Abstract | Tema disertacije odnosi se na poboljšanje kontrole dimenzija i oblika u brodograđevnom proizvodnom procesu fotogrametrijskom metodom. Točnost izrade međuproizvoda ključ je veće proizvodnosti sastavljanja brodskog trupa. Fotogrametrijska metoda omogućuje brže mjerenje oblika i dimenzija, te rano otkrivanje netočnosti kada se ispravci mogu jednostavnije izvesti. U prvom, uvodnom poglavlju disertacije, definiran je problem i svrha rada, dosadašnje spoznaje o problemima točnosti dimenzija i oblika i postavljena je hipoteza rada. Drugo poglavlje prikazuje postojeće stanje metoda kontrole dimenzija i oblika u brodograđevnom procesu. Razmatrane su tradicionalne i optičke metode, te alati i uređaji. Primjerima su ilustrirani postupci kontrole u predmontaži kao i postupci mjerenja koji se obavljaju prije porinuća. Prikazan je i standard dopuštenih odstupanja koji propisuju klasifikacijske ustanove. Treće je poglavlje posvećeno fotogrametrijskoj metodi. Prikazana je teorijska osnova metode, te odgovarajući fotogrametrijski sustav. Razmatrane su osnovne operacije i uvjeti koji moraju biti ispunjeni da bi se mjerenje kvalitetno obavilo, a rezultati mjerenja bili točni i pouzdani. Opisane su sve faze postupka mjerenja od izbora objekta, definiranja zadataka mjerenja do analize i prikazivanja mjernih rezultata. Izložen je i trend razvoja fotogrametrijskog sustava koji omogućuje brže i efikasnije mjerenje. četvrto poglavlje odnosi se na mogućnosti primjene fotogrametrijske metode u kontroli dimenzija i oblika u svim fazama brodograđevnog proizvodnog procesa, odnosno na kontrolu oblika dijelova, njihovog međusobnog položaja te usporedbu rezultata mjerenja sa CAD modelom u fazama obrade elemenata, predmontaže i montaže trupa na dilju. U petom poglavlju prikazane su specifičnosti fotogrametrijske metode u brodograđevnoj primjeni pomoću mjerenja u fazama predmontaže i montaže sekcija brodske strukture. U fazi predmontaže sekcija razmatrana je kontrola oblika i međusobnog položaja dijelova sekcije, kontrola mjera zadanih tehnološkom uputom, te kontrola oblika i dimenzija sekcije usporedbom sa CAD modelom. U fazi montaže sekcija prikazane su analize odstupanja sekcijskih spojeva metodom preklapanja mjerenja sekcije i mjerenja pozicije na brodu temeljem čega se predlažu korekcije spojnog ruba. Vrijednosti predloženih i izvedenih korekcija uspoređuju se da bi se ocijenila točnost metode i pouzdanost rezultata mjerenja. Isto tako se preklapa CAD model sekcije i rezultati mjerenja njene buduće pozicije na brodu. Temeljem ovih rezultata ocijenjuje se točnost sekcijskog spoja. Uspoređuju se i predložene korekcije ovih analiza da bi se ocijenila točnost dimenzija i oblika sekcija te metode preklapanja rezultata mjerenja u programskom paketu. U šestom poglavlju razmatra se prikladnost fotogrametrijske metode u brodogradnji. U razmatranje su uključene potrebe i mogućnosti, razvoj mjerne metode te uvjeti primjene. Zaključno su istaknute prednosti primjene fotogrametrijske metode u brodograđevnom proizvodnom procesu. |
Abstract (english) | Topic of this dissertation is improvement of dimensional and shape control in shipbuilding production process by using photogrammetric method. Accuracy of building units is the key of larger productivity of the ship hull assembly. Photogrammetric method enables fast measurement of dimensions and shape and early detection of possible inaccuracies in a stage when all corrections of structures can be done simply. First chapter, introduction, defines the following: problem, aim of the topic and describes up-to-date cognitions about problems of dimension and shape accuracy in the shipbuilding process. Hypothesis is set at the end of chapter. Second chapter elaborates actual activities of dimensional and shape control in the shipbuilding process. Both traditional and optical methods and devices are examined. The methods of control are illustrated by examples at subassembly and assembly stage. The standard of allowable tolerances, set by classification societies, is presented. Third chapter focuses on the photogrammetric method. Theoretical basic of method and photogrammetric system are presented. Basic activities and demands for correct measurement are also defined. Phases of measurement procedure are described, including selection of measuring object, defining measurement tasks, results analysis and presentation. Ways of development of the photogrammetric system, which would enable faster and more effective measurement, is presented. Fourth chapter elaborates possibilities of implementation of the photogrammetric method in dimensional and shape control in the shipbuilding production process. It contains implementation possibilities for shape control of elements, control of elements positions and comparison of measurement results with CAD model in stages of elements work, subassembly and assembly in the building berth. In the fifth chapter, peculiarities of photogrammetric method in the shipbuilding are presented, with measurements in the ship structures subassembly and assembly stages. Topic of this dissertation is improvement of dimensional and shape control in shipbuilding production process by using photogrammetric method. Accuracy of building units is the key of larger productivity of the ship hull assembly. Photogrammetric method enables fast measurement of dimensions and shape and early detection of possible inaccuracies in a stage when all corrections of structures can be done simply. First chapter, introduction, defines the following: problem, aim of the topic and describes up-to-date cognitions about problems of dimension and shape accuracy in the shipbuilding process. Hypothesis is set at the end of chapter. Second chapter elaborates actual activities of dimensional and shape control in the shipbuilding process. Both traditional and optical methods and devices are examined. The methods of control are illustrated by examples at subassembly and assembly stage. The standard of allowable tolerances, set by classification societies, is presented. Third chapter focuses on the photogrammetric method. Theoretical basic of method and photogrammetric system are presented. Basic activities and demands for correct measurement are also defined. Phases of measurement procedure are described, including selection of measuring object, defining measurement tasks, results analysis and presentation. Ways of development of the photogrammetric system, which would enable faster and more effective measurement, is presented. Fourth chapter elaborates possibilities of implementation of the photogrammetric method in dimensional and shape control in the shipbuilding production process. It contains implementation possibilities for shape control of elements, control of elements positions and comparison of measurement results with CAD model in stages of elements work, subassembly and assembly in the building berth. In the fifth chapter, peculiarities of photogrammetric method in the shipbuilding are presented, with measurements in the ship structures subassembly and assembly stages. For section in subassembly stage, section elements shape and positions control, control of measures determined with technological documentation and control of shape and dimensions of sections in comparison with CAD model are examined. For section in assembly stage, analyses of section joint aberrance are presented. Measurement results of the section and position on the ship are overlapped. Corrections of the section edge based on measurement results are suggested. Values of suggested and real corrections are compared and the accuracy of method and measurement results reliability is reviewed. CAD model of the section and measurement results of ship are also overlapped. Accuracy of the section joint on the ship based on measurement results is reviewed. Comparison of suggested corrections is performed after analyses. Results are used to review accuracy of section dimensions and shape. The results are also used to review the method of measurement results overlapping in program package. In the sixth chapter, suitableness of the photogrammetric method in the shipbuilding is examined. The examination involves needs, possibilities, development and conditions of use. Conclusions contain advantages of using the photogrammetric method in the shipbuilding process. |