
A method for computer-aided symmetry detection in
3D CAD models

Burić, Mladen

Doctoral thesis / Disertacija

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu,
Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:702076

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-11

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering
and Naval Architecture University of Zagreb

https://urn.nsk.hr/urn:nbn:hr:235:702076
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fsb.unizg.hr
https://repozitorij.fsb.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fsb:9937
https://dabar.srce.hr/islandora/object/fsb:9937

Faculty of Mechanical Engineering and Naval Architecture

Mladen Burić

A METHOD FOR COMPUTER-AIDED
SYMMETRY DETECTION IN 3D CAD

MODELS

DOCTORAL THESIS

Zagreb, 2023

This page intentionally left blank.

Faculty of Mechanical Engineering and Naval Architecture

Mladen Burić

A METHOD FOR COMPUTER-AIDED
SYMMETRY DETECTION IN 3D CAD

MODELS

DOCTORAL THESIS

Supervisor:

Assoc. Prof. Stanko Škec, PhD

Zagreb, 2023

This page intentionally left blank.

Fakultet strojarstva i brodogradnje

Mladen Burić

METODA ZA RAČUNALNO
POTPOMOGNUTU DETEKCIJU

SIMETRIJE U 3D CAD MODELIMA

DOKTORSKI RAD

Mentor:

izv. prof. dr. sc. Stanko Škec

Zagreb, 2023.

This page intentionally left blank.

BIBLIOGRAPHY DATAS

UDC: 621

Keywords: computer-aided symmetry detection, exact

symmetry, partial symmetry, axisymmetry,

reflectional symmetry, Computer-aided

design (CAD), Boundary representation (B-

rep)

Scientific area: Technical sciences

Scientific field: Mechanical engineering

Institution: Faculty of Mechanical Engineering and

Naval Architecture (FMENA), University

of Zagreb

Supervisor: Assoc. Prof. Stanko Škec, PhD

Number of pages: 261

Number of figures: 73

Number of tables: 23

Number of references: 151

Date of oral examination: 8th December 2023

Jury members: Assoc. Prof. Stanko Škec, PhD, University

of Zagreb, Croatia

Prof. Nenad Bojčetić, PhD, University of

Zagreb, Croatia

Prof. Željko Ivandić, PhD, University of

Slavonski Brod, Croatia

Archive: FMENA

University of Zagreb

National and University Library in Zagreb

ACKNOWLEDGMENTS

I am grateful to my supervisor, Assoc. Prof. Stanko Škec, for providing me with the

opportunity, guidance, and unwavering support throughout the research and the

preparation of this doctoral thesis.

I would also like to express my gratitude to the Committee members, Prof. Nenad

Bojčetić and Prof. Željko Ivandić, for their invaluable feedback and constructive

criticism, which greatly contributed to the improvement of this dissertation.

Special thanks go to Assoc. Prof. Tina Bosner and Assist. Prof. Mario Brčić for their

generous support and time dedicated to this project. I also thank all Chair of Design and

Product Development members, particularly Prof. Emer. Dorian Marjanović. Special

thanks to Prof. Zoran Lulić, who is always open to help.

Lastly, I want to acknowledge my family for their unwavering patience, understanding,

and moral and financial support throughout my academic journey. My heartfelt thanks go

to my wife, Monika, for her support and encouragement, and to my son, Krsto, whose

presence always brings me joy.

I

ABOUT THE SUPERVISOR

Stanko Škec was born in Zagreb, Croatia. He holds PhD degree from the Faculty of

Mechanical Engineering and Naval Architecture, University of Zagreb (UNIZAG-FSB).

He is currently an Associate Professor at the Chair of Design and Product Development

at UNIZAG-FSB. He was appointed as a Visiting Assistant Professor (2018-2019) at the

Engineering Systems Group, DTU – Technical University of Denmark, Lyngby,

Denmark. Previously, he was a visiting researcher at several institutions abroad – Ecole

Centrale Paris, the University of Bristol, and The University of British Columbia.

As a project team member, he previously participated in various domestic (i.e., two

Croatian Science Foundation projects and one government-founded project) and

international projects (i.e., one EUREKA project, five ERASMUS+ projects, and one

HORIZON2020 projects). He also led the international ERASMUS+ project "E-learning

Platform for Innovative Product Development" (http://www.elpid.org/).

Dr Škec has published his work in international journals (e.g., TFSC, AEI, Design

Studies, Research in Engineering Design, Journal of Engineering Design) and peer-

reviewed conferences (e.g., ICED, DESIGN, NordDesign). He acted as a reviewer for

several international journals (e.g., Sustainability, IEEE Access, IEEE TEM, AI EDAM).

The primary research field and scientific focus of Dr Škec has been the multidisciplinary

field of product-service systems design and development. His research interests are

primarily focused on the management and monitoring of development processes and

activities, as well as on studies of distributed work and virtual collaboration.

He has actively participated in the organisation of the biennial DESIGN series event since

2012, which regularly attracts more than 300 experts from more than 30 countries around

the world. In addition, he was elected to serve as an Assistant Programme Chair of

ICED17 (21st International Conference on Engineering Design), which was held at The

University of British Columbia, Vancouver (http://iced17.org/).

Besides the scientific and professional work summarised above, Dr Škec is involved in

teaching through UNIZAG-FSB undergraduate and graduate study programs in product

development and design theories. As a part-time assistant lecturer, he held tutorials at the

Polytechnics of Zagreb and the Faculty of Industrial Engineering Novo Mesto (Slovenia).

II

ABSTRACT

Geometrical symmetry represents a fundamental property employed in many aspects of

mechanical engineering. Engineers typically rely on visual inspection to detect symmetry

in 3D CAD models, but there is a requirement for computer-aided symmetry detection.

While prior studies have focused on symmetry detection in 3D CAD models with analytic

surfaces, there is a need for a method that can handle numeric surfaces as well. This

doctoral thesis introduces a geometry-based computer-aided symmetry detection method

for boundary representation 3D CAD models that utilise both analytic and numeric

geometry. The method can detect global and partial reflectional symmetry and

axisymmetry in single-part CAD models with one body and manifold geometry. It

consists of six steps: (1) interpretation of the 3D CAD model, (2) analysis of the B-rep,

(3) generation, (4) trimming, and (5) evaluation of planes of symmetry and axes of

symmetry candidates, and (6) visualisation of detected planes of symmetry and axes of

symmetry. The method is intended to be general and applicable to various input CAD

models and solid modelling CAD systems. It has been implemented by proposing a

computational environment using a CAD system’s Application Programming Interface

functionalities. The method and the computational environment were subjected to

structural and performance validation using the Validation Square. The results indicate

that the planes and axes of symmetry can be detected accurately and with linear time

complexity.

Keywords:

symmetry detection, exact symmetry, partial symmetry, axisymmetry, reflection

symmetry, Computer-Aided Design (CAD), Boundary representation (B-rep)

III

PROŠIRENI SAŽETAK

Geometrijska simetrija (u daljnjem tekstu simetrija) je svojstvo objekta koje postoji u

prirodi i mnogim proizvodima koje je izradio čovjek. Simetrija je predmet istraživanja u

područjima poput matematike, fizike, elektrotehnike, arhitekture, građevinarstva,

biologije, te čak i filozofije. Iz perspektive strojarstva, mnogi dijelovi i sklopovi su

simetrični kako bi zadovoljili zahtjeve funkcionalnosti i performansi. Na primjer,

simetrija poboljšava stabilnost u sklopovima s rotirajućim dijelovima poput turbostrojeva

i motora s unutarnjim izgaranjem. Tijekom montaže, mehanički dijelovi s višestrukom

refleksijskom simetrijom obično zahtijevaju manje vremena za rukovanje i manje su

podložni greškama pri sastavljanju uzrokovanim nepravilnom orijentacijom dijela. U

numeričkoj analizi, simetrija se često koristi za smanjenje veličine računalnog modela,

što posljedično rezultira smanjenjem računalnog zahtjeva same analize. U tehničkom

crtanju simetrični dijelovi mogu se prikazati pola u presjeku, a pola u vanjskom pogledu,

čime se pojednostavljuje i smanjuje broj potrebnih ortogonalnih projekcija na crtežu.

Pored toga, kod kotiranja simetričnih dijelova ili značajki nije potrebno kotirati simetralu.

Simetrija je korisna u proizvodnom procesu za određivanje ravnine razdvajanja kod

štancanja i injekcijskog prešanja strojnih dijelova. Nadalje, iz perspektive oblikovanja

pomoću računala, prisutnost ili nedostatak simetrije u pojedinačnim dijelovima ili

sklopovima može biti važan čimbenik prilikom konstruiranja. Simetrično konstruirani

dijelovi i (pod)sklopovi mogu znatno pojednostaviti proces oblikovanja pomoću računala.

Na primjer, određene značajke ili cijeli geometrijski oblik trodimenzionalnog CAD (engl.

Computer-aided design) modela, može se generirati značajkama zrcaljenja, kružnog ili

linearnog uzorka. Drugi primjer je da se broj pojedinačnih zrcalno simetričnih dijelova u

sklopnom CAD modelu može smanjiti zamjenom s jednim simetričnim dijelom. Na

temelju navedenih primjera može se zaključiti da je simetrija važno svojstvo koje se vrlo

često koristi u raznim područjima strojarstva, pa samim time i pri konstruiranju.

Tijekom oblikovanja pomoću računala, kod simetrično izrađenih CAD modela, nerijetko

se javlja zahtjev za potvrdom postojanja određene vrste simetrije. Pri tome je sama

informacija o simetriji vrlo rijetko izravno pohranjena u izvornim CAD modelima, dok u

neutralnim formatima za razmjenu (npr. STEP, IGS, itd.) u ovome trenutku uopće nije

podržana pohrana informacije o simetriji. U iznimnim slučajevima, informacija o

IV

simetriji može biti neizravno pohranjena u izvornom CAD modelu. To se na primjer

događa kada je konačni geometrijski oblik dobiven operacijom zrcaljenja u odnosu na

ravninu simetrije. Zbog toga se u praksi još uvijek za otkrivanje informacije o simetriji

uglavnom koristi vizualno prepoznavanje od strane inženjera. Međutim, vizualno

prepoznavanje može biti zahtjevno i dugotrajno za složene geometrijske oblike ili pri

analizi velikoga broja CAD modela pohranjenih u CAD repozitoriju. Isto tako, egzaktna

simetrija u matematičkom smislu ne može se otkriti vizualnim prepoznavanjem niti u

jednom CAD modelu, nego samo aproksimativna. Shodno tomu, drugi način za

otkrivanje informacija o simetriji je upotrebom računalno potpomognute detekcije

simetrije (RPDS), koja omogućuje automatsku identifikaciju ravnina, osi ili točaka

simetrije u dvodimenzionalnim ili trodimenzionalnim digitalnim objektima. RPDS dobila

je značajnu pozornost u strojarstvu, ali i u drugim područjima istraživanja poput

matematike, računarstva, medicine, arhitekture i građevinarstva. U strojarstvu, RPDS je

do sad korištena je u svrhu pronalaženja, kompresije i poravnanja CAD modela,

oblikovanja proizvoda za montažu, te otkrivanje namjere konstruktora u skeniranim

modelima tijekom procesa povratnog inženjerstva.

U matematičkom smislu, objekt je simetričan ako ostaje invarijantan u odnosu na

određene geometrijske transformacije kao što su refleksija, rotacija, translacija ili njihova

međusobna kombinacija (npr. diedarska simetrija je kombinacija refleksijske i rotacijske

simetrije). Prema mjerilu, simetriju se može podijeliti na globalnu, parcijalnu

(djelomičnu) i lokalnu. Globalna simetrija označava da je cijeli digitalni objekt

simetričan, dok parcijalna simetrija upućuje na to da je digitalni objekt globalno

simetričan, ali da postoje određeni lokalni dijelovi geometrije koji nisu simetrični.

Konačno, lokalna simetrija označava da je relativno mali dio geometrije ili da su samo

određeni dijelovi digitalnog objekta simetrični. Kao što je već ranije spomenuto, simetrija

može biti egzaktna (točna) ili aproksimativna (približna). Za razlikovanje spomenutih

dviju vrsta simetrije koristi se određena funkcija udaljenosti d(M,T(M)), koja mjeri

udaljenost između geometrijskog oblika M i njegove transformacije T(M). Funkcija

udaljenosti se uspoređuje s određenom greškom ε, tako da je d(M,T(M))<ε. Ako je ε≅0

tada se simetrija može smatrati egzaktnom, u suprotnom aproksimativnom. Da bi se iz

perspektive strojarstva neki CAD model smatrao egzaktno simetričnim, greška ε bi

trebala biti reda veličine minimalnih tolerancija izrade strojnih dijelova, odnosno ε=10–6.

V

Digitalni objekti koji su predmet istraživanja u okviru ovoga doktorskog rada jesu kruti

CAD modeli s rubnim prikazom (engl. boundary representation, B-rep). Postojeći pristupi

za RPDS u CAD modelima s rubnim prikazom uglavnom su ograničeni na analitičke

površine (ravne, cilindrične, stožaste, sferne i toroidalne), iako isti često sadrže i

numeričke površine (primjerice B-spline, ekstrudirane površine, zarotirane površine,

itd.). Općenito se u kontekstu trodimenzionalnih digitalnih objekta pristupi RPDS-a

temelje se na analizi geometrije ili prikaza. Pristup temeljen na analizi geometriji za

detekciju simetrije koristi određena geometrijska svojstva digitalnog objekta (primjerice

pozicije točaka u prostoru, zakrivljenost plohe, itd.), te se najčešće kao ulazni digitalni

objekti koriste kruti CAD modeli, rešetkaste konstrukcije, voksel modeli, NURBS

modeli, oblaci točaka, mrežasti modeli, itd. U nekim slučajevima vrši se dodatna obrada

inicijalnog ulaznog digitalnog objekta, primjerice, inicijalni mrežni model se pretvara u

voksel model ili oblak točaka. Pristup temeljen na geometriji omogućava detekciju

aproksimativne i egzaktne simetrije. U pristupu temeljenom na pogledu, trodimenzionalni

objekt se pretvara u dvodimenzionalni prikaz, kao na primjer, u sliku ili projekciju.

Međutim, ovaj pristup ograničen je isključivo na otkrivanje aproksimativne simetrije što

ga čini ne prikladnim za CAD modele s rubnim prikazom.

Nadalje, prema načinu detekcije ravnina ili osi simetrije u digitalnom objektu, postoje

dva pristupa u RPDS-u: eksplicitni i implicitni. Kod eksplicitnog pristupa se ravnine ili

osi simetrije u digitalnom objektu pronalaze direktno. Implicitni pristup podrazumijeva

da se za dani ulazni digitalni objekt identificira određeni broj kandidata za ravnine i/ili

osi simetrije. Potom se ti kandidati evaluiraju s obzirom na geometriju ulaznog digitalnog

objekta u svrhu provjere predstavljaju li neki od kandidata u konačnici i prave ravnine ili

osi simetrije. Kandidati za ravnine i osi simetrije identificiraju se na nekoliko načina,

među kojima su analiza glavnih komponenti, uparivanjem određenih entiteta (na primjer

točaka), analiza svojstava lokalnih površina, inkrementalna rotacija oko centroida, itd.

Neke od prethodnih RPDS studija ograničene su isključivo na otkrivanje ravnine i/ili osi

simetrije koje prolaze kroz neku referentnu točku poput ishodišta, težišta, ili središta

mase, što je prikladno za detekciju egzaktne, ali ne i aproksimativne simetrije.

Kad je riječ o detekciji simetrije u krutim CAD modelima, one je proučavana iz dva

aspekta: temeljem značajki ili rubnog prikaza. Prvi način koristi značajke modeliranja,

Booleove operacije i povijesti modeliranja za detekciju egzaktne simetrije u pojedinačnim

VI

dijelovima i sklopovima. Međutim, taj aspekt ograničen je na izvorne CAD modele koji

su vezani uz neki CAD sustav, te može biti osjetljiv na određene loše navike konstruktora

koje prakticira prilikom modeliranja (na primjer modeliranje korištenjem viška značajki

ili modeliranje simetričnih oblika korištenjem značajki koje nisu izvedene simetrično).

Drugi aspekt za ulaz koristi geometrijske i topološke informacije rubnog prikaza, što

omogućuje upotrebu izvornih CAD modela kao i neutralnih formata za razmjenu. U svrhu

otkrivanja globalne refleksijske i osne simetrije, neke studije predlažu pristup koji se

temelji na petljama (zatvoreni krug rubova koji okružuju plohu). Kandidati za ravnine i

osi simetrije dobiveni su kao rezultantni vektor dvaju jediničnih normalnih vektora iz

identičnih parova petlji, dok su stvarne ravnine i osi simetrije dobivene međusobnom

usporedbom kandidata prema kumulativnim površinama petlji. U drugom istraživanju se

predlaže tzv. „podjeli pa vladaj“ pristup, koristeći kao ulaz plohe za otkrivanje egzaktne

globalne i parcijalne refleksijske i osne simetrije. U prvoj fazi, lokalni kandidati za

ravnine i osi simetrije dobivaju se preko lokalnih simetričnih svojstava ploha i njihovih

sjecišta, kako bi se u drugoj fazi podudaranjem lokalnih kandidata utvrdila globalna

simetrija. Druga studija predlaže pristup za otkrivanje cikličkih područja u parcijalno

osno simetričnim modelima koristeći unaprijed dodijeljenu os simetrije za ulaz. Nadalje,

u jednoj drugoj studiji korišten je pristup temeljen na grafu za izdvajanje simetričnih

područja na različitim geometrijskim mjerilima. Predloženi pristup uključuje detekciju

egzaktne refleksijske, rotacijske i translacijske simetrije.

Općenito, postojeće studije RPDS-u u CAD modelima s rubnim prikazom imaju nekoliko

nedostataka: (1) većina studija je ograničena na analitičke površine, tj. ravne, cilindrične,

stožaste, sferne i toroidalne površine, iako kruti CAD modeli često sadrže i numeričke

površine, (2) iako su neke RPDS studije uključivale i numeričke površine (B-spline), one

su razmatrane samo u kontekstu refleksijske i cikličke simetrije. (2) Stoga su potrebna

daljnja istraživanja u tom području kako bi se uključili i drugi tipovi numeričkih površina

koji se javljaju u CAD modelima, i (3) parcijalna simetrija je još uvijek nedovoljno

istražena te postoji potreba za predlaganjem određene metrike u svrhu detekcije egzaktne

globalne, parcijalne i nesimetrije u CAD modelima.

U kontekstu spomenutih nedostataka u prethodnim istraživanjima, glavni cilj ovoga

doktorskog rada je predložiti metodu i razviti računalno okruženje za detekciju egzaktne

globalne i parcijalne refleksijske i osne simetrije u CAD modelima s rubnim prikazom

VII

koji sadrže analitičke i numeričke površine. Istraživanje je ograničeno na krute CAD

modele s geometrijom mnogostrukosti, kao i na pojedinačne dijelove sa samo jednim

tijelom. Shodno tomu, hipoteza istraživanja glasi: Primjenom metode temeljene na

geometriji moguće je detektirati t egzaktnu globalnu i parcijalnu refleksijsku i osnu

simetriju u CAD modelima s rubnim prikazom koji sadrže analitičke i numeričke

površine. Očekivani znanstveni doprinosi istraživanja je: 1) Metoda temeljena na

geometriji za detekciju simetrije u CAD modelima koji sadrže analitičke i numeričke

površine, i 2) Računalno okruženje za detekciju simetrije u CAD modelima koji sadrže

analitičke i numeričke površine.

Predložena metoda za RPDS koristi rubni prikaz kao ulaz za detekciju simetrije, dok kao

rezultat pruža informaciju o prisutnosti egzaktne globalne ili parcijalne simetrije, te

refleksijske ili osne simetrije. Korištenje rubnog prikaza kao ulaz predstavlja općeniti

pristup primjenjiv i proširiv na različite CAD sustave i formate datoteka. Predložena

metoda sastoji se od šest koraka: (1) interpretacija 3D CAD modela, (2) analiza rubnog

prikaza, (3) generiranje kandidata za ravnine i osi simetrije, (4) reduciranje kandidata za

ravnine i osi simetrije, (5) evaluacija kandidata za ravnine i osi simetrije i (6) vizualizacija

otkrivenih stvarnih ravnina i osi simetrija.

Inicijalno je potrebno CAD model interpretirati pomoću odgovarajućeg CAD sustava.

Nakon interpretacije, rubni prikaz se podvrgava analizi, koja uključuje klasifikaciju

topoloških elemenata (ploha i rubova) prema njihovim osnovnim geometrijskim

elementima (vrstama površina i krivulja). Temelj predložene metode detekcije simetrije

su plohe, koje kao što je ranije spomenute uključuju i analitičke, također uključuju i

numeričke vrste površina (B-spline, zarotirane plohe, itd.). Pri tome RPDS metoda nije

ograničena na određene vrste numerički površina, nego zbog svoje općenitosti omogućuje

prilagodbu prema vrstama površina koje su specifične za određeni CAD sustav ili CAD

format. Osim klasifikacije, u koraku analize rubnog prikaza provodi se izračun

specifičnih svojstava ploha. U tu svrhu, svaka ploha se predstavlja jedinstvenom točkom

(centroidom ili njegovom projekcijom na plohu), a odgovarajući jedinični vektor normale

ili jedinični vektor osi izračunava se u spomenuti točkama. Predložena metoda oslanja se

na implicitni (indirektni) pristup detekcije simetrije koji podrazumijeva generiranje

određenog skupa kandidata za ravnine i osi simetrije, te njihovu evaluaciju u svrhu

detekcije stvarnih ravnina i/ili osi simetrije. Kandidati se u okviru predložene metode

VIII

generiraju iz glavnih osi inercije (po tri kandidata za ravnine i za osi simetrije), iz parova

sličnih ploha, te iz pojedinačnih ploha. Kandidati generirani iz glavnih osi inercije

pokrivaju detekciju potencijalno egzaktne globalne simetrije u CAD modelu. Međutim,

ti kandidati nisu dovoljni za detekciju ravnina i osi simetrije koji se ne poklapaju s

glavnim osim inercije. Primjerice, CAD model može biti višestruko egzaktno globalno ili

parcijalno reflektivno simetričan. Da bi se pokrile te vrste simetrije, kandidati se također

generiraju i iz parova sličnih ploha, a u uparuju se samo plohe istoga tipa. Metrika koji se

koristi za utvrđivanje sličnih ploha je kosinusova sličnost, za čiji se izračun upotrebljavaju

rubovi ploha. Svakom rubu se dodjeljuje posebni kôd koji sadrži informacije o vrsti petlji

kojoj pripada (vanjskoj ili unutarnjoj), vrsti ruba (linija, kružnica, elipsa, B-spline, itd.),

te duljina ruba. Svaki par ploha koji ima kosinusovu sličnost jednaku 1, njegove plohe

smatraju se identičnim, a sličnima ako je ispod jedan, a iznad određene granične

vrijednosti (npr. 0,7). U konačnici se iz parova simetričnih ploha generiraju kandidati za

ravninu simetrije (položaj kandidata ravnine dobiva se iz središnja točke između ploha,

dok orijentacija preko jediničnih normala ploha). Posljednja skupina kandidata generira

se iz pojedinačnih ploha (cilindričnih, stožastih, itd.) i odnosi se na kandidate za osnu

simetriju čime se pokriva eventualno postojanje parcijalne osne simetriju u CAD modelu.

Orijentacija kandidata osi dobiva se iz jediničnog vektora osi plohe, a položaj je definiran

točkom na osi plohi. Generirani kandidati se prosljeđuju sljedećem koraku.

U sljedećem koraku se reducira broj kandidata s ciljem uklanjanja duplikata i

neprikladnih kandidata koji su značajno udaljeni od centra gravitacije CAD modela.

Svaki od preostalih kandidata za ravnine i osi simetrije evaluira se pomoću vektorskog

računa koristeći pri tome specifična svojstva ploha iz koraka analize rubnog prikaza. Ako

proces evaluacije pokaže da određeni kandidat za ravninu ili os simetrije doista

predstavlja i stvarnu ravninu ili os simetrije, isti se vizualizira u CAD modelu kako bi se

inženjeru pružila informacija o simetriji. U okviru studije predložene su dvije metrike za

evaluaciju kandidata za ravnine ili osi simetrije u CAD modelima s rubnim prikazom, SFI

i GSI. SFI mjeri simetriju topologije, dok GSI mjeri simetriju geometrije u CAD modelu.

Pri tome, GSI predstavlja mjeru za definiranje granica između egzaktne globalne,

parcijalne simetrije i asimetrije.

U okviru doktorskog rada, predložena metoda je implementirana unutar komercijalnog

CAD sustava koristeći funkcionalnosti njegovog aplikacijskog programskog sučelja, a

IX

kao rezultat toga razvijeno je računalno okruženje. Računalno okruženje se sastoji od

grafičkog sučelja, koje omogućuje upravljanje procesom detekcije simetrije kao i post

procesuiranje i vizualizaciju simetričnih i nesimetričnih ploha. Također je dokazano da

se, zbog svoje općenitosti, metoda može implementirati i u drugim CAD sustavim koji

pružaju slične funkcionalnosti aplikacijskog programskog sučelja.

Predložena metoda i računalno okruženje za RPDS podvrgnuti su validaciji upotrebom

Validation square metode, koja se sastoji od strukturne validacije (koja je kvalitativna) i

validacije performansi (koja je kvantitativna). Sama validacija provedena je na

reprezentativnom skupu od 1100 CAD modela. Na temelju validacije zaključeno je da

metoda omogućuje detekciju simetrije na različitim formatima ulaznih CAD modela

(izvorni, Parasolid i STEP). Također, metoda se pokazala robusnom s obzirom na

interpretaciju CAD modela (koji mogu poticati iz različitih CAD sustava), što može imati

ima minimalan lokalni utjecaj na rezultate detekcije simetrije. Na primjer, u rijetkim

situacijama metoda ne može detektirati određene simetrične parove ploha ili samo-

simetričnih ploha zbog numeričkih grešaka koje nisu unutar ε=10–6. Nadalje, validacija

je otkrila da je predložena metoda omogućuje detekciju simetrije uz visoku točnost od

87% te linearnom računalnom složenošću. Konačno, temeljem validacije, predložena

RPDS metoda pokazuje mogućnost proširenja na CAD modele bez mnogostrukosti,

pojedinačne CAD modele s višestrukim tijelima, sklopne CAD modele, druge CAD

formate (ACIS i IGES), pa čak i druge trodimenzionalne digitalne objekte kao što su

rešetkaste konstrukcije. Na temelju svega toga može se zaključiti da je potvrđena hipoteza

da se metoda temeljena na geometriji može koristiti za otkrivanje egzaktne globalne i

parcijalne refleksijske i osne simetrije u CAD modelima s rubni prikazom koji sadrže

analitičke i numeričke površine. Isto tako, predložena RPDS metoda i implementacija

metode u obliku razvoja računalnog okruženja, potvrđuju da su ostvareni očekivane

znanstveni doprinosi postavljene u okviru ovoga doktorskoga rada.

Iako predložena metoda za RPDS predstavlja unaprjeđenje u odnosu postojeće studije,

nekoliko je budućih smjerova istraživanja. Prije svega, metoda je ograničena na

refleksijsku i osnu simetriju. Kod mehanički dijelova su prisutne i druge vrste simetrije,

poput cikličke i diedarske simetrije. Trenutno je ciklička simetrija u kontekstu CAD s

modela rubnim prikazom još uvijek nedovoljno istražena, te bi buduća istraživanja mogla

ići u smjeru proširenja mogućnosti metode na detekciju cikličke simetrije. Osim toga,

X

metoda bi se mogla poboljšati uvođenjem detekcije lokalne simetrije. Predložena RPDS

metoda pokazuje obećavajuće rezultate kada je u pitanju njezino proširenje na CAD

modele bez mnogostrukosti, pojedinačne dijelove s višestrukim tijelima, sklopne CAD

modele, druge CAD formate (ACIS i IGES), CAD modela sastavljenih predominantno

od numeričkih ploha, pa čak i druge trodimenzionalne digitalne objekte kao što su

rešetkaste konstrukcije. Iako metoda uključuje numeričke površine, potreban je daljnji

nastavak istraživanja vezan uz analizu CAD modela sastavljenih u potpunosti od

numeričke geometrije (primjerice karoserija automobila, trup zrakoplova, itd.). U tom

kontekstu, dan je prijedlog poboljšanja inicijalno predložene metode. Na posljetku,

buduća istraživanja bi trebala uključivati unaprjeđenje računalnog okruženja u svrhu

razvoja samostalne aplikacije, kako bi detekcija simetrije postala neovisna o CAD

sustavu.

XI

TABLE OF CONTENTS

ABOUT THE SUPERVISOR ... I

ABSTRACT ... II

PROŠIRENI SAŽETAK .. III

LIST OF FIGURES ... XIV

LIST OF TABLES .. XVI

LIST OF ABBREVIATIONS .. XVII

NOMENCLATURE .. XIX

1 INTRODUCTION ... 1

1.1 Research motivation .. 4

1.2 Research objective, hypothesis, and scientific contributions 5

1.3 Research methodology .. 6

1.4 Thesis organization .. 7

2 RESEARCH BACKGROUND ... 9

2.1.1 Computer-Aided Symmetry Detection in Mechanical Engineering......... 15

2.1.2 Symmetry and similarity measures... 23

2.1.3 Overview of CASD studies .. 27

2.1.4 Relevant research gaps ... 32

2.2 CAD systems for CASD .. 32

2.2.1 Application Programming Interface ... 34

2.2.2 Boundary representation ... 38

2.3 Analytic and numeric geometry in B-rep .. 41

2.3.1 Surfaces .. 43

2.3.2 Curves ... 48

2.4 CAD models formats for CASD .. 50

2.4.1 Native formats .. 53

XII

2.4.2 Kernel formats .. 54

2.4.3 Neutral formats ... 56

3 A METHOD FOR COMPUTER-AIDED SYMMETRY DETECTION 61

3.1 Interpretation of the 3D CAD model ... 62

3.2 Analysis of the B-rep ... 64

3.3 Generation of planes and axes of symmetry candidates 71

3.3.1 Principal axes of inertia .. 72

3.3.2 Pairs of similar faces... 74

3.3.3 Single faces ... 81

3.4 Trimming of planes and axes of symmetry candidates 82

3.5 Evaluation of planes and axes of symmetry candidates 84

3.5.1 Global symmetry .. 87

3.5.1.1 Reflectional symmetry .. 87

3.5.1.2 Axisymmetry .. 89

3.5.2 Global symmetry index .. 90

3.5.3 Partial symmetry ... 92

3.5.3.1 Reflectional symmetry .. 92

3.5.3.2 Axisymmetry .. 94

3.6 Visualisation of actual planes and axes of symmetry .. 94

3.7 Data model ... 95

4 COMPUTATIONAL ENVIRONMENT .. 105

4.1 Implementation of the CASD method into a CAD System 107

4.1.1 Input 3D CAD models .. 108

4.1.2 Analysis of B-rep .. 109

4.1.3 Generation and trimming of planes and axes of symmetry candidates .. 112

4.1.4 Evaluation of planes and axes of symmetry candidates 113

XIII

4.1.5 Visualisation of actual planes and axes of symmetry 114

4.1.6 Graphical user interface and results file ... 115

4.2 Implementation of the CASD method into alternative CAD systems 117

5 VALIDATION & DISCUSSION ... 120

5.1 Data Collection .. 121

5.2 Structural Validation ... 125

5.2.1 Validity of individual steps of the CASD method 125

5.2.2 Consistency of the CASD method .. 128

5.2.3 Appropriateness of the example problems ... 129

5.3 Performance Validation ... 131

5.3.1 Usefulness of the CASD method with respect to example problems 132

5.3.2 Usefulness linked to applying the CASD method 147

5.3.3 Usefulness of the CASD method beyond example problems................. 153

5.4 Improvement of the CASD method ... 161

5.5 Implications of research findings .. 166

5.5.1 Implications for research .. 166

5.5.2 Implications for practice ... 167

5.6 Limitations ... 168

6 CONCLUSIONS ... 170

6.1 Future research directions .. 172

REFERENCES ... 173

BIOGRAPHY ... 188

ŽIVOTOPIS ... 189

LIST OF PUBLICATIONS .. 190

APPENDIX .. 191

XIV

LIST OF FIGURES

Figure 1. Mechanical parts exhibiting reflectional symmetry at different scales 3
Figure 2. Mechanical parts with diverse types of symmetries 3

Figure 3. Symmetry detection – engineer vs CASD ... 5
Figure 4. Sketch of a human body standing still (left) and in motion (right) 11
Figure 5. Examples of non-manifold models .. 33
Figure 6. Basic constituents of CAD systems ... 33
Figure 7. B-rep technique .. 39

Figure 8. Potential set of pointers for a topological data structure (left) and winged-

edge data structure (right) .. 39
Figure 9. Example of a basic B-rep model data structure ... 40

Figure 10. Basic types of geometric entities ... 41
Figure 11. A two-cylinder test – different features applied to the intersection edge. ... 42
Figure 12. Basic flowchart of the proposed symmetry detection method..................... 61
Figure 13. Flowchart of the B-rep analysis step ... 64

Figure 14. Example of unpartitioned (left) and partitioned periodical faces (right) 65
Figure 15. Examples of different types of analytical surfaces 66
Figure 16. Examples of different types of numeric surfaces .. 67
Figure 17. Examples of orthogonal projections C' of the face centroids C onto faces . 71

Figure 18. Flowchart of the candidate generation step ... 72
Figure 19. Example of the string code designation for a similar face pair. 76

Figure 20. The plot of similarity measures scores for test cases from Figure 12 77
Figure 21. An illustrative example of the faces centre points 80
Figure 22. Arrangements between two faces: (a) parallel, (b) coplanar, and (c)

arbitrarily oriented. .. 80

Figure 23. A partially axisymmetric part compound of cylindrical surfaces 81
Figure 24. Flowchart of the candidate trimming step ... 84
Figure 25. Flowchart of the POSCs and AOSCs evaluation step (part 1) 85

Figure 26. Flowchart of the POSCs and AOSCs evaluation step (part 2) 86
Figure 27. Internal (a) and external (b) approach to store the visualisation of APOSs

and AAOSs .. 95

Figure 28. Class diagram for the step analysis of B-rep ... 96
Figure 29. Class diagram for the steps generation, trimming, evaluation, and

visualisation of candidates for reflectional symmetry 103
Figure 30. Class diagram for the steps generation, trimming, evaluation, and

visualisation of candidates for axisymmetry ... 104

Figure 31. Schematic representation of the computational environment 105

Figure 32. Solidworks API model object hierarchy .. 107

Figure 33. Structure of Sub procedures within the Symmetry Detector 108
Figure 34. Relationship between topological entities ... 109

Figure 35. The Symmetry Detector GUI... 116
Figure 36. An example of the results file .. 117
Figure 37. A bar chart of relative frequencies of surfaces within the first dataset 122
Figure 38. A sample of the first dataset .. 122
Figure 39. A bar chart of relative frequencies of surfaces within the second dataset. 123

Figure 40. As sample of the second dataset .. 124

XV

Figure 41. Examples of CAD models from the first dataset with the detected APOS and

AAOS (Part 1) ... 134
Figure 42. Examples of CAD models from the first dataset with the detected APOS and

AAOS (Part 2) ... 135
Figure 43. Examples of CAD models from the first dataset with the detected APOS and

AAOS (Part 3) ... 136
Figure 44. A sample of CAD models with the detected APOS and AAOS................ 138
Figure 45. Examples of global FP symmetry detection .. 140
Figure 46. Examples of FP stand-alone faces and face pairs 141
Figure 47. Examples of local FP symmetry detection .. 141

Figure 48. Examples of global scale FN symmetry detection 142
Figure 49. An example of a FN symmetric face pair .. 142

Figure 50. Examples of 3D CAD models that are multiple reflectional symmetric as

well as cyclic symmetric. ... 143
Figure 51. Big-O charts for B-rep analysis step .. 144
Figure 52. Big-O charts for generation and trimming of candidates’ steps 144
Figure 53. Big-O charts for evaluation of candidates’ step .. 145

Figure 54. Big-O charts for visualisation step .. 145
Figure 55. Experimental time complexity of the symmetry detection method 145

Figure 56. GSI vs. SFI plot ... 147
Figure 57. Symmetry detection results with (upper row) and without (lower row) the

sub-step classification of topology .. 148
Figure 58. Symmetry detection results with (upper row) and without (lower row) the

sub-step generation of candidates from the PAOI 149

Figure 59. Symmetry detection results with (upper row) and without (lower row) the

sub-step generation of candidates from similar face pairs......................... 150

Figure 60. Symmetry detection results with (upper row) and without (lower row) the

sub-step generation of candidates from single faces 151

Figure 61. Examples of single part 3D CAD models with multiple bodies 154
Figure 62. Examples of non-manifold 3D CAD models... 155
Figure 63. Assembly CAD model data structure compound of multiple-part CAD

models .. 156
Figure 64. An assembly CAD model represented as multi-body part CAD model 156
Figure 65. Examples of orientation of bolts in an assembly CAD model................... 157

Figure 66. Examples of CAD models with predominantly numeric surfaces............. 158
Figure 67. Examples of 3D CAD models in ACIS and IGES file format 159

Figure 68. Examples of other 3D digital objects (cable-strut structures) 160
Figure 69. Flowchart of the second evaluation step for remaining faces.................... 162

Figure 70. Uniform sampled faces .. 163
Figure 71. Flowchart of the evaluation step of sampled points with respect to a POSC

 ... 164

Figure 72. Flowchart of the evaluation of sampled points with respect to an AOSC . 165
Figure 73. A uniformly sampled axisymmetric face ... 165

XVI

LIST OF TABLES

Table 1. Overview of prior CASD studies (Part 1) ... 28
Table 2. Overview of prior CASD studies (Part 2) ... 29

Table 3. Overview of prior CASD studies (Part 3) ... 30
Table 4. Overview of prior CASD studies (Part 4) ... 31
Table 5. An overview of different 3D CAD model formats 51
Table 6. Overview of geometry in CGM and ShapeManager 54
Table 7. Overview of geometry in Parasolid and ACIS .. 56

Table 8. Overview of geometry in STEP and IGES .. 59
Table 9. Characteristic face properties for various surface types 68
Table 10. Characteristic surface parameters retrievable from a CAD system 69

Table 11. Characteristic edge properties for various curve types 69
Table 12. Comparison of similarity measure scores for face pairs examples.............. 77
Table 13. An example of the binary feature vectors for the face pair in Figure 19 79
Table 14. Symmetry correlation matrix ... 92

Table 15. Types of surfaces and edges and their labels. .. 110
Table 16. Solidworks API objects and methods for obtaining specific properties of

edges and faces. ... 112
Table 17. Solidworks API objects and methods for generating and trimming of POSCs

and AOSCs .. 113
Table 18. Solidworks API objects and methods for evaluation of POSCs and AOSCs

 ... 114
Table 19. Solidworks API objects and methods for creating a plane or axis. 115
Table 20. Comparison of API commands in Solidworks, NX, and FreeCAD 118

Table 21. Accuracy score of the symmetry detection .. 139

Table 22. Theoretical time complexity of the proposed CASD method 144
Table 23. Comparison of the number of candidates with prior studies 152

XVII

LIST OF ABBREVIATIONS

ACIS Advanced Computerized Implementation of Standards

ANSI American National Standards Institute

ASCII American Standard Code for Information Interchange

AAOS(s) Actual axis(es) of symmetry

APOS(s) Actual plane(s) of symmetry

AOS(s) Axis(es) of symmetry

AOSC(s) Axis(es) of symmetry candidate(s)

API Application Programming Interface

B-rep Boundary Representation

CAD Computer-aided design

CAE Computer-aided engineering

CAM Computer-aided manufacturing

CAPP Computer-aided process planning

CASD Computer-aided symmetry detection

CAx Computer-aided x

CGM Convergence Geometric Modeler

COG Centre of gravity

CSG Constructive Solid Geometry

DMSC Digital Metrology Standards Consortium

FC Face class

FN False negative

FP False positive

FEA Finite element analysis

GUI Graphical user interface

IGES Initial Graphics Exchange Specification

ISO International Standard Organization

JT Jupiter Tessellation

MBD Model Based Definition

PDF Portable Document Format

POS(s) Plane(s) of symmetry

POSC(s) Plane(s) of symmetry candidate(s)

XVIII

PMI Product Manufacturing Information

STEP Standard for the Exchange of Product model data

TN True negative

TP True positive

VB Visual Basic

VBA Visual Basic for Application

PC Pairwise comparison

QIF Quality Information Frameworks

3D Three-dimensional

2D Two-dimensional

XIX

NOMENCLATURE

aA [-] AOSC orientation vector

a [-] component of the principal axis

AR [-] area ratio

A [-] point on POSC

A [-] binary feature vector

b [-] component of the principal axis

b [-] vector between the COG & a point A on the AOSC

B [-] binary feature vector

BBC [-] Braun-Blanquet coefficient

c [-] component of the principal axis

CS [-] Cosine similarity

CS(F1,F2) [-] Cosine similarity between 1st and 2nd face

d [-] degree

JI [-] Jaccard index

f [-] face vector (normal or axis vector)

F1 [-] binary feature vector of 1st face

F2 [-] binary feature vector of 2st face

fp [-] symmetric face pairs

fc [-] individual faces

GSI [-] Global symmetry index

GSIE [-] Global symmetry index for edges

DOS [-] Degree of Symmetry

d1 [-] u degree

d2 [-] v degree

dA [m] point-to-line distance between AOSC and COG

dM [m] point-to-plane distance of between POSC and COG

dC,k [m] point-to-plane distance POSC and stand-alone face

IP [kg/m2] inertia tensor

K1 [-] upper index on u control points,

K2 [-] upper index on v control points

L [kgm2/s] angular momentum vector

M [mm] midpoint

n [-] unit normal vector to the face at some point

XX

N [-] normal vector to the face at some point

nP [-] unit normal vector to the POSC

nF [-] number of faces in the CAD model

nE [-] number of edges in the CAD model

nL [-] number of loops in the CAD model

nFC [-] number of faces in a face class

nFP [-] number of symmetrical face pairs

nSF [-] number of symmetrical stand-alone faces

nSP [-] number of symmetrical points

nTP [-] number of total sampled points

1 ()
d

iN u [-] B-spline basis functions

2 ()
d

iN v [-] B-spline basis functions

P [-] point

p [-] cross-product vector (POSC)

q [-] cross-product vector (AOSC)

Pi [-] control points

Pij [-] control points

R [m] radius

r [-] position vector of a face

ri [-] position vector of the i-th face

rj [-] position vector of the j-th face

sij [-] resultant vector of two subtracted position vectors

ti [-] position vector of the i-th face

tj [-] position vector of the j-th face

SFI [-] Symmetrical faces index

SLI [-] Symmetrical lines index

wi [-] weights (curve)

wij [-] weights (surface)

S [-] average position of sampled points

SD [-] symmetry distance

S(x,y) [-] implicit equation of analytic curve

S(x,y,z) [-] implicit equation of analytic surface

SDC [-] Sørensen–Dice coefficient

SSC [-] Szymkiewicz–Simpson coefficient

XXI

V [-] direction vector

v [-] orientation vector

α [º] half-angle of conical surface

β [-] coefficient of symmetry

γu [º] periodicity angle of the face in u direction

γv [º] periodicity angle of the face in v direction

ε [-] computation error for CASD

εA [-] computational error for surface area

σ(u,v) [-] parametric surface

λ(u) [-] parametric curve

Ω [-] velocity vector

ωij [-] weights (surface)

ΔLx [m] minimum bounding box length in x direction

ΔLy [m] minimum bounding box length in y direction

ΔLz [m] minimum bounding box length in z direction

δmax [m] max. allowable distance of POSC or AOSC from COG

1

1 INTRODUCTION

__

This introduction chapter provides general information about symmetry, its significance,

and various types of symmetries in mechanical engineering. The reader is introduced to

the motivation for investigating symmetry detection and is provided with a concise

overview of the thesis's research objective, hypothesis, methodology, and anticipated

scientific contributions.

¯¯

Geometric symmetry (hereinafter denoted as symmetry) is a property that exists in a wide

range of natural and man-made objects. This property is present in the simplest of

molecules [1], in human and biological organisms [2], and in complex galaxies in the

universe [3]. In particular, symmetry is an integral part of science and engineering. It was

the scope of research in biology [2], mathematics [4], physics [5], and even philosophy

[6]. Many structures exhibit symmetry in architecture and civil engineering for aesthetic

and functional reasons [7]. The symmetry of a lattice steel structure may have a distinct

influence on its static and kinematic behaviour [8]. In electrical engineering, the

symmetry of an electronic system can improve its robustness and reliability against noise,

interference, and failure [9]. Further, symmetry can be utilised in robotics for visual object

recognition [10].

From the perspective of mechanical engineering, many parts and assemblies are

symmetrical to meet functional and performance requirements [11]. For instance, it

enhances the stability and balance of assemblies with rotating parts, such as

turbomachines and internal combustion engines. Technical drawings can depict

symmetrical parts by illustrating half in the section and half in the outside view, reducing

the number of necessary orthogonal projections [12]. Additionally, dimensioning is not

required for the line of symmetry of symmetric parts and features [13]. Computer-aided

engineering (CAE) often utilises symmetry to reduce the size of the analysis model, which

decreases computational demand and increases analysis accuracy [14,15]. Symmetry is

also useful in manufacturing to determine the parting planes of mechanical parts in the

stamping and moulding processes [16]. During assembling, mechanical parts with

multiple reflectional symmetries require less handling time and are less likely to face

assembly errors due to incorrect orientation [17]. Moreover, the symmetry of assemblies

2

can be used to build design knowledge and guide its application in engineering design

[18].

From an engineering design standpoint, the presence or absence of symmetry in parts or

assemblies can play a crucial role. Incorporating symmetry into the design of parts or

(sub)assemblies can significantly streamline the computer-aided design (CAD) process.

This is because certain features or the entire geometric shape of the part's CAD model

can be mirrored or patterned (linear, circular, or translational). Additionally, replacing

two mirrored parts with one symmetrical part can reduce the number of individual parts

in the assembly CAD model [19]. Symmetry is an essential property extensively utilised

in various fields, including engineering design, as evidenced by the examples.

In mathematical terms, an object is symmetrical if it remains unchanged (invariant) after

undergoing geometric transformations such as reflection, rotation, translation, or their

combinations [20,21]. Dihedral symmetry, for instance, involves both reflection and

rotation transformations. Symmetry is categorised as either exact (perfect) or approximate

(imperfect), depending on its level of accuracy. A distance function d(M,T(M)) is utilised

to distinguish between the two. This function measures the distance between the

geometric shape M and its transformation T(M) and is evaluated within a specific

computation error ε, such that d(M,T(M))<ε [22]. When ε≅0, the detected symmetry is

considered exact, otherwise approximate. From the perspective of mechanical

engineering, the computation error should be at least within the manufacturing accuracy

ε=10–6 to qualify the mechanical part exactly symmetrical [16,23].

In terms of scale, mechanical parts exhibit either global [23], partial [16], or local [20]

symmetry. Global symmetry implies that the 3D CAD model is fully symmetrical (Figure

1, a). Partial symmetry denotes that the 3D CAD model would be globally symmetrical

if certain geometrical features would not disturb symmetry [23] (Figure 1, b). Hence,

partial symmetry can be considered a subset of global symmetry with local non-

symmetric features. In mechanical engineering, partial symmetry is also denoted as quasi-

symmetry [14]. Finally, the local symmetry of the 3D CAD model refers to the case when

only certain portions of the 3D CAD model are symmetrical (Figure 1, c). This doctoral

thesis focuses on exact global and partial symmetry in 3D CAD models because of their

relevance in mechanical engineering [14–19].

3

a) global symmetry b) partial symmetry c) local symmetry

Figure 1. Mechanical parts exhibiting reflectional symmetry at different scales

Mechanical parts commonly exhibit several basic types of symmetry, depending on the

type of transformation (Figure 2). These types include reflectional (mirror or bilateral),

rotational (cyclic symmetry and axisymmetry), and translational (repetitive) symmetry

[11]. Reflectional symmetry denotes that the part remains unchanged when mirrored

about a plane. (Figure 2, a). Rotational symmetric parts remain invariant under rotation

about a central axis by an angle of 360°/N, where N represents the number of repetitions

at angular intervals (Figure 2, b). This type of symmetry is known under the term N-fold

rotational symmetry, where N is at least N=2 because 1-fold symmetry does not represent

symmetry (after 360° rotation, any object is mapped again onto itself). N-fold rotational

symmetry about a central axis is denoted cyclic symmetry, which is very common in

mechanical engineering [23]. Axisymmetry is a particular case of N-fold rotational

symmetry where N=∞. Hence, an axisymmetric part remains unchanged under all

rotations about a central axis (Figure 2, c). Translational symmetric parts are invariant

when sliding in some direction (Figure 2, d). Apart from the basic types of symmetry,

mechanical parts may exhibit a combination of symmetries. For example, a mechanical

part may be dihedral symmetric, which means that it is simultaneously reflectional and

cyclic symmetric (Figure 2, b). The scope of this research is limited to reflectional and

axisymmetric, as those two types are the most common in mechanical engineering [18].

a) reflectional

symmetry

b) cyclic

symmetry
c) axisymmetry

d) translational

symmetry

Figure 2. Mechanical parts with diverse types of symmetries

4

1.1 Research motivation

As highlighted in the introduction chapter, symmetry is an important geometrical property

often employed in mechanical engineering. Engineers must often ensure that their 3D

CAD models are designed symmetrically to achieve their intended design. While

symmetry information is crucial, it is often not directly stored in the CAD model as planes

and axes of symmetry [24]. The exception of indirectly stored symmetry information

within the CAD model is when the final geometric shape is created by mirroring or pattern

operations (linear, circular or translational) with respect to a plane or axis. However, such

indirectly stored symmetry information is usually lost when exchanging the CAD model

via neural or kernel CAD file formats (STEP1, IGES2, Parasolid, and ACIS3) because

these formats currently do not support the exchange of reference geometry (planes and

axes).

Engineers typically rely on visual inspection to detect symmetry in 3D CAD models, but

this process can be time-consuming and challenging for complex shapes [23]. In addition,

the engineer can visually detect only approximate symmetry [25], as exact symmetry

needs additional mathematical verification. Computer-aided symmetry detection (CASD)

aims to automatically identify planes, axes, and points of symmetry within digital objects,

including 3D CAD models. Figure 3 compares qualitatively the time required for

symmetry detection between the engineer and CASD, showing that as the number of

digital objects increases, CASD becomes more efficient. Additionally, the mathematical

verification of exact symmetry is faster and easier to compute through CASD. However,

state-of-the-art CAD systems often do not provide proper CASD tools or require manual

input from the user to verify symmetry [26]. Thus, one of the motivations of this research

is the lack of proper symmetry detection tools in state-of-the-art CAD systems that could

support or replace the need for visual detection of symmetry by the engineer.

1 Standard for the Exchange of Product Model Data
2 Initial Graphics Exchange Specification
3 Advanced Computerized Implementation of Standards

5

Figure 3. Symmetry detection – engineer vs CASD

The digital objects that are the focus of this doctoral thesis are 3D CAD models with

boundary representation (B-rep or BREP), which are most often used in solid modelling

[27,28]. B-rep CAD models consist of analytic or numeric geometry [28,31]. As outlined

in Chapter 2, while previous CASD studies typically covered analytic geometry including

plane, cylindrical, conical, spherical, and toroidal surfaces, there remains a gap in

addressing numeric geometry. Until now, only spline surfaces and curves were

considered [14,23]. This gap is a significant drawback since B-rep CAD models often

require both geometry types. Therefore, this doctoral thesis is motivated by the limitations

of prior CASD studies and aims to propose a CASD method to address these

shortcomings. The following section outlines the research objective, hypothesis, and

scientific contributions.

1.2 Research objective, hypothesis, and scientific contributions

The main research objective of this doctoral thesis is to introduce a CASD method and

propose a computational environment for detecting exact global and partial reflectional

and axisymmetry in B-rep CAD models containing analytical and numerical geometry.

This research is limited to solid B-rep CAD models with manifold geometry and single

parts with one body. The past CASD studies use either a geometry-based or view-based

approach [29,30] (for more details, refer to Chapter 2). The geometry-based approach

relies on the geometrical information of the input digital object to recognise symmetry.

T
im

e

Number of digital objects

Engineer

CASD

Symmetry detection

6

The hypothesis of this research is as follows:

A geometry-based method can be used to detect exact global and partial reflectional

symmetry and axisymmetry in B-rep CAD models containing analytical and numerical

surfaces.

The expected scientific contribution of this doctoral thesis is:

1. A geometric-based method for symmetry detection in 3D CAD models that

contain analytical and numerical surfaces.

2. A computational environment for symmetry detection in 3D CAD models that

contain analytical and numerical surfaces.

Considering the defined research objective, hypothesis, and scientific contributions, the

following section discusses the research methodology.

1.3 Research methodology

The research methodology in this doctoral thesis is based on reference [32]. It comprises

four distinct phases (each phase is discussed in detail in the subsequent four paragraphs):

(1) the preliminary research,

(2) the proposed CASD method,

(3) implementing the CASD method into a computational environment, and

(4) validation of the proposed CASD method and computational environment.

(1) To establish a comprehensive understanding of the research area, the preliminary

research phase involves an overview of existing scientific and expert literature. This

literature overview entails identifying relevant sources and analysing and synthesising

research findings. The primary focus of this phase is to gain a fundamental understanding

of symmetry, types of symmetries, and previous CASD studies, particularly those

concerning solid CAD models. Additionally, the preliminary research delves into the

mathematical concepts underlying the B-rep technique, which is commonly used in state-

of-the-art CAD systems [10]. Furthermore, this phase aims to explore suitable CAD file

formats for use in CASD. Ultimately, the preliminary research phase defines the research

methodology, goals, and hypothesis.

(2) After conducting preliminary research, a CASD method for solid B-rep CAD models

that include both analytical and numerical surfaces is introduced. The CASD method aims

7

to provide a versatile solution through a geometry-based approach that allows for a range

of input CAD models (including native, kernel, and neutral file formats) and can be

adapted to various CAD systems. The proposed CASD method leverages the geometrical

and topological data of the B-rep model to detect symmetry.

(3) The third phase involves proposing a computational environment designed to detect

symmetry, allowing for the successful execution and validation of the proposed method.

This is accomplished by selecting a suitable commercial CAD system, specifically

Solidworks, and developing the computational environment through its Application

Programming Interface (API). To demonstrate that the API serves solely as a tool for the

development of the computational environment, the possibility of implementing the

CASD method into two additional CAD systems, the commercial NX and the open-

source FreeCAD, is explored.

(4) In the final stage of the research methodology, two datasets consisting of over 1000

solid CAD models in neutral STEP file format were gathered from two online CAD

databases. These datasets contain a diverse range of mechanical parts and consist of

common types of analytic and numerical surfaces present in solid CAD models. For

validating the proposed CASD method and computational environment, the Validation

Square [33] has been employed. Through this validation process, the advantages and

drawbacks of the CASD method were identified and analysed. Finally, improvements to

the method and computational environment were suggested, and future research

directions were proposed based on the findings and conclusions.

1.4 Thesis organization

The doctoral thesis is divided into six chapters that, to some extent, align with the

previously described phases of the research methodology.

Chapter 1 introduces symmetry and the types of symmetry and provides insights into the

research motivation alongside a brief overview of the research aim, hypothesis, and

expected scientific contributions.

Chapter 2 provides a comprehensive review of prior studies in CASD, with a special focus

on mechanical engineering and symmetry detection in 3D CAD models. It also highlights

the notable research gaps. Additionally, it covers CAD systems for CASD and the B-rep

technique that represents the shape of the 3D CAD model. The chapter also includes the

8

basics of analytic and numeric geometry in the context of CAD exchange formats and

existing geometric modelling kernels. This chapter corresponds to the preliminary stage

of the research methodology.

In Chapter 3, a method for CASD in B-rep CAD models based on analytic and numeric

geometry is proposed, considering the theoretical research background and previous

CASD studies. The chapter is organised into sections that correspond to the proposed

method's steps: (1) interpretation of the 3D CAD model, (2) analysis of B-rep, (3)

generation, (4) trimming, and (5) evaluation of the planes and axes of symmetry

candidates, and (6) the visualisation of the actual planes and axes of symmetry. This

chapter focuses on the second phase of the research methodology.

In Chapter 4, the implementation of the proposed CASD method into a CAD system is

discussed, with a focus on the computational environment. Additionally, the feasibility

of applying the method in two other CAD systems is explored through their Application

Programming Interfaces. This chapter represents the third phase of the research

methodology.

Chapter 5 is devoted to validating the proposed CASD method and the computational

environment. To accomplish this, the Validation Square [33] is used, which includes both

qualitative and quantitative measures of structural and performance validity. This chapter

also discusses the results within the framework of previous CASD studies.

Chapter 6 serves as the conclusion to the doctoral thesis. It reflects on the hypothesis and

scientific contributions of the research and offers suggestions for future work. The last

two chapters represent the fourth and final phase of the research methodology.

9

2 RESEARCH BACKGROUND

__

The second chapter summarises the research background for the conducted study. First,

a review of past computer-aided symmetry detection research is given, with particular

attention to mechanical engineering and 3D CAD models. Based on that, the research

gaps are highlighted. Then, CAD systems for solid modelling and the underlying

boundary representation technique most widely used for describing the 3D CAD model’s

shape are discussed. Next, the fundamentals of analytic and numeric geometry are

examined from the perspective of data exchange files and geometric modelling kernels.

¯¯

Computer-aided symmetry detection has been the scope of research for many years in

different fields, including mechanical engineering [23], computer engineering [34], civil

engineering [35], mathematics [36], and medicine [37]. As mentioned earlier, CASD aims

to automate the detection of planes, axes, or points of symmetry in 2D or 3D digital

objects. Typical examples of 2D digital objects used as input are images [38], computed

thermography (CT) scans [37], and views [39]. On the other hand, the typical 3D digital

objects exploited as CASD input are point clouds [40], mesh models [41], 3D CAD

models [42], cable-strut structures [43], voxel models [41], and NURBS models [44].

CASD studies can be divided on whether they detect symmetry on complete [46] or

incomplete [47] digital objects with considerable missing parts. Further, the inputs for

CASD can be grouped into discrete (e.g., point clouds, mesh models, and voxel models)

or continuous data (e.g., B-rep CAD model and NURBS model). In certain CASD studies,

the initial input digital object is further processed and converted to make it more suitable

for symmetry detection analysis. For that purpose, a mesh model was converted into a

voxel model [48] or point cloud [38]. Also, a point cloud was subjected to meshing [49].

Furthermore, the initial input digital object may be represented by shape descriptors [50–

53], which map the shape of an input digital object to a spherical domain. The main

advantage of shape descriptors is that they exhibit the equivalent symmetry as the initial

input digital object [50,51]. Another advantage of shape descriptors is that a complex

shape is simplified, facilitating the CASD process. For instance, using spherical harmonic

coefficients, the shape of a 3D mesh model with thousands of vertices may be represented

10

using only a few tens of coefficients [52]. The shape descriptors used so far are orientation

histogram [50], reflective symmetry descriptor [47], generalised moment functions, and

volumetric function [53]. The main drawback of using shape descriptors is that the plane

and axes of symmetry often need to pass through the digital object’s centre point or

centroid, which is unsuitable for detecting approximate symmetry. In this doctoral thesis,

the digital objects employed as input are B-rep 3D CAD models generated during solid

modelling.

Apart from the input, the CASD generates specific output. The output of CASD can be

classified based on various criteria: type of transformation, scale, accuracy, and distance

metrics. The first three criteria were already highlighted in the previous chapter. As

already indicated, the most common types of transformation are reflection [16], rotation

[14,23], and translation [20]. As already stated, the possible CASD outputs in terms of

scale are global, partial, or local symmetry, while in terms of accuracy, symmetry is exact

or approximate. As previously outlined, the accuracy is distinguished based on the

distance function d(M,T(M))<ε4. Usually, the correlation between the input and output in

terms of accuracy is as follows. If the input is continuous data, then the expected output

is most often exact symmetry, and if the input is discrete data, then the expected output

is usually approximate symmetry. In the last criterion, distance metrics, the output can be

classified into extrinsic [16] or intrinsic [37] symmetry. Extrinsic symmetry is often

measured with Euclidean distance, while intrinsic symmetry with geodesic distance [54].

Most CASD studies address the detection of extrinsic symmetry (see Subsection 2.1.3).

That is because, most often, the inputs for symmetry detection are rigid objects. Intrinsic

symmetry, however, is focused on detecting symmetries in non-rigid or deformable

objects. The difference between extrinsic and intrinsic symmetry can be explained by

observing the representation of the human body, as illustrated in Figure 4. For instance,

a human body is extrinsically symmetric when it stands still with raised hands (Figure 4,

left). However, the body becomes intrinsically symmetric when in motion (Figure 4,

right); only the distance metrics to measure the symmetry are different. An extrinsically

symmetric object is also intrinsically symmetric, but an intrinsically symmetric object is

extrinsically asymmetric. Hence, extrinsic symmetry is a subset of intrinsic symmetry.

4 In mechanical engineering ε corresponds to the minimum manufacturing accuracy ε=10–6 m [16,23].

11

The present doctoral thesis addresses extrinsic symmetry as the 3D CAD models from

solid modelling are rigid.

extrinsic symmetric intrinsic symmetric

Figure 4. Sketch of a human body standing still (left) and in motion (right)

After introducing the inputs and outputs of CASD, the common approaches of CASD are

further discussed. The CASD studies can be divided into geometry-based [40,43] and

view-based [29,30]. Geometry-based CASD exploits the digital object's geometrical

information for symmetry recognition. Geometry-based CASD can be further divided

into those that only require the position information [55] (e.g., use only point clouds as

input) and those that also use the surface information [47] (e.g., surface normal or

Gaussian curvature) for the detection of symmetry. On the other hand, in the view-based

CASD, symmetry detection is conducted by exploiting the information stored in 2D

representations such as orthogonal views or images [29,56]. For instance, a set of

viewpoints can be generated by setting a camera on the sphere pointing at the origin of

the 3D digital object [30]. When it comes to the approaches for detecting the planes and

axes of symmetry, the prior CASD studies use two main approaches: implicit (indirect)

[46] and explicit (direct) [21]. In the implicit approach, for the given input model, a set

of planes of symmetry candidates (POSCs) or axes of symmetry candidates (AOSCs) is

generated and evaluated to determine the possible existence of the actual planes of

symmetry (APOSs) or actual axes of symmetry (AAOS) among them. The explicit

approach computes the APOS or AAOS directly without generating a set of candidates.

First, the CASD studies with the implicit approach are discussed.

The implicit approach, as outlined in Subsection 2.1.3 of CASD, typically involves three

steps. Firstly, a set of POSCs or axes AOSCs is generated based on the input model.

Secondly, duplicates may be removed from the candidate set, although this step is

optional. Finally, the candidates are evaluated to determine if any APOSs or AAOS are

12

potentially present among them. These steps are discussed in the following paragraph.

The set of POSCs or AOSCs are generated using Principal Component Analysis (PCA),

Random Sample Consensus (RANSAC), pairing of entities (e.g., points [46], viewpoints

[29,30], etc.), incremental rotations [55], and so on. PCA was often exploited in CASD

to identify the candidates (see Subsection 2.1.3). Generally, this is because APOS and

AAOS of digital objects exhibiting exact symmetry may be aligned with the principal

axes [59]. However, the drawback of PCA is that the computation of principal axes may

be sensitive to the distributions of points on the objects [60]. In addition, only exact

symmetries aligned with the principal axes can be detected, while other symmetries

existing in the object may remain undetected. Also, the POSCs or AOSCs are usually

constrained to pass through a reference point such as the centroid or centre of

gravity/mass [29,30], which is not suitable for detecting approximate symmetry. Another

common approach to generate candidates is RANSAC, which is an iterative method for

robust model fitting of data containing many outliers. The basic idea is to generate the

POSCs and AOSCs by fitting input points. The disadvantage is that with many input

points, RANSAC usually produces many candidates, which can result in a

computationally demanding CASD procedure [61]. Hence, the sampling of points can be

exploited to reduce the number of input points [62]. Another common approach to

generate candidates is by pairing entities. For instance, POSCs were generated by

matching pairs of feature points [47]. Feature points were extracted from vertices with

the highest Gaussian curvature. Another study generated the POSCs by matching pairs of

points with a similar value of the heat accumulation function (a surface function based on

a heat diffusion process) [46]. Another study identified the POSCs from pairs of

viewpoints by matching the viewpoint entropies [29,30]. The viewpoint entropy was

computed based on Shannon entropy, considering the projection area of each visible face

and the number of visible faces. Next, the candidates were obtained by incremental

rotations around a spherical surface to generate a set of AOSC with increments fixed to

0.5º [55]. Generally, the problem when dealing with incremental rotations is the

appropriate choice of increment. A too-small increment can result in too many candidates

and a computationally demanding CASD procedure, while a too-large increment can

result in an insufficient number of candidates, increasing the risk of symmetry

misdetection. In addition, the candidates usually must pass through some reference point,

13

i.e., centroid, which limits the CASD to exact symmetry. In the second step of the implicit

CASD approach, which is optional, the generated POSCs or AOSCs are further

eliminated. For instance, the study in [40] conducted candidate pruning to eliminate

duplicates using a distance function to measure the distance between two POSCs. Another

CASD study eliminated duplicate POSCs through a comparison process by checking for

coincidence and parallelism between two POSCs [42]. In the third step, the generated

candidates are evaluated to determine if a POSC or AOSC also represents an APOS or

AAOS. Different approaches are used for that. The studies reported in [29,30] evaluated

each POSC with all pairs of viewpoints with matching entropy to verify whether the

remaining matching pairs are within a minimum number. If the number of symmetric

pairs was large enough, the POSC was declared as the APOS. The research in [46]

proposed evaluating the POSCs through a voting scheme. Only mesh points with mean

curvature higher than a threshold value were considered in the voting. The POSC received

more votes if more point pairs were reflectional symmetrical to it. In the end, the POSC

with the highest vote count was selected as the APOS. Another voting process was

proposed in [47]. Each POSC was tested against all feature point pairs, and the POSC

with the highest vote count was declared as the APOS. The study described in [57]

proposed a variation of Hausdorff distance for the evaluation of candidates, which

measures the average distance between the original mesh and the mesh created by

reflecting the original mesh over the candidate. Another study used gradient descent to

obtain the local optimum and its error for each POSC [60]. The error was computed as

the mean square between a point and its closest mirror reflection point. The POSC with

the smallest error was selected as the APOS. In summary, the implicit CASD approach

generates a set of candidates, while the explicit approach, which is discussed in the next

paragraph, computes the APOS or AAOS directly.

The study in [21] sampled the input model and computed the principal curvatures and

directions for each sampled point. Then, pairs of the sampled points were generated to

create candidate transformations (one point of the given pair is transformed to align its

position, principal directions, and normal direction with the second point in the pair). The

candidate transformations, i.e., a set of points in the transformation space, were clustered

using mean shift to detect partial symmetry. The study in [58] suggested looking for

correspondences between symmetric points rather than performing symmetric

14

transformations to find symmetries. These correspondences were represented in a

symmetry correspondence matrix that encoded symmetry relationships between pairs of

points sampled from the input data. The symmetry correspondence matrix was derived

from the inverse of a dissimilarity matrix obtained by pairing points with a randomised

voting algorithm. The analysis of the correspondence matrix was based on its spectral

properties. For this purpose, the authors introduced the Symmetry Factored Embedding

(SFE) and the Symmetry Factored Distance (SFD). The SFE embedded the input shape

into a higher-dimensional Euclidean space, and the SFD represented the Euclidean

distance in that space. In addition to detecting global extrinsic symmetry, partial extrinsic

and intrinsic symmetry were also investigated. Although the proposed study is general

and robust to noise in the input, its time complexity seems relatively high. The study in

[41] used volumetric 3D shapes as input for detecting approximate reflectional and

rotational symmetries. The shape was described by a binary indicator function, which

equals “1” for interior points and “0” for all points outside the shape. Next, the distortion

was computed, representing the total mismatched volume between the original and

transformed shapes. The transformation space was then carefully sampled to find

symmetry with high probability. Each transformation was efficiently evaluated using a

sub-linear sampling that randomly examined only a small number of points. The proposed

CASD research appears to be fast and robust to noise in the data. However, the input

shape’s centroid requires alignment with the origin, and the detected plane or axis of

symmetry must pass through the origin. Another explicit approach in [52] proposed a

more straightforward solution by approximating the triangle mesh model’s shape with

spherical harmonics coefficients. Consequently, a shape with thousands of vertices may

be represented using only a few tens of coefficients. The study concluded that the

reflective symmetry in the 3D shape is equivalent to a linear phase structure in the

corresponding spherical harmonic coefficients. In this way, the symmetry detection

matches a compact set of descriptors, i.e., optimising a linear phase fit to the observed

coefficients. The proposed study is also applicable to point clouds. However, its main

disadvantage is that only reflectional symmetry can be detected passing through the

origin.

The mentioned CASD studies have been discussed in the context of different research

fields, such as computational computer engineering, civil engineering, etc. However, this

15

doctoral thesis deals with CASD in mechanical engineering, so the following subsection

reviews previous CASD studies in this field.

2.1.1 Computer-Aided Symmetry Detection in Mechanical Engineering

From the perspective of mechanical engineering, CASD was exploited for retrieval [44],

compression [64], and alignment [60] of 3D CAD models, design for assembly [42], and

detecting design intent in scanned models from reverse engineering [65]. Most past

research investigated symmetry detection on single parts [16,23,42,63] and less often on

assemblies [66]. Further, the CASD studies were dominantly focused on detecting exact

symmetry [16,23,42,63] and rarely on detecting approximate symmetry [67,68]. The

common types of symmetries studied were reflectional [16], rotational, [42] axisymmetry

[66], translational [65], and dihedral [68] symmetry. The studies addressed the detection

of symmetry at various scales: global [16], partial [23], and local [20]. The early research

related to CASD in CAD was focused on detecting the axis of symmetry in 2D polygons

[36,37]. However, due to their complexity, this did not match the requirements of 3D

CAD models. The studies on CASD in 3D CAD models can be divided into two groups.

The first group studied CASD from the perspective of B-rep [14,20,23,42,65– 69], while

the second group studied CASD from the perspective of design features [25,70]. The

general disadvantage of using design features over the B-rep is the restriction to native

CAD models, as the history tree and feature information can only be shared through those

file formats. The B-rep CAD models studied in prior CASD studies were exact [20,42]

and approximate [65]. Exact B-rep CAD models are those obtained from solid modelling,

while approximate B-rep CAD models originated from reverse engineering.

First, an overview of CASD studies in approximate B-rep CAD models is presented. The

research in [65,67,68,69] studied CASD for detecting geometric design intent in reverse

engineering CAD models obtained by scanning. Hence, the inputs for CASD were

approximate B-rep CAD models, and the outputs were approximate symmetry. The

studies [67,68] used the vertices of the B-rep model to detect local incomplete symmetries

under reflection, rotation, translation, rotation-reflection, and glide-reflection were

detected using a cycle clustering algorithm. Incomplete symmetries were defined as a set

of incomplete cycles constructed by a set of consecutive vertices of an approximately

regular polygon [67,68]. The detection of approximate symmetry of the vertices point set

16

was turned into a permutation of the points and mapping distances between the points

approximately onto each other (the tolerance was fixed to max. 5% of the longest distance

between points in the input point set). The drawback of the proposed study is that it relied

on vertices (although the input model does not necessarily need to have vertices) and

addressed only local symmetry. Another research by the same authors [69] investigated

the decomposition of approximate B-rep CAD models into regularity feature trees

(RFTs). Regularity features are simple closed volumes that combined describe the CAD

model's original shape. The detection of regularity features was based on recovering

broken symmetries in the model by analysing symmetry breaks in faces (a face might be

broken in its interior, across one or more edges, or surrounding one or more vertices). The

decomposition exposed rotational symmetric and regular translational arrangements of

regularity features. The drawback of the study is that it addressed only local symmetry.

The same authors presented an extension of the work in [65]. First, the shape of the

approximate B-rep model was described through leaf-parts, i.e., regularity features at the

leaves of the RFT. The basic idea employed was to seek regularities (congruencies,

incomplete symmetries5, and symmetric arrangements) within these leaf-parts. The

regularities were detected via consistent mappings between characteristic point sets of the

B-rep model, i.e., leaf-part centroids, vertices, and other specific points which

characterise edges and faces (e.g., a circular arc may be uniquely determined by its two

endpoints and its midpoint). Congruencies in the leaf-parts were detected by a clustering

algorithm that created congruence sets (each containing one or more congruent leaf-

parts). Next, subsets forming incomplete symmetries and incomplete symmetric

arrangements were obtained for each congruence set. The type of transformations

addressed to detect symmetric arrangements in the set of leaf-parts were reflection,

inversion, translation, rotation, dihedral, glide (mirror in a line followed by translation

parallel to the line), and screw (rotation about an axis followed by a translation along the

axis). The study used the concept of compatible symmetries, meaning that symmetries

were merged and multiple subsets shared the same type of symmetry. The compatible

symmetries shared by leaf-parts and their symmetric arrangements were further combined

to detect regularities in the form of transformations matching sub-parts of the model. The

geometric regularities of and between model sub-parts enable the detection of geometric

5 This means that not all elements building the symmetry were present

17

design intent. The study addressed the detection of local (from symmetric arrangements

of leaf-parts) and global symmetry (from compatible symmetry). The main limitation of

both studies [65,69] was the consideration of only planar, spherical, cylindrical, conical,

and toroidal surfaces. This restriction arises from the difficulty of extending the geometry

to numeric surfaces involved in the RFT construction. In addition, using approximate B-

rep CAD models limits the CASD only to approximate symmetry. To detect exact

symmetry within the 3D CAD model, exact B-rep’s from solid modelling were used as

input, which is discussed in the next paragraph.

The research reported in [23,42] studied symmetry detection in the context of Design for

Assembly. The research proposed a loop-based approach for detecting exact and partial

reflection symmetry in exact B-rep CAD models6. In addition to the mentioned

symmetries, primary axes (major and minor) were detected, which lie parallel and

perpendicular to the longest dimension of the 3D CAD model’s smallest bounding box.

First, the loops were classified based on the surface type (plane, cylinder, sphere, torus,

cone, and spline). Then, the POSCs and AOSCs were generated by pairing identical loops

through their properties, such as loop type and area (i.e., the surface area bounded by the

loop of a face) and the number of edges. The POSCs and AOSCs were generated from

the loop centroid and normal vector. For that purpose, three loop pair types were

distinguished: coplanar, parallel, and coaxial. The first and the second loop pair types

were used to create the POSCs, while the third was used to create the AOSCs. The AOSCs

were also generated from single loops of the cylindrical, spherical, and toroidal surface

types. The peak number of the initially generated POSCs and AOSCs can be estimated

using the following equation:

6

L, L,

C POSC AOSC E

1

(1)

2

k k

k

n n
n n n n

=

−
= + = + ,

(1)

where nE is the total number of edges in the CAD model, and nL,k is the total number of

loops of the particular loop type (plane, cylinder, sphere, torus, cone, or B-spline). The

initially generated POSCs and AOSCs were rationalised by eliminating duplicates and

assigning the associated loops to the rationalised candidates. The symmetry was

considered “stronger” if more loops and loop areas were associated with a rationalised

6 A loop is a closed circuit of edges bounding a face.

18

POSC or AOSC. Hence, the rationalised candidates were ranked according to the number

of loops and total loop area, and those with the highest ranking were declared as the

APOSs or AAOSs. The study, however, did not explicitly emphasise the criteria for

detecting partial symmetry. The study also proposed to group all symmetric loops about

a common APOS or AAOS and thereby isolate the asymmetric portions of the boundary

for further consideration. The primary axes were defined from the intersection of several

highest-ranked candidates by identifying maximally two orthogonal axes. The study

addressed loops with underlying analytic surface types (plane, cylinder, cone, sphere, and

torus) and numeric surface types (only spline surfaces). Calculating loop properties (loop

area and normal vector) for the spline surface type may be sensitive and lead to invalid

POSCs when matching identical loops. Hence, the authors propose excluding such loops

if they do not form a considerable proportion of the total surface area of the input model.

In the case of an input model composed dominantly or entirely of B-spline loops, the

proposal was to calculate the loop properties by projecting their associated faces against

a plane and calculating the properties of the resulting planar projection. A significant

obstacle in the implementation was the imprecision of geometric and topological

definitions of loops in the ACIS geometric modelling kernel. Hence, instead of loops, the

following studies proposed using faces as input.

The research [16,63] explored the use of CASD in the product development process. They

proposed the divide-and-conquer strategy for detecting exact global and partial

axisymmetry and reflectional symmetry using faces of the B-rep as input. As a

preliminary step, the B-Rep model’s topology was first transformed into hypergraph data

structures to generate maximal surfaces and curves by merging adjacent surfaces and

curves. For instance, two adjacent half-cylinders can be merged into one closed cylinder

to obtain a maximal surface. Then, in the divide phase, the POSCs and AOSCs were

generated from one, two, or three adjacent faces using the intrinsic parameters of the

underlying analytic surfaces and their intersections (vertices, edges, and loops). For

instance, the intrinsic parameters of a plane surface are its base point and normal vector,

those of a cylindrical surface its axis point, axis vector and radius, and so on. Five

categories of POSCs were distinguished:

• An Orthogonal POSC is orthogonal to an edge and created by the two

neighbouring faces.

19

• A Loop Bisector POSC is attached to vertex and reflects a symmetry of its two

adjacent edges.

• A Loop Symmetry POSC is the symmetry information within a face containing

multiple loops.

• A bisector POSC coincides with an edge in a bisector plane produced by its

adjacent faces.

• An AOSC is a special case of an infinite number of Orthogonal POSCs. For

instance, axisymmetric faces (e.g., a closed cylinder, sphere, torus, and cone) have

infinite POSCs.

The highest possible number of candidates nC (including POSCs and AOSCs) can be

estimated using the following equation:

 C E V L2 ,n n pn n= + +

(2)

where nE represents the total number of edges, nV is the total number of vertices, and nL

is the total number of loops in the 3D CAD model. At the same time, parameter p

describes the maximum number of adjacent faces around a vertex (assuming up to four

faces share the same vertex p=4). The generated candidates are evaluated in the conquer

phase, consisting of a two-level propagation process. In the first level, coincident POSCs

and AOSCs are merged to form POSC chains, representing the intersections between

POSCs and the 3D CAD model’s boundary. In the second level, the propagation expands

over the 3D CAD model’s boundary on both sides of POSC chains until all surfaces are

covered without asymmetry. In this way, exact global symmetry is detected. However, it

was not specified how much boundary needs to be covered to consider the CAD model

partially symmetric. The study addressed only analytical surfaces (plane, cylinder, cone,

sphere, and torus). Another study drawback is that a combinatorial analysis was used to

obtain the combinations of surfaces, their adjacencies, and intersections for identifying

the POSCs and AOSCs. Consequently, if the input 3D CAD model has certain non-

predicted combinations of analytical surfaces, the corresponding POSCs or AOSCs (i.e.,

APOSs and AAOSs later) may remain undetected.

The studies [14,66] investigated CASD in the context of CAE for the detection of

symmetric regions in partial axisymmetric (i.e., quasi-axisymmetric) 3D CAD models

and their decomposition for automated hex-mesh generation. The study was first

introduced on single parts [66] and later extended to assemblies [14]. The basic concept

20

was to classify faces into axisymmetric, pseudo-axisymmetric, cyclic symmetric, and

non-axisymmetric to identify axisymmetric regions, cyclic sectors, and non-cyclic

regions. The study addressed analytical surfaces and NURBS. The faces were classified

based on the following criteria:

• Axisymmetric faces may be cylindrical, conical, spherical, and toroidal surfaces

if their axis of rotation is colinear with the AOSC. In addition, the surfaces were

required to span the entire 360° rotation around the AOSC and to be bounded by

two outer loops. A plane face was classified as axisymmetric if its normal vector

was parallel with the AOSC and all axes of bounding edges were collinear with

the AOSC.

• A pseudo-axisymmetric face implies an axisymmetric face containing either non-

axisymmetric or cyclic symmetric inner loops and axisymmetric outer loops.

• Cyclic symmetric faces were identified by grouping equivalent faces into

repetitive patterns.

Equivalent faces were identified based on the geometrical properties of their underlying

surfaces and the topological and geometrical properties of their curves. The first condition

of equivalent faces was that they were equally distanced from the AOSC. The further

considered geometrical properties were the normal orientation for plane surfaces, the

radius for cylindrical and spherical surfaces, the major radius and half angle for conical

surfaces, and the major and minor radius for toroidal surfaces. For the cylindrical, conical,

toroidal, and plane surfaces, the additional geometrical property compared was the scalar

projection of the corresponding face vector (normal or axis vector) onto the AOSC. The

geometrical properties of the B-spline surfaces were queried through the equivalence of

knot vectors and control points. If the geometrical properties of surfaces were equal, then

the geometrical properties of their curves were compared. The linear, circular, and

elliptical curves were compared using their geometric properties (the authors did not

specify which exactly). Like surfaces, the B-spline curves were compared by their knot

vectors and control points. Intersection curves between two surfaces were considered

equivalent if their respective pairs of surfaces were equivalent. Finally, all equivalent

cyclic faces (including the rotation angle between them) were organised into groups of

cyclic faces to identify the existence of a repeated cyclic pattern in each group. The total

number of combinations to obtain the repeated cyclic pattern in a group was nm, where n

21

represents the number of repetitions, and m the number of faces in the group. The

proposed criterion for selecting a combination of cyclic faces was to maximize the

number of shared edges between the faces. Instead of finding the complete list of

combinations for each group, the authors propose a front propagation to find one

combination containing connected faces and an optimization loop to converge to the list

of faces having the maximum number of shared edges. The main advantage of this CASD

study is that it deals with the detection of cyclic symmetry (although only at the local

level), while its main disadvantage is that it required manual input of the AOSC.

The study in [20] proposed a graph-based approach to detect multi-scale (i.e., at different

geometric scales) symmetric regions and extract symmetric relations among these

regions. The CAD model’s B-rep model was represented by a Congruence-labelled

Adjacency Graph (CLAG) and Frequent Sub-graph Mining (FSM) was used to mine in

CLAG, and to extract complete multi-scale congruence features. To overcome the

problem of redundant congruence features, a set of geometric heuristic rules were used to

filter meaningless congruence features. The remaining congruence features reflectional,

rotational, translational symmetries and symmetry structures (i.e., compound symmetry

relations) were detected. The construction of CLAG was done in three steps. First, the

congruent faces of the model were clustered into the same set and every set received a

different face label. Second, a corresponding vertex label to each vertex of CLAG was

added for each face based on its associated face label. And third, the edge label for each

edge in CLAG was determined based on its adjacent faces in the model (the same edge

label was used if two edges shared the same adjacent faces, otherwise a new edge label

was generated). The study proposed the application of CASD for Smart Direct Modelling

and multi-scale model simplification. The study was also limited to analytic surfaces.

Another significant drawback of this graph-based approach is that it is computationally

demanding. Next, the group of researchers who studied symmetry detection from the

perspective of design features is discussed. Those studies are restricted to native CAD

models and are applicable only to a particular CAD system.

The studies presented in [25,70,71] used feature information as input to detect exact

reflectional and rotational symmetry in parts [25,71] and assemblies [70]. In the context

of single parts, the feature information used were feature types, parameters, sketches,

references, Boolean operations, and the modelling history or feature tree [25]. The CAD

22

model’s features were first classified into congruent feature sets. Congruent means that

two features can be transformed into each other by an isometry (reflection or rotation).

The feature sets were detected through the study on the relationship between feature

information and the self-symmetry of features. Then, the feature sets were sorted into an

ordered sequence, and global symmetry was derived by successively merging and

verifying the symmetries of feature sets in the ordered sequence. The research assumed

that the CAD models were designed free of the designer’s bad modelling habits, which is

not always the case in practice. In other words, the proposed CASD research is sensitive

to redundant feature modelling and modelling of symmetric shapes using non-symmetric

features. In addition, the research covered only features made up of analytic surfaces.

Hence, an extension of the study covering numeric surfaces was briefly introduced in

[71]. The study used a feature reference tree (FRT) to describe the design history of the

surface model. To deal with non-unique design history, so called feature tuples were

constructed from the FRT and the parent-child relationships of topological entities. The

surface models' global reflectional and rotational symmetries were detected using feature

information in feature tuples. Another extension of the study [25] from single parts to

assemblies was proposed by the same authors in [70] to detect global reflectional and

rotational symmetry in assembly CAD models. The symmetry between components is

identified through geometric reasoning by taking full advantage of the assembly

constraints and the geometric information of the components. The parts within the

assembly were also constrained only to analytic surfaces.

Considering the mentioned CASD studies, the following points are interesting from the

perspective of the CASD method within this doctoral thesis:

• The B-rep [16,20,42,65,66] of the CAD model was more frequently used as input

in CASD than features [25,71]. This is because the B-rep offers greater generality

and flexibility, not being limited solely to native CAD models.

• The common topological entities used in prior CASD studies are faces [16,20,66],

loops [42], and vertices [67]. Faces are more convenient than loops and vertices

as they provide more detailed geometrical information. Loops are sets of

connected edges, and calculating their properties can be imprecise and

computationally demanding, while vertices may not adequately describe the shape

of the CAD model.

23

• Most previous CASD studies [16,20,23,65,66] utilise the B-rep definition and

classify topological entities based on the types of underlying geometric entities.

• The prior CASD studies dominantly use the implicit symmetry detection

approach, where the POSCs and AOSCs were generated from the self-symmetry

of single topologic entities or by pairing of topologic entities.

• The implicit symmetry detection approach is predominantly used in prior CASD

studies [16,20,42,66], where the POSCs and AOSCs are generated from the self-

symmetry of single topological entities or by pairing of topological entities.

The following subsection presents and discusses the basic idea of symmetry measures

from the perspective of several existing CASD studies.

2.1.2 Symmetry and similarity measures

Symmetry measures are used in the implicit approach of CASD to evaluate or quantify

the symmetry in the digital object. These measures are usually expressed as a numerical

value and calculated for each POSC or AOSC. Typically, symmetry measures fall

between 0 and 1 [72–75], and the POSC or AOSC with the highest symmetry measure

score is selected as the APOS or AAOS [62]. One study suggested maximising a defined

symmetry measure to assess each POSC [62], as follows:

 () ()()
1 1

, 
= =

= −
n n

X ij i j

i j

s p r p x x (3)

where ωij represents the weights of given pairs of points, φ is a similarity function, the

function r (p, xi) reflects a point xi over a plane P represented by the vector p, and xj is

any other point. Although the weights were initially set to 1, they can be utilised to

incorporate additional information about the input model, such as the normal vectors or

directions of principle curvatures in corresponding point pairs with respect to a given

plane. As the proposed symmetry measure is continuous and differentiable, optimisation

methods can be applied. Ultimately, the APOS with the highest symmetry measure was

selected as the POSC. One limitation of this study is that it can only identify the most

significant APOS, even if the input model has more than one APOS.

Researchers have endeavoured to develop symmetry measures that assign a numerical

value between 0 and 1 to quantify the level of symmetry expressed in digital objects [72–

24

75]. Typically, a score of 0 indicates non-symmetry, while a score of 1 denotes full

symmetry. One such measure is the coefficient of symmetry β, which assesses reflectional

symmetry in planar images along a specified axis of symmetry [72]. The coefficient of

symmetry β can be defined as follows:

2

(,) (,)

(,)

w x y w x y dxdy

w x y dxdy
 =




, (4)

where (,)w x y and (,)w x y are the intensity functions of two symmetric points and with

respect to the axis of symmetry. The coefficient of symmetry ranges between 0 ≤ β ≤ 1,

where β=1 indicates exact symmetry and β=0 non-symmetry. Another symmetry

measure, the Symmetry Distance (SD) applies to reflectional or rotational symmetry in

2D shapes represented by a sequence of points (i.e., polygons) [73]. SD is defined as the

minimum mean squared distance between the points of the two shapes:

1 2

0

1 ˆSD
j

i i

i

P P
j

−

=

= − , (5)

where P represents the shape and P̂ its symmetry transforms, while j is the sequence of

points. The SD enables a comparison of the “amount” of symmetry of different shapes

and the “amount” of different symmetries of a single shape. If SD=0, the shape is

considered perfectly symmetric. The authors also present a way to extend the SD to 3D

shapes represented by points sampled on a plane and projected on the object. The study

in [74] proposed the Degree of Symmetry (DOS) to measure reflectional symmetry in 2D

polygons:

SD(,)

DOS 1
Area() Area()

A B

A B
 (6)

 SD(,) Area() Area()A B A B A B (7)

where SD (A, B) represents the symmetric difference, and A and B are two sets. If the

shape is symmetrical, the DOS equals 1 since the symmetric difference is 0. The larger

the value of SD, the greater the non-symmetry.

The study presented in [75] proposes using Jaccard similarity as a symmetry measure for

detecting the axis of reflectional symmetry in binary images with black and white pixels.

25

Thereby, the Jaccard index μ(B) for a reflectional symmetric binary image was defined

as:

() ()

()
() ()

R

R

S B S B
B

S B S B
, (8)

where B is the binary image (the brightness of the black pixels denoted with 1 and those

of white pixels with 0), Br is the reflection of the binary image B with respect to a line,

S(B) is the set of pixels belonging to the image B, the brightness of which is equal to 1. If

μ(B)=1, the binary image B is considered fully symmetrical. Detecting reflection

symmetry involves iterating through all possible lines that cross the binary image and

finding the one with the highest Jaccard index. Although the presented symmetry

measures focus on the 2D domain, extending them to the 3D domain is a challenging task

due to their definition [72–75]. As such, an appropriate symmetry measure that applies to

3D CAD models with B-rep is necessary and is proposed in the CASD method in this

doctoral thesis (Subsection 3.5.2).

Another type of measure often employed in CASD are similarity measures. Generally,

the similarity is studied in engineering design to support designers in generating new

designs [76] or in manufacturing to extract existing product information, such as cost

estimations in machining [77]. Moreover, recognising similarities in 3D CAD models can

be applied to reuse existing design solutions [78]. For this purpose, a given input CAD

model (new design) is used to retrieve similar CAD models from the database (existing

designs). Recognising similarity may also benefit the clustering of CAD models [79].

However, in the implicit CASD approach, similarity measures such as the heat

accumulation function [46] or Gaussian curvature [47] were exploited to match similar

point pairs for generating POSCs. In the context of this doctoral thesis, similarity

measures are engaging for generating the POSCs from identical or similar pairs of

topological entities in the B-rep CAD model. Existing CASD studies [23,42] related to

B-rep CAD models identified identical loop pairs using their properties (loop type, loop

area, and the number of edges) as a similarity measure. Similarity measures from statistics

were considered and investigated for implementation in the CASD method within this

doctoral thesis. They are generally used to compare the similarity between two finite

26

datasets. For instance, the Cosine similarity (CS) computes the cosine of the angle

between two feature vectors A and B [80]:

 CS cos
X Y c

X Y a c b c

A B

A B
.

(9)

The CS can also be expressed as a function of two datasets (X and Y). In that case, it is

defined as the intersection size (the number of common elements) divided by the square

root of the set's multiplied cardinalities. The cardinality of a set, |X| or |Y|, represents the

number of elements it contains. Alternatively, if two finite datasets are represented by

two binary feature vectors, A and B, then in the above Equation a represents the total

number of features with the value 1 in A and 0 in B, b the total number of features with

the value 0 in A and 1 in B, and c the total number of features with value 1 in both A and

B. For instance, CS was utilised to compute the similarity between two Opitz code vectors

(the CAD model features were presented by alphanumerical digits) [81]. Another typical

similarity measure, the Jaccard index (JI) already mentioned in Equation (8), is defined

as the size of the intersection divided by the size of the union (the number of unique

elements) of two finite datasets X and Y [82]:

 JI
X Y X Y c

X Y X Y X Y a b c
.

(10)

The JI was employed for clustering purposes to measure the similarity between

machines/parts and group them [83]. Alternative similarity measures related to the

Jaccard index are the Sørensen–Dice coefficient (SDC), which is defined as twice the size

of the intersection divided by the sum of elements in each set, the Szymkiewicz–Simpson

coefficient (SSC) or Overlap coefficient, described as the ratio between the size of the

intersection and the smaller cardinality of two datasets, and the Braun-Blanquet

coefficient (BBC), which represents the size of the intersection divided by the larger

cardinality of two datasets [75,82]:

2

SDC
0.5 20.5

X Y X Y c

X Y a b cX Y
,

(11)

 SSC
min ,min ,

X Y c

a c b cX Y
,

(12)

27

 BBC
max ,max ,

X Y c

a c b cX Y
.

(13)

All mentioned similarity measures from Equations (8) to (12) have a range of [0, 1].

Values close to 1 represent very similar sets, while values close to 0 represent very

different sets. The referred similarity measures are explored in terms of their possibilities

and applicability for detecting similar pairs of topological entities to generate the POSCs

(for more details refer to Subsection 3.3.2).

2.1.3 Overview of CASD studies

Tables 1 to 4 offer an overview of past CASD studies, organised by year of publication.

These tables present pertinent information about the various 2D and 3D digital objects

utilised as input, as well as a summary of the typical CASD outputs, including the type

of transformation (such as reflectional, rotational, and axisymmetry), scale (global,

partial, or local), accuracy (exact vs approximate), and distance metrics (extrinsic vs

intrinsic), and the approaches (geometry-based vs view-based and explicit vs implicit).

Based on this data, certain conclusions can be drawn. Point clouds are the most common

input for CASD studies, with reflectional symmetry being the most frequently studied

type of symmetry. Symmetry detection is usually addressed at the global level, with most

studies focusing on detecting approximate and extrinsic symmetry. The geometry-based

and implicit approaches are the most widely used methods for detecting symmetry. Based

on the reviewed CASD studies in the previous subsections, the following subsection

identifies the relevant research gaps in the context of B-rep CAD models.

28

Table 1. Overview of prior CASD studies (Part 1)

RESEARCH

Y
E

A
R

INPUT OUTPUT
APPR Note

2D 3D TYPE OF TRANSF. SCALE ACC D.M.

Im
ag

e

V
ie

w

C
T

 o
r

M
R

I

W
ir

ef
ra

m
e

P
o

in
t

cl
o
u

d

M
es

h
 m

o
d

el

V
o

x
el

 m
o
d

el

C
A

D
 m

o
d

el

N
U

R
B

S
 m

o
d

el

C
ab

le
-s

tr
u

ts

R
ef

le
ct

io
n

al

R
o

ta
ti

o
n

al

C
y

cl
ic

A
x

is
y

m
m

et
ry

T
ra

n
sl

at
io

n
al

D
ih

ed
ra

l

G
lo

b
al

P
ar

ti
al

L
o

ca
l

E
x

ac
t

A
p

p
ro

x
im

at
e

E
x

tr
in

si
c

In
tr

in
si

c

G
eo

m
et

ry
-b

as
ed

V
ie

w
-b

as
ed

E
x

p
li

ci
t

Im
p

li
ci

t

Sun and Sherrah [50] 1997 ● ● ● ● ● ● ● ● ● ● ●
Shape descriptor: Orientation Histogram (Extended

Gaussian Image); PCA

Tate [23] 2000 ● ● ● ● ● ● ● ● ● B-rep CAD model

Tate and Jared [42] 2003 ● ● ● ● ● ● ● ● ● B-rep CAD model

Kazhdan et al. [48] 2004 ● ● ● ● ● ● ● ● ●
Shape descriptors: Reflective Symmetry Descriptor,

Voxelization of 3D Models, candidates must pass

through the COG/COM

Lucchese L [84] 2004 ● ● ● ● ● ● ● ● -

Thrun and Wegbreit

[39]
2005 ● ● ● ● ● ● ● ● ● -

Podolak et al. [53] 2006 ● ● ● ● ● ● ● ● ● ●

Shape descriptors: Planar Reflective Symmetry

Transform (PRST), Mesh model transformed into a

volumetric function, candidates must pass through the

COG/COM, Vote scheme

Martinet et al. [51] 2006 ● ● ● ● ● ● ● ●
Shape descriptors: generalised moment functions,

candidates must pass through COG/COM

Mitra et al. [21] 2006 ● ● ● ● ● ● ● ● ● ● shape descriptors: curvature

Zou and Lee [85]. 2006 ● ● ● ● ● ● Skews symmetries

Li et al. [69] 2006 ● ● ● ● ● ● ● -

29

Table 2. Overview of prior CASD studies (Part 2)

RESEARCH

Y
E

A
R

INPUT OUTPUT
APPR Note

2D 3D TYPE OF TRANSF. SCALE ACC D.M.

Im
ag

e

V
ie

w

C
T

 o
r

M
R

I

W
ir

ef
ra

m
e

P
o

in
t

cl
o
u

d

M
es

h
 m

o
d

el

V
o

x
el

 m
o
d

el

C
A

D
 m

o
d

el

N
U

R
B

S
 m

o
d

el

C
ab

le
-s

tr
u

ts

R
ef

le
ct

io
n

al

R
o

ta
ti

o
n

al

C
y

cl
ic

A
x

is
y

m
m

et
ry

T
ra

n
sl

at
io

n
al

D
ih

ed
ra

l

G
lo

b
al

P
ar

ti
al

L
o

ca
l

E
x

ac
t

A
p

p
ro

x
im

at
e

E
x

tr
in

si
c

In
tr

in
si

c

G
eo

m
et

ry
-b

as
ed

V
ie

w
-b

as
ed

E
x

p
li

ci
t

Im
p

li
ci

t

Li et al. [67] 2007 ● ● ● ● ● ● ● ● ● ● ●
Input: approximate B-rep CAD model.

Cycle clustering algorithm.

Tedjokusumo and

Leow [60]
2007 ● ● ● ● ● ● ● ● PCA, Bilateral symmetry plane.

Pauly et al. [86] 2008 ● ● ● ● ● ● ● ● ● ● -

Chang and Park [49] 2008 ● ● ● ● ● ● ●
Triangulation of point clouds. Initial POSC needs to

be specified by the user.

Li et al. [68] 2008 ● ● ● ● ● ● ● ● ● ● ●
Approximate B-rep CAD model

Cycle clustering algorithm

Xu et al. [87] 2009 ● ● ● ● ● ● ●
Geodesic distance. For Segmentation and

Vote scheme

Li et al. [65] 2010 ● ● ● ● ● ● ● ● ● ● ● ● ●
Approximate B-rep CAD model

Regularity Feature Trees

Raviv et al. [54] 2010 ● ● ● ● ● ● ● ● ● ● ● -

Lipman et al. [58] 2010 ● ● ● ● ● ● ● ● ● ●
Symmetry Factored Embedding (SFE)

Symmetry Factored Distance (SFD)

Zingoni [55] 2012 ● ● ● ● ● ● ● ● ● ● -

Kakarala et al. [52] 2013 ● ● ● ● ● ● Shape descriptors - spherical harmonics

Li et al. [16] 2013 ● ● ● ● ● ● ● ● ● B-rep CAD model

30

Table 3. Overview of prior CASD studies (Part 3)

RESEARCH

Y
E

A
R

INPUT OUTPUT
APPR Note

2D 3D TYPE OF TRANSF. SCALE ACC D.M.

Im
ag

e

V
ie

w

C
T

 o
r

M
R

I

W
ir

ef
ra

m
e

P
o

in
t

cl
o
u

d

M
es

h
 m

o
d

el

V
o

x
el

 m
o
d

el

C
A

D
 m

o
d

el

N
U

R
B

S
 m

o
d

el

C
ab

le
-s

tr
u

ts

R
ef

le
ct

io
n

al

R
o

ta
ti

o
n

al

C
y

cl
ic

A
x

is
y

m
m

et
ry

T
ra

n
sl

at
io

n
al

D
ih

ed
ra

l

G
lo

b
al

P
ar

ti
al

L
o

ca
l

E
x

ac
t

A
p

p
ro

x
im

at
e

E
x

tr
in

si
c

In
tr

in
si

c

G
eo

m
et

ry
-b

as
ed

V
ie

w
-b

as
ed

E
x

p
li

ci
t

Im
p

li
ci

t

Jiang et al. [25] 2013 ● ● ● ● ● ● ● ● -

Sipran et al. [46] 2014 ● ● ● ● ● ● ●
Vote-based scheme. Models with large missing parts.

Candidates generated by point pair matching.

Dang et al. [44] 2014 ● ● ● ● ● ● ● ● Retrieval, PCA

Korman et al. [41] 2015 ● ● ● ● ● ● ● ● ● ● ● -

Dang et al. [45] 2015 ● ● ● ● ● ● ● For alignment, Shape function

Stephenson et al. [57] 2015 ● ● ● ● ● ● ● ●
PCA, Two procedures: (I) variation of Hausdorff

distance, and (II) ray casting

Li et al. [30] 2016 ● ● ● ● ● ● ● Candidates from Continuous PCA, Viewpoint entropy

Schiebener et al.[88] 2016 ● ● ● ● ● ● ●
Incomplete models.

POSC generated from RANSAC.

Hruda & Dvorák [47] 2017 ● ● ● ● ● ● ●
Incomplete models. POSC generated by pairing

feature points (with the highest Gaussian curvature).

Voting process for selection of APOS.

Jiang et al. [70] 2017 ● ● ● ● ● ● ● ● Symmetry detection in assembly CAD models.

Boussuge et al. [66] 2017 ● ● ● ● ● ● ● ● ● ● ● -

Hruda [62] 2018 ● ● ● ● ● ● ● ● ● Symmetry detection in incomplete models.

Tierney et al. [14] 2018 ● ● ● ● ● ● ● ● ● ● ●
Input: B-rep CAD model. Symmetry-based

decomposition for quasi-axisymmetric assembly

CAD models.

Chen et al. [43] 2018 ● ● ● ● ● ● ● ● ● ● -

31

Table 4. Overview of prior CASD studies (Part 4)

RESEARCH

Y
E

A
R

INPUT OUTPUT
APPR Note

2D 3D TYPE OF TRANSF. SCALE ACC D.M.

Im
ag

e

V
ie

w

C
T

 o
r

M
R

I

W
ir

ef
ra

m
e

P
o

in
t

cl
o
u

d

M
es

h
 m

o
d

el

V
o

x
el

 m
o
d

el

C
A

D
 m

o
d

el

N
U

R
B

S
 m

o
d

el

C
ab

le
-s

tr
u

ts

R
ef

le
ct

io
n

al

R
o

ta
ti

o
n

al

C
y

cl
ic

A
x

is
y

m
m

et
ry

T
ra

n
sl

at
io

n
al

D
ih

ed
ra

l

G
lo

b
al

P
ar

ti
al

L
o

ca
l

E
x

ac
t

A
p

p
ro

x
im

at
e

E
x

tr
in

si
c

In
tr

in
si

c

G
eo

m
et

ry
-b

as
ed

V
ie

w
-b

as
ed

E
x

p
li

ci
t

Im
p

li
ci

t

Li et al. [20] 2019 ● ● ● ● ● ● ● ● ●
Input: B-rep CAD model. Congruence-labelled

Adjacency Graph (CLAG) Frequent Sub-graph

Mining (FSM)

Ji et al. [38] 2019 ● ● ● ● ● ● ● RANSAC

Gnutti et al. [89] 2021 ● ● ● ● ● ● ● -

Fotouhi et al. [37] 2020 ● ● ● ● ● ● ● RANSAC

Gothandaraman et al.

[56]
2020 ● ● ● ● ● ● ● -

Hruda et al. [40] 2022 ● ● ● ● ● ● ● ● RANSAC

32

2.1.4 Relevant research gaps

After reviewing existing CASD studies related to 3D CAD models, this thesis has

identified several research gaps. Firstly, past CASD studies have mainly focused on

analytic surfaces such as plane, cylindrical, conical, spherical, and toroidal surfaces

[20,63]. While some prior studies have attempted to include numeric surfaces, such as

spline surfaces, only reflectional and cyclic symmetry were considered [23,42,66].

However, 3D CAD models often contain other types of numeric surfaces, such as

extruded, swept, surface of revolution, and blend surfaces, which require further research

in CASD. Additionally, while some studies have addressed partial symmetry [42,63],

there is still a need for an adequate measure to detect partial symmetry. Overall, a unified

CASD method is required to process exact global and partial reflectional and

axisymmetric 3D CAD models with both analytic and numeric surfaces.

To address these research gaps, this doctoral thesis proposes a novel CASD method that

can detect exact global and partial reflectional and axisymmetry in 3D CAD models with

both analytic and numeric surfaces. Additionally, a symmetry measure is proposed to

classify the type of symmetry in the B-rep CAD model. Specific software and

programming languages, such as MATLAB, are commonly used for implementing CASD

[40,43]. When using 3D CAD models as input, the CASD is typically conducted within

a CAD system, which is discussed in the following section.

2.2 CAD systems for CASD

The CAD systems used to design 3D CAD models are categorised into commercial and

open-source. Popular commercial CAD systems are AutoCAD, CATIA V5, Creo

Parametric, Solidworks, NX, Solid Edge, and so on, while open-source CAD systems are

FreeCAD, Open CASCADE, etc. CAD systems are also categorised as either 2D or 3D,

with 2D systems being drawing-based and 3D systems being model-based. Most 3D CAD

systems use a feature-based, parametric modelling approach, where design features are

defined by various parameters such as sketch dimensions, extrude length, and revolve

angle. The final shape of the 3D model is obtained step-by-step by turning 2D sketches

into 3D features or by modifying existing geometry (Boolean operations, transformations

such as mirroring, patterning, and so on). Features have been used as input for symmetry

33

detection [25]. Additionally, 3D CAD models can be divided into single parts and

assemblies. A single part consists of one or more bodies, while an assembly comprises

two or more parts. To date, CASD has been applied to both single part [16,42] and

assembly [66] CAD models.

The 3D CAD models generated in CAD systems can be further divided into manifold and

non-manifold. Manifold models are manufacturable objects, while non-manifold models

are artificial objects that lack material thickness at certain edges or points [27] (Figure 5).

In manifold models, an edge can only be shared by two faces, whereas non-manifold

models may have an edge shared by more than two faces (Figure 5). CAD systems such

as NX, Solidworks, and Solid Edge rely on the Parasolid geometric modelling kernel and

only allow for the design of manifold models. On the other hand, CAD systems like

CATIA V5, Autodesk Inventor, and Creo Parametric enable the creation of both manifold

and non-manifold models. In the context of CASD, the manifold [23] and non-manifold

models [63] were used as input. This doctoral thesis focuses on detecting symmetry in

solid 3D CAD models consisting of single parts with one body and manifold geometry.

Figure 5. Examples of non-manifold models

CAD systems typically comprise several constituents [27], including graphical user

interface, geometric modelling kernel, Application Programming Interface, databases,

etc. (Figure 6).

Figure 6. Basic constituents of CAD systems

Graphical user

interface

Geometric

modelling kernel

Application

programming interface
Databases etc.

CAD system

34

The graphical user interface (GUI) enables the interaction between the user and the

software. The layout and appearance of the GUI make every CAD software system unique

and recognisable. The command toolbar, graphic window, and history tree are the main

elements of the GUI. The command toolbar contains icons enabling access to different

features and sketch operations. The graphic window provides the CAD models’

visualisation and manipulation (translation, rotation, zoom-in and -out, etc.). The history

tree records all modelling features, sketches, and operations undertaken to create the part,

assembly, or drawing. In some CASD studies, the history tree was exploited for CASD

[25,70]. The geometric modelling kernel is the heart of every CAD system, which creates,

modifies, and maintains the shapes of the model [27]. There are several kernels in

commercial CAD systems: ACIS, Parasolid, Convergence Geometric Modeler (CGM),

ShapeManager, and C3D. Open CASCADE is a freely available open-source kernel

besides commercial geometric modelling kernels. Until now, past CASD studies used

CAD systems with ACIS [23,42], Parasolid [66], CGM [25], and Open CASCADE

[16,63] geometric modelling kernels. Most CAD systems provide an API to access CAD

system functionalities and develop custom applications that may enhance the CAD

system possibilities. This doctoral thesis uses a CAD system API to implement the

proposed CASD method. Thus, an overview of existing CAD system APIs is provided in

the next subsection.

2.2.1 Application Programming Interface

The CAD system’s Application Programming Interface can be used to develop custom

applications and enhance the capabilities and functionalities of the CAD system. From

the scientific research standpoint, the API can be utilised to implement methods and

frameworks, write specific algorithms, and perform validations. For instance, the CAD

systems APIs were used to develop tools for feature recognition in CAD models [90],

idealisation of CAD models for finite element analysis (FEA) [91], automation of

generating technical drawings [92], and so on. Three types of applications can be

developed through the CAD system API: a) macros, b) stand-alone applications, or c)

add-in applications. A macro is usually programmed using low-level programming

languages, i.e., scripting languages such as VBA, VBScript, and CATScript. The

programming of macros is relatively straightforward and quick. However, macros run in

35

the CAD system’s memory space, which may affect the execution time of the macro.

Add-in and stand-alone applications are developed using high-level programming

languages, i.e., computer languages such as C#, C++, Fortran, and so on. An add-in

application can be integrated within the CAD software environment and usually allows

for the modification of the user interface of the CAD system. A stand-alone application

has its own interface and does not require the user to work interactively with the CAD

software. Most CAD system APIs are based on Microsoft’s Component Object Model

(COM) technology, where the basic API elements are various interfaces and objects with

their properties and functions.

From the perspective of CASD, the APIs were frequently used for implementation

purposes. For instance, the study reported in [63] utilised two CAD system APIs to

develop a symmetry detection tool. The first was CATIA V5, and the second was Open

CASCADE. The reason for having two APIs was that the API functionalities in CATIA

V5 are relatively limited without special licensing. In particular, the lack of access to

some of the data of the B-Rep should be highlighted. For instance, basic topological

entities such as loops are inaccessible [91]. Within the study [63], researchers developed

a CATIA V5 macro using Visual Basic for Application (VBA) to retrieve the basic

parameters of analytic surfaces. The CATIA Application Architecture (CAA) is the API

for developing user-specific applications in CATIA. CATIA V5 automation relies on

several programming languages: CATScript, Visual Basic (VB), and C++. CATScript is

a portable version and non-GUI-oriented programming language of Dassault Systemes,

similar to VBScript (a subset of VB). An advantage of CATScript is its easy use and

recording ability, but it has limited flexibility and difficulties in debugging. Several

subsets of VB are provided within CATIA V5: Visual Basic for Application (VBA),

Visual Basic 6.0 (VB6), and VBScript. VBA is directly hosted in CATIA V5 and provides

a complete programming environment with an editor, debugger, and help object viewer.

The scripting languages in CATIA provide limited access to automation objects. C++ is

the primary language of CAA and is more powerful since it can overcome all the

limitations of the scripting languages. The main disadvantage is its learning complexity,

time-consuming development of applications, as well as a special licensing requirement

[93]. Open CASCADE was the second CAD system used in the study [63] to overcome

the mentioned limitations of CATIA V5 API functionalities in VBA. The initial input 3D

36

CAD model was exported as a STEP file, and the symmetry detection analysis was further

conducted using Open CASCADE Technology (OCCT). The OCCT is a software

development platform providing services for 3D surface and solid modelling, CAD data

exchange, and visualisation [94]. The data structure of the OCCT library is compatible

with STEP (ISO 10303-42) [95]. Most of OCCT functionality is available in the form of

C++ libraries. The OCCT was used to develop specific applications in the CAD [96],

Computer-aided manufacturing (CAM) [95], or CAE domain [97].

Instead of using two CAD systems, a more appropriate solution is to use one CAD system

that provides complete access to the CAD model B-rep data structure. For example, the

studies [14,66] used NX API to develop a CASD tool. The CAD system NX provides NX

Open, a collection of APIs for creating custom applications through an open architecture

using different programming languages (Visual Basic, Java, Python, C/C++, and C#)

[98]. It allows the integration of third-party applications and customisation of the NX

interface. For users with low-level programming skills for the automation of simple

repetitive tasks, NX offers Simple NX Application Programming (SNAP) [99]. SNAP is

based on the Visual Basic (VB.Net) language and can be used with the NX Journal Editor

or Visual Studio. Some operations in NX may be automated with Graphics Interactive

programming (GRIP). It can sometimes perform advanced, customised operations more

efficiently than interactive NX [100]. GRIP uses a vocabulary of English-like words,

which makes it similar in many ways to interpretive BASIC or FORTRAN. Knowledge

Fusion [101] is an interpreted, object-oriented language that allows the addition of

engineering knowledge to a part by creating rules, which are the basic building blocks of

the language. The language is declarative rather than procedural, meaning the rules are

generally only evaluated when referenced or demanded. In addition, external knowledge

bases, such as databases or spreadsheets, may also be accessed.

The research in [23] developed a stand-alone application as an assembly-oriented CAD

environment with an included symmetry detection tool. The environment was built

directly at the ACIS geometric modelling kernel level using C++. Other CAD systems

with API applicable for CASD are Creo Parametric, Autodesk Inventor, Solid Edge, and

Solidworks. Creo Parametric does not have a built-in VBA for macros, but it offers VB

libraries with limited functions to access the CREO functionalities. Thus, macros can be

written in external environments such as MS Office VBA or Visual Studio VB.NET.

37

Another way to implement design automation is by using Mapkeys7. Maximum

automation functionality in Creo Parametric can be accessed with the APIs Creo

Parametric TOOLKIT, J-link, and Pro/Web.Link for Web Environment. While J-link and

Pro/Web.Link are freely available, CP TOOLKIT requires special licensing to develop,

build, and test applications (PTC Creo, 2016). TOOLKIT relies on C or C++

programming language, J-Link makes it possible to develop Java programs, while

Web.Link uses the Netscape Web browser to build custom applications. The CAD system

Autodesk Inventor exposes its programming interface using the Microsoft COM

automation interface. The interface may be accessed using programming languages such

as Microsoft Visual C++, VB, C#, and Delphi. Autodesk Inventor provides a built-in

VBA editor to develop macros. Add-ins and stand-alone (EXE) applications are

developed using the .NET-based languages and libraries with Visual Studio. The iLogic

is a unique add-in based on the VB.NET language included within all Autodesk Inventor

packages. The iLogic interface gives the user access to almost all API functionalities.

However, it lacks direct debugging capabilities – stepping through the code line-by-line

as it executes is impossible. In Solid Edge, macros can be developed through Excel VBA,

while add-ins with the Microsoft frameworks VB.NET (C#) or Visual Studio (C++).

Also, any programming or scripting language that supports COM can use the Solid Edge

COM API. The different application types that can be developed using Solidworks API

are macros, stand-alone, and add-in applications. The programming languages provided

are VBA, Visual Basic .NET (VB.NET), Visual C++/CLI, Visual C# .NET, Visual C++

6.0. One of the Solidworks API's main advantages compared to other CAD systems is the

accessibility of almost all automation objects at the low-level programming languages

without special licensing [102]. To summarise, the CAD system API functionalities were

often exploited in CASD for different input 3D CAD models. Alternatively, when the

input 3D CAD model is in STEP format, the information of the STEP file can be accessed

through Java standard data access interface (JSDAI) [103], which is an open-source API

to read, write and execute runtime manipulation of the EXPRESS-based data model [90].

For instance, JSDAI was used in the CAM domain to develop a STEP-based feature

7 A Mapkey is a keyboard macro that maps frequently used command sequences to specific keyboard

keys.

38

recognition system for recognising B-spline surface features [90]. It could also be used in

the context of CASD as it provides access to the B-rep data structure.

Finally, several requirements should be considered when selecting an appropriate CAD

system API. The first factor is the type of application that should be developed (macros,

stand-alone applications, or add-in applications). Further, the type of programming

language should be used and its availability within the API. Finally, the required

accessibility of the CAD system functionalities via the API should be considered. In

particular, the accessibility of the B-rep data structure is vital for CASD. Thus, the

following subsection discusses the basic concept of B-rep.

2.2.2 Boundary representation

The B-rep derived from the 3D CAD model has been utilized as a reliable input for

symmetry detection in numerous CASD studies [23,42,66]. Its versatility has been

demonstrated in various other studies such as clustering of 3D CAD models [104], feature

recognition for CAM [105], or model simplification for CAE [91]. The B-rep technique

is dominantly used for representing and exchanging solid CAD models [27,28].

Alternative modelling techniques for representing solids, such as Octrees and

Constructive Solid Geometry (CSG), have several disadvantages over B-rep. Octrees

approximate the shape by many voxels, where larger-sized voxels make up the interior of

the solid, while smaller-sized voxels make up the boundary. Although Octrees are easy

to generate, they may be extremely inefficient for highly accurate models [106]. Thus,

they are not accurate enough for exact symmetry detection. CSG models are compounds

of simple primitive solids (cuboids, cylinders, prisms, pyramids, spheres, and cones)

merged through Boolean operations (union, intersection, and difference). Although the

CSG technique contains the geometry of a solid, the major drawback is that the topology

is not present. The B-rep technique (Figure 7) overcomes this drawback as its data

structure is composed of two main parts: topology and geometry [107].

39

 B-rep CAD model
B-rep CAD model

(exploded view)

Figure 7. B-rep technique

The topology defines the structure of the model and provides information about the

adjacency or connectivity between the three basic types of entities: faces, edges, and

vertices. Edges bound faces, while vertices are points connecting several faces and edges.

The topology of a solid has nine potential sets of pointers connecting vertices, edges, and

faces (Figure 8, left). However, fewer pointers are stored as a trade-off between the speed

of querying each topological entity and the space required to store the topological

information. Hence, topology is most often described by the winged-edge data structure

[108] (Figure 8, right). For solids bounded by two-dimensional manifolds, each edge lies

on two faces, and each edge typically connects two distinct vertices.

F – face E – edge V – vertices

Figure 8. Potential set of pointers for a topological data structure (left) and winged-

edge data structure (right)

The geometry defines the model's shape and consists of three basic types of entities

(Figure 9): surfaces, curves, and points. Each surface is associated with a face, each curve

with an edge, and each point with a vertex. The face is a portion of its associated surface,

F

V E

F1

F2

E1
V2 V1

E2 E4

E3 E5

40

the edge is a segment of its associated curve, and the vertex coincides with its associated

point. Each geometric entity is defined by a set of properties describing the associated

topological entity. For example, the point defines the position of its associated vertex in

the modelling space.

Depending on the CAD system and its geometric modelling kernel, the B-rep data

structure may contain other topological entities such as (e.g., shells, loops, and coedges).

A shell represents a closed set of faces. A loop is a closed set of edges bounding a face.

A coedge is an oriented edge whose orthogonal vector (cross product between the face

normal vector and the edge’s tangent vector) points in the direction of the interior of the

face. In manifold CAD models, each edge can only be shared by two adjacent faces,

which means there can only be two edges (each pointing in the opposite directions along

the edge). In non-manifold CAD models, an edge can be associated with more than two

faces and can have more than two coedges.

Figure 9. Example of a basic B-rep model data structure

Keeping the geometry and topology separate gives more flexibility during modelling

operations [28]. Moreover, such an approach enables checking the B-rep model's

topological integrity at any time using Euler's equation. In its simplest form, the Euler

equation states that the number of vertices V and faces F is equal to the number of edges

E increased by two:

 V+F=E+2. (14)

The extended version of the Euler equation applicable for the general case includes as

well other contributors such as the number of genus G (the number of holes going through

the solid), the number of inner face loops L, and the number of shells S:

B-rep model

Faces

Edges

Vertices

Surfaces

Points

Curves

Topology

Coedges

Loops

Shells

Geometry

41

 V–E+F–L=2(S–G). (15)

The B-rep data structure depends on the CAD system and the underlying geometric

modelling kernel. CAD systems using the same geometric modelling kernel are likely to

have a similar B-rep data structure (see Section 2.4). Figure 10 shows some of the basic

types of geometric entities used in CAD systems. Typical types of surfaces are plane,

cylinder, cone, sphere, toroidal, B-spline surface, etc., while typical curve types are line,

circle, ellipse, B-spline curve, etc. As already mentioned, the geometry within a 3D CAD

model can be divided into analytic and numeric [28,31], which is discussed in more detail

in the following section.

Figure 10. Basic types of geometric entities

2.3 Analytic and numeric geometry in B-rep

Analytic geometry can be divided into analytic surfaces and curves. There are five

analytic surfaces: plane, cylindrical, conical, spherical, and toroidal surfaces. Typical

analytical curves are line, circle, ellipse, hyperbola, and parabola. All other surfaces and

curves that do not fall into the category of analytic surfaces and curves can be classified

as numeric. Hence, typical numeric surfaces found in B-rep CAD models are spline

surfaces, surfaces of revolution (or revolved surfaces), swept surfaces, blend surfaces,

etc. The numeric curves are spline, p curve, trimmed curve, intersection curve, etc. The

prior studies related to CASD in B-rep CAD models were mainly limited to analytic

surfaces (plane, cylindrical, conical, spherical, and toroidal surfaces)

[16,23,42,63,67,68,69]. Until now, numeric surfaces were briefly considered in the

Plane

Geometry

Surface Curve Vertex

Cylinder

Cone

Sphere

etc.

...

Line

Circle

etc.

...

Point

Spline

 Spline

42

context of CASD (as discussed in Subsection 2.1.1, only spline surfaces were considered).

Therefore, further research is needed to include other types of numeric surfaces in CASD.

During feature-based modelling, analytic geometry is created within the CAD model from

solid primitives, i.e., when analytic 2D curves are extruded, revolved, and so on. On the

other side, numeric geometry may be created within CAD systems in two ways:

automatically or intentionally. Automatically implies that the CAD system creates

numeric geometry in the background during modelling without user’s knowledge. A

typical example is when fillet or chamfer features are used to round off or break edges.

Consequently, by default, the CAD system may create either a blended or a spline surface

(Figure 11). On the other hand, when the user needs to design 3D CAD models with

complex shapes (fuselage or wing of an airplane, car body, turbine blade, etc.), free-form

surface modelling is applied, and numeric geometry is created intentionally by the user.

(a)

two cylinders with

different diameters

(b)

fillet/round feature

(blend or spline surface)

(c)

chamfer feature

(spline surface)

Figure 11. A two-cylinder test – different features applied to the intersection edge.

There are three common methods to represent geometry in CAD systems [31]:

• implicit equations,

• parametric representation, and

• procedural definitions.

Using implicit equations, it is difficult to compute a point on a curve or surface while

using parametric representation, it is difficult to determine if a given point lies on the

curve or surface. Hence, all analytic curves and surfaces are also defined by parametric

representations. The two most common techniques of representing curves and surfaces in

geometric modelling are implicit equations and parametric representations [31,106,109].

The implicit equation of a surface in Euclidean space R3 is defined by the equation:

 (, ,) 0,S x y z = (16)

43

while those of a curve, respectively:

 (,) 0.S x y = (17)

 On the other hand, the parametric representation of surfaces is defined as follows:

 (,),u vσ (18)

where u and v are independent dimensionless parameters. The parametric representation

of a curve is:

 ().uλ

(19)

A procedural definition of a curve or surface implies that a base curve or surfaces and a

procedure or formula are used to compute points on the intended geometry from points

on the base geometry [31]. For instance, offset and blend surfaces may be represented

procedurally [106]. The main disadvantage of procedurally defined surfaces is that they

usually cannot be transferred to other CAD systems that do not understand this definition

[110]. The next subsection provides the implicit equations and parametric representation

of surfaces and curves from the perspective of STEP and Parasolid [109,111]. The next

two sub-section provide mathematical expressions for different types of analytic and

numeric surfaces, which are important to compute surface and edge properties relevant

for the proposed CASD method.

2.3.1 Surfaces

Surfaces are essential as they describe the shapes of the associated faces in the B-rep CAD

model. The types of surfaces discussed in this section are the analytic surfaces plane,

cylindrical, conical, spherical, and toroidal, and numeric surfaces spline, swept, and blend

surfaces. A plane is an unbounded surface with a constant normal and is defined by a

point on the plane and the normal direction. The plane surface has the following

parameterisation:

 (,) ,u v u v= + +σ C x y (20)

where C is the position location, while x and y represent the directions of the local

coordinate system of the plane. The parametrisation ranges –∞ < u, v < ∞. The implicit

form of the plane surface is defined as:

 (, ,) =0.S x y z ax by cz d + + + (21)

44

A cylindrical surface is a surface at a constant distance (the radius) from a straight line

and is defined by its radius R and its orientation and location. The cylindrical surface has

the following parameterisation:

 () ()()(,) cos sin ,u v R u u v= + + +σ C x y z (22)

where R is the cylinder radius, z is the axis of the cylindrical surface. The parametrisation

range is 0 ≤ u ≤ 360º and –∞ < v < ∞. The surface unit normal vector can be obtained

from the equation:

 ()() ()()(,) cos sin .u v u u= +n x y (23)

The implicit form of the cylindrical surface is defined as:

2 2 2(, ,) =0.S x y z x y R + − (24)

A conical surface is created when a line in 3D space is revolves around an intersecting

line. It is defined by the half-angle α, location, orientation, and the radius Rc of the cone

in the plane passing through the location point C normal to the cone axis. The conical

surface has the following parameterisation:

 () () ()()c(,) tan cos sin ,u v R v u u v= + + + +σ C x y z (25)

where α is the half-angle, and R the radius. The parametrisation range is 0 ≤ u ≤ 360º

and –∞ < v < ∞. The surface unit normal vector can be obtained using the equations:

() () ()

()
2

cos sin tan
(,)

1 tan

u u
u v

+ −
=

+

x y z
n




, (26)

() () ()

()
2

cos sin tan
(,)

1 tan

u u
u v

+ −
= −

+

x y z
n




. (27)

The first equation above applies to the case when ()c tan 0R v+  , while the second

equation applies when ()c tan 0R v+  . The implicit form of the conical surface is

defined as:

 ()
22 2

c(, ,) tan 0.S x y z x y R z + − + = (28)

45

A spherical surface is a surface that has a constant distance (radius) from a central point

and is described by the radius, location, and orientation of the surface. The spherical

surface has the following parameterisation:

 () ()() ()s s(,) cos cos sin sin ,u v R v u u R v= + + +σ C x y z (29)

where z is the axis and Rs is the radius of the spherical surface. The parametrisation range

is 0 ≤ u ≤ 360º and –90º < v < 90º. The surface unit normal vector can be obtained using

the equation:

 () ()() ()(,) cos cos sin sin .u v v u u v= + +n x y z (30)

The analytic form of the spherical surface is defined as:

2 2 2 2

s(, ,) 0.S x y z x y z R + + − = (31)

A toroidal surface is created when a circle is revolved around a line in its plane. The

radius of the revolved circle is called the minor radius, and the distance from the circle’s

centre to the axis of revolution is called the major radius. Therefore, the major and minor

radius, position, and orientation describe the toroidal surface. The toroidal surface has the

following parameterisation:

 () () ()() ()t t t. (,) cos cos sin sin ,u v R r v u u r v= + + + +σ C x y z (32)

where z is the axis of the toroidal surface, while Rt and rt are the major and minor radii.

The parametrisation ranges from 0 < u, v < 360º. The implicit form of the toroidal surface

is defined as:

 ()2 2 2 2 2 2 2

t t t(, ,) 2 0.S x y z x y z R x y r R + + − + − + = (33)

Next, the numeric surfaces are discussed, starting with spline surfaces. Several types of

spline surfaces exist, such as Bezier, B-spline, NURBS, etc. Regardless of the name, a

spline surface consists of several patches pieced together with some form of continuity

[31]. Non-uniform rational B-splines (NURBS) have become the de facto industry

standard for the representation, design, and data exchange of geometric information

[112,113]. NURBS are generalisations of nonrational B-splines and rational and

nonrational Bezier curves and surfaces. B-spline surfaces are a general form of the

rational or polynomial parametric surface represented by control points, basis functions,

46

and optional weights. The common subtypes are B-spline surface with knots, uniform

surface, quasi-uniform surface, and Bezier surface [109]. The B-spline surface has the

following parametrisation in the polynomial case:

1 2

1 2

0 0

(,) () (),
K K

d d

ij i j

i j

u v P N u N v
= =

=σ (34)

In the rational case, the B-spline surface has the following parametrisation:

1 2

1 2

1 2

1 2

0 0

0 0

() ()

(,) ,

() ()

K K
d d

ij ij i j

i j

K K
d d

ij i j

i j

w P N u N v

u v

w N u N v

= =

= =

=




σ (35)

where K1 is the upper index on u control points, K2 the upper index on v control points,

Pij represents the control points, wij the weights, d1 the u degree, d2 the v degree, and

1 ()
d

iN u and
2 ()

d

iN v the B-spline basis functions. A B-spline surface with knots is a type

of B-spline surface in which the knot values are explicitly given and is used to represent

non-uniform B-spline surfaces but may also be used for other knot types. A uniform

surface is a type of B-spline surface in which the knots are evenly spaced (only if all knots

are of multiplicity and they differ by a positive constant from the preceding knot). A

quasi-uniform surface is a type of B-spline surface in which the knots are evenly spaced

and, except for the first and last, have multiplicity 1. Bezier surface is a type of B-spline

surface in which the knots are evenly spaced and have high multiplicities. A rational B-

spline surface is a type of B-spline surface that is a piecewise parametric rational surface

described in terms of control points, associated weight values, and basis functions. It is

instantiated with any other subtypes of the B-spline surface, which provide explicit or

implicit knot values from which the basis functions are defined.

Next, the swept surface is constructed by sweeping a curve along another curve [109].

The common subtypes are surface of linear extrusion, surface of revolution, surface curve

swept surface, and fixed reference swept surface. A surface of linear extrusion is created

when a curve is swept in some direction. The parametrisation is as follows:

 ()(,) ,u v u v= +σ λ V (36)

47

where λ(u) is the curve’s parametrisation, and V is the extrusion axis. The parametrisation

range for v is –∞ < v < ∞, while for u it is defined by the curve parametrisation.

Further, a surface of revolution is generated when a curve is rotated one complete

revolution about an axis. The parametrisation is defined as:

()() ()()() ()(,) cos 1 cosu v v u v u= + − + − − +σ C λ C λ C V V

()()sin ,v u+  −V λ C
(37)

where λ(v) is the curve’s parametrisation, C is the position location, and V is the axis of

revolution.

A surface curve swept surface and a fixed reference swept surface are types of swept

surfaces created when a curve is swept along a directrix curve that lies on the reference

surface [109]. Both surface types have the following parametrisation:

 () () ()(,) ,u v u u v= +σ μ T λ (38)

where μ(u) is the directrix parametrisation, λ(v) the swept curve parametrisation, and T(u)

transformation matrix at parameter u. The u parameter range depends on the directrix

curve, while the v parameter range depends on the referenced swept curve. The difference

between the surface curve swept surface and fixed reference swept surface is that the first

has a local X axis in the direction of the normal to the reference surface. In contrast, the

second has a local X axis in the direction of the projection of fixed reference onto the

normal plane to the directrix at this point [109].

Surface blending, usually through fillet or round features, is widely used in CAD for

functional or aesthetic reasons and implies the smooth joining of two or more given

surfaces [114]. As a result of surface blending, different types of surfaces may be

generated (e.g., cylindrical, spherical, toroidal, blend, etc.), depending on the type of

edges or faces to which the blending is applied. During blending, the specific type of

surface that may be created is the blend surface (see Figure 11, b). Blend surfaces may be

defined procedurally [106,115] or parametrically [116]. Procedurally defined blend

surfaces can only be passed into another CAD system with approximation [31]. For

instance, CAD systems relying on the Parasolid geometric modelling kernel may

exchange blend surfaces via the kernel file format without approximation. However,

during the export of blend surfaces to any other neutral file format, they will be

48

approximated by B-spline surfaces. The parametrically defined blend surface is usually

represented by a Bezier or B-Spline surface [117]. The construction of a parametrically

defied blend is typically based on surface intersection [115], interpolation [114], and

trimming [117]. A blend surface may have the following parametrisation [111]:

 ()() () ()() ()b b(,) () cos sin ,u v u R v a u u R v a u u= + +σ C x y (39)

where C(u) is the spine curve, Rb is the blend radius, x(u) and y(u) are unit vectors such,

and a(u) is the angle subtended by points on the boundary curves at the spine. The spine

is the blend’s centre line or the path along which the centre of the ball moves.

The next numeric surface type is the offset surface. An offset surface is mathematically

complex and can rarely be represented precisely in NURBS form [118]. Hence, the offset

surface is another example of a procedurally defined surface. It has the following

parameterisation:

 () (), , ,u v u v d= +σ S n (40)

where S(u,v) represents the basis surface, n is the unit normal vector to the basis surface,

and d is the distance, i.e., a constant scalar, which can be positive, negative, or zero to

indicate the preferred side of the surface [118]. The introduced equations are used to

compute the surface properties, such as the normal vector, centroid, area, etc., for the

proposed CASD method (see Chapter 3). Besides surfaces, another vital topological

entity is curves, which describe the shape of the associated edges in the B-rep CAD

model.

2.3.2 Curves

The common curves in B-Rep are the line, conics (circle, ellipse, hyperbola, and

parabola), Pcurve, B-spline curve, etc. A line is defined by a point and a direction,

parametrised by the following equation:

 () ,u u= +λ P V (41)

where P is a point and V is the direction vector. The u parameter ranges from –∞ < u <

∞. Conics are a group of curves produced by intersecting a plane with a cone. The first

type of conic is the circle, which is defined by a radius R and the location and orientation

of the circle. It is parametrised by the equation:

49

 () () ()()cos sin .u R u u= + +λ C x y (42)

The implicit form of the circle is defined as:

2 2 2(,) 0.S x y x y R + − = (43)

Another conic, ellipse, is defined by a half-major R1 and half-minor R2 radius, the position

and orientation of the curve. It is parametrised by the next equation:

 () ()() ()()1 2cos sin .u R u R u= + +λ C x y (44)

The parameter u ranges from 0 ≤ u ≤ 360º. The implicit form of the ellipse is defined as

follows:

2 2

1 2

(,) 1 0
x y

S x y
R R

   
 + − =   
   

. (45)

The hyperbola is a conic determined by the lengths of the major R1 and minor R2 radius,

the curve’s position and orientation:

 () ()() ()()1 2cosh sinh .u R u R u= + +λ C x y (46)

The parameter u ranges -∞ < u < ∞. The hyperbola has the following implicit form:

2 2

1 2

(,) 1 0
x y

S x y
R R

   
 − − =   
   

. (47)

The last conic, parabola, is described by its focal distance F, position, and orientation,

with the following parametrisation:

 () ()2 2 .u F u u= + +λ C x y (48)

The parameter u ranges -∞ < u < ∞. The parabola’s implicit form is:

2(,) 4 0S x y Fx y − = (49)

A B-spline curve is a piecewise parametric polynomial or rational curve described in

terms of control points and basis functions. The B-spline curve has been selected as the

most stable format to represent all types of polynomial or rational parametric curves. With

appropriate attribute values, it can represent single-span or spline curves of explicit

polynomial, rational, Bezier or B-spline curve types. The B-spline curve has three special

50

subtypes where the knots and knot multiplicities can be derived to provide simple default

capabilities. The B-spline curve has the following parametrisation in the polynomial case:

0

() ()
k

d

i i

i

u PN u
=

=λ . (50)

The B-spline curve has the following parametrisation in the rational case:

0

0

()

(,)

()

k
d

i i i

i

k
d

i i

i

w PN u

u v

w N u

=

=

=



σ , (51)

where k+1 is the number of control points, Pi are the control points, wi are the weights,

and d is the degree. The introduced equations for several analytic and numeric curves are

important for computing the curve properties, such as the length, midpoint, and so on,

and are used in the proposed symmetry detection method (see Chapter 3). The type of

surfaces and curves available depends on the observed CAD system (geometric modelling

kernel) and CAD model formats. Thus, the next subsection gives an overview of CAD

model formats applicable as input for CASD, alongside their type of surfaces and curves.

2.4 CAD models formats for CASD

The 3D CAD model file formats can generally be divided into native, kernel, and neutral

(see Table 5). The native 3D CAD file formats are strictly related to the corresponding

CAD systems (e.g., Solidworks *.sldprt, CATIA V5 *.CATpart, NX *.prt, etc.). Most

CAD systems also provide the export of kernel exchange file formats (e.g., Parasolid and

ACIS). Neutral file formats enable interoperability between different CAD systems and

sharing 3D CAD models among different contributors (CAD, CAE, CAPP, and CAM).

The most common neutral file formats are STEP, IGES, JT8, QIF9, etc. The 3D CAD

model formats can be divided based on whether they use the B-rep technique (see Table

5). This is important as prior CASD research often exploited the B-rep. The past CASD

studies used as input neutral STEP [16,63], kernel ACIS file [23,42], and native files

CATIA V5 [25,70] and NX [66].

8 Jupiter Tessellation
9 Quality Information Framework

51

Table 5. An overview of different 3D CAD model formats

Format

E
x

te
n

si
o

n

M
a

n
a

g
ed

 b
y

S
ta

n
d

a
rd

N
a

ti
v

e

K
er

n
el

N
eu

tr
a
l

B
-r

ep

A
p

p
li

ca
b

le
 f

o
r

C
A

S
D

STEP .step, .stp ISO
ISO 10303-

242:2020
  ✓ ✓ ✓

IGES .iges, .igs ANSI
NBSIR 80-

1978
  ✓ ✓ ✓

Parasolid .x_t, .x_b Siemens -  ✓  ✓ ✓

ACIS
.sat, .sab

.asat, .asab

Dassault

Systemes
-  ✓  ✓ ✓

JT .jt, .j_t Siemens
ISO

14306:2017
  ✓ ✓ ✓

QIF .qif DMSC
ISO

23952:2020
  ✓ ✓ 

STL .stl 3D Systems -   ✓  

3D PDF .pdf
3D PDF

Consortium

ISO 14739-

1:2014
  ✓  

eDrawings .eprt, .easm
Dassault

Systemes
-   ✓  

Solidworks
.sldprt

.sldasm

Dassault

Systemes
- ✓   ✓ ✓

Catia V5
.CATpart

.CATproduct

Dassault

Systemes
- ✓   ✓ ✓

NX .prt Siemens - ✓   ✓ ✓

Creo

Parametric
.prt PTC - ✓   ✓ ✓

Autodesk

Inventor
.ipt, .iam Autodesk - ✓   ✓ ✓

Open

CASCADE

Technology

.brep
Open

CASCADE
- ✓   ✓ ✓

✓– yes  – no

The smooth exchange of 3D CAD models between different CAD systems is important

to ensure reliable product definitions and avoid potential repairing of the geometry. The

interpretation of the CAD model is also important factor to consider from the perspective

of CASD. As already mentioned, there are three commonly used ways 3D CAD models

may be exchanged. The first way is through native file formats, which implies that the

52

exchange is conducted between two identical CAD systems. This type of exchange is

generally without any difficulties; the B-rep data structure and all other relevant CAD

information (modelling history, features, parameters, and constraints) can be fully

maintained. The only issue that may arise is when exchanging different CAD system

versions. For instance, importing a native file created in a higher version into a lower

version of the CAD system is usually impossible. The second way of exchanging is by

employing kernel file formats such as Parasolid and ACIS. The B-rep data structure

remains unchanged if the exchange is being conducted between two CAD systems that

share the same geometric modelling kernel. However, the relevant CAD information will

be lost. The second scenario is when the kernel file format is imported by a computer-

aided x (CAx) system that uses another geometric modelling kernel. This may change the

B-rep data structure in terms of geometry, while the CAD information will also be lost.

The third way of exchanging CAD models between CAD systems, probably the most

common, is through neutral file formats (STEP and IGS). Here, two aspects need to be

considered. The first aspect is how one CAD system converts the 3D CAD model into a

neutral file format. For instance, the CAx system may support some geometry that is not

supported by the neutral file format (e.g., blend surfaces). In this case, the geometry might

be approximated. The second aspect is how the other CAD system interprets the generated

neutral file format. Mainly, there is a risk of inconsistency between geometry and

topology of the CAD model when exchanging from a CAD system with loose numerical

tolerances to a system with more stringent criteria [119,120]. Consequently, gaps may

arise between vertices and edges, leading to errors and invalid topology and geometry.

The neutral file formats can also not share other relevant CAD information such as

features, reference geometry (planes, axes, and points), etc.

When exchanging a curve or surface between two CAD systems which represent

geometry differently, there are three possible scenarios [31]: a) a mathematically precise

conversion, b) a geometrically precise conversion with altered parameterisation, and c)

no mathematically precise conversion between the two systems. A mathematically

precise conversion means that the transformation is geometrically and parametrically

equivalent between the two CAD systems. The only error that might occur is the floating

point roundoff error. If two CAD systems support representations of analytic geometry,

then the exchange of analytic geometry between them is precise. Surfaces and curves that

53

are defined procedurally are usually complex (e.g., offset curve and surface, blend

surface, etc.) and can rarely be exchanged between CAD systems without approximation

in NURBS form. The conversion of a particular NURBS representation into an equivalent

type of spline curve or surface, and vice versa, requires the consideration of three aspects:

degree, rationality, and continuity. When it comes to the degree, it cannot be decreased,

but it can be increased. Non-rational geometry is a sum of polynomials, while rational

geometry is a ratio of sums of polynomials. Hence, rational geometry cannot be

transferred to CAD systems supporting only non-rational geometry, while vice versa is

possible. As an example, two CAD systems are observed: the first allows non-rational

geometry and restricts the degree of the curve or surface, and the second allows rational

geometry without restricting the degree of the curve or surface. If geometry is passed

from the first to the second CAD system, the corresponding curves or surfaces must be

approximated. On the other hand, the conversion in the reverse direction puts no

restrictions on the geometry. The conversion of type (parametric C or geometric G) and

order (C0, C1, C2, G0, G1, G2, etc.) of continuity between the curve segments or surface

patches is a more complex topic, and the following points need to be considered [31]:

• If a CAD system allows arbitrary knot spacing and multiplicity, it can represent

precisely (geometrically and parametrically) virtually all polynomial and rational

spline curves, which are at least C0 continuous.

• Multiple knots are necessary for G continuous curves, but if desired, re-

parameterisation can be used to achieve C continuity and lower the multiplicity

of internal knots.

• The use of re-parametrised curves in certain types of surface constructions (e.g.,

ruled surfaces) can change surface geometry.

As many existing CASD studies, among them the CASD method proposed in this doctoral

thesis, rely on the classification of topological entities of the B-rep, in the next

subsections, an overview of different types of geometrical entities is given for native,

kernel and neutral file formats.

2.4.1 Native formats

The native file formats are observed in the context of CATIA V5, which uses the

Convergence Geometric Modeler (CGM) geometric modelling kernel, and Autodesk

54

Inventor, which relies on the ShapeManager geometric modelling kernel. Table 6 shows

the comparison of geometry in CGM and ShapeManager. In both cases, the structure of

the geometry is quite simple. Apart from the standard analytic surfaces (plane, cylinder,

cone, sphere, and torus), numerical surfaces are represented as NURBS or B-spline

surfaces. The additional geometric entities in the ShapeManager modelling kernel are the

elliptical cone, elliptical cylinder surface, and the curve elliptical arc. On the other hand,

the additional geometric entity in the CGM modelling kernel is the PCurve. A PCurves is

used to define curves in the parameter space of a surface. For instance, a PLine is a curve

where the mathematical representation in the space of the surface is a line. Hence, in the

3D space, a PCurve can be a line, circle, or more complex curve on a NURBS surface.

Table 6. Overview of geometry in CGM and ShapeManager

 CGM ShapeManager

G
E

O
M

E
T

R
Y

VERTEX POINT POINT

CURVE

LINE

CIRCLE

ELLIPSE

SPLINE CURVE

NURBS CURVE

PCURVE1

LINE

CIRCLE

ELLIPSE

ELLIPTICAL ARC

B-SPLINE CURVE

SURFACE

PLANE

CYLINDER

CONE

SPHERE

TORUS

NURBS

PLANE

CYLINDER

CONE

ELLIPTICAL CONE

ELLIPTICAL

CYLINDER

SPHERE

TORUS

B-SPLINE SURFACE
1 PLINE, PCIRCLE, PELLIPSE, PSPLINE, PNURBS

The past CASD studies used as input native CAD models from CATIA V5 [25,70] and

NX [66]. The native NX format and those from Solidworks, Solid Edge, etc. use the

Parasolid geometric modelling kernel. Hence, the geometry found in such native files is

discussed from the perspective of kernel formats in the next subsection.

2.4.2 Kernel formats

The two kernel formats are Parasolid and ACIS. The ACIS format was used directly as

input in CASD [23,42], while the Parasolid format was indirectly used through the native

55

NX format [66]. Parasolid is a non-standard kernel file format that supports wireframe,

surface, solid, and general non-manifold models [111]. The Parasolid geometric

modelling kernel is an integral part of many CAD (NX, Solidworks, and Solid Edge),

CAM (e.g., SolidCAM), and CAE systems (e.g., Abaqus and Ansys). Hence, the main

advantage of The Parasolid is that it is supported by many CAx systems. The Parasolid

format may be represented by two versions: textual or binary. The extension *.x_t refers

to the textual version, while the extension *.x_b refers to the binary version. For the same

3D CAD model, both versions will contain the same data but in different forms. The

Parasolid format can maintain the part-assembly hierarchy. The advantage is that the

format enables interoperability between CAD systems running on the Parasolid geometric

modelling kernel. However, since it is a non-standard file format, specific data may be

inaccessible or incomplete after being imported into non-Parasolid CAD systems. A blend

surface is exchangeable between CAD systems with a Parasolid geometric kernel but will

be transformed into a spline surface when exchanged via other formats such as STEP.

The second kernel file format is ACIS is employed in many CAD and CAE systems (e.g.,

SpaceClaim, BricsCAD, IronCAD KeyKreator). Like Parasolid, the ACIS file format

may be represented by textual (*.sat) or binary (*.sab) version. A textual representation

provides better readability to humans than a binary representation, but it is more sensitive

to numerical round-off errors and has a larger storage size. The ACIS file format cannot

maintain the part-assembly hierarchy and export mesh models.

The comparison of the available types of geometrical entities in Parasolid and ACIS is

given in Table 7. Both provide the same type of analytic surfaces, while numeric surfaces

are in ACIS represented by spline surface and in Parasolid with blend, bsurface (i.e., B-

spline surface), surface of revolution, extruded surface, offset surface, trimmed and

foreign surface. A foreign surface is a particular surface type for representing the user’s

data. Additionally, in the ACIS, there are the interpolated curve, degenerate curve, and

undefined curve. An interpolated curve represents an intersection between two surfaces

or the projection of a curve onto a surface. A Degenerate curve is used to build skin or

loft surfaces that come to a point at either end. An undefined curve denotes a curve

defined only on its endpoints, for which there are explicit positions, directions, and

56

curvatures. The additional curves in Parasolid are bcurve (B-spline), spcurve,

intersection, constparam, and trimmed. An intersection curve is generated at the

intersection of two surfaces. A trimmed curve is a basis curve of another bounded region

curve. A spcurve is a 3D curve generated as a 2D curve in the parameter space of a

surface. The prior CASD studies addressed analytic and spline surfaces using NX

(Parasolid) and ACIS format as input [23,42,66]. The type of geometry in neutral formats

is discussed in following subsection.

Table 7. Overview of geometry in Parasolid and ACIS

 Parasolid ACIS

G
E

O
M

E
T

R
Y

VERTEX POINT POINT

CURVE

LINE

CIRCLE

ELLIPSE

PARABOLAS1

HYPERBOLAS1

BCURVE2

SPCURVE

INTERSECTION

CONSTPARAM

TRIMMED

STRAIGHT LINE

ELLIPSE3

INTERPOLATED CURVE4

DEGENERATE CURVE

UNDEFINED CURVE

SURFACE

PLANE

CYLINDER

CONE

SPHERE

TORUS

BLEND

BSURFACE2

SURFACE OF REVOLUTION

EXTRUDED SURFACE

OFFSET SURFACE

FOREIGN SURFACE

PLANE

CONE5

SPHERE

TORUS

SPLINE SURFACE

1 Applies only to Siemens NX
2 B-spline curve/surface

3 Includes the circle as a special type of ellipse.
4 Includes B-splines.
5 Includes as well cylindrical surfaces.

2.4.3 Neutral formats

The neutral formats applicable in the context of CASD are STEP, IGES and JT. Until

now, only the STEP format was exploited as CASD input [16,63]. Most other neutral

CAD exchange formats (e.g., JF, QIF, eDrawings, 3D PDF, and STL) are unsuitable for

CASD, mainly because they do not rely on the B-rep technique. STEP is the most

frequently used neutral exchange 3D CAD file format [121,122]. Most commercial CAx

systems support the import and export of STEP file formats, enabling interoperability

57

between different CAD systems. The Open CASCADE CAD system with the Open

CASCADE Technology modelling kernel relies on the STEP file data structure [123].

Usually, the STEP format is represented as a text file using the EXPRESS language [124].

It can contain various B-Rep data such as part-assembly hierarchy, solid, sheet, wireframe

bodies, and topological information. The major STEP file format standards related to

mechanical engineering are defined by several Application Protocols (AP), including

STEP AP203, STEP AP214, and STEP AP242. STEP AP203 defines geometry, topology,

and configuration management data for solid models (mechanical parts and assemblies).

The STEP AP214, along with the features from STEP AP203, additionally includes

colours, layers, and geometric dimensioning and tolerancing (GD&T). STEP AP242

combines both STEP 203 and STEP 214 to support MBD. Exporting a STEP file may be

time-consuming for CAD models with complex geometry.

IGES was the first neutral exchange CAD file format introduced [125]. It can be used to

represent both B-Rep and CSG geometries. IGES can contain different types of

information, such as surface, solid, and circuit diagrams. Many CAD systems support this

format as it is one of the oldest CAD formats. However, the disadvantage of this file

format is its sensitivity to geometric errors (e.g., gaps between surfaces, missing faces,

and wrong surface orientation), which can require intensive repair in extreme cases. IGES

describes a body primarily via disconnected surfaces instead of topological graphs.

Hence, IGES is more suitable for surface geometry and less suitable for solid models.

The JT could also be applicable in the context of CASD because it contains the B-rep

information. JT is a standardised file format in the form of a binary representation, which

enables defining different levels of detail of the 3D CAD model and specifying the degree

of precision (less precision indicates lower data storage size, higher precision means an

increased data storage size) [126]. The JT format supports part-assembly hierarchy, mesh,

PMI, and visual attributes (colouring and textures). Compared to the STEP file, the JT

file enables the exporting of 3D models with less data storage size of the same geometry.

Although the JT file format is used in the automotive and aerospace industry [128], it is

limited in practical application because it is supported only by several CAD systems (e.g.,

NX, PTC Creo, and Autodesk Inventor).

58

An overview of the type of geometric entities in STEP and IGES is given in Table 8.

Analytic surfaces with defined parametric representation are referred to as elementary

surfaces in STEP. Analytic surfaces are also supported in IGES; only the circular and

conical surfaces are denoted as right circular cylindrical and conical surfaces. The

numeric surfaces in STEP are represented in the swept, bounded, and offset surface

groups. The swept and offset surfaces were already covered in subsection 2.3.1. Bounded

surfaces are surrounded by identifiable boundaries and have a finite area. Those surfaces

are the B-spline, rectangular trimmed, curve bounded, rectangular composite, locally

refined spline, and Bezier surface (only in Open CASCADE). The B-spline surface and

its subtypes were discussed in subsection 2.3.1. A rectangular trimmed surface is defined

by a basis surface and bounded by constant parametric lines. A curve bounded surface is

a parametric surface with curved boundaries defined by one or more pcurves or boundary

curves. A rectangular composite surface is formed by a rectangular array of segments or

patches. A locally refined spline surface is a piecewise parametric polynomial or rational

surface described with control points and local B-spline functions. Apart from the

numeric surfaces already mentioned in native and kernel formats, the additional surfaces

in IGES are the ruled and parametric spline surface. A ruled surface is created when

sweeping over an area between defined curves, while a parametric spline surface is

described by a series of parametric surfaces split into a grid. The curves in STEP are

divided into four groups: conics, bounded curves, curves on surface, and offset curves. In

IGES, additionally to the mentioned STEP curves, there is the parametric spline curve,

composed of a series of parametric polynomials.

59

Table 8. Overview of geometry in STEP and IGES

 STEP IGES

G
E

O
M

E
T

R
Y

VERTEX

CARTESIAN POINT

POINT ON CURVE1

POINT ON SURF.1

POINT

CURVE

LINE

LINE

CIRCULAR ARC

CONIC ARC

PARAMETRIC SPLINE CURVE

DIRECTION

RATIONAL B-SPLINE CURVE

OFFSET CURVE

CURVE ON A PARAMETRIC SURF.

COMPOSITE CURVE

CONICS

CIRCLE

ELLIPSE

PARABOLA

HYPERBOLA

BOUNDED

CURVES

POLY LINE

B-SPLINE CURVE

TRIMMED CURVE

COMPOSITE CURVE

CURVES

ON SURFACE

PCURVE

SURFACE CURVE

INTERSECTION CURVE

COMPOSITE CURVE ON SURF.

BEZIER CURVE2

OFFSET

CURVES

2D OFFSET CURVE

3D OFFSET CURVE

SURFACE

ELEMENTARY

SURFACES

PLANE

CYLINDRICAL SURFACE

CONICAL SURFACE

SPHERICAL SURFACE

TOROIDAL SURFACE

PLANE SURFACE

SPHERICAL SURFACE

TOROIDAL SURFACE

BOUNDED SURFACE

TRIMMED SURFACE

OFFSET SURFACE

PARAMETRIC SPLINE SURF.

RULED SURFACE

SURFACE OF REVOLUTION

RATIONAL B-SPLINE SURFACE

RIGHT CIRCULAR CYLIND. SURF.

RIGHT CIRCULAR CONICAL SURF.

SWEPT

SURFACES

SURF. OF LINEAR EXTRUSION

SURF. OF REVOLUTION

SURF. CURVE SWEPT SURF.1

FIXED REFERENCE SWEPT SURF.1

BOUNDED

SURFACES

B-SPLINE SURFACE

RECTANGULAR TRIMMED SURF.

CURVE BOUNDED SURFACE

RECTANGULAR COMPOSITE SURF.

LOCALLY REFINED SPLINE SURF.

BEZIER SURFACE2

OFFSET SURF.

AXIS

PLACE-

MENT

AXIS PLACEMENT 1

AXIS PLACEMENT 2

VECTOR
DIRETCTION

VECTOR WITH MAGNITITUDE

1 Applies only to STEP
2 Applies only to Open CASCADE

The types of geometrical entities, i.e., surfaces and curves, used across different 3D CAD

model formats are similar. All formats support analytic surfaces (plane, cylindrical,

conical, spherical, and toroidal surfaces) and curves (line, circle, and ellipse, while

additionally parabola and hyperbola in some formats there are the). The numeric surfaces

and edges are also quite similar. For instance, a B-spline surface or curve may have a

representation in the form of Bezier, NURBS, parametric spline surface or curve, etc.

Other numeric surfaces include the surface of revolution, extruded surface (or surface of

60

linear extrusion), offset surface, swept surface, etc. The typical numeric curves are

trimmed curve, pcurve, intersection curve, offset curve, etc. During the exchange of CAD

models, if the face’s underlying surface type (e.g., surface of revolution, extruded surface,

blend, etc.) is not supported by the CAD format, it needs to be represented by some other

numeric surface (usually B-spline) and with certain approximation. The same principle

applies to the exchange of edges with different underlying curve types. Classifying

topological entities based on the associated geometric entity type represents a common

approach in most CASD studies that used the B-rep CAD model as input. Classification

of topological entities is also exploited in this research. Based on the theoretical

foundations highlighted, the following chapter presents a CASD method for detecting

exact global and partial reflectional and axisymmetry in B-rep CAD models.

61

3 A METHOD FOR COMPUTER-AIDED SYMMETRY

DETECTION

__

This chapter synthesises the relevant insights from the theoretical background into a

method for computer-aided symmetry detection in 3D CAD models with B-rep. The

introduced method consists of six steps: (1) 3D CAD model interpretation, (2) B-rep

analysis, (3) generation, (4) trimming, and (5) evaluation of the POSCs and AOSCs, (6)

and visualisation of detected APOS(s) or AAOS. The sections of the chapter are organised

in such a way that each represents one step of the proposed symmetry detection method.

Finally, a data model for the proposed CASD method is given.

¯¯

Based on the presented research background, in this chapter, the main research objective

of the doctoral thesis is addressed by proposing a CASD method for CAD models. The

input for the CASD method is the B-rep of a 3D CAD model, while the possible output

of the symmetry detection is exact global or partial symmetry and reflectional symmetry

or axisymmetry. By using B-rep as input, the proposed method offers a general approach

that can be applied and extended to various CAD systems and formats. The method

comprises six steps (the flowchart is shown in Figure 12): (1) interpretation of the 3D

CAD model, (2) analysis of B-rep, (3) generation, (4) trimming, and (5) evaluation of

POSCs and AOSCs, and (6) visualisation of detected APOS(s) or AAOS.

Figure 12. Basic flowchart of the proposed symmetry detection method

First, the 3D CAD model must be interpreted using a suitable CAD system. After that,

the 3D CAD model’s B-rep is subjected to analysis, which includes classifying

Start

3D CAD

Model

2. Analysis

of B-rep

6. Visualisation

of APOSs &

AAOSs

3. Generation

POSCs &

AOSCs

4. Trimming

of POSCs &

AOSCs

5. Evaluation

of POSCs

& AOSCs

Result

file

Remaining

POSCs &

AOSCs

Classified

topology

End

1. Interpretation

of the 3D CAD

model

Generated

POSCs &

AOSCs

62

topological entities (faces and edges) according to their underlying geometric entities

(types of surfaces and edges). The foundation of the proposed symmetry detection method

is faces, which are not limited only to analytic surfaces, but the method can also process

numeric surface types. The B-rep analysis step consists of classifying and calculating

specific face and edge properties. The proposed CASD method uses a geometry-based

approach, where each face is represented by a unique point (centroid or its projection onto

the face) and the respective unit normal vector or unit axis vector at this point. Further,

the CASD method relies on the implicit symmetry detection approach, meaning that the

POSCs and AOSCs are generated from principal axes of inertia (PAOI), pairs of similar

faces, and single faces. Then, the generated candidates are subjected to trimming to

remove duplicate and unsuitable candidates. Each remaining POSC and AOSC undergoes

an evaluation process with respect to the faces and edges using vector calculus and

specific face and edge properties obtained from the B-rep analysis. If the evaluation

shows that the corresponding POSC or AOSC also represents the APOS or AAOS, it is

then visualised within the 3D CAD model.

3.1 Interpretation of the 3D CAD model

The symmetry detection method starts with interpreting the 3D CAD model input. This

input can come in various file formats, such as native, kernel, or neutral. Previous studies

on CASD have used different file formats, including neutral STEP format [63], kernel

formats Parasolid [14,66] and ACIS [23,42]. In addition, some studies have utilised a

native file format (CATIA V5) to detect symmetry based on design features [25,70].

However, within this study, to maintain the generality of the proposed CASD method,

symmetry detection is performed from the aspect of the B-rep. That makes the method

independent and applicable to various file formats and CAD systems. The B-rep

technique has been successfully utilised in previous CASD studies [16,14,23,42,63,66]

due to its ability to represent continuous data defined as an infinite point set, making it

ideal for detecting exact symmetry. The advantage of the B-rep over other input 3D digital

objects (e.g., point clouds and mesh models) is that it represents continuous data defined

as an infinite point set, which makes it suitable for detecting exact symmetry. As shown

in Table 5, many CAD file formats rely on the B-rep technique. For instance, the neutral

file formats STEP and IGES or the kernel file formats Parasolid and ACIS can be used

63

for that purpose. Depending on the CAD system used to interpret the CAD model, a native

file format may also be appropriate as input.

The interpretation of the input 3D CAD model is conducted by utilising a CAD system

(commercial or open-source). As a result of the interpretation process, the topological and

geometrical information of the B-rep becomes available. For instance, in previous CASD

studies, a STEP file was used as input for symmetry detection, and two CAD systems

(CATIA V5 and Open CASCADE) were used for interpretation [16,63]. To avoid the

exchanges between two CAD systems, NX can be used in CASD for interpreting input

models in Parasolid format [14,66]. Another solution for interpreting the CAD model is

directly at the ACIS geometric modelling kernel level [23,42], providing complete access

to the B-rep’s topology and geometry.

An important factor to consider when interpreting the 3D CAD model in the context of

CASD is accuracy, which is needed to achieve exact symmetry detection, especially when

exchanging CAD file formats between CAD or other CAx systems. For instance, the

accuracy of geometry data exchange between different CAD systems using STEP AP242

is for numeric geometry below 10–6 m, while even higher accuracy can be obtained for

analytic geometry [127]. An additional requirement for symmetry detection is that the

interpreted 3D CAD model must be free of errors such as invalid topology and its

associated geometry. For instance, the Euler equation (15) can used to verify if the

topology of the B-rep CAD model is valid. Moreover, the CAD model can be checked

for errors automatically by most CAD systems when interpreting the CAD model. The

interpreted CAD model needs to be a solid body. Otherwise, the 3D CAD model’s mass

properties, which are relevant to the proposed CASD method (see Section 3.3), cannot be

computed.

Finally, it can be concluded that interpreting the input 3D CAD model by employing a

suitable CAD system is necessary to gather the B-rep model’s topological and

geometrical definition for the following steps. To maintain the generality of the proposed

CASD method, it is not yet limited to an input 3D CAD file format or a CAD system

(until the proposed CASD method is implemented in Chapter 4). Generally, the only

requirement for the input 3D CAD model is that it supports the B-rep technique.

64

3.2 Analysis of the B-rep

After interpreting the CAD model, the next step of the CASD method is to analyse the B-

rep, which is conducted generally through a CAD system. First, the CAD model must be

error-free (as highlighted in the previous section). In addition, it needs to be checked

whether the input CAD model is a single part with one body (according to the research

limitations specified in Section 1.2). The analysis of B-rep consists of three sub-steps (as

shown in Figure 13): (1) merging and (2) classification of topology, and (3) calculation

of face and edge properties.

Figure 13. Flowchart of the B-rep analysis step

The default CAD system functionalities generally do not provide access to the B-rep data

structure. However, the B-rep data is often accessible through the CAD system’s API. In

some studies [16,63], two separate CAD systems (CATIA V5 and Open CASCADE)

were required to access the B-rep data structure. This is necessary when the first CAD

system enables access only to geometrical properties, while the topological information

needs to be retrieved through a secondary CAD system. Therefore, a more enhanced

approach is to use a CAD system that provides complete access to the CAD model’s B-

rep data structure, such as NX [14,66]. This enables the development of a custom

application directly built on the ACIS geometric modelling kernel [23,42]. In the context

of the CASD method within this study, the analysis of the 3D CAD model’s B-rep

includes the classification of topology and the computation of specific properties from

the associated geometry. The previous CASD studies relied on loops [23,42] and faces

[16,14,63,66]. A negative aspect of using loops can be the computation accuracy of their

properties, which may be imprecise and not supported by the CAD system’s

functionalities. This approach depends on how the geometric modelling kernel manages

 2b.

Classification

of topology

Classified

topology

2c. Calculation

of face & edge

properties

2a. Merging

of topology

1. Interpretation

of the 3D

CAD model

3. Generation

of POSCs

& AOSCs

Is single-

part CAD

model?

End
No. of

bodies=1

?

F

T

T

F Free of

errors?

T

F

65

loops, and there may be variations in how loops are handled in other CAD systems

[23,42]. Instead of loops, the use of faces represents an inherent approach as they are the

basic building unit of the B-rep with demonstrated success in symmetry detection

[16,14,66]. Thus, in this thesis, the foundation of the CASD method is also the face.

Additionally, edges are exploited for secondary calculations of method-specific face

properties such as Cosine similarity (Subsection 3.3.2) and evaluation of POSC and

AOSC (Section 3.5). Although the proposed CASD method is geometry-based, it exploits

the benefits of the B-rep technique as it takes advantage of the topological information.

The topology of the CAD model needs to be pre-processed before its classification.

Theoretically, the input CAD model’s topology can be a compound of numerous

combinations of faces and edges without changing its shape [129]. Therefore, in the first

sub-step of the B-rep analysis, the input CAD model’s topology and associated geometry

must be checked if merging operations are required. A hypergraph data structure

representing adjacency relationships between faces, edges, and vertices in the CAD

model can be exploited to identify topological entities suitable for merging [16,63]. In

manifold CAD models, to which this research is limited, the primary consideration in

terms of topology merging is partitioned periodical faces (e.g., cylindrical, conical,

toroidal, spherical surfaces, etc.), which are usually a result of the modelling process in

the CAD system. For instance, specific CAD systems (such as CATIA V5) partition

periodical faces by default during the modelling process, while other CAD systems (such

as Solidworks) do not partition periodical faces at all [27] (Figure 14).

Figure 14. Example of unpartitioned (left) and partitioned periodical faces (right)

Sometimes, the partitioning of periodical faces can result from exchanging CAD models

through different file formats, even though the CAD system does not partition faces by

default during the modelling process [130]. In the context of CASD, the identification of

partitioned faces and edges should be considered by merging identical faces adjacent to

each other that share the same surface type and parameters [16,63,66]. The merging of

topology and associated geometry can be conducted employing topology merging

66

operators [131] or even controlled during the import of CAD models into the CAD system

[132]. To conclude, the proposed CASD method considers the merging of topological

entities, but existing approaches can be used to pre-process the topology of the CAD

model. In implementing the CASD method, the merging of periodical topological entities

is controlled during the import of CAD models into the CAD system [131], which is

further discussed in Chapter 4.

In the next sub-step, classification of topology, the topological entities (faces and edges)

in the CAD model are looped and grouped into different classes based on their underlying

surface and curve type (Figure 15 and Figure 16), e.g., plane, cylindrical, conical,

spherical, toroidal, surface of revolution, spline surface, line, circle, spline curve, etc. In

the context of past CASD studies, faces and loops were also classified based on their

underlying surface type [14,23,42,66]. Classifying faces is necessary because only faces

from the same class require pairwise comparison while evaluating reflectional symmetry.

Generally, the types of surfaces available depend on the CAD system used to interpret

the input 3D CAD model. Certain surface types are so common that most CAD systems

have an equivalent representation (e.g., plane, cylindrical surface, etc.). If the CAD

system does not support a specific surface type, it may be replaced by another suitable

surface type during the interpretation process. For instance, a blend surface can be

exchanged between Parasolid CAD systems. However, specific CAD systems (e.g.,

CATIA V5 and Autodesk Inventor) or exchange CAD file formats (e.g., STEP and IGES)

do not support blend surfaces and may interpret them as spline surfaces.

 Plane
Cylindrical

(closed)

Cylindrical

(open)

Conical

(closed)

Conical

(open)

Spherical

(closed)

Spherical

(open)

Toroidal

(closed)

Toroidal

(open)

Figure 15. Examples of different types of analytical surfaces

67

Blend surface spline surface Surface of revolution

Figure 16. Examples of different types of numeric surfaces

An additional concern during classification is the labelling of topological entities within

the CAD model to perform different operations on them later, such as tracking, selecting,

referring, etc. A CAD system may support the labelling of topological entities as unique

IDs at the API level. The CAD system can have default IDs, or they can be assigned by

the user, which must ensure that each is unique. The user-defined labelling can be

represented by the type of surface or edge and a digit counting to the total number of the

corresponding surface or edge type in the CAD model. The labelling of topological

entities is further discussed during the method's implementation (see Chapter 4).

Another significant step in prior CASD studies is the retrieval of characteristic parameters

of geometric entities [16,23,42,63,66] and calculating characteristic geometric properties

of topologic entities such as the loop area and loop centroid [23,42]. Hence, after the

classification, the next step of the proposed CAS method is the computation of specific

geometric properties of faces and edges, which are used in the subsequent steps to

generate, trim, and evaluate the POSCs and AOSCs. For each face, the following

geometrical properties are computed: periodicity angle γ, face area, face centroid or its

projection onto the face, and face unit normal or axis vector (Table 9). The geometrical

properties of a face depend on the type of associated surface and whether the face is open

or closed, which is queried with the periodicity angle γ.

68

Table 9. Characteristic face properties for various surface types

Surface types Vector Unique point
A

n
a

ly
ti

c

Plane − Normal vector Face centroid (FC)

Cylindrical surface
Open Normal vector FC projected onto the face

Closed Axis vector Face centroid (FC)

Conical surface
Open Normal vector FC projected onto the face

Closed Axis vector Face centroid (FC)

Spherical surface
Open Normal vector FC projected onto the face

Closed Axis vectors Face centroid (FC)

Toroidal surface
Open Normal vector FC projected onto the face

Closed Axis vector Face centroid (FC)

N
u

m
er

ic

Surface of revolution
Open Normal vector FC projected onto the face

Closed Axis vector Face centroid (FC)

Spline surface − Normal vector FC projected onto the face

Blend surface
Open Axis vector Face centroid (FC)

Closed Normal vector FC projected onto the face

Extruded surface − Normal vector FC projected onto the face

Offset surface − Normal vector FC projected onto the face

The periodicity angle γu is only computed for periodical surfaces (cylindrical, conical,

toroidal, spherical, surface of revolution, and blend) to evaluate if a face is open or closed

(Figure 15 and Table 9). The angle γu can be computed from the parametrisation range of

the face. For surfaces periodical in one direction, u is usually the periodical direction

[133]. A spherical surface is periodical in two directions (u and v), so a second periodicity

angle γv needs to be computed. If γu < 2π (360º) or γv < 2π, the face is open, while γu =2π or

γv = 2π indicates that the face is closed. The next characteristic property is either the unit

normal vector or the unit axis vector of the face. Which of them is computed depends on

the underlying surface type and whether the face is closed or open (Table 9). Closed

periodical faces with the underlying surface types cylindrical, conical, toroidal, and

surface of revolution are defined by their unit axis vector, which can be retrieved from

the parameters that define the corresponding surfaces in the CAD system (Table 10). The

functionalities for retrieval of face properties are most often provided by the CAD systems

at the API level. However, the axis vector for a closed face of spherical surface type can

be computed from its origin and centroid. A sphere or a “ball” (a fully closed face of the

spherical surface type with γu = 2π and γv = 2π) is not likely to occur in single-body part

CAD models unless the part is a bearing ball exhibiting spherical symmetry with an

infinite number of APOS and AAOS. Therefore, such faces can be excluded from the

69

CASD method without negative influence on detecting reflectional symmetry and

axisymmetry.

Table 10. Characteristic surface parameters retrievable from a CAD system

Surface types Point Vector Parameter 1 Parameter 2

A
n

a
ly

ti
c

Plane Root point Normal vector* − −

Cylindrical surface Origin Axis vector* Radius −

Conical surface Origin Axis vector* Radius Half angle

Spherical surface Origin − Radius −

Toroidal surface Origin Axis vector* Major radius Minor radius

N
u

m
er

ic

Surface of revolution1 Point on axis Axis vector* − −

Spline surface − − Parameterisation data3 −

Blend surface − − Radius −

Extrude surface1 − Direction vector − −

Offset surface2 − − Offset distance −

 1 – defined by a profile curve

 2 – defined by a base surface

 3 – knot vectors in u & v direction, control points, order of the surface in u & v direction, etc.

 * – used by the proposed CASD method in this research.

Analogical to faces, for each edge, a set of topological and geometrical properties is

retrieved from the CAD system or computed, such as the edge length, midpoint, and

whether the edge belongs to an outer or inner loop (Table 11). The edge properties are

used in the next step to calculate similar face pairs and their midpoints (Subsection 3.3.2).

Table 11. Characteristic edge properties for various curve types

Curve types Loop type Unique point

A
n

a
ly

ti
c

Line − outer or inner Midpoint

Circle
closed outer or inner Centre

open outer or inner Midpoint

Ellipse
Closed outer or inner Centre

open outer or inner Midpoint

N
u

m
er

ic

Spline curve − outer or inner Midpoint

P curve − outer or inner Midpoint

Intersection curve − outer or inner Midpoint

Trimmed curve − outer or inner Midpoint

Offset curve − outer or inner Midpoint

The unit normal vector n at any point on the surface can be computed from the cross

product of the tangent vectors Ru and Rv:

u v

u v

R RN
n

N R R


= =


, (52)

70

where
u

u

σ
R


=


 and
v

v

σ
R


=


. The face’s normal orientation points always away from

the solid CAD model. The next property, face area, can be computed by integrating the

length of the normal vector to the surface over the appropriate domain D in the parametric

uv plane:

 u v
D D

A dudv dudv=  = R R N . (53)

As already mentioned, the proposed method relies on representing each face by a unique

point. The face centroid C can be calculated as follows:

 C C CC(, ,) , , , , .
yx z D D D

xdS ydS zdSAA A
x y z

A A A A A A

  
 = = 
    

  
 (54)

The centroid lies either on the face or outside of it. For instance, the face’s centroid of a

plane surface type lies typically on the face, while those of other surface types are located

outside the face. Since the unit normal vector n can only be computed for points lying on

the face, the centroid is not suitable for open faces (except for planes). Hence, another

unique point for open faces needs to be acquired. Theoretically, the unique point of an

open face could be obtained from the uv midpoint in the parameter domain σ(umid,vmid) to

compute the corresponding centre point on the surface domain10. However, the parametric

representation of a surface is not unique [31], and it was demonstrated that the uniform

sampling in the parameter domain may lead to a non-uniform sampling of the surface

domain [134]. For those reasons, the unique point representation of faces using the uv

midpoint and centre point may not assure sufficient repeatability. Instead of the face

centre, the CASD method uses the orthogonal projection of the face centroid onto the

face, i.e., the closest projection point onto the face. Mathematically, the orthogonal

projection of a point implies finding a projected point on a face so that the vector

connecting the point in space and the point projected on the face becomes perpendicular

to the face. The set of orthogonal projections of a point C onto a parametric surface is

equal to [135] (Figure 17):

 () orth ' ' / ' , ,nf = −  C C C C C R (55)

10 The uv midpoint is computed from the face’s uv bounds: umid = (umin + umax)/2 and vmid = (vmin + vmax)/2

71

where C is the centroid point, C' is the projected point. Orthogonal projection requires

the existence of a tangent plane at the projected point on the surface.

Cylindrical surface Surface of revolution Extruded surface

Figure 17. Examples of orthogonal projections C' of the face centroids C onto faces

This research does not intend to develop a novel approach for computing the closest

projection point on the surface. Existing approaches can be exploited for that purpose (a

review is given in the study [135]). Moreover, many CAD systems often provide their

own methods and functionalities related to the computation of a projection point onto the

face [136]. To conclude, depending on the type (closed or open), a face is represented by

two possible types of points: the face centroid or the orthogonal projection of the face

centroid onto the face. Besides the face properties, the CASD method exploits specific

edge properties (edge length and midpoint) for partial symmetry detection. The edge

length can be computed using the equation:

2 2 2

.
b

a

dx dy dz
L du

du du du

     
= + +     

     
 (56)

The computation of the curve midpoint is accomplished by an iterative process of finding

b0 such that the lengths of the curve on the left and right sides of the midpoint are equal:

0

0

2 2 2 2 2 2

.
b b

a b

dx dy dz dx dy dz
du du

du du du du du du

           
+ + = + +           

           
  (57)

Finally, the classified faces and their computed properties are used in the next step of the

CASD method to generate the POSCs and AOSCs.

3.3 Generation of planes and axes of symmetry candidates

As already stated, the proposed CASD method relies on an implicit (indirect) symmetry

detection approach, meaning a set of POSCs and AOSCs is generated. The classified faces

and their specific properties from the previous B-rep analysis step are utilised for that

purpose. The POSCs and AOSCs are generated in three sub-steps:

1) the principal axes of inertia,

x y

z

C

C'

x y

z

C

C'

x y

z C

C'

72

2) pairs of similar faces and

3) single faces.

Three POSCs and three AOSCs are always generated from the 3D CAD model’s PAOI

passing through the COG to cover the possible existence of exact global reflectional and

axisymmetry. Further, to cover the detection of possible exact global symmetries that are

misaligned with the PAOI or partial symmetries within the 3D CAD model, additional

POSCs are generated from pairs of similar faces of either the plane, cylindrical or spline

surface type. Finally, single faces of the cylindrical, conical, toroidal, and surface of

revolution type are employed to generate the AOSCs for detecting partial axisymmetry

within the 3D CAD model. The flowchart of the candidate generation step is given in

Figure 18 and further discussed in the following subsections.

Figure 18. Flowchart of the candidate generation step

3.3.1 Principal axes of inertia

First, three POSCs and three AOSCs are always generated from the 3D model’s principal

axes of inertia to cover the possible existence of exact global symmetry within the 3D

CAD model. The justification for that is reflected in the following facts [137]:

1) If an object, i.e., a 3D CAD model, exhibits exact reflectional or axisymmetry,

then corresponding APOS(s) or AAOS must pass through its centre of gravity

(COG).

Classified

topology

4. Trimming

of POSCs

& AOSCs

Similarity

measure

≥ STH

3a. Pairwise

comparison

of faces1

Next face pair

3b. Loop

single faces2

Ai/Aj

≥ATH

F

T

All FPs4

compared

?

Generate

POSC

F

T

3c.

Computation

of PAOI3

T

1 Surface types: plane, cylindrical, & spline.
2 Closed faces: cylindrical, conical, toroidal, & surface of revolution.

3 PAOI – Principal Axes of Inertia
4 FPs – Face Pairs

Generate

AOSCs from

single faces

Generate six

POSCs & AOSCs

from PAOI4

Generation step

Trimming step

nPOSC

>1

Next surface type

Generated

POSCs &

AOSCs

T F

F

73

2) If an object, i.e., a 3D CAD model, exhibits exact reflectional symmetry, then the

direction normal to the APOS is a principal axis.

3) If an object, i.e., a 3D CAD model, exhibits exact axisymmetry, then the AAOS

is a principal axis.

So far, PCA has been used in existing CASD studies [29,30,57,60] for point clouds and

mesh models to identify the POSCs and AOSCs. It was also used for detecting

approximate symmetries (reflectional and rotational) in 3D CAD models represented by

octrees [137]. However, until now, PCA has not been used in the context of B-rep CAD

models. Hence, the proposed CASD method, exploits the PAOI to identify three POSCs

and three AOSCs. The first step is to calculate the COG. For uniform density throughout

the object, the centre of mass and centre of gravity correspond to the volume centroid.

For a volume of arbitrary shape, the coordinates of the centroid (xc, yc, zc) are defined by

the following equations:

 C C C; ;V V V

V V V

x dV y dV z dV

x y z
dV dV dV

  

= = =
  

  
 (58)

where the x, y, and z terms inside the integrals denote the distances measured from the

reference axes to the centroid of the differential volume. Next, the PAOI are computed.

For that purpose, first, the moments of inertia and products of inertia are calculated using

the following equations:

 I

()

()

()

2 2

2 2

2 2

= +

= +

= +







xx

yy

zz

I y z dm

I z x dm

I x y dm

()

()

()

=

=

=







xy

yz

zx

I xy dm

I yz dm

I zx dm

 (59)

Then, the inertia tensor is defined as:

 P

xx xy xz

xy yy yz

xz yz zz

I I I

I I I

I I I

 − −
 

= − − 
 − − 

I . (60)

The angular momentum vector L is proportional to the inertia tensor and angular velocity

vector ω:

 P .= L I ω (61)

74

To find the axis of rotation where L and ω are parallel, the equation above can further be

written:

 P . = I ω ω (62)

Finally, the task of finding the principal axis of inertia becomes an eigenvalue problem:

 P 0.− =I I (63)

From the equation above, the three eigenvalues are the principal moments of inertia, and

the three eigenvectors are the PAOI. Most often, the generated POSCs will be parallel with

the XY, YZ, and ZX planes, while the AAOSs will be parallel with the coordinate system

axes. This is because CAD systems provide default built-in planes (e.g., front aligned

with XY plane, right aligned with YZ plane, and top aligned ZX plane) exploited for

modelling purposes, and most 3D CAD models have a regular shape. However, the 3D

model may also be rotated with respect to the coordinate axes or have an irregular shape,

resulting in misalignment of the PAOI with respect to the coordinate system. Finally, a

POSC is defined by the plane equation:

 () () ()C C C 0 ,a x x b y y c z z− + − + − = (64)

while the line equation defines an AOSC:

() () ()C C C

 ,
x x y y z z

a b c

− − −
= = (65)

where the variables a, b, and c represent the components of the PAOI, while xC, yC, and

zC are the coordinates of the COG. The candidates can be stored in a 2D array of the size

6×6, where the first three rows represent the POSCs, which are stored in the form of (a,

b, c, xC, yC, zC), while the last three rows define the AOSCs and are of the following form

(o, p, q, xC, yC, zC). The functionalities of CAD systems usually provide mass properties

such as the COG (or centre of mass as referred to in some CAD systems) and the PAOI.

The six candidates generated from PAOI may not be sufficient to detect exact global

reflectional symmetries that are misaligned with the axes or partial reflectional and

axisymmetry within the 3D CAD model. Therefore, additional candidates need to be

generated by pairing similar faces.

3.3.2 Pairs of similar faces

As already stated, the POSCs are generated from pairs of similar faces and exploited for

detecting exact global and partial reflection symmetry in the 3D CAD model. Previous

75

studies generated the POSCs by pairing identical loops of the plane, cylindrical, conical,

toroidal, and spherical surface type [23,42] or from the intersection edges of two adjacent

faces (considering different combinations of 5 analytic surface types) [16,63]. In the

context of the proposed CASD method, only faces from the same class are compared, and

each face pair can generate only one POSC. Ideally, to cover all possible POSCs, the face

pairs should be generated considering all face classes. However, this may result in an

unnecessarily large number of POSCs with many duplicates. Hence, the strategy for the

generation of POSCs is as follows:

1) First, pairs are generated from similar faces of the underlying plane surface type.

If at least one POSC is generated, the further generation process stops at this point.

This generation process is most often sufficient for a variety of CAD models.

2) If the attempt to generate any POSC failed because no pairs of similar faces are

identified or no faces of the underlying plane surface type are present within the

3D CAD model, then the pairs are generated from identical faces of the cylindrical

surface type. If at least one POSC is generated, the further generation process

stops at this point.

3) Again, if the attempt to generate the POSCs failed for the previously mentioned

reasons, then the pairs are generated from identical faces of the underlying spline

surface type.

Past studies reported in [23,42] evaluated the similarity between pairs of loops by using

their properties (loop type, loop area, and number of edges). However, this may not be an

adequate measure since two non-identical loops can have the same properties. Hence, in

the context of this study, two criteria are used to identify similar face pairs: the area ratio

and a similarity measure. The reason for having two criteria is that the first is used as a

pre-filter for the second, which is computationally demanding and needs to be avoided

whenever possible. The area ratio (AR) of a face pair represents the surface area of the

first face divided by the surface area of the second face:

 1

TH

 2

AR AR
A

A
=  (66)

where ARTH represents the threshold value of the area ratio. The AR is computed so that

A1 ≤ A2, so its score ranges between 0 and 1. The significance of AR is that it enables

quick filtering of dissimilar face pairs. Only face pairs with AR ≥ ARTH are further

processed to the second similarity criterion. The similarity between two faces is assessed

via a similarity measure. For the selection of an appropriate similarity measure,

76

preliminary research was conducted. The similarity measures from Equations (9) to (13)

were considered, i.e., the Jaccard index (JI), Cosine similarity (CS), Sørensen-Dice

coefficient (SDC), Szymkiewicz-Simpson coefficient (SSC), and Braun-Blanquet

coefficient (BBC). The preliminary research aimed to investigate the applicability of the

mentioned similarity measures for pairing similar faces. Generally, similarity measures

are used in statistics to compute the similarity between two finite datasets [75,82]. In the

context of B-rep, the basic idea is to observe the faces within the 3D CAD model as finite

sets of edges. For that purpose, faces are first decomposed into their edges and labelled

using a string code (e.g., “oLI10”). The string code represents a unique label for each

edge considering the following properties: loop type, curve type, and curve length. The

first letter of the string code indicates to which loop type the edge belongs (“i” stands for

an inner loop while “o” for an outer loop). The following two string code letters describe

the type of the underlying curve. For instance, lines are lablled with “LI”, circles with

“CI”, spline curves with “SC”, and so on. The last part of the string code denotes the

length of the curve in millimetres rounded off to two decimal places. Examples of string

codes are given in Figure 19.

Figure 19. Example of the string code designation for a similar face pair.

The preliminary research selecting an appropriate similarity measure included ten

randomly selected test cases of face pairs with varied similarities (Figure 12). The face

pairs are classified as identical (Figure 12, 1), similar (Figure 12, 2 – 9), and non-similar

at all (Figure 12, 10).

x y

z

APOS
F2 F1

oLI5 oLI10

oLI5

oLI10

iCY1
iCY1

oLI5

oLI5 oLI10

oLI10

F1 F2

77

Table 12. Comparison of similarity measure scores for face pairs examples

No. Face pairs AR CS JI SDC SSC BBC

1

1 1 1 1 1 1

2 0.96 0.80 0.67 0.80 0.80 0.80

3

0.97 0.95 0.90 0.95 0.95 0.95

4 0.96 0.92 0.84 0.91 0.94 0.89

5

0.98 0.91 0.83 0.91 1 0.83

6

0.99 0.77 0.61 0.76 0.92 0.65

7 0.98 0.69 0.52 0.67 0.80 0.60

8 1 0.75 0.60 0.75 0.75 0.75

9

0.94 0.76 0.61 0.76 0.81 0.71

10 1 0 0 0 0 0

For instance, some face pairs have the same outer shape and different inner shapes (Figure

12, 2 – 5). Other face pairs have slightly different outer shapes (Figure 12, 6 – 8) or

different outer and inner shapes (Figure 12, 9). The computed scores of the similarity

measures are given in Figure 12 and Figure 20. The results show that all similarity

measures correctly recognise identical (Figure 12, 1) and non-similar face pairs (Figure

12, 10). The main difference between the computed scores is manifested for similar faces

(Figure 12, 2 – 9).

Figure 20. The plot of similarity measures scores for test cases from Figure 12

The basic definitions of similarity measures were investigated to understand their

differences. All similarity measures from Equations (9) to (13) have the same numerators,

i.e., the number of common features in both datasets, while the main difference between

them derives from the denominators. For the given test cases, the JI is the most

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

S
co

re
s

Test case no.

Comaprison of similarity measures

CS

JI

SDC

SSC

BBC

78

conservative similarity measure compared to others because the computed scores are

always the lowest. By its definition, the JI penalises differences between two faces more

strongly, even when the set of edges of the first face is a proper subset of the set of edges

of the second face (Figure 12, 5). This is because the JI considers the total membership

of both sets of edges in the denominator. The BBC penalises differences in the size of the

sets slightly lower than the JI, as the number of common edges is divided by the larger

size between the two sets of edges. The SDC doubles (i.e., “weights”) the intersection in

the numerator and divides it with the sum of the cardinalities from both sets of edges.

Consequently, this produces less penalisation and higher similarity than in the case of the

JI and BBC. The difference between the CS and SDC is negligible because their

denominators, √(|X|∙|Y|) against 0.5(|X|+|Y|), will result in nearly identical scores if the

number of edges in both faces does not differ considerably (i.e., the difference is not

greater than one order of magnitude). The SSC is the least conservative similarity

measure, which may result in a false positive fully similar face pair in some instances.

This happens if all edges in the “smaller” face are also found in the “larger” face (Figure

12, 8). In that case, the score is SSC=1, regardless of how many additional edges are in

the “larger” face. Based on the computed scores for the given test cases, it can be

concluded that the JI and BBC are inadequate to measure the similarity between two faces

due to the considerable penalisation leading to an underestimation of similarity. In

contrast, the SSC may overestimate the similarity in some cases. Hence, the CS and SDC,

resulting in nearly identical scores, appear to be the most convenient similarity measure

between two faces. A face pair is considered similar if the condition CS≥STH or SDC≥STH

is fulfilled, whereby the threshold value can be set, for instance, to STH=0.75 (based on

the computed examples in Figure 12). Also, the threshold value for the area ratio can be

set to ARTH=0.90. In the context of the proposed method, the Cosine similarity has been

selected, which is defined as:

1 2

1 2 TH

1 2

CS(,) SF F


= 
F F

F F
 (67)

where F1 and F2 are the binary feature vectors of the first and second face. An example

of two binary feature vectors used as input for calculating the Cosine similarity is given

in Table 13. The size of both binary feature vectors equals and corresponds to the number

of unique edges across both faces. Each edge is assigned with “1” if present in the

corresponding feature vector, and with “0” if absent.

79

Table 13. An example of the binary feature vectors for the face pair in Figure 19

Edges oLI5 oLI5 oLI10 oLI10 iCY1 iCY1

Face 1 – feature vector F1 1 1 1 1 0 0

Face 2 – feature vector F2 1 1 1 1 1 1

The peak number of the planes of symmetry candidates nPOSC depends on the number of

face pairs. As face pairs are computed either from faces of the plane, cylindrical, or spline

surface type, the peak value of nPOSC can be calculated using one of the following

equations:

()PL PL

POSC

1

2

n n
n

−
= or

()BS BS

POSC

1

2

n n
n

−
= or

()BS BS

POSC

1

2

n n
n

−
= (68)

Where nPL, nCY, and nBS are the number of faces of the planar, cylindrical, and spline

surface type in the CAD model. After the identification of similar face pairs, the

corresponding planes of symmetry candidates are generated using the plane equation,

which is defined by the midpoint M(xM, yM, zM) and the unit normal vector to the plane

nP=(a,b,c):

 () () ()M M M 0.a x x b y y c z z− + − + − = (69)

Two approaches are used to calculate the midpoint. The first is when the paired faces are

considered identical, i.e., CS (F1, F2) = 1, then the corresponding midpoint M between two

faces is calculated from their centroids:

1 2 1 2 1 2C C C C C C

M M MM(, ,) , , ,
2 2 2

x x y y z z
x y z

+ + + 
=  
 

 (70)

The second approach is used if the paired faces are considered similar, i.e., STH ≤

CS(F1,F2) < 1, then the corresponding midpoint M′ between the two faces is computed

from their centre points
1 1 11 E E EE (, ,)x y z and

2 2 22 E E EE (, ,)x y z as illustrated in Figure 21:

1 2 1 2 1 2E E E E E E

M M MM'(, ,) , ,
2 2 2

x x y y z z
x y z

+ + + 
=  
 

. (71)

The centre points E1 and E2 are the average position of the midpoints of edges that are

identical and shared by both faces:

E1

1 1 ,m

1

E

1E

1
j

n

E

j

x x
n =

= 
E1

1 1 ,m

1

E

1E

1
j

n

E

j

y y
n =

= 
E1

1 1 ,m

1

E

1E

1
j

n

E

j

z z
n =

=  , (72)

80

and

E2

2 2 ,m

2

E

1E

1
j

n

E

j

x x
n =

= 
E2

2 2 ,m

2

E

1E

1
j

n

E

j

y y
n =

= 
E2

2 2 ,m

2

E

1E

1
j

n

E

j

z z
n =

=  (73)

where
1En and

2En represent the number of identical edges shared between the two

observed faces (
1 2E En n=).

Figure 21. An illustrative example of the faces centre points

The unit normal to the plane of symmetry candidate is computed from the normal of the

face pair, considering three possible arrangements between the two faces (Figure 22):

parallel, coplanar, or arbitrarily oriented. The arrangement between two faces is

calculated from their unit normal at the face centroids (for plane surface) or the projection

points of the face centroids onto the faces (for cylindrical and spline surfaces).

a) b) c)

Figure 22. Arrangements between two faces: (a) parallel, (b) coplanar, and (c) arbitrarily

oriented.

For parallel arrangement between the unit normal vectors to the faces (Figure 22, a), the

unit normal n to the POSC corresponds to either the face normal of the first or the second

face:

 () 1, ,a b c= =n n or () 2, ,a b c= =n n (74)

When the unit normal vectors to the faces are coplanar (Figure 22, b), then the unit normal

n to the POSC is calculated from the centroid points of the faces (for plane surfaces):

x y

z

F2 F1

E11,m

E21,m

E14,m E24,m

E22,m

E12,m

E13,m

E23,m

M′

POSC

1 2

n1 n

M C C

POSC

n2

1

1
2

n2

C

n1

n
n

POSC

C M

n1

2 C C

POSC

M

1

n2

n

2 2 22 E E EE (, ,)x y z
1 1 11 E E EE (, ,)x y z

81

 () ()
2 1 2 1 2 1C C C C C C, , , , ,a b c x x y y z z= = = − − −

C
n C

C
, (75)

or from the projection points of the face centroids onto the faces (for cylindrical and spline

surfaces):

 () ()
2 1 2 1 2 1C ' C ' C ' C ' C ' C '

'
, , , ' , ,

'
a b c x x y y z z= = = − − −

C
n C

C
. (76)

The last arrangement, if unit normal vectors to the faces are arbitrarily oriented (neither

parallel nor coplanar), implies that the unit normal n to the plane of symmetry candidate

is computed as the resultant vector of the face normal vectors (Figure 22, c):

 () 1 2, , , a b c= = = −
R

n R n n
R

. (77)

The POSCs can be stored in an array of the size nPOSC×6, where each row has the following

form (a, b, c, xM, yM, zM). The described procedure for generating POSCs from similar face

pairs covers detecting exact global and partial reflectional symmetry. The AOSCs are

generated from single faces to extend the procedure to axisymmetry.

3.3.3 Single faces

Alongside the POSCs and AOSCs generated from PAOI and similar face pairs, additional

APOSs are obtained from single closed faces of the following surface types: cylindrical,

conical, toroidal, and surface of revolution. The justification for this is that axisymmetric

CAD models (exact or partially symmetric) dominantly consist of faces of the mentioned

surface types (Figure 23). The past CASD studies generated AOSCs by pairing identical

coaxial loops or from single loops of the cylindrical, spherical, and toroidal surface type

[23,42], or from the intersection edges between two adjacent faces (considering different

combinations of 5 analytic surface types) [16,63].

Figure 23. A partially axisymmetric part compound of cylindrical surfaces

x y

z

CY1

AOSC 1

CY3

AOSC 3

AAOS

CY2

AOSC 2

CY4

AOSC 4

82

The peak number of axes of symmetry candidates nAOSC in the 3D CAD model is equal to

the sum of the number of single closed faces of the mentioned surface types:

 nAOSC=nCY+nCO+nTO+nSR. (78)

where nCY is the number of faces of the cylindrical surface type, nCO is the number of faces

of the conical surface type, nTO is the number of faces of the toroidal surface type, nSR is

the number of faces of the surface of revolution type. The line equation defines the axes

of symmetry candidates:

() () ()A A A

.
x x y y z z

o p q

− − −
= = (79)

where o, p, and q represent the components of the unit direction vector a=(o,p,q) of the

cylinder axis, and A(xA, yA, zA) is any point on the axis. The AOSCs can be stored in an

array of the size nAOSC×6, where each row has the following form (o, p, q, xA, yA, zA). Apart

from the AOSCs generated from single faces, additional candidates are always generated

from the 3D CAD model’s PAOI (see Subsection 3.3.1). To summarise, the candidates

generated from single faces, alongside those generated out of similar face pairs and PAOI,

are used as input in the following step, where they are subjected to trimming.

3.4 Trimming of planes and axes of symmetry candidates

Once the POSCs and AOSCs have been generated, they are subjected to the trimming

step to eliminate duplicates or unsuitable candidates. A duplicate candidate is considered

any POSC with at least one coplanar POSC or any AOSC with at least one coaxial AOSC.

The coplanarity and coaxiality are queried with the plane and line equations (69) and (79)

together with the length of the cross-product length between the POSC’s normal vector

or the AOSC’s direction vector, which needs to be zero. A similar approach of eliminating

POSCs and AOSCs duplicates was also used in [23,42]. On the other hand, an unsuitable

candidate is any POSC or AOSC that is considerably distanced from the 3D CAD model’s

COG and is unlikely to become an APOS or AAOS. The reason for trimming unsuitable

candidates arises from the following facts:

1) The APOS or AAOS of an exact symmetric object (i.e., a 3D CAD model) must

pass through its COG [42] and

2) The APOS and AAOS of a partially symmetric object (i.e., a 3D CAD model)

will be close to its centroid [138].

83

Based on that, unsuitable candidates are queried by the point-to-plane or point-to-line

distance. The point-to-plane distance dPOSC is used to compute the distance between the

COG and the POSC:

C C C

POSC
2 2 2

,
ax by cz d

d
a b c

+ + +
=

+ +
 (80)

where d = – axM – byM – czM. Analogically, the point-to-line distance dAOSC between the

COG and the axis of symmetry candidate is calculated as follows:

 AOSC ,d


=
b a

a
 (81)

where b is the vector between the COG denoted as C (xC, yC, zC) and any point A on the

axis. Finally, to trim unsuitable candidates, dPOSC or dAOSC need to be less than the

maximum allowed distance δmax, i.e., dPOSC ≤ δmax and dAOSC ≤ δmax. The δmax value must

be carefully chosen. A too-high value of δmax can lead to many untrimmed POSCs or

AOSCs, which are not likely to become APOSs or AAOS. Conversely, a too-low value

of δmax can result in many trimmed POSCs or AOSCs, among which there might be

APOSs or AAOS. Hence, the δmax was defined empirically, based on the minimum

bounding box, i.e., the smallest box in which the 3D CAD model fits:

 () () ()
22 2

max 0.05 ,x y zL L L=   +  +  (82)

where ΔLx, ΔLy, and ΔLz represent the lengths of the minimum bounding box in the

respective directions of coordinate axes (x, y, and z). The interpretation of Equation (82)

is that the δmax is within 5% of the CAD model’s minimum bounding box diagonal length.

Hence, the APOS(s) or AAOS of a partial symmetric CAD model is maximumly

distanced from the COG by δmax. Many CAD systems provide the functionalities for

calculating the minimum bounding box. Alternatively, the minimum bounding box of a

solid CAD model can be computed by exploiting existing methods. For instance, the

method reported in [139] uses an iterative approach and shifts the problem of finding the

minimum bounding box of a solid into the 2D domain by using projected contours of the

solid onto the three principal planes.

Finally, Figure 24 illustrates the corresponding flowchart of the trimming step. The

output of this step is a set of remaining POSCs and AOSCs that are used as input in the

evaluation step.

84

Figure 24. Flowchart of the candidate trimming step

3.5 Evaluation of planes and axes of symmetry candidates

All remaining POSCs and AOSCs from the trimming step are evaluated individually with

respect to the 3D CAD model’s B-rep. The evaluation relies on vector calculus using

classified faces and edges with their specific properties from the B-rep analysis step as

input. The previous CASD studies relied their evaluation on the mutual comparison of

POSCs and AOSCs and propagation of local symmetry properties associated with

topological entities (loops or faces) to the global level. In the past, CASD studies

achieved this by ranking rationalised candidates according to the number of loops and

total loop area associated with a rationalised candidate [23,42]. Another way was to

extend the POSCs' or AOSCs' validity over the largest possible area of the B-rep to detect

the 3D CAD model’s global symmetry properties [16,63]. The CASD method within this

study, however, evaluates each POSC and AOSC individually by searching for

symmetric face pairs and self-symmetric stand-alone faces that match a set of criteria

discussed in this subsection.

The evaluation step consists of two sub-steps. The first sub-step, illustrated through the

flowchart in Figure 25, evaluates the existence of global symmetry. The second sub-step

evaluates partial symmetry, and its flowchart is described in Figure 26. Both sub-steps

consist of two parts, i.e., the evaluation of POSCs for detecting reflectional symmetry

Elimination of duplicate candidates Elimination of unsuitable candidates

5. Evaluation

of POSCs &

AOSCs

|| ni× nj || ≤ ε

or

|| ak× al || ≤ ε

F

Next POSCs or AOSCs pair

All AOSC

& POSC

compared?

T

F

Generated

of POSCs

& AOSCs

T

 1 a (x – xM) + b (y – yM) + c (z – zM) = 0

 2 (x – xA) / o = (y – yA) / p = (z – zA) / q

4b. Loop

remaining

POSCs &

AOSCs

dPOSC or

dAOSC ≤

δmax

F

All POSCs

& AOSCs

looped?

T

F

T

Next POSCs or AOSCs pair

4a. Pairwise

comparison of

generated POSCs

& AOSCs

Remaining

POSCs &

AOSCs

Eq. (64)1

or

Eq.(79) 2

F

T

85

and the evaluation of AOSCs for detecting axisymmetry. During the implementation of

the CASD method, the two parts of the sub-steps can be conducted simultaneously.

However, they are described separately in the following subsections for better

understanding.

1 includes all faces that neither belong to a face pair or stand-alone face * Figure 26

Figure 25. Flowchart of the POSCs and AOSCs evaluation step (part 1)

Add stand-alone face

to exact refl. sym. list

dC,k ≤ ε

dM,ij ≤ ε

CAD model
exact refl. sym.

w.r.t. POSC

T

T

E

T

F

F

T F

T

T

F

SFI=1

All POSCs

looped?

All faces

PC?

All faces

looped?

D*

All FCs

looped?
A

B C

F

F

T

F

F

|Ai–Aj|≤εA

|| vij×nP|| ≤ ε

T

T

||(ri –rj)×nP||

≤ ε

T

GSI ≥

0.5

F

T

Add face pair to

refl. sym. list

F

Add stand-alone face

to axisym. list

F

T

T

T F

T

T

SFI=1

dA,k ≤ ε

All faces

looped?

All FCs

looped?

All AOSCs

looped?
C

T

T F

F

F

F

F

G

CAD model

exact axisym.

w.r.t. AOSC

F*

GSI ≥

0.5

||fk × aA||

≤ ε

6. Visualisation

of APOS

& AAOS

Results file

(*.txt)

C

 Evaluation of POSCs for global reflectional sym. Evaluation of AOSCs for global axisymmetry

F

Loop

 POSCs

& AOSC

Classified

topology

Loop single

faces

Remaining

POSCs &

AOSCs

Faces from

same face

class (FC)

A
Next FC

Pairwise

comparison

(PC) of faces1

Next POSC or AOSC
B

86

1 includes all faces that neither belong to a symmetric face pair or stand-alone face
2 includes all faces not recognised as self-symmetric stand-alone faces

3 Eq. (79)
* Figure 25

Figure 26. Flowchart of the POSCs and AOSCs evaluation step (part 2)

Evaluation of POSCs for partial reflectional sym. Evaluation of AOSCs for partial axisymmetry

T

F
Remaining

faces2

Loop single

faces T

F

||f k×aA|| ≤ ε

Face axis

& AOSC

concident1?

G*

Add stand-alone

face to

axisym. list

T

All faces

looped?

F

T

F

CAD model

partially axisym.
w.r.t. to AOSC

GSI ≥

GSITH

F

T

Add stand-alone

edge to refl.

sym. list

dm,q≤ ε

F

All ECs

looped?

Pairwise

comparison

of edges

All edges

PC?

||(eo×ep)×nP||

≤ ε

dE,op ≤ ε
F

F

Loop single

faces

Add face to

refl. sym. list

Loop single

edges

|Lo–Lp|≤εA

Add edge pair to

refl. sym. list

T

T

T

All edges

looped?

F

T

GSIE ≤

GSIE,TH

All faces

looped?

T

F

T

F

T

Add face pair to

refl. sym. list

T

T

T

T

F

T

All faces

PC?

F

CS ≥

STH

||(ti –tj)×nP||

≤ ε

F

dM′,ij ≤ ε

Remaining

faces1

E*

D

Faces from

same face

class (FC)

Pairwise

comparison (PC)

of remaining faces

All FCs

looped?

GSI ≥

GSITH

F

CAD model

partially refl. sym.
w.r.t. to POSC

F

F

F

T

Edges from

same edge

class (EC)

F

87

3.5.1 Global symmetry

The first evaluation sub-step aims to detect exact global symmetry in the 3D CAD model

(Figure 25). In this sub-step, the primary inputs for evaluating the POSCs or AOSCs are

the B-rep's faces. As a result of this evaluation sub-step, the CASD method detects either

global reflectional symmetry or axisymmetry.

3.5.1.1 Reflectional symmetry

The faces of reflectional symmetric 3D CAD models can be divided into three categories:

1) symmetric face pairs,

2) symmetric stand-alone faces, and

3) non-symmetric (i.e., asymmetric) faces.

A symmetric face pair consists of two faces which are reflectional symmetric with respect

to the observed POSC. A stand-alone face is a reflectional self-symmetric single face

intersected by the observed plane of symmetry candidate and divided into two equal

reflectional symmetric parts. All faces with no symmetric pair or that are not reflectional

self-symmetric are categorised as non-symmetric. Those faces are declared as remaining

faces and used as input in the second evaluation process to verify if they are partially

symmetric (Subsection 3.5.3). Symmetric face pairs and stand-alone faces can be found

in exact and partial reflectional symmetric 3D CAD models, while non-symmetric faces

occur only in partially reflectional symmetric 3D CAD models.

Symmetric face pairs are identified using a pairwise comparison process between all

faces of the same class. Three criteria need to be fulfilled for judging whether a face pair

is symmetrical with respect to the POSC: equality, coincidence, and orientation. The

equality criterion is satisfied if the difference between the surface areas of i-th and j-th

face (i≠j) is below the computation error εA:

 A .i jA A−   (83)

At this point, it can be assumed that εA= ε=10–6 m. If Equation (83) is satisfied, next, the

coincidence criterion is assessed through the point-to-plane distance dM,ij (analogical to

Equation (80)) between the ij-th (i≠j) face pair midpoint of the face pair and the

corresponding POSC. The face pairs count from 1 to the number of faces in the observed

face class. To meet the coincidence criterion, the point-to-plane distance dM,ij needs to be

within the specified computation error:

88

 dM,ij ≤ ε. (84)

The last criterion that must be fulfilled is the orientation of the face pair’s normal and

position vectors. The normal vectors are queried for each face pair with the cross-product

vector pij, computed between the orientation vector vij and the normal vector to the POSC

nP:

 P .ij ij= p v n (85)

The orientation vector vij is calculated based on the arrangement between two faces,

which can be parallel, coplanar, or arbitrarily oriented (analogical to the cases in Figure

22). The orientation vector vij for a face pair is calculated from the normal vectors at the

projected point of the face centroid onto the face (for an open face) or their axis vectors

at the face centroid (for a closed face). If a face pair is parallel, the orientation vector is

obtained from either face’s normal vector using Equation (74). For a coplanar face pair,

then the orientation vector is obtained from Equation (75). The orientation vector of an

arbitrarily oriented face pair is calculated from Equation (76). The first part of the

orientation criterion is satisfied if the length of the cross-product vector pij is below ε:

 .ij p  (86)

The second part of the orientation criterion is related to the position vectors. For each

face, the position vector is computed between the point describing the POSC (i.e., the

midpoint M(xM, yM, zM)) and the characteristic face point (centroid or its projection). The

position vectors are exploited to verify if the face pair is invariant to reflectional

transformation with respect to the POSC. First, the position vectors are subtracted for

each face pair, denoted as the vector sij:

 ,ij i j= −s r r (87)

where ri and rj are the position vectors of the i-th and j-th face (i≠j). Next, to meet the

second part of the orientation criterion, the cross-product length between sij and nP needs

to be below the computation error ε:

 P .ij  s n  (88)

The second category of faces in reflectional symmetric 3D CAD models are the stand-

alone faces, i.e., single faces that do not belong to any symmetrical face pair. A stand-

alone face is reflectional self-symmetric and needs to satisfy only the coincidence

criterion. In other words, the centroid (for a closed face) or projection of the centroid

89

onto the face (for an open face) must coincide with the POSC. Again, this is queried with

point-to-plane distance dC,k (like in Equation (80)), where k represents the k-th face in the

observed face class. To consider a stand-alone face reflectional self-symmetric, the

condition dC,k ≤ ε needs to be fulfilled.

Once the mentioned criteria were checked for all faces, the 3D CAD model is considered

exact symmetrical if the number of symmetric face pairs nFP and symmetric stand-alone

faces nSF is equal the total number of faces nF in the 3D CAD model:

 FP SF F.n n n+ = (89)

Otherwise, if the equation above is not in equilibrium, the 3D CAD model is potentially

partially symmetric. By further rearrangement of the equation above, the symmetrical

faces index (SFI) can be introduced:

FP SF

F

SFI .
n n

n

+
= (90)

The SFI is the ratio between the number of symmetrical faces (face pairs and stand-alone

faces) and the total number of faces in the 3D CAD model. The SFI aims to measure the

symmetry of the topology in the B-rep CAD model. It is computed for each POSC and

has a range of [0, 1], where SFI=0 indicates non-symmetry and SFI=1 exact global

reflectional symmetry. SFI < 1 indicates that the 3D CAD model might be partially

symmetric. Although the SFI provides a measure for detecting exact global symmetry, it

is unsuitable for measuring partial symmetry due to its sensitivity to a lower number of

topological entities (faces) in the 3D CAD model. Therefore, another measure

appropriate for partial symmetry is proposed, discussed in Subsection 3.5.2. The

evaluation of axisymmetry is introduced in the following subsection.

3.5.1.2 Axisymmetry

The category of faces present in exact axisymmetric 3D CAD models are only stand-

alone faces, while partially axisymmetric 3D CAD models have also non-symmetric

faces. Symmetrical stand-alone faces must fulfil two criteria: coincidence and

orientation. A face is axisymmetric with respect to the AOSC if its centroid (applies for

a closed face) or projection of the centroid onto the face (applies for an open face)

coincides with the AOSC. This is queried with the point-to-line distance from Equation

(81), in this case, designated as dA,k. The coincidence criterion is fulfilled if dA,k ≤ ε. On

90

the other hand, the orientation criterion is queried with the cross-product vector qk of the

k-th face, which is computed between the face vector fk (normal or axis vector) and the

AOSC orientation vector aA:

 A .k k= q f a (91)

The orientation criterion is met if the length of the cross-product vector is below ε:

 .k q  (92)

The 3D CAD model exhibits exact axisymmetry if the number of all stand-alone faces

nSA is in equilibrium with the total number of faces n in the 3D CAD model:

 SF F.n n= (93)

In the case of axisymmetry, the number of symmetrical face pairs is zero and can be

eliminated from the Equation (90), so the SFI turns into:

SF

F

SFI .
n

n
= (94)

Hence, in this case, the SFI is defined as the ratio between the number of stand-alone

faces and the total number of faces in the 3D CAD model. Analogical to reflectional

symmetry, the SFI is also calculated for each AOSC, where SFI=0 represents non-

symmetry and SFI=1 exact global axisymmetry. If SFI<1, the 3D CAD model is further

investigated for partial axisymmetry. For that purpose, the global symmetry index is

proposed, which also applies to reflectional symmetry.

3.5.2 Global symmetry index

The SFI intends to measure exact symmetry and applies to reflectional and axisymmetry.

However, it cannot measure partial symmetry within the 3D CAD model. This is because

the SFI score may be sensitive to the number of faces in the 3D CAD, especially if the

number of faces is low. Therefore, another symmetry measure is introduced, the global

symmetry index (GSI), which represents the ratio between the surface area of

symmetrical faces Asym and the total surface area A of the 3D CAD model:

sym

sym

GSI .
S

S

dA

dA
=



 (95)

The equation above can be further expressed in terms of the surface area of symmetric

face pairs and stand-alone faces:

91

SAFP

FP, SA,

=1 =1

1

GSI ,

nn

i j

i j

n

k

k

A A

A
=

+

=

 


 (96)

where AFP,i represents the total surface area of the i-th face pair, ASA,j the surface area of

j-th stand-alone face, and Ak the surface area of the k-th face in the 3D CAD model. The

GSI applies to both reflectional and axisymmetry and is computed for each POSC and

AOSC. It has a range of [0, 1], where GSI=0 represents non-symmetry and GSI=1 exact

global symmetry. In the case of partial symmetry, the GSI will be close to 1, while the

threshold value GSITH, below which the 3D CAD model is not considered partially

symmetric anymore, needs to be determined by testing. If the 3D CAD model exhibits

exact global symmetry, then SFI=1 and GSI=1. The SFI measures the symmetry of the

topology of the B-rep CAD model, while the GSI measures the symmetry of the

underlying geometry.

In addition to the proposed symmetry measures, there are also certain combinations and

restrictions regarding the types of symmetries a 3D CAD model may or may not exhibit,

which can be described with the symmetry correlation matrix (Table 14). The correlation

between the types of symmetries (globally reflectional, globally axisymmetry, partially

reflectional, and partially axisymmetry) must be implemented into the CASD method.

Specific correlations are already, by default, maintained by the CASD method through its

definition. For instance, a 3D CAD model cannot be simultaneously globally

axisymmetric and partially reflectional symmetric. Another example is that a 3D CAD

model cannot be simultaneously globally and partially axisymmetric. However, an

additional check is required to see if the 3D CAD model is simultaneously globally

axisymmetric and reflectionally symmetric. In that case, reflectional symmetry can only

exist perpendicular to axisymmetry. Therefore, the detected APOS(s) should be checked

for coincidence with the AAOS and eliminated in case of confirmation.

92

Table 14. Symmetry correlation matrix

Type of symmetry

in th 3D CAD model

Globally

reflectional

symmetry

Globally

axisym.

Partially

reflectional

symmetry

Partially

axisym.

Globally reflectional symmetry – ✓
1 ✓ ✓

Globally axisymmetry ✓
1 –  

Partially reflectional symmetry ✓  – ✓

Partially axisymmetry ✓  ✓ –

✓ Combination of symmetries possible  Combination of symmetries not possible

1 The detected APOS and AAOS must be perpendicular to each other

3.5.3 Partial symmetry

If global symmetry is not detected (SFI<1), a second evaluation sub-step is performed to

detect partial symmetry in the 3D CAD model (Figure 26). The criterion to start the

second evaluation sub-step is that GSI>0.5, i.e., 50% of the total surface area is

symmetric. In the second evaluation sub-step, the inputs are all remaining non-symmetric

faces (i.e., do not belong to a face pair or stand-alone face) from the first sub-step. Apart

from faces, the edges of the B-rep are also exploited as input for evaluating the POSCs or

AOSCs. This second evaluation sub-step addresses the detection of partial reflectional

and axisymmetry in the 3D CAD model.

3.5.3.1 Reflectional symmetry

The procedure for detecting partially reflectional symmetric face pairs and stand-alone

faces is analogous to the previously described global symmetry detection procedure. The

main difference is that lower topological entities, i.e., edges, are exploited to evaluate

partial symmetry. The remaining undetected faces from the first sub-step are pairwise

compared (only from the same class) to detect partially reflectional symmetric face pairs.

In contrast, single faces are looped to detect partially reflectional self-symmetric stand-

alone faces. Three criteria need to be fulfilled for judging whether a face pair is partially

reflectional symmetric with respect to the POSC: similarity, coincidence, and orientation.

The similarity criterion implies identifying if a face pair is similar using the Cosine

similarity from Equation (67) in the same manner as described in subsection 3.3.2. If the

condition CS≤STH is satisfied, then the midpoint M' for the similar face pair is calculated

from the face centre points. A face centre point is the average position of the edge

midpoints that are identical and shared by both faces. The coincidence criterion is

assessed using the point-to-plane distance dM′ij (comparable to Equation (80)) between the

93

midpoint M′ and the POSC. If the coincidence criterion is met, i.e., dM′ij ≤ ε, then the

orientation criterion is queried. For that purpose, the position vectors of the faces ti and tj

are computed and subtracted. A position vector points from the relevant POSC point to

the face centre point Ei. A similar face pair meets the orientation criterion if the cross-

product length between subtracted faces’ position vectors and the normal to the POSC is

below the specified computation error ε:

 P() .i j−  t t n  (97)

Finally, if all three criteria are satisfied (similarity, coincidence, and orientation), then

observed face pair is considered partially reflectional symmetric. A stand-alone face is

assessed for partial reflectional self-symmetry through its edges. Three edge types are

distinguished: reflectional symmetric edge pairs, self-symmetric stand-alone edges, and

non-symmetric edges. The assessment of reflectional symmetric edge pairs consists of

the following criteria: equality, coincidence, and orientation. The equality criterion

implies that two edges belonging to the same class are of equal length, i.e.:

 A .o pL L−   (98)

To examine the coincidence criterion, the edge pair midpoint between the o-th and p-th

edge is used to assess distance from the POSC. The point-to-plane distance, denoted as

dE,op, is computed via the modified Equation (80). The last criterion to be met is the

orientation of the edges’ position vectors eo and ep, which must satisfy the equation:

 P() .o p−  e e n  (99)

An edge position vector points from the relevant POSC point to the edge midpoint.

Finally, if all three criteria are satisfied (equality, coincidence, and orientation), the

observed edge pair is partially reflectional symmetric. A stand-alone edge is reflectional

self-symmetric if it fulfils the coincidence criterion, which is assessed with the point-to-

plane distance dm,q computed between the edge midpoint and POSC. To estimate if a

stand-alone face is partially reflectional self-symmetric, the GSI needs to be slightly

modified by using the edge length instead of the face area:

SLLP

LI

EP, SE,

=1 =1

E E, TH

1

GSI GSI ,

nn

i j

i j

n

k

k

L L

L
=

+

= 

 


 (100)

where LEP,i represents the length of the i-th edge pair, LSE,j the length of the j-th stand-

alone edge, and Lk the length of the k-th edge. Like the GSI, the GSIE also ranges between

94

[0, 1]. Now, it is just a matter of finding the threshold GSIE,TH above which the stand-

alone face is partially reflectional self-symmetric.

After examining the existence of partially reflectional symmetric face pairs and self-

symmetric stand-alone faces from the remaining faces, the GSI is updated and needs to

be GSI ≥ GSITH to confirm that the 3D CAD model is partially reflectional symmetric.

3.5.3.2 Axisymmetry

As already emphasised, the remaining faces from the first sub-step are exploited in the

second sub-step for evaluating partial axisymmetry. The categories of faces in partially

axisymmetric 3D CAD models are axisymmetric stand-alone, partially axisymmetric

stand-alone, and non-symmetric faces. Axisymmetric stand-alone faces are detected

through the procedure described in Subsection 3.5.1. Two criteria are assessed to detect

a partially axisymmetric stand-alone face: orientation and coincidence. The orientation

criterion assesses if the cross-product length between the face’s normal or axis vector and

the AOSC orientation vector is below ε (Equations (91) and (92)). If this criterion is

satisfied, the next criterion is to query if the face axis coincides with the AOSC, which is

accomplished using the line equation (79). Finally, a face is considered partially

axisymmetric if both criteria are satisfied (orientation and coincidence). After evaluating

partially axisymmetric stand-alone faces, the GSI is updated and needs to be GSI ≥ GSITH

to confirm that the 3D CAD model is partially axisymmetric with respect to the AOSC,

which is then declared as the AAOS. At the end of the evaluation step, each POSC or

AOSC that has been evaluated to be an APOS or AAOS is then visualised within the 3D

CAD model.

3.6 Visualisation of actual planes and axes of symmetry

The symmetry information is provided by visualising the detected APOS(s) and AAOS

within the 3D CAD model. An APOS is defined by its unit normal vector and any point

on the plane, i.e., the midpoint between the two similar faces. On the other hand, an

AAOS is defined by its unit axis vector and any point on the axis, i.e., the origin of the

cylindrical surface. There are several ways planes can be created in CAD systems

[140,141]: through point and line, through three points, through two lines, plane equation

and reference point, etc. Analogically, there are multiple ways to create axes in CAD

systems [140,141]: through two points, point and direction, normal to surface, etc. When

it comes to storing the symmetry information, there are two approaches (Figure 27):

internal or external. The internal approach implies that the APOS(s) and AAOS are

95

visualised and permanently stored within the 3D CAD model. On the other hand, in the

external approach, the APOS(s) and AAOS can be retrieved from a results file associated

with the 3D CAD model and visualised within the 3D CAD model using the

computational environment. The drawback of the internal approach is that the APOS(s)

and AAOS may be lost during an exchange of the CAD model in a neutral format (STEP,

IGES, etc.), while the external approach requires the use of the computational

environment to retrieve the APOS(s) and AAOS. Apart from the visualisation of APOS

and AAOS, additional visualisation of symmetric and non-symmetric faces which are

related to the corresponding APOS or AAOS should be provided. The visualisation of

reference geometry (planes and axes) can be accomplished through the CAD system

functionalities at the API level. Hence, further details regarding visualisation are

discussed during the implementation of the proposed CASD method (Subsection 4.1.5).

a) b)

Figure 27. Internal (a) and external (b) approach to store the visualisation of APOSs and

AAOSs

Since all steps of the CASD method were presented, a data model for the CASD method

can be built. The data model is important because it visually describes the CASD

method’s data requirements and enables its easier implementation among different CAD

systems.

3.7 Data model

The data model is constructed using the unified modelling language (UML), expressed as

class diagrams. These diagrams are widely used in object-oriented system modelling

[142]. A class diagram typically includes a group of classes and their interrelationships.

Each class defines a set of objects that share common attributes (properties), methods

(operations), and relationships. The CASD method employs two class diagrams, one

3D CAD

Model

Results

file

Graphical user interface

5. Evaluation

of POSCs

& AOSCs

6. Visualisation

of APOSs &

AAOSs

6. Visualisation

of APOSs &

AAOSs

5. Evaluation

of POSCs

& AOSCs

3D CAD

Model

Graphical user interface

Results

file

96

outlining data relevant to the B-rep analysis step and another summarising relevant data

for the remaining steps. Figure 28 displays the class diagram for the B-rep analysis step.

The importance of the CASD method’s data model is its use in the implementation into a

CAD system (Chapter 4).

Figure 28. Class diagram for the step analysis of B-rep

1

1

1..nF

1

1
1

Face

+ surfaceType

+ uvParametrisation

+ faceLabel

+ faceArea

+ angle

+ edges

+ loops

– getSurface()

– getSurfaceType()

– getuvParametrisation()

– setFaceLabel()

– computeFaceArea()

– isOpen()

– getEdges()

– getLoops()

1..2

1

0..*

1

BrepCADmodel

+ name

+ location

 – isSinglePart()

– isSingleBody()

– isManifold()

– getName()

– getLocation()

+ getBody()

Loop

+ loopType

+ faces

+ edges

 – getLoopType()

– getFaces()

– getEdges()

OpenEdge

+ midpoint

– computeMidpoint()

ClosedEdge

+ centre

– getCentre()

OpenFace

+ projectionPoint

+ normalVector

– computeProjectPoint()

– computeNormalVector()

ClosedFace

+ centroidPoint

+ axisVector

– computeCentPoint()

– getAxisVector()

0..*

1

1

1

+ prinipalAxes

+ centreOfGravity

– computePrinipalAxes()

– computeCentreOfGravity()

MassProperties

– deltaX

– deltaY

– deltaZ

+ deltaMax

 – computeBoundingBox()

– computeDeltaMax()

BoundingBox

Edge

+ curveType

+ edgeLength

+ edgeLabel

+ uParametrisation

+ angle

 – getCurveType()

– computeEdgeLength()

– setEdgeLabel()

– getuParametrisation()

+ isOpen()

Body

+ faces

+ edges

+ faceCount

+ edgeCount

– getFaces()

– getEdges()

– getFaceCount()

– getEdgeCount()

Cylind.

Spherical

Conical

Plane

Offset

Spline

Extruded

Blended

Revolved

Toroidal

Spline

Ellipse

Circle

Line

Offset

Trimmed

Intersection

P curve

97

The class diagram is structured into distinct classes, each with its own attributes and

methods (Figure 28):

- BRepCADmodel – this class encompasses general information pertaining to the

B-Rep CAD model. Among its attributes are the name and location of the input

CAD model. It also includes methods such as getName() to retrieve the name of

the input CAD model, getLocation() to obtain the location of the input 3D CAD

model, isSinglePart() to check if the input 3D CAD model is a single part,

isSingleBody() to verify if the input 3D CAD model has one body, and

isManifold() to determine if the input 3D CAD model is manifold.

- MassProperties – defines the mass properties of the input 3D CAD model. Its

attributes are the prinipalAxes representing the PAOI, and the centerOfGravity

designates the centre of gravity, while its methods are related to the computation

of the mentioned attributes. The mass properties belong only to one input B-rep

CAD model.

- BoundingBox – defines the maximum bounding box of the 3D CAD model and

consists of the attributes deltaX, deltaY, and deltaZ which represent the lengths of

the 3D CAD model’s minimum bounding box in the respective directions of the

coordinate axes (x, y, and z). The attribute deltaMax represents the maximum

allowed distance of the candidate from the COG used in the trimming step. The

BRepCADmodel and the BoundingBox relationship is one-to-one, as the 3D CAD

model has one minimum bounding box.

- Face – this class defines a face in the B-Rep and contains attributes and methods

relevant to the CASD method. The attributes are the underlying surfaceType, the

faceArea, the underlying surface uvParametrisation, the periodicity angle, which

describes if the face is open or closed, the faceLabel, the face’s edges and loops.

A solid B-rep CAD model can have one to nF number of faces (1..nF). In the

context of the CASD method, a Face can be open or closed, so the corresponding

sub-classes are the OpenFace or ClosedFace.

- OpenFace – this class defines the relevant information of an open face. Its

attributes are the normalVector_n and projectionPoint.

- ClosedFace – this class defines the relevant information of an open face. Its

attributes are the axisVector_a and centroidPoint.

- Loop – this class defines the relevant information of a loop. The corresponding

attribute is the loopType, which can be either outer or inner, and its associated

98

method is the getLoopType(). A face can have zero to many loops (0..*), while an

Edge belongs to one or two loops (1..2).

- Edge – this class defines the edge and contains relevant attributes and methods for

the B-Rep analysis. The attributes include the underlying curveType, edgeLength,

and edgeLabel. A face has zero to many edges (0..*). An edge can be open or

closed. Hence, its corresponding sub-classes are the OpenEdge or ClosedEdge.

- OpenEdge – this class defines the relevant data of an open edge. The attribute of

an open edge is its midpoint, computed through the corresponding method

computeMidpoint().

- ClosedEdge – this class defines the relevant data of an open edge, the attribute

edge centre, and the associated method getCentre() retrieves the edge's centre

from the associated curve parameters.

The necessary information for generating, trimming, evaluating, and visualising

candidates can be found in two class diagrams: reflectional symmetry (Figure 29) and

axisymmetry (Figure 30). The reflectional symmetry class diagram is comprised of

several classes, each with its attributes and methods (Figure 29):

- GeneratePOSC – this class defines the data relevant for generating a POSC from

the corresponding SimilarFacePair and PAOI. It includes the attributes

planePoint, which determines the location on the plane, and the normalVector_n,

which determines the normal vector of the plane. The corresponding methods are

computPlanePoint(), computeNormalVector_n(), and addPlane(), which adds the

candidate to a list.

- SimilarFacePair – is a sub-class of GeneratePOSC to generate the candidate from

a similar face pair, consisting of the attributes areaRatio, cosineSimilarity,

featureVector1, featureVector2, and the equivalent methods for computing them

computeAreaRatio(), computeCosineSimilarity(), computeFeatureVector1(), and

computeFeatureVector2(). The method isSimilar() determines whether the face

pair is similar.

- TrimDuplicatePOSC – this class defines the trimming of a duplicate POSC. It

consists of the attribute lgthCross_n1_n2, which defines the cross-product length

between two POSC’s normal vectors. The methods are computePlaneEquation(),

which calculates the plane equation to query if two POSCs are coincident,

computeLgthCross_n1_n2(), which computes the cross-product length between

two candidates to check if they are parallel, isDuplicate() provides the information

if a candidate is duplicate, and deletePlane() which removes the duplicate POSC.

99

All generated POSCs are exploited in the trimming. Hence, the total number of

generated POSCs nPOSC from the class GeneratePlaneCandidate is used in the

class TrimDuplicatePlane (nPOSC to nPOSC).

- TrimUnsuitablePOSC – this class defines the trimming of an unsuitable POSC.

Its attribute is the pointPlaneDist, which defines the point-to-plane distance

between the POSC and COG to be compared with δmax, while the methods are

computePointPlaneDist(), isUnsuitable(), which checks if the POSC is

unsuitable, and deletePlane(), which removes the unsuitable POSC from the list.

- EvaluatePOSC – this class defines the evaluation of a POSC. The class consists

of the attributes scoreGSI and scoreSFI, providing the GSI and SFI values for the

POSC. Its methods are computeScoreGSI(), computeScoreSFI(), and isAPOS() to

determine if the POSC is an APOS. EvaluatePOSC consists of four sub-classes:

StandAloneFace, FacePair, RemainingStandAloneFace, and

RemainingFacePair. The first two are related to the evaluation of exact

symmetrical faces, while the last two are related to the second evaluation process

for partially symmetrical faces.

- StandAloneFace – this class defines the data for evaluating a stand-alone face.

The attribute is poinPlaneDist(), representing the point-to-plane distance between

the characteristic face point and the POSC. The methods are

computePoinPlaneDist() and isSymmetrical() for determining whether the stand-

alone face is symmetrical.

- FacePair – this class defines the data for evaluating a face pair. The relevant

attributes are areaDifference (difference between the areas of two faces), midpoint

(the face pair midpoint), pointPlaneDist (the point-to-plane distance between

midpoint and POSC), positionVect_r1 (position vector of 1st face),

positionVect_r2 (position vector of 2nd face), subtractVect_s (subtracted vector

between vectors positionVect_r1 and positionVect_r2), orientVect_v (orientation

vector of the face pair depending on the arrangement between the 1st and 2nd face),

s_x_n_lgth (cross-product length between subtractVect_s and POSC’s normal

vector), and v_x_n_lgth (cross-product length between orientation vector

orientVect_v and POSC’s normal vector). The methods are related to the

computation of the corresponding attributes, and the method isSymmetrical(),

which describes if the face pair is symmetrical.

- RemainingStandAloneFace – this class defines the data to assess a stand-alone

face in the second evaluation process. It consists of the attribute scoreGSI_E,

100

which defines the global symmetry index for edges. The methods are

computeScoreGSI_E and isPartiallySymmetrical() (which provides information

on whether the face is partially symmetrical). This class consists of two sub-

classes, StandAloneEdge and EdgePair, defining the relevant data for evaluating

edges.

- StandAloneEdge – this class defines the data to assess a stand-alone edge for

reflectional self-symmetry in the second evaluation process. It consists of the

attribute PointPlaneDist(), which defines the point-to-plane distance between the

edge midpoint and the POSC, and the methods computePointPlaneDist() and

isSymmetrical().

- EdgePair – this class consists of data to assess an edge pair reflectional symmetry

in the second evaluation process. The attributes are lengthDifference (which

denotes the length difference between the 1st and the 2nd edge), midpoint (which

is the edge pair midpoint), pointPlaneDist (which defines the point-to-plane

distance between the midpoint and POSC), vector_s1 (is the position vector of 1st

edge), vector_s2 (is the position vector of 2nd edge), subtractVect_e (is the

subtracted vector between vector_e1 and vector_e2), e_x_n_lgth and (is the cross-

product length between subtracted position vectors subtractVect_e and the

POSC’s normal vector). The methods are related to the computation of the

corresponding attributes, including additionally the method isSymmetrical(),

describing if the edge pair is symmetrical.

- RemainingFacePair – this class defines the data to assess a remaining face pair in

the second evaluation process. It includes the attributes cosineSimilarity (which

defines the cosine similarity of the face pair), faceCentre_E1 (which is the centre

of the 1st face), faceCentre_E2 (which is the centre of the 2nd face), midpoint

(midpoint between the faceCentre_E1 and faceCentre_E2), pointPlaneDist

(point-to-plane distance between the midpoint and POSC’s normal vector),

positionVector_t1 (position vector of 1st face), positionVector_t2 (position vector

of 2nd face), subtractVect_t (is the subtracted vector between positionVector_t1

and positionVector_t2) , t_x_n_lgth (cross-product length between vector

subtractVect_t and POSC’s normal vector). The methods are related to the

computation of the corresponding attributes, including the method that checks if

the remaining face pair isSymmetrical().

- VisualiseAPOS – this class defines the data for the visualisation of an APOS. The

createPlane() method is intended to visualise the APOS in the 3D CAD model.

101

- ResultsFile – this class defines the data for generating the results file. It includes

the attributes nameResultFile and locationResultFile, and the methods

createTxtFile() (creates the results file associated to the 3D CAD model),

addAPOS() (writes the detected APOS into the results file), and addSymFaces()

(writes the detected symmetric faces for the APOS into the results file).

Like the reflectional symmetric class diagram, the axisymmetry class diagram is also

comprised of several classes, each with its attributes and methods (Figure 30):

- GenerateAOSC – this class defines the data relevant for generating an AOSC from

the corresponding SingleFace and PAOI. It includes the attributes axisPoint,

which determines the location on the axis, and the axisVector_a, which

determines the orientation vector of the axis. The corresponding methods are

getAxisPoint(), getAxisVector_a(), and addAxis(), which adds the candidate to a

list.

- SingleFace – is a sub-class of GenerateAPOSC to generate the candidate from a

single face, consisting of the methods isClosed(), isCylindricalSufrace(),

isConicalSurface(), isToroidalSurface(), isRevolvedSurface(), used to assess if

the face is closed and of the specific surface type.

- TrimDuplicateAOSC – this class defines the trimming of a duplicate AOSC. It

consists of the attribute lgthCross_a1_a2, which defines the cross-product length

between two AOSC’s axis vectors. The methods are computeLineEquation(),

which calculates the line equation to query if two AOSCs are coincident,

computeLgthCross_a1_a2(), which computes the cross-product length between

two candidates to check if they are parallel, isDuplicate() provides the information

if a candidate is duplicate, and deleteAxis() which removes the duplicate AOSC.

All generated AOSCs are exploited in the trimming. Hence, the total number of

generated AOSCs nAOSC from the class GenerateAxisCandidate is used in the class

TrimDuplicateAxis (nAOSC to nAOSC).

- TrimUnsuitableAOSC – this class defines the trimming of an unsuitable AOSC.

Its attribute is the pointLineDist, which defines the point-to-line distance between

the AOSC and COG to be compared with δmax, while the methods are

computePointLineDist(), isUnsuitable(), which checks if the AOSC is unsuitable,

and deleteAxis(), which removes the unsuitable POSC from the list.

- EvaluateAOSC – this class defines the evaluation of an AOSC. The class consists

of the attributes scoreGSI and scoreSFI, providing the GSI and SFI values for the

102

AOSC. Its methods are computeScoreGSI(), computeScoreSFI(), and isAAOS() to

determine if the AOSC is an AAOS. EvaluateAWOSC consists of two sub-classes:

StandAloneFace and RemainingStandAloneFace. The first is related to the

evaluation of exact symmetrical faces, while the second is related to the second

evaluation process for partially symmetrical faces.

- StandAloneFace – this class defines the data for evaluating a stand-alone face.

The attributes are pointLineDist, representing the point-to-plane distance between

the characteristic face point and the POSC, and f_x_a_lgth, which describes the

cross-product length between the characteristic face vector and AOSC’s

orientation vector check for parallelism. The methods are

computePoinPlaneDist(), compute_f_x_a_lgth(), and isSymmetrical() for

determining whether the stand-alone face is symmetrical.

- RemainingStandAloneFace – this class defines the data to assess a stand-alone

face in the second evaluation process. It includes the attributes f_x_a_lgth, which

describes the cross-product length between the characteristic face vector and

AOSC’s orientation vector to check for parallelism, and LineEquation, which

calculates the line equation to check if the face axis and AOSC are coincident.

The corresponding methods are compute_f_x_a_lgth(), computeLineEquation(),

isCoincident(), and isPartiallySymmetrical(), which provides information on

whether the face is partially symmetrical.

- VisualiseAAOS – this class defines the data for the visualisation of an AAOS, and

consists of the createPlane() method, intended to visualise the AAOS in the 3D

CAD model.

- ResultsFile – this class defines the data for generating the results file. It includes

the attributes nameResultFile and locationResultFile, and the methods

createTxtFile() (creates the results file associated to the 3D CAD model),

addAAOS() (writes the detected AAOS into the results file), and addSymFaces()

(writes the detected symmetric faces for the AAOS into the results file).

103

Figure 29. Class diagram for the steps generation, trimming, evaluation, and

visualisation of candidates for reflectional symmetry

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

FacePair

– areaDifference

– midpoint

– pointPlaneDist

– positionVect_r1

– positionVect _r2

– orientVect_v

– subtractVect_s

– s_x_n_lgth

– v_x_n_lgth

– computeAreaDiff ()

– computeMidpoint()

– computePoinPlaneDist()

– computeVector_r1 ()

– computeVector_r2 ()

– computeOrientVect_v ()

– computeSubtractVect_s()

– compute_s_x_n_lgth()

– compute_v_x_n_lgth()

+ isSymmetrical()

SimilarFacePair

– areaRatio

– cosineSimilarity

– featureVector1

– featureVector2

– computeAreaRatio()

– computeCosineSimilarity()

– computeFeatureVector1()

– computeFeatureVector2()

+ isSimilar()

nAPOS

nAPOS

nPOSC,T2

nPOSC,T2

3

3

nPOSC,T1
nPOSC,T1

nPOSC

nPOSC

1..*
1..*

TrimDuplicatePOSC

 – lgthCross_n1_n2

– computePlaneEquation()

– computeLgthCross_n1_n2()

– isDuplicate()

– deletePlane()

nAPOS

nAPOS

1..*
1..*

BrepCADmodel

+ name

+ location

– isSinglePart()

– isSingleBody()

– isManifold()

– getName()

– getLocation()

– getBody()

GeneratePOSC

+ planePoint

+ normalVector_n

 – computPlanePoint()

– computNormalVector_n()

– addPlane()

VisualiseAPOS

– createPlane()

ResultsFile

+ nameResultFile

+ locationResultFile

– createTxtFile()

+ addAPOS()

+ addSymFaces()

EvaluatePOSC

+ scoreGSI

+ scoreSFI

 + computeScoreGSI()

+ computeScoreSFI()

+ isAPOS()

TrimUnsuitablePOSC

– pointPlaneDist

 – computePointPlaneDist()

– isUnusitable()

 – deletePlane()

StandAloneFace

– pointPlaneDist

 – computePoinPlaneDist()

+ isSymmetrical()

+ principalAxes

+ centreOfGravity

– computePrinipalAxes()

– computeCentreOfGravity()

MassProperties

StandAloneEdge

– pointPlaneDist

 – computePointPlaneDist()

+ isSymmetrical()

EdgePair

– lengthDifference

– midpoint

– pointPlaneDist

– vector_e1

– vector_e2

– subtractVect_e

– e_x_n_lgth()

– computeLengthDiff()

– computeMidpoint()

– computePointPlaneDist()

– computeVector_e1()

– computeVector_e2()

– computeSubtractVect_e()

– compute_e_x_n_lgth()

+ isSymmetrical()

RemainingFacePair

– cosineSimilarity

– faceCentre_E1

– faceCentre_E2

– midpoint

– pointPlaneDist

– positionVector_t1

– positionVector_t2

– subtractVect_t

– s_x_n_lgth

 – computeCosineSimilarity()

– computeFaceCentre_E1()

– computeFaceCentre _E2()

– computeCenterPoint()

– computePointPlaneDist()

– computePositionVec_t1()

– computePositionVec_t2()

– computeSubtractVect_t()

– compute__t_x_n_lgth()

+ isPartiallySymmetrical()

RemainingStandAloneFace

+ scoreGSI_E

 – computeScoreGSI_E

+ isPartiallySymmetric()

104

Figure 30. Class diagram for the steps generation, trimming, evaluation, and

visualisation of candidates for axisymmetry

1..*

1..*

SingleFace

 – isClosed()

– isCylindricalSufrace()

– isConicalSurface()

– isToroidalSurface()

 – isRevolvedSurface()

-

1..*

1..*

nAAOS

nAAO

nAOSC,T2

nAOSC,T2

3

3

nAOSC,T1
nAOSC,T1

nAOSC

nAOSC

TrimDuplicateAOSC

 – lgthCross_a1_a2

– computeLineEquation()

– computeLgthCross_a1_a2()

– isDuplicate

– deleteAxis()

1..*

1..*

nAAOS

nAAOS

BrepCADmodel

+ name

+ location

– isSinglePart()

– isSingleBody()

– isManifold()

– getName()

– getLocation()

– getBody()

GenerateAOSC

 + axisPoint

+ axisVector_a

 – getAxisPoint()

– getAxisVector_a()

– addAxis()

VisualiseAAOS

+ createAxis()

ResultsFile

+ nameResultFile

+ locationResultFile

+ createTxtFile()

+ addAPOS()

+ addSymFaces()

EvaluateAOSC

+ scoreGSI

+ scoreSFI

 + computeScoreGSI()

+ computeScoreSFI()

+ isAAOS()

TrimUnsuitableAOSC

– pointLineDist

– computePointLineDist()

– isUnusitable()

– deleteAxis()

StandAloneFace

– pointLineDist

– f_x_a_lgth

 – computePoinPlaneDist()

– compute_f_x_a_lgth()

+ isSymmetrical()

+ principalAxes

+ centreOfGravity

– computePrinipalAxes()

– computeCentreOfGravity()

MassProperties

RemainingStandAloneFace

 – f_x_a_lgth

– lineEquation

 – compute_f_x_a_lgth()

– computeLineEquation()

– isCoincident()

+ isPartiallySymmetrical()

105

4 COMPUTATIONAL ENVIRONMENT

__

This chapter describes the implementation of the proposed symmetry detection method.

As a result of the implementation, a computational environment has been developed by

means of the commercial CAD system Solidworks and its Application Programming

Interface. In addition, the feasibility of implementing the method into two other CAD

systems has been investigated. The additional considered CAD systems were the

commercial CAD system NX and the open-source CAD system FreeCAD.

¯¯

The proposed CASD method described in the previous chapter has been implemented

into the commercial CAD system Solidworks 2020 using its Application Programming

Interface. The implementation within the CAD system aims to investigate if the method

is suitable for practical application. Apart from the implementation in Solidworks, an

investigation regarding the feasibility of implementing the method in alternative CAD

systems such as NX and FreeCAD has been conducted. Implementing the CASD method

in different CAD systems and geometric modelling kernels is useful to examine its

generality. On one side, the commercial CAD system NX uses the same geometric

modelling kernel with a similar B-rep data structure as in Solidworks. Conversely, the

open-source CAD system FreeCAD uses a different modelling kernel and B-rep data

structure. For the implementation of the proposed CASD method, the data model

presented in Section 3.7 is exploited. As a result of the implementation, a computational

environment has been proposed, as shown in (Figure 31).

Figure 31. Schematic representation of the computational environment

CAD system

3D CAD

model

Engineer

CAD system

GUI

Results

file

Repository of

3D CAD models

CAD system

API

Symmetry

Detector

GUI

106

The computational environment consists of the Symmetry Detector GUI, the CAD system

GUI and API, an input 3D CAD model currently open or from a repository of 3D CAD

models (optional). The core of the computational environment is the Symmetry Detector

GUI, which has been incorporated into the CAD system. It contains a source code that

can interact with the CAD system via its API. The Symmetry Detector enables

recognising symmetry and provides postprocessing capabilities, i.e., storing and

visualising the symmetry detection results within the 3D CAD system. The symmetry

detection results are retrievable from a text results file, generated at the end of the

symmetry detection, and associated with a 3D CAD model. The Symmetry Detector can

process a single 3D CAD model currently open within the CAD system or loop through

multiple 3D CAD models from a repository stored at some location (Figure 31).

While implementing the proposed CASD method, the approach was to leverage the

capabilities of the CAD system API. However, it is important to note that the accessibility

and functionality of the API object hierarchy differ depending on the CAD system. For

instance, some CAD systems (like Solidworks) allow full access to the API object

hierarchy, while others (like CATIA V5) offer limited access that may require special

licensing. Additionally, the programming language used to write the source code may

also impact the accessibility and functionality of the API object hierarchy in some CAD

systems. Solidworks API was chosen primarily due to its ability to access the entire API

object hierarchy without any limitations on licensing. Moreover, there are nearly no

limitations to the API object hierarchy accessibility in the available programming

languages (VBA, C#, or C++). Consequently, the Symmetry Detector GUI was created

at the macro level employing the VBA programming language, as the development of

macros is relatively quick and straightforward.

The Solidworks API provides all the necessary functionalities to retrieve the topological

and geometrical information from the 3D CAD model's B-rep. Most properties and

parameters can be accessed directly through the corresponding API objects and methods.

For instance, retrieving the COG and axes of inertia of a 3D CAD model is a

straightforward process. However, to retrieve specific properties of the CASD method, a

workaround solution may be required. For example, the face centroid cannot be computed

directly, but it can be obtained by creating a reference point on the face. Additionally,

there may be multiple ways to retrieve a property value. For instance, the face area and

107

edge length may be obtained by selecting the topological entity and using the

measurement tool API object or directly from the related face or edge API object. The

following sections give insights into the implementation of the method steps.

4.1 Implementation of the CASD method into a CAD System

The CAD system Solidworks is the interpreter of the input 3D CAD model, while its API

represents a “tool” for interacting with the 3D CAD model and computing mathematical

expressions from the steps of the symmetry detection method. At this point, it is important

to emphasise that any other CAD system and its API with the same functionalities could

also have been used for that purpose. Hence, the feasibility of implementing the method

into alternative CAD systems NX and FreeCAD is demonstrated in Section 4.2.

Solidworks API relies on Microsoft’s Component Object Model (COM) that uses

interfaces (objects), interface inheritance, and factory methods to return interfaces on

existing and new objects. Interfaces provide public properties and methods. The highest-

level object in the Solidworks API structure is the SldWorks interface (Figure 33).

Figure 32. Solidworks API model object hierarchy

It enables direct and indirect access to all interfaces exposed in the Solidworks API object

hierarchy [133]. Directly below the SldWorks interface is the iModelDoc2 interface,

which enables access to the three main Solidworks document types: parts, assemblies,

and drawings. Each document type has its object (iPartDoc, iAssemblyDoc, and

iDrawingDoc) with its related functions [133]. If an object can only be accessed

indirectly, it must be referenced from another higher object in the hierarchy. Most of the

SldWorks

iPartDoc iDrawingDoc iAssemblyDoc

iModelDocExtension

iModelViewManager

iSelectionManager

iFeatureManager

iSketchManager iConfigurationManager

iBody2

iFeature

iComponent2

iMate

iSheet

iView

etc. etc. etc.

iCustomPropertyManager

etc.

etc.

iModelDoc2

https://help.solidworks.com/2019/English/api/sldworksapi/SolidWorks.interop.sldworks~SolidWorks.interop.sldworks.ISldWorks.html
https://help.solidworks.com/2019/English/api/sldworksapi/SolidWorks.interop.sldworks~SolidWorks.interop.sldworks.ISldWorks.html

108

Solidworks API objects correspond to user-interface functionality However, certain

objects provide functionality only accessible through the Solidworks API (for example,

the Attribute object).

Design automation in CAD systems can take various forms, such as stand-alone

applications, add-ins, or macros. There are two ways that applications can run: in-process

and out-of-process. In-process means the application (e.g., macro) runs within the CAD

system process and uses its computer memory. This is usually slower and can cause the

CAD system to freeze if the application is demanding. On the other hand, an out-of-

process application (e.g., stand-alone) runs in its process in the computer memory,

making it much faster as it is independent of the CAD system. The Symmetry Detector

GUI has been developed at the macro level. The is modelled as a User Form, while the

steps of the proposed CASD method are split into four VBA Sub procedures (Figure 33):

Sub AnalysisBrep, Sub GenerateTrimCandidates, Sub EvaluateCandidates, Sub

VisualisePlanesAxes.

Figure 33. Structure of Sub procedures within the Symmetry Detector

4.1.1 Input 3D CAD models

As already stated, the proposed CASD method intends to be general, and its

implementation into a CAD system (and later its validation in Chapter 5) shall confirm

the generality. For that purpose, three types of input 3D CAD models were included in

the implementation:

1) Native file format (Solidworks),

2) Kernel file format (Parasolid) and

3) Neutral file formats (STEP).

Limiting the CASD to native CAD models designed only in Solidworks would be a

significant implementation constraint. Kernel formats facilitate one-to-one interpretation

Symmetry

Detector GUI

Sub

Main

Sub AnalysisBrep

Sub GenerateTrimCandidates

Sub EvaluateCandidates

Sub VisualisePlanesAxes

109

between CAD systems sharing the same geometric modelling kernel. Neutral file formats

are commonly used to exchange CAD models between different systems with varying

geometric modelling kernels. Thus, they are a logical input. Until now, none of the

previous CASD studies [16,23,42,63,66] had considered all three types of CAD model

file formats as inputs for symmetry detection, which represents a novelty. The

requirement for symmetry detection is that the 3D CAD model is interpreted free of

topology or geometry errors. In Solidworks, any existing error in the 3D CAD model can

be checked with iModelDocExtension.GetWhatsWrong(). Alternatively, if such analysis

tools are unavailable through the CAD system API functionalities, the topology can be

checked with the Euler equation (15) or visually by the engineer. After the interpretation

of the input 3D CAD model, the next step is the analysis of the B-rep.

4.1.2 Analysis of B-rep

In the Sub procedure AnalysisBrep, the B-rep is analysed. This step of the CASD method

is divided into several sub-steps: merging and classification of topology and calculation

of face and edge properties. When implementing the method into a CAD system, the

topological data structure of the B-rep needs to be considered first. Figure 34 provides a

flowchart of the relationship between topological entities and their accessibility via the

Solidworks API. The flowchart applies to manifold CAD models. The relationship

between the topological entities is essential for classifying faces and edges and

determining how they are connected to loops. Loops are utilised for the string code

designation of edges when computing the Cosine similarity.

Figure 34. Relationship between topological entities

Bodies

Faces

Part

document

Face Edges

Body

Loops

Loop

Edge

110

The topological entities are accessed through a top-to-down approach, with the part

document on the roof and one or more bodies below (this research is limited to parts with

a single body. The next level below is the body object from which the corresponding faces

and edges can be retrieved. Underneath the face are the edges that bound the face and

belong to loops. Each edge is associated with two adjacent faces and belongs to one or

two loops, both of which can be obtained from the edge object. Each loop points to an

associated face and two edges. When implementing the method, it is important to consider

the types of surfaces and edges supported by the CAD system. These can be retrieved

from the associated faces and edges. Table 15 provides the types of analytic and numeric

surfaces and curves included in the implementation in Solidworks.

Table 15. Types of surfaces and edges and their labels.

Types of surfaces

and curves in Solidworks

Label

abbreviation

F
a

ce
s

A
n

a
ly

ti
c

Plane PL

Cylinder CY

Cone CO

Sphere SP

Torus TO

N
u

m
er

ic

Blend BL

B-spline surface BS

Extruded EX

Offset OD

Surface of revolution SR

E
d

g
es

A
n

a
ly

ti
c

Line LI

Circle CI

Ellipse EL

N
u

m
er

ic

B-spline curve BC

Constant parameter curve CP

Intersection IN

Trimmed TR

SP curve SC

The naming of faces and edges is taken over from Solidworks. For instance, the cylinder

represents a cylindrical surface, the cone a conical surface, the sphere a spherical surface,

and so on. These surface types and curves are common in CAD systems that use the

Parasolid geometric modelling kernel, including Solidworks, NX, and Solid Edge (Table

7). Solidworks can automatically merge periodic faces during the 3D CAD model import

111

process, eliminating the need for the sub-step topology merging. However, this is not the

case in certain other CAD systems like CATIA V5 and FreeCAD. The B-rep analysis

begins by labelling topological entities, including faces and edges, each labelled with two

letters (as shown in Table 15) and a digit counting to the total number of faces for a given

surface type. For example, planes are designated with PL1, PL2, PL3, PL4, etc., cylinders

with CY1, CY2, CY3, CY4, etc., cones with CO1, CO2, CO3, CO4, etc., B-spline surface

with BS1, BS2, BS3, BS4, etc., lines with LI1, LI2, LI3, LI4, etc., circles with CI1, CI2,

CI3, CI4, etc., B-spline curves with BC1, BC2, BC3, BC4, and so on). The labelling of

topological entities enables their selection for retrieving certain properties, for example,

the face centroid or the edge midpoint, or their highlighting, colouring, etc. All faces and

edges in the 3D CAD model are retrieved as arrays with the Body2.GetFaces() and

Body2.GetEdges() methods. The labelling of topological entities implies that all faces and

edges are looped and labelled using the iModelDoc2.SetEntityName() or

iPartDoc.SetEntityName() method, which is valid for the labelling of faces, edges, and

vertices. After labelling, all faces and edges are classified according to their associated

surface and curve type using the iSurface.Identity() and iCurve.Identity() methods.

Finally, the specific properties of faces and edges can be obtained using the commands

outlined in Table 16. The outputs of the B-rep analysis are a set of arrays representing the

classes of faces and edges. Additional classes not explicitly given in Table 15 are those

generated from open periodical surfaces (open cylinder, open cone, open blend, open

sphere, and open torus). Those surface classes are distinguished based on the periodicity

angle (as described is Subsection 4.1.2).

The row structures of the arrays depend on the surface type. For planes, the array rows

have the following form: (Face label; Area; xFC; yFC; zFC; nFC, x; nFC, y; nFC, z). All array

rows of open faces have the following form: (Face label; Area; xFC’; yFC’; zFC’; nFC’, x; nFC’,

y; nFC’, z). All other closed faces have the following form of the array rows: (Face label;

Area; xFC’; yFC’; zFC; aFC, x; aFC, y; aFC, z). The coordinates xFC, yFC, and zFC represent the

face centroid, while xFC’, yFC’, and zFC’ the projection of the face centroid onto the face.

The variables nFC, x, nFC, y, and nFC, z are the components of the face normal vector at the

centroid point, while nFC’, x, nFC’, y, and nFC’, z are the components of the face normal vector

at the projection point of the centroid onto the face. The variables aFC, x, aFC, y, and aFC, z

represents the components of the face’s axis vector at the centroid point.

112

Table 16. Solidworks API objects and methods for obtaining specific properties of

edges and faces.

Parameter or property SOLIDWORKS

Get all faces in 3D CAD model iBody2.GetFaces()

Face area iFace2.GetArea()

Get the loops of a face iFace2.GetLoops()

Get loop type iLoop2.IsOuter()

Get faces in 3D CAD model iBody2.GetFaces()

Get surface type of a face iSurface.Identity()

Get edges in 3D CAD model iLoop2.GetEdges()

Get curve type of an edge iCurve.Identity()

Surface parameters

iSurface

↓

.ConeParams2()

.CylinderParams()

.PlaneParams()

.SphereParams()

.TorusParams()

. GetRevsurfParams()

.GetExtrusionsurfParams()

.GetOffsetSurfParams2()

.Parameterization2()

Face centroid (FC) iFeatureManager.InsertReferencePoint()

FC projection onto the face iSurface.GetClosestPointOn()

Face normal iSurface.EvaluateAtPoint()

Edge length iCurve.GetLength2()

Edge midpoint iFeatureManager.InsertReferencePoint()

After analysing the B-rep, the next steps involve generating, trimming and evaluating

POSCs and AOSCs. The part of the source code for conducting the B-rep analysis in the

computational environment is provided in Appendix A1.

4.1.3 Generation and trimming of planes and axes of symmetry candidates

The two steps of the CASD method, generation and trimming of POSCs and AOSC, are

covered in one Sub procedure, namely GenerateTrimCandidates. This has been done for

practical reasons, as those two steps are naturally correlated. As already stated, the

proposed method relies on the implicit symmetry detection approach, which means that

a set of POSCs and AOSCs are generated from the PAOI, single faces, and pairs of similar

faces (see Section 3.3). Usually, the PAOI may be retrieved as a standard mass property

in most CAD systems. In Solidworks, this property can be gathered by the

113

iModelDocExt.GetMassProperties2() command (Table 17). The part of the source code

for the retrieval of PAOI within the computational environment is given in Appendix A2.

Table 17. Solidworks API objects and methods for generating and trimming of POSCs

and AOSCs

Parameter or property SOLIDWORKS Command

Get 3D CAD model’s COG and PAOI iModelDocExt.GetMassProperties2()

Get 3D CAD model’s minimum bounding box iPartDoc.GetPartBox()

Get curve type of an edge iFeatureManager.InsertReferencePoint()

The AOSCs are generated by looping all faces of the closed cylindrical surface type

through the CAD model and retrieving their relevant parameters, the axis vector, and the

point on the axis. For POSCs, a pairwise comparison is conducted between all faces

(plane, cylindrical or B-spline surface type), and the cosine similarity measure is between

each pair (as described in Subsection 3.3.2). The generated POSCs and AOSCs are stored

in two temporary arrays and are used as input for the trimming step, whose details are

presented in Section 3.4. Coincident duplicate candidates are removed by a pairwise

comparison process of POSCs first, and AOSCs second. The distance of each remaining

candidate is checked from the COG with the point-to-plane distance for POSCs and the

point-to-line distance for AOSCs. The command PartDoc.GetPartBox() can retrieve the

3D CAD model’s minimum bounding box for calculating the candidate’s maximum

allowed distance from the COG according to Equation (82). A part of the source code for

the generation and trimming of candidates within the computational environment is

provided in Appendix A3. The remaining candidates are subjected to evaluation relying

on vector calculus (details are provided in Section 3.5.).

4.1.4 Evaluation of planes and axes of symmetry candidates

The evaluation of POSCs and AOSCs is performed in the Sub procedure

EvaluateCandidates. Generally, the computation error in the implementation was set to

ε=10−6 m, which is in the range of manufacturing accuracy in mechanical engineering.

After trimming, all remaining POSCs and AOSCs are used as input for the evaluation

step, where each candidate is evaluated with respect to the classified faces of the B-rep

using vector calculus and the specific face properties. The evaluation of candidates relies

on vector calculus, i.e., subtracting or adding two vectors, dot and cross products of two

114

vectors, vector length, and normalisation of a vector. The Solidworks API provides

corresponding objects and methods for vector calculus (see Table 18).

Table 18. Solidworks API objects and methods for evaluation of POSCs and AOSCs

Parameter or property SOLIDWORKS Command

Create a vector iMathUtility.CreateVector()

Subtract two vectors Set VectorOperation = Vector1.Subtract(Vector2)

Add two vectors Set VectorOperation = Vector1.Add(Vector2)

Get length of a vector iMathVector.GetLength()

Get unit vector iMathVector.Normalise()

Get dot product between two vectors iMathVector.Dot()

Get cross product between two vectors iMathVector.Cross()

Section 3.5 discusses the evaluation process of detecting symmetric face pairs and self-

symmetric stand-alone faces. For each POSC, symmetric face pairs are detected by

pairwise comparison of faces from the same class, while symmetric stand-alone faces are

detected by looping all faces in the 3D CAD model. Similar, for each AOSC, self-

symmetric stand-alone faces are evaluated by looping individually all faces in the 3D

CAD model. This individual looping of faces can be done simultaneously with the

pairwise comparison. The theoretical background of this step is provided in Section 3.5.

A part of the source code for the evaluation of candidates within the computational

environment is provided in Appendix A4. If the evaluation shows that the corresponding

POSC or AOSC also represents the APOS or AAOS, it is visualised within the 3D CAD

model.

4.1.5 Visualisation of actual planes and axes of symmetry

The visualisation of APOSs and AAOSs is conducted in the Sub procedure

VisualisePlanesAxes. Once the symmetry detection has been finished, the APOSs and

AAOS are visualised within the 3D CAD model to provide the symmetry information to

the user. The visualisation of the APOS and AAOS implies that they are created within

the 3D CAD model as a reference plane or reference axis. In most CAD systems, a

reference plane or an axis cannot be created directly but indirectly through other reference

geometry. For instance, a reference point indicating the position and a reference line

indicating the orientation are required to create a plane. The same applies to a reference

axis. The strategy for creating the plane or axis in Solidworks is to create a point and a

115

line in a 3D sketch, where the point represents the position while the line represents the

orientation of the APOS or AAOS. The API objects and methods for that are provided in

Table 19. The created plane or axis is uniquely named “POS” or “AOS” including a digit

that starts from 1 and counts to the total number of detected APOS or AAOS.

Table 19. Solidworks API objects and methods for creating a plane or axis.

Parameter or property SOLIDWORKS

Create a 3D sketch iSketchManager.Insert3DSketch()

Create a point within the 3D sketch iSketchManager.CreatePoint()

Create a line within the 3D sketch iSketchManager.CreateLine()

Create a plane within the 3D CAD model iFeatureManager.InsertRefPlane()

Create an axis within the 3D CAD model iFeatureManager.InsertRefAxis()

The visualisation of APOSs and AAOS represents only one part of the symmetry

information. Another important aspect is the visualisation of symmetric and asymmetric

faces in the 3D CAD model associated with the corresponding APOS or AAOS. This is

achieved through a Symmetry Detector GUI. In addition, a results file has been proposed

to permanently store the symmetry detection results for each CAD model, which can be

loaded into the GUI anytime for visualisation purposes.

4.1.6 Graphical user interface and results file

The developed Symmetry Detector GUI, which is illustrated in Figure 35, provides a set

of commands that enables the engineer to conduct the symmetry detection process and

postprocessing of the symmetry detection results. Symmetry Detector can process the

currently open 3D CAD model within the CAD system or repository of 3D CAD models

from some location. Postprocessing includes the retrieval and visualisation of the

symmetry detection results.

116

Option buttons single CAD

model or repository

Start of symmetry detection
Location of repository

General info
Opening of results file

Loading or opening of

results file List of APOSs and AAOS

List of symmetric faces List of non-symmetric faces

Colours for symmetric faces
Colours for non-symmetric

faces

Summary of surface types
Symmetry measures

Figure 35. The Symmetry Detector GUI

Symmetry Detector is a tool that offers helpful information about the symmetry of 3D

CAD models. It can detect the type of symmetry and provide details about the number of

detected APOS and AAOS. The tool has three command buttons that allow users to start

the symmetry detection process, load files, and open results. The list of symmetric faces

contains face pairs (e.g., PL1-PL2) and stand-alone faces (e.g., CY2). Different colouring

of faces can also provide better visualisation of the results. Additionally, Symmetry

Detector provides information about the number of faces in a 3D CAD model, as well as

corresponding symmetry measure scores (SFI and GSI) for the selected APOS or AAOS.

Each time a 3D CAD model is subjected to symmetry detection, results are saved in a

*.txt file with the same name and location as the 3D CAD model. The file includes general

information, a list of faces and their properties, COG and axes of inertia, an overview and

count of surfaces, a list of planes and axes of symmetry and their symmetric faces, as well

as the total count of detected symmetry planes and axes (Figure 36).

117

File name: Part1. sldprt

File location: C:\Users\CAD models

Date and time: 15/01/2023 14:42

(Plane; PL1; 32; −6; 2,5; −3,4641; −0,86603; 0; −0,5)

(Plane; PL2; 32; −6; 2,5; 3,4641; −0,86603; 0; 0,5)

(Plane; PL3; 32; 0; 2,5; 6,9282; 0; 0; 1)

(Plane; PL4; 32; 6; 2,5; 3,4641; 0,86603; 0; 0,5)

(Plane; PL5; 32; 6; 2,5; −3,4641; 0,86603; 0; −0,5)

(Plane; PL6; 32; 0; 2,5; −6,9282; 0; 0; −1)

COG=(0; 0,0025; 0)

n1=(0; 0; 1)

n2=(1; 0; 0)

n3=(0; 1; 0)

PLANES: 8

CYLINDERS: 1

OPEN-CYLINDERS: 12

CONES: 0

OPEN-CONES: 0

SPHERES: 0

OPEN-SPHERES: 0

TORUSES: 0

OPEN-TORUSES: 0

BLENDS: 0

BSURFACES: 0

OFFSETS: 0

EXTRUSIONS: 0

REVOLVES: 0

SEMI-REVOLVES: 0

TOTAL FACES: 21

PLANE OF SYMMETRY 1:

PL1-PL3

PL2

PL4-PL6

PL5

PL7

PL8

NUMBER OF SYMMETRIC FACES POS 1: 21

SYMMETRICAL FACES INDEX POS 1: 1

GLOBAL SYMMETRY INDEX POS 1: 1

TOTAL NUMBER OF POS: 1

TOTAL NUMBER OF AOS: 0

Figure 36. An example of the results file

4.2 Implementation of the CASD method into alternative CAD systems

The previous section describes the implementation of the method into the CAD system

Solidworks using its API functionalities. However, it is important to note that the method

could also be implemented in other CAD systems through their APIs. To demonstrate

this, the implementation of the method in alternative CAD systems such as NX and

FreeCAD was investigated. As previously mentioned, NX uses the Parasolid modelling

kernel and offers almost the same geometrical entities as Solidworks, with the addition

of two types of curves parabola and hyperbola (Table 7). FreeCAD, on the other hand, is

an open-source CAD system that employs the Open CASCADE geometric modelling

kernel [143]. The B-rep data structure in Open CASCADE is based on the STEP file data

structure (Table 8). Considering the differences between the B-rep data structure in

Solidworks/NX and FreeCAD, some adjustments may be necessary in terms of face and

edge classes to implement the CASD method. Table 20 compares the existing Solidworks

API commands with those available in NX and FreeCAD that provide the same

functionalities. None of the listed commands require any special licensing. The

commands in Table 20 are mainly related to the B-rep analysis step. Other steps of the

CASD method were not considered because they could be replaced by custom-written

functions or libraries that provide the required functionalities. Alternatively, other steps

can be performed in non-CAD software, such as MATLAB, using the data obtained from

the B-rep analysis step.

118

Table 20. Comparison of API commands in Solidworks, NX, and FreeCAD

Description Solidworks NX FreeCAD

Get all faces in

the 3D CAD

model

iBody2

↓

.GetFaces()

* UF.Modeling

↓

.AskBodyFaces()

*Body

↓

.GetFaces()

Part.Shape

↓

.Faces()

Face’s surface

type

iSurface

↓

.Identity()

* UF.Modeling

↓

.AskFaceType()

*Face

↓

.FaceType()

Part.Shape.Face

↓

.Surface()

Get edges in 3D

CAD model

iFace2 or iBody or iLoop2

↓

.GetEdges()

* UF.Modeling

↓

.AskFaceEdges()

*Body

↓

.GetEdges()

Shape

↓

.Edges()

Shape.Face

↓

.Edges()

Edge’s curve

type

iCurve

↓

.Identity()

* UF.Modeling

↓

.AskEdgeType

Part.Shape.Edge

↓

.Curve()

Labelling of

topology

iPartDoc.

↓

SetEntityName()

*Face or *Edge

↓

.SetName() or .Tag()

N/A

Face area
iFace2

↓

.GetArea()

*MeasureFaces

↓

.Area()

Part.Shape.Face

↓

.Area()

Surface

parameters

iSurface

↓
*UF.Modeling

↓

.AskFaceData()

.AskBsurf()

.AskFacePeriodicity

Part.Shape.Face

↓

.ParameterAt()

.ParameterRange()

.Surface.Axis()

.ConeParams2()

.CylinderParams()

.PlaneParams()

.SphereParams()

.TorusParams()

. GetRevsurfParams()

.GetExtrusionsurfParams()

.GetOffsetSurfParams2()

.Parameterization2()

Face centroid
iFeatureManager

↓

.InsertReferencePoint()

*GenericMeasure

↓

.MassProperties()

Part.Shape.Face

↓

.CenterOfMass()

Face centroid

projection

onto the face

iSurface

↓

.GetClosestPointOn()

*UF.Modeling

↓

.AskFaceParm()

Part.Shape.Face

↓

.MakeParallelProjection()

Face normal
iSurface

↓

.EvaluateAtPoint()

*UF.Modeling

↓

.AskFaceProps()

Part.Shape.Face

↓

.NormalAt()

Edge length
iCurve

↓

.GetLength2()

*Edge

↓

.GetEdges()

Part.Shape.Edge

↓

.Length()

Edge midpoint
iFeatureManager

↓

.InsertReferencePoint()

*GenericMeasure

↓

.MassProperties()

Part.Shape.Edge

↓

.CenterOfMass()

Get loops
iFace2

↓

.GetLoops()

**Face

↓

.Loops()

Shape.Face

↓

.Wires()

Loop type
iLoop2

↓

.IsOuter()

**Loop

↓

.OuterLoop()

Part.Shape.Face

↓

.OuterWire()

Mass properties

(COG or COM

and PAOI)

iModelDocExt

↓

.GetMassProperties2()

*UF.Modeling

↓

.AskMassProps3d()

Part.Shape

↓

.CenterOfMass()

.PrincipalProperties()

Minimum

bounding box

iPartDoc

↓

.GetPartBox()

*ModlGeneral

↓

.AskBoundingBox()

Part.Shape

↓

.BoundBox()

 * – NXOpen. ** – SNAP.NX.

119

It is interesting to note that both alternative CAD systems do not require workaround

solutions like in Solidworks API to compute the face centroid or edge midpoint, which

can be computed directly through existing API commands. FreeCAD lacks commands

for the custom labelling of topological entities. FreeCAD does not have specific

commands for the custom labelling of topological entities. However, this is not a

significant drawback, as a default labelling of topological entities is provided and can be

used for implementation purposes. By default, faces are designated with “Face” plus an

enumeration that starts from 1 to the total number of faces in the CAD model (e.g., Face1,

Face2, Face3, etc.). The same applies to edges and vertices, except that they are instead

of “Face” designated with “Edge” or “Vertex”. In addition, when implementing the

method in FreeCAD, it is noticeable that wires are equivalent to loops in NX or

Solidworks. Based on the investigation, it is feasible to implement the proposed CASD

method into the considered alternative CAD systems using their APIs. However,

additional programming effort and possibly changes in the strategy for retrieving method-

relevant data are required. The CASD method and computational environment are

validated in the following chapter.

120

5 VALIDATION & DISCUSSION

__

This chapter focuses on the validation of the proposed method for detecting symmetry, as

well as its implementation in a computational environment. The Validation Square, which

consists of Structural and Performance validation is employed for that purpose.

Additionally, a discussion is conducted alongside the validation process. Finally, the

chapter concludes with a discussion of the research implications for both research and

practical application.

¯¯

The proposed CASD method and its implementation into a CAD system are validated

using the Validation Square [33]. The Validation square was initially introduced to

validate engineering design methods but can also be used for validating research in

general because it represents a systematic and comprehensive validation approach. The

Validation Square builds confidence in the method's usefulness by evaluating its

effectiveness and efficiency through qualitative and quantitative measures. Hence, the

Validation Square is compound of two parts [33]:

1) Structural validation, which is a qualitative assessment that aims to evaluate the

method’s effectiveness, i.e., whether the symmetry detection is correctly, and

2) Performance validation, which is a quantitative assessment that aims to evaluate

method’s efficiency, i.e., whether the symmetry detection is correct.

The process of structural validation involves acknowledging the validity of each

individual step that comprises the method, confirming the consistency of the method by

examining how these steps are integrated, and verifying the appropriateness of the

example problems used in the performance validation. Conversely, the performance

validation requires determining the effectiveness of the method in achieving its initial

purpose for specific example problems, acknowledging that effectiveness is linked to the

application of the method, and assessing the method's overall usefulness beyond the

example problems. In this context, structural validation pertains to the validation of the

CASD method, while performance validation pertains to the validation of the

computational environment in which the CASD method is implemented. For the

121

performance validation, two datasets were gathered, which are discussed in the following

section.

5.1 Data Collection

The CAD models included in both datasets are exclusively solid B-rep CAD models with

manifold geometry and single parts with one body, as outlined in Section 1.2. The

objective of the first dataset is to validate the sensitivity of the computational environment

against various input CAD model formats including native Solidworks, Parasolid, and

STEP, created in different CAD systems such as Solidworks, CATIA V5, and FreeCAD.

and their interpretation of B-rep within the implemented CAD system. These models are

then interpreted as B-rep within the implemented CAD system. The second dataset is

intended to validate the accuracy and time complexity of symmetry detection. The CAD

models from both datasets were carefully selected to represent relevant examples from

practice.

The first dataset comprises 20 representative 3D CAD models each created in three

different CAD systems: Solidworks, CATIA V5, and FreeCAD. These CAD models

were exported in STEP format and utilised for performance validation. All models within

this dataset were either exact reflectional or axisymmetric, without any non-symmetric

parts. Each 3D CAD model from this first dataset was modelled in three different CAD

system but in the same manner, using features in the same sequence. To confirm that the

models were truly exact global reflectional symmetric, the final shape was mirrored with

respect to the plane of symmetry. Similarly, the axisymmetric CAD models were

obtained by revolving a profile around an axis to ensure that the parts were exact global

symmetric. In addition to the native CAD models, 20 Parasolid formats were also

included in this dataset, exported from the native Solidworks files. Therefore, the total

number of CAD models within this initial dataset is 100 (20 native Solidworks CAD

models, 20 Parasolid CAD models, 20 STEP Solidworks CAD models, 20 STEP CATIA

V5 CAD models, and 20 STEP FreeCAD CAD models). The 3D CAD models were

carefully selected to ensure a balanced representation of both analytic and numeric

geometry. Specifically, the first dataset comprises 73% analytic surfaces and 27%

numeric surfaces, as depicted in Figure 37. A sample of the first dataset is shown in

Figure 38.

122

Figure 37. A bar chart of relative frequencies of surfaces within the first dataset

a) Cover b) Crankshaft c) Housing

d) Bottle e) Fork f) Chair

g) Gear housing h) Shaft i) Handle

Figure 38. A sample of the first dataset

2
25

4
20

10
 1

2

28
 9

3

31
 3

8

1
 1

4

5
98

0

5

10

15

20

25

30

35

el

a

e

e

en

e

 e al el ()

123

The second dataset comprises 1000 CAD models in STEP format and is significantly

larger than the first. Figure 40 shows a sample of the collected data. Its purpose is to

validate the time complexity and accuracy of the implemented CASD method. The CAD

models of this second dataset were collected from GrabCAD and PARTCommunity

[144,145], and represent various mechanical parts manufactured through casting,

moulding, forming, and machining. The selected 3D CAD models ensure a fair

representation of analytic and numeric geometry. Analytic surfaces, such as planes,

cylinders, cones, toruses, and spheres, account for roughly 75% of all faces, while

numeric surfaces, such as B-splines and surfaces of revolution, account for the remaining

25% (Figure 39). The dataset also includes CAD models in arbitrary orientations and

positions in the 3D model space to test the sensitivity of the CASD method. The models

in this second dataset are categorised as:

1) exact global reflectional symmetric parts (Figure 40, a – l),

2) exact global axisymmetric parts (Figure 40, m – p),

3) partial reflectional symmetric and axisymmetric parts (Figure 40, q – t), and

4) non-symmetric (Figure 40, u – x).

Figure 39. A bar chart of relative frequencies of surfaces within the second dataset.

In Figure 40, there are global reflectional symmetric parts that can have one (a – d), two

(e – h), or multiple APOS (i – l). The models vary in complexity, ranging from very

simple with only a few faces to highly intricate with several hundred faces.

1
38

5
90

8
54

26
 0

3
 3

8

14
 2

4

6
49

0

5

10

15

20

25

30

35

40

el

a

e

e

en

e

 e al el ()

124

a) b) c) d)

e) f) g) h)

i) j) k) l)

m) n) o) p)

q) r) s) t)

u) v) w) x)

Figure 40. As sample of the second dataset

125

The total sizes of the datasets in this research are considerably larger compared with prior

CASD studies. For example, the studies referenced in [16,63] utilised 45 CAD models in

STEP format, while others employed 10 CAD models in ACIS format and 32 CAD

models in native CATIA V5 format [23,42,25]. In conclusion, both datasets collected in

this study are used in performance validation. However, before that, it is important to

examine the appropriateness of the gathered data in the structural validation. The

following section focuses on structural validation.

5.2 Structural Validation

As outlined at the beginning of this chapter, the method's structural validation phase

comprises three key phases. In the first phase, the method's individual steps, as described

in Chapter 3, are validated with the help of literature to build confidence in their validity.

Moving on to the second phase, the focus shifts to building confidence in the method's

internal consistency by examining the information flow of its steps using flowchart

representations. Lastly, the third phase builds confidence in the example problems

selected for the performance validation. The following subsections delved deeper into

each of these three structural validation phases.

5.2.1 Validity of individual steps of the CASD method

The first step of the symmetry detection method is interpreting the input 3D CAD model.

Prior studies [16,14,23,42,63,66] utilised a CAD system as an interpreter to read the B-

rep model and retrieve its topological and geometrical information for the subsequent

steps. The typical interpreters used in previous studies were commercial CAD systems,

such as CATIA V5 and NX, or open-source CAD systems, such as Open CASCADE.

The next step, which is the analysis of B-Rep, comprises three sub-steps: merging of

topology, classification of topology, and computation of properties of faces and edges.

Merging of topology involves combining split faces and edges to obtain the B-rep in terms

of maximal faces and edges [20]. Usually, the split faces are adjacent and share the same

edge(s), underlying surface type, and properties. Split faces are often adjacent and share

the same edge(s), underlying surface type, and properties, and are typically an issue

related to periodical surfaces that are partitioned into two halves during the CAD

modelling process. Combining split faces is essential to prevent local asymmetry in the

126

CAD model. For example, if two faces of the cylindrical surface type are reflectional

symmetric and both are partitioned into two halves, the symmetry in the CAD model is

disturbed unless the partitioned face halves are merged. Previous CASD studies

[16,14,63,66] have also emphasised the importance of this sub-step.

During the second sub-step, topology classification, groups topological entities according

to their associated geometric entities. topological entities are grouped based on their

associated geometric entities. There are two primary reasons for conducting this

classification. The first reason is that symmetric properties are shared among faces of the

same class, which can then be used to generate POSCs and AOSCs, as established by

various studies [16,14,23,42,63,66]. The second reason is that only faces from the same

class can be reflectional symmetric. In the final sub-step, face and edge properties are

calculated to assign specific geometrical parameters and properties to topological entities,

which are then used for symmetry detection. Previous CASD studies have extracted

surface and curve parameters for faces and edges [16,14,63,66] and computed loop

properties [23,42].

The following two steps of the method, generation and trimming of candidates, are also

common in CASD studies [16,14,23,42,63,66]. Candidates are generated by pairing

[23,42] and from single topological entities [16,23,42,63] but not from the PAOI, which

appears to be novel in the context of symmetry detection in B-rep CAD models.

Moreover, the presented method introduces a novel criterion for matching pairs of

topological entities. The Cosine similarity measure is proposed instead of comparing

properties such as the area and number of edges [23,42]. Unlike previous studies

[16,23,42,63], candidate trimming in this research encompasses the removal of not only

duplicates but also unsuitable candidates that are significantly distanced from the 3D

CAD model's COG.

In implicit CASD approaches [40,55], evaluating candidates is a crucial step that applies

not only in the B-rep context. However, there is a key difference between the evaluation

methods proposed in this study and those in other B-rep CASD studies [16,23,42,63].

While other studies mainly evaluate candidates to each other, this study evaluates each

candidate individually, considering all faces in the 3D CAD model. The evaluation

procedure employs vector calculus to create and exploit face position vectors and normal

127

vectors, which help detect symmetric face pairs, while the face centroid or its projection

onto the face helps detect symmetric stand-alone faces. Additionally, our evaluation

criteria for symmetry within the B-rep CAD model rely on two proposed measures - the

SFI and GSI. The SFI measures the topology's symmetry, while the GSI measures the

geometry's symmetry within the B-rep CAD model. The SFI is a function of symmetric

face pairs and self-symmetric stand-alone faces, while the GSI is a function of the surface

area of symmetric face pairs and self-symmetric stand-alone faces. SFI and GSI aim to

provide a measure of exact global, partial, and non-symmetry, which represents a novel

approach compared to related past CASD studies. These studies evaluated candidates by

ranking them according to loop area and the number of edges [23,42] and propagated

candidates over the entire B-rep until all surfaces were covered without the occurrence of

asymmetry.

In CASD, it is common practice to visualise the detected planes and axes of symmetry

within a 3D object. This step provides engineers with direct information about the

detected symmetry and has been utilised in several studies [16,14,23,42,63,66].

Additionally, the method entails visualising symmetric and non-symmetric faces within

the 3D CAD model in relation to the corresponding planes and axes of symmetry.

Furthermore, the symmetry detection results are permanently stored in an external results

file. This represents a novel approach to the practical application of symmetry detection

in B-rep CAD models, which is noteworthy.

To summarise, this study proposes a novel method for detecting symmetry using a

geometric-based CASD approach. Unlike previous studies that viewed the B-rep as an

infinite point set model, this method represents each face by a unique point. The face

centroid, or its projection onto the face, ensures that identical-shaped faces are always

represented by equivalent points. By transforming the B-rep CAD model into a set of

points, the number of points equals the total number of faces in the CAD model. Apart

from the position information, each point has additional characteristics, the normal or axis

vector, that provide surface orientation information. This unique point approach reduces

the size of the analysis model without losing symmetry recognition capabilities. It also

changes the subsequent steps compared to prior CASD studies, as each POSC and AOSC

is evaluated individually based on the unique points of the CAD model rather than

through mutual comparison [16,42].

128

5.2.2 Consistency of the CASD method

During the second phase of structural validation, emphasis is placed on ensuring the

consistency of the method by utilising an information flow-chart representation. This

approach instils confidence in the way the method steps are put together. In the context

of the proposed symmetry detection method, a comprehensive information flow chart has

already been presented for each step within Chapter 3, detailing the inputs and outputs of

each step. However, further explanation of each step's input and output is provided in the

following paragraphs.

The first input in the information flowchart that needs to be considered is the 3D CAD

model employed for symmetry detection. The presented CASD method essentially puts

no restrictions on the input 3D CAD model, if it is a B-rep model. This is because the

method relies on the unique points approach that could be adjusted to any input 3D CAD

model format with B-rep. For implementation purposed the input 3D CAD models were

limited to native Solidworks, kernel Parasolid, and neutral STEP formats. The datasets

used for validation are described in Section 5.1. The inclusion of other CAD formats,

such as native from other CAD systems, may be limited to the interpretation possibilities

of the CAD system where the computational environment has been developed. However,

including three different types of CAD model formats in this study represents an

enhancement compared to past studies [16,23,66]. Also, the introduced symmetry

detection method can process analytic and numeric surfaces. At the same time, the past

CASD studies were mainly restricted to analytic surfaces due to the difficulties in

detecting the symmetry properties of numeric surfaces [63]. The input 3D CAD model

for CASD is used in the interpretation step, which is conducted utilising a CAD system.

The way in which the input CAD model is interpreted may vary depending on the file

format. When using a native CAD model, interpretation issues are usually not a concern.

A CAD model in kernel format can also be interpreted without issue if the underlying

modelling kernel is the same as that of the CAD system. However, interpreting neutral

files can be more challenging as it may result in invalid topology or geometry, as well as

an approximation of geometry (possible scenarios have been discussed in Section 2.4).

Despite this, it has been demonstrated that CAD systems are able to interpret neutral

STEP files with a high degree of accuracy, with an accuracy of at least below 10–6 m for

129

both analytic and numeric surfaces [127]. A detailed discussion of the interpretation

process can be found in Section 5.3.

The interpreted CAD model is used as input for the B-rep analysis step to generate

classified topology as output. The output of the B-rep analysis step is the classified

topology, including their specific properties (Figure 13). The classified topology is used

as input in two steps. The first is the candidate generation step to generate POSCs and

AOSCs (Figure 18), and the second is the candidate evaluation step (Figure 18). The

candidate generation step produces a set of POSCs and AOSCs as output, which is

employed as input in the candidate trimming step (Figure 24). The initial set of generated

POSCs and AOSCs is reduced in the trimming step. Hence, the output of this step is the

remaining POSCs and AOSCs. These remaining POSCs and AOSCs, along with the

classified geometry, are utilised as input to evaluated for symmetry. If the evaluation step

confirms the existence of symmetry through the proposed symmetry measures, the output

of this step is the detected APOS or AAOS.

The interpreted CAD model is used as input for the B-rep analysis step to generate

classified topology as output (Figure 13). This classified topology is then used as input in

the candidate generation (Figure 18) and candidate evaluation steps (Figure 25 and Figure

26). The candidate generation step produces a set of POSCs and AOSCs, which is further

reduced in the candidate trimming step to obtain a final set of POSCs and AOSCs (Figure

24). These remaining POSCs and AOSCs, along with the classified geometry, are

subjected to evaluation for reflection symmetry or axisymmetry (Figure 25 and Figure

26). If the evaluation confirms the presence of symmetry, the final output of the CASD

method is either an APOS or AAOS visualised in the 3D CAD model.

5.2.3 Appropriateness of the example problems

The final phase of structural validation is accepting chosen example problems for

performance evaluation by building confidence in their appropriateness. As proposed in

the Validation Square [33], these examples are case studies that support a claim of

generality. However, in this study, two datasets consisting of representative 3D CAD

models were utilised for performance validation instead of case studies. The

appropriateness of these datasets can be observed from several aspects, including their

130

size, origin, CAD format types, symmetry types, surface types, and types of mechanical

parts.

The first aspect of the appropriateness of example problems is the size of the dataset. A

considerable dataset size utilised for validation suggests a broad range of CAD models

comprising diverse combinations of topological entities and geometric shapes. In sum,

there are 1100 CAD models undergoing symmetry detection, which instils trust that the

CASD method is exposed to various example problem scenarios that may not arise in a

considerably smaller dataset.

Moving on to the next aspect, the origin of the datasets, it is worth noting that the CAD

models in the first smaller set were created using three distinct CAD systems, each

utilising a different geometric modelling kernel. On the other hand, the second larger

dataset was meticulously curated from online libraries of CAD models [144,145],

featuring various relevant examples from real-world practice, modelled in diverse CAD

systems by a multitude of users with their own unique CAD modelling techniques. This

builds confidence that the sample problems are abundant in diversity.

The following aspect to consider is the variety of CAD formats present in the datasets.

The first dataset includes native Solidworks, kernel Parasolid, and neutral STEP formats.

This dataset is comprised of 20 unique CAD models designed in distinct CAD systems

and represented by various formats. The STEP formats in this dataset originate from three

CAD systems (Solidworks, CATIA V5, and FreeCAD), each utilising a unique geometric

modelling kernel. The native and Parasolid files were created using Solidworks software.

The CAD models were meticulously designed to ensure that their geometric shapes are

exactly reflectional symmetric and axisymmetric. As a result, this dataset serves as an

etalon for validating the CASD method’s ability to detect symmetry. Therefore, this

aspect instils confidence that the CAD models used for symmetry detection are

appropriate to test the CASD method’s generality.

Another aspect is to ensure representative types of symmetries within the datasets are

appropriate, particularly in the second larger dataset. This dataset is utilised to validate

the accuracy of the symmetry detection. As previously noted in Section 5.1, the

highlighted types of symmetries include exact global and partial reflectional symmetric

131

and axisymmetric models, as well as non-symmetric CAD models. This aspect builds

confidence for validating the accuracy of the symmetry detection.

The last aspect to consider when evaluating the suitability of example problems is

including a wide range of mechanical part types in the datasets. To achieve this, various

CAD models were gathered based on common manufacturing processes such as casting,

moulding, forming, and machining. This diverse collection of CAD models ensures that

the datasets adequately represent analytical and numerical surface types. A visual

depiction of the corresponding bar charts of surface types in the datasets is given in Figure

37 and Figure 39. The datasets consist of parts where symmetry represents a functional

requirement. For example, for rotational parts (gears, shafts, etc.), the detection of

symmetry is essential to verify if they meet the functional requirements. Further, the

datasets consist of parts where symmetry represents a technological requirement. For

instance, detecting reflectional symmetry in plastic injection mould parts may provide

information about its partitioning line. Symmetry recognition within mechanical parts is

generally meaningful from the perspective of CAD, CAE, and CAM. From the standpoint

of CAD, engineers rely on this information to verify if the 3D CAD model’s geometrical

shape meets the design intent. Even if it appears visually symmetrical, local missing

features like fillets or chamfers can disrupt the symmetry. In CAE, identifying symmetry

can help reduce the size of the analysis model and its computational demand. In CAM,

recognising axisymmetry in 3D CAD models manufactured by turning represents

valuable manufacturing information. To summarise, considering the outlined arguments

for the mentioned aspects (data size and origin, CAD format types, symmetry types,

surface types, and mechanical part types), one can confidently conclude that the collected

dataset is appropriate for performance validation.

5.3 Performance Validation

As already stated, performance validation is a quantitative process with three phases.

During the first phase, representative 3D CAD models are utilised to assess the

effectiveness of the CASD method in detecting symmetry within a model. This should be

accurate and insensitive to input CAD model format and modelling origin while

maintaining an acceptable time complexity. In the second phase, the confidence of the

usefulness of the tested CAD models is built by individually evaluating each step of the

132

CASD method. Finally, the third phase involves validating the usefulness of the CASD

method beyond example problems. The three phases of performance validation are

described in more detail in the following subsections.

5.3.1 Usefulness of the CASD method with respect to example problems

The first phase involves accepting the usefulness of the initial purpose of the implemented

CASD method for example problems. These example problems are represented by the

3D CAD models from the datasets, and their appropriateness for symmetry detection has

been demonstrated in Subsection 5.2.3. The validation process is divided into two parts,

with the description of the datasets provided in Section 5.1. The first validation part is

carried out on the first dataset, and it aims to evaluate the sensitivity of the CASD method

against different input CAD model formats created using different CAD systems. The

primary objective is to confirm the consistency of the proposed CASD method and detect

any possible numerical errors. Additionally, it investigates whether CAD model

interpretation may affect the symmetry detection results and identifies any possible

differences in the detection of symmetric face pairs and stand-alone faces among input

models generated using different CAD systems. The purpose of the second dataset is to

validate the accuracy [147] and time complexity [148] of the CASD method via the

computational environment. The accuracy gauges the correctness of symmetry detection,

while the time complexity reflects the speed at which symmetry detection can be

performed. Additionally, this validation part aims to expose any unforeseen

computational or technical challenges. To accomplish this, a test-debug-test [32] cycle

was executed to ensure adherence to the intended function, with necessary modifications

made if such functionality was not achieved.

The first part of the validation is illustrated through several representative examples in

Figure 41 to Figure 42. Overall, it was found that the corresponding APOS or AAOS were

accurately detected in all 3D CAD models from this dataset, regardless of CAD system

used to design them (Figures 41 – 43). This held true also for models represented in both

native Solidworks and Parasolid formats. However, it was identified that in some rare

cases local false negative symmetry detection may occur. Specifically, a small number of

face pairs or stand-alone faces in the 3D CAD models may not be detected as symmetrical

(as shown in Figures 42 – 43). Importantly, this does not impact the overall symmetry

133

detection results at the global level, only at the local level. The primary cause of false

negative symmetry detection is that the specified computation error for exact symmetry

(ε=10–6 m) cannot always be achieved. In these cases, the computation error typically falls

within the range of ε=10–5 m.

False negative symmetry detection cases include when two reflectional symmetric faces

fail to meet the equality criterion, meaning the difference between their surface areas

exceeds εA (as per Equation (83)). This issue is common for numeric surfaces and may

also occur in analytic surfaces with complex numeric intersection curves due to inaccurate

computation of face area in Solidworks, resulting in an approximate value [146].

Additionally, if the coincidence criterion is not met within the specified ε for reflectional

symmetric or axisymmetric faces (Equations (80) and (81)), the computed face centroid

point or its point projected onto the face may not coincide with a POSC or AOSC, or the

calculated midpoint of a face pair may not coincide with a POSC. Lastly, the orientation

criterion may not be fulfilled when the lengths of cross-product vectors (Equations (86),

(88), and (92)) exceed the computation error ε during querying for reflectional symmetric

face pairs or axisymmetry stand-alone face.

The detection of global symmetry in 3D CAD models may be affected to a small extent

by variations in CAD systems, but this impact is limited to local detection. It is worth

noting that certain 3D CAD models, particularly those designed in CATIA V5, can have

partitioned B-spline faces that could cause local symmetry misdetection. However, it is

important to highlight that no false positive APOSs or AAOSs were identified. Likewise,

the first dataset contained no false positive face pairs or standalone faces.

Based on this first validation part, it can be concluded that the implemented CASD

method remains consistent and insensitive in detecting corresponding APOS or AAOS,

even if the input 3D CAD models were generated in different CAD systems or are in

native, Parasolid or STEP format.

134

Solidworks CATIA V5 FreeCAD

SFI=1

GSI=1
SFI=1

GSI=1
SFI=1

GSI=1

SFI=1

GSI=1

SFI=1

GSI=1

SFI=1

GSI=1

SFI=1

GSI=1
SFI=1

GSI=1
SFI=1

GSI=1

Figure 41. Examples of CAD models from the first dataset with the detected APOS and

AAOS (Part 1)

135

Solidworks CATIA V5 FreeCAD

SFI=1

GSI=1

SFI=0.97

GSI=0.99

SFI=1

GSI=1

SFI=1

GSI=1

SFI=0.97

GSI=0.94

SFI=1

GSI=1

SFI=0.99

GSI=0.99

SFI=0.99

GSI=0.99

SFI=0.97

GSI=0.99

Figure 42. Examples of CAD models from the first dataset with the detected APOS and

AAOS (Part 2)

136

Solidworks CATIA V5 FreeCAD

SFI=0.98

GSI=0.99

SFI=0.98

GSI=0.99

SFI=0.93

GSI=0.98

SFI=0.91

GSI=0.99

SFI=0.89

GSI=0.99

SFI=0.91

GSI=0.99

SFI=0.99

GSI=0.99

SFI=0.97

GSI=0.98

SFI=0.99

GSI=0.99

Figure 43. Examples of CAD models from the first dataset with the detected APOS and

AAOS (Part 3)

137

The second part of the validation assesses the accuracy and time complexity of the CASD

method using the second dataset, described in Section 5.1. The CASD method attempts

to identify the corresponding planes and axes of symmetry in the 3D CAD model and

identify whether the detected symmetry is exact global reflectional symmetry, partial

reflectional symmetry, exact global axisymmetry, partial axisymmetry, or non-symmetry.

Hence, evaluating the method’s accuracy can be observed as a classification problem. For

that purpose, the accuracy [147] can be calculated as follows:

TP+TN

Accuracy
TP +TN + FP + FN

= , (101)

where TP stands for true positive, TN for true negative, FP for false positive, and FN for

false negative symmetry detection result. A true positive result denotes the detection of

symmetry in the 3D CAD model when it does exist. A true negative result represents that

symmetry is not detected and does not exist in the 3D CAD model. A false positive result

indicates the detection of symmetry when it does not exist in the 3D CAD model. A false

negative result implies that symmetry is not detected in the 3D CAD model when it exists.

The time complexity has been evaluated both theoretically and experimentally using the

Big-O complexity chart [148]. This chart expresses the time complexity as a function of

the input size, which is the number of faces nF in the 3D CAD model. The time complexity

or running time is important for assessing if the CASD method can detect symmetry in a

reasonable time for practical applications. Moreover, the validation also included the

assessment of the global symmetry index threshold GSITH value, which defines the border

between partially symmetric and non-symmetric CAD models.

To ensure consistent results, the second part of the validation was conducted on the same

hardware for all 3D CAD models in the second dataset, on a Dell Precision Working

station with Intel i7-1165G7 up to 4.7 GHz processor and 16 GB RAM. As depicted in

Figure 44, the results of the symmetry detection, i.e., the detected APOS and AAOS, were

applied to a range of 3D CAD models that varied in symmetry type, including global

reflectional symmetric (GRS), partial reflectional symmetric (PRS), global axisymmetric

(GAS), partial axisymmetric (PAS), and non-symmetric (NS).

138

(1) PRS (2) PRS (3) GRS (4) PRS (5) GRS
SFI=0.99

GSI=0.99

SFI=0.93

GSI=0.70

SFI=1

GSI=1

SFI=0.85

GSI=0.98

SFI=1**

GSI=1**

(6) GRS (7) GRS (8) GRS (9) GRS (10) PRS
SFI=1**
GSI=1**

SFI=1**
GSI=1**

SFI=1.00**
GSI=1.00**

SFI=1**
GSI=1**

SFI=0.83*
GSI=0.82*

(11) PRS (12) PRS (13) PRS (14) GRS & PRS (15) PRS
SFI=0.99

GSI=0.99

SFI=0.99

GSI=0.99

SFI=0.67

GSI=0.70

SFI=1

GSI=1

SFI=0.98

GSI=0.99

SFI=0.90

GSI=0.89

(16) GAS (17) PAS & GRS (18) PAS & GRS (19) PAS & GRS (20) PAS & GRS
SFI=1

GSI=1

SFI=1

GSI=1

SFI=0.91

GSI=0.81

SFI=1

GSI=1

SFI=1

GSI=1

SFI=1**

GSI=1**

SFI=0.80

GSI=0.88

SFI=1**

GSI=1**

(16) NS (17) NS (18) NS (19) NS (20) NS
SFI=0.64***

GSI=0.45***

SFI=0.44***

GSI=0.63***

SFI=0.26***

GSI=0.28***

SFI=0.40***

GSI=0.48***

SFI=0.26***

GSI=0.15***

* Score corresponds to the POS with lowest score

** Score applies to all found POS

*** Corresponds to the POS with highest score

Figure 44. A sample of CAD models with the detected APOS and AAOS

The assessment of TP, TN, FP, and FN symmetry detection results involved evaluating

exact and partial symmetry together. The overall accuracy of the symmetry detection was

calculated based on these results. To ensure a conservative approach, a TP result was only

139

counted if all possible planes and axes of symmetry were detected in the CAD model. At

the same time, a TN was accounted for only if all planes and axes of symmetry were not

detected. Conversely, an FP was recorded if even one plane or axis of symmetry was

incorrectly identified, and an FN was noted if even one plane or axis of symmetry in the

CAD model was missed. Table 21 presents the results of this evaluation, and based on

these findings, the symmetry detection accuracy for the 3D CAD model from the second

dataset is calculated to be 0.87.

Table 21. Accuracy score of the symmetry detection

Result No. of CAD Models

TP 779

TN 86

FP 59

FN 76

Accuracy 0.87

The CASD method can detect symmetry at the minimum manufacturing accuracy in

mechanical engineering (ε=10–6 m), which can be achieved for both analytical and

numeric surfaces. However, in specific cases, the method may fail to detect symmetry.

The typical types of computational errors occurring during symmetry detection have

already been outlined during the first part of the validation. While these errors are at the

local level and may cause a negligible reduction of the SFI and GSI scores (Figure 44,

CAD models (1), (11) and (12)), they will not result in an overall miss-detection of

symmetry in the 3D CAD model. Another issue that may arise pertains to creating POSCs

and AOSCs from the PAOI. This problem is revealed in the alignment of the PAOI with

the 3D CAD model. Sometimes, a round-off error may occur at the fifth or sixth decimal

place, leading to a computational error during candidate evaluation further down the line.

The root of this error can be traced back to the CAD system's functionality for computing

the PAOI, although this is a rare occurrence. To resolve this issue, it may be helpful to

stringent the computation error ε for trimming candidates (from the current ε=10–6 m to

ε=10–7 m) to avoid eliminating duplicate candidates from similar face pairs that are

coincident with the POAI exhibiting alignment issues.

The detection of FP symmetry can occur at either the global or local scale. When detected

globally, it means that the identified APOS is incorrect. On the other hand, when detected

140

locally, it indicates that the identified face pair or stand-alone face is incorrect (as

previously discussed for the first dataset in this subsection). Figure 45 provides two

examples of FP results at the global scale, which can happen in parts that exhibit both

multiple reflectional symmetry and partial axisymmetry. False positive APOSs may be

detected from the PAOI POSCs. In the first example, only one APOS is FP (the horizontal

plane in Figure 45 – a), whereas in the second example, two APOSs are FP (Figure 45 –

b). Note that only the APOSs from the PAOI are displayed in Figure 45, as other APOSs

were detected but not plotted to avoid confusion. Although the detected APOSs are not

incorrect because they reveal partial reflectional symmetry in the CAD model, they are

meaningless since an infinite number of such APOSs exist. Therefore, these detected

APOSs can be considered as FP.

a)

b)

Figure 45. Examples of global FP symmetry detection

Figure 46 and Figure 47 show several examples of FP symmetry detection at the local

scale. Figure 46 shows an artificial object created to demonstrate local FP reflectional

symmetry. Within this example, a face pairs that is not reflectional symmetric (Figure 46

– a) and two stand-alone face that are not self-symmetric (Figure 46 – b and c), were

141

identified by the CASD method based on the corresponding criteria (equality,

coincidence, or orientation criteria).

a) b) c)

Figure 46. Examples of FP stand-alone faces and face pairs

The CASD method may also detect FP stand-alone faces in axisymmetric 3D CAD

models (Figure 47). This is because the face centroid coincides with the AOSC, even

though the face itself is not axisymmetric. However, such FPs are not typical in practice.

In case of occurrence, they usually do not lead to global symmetry misdetection, as other

adjacent faces in the 3D CAD model are not recognised as FP.

a) b) c)

FP axisymmetric stand-alone face

Figure 47. Examples of local FP symmetry detection

Global and local FN symmetry detection has also been identified in 3D CAD models from

the dataset. An FN at the global scale implies that the APOS of the 3D CAD model has

not been detected at all, while at the local scale, it may occur as a misdetection of a face

pair or stand-alone face. Typical examples of FN symmetry detection at the global level

are partially reflectional symmetric 3D CAD models (Figure 48), which have no

symmetric face pairs (planar, cylindrical, and B-spline surface type) that can be exploited

142

for the generation of the POSC(s). However, exact reflectional symmetric 3D CAD

models are less likely to experience FN symmetry detection since the POSCs can be

detected from the PAOI, even without symmetric face pairs.

a) b)

Figure 48. Examples of global scale FN symmetry detection

Figure 49 illustrates an instance of FN symmetry detection at the local level caused by

symmetric face pairs. The reason for FN is that symmetric face pairs belong to different

face classes or surface types. This is rare in practice, often resulting from modelling or

interpretation. When design features are split into multiple operations, different surface

types may be created instead of one, or the CAD system may interpret two symmetric

faces as different surface types during 3D CAD model import. Consequently, the

proposed CASD method fails to identify such face pairs since it only evaluates faces

within the same class.

FN symmetrical face pair

Figure 49. An example of a FN symmetric face pair

The proposed CASD method is insensitive to specific positions or orientations of a 3D

CAD model within the 3D modelling space. That is an important aspect as the 3D CAD

143

model COG does not necessarily need to be coincident with the origin, or its PAOI may

not be aligned with the coordinate axes of the modelling space. In some instances, the

proposed method indirectly detects cyclic symmetry by detecting multiple reflectional

symmetries in the CAD model (Figure 50). However, identifying this type of symmetry

is still up to the user since there is no adequate symmetry measure yet. Therefore, in

addition to exact global and partial axisymmetry, the proposed CASD method can

indirectly detect exact global rotational symmetries in some instances.

Figure 50. Examples of 3D CAD models that are multiple reflectional symmetric as well

as cyclic symmetric.

The time complexity has been estimated theoretically and experimentally as in previous

studies [16,42]. The theoretically estimated time complexity represents the worst-case

with the longest running time, where only the highest-order term is considered for each

step of the method because it dominates over the other terms on large inputs [148]. During

the B-rep Analysis step, each face in the CAD model is labelled and analysed for its

properties, which takes linear time O(nF). In the candidate generation and trimming step,

both the POSCs and AOSCs must be pairwise compared for trimming. The time

complexity in those steps depends on the number of faces of the plane (nPL), cylindrical

(nCY) and B-spline (nBS) surface type in the CAD model. However, if the CAD model

consists entirely of one surface type (nF=nPL), the time complexity can be expressed as

O(nF
2) in the worst-case scenario. This also applies to evaluating candidates, where

pairwise face comparisons require O(nF
2) time. The visualisation step involves looping

through all candidates, with a time complexity of O(nF) in the most conservative case

(n=nPL). The theoretical time complexities of each step are summarised in Table 22.

144

Table 22. Theoretical time complexity of the proposed CASD method

As mentioned, the experimental time complexity has been obtained through testing on

the collected 3D CAD models, and the results for each particular step are illustrated in

Figures 51 – 54, as well as the overall time complexity of the symmetry detection method

in Figure 55.

Figure 51. Big-O charts for B-rep analysis step

Figure 52. Big-O charts for generation and trimming of candidates’ steps

t = 0,0263∙nF

R² = 0.7683

0

10

20

30

40

50

0 200 400 600 800 1000

T
im

e
t

(s
ec

.)

Number of faces nF

B-rep analysis

t = 0.0196∙nF − 0.0495

R² = 0.6325

0

10

20

30

40

50

0 200 400 600 800 1000

T
im

e
t

(s
ec

.)

Number of faces nF

Generation & trimming of candidates

CASD method’s step Time Complexity

B-rep analysis O(nF)

Generation and trimming of POSCs and AOSCs O(nF
2)

Evaluation of POSCs and AOSCs O(nF
2)

Visualisation of APOSs and AAOS O(nF)

All steps O(nF
2)

145

Figure 53. Big-O charts for evaluation of candidates’ step

Figure 54. Big-O charts for visualisation step

Figure 55. Experimental time complexity of the symmetry detection method

t = 0,0021∙nF − 0.1722

R² = 0.3129

0

2

4

6

8

10

0 200 400 600 800 1000

T
im

e
t

(s
ec

.)

Number of faces nF

Evaluation of candidates

t = 0.0093∙nF + 1,8902

R² = 0.4081

0

5

10

15

20

25

0 200 400 600 800 1000

T
im

e
t

(s
ec

.)

Number faces nF

Visualisation

t = 0.0534∙nF + 2.7279

R² = 0.8348

0

15

30

45

60

75

0 200 400 600 800 1000

T
im

e
t

(s
ec

.)

Number of faces nF

Symmetry detection method

146

The comparison of theoretical and experimental time complexity reveals that there is a

difference between the candidate generation, trimming and evaluation steps, as well as

the overall time complexity of the symmetry detection method. Theoretically, these steps

have been estimated to have a time complexity of O(nF
2) time, while experimentally, the

time complexity is estimated to be O(nF) time. This difference is because the theoretical

time complexity assumes a worst-case scenario, where all faces in the 3D CAD model

are of only one surface type, such as planes. However, the CAD models from the dataset

are comprised of various surface types, and only faces of the same type require pairwise

comparison, not all faces in the 3D CAD model. Therefore, the actual number of inputs

is less than the total number of faces in the CAD model, corresponding to the highest

number of faces of the corresponding surface type. Consequently, the experimental time

complexity represents the average running time. Additionally, the linear trend O(nF) of

the experimental time complexities could be attributed to the fact that the number of faces

needs to be significantly larger to produce the quadratic trend. Nonetheless, the structural

validation in Subsection 5.2.3 has confirmed the appropriateness of the datasets, and there

is no need to artificially increase the number of faces. Finally, the experimentally

evaluated O(n) time complexity of the CASD method is improved compared to the prior

CASD studies, which estimated their algorithms to O(n4) [23] and close to O(n2) [63]

time.

Finally, to estimate the threshold value for the global symmetry index GSITH, a plot of

the GSI and SFI has been done for the 3D CAD model of the second dataset (Figure 56).

The categories of the 3D CAD models can be divided into exact global, partial, and non-

symmetric. As already stated, the SFI measures the symmetry of the topology, while the

GSI measures the symmetry of the geometry. Exact global symmetry implies that SFI=1

and GSI=1. In the case of partial symmetry, SFI<1 and GSI≥GSITH. Non-symmetry

implies SFI<1 and GSI<GSITH. The analysis of the CAD models in Figure 56 suggests

that a value of approximately GSITH=0.70 would be an appropriate threshold between

partial symmetry and non-symmetry. However, this is just a proposal, and the engineer

can select another value of GSITH.

147

Figure 56. GSI vs. SFI plot

5.3.2 Usefulness linked to applying the CASD method

The second phase of performance validation is to build confidence that the usefulness of

the symmetry detection results for the 3D CAD models is linked to applying the CASD

method. This is achieved through a quantitative assessment of the usefulness of each step

individually by comparing the symmetry detection results with and without the step.

Furthermore, comparisons are made between the symmetry detection outcomes of certain

steps and those from previous CASD studies.

In the context of this validation phase, the interpretation of the 3D CAD model represents

a mandatory step without which symmetry detection cannot be conducted. Similarly, B-

rep analysis is also an irreplaceable step; symmetry detection can only be conducted with

it. However, since B-rep analysis involves multiple sub-steps, including topology

merging and classification, as well as face and edge property calculation, the validation

phase can be conducted within each sub-step. Theoretically, the symmetry detection

could be conducted without the first sub-step topology merging. It was already mentioned

in Subsection 5.3.1 that the false negative symmetry detection results may occur in 3D

CAD models that have partitioned faces (this is common when designing in CATIA V5).

Figure 57 shows the symmetry detection results with and without this sub-step for several

example cases from the second dataset.

148

No. of APOS: 2 No. of APOS: 4 No. of APOS: 3 No. of AAOS: 1

No. of APOS: 2

a)

No. of APOS: 2

b)

No. of APOS: 0

c)

No. of AAOS: 0

d)

Figure 57. Symmetry detection results with (upper row) and without (lower row) the

sub-step classification of topology

Without the topology merging sub-step, a closed periodical face (such as cylindrical,

toroidal, conical, or spherical surfaces) may be partitioned into two face halves (Figure

57, lower row). Consequently, this may lead to an increased number of false negative

(Figure 57, b and c) or false positive (Figure 57, d) symmetry detection results. This is

because the partitioned face halves may disturb the symmetry of the 3D CAD model. The

partitioned face halves can disrupt the symmetry of the 3D CAD model, except in cases

where they are symmetrically arranged with respect to a candidate (Figure 57, a). The

comparison of the symmetry detection results with and without the merging of topology

proves the usefulness of this sub-step.

The second sub-step involves classifying topological entities based on their geometric

type. Topological entities from the same class are then pairwise compared in the

generation and evaluation steps. Omitting this sub-step would require a pairwise

comparison of all topological entities, resulting in higher time complexity. The usefulness

of this sub-step is confirmed by the fact that the time complexity for pairwise comparison

of all faces in the 3D CAD model is higher than the sum of the time complexities for

pairwise comparison of faces in different classes 2 2 2 2

PL CY CO() () () ()O n O n O n O n + + +

149

2 2 2

SP TO BS() () () ...O n O n O n+ + + . Finally, the sub-step face and edge properties calculation

is essential for the subsequent steps of the CASD method, although it is not quantitatively

measurable in the validation phase. Without this sub-step, the symmetry detection process

would not succeed. Thus, the usefulness of this sub-step is indisputable.

The next step of the CASD method deals with generating POSCs and AOSCs. As the

proposed CASD method relies on the implicit (indirect) symmetry detection approach, it

is impossible to conduct the symmetry detection without this step. Thus, the usefulness

of this step will be observed from the perspective of its sub-steps. The candidates are

generated from the PAOI, pairs of similar faces, and single faces. The candidates

generated from the PAOI are used to detect exact global reflectional or axisymmetry in

the 3D CAD model. Without the mentioned sub-step, the risk of false negative symmetry

detection increases. To prove this statement, several CAD models from the second dataset

were subjected to symmetry detection without this sub-step (Figure 58).

No. of APOS: 2 No. of APOS: 1 No. of APOS: 1 No. of APOS: 1

No. of APOS: 1

a)

No. of APOS: 0

b)

No. of APOS: 0

c)

No. of AAOS: 0

d)

Figure 58. Symmetry detection results with (upper row) and without (lower row) the

sub-step generation of candidates from the PAOI

The results demonstrate that the CASD method may fail to detect exact reflectional

symmetric 3D CAD models (Figure 58, lower row). Typically, this happens when there

150

are no reflectional symmetric face pairs within the 3D CAD model to replace the missing

PAOI candidates in the following sub-step. The symmetry detection results with and

without the generation of candidates from the PAOI prove this sub-step's usefulness,

especially regarding reflectional symmetry. However, the lack of this sub-step does not

influence the detection of axisymmetry, as the missing PAOI candidates are replaceable

through the generation of candidates from single faces.

Next, the symmetry detection results with and without the sub-step generation of

candidates from similar face pairs are observed (Figure 59). Removing this sub-step from

the CASD method may reduce the number of POSCs and increase the risk of false

negative symmetry detection. In particular, it negatively influences the detection of exact

symmetries that are not aligned with the PAOI (Figure 59, a – c) and partial reflectional

symmetry (Figure 59, a – c). Thus, the symmetry detection results with and without this

sub-step provide compelling evidence for its usefulness.

No. of APOS: 3 No. of APOS: 6 No. of APOS: 4 No. of APOS: 6

No. of APOS: 1

a)

No. of APOS: 2

b)

No. of APOS: 2

c)

No. of AAOS:1

d)

Figure 59. Symmetry detection results with (upper row) and without (lower row) the

sub-step generation of candidates from similar face pairs

Finally, the last sub-step consists of the generation of AOSCs out of single faces. The

impact of removing this sub-step is illustrated in Figure 59 through several test cases from

151

the second dataset (the upper row represents the results with the sub-step, while the lower

row without the sub-step). Apart from AOSCs generated from the PAOI, there are no

additional AOSCs generated without this sub-step. Thus, the CASD method fails to detect

partial axisymmetry within the 3D CAD model (Figure 59, lower row), while there is no

impact on the detection of reflectional symmetry. Based on the results, the usefulness of

this sub-step can be confirmed.

No. of APOS: 1

No. of AAOS: 1

No. of APOS: 2

No. of AAOS: 1

No. of APOS: 3

No. of AAOS: 1

No. of APOS: 1

No. of AAOS: 1

No. of APOS: 1

No. of AAOS: 0

a)

No. of APOS: 2

No. of AAOS: 0

b)

No. of APOS: 3

No. of AAOS: 0

c)

No. of APOS: 1

No. of AAOS: 0

d)

Figure 60. Symmetry detection results with (upper row) and without (lower row) the

sub-step generation of candidates from single faces

Next in line is the step trimming of candidates. Theoretically, the CASD method can work

without this step because it does not produce additional candidates and thus has no effect

on the accuracy of symmetry detection. Instead, it attempts to reduce the number of

initially generated candidates to avoid their unnecessary evaluation. In this way, the time

complexity of the CASD method can be reduced. The step consists of two sub-steps –

eliminating duplicate and unsuitable candidates. The usefulness of this step is validated

on the second dataset by experimentally investigating the number of candidates before

and after trimming, which is also compared with prior CASD studies [16,23]. Identifying

too many POSCs and AOSCs without their practical need for detecting symmetries can

152

lead to a computationally demanding CASD method. Conversely, identifying of too few

POSCs and AOSCs increases the risk of symmetry detection failure. The proposed CASD

method generates, on average, 1141 candidates (POSCs and AOSCs) per 3D CAD model,

while after trimming, the average number of candidates per 3D CAD model is reduced to

15. This proves the usefulness of the trimming step, as the number of candidates can be

reduced by ≈41 times. Table 23 compares the number of generated candidates with prior

CASD studies [23,63] regarding the average number of candidates per CAD model. The

number of candidates from prior studies has been estimated theoretically from the

equations. Compared to the study in [23], the present CASD method produces ≈72 times

fewer candidates and ≈57 times fewer candidates than in the study [63].

Table 23. Comparison of the number of candidates with prior studies

CASD

study
Equation

(nPOSC + nAOSC) per

CAD model

(nPOSC + nAOSC) per

CAD model used as

input for CASD

Study [23] (1) 2108 2108a

Study [63] (2) 26776 2678b

CASD method - 1514 37c
a

The initially generated candidates are also used as input for symmetry detection.
b

After the rationalisation of candidates. Assumed 10% of the initially generated candidates, the exact number cannot be estimated.
c After trimming of candidates.

In the CASD method, the final two steps involve assessing candidates in relation to the

B-rep of the 3D CAD model to identify the corresponding APOS or AAOS and then

displaying it in the 3D CAD model. These steps are crucial, and the CASD method cannot

deliver complete symmetry detection results without them. As such, within the current

performance validation, the importance of these steps is self-evident.

In conclusion, validating each step of the CASD method individually by comparing

symmetry detection results with and without the step provides compelling evidence of its

usefulness. It is worth noting that certain steps, such as interpreting the CAD model, B-

rep analysis, candidate generation, and evaluation, are indispensable to the success of

symmetry detection. Moreover, it was demonstrated that omitting their sub-steps from

the steps can have an adverse impact on the accuracy of symmetry detection. While

trimming candidates is not a necessary step and theoretically can be excluded from the

CASD method, doing so could negatively impact the time complexity of symmetry

detection.

153

5.3.3 Usefulness of the CASD method beyond example problems

The final performance validation phase aims to investigate the method's usefulness

beyond the tested example problems to produce belief in its generality. In contrast to the

Validation Square's suggestion of using only a few case studies [33], this study analysed

two datasets comprising 1100 representative 3D CAD models. While this is a substantial

number, the datasets were restricted to single parts with one body and manifold geometry,

as outlined in Section 1.2. Furthermore, the tested CAD models consisted of a

combination of analytic and numeric surfaces. Despite these limitations, the CASD

method's applicability beyond the tested models can be evaluated from various aspects.

One important aspect is the usefulness of the CASD method for single parts with multiple

bodies. Usually, a part is represented by only one body, but it can have multiple bodies

in some instances, such as welded structures or injection moulded plastic parts with metal

inserts. Therefore, it is preferable to also consider such cases in the context of symmetry

detection. The second aspect is the CASD method’s usefulness for CAD models with

non-manifold geometry (examples are illustrated in Figure 5). This is particularly relevant

for symmetry detection in FEA models [14,66], which often use non-manifold geometry

(examples of manifold geometry are illustrated in Figure 5). The third aspect is the

usefulness of the CASD method for assembly CAD models, which are also frequently

exploited in CAD. The fourth aspect is the usefulness of the CASD method for CAD

models with a file format different from the example cases, such as ACIS and IGES. The

last aspect is the CASD method’s usefulness for CAD models, which are dominantly or

entirely made of numeric surfaces, usually generated with surface modelling tools. This

aspect is particularly important in industrial design, automotive, and aerospace industries.

For the evaluation of the CASD method's usefulness on single parts with multiple bodies,

several 3D CAD models were subjected to symmetry detection via the computational

environment (Figure 61). These models included a clamping ring and housing with two

bodies (Figure 61 – a and b), as well as a welded table with 20 bodies (Figure 61 – c).

154

a) b) c)

Figure 61. Examples of single part 3D CAD models with multiple bodies

Based on the symmetry detection results illustrated in Figure 61, it can be concluded that

the CASD method is useful for detecting global APOS and AAOS of parts with multiple

bodies. Moreover, with specific modifications to the source code, the implemented CASD

method could be configured to detect APOS or AAOS for each individual body, thereby

enabling symmetry detection at the local level. To achieve this, the GSI and SFI should

be calculated by incorporating only those faces that pertain to a given body.

The second aspect is the usefulness of the CASD method for non-manifold CAD models.

In particular, the focus is on non-manifold geometry common in FEA, where symmetry

detection is advantageous in reducing the overall computational effort of the analysis.

CAD models for FEA are often idealised to make them more mesh-friendly, such as thin-

wall structures or sheet metal parts. These CAD models are initially designed as solids

but can be idealised by a mid-surface model or represented as a combination of bodies

and mid-surfaces. This idealisation can result in non-manifold geometry, as shown in

Figure 62. Since Solidworks is a non-manifold CAD system, performing symmetry

detection of non-manifold CAD models via the computational environment is impossible.

Therefore, the usefulness of the CASD method for non-manifold CAD models is

discussed theoretically. In manifold CAD models, an edge can only be shared by two

adjacent faces, while in non-manifold CAD models, it can be shared by more than two

faces (e.g., by three faces, as shown in Figure 62). While this is generally not an issue fir

the CASD method, when combining solids and surfaces in non-manifold 3D CAD

models, it can affect the generation of POSCs and AOSCs from the PAOI. In such models,

surfaces lack thickness and mass properties, and the PAOI are only computed from solid

bodies. For example, two different manifold CAD models have the same POSCs (POSC

155

1 to POSC 3) generated by the CASD method because they share the exact solid shape,

the cube in Figure 62 – a and b. In both CAD models, symmetry would be detected from

the candidates generated from similar face pairs. In manifold 3D CAD models entirely

composed of surfaces (Figure 62 – c), there is a risk of misdetection of exact reflectional

symmetry because the PAOI cannot be computed. It can be concluded that the CASD

method is generally applicable to non-manifold CAD models. However, generating

POSCs and AOSCs requires improvement to overcome the highlighted risks.

a) b) c)

Figure 62. Examples of non-manifold 3D CAD models

The next aspect is the usefulness of the CASD method in assembly CAD models. Most

often, assembly CAD models consist of multiple-part CAD models (Figure 63). These

part CAD models are separate files associated with the assembly CAD model and can

have one or multiple bodies. Alternatively, an assembly CAD model can be transformed

into a part CAD model to decrease file size and the total number of files. Consequently,

within such an assembly CAD model, each part CAD model is turned into a body (Figure

64). While it has been demonstrated that the CASD method can manage multi-body part

CAD models, further exploration is necessary to assess its applicability to assembly CAD

models.

156

Figure 63. Assembly CAD model data structure compound of multiple-part CAD

models

Figure 64. An assembly CAD model represented as multi-body part CAD model

The CASD method is designed to identify symmetry in single-part CAD models, enabling

symmetry detection in each part of the CAD models that make up the assembly. This

produces local symmetry information within the assembly CAD model. To detect global

symmetry in the assembly CAD model, all faces and edges of the part CAD models need

to be implemented in the B-rep analysis. There are two ways to generate candidates. The

first way, covered by the initially proposed CASD method, is to generate candidates

separately from each part CAD model. The second way of generating candidates is

directly from the assembly CAD model, which requires modifying the proposed CASD

method to incorporate all faces for the candidate generation. Analogically, all faces from

the assembly CAD model must be included also during the candidate evaluation step.

Two potential failures not covered by the proposed CASD method may occur during the

evaluation. The first is the detection of false positive symmetric face pairs, which can

happen if mating faces between parts are coincident and identical or similar. The second

Bodies Faces

Assembly

CAD model

etc. Body
Part

CAD model 1

Part

CAD model 2

Part

CAD model i

Bodies Faces Body

Bodies Faces Body

etc.

etc.

. . .

. . .

Faces

Part

CAD model

etc. Body 1

Faces Body 2

Faces Body i

etc.

etc.

Assembly

CAD model

157

failure is related to the orientation of parts in the assembly. For example, bolts can have

a symmetrical or non-symmetrical arrangement depending on their rotational positions in

the assembly (Figure 65).

reflectional symmetric bolts non-symmetric bolts

Figure 65. Examples of orientation of bolts in an assembly CAD model

While the proposed CASD method is suitable for CAD assemblies represented as multi-

body part CAD models, further improvement is necessary for assembly CAD models

consisting of part CAD models to overcome the mentioned failures and ensure the

detection of the APOS and AAOS.

The next aspect considered is the usefulness of the CASD method for CAD models

compound predominantly of numeric surfaces. The CASD method has already been

validated (see Section 5.3.1) on the second dataset with a share of analytic and numeric

surfaces of approximately 75% against 25%, considering the total number of faces in the

dataset. To expand beyond the these dataset, additional CAD models with a share of

numeric surfaces over 50% up to 90% were considered (Figure 66). The symmetry

detection process was applied to example cases using the computational environment,

and the corresponding APOS were detected accurately, as illustrated in Figure 66. Even

when the CAD models were primarily composed of numeric surfaces, all relevant POSCs

in the example cases were detected correctly.

158

a) Mouse housing

79.3% numeric surfaces

SFI=0.98

GSI=0.91

b) Race car front wing

66.2% numeric surfaces

SFI=0.99

GSI=0.98

c) Plastic bottel

54.5% numeric surfaces

SFI=1

GSI=1

d) handle cover

82.2% numeric surfaces

SFI=0.97

GSI=0.97

e) Airplane wing

94.7% numeric surfaces

SFI=1

GSI=1

f) Hairdryer

94.3% numeric surfaces

SFI=0.91

GSI=0.94

Figure 66. Examples of CAD models with predominantly numeric surfaces

Another aspect is the usefulness of the CASD method beyond the tested CAD model

formats (native Solidworks, Parasolid, and STEP). For this purpose, several CAD models

in ACIS and IGES file format taken from the first dataset have been additionally subjected

to symmetry detection through the computational environment (Figure 67). The analysed

CAD models are reflectional symmetric (Figure 67, a – d), reflectional-axisymmetric,

(Figure 67, e), and axisymmetric (Figure 67, f – g). The results reveal that symmetry can

be detected in CAD models represented by the ACIS and IGES formats.

159

No. of APOS: 1

a)

No. of APOS: 2

b)

No. of APOS: 2

c)

No. of APOS: 1

d)

No. of APOS: 3

e)

No. of APOS: 2

No. of AAOS: 1

f)

No. of AAOS: 1

g)

No. of AAOS: 1

h)

Figure 67. Examples of 3D CAD models in ACIS and IGES file format

Apart from B-rep CAD models, the usefulness of the CASD method can also be observed

generally for its application in 3D digital objects. For that purpose, the steps of the

proposed CASD method could be modified to work beyond B-rep CAD models. Just like

with CAD models, analysing and interpreting the geometry of 3D digital objects is

essential. Previous CASD studies have also utilised principal component analysis to

generate POSCs and AOSCs [29,30,57,60]. However, generating POSCs from face pairs

and AOSCs from single faces presents challenges when working with other 3D digital

objects, as these steps rely heavily on the specific definition of B-rep CAD models.

Nevertheless, trimming duplicate and unsuitable candidates significantly distanced from

the COG can still be useful for other 3D digital objects. Evaluating candidates based on

vector calculus can also be adapted to other 3D digital objects containing position and

surface information. Mesh models are a prime example of such digital objects. Finally,

the visualisation of APOS and AAOS is a common practice in many CASD studies.

160

To explore the CASD method's usefulness in relation to other 3D digital objects, the

extension of the method to grid or cable-strut structures has been investigated. These

types of structures are frequently utilised in mechanical engineering for cranes, as well as

in civil engineering for bridges. The example cases analysed involved exact global

reflectional symmetric grid or cable-strut structures (axisymmetry is not applicable for

such structures), as illustrated in Figure 68. Thus, the input for the CASD method is yet

a point-line model.

a) b) c)

Figure 68. Examples of other 3D digital objects (cable-strut structures)

In the B-rep analysis step, the inputs are now lines and points instead of faces and edges.

This means that specific properties are different, such as replacing the face centroid with

the line midpoint, the surface area with the line length, and the normal vector with the

line direction vector. POSCs cannot be generated from the PAOI as lines have no mass

properties, but they can be generated from pairs of lines of equal length. The position of

a POSC is the midpoint computed between midpoints of two identical lines, while the

POSC’s normal vector is computed based on the arrangement between two equal lines

(parallel, coaxial, or arbitrarily oriented). In the trimming step, only duplicate POSCs

need to be removed since unsuitable candidates are relevant for partial symmetry, which

is not considered. The evaluation step still utilises vector calculus. However, an

adjustment is needed for the SFI since faces are no longer the input. The SFI becomes the

161

symmetrical lines index (SLI) and is used to detect exact global symmetry. It is defined

as follows:

LP SL

LI

SLI
n n

n

+
= , (102)

where nLP is the number of symmetrical line pairs, nSL is the number of symmetrical stand-

alone lines, and nLI is the total number of lines in the input models. SLI ranges between

[0,1]. Figure 68 shows the results of symmetry detection in the example cases. In the first

two cases (Figure 68, a and b), all APOSs were accurately detected. However, in the third

case (Figure 68, c), one false positive APOS was detected due to the midpoints of diagonal

lines being coincident with the plane, while their endpoints were not symmetric. Thus, to

improve the CASD method for point-line input models and eliminate false positive

results, endpoints of lines should also be included in the evaluation step. The CASD

method needs certain modifications to detect symmetry in other 3D digital objects,

particularly point-line input models. Additionally, the method could be useful for partially

reflectional symmetric cable-strut structures, with partial symmetry measured using the

GSIE from Equation (100).

5.4 Improvement of the CASD method

Based on the validation results, this section presents an enhancement to the initial CASD

method proposed in Chapter 3. As already outlined, in some instances described through

the validation, the proposed CASD method may fail to detect symmetric face pairs or

stand-alone faces in the 3D CAD model. While this failure is localised and does not affect

symmetry detection at the global level, the CASD method could benefit from an

improvement by subjecting the undetected symmetry faces to a third evaluation step. The

third evaluation step could be conducted by default for all faces with undetected

symmetry or be an additional command in the Symmetry Detector GUI, empowering

engineers to determine whether specific faces should be evaluated.

The fundamental principle of this third evaluation step is to represent faces with sampled

points, which offer a more comprehensive description of their shape, instead of the unique

point representation (centroid or its projection onto the face). The flowchart of the third

evaluation step is displayed in Figure 69. First, the remaining faces with undetected

symmetry are subjected to point sampling (Figure 70). Its position and normal vector

162

define each sampled point. The face’s sampled points are used as input to estimate if a

single face is self-symmetric or if a face pair is symmetric with respect to a POSC. To

detect symmetry within ε=10–6 m, it is crucial to obtain uniformly sampling of faces.

Uniformity entails dividing the face into rectangular patches with equal-length sides

while ensuring that the shape and size of quad patches are as similar as possible. Uniform

means that the face is divided into rectangular patches with sides of equal lengths, while

the shape and size of quad patches should be the same as much as possible. However,

uniform sampling of the parameter domain can result in non-uniform sampling of the face

itself since the mapping from the parameter domain to the face can be highly distortive

[134]. Hence, to achieve uniform sampling of the face, a non-uniform sampling of the

parameter domain needs to be conducted.

Figure 69. Flowchart of the second evaluation step for remaining faces

Remaining

faces

Point

sampling

of faces

Evaluate a face

pair (FP) with

respect to a POSC

Start
Pairwise

comparison of

faces (same class)

Loop

single faces
All SFs

looped?

SF

symmetric

?

Face pair

symmetric

?

T

Evaluate a single

face (SF) with

respect to a POSC

T F

Sampled

faces

Next SF

Results

file

End

All Face

pairs

compared?
Face pair

T

F

T F

F

Next FP

Evaluation for self-symmetric stand-alone faces

Evaluation for symmetric face pairs

163

Figure 70. Uniform sampled faces

The existing sampling methods often rely on re-parameterisation and the curvature of the

surface [134,149–151]. The sampling method reported in [134] proposed an optimality

criterion for re-parameterising Bezier surfaces by measuring their quality using deviation

minimisation from an ideal uniform parameterisation. The research in [149] introduced

an approach for sampling NURBS based on the mean curvature parametrisation. Another

sampling method presented in [150] proposes to create points on NURBS by ranking

according to their complexity (determined by the mean Gaussian curvature and the size

of the patches), and several points were distributed according to the rank. The study in

[151] proposed a similar method, dividing NURBS surfaces into patches based on knot

vectors, ranking patches by size, and then sampling points accordingly (patches with

higher ranks received more points proportional to their size).

The evaluation step flowchart for reflection symmetry to detect stand-alone faces or face

pairs is presented in Figure 71. When evaluating a stand-alone face for reflectional self-

symmetry, all its points are pairwise compared. On the other hand, when evaluating a face

pair for reflectional symmetry, each point from the first face is compared with those from

the second face. In both cases, the points are evaluated with respect to a POSC. To do so,

first the midpoint P between a point pair is computed. Then, the point-to-plane distance

dP between the midpoint P and the POSC is computed analogically to Equation (80). If

the condition dP ≤ ε is satisfied, the position vectors ri and rj of the i-th and j-th (i≠j) point

is computed for each point pair (as illustrated in Figure 70). The initial point of each

position vector is the same (point M on the POSC), while the terminal point varies

depending on the sample point on the face.

POSC

Face 1 Face 2

n1i n2j

M n

r1i r2j

Si (x1i, y1i, z1i) Sj (x2j, y2j, z2j)

164

s

1 of a stand-alone face or a face pair
2 for a stand-alone face, its points are compared pairwise; for a face pair, the points of the first face are compared

with those of the second face.

Figure 71. Flowchart of the evaluation step of sampled points with respect to a POSC

To evaluate reflectional symmetry, the position vectors are subtracted for each point pair,

and the cross-product length is computed between the subtracted position vectors and the

normal vector to the POSC. If the length of this cross-product vector is zero, the normal

vectors at the sampled points on the face are computed. Depending on the arrangement

between two normal vectors (parallel, coplanar, or arbitrarily angled), the resultant vector

v is computed (as discussed in Section 3.5). If the length of the cross-product between the

resultant vector v and the POSC normal nP is below ε, then the points are considered

symmetric, and the procedure is repeated for the next pair of points. Finally, the face is

considered symmetric if the number of symmetric points nSP equals number of total

sampled points nTP, i.e., nSP=nTP.

A stand-alone face is evaluated for axisymmetry utilising the flowchart illustrated in

Figure 72. To conduct this assessment, uniformly sampled points on the face (as

illustrated in Figure 73) can be employed, using one of the sampling methods previously

mentioned [134,149–151].

Sampled

points1

Pairwise

comparison of

sampled points2

Compute the

midpoint P of a

point pair (PP)

All PPs

looped?

Next PP

dP ≤ ε ||(r1j –r2j)×nP||

≤ ε

F

Add PP to list

of symmetric

points nSP

Next PP
End

Start

T

T
|| vij×nP|| ≤ ε

F

F

T

nSP=nTP

Face(s)

refl. sym.

T

F T

F

165

1 of a stand-alone face

Figure 72. Flowchart of the evaluation of sampled points with respect to an AOSC

First, the average position S(xS,yS,zS) of the sampled points on the face are calculated

through the following equations:

TP

S S

1TP

1
i

n

i

x x
n =

= 
TP

S S

1TP

1
i

n

i

y y
n =

= 
TP

S S

1TP

1
i

n

i

z z
n =

=  . (103)

To qualify as axisymmetric, the average position S of the sampled points needs to be

coincident with the APOS. This is determined by computing the point-to-line distance dS

analogical to Equation (81). If the point-to-line distance dS is below the computational

error ε, then the cross-product length between the face’s axis vector f and the AOSC’s

orientation vector aP is computed and must be below ε.

Figure 73. A uniformly sampled axisymmetric face

The third evaluation step offers a potential upgrade to the original CASD method

introduced in Chapter 3. However, implementing this upgrade would require an increase

in computational effort due to the larger number of input points. Furthermore, it is

important to validate the proposed upgrade in future to determine any potential issues.

Sampled

points1

Compute average

position A of

sampled points

Eq. (103)

||f × aP|| ≤ ε

dS ≤ ε

End

Start

Face

axisym.

F
F

T T

Results

file

Si (xi, yi, zi)

AOSC

166

5.5 Implications of research findings

The proposed CASD method and its implementation in the form of the developed

computational environment, alongside with the findings from the validation, have various

implications, which are discussed in the context of research and practice.

5.5.1 Implications for research

It is worth noting that the CASD method in this thesis differs from previous research that

primarily employed analytical geometry for symmetry detection [16,42]. While previous

studies addressed spline surfaces, they could have been more effective in detecting exact

symmetry for CAD models with spline surfaces [23,42]. Instead, they proposed

approximate solutions for computing symmetry properties of topological entities. The

proposed CASD method can also be applied to exact symmetry and numerical geometry,

including spline, surface of revolution, extruded surface, offset surface, blended surface,

and more. Furthermore, this research presents improvements to the initially introduced

CASD method for conducting symmetry detection in CAD models represented

predominantly by numeric surfaces (Section 5.4). Therefore, this doctoral thesis may

inspire researchers to conduct further CASD studies for even more complex parts

consisting predominantly of numeric geometry, such as aeroplane wings, car bodies,

turbine blades, and other products with complex aesthetic shapes.

The presented method offers a unique approach to matching pairs of topological entities

using similarity measures, such as Cosine similarity. Indeed, this method could be

employed in prior symmetry detection studies [23], which utilised a loop-based pairing

approach with loop area and the number of edges as pair-matching criteria. In addition,

researchers may find value in using similarity measures from this doctoral thesis in other

research topics, such as recognising similar 3D CAD models to reuse existing design

solutions [78]. This research outlines the importance of merging partitioned topological

entities as a pre-step for symmetry detection, albeit in a simplified manner, by leveraging

the CAD system's automatic merging of partitioned periodic faces during model import.

This could spur researchers to develop researchers to develop novel topology merging

methods for B-rep CAD models.

167

Previous studies in [16,63] detected symmetry by generating candidates based on local

symmetry properties of topological entities and propagating them globally over the B-

rep. Another study utilised a ranking system based on loop area and number of edges to

detect symmetry [23,42]. However, these studies did not include a distance function to

evaluate candidates with respect to geometry. In contrast, the proposed CASD method

within this doctoral thesis evaluates each candidate with respect to the geometry using a

procedure based on vector calculus. Specifically, the inputs for the vector calculus are

faces, each represented by a unique point (face centroid or its projection onto the face)

and a vector (axis or normal vector) at this point. This approach may also be applicable

to other CASD studies utilising mesh models as input, as seen in reference [47].

This study introduces two symmetry measures (SFI and GSI) that can differentiate

between exact, partial, and non-symmetric B-rep CAD models. These measures can

potentially be applied to existing CASD studies [16,42] to measure partial symmetry.

While this research focused solely on single-part manifold CAD models, promising

results were obtained during validation (Subsection 5.3.3) for other types of input CAD

models as well, including single-part multi-body CAD models, non-manifold CAD

models, assembly CAD models, and CAD models primarily composed of numeric

surfaces, as well as other input CAD model formats such as IGES and ACIS.

Additionally, the proposed method shows promise in being extendable and applicable to

other digital objects, such as cable-strut structures.

Finally, it is important to note that the collected dataset of over 1000 different 3D CAD

models in STEP format represents a valuable repository that could be used to validate

previous CASD studies [16,42,66] or used in other research fields such as feature

recognition [90].

5.5.2 Implications for practice

There are several implications of this study related to practice. One of them is that it

provides a computational environment for computer-aided symmetry detection. This

enables engineers to analyse symmetry within the CAD model during the design process

or downstream activities such as CAE, CAPP, CAM, etc. While the computational

environment is specific to a particular CAD system, the CASD method is general and can

be extended to other CAD systems, as discussed in Section 4.2.

168

Apart from a single CAD model, the developed computational environment can

automatically analyse a set of CAD models located at a specific location, making it

applicable for symmetry detection in large CAD repositories. The detected type of

symmetry, whether global exact or partial reflectional symmetry, global exact or partial

axisymmetry, or even non-symmetry, can be attributed to CAD models and used as a

search criterion in a CAD repository or a product data management system. The

computational environment also allows engineers to postprocess the results by visualising

and colouring the faces that are symmetric or disturb the symmetry related to the

corresponding APOS or AAOS.

In addition, the computational environment creates an external .txt results file associated

with the 3D CAD model, which provides a solution for permanently storing symmetry

detection results. In this way, the symmetry information can be retained for neutral and

kernel CAD formats (STEP, IGES, ACIS, and Parasolid) that do not support the storage

of reference geometry. An additional advantage is that the detected symmetry information

for the CAD models is not lost and can be shared among different contributors in the

product development process.

5.6 Limitations

The limitations of this study can be observed from the aspect of the CASD method and

its implementation, i.e., the computational environment. The input of the proposed

symmetry detection method is restricted to 3D CAD models with B-rep. The 3D CAD

models are limited to single parts with only one body and manifold geometry, as stated

in the research objectives (Subsection 1.2). Although the method theoretically puts no

limitations on the type of numeric geometry, the implementation was limited to the

numeric surfaces available in the selected CAD system Solidworks (B-spline surface,

surface of revolution, offset, extruded, and blend surface). The types of symmetry that

are addressed by the proposed CASD method are reflectional symmetry and

axisymmetry, although mechanical components may also exhibit other types of

symmetry, such as cyclic and translational. Further, the CASD method is restricted to

detecting global and partial symmetry and does not support local symmetry detection

within the 3D CAD model. From the aspect of implementation, the computational

environment is limited to the CAD system used for development (i.e., Solidworks), which

169

puts certain restrictions on practical application. The considered input CAD models were

native (Solidworks), kernel (Parasolid, ACIS), and neutral (STEP, IGES) file formats.

The CASD method is also limited to CAD models that need to be free of topological

errors (e.g., missing faces), because otherwise, the mass properties of the 3D CAD model

cannot be computed, and the candidates from the PAOI cannot be generated.

170

6 CONCLUSIONS

__

This final chapter reflects on the aims and research hypothesis, providing a conclusion

of the conducted research. At the end, future research directions are outlined.

¯¯

Symmetry is an essential geometric property often employed in mechanical engineering.

To detect symmetry in 3D CAD models, engineers could utilise CASD. While previous

CASD studies have focused on CAD models with analytic surfaces, numeric surfaces

have not been adequately considered. Furthermore, there is a need for research to propose

a measure for detecting partial symmetry. This doctoral thesis tackles these research gaps

by presenting a geometry-based CASD method for recognising exact global and partial

reflectional and axisymmetry in CAD models with B-rep. The method involves six steps

(Chapter 3), including interpretation of B-rep, analysis, generation, trimming, evaluation,

and visualisation of POSCs and AOSCs. Importantly, the method is versatile and can

work with input CAD models in various formats like STEP, Parasolid, ACIS, IGES, and

more. The research novelty lies in the unique representation of each face with a point and

a characteristic vector. The method relies on the implicit symmetry detection approach,

which implies generating a set of POSCs and AOSCs.

This study introduces a combined approach to generating POSCs and AOSCs, utilising

single faces, pairs of similar faces, and PAOI. A unique aspect of this approach is using

similarity measures, such as cosine similarity, to identify pairs of similar faces. This offers

the advantage of detecting exact global and partial symmetry. Additionally, using PAOI

in the context of B-rep CAD models allows for detecting symmetries that align with these

axes. After generating candidates, a trimming process is applied to remove duplicate and

unsuitable candidates that are far from the COG. While eliminating duplicates is not new,

removing unsuitable candidates has not been utilised in B-rep CAD models. This

eliminates candidates who are unlikely to become APOS or AAOS, streamlining the

evaluation process.

Following the trimming step, each remaining POSC and AOSC undergoes evaluation

with respect to the B-rep using a vector calculus procedure that takes the face’s unique

171

points and characteristic vectors as inputs. This vector calculus procedure has not been

employed in previous studies. To determine whether the B-rep CAD model is symmetric

with respect to a POSC or AOSC, two novel symmetry measures are proposed: the SFI

and GSI. The SFI measures the topology symmetry, while the GSI measures the geometry

symmetry of the B-rep CAD model. The GSI, in particular, provides a measure for

defining the threshold values between exact global, partial symmetry, and non-symmetry.

Finally, if evaluation confirms that the corresponding POSC or AOSC also represents

APOS or AAOS, it is stored in a result file and visualised in the 3D CAD model.

By introducing a computational environment in Chapter 4 that utilises the Solidworks

CAD system API functionalities, the CASD method has been successfully implemented.

Furthermore, the research findings indicate that this method can be extended to include

two other CAD systems, namely NX and FreeCAD. However, the implementation

process across different CAD systems may vary due to the specific types of surfaces and

edges they support.

The proposed CASD method and computational environment underwent extensive

structural and performance validation, as outlined in Chapter 5. The results of this

validation demonstrate the insensitivity of the CASD method in detecting the

corresponding APOS or AAOS, even when input 3D CAD models originate from

different CAD systems. In addition, any interpretation differences between 3D CAD

models from different systems are unlikely to impact the detection of symmetry, as any

false negative face pairs or stand-alone faces would be at the local level. Furthermore, the

validation confirms that the CASD method is highly accurate in detecting the

corresponding APOS or AAOS, all while maintaining a linear time complexity.

The proposed CASD method utilises the geometrical information of the B-rep CAD

models, allowing for the detection of exact global and partial reflectional symmetry as

well as axisymmetry. Through validation, it has been confirmed that this geometry-based

method can successfully detect symmetry in various CAD models containing both

analytic and numeric surfaces. Thus, the hypothesis that a geometry-based approach can

be used to detect symmetry in such models has been confirmed. Furthermore, the proposal

of the CASD method and its implementation through the computational environment

confirm the expected scientific contribution of this research.

172

6.1 Future research directions

While the proposed CASD method represents an improvement in symmetry detection in B-

rep CAD models (partial symmetry detection and models with numeric surfaces), there are

still avenues for further research. The CASD method in this research is limited to reflectional

symmetry and axisymmetry, but mechanical parts may exhibit other types of symmetry,

including cyclic, translational, and dihedral. These types of symmetry still need to be solved

in the context of B-rep CAD models, and future research could focus on extending the CASD

method’s capabilities. Additionally, the proposed CASD method can be enhanced by

addressing the detection of local symmetry. While local symmetry was addressed in previous

CASD studies regarding analytic surfaces, it remains an open topic from the perspective of

numeric surfaces. Although the validation confirmed the usefulness of the CASD method

beyond example problems, further research is needed related to symmetry detection in 3D

CAD models that are compound predominantly or entirely of numeric geometry. To that end,

an improvement of the CASD method has been presented (Subsection 5.5), which requires

further research and validation. The CASD method shows promising results when it comes

to extending it to non-manifold B-rep CAD models, single-part multi-body CAD models,

assembly CAD models, various CAD formats (ACIS and IGES), and other 3D digital objects

such as cable-strut structures. However, further research is necessary in these fields. Finally,

improving the computational environment by developing a stand-alone application would

make the CASD independent of the CAD system, which is a possible research area.

173

REFERENCES

[1] Beruski O, Vidal LN. Algorithms for computer detection of symmetry elements in

molecular systems. J Comput Chem. 2014;35(4):290-9. doi: 10.1002/jcc.23493.

[2] Marcellini S. When Brachyury meets Smad1: the evolution of bilateral symmetry

during gastrulation. Bioessays. 2006 Apr;28(4):413-20. doi: 10.1002/bies.20387.

PMID: 16547957.

[3] Guo Q, Guo F, Shao J. Irregular shape symmetry analysis: theory and application

to quantitative galaxy classification. IEEE Trans Pattern Anal Mach Intell. 2010;

32(10):1730-43. doi: 10.1109/TPAMI.2010.13.

[4] Dolgy DV, Kim DS, Kim T, et al. Identities of symmetry for Carlitz q-Bernoulli

polynomials arising from q-Volkenborn integral on Zp under symmetry group S3.

Advanced Studies in Theoretical Physics. 2014; 8: 737–744. doi:

10.12988/astp.2014.4682

[5] Yang CN. Conceptual beginnings of various symmetries in twentieth century

physics. Chinese J Phys 1994; 32: 1437–1446.

[6] Fernandez E. Symmetry: key to nature and natural philosophy. Metascience. 2004;

13: 329–333.

[7] Nikolić V, Radović L, Marković B. Symmetry of “Twins”. Symmetry. 2015;

7(1):164-181. doi: 10.3390/sym7010164.

[8] Zingoni A. Insights on the vibration characteristics of double-layer cable nets of

D4h symmetry. International Journal of Solids and Structures. 2018; 135:261–273.

doi: 10.1016/j.ijsolstr.2017.11.025.

[9] Cao W, Wang C, Chen W. et al. Fully integrated parity–time-symmetric electronics.

Nat. Nanotechnol. 2022; 17:262–268. doi: 10.1038/s41565-021-01038-4

[10] Li WH, Zang AM, Kleeman L. Bilateral Symmetry Detection for Real-time

Robotics Applications. Int. J. Robot. Res. 2008; 27, 785–814. doi:

10.1177/0278364908092131

[11] Qiu Q, Chen X, Yang C, Feng P. Classification and Effects of Symmetry of

Mechanical Structure and Its Application in Design. Symmetry. 2021; 13(4):683.

doi: 10.3390/sym13040683

174

[12] Simmons CH, Phelps N. Manual of Engineering Drawing Technical Product

Specification and Documentation to British and International Standards, Fourth

Edition, Butterworth-Heinemann, 2012. ISBN: 978-0-08-096652-6

[13] International Standard Organization, ISO 129-1:2004, Technical drawings –

Indication of dimensions and tolerances – Part 1: General principles, 2004

[14] Tierney C, Boussuge F, Robinson T, Nolan D, Armstrong C. Efficient symmetry-

based decomposition for meshing quasi-axisymmetric assemblies. Computer-

Aided Design and Applications. 2019; 16(3):478-495. doi:

10.14733/cadaps.2019.478-495

[15] Suresh K., Sirpotdar A. Automated symmetry exploitation in engineering analysis.

Engineering with Computers. 2006; 21: 304–311. doi: 10.1007/s00366-006-0021-

2

[16] Li K, Foucault G, Léon J, Trlin M. Fast global and partial reflective symmetry

analyses using boundary surfaces of mechanical. 2014; 53:70-89. doi:

10.1016/j.cad.2014.03.005

[17] Deng X, Wang J. Research on the manufacturing of mechanical parts based on the

theory of space symmetry group. Academic Journal of Manufacturing Engineering.

2017; 15(1):64-71.

[18] Ma, Z.; Zhang, T.; Liu, F.; Yang, J. Knowledge discovery in design instances of

mechanical structure symmetry. Adv. Mech. Eng. 2015, 7, 1–19. doi:

10.1177/1687814015615044.

[19] Giesecke FE, Lockhart S, Goodman M, Johnson C. Technical Drawing with

Engineering Graphics; 15th Edition; Pearson Education: Hoboken, NJ, USA, 2016.

[20] Li C, Li M, GaoS.: Multi-scale symmetry detection of CAD models, Computer-

Aided Design and Applications, 2018; 16(1): 50-66. doi: 10.14733/cadaps.2019.50-

66

[21] Mitra NJ, Guibas L, Pauly M. Partial and approximate symmetry detection for 3d

geometry. ACM Transactions on Graphics (Proc. SIGGRAPH) 2006; 25(3): 560–

568. doi: 10.1145/1179352.1141924

[22] Mitra N, Pauly M, Wand M, Ceylan D. Symmetry in 3D Geometry: Extraction and

Applications. Comput. Graph. Forum. 2013; 32: 1–23. doi: 10.1111/cgf.12010.

175

[23] Tate SJ. Symmetry and Shape Analysis for Assembly-Oriented CAD. Doctoral

Thesis, Cranfield University, Bedford, UK, May 2000.

[24] Buric M , Brcic M , Bojcetic N, Skec S. Computer-Aided Detection of Exact

Reflection and Axisymmetry in B-rep CAD Models. Computer-Aided Design &

Applications, 2023; 20(5): 884-897. doi: 10.14733/cadaps.2023.884-897

[25] Jiang J, Chen Z, He K. A feature-based method of rapidly detecting global exact

symmetries in CAD models. Computer Aided Design 2013; 45: 1081–1094. doi:

10.1016/j.cad.2013.04.005.

[26] Solidworks 2021 Help - Symmetry Check Utility,

https://help.solidworks.com/2021/english/SolidWorks/sldworks/HIDD_SYMCHE

CK_MAINPAGE.htm (accessed: 20.06.2023)

[27] Stroud I, Nagy H. Solid modelling and CAD systems: How to survive a CAD

system, Springer, London, 2011. doi: 10.1007/978-0-85729-259-9

[28] Stroud I, Boundary Representation Modelling Techniques, Springer, London, 2010.

doi: 10.1007/978-1-84628-616-2

[29] Li B, Johan H, Ye Y, Lu Y. Efficient view-based 3d reflection symmetry detection.

SIGGRAPH Asia 2014 Creative Shape Modeling and Design (SA '14). , New York,

NY, USA, 3-6.12.2014, Association for Computing Machinery, pp 1–8. doi:

10.1145/2669043.2669045

[30] Li B, Johan H, Ye Y, Lu Y. Efficient 3D reflection symmetry detection: A view-

based approach, Graphical Models, 2016; 83: 2-14. doi:

10.1016/j.gmod.2015.09.003

[31] Piegl L, Tiller W. The NURBS Book, 2nd edition, Springer-Verlag, New York, NY,

USA, 1996.

[32] Blessing L, Chakrabarti A. DRM, a Design Research Methodology. Springer-

Verlag, London, 2009. doi: 10.1007/978-1-84882-587-1.

[33] Pedersen K, Emblemsvag J, Reid Bailey, Allen JK, Mistree F. Validating Design

Methods & Research: The Validation Square. 2000 ASME Design Engineering

Technical Conferences. 2000.

[34] Nagar R, Raman S. 3DSymm: Robust and Accurate 3D Reflection Symmetry

Detection. Pattern Recognition. 2020; 107:107483. doi:

10.1016/j.patcog.2020.107483.

176

[35] Xue F, Chen K, Lu W. Architectural Symmetry Detection from 3D Urban Point

Clouds: A Derivative-Free Optimization (DFO) Approach. Advances in

Informatics and Computing in Civil and Construction Engineering: Proceedings of

the 35th CIB W78 2018 Conference: IT in Design, Construction, and Management;

Springer: Berlin/Heidelberg, Germany, 2019; pp. 513–519. doi: 10.1007/978-3-

030-00220-6_61.

[36] Alcázara JG, Hermosoa C, Muntinghb G. Symmetry Detection of Rational Space

Curves from their Curvature and Torsion. Comput. Aided Geom. Des. 2015; 33:

51–65. doi: 10.1016/j.cagd.2015.01.003.

[37] Fotouhi J, Taylor G, Unberath M, Johnson A, Lee S C, Osgood G, Armand M,

Navab N. Exploring Partial Intrinsic and Extrinsic Symmetry in 3D Medical

Imaging. Medical Image Analysis. 2020; 72: 102127. doi:

10.1016/j.media.2021.102127

[38] Ji P, Liu X. A fast and efficient 3D reflection symmetry detector based on neural

networks, Multimedia Tools and Applications, 2019; 78: 35471–35492. doi:

10.1007/s11042-019-08043-9

[39] Thrun S, Wegbreit B. Shape from symmetry. Proceedings of the Tenth IEEE

International Conference on Computer Vision - Volume 2 (ICCV '05). IEEE

Computer Society, USA, 1824–1831. doi: 10.1109/ICCV.2005.221

[40] Hruda, L.; Kolingerová, I.; Váša, L.: Robust, fast and flexible symmetry plane

detection based on differentiable symmetry measure, The Visual Computer, 38(24),

2022, 555–571. https://doi.org/10.1007/s00371-020-02034-w

[41] Korman S, Litman R, Avidan S, Bronstein A. Probably Approximately Symmetric:

Fast Rigid Symmetry Detection with Global Guarantees. Computer Graphics

Forum. 2014;34(1):2-13. doi:10.1111/cgf.12454.

[42] Tate S, Jared G. Recognising symmetry in solid models, 2003; 35(7): 673–692. doi:

10.1016/S0010-4485(02)00093-3

[43] Chen Y, Linzi F, Feng J. Automatic and Exact Symmetry Recognition of Structures

Exhibiting High-Order Symmetries, Journal of Computing in Civil Engineering.

32(2): 04018002. doi: 10.1061/(ASCE)CP.1943-5487.0000743

177

[44] Dang Q, Morin G, Mouysset S. Symmetry and Fourier Descriptor: A Hybrid

Feature for NURBS based B-Rep Models Retrieval. Conference: Eurographics

Workshop on 3D Object Retrieval, 2014; 45-52. doi: 10.2312/3dor.20141049

[45] Dang Q, Mouysset S, Morin G. Symmetry-Based Alignment for 3D Model

Retrieval. In Proceedings of the 12th International Workshop on Content-Based

Multimedia Indexing (CBMI), Klagenfurt, Austria, 18–20.06.2014.

doi:10.1109/CBMI.2014.6849816.

[46] Sipiran I, Gregor R, Schreck T. Approximate Symmetry Detection in Partial 3D

Meshes. Computer Graphics Forum. 2014; 33(7): 131-140. doi:10.1111/cgf.12481.

[47] Hruda L, Dvorák J. Estimating Approximate Plane of Symmetry of 3D Triangle

Meshes. Proceedings Central European Seminar on Computer Graphics,

Smolenice, Slovakia, 2017.

[48] Kazhdan M, Chazelle B, Dobkin D, Funkhouser T, Rusinkiewicz S. A Reflective

Symmetry Descriptor for 3D Models. Algorithmica 2004; 38(1): 201–225. doi:

10.1007/s00453-003-1050-5.

[49] Chang M, Park SC. Reverse engineering of a symmetric object. Computers &

Industrial Engineering, 2008; 55(2): 311-320. doi: 10.1016/j.cie.2007.12.015

[50] Sun C, Sherrah J. 3D symmetry detection using the extended Gaussian image. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 1997; 19(2): 164-168.

doi: 10.1109/34.574800.

[51] Martinet A, Soler C, Holzschuch N, Sillion FX. Accurate Detection of Symmetries

in 3D Shapes. ACM Transactions on Graphics, Association for Computing

Machinery, 2006; 25(2): 439 - 464. doi: 10.1145/1138450.1138462

[52] Kakarala R, Kaliamoorthi P, Premachandran V. Three-Dimensional Bilateral

Symmetry Plane Estimation in the Phase Domain, IEEE Conference on Computer

Vision and Pattern Recognition, 23-28.06.2013 Portland, OR, USA, 2013. p. 249-

256, doi: 10.1109/CVPR.2013.39.

[53] Podolak J, Shilane P, Golovinskiy A, Rusinkiewicz S, Funkhouser T. A planar-

reflective symmetry transform for 3D shapes. ACM Transactions on Graphics.

2006; 25(3): 549–559. doi: 10.1145/1141911.1141923

178

[54] Raviv D, Bronstein AM, Bronstein MM., Kimmel R. Full and Partial Symmetries

of Non-rigid Shapes. International Journal of Computer Vision. 2010; 89: 18–39.

doi:10.1007/s11263-010-0320-3

[55] Zingoni A. Symmetry recognition in group-theoretic computational schemes for

complex structural systems, Computers and Structures, 2012; 94-95: 34-44. doi:

10.1016/j.compstruc.2011.12.004

[56] Gothandaraman R, Jha R, Muthuswamy S. Reflectional and rotational symmetry

detection of CAD models based on point cloud processing. In Proceedings of the

IEEE 4th Conference on Information & Communication Technology (CICT),

Chennai, India, 3–5 December 2020. doi:10.1109/CICT51604.2020.9312109

[57] Stephenson M, Clark A, Green R. Novel methods for reflective symmetry detection

in scanned 3D models. International Conference on Image and Vision Computing,

Auckland (IVCNZ), New Zealand, 23-24.11.2015, IEEE, 2015. p.1-6.

doi:10.1109/IVCNZ.2015.7761555.

[58] Lipman Y, Xiaobai C, Daubechies I, Funkhouser T. Symmetry Factored

Embedding And Distance. ACM Transactions on Graphics (TOG). 2010; 29(4):

103. doi: 10.1145/1778765.1778840.

[59] Minovic P, Ishikawa S, Kato K. Symmetry identification of a 3-D object

represented by octree. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1993; 15(5): 507-514. doi: 10.1109/34.211472.

[60] Tedjokusumo J, Leow, WK. Normalization and Alignment of 3D Objects Based on

Bilateral Symmetry Planes. Cham, TJ., Cai, J., Dorai, C., Rajan, D., Chua, TS.,

Chia, LT. (eds) Advances in Multimedia Modeling. MMM 2007. Lecture Notes in

Computer Science, vol 4351. Springer, Berlin, Heidelberg, 2006. doi: 10.1007/978-

3-540-69423-6_8

[61] Yeh YT, Měch R. Detecting Symmetries and Curvilinear Arrangements in Vector

Art. Computer Graphics Forum, 2009; 28: 707-716. doi: 10.1111/j.1467-

8659.2009.01411.x

[62] Hruda L. Symmetry Detection in Geometric Models [Master Thesis]. [Plzen]:

University of West Bohemia; 2018

179

[63] Li K. Shape Analysis of B-Rep CAD Models to Extract Partial and Global

Symmetries. PhD Thesis, University Grenoble, Saint-Martin-d’Hères, France,

November 2011.

[64] Tayangkanon T, Sompagdee P, Li X. 3D Model Compression over ASCII Encoded

Using Rotational and Reflective Symmetry, 2018 10th International Conference on

Knowledge and Smart Technology (KST), 31.1.-3.2.2018, p.53-58. doi:

10.1109/KST.2018.8426067

[65] Li M, Langbein F, Martin R. Detecting design intent in approximate CAD models

using symmetry. Computer-Aided Design, 2010; 42: 183-201. doi:

10.1016/j.cad.2009.10.001

[66] Boussuge F, Tierney CM, Robinson TT, Armstrong CG. Symmetry-based

decomposition for meshing quasi-axisymmetric components. Procedia

Engineering, 2017; 203: 375-387. doi: 10.1016/j.proeng.2017.09.812.

[67] Li M, Langbein FC, Martin RR. Detecting approximate incomplete symmetries in

discrete point sets. Proceedings of the 2007 ACM symposium on Solid and physical

modelling (SPM '07). Association for Computing Machinery, New York, NY,

USA, 2007, p.335–340. doi: 10.1145/1236246.1236294

[68] Li M, Langbein FC, Martinn RR. Detecting approximate symmetries of discrete

point subsets, Computer-Aided Design, 2008; 40(1): 76-93. doi:

10.1016/j.cad.2007.06.007.

[69] Li M, Langbein F, Ralph M. Constructing Regularity Feature Trees for Solid

Models. Lecture Notes in Computer Science. 2006; p.4077. 267-286. doi:

10.1007/11802914_19.

[70] Jiang, J, Gong, Q, Chen, Z. He, K.; Ruang, R.: A Feature-based Method of Rapidly

Detecting Global Symmetries of Static Assembly CAD Models, Jisuanji Fuzhu

Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer

Graphics, 29(5), 2017, 950-957.

[71] Jiang J, Chen Z, He K. A feature-based approach for detecting global symmetries

in CAD models with free-form surfaces, 13th International Conference on

Computer-Aided Design and Computer Graphics, 2013, doi:

10.1109/CADGraphics.2013.58

180

[72] Marola, G. On the Detection of the Axes of Symmetry of Symmetric and Almost

Symmetric Planar Images. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 104–

108. doi: 10.1109/34.23119.

[73] Zabrodsky H, Peleg S. Avnir, D. Symmetry as a continuous feature. IEEE Trans.

Pattern Anal. Mach. Intell. 1995; 17: 1154–1166. doi: 10.1109/34.476508.

[74] Kulkarni, P.; Dutta, D.; Saigal, R. An Investigation of Techniques for Asymmetry

Rectification, J. Mech. Des. 1995; 117: 620–626. doi: 10.1115/1.2826730.

[75] Fedotova S, Kushnir O, Seredin O. Comparison of Binary Images based on Jaccard

Measure using Symmetry Information. 15th International Joint Conference on

Computer Vision, Imaging and Computer Graphics Theory and Applications. 27-

29.2.2020., Valletta, Malta, 2020; p.398-404. doi: 10.5220/0008989803980404.

[76] Chaudhari A, Bilionis I, Panchal J. Similarity in Engineering Design: A

Knowledge-Based Approach, Proceedings of the ASME 2019 International Design

Engineering Technical Conferences and Computers and Information in Engineering

Conference. Volume 7: 31st International Conference on Design Theory and

Methodology. Anaheim, California, USA. 18–21.08.2019. ASME. 2019, doi:

10.1115/DETC2019-98272

[77] Cardone A, Gupta SK. Deshmukh A, Karnik M. Machining feature-based similarity

assessment algorithms for prismatic machined parts, Computer-Aided Design,

2006; 38(9): 954-972, doi: 10.1016/j.cad.2006.08.001

[78] Zehtaban L, Elazhary O, Roller R. A framework for similarity recognition of CAD

models, Journal of Computational Design and Engineering, 2016; 3(3): 274-285,

doi: 10.1016/j.jcde.2016.04.002

[79] Wang J, Yan W, Huang C. Surface shape-based clustering for B-rep models,

Multimedia Tools and Applications, 2020; 7: 25747–25761, doi: 10.1007/s11042-

020-09252-3

[80] Nandy A, Dong A, Goucher-Lambert K. Evaluating Quantitative Measures for

Assessing Functional Similarity in Engineering Design. ASME. Journal of

Mechanical Design. 2022; 144(3): 031401. doi: 10.1115/1.4052302

[81] Zehtaban L, Elazhary O, Roller R. A framework for similarity recognition of CAD

models. J. Comput. Des. Eng. 2016; 3: 274–285. doi: 10.1016/j.jcde.2016.04.002.

181

[82] Kim S, Kato I, Zhang X. Comparative Analysis of Binary Similarity Measures for

Compound Identification in Mass Spectrometry-Based Metabolomics. Metabolites.

2022; 12(8):694. doi:10.3390/metabo12080694

[83] Seifoddini H, Djassemi M. Merits of the production volume based similarity

coefficient in machine cell formation, J. Manuf. Syst. 1995; 14: 35–44. doi:

10.1016/0278-6125(95)98899-H.

[84] Lucchese L. Frequency domain classification of cyclic and dihedral symmetries of

finite 2-D patterns, Pattern Recognition, 2004;37(12):2263-2280. doi:

10.1016/j.patcog.2004.04.012.

[85] Zou HL, Lee YT. Skewed rotational symmetry detection from a 2D line drawing of

a 3D polyhedral object. Computer-Aided Design. 2006; 38:1224-1232. doi:

10.1016/j.cad.2006.08.003.

[86] Pauly M, Mitra NJ, Wallner J, Pottmann H, Guibas LJ. Discovering structural

regularity in 3D geometry. ACM Trans. Graph. 2008;27(3):1–11.

doi:10.1145/1360612.1360642

[87] Xu K, Zhang H, Tagliasacchi A, Liu L, Li G, Meng M, Xiong Y. Partial intrinsic

reflectional symmetry of 3D shapes. ACM Trans. Graph. 2009;28(5):1–10. doi:

10.1145/1618452.1618484

[88] Schiebener D, Schmidt A, Vahrenkamp N, Asfour T. Heuristic 3D object shape

completion based on symmetry and scene context,2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea,

2016, p. 74-81, doi:10.1109/IROS.2016.7759037.

[89] Gnutti A, Guerrini F, Leonardi R. Combining Appearance and Gradient

Information for Image Symmetry Detection. IEEE Transactions On Image

Processing, 2021;30:5708-5723. doi:10.1109/TIP.2021.3085202

[90] Venu B, Komma VR, Srivastava D. STEP-based Feature Recognition System for

B-spline Surface Features. Int. J. Autom. Comput. 2018; 15: 500–512 doi:

10.1007/s11633-018-1116-0

[91] Burić M, Marjanović D. A tool for idealisation of CAD models, Proceedings of the

DESIGN 2018 15th International Design Conference, 2018, p.205-214 doi:

10.21278/idc.2018.0367

182

[92] Raffaeli R, Cicconi P, Germani M. Automation of drafting execution by schemes

definitions and feature recognition. Computer-Aided Design and Applications.

2015; 13: 1-12. doi: 10.1080/16864360.2015.1131538.

[93] CATIA V5 API help documentation – CAA V5 Encyclopedia, Available:

https://www.maruf.ca/files/caadoc/CAACenV5Default.htm (accessed 20.06.2023)

[94] Open CASCADE Technology API help documentation

https://dev.opencascade.org/doc/overview/html/ (accessed 20.06.2023)

[95] Slyadnev S, Malyshev A, Turlapov V. CAD model inspection utility and

prototyping framework based on OpenCascade, Conference: GraphiCon 2017,

Perm, Russia, 2017

[96] Müller JD, Zhang X, Akbarzadeh S, Wang Y. Geometric continuity constraints of

automatically derived parametrisations in CAD-based shape optimisation.

International Journal of Computational Fluid Dynamics 2019; 33(6-7): 272-288.

doi: 10.1080/16864360.2018.1462881

[97] Banović M, Mykhaskiv O, Auriemma S, Walther A, Legrand H, Müller JD.

Algorithmic differentiation of the Open CASCADE Technology CAD kernel and

its coupling with an adjoint CFD solver. 2018; 33(4-6):813-828. doi:

10.1080/10556788.2018.1431235

[98] NX12 API Programming Tools Help, Available:

https://docs.plm.automation.siemens.com/tdoc/nx/12/nx_api/ (accessed 20.6.2023)

[99] NX Getting Started with SNAP, 2014, Available:

https://docs.plm.automation.siemens.com/data_services/resources/nx/10/nx_api/e

n_US/graphics/fileLibrary/nx/snap/SNAP_Getting_Started_V10.pdf (accessed

20.06.2023)

[100] Getting Started with NX Open, 2017, Available:

https://docs.plm.automation.siemens.com/data_services/resources/nx/12/nx_api/c

ommon/en_US/graphics/fileLibrary/nx/nxopen/nxopen_getting_started_v12.pdf

(accessed 20.06.2023)

[101] Song Y Li A, Jia Y, Huang J, Zhao X. Knowledge Fusion: Introduction of Concepts

and Techniques. 2019 IEEE Fourth International Conference on Data Science in

Cyberspace (DSC), Hangzhou, China, 2019, pp. 112-118, doi:

10.1109/DSC.2019.00025.

183

[102] Buric M, Brcic M, Škec S. Towards Automated Drafting in CAD Systems.

Conference: EEET 2021: 2021 4th International Conference on Electronics and

Electrical Engineering Technology, December 2021, doi:

10.1145/3508297.3508335

[103] JSDAI. Java Standard Data Access Interface. Available: http://www.jsdai.net/

(Accessed: 20.06.2023)

[104] Wang J, Yan W, Huang C. Surface shape-based clustering for B-rep models.

Multimed Tools Appl, 2020; 79: 25747–25761. doi: 10.1007/s11042-020-09252-3

[105] Wang J. Research on Shape Feature Recognition of B-Rep Model Based on

Wavelet Transform. Mathematical Problems in Engineering. 2018. 1-8. doi:

10.1155/2018/6310482.

[106] Goldman R. An Integrated Introduction to Computer Graphics and Geometric

Modeling. 1st Edition, CRC Press, Boca Raton-London-New York, 2009

[107] Nasr EA, Kamrani AK. Computer-Based Design and Manufacturing: An

Information-Based Approach, Springer, New York, USA, 2007

[108] Tornincasa S, Di, F. (2010). The future and the evolution of CAD. Conference: 14th

International Research/Expert Conference. ”Trends in the Development of

Machinery and Associated Technology”, TMT 2010 Proceedings, 2010

[109] STEP ISO 10303-42:2021 Available:

https://ap238.org/SMRL_v8_final/data/resource_docs/geometric_and_topological

_representation/sys/cover.htm (accessed 20.06.2023)

[110] Filip DJ, Ball TW. Procedurally representing lofted surfaces, IEEE Computer

Graphics and Applications, 1989; 9(6): 27-33, doi: 10.1109/38.41467

[111] Parasolid XT Format Reference, 2008, Available:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8dc47dbb5fe6

01bc0b73ba64b6f2a7a50e1eea59 (accessed 20.06.2023)

[112] Ziani M. Towards adaptation of the NURBS weights in shape optimization. MMC.

2022; 9(4): 959–967. Doi: 10.23939/mmc2022.04.959

[113] Wu Z, Seah HS, Lin F. NURBS Volume for Modelling Complex Objects. In: Chen,

M., Kaufman, A.E., Yagel, R. (eds) Volume Graphics. Springer, London. 2000.

https://doi.org/10.1007/978-1-4471-0737-8_9

184

[114] Pasadas M, Rodríguez M. Construction of blending surfaces by parametric discrete

interpolation PDE splines. Mathematics and Computers in Simulation. 2008; 77:

282-doi290. 10.1016/j.matcom.2007.08.011.

[115] Choi BK. Surface Modeling for CAD/CAM, Elsevier, New York, 1991,

[116] Vida J, Martin RR., Varady T. A survey of blending methods that use parametric

surfaces, Computer-Aided Design, 1994, 26(5): 341-365. doi: 10.1016/0010-

4485(94)90023-X.

[117] Huang L, Zhu X. Construction of Blending Surfaces. School of Mechanical

Engineering & Automation, Beijing University of Aeronautics & Astronautics,

Beijing. Available: http://www.linghuang.org/research/paper/blending.htm

(accessed 20.6.2023)

[118] Farouki RT. The approximation of non-degenerate offset surfaces, Computer Aided

Geometric Design, 1986; 3(1): 15-43, doi: 10.1016/0167-8396(86)90022-1.

[119] Kim J, Pratt MJ, Iyer RG, Sriram RD. Data Exchange of Parametric CAD Models

Using ISO 10303-108, 2007. Available:

https://www.govinfo.gov/content/pkg/GOVPUB-C13-

38c6804180ddd38aa87a68f74ad21bcc/pdf/GOVPUB-C13-

38c6804180ddd38aa87a68f74ad21bcc.pdf (accessed: 20.06.2023)

[120] Kim J, Pratt MJ, Iyer RG, Sriram RD, Standardized data exchange of CAD models

with design intent. Computer-Aided Design. 2008; 40(7): 760-777, doi:

10.1016/j.cad.2007.06.014.

[121] Pan C, Smith S. Extracting geometrical data from CAD step files. International

Design Engineering Technical Conferences and Computers and Information in

Engineering Conference. ASME. 2003. doi: 10.1115/DETC2003/CIE-48224.

[122] Shahin TM. Feature-Based Design – An Overview. Computer-aided Design and

Applications. Computer-Aided Design and Applications, 2008; 5(5): 639-653. doi:

10.3722/cadaps.2008.639-653.

[123] Open CASCADE Technology – Geometry Class Reference, Available:

https://dev.opencascade.org/doc/refman/html/class_geom___geometry.html.

Accessed: 20.06.2023)

185

[124] International Standard Organization, ISO 10303-11:2004 Industrial automation

systems and integration – Product data representation and exchange – Part 11:

Description methods: The EXPRESS language reference manual

[125] Somiya S. Handbook of Advanced Ceramics: Materials, Applications, Processing,

and Properties, 2nd Edition, Elsevier, 2013, doi: 10.1016/C2010-0-66261-4

[126] Katzenbach A, Handschuh S, Vettermann S. JT Format (ISO 14306) and AP 242

(ISO 10303): The Step to the Next Generation Collaborative Product Creation. in:

Kovacs, G.L., Kochan, D. (Eds.), Digital Product and Process Development

Systems, Springer Berlin Heidelberg, p. 41–52 2013. doi: 10.1007/978-3-642-

41329-2_6.

[127] Bijnens J, Kellens K, Cheshire D. Accuracy of geometry data exchange using STEP

AP242. Procedia CIRP. 2018; 78: 219-224, doi: 10.1016/j.procir.2018.09.048.

[128] Trinkel T, Anderl R, Zocholl M, Eichhorn H. Long-Term Archiving of Exact 3D

CAD Geometry With JT. ASME 2015 International Mechanical Engineering

Congress and Exposition American Society of Mechanical Engineers, 2015, doi:

10.1115/IMECE2015-53211

[129] Boussuge F, Léon JC, Hahmann S, Fine L. Idealized Models for FEA Derived from

Generative Modeling Processes Based on Extrusion Primitives. Engineering with

Computers, 2015; 31: 513-527. doi:10.1007/978-3-319-02335-9_8

[130] Solidworks 2021 Help documentation – STEP Export Options, Available:

https://help.solidworks.com/2021/english/SolidWorks/sldworks/hidd_export_opti

ons_step.htm (Accessed: 20.06.2023)

[131] Tierney CM, Sun L, Robinson TT, Armstrong CG. Using virtual topology

operations to generate analysis topology. Computer-Aided Design, 2017; 85: 154-

167. doi: 10.1016/j.cad.2016.07.015.

[132] Solidworks 2021 Help documentation – General Import Options, Available:

https://help.solidworks.com/2021/English/SolidWorks/sldworks/hidd_options_im

port_general.htm (Accessed: 20.06.2023)

[133] Solidworks 2021 API Help – Surface Parameterization Data Interface, Available:

https://help.solidworks.com/2015/english/api/sldworksapi/SOLIDWORKS.Intero

p.sldworks~SOLIDWORKS.Interop.sldworks.ISurfaceParameterizationData.html

186

[134] Li Y, Wangmn W, Tu C. Optimal Sampling of Parametric Surfaces. Computer

Aided Design and Application. 2012; 9: 55–60. doi: 10.3722/cadaps.2012.55-60.

[135] Ko K, Sakkalis T. Orthogonal projection of points in CAD/CAM applications: an

overview. Journal of Computational Design and Engineering. 2014; 1(2): 116-127.

doi: 10.7315/JCDE.2014.012.

[136] Solidworks 2021 API Help – Get Closest Point On Face Method, Available:

https://help.solidworks.com/2020/english/api/sldworksapi/solidworks.interop.sldw

orks~solidworks.interop.sldworks.iface2~getclosestpointon.html (Accessed:

20.06.2023)

[137] Minovic P, Ishikawa S, Kato K. Symmetry identification of a 3-D object

represented by octree. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1993; 15(5): 507-514. doi: 10.1109/34.211472.

[138] Parry-Barwick S, Bowyer A. Symmetry analysis and geometric modelling. ed. KK

Fung and A. Ginige, Dicta, 1993; 93: 39-46.

[139] Chan CK, Tan ST. Determination of the minimum bounding box of an arbitrary

solid: an iterative approach. Computers & Structures. 2001; 79(15): 1433-1449. doi:

10.1016/S0045-7949(01)00046-3.

[140] CATIA V5 help documentation – Reference elements. Available:

http://catiadoc.free.fr/online/prtug_C2/prtugbt1600.htm (Accessed: 20.06.2023)

[141] Solidworks 2021 Help documentation – Reference geometry. Available:

https://help.solidworks.com/2021/english/SolidWorks/sldworks/c_Reference_Geo

metry_Overview.htm (Accessed: 20.06.2023)

[142] Booch G, Rumbaugh J, Jacobson I. The Unified Modeling Language User Guide,

2nd Edition, Addison-Wesley Professional, 2005

[143] FreeCAD Help documentation. Available:

https://wiki.freecad.org/OpenCASCADE (Accessed: 20.06.2023)

[144] GrabCAD. Available online: https://grabcad.com/dashboard (Accessed:

01.03.2023)

[145] PARTcommunity. Available online: https://b2b.partcommunity.com/community/

(Accessed: 01.03.2023)

187

[146] Solidworks 2021 Help documentation – Face2.GetArea. Available:

https://help.solidworks.com/2015/english/api/sldworksapi/solidworks.interop.sldw

orks~solidworks.interop.sldworks.iface2~getarea.html (Accessed: 20.06.2023)

[147] Vakili, M., Ghamsari, M.K., & Rezaei, M. Performance Analysis and Comparison

of Machine and Deep Learning Algorithms for IoT Data Classification. ArXiv,

2020; abs/2001.09636.

[148] Sipser, M. Introduction to the Theory of Computation, 3rd ed.; Cengage Learning:

Boston, MA, USA, 2021.

[149] Pagani L., Scott P.J. Curvature based sampling of curves and surfaces. Computer

Aided Geometric Design. 2018; (59): 32-48; doi: 10.1016/j.cagd.2017.11.004.

[150] Elkott D. F., Elmaraghy H. A., Elmaraghy W. H. Automatic sampling for CMM

inspection planning of free-form surfaces. International Journal of Production

Research. 2002; 40(11): 2653-2676, doi: 10.1080/00207540210133435

[151] Obeidat S., Raman S. An intelligent sampling method for inspecting free-form

surfaces. The International Journal of Advanced Manufacturing Technology. 2009;

40:1125-1136. doi: 10.1007/s00170-008-1427-3.

188

BIOGRAPHY

Mladen Burić was born in 1987 in Odžak (Bosnia and Herzegovina). He attended the

elementary schools in Darmstadt (Germany) and Rovinj (Croatia). During his elementary

school education, he participated two times and achieved notable results in the state

competition of young technicians of the Republic of Croatia. In 2006, he graduated from

the mathematical gymnasium in Rovinj and entered the Faculty of Mechanical

Engineering and Naval Architecture in Zagreb in the same year. He gained a bachelor's

degree in mechanical engineering in 2010 and a master's degree in 2012. He started his

professional career while studying and working in Switzerland, a six-month student

practice at ABB Turbo Systems. From January 2013 to September 2016, he was employed

at Alstom Power (later General Electric) in Karlovac as a mechanical integrity engineer

for gas turbines. From October 2016 to December 2019, he worked as a design engineer

at Yazaki Europe Limited in Zagreb on developing connectors and electrical chargers for

the automotive industry. Since January 2019, he has worked at PIA Automation Croatia

as a mechanical engineer designing custom automation machines for the automotive

industry. In parallel with work, he is a part-time PhD researcher at the Faculty of

Mechanical Engineering and Naval Architecture in Zagreb. He speaks English and

German language.

189

ŽIVOTOPIS

Mladen Burić rođen je 1987. u Odžaku (Bosna i Hercegovina). Osnovne školu pohađao

je u Darmstadtu (Njemačka) i u Rovinju (Hrvatska). Tijekom osnovnoškolskog

obrazovanja dva put sudjeluje i ostvaruje zapažene rezultate na državnom natjecanju

mladih tehničara Republike Hrvatske iz područja strojarstva. Godine 2006. završava

matematičku gimnaziju u Rovinju i iste godine upisuje Fakultet strojarstva i brodogradnje

u Zagrebu (konstrukcijski smjer). Titulu prvostupnika strojarstva stječe 2010. godine, a

2012. magistra inženjera strojarstva. Svoju profesionalnu karijeru započinje tijekom

studija radeći studentsku praksu u Švicarskoj u trajanju od šest mjeseci u tvrtki ABB

Turbo Systems. Od siječnja 2013. do listopada 2016. zaposlen je u tvrtki Alstom Power

(kasnije General Electric) u Karlovcu kao inženjer za proračun mehaničkog integriteta

plinskih turbina. Od listopada 2016. do prosinca 2018. radi kao inženjer konstruktor u

tvrtki Yazaki Europe Limited u Zagrebu na razvoju konektora i električnih punjača za

automobilsku industriju. Od siječnja 2019. je zaposlen na poziciji inženjer konstruktor u

tvrtki PIA Automation Croatia, te se bavi konstruiranjem automatiziranih strojeva

specijalne namjene za automobilsku industriju. Paralelno uz posao studira na doktorskom

studiji na Fakultetu strojarstva i brodogradnje u Zagrebu. Govori engleskim i njemačkim

jezikom.

190

LIST OF PUBLICATIONS

1. Buric M, Skec S. A Procedure for Identifying Planes and Axes of Symmetry Candidates

in B-rep CAD Models. CAD’23, Mexico City, July 10-12, 2023. doi:

10.14733/cadconfP.2023.297-301

2. Buric M, Bosner T, Skec S. A Framework for Detection of Exact Global and Partial

Symmetry in 3D CAD Models. Symmetry. 15(5):1058, 2023, doi: 10.3390/sym15051058

3. Buric M, Brcic M, Bojcetic N, Skec S. Computer-Aided Detection of Exact Reflection

and Axisymmetry in B-rep CAD Models. Computer-Aided Design and Applications,

20(5):884, 2023, doi: 10.14733/cadaps.2023.884-897

4. Buric M, Brcic M, Bojcetic N, Skec S. Computer-Aided Detection of Exact Reflection

and Axisymmetry in B-rep CAD Models. In: CAD'22 Proceedings, Beijing, Chine, July

11-13, 2022, pp. 251-256, https://doi.org/, doi: 10.14733/cadconfP.2022.251-256

5. Buric M, Brcic M, Skec S. Towards Automated Drafting in CAD Systems. In: 4th

International Conference on Electronics and Electrical Engineering Technology (EEET

2021) Nanjing: ACM, 2021. pp 233-238. doi:10.1145/3508297.3508335

6. Buric M, Marjanovic D. A tool for Idealisation of CAD Models. In: Proceedings of

the 15th International Design Conference (DESIGN 2018), Dubrovnik, Croatia, pp. 205-

214 doi:10.21278/idc.2018.0367

7. Buric M, Katana B. Low-Cost Experimental Setup for 2D Digital Image Correlation

Method. In: 5th International Conference Vallis Aurea, Požega, Croatia, 2016. pp. 43-53

8. Katana B, Buric M. Polymer Materials in the Food Industry. In: 5th International

Conference Vallis Aurea, Požega, Croatia, 2016. pp. 199-206

191

APPENDIX

A1 – ANALYSIS OF B-REP

Sub TopologyClassification()

Dim swApp As SldWorks.SldWorks

Dim swModel As SldWorks.ModelDoc2

Dim swSelMgr As SldWorks.SelectionMgr

Dim swSelData As SldWorks.SelectData

Dim swModelDocExt As SldWorks.ModelDocExtension

Dim swPart As SldWorks.PartDoc

Dim swBody As SldWorks.Body2

Dim swFace As SldWorks.face2

Dim swEdge As SldWorks.Edge

Dim swVertex As SldWorks.Vertex

Dim swCurve As SldWorks.Curve

Dim swLoop As SldWorks.Loop2

Dim swEnt As SldWorks.Entity

Dim swEntity As Entity

Dim swDataselection As SelectData

Dim swSurf As SldWorks.Surface

Dim nStatus As Long

Dim bRet As Boolean

Dim vBodies As Variant

Dim vSectionPropeties1 As Variant

Dim swFeatureManager As FeatureManager

Dim vFeat As Variant

Dim vRefPointFeatures As Variant

Dim swRefPt As RefPoint

Dim swMathPt As MathPoint

Dim swRefPtData As SldWorks.RefPointFeatureData

Dim swMathUntility As MathUtility

Dim CentroidVector As MathVector

Dim CentroidVector2 As MathVector

Dim NormalVector As MathVector

Dim NormalVector2 As MathVector

Dim VectorLength As Double

Dim VectorLength2 As Double

Dim VectorOperation As MathVector

Dim VectorOperation2 As MathVector

Dim NormalizedVector As MathVector

Dim NormalizedVector2 As MathVector

Dim NormalizedVector3 As MathVector

Dim CrossProdCentVect As MathVector

Dim CrossProdNormVect As MathVector

Dim swCoPlanarVector As MathVector

Dim vCylinder As Variant

Dim vCone As Variant

Dim vSphere As Variant

Dim vTorus As Variant

Dim vPoint As Variant

Dim vVertices As Variant

192

Dim vCircle As Variant

Dim vEllipse As Variant

Dim CenterPoints(1, 2)

Dim OuterLoopCount As Integer

Dim vPt As Variant

Dim vNorm As Variant

Dim dAngle As Double

Dim dAngle2 As Double

Dim CentroidPoint(2) As Double

Dim CentroidPoint2(2) As Double

Dim NormalPoint(2) As Double

Dim NormalPoint2(2) As Double

Dim vCentroidPoint As Variant

Dim vCentroidPoint2 As Variant

Dim vNormalPoint As Variant

Dim vNormalPoint2 As Variant

Dim vTempPoint As Variant

Dim vTempPoint2 As Variant

Dim vTempPoint3 As Variant

Dim vTempPoint4 As Variant

Dim vArrayVector

Dim vArrayVector2

Dim vArrayCoplanarVector2

Dim vArrayNormVector

Dim vArrayNormVector2

Dim vArrayNormVector3

Dim vPt3(2) As Double

Dim vPt4 As Variant

Set swApp = CreateObject("SldWorks.Application")

Set swModel = swApp.ActiveDoc

Set swFeatureManager = swModel.FeatureManager

Set swPart = swModel

Set swMathUntility = swApp.GetMathUtility

Set swModelDocExt = swModel.Extension

Set swSelMgr = swModel.SelectionManager

Set swSelData = swSelMgr.CreateSelectData

vBodies = swPart.GetBodies2(swAllBodies, True)

Set swBody = vBodies(0)

Set swFace = swBody.GetFirstFace

swModel.ClearSelection2 True

Dim DecimalPlaces2 As Integer

DecimalPlaces = 6

DecimalPlaces2 = 6

DecimalPlaces3 = 6

Dim TextFile As Integer

Dim strText As String

Dim LineArray() As String

iPlanesCount = 0

iCylindersCount = 0

iSemiCylindersCount = 0

iConesCount = 0

iSemiConesCount = 0

iSpheresCount = 0

193

iSemiSpheresCount = 0

iTorusesCount = 0

iSemiTorusesCount = 0

iBlendsCount = 0

iExtrusionsCount = 0

iRevolvesCount = 0

iSemiRevolvesCount = 0

TotalFacesCount = 0

SymmetryPlane1Count = 0

SymmetryPlane2Count = 0

SymmetryPlane3Count = 0

Dim LowerRange As Double

Dim UpperRange As Double

LowerRange = 0.99

UpperRange = 1.01

Dim NormalDirection1 As Boolean

Dim NormalDirection2 As Boolean

Dim String1 As String

Dim String2 As String

Dim vPlane1 As Variant

Do While Not swFace Is Nothing

 Set swEnt = swFace

 Set swSurf = swFace.GetSurface

 vPlane1 = swSurf.PlaneParams

 NormalDirection1 = swFace.FaceInSurfaceSense

 If NormalDirection1 <> False Then

 vPlane1(0) = (-1) * vPlane1(0)

 vPlane1(1) = (-1) * vPlane1(1)

 vPlane1(2) = (-1) * vPlane1(2)

 Else

End If

 If swSurf.Identity = 4001 Then

 bRet = swEnt.Select4(False, swSelData)

 vSectionPropeties1 = swModel.Extension.GetSectionProperties2(swFace)

 swModel.ClearSelection2 True

 sPLANES(iPlanesCount, 0) = swModel.GetEntityName(swEnt)

 sPLANES(iPlanesCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

 sPLANES(iPlanesCount, 2) = Round((vSectionPropeties1(2) * 1000), DecimalPlaces)

 sPLANES(iPlanesCount, 3) = Round((vSectionPropeties1(3) * 1000), DecimalPlaces)

 sPLANES(iPlanesCount, 4) = Round((vSectionPropeties1(4) * 1000), DecimalPlaces)

 sPLANES(iPlanesCount, 5) = Round(vPlane1(0), DecimalPlaces)

 sPLANES(iPlanesCount, 6) = Round(vPlane1(1), DecimalPlaces)

 sPLANES(iPlanesCount, 7) = Round(vPlane1(2), DecimalPlaces)

 iPlanesCount = iPlanesCount + 1

 End If

 If swSurf.Identity = 4002 Then

 GetFaceCenterParameters swFace, vPt, vNorm, dAngle, dAngle2

 If dAngle < 360 Then

 sSEMICYLINDERS(iSemiCylindersCount, 1) = Round((swFace.GetArea * 1000000),

 DecimalPlaces2)

 sSEMICYLINDERS(iSemiCylindersCount, 2) = Round((vPt(0)) * 1000, DecimalPlaces)

194

 sSEMICYLINDERS(iSemiCylindersCount, 3) = Round((vPt(1)) * 1000, DecimalPlaces)

 sSEMICYLINDERS(iSemiCylindersCount, 4) = Round((vPt(2)) * 1000, DecimalPlaces)

 sSEMICYLINDERS(iSemiCylindersCount, 5) = Round(vNorm(0), DecimalPlaces)

 sSEMICYLINDERS(iSemiCylindersCount, 6) = Round(vNorm(1), DecimalPlaces)

 sSEMICYLINDERS(iSemiCylindersCount, 7) = Round(vNorm(2), DecimalPlaces)

 iSemiCylindersCount = iSemiCylindersCount + 1

 ElseIf dAngle = 360 Then

 vCylinder = swSurf.CylinderParams

 bRet = swEnt.Select4(False, swSelData)

 vRefPointFeatures = swFeatureManager.InsertReferencePoint(4, 0, 0, 1)

 For Each vFeat In vRefPointFeatures

 Set swFeat = vFeat

 Set swRefPt = swFeat.GetSpecificFeature2

 Set swRefPtData = swFeat.GetDefinition

 Set swMathPt = swRefPt.GetRefPoint

 boolstatus = swFeat.Select2(False, -1)

 boolstatus = swModelDocExt.DeleteSelection2(1)

 Next

 swModel.ClearSelection2 True

 sCYLINDERS(iCylindersCount, 0) = swModel.GetEntityName(swEnt)

 sCYLINDERS(iCylindersCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces)

 sCYLINDERS(iCylindersCount, 2) = Round((swMathPt.ArrayData(0)) * 1000, DecimalPlaces)

 sCYLINDERS(iCylindersCount, 3) = Round((swMathPt.ArrayData(1)) * 1000, DecimalPlaces)

 sCYLINDERS(iCylindersCount, 4) = Round((swMathPt.ArrayData(2)) * 1000, DecimalPlaces)

 sCYLINDERS(iCylindersCount, 5) = Round(vCylinder(3), DecimalPlaces)

 sCYLINDERS(iCylindersCount, 6) = Round(vCylinder(4), DecimalPlaces)

 sCYLINDERS(iCylindersCount, 7) = Round(vCylinder(5), DecimalPlaces)

 iCylindersCount = iCylindersCount + 1

 End If

 End If

 If swSurf.Identity = 4003 Then

 GetFaceCenterParameters swFace, vPt, vNorm, dAngle, dAngle2

 If dAngle < 360 Then

 sSEMICONES(iSemiConesCount, 0) = swModel.GetEntityName(swEnt)

 sSEMICONES(iSemiConesCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

 sSEMICONES(iSemiConesCount, 2) = Round((vPt(0)) * 1000, DecimalPlaces)

 sSEMICONES(iSemiConesCount, 3) = Round((vPt(1)) * 1000, DecimalPlaces)

 sSEMICONES(iSemiConesCount, 4) = Round((vPt(2)) * 1000, DecimalPlaces)

 sSEMICONES(iSemiConesCount, 5) = Round(vNorm(0), DecimalPlaces)

 sSEMICONES(iSemiConesCount, 6) = Round(vNorm(1), DecimalPlaces)

 sSEMICONES(iSemiConesCount, 7) = Round(vNorm(2), DecimalPlaces)

 iSemiConesCount = iSemiConesCount + 1

 ElseIf dAngle = 360 Then

 vCone = swSurf.ConeParams2

 bRet = swEnt.Select4(False, swSelData)

 vRefPointFeatures = swFeatureManager.InsertReferencePoint(4, 0, 0, 1)

 For Each vFeat In vRefPointFeatures

 Set swFeat = vFeat

 Set swRefPt = swFeat.GetSpecificFeature2

 Set swRefPtData = swFeat.GetDefinition

 Set swMathPt = swRefPt.GetRefPoint

 boolstatus = swFeat.Select2(False, -1)

 boolstatus = swModelDocExt.DeleteSelection2(1)

 Next

 swModel.ClearSelection2 True

 sCONES(iConesCount, 0) = swModel.GetEntityName(swEnt)

 sCONES(iConesCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

195

 sCONES(iConesCount, 2) = Round((swMathPt.ArrayData(0)) * 1000, DecimalPlaces)

 sCONES(iConesCount, 3) = Round((swMathPt.ArrayData(1)) * 1000, DecimalPlaces)

 sCONES(iConesCount, 4) = Round((swMathPt.ArrayData(2)) * 1000, DecimalPlaces)

 sCONES(iConesCount, 5) = Round(vCone(3), DecimalPlaces)

 sCONES(iConesCount, 6) = Round(vCone(4), DecimalPlaces)

 sCONES(iConesCount, 7) = Round(vCone(5), DecimalPlaces)

 iConesCount = iConesCount + 1

 End If

 End If

 If swSurf.Identity = 4004 Then

 GetFaceCenterParameters swFace, vPt, vNorm, dAngle, dAngle2

 If dAngle < 360 Then

 sSEMISPHERES(iSemiSpheresCount, 0) = swModel.GetEntityName(swEnt)

 sSEMISPHERES(iSemiSpheresCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

 sSEMISPHERES(iSemiSpheresCount, 2) = Round((vPt(0)) * 1000, DecimalPlaces)

 sSEMISPHERES(iSemiSpheresCount, 3) = Round((vPt(1)) * 1000, DecimalPlaces)

 sSEMISPHERES(iSemiSpheresCount, 4) = Round((vPt(2)) * 1000, DecimalPlaces)

 sSEMISPHERES(iSemiSpheresCount, 5) = Round(vNorm(0), DecimalPlaces)

 sSEMISPHERES(iSemiSpheresCount, 6) = Round(vNorm(1), DecimalPlaces)

 sSEMISPHERES(iSemiSpheresCount, 7) = Round(vNorm(2), DecimalPlaces)

 iSemiSpheresCount = iSemiSpheresCount + 1

 ElseIf dAngle = 360 Then

 vSphere = swSurf.SphereParams

 bRet = swEnt.Select4(False, swSelData)

 vRefPointFeatures = swFeatureManager.InsertReferencePoint(4, 0, 0, 1)

 For Each vFeat In vRefPointFeatures

 Set swFeat = vFeat

 Set swRefPt = swFeat.GetSpecificFeature2

 Set swRefPtData = swFeat.GetDefinition

 Set swMathPt = swRefPt.GetRefPoint

 boolstatus = swFeat.Select2(False, -1)

 boolstatus = swModelDocExt.DeleteSelection2(1)

 Next

 swModel.ClearSelection2 True

 vNorm(0) = swMathPt.ArrayData(0) - vSphere(0)

 vNorm(1) = swMathPt.ArrayData(1) - vSphere(1)

 vNorm(2) = swMathPt.ArrayData(2) - vSphere(2)

 vNorm(0) = vNorm(0) / (Sqrt(vNorm(0) ^ 2 + vNorm(1) ^ 2 + vNorm(2) ^ 2))

 vNorm(1) = vNorm(1) / (Sqrt(vNorm(0) ^ 2 + vNorm(1) ^ 2 + vNorm(2) ^ 2))

 vNorm(2) = vNorm(2) / (Sqrt(vNorm(0) ^ 2 + vNorm(1) ^ 2 + vNorm(2) ^ 2))

 sSPHERES(iSpheresCount, 0) = swModel.GetEntityName(swEnt)

 sSPHERES(iSpheresCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

 sSPHERES(iSpheresCount, 2) = Round((swMathPt.ArrayData(0) * 1000), DecimalPlaces)

 sSPHERES(iSpheresCount, 3) = Round((swMathPt.ArrayData(1) * 1000), DecimalPlaces)

 sSPHERES(iSpheresCount, 4) = Round((swMathPt.ArrayData(2) * 1000), DecimalPlaces)

 sSPHERES(iSpheresCount, 5) = Round(vNorm(0), DecimalPlaces)

 sSPHERES(iSpheresCount, 6) = Round(vNorm(1), DecimalPlaces)

 sSPHERES(iSpheresCount, 7) = Round(vNorm(2), DecimalPlaces)

 iSpheresCount = iSpheresCount + 1

 End If

 End If

 If swSurf.Identity = 4005 Then

196

 GetFaceCenterParameters swFace, vPt, vNorm, dAngle, dAngle2

 If dAngle < 360 Then

 sSEMITORUSES(iSemiTorusesCount, 0) = swModel.GetEntityName(swEnt)

 sSEMITORUSES(iSemiTorusesCount, 1) = Round((swFace.GetArea * 1000000),

 DecimalPlaces2)

 sSEMITORUSES(iSemiTorusesCount, 2) = Round((vPt(0)) * 1000, DecimalPlaces)

 sSEMITORUSES(iSemiTorusesCount, 3) = Round((vPt(1)) * 1000, DecimalPlaces)

 sSEMITORUSES(iSemiTorusesCount, 4) = Round((vPt(2)) * 1000, DecimalPlaces)

 sSEMITORUSES(iSemiTorusesCount, 5) = Round(vNorm(0), DecimalPlaces)

 sSEMITORUSES(iSemiTorusesCount, 6) = Round(vNorm(1), DecimalPlaces)

 sSEMITORUSES(iSemiTorusesCount, 7) = Round(vNorm(2), DecimalPlaces)

 iSemiTorusesCount = iSemiTorusesCount + 1

 ElseIf dAngle = 360 Then

 vTorus = swSurf.TorusParams

 bRet = swEnt.Select4(False, swSelData)

 vRefPointFeatures = swFeatureManager.InsertReferencePoint(4, 0, 0, 1)

 For Each vFeat In vRefPointFeatures

 Set swFeat = vFeat

 Set swRefPt = swFeat.GetSpecificFeature2

 Set swRefPtData = swFeat.GetDefinition

 Set swMathPt = swRefPt.GetRefPoint

 boolstatus = swFeat.Select2(False, -1)

 boolstatus = swModelDocExt.DeleteSelection2(1)

 Next

 swModel.ClearSelection2 True

 sTORUSES(iTorusesCount, 0) = swModel.GetEntityName(swEnt)

 sTORUSES(iTorusesCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

 sTORUSES(iTorusesCount, 2) = Round((swMathPt.ArrayData(0) * 1000), DecimalPlaces)

 sTORUSES(iTorusesCount, 3) = Round((swMathPt.ArrayData(1) * 1000), DecimalPlaces)

 sTORUSES(iTorusesCount, 4) = Round((swMathPt.ArrayData(2) * 1000), DecimalPlaces)

 sTORUSES(iTorusesCount, 5) = Round(vTorus(3), DecimalPlaces)

 sTORUSES(iTorusesCount, 6) = Round(vTorus(4), DecimalPlaces)

 sTORUSES(iTorusesCount, 7) = Round(vTorus(5), DecimalPlaces)

 iTorusesCount = iTorusesCount + 1

 End If

 End If

 If swSurf.Identity = 4006 Then

 GetFaceCenterParameters swFace, vPt, vNorm, dAngle, dAngle2

 If dAngle = 360 Or dAngle2 = 360 Then

 bRet = swEnt.Select4(False, swSelData)

 vRefPointFeatures = swFeatureManager.InsertReferencePoint(4, 0, 0, 1)

 For Each vFeat In vRefPointFeatures

 Set swFeat = vFeat

 Set swRefPt = swFeat.GetSpecificFeature2

 Set swRefPtData = swFeat.GetDefinition

 Set swMathPt = swRefPt.GetRefPoint

 boolstatus = swFeat.Select2(False, -1)

 boolstatus = swModelDocExt.DeleteSelection2(1)

 Next

 sBSURFACES(iBSurfacesCount, 0) = swModel.GetEntityName(swEnt)

 sBSURFACES(iBSurfacesCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

 sBSURFACES(iBSurfacesCount, 2) = Round((swMathPt.ArrayData(0)) * 1000, DecimalPlaces)

 sBSURFACES(iBSurfacesCount, 3) = Round((swMathPt.ArrayData(1)) * 1000, DecimalPlaces)

 sBSURFACES(iBSurfacesCount, 4) = Round((swMathPt.ArrayData(2)) * 1000, DecimalPlaces)

 sBSURFACES(iBSurfacesCount, 5) = Round(vNorm(0), DecimalPlaces)

 sBSURFACES(iBSurfacesCount, 6) = Round(vNorm(1), DecimalPlaces)

197

 sBSURFACES(iBSurfacesCount, 7) = Round(vNorm(2), DecimalPlaces)

 Else

 sBSURFACES(iBSurfacesCount, 0) = swModel.GetEntityName(swEnt)

 sBSURFACES(iBSurfacesCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

 sBSURFACES(iBSurfacesCount, 2) = Round((vPt(0)) * 1000, DecimalPlaces)

 sBSURFACES(iBSurfacesCount, 3) = Round((vPt(1)) * 1000, DecimalPlaces)

 sBSURFACES(iBSurfacesCount, 4) = Round((vPt(2)) * 1000, DecimalPlaces)

 sBSURFACES(iBSurfacesCount, 5) = Round(vNorm(0), DecimalPlaces)

 sBSURFACES(iBSurfacesCount, 6) = Round(vNorm(1), DecimalPlaces)

 sBSURFACES(iBSurfacesCount, 7) = Round(vNorm(2), DecimalPlaces)

 End If

 iBSurfacesCount = iBSurfacesCount + 1

 End If

 If swSurf.Identity = 4007 Then

 GetFaceCenterParameters swFace, vPt, vNorm, dAngle, dAngle2

 sBLENDS(iBlendsCount, 0) = swModel.GetEntityName(swEnt)

 sBLENDS(iBlendsCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

 sBLENDS(iBlendsCount, 2) = Round((vPt(0)) * 1000, DecimalPlaces)

 sBLENDS(iBlendsCount, 3) = Round((vPt(1)) * 1000, DecimalPlaces)

 sBLENDS(iBlendsCount, 4) = Round((vPt(2)) * 1000, DecimalPlaces)

 sBLENDS(iBlendsCount, 5) = Round(vNorm(0), DecimalPlaces)

 sBLENDS(iBlendsCount, 6) = Round(vNorm(1), DecimalPlaces)

 sBLENDS(iBlendsCount, 7) = Round(vNorm(2), DecimalPlaces)

 iBlendsCount = iBlendsCount + 1

 End If

If swSurf.Identity = 4008 Then

 GetFaceCenterParameters swFace, vPt, vNorm, dAngle, dAngle2

 sOFFSETS(iOffsetsCount, 0) = swModel.GetEntityName(swEnt)

 sOFFSETS(iOffsetsCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

 sOFFSETS(iOffsetsCount, 2) = Round((vPt(0)) * 1000, DecimalPlaces)

 sOFFSETS(iOffsetsCount, 3) = Round((vPt(1)) * 1000, DecimalPlaces)

 sOFFSETS(iOffsetsCount, 4) = Round((vPt(2)) * 1000, DecimalPlaces)

 sOFFSETS(iOffsetsCount, 5) = Round(vNorm(0), DecimalPlaces)

 sOFFSETS(iOffsetsCount, 6) = Round(vNorm(1), DecimalPlaces)

 sOFFSETS(iOffsetsCount, 7) = Round(vNorm(2), DecimalPlaces)

 iOffsetsCount = iOffsetsCount + 1

 End If

 If swSurf.Identity = 4009 Then

 GetFaceCenterParameters swFace, vPt, vNorm, dAngle, dAngle2

 sEXTRUSIONS(iExtrusionsCount, 0) = swModel.GetEntityName(swEnt)

 sEXTRUSIONS(iExtrusionsCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

 sEXTRUSIONS(iExtrusionsCount, 2) = Round((vPt(0)) * 1000, DecimalPlaces)

 sEXTRUSIONS(iExtrusionsCount, 3) = Round((vPt(1)) * 1000, DecimalPlaces)

 sEXTRUSIONS(iExtrusionsCount, 4) = Round((vPt(2)) * 1000, DecimalPlaces)

 sEXTRUSIONS(iExtrusionsCount, 5) = Round(vNorm(0), DecimalPlaces)

 sEXTRUSIONS(iExtrusionsCount, 6) = Round(vNorm(1), DecimalPlaces)

 sEXTRUSIONS(iExtrusionsCount, 7) = Round(vNorm(2), DecimalPlaces)

 iExtrusionsCount = iExtrusionsCount + 1

 End If

 If swSurf.Identity = 4010 Then

 GetFaceCenterParameters swFace, vPt, vNorm, dAngle, dAngle2

 If dAngle2 < 360 Then

 vRevolve = swSurf.GetRevsurfParams

 sSEMIREVOLVES(iSemiRevolvesCount, 0) = swModel.GetEntityName(swEnt)

198

 sSEMIREVOLVES(iSemiRevolvesCount, 1) = Round((swFace.GetArea * 1000000),

 DecimalPlaces2)

 sSEMIREVOLVES(iSemiRevolvesCount, 2) = Round((vPt(0) * 1000), DecimalPlaces)

 sSEMIREVOLVES(iSemiRevolvesCount, 3) = Round((vPt(1) * 1000), DecimalPlaces)

 sSEMIREVOLVES(iSemiRevolvesCount, 4) = Round((vPt(2) * 1000), DecimalPlaces)

 sSEMIREVOLVES(iSemiRevolvesCount, 5) = Round(vNorm(0), DecimalPlaces)

 sSEMIREVOLVES(iSemiRevolvesCount, 6) = Round(vNorm(1), DecimalPlaces)

 sSEMIREVOLVES(iSemiRevolvesCount, 7) = Round(vNorm(2), DecimalPlaces)

 iSemiRevolvesCount = iSemiRevolvesCount + 1

 ElseIf dAngle2 = 360 Then

 vRevolve = swSurf.GetRevsurfParams

 bRet = swEnt.Select4(False, swSelData)

 vRefPointFeatures = swFeatureManager.InsertReferencePoint(4, 0, 0, 1)

 For Each vFeat In vRefPointFeatures

 Set swFeat = vFeat

 Set swRefPt = swFeat.GetSpecificFeature2

 Set swRefPtData = swFeat.GetDefinition

 Set swMathPt = swRefPt.GetRefPoint

 boolstatus = swFeat.Select2(False, -1)

 boolstatus = swModelDocExt.DeleteSelection2(1)

 Next

 swModel.ClearSelection2 True

 vNorm(0) = swMathPt.ArrayData(0) - vRevolve(0)

 vNorm(1) = swMathPt.ArrayData(1) - vRevolve(1)

 vNorm(2) = swMathPt.ArrayData(2) - vRevolve(2)

 vNorm(0) = vNorm(0) / (Sqrt(vNorm(0) ^ 2 + vNorm(1) ^ 2 + vNorm(2) ^ 2))

 vNorm(1) = vNorm(1) / (Sqrt(vNorm(0) ^ 2 + vNorm(1) ^ 2 + vNorm(2) ^ 2))

 vNorm(2) = vNorm(2) / (Sqrt(vNorm(0) ^ 2 + vNorm(1) ^ 2 + vNorm(2) ^ 2))

 sREVOLVES(iRevolvesCount, 0) = swModel.GetEntityName(swEnt)

 sREVOLVES(iRevolvesCount, 1) = Round((swFace.GetArea * 1000000), DecimalPlaces2)

 sREVOLVES(iRevolvesCount, 2) = Round((swMathPt.ArrayData(0) * 1000), DecimalPlaces)

 sREVOLVES(iRevolvesCount, 3) = Round((swMathPt.ArrayData(1) * 1000), DecimalPlaces)

 sREVOLVES(iRevolvesCount, 4) = Round((swMathPt.ArrayData(2) * 1000), DecimalPlaces)

 sREVOLVES(iRevolvesCount, 5) = Round(vNorm(0), DecimalPlaces)

 sREVOLVES(iRevolvesCount, 6) = Round(vNorm(1), DecimalPlaces)

 sREVOLVES(iRevolvesCount, 7) = Round(vNorm(2), DecimalPlaces)

 iRevolvesCount = iRevolvesCount + 1

 End If

 End If

 Set swFace = swFace.GetNextFace

 Loop

TotalFacesCount = iPlanesCount + iCylindersCount + iSemiCylindersCount + iConesCount +

iSemiConesCount + iSpheresCount + iSemiSpheresCount + iTorusesCount + iSemiTorusesCount +

iBSurfacesCount + iOffsetsCount + iBlendsCount + iExtrusionsCount + iRevolvesCount +

iSemiRevolvesCount

End Sub

A2 - COMPUTATION OF MASS PROPERTIES

Sub CenterOfMass()

Dim swApp As SldWorks.SldWorks

Dim swModel As SldWorks.ModelDoc2

199

Dim swModelDocExt As SldWorks.ModelDocExtension

Dim swMassProperty As MassProperty

Dim nStatus As Long

Dim DecimalPlaces As Integer

DecimalPlaces = 9

Set swApp = CreateObject("SldWorks.Application")

Set swModel = swApp.ActiveDoc

Set swModelDocExt = swModel.Extension

vMassProp = swModelDocExt.GetMassProperties2(2, nStatus, True)

Set swMassProperty = swModelDocExt.CreateMassProperty

vXAxis = swMassProperty.PrincipleAxesOfInertia(0)

vYAxis = swMassProperty.PrincipleAxesOfInertia(1)

vZAxis = swMassProperty.PrincipleAxesOfInertia(2)

dTotalArea = vMassProp(4) * 1000000

End Sub

A3 – GENERATION & TRIMMING OF POSCs & AOSCs

Sub SymmetryCandidates()

Dim swApp As SldWorks.SldWorks

Dim swModelDoc As SldWorks.ModelDoc2

Dim swPart As PartDoc

Dim swModelDocExt As SldWorks.ModelDocExtension

Dim swSelMgr As SldWorks.SelectionMgr

Dim swMathUntility As MathUtility

Dim boolstatus As Boolean

Dim swMeasure As SldWorks.Measure

Dim swEntity1 As Entity

Dim swEntity2 As Entity

Dim swFeatureManager As FeatureManager

Dim swRefPlane As RefPlane

Dim vSectionPropFace1 As Variant

Dim vSectionPropFace2 As Variant

Dim dMidpoint(2) As Variant

Dim vCOG As Variant

Dim COGStatus As Long

Dim vBoundBox As Variant

Dim dDeltaL(2) As Double

Dim dDeltaTotal As Double

Dim iDecimalPlaces As Integer

iDecimalPlaces = 4

Set swApp = Application.SldWorks

Set swModelDoc = swApp.ActiveDoc

Set swPart = swModelDoc

Set swModelDocExt = swModelDoc.Extension

Set swSelMgr = swModelDoc.SelectionManager

Set swFeatureManager = swModelDoc.FeatureManager

Set swMathUntility = swApp.GetMathUtility

200

vCOG = swModelDocExt.GetMassProperties2(2, COGStatus, True)

vBoundBox = swPart.GetPartBox(True)

Dim PointToPlaneDistance As Double

Dim CosineSimlarity As Double

Dim SetA As Integer

Dim SetB As Integer

Dim dArea1 As Double

Dim dArea2 As Double

Dim IntersectionAB As Integer

Dim UnionAB As Integer

Dim IntersectionOuterLoopsAB As Integer

Dim UnionOuterLoopsAB As Integer

Dim IntersectionInnerLoopsAB As Integer

Dim UnionInnerLoopsAB As Integer

Dim FaceName1 As String

Dim face1 As face2

Dim swSurface1 As Surface

Dim vFace1 As Variant

Dim vEdges1 As Variant

Dim swEdge1 As Edge

Dim swLoop1 As Loop2

Dim swCurve1 As Curve

Dim iEdgeType1 As Integer

Dim iBCURVE1 As Integer

Dim iCIRCLE1 As Integer

Dim iCONSTPARAM1 As Integer

Dim iELLIPSE1 As Integer

Dim iINTERSECTION1 As Integer

Dim iLINE1 As Integer

Dim iSPCURVE1 As Integer

Dim iTRIMMED1 As Integer

Dim vCurveParam1 As Variant

Dim vLoops1 'As Variant

'Dim vOuterLoops1 As Variant

'Dim vInnerLoops1 As Variant

Dim iOuterLoopsCount1 As Integer

Dim iInnerLoopsCount1 As Integer

Dim iLoopsCount1 As Integer

Dim vInnerLoopEdges1 'As Variant

Dim vOuterLoopEdges1 'As Variant

Dim iInnerEdgesCount1 As Integer

Dim iOuterEdgesCount1 As Integer

Set vFace1 = face1

Dim FaceCount1 As Integer

Dim StringEdges1 As String

Dim v1 As Variant

Dim i As Integer

Dim FaceName2 As String

Dim face2 As face2

Dim swSurface2 As Surface

Dim vFace2 As Variant

Dim vEdges2 As Variant

201

Dim swLoop2 As Loop2

Dim swEdge2 As Edge

Dim swCurve2 As Curve

Dim iEdgeType2 As Integer

Dim iBCURVE2 As Integer

Dim iCIRCLE2 As Integer

Dim iCONSTPARAM2 As Integer

Dim iELLIPSE2 As Integer

Dim iINTERSECTION2 As Integer

Dim iLINE2 As Integer

Dim iSPCURVE2 As Integer

Dim iTRIMMED2 As Integer

Dim vCurveParam2 As Variant

Dim vLoops2 As Variant

Dim iOuterLoopsCount2 As Integer

Dim iInnerLoopsCount2 As Integer

Dim iLoopsCount2 As Integer

Dim vInnerLoopEdges2 As Variant

Dim vOuterLoopEdges2 As Variant

Dim iInnerEdgesCount2 As Integer

Dim iOuterEdgesCount2 As Integer

Set vFace2 = face2

Dim FaceCount2 As Integer

Dim StringEdges2 As String

Dim v2 As Variant

Dim CurveLength As Single

Dim face3 As face2

Dim swEntity3 As Entity

Dim swSurface3 As Surface

Dim vCylinder As Variant

Dim AxisVector As MathVector

Dim APVector As MathVector

Dim CrossProductVector As MathVector

Dim CrossProductVectorNormalized As MathVector

Dim vAxisDir(2) As Double

Dim vAxisPoint(2) As Double

Dim vAPPoint(2) As Double

Dim vAxisDirTemp As Variant

Dim vAxisPointTemp As Variant

Dim vAPPointTemp As Variant

Dim PointToAxisDistance As Double

Dim AxisVector1 As MathVector

Dim AxisVector2 As MathVector

Dim dAxisVector1(2) As Double

Dim dAxisVector2(2) As Double

Dim vAxisVector1 As Variant

Dim vAxisVector2 As Variant

Dim FaceNormalDirection1 As Boolean

Dim FaceNormalDirection2 As Boolean

Dim vPlaneFace1 As Variant

Dim vPlaneFace2 As Variant

Dim vFaceNormal1(2) As Double

Dim vFaceNormal2(2) As Double

Dim vFaceNormal1Temp As Variant

Dim vFaceNormal2Temp As Variant

202

Dim iCounter1 As Integer

Dim iCounter2 As Integer

Dim AreaRatio As Double

Dim PerimeterRatio As Double

Dim dAreaFace1 As Double

Dim dAreaFace2 As Double

Dim Point1(2) As Double

Dim Point2(2) As Double

Dim vXAxisVector1 As MathVector

Dim vYAxisVector2 As MathVector

Dim vZAxisVector3 As MathVector

Dim vCrossVectorPlane1 As MathVector

Dim vCrossVectorPlane2 As MathVector

Dim vCrossVectorPlane3 As MathVector

Dim vCrossVectorAxis1 As MathVector

Dim vCrossVectorAxis2 As MathVector

Dim vCrossVectorAxis3 As MathVector

Dim NormalVector1 As MathVector

Dim NormalVector2 As MathVector

Dim CrossProdNormVect As MathVector

Dim NormalizedVector As MathVector

Dim NormalizedVector1 As MathVector

Dim NormalizedVector2 As MathVector

Dim VectorOperation As MathVector

Dim vPtTemp(2) As Double

Dim vPtTemp2 As Variant

Dim vArrayVector

Dim vArrayNormVector

Dim bTempCandi As Boolean

Dim bTempCandi2 As Boolean

Erase POSCandidates()

Erase POSCandidates2()

Erase AOSCandidates()

Erase AOSCandidates2()

iPOSCandidatesCount = 0

iPOSCandidatesCount2 = 0

iAOSCandidatesCount = 0

iAOSCandidatesCount2 = 0

dDeltaL(0) = Abs((vBoundBox(0))) + Abs((vBoundBox(3))) * 1000#

dDeltaL(1) = Abs((vBoundBox(1))) + Abs((vBoundBox(4))) * 1000#

dDeltaL(2) = Abs((vBoundBox(2))) + Abs((vBoundBox(5))) * 1000#

dDeltaTotal = 0.075 * Sqr((dDeltaL(0) ^ 2 + dDeltaL(1) ^ 2 + dDeltaL(2) ^ 2))

Set vXAxisVector1 = swMathUntility.CreateVector(vXAxis)

Set vYAxisVector2 = swMathUntility.CreateVector(vYAxis)

Set vZAxisVector3 = swMathUntility.CreateVector(vZAxis)

For q = 0 To (iPlanesCount - 2)

For r = q + 1 To (iPlanesCount - 1)

203

FaceName1 = sPLANES(q, 0)

FaceName2 = sPLANES(r, 0)

Set face1 = swPart.GetEntityByName(FaceName1, 2)

Set face2 = swPart.GetEntityByName(FaceName2, 2)

dArea1 = face1.GetArea

dArea2 = face2.GetArea

If ((dArea1 / dArea2) >= 0.85) And ((dArea1 / dArea2) <= 1.15) Then

Set swEntity1 = face1

FaceCount1 = face1.GetEdgeCount

ReDim aEdges1(FaceCount1) As String

vEdges1 = face1.GetEdges

iLoopsCount1 = face1.GetLoopCount

Set swSurface1 = face1.GetSurface

vPlaneFace1 = swSurface1.PlaneParams

FaceNormalDirection1 = face1.FaceInSurfaceSense

If FaceNormalDirection1 <> False Then

 vFaceNormal1(0) = (-1) * vPlaneFace1(0)

 vFaceNormal1(1) = (-1) * vPlaneFace1(1)

 vFaceNormal1(2) = (-1) * vPlaneFace1(2)

Else

 vFaceNormal1(0) = vPlaneFace1(0)

 vFaceNormal1(1) = vPlaneFace1(1)

 vFaceNormal1(2) = vPlaneFace1(2)

End If

ReDim vInnerLoops1(iLoopsCount1) As Loop2

ReDim vOuterLoops1(iLoopsCount1) As Loop2

vLoops1 = face1.GetLoops

For j = 0 To (iLoopsCount1 - 1)

Set swLoop1 = vLoops1(j)

 If swLoop1.IsOuter <> False Then

 Set vOuterLoops1(iOuterLoopsCount1) = vLoops1(j)

 iOuterLoopsCount1 = iOuterLoopsCount1 + 1

 iOuterEdgesCount1 = iOuterEdgesCount1 + swLoop1.GetEdgeCount

 Else

 Set vInnerLoops1(iInnerLoopsCount1) = vLoops1(j)

 iInnerLoopsCount1 = iInnerLoopsCount1 + 1

 iInnerEdgesCount1 = iInnerEdgesCount1 + swLoop1.GetEdgeCount

 End If

Next

ReDim aEdgesInnerLoops1(iInnerEdgesCount1) As String

ReDim aEdgesOuterLoops1(iOuterEdgesCount1) As String

'LOOPS FACE 1

For o = 0 To (iInnerLoopsCount1 - 1)

Set swLoop1 = vInnerLoops1(o)

vInnerLoopEdges1 = swLoop1.GetEdges

 For p = 0 To (swLoop1.GetEdgeCount - 1)

 Set swEdge1 = vInnerLoopEdges1(p)

 Set swCurve1 = swEdge1.GetCurve

204

 iEdgeType = swCurve1.Identity

 vCurveParam1 = swEdge1.GetCurveParams2

 CurveLength = Round(swCurve1.GetLength2(vCurveParam1(6), vCurveParam1(7)) * 1000#, 2)

 Select Case iEdgeType

 Case 3001

 aEdgesInnerLoops1(iCounter1) = "LI" & CurveLength

 iCounter1 = iCounter1 + 1

 Case 3002

 aEdgesInnerLoops1(iCounter1) = "CI" & CurveLength

 iCounter1 = iCounter1 + 1

 Case 3003

 aEdgesInnerLoops1(iCounter1) = "EL" & CurveLength

 iCounter1 = iCounter1 + 1

 Case 3004

 aEdgesInnerLoops1(iCounter1) = "IN" & CurveLength

 iCounter1 = iCounter1 + 1

 Case 3005

 aEdgesInnerLoops1(iCounter1) = "BC" & CurveLength

 iCounter1 = iCounter1 + 1

 Case 3006

 aEdgesInnerLoops1(iCounter1) = "SC" & CurveLength

 iCounter1 = iCounter1 + 1

 Case 3007

 aEdgesInnerLoops1(iCounter1) = "BL" & CurveLength

 iCounter1 = iCounter1 + 1

 Case 3008

 aEdgesInnerLoops1(iCounter1) = "CP" & CurveLength

 iCounter1 = iCounter1 + 1

 Case 3009

 aEdgesInnerLoops1(iCounter1) = "TR" & CurveLength

 iCounter1 = iCounter1 + 1

 End Select

 Next p

Next o

For o = 0 To (iOuterLoopsCount1 - 1)

Set swLoop1 = vOuterLoops1(o)

vOuterLoopEdges1 = swLoop1.GetEdges

 For p = 0 To (swLoop1.GetEdgeCount - 1)

 Set swEdge1 = vOuterLoopEdges1(p)

 Set swCurve1 = swEdge1.GetCurve

 iEdgeType = swCurve1.Identity

 vCurveParam1 = swEdge1.GetCurveParams2

 CurveLength = Round(swCurve1.GetLength2(vCurveParam1(6), vCurveParam1(7)) * 1000#, 2)

 Select Case iEdgeType

 Case 3001

205

 aEdgesOuterLoops1(p) = "LI" & CurveLength

 Case 3002

 aEdgesOuterLoops1(p) = "CI" & CurveLength

 Case 3003

 aEdgesOuterLoops1(p) = "EL" & CurveLength

 Case 3004

 aEdgesOuterLoops1(p) = "IN" & CurveLength

 Case 3005

 aEdgesOuterLoops1(p) = "BC" & CurveLength

 Case 3006

 aEdgesOuterLoops1(p) = "SC" & CurveLength

 Case 3007

 aEdgesOuterLoops1(p) = "BL" & CurveLength

 Case 3008

 aEdgesOuterLoops1(p) = "CP" & CurveLength

 Case 3009

 aEdgesOuterLoops1(p) = "TR" & CurveLength

 End Select

 Next p

Next o

'FACE 1

For i = 0 To (face1.GetEdgeCount - 1)

 Set swEdge1 = vEdges1(i)

 Set swCurve1 = swEdge1.GetCurve

 iEdgeType = swCurve1.Identity

 vCurveParam1 = swEdge1.GetCurveParams2

 CurveLength = Round(swCurve1.GetLength2(vCurveParam1(6), vCurveParam1(7)) * 1000#, 2)

 Select Case iEdgeType

 Case 3001

 iLINE1 = iLINE1 + 1

 aEdges1(i) = "LI" & CurveLength

 Case 3002

 iCIRCLE1 = iCIRCLE1 + 1

 aEdges1(i) = "CI" & CurveLength

 Case 3003

 iELLIPSE1 = iELLIPSE1 + 1

 aEdges1(i) = "EL" & CurveLength

 Case 3004

 iINTERSECTION1 = iINTERSECTION1 + 1

 aEdges1(i) = "IN" & CurveLength

 Case 3005

 iBCURVE1 = iBCURVE1 + 1

206

 aEdges1(i) = "BC" & CurveLength

 Case 3006

 iSPCURVE1 = iSPCURVE1 + 1

 aEdges1(i) = "SC" & CurveLength

 Case 3007

 iBLEND1 = iBLEND1 + 1

 aEdges1(i) = "BL" & CurveLength

 Case 3008

 iCONSTPARAM1 = iCONSTPARAM1 + 1

 aEdges1(i) = "CP" & CurveLength

 Case 3009

 iTRIMMED1 = iTRIMMED1 + 1

 aEdges1(i) = "TR" & CurveLength

 End Select

StringEdges1 = StringEdges1 & "-" & aEdges1(i)

Next i

Set swEntity2 = face2

FaceCount2 = face2.GetEdgeCount

ReDim aEdges2(FaceCount2) As String

vEdges2 = face2.GetEdges

iLoopsCount2 = face2.GetLoopCount

Set swSurface2 = face2.GetSurface

vPlaneFace2 = swSurface2.PlaneParams

FaceNormalDirection2 = face2.FaceInSurfaceSense

If FaceNormalDirection2 <> False Then

 vFaceNormal2(0) = (-1) * vPlaneFace2(0)

 vFaceNormal2(1) = (-1) * vPlaneFace2(1)

 vFaceNormal2(2) = (-1) * vPlaneFace2(2)

Else

 vFaceNormal2(0) = vPlaneFace2(0)

 vFaceNormal2(1) = vPlaneFace2(1)

 vFaceNormal2(2) = vPlaneFace2(2)

End If

ReDim vInnerLoops2(iLoopsCount2) As Loop2

ReDim vOuterLoops2(iLoopsCount2) As Loop2

vLoops2 = face2.GetLoops

For j = 0 To (iLoopsCount2 - 1)

Set swLoop2 = vLoops2(j)

 If swLoop2.IsOuter <> False Then

 Set vOuterLoops2(iOuterLoopsCount2) = swLoop2

 iOuterLoopsCount2 = iOuterLoopsCount2 + 1

 iOuterEdgesCount2 = iOuterEdgesCount2 + swLoop2.GetEdgeCount

 Else

 Set vInnerLoops2(iInnerLoopsCount2) = swLoop2

 iInnerLoopsCount2 = iInnerLoopsCount2 + 1

 iInnerEdgesCount2 = iInnerEdgesCount2 + swLoop2.GetEdgeCount

207

 End If

Next

'LOOPS FACE 2

For o = 0 To (iOuterLoopsCount2 - 1)

Set swLoop2 = vOuterLoops2(o)

vOuterLoopEdges2 = swLoop2.GetEdges

 For p = 0 To (swLoop2.GetEdgeCount - 1)

 Set swEdge2 = vOuterLoopEdges2(p)

 Set swCurve2 = swEdge2.GetCurve

 iEdgeType = swCurve2.Identity

 vCurveParam2 = swEdge2.GetCurveParams2

 CurveLength = Round(swCurve2.GetLength2(vCurveParam2(6), vCurveParam2(7)) * 1000#, 2)

 Select Case iEdgeType

 Case 3001

 aEdgesOuterLoops2(p) = "LI" & CurveLength

 Case 3002

 aEdgesOuterLoops2(p) = "CI" & CurveLength

 Case 3003

 aEdgesOuterLoops2(p) = "EL" & CurveLength

 Case 3004

 aEdgesOuterLoops2(p) = "IN" & CurveLength

 Case 3005

 aEdgesOuterLoops2(p) = "BC" & CurveLength

 Case 3006

 aEdgesOuterLoops2(p) = "SC" & CurveLength

 Case 3007

 aEdgesOuterLoops2(p) = "BL" & CurveLength

 Case 3008

 aEdgesOuterLoops2(p) = "CP" & CurveLength

 Case 3009

 aEdgesOuterLoops2(p) = "TR" & CurveLength

 End Select

 Next p

Next o

For o = 0 To (iInnerLoopsCount2 - 1)

Set swLoop2 = vInnerLoops2(o)

vInnerLoopEdges2 = swLoop2.GetEdges

 For p = 0 To (swLoop2.GetEdgeCount - 1)

 Set swEdge2 = vInnerLoopEdges2(p)

 Set swCurve2 = swEdge2.GetCurve

 iEdgeType = swCurve2.Identity

 vCurveParam2 = swEdge2.GetCurveParams2

 CurveLength = Round(swCurve2.GetLength2(vCurveParam2(6), vCurveParam2(7)) * 1000#, 2)

 Select Case iEdgeType

 Case 3001

 aEdgesInnerLoops2(iCounter2) = "LI" & CurveLength

 iCounter2 = iCounter2 + 1

 Case 3002

 aEdgesInnerLoops2(iCounter2) = "CI" & CurveLength

 iCounter2 = iCounter2 + 1

 Case 3003

 aEdgesInnerLoops2(iCounter2) = "EL" & CurveLength

 iCounter2 = iCounter2 + 1

208

 Case 3004

 aEdgesInnerLoops2(iCounter2) = "IN" & CurveLength

 iCounter2 = iCounter2 + 1

 Case 3005

 aEdgesInnerLoops2(iCounter2) = "BC" & CurveLength

 iCounter2 = iCounter2 + 1

 Case 3006

 aEdgesInnerLoops2(iCounter2) = "SC" & CurveLength

 iCounter2 = iCounter2 + 1

 Case 3007

 aEdgesInnerLoops2(iCounter2) = "BL" & CurveLength

 iCounter2 = iCounter2 + 1

 Case 3008

 aEdgesInnerLoops2(iCounter2) = "CP" & CurveLength

 iCounter2 = iCounter2 + 1

 Case 3009

 aEdgesInnerLoops2(iCounter2) = "TR" & CurveLength

 iCounter2 = iCounter2 + 1

 End Select

 Next p

Next o

For i = 0 To (face2.GetEdgeCount - 1)

 Set swEdge2 = vEdges2(i)

 Set swCurve2 = swEdge2.GetCurve

 iEdgeType = swCurve2.Identity

 vCurveParam2 = swEdge2.GetCurveParams2

 CurveLength = Round(swCurve2.GetLength2(vCurveParam2(6), vCurveParam2(7)) * 1000#, 2)

 Select Case iEdgeType

 Case 3001

 iLINE2 = iLINE2 + 1

 aEdges2(i) = "LI" & CurveLength

 Case 3002

 iCIRCLE2 = iCIRCLE2 + 1

 aEdges2(i) = "CI" & CurveLength

 Case 3003

 iELLIPSE2 = iELLIPSE2 + 1

 aEdges2(i) = "EL" & CurveLength

 Case 3004

 iINTERSECTION2 = iINTERSECTION2 + 1

 aEdges2(i) = "IN" & CurveLength

 Case 3005

 iBCURVE2 = iBCURVE2 + 1

 aEdges2(i) = "BC" & CurveLength

 Case 3006

 iSPCURVE2 = iSPCURVE2 + 1

 aEdges2(i) = "SC" & CurveLength

 Case 3007

 iBLEND2 = iBLEND2 + 1

 aEdges2(i) = "BL" & CurveLength

 Case 3008

 iCONSTPARAM2 = iCONSTPARAM2 + 1

 aEdges2(i) = "CP" & CurveLength

 Case 3009

 iTRIMMED2 = iTRIMMED2 + 1

 aEdges2(i) = "TR" & CurveLength

 End Select

209

StringEdges2 = StringEdges2 & "-" & aEdges2(i)

Next i

swModelDoc.ClearSelection2 True

swEntity1.Select (True)

vSectionPropFace1 = swModelDoc.Extension.GetSectionProperties2(face1)

Set swMeasure = swModelDocExt.CreateMeasure

swMeasure.LengthDecimalPlaces = 14

boolstatus = swMeasure.Calculate(Nothing)

swMeasure.ArcOption = 0

dAreaFace1 = swMeasure.Area * 1000000

q1 = Sqr(swMeasure.Area * 1000000)

q2 = (swMeasure.Perimeter * 1000) '^ 2

' Get the section properties for the selected face

swModelDoc.ClearSelection2 True

swEntity2.Select (True)

vSectionPropFace2 = swModelDoc.Extension.GetSectionProperties2(face1)

Set swMeasure = swModelDocExt.CreateMeasure

swMeasure.LengthDecimalPlaces = 14

boolstatus = swMeasure.Calculate(Nothing)

swMeasure.ArcOption = 0

dAreaFace2 = swMeasure.Area * 1000000

p1 = Sqr(swMeasure.Area * 1000000)

p2 = (swMeasure.Perimeter * 1000) '^ 2

swModelDoc.ClearSelection2 True

vFaceNormal1Temp = vFaceNormal1

vFaceNormal2Temp = vFaceNormal2

Set NormalVector1 = swMathUntility.CreateVector(vFaceNormal1Temp)

Set NormalVector2 = swMathUntility.CreateVector(vFaceNormal2Temp)

Set CrossProdNormVect = NormalVector1.Cross(NormalVector2)

(vSectionPropFace1(4) - vSectionPropFace2(4))

PlaneParameter1 = vFaceNormal1(0) * (vSectionPropFace1(2) - vSectionPropFace2(2)) +

vFaceNormal1(1) * (vSectionPropFace1(3) - vSectionPropFace2(3)) + vFaceNormal1(2) *

(vSectionPropFace1(4) - vSectionPropFace2(4))

If Round(CrossProdNormVect.GetLength(), 6) = 0 Then

 If Round(PlaneParameter1, 12) = 0 Then

 FaceStatus = "COPLANAR"

 vPtTemp(0) = vSectionPropFace1(2) - vSectionPropFace2(2)

 vPtTemp(1) = vSectionPropFace1(3) - vSectionPropFace2(3)

 vPtTemp(2) = vSectionPropFace1(4) - vSectionPropFace2(4)

 vPtTemp2 = vPtTemp

 Set VectorOperation = swMathUntility.CreateVector(vPtTemp2)

 Else

 FaceStatus = "PARALLEL"

210

 Set VectorOperation = NormalVector1

 End If

Else

 FaceStatus = "ELSE"

 Set VectorOperation = NormalVector1.Subtract(NormalVector2)

End If

Set NormalizedVector = VectorOperation.Normalise

vArrayVector = VectorOperation.ArrayData

vArrayNormVector = NormalizedVector.ArrayData

EuclideanDistance = Sqr((((vSectionPropFace2(2) + vSectionPropFace1(2)) / 2) - vCOG(0)) ^ 2 +

(((vSectionPropFace2(3) + vSectionPropFace1(3)) / 2) - vCOG(1)) ^ 2 + (((vSectionPropFace2(4) +

vSectionPropFace1(4)) / 2) - vCOG(2)) ^ 2)

dMidpoint(0) = (vSectionPropFace2(2) + vSectionPropFace1(2)) / 2

dMidpoint(1) = (vSectionPropFace2(3) + vSectionPropFace1(3)) / 2

dMidpoint(2) = (vSectionPropFace2(4) + vSectionPropFace1(4)) / 2

dA = vArrayNormVector(0)

dB = vArrayNormVector(1)

dC = vArrayNormVector(2)

dD = -(dA * dMidpoint(0) + dB * dMidpoint(1) + dC * dMidpoint(2))

On Error Resume Next

PointToPlaneDistance = (Abs((dA * vCOG(0)) + (dB * vCOG(1)) + (dC * vCOG(2)) + dD)) / Sqr(dA ^ 2

+ dB ^ 2 + dC ^ 2)

Set vCrossVectorPlane1 = vXAxisVector1.Cross(NormalizedVector)

Set vCrossVectorPlane2 = vYAxisVector2.Cross(NormalizedVector)

Set vCrossVectorPlane3 = vZAxisVector3.Cross(NormalizedVector)

Point1(0) = q1

Point1(1) = g2

Point1(2) = 0

Point2(0) = p1

Point2(1) = p2

Point2(2) = 0

vPoint1 = Point1

vPoint2 = Point2

AB = (q1 * p1) + (q2 * p2)

A = Sqr((q1) ^ 2 + (q2) ^ 2)

b = Sqr((p1) ^ 2 + (p2) ^ 2)

UnionAB = FaceCount1 + FaceCount2

For k = 0 To FaceCount1

For l = 0 To FaceCount2

If aEdges1(k) <> "" Or aEdges2(l) <> "" Then

 If aEdges1(k) = aEdges2(l) Then

 IntersectionAB = IntersectionAB + 1

211

 UnionAB = UnionAB - 1

 aEdges1(k) = ""

 aEdges2(l) = ""

 End If

End If

Next l

Next k

UnionInnerLoopsAB = iInnerEdgesCount1 + iInnerEdgesCount2

For k = 0 To iInnerEdgesCount1

For l = 0 To iInnerEdgesCount2

If aEdgesInnerLoops1(k) <> "" Or aEdgesInnerLoops2(l) <> "" Then

 If aEdgesInnerLoops1(k) = aEdgesInnerLoops2(l) Then

 IntersectionInnerLoopsAB = IntersectionInnerLoopsAB + 1

 UnionInnerLoopsAB = UnionInnerLoopsAB - 1

 aEdgesInnerLoops1(k) = ""

 aEdgesInnerLoops2(l) = ""

 End If

End If

Next l

Next k

UnionOuterLoopsAB = iOuterEdgesCount1 + iOuterEdgesCount2

For k = 0 To iOuterEdgesCount1

For l = 0 To iOuterEdgesCount2

If aEdgesOuterLoops1(k) <> "" Or aEdgesOuterLoops2(l) <> "" Then

 If aEdgesOuterLoops1(k) = aEdgesOuterLoops2(l) Then

 IntersectionOuterLoopsAB = IntersectionOuterLoopsAB + 1

 UnionOuterLoopsAB = UnionOuterLoopsAB - 1

 aEdgesOuterLoops1(k) = ""

 aEdgesOuterLoops2(l) = ""

 End If

End If

Next l

Next k

If p1 >= q1 Then

AreaRatio = q1 / p1

Else

AreaRatio = p1 / q1

End If

If p2 >= q2 Then

PerimeterRatio = q2 / p2

Else

PerimeterRatio = p2 / q2

End If

CosineSimlarity = IntersectionAB & "/" & Sqr(SetA * SetB)

If CosineSimlarity >= 0.70 And (Round(PointToPlaneDistance, iDecimalPlaces) * 1000) <=

(dDeltaTotal / 2) Then

If Round(PointToAxisDistance, iDecimalPlaces) * 1000 = 0 And

((Round(vCrossVectorPlane1.GetLength, iDecimalPlaces) = 0) Or

212

(Round(vCrossVectorPlane2.GetLength, iDecimalPlaces) = 0) Or

(Round(vCrossVectorPlane3.GetLength, iDecimalPlaces) = 0)) Then

Else

swEntity1.Select (True)

swEntity2.Select (True)

POSCandidates(iPOSCandidatesCount, 0) = FaceName1 & "-" & FaceName2

POSCandidates(iPOSCandidatesCount, 1) = dMidpoint(0)

POSCandidates(iPOSCandidatesCount, 2) = dMidpoint(1)

POSCandidates(iPOSCandidatesCount, 3) = dMidpoint(2)

POSCandidates(iPOSCandidatesCount, 4) = vArrayNormVector(0)

POSCandidates(iPOSCandidatesCount, 5) = vArrayNormVector(1)

POSCandidates(iPOSCandidatesCount, 6) = vArrayNormVector(2)

POSCandidates(iPOSCandidatesCount, 7) = FaceStatus

POSCandidates(iPOSCandidatesCount, 8) = PointToPlaneDistance

iPOSCandidatesCount = iPOSCandidatesCount + 1

End If

End If

swModelDoc.ClearSelection2 True

Erase vOuterLoops1

Erase vInnerLoops1

iOuterLoopsCount1 = 0

iInnerLoopsCount1 = 0

iInnerEdgesCount1 = 0

iOuterEdgesCount1 = 0

iCounter1 = 0

iLINE1 = 0

iCIRCLE1 = 0

iINTERSECTION1 = 0

iBCURVE1 = 0

iSPCURVE1 = 0

iCONSTPARAM1 = 0

iTRIMMED1 = 0

Erase dMidpoint()

dA = 0

dB = 0

dC = 0

dD = 0

PointToPlaneDistance = 0

Erase vOuterLoops2

Erase vInnerLoops2

iOuterLoopsCount2 = 0

iInnerLoopsCount2 = 0

iInnerEdgesCount2 = 0

iOuterEdgesCount2 = 0

iCounter2 = 0

213

iLINE2 = 0

iCIRCLE2 = 0

iINTERSECTION2 = 0

iBCURVE2 = 0

iSPCURVE2 = 0

iCONSTPARAM2 = 0

iTRIMMED2 = 0

dAreaFace1 = 0

dAreaFace2 = 0

Erase Point1()

Erase Point2()

Erase vPoint1

Erase vPoint2

Erase aEdges1

Erase aEdges2

Erase vPlaneFace1

Erase vPlaneFace2

Erase vSectionPropFace1

Erase vSectionPropFace2

Erase vPtTemp()

Erase vArrayVector

Erase vArrayNormVector

A = 0

b = 0

AB = 0

p1 = 0

p2 = 0

q1 = 0

q2 = 0

IntersectionAB = 0

UnionAB = 0

UnionOuterLoopsAB = 0

UnionInnerLoopsAB = 0

IntersectionOuterLoopsAB = 0

IntersectionInnerLoopsAB = 0

PlaneParameter1 = 0

iPOSCandidatesCount2 = 0

iPOSCandidatesCount3 = 0

Erase aEdgesOuterLoops1

Erase aEdgesOuterLoops2

End If

 Next r

Next q

'******************************

'Eliminating POS/AOS duplicates

'******************************

bTempCandi = False

For q = 0 To (iPOSCandidatesCount - 2)

214

For r = q + 1 To (iPOSCandidatesCount - 1)

If POSCandidates(q, 0) <> "" And POSCandidates(r, 0) <> "" Then

PlaneParameter1 = POSCandidates(q, 4) * (POSCandidates(q, 1) - POSCandidates(r, 1)) +

POSCandidates(q, 5) * (POSCandidates(q, 2) - POSCandidates(r, 2)) + POSCandidates(q, 6) *

(POSCandidates(q, 3) - POSCandidates(r, 3))

vFaceNormal1(0) = POSCandidates(q, 4)

vFaceNormal1(1) = POSCandidates(q, 5)

vFaceNormal1(2) = POSCandidates(q, 6)

vFaceNormal2(0) = POSCandidates(r, 4)

vFaceNormal2(1) = POSCandidates(r, 5)

vFaceNormal2(2) = POSCandidates(r, 6)

vFaceNormal1Temp = vFaceNormal1

vFaceNormal2Temp = vFaceNormal2

Set NormalVector1 = swMathUntility.CreateVector(vFaceNormal1Temp)

Set NormalVector2 = swMathUntility.CreateVector(vFaceNormal2Temp)

Set CrossProdNormVect = NormalVector1.Cross(NormalVector2)

If Round(CrossProdNormVect.GetLength(), 6) = 0 Then

 If Round(PlaneParameter1, 6) = 0 Then

 If POSCandidates(q, 7) = "COPLANAR" Then

 If POSCandidates(r, 7) = "COPLANAR" Then

 If r < (iPOSCandidatesCount - 1) Then

 POSCandidates(r, 0) = ""

 iPOSCandidatesCount3 = iPOSCandidatesCount3 + 1

 Else

 If bTempCandi = False Then

 POSCandidates2(iPOSCandidatesCount2, 0) = POSCandidates(q, 0)

 POSCandidates2(iPOSCandidatesCount2, 1) = POSCandidates(q, 1)

 POSCandidates2(iPOSCandidatesCount2, 2) = POSCandidates(q, 2)

 POSCandidates2(iPOSCandidatesCount2, 3) = POSCandidates(q, 3)

 POSCandidates2(iPOSCandidatesCount2, 4) = POSCandidates(q, 4)

 POSCandidates2(iPOSCandidatesCount2, 5) = POSCandidates(q, 5)

 POSCandidates2(iPOSCandidatesCount2, 6) = POSCandidates(q, 6)

 POSCandidates2(iPOSCandidatesCount2, 7) = POSCandidates(q, 7)

 POSCandidates2(iPOSCandidatesCount2, 8) = POSCandidates(q, 8)

 iPOSCandidatesCount2 = iPOSCandidatesCount2 + 1

 bTempCandi = True

 End If

 POSCandidates(r, 0) = ""

 iPOSCandidatesCount3 = iPOSCandidatesCount3 + 1

 End If

 Else

 If bTempCandi = False Then

 POSCandidates2(iPOSCandidatesCount2, 0) = POSCandidates(r, 0)

 POSCandidates2(iPOSCandidatesCount2, 1) = POSCandidates(r, 1)

 POSCandidates2(iPOSCandidatesCount2, 2) = POSCandidates(r, 2)

 POSCandidates2(iPOSCandidatesCount2, 3) = POSCandidates(r, 3)

 POSCandidates2(iPOSCandidatesCount2, 4) = POSCandidates(r, 4)

 POSCandidates2(iPOSCandidatesCount2, 5) = POSCandidates(r, 5)

 POSCandidates2(iPOSCandidatesCount2, 6) = POSCandidates(r, 6)

 POSCandidates2(iPOSCandidatesCount2, 7) = POSCandidates(r, 7)

 POSCandidates2(iPOSCandidatesCount2, 8) = POSCandidates(r, 8)

215

 iPOSCandidatesCount2 = iPOSCandidatesCount2 + 1

 bTempCandi = True

 End If

 POSCandidates(r, 0) = ""

 iPOSCandidatesCount3 = iPOSCandidatesCount3 + 1

 End If

 Else

 If bTempCandi = False Then

 POSCandidates2(iPOSCandidatesCount2, 0) = POSCandidates(q, 0)

 POSCandidates2(iPOSCandidatesCount2, 1) = POSCandidates(q, 1)

 POSCandidates2(iPOSCandidatesCount2, 2) = POSCandidates(q, 2)

 POSCandidates2(iPOSCandidatesCount2, 3) = POSCandidates(q, 3)

 POSCandidates2(iPOSCandidatesCount2, 4) = POSCandidates(q, 4)

 POSCandidates2(iPOSCandidatesCount2, 5) = POSCandidates(q, 5)

 POSCandidates2(iPOSCandidatesCount2, 6) = POSCandidates(q, 6)

 POSCandidates2(iPOSCandidatesCount2, 7) = POSCandidates(q, 7)

 POSCandidates2(iPOSCandidatesCount2, 8) = POSCandidates(q, 8)

 iPOSCandidatesCount2 = iPOSCandidatesCount2 + 1

 bTempCandi = True

 End If

 POSCandidates(r, 0) = ""

 iPOSCandidatesCount3 = iPOSCandidatesCount3 + 1

 End If

 End If

Else

End If

End If

PlaneParameter1 = 0

Erase vFaceNormal1Temp

Erase vFaceNormal2Temp

Erase vFaceNormal1

Erase vFaceNormal2

Next r

bTempCandi = False

Next q

bTempCandi = False

If iPOSCandidatesCount2 <> (iPOSCandidatesCount - iPOSCandidatesCount3) Then

For i = 0 To (iPOSCandidatesCount - 1)

 For j = 0 To (iPOSCandidatesCount2 - 1)

 If POSCandidates(i, 0) <> "" And POSCandidates2(j, 0) <> "" Then

 If POSCandidates(i, 0) = POSCandidates2(j, 0) Then

 bTempCandi = True

 End If

 End If

 Next j

 If bTempCandi = False And POSCandidates(i, 0) <> "" Then

 POSCandidates2(iPOSCandidatesCount2, 0) = POSCandidates(i, 0)

 POSCandidates2(iPOSCandidatesCount2, 1) = POSCandidates(i, 1)

216

 POSCandidates2(iPOSCandidatesCount2, 2) = POSCandidates(i, 2)

 POSCandidates2(iPOSCandidatesCount2, 3) = POSCandidates(i, 3)

 POSCandidates2(iPOSCandidatesCount2, 4) = POSCandidates(i, 4)

 POSCandidates2(iPOSCandidatesCount2, 5) = POSCandidates(i, 5)

 POSCandidates2(iPOSCandidatesCount2, 6) = POSCandidates(i, 6)

 POSCandidates2(iPOSCandidatesCount2, 7) = POSCandidates(i, 7)

 POSCandidates2(iPOSCandidatesCount2, 8) = POSCandidates(i, 8)

 iPOSCandidatesCount2 = iPOSCandidatesCount2 + 1

 End If

bTempCandi = False

Next i

End If

If iPOSCandidatesCount2 = 0 Then

POSCandidates2(iPOSCandidatesCount2, 0) = ""

POSCandidates2(iPOSCandidatesCount2, 1) = vMassProp(0)

POSCandidates2(iPOSCandidatesCount2, 2) = vMassProp(1)

POSCandidates2(iPOSCandidatesCount2, 3) = vMassProp(2)

POSCandidates2(iPOSCandidatesCount2, 4) = vXAxis(0)

POSCandidates2(iPOSCandidatesCount2, 5) = vXAxis(1)

POSCandidates2(iPOSCandidatesCount2, 6) = vXAxis(2)

POSCandidates2(iPOSCandidatesCount2, 7) = ""

POSCandidates2(iPOSCandidatesCount2 + 1, 0) = ""

POSCandidates2(iPOSCandidatesCount2 + 1, 1) = vMassProp(0)

POSCandidates2(iPOSCandidatesCount2 + 1, 2) = vMassProp(1)

POSCandidates2(iPOSCandidatesCount2 + 1, 3) = vMassProp(2)

POSCandidates2(iPOSCandidatesCount2 + 1, 4) = vYAxis(0)

POSCandidates2(iPOSCandidatesCount2 + 1, 5) = vYAxis(1)

POSCandidates2(iPOSCandidatesCount2 + 1, 6) = vYAxis(2)

POSCandidates2(iPOSCandidatesCount2 + 1, 7) = ""

POSCandidates2(iPOSCandidatesCount2 + 2, 0) = ""

POSCandidates2(iPOSCandidatesCount2 + 2, 1) = vMassProp(0)

POSCandidates2(iPOSCandidatesCount2 + 2, 2) = vMassProp(1)

POSCandidates2(iPOSCandidatesCount2 + 2, 3) = vMassProp(2)

POSCandidates2(iPOSCandidatesCount2 + 2, 4) = vZAxis(0)

POSCandidates2(iPOSCandidatesCount2 + 2, 5) = vZAxis(1)

POSCandidates2(iPOSCandidatesCount2 + 2, 6) = vZAxis(2)

POSCandidates2(iPOSCandidatesCount2 + 2, 7) = ""

iPOSCandidatesCount2 = iPOSCandidatesCount2 + 3

Else

POSCandidates2(iPOSCandidatesCount2 + 0, 0) = ""

POSCandidates2(iPOSCandidatesCount2 + 0, 1) = vMassProp(0)

POSCandidates2(iPOSCandidatesCount2 + 0, 2) = vMassProp(1)

POSCandidates2(iPOSCandidatesCount2 + 0, 3) = vMassProp(2)

POSCandidates2(iPOSCandidatesCount2 + 0, 4) = vXAxis(0)

POSCandidates2(iPOSCandidatesCount2 + 0, 5) = vXAxis(1)

POSCandidates2(iPOSCandidatesCount2 + 0, 6) = vXAxis(2)

POSCandidates2(iPOSCandidatesCount2 + 0, 7) = ""

POSCandidates2(iPOSCandidatesCount2 + 1, 0) = ""

POSCandidates2(iPOSCandidatesCount2 + 1, 1) = vMassProp(0)

POSCandidates2(iPOSCandidatesCount2 + 1, 2) = vMassProp(1)

217

POSCandidates2(iPOSCandidatesCount2 + 1, 3) = vMassProp(2)

POSCandidates2(iPOSCandidatesCount2 + 1, 4) = vYAxis(0)

POSCandidates2(iPOSCandidatesCount2 + 1, 5) = vYAxis(1)

POSCandidates2(iPOSCandidatesCount2 + 1, 6) = vYAxis(2)

POSCandidates2(iPOSCandidatesCount2 + 1, 7) = ""

POSCandidates2(iPOSCandidatesCount2 + 2, 0) = ""

POSCandidates2(iPOSCandidatesCount2 + 2, 1) = vMassProp(0)

POSCandidates2(iPOSCandidatesCount2 + 2, 2) = vMassProp(1)

POSCandidates2(iPOSCandidatesCount2 + 2, 3) = vMassProp(2)

POSCandidates2(iPOSCandidatesCount2 + 2, 4) = vZAxis(0)

POSCandidates2(iPOSCandidatesCount2 + 2, 5) = vZAxis(1)

POSCandidates2(iPOSCandidatesCount2 + 2, 6) = vZAxis(2)

POSCandidates2(iPOSCandidatesCount2 + 2, 7) = ""

iPOSCandidatesCount2 = iPOSCandidatesCount2 + 3

End If

For t = 0 To (iCylindersCount - 1)

FaceName3 = sCYLINDERS(t, 0)

Set face3 = swPart.GetEntityByName(FaceName3, 2)

Set swEntity3 = face3

Set swSurface3 = face3.GetSurface

vCylinder = swSurface3.CylinderParams

swEntity3.Select (True)

vAxisPoint(0) = vCylinder(0)

vAxisPoint(1) = vCylinder(1)

vAxisPoint(2) = vCylinder(2)

vAxisDir(0) = vCylinder(3) * 2

vAxisDir(1) = vCylinder(4) * 2

vAxisDir(2) = vCylinder(5) * 2

vAPPoint(0) = vCOG(0) - vAxisPoint(0)

vAPPoint(1) = vCOG(1) - vAxisPoint(1)

vAPPoint(2) = vCOG(2) - vAxisPoint(2)

vAPPointTemp = vAPPoint

vAxisDirTemp = vAxisDir

Set APVector = swMathUntility.CreateVector(vAPPointTemp)

Set AxisVector = swMathUntility.CreateVector(vAxisDirTemp)

Set CrossProductVector = APVector.Cross(AxisVector)

PointToAxisDistance = CrossProductVector.GetLength / AxisVector.GetLength

Set vCrossVectorAxis1 = vXAxisVector1.Cross(AxisVector)

Set vCrossVectorAxis2 = vYAxisVector2.Cross(AxisVector)

Set vCrossVectorAxis3 = vZAxisVector3.Cross(AxisVector)

If (Round(PointToAxisDistance, iDecimalPlaces) * 1000) <= (dDeltaTotal / 2) Then

If Round(PointToAxisDistance, iDecimalPlaces) * 1000 = 0 And ((Round(vCrossVectorAxis1.GetLength,

iDecimalPlaces) = 0) Or (Round(vCrossVectorAxis2.GetLength, iDecimalPlaces) = 0) Or

(Round(vCrossVectorAxis3.GetLength, iDecimalPlaces) = 0)) Then

218

Else

AOSCandidates(iAOSCandidatesCount, 0) = FaceName3

AOSCandidates(iAOSCandidatesCount, 1) = vCylinder(0)

AOSCandidates(iAOSCandidatesCount, 2) = vCylinder(1)

AOSCandidates(iAOSCandidatesCount, 3) = vCylinder(2)

AOSCandidates(iAOSCandidatesCount, 4) = vCylinder(3)

AOSCandidates(iAOSCandidatesCount, 5) = vCylinder(4)

AOSCandidates(iAOSCandidatesCount, 6) = vCylinder(5)

'AOSCandidates(iAOSCandidatesCount, 7) = FaceStatus

AOSCandidates(iAOSCandidatesCount, 8) = PointToAxisDistance

iAOSCandidatesCount = iAOSCandidatesCount + 1

End If

End If

swModelDoc.ClearSelection2 True

Next t

For t = 0 To (iSemiCylindersCount - 1)

FaceName3 = sSEMICYLINDERS(t, 0)

Set face3 = swPart.GetEntityByName(FaceName3, 2)

Set swEntity3 = face3

Set swSurface3 = face3.GetSurface

vCylinder = swSurface3.CylinderParams

swEntity3.Select (True)

vAxisPoint(0) = vCylinder(0)

vAxisPoint(1) = vCylinder(1)

vAxisPoint(2) = vCylinder(2)

vAxisDir(0) = vCylinder(3) * 2

vAxisDir(1) = vCylinder(4) * 2

vAxisDir(2) = vCylinder(5) * 2

vAPPoint(0) = vCOG(0) - vAxisPoint(0)

vAPPoint(1) = vCOG(1) - vAxisPoint(1)

vAPPoint(2) = vCOG(2) - vAxisPoint(2)

vAPPointTemp = vAPPoint

vAxisDirTemp = vAxisDir

Set APVector = swMathUntility.CreateVector(vAPPointTemp)

Set AxisVector = swMathUntility.CreateVector(vAxisDirTemp)

Set CrossProductVector = APVector.Cross(AxisVector)

'Set CrossProductVectorNormalized = CrossProductVector.Normalise

PointToAxisDistance = CrossProductVector.GetLength / AxisVector.GetLength

Set vCrossVectorAxis1 = vXAxisVector1.Cross(AxisVector)

Set vCrossVectorAxis2 = vYAxisVector2.Cross(AxisVector)

Set vCrossVectorAxis3 = vZAxisVector3.Cross(AxisVector)

If (Round(PointToAxisDistance, iDecimalPlaces) * 1000) <= (dDeltaTotal / 2) Then

219

If Round(PointToAxisDistance, iDecimalPlaces) * 1000 = 0 And ((Round(vCrossVectorAxis1.GetLength,

iDecimalPlaces) = 0) Or (Round(vCrossVectorAxis2.GetLength, iDecimalPlaces) = 0) Or

(Round(vCrossVectorAxis3.GetLength, iDecimalPlaces) = 0)) Then

Else

AOSCandidates(iAOSCandidatesCount, 0) = FaceName3

AOSCandidates(iAOSCandidatesCount, 1) = vCylinder(0)

AOSCandidates(iAOSCandidatesCount, 2) = vCylinder(1)

AOSCandidates(iAOSCandidatesCount, 3) = vCylinder(2)

AOSCandidates(iAOSCandidatesCount, 4) = vCylinder(3)

AOSCandidates(iAOSCandidatesCount, 5) = vCylinder(4)

AOSCandidates(iAOSCandidatesCount, 6) = vCylinder(5)

AOSCandidates(iAOSCandidatesCount, 7) = FaceStatus

AOSCandidates(iAOSCandidatesCount, 8) = PointToAxisDistance

iAOSCandidatesCount = iAOSCandidatesCount + 1

End If

End If

swModelDoc.ClearSelection2 True

Next t

bTempCandi = False

For q = 0 To (iAOSCandidatesCount - 2)

For r = q + 1 To (iAOSCandidatesCount - 1)

If AOSCandidates(q, 0) <> "" And AOSCandidates(r, 0) <> "" Then

dAxisVector1(0) = AOSCandidates(q, 4)

dAxisVector1(1) = AOSCandidates(q, 5)

dAxisVector1(2) = AOSCandidates(q, 6)

dAxisVector2(0) = AOSCandidates(r, 4)

dAxisVector2(1) = AOSCandidates(r, 5)

dAxisVector2(2) = AOSCandidates(r, 6)

vAxisVector1 = dAxisVector1

vAxisVector2 = dAxisVector2

Set AxisVector1 = swMathUntility.CreateVector(vAxisVector1)

Set AxisVector2 = swMathUntility.CreateVector(vAxisVector2)

Set CrossProductVector = AxisVector1.Cross(AxisVector2)

If Round(CrossProductVector.GetLength, 6) = 0 Then

'TWO axis vector components = 0

If Abs(Round(dAxisVector1(0), 6)) = 1 And Round(dAxisVector1(1), 6) = 0 And Round(dAxisVector1(2),

6) = 0 Then

 If (Round(AOSCandidates(q, 2), 6) = Round(AOSCandidates(r, 2), 6)) And (Round(AOSCandidates(q,

3), 6) = Round(AOSCandidates(r, 3), 6)) Then

 If bTempCandi = False Then

 AOSCandidates2(iAOSCandidatesCount2, 0) = AOSCandidates(q, 0)

 AOSCandidates2(iAOSCandidatesCount2, 1) = AOSCandidates(q, 1)

 AOSCandidates2(iAOSCandidatesCount2, 2) = AOSCandidates(q, 2)

 AOSCandidates2(iAOSCandidatesCount2, 3) = AOSCandidates(q, 3)

 AOSCandidates2(iAOSCandidatesCount2, 4) = AOSCandidates(q, 4)

220

 AOSCandidates2(iAOSCandidatesCount2, 5) = AOSCandidates(q, 5)

 AOSCandidates2(iAOSCandidatesCount2, 6) = AOSCandidates(q, 6)

 AOSCandidates2(iAOSCandidatesCount2, 7) = AOSCandidates(q, 7)

 AOSCandidates2(iAOSCandidatesCount2, 8) = AOSCandidates(q, 8)

 iAOSCandidatesCount2 = iAOSCandidatesCount2 + 1

 bTempCandi = True

 End If

 AOSCandidates(r, 0) = ""

 iAOSCandidatesCount3 = iAOSCandidatesCount3 + 1

 End If

End If

If Round(dAxisVector1(0), 6) = 0 And Abs(Round(dAxisVector1(1), 6)) = 1 And Round(dAxisVector1(2),

6) = 0 Then

 If (Round(AOSCandidates(q, 1), 6) = Round(AOSCandidates(r, 1), 6)) And (Round(AOSCandidates(q,

3), 6) = Round(AOSCandidates(r, 3), 6)) Then

 If bTempCandi = False Then

 AOSCandidates2(iAOSCandidatesCount2, 0) = AOSCandidates(q, 0)

 AOSCandidates2(iAOSCandidatesCount2, 1) = AOSCandidates(q, 1)

 AOSCandidates2(iAOSCandidatesCount2, 2) = AOSCandidates(q, 2)

 AOSCandidates2(iAOSCandidatesCount2, 3) = AOSCandidates(q, 3)

 AOSCandidates2(iAOSCandidatesCount2, 4) = AOSCandidates(q, 4)

 AOSCandidates2(iAOSCandidatesCount2, 5) = AOSCandidates(q, 5)

 AOSCandidates2(iAOSCandidatesCount2, 6) = AOSCandidates(q, 6)

 AOSCandidates2(iAOSCandidatesCount2, 7) = AOSCandidates(q, 7)

 AOSCandidates2(iAOSCandidatesCount2, 8) = AOSCandidates(q, 8)

 iAOSCandidatesCount2 = iAOSCandidatesCount2 + 1

 bTempCandi = True

 End If

 AOSCandidates(r, 0) = ""

 iAOSCandidatesCount3 = iAOSCandidatesCount3 + 1

 End If

End If

If Round(dAxisVector1(0), 6) = 0 And Round(dAxisVector1(1), 6) = 0 And Abs(Round(dAxisVector1(2),

6)) = 1 Then

 If (Round(AOSCandidates(q, 1), 6) = Round(AOSCandidates(r, 1), 6)) And (Round(AOSCandidates(q,

2), 6) = Round(AOSCandidates(r, 2), 6)) Then

 If bTempCandi = False Then

 AOSCandidates2(iAOSCandidatesCount2, 0) = AOSCandidates(q, 0)

 AOSCandidates2(iAOSCandidatesCount2, 1) = AOSCandidates(q, 1)

 AOSCandidates2(iAOSCandidatesCount2, 2) = AOSCandidates(q, 2)

 AOSCandidates2(iAOSCandidatesCount2, 3) = AOSCandidates(q, 3)

 AOSCandidates2(iAOSCandidatesCount2, 4) = AOSCandidates(q, 4)

 AOSCandidates2(iAOSCandidatesCount2, 5) = AOSCandidates(q, 5)

 AOSCandidates2(iAOSCandidatesCount2, 6) = AOSCandidates(q, 6)

 AOSCandidates2(iAOSCandidatesCount2, 7) = AOSCandidates(q, 7)

 AOSCandidates2(iAOSCandidatesCount2, 8) = AOSCandidates(q, 8)

 iAOSCandidatesCount2 = iAOSCandidatesCount2 + 1

 bTempCandi = True

 End If

 AOSCandidates(r, 0) = ""

 iAOSCandidatesCount3 = iAOSCandidatesCount3 + 1

 End If

End If

'ONE axis vector component = 0

221

If Round(dAxisVector1(0), 6) = 0 And Round(dAxisVector1(1), 6) <> 0 And Round(dAxisVector1(2), 6)

<> 0 Then

K2 = (AOSCandidates(q, 2) - AOSCandidates(r, 2)) / AOSCandidates(q, 5)

K3 = (AOSCandidates(q, 3) - AOSCandidates(r, 3)) / AOSCandidates(q, 6)

 If Round(K2, 6) = Round(K3, 6) Then

 If bTempCandi = False Then

 AOSCandidates2(iAOSCandidatesCount2, 0) = AOSCandidates(q, 0)

 AOSCandidates2(iAOSCandidatesCount2, 1) = AOSCandidates(q, 1)

 AOSCandidates2(iAOSCandidatesCount2, 2) = AOSCandidates(q, 2)

 AOSCandidates2(iAOSCandidatesCount2, 3) = AOSCandidates(q, 3)

 AOSCandidates2(iAOSCandidatesCount2, 4) = AOSCandidates(q, 4)

 AOSCandidates2(iAOSCandidatesCount2, 5) = AOSCandidates(q, 5)

 AOSCandidates2(iAOSCandidatesCount2, 6) = AOSCandidates(q, 6)

 AOSCandidates2(iAOSCandidatesCount2, 7) = AOSCandidates(q, 7)

 AOSCandidates2(iAOSCandidatesCount2, 8) = AOSCandidates(q, 8)

 iAOSCandidatesCount2 = iAOSCandidatesCount2 + 1

 bTempCandi = True

 End If

 AOSCandidates(r, 0) = ""

 iAOSCandidatesCount3 = iAOSCandidatesCount3 + 1

 End If

End If

If Round(dAxisVector1(0), 6) <> 0 And Round(dAxisVector1(1), 6) = 0 And Round(dAxisVector1(2), 6)

<> 0 Then

K1 = (AOSCandidates(q, 1) - AOSCandidates(r, 1)) / AOSCandidates(q, 4)

K3 = (AOSCandidates(q, 3) - AOSCandidates(r, 3)) / AOSCandidates(q, 6)

 If Round(K1, 6) = Round(K3, 6) Then

 If bTempCandi = False Then

 AOSCandidates2(iAOSCandidatesCount2, 0) = AOSCandidates(q, 0)

 AOSCandidates2(iAOSCandidatesCount2, 1) = AOSCandidates(q, 1)

 AOSCandidates2(iAOSCandidatesCount2, 2) = AOSCandidates(q, 2)

 AOSCandidates2(iAOSCandidatesCount2, 3) = AOSCandidates(q, 3)

 AOSCandidates2(iAOSCandidatesCount2, 4) = AOSCandidates(q, 4)

 AOSCandidates2(iAOSCandidatesCount2, 5) = AOSCandidates(q, 5)

 AOSCandidates2(iAOSCandidatesCount2, 6) = AOSCandidates(q, 6)

 AOSCandidates2(iAOSCandidatesCount2, 7) = AOSCandidates(q, 7)

 AOSCandidates2(iAOSCandidatesCount2, 8) = AOSCandidates(q, 8)

 iAOSCandidatesCount2 = iAOSCandidatesCount2 + 1

 bTempCandi = True

 End If

 AOSCandidates(r, 0) = ""

 iAOSCandidatesCount3 = iAOSCandidatesCount3 + 1

 End If

End If

If Round(dAxisVector1(0), 6) <> 0 And Round(dAxisVector1(1), 6) <> 0 And Round(dAxisVector1(2), 6)

= 0 Then

K1 = (AOSCandidates(q, 1) - AOSCandidates(r, 1)) / AOSCandidates(q, 4)

K2 = (AOSCandidates(q, 2) - AOSCandidates(r, 2)) / AOSCandidates(q, 5)

 If Round(K1, 6) = Round(K2, 6) Then

 If bTempCandi = False Then

 AOSCandidates2(iAOSCandidatesCount2, 0) = AOSCandidates(q, 0)

 AOSCandidates2(iAOSCandidatesCount2, 1) = AOSCandidates(q, 1)

 AOSCandidates2(iAOSCandidatesCount2, 2) = AOSCandidates(q, 2)

 AOSCandidates2(iAOSCandidatesCount2, 3) = AOSCandidates(q, 3)

 AOSCandidates2(iAOSCandidatesCount2, 4) = AOSCandidates(q, 4)

222

 AOSCandidates2(iAOSCandidatesCount2, 5) = AOSCandidates(q, 5)

 AOSCandidates2(iAOSCandidatesCount2, 6) = AOSCandidates(q, 6)

 AOSCandidates2(iAOSCandidatesCount2, 7) = AOSCandidates(q, 7)

 AOSCandidates2(iAOSCandidatesCount2, 8) = AOSCandidates(q, 8)

 iAOSCandidatesCount2 = iAOSCandidatesCount2 + 1

 bTempCandi = True

 End If

 AOSCandidates(r, 0) = ""

 iAOSCandidatesCount3 = iAOSCandidatesCount3 + 1

 End If

End If

'ALL components of axis vector <> 0

If Round(dAxisVector1(0), 6) <> 0 And Round(dAxisVector1(1), 6) <> 0 And Round(dAxisVector1(2), 6)

<> 0 Then

K1 = (AOSCandidates(q, 1) - AOSCandidates(r, 1)) / AOSCandidates(q, 4)

K2 = (AOSCandidates(q, 2) - AOSCandidates(r, 2)) / AOSCandidates(q, 5)

K3 = (AOSCandidates(q, 3) - AOSCandidates(r, 3)) / AOSCandidates(q, 6)

 If Round(K1, 6) = Round(K2, 6) And Round(K2, 6) = Round(K3, 6) And Round(K3, 6) = Round(K1, 6)

Then

 If bTempCandi = False Then

 AOSCandidates2(iAOSCandidatesCount2, 0) = AOSCandidates(q, 0)

 AOSCandidates2(iAOSCandidatesCount2, 1) = AOSCandidates(q, 1)

 AOSCandidates2(iAOSCandidatesCount2, 2) = AOSCandidates(q, 2)

 AOSCandidates2(iAOSCandidatesCount2, 3) = AOSCandidates(q, 3)

 AOSCandidates2(iAOSCandidatesCount2, 4) = AOSCandidates(q, 4)

 AOSCandidates2(iAOSCandidatesCount2, 5) = AOSCandidates(q, 5)

 AOSCandidates2(iAOSCandidatesCount2, 6) = AOSCandidates(q, 6)

 AOSCandidates2(iAOSCandidatesCount2, 7) = AOSCandidates(q, 7)

 AOSCandidates2(iAOSCandidatesCount2, 8) = AOSCandidates(q, 8)

 iAOSCandidatesCount2 = iAOSCandidatesCount2 + 1

 bTempCandi = True

 End If

 AOSCandidates(r, 0) = ""

 iAOSCandidatesCount3 = iAOSCandidatesCount3 + 1

 End If

End If

End If

End If

Next r

bTempCandi = False

Next q

If iAOSCandidatesCount2 = 0 Then

AOSCandidates2(iAOSCandidatesCount2, 0) = ""

AOSCandidates2(iAOSCandidatesCount2, 1) = vMassProp(0)

AOSCandidates2(iAOSCandidatesCount2, 2) = vMassProp(1)

AOSCandidates2(iAOSCandidatesCount2, 3) = vMassProp(2)

AOSCandidates2(iAOSCandidatesCount2, 4) = vXAxis(0)

AOSCandidates2(iAOSCandidatesCount2, 5) = vXAxis(1)

AOSCandidates2(iAOSCandidatesCount2, 6) = vXAxis(2)

AOSCandidates2(iAOSCandidatesCount2, 7) = ""

223

AOSCandidates2(iAOSCandidatesCount2 + 1, 0) = ""

AOSCandidates2(iAOSCandidatesCount2 + 1, 1) = vMassProp(0)

AOSCandidates2(iAOSCandidatesCount2 + 1, 2) = vMassProp(1)

AOSCandidates2(iAOSCandidatesCount2 + 1, 3) = vMassProp(2)

AOSCandidates2(iAOSCandidatesCount2 + 1, 4) = vYAxis(0)

AOSCandidates2(iAOSCandidatesCount2 + 1, 5) = vYAxis(1)

AOSCandidates2(iAOSCandidatesCount2 + 1, 6) = vYAxis(2)

AOSCandidates2(iAOSCandidatesCount2 + 1, 7) = ""

AOSCandidates2(iAOSCandidatesCount2 + 2, 0) = ""

AOSCandidates2(iAOSCandidatesCount2 + 2, 1) = vMassProp(0)

AOSCandidates2(iAOSCandidatesCount2 + 2, 2) = vMassProp(1)

AOSCandidates2(iAOSCandidatesCount2 + 2, 3) = vMassProp(2)

AOSCandidates2(iAOSCandidatesCount2 + 2, 4) = vZAxis(0)

AOSCandidates2(iAOSCandidatesCount2 + 2, 5) = vZAxis(1)

AOSCandidates2(iAOSCandidatesCount2 + 2, 6) = vZAxis(2)

AOSCandidates2(iAOSCandidatesCount2 + 2, 7) = ""

iAOSCandidatesCount2 = iAOSCandidatesCount2 + 3

Else

AOSCandidates2(iAOSCandidatesCount2 + 0, 0) = ""

AOSCandidates2(iAOSCandidatesCount2 + 0, 1) = vMassProp(0)

AOSCandidates2(iAOSCandidatesCount2 + 0, 2) = vMassProp(1)

AOSCandidates2(iAOSCandidatesCount2 + 0, 3) = vMassProp(2)

AOSCandidates2(iAOSCandidatesCount2 + 0, 4) = vXAxis(0)

AOSCandidates2(iAOSCandidatesCount2 + 0, 5) = vXAxis(1)

AOSCandidates2(iAOSCandidatesCount2 + 0, 6) = vXAxis(2)

AOSCandidates2(iAOSCandidatesCount2 + 0, 7) = ""

AOSCandidates2(iAOSCandidatesCount2 + 1, 0) = ""

AOSCandidates2(iAOSCandidatesCount2 + 1, 1) = vMassProp(0)

AOSCandidates2(iAOSCandidatesCount2 + 1, 2) = vMassProp(1)

AOSCandidates2(iAOSCandidatesCount2 + 1, 3) = vMassProp(2)

AOSCandidates2(iAOSCandidatesCount2 + 1, 4) = vYAxis(0)

AOSCandidates2(iAOSCandidatesCount2 + 1, 5) = vYAxis(1)

AOSCandidates2(iAOSCandidatesCount2 + 1, 6) = vYAxis(2)

AOSCandidates2(iAOSCandidatesCount2 + 1, 7) = ""

AOSCandidates2(iAOSCandidatesCount2 + 2, 0) = ""

AOSCandidates2(iAOSCandidatesCount2 + 2, 1) = vMassProp(0)

AOSCandidates2(iAOSCandidatesCount2 + 2, 2) = vMassProp(1)

AOSCandidates2(iAOSCandidatesCount2 + 2, 3) = vMassProp(2)

AOSCandidates2(iAOSCandidatesCount2 + 2, 4) = vZAxis(0)

AOSCandidates2(iAOSCandidatesCount2 + 2, 5) = vZAxis(1)

AOSCandidates2(iAOSCandidatesCount2 + 2, 6) = vZAxis(2)

AOSCandidates2(iAOSCandidatesCount2 + 2, 7) = ""

iAOSCandidatesCount2 = iAOSCandidatesCount2 + 3

End If

End Sub

A4 – EVALUATION OF POSCs & AOSCs

224

Sub MultipleCandidates(iArrayCounter() As Integer, sSymmetryPlane() As String, dSymmetricArea() As

Double, SymmetryPlaneCount() As Integer, iArrayCounter2() As Integer, sSymmetryAxis() As String,

Dim swApp As SldWorks.SldWorks

Dim swMathUntility As MathUtility

Dim dNormalPoint(2) As Double

Dim dNormalPoint2(2) As Double

Dim dNormalPoint3(2) As Double

Dim dCentroidPoint(2) As Double

Dim dCentroidPoint2(2) As Double

Dim dSurfMidPoint(2) As Double

Dim dPt3(2) As Double

Dim vArrayVector

Dim vArrayNormVector

Dim vNormalPoint

Dim vNormalPoint2

Dim vNormalPoint3

Dim vCentroidPoint

Dim vCentroidPoint2

Dim vPt4

Dim NewPoint1as As Double

Dim NewPoint2 As Double

Dim NormalVector As MathVector

Dim NormalVector2 As MathVector

Dim NormalVector3 As MathVector

Dim CrossProdNormVect As MathVector

Dim CrossProdNormVect2 As MathVector

Dim VectorOperation As MathVector

Dim CrossProdCentVect As MathVector

Dim CrossProdCentVect2 As MathVector

Dim VectorOperation2 As MathVector

Dim dEuclideanDistance1 As Double

Dim dEuclideanDistance2 As Double

Dim sSURFACE() As String

Dim PlaneParameter() As Variant

Dim u As Integer

Dim APVector As MathVector

Dim CrossProductVector As MathVector

Dim vAPPoint(2) As Double

Dim vAPPointTemp As Variant

Dim PointToAxisDistance As Double

Dim AxisVector1 As MathVector

Dim AxisVector2 As MathVector

Dim dAxisVector1(2) As Double

Dim dAxisVector2(2) As Double

Dim vAxisVector1 As Variant

Dim vAxisVector2 As Variant

Dim bSecondCount1 As Boolean

Dim bSecondCount2 As Boolean

Dim Point1(2) As Double

Dim Point2(2) As Double

Dim Point3(2) As Double

Dim Point4(2) As Double

Dim LowerRange As Double

Dim UpperRange As Double

LowerRange = 0.997

225

UpperRange = 1.003

bSecondCount1 = False

bSecondCount2 = False

DecimalPlaces = 7

DecimalPlaces2 = 7

ReDim PlaneParameter(iPOSCandidatesCount2)

ReDim sSymmetryPlane(iPOSCandidatesCount2, TotalFacesCount)

ReDim dSymmetricArea(iPOSCandidatesCount2)

ReDim SymmetryPlaneCount(iPOSCandidatesCount2)

ReDim iArrayCounter(iPOSCandidatesCount2)

ReDim sSymmetryAxis(iAOSCandidatesCount2, TotalFacesCount)

ReDim dSymmetricArea2(iAOSCandidatesCount2)

ReDim SymmetryAxisCount(iAOSCandidatesCount2)

ReDim iArrayCounter2(iAOSCandidatesCount2)

Set swApp = CreateObject("SldWorks.Application")

Set swMathUntility = swApp.GetMathUtility

For s = 0 To 14

Select Case s

Case 0

If iPlanesCount > 0 Then

sSURFACE = sPLANES()

iSurfaceCount = iPlanesCount

Else

GoTo Line1

End If

Case 1

If iCylindersCount > 0 Then

sSURFACE = sCYLINDERS()

iSurfaceCount = iCylindersCount

Else

GoTo Line1

End If

Case 2

If iSemiCylindersCount > 0 Then

sSURFACE = sSEMICYLINDERS()

iSurfaceCount = iSemiCylindersCount

Else

GoTo Line1

End If

Case 3

If iConesCount > 0 Then

sSURFACE = sCONES()

iSurfaceCount = iConesCount

Else

GoTo Line1

End If

Case 4

If iSemiConesCount > 0 Then

sSURFACE = sSEMICONES()

iSurfaceCount = iSemiConesCount

226

Else

GoTo Line1

End If

Case 5

If iSpheresCount > 0 Then

sSURFACE = sSPHERES()

iSurfaceCount = iSpheresCount

Else

GoTo Line1

End If

Case 6

If iSemiSpheresCount > 0 Then

sSURFACE = sSEMISPHERES()

iSurfaceCount = iSemiSpheresCount

Else

GoTo Line1

End If

Case 7

If iTorusesCount > 0 Then

sSURFACE = sTORUSES()

iSurfaceCount = iTorusesCount

Else

GoTo Line1

End If

Case 8

If iSemiTorusesCount > 0 Then

sSURFACE = sSEMITORUSES()

iSurfaceCount = iSemiTorusesCount

Else

GoTo Line1

End If

Case 9

If iBlendsCount > 0 Then

sSURFACE = sBLENDS()

iSurfaceCount = iBlendsCount

Else

GoTo Line1

End If

Case 10

If iBSurfacesCount > 0 Then

sSURFACE = sBSURFACES()

iSurfaceCount = iBSurfacesCount

Else

GoTo Line1

End If

Case 11

If iExtrusionsCount > 0 Then

sSURFACE = sEXTRUSIONS()

iSurfaceCount = iExtrusionsCount

Else

GoTo Line1

227

End If

Case 12

If iRevolvesCount > 0 Then

sSURFACE = sREVOLVES()

iSurfaceCount = iRevolvesCount

Else

GoTo Line1

End If

Case 13

If iSemiRevolvesCount > 0 Then

sSURFACE = sSEMIREVOLVES()

iSurfaceCount = iSemiRevolvesCount

Else

GoTo Line1

End If

Case 14

If iOffsetsCount > 0 Then

sSURFACE = sOFFSETS()

iSurfaceCount = iOffsetsCount

Else

GoTo Line1

End If

End Select

'****************************

'******SINGLE SURFACE******

'****************************

'***Reflection symmetry check***

If iSurfaceCount = 1 Then

For u = 0 To (iPOSCandidatesCount2 - 1)

PlaneParameter(u) = POSCandidates2(u, 4) * (POSCandidates2(u, 1) * 1000# - sSURFACE(0, 2)) +

POSCandidates2(u, 5) * (POSCandidates2(u, 2) * 1000# - sSURFACE(0, 3)) + POSCandidates2(u, 6) *

(POSCandidates2(u, 3) * 1000# - sSURFACE(0, 4))

 If Round(PlaneParameter(u), DecimalPlaces) = 0 Then

 sSymmetryPlane(u, iArrayCounter(u)) = sSURFACE(0, 0)

 dSymmetricArea(u) = dSymmetricArea(u) + sSURFACE(0, 1)

 SymmetryPlaneCount(u) = SymmetryPlaneCount(u) + 1

 iArrayCounter(u) = iArrayCounter(u) + 1

 End If

Next u

'**************************

'***Axisymmetry check***

For v = 0 To (iAOSCandidatesCount2 - 1)

dAxisVector1(0) = AOSCandidates2(v, 4)

dAxisVector1(1) = AOSCandidates2(v, 5)

dAxisVector1(2) = AOSCandidates2(v, 6)

dAxisVector2(0) = sSURFACE(0, 5)

dAxisVector2(1) = sSURFACE(0, 6)

dAxisVector2(2) = sSURFACE(0, 7)

vAxisVector1 = dAxisVector1

228

vAxisVector2 = dAxisVector2

Set AxisVector1 = swMathUntility.CreateVector(vAxisVector1)

Set AxisVector2 = swMathUntility.CreateVector(vAxisVector2)

Set CrossProductVector = AxisVector1.Cross(AxisVector2)

If Round(CrossProductVector.GetLength, 6) = 0 Then

vAPPoint(0) = sSURFACE(0, 2) - AOSCandidates2(v, 1) * 1000#

vAPPoint(1) = sSURFACE(0, 3) - AOSCandidates2(v, 2) * 1000#

vAPPoint(2) = sSURFACE(0, 4) - AOSCandidates2(v, 3) * 1000#

vAPPointTemp = vAPPoint

Set APVector = swMathUntility.CreateVector(vAPPointTemp)

Set CrossProductVector = APVector.Cross(AxisVector1)

PointToAxisDistance = CrossProductVector.GetLength / AxisVector1.GetLength

 If Round(PointToAxisDistance, DecimalPlaces2) = 0 Then

 sSymmetryAxis(v, iArrayCounter2(v)) = sSURFACE(0, 0)

 dSymmetricArea2(v) = dSymmetricArea2(v) + sSURFACE(0, 1)

 SymmetryAxisCount(v) = SymmetryAxisCount(v) + 1

 iArrayCounter2(v) = iArrayCounter2(v) + 1

 End If

End If

Next v

End If

'********************************

'********************************

'******MULTIPLE SURFACES******

'********************************

If iSurfaceCount > 1 Then

For i = 0 To (iSurfaceCount - 2) '***Loop faces 1st time for paiwise comaprison***

'***SINGLE POS CANDIDATE***

If iPOSCandidatesCount2 = 1 Then

PlaneParameter(u) = POSCandidates2(u, 4) * (POSCandidates2(u, 1) * 1000# - sSURFACE(i, 2)) +

POSCandidates2(u, 5) * (POSCandidates2(u, 2) * 1000# - sSURFACE(i, 3)) + POSCandidates2(u, 6) *

(POSCandidates2(u, 3) * 1000# - sSURFACE(i, 4))

 If Round(PlaneParameter(u), DecimalPlaces) = 0 Then

 sSymmetryPlane(u, iArrayCounter(u)) = sSURFACE(i, 0)

 dSymmetricArea(u) = dSymmetricArea(u) + sSURFACE(i, 1)

 SymmetryPlaneCount(u) = SymmetryPlaneCount(u) + 1

 iArrayCounter(u) = iArrayCounter(u) + 1

 End If

'***MULTIPLE POS CANDIDATES***

Else

'***Check if face centroid of each stand-alone faces (except last one) is coincident with AOS***

For v = 0 To (iAOSCandidatesCount2 - 1)

dAxisVector1(0) = AOSCandidates2(v, 4)

dAxisVector1(1) = AOSCandidates2(v, 5)

dAxisVector1(2) = AOSCandidates2(v, 6)

dAxisVector2(0) = sSURFACE(i, 5)

dAxisVector2(1) = sSURFACE(i, 6)

229

dAxisVector2(2) = sSURFACE(i, 7)

vAxisVector1 = dAxisVector1

vAxisVector2 = dAxisVector2

Set AxisVector1 = swMathUntility.CreateVector(vAxisVector1)

Set AxisVector2 = swMathUntility.CreateVector(vAxisVector2)

Set CrossProductVector = AxisVector1.Cross(AxisVector2)

If Round(CrossProductVector.GetLength, DecimalPlaces2) = 0 Then

vAPPoint(0) = sSURFACE(i, 2) - AOSCandidates2(v, 1) * 1000#

vAPPoint(1) = sSURFACE(i, 3) - AOSCandidates2(v, 2) * 1000#

vAPPoint(2) = sSURFACE(i, 4) - AOSCandidates2(v, 3) * 1000#

vAPPointTemp = vAPPoint

Set APVector = swMathUntility.CreateVector(vAPPointTemp)

Set CrossProductVector = APVector.Cross(AxisVector1)

PointToAxisDistance = CrossProductVector.GetLength / AxisVector1.GetLength

 If Round(PointToAxisDistance, DecimalPlaces2) = 0 Then

 sSymmetryAxis(v, iArrayCounter2(v)) = sSURFACE(i, 0)

 dSymmetricArea2(v) = dSymmetricArea2(v) + sSURFACE(i, 1)

 SymmetryAxisCount(v) = SymmetryAxisCount(v) + 1

 iArrayCounter2(v) = iArrayCounter2(v) + 1

 End If

End If

Next v

For u = 0 To (iPOSCandidatesCount2 - 1) '***Loop all POS candidates***

'***Check if face centroid of each stand-alone faces (except last one) is coincident with POS***

 PlaneParameter(u) = POSCandidates2(u, 4) * (POSCandidates2(u, 1) * 1000# - sSURFACE(i, 2)) +

POSCandidates2(u, 5) * (POSCandidates2(u, 2) * 1000# - sSURFACE(i, 3)) + POSCandidates2(u, 6) *

(POSCandidates2(u, 3) * 1000# - sSURFACE(i, 4))

 If Round(PlaneParameter(u), DecimalPlaces) = 0 Then

 sSymmetryPlane(u, iArrayCounter(u)) = sSURFACE(i, 0)

 dSymmetricArea(u) = dSymmetricArea(u) + sSURFACE(i, 1)

 SymmetryPlaneCount(u) = SymmetryPlaneCount(u) + 1

 iArrayCounter(u) = iArrayCounter(u) + 1

 End If

For j = i + 1 To (iSurfaceCount - 1) '***Loop faces 2nd time for paiwise comaprison***

'***Check if face centroid of last stand-alone face is coincident with POS/AOS***

If i = (iSurfaceCount - 2) And j = (iSurfaceCount - 1) Then '

 PlaneParameter(u) = POSCandidates2(u, 4) * (POSCandidates2(u, 1) * 1000# - sSURFACE(j, 2)) +

POSCandidates2(u, 5) * (POSCandidates2(u, 2) * 1000# - sSURFACE(j, 3)) + POSCandidates2(u, 6) *

(POSCandidates2(u, 3) * 1000# - sSURFACE(j, 4))

 If Round(PlaneParameter(u), DecimalPlaces) = 0 Then

 sSymmetryPlane(u, iArrayCounter(u)) = sSURFACE(j, 0)

 dSymmetricArea(u) = dSymmetricArea(u) + sSURFACE(j, 1)

 SymmetryPlaneCount(u) = SymmetryPlaneCount(u) + 1

 iArrayCounter(u) = iArrayCounter(u) + 1

 End If

 If bSecondCount2 = False Then

 bSecondCount2 = True

 For v = 0 To (iAOSCandidatesCount2 - 1)

230

 dAxisVector1(0) = AOSCandidates2(v, 4)

 dAxisVector1(1) = AOSCandidates2(v, 5)

 dAxisVector1(2) = AOSCandidates2(v, 6)

 dAxisVector2(0) = sSURFACE(j, 5)

 dAxisVector2(1) = sSURFACE(j, 6)

 dAxisVector2(2) = sSURFACE(j, 7)

 vAxisVector1 = dAxisVector1

 vAxisVector2 = dAxisVector2

 Set AxisVector1 = swMathUntility.CreateVector(vAxisVector1)

 Set AxisVector2 = swMathUntility.CreateVector(vAxisVector2)

 Set CrossProductVector = AxisVector1.Cross(AxisVector2)

 If Round(CrossProductVector.GetLength, DecimalPlaces2) = 0 Then

 vAPPoint(0) = sSURFACE(j, 2) - AOSCandidates2(v, 1) * 1000#

 vAPPoint(1) = sSURFACE(j, 3) - AOSCandidates2(v, 2) * 1000#

 vAPPoint(2) = sSURFACE(j, 4) - AOSCandidates2(v, 3) * 1000#

 vAPPointTemp = vAPPoint

 Set APVector = swMathUntility.CreateVector(vAPPointTemp)

 Set CrossProductVector = APVector.Cross(AxisVector1)

 PointToAxisDistance = CrossProductVector.GetLength / AxisVector1.GetLength

 If Round(PointToAxisDistance, DecimalPlaces2) = 0 Then

 sSymmetryAxis(v, iArrayCounter2(v)) = sSURFACE(j, 0)

 dSymmetricArea2(v) = dSymmetricArea2(v) + sSURFACE(j, 1)

 SymmetryAxisCount(v) = SymmetryAxisCount(v) + 1

 iArrayCounter2(v) = iArrayCounter2(v) + 1

 End If

 End If

 Next v

 End If

End If

If ((sSURFACE(i, 1) / sSURFACE(j, 1)) >= LowerRange) And ((sSURFACE(i, 1) / sSURFACE(j, 1)) <=

UpperRange) Then

NewPoint1 = sSURFACE(i, 2)

NewPoint2 = sSURFACE(j, 2)

dSurfMidPoint(0) = (NewPoint1 + NewPoint2) / 2

NewPoint1 = sSURFACE(i, 3)

NewPoint2 = sSURFACE(j, 3)

dSurfMidPoint(1) = (NewPoint1 + NewPoint2) / 2

NewPoint1 = sSURFACE(i, 4)

NewPoint2 = sSURFACE(j, 4)

dSurfMidPoint(2) = (NewPoint1 + NewPoint2) / 2

dCentroidPoint(0) = sSURFACE(i, 2) - dSurfMidPoint(0) 'centroid point 1

dCentroidPoint(1) = sSURFACE(i, 3) - dSurfMidPoint(1) 'centroid point 1

dCentroidPoint(2) = sSURFACE(i, 4) - dSurfMidPoint(2) 'centroid point 1

dCentroidPoint2(0) = sSURFACE(j, 2) - dSurfMidPoint(0) 'centroid point 2

dCentroidPoint2(1) = sSURFACE(j, 3) - dSurfMidPoint(1) 'centroid point 2

dCentroidPoint2(2) = sSURFACE(j, 4) - dSurfMidPoint(2) 'centroid point 2

231

dNormalPoint(0) = sSURFACE(i, 5) 'normal point 1

dNormalPoint(1) = sSURFACE(i, 6) 'normal point 1

dNormalPoint(2) = sSURFACE(i, 7) 'normal point 1

dNormalPoint2(0) = sSURFACE(j, 5) 'normal point 2

dNormalPoint2(1) = sSURFACE(j, 6) 'normal point 2

dNormalPoint2(2) = sSURFACE(j, 7) 'normal point 2

vCentroidPoint = dCentroidPoint

vCentroidPoint2 = dCentroidPoint2

vNormalPoint = dNormalPoint

vNormalPoint2 = dNormalPoint2

Set CentroidVector = swMathUntility.CreateVector(vCentroidPoint)

Set CentroidVector2 = swMathUntility.CreateVector(vCentroidPoint2)

dEuclideanDistance1 = Sqr((sSURFACE(i, 2) - POSCandidates2(u, 1) * 1000#) ^ 2 + (sSURFACE(i, 3) -

POSCandidates2(u, 2) * 1000#) ^ 2 + (sSURFACE(i, 4) - POSCandidates2(u, 3) * 1000#) ^ 2)

dEuclideanDistance2 = Sqr((sSURFACE(j, 2) - POSCandidates2(u, 1) * 1000#) ^ 2 + (sSURFACE(j, 3) -

POSCandidates2(u, 2) * 1000#) ^ 2 + (sSURFACE(j, 4) - POSCandidates2(u, 3) * 1000#) ^ 2)

dA = POSCandidates2(u, 4) * 1000#

dB = POSCandidates2(u, 5) * 1000#

dC = POSCandidates2(u, 6) * 1000#

dD = -(dA * POSCandidates2(u, 1) * 1000# + dB * POSCandidates2(u, 2) * 1000# + dC *

POSCandidates2(u, 3) * 1000#)

PointToPlaneDistance = (Abs((dA * dSurfMidPoint(0)) + (dB * dSurfMidPoint(1)) + (dC *

dSurfMidPoint(2)) + dD)) / Sqr(dA ^ 2 + dB ^ 2 + dC ^ 2)

Set NormalVector = swMathUntility.CreateVector(vNormalPoint)

Set NormalVector2 = swMathUntility.CreateVector(vNormalPoint2)

Set CrossProdNormVect = NormalVector.Cross(NormalVector2)

Set CrossProdCentVect = CentroidVector.Cross(CentroidVector2)

'***Checking the status of two face pairs, whether they are coplanar, parallel or else***

'***********PlaneParameter = An * (x1 - x0) + Bn * (y1 - y0) + Cn * (z1 - z0)************

PlaneParameter1 = dNormalPoint(0) * (dCentroidPoint(0) - dCentroidPoint2(0)) + dNormalPoint(1) *

(dCentroidPoint(1) - dCentroidPoint2(1)) + dNormalPoint(2) * (dCentroidPoint(2) -

dCentroidPoint2(2))

 If Round(CrossProdNormVect.GetLength, DecimalPlaces2) = 0 Then

 If Round(PlaneParameter1, DecimalPlaces2) = 0 Then

 FaceStatus = "COPLANAR"

 dPt3(0) = dCentroidPoint(0) - dCentroidPoint2(0)

 dPt3(1) = dCentroidPoint(1) - dCentroidPoint2(1)

 dPt3(2) = dCentroidPoint(2) - dCentroidPoint2(2)

 vPt4 = dPt3

 Set VectorOperation = swMathUntility.CreateVector(vPt4) 'coplanar vector

 Else

 FaceStatus = "PARALLEL"

 Set VectorOperation = NormalVector

 End If

 Else

 FaceStatus = "ELSE"

 Set VectorOperation = NormalVector.Subtract(NormalVector2)

 End If

232

 If Round(CrossProdCentVect.GetLength, DecimalPlaces2) = 0 Then

 FaceStatus2 = "PARALLEL"

 Set VectorOperation2 = CentroidVector.Subtract(CentroidVector2)

 Else

 FaceStatus2 = "ELSE"

 Set VectorOperation2 = CentroidVector.Subtract(CentroidVector2)

 End If

 Set NormalizedVector = VectorOperation.Normalise

 Set NormalizedVector2 = VectorOperation2.Normalise

 vArrayVector = VectorOperation.ArrayData

 vArrayVector2 = VectorOperation2.ArrayData

 vArrayNormVector = NormalizedVector.ArrayData

 vArrayNormVector2 = NormalizedVector2.ArrayData

'***Checking whether the midpoint of face pairs is coincident with the POS***

'*****PlaneParameter = An * (x1 - x0) + Bn * (y1 - y0) + Cn * (z1 - z0)******

PlaneParameter(u) = POSCandidates2(u, 4) * (POSCandidates2(u, 1) * 1000# - dSurfMidPoint(0)) +

POSCandidates2(u, 5) * (POSCandidates2(u, 2) * 1000# - dSurfMidPoint(1)) + POSCandidates2(u, 6) *

(POSCandidates2(u, 3) * 1000# - dSurfMidPoint(2))

'***Checking whether the cross product of the face normals resultant vector (vector operation) and the

normal POS vector is zero***

 If Round(PlaneParameter(u), DecimalPlaces2) = 0 Then

 dNormalPoint3(0) = POSCandidates2(u, 4) 'POS normal point 1

 dNormalPoint3(1) = POSCandidates2(u, 5) 'POS normal point 1

 dNormalPoint3(2) = POSCandidates2(u, 6) 'POS normal point 1

 vNormalPoint3 = dNormalPoint3

 Set NormalVector3 = swMathUntility.CreateVector(vNormalPoint3)

 Set CrossProdNormVect2 = NormalizedVector.Cross(NormalVector3)

 Set CrossProdCentVect2 = NormalizedVector2.Cross(NormalVector3)

 If Round(CrossProdNormVect2.GetLength, DecimalPlaces2) = 0 Or

Round(CrossProdNormVect2.GetLength, DecimalPlaces2) = 1 Then

 If Round(CrossProdCentVect2.GetLength, DecimalPlaces2) = 0 Then

 sSymmetryPlane(u, iArrayCounter(u)) = sSURFACE(i, 0) & "-" & sSURFACE(j, 0)

 dSymmetricArea(u) = dSymmetricArea(u) + sSURFACE(i, 1) + sSURFACE(j, 1)

 SymmetryPlaneCount(u) = SymmetryPlaneCount(u) + 2

 iArrayCounter(u) = iArrayCounter(u) + 1

 End If

 End If

 End If

End If

End If

Next j

Next u

End If

Next i

End If

Erase sSURFACE()

Line1:

bSecondCount2 = False

Next s

