Abstract | U diplomskom radu je konstruiran i izrađen 3D tiskač sa grijanom komorom koji radi na principu taložnog očvršćivanja. Taložno očvršćivanje je jedan od postupaka aditivne proizvodnje, koji je najviše zastupljen kod niskobudžetnih 3D tiskača, jer za izradu takvog uređaja nisu potrebne skupe komponente ( kao što su kod SLS postupka laserska glava, kod PolyJet postupka UV svjetiljka itd.. ). Glavni nedostatci taložnog očvršćivanja su vidljivost tiskanih slojeva i manja dimenzijska točnost nego kod ostalih postupaka aditivne proizvodnje. Prednost mu je niska cijena izrade dijelova ( pa i samog stroja ) te se zbog toga često koristi kod proizvodnje početnih koncepata u razvoju proizvoda, odnosno prototipova. Kod konstrukcije 3D tiskača, najprije je potrebno razraditi mehanički dio, odnosno odrediti način gibanja pojedinih osi ( X, Y, Z ). Zatim je potrebno razraditi upravljački, odnosno elektronički i električni dio, te na kraju sastaviti grijanu komoru. Ekstruder izrađenog 3D tiskača giba se u jednoj ravnini ( X - Y ), dok se grijana platforma na koju se vrši tiskanje giba po Z osi. Tako se omogućava izrada tvorevina u 3D prostoru. Kao glavni dio upravljačkog sustava odabran je Arduino Mega 2560 mikrokontroler, koji upravlja i usklađuje gibanja ekstrudera i grijane platforme sa signalima koje prima od brojnih senzora koji se koriste kod 3D tiskanja (senzori položaja, temperature). Kako bi se omogućilo tiskanje iz materijala s velikim koeficijentom stezanja uslijed hlađenja, kao što je ABS, potrebno je osigurati grijanje radnog prostora tiskača. Grijana komora se može razmatrati kao zaseban uređaj kojem je funkcija održavanje konstantne temperature unutar radnog volumena. Zbog toga je za izradu grijane komore potrebno osigurati izolirani radni prostor s posebnim grijačem i senzorom temperature. |
Abstract (english) | In this graduate thesis is developed a 3D printer with a heated chamber, which is operating on the principle of fused deposition modeling. Fused deposition modeling is one of the many additive manufacturing processes chiefly represented in low-cost 3D printers because to compose it there are not needed ecpensive components such as at SLS process laser head, PolyJet UV lamp, etc. The main defects of fused deposition modeling are visibility of the printed layers and smaller dimensional accuracy than in other additive manufacturing processes. The main advantage is the low cost of making parts ( and even the machine itself ) and therefore is often used in the production of initial concepts of a products ( ie prototypes ). In the design of a 3D printer, it is first necessary to elaborate a mechanical part, ie to determine the mode of movement of an individual axes ( X,Y,Z ). Afterwards is necessary to elaborate the control, ie the electronical and electrical parts, and finally to form a heated chamber. The extruder of the 3D printer runs in one plane ( X - Y ), while the heated platform, on which the printing is done, runs in Z axis. This allows us to create models in three-dimensional space. The main part of the control system is the Arduino Mega 2560 microcontroller, which manage and tunes the motion of the extruder and heated platform with signals that receives from a sensors used in 3D printing process ( position and temperature sensors ). If we use the, the above described, 3D printer without a heated chamber, we can create models with low shrinkage ( PLA and PETG ) or a high shrinkage material models, but small scale measures. For this reason, it is important that the 3D printer has a heated chamber that allows printing models of a material with high shrinkage ( ABS ). A heated chamber can be considered as a separate device with a function to maintain a constant temperature within its operating volume. For that reason, to create a heated chamber it is necessary to close the working volume and to have a special heater and temperature sensor that sends the signal to heater if the operating volume needs to be warmed or not. |