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SAZETAK

U kontekstu energetske tranzicije i dekarbonizacije elektroenergetskog sektora, precizno
dugoroc¢no planiranje kljucan je preduvjet za donosSenje ispravnih investicijskih odluka. Ovaj
zavr$ni rad istrazuje i1 usporeduje dva fundamentalno razlicita pristupa za izradu dugoro¢nih
profila potro$nje elektricne energije: deterministicki, temeljen na "bottom-up” analizi, i
statisti¢ki pristup, temeljen na primjeni SARIMA modela. Cilj rada je analizirati utjecaj odabira
metode predvidanja na rezultate simulacija energetskog sustava Republike Hrvatske pomocu

softvera EnergyPLAN.

Za potrebe rada, na temelju povijesnih podataka o satnoj potrosnji za 2018. godinu, razvijen je
i validiran SARIMA model. Potom su generirani profili optere¢enja za godine 2030., 2040. i
2050. primjenom obiju metoda te su koriSteni kao ulazni podaci u simulacijske scenarije, uz

nepromijenjenu proizvodnu stranu sustava.

Rezultati su pokazali da primjena dviju metoda dovodi do fundamentalno razli¢itih profila
optere¢enja. Dugoro¢na ekstrapolacija SARIMA modelom rezultirala je generiranjem
nerealistinog, "izgladenog" profila s izrazito visokim faktorom opterecenja, koji gubi kljucnu
satnu 1 dnevnu varijabilnost. Koristenje takvog profila u EnergyPLAN simulacijama dovelo je
do znacajnih razlika u klju¢nim tehno-ekonomskim pokazateljima, ukljuc¢ujué¢i ukupne godisnje
troskove sustava, emisije CO: i koli¢inu viska elektricne energije. Rad zakljuCuje da direktna
primjena SARIMA modela za dugoro¢no predvidanje nije prikladna jer moze dovesti do
pogresnih zakljuCaka o potrebama sustava za fleksibilnosc¢u, te se naglasava klju¢na vaznost
odabira metodologije predikcije u procesu strateskog energetskog planiranja.

Kljuéne rije¢i: Energetsko planiranje, predikcija potrosnje, ARIMA model, EnergyPLAN,

elektroenergetski sustav, vremenski nizovi, faktor opterecenja
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SUMMARY

In the context of the energy transition and the decarbonisation of the electricity sector, accurate
long-term planning is a key prerequisite for making sound investment decisions. This final
thesis investigates and compares two fundamentally different approaches for developing long-
term electricity consumption profiles: the deterministic approach, based on a "bottom-up"
analysis, and the statistical approach, based on the application of the SARIMA model. The aim
of the thesis is to analyse the impact of the chosen forecasting method on the simulation results
of the Croatian energy system using the EnergyPLAN software.

For the purpose of this thesis, a SARIMA model was developed and validated based on
historical hourly consumption data for the year 2018. Subsequently, load profiles for the years
2030, 2040, and 2050 were generated using both methods and were used as input data for
simulation scenarios, while keeping the supply side of the system unchanged.

The results have shown that the application of the two methods leads to fundamentally different
load profiles. The long-term extrapolation with the SARIMA model resulted in an unrealistic,
"flattened™ profile with an extremely high load factor, which loses the crucial hourly and daily
variability. The use of such a profile in EnergyPLAN simulations led to significant differences
in key techno-economic indicators, including total annual system costs, CO. emissions, and the
amount of excess electricity production. The thesis concludes that the direct application of the
SARIMA model for long-term forecasting is not appropriate as it can lead to erroneous
conclusions about the system's flexibility needs, and it emphasizes the critical importance of

selecting the prediction methodology in the strategic energy planning process.

Key words: Energy Planning, Demand Forecasting, ARIMA Model, EnergyPLAN, Power

System, Time Series, Load Factor
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1. UvOD

Suvremeni energetski sustavi nalaze se u srediStu globalne transformacije, potaknute potrebom
za rjeSavanjem klimatskih promjena i imperativom za postizanjem odrzive buduc¢nosti. Proces
energetske tranzicije, koji podrazumijeva sveobuhvatno napustanje fosilnih goriva i prelazak
na cCiste, obnovljive izvore energije, predstavlja jedan od najvecih tehnoloskih i drustvenih
izazova 21. stoljeCa. U jezgri ove tranzicije nalazi se elektroenergetski sektor, c¢ija
dekarbonizacija sluzi kao temelj za smanjenje emisija U ostalim sektorima, poput prometa i
industrije. Planiranje buducih elektroenergetskih sustava u ovom dinami¢nom 1 neizvjesnom
okruzenju iznimno je slozen zadatak. Odluke o ulaganjima u dugovje¢nu i kapitalno intenzivnu
infrastrukturu, koje se donose danas, imat ¢e duboke i dalekosezne posljedice na gospodarstvo
1drustvo u desetlje¢ima koja dolaze. Ucinkovito upravljanje ovim procesom zahtijeva primjenu
sofisticiranih alata za modeliranje koji omogucuju simulaciju i analizu razli¢itih razvojnih
scenarija. Medutim, pouzdanost i valjanost rezultata dobivenih ovim alatima presudno ovise o
kvaliteti njihovih ulaznih podataka. Ovaj zavr$ni rad bavi se upravo jednim od najvaznijih
ulaznih parametara, a to je predvidanje buduce potrosnje elektricne energije. Svrha rada je
sustavno istraziti kako dva fundamentalno razli¢ita metodoloSka pristupa za izradu profila
buduce potrosnje, deterministicki 1 statisticki, utjecu na konaCne rezultate strateSkog
energetskog planiranja, ¢ime se direktno ispituje osjetljivost planskih odluka na odabranu

metodologiju predvidanja.

1.1. Kontekst energetskog planiranja

Moderno energetsko planiranje odvija se unutar slozenog okvira definiranog konceptom
poznatim kao energetski trilema, koji prepoznaje tri temeljna, Cesto medusobno suprotstavljena
cilja: energetsku sigurnost, socijalnu jednakost i okoliSnu odrzivost [1]. Energetska tranzicija,
sa svojim fokusom na dekarbonizaciju, izravno adresira stup okoliSne odrzivosti, no
istovremeno stvara nove i1 zna¢ajne pritiske na preostala dva stupa. Na globalnoj razini, Pariski
sporazum postavio je pravni okvir za ograni¢avanje globalnog zatopljenja, obvezujuéi drzave
potpisnice na definiranje vlastitih nacionalno utvrdenih doprinosa smanjenju emisija [2]. Na
razini Europske unije, ova je obveza pretoc¢ena u jo§ ambiciozniji zakonodavni paket, Europski
zeleni plan, ¢iji je cilj postizanje klimatske neutralnosti do 2050. godine [3]. Tehnoloska

okosnica za postizanje ovih ciljeva jest masovna integracija obnovljivih izvora energije (OIE),

prvenstveno vijetroelektrana i suncanih elektrana, no ona sa sobom donosi fundamentalni
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tehnicki izazov koji mijenja paradigmu upravljanja elektroenergetskim sustavom. Za razliku od
konvencionalnih, upravljivih termoelektrana ili hidroelektrana s velikim akumulacijama, ¢ija
se proizvodnja moze precizno kontrolirati, proizvodnja iz vjetra i sunca je varijabilna,
intermitentna i stohasticka. Ova varijabilnost dovodi do nekoliko klju¢nih problema. Prvo,
dolazi do potencijalnog vremenskog raskoraka izmedu razdoblja visoke proizvodnje i razdoblja
vr$ne potros$nje. Drugo, smanjuje se ukupna inercija sustava jer obnovljivi izvori temeljeni na
inverterima ne doprinose inerciji kao velike rotirajuée mase sinkronih generatora. Posljedi¢no,
odrzavanje klju¢ne ravnoteze izmedu proizvodnje i potro$nje u svakom trenutku postaje znatno
teze 1 zahtijeva nove izvore fleksibilnosti, kao $to su sustavi za pohranu energije, upravljanje
potro$njom te jacanje prekograni¢nih interkonekcija.

U tom kontekstu, Republika Hrvatska, kao punopravna ¢lanica Europske unije, obvezna je
slijediti zacrtane ciljeve, Sto je i definirano kroz njezinu Energetsku strategiju do 2030. s
pogledom na 2050. godinu, koja predvida znac¢ajan porast udjela OIE i postupnu transformaciju
energetskog sektora [4]. Za planiranje i analizu ovako sloZenih scenarija tranzicije, neophodno
je koristenje naprednih alata. Softver EnergyPLAN, razvijen na SveucilisStu u Aalborgu,
predstavlja jedan od vodecih svjetskih alata za modeliranje nacionalnih 1 regionalnih
energetskih sustava [5]. Njegova snaga lezi u holistiCkom pristupu i satnoj rezoluciji simulacije,
Sto omogucuje detaljnu analizu interakcija izmedu razlicitih sektora i procjenu klju¢nih tehno-
ekonomskih pokazatelja. Ipak, kljucni preduvjet za dobivanje smislenih i pouzdanih rezultata
jest koristenje kvalitetnih ulaznih podataka koji vjerno opisuju buduce stanje sustava. Medu
svim ulaznim podacima, profil buducée potraznje za elektricnom energijom istice se kao jedan
od najutjecajnijih, a njegova izrada predmet je razli¢itih metodoloskih pristupa koje ovaj rad

sustavno istrazuje.

1.2. Vaznost predikcije potroSnje

Predvidanje buduce potrosnje elektrine energije, odnosno izrada profila optereéenja,
predstavlja temeljnu i nezaobilaznu aktivnost u upravljanju i planiranju svakog
elektroenergetskog sustava. Vaznost ove discipline moze se sagledati kroz razli¢ite vremenske
horizonte, od operativnog vodenja sustava u stvarnom vremenu do donoSenja dugoro¢nih
strateSkih odluka. Na kratkoro¢noj, operativnoj razini, prognoze koje obuhvacéaju nadolaze¢e
sate 1 dane kljucne su za ekonomican i siguran rad sustava. One sluZe kao osnova za planiranje
angazmana elektrana, osiguravanje dovoljne rezerve snage za pokrivanje nepredvidenih ispada

ili porasta potrosnje te za u€inkovito upravljanje tokovima snaga u prijenosnoj i distribucijskoj
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mrezi. Na dugorocnoj, strateskoj razini, koja je u fokusu ovog rada, predvideni profili
opterecenja koriste se kao temelj za donoSenje najvaznijih investicijskih odluka o buduénosti

cjelokupnog energetskog sektora.

Preciznost dugoro¢nih prognoza ima izravne i znacajne tehnicke i ekonomske posljedice.
Sustavno podcjenjivanje buduce potrosnje, a osobito njezinih vr$nih vrijednosti, moze dovesti
do nedovoljnih ulaganja u proizvodne i mrezne kapacitete. Takav ishod dugoro¢no smanjuje
sigurnost opskrbe 1 povecava rizik od poremecaja u radu sustava, pa €ak i restrikcija potrosnje
u kritiénim razdobljima. S druge strane, sustavno precjenjivanje buduce potraznje rezultira
nepotrebnim i skupim investicijama u prekapacitiranu infrastrukturu. Takva ulaganja dovode
do pojave takozvane zarobljene imovine (eng. stranded assets), odnosno neiskoristenih ili slabo
iskoriStenih postrojenja Ciji se troSkovi u konacnici prelijevaju na krajnje korisnike kroz vise
cijene energije, smanjujuci tako ekonomsku konkurentnost cijelog gospodarstva.

U suvremenom kontekstu energetske tranzicije i visoke integracije obnovljivih izvora energije,
vaznost realisticnog profila optere¢enja postaje joS izrazenija. Buduéi da je proizvodnja iz
vjetroelektrana i sun¢anih elektrana varijabilna, tocan prikaz dinamike potrosnje kljucan je za
ispravnu procjenu buducih izazova. Naime, nerealno "izgladen" profil potroSnje moze prikriti
stvarni intenzitet 1 trajanje razdoblja u kojima se pojavljuju veliki viskovi energije iz OIE, §to
dovodi do podcjenjivanja potrebe za sustavima pohrane energije. Jednako tako, takav profil
moze umanjiti stvarne vr$ne potrebe sustava koje se moraju pokriti iz upravljivih izvora, §to
dovodi do podcjenjivanja potrebe za vr$nim elektranama i drugim izvorima fleksibilnosti.
Stoga, kvaliteta i realizam profila opterecenja izravno utjeCu na sve kljucne zakljucke o tehno-

ekonomskoj izvedivosti 1 operativnoj stabilnosti buduc¢ih energetskih scenarija.

1.3. Problem istraZivanja

S obzirom na klju¢nu ulogu profila opterecenja u strateSkom planiranju, odabir metodologije
za njegovu izradu predstavlja jedan od temeljnih koraka koji prethodi svakoj tehno-ekonomskoj
analizi. U praksi su se iskristalizirala dva fundamentalno razli¢ita pristupa. S jedne strane nalazi
se deterministicki pristup, koji se u ovom radu temelji na detaljnom inZenjerskom "bottom-up"
[14] modeliranju. Za razliku od jednostavnog skaliranja povijesnih podataka, ovaj pristup
dekomponira ukupnu potrosnju na sektore i krajnje namjene te modelira njihov buduéi razvoj
uzimajuéi u obzir vanjske faktore poput tehnoloskih promjena, demografije i energetskih

politika. Njegova klju¢na karakteristika je sposobnost generiranja strukturno novog profila
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opterecenja koji odrazava ocekivane promjene u navikama i tehnologijama potrosnje,

zadrzavajuci pritom realisti¢nu dnevnu i1 sezonsku dinamiku.

S druge strane nalazi se statisticki pristup, koji je predmet brojnih istrazivanja u podrucju
energetike [16], a ¢iji je istaknuti predstavnik u ovom radu ARIMA model. Za razliku od
deterministicke metode, ARIMA ne kopira povijesne podatke, ve¢ nastoji identificirati i
matematicki modelirati temeljne statisticke procese i uzorke koji se u tim podacima nalaze.
Model uci o trendovima, sezonalnosti 1 autokorelacijskim vezama iz proslosti kako bi generirao
potpuno novu, sintetiCku projekciju buducih vrijednosti. Ovaj pristup stoga ne predstavlja
presliku stvarnosti, ve¢ njezinu matemati¢ku apstrakciju i ekstrapolaciju. Problem kojim se ovaj
rad bavi proizlazi iz suceljavanja ove dvije razli¢ite filozofije: oCuvanje empirijske, povijesne
strukture nasuprot generiranju nove strukture temeljene na statistickim zakonitostima. Buduci
da oba pristupa, polaze¢i od istih povijesnih podataka, zbog svoje razli¢ite prirode nuzno
generiraju strukturno drugacije profile buduceg opterecenja, postavlja se sredi$nje istrazivacko
pitanje o prirodi i magnitudi razlika u kljuénim tehno-ekonomskim pokazateljima

funkcioniranja buduceg elektroenergetskog sustava, kada se kao ulazni podatak u simulacijski

model koriste profili potrosnje dobiveni deterministickom 1 statistickom metodom.

1.4.  Cilj i hipoteza rada

Sukladno definiranom problemu istrazivanja, postavljen je glavni cilj ovog zavrSnog rada, a to
je provesti sustavnu i objektivnu usporedbu deterministickog i statistickog pristupa u predikciji
energetske potroSnje te detaljno analizirati 1 kvantificirati utjecaj tih pristupa na rezultate
simulacija u softveru EnergyPLAN. Za ostvarenje glavnog cilja, a u skladu sa zadatkom
zavr$nog rada, definirani su specifi¢ni ciljevi. To obuhvacéa prikupljanje i1 detaljnu analizu
povijesnih podataka o ukupnoj satnoj potrosnji elektricne energije u Republici Hrvatskoj;
razvoj 1 primjenu sezonskog ARIMA modela za predikciju buduce satne potrosnje; prilagodbu
i koristenje EnergyPLAN modela za simulaciju rada elektroenergetskog sustava temeljem
dvaju razli¢itih scenarija; usporedbu rezultata scenarija koji koristi ARIMA predikcije s onim
koji se temelji na deterministiCkom profilu; te kona¢no, analizu uocéenih razlika u rezultatima
modeliranja i formulaciju preporuka za vrednovanje 1 upotrebu metoda predikcije u budu¢em
energetskom planiranju.

Na temelju postavljenih ciljeva, definirana je i srediSnja radna hipoteza ovog istraZivanja.
Hipoteza glasi: Primjena deterministickog pristupa, koji generira profil potrosnje temeljen na

detaljnoj sektorskoj analizi buduéih potreba, i statisticke ARIMA metode, koja generira profil
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temeljen na matematickom modelu, rezultirat ¢e generiranjem strukturno znacajno razli¢itih
profila opterecenja. Pretpostavlja se da Ce te strukturne razlike, kada se profili koriste kao ulazni
podaci u EnergyPLAN simulacije, dovesti do mjerljivih i strateski relevantnih razlika u
klju¢nim tehno-ekonomskim pokazateljima sustava. Oc¢ekuje se da ¢e se razlike ocCitovati u
procijenjenoj potrebnoj vr$noj snazi, koli¢ini neiskoriStene energije iz obnovljivih izvora,
potrebama za fleksibilno$¢u sustava te, posljedicno, u ukupnim godisnjim troskovima sustava,
¢ime ¢e se potvrditi da odabir metode predikcije ima direktan i nezanemariv utjecaj na zakljucke

proizasle iz procesa strateskog energetskog planiranja.

1.5. Struktura rada

Kako bi se sustavno provelo istraZivanje, ostvarili zadani ciljevi 1 provjerila postavljena
hipoteza, ovaj zavrSni rad je organiziran u Sest medusobno povezanih poglavlja. Nakon ovog
uvodnog poglavlja, slijedi drugo poglavlje pod naslovom Teorijska podloga, koje pruza pregled
temeljnih koncepata modeliranja energetskih sustava, s naglaskom na softver EnergyPLAN. U
njemu se takoder detaljno objasnjava teorija analize vremenskih nizova i principi rada ARIMA
i SARIMA modela, kao i metrike za njihovu evaluaciju. Tre¢e poglavlje, Metode, korak po
korak opisuje cjelokupni postupak provedenog istrazivanja, od prikupljanja i analize podataka,
preko razvoja i validacije SARIMA modela, do postavljanja i opisa scenarija u softveru
EnergyPLAN. Cetvrto poglavlje, Rezultati, objektivno i pregledno prikazuje sve dobivene
ishode. To ukljucuje graficku 1 numericku usporedbu profila opterecenja dobivenih
deterministickim i SARIMA pristupom, kao i1 kljune izlazne pokazatelje iz EnergyPLAN
simulacija za oba promatrana scenarija. U petom poglavlju, Rasprava, provodi se detaljna
analiza 1 interpretacija dobivenih rezultata, usporeduju se pristupi te se raspravlja o
implikacijama uocenih razlika na proces energetskog planiranja. Na samom kraju, Sesto
poglavlje, Zaklju€ak, sazima kljucne spoznaje rada, daje konac¢ni osvrt na istrazivacko pitanje

1 postavljenu hipotezu te nudi preporuke za buduca istrazivanja u ovom podrucju.
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2. TEORIJSKA PODLOGA

Nakon §to su u uvodnom poglavlju postavljeni problem, ciljevi i hipoteza istrazivanja, ovo
poglavlje posveéeno je izlaganju teorijske osnove nuzne za razumijevanje metodologije i
analize koja slijedi. U prvom dijelu poglavlja obraduju se osnovni koncepti modeliranja
energetskih sustava, s posebnim naglaskom na karakteristike i nacin rada softvera
EnergyPL AN, koji je koristen kao analiticki alat u ovom radu. Drugi dio poglavlja usredotocen
je na teoriju vremenskih nizova, detaljno objasnjavajuéi temeljne pojmove i principe rada
ARIMA modela, kao i metricke pokazatelje koji se koriste za ocjenu njihove uspjeSnosti. Time
se postavlja teorijski okvir za obje metode generiranja profila potrosnje koje se u radu

usporeduju.

2.1. Modeliranje energetskih sustava i softver EnergyPLAN

Modeliranje energetskih sustava predstavlja klju¢nu disciplinu u podruc¢ju energetike koja
omogucuje analizu, planiranje 1 optimizaciju slozenih sustava za proizvodnju, pretvorbu,
prijenos i potro$nju energije. Svrha energetskog modeliranja je stvoriti pojednostavljenu,
matematicku reprezentaciju stvarnog energetskog sustava kako bi se razumjele interakcije
izmedu njegovih komponenti, predvidjelo njegovo ponaSanje pod razli¢itim uvjetima te
procijenile tehnicke, ekonomske 1 okoliSne posljedice razli¢itih strateskih odluka. Primjenom
energetskih modela moguce je testirati efekte razlicitih politika, poput uvodenja naknada za
emisije CO: ili subvencioniranja odredenih tehnologija, prije njihove stvarne implementacije,
¢ime se smanjuju investicijski rizici i povecava kvaliteta dugoro¢nog planiranja [7].

Energetski modeli mogu se klasificirati prema razli¢itim kriterijima, no jedna od temeljnih
podjela jest na optimizacijske i simulacijske modele. Optimizacijski modeli koriste
matematicke algoritme kako bi pronasli optimalno rjeSenje s obzirom na zadani cilj, primjerice
minimizaciju ukupnih troskova sustava ili emisija staklenickih plinova, pri ¢emu model
samostalno odreduje optimalne kapacitete i na¢in rada sustava. Simulacijski modeli, s druge
strane, ne traze optimum, ve¢ odgovaraju na pitanje "Sto ako?". Korisnik u ovim modelima
unaprijed definira sve karakteristike sustava, ukljucujuéi instalirane kapacitete, a model zatim

simulira njegov rad i izraCunava ishode [8].

Softver EnergyPLAN, koji je koriSten u ovom radu, pripada skupini simulacijskih modela.
Razvijen je na Odsjeku za planiranje na SveuciliStu Aalborg u Danskoj te se etablirao kao jedan

od vodecih alata za analizu i1 planiranje kompleksnih energetskih sustava na nacionalnoj i
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regionalnoj razini. Njegov temeljni princip rada nije optimizacija, ve¢ detaljna simulacija

energetskih tokova. Jedna od klju¢nih prednosti modela je njegova satna vremenska rezolucija,
Sto znaci da provodi energetske bilance za svaki od 8760 sati u godini. Ovakva rezolucija od
presudne je vaznosti za analizu sustava s visokim udjelom varijabilnih obnovljivih izvora
energije, poput vjetroelektrana i suncanih elektrana, jer omogucuje precizno uocavanje

vremenskog nepodudaranja izmedu njihove proizvodnje i potrosnje [7].
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Slikal. Shema alata EnergyPLAN
EnergyPLAN primjenjuje holisticki pristup, Sto znaci da je sposoban modelirati cjelokupni
nacionalni energetski sustav, ukljuujuéi elektroenergetski, toplinski (centralizirano i
individualno grijanje), sektor hladenja, transportni i industrijski sektor. Ulazni podaci modela
obuhvacaju distribucije satne potraznje za energijom u razli¢itim sektorima, instalirane
proizvodne kapacitete, tehnicke karakteristike postrojenja poput stupnja djelovanja i
raspolozivosti, kao 1 ekonomske parametre poput cijena goriva, operativnih troskova i
emisijskih faktora. Na temelju zadanih ulaznih podataka, model kao izlazne rezultate pruza
detaljnu godisnju energetsku bilancu, ukupne emisije stakleni¢kih plinova, udio obnovljivih
izvora u finalnoj potrosnji, koli¢inu neiskoriStene energije, potrebe za uvozom i izvozom
energije te ukupne godiSnje troskove sustava, ukljucujuéi troskove goriva te fiksne i varijabilne

operativne troSkove. Zbog ovih karakteristika, EnergyPLAN se koristi diljem svijeta za izradu
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i analizu nacionalnih energetskih strategija, a posebno je pogodan za istrazivanje scenarija s

visokim udjelom obnovljivih izvora [5, 7].

2.2. Vremenski nizovi i prediktivho modeliranje

Vremenski niz (eng. time series) je niz tocaka podataka koje su prikupljene u uzastopnim,
najces¢e jednakim, vremenskim intervalima. Podaci ove wvrste prisutni su u brojnim
znanstvenim 1 gospodarskim podrucjima, od financija i meteorologije do energetike. Potrosnja
elektricne energije na satnoj razini, koja se analizira u ovom radu, predstavlja tipian primjer
vremenskog niza. Analiza vremenskih nizova obuhvaca skup metoda kojima se nastoje otkriti
1razumjeti temeljni uzorci 1 strukture u podacima, a glavni cilj je Cesto razvoj modela koji moze
predvidjeti buduce vrijednosti niza [6].

Svaki vremenski niz moze se dekomponirati na nekoliko osnovnih komponenti koje opisuju

njegovo ponasanje. Te komponente su:

1. Trend: Predstavlja dugoro¢nu tendenciju ili smjer kretanja niza. Trend moze biti
uzlazni, silazni ili stacionaran (ravan), a odrazava dugoro¢ne promjene u sustavu, kao

Sto su gospodarski rast ili demografske promjene koje utjecu na potroSnju energije.

2. Sezonalnost: Odnosi se na periodi¢ne, ponavljaju¢e fluktuacije koje se javljaju u
fiksnim vremenskim intervalima. Za potroSnju elektricne energije karakteristicno je
postojanje viSestruke sezonalnosti. Na primjer, postoji dnevna sezonalnost s vrhovima
potrosnje ujutro i poslijepodne, tjedna sezonalnost s nizom potro$njom tijekom vikenda,
te godiSnja sezonalnost s ve¢om potrosnjom tijekom zime (zbog grijanja) i ljeta (zbog
hladenja).

3. Ciklus: Predstavlja fluktuacije koje se takoder ponavljaju, ali u nepravilnim, nefiksnim
intervalima, najée$¢e duzim od jedne godine. Ovi ciklusi su Cesto povezani s

makroekonomskim kretanjima i poslovnim ciklusima.

4. Neregularnost (Sum): Obuhvaca sve preostale, slu¢ajne i nepredvidive varijacije u nizu

koje se ne mogu pripisati trendu, sezonalnosti ili ciklusu.

Jedan od klju¢nih koncepata u analizi vremenskih nizova jest stacionarnost. Vremenski niz se
smatra stacionarnim ako se njegova statisticka svojstva, kao $to su srednja vrijednost, varijanca
i autokorelacija, ne mijenjaju s vremenom. Vecina stvarnih ekonomskih i energetskih
vremenskih nizova nije stacionarna jer sadrze trend i1 sezonalnost. Stacionarnost je, medutim,

preduvjet za primjenu mnogih statistickih modela, uklju¢uju¢éi ARIMA model. Stoga se
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nestacionarni nizovi moraju transformirati u stacionarne, a najces¢a metoda za postizanje toga

je diferenciranje, odnosno ra¢unanje razlike izmedu uzastopnih opazanja.

Za identifikaciju strukture vremenskog niza koriste se dva vazna alata: autokorelacijska
funkcija (ACF) i parcijalna autokorelacijska funkcija (PACF). ACF myjeri korelaciju izmedu
vremenskog niza i njegovih prethodnih vrijednosti (lagova). PACF mjeri korelaciju izmedu
niza i njegovog laga, ali nakon $to se ukloni utjecaj svih kracih, posrednih lagova. Graficki
prikazi ovih funkcija, poznati kao korelogrami, sluze za identifikaciju redova modela, odnosno

za odredivanje parametara u ARIMA modelima [6, 9].

2.3.  ARIMA i SARIMA modeli

ARIMA (Autoregressive Integrated Moving Average) model predstavlja jednu od najpoznatijih
1 najCeS¢e koristenih klasa statistickih modela za analizu 1 predvidanje stacionarnih ili
stacionariziranih vremenskih nizova. Njegova popularnost proizlazi iz sposobnosti da modelira
sirok spektar razli¢itih vremenskih struktura. Naziv modela je akronim koji opisuje njegove tri

temeljne komponente [6]:

1. Autoregresivni (AR) dio: Ovaj dio modela pretpostavlja da trenutna vrijednost u nizu
ovisi 0 njezinim prethodnim vrijednostima. Linearna veza izmedu trenutne vrijednosti i
odredenog broja prethodnih vrijednosti definira autoregresivni proces. Red
autoregresivnog dijela oznacCava se parametrom p, Koji govori koliko se prethodnih

vrijednosti koristi za modeliranje trenutne.

2. Integrirani (1) dio: Ova komponenta odnosi se na proces diferenciranja kojim se
nestacionarni vremenski niz transformira u stacionarni. Red integriranog dijela, oznacen
parametrom d, odgovara broju diferenciranja potrebnih da bi se niz u¢inio stacionarnim.

Ako je niz ve¢ stacionaran, tada je d=0.

3. Dio pomi¢nih prosjeka (MA): Ovaj dio modela pretpostavlja da trenutna vrijednost
ovisi o prethodnim pogreskama predvidanja. Model pomi¢nih prosjeka je linearna
kombinacija sadasnje i prethodnih vrijednosti slucajne pogreske. Time model uzima u
obzir slucajne Sokove ili nepredvidene dogadaje iz proslosti. Red dijela pomi¢nih
prosjeka oznacava se parametrom g, koji govori koliko se prethodnih pogreSaka

predvidanja koristi u modelu.

Kombinacijom ovih triju komponenti dobiva se op¢i nesezonski ARIMA(p,d,q) model.

Medutim, za vremenske nizove koji, poput potrosnje elektricne energije, pokazuju jasne
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sezonske uzorke, osnovni ARIMA model nije dovoljan. Zbog toga se koristi njegovo prosirenje

poznato kao Sezonski ARIMA ili SARIMA model.

SARIMA model prosiruje ARIMA model ukljucivanjem dodatnog skupa sezonskih
komponenti koje modeliraju periodicne varijacije u podacima. Model se opisuje
notacijom SARIMA(p,d,q)(P,D,Q)m. Prva trojka parametara (p,d,q) odnosi se na nesezonski
dio modela, kao Sto je prethodno opisano. Druga trojka (P,D,Q) predstavlja sezonske

komponente, a njihovo znacenje je analogno nesezonskim parametrima:

o P: Red sezonskog autoregresivnog dijela.

o D: Broj sezonskih diferenciranja.

e Q: Red sezonskog dijela pomi¢nih prosjeka.
Parametar m predstavlja frekvenciju sezone, odnosno broj opazanja unutar jednog sezonskog
ciklusa. Na primjer, za satne podatke s dnevnom sezonalno§¢u, m=24. Za mjese¢ne podatke s
godiSnjom sezonalno$¢u, m=12. SARIMA model stoga istovremeno modelira i dugoro¢ne,
nesezonske ovisnosti 1 kratkoro¢ne, sezonske uzorke, §to ga ¢ini iznimno mo¢nim 1 fleksibilnim

alatom za modeliranje kompleksnih vremenskih nizova [6, 9].

2.4.  Evaluacija modela predvidanja

Nakon razvoja i treniranja modela za predvidanje vremenskih nizova, klju¢an korak koji slijedi
jest njegova evaluacija. Proces evaluacije sluzi za kvantitativnu procjenu uspjesnosti modela te
za usporedbu razli¢itih modela kako bi se odabrao onaj koji daje najpouzdanije rezultate. Ovaj
proces se obi¢no dijeli na dvije faze: odabir optimalnih parametara modela tijekom njegovog
razvoja te validaciju kona¢nog modela na podacima koje model prethodno nije vidio. Za svaku

od ovih faza koriste se specificni metricki pokazatelji.

Jedan od najc¢es¢e koriStenih pokazatelja za odabir modela jest Akaikeov informacijski
kriterij (AIC). AIC je statistiCka mjera koja se koristi za usporedbu relativne kvalitete razli¢itih
statistickih modela za zadani skup podataka. Njegova temeljna ideja je uspostavljanje ravnoteze
izmedu preciznosti modela, odnosno stupnja u kojem model odgovara podacima (eng. goodness
of fit), i njegove sloZenosti, odnosno broja parametara koje koristi. Model koji je previse
jednostavan mozda ne¢e mo¢i uhvatiti sve vazne uzorke u podacima, dok model koji je previSe
slozen moze dovesti do takozvanog preprilagodavanja (eng. overfitting), gdje se model

......

sposobnost generalizacije na nove podatke. AIC kaznjava modele s ve¢im brojem parametara,
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tezec¢i odabiru modela koji postize dobru preciznost uz §to manju slozenost. Pri usporedbi vise

modela, onaj s nizom vrijednos¢u AIC-a smatra se relativno boljim [10].

Nakon §to je model odabran, njegova stvarna sposobnost predvidanja mora se validirati na
testnom skupu podataka, odnosno na dijelu podataka koji nije koriSten za treniranje modela.
Time se simulira primjena modela u stvarnim uvjetima. Za ovu svrhu koriste se metrike
pogreske koje mjere odstupanje izmedu predvidenih vrijednosti i stvarnih, opazenih vrijednosti.
Neke od najvaznijih metrika su [9, 11]:

Srednja apsolutna pogreska (MAE - Mean Absolute Error): Predstavlja prosjek apsolutnih
vrijednosti razlika izmedu predvidenih 1 stvarnih vrijednosti. Buduéi da koristi apsolutne
vrijednosti, ova metrika ne uzima u obzir smjer pogresaka (jesu li predvidanja bila visa ili niza
od stvarnih vrijednosti), a sSvaka pogreska doprinosi ukupnoj vrijednosti linearno,
proporcionalno svojoj veli€ini. Lako je interpretirati jer je izraZena u istim jedinicama kao 1
originalni podaci.

Korijen srednje kvadratne pogreske (RMSE - Root Mean Squared Error): Ova metrika se
izracunava kao korijen prosjeka kvadrata razlika izmedu predvidenih i stvarnih vrijednosti.
Kvadratiranjem pogreSaka prije njihovog usrednjavanja, RMSE daje znatno vecu tezinu ve¢im
pogreskama. To znaci da je ova metrika posebno osjetljiva na velike, atipi¢ne pogreske (eng.
outliers). Kao i MAE, izrazena je u istim jedinicama kao i originalni podaci, Sto olakSava
interpretaciju. Zbog svojih svojstava, jedna je od najcesc¢e koristenih metrika za ocjenu modela

predvidanja.

Srednja apsolutna postotna pogreSka (MAPE - Mean Absolute Percentage Error):
Izracunava se kao prosjek apsolutnih postotnih pogresaka, gdje se svaka pogreska izrazava kao
postotak stvarne vrijednosti. Glavna prednost MAPE metrike je njezina neovisnost o skali
podataka, Sto je ¢ini korisnom za usporedbu tocnosti predvidanja na razlicitim vremenskim
nizovima. Medutim, njezin nedostatak je Sto postaje nedefinirana ili poprima ekstremne

vrijednosti ako su stvarne vrijednosti u nizu jednake ili vrlo blizu nule.
Koristenjem kombinacije navedenih metrika dobiva se sveobuhvatna slika o performansama
modela, uzimajuéi u obzir razli¢ite aspekte i osjetljivosti na pogreske, Sto omogucuje donosenje

informirane odluke o njegovoj kona¢noj prikladnosti za zadanu svrhu.
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3. METODE

Ovo poglavlje detaljno opisuje metodoloski okvir i sve korake provedene u istrazivanju.
Zapocinje s opisom prikupljanja i analize ulaznih podataka, nakon ¢ega slijedi detaljan prikaz
procesa razvoja, validacije i primjene SARIMA modela. Na kraju se opisuje nacin izrade
analiziranih profila potros$nje te njihova implementacija u softveru EnergyPLAN. Cjelokupni
proces je prikazan na nain da osigura transparentnost i omoguci potencijalnu ponovljivost

istrazivanja.

3.1.  Prikupljanje i analiza ulaznih podataka

Kao osnova za razvoj statistickog modela u ovom radu koriSteni su podaci o ukupnoj satnoj
potros$nji elektricne energije u Republici Hrvatskoj za cijelu 2018. godinu. Podaci su preuzeti
iz sluzbenih evidencija ENTSO-e [12], a dostupni su u tekstualnoj datoteci pod nazivom
HRel2018.txt. Prvi korak u obradi podataka bila je provjera njihove kvalitete i cjelovitosti.
Utvrdeno je da se skup podataka sastoji od ukupno 8784 satna ocitanja te je potvrdeno da u

skupu ne postoje nedostajuce vrijednosti koje bi zahtijevale dodatnu obradu.

Nakon potvrde integriteta podataka, provedena je eksploratorna analiza podataka (EDA) s
ciljem identifikacije klju¢nih karakteristika i obrazaca ponasanja vremenskog niza. Na Slici 2
prikazan je graficki prikaz cjelokupnog godiSnjeg niza potrosnje. S grafa je moguce jasno uociti
postojanje godiSnje sezonalnosti, s viSim razinama potroSnje tijekom zimskih mjeseci te
izrazenim ljetnim vrhom potrosnje, dok su nize razine potroSnje karakteristicne za prijelazna
razdoblja proljeca i jeseni. Ovaj godisnji trend dodatno je istaknut iscrtavanjem 30-dnevnog
pomic¢nog prosjeka (eng. rolling average), koji izgladuje kratkorocne fluktuacije i jasno

prikazuje dugoro¢ni sezonski uzorak.
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Hourly Electricity Demand for 2018
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Slika 2.  Satna potro$nja elektri¢ne energije u 2018.godini

Kako bi se analizirala unutardnevna dinamika, izracunat je i graficki prikazan prosjecni dnevni
profil potrosnje, prikazan na Slici 3. Ovaj profil dobiven je usrednjavanjem satnih vrijednosti
za svaki od 24 sata u danu tijekom cijele promatrane godine. Graf jasno potvrduje postojanje
izrazene dnevne sezonalnosti, karakteristicne za elektroenergetske sustave. Uocavaju se dva
vrha potroSnje: prvi, manji jutarnji vrh te drugi, izrazeniji poslijepodnevni i vecernji vrh.
Takoder je jasno vidljiva i no¢na "dolina", odnosno period znacajno nize potrosnje tijekom
no¢nih sati. Prepoznavanje ovih ponavljaju¢ih dnevnih 1 godi$njih uzoraka klju¢no je za
ispravan odabir 1 parametrizaciju statistickog modela u kasnijim koracima.

Average Daily Demand Profile (2018)
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Slika3.  Prosje¢ni dnevni profil potro$nje elektri¢ne energije u 2018.
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3.2. Razvoj SARIMA modela

Nakon $to je eksploratorna analiza podataka potvrdila kompleksnu strukturu vremenskog niza
potrosnje, obiljezenu viSestrukim sezonskim obrascima, pristupilo se razvoju adekvatnog
statistickog modela za predvidanje. Za tu svrhu odabran je Sezonski autoregresivni integrirani
model pomi¢nih prosjeka (SARIMA), koji je zbog svoje arhitekture Cesto primjenjivan u
slicnim analizama [17]. Proces razvoja modela u ovom radu bio je sustavan i sastojao se od tri
klju¢na koraka, koji ¢e biti detaljno opisani u nastavku. Prvi korak bila je formalna provjera
stacionarnosti, temeljnog preduvjeta za primjenu modela. Drugi korak obuhvatio je inicijalnu
identifikaciju potencijalnih redova modela pomocu analize korelacijskih funkcija. Zavr$ni, treci
korak bio je rigorozno pretraZivanje prostora parametara kako bi se pronasla optimalna
kombinacija koja najbolje opisuje promatrane podatke. Cjelokupni proces razvoja modela, od
provjere stacionarnosti do konac¢nog treniranja, implementiran je u programskom jeziku
Python, uz koriStenje standardnih biblioteka za znanost o podacima kao §to su Pandas za
manipulaciju podacima, Matplotlib za vizualizaciju te prvenstveno Statsmodels za

implementaciju samog SARIMA modela.

3.2.1. Provjera stacionarnosti

Teorijski preduvjet za primjenu SARIMA modela jest da vremenski niz na kojem se model
gradi bude stacionaran. Stacionarnost podrazumijeva da se statistiCka svojstva niza, kao $to su
srednja vrijednost, varijanca i kovarijanca, ne mijenjaju s protokom vremena. lako vizualna
inspekcija godiSnjeg profila potroSnje (Slika 2) sugerira postojanje sezonskog trenda, $to bi
moglo ukazivati na nestacionarnost, nuzno je provesti formalni statisticki test kako bi se donio
konacan zakljucak. U tu svrhu primijenjen je Prosireni Dickey-Fullerov (ADF) test [13]. ADF
test je standardna statisticka procedura za testiranje postojanja jedini¢nog korijena (eng. unit
root) u vremenskom nizu. Prisutnost jedinicnog korijena ukazuje na to da je niz nestacionaran.
Test se temelji na sljede¢im hipotezama:

e Nulta hipoteza (HO): Niz posjeduje jedini¢ni korijen i nestacionaran je.

e Alternativna hipoteza (H1): Niz ne posjeduje jedini¢ni korijen i stacionaran je.
Odluka o odbacivanju nulte hipoteze donosi se na temelju dva kriterija: p-vrijednosti i
usporedbe ADF statistike s kriticnim vrijednostima. Rezultati provedenog ADF testa na

analiziranom nizu satne potrosnje prikazani su u Tablici 1.
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Pokazatelj Vrijednost
ADF Statistika -6.2123
p-vrijednost 0.0000
Kriti¢na vrijednost (1%) -3.4311
Kriti¢na vrijednost (5%) -2.8619
Kriti¢na vrijednost (10%) -2.5669
Tablica 1. Rezultati Prosirenog Dickey-Fullerovog (ADF) testa na nizu satne potrosnje

Prvi i najéeSc¢e koriSteni kriterij je p-vrijednost. Dobivena p-vrijednost iznosi 0.0000, §to je
znatno nize od standardne razine statisticke znacajnosti (o = 0.05). Na temelju ovog pokazatelja,
nulta hipoteza se s visokom razinom pouzdanosti odbacuje.

Drugi, komplementarni kriterij jest usporedba izraCunate ADF statistike s kriticnim
vrijednostima. Kritine vrijednosti predstavljaju granicne pragove za razliite razine
pouzdanosti: 1%, 5% 1 10%. Da bi se nulta hipoteza odbacila na odredenoj razini pouzdanosti,
izracunata ADF statistika mora biti manja (odnosno, negativnija) od odgovarajuce kriti¢ne
vrijednosti. U ovom slucaju, dobivena ADF statistika od -6.2123 znacajno je manja ¢ak i od
najstroze kriti¢ne vrijednosti od -3.4311, koja odgovara razini pouzdanosti od 99%.

Buduc¢i da oba kriterija (iznimno niska p-vrijednost i ADF statistika manja od svih kriticnih
vrijednosti) pruzaju snazan i konzistentan dokaz protiv nulte hipoteze, sa sigurnoscéu se
zakljuCuje da je promatrani vremenski niz potroSnje stacionaran u smislu nesezonskih
komponenti. Stoga, dodatno diferenciranje nije potrebno za postizanje stacionarnosti, te je
parametar nesezonskog diferenciranja d u SARIMA modelu postavljen na vrijednost 0.
Implementacija Prosirenog Dickey-Fullerovog testa provedena je pomocu funkcije adfuller iz
biblioteke Statsmodels. Funkciji se kao ulazni argument prosljeduje vremenski niz potrosnje, a
ona kao izlaz vra¢a niz pokazatelja, uklju¢ujuc¢i ADF statistiku i p-vrijednost, koji su prikazani
u Tablici 1. Kratki isje€ak koda koji ilustrira primjenu testa prikazan je ispod.

# Perform the test on the clean data
adf_result = adfuller(demand_2018_hourly.dropna())

# Extract and print all relevant results from the test
adf_statistic = adf_result|®

p_value = adf_result|1

critical_values = adf_result|4

Slika4.  Primjena ADF testa
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3.2.2. ldentifikacija redova modela

Nakon §to je potvrdena stacionarnost niza, sljede¢i korak u razvoju SARIMA modela je
inicijalna identifikacija njegovih redova, odnosno odredivanje potencijalnih vrijednosti za
nesezonske parametre p i g te sezonske parametre P, D i Q. Za ovu svrhu koriste se graficki
prikazi autokorelacijske funkcije (ACF) i parcijalne autokorelacijske funkcije (PACF). Ovi
grafovi, poznati kao korelogrami, vizualiziraju korelaciju vremenskog niza sa svojim
prethodnim vrijednostima (lagovima) i pomazu u prepoznavanju temeljnih autoregresivnih
(AR) 1 procesa pomicnih prosjeka (MA).

Na Slici 4 prikazani su korelogrami ACF i PACF funkcija, izraunati na izvornom,

stacionarnom nizu satne potros$nje za prvih 50 lagova.

Autocorrelation Function (ACF) Partial Autocorrelation Function (PACF)

-1.00 -1.00

Slika5.  Korelogrami ACF i PACF funkcija

Analiza ACF grafa pruza klju¢ne uvide u strukturu podataka. Najuocljivija karakteristika je
prisutnost izrazito visokih, statisticki znacajnih autokorelacija na lagovima koji su viSekratnici
broja 24 (npr. lag 24, 48). Ovaj uzorak je jasan pokazatelj postojanja snazne dnevne
sezonalnosti u podacima. Izuzetno je vazno primijetiti da ove sezonske autokorelacije opadaju
vrlo sporo. Ovakvo sporo, gotovo linearno opadanje vrijednosti na sezonskim lagovima
klasican je pokazatelj prisutnosti sezonskog jedini¢énog korijena, Sto implicira da je niz, iako
nesezonski stacionaran, i dalje sezonski nestacionaran. Kako bi se uklonila ova sezonska
nestacionarnost, potrebno je provesti sezonsko diferenciranje. Na temelju ovog vizualnog
dokaza, donesena je odluka da se parametar sezonskog diferenciranja D u SARIMA modelu
postavi na vrijednost 1.

S druge strane, PACF graf, koji prikazuje parcijalnu korelaciju, pokazuje nekoliko statisticki

znacajnih Siljaka na pocetnim, nesezonskim lagovima, nakon kojih vrijednosti naglo opadaju.
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Takvo ponaSanje, gdje PACF graf ima nagli prekid nakon nekoliko lagova, tipicno ukazuje na
postojanje autoregresivne (AR) komponente u nizu.

lako vizualna inspekcija korelograma daje vrijedne smjernice za odabir parametara, poput
odluke o vrijednosti D=1, zbog kompleksnosti uzoraka i medusobnog utjecaja nesezonskih i
sezonskih komponenti, precizno odredivanje svih ostalih redova modela (p, q, P, Q) na ovaj
nacin moze biti nepouzdano. Stoga je u ovom radu primijenjen sustavniji i robusniji pristup,
opisan u sljede¢em poglavlju, koji se temelji na pretrazivanju prostora mogucih modela i
odabiru onog s najboljim statistiCkim pokazateljem.

Graficki prikazi autokorelacijske i parcijalne autokorelacijske funkcije, prikazani na Slici 5,
generirani su pomoc¢u funkcija plot_acf i plot_pacf iz biblioteke Statsmodels. Ovim funkcijama
definira se broj lagova (vremenskih pomaka) koji se Zele analizirati, a one automatski iscrtavaju
korelograme sa statistiCki znacajnim korelacijeama istaknutim izvan osjencanog podrucja

intervala pouzdanosti.

# 4.5. ACF and PACF plots to help identify AR(p) and MA(q) parameters.
print(”"\nPlotting ACF and PACF on the original stationary series...")
fig, axes = plt.subplots(1, 2, figsize=(16,5))
plot_acf(demand_2618_hourly, ax=axes|0]|, lags=48)

axes|0)].set_title( Autocorrelation Function (ACF)")
plot_pacf(demand_2018_hourly, ax=axes|1], lags=48, method='ywm')
axes|1).set_title('Partial Autocorrelation Function (PACF)")
plt.show()

Slika6.  Generiranje ACF i PACF grafikona

3.2.3.  Odabir optimalnih parametara i treniranje modela

S obzirom na to da vizualna inspekcija korelograma pruza samo inicijalne smjernice, za
konacan odabir optimalnih redova modela (p, g, P, Q) primijenjen je sustavan i automatiziran
pristup poznat kao pretrazivanje po reSetki (eng. Grid Search). Ova metoda ukljucuje
definiranje skupa mogucih vrijednosti za svaki od parametara, nakon cega se za svaku
jedinstvenu kombinaciju parametara trenira zaseban SARIMA model. Kao kriterij za usporedbu
1 odabir najboljeg modela koristen je Akaikeov informacijski kriterij (AIC), opisan u poglavlju
2.4. Cilj je bio pronac¢i model koji postize najnizu mogucéu AIC vrijednost, jer ona ukazuje na
najbolju ravnotezu izmedu preciznosti i slozenosti modela. Logika implementiranog

pretraZivanja po reSetki prikazana je u nastavku.
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for i, param_set in enumerate(all_params):
order, seasonal_order, trend = param_set[@], param_set[1] + (m,), param_set[2]

if order == (@, d_param_final, @) and seasonal_order == (@, D_param_final, @, m):
continue
try:
model = SARIMAX(train_data, order=order, seasonal_order=seasonal_order, trend=trend,
enforce_stationarity=False, enforce_invertibility=False)
results = model.fit(disp=False)
if results.aic < best_aic:
best_aic = results.aic
best_params = param_set
print(f"New best model found ({i+1}/{len(all_params)}): SARIMAX{order}{seasonal_order}, trend='{trend}
del model, results
gc.collect()

except Exception:
continue

Slika7.  Logika pretraZivanja po resetki (Grid Search)

Proces pretrazivanja proveden je na skupu podataka za treniranje, koji je obuhvacao prvih
jedanaest mjeseci 2018. godine, od 1. sije¢nja do 30. studenog. Na temelju prethodnih analiza,
parametri d i D bili su fiksirani na 0 i 1, dok se za ostale parametre (p, g, P, Q) ispitivao raspon
vrijednosti od 0 do 2. Uz same redove modela, testirana je i prisutnost deterministicke
komponente trenda, oznacene parametrom trend='c'. Ovaj parametar u model uvodi konstantu
ili presjek (eng. intercept), Sto modelu omogucuje da bolje uhvati srednju razinu oko koje niz
oscilira. Tako je niz stacionaran, prisutnost konstante moze poboljsati prilagodbu modela
podacima koji ne osciliraju oko nule, $to je slucaj s potrosnjom elektri¢ne energije.

Za svaku kombinaciju, kreira se i trenira (.fit()) novi SARIMA model na skupu podataka za
treniranje. Nakon svakog treniranja, provjerava se Akaikeov informacijski kriterij (AIC)
dobivenog modela. Ako je AIC vrijednost niza od do tada zabiljezene najnize vrijednosti, ta se
kombinacija parametara proglasava trenutno najboljom. Proces se ponavlja dok se ne testiraju
sve kombinacije, a kona¢ni ispis prikazuje parametre modela koji je postigao najnizi AIC.
Nakon testiranja ukupno 72 razlicite kombinacije parametara, pretrazivanje po resetki je kao
optimalan identificiralo model s parametrima SARIMA(1,0,2)(1,1,1)24 i uklju¢enom
komponentom trenda (trend='c'). Ovaj model je postigao najnizu AIC vrijednost od 78825.88.
Ukljucivanje konstante se pokazalo opravdanim jer su modeli s tom komponentom
konzistentno postizali nize AIC vrijednosti od svojih parnjaka bez nje. Odabrani model, s
navedenim parametrima, koriSten je u sljede¢im fazama istraZivanja za validaciju i generiranje

konaénih predikcija.
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--- PARAMETER SEARCH ON TRAINING SET (BALANCED APPROACH) ---
Parameter search will be performed on data from 2018-01-01 ©0:00:00 to 2018-11-30 23:09:00.

Starting balanced grid search on training data... Testing 72 combinations.

This may take several hours, but is less likely to result in an unmanageable model.

New best model found (3/72): SARIMAX(9@, 0, ©)(@, 1, 1, 24), trend="c' -> AIC: 103536.38
New best model found (7/72): SARIMAX(Q, 0, ©)(1, 1, 1, 24), trend="c' -> AIC: 102254.30
New best model found (9/72): SARIMAX(Q, ©, 1)(@, 1, @, 24), trend="c' -> AIC: 94759.15
New best model found (11/72): SARIMAX(Q, ©, 1)(@, 1, 1, 24), trend="c' -> AIC: 94045.94

New best model found (17/72): SARIMAX(OQ, ©, 2)(@, 1, @, 24), trend="c' -> AIC: 89411.62
New best model found (19/72): SARIMAX(®, ©, 2)(@, 1, 1, 24), trend='c' -> AIC: 88229.69
New best model found (23/72): SARIMAX(®, ©, 2)(1, 1, 1, 24), trend="c' -> AIC: 87390.55
New best model found (24/72): SARIMAX(®, ©, 2)(1, 1, 1, 24), trend="ct' -> AIC: 87389.34
New best model found (25/72): SARIMAX(1, ©, ©)(@, 1, @, 24), trend='c' -> AIC: 83665.03
New best model found (27/72): SARIMAX(1, ©, ©)(Q, 1, 1, 24), trend='c' -> AIC: 81176.55
New best model found (31/72): SARIMAX(1, ©, ©)(1, 1, 1, 24), trend="c' -> AIC: 80756.08
New best model found (35/72): SARIMAX(1, @, 1)(e, 1, 1, 24), trend="c' -> AIC: 79320.86
New best model found (39/72): SARIMAX(1, @, 1)(1, 1, 1, 24), trend='c' -> AIC: 79056.23
New best model found (47/72): SARIMAX(1, ©, 2)(1, 1, 1, 24), trend='c' -> AIC: 78825.08

--- Balanced Grid Search on Training Data Complete ---
Best SARIMAX Order (p,d,q): (1, @, 2)

Best Seasonal Order (P,D,Q,m): (1, 1, 1, 24)

Best Trend: 'c'

Lowest AIC on training data: 78825.08

Slika 8.  Proces pretrazivanja i odabira kona¢nog modela

3.3.  Validacija modela

Nakon odabira optimalnih parametara 1 treniranja modela na skupu podataka za ucenje,
proveden je klju¢an korak validacije. Svrha validacije je ocijeniti performanse modela na
podacima koje on prethodno nije vidio, ¢ime se provjerava njegova sposobnost generalizacije i
predvidanja u realnim uvjetima. Za ovu svrhu koriSten je testni skup podataka, koji je
obuhvacao cjelokupni mjesec prosinac 2018. godine, a koji je bio izuzet iz procesa treniranja i

odabira parametara.

Ucinkovitost modela na testnom skupu kvantificirana je pomocu standardnih metrickih
pokazatelja pogreske, opisanih u poglavlju 2.4. Izracunate vrijednosti pogreSaka prikazane su
u Tablici 2. Model je postigao srednju apsolutnu pogresku (MAE) od 159.74 MWh, §to znaci
da je predvidanje u prosjeku odstupalo za tu vrijednost od stvarne satne potro$nje. Korijen
srednje kvadratne pogreske (RMSE) iznosio je 200.62 MWh, dok je srednja apsolutna postotna
pogreska (MAPE) od 7.31% pokazala da je prosje¢no odstupanje predvidanja od stvarne

vrijednosti bilo unutar prihvatljivih granica za ovu vrstu modeliranja.
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Metricki pokazatelj Vrijednost

Srednja apsolutna pogreska (MAE) 159.74 MWh

Korijen srednje kvadratne pogreske (RMSE) | 200.62 MWh

Srednja  apsolutna  postotna  pogreska | 7.31 %
(MAPE)

Tablica 2. Rezultati validacije modela na testnom skupu (prosinac 2018.)

Uz numericku analizu, provedena je 1 vizualna inspekcija kvalitete predvidanja. Na Slici 9
prikazana je usporedba stvarnih vrijednosti potro$nje (puna linija) i vrijednosti koje je model
predvidio (isprekidana linija) za cjelokupni testni period. S grafa je uocljivo da model uspjesno
replicira temeljnu dinamiku potrosnje, uklju¢uju¢i dnevne cikluse s jutarnjim 1 vecernjim
vrhovima te no¢nim dolinama. Iako se mogu primijetiti manja odstupanja, posebice kod
predvidanja ekstremnih vr$nih vrijednosti, opc¢enito slaganje izmedu predvidenog i stvarnog
niza potvrduje da je model naucio klju¢ne uzorke iz podataka.

SARIMAX Forecast vs. Actual Values for December 2018
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Slika9.  Usporedba stvarnih vrijednosti potro$nje i predvidanaja na testnom periodu
Na temelju rezultata kvantitativne i kvalitativne validacije, ocijenjeno je da razvijeni SARIMA

model posjeduje zadovoljavajucu prediktivnu to€nost te je kao takav prikladan za koristenje u

sljedecoj fazi istrazivanja, odnosno za generiranje dugorocnih profila potrosnje.
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3.4.  Izrada profila opterefenja za analizu

Nakon $to je statisticki model uspjeSno razvijen i validiran, pristupilo se zavr$noj fazi
metodologije koja je obuhvacala generiranje kona¢nih ulaznih podataka za simulacijsku
analizu. U ovom koraku izradena su dva razliita skupa profila satnog opterecenja za ciljane
godine 2030., 2040. i 2050., pri ¢emu je svaki skup odgovarao jednom od dvaju promatranih
pristupa. Prvi skup profila, koji predstavlja Scenarij B, generiran je primjenom razvijenog
SARIMA modela. Drugi skup, koji predstavlja referentni Scenarij A, temelji se na

deterministickom pristupu, a detaljno je opisan u nastavku.

3.4.1. lzrada SARIMA profila (Scenarij B)

Kako bi se za generiranje kona¢nih predikcija iskoristile sve raspolozive informacije sadrzane
u povijesnim podacima, prethodno validirani SARIMA(1,0,2)(1,1,1)24 model ponovno je
treniran. Za razliku od faze validacije, u ovom koraku model je treniran na cjelokupnom skupu
podataka za 2018. godinu, od 1. sije¢nja do 31. prosinca. Time je stvoren definitivni model, ¢iji

su parametri optimizirani na temelju svih 8784 satna ocitanja.

Ovaj definitivni model potom je koriSten za generiranje dugoro¢nih predikcija, odnosno za
satne potroSnje elektri¢ne energije za tri ciljane godine: 2030., 2040. 1 2050. Za svaku od tih
godina generiran je zaseban vremenski niz od 8760 ili 8784 satna ocitanja, ovisno o tome je li
godina prijestupna. Grafi¢ki prikazi dobivenih profila optereéenja za svaku od ciljanih godina
prikazani su na Slikama 10, 11 i 12.

Full-Year SARIMAX Forecast for 2030
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Slika 10. Predvidanje modela za 2030. godinu
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Full-Year SARIMAX Forecast for 2040
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Slika11. Predvidanje modela za 2040. godinu

Full-Year SARIMAX Forecast for 2050
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Slika 12. Predvidanje modela za 2050. godinu
Ukupne godisnje potrosnje energije koje proizlaze iz ovih profila, a koje su koriStene kao ulazni

podaci u daljnjoj analizi, sazete su u Tablici 3.

Godina Predvidena potrosnja (TWh)
2030 24.55
2040 29.66
2050 34.62

Tablica 3. Ukupna godiSnja potro$nja predvidena SARIMA modelom
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3.4.2. Definiranje deterministickog profila (Scenarij A)

Profil optereéenja koji u ovom istrazivanju predstavlja referentni Scenarij A, a koji se temelji
na deterministiCkom pristupu, preuzet je iz prethodnih istrazivanja provedenih na Fakultetu
strojarstva i brodogradnje. Specifi¢no, koristeni profili za ciljane godine rezultat su detaljnog
modeliranja energetskog sustava Republike Hrvatske, provedenog u sklopu diplomskog rada
Luke Herca [15].

Za razliku od statistickog pristupa koji ekstrapolira agregatni vremenski niz kao cjelinu, izrada
ovog profila temelji se na detaljnoj, inZenjerskoj metodi poznatoj kao "bottom-up™ modeliranje
[14]. Ovaj pristup ne promatra ukupnu potro$nju kao jedinstvenu varijablu, ve¢ je dekomponira
na niz manjih segmenata kako bi se Sto vjernije obuhvatile budu¢e promjene u strukturi
potro$nje. Analiza zapoc€inje na razini pojedinih sektora potrosnje, kao §to su kucanstva, usluzni
sektor, industrija i promet. Unutar svakog sektora, potro$nja se dalje ras¢lanjuje prema krajnjoj
namjeni energije, na primjer na potroSnju za grijanje, hladenje, rasvjetu, rad kucanskih aparata
ili industrijske procese.

Buduca potraznja za svaki od ovih segmenata zasebno se predvida uzimajuci u obzir niz
specificnih, egzogenih faktora koji definiraju budu¢i razvoj. U modelu iz kojeg su preuzeti
podaci [15], ti faktori uklju¢uju demografske 1 makroekonomske projekcije, kao 1 kljucne
pretpostavke o budu¢em tehnoloSkom razvoju i primjeni energetskih politika. Neke od

najvaznijih pretpostavki koje oblikuju konac¢ni profil odnose se na:

e ocekivani napredak u podrucju energetske ucinkovitosti, definiran kroz Dugoro¢nu
strategiju obnove nacionalnog fonda zgrada, koji utje€e na smanjenje potraznje za
energijom,

e stupanj elektrifikacije pojedinih sektora, poput prometa (kroz porast broja elektri¢nih
vozila) 1 grijanja (kroz Siru primjenu dizalica topline), Sto, s druge strane, utjece na
povecanje potraznje za elektricnom energijom.

Konac¢ni, agregatni profil opterecenja za svaku ciljanu godinu, koji se koristi u ovom radu kao
Scenarij A, dobiven je zbrajanjem svih pojedina¢no modeliranih segmenata potroSnje. Rezultat
je profil koji, iako deterministicki, u sebi sadrzi kompleksne i strukturno razli¢ite promjene
oblika krivulje opterecenja, odrazavajuci tako oc¢ekivane promjene u navikama i tehnologijama
potroSnje. Upravo ta sposobnost uklju¢ivanja vanjskih, strukturnih promjena u model
predstavlja temeljnu razliku u odnosu na statisticki SARIMA pristup, koji se temelji isklju¢ivo

na povijesnim podacima.
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3.5. Postavke simulacijskih scenarija u softveru EnergyPLAN

Finalna usporedba dvaju promatranih pristupa provedena je pomocu niza simulacija u
softverskom alatu EnergyPLAN. Kao osnova za analizu koriSten je postojeci, referentni model
hrvatskog elektroenergetskog sustava koji u potpunosti odgovara deterministickom Scenariju
A. Ovaj referentni model ukljucuje detaljne ulazne podatke ne samo o potrosnji, ve¢ i 0 svim

planiranim proizvodnim jedinicama i njihovim tehno-ekonomskim karakteristikama.

Kako bi se provela objektivna i izolirana usporedba utjecaja samog profila potrosnje, za
Scenarij B (SARIMA) primijenjen je sljede¢i metodoloski pristup. Ukupna godiSnja potraznja
za elektricnom energijom, predvidena SARIMA modelom za svaku od ciljanih godina, unesena
je u model. Unutar EnergyPLAN-a, distribucija te ukupne potraznje po pojedinim sektorima
(npr. kucanstva, industrija) zadrZana je identicnom kao u referentnom Scenariju A. Na taj je
nacin osigurano da je jedina razlika izmedu dvaju scenarija na strani potraznje sam oblik satne

krivulje opterecenja, a ne i sektorska struktura potrosnje.

Kljuéni element eksperimentalnog postava jest da je strana proizvodnje sustava (eng. supply
side), Sto ukljuCuje instalirane kapacitete svih postoje¢ih i planiranih elektrana, njihove
stupnjeve djelovanja i troSkove, ostala potpuno neizmijenjena i identicna u oba scenarija.
Ovakav pristup omogucuje direktan odgovor na istrazivacko pitanje: kakve bi bile posljedice
na rad i troskove sustava, planiranog prema deterministickim pretpostavkama, ukoliko bi se
stvarna potrosnja u buduénosti ponasala sukladno predvidanjima SARIMA modela. Time je
osigurano da su sve uocene razlike u izlaznim rezultatima modela, kao Sto su emisije COx,
neiskoristeni viskovi energije ili potreba za uvozom, isklju¢ivo posljedica razlika u ulaznom

profilu potrosnje.
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4. REZULTATI

Ovo poglavlje predstavlja klju¢ne rezultate istrazivanja, s fokusom na kvantitativou usporedbu
dvaju promatranih scenarija. U prvom dijelu poglavlja analiziraju se i usporeduju osnovne
numericke karakteristike profila optereéenja dobivenih deterministickim (Scenarij A) i
statistickim (Scenarij B) pristupom. Ovaj korak sluzi za utvrdivanje temeljnih strukturnih
razlika u ulaznim podacima koji su koriSteni za simulacije. U drugom, srediSnjem dijelu
poglavlja, sustavno se prikazuju i usporeduju klju¢ni tehno-ekonomski pokazatelji dobiveni iz
simulacija u softveru EnergyPLAN za oba scenarija. Rezultati su prikazani odvojeno za svaku
od ciljanih godina, 2030., 2040. 1 2050., kako bi se omoguc¢ila jasna 1 pregledna usporedba i

stvorila ¢vrsta osnova za analizu i raspravu koja slijedi u idu¢em poglavlju.

4.1. Usporedba agregatnih karakteristika profila opterecenja

U svrhu objektivne analize, prvi korak je kvantificirati temeljne razlike u agregatnim
karakteristikama profila opterecenja dobivenih deterministickim pristupom (Scenarij A) i
statistickim SARIMA pristupom (Scenarij B). Ove karakteristike definiraju osnovnu strukturu
potros$nje koja sluzi kao ulaz u simulacijski model i direktno utjeCu na njegove rezultate. U
Tablici 4 sustavno su usporedeni klju¢ni pokazatelji za oba scenarija za svaku od promatranih
godina. Vrijednosti za Scenarij B (SARIMA) preuzete su izravno iz rezultata modela, ok su
vrijednosti za Scenarij A (Deterministicki) u potpunosti preuzete iz rezultata "bottom-up"

modeliranja provedenog u referenci [15].

Fakultet strojarstva i brodogradnje 25



Roko Boskovi¢ Zavrsni rad

Pokazatelj Godina Scenarij A Scenarij B
(Deterministicki) (SARIMA)

Ukupna potrosnja (TWh) 2030 25.51 24.55

2040 26.74 29.66

2050 22.87 34.62
Vrs$no opterecenje (MW) 2030 3329 3084

2040 3410 3552

2050 2874 4020
Minimalno opterecenje 2030 2406 2203
(MwW)

2040 2608 2671

2050 2288 3140
Prosjecno opterecenje 2030 2912 2803
(MW)

2040 3053 3386

2050 2611 3951
Faktor opterecenja (%) 2030 87.5% 90.9%

2040 89.5% 95.3%

2050 90.9% 98.3%

Tablica 4. Usporedba klju¢nih karakteristika profila optere¢enja

Iz tablice je vidljivo da se predvidanja ukupne godiSnje potrosnje dvjema metodama znacajno
razlikuju. SARIMA model (Scenarij B) predvida nesto nizu potrosnju za 2030. godinu, ali
znacajno visu za 2040. i 2050. godinu u odnosu na deterministicki model (Scenarij A).
Zanimljivo je da deterministicki model predvida pad potroSnje izmedu 2040. i 2050. godine,
Sto je posljedica "bottom-up" pristupa koji u obzir uzima i o¢ekivani znacajan utjecaj mjera
energetske ucinkovitosti.

Strukturne razlike profila najjasnije se ocituju kroz analizu faktora opterec¢enja. Faktor
opterecenja, koji sluzi kao klju¢na mjera varijabilnosti potrosnje, u ovom je radu izraCunat kao
omjer prosje¢nog i vrSnog opterecenja za svaki scenarij (Faktor opterecenja = Prosjecno
opterecenje / Vrs$no opterecenje * 100%). Prosjecno opterecenje je pritom dobiveno dijeljenjem

ukupne godiSnje potroS$nje (u MWh) s brojem sati u godini (8760).
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Slika 13. Usporedba faktora optereéenja kroz godine
Deterministicki profil (Scenarij A) zadrzava realistiCan faktor opterecenja koji se kre¢e oko
90%, §to ukazuje na zadrZavanje prepoznatljive dinamike s izrazenim razlikama izmedu dnevne
i noéne potrosnje. S druge strane, SARIMA profil (Scenarij B) konzistentno proizvodi izrazito
visok faktor opterecenja, kojiraste s vremenom i za 2050. godinu doseze ¢ak 98.3%. To ukazuje
na to da je profil generiran dugorocnom statistickom ekstrapolacijom vrlo "ravan", odnosno da
posjeduje izrazito malu varijabilnost izmedu minimalne, prosjeéne i vrSne potros$nje. Ove
kvantificirane strukturne razlike u ulaznim profilima ¢ine osnovu za analizu njihovog utjecaja

na performanse i troSkove energetskog sustava, §to je prikazano u nastavku.

4.2. Usporedna analiza rezultata simulacija

Nakon utvrdivanja temeljnih strukturnih razlika u ulaznim profilima opterecenja, klju¢ni korak
istrazivanja jest kvantifikacija njihovog utjecaja na funkcioniranje elektroenergetskog sustava.
Pomocu softvera EnergyPLAN provedene su simulacije za svaki od dva scenarija za ciljane
godine 2030., 2040. 12050. U nastavku se provodi detaljna graficka analiza i usporedba klju¢nih
tehno-ekonomskih i okoli$nih pokazatelja dobivenih iz ovih simulacija. Cilj ovog poglavlja nije
samo predstaviti rezultate, ve¢ i pruziti inicijalnu interpretaciju uzroka koji dovode do uocenih

razlika, stvaraju¢i time ¢vrstu osnovu za cjelovitu raspravu koja slijedi.
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Slika 14. Usporedba godisnjih emisija CO:
Na Slici 14 prikazana je usporedba ukupnih godi$njih emisija CO.. Oba scenarija pokazuju

ocekivani trend snazne dekarbonizacije, s gotovo potpunim eliminiranjem emisija do 2050.
godine. Medutim, zanimljivo je promotriti meduodnos dvaju scenarija. U 2030. godini, Scenarij
B (ARIMA), unato¢ nesto nizoj ukupnoj potrosnji, ima blago povoljniji rezultat s 5.74 Mt COx,
u usporedbi s 5.91 Mt u Scenariju A. Glavni razlog tome lezi u "ravnijem" profilu potrosnje
Scenarija B, koji olakSava integraciju obnovljivih izvora i smanjuje potrebu za angaZmanom
fosilnih elektrana za pokrivanje vrSnih opterecenja. Ve¢ u 2040. godini, situacija se preokrece.
Utjecaj znacajno vece ukupne potroSnje u Scenariju B (29.66 TWh naspram 26.74 TWh)

nadvladava prednosti "ravnog" profila, §to rezultira s priblizno 10% vi§im emisijama.
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Slika 15. Usporedba udjela obnovljivih izvora u proizvodnji elektri¢ne energije

Trendovi udjela obnovljivih izvora energije, prikazani na Slici 15, potvrduju zapazanja o
emisijama. U 2030. godini, povoljniji oblik krivulje u Scenariju B omogucuje postizanje viseg
udjela OIE (92.3%). Medutim, kako ukupna potrosnja u Scenariju B raste, a u Scenariju A pada
zbog mjera energetske ucinkovitosti, Scenarij A u 2050. godini ostvaruje iznimno visok udio
OIE od 116.9%. Vrijednost iznad 100% ukazuje na to da sustav, temeljen na realisticnom
profilu potro$nje, na godiSnjoj razini proizvodi znacajan visak elektricne energije iz OIE koji

premasuje ukupnu domacu potraznju, $to otvara pitanje izvoza ili dodatne pohrane energije.
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Slika 16. Usporedba viska elektri¢ne energije (CEEP)
Slika 16, koja prikazuje neiskoriSteni viSak elektricne energije (CEEP), pruza najjasniji uvid u
tehnicke izazove integracije OIE. U godinama 2030. 1 2040. razlike su relativno male. Medutim,
u 2050. godini, kada je udio OIE u oba scenarija iznimno visok, razlika postaje drasti¢na.
Scenarij A, sa svojim realisticnim profilom koji sadrzi izrazene no¢ne doline potrosnje, generira
Cak 4.24 TWh viska energije. To je energija proizvedena iz vjetra i sunca u satima kada je
potraznja niska 1 sustav je ne moZe potro$iti niti pohraniti. S druge strane, Scenarij B, s gotovo
konstantnom potro$njom, ima zanemarivih 0.59 TWh viska. Ovaj rezultat jasno pokazuje kako
nerealistiCan, "izgladen" profil moze u potpunosti prikriti jedan od najvecih problema buducih

energetskih sustava — upravljanje viskovima energije.
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Slika 17. Usporedba ukupne potro$nje goriva u sustavu
Ukupna potrosnja goriva, prikazana na Slici 17, objedinjuje potrosnju fosilnih goriva i biomase.
Kretanje ovog pokazatelja vjerno prati trendove emisija i ukupne potrosnje. Veca potraznja za
energijom u Scenariju B u 2040. i 2050. godini neizbjezno zahtijeva vecu koli¢inu ulaznog

goriva, bilo za direktnu proizvodnju elektricne energije ili za pogon kogeneracijskih
postrojenja.

543

BN Scenarij A (Deterministicki)
W Scenarij B (ARIMA)

Proizvodnja (TWh)

2030 2040 2050

Slika 18. Usporedba ukupne godi$nje proizvodnje iz termoelektrana (CHP i PP)
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Analiza proizvodnje iz upravljivih termoelektrana na Slici 18 otkriva klju¢nu dinamiku. U sve
tri promatrane godine, Scenarij B zahtijeva znacajno veéu proizvodnju iz termalnih izvora. To
je izravna posljedica vise ukupne godisnje potrosnje koju je SARIMA model predvidio. Tako
"ravniji" profil u teoriji smanjuje potrebu za vr$nim angazmanom, u ovom slucaju je ukupna
koli¢ina energije koju treba isporuciti toliko veca da sustav mora konstantno koristiti
termoelektrane kako bi pokrio osnovno opterecenje, Sto nadjaava sve prednosti "ravnog"

profila.
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Slika 19. Usporedba ukupnih godi$njih tro§kova sustava

Konac¢no, Slika 19 prikazuje kumulativni ekonomski ishod svih prethodno analiziranih faktora.
Dok su razlike u 2030. i 2040. godini umjerene, za 2050. godinu one postaju izrazito velike.
Scenarij B rezultira s gotovo 18% viSim ukupnim godiSnjim troSkovima. Ovaj naizgled
kontraintuitivan rezultat, s obzirom na manji viSak energije u Scenariju B, posljedica je
fundamentalnog nedostatka statistickog modela: njegove nemoguénosti da predvidi utjecaj
buducih politika energetske u¢inkovitosti. Ogromna koli¢ina energije koju je sustav u Scenariju
B morao proizvesti kako bi zadovoljio nerealno visoku potraznju dovela je do znatno visih

operativnih 1 investicijskih troskova, $to ¢e biti detaljnije elaborirano u sljede¢em poglavlju.
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5. RASPRAVA

Nakon §to su u prethodnom poglavlju kvantitativno prikazani rezultati dobiveni usporednom
analizom dvaju promatranih scenarija, ovo poglavlje posveceno je njihovoj detaljnoj analizi i
interpretaciji. Cilj rasprave je nadi¢i puko predstavljanje podataka te istraziti temeljne uzroke
uocenih razlika, razmotriti implikacije tih razlika na proces i zakljucke energetskog planiranja
te dati kriticku ocjenu primijenjenih metodologija. Rasprava je strukturirana tako da logicki
slijedi tijek istrazivanja: prvo se analiziraju fundamentalne razlike u samim ulaznim profilima
optereéenja, zatim se razmatra kako te strukturne razlike utjeu na kona¢ne tehno-ekonomske
rezultate simulacija te se, na temelju cjelokupne analize, daju preporuke za budu¢u metodolosku

praksu u podruc¢ju dugoro¢nog energetskog planiranja.

5.1.  Analiza i interpretacija razlika u profilima optereéenja

Kao $to je prikazano u poglavlju 4.1, dva primijenjena pristupa, deterministicki 1 statisticki,
rezultirala su profilima optereCenja koji se fundamentalno razlikuju, kako u agregatnim
godiS$njim vrijednostima, tako i u svojoj unutarnjoj strukturi. Razumijevanje porijekla i prirode
ovih razlika predstavlja klju¢an preduvjet za ispravnu interpretaciju konacnih rezultata
simulacija. U nastavku se stoga detaljnije analiziraju uzroci koji dovode do odstupanja u obliku

profila te u predvidenoj ukupnoj godiSnjoj potros$nji energije.

5.1.1. Porijeklo strukturnih razlika

Analiza rezultata iz Tablice 4 jasno pokazuje da najveca razlika izmedu Scenarija A
(Deterministicki) 1 Scenarija B (SARIMA) ne leZi nuZno u ukupnoj godi$njoj potro3nji, ve¢ u
samoj strukturi satnog profila optere¢enja. Porijeklo ovih razlika direktna je posljedica
fundamentalno drugacije filozofije dvaju primijenjenih pristupa. Deterministi¢ki "bottom-up"
pristup, opisan u poglavlju 3.4.2., ne temelji se na jednostavnom skaliranju povijesnog profila,
ve¢ na detaljnoj sektorskoj analizi buducih potreba za energijom. On generira novi, budu¢i oblik
profila koji odraZzava ocekivane strukturne promjene, poput utjecaja energetske uc¢inkovitosti i
elektrifikacije. Takav profil, iako deterministicki, zadrZzava realisticnu dinamiku s izraZenim

dnevnim 1 sezonskim varijacijama, §to rezultira realisti¢nim faktorom opterecenja.

S druge strane, SARIMA model, primijenjen za izradu dugoro¢ne prognoze, pokazuje
ponasanje koje je karakteristiCno za statisticke modele kada se ekstrapoliraju daleko izvan

perioda na kojem su trenirani. Iako je model uspje$no validiran i pokazao sposobnost pracenja

Fakultet strojarstva i brodogradnje 33



Roko Boskovi¢ Zavrsni rad

uzoraka na kratkom roku (poglavlje 3.3), njegova dugoro¢na predikcija tezi "izumiranju" ili
slabljenju pocetnih sezonskih uzoraka. Ovaj fenomen je dobro poznat u literaturi o vremenskim
nizovima; dugorocne prognoze generirane ARIMA modelima teze konvergenciji prema
srednjoj vrijednosti (ili deterministickom trendu) niza, gubeci pritom specificne kratkoro¢ne
varijacije [9]. Posljedi¢no, model konvergira prema svojoj dugoro¢noj srednjoj vrijednosti,
¢ime se gubi izrazena varijabilnost izmedu vr$ne i bazne potrosnje.

Posljedica takvog ponasanja modela je generiranje fizicki nerealisticnog profila opterecenja s
izuzetno visokim faktorom opterecenja, koji za 2050. godinu u Scenariju B doseze ¢ak 98.3%.
U stvarnom elektroenergetskom sustavu, ovakav gotovo konstantan profil potrosnje je nemogu¢
jer ne odrazava temeljne ljudske 1 industrijske aktivnosti koje su cikli¢ne prirode. Stvarna
potro$nja uvijek ¢e imati znac¢ajno nizu no¢nu potrosnju u odnosu na dnevnu, §to SARIMA
model u svojoj dugoro¢noj projekciji nije uspio replicirati. Ova fundamentalna razlika u
varijabilnosti profila klju¢na je za razumijevanje razlika u rezultatima simulacija, posebice u

kontekstu potrebe za fleksibilnoS¢u sustava.

5.1.2. Implikacije razlika u ukupnoj potrosnji

Osim strukturnih razlika, vazno je analizirati i razlike u predvidenoj ukupnoj godiSnjoj potrosnji
energije, jer one izravno utjecu na potrebnu koli¢inu proizvedene energije i ukupne troskove
sustava. Kao sto je vidljivo iz Tablice 4, predvidanja dvaju modela znacajno se razlikuju, a

posebno je zanimljiv trend pada potroSnje u Scenariju A nakon 2040. godine.

Ove razlike proizlaze iz temeljne paradigme svakog modela. SARIMA model, kao disto
statisticki, "data-driven" alat, svoju prognozu temelji isklju¢ivo na povijesnim podacima. On
identificira postojeci trend u podacima iz 2018. godine i ekstrapolira ga linearno u buduénost.
Model, po svojoj prirodi, nema sposobnost uklju¢ivanja vanjskih, budu¢ih promjena u politici
ili tehnologiji koje nisu bile prisutne u povijesnim podacima na kojima je treniran. Njegova
prognoza je stoga odraz pretpostavke da ¢e se budu¢nost ponasati na isti nacin kao 1 proslost.

S druge strane, deterministi¢ki "bottom-up™ model (Scenarij A) po svojoj je definiciji dizajniran
da ukljuci upravo takve vanjske faktore. Pad ukupne potro$nje predviden izmedu 2040. 1 2050.
godine nije greSka, ve¢ logi¢na posljedica pretpostavki o znacajnom utjecaju planiranih mjera
energetske ucinkovitosti, definiranih u strateSkim dokumentima poput Dugoro¢ne strategije
obnove nacionalnog fonda zgrada i europskih direktiva. Ovaj model pretpostavlja da ce

ulaganja u energetsku obnovu zgrada, uinkovitije industrijske procese i napredne uredaje
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nakon 2040. godine imati toliko snazan uc¢inak na smanjenje potraznje da ¢e on nadjacati rast

potrosnje uzrokovan daljnjom elektrifikacijom prometa i grijanja.

Usporedba ova dva pristupa stoga jasno ilustrira klju¢no ograni¢enje naivne primjene Cisto
statistickih modela u dugoro¢nom energetskom planiranju: oni ne mogu predvidjeti
diskontinuitete i strukturne lomove wuzrokovane budu¢im politikama 1 tehnoloskim
promjenama. To ih ¢ini korisnim za analizu "business as usual" scenarija, ali manje prikladnim

za modeliranje ambicioznih tranzicijskih puteva.

5.2. Utjecaj metode predikcije na rezultate energetskog modeliranja

Fundamentalne razlike u strukturi i agregatnim vrijednostima profila opterecenja, analizirane u
prethodnom poglavlju, izravno se prenose na rezultate simulacija rada elektroenergetskog
sustava. Softver EnergyPLAN, zbog svoje satne rezolucije, iznimno je osjetljiv na oblik ulazne
krivulje potrosnje, jer o njoj ovise kljuéne odluke o angaZmanu elektrana, potrebi za
skladiStenjem energije 1 pojavi viSkova iz varijabilnih obnovljivih izvora. U nastavku se stoga
detaljno analizira kako su uocene razlike u profilima dovele do konkretnih odstupanja u tehno-

ekonomskim pokazateljima sustava za svaku od promatranih godina.

5.2.1. Analiza rezultata za 2030. i 2040. godinu

Usporedna analiza rezultata za 2030. i 2040. godinu otkriva kompleksan meduodnos izmedu
ukupne potro$nje i strukture profila opterecenja. Za 2030. godinu, Scenarij B (SARIMA)
pokazao je neznatno povoljnije rezultate, s nizim emisijama CO: i manjim ukupnim troskovima
sustava. lako SARIMA model predvida nesto nizu ukupnu potrosnju, kljucni razlog za ove
rezultate lezi u njegovom "ravnijem" profilu. Manji raspon izmedu vrSne i bazne potroSnje
olakSava integraciju varijabilnih obnovljivih izvora energije, smanjuju¢i potrebu za
angazmanom fosilnih elektrana za pokrivanje vrSnih optereéenja i rezultiraju¢i manjom
potro$njom goriva 1 nizim emisijama.

Medutim, za 2040. godinu situacija se zna¢ajno mijenja. Scenarij B (SARIMA) u ovom slucaju
rezultira s priblizno 10% viSim emisijama CO- i troSkovima koji su za 217 milijuna eura vec¢i
od onih u Scenariju A. Do ovog preokreta dolazi jer je u 2040. godini utjecaj ukupne predvidene
potroSnje nadvladao utjecaj oblika profila. Znacajno viSa ukupna potroSnja koju je SARIMA

model predvidio za tu godinu (29.66 TWh naspram 26.74 TWh) zahtijevala je veéi angazman
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svih raspolozivih izvora, ukljucujuéi i termoelektrane, §to je izravno dovelo do vece potrosnje
goriva, a time i viSih emisija i troSkova.

Ova promjena u odnosima izmedu dva scenarija jasno pokazuje da kona¢ni tehno-ekonomski
rezultati ne ovise samo o jednom faktoru, ve¢ o interakciji dviju kljucnih varijabli: ukupne
koli¢ine energije koju sustav mora isporuciti tijekom godine i dinamicke strukture, odnosno

nacina na koji je ta potros$nja rasporedena iz sata u sat.

5.2.2. Analiza rezultata za 2050. godinu i problem nerealisticnog profila

Analiza rezultata za 2050. godinu pruza najdublji uvid u opasnosti koje proizlaze iz koristenja
nerealistiCnog profila optere¢enja u dugorocnom energetskom planiranju. Iako oba scenarija
predvidaju gotovo potpunu dekarbonizaciju sustava s minimalnim emisijama CO., Scenarij B
(SARIMA) rezultira s drasticno vi§im ukupnim troSkovima sustava, koji su za cak 853 milijuna
eura, odnosno za gotovo 18%, ve¢i nego u Scenariju A. Na prvi pogled, ovaj nalaz moze
djelovati kontraintuitivno, no on ukazuje na skrivene probleme koje "ravan" profil potrosnje

prikriva.

Glavni uzrok ovako velikih razlika u troskovima lezi u nac¢inu na koji profili optere¢enja utjecu
na potrebu za fleksibilnoS¢u sustava. Deterministicki profil (Scenarij A), sa svojim izrazenim i
oStrim vrhovima potrosnje, ispravno signalizira da ¢e sustav u buducnosti, unato¢ visokom
udjelu OIE, 1 dalje imati potrebu za znacajnim kapacitetima koji mogu brzo reagirati i pokriti
te vrSne sate. To mogu biti vrSne elektrane na plin, baterijska skladista ili drugi izvori
fleksibilnosti. Model temeljen na ovom profilu realnije procjenjuje operativne izazove i

troskove odrzavanja stabilnosti.

S druge strane, izrazito "ravan" profil SARIMA modela, s faktorom opterecenja od 98.3%, Salje
pogreSan signal da ¢e potrosnja u buducnosti biti gotovo konstantna. U takvom hipotetskom
sustavu, potreba za fleksibilnoS¢u je minimalna, jer je proizvodnju iz OIE znatno lakSe uskladiti
s predvidljivom 1 stabilnom potroSnjom. To objasnjava zaSto Scenarij B ima manji viSak
neiskoriStene energije — jer model ne prepoznaje sate izrazito niske potroSnje u koje bi tu

energiju trebalo "proliti ili pohraniti.

Upravo u tome leZi opasnost ovakvog pristupa: on stvara laznu sliku sustava kojim je lako
upravljati. Planiranje investicija temeljeno na ovakvom nerealisticnom profilu dovelo bi do
podkapacitiranog sustava u pogledu fleksibilnosti. Takav sustav u stvarnosti ne bi bio sposoban
zadovoljiti stvarne, ostre vrhove potrosnje, $to bi dovelo do ugrozavanja sigurnosti opskrbe ili

do potrebe za naknadnim, iznimno skupim i hitnim intervencijama. Visi troskovi u simulaciji
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za Scenarij B stoga ne odrazavaju samo viSu ukupnu potrosnju, ve¢ i neoptimalan rad sustava
koji je, iako planiran s identi¢nim proizvodnim kapacitetima, prisiljen neefikasno raditi kako bi

zadovoljio nerealan profil potraznje.

5.3. Kiriti¢ka ocjena metoda i preporuke za praksu u planiranju

Cjelokupna provedena analiza, od usporedbe ulaznih profila do interpretacije konacnih
rezultata simulacija, omogucuje formuliranje kriticke ocjene dvaju primijenjenih metodoloskih
pristupa. Razumijevanje njihovih inherentnih prednosti i nedostataka, koje su jasno dosle do
izraZaja u ovom istrazivanju, klju¢no je za definiranje preporuka za buducu praksu u podrucju

dugoro¢nog energetskog planiranja 1 istrazivanja.

5.3.1.  Vrednovanje primijenjenih pristupa

Na temelju provedene analize, moguce je sustavno vrednovati oba primijenjena pristupa,
isticu¢i njihove prednosti i, S§to je vaznije, nedostatke u kontekstu dugorocnog strateskog

planiranja.

Deterministicki "bottom-up" pristup (Scenarij A) pokazao je klju¢nu prednost u svojoj
sposobnosti da integrira vanjske, egzogene faktore kao Sto su planirane politike energetske
ucinkovitosti 1 strukturne promjene u sektorima potrosnje. To mu omogucuje da modelira
kompleksne i nelinearne trendove, poput pada ukupne potrosnje nakon 2040. godine, Sto je
scenarij koji Cisto statisticki modeli ne mogu predvidjeti. Nadalje, ovaj pristup po svojoj prirodi
cuva realisticnu unutardnevnu i sezonsku dinamiku potrosnje, Sto rezultira fizicki smislenim
profilima opterecenja s realnim faktorom opterecenja. Njegov glavni nedostatak lezi u velikoj
ovisnosti o kvaliteti 1 tocnosti brojnih ulaznih pretpostavki, od makroekonomskih do

tehnoloskih, koje su 1 same podloZzne visokom stupnju neizvjesnosti.

Statisticki SARIMA pristup (Scenarij B), s druge strane, pokazao je da je njegova direktna i
naivna primjena za izradu dugorocnih, viSedesetljetnih profila opterecenja metodoloski
neispravna i potencijalno opasna. Iako je model pokazao zadovoljavajucu to¢nost u
kratkoro¢noj validaciji, njegova dugoroc¢na ekstrapolacija dovodi do generiranja nerealisticnog,
"izgladenog" profila koji gubi sve klju€ne strukturne karakteristike stvarne potrosnje. Prednost
ovog pristupa lezi iskljucivo u njegovoj jednostavnosti i malom broju potrebnih ulaznih
podataka. Medutim, mana koja proizlazi iz gubitka varijabilnosti i nemoguénosti uklju¢ivanja

buducih politika u potpunosti nadmasuje tu prednost. Rezultati jasno pokazuju da koriStenje
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ovakvog profila moze dovesti do ozbiljno pogresnih zaklju¢aka o potrebama sustava za

fleksibilnos¢u 1, posljedi¢no, do pogresnih investicijskih odluka.

5.3.2. Preporuke za buduéa istraZivanja i metodolosku praksu

Na temelju zakljucaka o nedostacima direktne primjene SARIMA modela za dugoroc¢ne
prognoze, nameée se potreba za definiranjem metodoloski ispravnije prakse koja moze

iskoristiti prednosti statistickog modeliranja, a istovremeno izbje¢i njegove zamke.

Kljuéna preporuka za buduca istrazivanja 1 praksu u energetskom planiranju jest primjena
hibridnog pristupa. Takav pristup spaja prednosti obiju analiziranih metoda. Umjesto direktne
dugorocne ekstrapolacije, preporucuje se koristenje SARIMA modela (ili drugih naprednih
statistickih modela poput neuronskih mreZa) za generiranje predikcije za jednu reprezentativnu
budu¢u godinu, odnosno za period od 8760 sati. Na ovaj naCin, model zadrzava svoju
sposobnost da generira profil s realisticnom satnom i dnevnom dinamikom, ukljucujuci
stohasti¢ke varijacije koje su svojstvene stvarnoj potrosnji, a koje jednostavni deterministic¢ki

profili ponekad zanemaruju.

Tako dobiven "tipi¢ni" statisticki generiran profil potom se ne bi dalje ekstrapolirao, ve¢ bi
sluzio kao temeljni oblik krivulje opterecenja. Taj se temeljni oblik zatim moze skalirati na
ukupne godis$nje vrijednosti potrosnje dobivene iz detaljnih "bottom-up™ modela, poput onog
koristenog u Scenariju A. Na taj nacin, konac¢ni profil optere¢enja za analizu posjedovao bi

dvije klju¢ne pozitivne karakteristike:
1. Realisti¢nu satnu dinamiku i varijabilnost, dobivenu iz statistickog modela.

2. Ukupnu godiS$nju potrosnju koja je u skladu s dugoroCnim strateSkim ciljevima,
politikama energetske ucinkovitosti i ocekivanom elektrifikacijom, dobivenu iz

"bottom-up" analize.

Ovakav hibridni pristup predstavlja metodoloSki znafajno unapredenje u odnosu na obje

pojedina¢ne metode analizirane u ovom radu te bi njegova primjena mogla doprinijeti izradi

.....

sektoru.
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6. ZAKLJUCAK

Ovaj zavrsni rad bavio se istrazivanjem i usporedbom dvaju fundamentalno razli¢itih pristupa
za predvidanje dugoro¢ne potrosnje elektriCne energije: deterministickog, temeljenog na
"bottom-up™ analizi, i statistiCkog, temeljenog na primjeni SARIMA modela. Cilj rada bio je
kvantificirati razlike u profilima opterecenja dobivenim ovim metodama te analizirati kako te
razlike utjecu na rezultate simulacija energetskog sustava Republike Hrvatske za godine 2030.,

2040. 12050. pomocu softvera EnergyPL AN.

U radu je prvo razvijen 1 validiran SARIMA model na povijesnim podacima o satnoj potroSnji
iz 2018. godine. Zatim su, primjenom tog modela 1 koriStenjem referentnih podataka za
deterministicki pristup, kreirana dva seta profila optere¢enja. Ta dva seta koriStena su kao ulazni
podaci za simulacije u softveru EnergyPLAN, pri ¢emu je proizvodna strana sustava ostala
neizmijenjena kako bi se izolirao iskljucivi utjecaj profila potrosnje.

Provedeno istrazivanje potvrdilo je srediSnju hipotezu rada: odabir metode predikcije ima
direktan, mjerljiv 1 strateSki relevantan utjecaj na rezultate energetskog modeliranja. Pokazalo
se da dva primijenjena pristupa generiraju strukturno fundamentalno razliite profile
opterecenja. SARIMA model, primijenjen za dugoro¢nu ekstrapolaciju, proizveo je
nerealistiCan, "ravan" profil potroSnje s iznimno visokim faktorom opterec¢enja, koji gubi
klju¢nu dinamiku i varijabilnost prisutnu u stvarnom sustavu. Usporedna analiza rezultata
simulacija pokazala je da koriStenje takvog nerealisticnog profila dovodi do znacajno drugacijih
zaklju¢aka o tehno-ekonomskim performansama sustava, uklju¢uju¢i procijenjene troskove,
emisije staklenickih plinova i koli¢inu viska elektricne energije. Kljuéni nalaz je da naivna
primjena statistickih metoda za dugoro¢no predvidanje, iako se moze Ciniti naprednijom, moze
proizvesti zavaravajuce i potencijalno opasne podloge za planiranje, jer prikriva stvarne potrebe

sustava za fleksibilno$cu.

Glavni doprinos ovog rada jest kvantitativna demonstracija osjetljivosti rezultata energetskog
planiranja na metodologiju izrade profila potroSnje te kriticka ocjena primjene SARIMA
modela u tu svrhu. Tako je SARIMA mocan alat za kratkoro¢ne prognoze, rad je jasno pokazao
njegova ogranicenja i neprikladnost za direktnu dugoro¢nu projekciju.

Tijekom istraZivanja uocena su i odredena ograni¢enja. Analiza se temeljila na podacima iz
samo jedne povijesne godine, a koriSten je samo jedan tip statistickog modela. Buduca
istrazivanja stoga bi se mogla usmjeriti na primjenu naprednijih modela, poput neuronskih

mreza (npr. LSTM), koje bi mogle bolje ocuvati dugoro¢nu dinamiku. Nadalje, preporucuje se
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primjena hibridnog pristupa, koji bi kombinirao realisticnu satnu varijabilnost dobivenu

statistickim modelom s ukupnim godi$njim vrijednostima potro$nje dobivenim iz detaljnih
"bottom-up" analiza, ¢ime bi se iskoristile prednosti obaju pristupa i dobile pouzdanije podloge

za buduce energetske strategije.
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PRILOZI

Cjeloviti programski kod 1 wupute =za koriStenje nalaze se na repozitoriju:

https://qgithub.com/Roko55/zavrsni-rad-energetika
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