Strahija, Antonio

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:161056

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-11

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Antonio Strahija

Zagreb, 2023.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentori:

Student:

Dr. sc. Matija Hoić, mag. ing.

Antonio Strahija

Zagreb, 2023.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se svom mentoru prof. dr. sc. Matiji Hoiću na usmjeravanju, korisnim savjetima i stručnoj pomoći prilikom izrade ovog rada.

Posebno se zahvaljujem svojim roditeljima, Tomici i Nevenki te bratu Karlu koji su mi bili konstantna podrška tijekom cjelokupnog studiranja.

Antonio Strahija

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za diplomske ispite studija strojarstva za smjerove: Procesno-energetski, konstrukcijski, inženjersko modeliranje i računalne simulacije i brodostrojarski

Sveuč Fakultet stro	ilište u Zagrebu pjarstva i brodogradnje
Datum	Prilog
Klasa: 602 - 0	4/23-6/1
Ur.broj: 15 - 2	23 -

DIPLOMSKI ZADATAK

Student:

JMBAG: 0035214957

Naslov rada na hrvatskom jeziku: Teleskopski dohvatnik

Antonio Strahija

Naslov rada na engleskom jeziku: Telescopic crane

Opis zadatka:

Potrebno je konstruirati teleskopski dohvatnik s pripadajućim mehanizmima za promjenu nagiba i zakretanje. Dohvatnik prihvaća teret preko standardne kuke zavješene na kraju zadnje sekcije teleskopa. Nije predviđen zaseban mehanizam za podizanje kuke užetom. Oslonac dohvatnika oblikovati u formi kružnog prstena s provrtima za vijčanu vezu.

Ciljano konstrukcijsko rješenje mora imati sljedeće karakteristike:

- najveći teret (najveći dohvat, horizontalni položaj):
- 2) najveći dohvat:
- najmanji dohvat:
- 4) brzina izvlačenja:
- 5) brzina promjena nagiba:
- 6) brzina rotacije oko vertikalne osi:
- 7) pogon:

 $v_{iz} = 10 \text{ m/min}$ $\omega_{nag} = 45 \text{ °/min}$ $\omega_{rot} = 90 \text{ °/min}$ hidraulički ili elektromehanički.

Q = 1 t

 $L_{\text{max}} = 12 \text{ m}$

 $L_{\rm min} = 5 \, \rm m$

Rad treba sadržavati:

- 1) uvodni pregled teleskopskih dohvatnika
- 2) opis razmatranih koncepcija rješenja te obrazloženje odabira rješenja
- 3) proračun mehanizma za dizanje, promjenu dohvata i rotacije
- 4) proračun nosive konstrukcije
- 5) sklopni crtež dohvatnika s potrebnim presjecima i detaljima
- 6) radioničku dokumentaciju prema dogovoru s mentorom.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan: 4. svibnja 2023. Datum predaje rada:

Predviđeni datumi obrane:

6. srpnja 2023.

17. – 21. srpnja 2023.

Zadatak zadao:

izv. prof. dr. sc. Matija Hoić

Predsjednik Povjerenstva: prof. dr. sc. Tanja Jurčević Lulić

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA	III
POPIS TABLICA	V
POPIS TEHNIČKE DOKUMENTACIJE	VI
POPIS OZNAKA	/II
SAŽETAKX	VI
SUMMARYXV	/II
1. UVOD	. 1
1.1. Općenito o prenosilima i dizalima [4]	. 2
2. ANALIZA POSTOJEĆE TEHNIKE NA TRŽIŠTU	. 3
2.1. Analiza proizvoda	. 3
2.1.1. Liebherr LTC 1050-3.1 TELEMATIK	. 3
2.1.2. Liebherr LTC 1050-3.1 Rope pull technology	.4
2.1.3. Palfinger PTM 1800	. 6
3. KONCEPTUALNA RJEŠENJA	. 7
3.1. Koncept A	.7
3.2. Koncept B	. 8
3.3. Koncept C	10
3.4. Koncept D	10
3.5. Koncept E	11
3.5.1. Vrednovanje koncepata	12
4. KONSTRUKCIJSKA RAZRADA	15
4.1. Mehanizam za prihvat i dizanje tereta	15
4.1.1. Izbor užetnog sistema dohvatnika	15
4.1.2. Dimenzioniranje i odabir čeličnog užeta	16
4.1.3. Dimenzioniranje i odabir kuke	18
4.1.4. Odabir normiranih nosača i matice kuke	20
4.1.5. Provjera čvrstoče nosača kuke	22
4.1.6. Provjera povrsinskog pritiska između nosivih limova i nosaca kuke	23
4.1.7. Provjera cvisioce malice kuke	23 22
4.1.6. Flovjeta nostvosti aksijamog težaja nosača kuke	23 74
4.1.9.1 Dimenzije profila žlijeba užnice	2 4 26
4.1.10. Dimenzioniranie bubnia	28
4.1.10.1. Osnovne dimenzije bubnja	28
4.1.10.2. Proračun stijenke bubnja	31
4.1.10.3. Debljina čeľne ploče bubnja	32
4.1.10.4. Vijčana veza čelne ploče i bubnja	33
4.1.10.5. Kontrola vijčane veze čelne ploče i bubnja	35
4.1.10.6. Veza užeta s bubnjem	35

4.1.10.7. Proračun osovine bubnja	36
4.1.10.8. Odabir ležaja bubnja	39
4.1.11. Odabir pogonske jedinice za dizanje	39
4.1.11.1. Potrebna snaga motora	41
4.1.11.2. Okretni moment motora	41
4.1.12. Provjera kočnice pogonske jedinice za dizanje	41
4.2. Nosiva konstrukcija granika	42
4.2.1. Određivanje dinamičkih faktora	42
4.2.1.1. Određivanje dinamičkog faktora ϕ 1	43
4.2.1.2. Određivanje dinamičkog faktora ϕ 2	43
4.2.1.3. Određivanje parcijalnog faktora sigurnosti γ <i>p</i> , 1	45
4.2.1.4. Provjera uvjeta čvrstoće dohvatnika	46
4.2.1.5. Provjera uvjeta krutosti dohvatnika	50
4.3. Provjera spojeva konstrukcije	51
4.3.1. Određivanje sile u hidrocilindru za promjenu nagiba kraka	51
4.3.1.1. Odabir hidrauličnog cilindra za promjenu nagiba i fiksiranje kraka	54
4.3.2. Proračun spoja hidrocilindra za promjenu nagiba kraka	54
4.3.2.1. Proračun zavara ušice prihvata cilindra za dohvatnik	54
4.3.2.2. Proračun osovine ušice prihvata cilindra za dohvatnik	57
4.3.2.3. Proračun nosivog lima ušice cilindra za dohvatnik na dodirni pritisak.	59
4.3.3. Određivanje sile u hidrauličnom cilindru za promjenu duljine dohvata	60
4.3.3.1. Odabir hidrauličnog cilindra za promjenu duljine dohvata	61
4.3.3.2. Proračun zavara prihvatne čahure cilindra za izvlačenje	62
4.3.4. Proračun zavara sklopa užnice	63
4.3.5. Proračun mase protuutega	64
4.3.6. Proračun spoja postolja i okretnog ležaja	66
4.3.6.1. Odabir okretnog ležaja	67
4.3.6.2. Vijci okretnog ležaja	71
4.3.6.3. Glavne mjere spoja okretnog ležaja	72
4.3.6.4. Proračun konstrukcije okretnog ležaja	73
4.3.6.5. Proračun potrebne snage za ostvarivanje rotacije	74
4.3.7. Proračun zupčastog para na mehanizmu za ostvarivanje rotacije	78
4.3.7.1. Odabir proračunskih faktora	79
4.3.8. Proračun zavara postolja hidrauličnog cilindra za nošenje protuutega	80
4.3.9. Proračun svornjaka za prihvat bubnja i protuutega	82
4.3.10. Proračun zavara postolja na temeljnu ploču	84
4.3.10.1. Klizne pločice teleskopa	88
4.3.11. Odabir lanca na mehanizmu za izvlačenje	88
4.4. Proračun opterećenja na oslonce	91
4.4.1.1. Granični slučajevi opterećenja kod Montagnonove metode	93
5. ZAKLJUČAK	97
LITERATURA	102
PRILOZI	103

POPIS SLIKA

Slika 1.	Liebherr LTM 1150-5.3 u voznom stanju	1
Slika 2.	Liebherr LTM 1190-4.2 u radnom stanju	1
Slika 3.	Liebherr LTC 1050-3.1 pogon dohvanika na jedinstveni cilindar	3
Slika 4.	Liebherr LTC 1050-3.1 hidromehanički pogon dohvatnika	4
Slika 5.	Liebherr LTC 1050-3.1 TELEMATIK (lijevo) i rope pull technology (desno)	5
Slika 6.	Palfinger PTM 1800	6
Slika 7.	Koncept A	7
Slika 8.	Sustav cilindra i zatika za izvlačenje	8
Slika 9.	Koncept B	9
Slika 10.	Plan brzina skretne užnice	9
Slika 11.	Koncept C	10
Slika 12.	Koncept D	11
Slika 13.	Koncept E	12
Slika 14.	Obični faktorski koloturnik, a) kinematička shema, b) praktična izvedba [4]	16
Slika 15.	Obrađeni vrat kuke [4]	19
Slika 16.	Ovjes i nosač kuke, DIN 15411 i DIN 15412 T.2 [4]	20
Slika 17.	Matice teretnih kuka [4]	21
Slika 18.	Nosač kuke, proračunska skica [4]	22
Slika 19.	Odabrani aksijalni ležaj nosača kuke oznake 51108 [17]	24
Slika 20.	Lijevo – prostorni pregib, desno – kut pregiba [4]	25
Slika 21.	Profil užnice [4]	27
Slika 22.	Oblici i mjerne skice užnica prema DIN 15 062 T.2 [4]	27
Slika 23.	Užnica s ležaievima tvrtke Gosan [23]	28
Slika 24.	Osnovne mjere i profil žlijeba bubnja [4]	29
Slika 25.	Dvoužetni ožljebljeni bubani, osnove mjere bubnja [4]	31
Slika 26.	Naprezanja elementa stijenke bubnja (lijevo), lokalno savijanje ljuske bubnja od	1
	jednog navoja užeta (desno) [4]	31
Slika 27.	Čelna ploča bubnja [4]	33
Slika 28.	Primjer konstrukcijske izvedbe bubnja i osnovne mjere [4]	34
Slika 29.	Veza užeta s bubnjem [4]	35
Slika 30.	Presjek konstrukcije bubnja i reduktora sa zglobnom osovinom [8]	37
Slika 31.	Statički model opterećenja bubnja	37
Slika 32.	Radijalni klipni motor, koljenasti [4]	40
Slika 33.	Opći sustav hidrauličkog pogona [4]	40
Slika 34.	Dijgrami unutrnjih sila i momenta dohvatnika	47
Slika 35.	Usporedba smičnog i naprezanja uzrokovanog savijanjem	48
Slika 36.	Metoda presieka nad dohvatnikom	48
Slika 37.	Poprečni presjek prvog segmenta dohvatnika	49
Slika 38.	Naprezanja dohvatnika dobivena u <i>SolidWorks</i> -u	50
Slika 39.	Pomaci dohvatnika dobiveni u <i>SolidWorks</i> -u	51
Slika 40.	Analiza dohvatnika i cilindra za promienu nagiba	52
Slika 41.	Sila u cilindru u ovisnosti o kutu nagiba dohvatnika	53
Slika 42.	Kuta nagiba cilindra u ovisnosti o kutu nagiba dohvatnika	53
Slika 43.	Liebherr hidraulični cilindra za promienu nagiba i fiksiranie kraka dohvatnika	54
Slika 44	Proračunska skica zavara prihvatne ušice cilindra na dohvatnika	55
Slika 45.	Skica uz proračun čvrstoće osovine cilindra [14]	58
Slika 46.	Proračunska skica nosivog lima ušice cilindra.	59
Slika 47.	Sila u cilindru za izvlačenje teleskopa u ovisnosti o kutu nagiba dohvatnika	61
, .		

Antonio Strahija

Slika 48.	Bosch cilindar za izvlačenje teleskopa	. 61
Slika 49.	Proračunska skica zavara prihvatne čahure cilindra za izvlačenje	. 62
Slika 50.	Proračunska skica zavara sklopa užnice	. 63
Slika 51.	Proračunska skica za određivanje mase protuutega [4]	. 65
Slika 52.	Aksijalno opterećenje na okretni ležaj [16]	. 67
Slika 53.	Savojno opterećenje na okretni ležaj [16]	. 67
Slika 54.	Zakretni ležaj postolja [16]	. 68
Slika 55.	Odabir faktora primjene [16]	. 68
Slika 56.	Primjer ispravnog odabira zakretnog ležaja [16]	. 69
Slika 57.	Odabir zakretnog ležaja na temelju parametara [16]	. 69
Slika 58.	Prikaz dimenzija zakretnog ležaja [16]	. 70
Slika 59.	Dimenzije odabranog zakretnog ležaja [16]	. 70
Slika 60.	Parametri odabranog zakretnog ležaja [16]	. 71
Slika 61.	Moment pritezanja za vijke zakretnog ležaja [16]	. 72
Slika 62.	Glavne mjere spoja zakretnog ležaja [16]	. 72
Slika 63.	Minimalna dubina navoja za vijke zakretnog ležaja [16]	. 73
Slika 64.	Dopuštene vrijednosti površinskih tlakova [16]	. 74
Slika 65.	Pogonska jedinica za rotaciju GFB 9 T2 2000/2	.76
Slika 66.	Osnovne dimenzije pogonske jedinice za rotaciju	. 77
Slika 67.	Hidraulični aksijalni klipni motor Bosch A2FM 56	. 78
Slika 68.	Proračunska skica zavara nosive ploče protuutega	. 80
Slika 69.	Proračunska skica svornjaka sklopa bubnja	. 83
Slika 70.	Proračunska skica zavara postolja	. 84
Slika 71.	Kvaliteta zavara [10]	. 87
Slika 72.	Samopodmazujuća brončana pločica s grafitom	. 88
Slika 73.	Konfiguracija lanca za izvlačenje [16]	. 89
Slika 67.	Prikaz osnovnih dimenzija lanca [16]	. 89
Slika 75.	Sila u lancu u ovisnosti o kutu nagiba dohvatnika	. 90
Slika 76.	Montagnonova metoda – ilustracija [5]	. 91
Slika 77.	Opterećenje na granik uz važne proračunske dimenzije [5]	. 92
Slika 78.	Kombinacija najveći raspon/najveći teret	. 93
Slika 79.	Kombinacija najmanji raspon/najveći teret	. 94
Slika 80.	Teleskopski dohvatnik – završni 3D CAD model	. 98
Slika 81.	Mobilni teleskopski dohvatnik – završni 3D CAD model	. 99
Slika 82.	Mobilni teleskopski dohvatnik – render 1	100
Slika 83.	Mobilni teleskopski dohvatnik – render 2	100
Slika 84.	Mobilni teleskopski dohvatnik – render 3	101

POPIS TABLICA

Tablica 1.	Matrica odlučivanja	13
Tablica 2.	Legenda ocjenjivanja koncepta	13
Tablica 3.	Pogonske grupe za različite izvedbe granika [5]	17
Tablica 4.	Pogonske grupe mehanizma dizanja, DIN 15020 [5]	17
Tablica 5.	Faktori sigurnosti za pojedine pogonske grupe [4]	17
Tablica 6.	Materijali normiranih kuka [4]	18
Tablica 7.	Faktori sigurnosti normiranih kuka [4]	19
Tablica 8.	Mjere obrađenog vrata za kuke kovane u kalupu, mm; (DIN 154 T.2) [4]	20
Tablica 9.	Mjere ovjesa i nosača kuke; materijal nosača C35 (Č1330), mm [4]	21
Tablica 10.	Mjere matica teretnih kuka do kuke broj 5, mm; materijal C 35 ili C 45; (DIN	
	15413) [4]	22
Tablica 11.	Minimalni odnosi (D/d) za pogonsku užad; (DIN 15020) [4]	25
Tablica 12.	Faktor <i>cp</i> [4]	26
Tablica 13.	Mjere profila žlijeba užnice u mm; (DIN 15061 T.1) [4]	26
Tablica 14.	Dimenzije sklopa užnice [Gosan]	28
Tablica 15.	Dimenzije profila žljebova bubnja [4]	29
Tablica 16.	Opis proračunskih kombinacija [5]	44
Tablica 17.	Karakteristične brzine dizanja v_h za određivanje faktora $\phi 2$ [5]	44
Tablica 18.	Grupe granika prema krutosti konstrukcije, faktor $\beta 2$ i $\phi 2$, min [5]	45
Tablica 19.	veličine parcijalnog faktora γp , 1 za težinu konstrukcije [5]	45
Tablica 20.	Proračunske kombinacije grupe opterećenja A i B s dinamičkim faktorima i	
	parcijalnim faktorima sigurnosti [5]	46
Tablica 21.	Karakteristike pogonske jedinice za rotaciju	77
Tablica 22.	Osnovne dimenzije pogonske jedinice za rotaciju	77
Tablica 23.	Karakteristike hidrauličnog motora	78
Tablica 24.	Opterećenja u osloncima prema graničnim slučajevima u kN	96

POPIS TEHNIČKE DOKUMENTACIJE

BROJ CRTEŽA	Naziv iz sastavnice
AS-01	Teleskopski dohvatnik
AS-01-01	Sklop kuke
AS-01-02	Postolje
AS-01-03	Sklop bubnja
AS-01-04	Dohvatnik
AS-01-04-01	Prvi segment
AS-01-04-02	Drugi segment
AS-01-04-03	Treći segment
AS-01-04-04	Sklop užnice

POPIS OZNAKA

Latinične oznake:

Oznaka	Jedinica	Opis
$\left(\frac{D}{d}\right)_{min}$	-	Minimalni odnos promjera užnice/bubnja i užeta
A_{\parallel}	mm ²	Površina paralelnih zavara
A_i	mm ²	Površina pojedinog proračunskog presjeka zavara
A_j	mm ²	Površina jezgre vijka
A_p	mm ²	Kontaktna površina između vijka i konstrukcije
A_{proj}	mm ²	Projicirana površina
A_{sv}	mm ²	Površina poprečnog presjeka svornjaka
A _{uk}	mm ²	Ukupna površina proračunskog presjeka zavara
а	mm	Dužina između prihvata cilindra i prihvata dohvatnika
a_d	mm	Razmak između osi zupčanika
a_i	mm	Udaljenost osi težišta presjeka od osi reduciranja
a_{os}	mm	Poprečni razmak oslonaca dizalice
b_1	-	Faktor veličine strojnog dijela
b_{1_k}	mm	Širina nosača kuke na kritičnom presjeku
b_2	-	Faktor kvalitete površinske obrade
b_{os}	mm	Uzdužni razmak oslonaca dizalice
b_p	-	Broj pregiba užeta
C_{0_k}	Ν	Statička nosivost ležaja kuke
<i>C</i> ₁	Ν	Dinamičko opterećenje ležaja
c_p	-	Koeficijent pregiba užeta
D1 D4	mm	Dimenzije pogonske jedinice za rotaciju
D_1	mm	Vanjski promjer glavine čelne ploče bubnja
D_{bub}	mm	Promjer bubnja
D _{už}	mm	Promjer užnice
d_{1_v}	mm	Promjer jezgre vijka
d_1	mm	Diobeni promjer pogonskog zupčanika
$d_{2,lan}$	mm	Promjer svornjaka lanca
d_2	mm	Promjer otvora nosača kuke

Diplomski rad

Fakultet strojarstva i brodogradnje

Antonio Strahija		Diplomski rad
d_5	mm	Promjer nosača kuke na mjestu oslonaca
d_{5_bub}	mm	Promjer osovine bubnja
d_7	mm	Promjer vijaka na čelnoj ploči bubnja
d_h	mm	promjer rupe vijka
d_{a1}	mm	Tjemeni promjer pogonskog zupčanika
d_{b1}	mm	Temeljni promjer pogonskog zupčanika
d_{f1}	mm	Podnožni promjer pogonskog zupčanika
d_m	mm	srednji radijus okretnog ležaja
d_{os_cil}	mm	Promjer osovine cilindra
d_{sv}	mm	Promjer svornjaka
$d_{u\check{z}}$	mm	Promjer čeličnog užeta
$d_{valj,min}$	mm	Minimalni promjer skretnog valjka lanca
d_{valj}	mm	Odabrani promjer skretnog valjka lanca
d_w	mm	Vanjski promjer kontaktne površine podloške
d_{w1}	mm	Promjer kinematske kružnice pogonskog zupčanika
е	mm	Ekscentricitet
e_0	mm	Udaljenost težišta komponente od osi rotacije
F_{\parallel}	Ν	Paralelna komponente sile na proračunski presjek zavara
F_{\perp}	Ν	Okomita komponente sile na proračunski presjek zavara
F_0	Ν	Rezultantno opterećenje na oslonce
F_1, F_2, F_3, F_4	Ν	Sile u osloncima dizalice prema Montagnonovoj metodi
F _{h_cil}	Ν	Horizontalna komponenta sile u hidrauličnom cilindru
$F_{\lim_{}max}$	Ν	Maksimalna sila na bočni lim ušice
F _{max_cil}	Ν	Maksimalna sila u cilindru za promjenu nagiba
F_A	Ν	Sila u osloncu A
F_B	Ν	Sila u osloncu B
F_M	Ν	Ugradbena sila prednaprezanja
F_{N_bub}	Ν	Normalna sila u vijku čelne ploče bubnja
F_P	Ν	Proračunsko opterećenje za nosivu konstrukciju
F_V	Ν	Sila u užetu pred ulazom u vijčanu vezu
F_a	Ν	Aksijalno opterećenje na okretni ležaj
F _{ar}	Ν	Korigirano aksijalno opterećenje na okretni ležaj

Antonio Strahija		Diplomski rad
F _{cil2_max}	Ν	Maksimalna sila u hidrauličnom cilindru za izvlačenje
F_j	Ν	Osnovni dio j-tog pojedinačnog opterećenja
$F_{lan,dop}$	kN	Dopušteno opterećenje lanca
F _{lan,max}	kN	Maksimalna sila koja djeluje na lanac
F_n	Ν	Potrebna normalna sila u jednom vijku kod spoja užeta
F_{os}	Ν	Proračunsko opterećenje oslonaca dizalice
F_{pred}	Ν	Sila prednaprezanja u vijcima okretnog ležaja
$F_{sv,uk}$	Ν	Sila koja djeluje na svornjake spoja bubnja
F_{sv}	Ν	Sila na pojedinom svornjaku
F_{tw}	Ν	Tangencijalna sila na zupčaniku
F _u	Ν	Sila u užetu
F _{un}	Ν	Normalna sila ostvarena vezom
F_{v_cil}	Ν	Vertikalna komponenta sile u hidrauličnom cilindru
$F_{oldsymbol{\phi},j}$	Ν	Povećano j-to pojedinačno opterećenje
f	-	Faktor ispune užeta
f_L	-	Faktor primjene za mobilne dizalice
G_2	Ν	Težina dohvatnika
G_{bub}	Ν	Težina bubnja
G_u	Ν	Težina protuutega
G_{voz}	Ν	Težina vozila
g	m/s ²	Konstanta gravitacijskog ubrzanja
HN_{pot}	-	Broj kuke
Н	mm	Visina dizanja
H_{nav}	mm	Potrebna dubina navoja
h	mm	Visina profila žlijeba
$h_{2,lan}$	mm	Visina lanca
h_3	mm	Visina nosača kuke na kritičnom presjeku
<i>h</i>	mm	Udaljenost osi osovine ušice u odnosu na proračunski
nuš		presjek zavara
I _{doh}	kgm ²	Moment inercije dohvatnika
I_i	mm^4	Pojedini moment tromosti
I _k	kgm ²	Dinamički moment inercije oko osi zakretnog ležaja

I _{red}	kgm ²	Reducirani moment inercije na osovinu pogonskog motora
I _{uk}	mm^4	Ukupni moment tromosti
i	-	Prijenosni omjer
i _k	-	Prijenosi omjer kuke
K_A	-	Faktor primjene
$K_{F\alpha}$	-	Faktor raspodijele opterećenja
<i>L</i> 1 <i>L</i> 4	mm	Dimenzije pogonske jedinice za rotaciju
L _{10h,min}	h	Zahtijevani vijek trajanja ležaja
L_{doh}	mm	Potrebna duljina dohvata dizalice
L _{lan}	mm	Duljina svornjaka lanca
$l_{2,max}$	mm	Krak djelovanja težine dohvatnika za drugi granični slučaj
l _{2,min}	mm	Krak djelovanja težine dohvatnika za prvi granični slučaj
l_A	mm	Krak djelovanja sile u osloncu A
l_B	mm	Krak djelovanja sile u osloncu B
l_Q	mm	Krak djelovanja težine tereta za drugi granični slučaj
l_b	mm	Ukupna duljina bubnja
l_k	mm	Duljina između oslonaca nosača kuke
l_r	mm	Radna duljina bubnja
$l_{sv,1}$	mm	Krak djelovanja težine bubnja i utega
$l_{sv,2}$	mm	Krak sprega sila svornjaka
$l_{u\check{z}}$	mm	Krak djelovanja sile u užetu
l_u	mm	Krak djelovanja težine utega, odnosno bubnja
l_{v}	mm	Razmak između vijaka kod vijčane veze užeta i bubnja
M_1	Nmm	Moment prevrtanja za prvi granični slučaj
M_{1_1}	Nmm	Moment na presjeku 1-1
M_2	Nmm	Moment prevrtanja za drugi granični slučaj
M_{\max_k}	Nmm	Maksimalni moment savijanja nosača kuke
M_{din}	Nm	Dinamički moment za savladavanje otpora
M_p	Nm	Ukupni moment pokretanja
M_{prit}	Nm	Moment pritezanja vijaka okretnog ležaja
M_r	Nm	Moment otpora rotaciji
M _{s,max_os}	Nmm	Maksimalni moment savijanja osovine

Antonio Strahija		Diplomski rad
M _{s,max}	Nmm	Maksimalni moment savijanja na dohvatnik
M_{s_cil}	Nmm	Moment savijanja na zavar ušice uslijed sile u cilindru
M _{st}	Nm	Statički moment za savladavanje otpora
M_t	Nmm	Moment koji djeluje na okretni ležaj
M_{tr}	Nmm	Korigirani moment koji djeluje na okretni ležaj
M_u	Nmm	Moment protuutega
М	Nm	Moment opterećenja na oslonca oko osi x prema
M_{χ}	1111	Montagnonovoj metodi
М	Nm	Moment opterećenja na oslonca oko osi y prema
^{III} y	1111	Montagnonovoj metodi
m	-	Modul zupčanika
m_Q, m_u, m_p	kg	Mase komponenti koje rotiraju
n_{bub}	1/s	Brzina vrtnje bubnja
n _{mot}	1/s	Broj okretaja pogonskog motora
n_{sv}	-	Broj svornjaka
n_{v_bub}	-	Broj vijaka na čelnoj ploči bubnja
P_M	W	Potrebna snaga klipnog motora za dizanje tereta
P_k	Ν	Opterećenje ležaja kuke
$P_{n,p}$	W	Snaga pogonskog hidromotora
P_r	Ν	Ekvivalentno dinamičko radijalno opterećenje ležaja
p_{bub}	-	Prijenosni omjer koloturnika
p_{dop}	N/mm ²	Dopušteni iznos površinskog tlaka
p_k	N/mm ²	Površinski pritisak između nosivih limova i nosača kuke
p_l	mm	Korak lanca
$p_{le\check{ extsf{z}}}$	N/mm ²	Tlak izazvan pritezanjem vijaka okretnog ležaja
p_{sr}	N/mm ²	Srednji iznos dodirnog pritiska
$p_{sv,dop}$	N/mm ²	Dopušteno površinski pritisak svornjaka
p_{sv}	N/mm ²	Površinski pritisak svornjaka
Q_{lan}	kN	Nosivost lanca
Q_t	t	Opterećenje u tonama
R_{e_k}	N/mm ²	Granica tečenja materijala kuke
R_e	N/mm ²	Granica tečenja

Antonio Strahija		Diplomski rad
R_m	N/mm ²	Prekidna čvrstoća materijala užeta
r	-	Odnos graničnih naprezanja u zavaru
r_Q, r_u, r_p	mm	Krakovi težišta u odnosu na os rotacije
r _{max}	mm	Maksimalna udaljenost tereta od osi rotacije
r_{min}	mm	Minimalna udaljenost tereta od osi rotacije
S	-	Faktor sigurnosti
S_p	mm	Minimalna debljina prirubnice okretnog ležaja
S ₁	mm	Minimalna debljina stijenke prirubnice okretnog ležaja
S_F	-	Faktor sigurnosti za interminirajući pogon
S_{dop_bub}	-	Potreban faktor sigurnosti bubnja
S_k	-	Postojeća sigurnost ležaja kuke
S _{lan}	-	Faktor sigurnosti lanca
S_{potr_k}	-	Potrebna sigurnost ležaja kuke
S	mm	Širina nosača kuke na mjestu oslonaca
S _{bub}	mm	Debljina stijenke bubnja
$S_1, S_2, S_3, S_4,$	mm	Dimenzije bubnja
S _{uš}	mm	Debljina ušice za prihvat cilindra
$T_{2,max}$	Nm	Maksimalni izlazni okretni moment
T _{Br,max}	Nm	Maksimalni kočioni okretni moment
T_M	Nm	Potreban okretni moment motora
$T_{k,m}$	Nm	Moment kočnice hidrauličnog motora
T _{lan}	mm	Debljina pločice lanca
T_{st}	Nm	Statički moment kočenja
t	mm	Korak namatanja užeta
t_p	mm	Kontaktna duljina cilindra i osovine
t_{pr}	S	Vrijeme pokretanja rotacije
t_v	mm	Kontaktna duljina ušice i osovine
u_k	-	Broj užadi iznad kuke
$v_{h,max}$	m/s	Najveća konstantna brzina dizanja tereta
v_h	m/s	Karakteristična brzina dizanja tereta
v_{diz}	m/s	Brzina dizanja tereta
v_n	-	Faktor sigurnosti kuke

Fakultet strojarstva i brodogradnje

Antonio Strahija		Diplomski rad
Ζ	-	Broj vijka za vezu užeta i bubnja
z_1	-	Broj zubi pogonskog zupčanika
<i>z</i> ₂	-	Broj zubi gonjenog zupčanika
Q	Ν	Težina tereta
q	N/mm	Kontinuirano opterećenje
q_{lan}	kg/m	Specifična masa lanca
W_{5_bub}	mm ³	Moment otpora presjeka osovine bubnja
W_k	mm ³	Moment otpora nosača kuke na kritičnom presjeku
W_{x_doh}	mm ³	Moment otpora presjeka dohvatnika na kritičnom presjeku
W	mm	Debljina čelne ploče bubnja
W _{dop}	mm	Dopušteni vertikalni pomak uslijed deformacije dohvatnika
	mm	X koordinata prihvata hidrauličnog cilindra na postolje
x_0		prema referentnom koordinatnom sustavu
Y_{F1}	-	Faktor oblika
$Y_{arepsilon}$	-	Faktor udijele opterećenja
${\mathcal{Y}}_0$	m m	Y koordinata prihvata hidrauličnog cilindra na postolje
	111111	prema referentnom koordinatnom sustavu
17.	mm	Položaj y koordinate težišta pojedinog proračunskog
${\mathcal{Y}}_i$	111111	presjeka zavara

Grčke oznake:

α	0	Zahvatni kut zupčanika
$\alpha_{u\check{z}}$	o	Kut pregiba užeta
α_0	-	Faktor čvrstoće materijala za čisto istosmjerno naprezanje
α_{bub}	0	Obuhvatni kut užeta prije vijčane veze
α_{doh}	0	Kut prihvatne ušice cilindra u odnosu na os dohvatnika
β_2	-	Faktor ovisan o podiznoj grupi
β_s	0	Kut prostornog pregiba užeta
$\gamma_{p,1}$	-	Parcijalni faktor sigurnosti utjecaja vlastite težine
$\gamma_{p,2}$	-	Parcijalni faktor sigurnosti utjecaja dizanja tereta
$\gamma_{p,j}$	-	Parcijalni faktor sigurnosti

Antonio Strahija		Diplomski rad
ε	-	Eksponent vijeka trajanja za ležajeve s dodirom u liniji
ε_{lpha}	-	Stupanj prekrivanja
η_0	-	Faktor korisnost užnice
η_{bub}	-	Stupanj iskoristivosti bubnja
$\eta_{ko\check{ ext{c}}}$	-	Stupanj iskoristivosti kočnice
η_{kol}	-	Stupanj iskoristivosti koloturnika
$\eta_{le{ ilde z}}$	-	Stupanj iskoristivosti ležajeva
η_{red}	-	Stupanj iskoristivosti reduktora
η_{rot}	-	stupanj efikasnosti rotacije
η_u	-	Faktor korisnost koloturnika
η_{uk}	-	Ukupni stupanj iskoristivosti
μ_1	-	Korigirani faktor trenja
$\mu_{\check{C}/\check{C}}$	-	Faktor trenja za par čelik/čelik
μ_G	-	Faktor trenja navoja
μ_{bub}	-	Faktor trenja između užeta i bubnja
$\sigma_1, \sigma_2, \sigma_3$	N/mm ²	Glavna naprezanja na mjestu namatanja
σ_{1_1}	N/mm ²	Naprezanje na presjeku 1-1
σ_{\max_k}	N/mm ²	Iznos naprezanja na kritičnom presjeku nosača kuke
$\sigma_{m{\phi}}$	N/mm ²	Cirkularno (tlačno) naprezanje stijenke bubnja
<i>-</i>	N/mm^2	Dopušteno naprezanje zavara za slučaj naizmjeničnog
ODt(r)dop	IN/11111	naprezanja u tlaku
	N/mm ²	Dopušteno naprezanje zavara za čisto naizmjenično
$\circ Dv(-1)aop$	1 1 / 11111	naprezanje
$\sigma_{F,dop}$	N/mm ²	Dopušteno naprezanje na savijanje u korijenu zuba
σ_F	N/mm ²	Naprezanje u korijenu zuba uslijed savijanja
σ_d	N/mm ²	Dopušteno naprezanje čelne ploče bubnja
σ_{dop_bub}	N/mm ²	Dopušteno naprezanje stijenke bubnja
σ_{dop_doh}	N/mm ²	Dopušteno naprezanje za odabrani materijal dohvatnika
σ_{f,dop_1}	N/mm ²	Dopušteno naprezanje na presjeku 1-1
$\sigma_{\!f,lim}$	N/mm ²	Dopušteno naprezanje na savijanje za materijal zuba
$\sigma_{\!fDN}$	N/mm ²	Trajna dinamička čvrstoća
σ_{red}	N/mm ²	Reducirano naprezanje

Fakultet strojarstva i brodogradnje

Antonio Strahija		Diplomski rad
$\sigma_{s,max}$	N/mm ²	Maksimalno naprezanje na dohvatnik uslijed savijanja
σ_s	N/mm ²	Naprezanje uslijed savijanja
σ_v	N/mm ²	Vlačno naprezanje
σ_{χ}	N/mm ²	Normalno naprezanje stijenke bubnja
τ	N/mm ²	Tangencijalno naprezanje
$ au_{sv,dop}$	N/mm ²	Dopušteno naprezanje svornjaka na odrez
$ au_{sv}$	N/mm ²	Naprezanje svornjaka na odrez
ϕ_1	-	Dinamički faktor utjecaja vlastite težine
ϕ_2	-	Dinamički faktor utjecaja dizanja tereta
$\phi_{2,min}$	_	minimalna veličina ϕ_2 ovisna o kombinaciji krutosti
	-	konstrukcije i načinu upravljanja mehanizmom dizanja
ϕ_j	-	Dinamički faktor j-tog opterećenja
arphi	-	Faktor utjecaja udaraca
$arphi_1$	0	Kut hidrauličnog cilindra za promjenu nagiba u odnosu na
		horizontalu
$arphi_2$	0	Kut prihvata cilindra na dohvatnik u odnosu na horizontalu
ψ	o	Kut zakreta dohvatnika u odnosu na x os koordinatnog
		sustava
ω_{mot}	rad/s	Kutna brzina pogonskog motora

SAŽETAK

Tema ovog diplomskog rada je osmisliti, koncipirati i konstruirati teleskopski dohvatnik s pripadajućim mehanizmima za promjenu nagiba i zakretanje. Teleskopski dohvatnici najčešće se koriste kod građevinskih radova, no njihova namjena može biti raznovrsna. Kako je danas novac – vrijeme, svrha uređaja je dizanje i transport odgovarajućeg tereta u što kraćem vremenskom intervalu kako bi proces bio što učinkovitiji. Posebnu pažnju u procesu konstruiranja potrebno je posvetiti sigurnom radu uređaja. Dakle, sve komponente koje sudjeluju u prijenosu sile potrebno je adekvatno proračunati, a sve dijelove koji dolaze u interakciju s čovjekom oblikovati na najpovoljniji način. U prvom dijelu rada provedena je analiza postojeće tehnika na tržištu i razrađena su konceptualna rješenja. Odabran je najpovoljniji koncept koji je nadalje podvrgnut dodatnoj razradi, proračunu nestandardnih komponenti, detaljiranju i izradi 3D CAD modela te naposljetku tehničke dokumentacije.

Ključne riječi: teleskopski dohvatnik, građevinski radovi, dizanje

SUMMARY

The topic of this master's degree thesis is the conceptualization and design of a telescopic booms in combination with proper mechanisms for angle adjustment and rotation. Telescopic booms are mostly used for construction work, although the applications can vary. Today, time is money, so the purpose of this device is to lift and transport the load in a quicker time frame so that the process is more efficient. A lot of time is spent designing for safety. That is, all components that are engaged in force transmission need to be analyzed and the parts that interact with humans need to be shaped in the best manner. The research on the present technology for the market was conducted in the first part of the thesis. From there, different conceptual ideas were designed. The most favorable concept was chosen and further developed, the non-standard parts were analyzed and finally, the 3D CAD model and the technical documentation were made.

Key words: telescopic boom, construction works, lifting

1. UVOD

U današnje vrijeme postoji sve veća potreba za adekvatnom mobilnom transportnom opremom koja je u stanju u što kraćem vremenu prenijeti što veći teret. Najčešće su to uređaji za građevinske radove, no postoji i puno raznih primjena u brodskim lukama, na brodovima, šumarskim radovima, transport ljudi (vatrogasci, službe za održavanje, ...) i mnoge druge. Budući da često teret nije uvijek jednake veličine i težine te ga treba transportirati na različitu visinu s manjim ili većim dosegom javlja se potreba za teleskopskim dohvatnicima. To su uređaji koji su posebno osmišljeni upravo kako bi ispunili takve zahtjeve korisnika. Najčešće izvedbe takvih uređaja su auto-granici.

Slika 1. Liebherr LTM 1150-5.3 u voznom stanju

Slika 2. Liebherr LTM 1190-4.2 u radnom stanju

1.1. Općenito o prenosilima i dizalima [4]

Transportna tehnika, kao svekoliki transport robe i ljudi, dijeli se na:

- prometnu tehniku (javni transport)
- dobavnu tehniku (unutrašnji transport)

Dobavna tehnika označava premještanje robu u proizvoljnom smjeru i na ograničenim udaljenostima, a uz pomoć prikladnih dobavnih sredstava.

Prenosila i dizala su tehnička sredstva dobavne tehnike koja u sustavu transportnog lanca služe za dizanje, prijenos, pretovar, skladištenje, rukovanje materijalom i predmetima, kao i za prijevoz materijala, predmeta i ljudi na kraćim udaljenostima.

Premještanje robe pomoću prenosila i dizala naziva se dobavni postupak. Svaki dobavni postupa sastoji se od zahvata, prijenosa i odlaganja robe ili materijala. Dobavni postupci mogu se obavljati prekidno i neprekidno.

Prema tome, korištena tehnička sredstva nazivaju se:

- sredstvima prekidne dobave
- sredstvima neprekidne dobave

Sredstva prekidne dobave mogu se razvrstati na sljedeći način:

- granici (kranovi) sredstvo prekidne dobave za obavljanje dobavnih postupaka unutar ograničenog radnog prostora
- dizalice mehanizmi ili naprave za dizanje tereta
- dizala ili liftovi sredstva prekidne dobave za vertikalni ili kosi transport
- manipulatori, industrijski roboti
- industrijska vozila

Osnovni projektni parametri sredstava prekidne dobave su:

- nosivost ili nazivni teret
- geometrijski parametri kojima se definira radno područje, npr. dohvat granika
- kinematički parametri, kao što su: brzina dizanja, okretanja i sl.
- pogonski parametri, kojima se uzimaju u obzir stvarni uvjeti rada, npr. broj radnih ciklusa na sat, relativno trajanje uključenja, relativno opterećenje (odnos stvarnog i nazivnog tereta), vijek trajanja, dinamički utjecaji, utjecaj vjetra, temperature i sl.
- vrsta tereta i način zahvaćanja tereta

U okviru ovog zadatka fokus se stavlja na granike (kranove) kao sredstva prekidne dobave te se uz postojeće projektne parametre pokušava dobiti optimalno rješenje koje ispunjava potrebne kriterije rada.

2. ANALIZA POSTOJEĆE TEHNIKE NA TRŽIŠTU

2.1. Analiza proizvoda

Na tržištu postoje različite izvedbe uređaja. Teleskopski dohvatnici najčešće su u izvedbi autogranika koji su pogonjeni hidrauličnim cilindrima. Unatoč tome, postoje i drugačije izvedbe. Jedan od način je preko pogonskog užeta ili kombinacija hidrauličnog cilindra i užeta. Postoji pak, izvedba na elektromehanički pogon koji se u slučaju gubitka snage može prilagoditi na ručni pogon. Rotacija dohvatnika vrši se na okretnom postolju gdje se nalazi i pogonska jedinica. To su standardizirani zakreni ležajevi upravo za primjenu kod auto-granika, bagera, raznih uređaja na gusjenicama i sl. Pogonska jedinica najčešće je planetarni prijenosnik pogonjen elektro- ili hidro-motorom. Pogon mehanizma za dizanje tereta gotovo je uvijek elektro-mehanički. Svaka od izvedbi ima svoje prednosti i to će se detaljnije prikazati nadalje na primjerima proizvoda.

2.1.1. Liebherr LTC 1050-3.1 TELEMATIK

Navedeni uređaj pogodan je za građevinske radove zbog velikog dosega i nosivosti. Dakle, to su najčešće radovi koji iziskuju sigurno dizanje teškog tereta na veću visinu. Ovaj teleskopski dohvatnik koristi kao pogon jedan cilindar. Prednost toga je kompaktna i lakša izvedba uređaja. Isto tako, zbog robusne izvedbe moguće je dizati masivne terete. Manjak ovakve izvedbe je to što se izvlačenje svakog dijela teleskopskog dohvatnika odvija posebno što u konačnici zahtijeva više vremena.

Tehničke specifikacije uređaja:

- Najveće dopušteno opterećenje 50 t
- Maksimalni radijus kod maksimalnog opterećenja 3.00 m
- Minimalni doseg dohvatnika– 8.10 m
- Maksimalni doseg dohvatnika-36 m
- Maksimalna visina mehanizma za podizanje tereta (uz nadogradnju) 48 m
- Maksimalni radijus 39 m
- Ukupna masa balasta 6.50 t

2.1.2. Liebherr LTC 1050-3.1 Rope pull technology

Navedeni uređaj pogodan je za građevinske radove koji zahtijevaju bržu montažu. Ovakav teleskopski dohvatnik za pogon koristi kombinaciju hidro-mehaničkog sustava. Dakle, kao pogon koristi se cilindar dok se za izvlačenje dijelova dohvatnika koristi uže. Prednost ovakvog sustava je da se svi dijelovi dohvatnika istovremeno izvlače čime se dobiva na brzini i jednostavnosti. Nedostatak je taj što se dohvatnik sastoji od maksimalno tri teleskopska dijela i maksimalno opterećenje je manje od prethodno navedenog slučaja.

Slika 4. Liebherr LTC 1050-3.1 hidromehanički pogon dohvatnika

Tehničke specifikacije uređaja:

- Najveće dopušteno opterećenje 17 t
- Maksimalni radijus kod maksimalnog opterećenja 5.00 m
- Minimalni doseg dohvatnika– 8.10 m
- Maksimalni doseg dohvatnika– 31 m
- Maksimalna visina mehanizma za podizanje tereta (uz nadogradnju) 43 m
- Maksimalni radijus 34 m
- Ukupna masa balasta 6.50 t

Slika 5. Liebherr LTC 1050-3.1 TELEMATIK (lijevo) i rope pull technology (desno)

2.1.3. Palfinger PTM 1800

Palfinger PTM 1800 je dizalica s teleskopskim dohvatnikom namijenjena za brodove, platforme i morske luke. Posebna se obratila pažnja na zaštitu od korozije zbog agresivne morske atmosfere. Postolje dohvatnika oblikovano je kao kružni prsten s provrtima za vijčanu vezu. Pogon je na hidrauliku.

Slika 6. Palfinger PTM 1800

Tehničke specifikacije uređaja:

- Najveće dopušteno opterećenje 16 t
- Minimalni doseg dohvatnika- 12 m
- Maksimalni doseg dohvatnika- 36 m
- Maksimalni moment podizanja 1920 kNm

3. KONCEPTUALNA RJEŠENJA

Na temelju analize postojeće tehnike na tržištu, funkcijske strukture i morfološke matrice generirana su četiri koncepta. Koncepti će nadalje biti opisani i ocijenjeni kako bi se na temelju zadanih parametara odredio onaj najbolji za daljnju razradu.

3.1. Koncept A

Prvi od koncepata prikazan je na slici ispod. Kako bi se čim lakše objasnio princip rada uređaja, skica je pojednostavljena i na njoj se nalaze djelomični presjeci.

Slika 7. Koncept A

Koncept A ponajprije je namijenjen za mobilnu izvedbu, dakle kao auto-granik. Princip rada uređaja je sljedeći. Teleskopski dohvatnik sastoji se od niza zatvorenih profila koji ulaze jedan u drugog. Profili su oblikovani tako da najbolje odgovaraju tj. podnose zadano opterećenje sustava, ali i da se ostvari kvalitetno klizanje između teleskopskih dijelova. Cijeli sustav pogonjen je samo jednim hidrauličnim cilindrom. Time je ostvarena kompaktna i robusna izvedba sa smanjenom masom sustava. Izvlačenje profila izvodi se po principu "jedan po jedan", što je značajka sustava s jednim pogonskim cilindrom.

Na početku cilindra nalazi se glava na kojoj je integrirani sustav za izvlačenje kao i vodilice. U osnovi, glavina sadrži zatike koji ulaze u predodređene utore. Dakle, kako bi se izvukla prva

razina teleskopskog dohvatnika, zatici izlaze iz otvora primarnoj razini dohvatnika. Kada se zatici izvuku, cilindar se počinje izvlačiti te zatici prenose svojim oblikom opterećenje i gibanje na sljedeću podrazinu dohvatnika. Kada se cilindar izvuče na traženu duljinu, zatici ponovo ulaze u otvore i time se osigurava dohvatnik na toj razini.

Slika 8. Sustav cilindra i zatika za izvlačenje

Postoji više opcije za izvlačenje dohvatnika, a to su uglavnom: 50, 90 i 100 posto tako da je moguće kombinirati više rješenja ovisno o teretu, nagibu, visini i vanjskim uvjetima.

Nagib se također kontrolira hidrauličnim cilindrom, dok je okretno postolje u formi kružnog prstena i pogonjeno je zupčaničkim prijenosom.

Bubanj i mehanizam za namatanje užeta nalaze se na suprotnoj strani dohvatnika i djeluju kao balast. Uže se vodi po gornjoj vanjskoj strani teleskopskog dohvatnika na kojoj se nalaze vodilice i zatezač užeta. Na samom vrhu dohvatnika nalaze se skretne užnice i sklop kuke. Uže je ovješeno za kraj dohvatnika.

3.2. Koncept B

Koncept B sličan je prethodnom konceptu A, ali uz jednu vrlo važnu razliku. Umjesto jednog pogonskog cilindra koristi se sustav užadi i kolotura koji su pogonjeni jednostavnim hidrauličnim cilindrom. Iako izvedba možda zvuči kompliciranije, ona dakako ima svoju svrhu i primjenu.

Korištenje ovakvog mehanizam ipak nosi sa sobom određena ograničenja. U pravilu se ne koristi više od četiri do pet stupnja teleskopskog dohvatnika. Postoje tri glavna problema: prevelika sila koja nastaje u pogonskom cilindru, uže koje je u nekim dijelovima zbog velikog opterećenja napeto, a opet u nekim dijelovima opuštenije što dovodi do smanjenog vijeka trajanja i sam smještaj cijelog mehanizma. Mehanizam dizanja radi po takozvanom "cascading lift" principu. Skica principa dana je ispod.

Slika 9. Koncept B

Mehanizam se naziva "cascading lift" ili "linear lift" jer se svi članovi izvuku u isto vrijeme iz dohvatnika. Budući da se posljednji član izvlači iz svih dijelova za isto vrijeme kao i prvi član, mora imati veću brzinu izvlačenja. Kako je snaga u sustavu konstantna, a za linearno gibanje jednaka umnošku sile i brzine, možemo zaključiti da je sila na pogonskom cilindru veća za omjer izlazne i ulazne brzine izvlačenja. Kada se prethodno navedeno preformulira, može se reći da je sila potrebna u cilindru veća od težine tereta za broj razina u izvlačenja u teleskopskom dohvatniku.

Slika 10. Plan brzina skretne užnice

Kao i u prethodnom konceptu, bubanj i mehanizam za namatanje užeta nalaze se na suprotnoj strani dohvatnika i djeluju kao balast. Uže se vodi po gornjoj vanjskoj strani teleskopskog dohvatnika na kojoj se nalaze vodilice i zatezač užeta. Na samom vrhu dohvatnika nalaze se skretne užnice i sklop kuke. Uže je ovješeno za kraj dohvatnika, a okretno postolje je pogonjeno zupčaničkim prijenosom. Nagib se regulira preko hidruličnog cilindra.

3.3. Koncept C

Suprotno od koncepta A i B, konstrukcija konceptna C nije u izvedbi auto-granika. Primjena ovog koncepta osmišljena je u brodskim lukama, na brodovima i sličnim mjestima gdje se položaj teleskopskog dohvatnika ne mijenja.

Slika 11. Koncept C

Uređaj je pogonjen na hidraulični i elektromehanički pogon. Teleskopski dohvatnik izvlači se pomoću niza hidrauličnih cilindara. Svaki od dijelova, tj. razina teleskopskog dohvatnika pogonjen je zasebnim hidruličnim cilindrom. Ovakva izvedba je nešto jednostavnija, no kod većeg broj razina teleskopskog dohvatnika upitan je smještaj tih svih cilindara. Ukratko, rješenje je adekvatno za manje teleskopske dohvatnike, do tri ili četiri razina izvlačenja. Hidraulični cilindri smješteni su s gornje vanjske strane dohvatnika.

Bubanj je smješten na samom dohvatniku, iznad okretnog postolja. Okretno postolje formirano je u obliku kružnog prstena i pogonjeno je zupčaničkim parom. Nagib je i u ovom slučaju reguliran hidrauličnim cilindrom koji se pokazuje kao najbolje rješenje.

3.4. Koncept D

Koncept D pomalo je apstraktan za današnje vrijeme jer kao pogon koristi ljudsku snagu. Dakle, potpuno je energetski neovisan što je idealno za teške uvjete rada gdje bi moderna tehnologija

mogla zakazat. Dakako, njegova uloga nije da se koristi kao glavno sredstvo za rad, već da u slučaju kvara ili iz nekog drugog razloga može poslužiti kao dostatna privremena zamjena.

Slika 12. Koncept D

Za prijenos snage koriste se zupčani parovi sa stupnjevima redukcije. Primarno se koriste čelnici i stožnici, a kod ulaza ljudske snage nalazi se poluga na kružnom vijencu čim većeg promjera kako bi se maksimalno iskoristio učinak redukcije i olakšao posao operateru. Ovakav pristup namijenjen je za manje terete i za teleskopski dohvatnik s jednom razinom izvlačenja. Za izvlačenje teleskopa ne koristiti se poseban mehanizam već se izvlačenje na željenu razinu obavlja ručno.

3.5. Koncept E

Prethodno navedeni koncepti oslanjanju se najviše na snagu koja dolazi iz principa Pascalovog zakona, odnosno hidraulike. Kako na današnje tržište sve više dolaze uređaji pogonjeni isključivo električnom energijom, ovaj koncept bazira se na toj ideji.

Slika 13. Koncept E

Po samom principu rada, koncept E vrlo je sličan konceptu B samo što kao glavni pogon teleskopskog dohvatnika ne koristi hidraulični cilindar već elektromotor. Teleskopski dohvatnik i dalje se izvlači pomoću integriranog sustava užeta i kolotura samo što uže se uže u ovom slučaju namata na zasebni bubanj. Dakle, postoje dva glavna pogonska užeta, ono koje se koristi za dizanje tereta i ono koje se koristi za izvlačenje teleskopskog dohvatnika. Oba užeta namataju se na bubanj, a bubanj je pogonjen elektromotor i zupčaničkim prijenosnikom. Nagib se regulira preko linearnog aktuatora tako da u cijelom sustavu nema potrebe za hidraulikom.

Prednosti i mane koncepta slične su kao i kod koncepta B. Prednost je ta što je relativno brzo vrijeme izvlačenja, dok je mana ta što je potrebna velika pogonska sila.

Postolje je okretno i u formi dva zupčanika, jedan veći zavaren po obodu i jedan manji, pogonski.

3.5.1. Vrednovanje koncepata

Vrednovanje koncepata temelji se na potrebama korisnika i ostalim kriterijima te se radi usporedba prednosti i nedostataka koncepata. Proces vrednovanja prikazan je u matrici odlučivanja. Kao referentni koncept biti će postavljen koncept .

Tablica 1.	Matrica	odlučivanja
------------	---------	-------------

	Koncepti										
	Tožinala	KON	NCEP	KON	NCEP	KON	NCEP	KON	NCEP	KON	NCEP
Kriteriji		Т	А	Т	В	T C	(ref.)	Т	D	Т	Έ
odabira	1 Taktor	Х	Y	Х	Y	Х	Y	Х	Y	Х	Y
Jednostavnos	5 %	4	0.20	4	0.20	3	0.15	1	0.05	4	0.20
t											
rukovanja											
Jednostavnos	10 %	2	0.20	2	0.20	3	0.30	5	0.50	3	0.30
t proizvodnje											
Brzina	15 %	2	0.30	5	0.75	3	0.45	2	0.30	3	0.45
izvlačenja											
Nosivost	20 %	5	1.00	4	0.80	3	0.60	1	0.20	3	0.60
Doseg	15 %	5	0.75	4	0.60	3	0.45	2	0.30	3	0.45
Kompaktnost	10 %	5	0.50	5	0.50	3	0.3	3	0.30	2	0.20
Masa	5 %	3	0.15	3	0.15	3	0.15	4	0.20	3	0.15
Sigurnost	5 %	3	0.15	3	0.15	3	0.15	3	0.15	3	0.15
Cijena	5 %	2	0.10	2	0.10	3	0.15	5	0.25	2	0.10
Održavanje	10 %	2	0.20	2	0.20	3	0.15	5	0.25	2	0.20
Ukup	na ocjena	3.	55	3.	65	2.	85	2.	.50	2.	80
	Rang		2		1		3		5		4

gdje je X – Ocjena, Y – Ponderirana ocjena

Tablica	2.	Legenda	ocieniiva	anja	koncepta
			o o j o n j n o		moneeptu

Relativna vrijednost koncepta	Ocjena
Puno lošije od referentnog koncepta	1
Lošije od referentnog koncepta	2
Jednako kao referentni koncept	3
Bolje od referentnog koncepta	4
Puno bolje od referentnog koncepta	5

Na temelju vrednovanja koncepata pomoću matrice odlučivanja zaključuje se da je koncept B najbolje rješenje za daljnji razvoj proizvoda.

Za jednostavnije i brze građevinske poduhvate koncept daje najbolje rješenja za tražene parametre. Iako je proizvodnja nešto kompliciranija, uređaj je kompaktan što dovodi do smanjenja mase i dimenzija. Upravo je to jedna od bitnijih značajki teleskopskog dohvatnika s mogućnošću ugradnje na prijevozno sredstvo kao auto-granik. Ovakvo rješenje pogodno je ne samo za građevinske radove, već uz malu preinaku i za službe spašavanja. Upravo zbog svoje brzine i efikasnosti uređaj je idealan za takvu primjenu.

Koncept se temelji na već postojećim rješenjima i principima što ulijeva povjerenje u korisnika, a opet jedinstven je zbog svog mehanizma za izvlačenje.
4. KONSTRUKCIJSKA RAZRADA

Odabrani koncept obavlja funkciju izvlačenja teleskopskog dohvatnika pomoću sustava užeta i kolotura pogonjenog hidrauličnim cilindrom. Nagib se također regulira s hidrauličnim cilindrom dok se rotacija obavlja preko zupčanog prijenosa pogonjenog elektromotorom. Za prijenos sile na postolje koristi se okretni ležaj.

4.1. Mehanizam za prihvat i dizanje tereta

Osnovni elementi mehanizma za dizanje su: bubanj, prijenosnik s motorom, uže, užnice, lanac i sklop kuke.

4.1.1. Izbor užetnog sistema dohvatnika

Kako bismo ostvarili što manju silu u užetu odabran je užetni sistem s prijenosnim omjerom

$$i_k = \frac{u_k}{1} = 2 \tag{1}$$

gdje je:

uk – broj užadi iznad kuke

Ovo vrijedi za obični faktorski koloturnik. Teleskopski granici mogu imati na vrhu dohvatnika sklop užnica čime se može povećati prijenosi omjer. To su najčešće teleskopski dohvatnici s većom nosivošću, odnosno većom čvrstoćom dohvatnika. U našem slučaju uzet je prijenosni omjer dva što je ujedno i najgori slučaj za silu u užetu pa ako se u eksploataciji stavi veći prijenosi omjer, to za uže neće predstavljati problem te smo na strani sigurnosti.

Slika 14. Obični faktorski koloturnik, a) kinematička shema, b) praktična izvedba [4]

4.1.2. Dimenzioniranje i odabir čeličnog užeta

Sila u užetu za prethodno odabrani prijenosi omjer iznosi:

$$F_u = \frac{Q}{u_k \cdot \eta_u} = \frac{10000}{2 \cdot 0.951} = 5258N$$
 (2)

Gdje je

 $u_k = 2 - broj užadi iznad kuke$

 $\eta_u = 0.99 - korisnost koloturnika, a računa se prema:$

$$\eta_u = \frac{1}{u_k} \cdot \frac{1 - \eta_0^{u_k}}{1 - \eta_0} \cdot \eta_0^2 = \frac{1}{2} \cdot \frac{1 - 0.98^2}{1 - 0.98} \cdot 0.98^2 = 0.951$$
(3)

gdje je:

 $\eta_0 = 0.98 - korisnost$ pojedine užnice s valjnim ležajom

Broj skretnih užnica je 2.

Potrebni minimalni promjer užeta izvodi se na temelju računske lomne sile, tj. sile koje uže može podnijeti na temelju čvrstoće žica (tipično $R_m = 2570 \text{ N/mm}^2$).

Sljedeći parametar koji je potrebno odrediti je pogonska grupa. Namjena ovog teleskopskog dohvatnika je montaža u cjelinu kao auto-granik te rad s kukom. Kao što se može vidjeti na

slici ispod teleskopski auto-granik u radu s kukom spada u pogonsku grupu **S3** prema ISO normi, odnosno u **B3** grupu prema DIN normi. Isto tako spada u **HC2** grupu krutosti (podizne grupe).

20	Brodski, palubni	rad s grabilicom ili magnetom	HC3, HC4	S4, S5	B4, B5
21	Okretni toranjski - građevinski		HC1	S2, S3	B3
22	Montažni granici, jarbolni (derik) granici	rad s kukom	HC1,HC2	S1, S2	B2, B3
23	Okretni na tračnicama	rad s kukom	HC2	S3, S4	B3, B4
24	Okretni na tračnicama	rad s grabilicom ili magnetom	HC3,HC4	S4, S5	B4, B5
25	Mobilni željeznički, u sastavu kompozicije		HC2	S4	B4
26	Auto granici, mobilni granici	rad s kukom	HC2	S3, S4	B3, B4
27	Auto granici, mobilni granici	rad s grabilicom ili magnetom	HC3, HC4	S4, S5	B4, B5
28	Auto- i mobilni granici velike nosivosti		HC1	S1, S2	B2, B3

 Tablica 3. Pogonske grupe za različite izvedbe granika [5]

Pretpostavimo li da dohvatnik godišnje radi prosječno do dva sata dnevno srednjim spektrom opterećenja dohvatnik spada u pogonsku grupu $1A_m$ prema normi DIN 15020, odnosno M4 prema normi 4301/1.

Tablica 4. Pogonske grupe mehanizma dizanja, DIN 15020 [5]

:	Spektar optered	enja	STVARNO RADNO VRIJEME T_S , h/dan										
Naziv	$k_{\rm S} = q_{\rm e}^3$	q _e	≤0,063	≤0,125	≤ 0,25	≤0,5	≤1	≤2	≤4	≤8	≤16	> 16	
v. teški	$0,5 < k_{\rm S} \le 1,0$	0,8 <q<sub>e≤1</q<sub>	1D _m	1Cm	1Bm	1A _m	2 _m	3 _m	4 _m	5 _m	-	-	
teški	0,25< k _s ≤0,5	0,63 <q<sub>e≤0,8</q<sub>		1D _m	1Cm	$1B_{m}$	1A _m	2 _m	3 _m	4 _m	5 _m	-	
srednji	0,125 <k<sub>s≤0,25</k<sub>	0,5 <q<sub>e≤0,63</q<sub>	-	-	1D _m	1Cm	1B _m	1A _m	2 _m	3 _m	4 _m	5 _m	
lagan	<i>k</i> _S ≤ 0,125	≤0,5	-	-	-	1D _m	1Cm	1B _m	1A _m	2 _m	3 _m	4 _m	

 Tablica 5. Faktori sigurnosti za pojedine pogonske grupe [4]

Pogonska grupa, DIN	1D _m	1Cm	-	$1B_m$	1A _m	2 _m	3 _m	4 _m	5 _m
Pogonska grupa, ISO	-	M1	M2	M3	M4	M5	M6	M7	M8
Faktor sigurnosti $S \ge$	2,8	3,15	3,35	3,55	4	4,5	5,6	7,1	9

Stoga, minimalni faktor sigurnost za tu pogonsku grupu je 4.

Promjer užeta računa se prema izrazu:

$$d_{u\check{z}} = \sqrt{\frac{4 \cdot S}{f \cdot \pi \cdot R_m}} \cdot \sqrt{F_u} = \sqrt{\frac{4 \cdot 4}{0.47 \cdot \pi \cdot 1570}} \cdot \sqrt{5258} = 6.024 \text{ mm}$$
(4)

gdje je:

f = 0.5 - faktor ispune užeta

Odabrano je paralelno pleteno uže promjera 7 mm normalno pletene izvedbe s faktorom ispune 0.47.

Oznaka odabranog užeta je: 7 DIN 3055 6x7 – FC 1570 U sZ.

4.1.3. Dimenzioniranje i odabir kuke

Kuka su u standardima označene brojevima. Broj kuke odabran je tako da označava dozvoljenu nosivost u tonama za neku odabranu nazivnu pogonsku grupu dizalica. Na temelju potrebne nosivosti, pogonske grupe i materijala, izračunava se potrebni broj kuke, a tada se bira standardna kuka sa sljedećim većim brojem kuke [4].

$$HN_{pot} = \frac{Q_t \cdot g}{R_e} \cdot \nu_n \tag{5}$$

gdje je:

vn – faktor sigurnosti na temelju pogonske grupe

Qt – najveće opterećenje u tonama

 $g = 9.81 \text{ m/s}^2$ - konstanta gravitacijskog ubrzanja

*R*_e- granica tečenja materijala kuke

Razred	Sitnozrnati čelici		Čelici za poboljšanje				
čvrstoće	Materijal	$R_{\rm e}$ ili $R_{\rm p0,2}$	Materijal	$R_{\rm e}$ ili $R_{\rm p0,2}$			
evisioee	Waterijai	MPa	wiaterijai	MPa			
М	S275N (StE285; ČRO 280)	250	-	-			
Р	S355N (StE355; ČRO 350)	315	-	-			
(S)	S420 N (StE420; ČRO 420)	390	34CrMo4 (Č 4731)	390			
Т	StE500 (ČRO 500)	490	34CrNiMo6 (Č 5431)	490			
(V)	_	-	30CrNiMo8 (Č 5432)	620			

Tablica 6. Materijali normiranih kuka [4]

Antonio Strahija

Za materijal kuke odabran je sitnozrnati konstrukcijski čelik oznake S355N (ČRO 350) čija je granica tečenja Re = 315 MPa. Slijedi da je za odabran materijal kuke i pogonsku grupu faktor sigurnosti kuka jednak $\nu_n = 1.5$.

Kvaliteta	$R_{\rm e}$ ili $R_{\rm p \ 0,2}^{*)}$		Faktor pogonske grupe $c_n = Q_t/HN$									
materijala	kN/cm ²	1Bm	1Am	2m	3m	4 m	5m					
М	23,5	2	1,6	1,25	1	0,8	0,63					
Р	31,5	2,5	2	1,6	1,25	1	0.8					
(S)	39	3,2	2,5	2	1,6	1,25	1					
Т	49	4	3,2	2,5	2	1,6	-					
(V)	62	5	4	3,2	2,5	2	-					
				r								
Faktor sigu	ırnosti <i>V</i> n**)	1,25	1,5	2	2,5	3,15	4					

Tablica 7. Faktori sigurnosti normiranih kuka [4]

Iz prethodno izračunatih i određenih parametara slijedi da je broj kuke jednak:

$$HN_{pot} \ge \frac{Q_t \cdot g}{R_e} \cdot \nu_n = \frac{1 \cdot 9.81}{31.5} \cdot 1.5 = 0,467$$
(6)

Iz konstrukcijskih razloga, zbog nedostatka manjih nosača kuke izabran je standardiziran broj kuke HN = 2.5. Budući da mjere kuka odgovaraju u potpunosti važećoj normi, čvrstoću same kuke nije potrebno provoditi. Nadalje, uzeli smo kuku par broja veću od izračunate vrijednosti tako da smo i time na strani sigurnosti. Mjere i dimenzije kuke prikazane su ispod.

Slika 15. Obrađeni vrat kuke [4]

Broj kuke	d_1	<i>d</i> 2 h11	Navoj d ₃ , c11	d4	<i>d</i> 5 c11	<i>d</i> ₇	e ₃	f4	l ₂	l ₃	<i>l</i> 4	<i>l</i> 5	<i>l</i> ₆	<i>l</i> 7	r 9	r ₁₀	r ₁₁
006	14	10	M 10	7,5	-	3,2	52	11,5	30,5	-	97,5	9.	4,5	-	1	2,5	2
010	16	12	M 12	9	-	3,2	60	13	32,5	-	106	11	5	-	1,2	3	2
012	16	12	M 12	9	-	3,2	63	14	32,5	-	112	11	5	-	1,2	3	2
020	20	16	M 16	12,5	-	4,2	70	16	41,5	-	135,5	15	6	-	1,2	3	2
025	20	16	M 16	12,5	-	4,2	74	17	41,5	-	141,5	15	6	-	1,2	3	2
04	24	20	M 20	16	-	5,2	83	19	46	-	152,5	18	7,5	-	1,6	4	2
05	24	20	M 20	16	-	5,2	89	20	46	-	164	18	7,5	-	1,6	4	2
08	30	24	M 24	19,5	-	6,2	100	22	55	-	183	22	9	-	2	5	3
1	30	24	M 24	19,5	-	6,2	105	23	55	-	194	22	9	-	2	8	3
1,6	36	30	M 30	24,5	-	6,2	118	26	68	-	221	27	10	-	2	10	3
2,5	42	36	M 36	30	-	10,2	132	30	83	-	250	32	10	-	2	10	3
4	48	42	M 42	35,5	-	10,2	148	33	93	-	281,5	36	15	-	3	10	3
5	53	45	M 45	38,5	-	10,2	165	37	103	-	314,5	40	15	-	3	10	3
6	60	50	Rd 50x6	42	43,4	10,2	180	27	121	112	375	45	20	10	4	14	3
8	67	56	Rd 56x6	48	49,4	12,2	205	32	133	122	413	50	20	10	4	16	3

Tablica 8. Mjere obrađenog vrata za kuke kovane u kalupu, mm; (DIN 154 T.2) [4]

4.1.4. Odabir normiranih nosača i matice kuke

Iz dimenzija, odnosno broja kuke, direktno proizlaze i dimenzije pripadajućeg nosača kuke i matice za kuku. Mjere nosača i ovjesa kuka također su standardizirane te su mjere prikazane na slici 16. i definirane u tablici 9.

Slika 16. Ovjes i nosač kuke, DIN 15411 i DIN 15412 T.2 [4]

Broj kuke	<i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> ₄	с	<i>d</i> ₂	d4 j6	d₅ h9	<i>d</i> ₆	h_1	h ₂	h ₃ h11	r ₁ max	<i>r</i> ₂	5	<i>s</i> ₁	<i>s</i> ₂	<i>t</i> ₁	<i>t</i> ₂	t ₃ max	<i>u</i> ₁	Ležaj
2,5	80	125	22,5	17	8	37	40	30	19	40	21,5	37	0,6	1,6	10	0,5	1,2	2	2	1	63,5	511 08
4	90	140	25	19	8	43	50	35	23	45	24	42	0,6	1,6	12	0,5	1,2	3	2	1	71	511 10
5	100	155	27,5	22	8	46	60	40	27	50	27,5	45	1	1,6	15	0,5	1,2	3	2	1	79,5	511 12
6	125	185	30	24	10	51	70	45	32	55	30	50	1	1,2	15	0,5	1,2	4	2,5	1	90	512 14
8	140	210	35	29	10	58	80	50	36	60	32,5	55	1	1,2	20	0,5	1,2	4	3,5	1	98	512 16
10	160	230	35	29	10	66	90	55	40	65	35	60	1,3	1,2	20	0,3	1,2	4	5	1	110	512 18
12	180	265	42,5	34	10	74	100	60	42	78	42	72	1,3	2	25	0,5	2	5	6	1	127	512 20
16	190	275	42,5	36	12	82	110	70	50	88	47	82	1,3	2	25	0,5	2	5	7	1,5	136	512 22
20	200	295	47,5	41	12	93	120	80	56	95	51	88	1,3	2	30	0,5	2,2	5	6,5	1,5	150	512 24
25	220	318	49	41	12	103	130	90	64	105	56	98	1,6	2	30	0,5	2,2	5	8	1,5	166	512 26
32	260	378	59	51	12	113	160	100	72	115	62	106	1,6	2	40	1	1	5	9	1,5	188	512 32
40	285	415	65	58	14	128	180	110	80	130	70	120	1,6	2,5	45	0,5	2,3	5	11	2	208	512 36
50	335	465	65	58	14	143	220	125	92	145	77,5	135	2	2,5	45	0,5	2,3	5	12	2	224	512 44
63	380	522	71	63	14	163	240	140	104	160	85	150	2,5	2,5	50	0,5	2,3	5	13	2	260	512 48
80	420	565	72,5	63	14	183	280	10	120	180	95	170	2,5	2,5	50	0,5	2,3	6	15,5	2	287	512 56
100	470	645	87,5	77	18	203	300	180	136	200	106	188	2,5	2,5	60	0,5	2,2	6	18,5	2	326	512 60
125	510	685	87,5	77	18	229	340	200	150	240	126	228	2,5	5	60	0,5	3,4	6	14	2	365	512 68
160	550	750	100	87	18	254	360	220	164	270	142	256	3	5	70	0,5	3,4	6	25	2	406	512 72
200	610	810	100	87	18	284	360	240	184	305	160	290	4	5	70	0,5	3,4	6	25	2	454	293 72
250	700	920	110	97	18	325	420	260	200	350	185	330	5	5	80	0,5	3,4	6	27	2	512	293 84

Tablica 9. Mjere ovjesa i nosača kuke; materijal nosača C35 (Č1330), mm [4]

Matica kuke je također standardizirana i njezine dimenzije i mjere su prikazane ispod.

Slika 17. Matice teretnih kuka [4]

Broj kuke	Navoj d1	d_{7}	<i>d</i> ₈ E9	d_9	<i>d</i> ₁₁ H12	h	<i>l</i> 5	l_6	<i>r</i> ₄	<i>t</i> ₁₁	t ₁₂	<i>t</i> ₁₃
2,5	M 36	70	60	63	8	44	32	10	0,6	4	12	8
4	M 42	80	70	73	10	49	36	12	0,6	5	13	9
5	M 45	95	85	88	10	56	40	13	1	5	16	9

Tablica 10.Mjere matica teretnih kuka do kuke broj 5, mm; materijal C 35 ili C 45; (DIN
15413) [4]

Vrijednosti nosača i matice kuke odabrane su prema prethodni standardima u skladu s odabranim brojem kuke (2.5).

4.1.5. Provjera čvrstoće nosača kuke

Nosač kuke proračunava se kao nosač na dva opterećena oslonca opterećen na savijanje, slika 18. Savijanje je najgore na središnjoj osi nosača kuke i izračunava se u skladu s odgovarajućim poprečnim presjekom nosača.

Standardni nosači kuke zadovoljavaju, no proračun je potreban u slučaju da se nosač želi proširiti kako bi se smjestile dodatne užnice između nosivih limova.

Slika 18. Nosač kuke, proračunska skica [4]

Iznos momenta savijanja maksimalan je na središnjoj osi nosača kuke i iznosi:

$$M_{\max_k} = \frac{Q_t \cdot g \cdot l}{4} = \frac{Q_t \cdot g \cdot (b_{1_k} + s)}{4} = \frac{1000 \cdot 9.81 \cdot (80 + 10)}{4} = 220725 \text{ Nmm}$$
(7)

Fakultet strojarstva i brodogradnje

Moment otpora poprečnog presjeka nosača kuke na središnjoj osi iznosi:

$$W_k = \frac{h_3^2}{6} \cdot \left(b_{1_k} - d_2 \right) = \frac{37^2}{6} \cdot (80 - 37) = 9811 \text{ mm}^3$$
(8)

Iznos najvećeg naprezanja uslijed savijanja iznosi:

$$\sigma_{max} = \frac{M_{max}}{W} = \frac{220725}{9811} = 22.5 \text{ MPa}$$
(9)

Iznos dopuštenog naprezanja iznosi 80...120 MPa za materijal C35 (Č 1330) [4] što je veće od izračunatog naprezanja te stoga zaključujemo da nosač zadovoljava.

4.1.6. Provjera površinskog pritiska između nosivih limova i nosača kuke

Uz savijanje, potrebo je provjeriti i površinski pritisak između nosivih limova i nosača kuke. Površinski pritisak računa se prema izrazu za srednju vrijednost:

$$p_k = \frac{Q_t \cdot g}{2 \cdot d_5 \cdot s} = \frac{1000 \cdot 9.81}{2 \cdot 30 \cdot 10} = 16.35 \text{ MPa}$$
(10)

Dopuštena vrijednost površinskog pritiska je 80...120 MPa [4] te budući da je izračunata vrijednost pritiska daleko manja, uvjet je zadovoljen.

4.1.7. Provjera čvrstoće matice kuke

Budući da je matica kuke standardizirana i njene dimenzije se neće mijenjati zaključujemo da matica zadovoljava uvjete čvrstoće.

4.1.8. Provjera nosivosti aksijalnog ležaja nosača kuke

Opterećenja koje djeluje na ležaj jednako je težini tereta i dobijemo ga iz izraza:

$$P_k = Q_t \cdot g = 1000 \cdot 9.81 = 9810 \,\mathrm{N} \tag{11}$$

Prema dimenzijama matice odabran je aksijalni ležaj proizvođača SKF oznake 51108 statičke nosivosti:

 $C_{0,k} = 63\ 000\ N$

Prema tome, postojeća sigurnost ležaja iznosi:

Fakultet strojarstva i brodogradnje

Antonio Strahija

Diplomski rad

$$S_k = \frac{C_{0_k}}{P} = \frac{63000}{9810} = 6.42 > S_{potr_k} = 1.5$$
(12)

Prema tome zaključujemo da ležaj zadovoljava potrebne uvjete.

Slika 19. Odabrani aksijalni ležaj nosača kuke oznake 51108 [17]

4.1.9. Dimenzioniranje i odabir užnice

Promjer užnice/bubnja mora biti dovoljno velik da savijanje užeta ne bude preveliko. Minimalni promjer definiran je kao omjer promjera užnice/bubnja i užeta. Minimalni potrebni promjer bubnja, užnice i izravnavajuće užnice određuje se prema [4] izrazu:

$$D_{u\check{z}} \ge \left(\frac{D}{d}\right)_{\min} \cdot c_{\mathrm{p}} \cdot d$$
 (13)

Gdje je:

 $\left(\frac{D}{d}\right)_{\min}$ - minimalni dozvoljeni odnos (D/d), prema važećim normama, tablica 15.

 $c_{\rm p}$ – koeficijent pregiba užeta, tablica 12.

 $d_{u\check{z}}$ – promjer užeta, mm

 $D_{u\check{z}}$ – promjer užnice, mjeren kroz središnjicu užeta, mm.

Pogonska			(D	/d) _{min} za							
grupa	bub	anj	už	tnica	izravnava	juća užnica					
1D _m	11,2	$(12,5)^{1}$	12,5	(14)1)	10	$(12,5)^{1}$					
$1C_{m}$	12,5	(14)	14	(16)	12,5	(14)					
$1B_m$	14	(16)	16 ²⁾	(18)	12,5	(14)					
1A _m	16	(18)	18	(20)	14	(16)					
$2_{\rm m}$	18	(20)	20	(22,4)	14	(16)					
3m	20	(22,4)	22,4	(25)	16	(18)					
4 _m	22,4	(25)	25	(28)	16	(18)					
5m	25	(28)	28	(31,5)	18	(20)					
1) Vrijednosti u zagra	adama su za viš	šeslojnu užad (užad s 2 ili 3	sloja pramena)	. Ukoliko se izbor	om konstrukcije					
višeslojnog užeta postiže dovoljna trajnost, mogu se koristiti faktori za jednoslojnu užad.											
²⁾ Užnice u grabilicama, bez obzira na stvarnu pog. grupu, mogu se dimenzionirati prema $(D/d)_{min}$ za grupu 1B _m .											

Tablica 11.	Minimalni odnosi	(D/d) za pog	onsku užad;	(DIN 15020) [4]
-------------	------------------	--------------	-------------	-----------------

Faktor c_p ovisi o najvećem broju pregiba na istom odsječku užeta. Broj pregiba broji se na sljedeći način:

- prijelaz iz ravnog u savijeno stanje (namatanje na bubanj) 1 pregib;
- istosmjerni prijelaz preko užnice (uže se uvijek savija u istom smjeru) 2 pregiba;
- protusmjerni prijelaz preko užnice (uže mijenja smjer savijanja) 4 pregiba

Pri promjeni ravnine gibanja užeta, prijelaz preko užnice koja skreće uže računa se kao:

- istosmjerni, za $\beta_s \leq 120^\circ$;
- protusmjerni, za $\beta_s > 120^\circ$, slika 20. lijevo.

U pregibe ne ubrajamo:

- vezanje kraja užeta;
- pregib preko izravnavajuće užnice;
- pregib preko užnice, ako je kut pregiba $\alpha_{u\check{z}} < 5^{\circ}$, slika 20. desno. [4]

Slika 20. Lijevo – prostorni pregib, desno – kut pregiba [4]

Broj pregiba b _p	≤ 5	6 do 9	≥ 10
Faktor c _p	1	1,12	1,25

Tablica 12.Faktor C_p [4]

Na teleskopskom dohvatniku predviđeno je namatanje na bubanj, dvije skretne užnice i užnica koloturnika te je stoga broj pregiba 7, a faktor c_p 1.12. Za pogonsku grupu 1A_m najmanji omjer promjera užnice i užeta prema tablici 11. iznosi 18. Stoga prema (35) slijedi da je proračunski promjer užnice:

$$D \ge 18 \cdot 1.12 \cdot 7 = 141.12 \text{ mm} \tag{14}$$

4.1.9.1. Dimenzije profila žlijeba užnice

Mjere profila žlijeba definirane su normom. Mjere ovise o promjeru užeta i mogu se očitati iz tablice 13.

r	d	h	b	a	r	d	h	b	a
1,6	3	8	9	2	13,5	25	40	51	8
2,2	4	10	11	2	14	26	40	52	8
2,7	5	12,5	14	2	15	27; 28	40	53	8
3,2	6	12,5	15	3	16	29; 30	45	59	8
3,7	7	15	17	4	17	31; 32	45	60	8
4,2	8	15	18	4	18	33; 34	50	65	10
4,8	9	17,5	21	4,5	19	35; 36	55	71	10
5,3	10	17,5	22	4,5	20	37; 38	55	72	11
6	11	20	25	5	21	39; 40	60	78	11
6,5	12	20	25	5	22	41	60	79	11
7	13	22,5	28	5	23	42; 43	65	84	11
7,5	14	25	31	6	24	44; 45	65	86	12,5
8	15	25	31	6	25	46	67,5	89	12,5
8,5	16	27,5	34	6	25	47	70	91	12,5
9	17	30	37	6	26	48	70	93	12,5
9,5	18	30	38	6	26	49	72,5	95	12,5
10	19	32,5	40	7	27	50	72,5	96	12,5
10,5	20	35	43	7	28	52	75	99	12,5
11	21	35	44	7	29	54	77,5	103	12,5
12	22	35	45	7	30	56	80	106	12,5
12,5	23	35	46	7	31	58	82,5	110	12,5
13	24	37,5	48	8	32	60	85	113	12,5

 Tablica 13.
 Mjere profila žlijeba užnice u mm; (DIN 15061 T.1) [4]

Slika 21. Profil užnice [4]

Postoje gotovi setovi užnica koje se izrađuju prema normi. Postoje četiri najčešća oblika užnica kakvi se tipično izrađuju i mogu kupiti. Razni oblici užnica mogu se vidjeti na slici 22.

Slika 22. Oblici i mjerne skice užnica prema DIN 15 062 T.2 [4]

Za ovaj rad odabrana je užnica oblika B proizvodača Gosan nazivnog promjer D = 150 mm, slika 23. To je užnica koja ima kuglične ležajeve oznake 6206. Glavne mjere užnice prikazane su u tablici 14.

Slika 23. Užnica s ležajevima tvrtke Gosan [23]

Tablica 14.Dimenzije sklopa užnice [23]

Br.užnice	d _{už} [mm]	d1 [mm]	d ₂ [mm]	d3 [mm]	b [mm]	L ₂ [mm]	Ležaj
2	7	150	175	30	24	34	6206

4.1.10. Dimenzioniranje bubnja

Bubanj služi za pogon užeta i kao spremnik potrebne duljine užeta. Namatanje užeta treba izvesti tako da se spriječi zapletanje užeta na bubnju. To se većinom postiže namatanjem na ožljebljeni bubanj. Na bubanj se može namatati jedno uže, tada je bubanj jednoužetni ili dva užeta, tada je bubanj dvoužetni. U našem slučaju bubanj je jednoužetni. Žljebovi čuvaju uže i osiguravaju jednakomjerno namatanje užeta.

4.1.10.1. Osnovne dimenzije bubnja

Promjer bubnja određuje se prema istom izrazu kao i promjer užnice:

$$D_{bub} \ge \left(\frac{D}{d}\right)_{\min} \cdot c_{p} \cdot d = 16 \cdot 1,12 \cdot 7 = 125,44 \text{ mm}$$
 (15)

Gdje je:

 $\left(\frac{D}{d}\right)_{\min}$ - minimalni dozvoljeni odnos (D/d), prema važećim normama, tablica 11. c_{p} – koeficijent pregiba užeta, tablica 12.

 d_{bub} – promjer užeta, mm

 D_{bub} – promjer bubnja, mjeren kroz središnjicu užeta, mm.

Iz konstrukcijskih razloga odabran je bubanj nazivnog promjera 190 mm. Bubanj će biti izrađen u zavarenoj izvedbi (šavna cijev) cijevi materijala čelika oznake S235JR (Č0361) debljine stijenke s = 10 mm. Odabrana je šavna cijev zbog veće slobode odabira promjera bubnja i boljih svojstava materijala. Glavne dimenzije žlijeba bubnja prikazane su na slici 24. i navedene u tablici 15.

Slika 24. Osnovne mjere i profil žlijeba bubnja [4]

			• •	, v	•						
<i>d</i> , mm	3 do 9	10 do 28	29 do 37	38 do 44	45 do 54	56 do 58	60				
r_2, mm	0,5	0,8	1,3	1,6	2	2,5	3				
h	$0,375d \le h \le 0,4d$										
r_1		0,53 <i>d</i>									
t				$\cong 1,15d$							

Tablica 15.Dimenzije profila žljebova bubnja [4]

Slijedi da su dimenzije profila bubnja:

$$\begin{array}{l} 0,375d \leq h \leq 0,4d \\ 0,375 \cdot 7 \leq h \leq 0,4 \cdot 7 \\ 2,625 \leq h \leq 2,8 \rightarrow h = 2,7 \ \mathrm{mm} \end{array} \tag{16}$$

$$t \approx 1,15 \cdot d = 1,15 \cdot 7 = 8,05 \text{ mm} \text{ (odabrano 8 mm)}$$
 (17)

$$r_1 = 0.53 \cdot d = 0.53 \cdot 7 = 3.71 \text{ mm} \text{ (odabrano 3.7 mm)}$$
 (18)

Radna duljina bubnja je ona duljina na kojoj se uže namotava u dužini *pH*. Kako bi se rasteretila veza užeta s bubnjem dodaju se dodatna tri namotaja koja se ne odmotavaju, a do rasterećenja veze dolazi zbog sile trenja koja se javlja na tri dodatna namotaja. Za samu vezu se još dodaju jedan do dva namotaja.

Radna duljina bubnja određuje se prema izrazu:

$$l_{\rm r} = \frac{p_{bub} \cdot H}{D_{bub} \cdot \pi} \cdot t = \frac{2 \cdot 11280}{190 \cdot \pi} \cdot 8 = 302,4 \,\rm{mm}$$
(19)

gdje je:

p_{bub} – prijenosi odnos koloturnika;

H – visina dizanja;

D_{bub} – promjer bubnja;

t – korak namatanja užeta.

Ukupna duljina bubnja određuje se prema izrazu:

$$l_{\rm b} = l_{\rm r} + s_1 + s_2 + s_3 + s_4 + 30 \tag{20}$$

gdje je:

$$s_1 = t + (40 \dots 50) = 8 + 45 = 53 \text{ mm}$$
 (21)

$$s_2 \cong t = 8 mm \tag{22}$$

$$s_3 = 4 \cdot t = 4 \cdot 8 = 32 \text{ mm}$$
 (23)

$$s_4 = (2,5 \dots 3,5) \cdot t = 3 \cdot 8 = 24 \text{ mm}$$
 (24)

Slijedi da je ukupna duljina bubnja:

$$l_{\rm b} = 262,2 + 53 + 8 + 32 + 24 + 30 = 409.2 \,{\rm mm}$$

 $l_{\rm b} = 410 \,{\rm mm}$ (25)

Mjere duljine bubnja prikazane su na slici 25.

Fakultet strojarstva i brodogradnje

Slika 25. Dvoužetni ožljebljeni bubanj, osnove mjere bubnja [4]

4.1.10.2. Proračun stijenke bubnja

Stijenka bubnja opterećena je na uvijanje, savijanje i prolom. Uvijanje je najčešće relativno malog iznosa pa se može zanemariti, a do utjecaja savijanja dolazi tek kod bubnjeva veće duljine. Prolom se događa zbog namatanja na bubanj pod opterećenjem, te najviše doprinosi naprezanju. Naprezanja uslijed namatanje užeta, slika 26.:

Slika 26. Naprezanja elementa stijenke bubnja (lijevo), lokalno savijanje ljuske bubnja od jednog navoja užeta (desno) [4]

Cirkularno (tlačno) naprezanje stijenke bubnja prema [6] iznosi:

$$\sigma_{\varphi} = -0.5 \cdot \frac{F}{t \cdot s} = -0.5 \cdot \frac{9810}{8 \cdot 10} = -61,31 \text{ MPa}$$
(26)

gdje je

 $s_{bub} = 10 \text{ mm} - \text{debljina stijenke bubnja}$

Normalno naprezanje iznosi:

$$\sigma_x = 0.96 \cdot F_u \cdot \sqrt{\frac{1}{D_{bub} \cdot s^3}} = 0.96 \cdot 9810 \cdot \sqrt{\frac{1}{190 \cdot 10^3}} = 21.61 \text{ MPa}$$
 (27)

Glavna naprezanja na mjestu namatanja su:

$$\sigma_{1} = \sigma_{x} = 21,61 \text{ MPa}$$

$$\sigma_{3} = |\sigma_{\varphi}| = 61,31 \text{ MPa}$$

$$\sigma_{2} = 0$$
(28)

Ekvivalentno naprezanje iznosi:

$$\sigma_1 - \sigma_3 = 21,61 - (-61,31) = 82,92 \text{ MPa}$$
 (29)

Dopušteno naprezanje za čelik S235JR iznosi:

$$\sigma_{dop_bub} = \frac{R_e}{S} = \frac{235}{2.5} = 94 \text{ MPa}$$
 (30)

gdje je:

S = 2...3 - faktor sigurnosti

Budući da vrijedi:

$$\sigma_1 - \sigma_3 \le \sigma_{dop}$$

$$82,92 \le 94 \text{ MPa}$$
(31)

Zaključujemo da stijenka bubnja zadovoljava kriterij čvrstoće.

4.1.10.3. Debljina čelne ploče bubnja

Za bubanj u zavarenoj izvedbi [6] vrijedi:

$$\sigma = 1,44 \cdot \left(1 - \frac{2 \cdot D_1}{3 \cdot D}\right) \cdot \frac{F_H}{w^2} \le \sigma_d = \frac{R_e}{S}$$
(32)

gdje je: σ_d – do 100 MPa;

 $D_1 = 80 \text{ mm} - \text{vanjski promjer glavine}$

Fakultet strojarstva i brodogradnje

S = 2...3 - faktor sigurnosti;

$$F_H = 0.1 F_u = 981 \text{ N};$$

 F_u – sila u užetu.

Iz gornjeg izraza može se izraziti debljina čelne ploče bubnja te stoga slijedi:

$$w \ge \sqrt{1,44 \cdot \left(1 - \frac{2 \cdot D_1}{3 \cdot D}\right) \cdot \frac{F_H}{\sigma_d}} = \sqrt{1,44 \cdot \left(1 - \frac{2 \cdot 80}{3 \cdot 190}\right) \cdot \frac{981}{100}} = 3,19 \text{ mm}$$
(33)

Iz konstrukcijskih razloga odabrana je debljina ploče (slika 27.) w = 10 mm.

Slika 27. Čelna ploča bubnja [4]

4.1.10.4. Vijčana veza čelne ploče i bubnja

Kako bi se osigurala rastavljivost između čeone ploče i bubnja, veza se ostvaruje pomoću vijaka. Stoga se okretni moment prenosi preko vijčane veze, u ovom slučaju silom trenja s čelne ploče na bubanj. Slijedi da moment trenja mora biti veći od okretnog momenta:

$$F_{N_bub} \cdot \mu_{\check{C}/\check{C}} \cdot \frac{d_7}{2} \cdot n_{v_bub} \ge F_u \cdot \frac{D}{2}$$
(34)

gdje je:

 $F_{N_bub} = \sigma_{dop} \cdot A_j$ – normalna sila koja se može ostvariti jednim vijkom

 $\mu_{\check{C}/\check{C}} = 0,2 - faktor trenja za čelik/čelik [2]$ $d_7 = D + 90 = 310 \text{ mm}$ - promjer na kojem se nalaze vijci (slika 28.) n_{v_bub} - broj vijaka $A_j = 32,8 \text{ mm}^2$ - površina jezgre vijka [1] za odabrane vijke M8 kvalitete 10.9.

$$\sigma_{dop} = \frac{R_e}{S} = \frac{900}{2.5} = 360 \text{ MPa}$$
(35)

gdje je:

 R_e – granica tečenja materijala vijka [7].

Slika 28. Primjer konstrukcijske izvedbe bubnja i osnovne mjere [4]

Iz jednadžbe (34) slijedi da je potreban broj vijaka:

$$n \ge \frac{F_u \cdot D}{\sigma_{dop} \cdot A_i \cdot \mu \cdot d_7} = \frac{9810 \cdot 219,1}{360 \cdot 32,8 \cdot 0,2 \cdot 310} = 2,55$$
(36)

Za ostvarivanje vijčane veze između čelne ploče i bubnja odabire se n = 6 vijaka M8 kvalitete materijala 10.9.

4.1.10.5. Kontrola vijčane veze čelne ploče i bubnja

Kada je vijak pritegnut opterećen je samo vlačnom silom, no prilikom pritezanja vijčanog spoja vijak je opterećen i na uvijanje. Stoga, bilo bi poželjno napraviti provjeru čvrstoće vijka prilikom pritezanja, ali u ovom slučaju to nije potrebno jer je odabrani broj vijaka duplo veći od računskog te se kritična sila u vijku neće pojaviti ni prilikom pritezanja spoja.

4.1.10.6. Veza užeta s bubnjem

Uže je pričvršćeno za bubnja pomoću vijaka preko sile trenja (slika 29.). Isto tako, uže je osigurano vlastitim trenjem koje se ostvaruje prilikom namatanja na bubanj. Iznos te sile trenja najmanji je kada je uže razmotano, odnosno kada je položaj kuke na najnižoj točki zahvata tereta.

Slika 29. Veza užeta s bubnjem [4]

Uz dva navoja prije vijčane veze, sila u užetu pred ulazom u vijčanu vezu iznosi [4]:

$$F_{\rm V} = \frac{F_u}{e^{\mu \cdot \alpha}} = \frac{9810}{e^{0,1 \cdot 4\pi}} = 2792 \,\,\rm N \tag{37}$$

gdje je:

 $\mu_{bub} = 0.1 - faktor trenja između užeta i bubnja$

 $\alpha_{u\check{z}} = 4\pi$ – obuhvatni kut, dva navoja prije vijčane veze

Normalna sila u užetu na mjestu veze s bubnjem mora biti [4]:

$$F_{\rm V} \le 0.4 \cdot F_{\mu} = 0.4 \cdot 9810 = 3924 \,\,{\rm N} \tag{38}$$

Potrebnu normalnu silu u jednom vijku računamo prema izrazu [4]:

$$F_{\rm n} = 2 \cdot F_{\rm un} = 2 \cdot \frac{F_{\rm V}}{(\mu + \mu_1) \cdot (e^{\mu \cdot \alpha} + 1)} = 0.8 \cdot F_u = 0.8 \cdot 9810 = 7848 \,\,\rm N \tag{39}$$

gdje je:

 $F_{\rm un}$ – normalna sila ostvarena vezom, N,

 μ_1 – definira slika 29.

Odabrani su vijci M10 kvalitete 10.9. čija je površina jezgre $A_j = 52,3 \text{ mm}^2$.

Potreba broj vijaka računa se prema izrazu:

$$z \ge \frac{F_{\rm n}}{\sigma_{\rm dop}} \cdot \left(\frac{1.3}{A_j} + \frac{32 \cdot \mu_1 \cdot h}{\pi \cdot d_1^3}\right) = \frac{7848}{360} \cdot \left(\frac{1.3}{52.3} + \frac{32 \cdot 0.1 \cdot 16}{\pi \cdot 8.376^3}\right) = 1.15$$
(40)

gdje je:

 $d_{1_v} = 8,376 \text{ mm} - \text{promjer jezgre vijka}$

Odabrano:

z = 2 vijka M10 kvalitete 10.9.

Vijci se stavljaju po obodu bubnja na razmaku:

$$l_{\rm v} \ge 5 \cdot d_u = 5 \cdot 7 = 35 \,\,\mathrm{mm} \tag{41}$$

4.1.10.7. Proračun osovine bubnja

Bubanj se s jedne strane oslanja na vratilo reduktora, dok se s druge strane oslanja na osovinu, odnosno ležajno mjesto kao što je prikazano na slici 30. Osovina je uglavnom opterećena na savijanje pa je potrebno u skladu s time i obaviti proračun. Težina samog bubnja je zanemariva naspram silama u užetu pa samim time nije ni uzeta u obzir kod statičkog modela (slika 31.)

Slika 30. Presjek konstrukcije bubnja i reduktora sa zglobnom osovinom [8]

Slika 31. Statički model opterećenja bubnja

Prvo radimo sumu momenata oko točke B:

$$\sum M_B = 0 \rightarrow -F_A \cdot l_A + F_u \cdot l_{u\check{z}} = 0$$
⁽⁴²⁾

Iz prethodne formulacije (jednadžba 42.) možemo izraziti i dobiti vertikalnu silu u osloncu A:

$$F_A = \frac{F_u \cdot l_{u\check{z}}}{l_A} = \frac{9810 \cdot 115}{410} = 2752 \text{ N}$$
(43)

Sada se radi suma momenata oko točke A kako bismo dobili silu FB:

$$\sum M_A = 0 \rightarrow -F_B \cdot l_B + F_u \cdot (l_B - l_{u\check{z}}) = 0$$
⁽⁴⁴⁾

Slijedi da je:

$$F_B = \frac{F_u \cdot (l_B - l_{u\check{z}})}{l_B} = \frac{9810 \cdot (410 - 115)}{410} = 7058 \text{ N}$$
(45)

Odabrano:

Promjer osovine bubnja $d_{5_bub} = 40$ mm, materijal osovine S235JR (Č.0361).

Kritični presjek 1-1:

$$M_1 = F_B \cdot 70 = 7058 \cdot 70 = 494060 \text{ Nmm}$$
(46)

Pa je naprezanje:

$$\sigma_1 = \frac{M_1}{W_{5_bub}} = \frac{494060}{6400} = 77,2 \text{ MPa}$$
(47)

gdje je:

 $W_{5_bub} \cong 0.1 \cdot d_{5_bub}^3 = 0.1 \cdot 40^3 = 6400 \text{ mm}^3 - \text{moment otpora presjeka}$

Dopušteno naprezanje na presjeku 1-1 iznosi:

$$\sigma_{f,dop_{-}1} = \frac{b_1 \cdot b_2 \cdot \sigma_{fDN}}{\varphi \cdot S_{potr}} = \frac{0.85 \cdot 0.96 \cdot 190}{1.1 \cdot 1.5} = 93,96 \text{ MPa}$$
(48)

gdje je:

 $b_1 = 0.85 - \text{faktor veličine strojnog dijela [9]},$

 $b_2 \cong 0.96$ – faktor kvalitete površinske obrade za Ra = 3.2 [9],

 $\sigma_{fDN} = 190 \text{ MPa} - \text{trajna dinamička čvrstoća za S235JR}$ (Č.0361) [9],

 $\varphi = 1,1 - utjecaj udaraca, faktor za pogonske uvjete [9],$

 $S_{potr} = 1,5 - potrebna sigurnost.$

Budući da vrijedi:

$$\sigma_{f,dop_{-}1} \ge \sigma_1 \to 93,96 \text{ MPa} \ge 77,2 \text{ MPa}$$

$$\tag{49}$$

Zaključujemo da osovina zadovoljava!

4.1.10.8. Odabir ležaja bubnja

Za ležaj osovine odabran je samopodesivi bačvasti ležaj s kućištem, firme SKF i kodne oznake SYNT 40 F. Ležaj se montira na postolje i pričvršćuje vijcima.

Ekvivalentno dinamičko radijalno opterećenje ležaja osovine bubnja iznosi:

$$P_r = F_B = 7058 \text{ N}$$
 (50)

Dinamičko opterećenje ležaja računa se prema sljedećem izrazu:

$$C_1 = P_r \cdot \left(\frac{60 \cdot n_{bub} \cdot L_{10h,\min}}{10^6}\right)^{\frac{1}{\varepsilon}}$$
(51)

gdje je:

$$n_{bub} = \frac{v_{bub} \cdot 2}{2 \cdot \pi \cdot D_{bub}} = \frac{v_{diz} \cdot i_{kol} \cdot 2}{2 \cdot \pi \cdot D_{bub}} = \frac{0,08333 \cdot 2 \cdot 2}{2 \cdot \pi \cdot 0,219} = 2,42 \text{ 1/s}$$
(52)

 $L_{10h,min} = 10000 \text{ h} - \text{zahtijevani vijek trajanja ležaja}$ $\varepsilon = \frac{10}{3} - \text{eksponent vijeka trajanja za ležajeve s teorijskim dodirom u liniji.}$

Slijedi da je:

$$C_1 = 7058 \cdot \left(\frac{60 \cdot 2,42 \cdot 10000}{10^6}\right)^{\frac{3}{10}} = 7893 \text{ N} \cong 7,9 \text{ kN}$$
 (53)

Nosivost odabranog ležaja iznosi C = 96,5 kN što je značajno više od tražene nosivosti od 7,9 kN te stoga zaključujemo da ležaj zadovoljava.

4.1.11. Odabir pogonske jedinice za dizanje

Kao i ostale pogonske jedinice, ovdje se neće koristiti elektromotor već hidraulički pogon, točnije koljenasti radijalni klipni motor (slika 32.). Prednosti uljnog hidrauličnog pogona su jednostavnije upravljanje, dobra i kontinuirana regulacija, mekani rad, znatno manje mase u pokretu. [4]

Slika 32. Radijalni klipni motor, koljenasti [4]

Motor preko bubnja i koloturnika podiže teret, a kako bi se frekvencija vrtnje elektromotora dovela na potrebnu frekvenciju vrtnje bubnje i kako bi se postigao određeni okretni moment na motor se nastavlja reduktor.

Kao glavni pogon služi Dieselov motor same dizalice i hidraulična pumpa koja dovodi ulje pod tlakom u hidraulični motor. Opći sustav takvog pogon prikazan je na slici 33.

Slika 33. Opći sustav hidrauličkog pogona [4]

4.1.11.1. Potrebna snaga motora

Potrebna snaga klipnog motora za dizanje tereta određuje se prema izrazu:

$$P_M = \frac{Q_t \cdot g \cdot v_{diz}}{\eta_{uk}} = \frac{9810 \cdot 0,08333}{0,88} = 929 \,\mathrm{W}$$
(54)

gdje je:

$$\eta_{uk} = \eta_{kol} \cdot \eta_{bub} \cdot \eta_{red} \cdot \eta_{ko\check{c}} \cdot \eta_{le\check{z}}^2 = 0,99 \cdot 0,98 \cdot 0,95 \cdot 0,99 \cdot 0,98^2 = 0,88$$
(55)

$$\begin{split} \eta_{kol} &= 0,99 - \text{stupanj iskoristivosti koloturnika} \\ \eta_{bub} &= 0,98 - \text{stupanj iskoristivosti bubnja} \\ \eta_{red} &= 0,95 - \text{stupanj iskoristivosti reduktora} \\ \eta_{koč} &= 0,99 - \text{stupanj iskoristivosti kočnice} \\ \eta_{lež} &= 0,98 - \text{stupanj iskoristivosti ležajeva} \end{split}$$

Prema tome snaga hidrauličnog motora iznosi $P_M = 929$ W.

4.1.11.2. Okretni moment motora

Okretni moment motora dobije se preko izraza:

$$T_M = \frac{P_M}{2 \cdot \pi \cdot n_{bub}} = \frac{929}{2 \cdot \pi \cdot 2,42} = 61,1 \text{ Nm}$$
(56)

Prema okretnom momentu i frekvenciji vrtnje odabire se motor za pogon bubnja. Odabran je sporohodni hidraulični radijalni motor tvrtke Bosch Rexroth kodne oznake MCR3 čiji je promjer izlaznog vratila $d_v = 40$ mm.

Maksimalni okretni moment hidrauličnog motora iznosi 1146 Nm, a dopušteno radijalno opterećenje iznosi oko 45 kN, ovisno o položaju vertikalne komponente sile. Za ostale podatke vidjeti prilog VI.

4.1.12. Provjera kočnice pogonske jedinice za dizanje

Odabrani hidraulični motor ima integriranu kočnicu na koju se oslanja za kočenje tereta. Moment kočenja sastoji se od statičkog i dinamičkog momenta kočenja.

Statički moment kočenja računa se prema:

Fakultet strojarstva i brodogradnje

Antonio Strahija

Diplomski rad

$$T_{st} = Q_t \cdot g \cdot \frac{v_{diz}}{2 \cdot \pi \cdot n_M} \cdot \eta_{ko\check{c}}$$
⁽⁵⁷⁾

gdje je:

$$\eta_{ko\check{c}} = 2 - \frac{1}{\eta_{uk}} = 2 - \frac{1}{0,88} = 0,86$$
(58)

iskoristivost uređaja u kočnom stanju.

Slijedi da je:

$$T_{st} = 9810 \cdot \frac{0,08333}{2 \cdot \pi \cdot 2,42} \cdot 0,86 = 46,24 \text{ Nm}$$
(59)

Dinamički moment kočenja je onaj moment koji se potreban kako bi se zaustavile sve pokretne mase. Budući da hidraulični motor rotira relativno malom brzinom kao i bubanj i užnice, zaključujemo da je iznos dinamičkog momenta zanemariv pa se stoga ni ne uzima u obzir. Moment kočnice hidrauličnog motora iznosi $T_{k,m} = 2200$ Nm, što je daleko više od potrebne

vrijednosti i time zaključujemo da kočnica zadovoljava.

4.2. Nosiva konstrukcija granika

Do sada smo dimenzionirali i odabrali komponente mehanizma za dizanje u skladu s zadanim opterećenjem od jedne tone. U ovom dijelu rada dimenzionira se nosiva konstrukcija tako da može podnijeti opterećenje od jedne tone u najgorem slučaju, a to je kada je teleskop maksimalno izvučen na zadanih 12 metara u horizontalnom položaju. To nazivamo teorijskim opterećenjem, tj. riječ je o statičkom opterećenju. Isto tako, nosiva konstrukcija mora podnijeti i opterećenje uslijed vlastite težine i težine pojedinih komponenti.

Za nosiva konstrukciju dohvatnika provjerava se čvrstoća i krutost konstrukcije. Kod provjere čvrstoće provjerava se sigurnost od umora materijala (pogonska čvrstoća) i sigurnost u odnosu na granična stanja konstrukcije (granica tečenja materijala, nestabilnost).

Proračun se radi u skladu s normom HRN EN 13001-1:2015.

4.2.1. Određivanje dinamičkih faktora

Prema normi kod proračuna nosive konstrukcije dohvatnika uzimaju se u obzir i dinamička opterećenja tako da se odrede odgovarajući faktori s kojima se množi teorijsko statičko opterećenje prema navedenom izrazu:

$$F_{\phi,j} = \phi_j \cdot F_j \tag{60}$$

gdje je:

 F_j – osnovni dio *j*-tog pojedinačnog opterećenja, npr. vlastita težina G, teret Q, itd.;

 ϕ_i – dinamički faktor *j*-tog opterećenja;

 $F_{\phi,j}$ – povećano *j*-to pojedinačno opterećenje. [5]

Kod mobilnih izvedbi u obzir se uzima opterećenje od vlastite težine konstrukcije i opterećenje od tereta.

Pored dinamičkog faktora, pojedinačna opterećenja se još množe s parcijalnim faktorom sigurnosti $\gamma_{p,j}$

4.2.1.1. Određivanje dinamičkog faktora ϕ_1

Dinamički faktor ϕ_1 uzima u obzir vlastitu težinu što je težina svih nepokretnih i pokretnih dijelova konstrukcije granika, osim radnog tereta koji se diže.

Vlastita težina množi se s faktorom ϕ_1 , s kojim se uzimaju u obzir inercijske sile nastale vibracijom nosive konstrukcije pri radu postrojenja. [5]

Faktor ϕ_1 određuje se prema izrazu [5]:

$$\phi_1 = 1 + \delta_k = 1 + 0, 1 = 1, 1 \tag{61}$$

gdje je:

$$0 \le \delta_k \le 0,1 \tag{62}$$

i treba se odabrati prema konstrukciji. Za teleskopski dohvatnika odabrana je vrijednost od 0,1.

4.2.1.2. Određivanje dinamičkog faktora ϕ_2

Isprekidani rad pogona mehanizma za dizanje može uzrokovati dinamička opterećenja. Utjecaj tog efekta možemo uhvatiti dinamičkim faktorom ϕ_2 tako da se pomnoži s nazivnim opterećenjem. Da bismo odredili dinamički faktor prvo je potrebno odrediti ostale potrebne parametre. Prvo je potrebno odrediti kojoj proračunskoj kombinaciji priprada teleskopski auto granik.

Prema tablici 16. vidljivo je da teleskopski granik pripada proračunskoj kombinaciji A1.

Proračunska kombinacija	Poglavlja	Opis kombinacije
A1	6.1.3.2	Opterećenja uslijed dizanja i premještanja tereta. Inercijske sile uzimaju se u obzir od onih mehanizama, koji redovito rade za vrijeme premještanja tereta.
A2	6.1.3.3	Naglo skidanje ili pad tereta. Ostalo kao u kombinaciji A1.
A3	6.1.3.5	Opterećenja od ubrzavanja i zaustavljanja svih pogonskih mehanizama sa zavješenim teretom.
A4	6.1.3.4	Vožnja s teretom po neravnoj podlozi, bez utjecaja dizanja tereta.
B1 do B4	6.1.3.7	Jednako kao A1 do A4, uz dodatak opterećenja od vjetra i ostalih klimatskih utjecaja za vrijeme rada.
B5	6.1.3.8	Granik u normalnom radu, vožnja po neravnoj podlozi, s opterećenjem od vođenja po tračnicama i opterećenjem od vjetra i ostalih klimatskih utjecaja.

 Tablica 16.
 Opis proračunskih kombinacija [5]

Prema načinu upravljanja mehanizmi dizanja podijeljeni su u vrste HD1 do HD5, kako slijedi:

HD1: mehanizam dizanja bez spore brzine;

HD2: s konstantnom sporom brzinom upravlja dizaličar

HD3: konstanta spora brzina održava se automatski, dok se teret ne digne s tla

HD4: s kontinuirano promjenjivom brzinom upravlja dizaličar

HD5: nakon napinjanja užeta, automatskim upravljanjem se postiže odabrana brzina, s ubrzanjem neovisnim o dizaličaru [5].

Teleskopski auto-granik u ovom radu spada u grupu HD4.

Tablica 17.Karakteristične brzine dizanja v_h za određivanje faktora ϕ_2 [5]

Kombinacija opterećenja	Vrsta mehanizma dizanja									
(vidjeti poglavlje 6.1.4.2)	HD1	HD2	HD3	HD4	HD5					
A1, B1	v _{h,max}	$v_{\rm h,CS}$	v _{h,CS}	$0,5 \cdot v_{h,max}$	0					
C1	-	$v_{\rm h,max}$	na sun inn Alia	V _{h,max}	$0,5 \cdot v_{h,max}$					

Iz tablice 17. vidljivo je da karakteristična brzina dizanja za određenu kombinaciju opterećenja (HD4) i vrstu mehanizma dizanja iznosi:

$$v_h = 0.5 \cdot v_{h,max} = 0.5 \cdot 5 = 2.5 \frac{\text{m}}{\text{min}} = 0.04167 \frac{\text{m}}{\text{s}}$$
 (63)

gdje je:

 $v_{h,max} = 5 \frac{m}{min}$ – najveća konstantna brzina dizanja tereta.

Grupe	Karakteristični	Faktor	<i>\$</i> 2,min							
krutosti (podizne grupe)	vertikalni pomak tereta δ	β_2 , s/m	HD1	HD2	HD3	HD4	HD5			
HC1	0,8 m ≤ δ	0,17	1,05	1,05	1,05	1,05	1,05			
HC2	$0,3 \text{ m} \le \delta < 0,8 \text{ m}$	0,34	1,1	1,1	1,05	1,1	1,05			
HC3	$0,15 \text{ m} \le \delta < 0,3 \text{ m}$	0,51	1,15	1,15	1,05	1,15	1,05			
HC4	δ < 0,15 m	0,68	1,2	1,2	1,05	1,2	1,05			

Tablica 18. Grupe granika prema krutosti konstrukcije, faktor β_2 i $\phi_{2,\min}$ [5]

Dinamički faktor ϕ_2 izračunava se prema izrazu [5]:

$$\phi_2 = \phi_{2,\min} + \beta_2 \cdot v_h = 1.1 + 0.34 \cdot 0.04167 = 1.114$$
(64)

gdje je:

 $\phi_{2,\min}$ – minimalna veličina ϕ_2 ovisna o kombinaciji krutosti konstrukcije i načinu upravljanja mehanizmom dizanja,

 β_2 – faktor ovisan o podiznoj grupi,

 v_h – karakteristična brzina dizanja.

4.2.1.3. Određivanje parcijalnog faktora sigurnosti $\gamma_{p,1}$

Već je prethodno određeno da mobilni granika pripada proračunskoj kombinaciji A1. Općenito vrijedi da je za teleskopske mobilne granike da teret djeluje nepovoljno, tj. pokušava prevrnuti konstrukciju. Stoga, prema tablici 19. vrijedi da je:

$$\gamma_{p,1} = 1,22$$
 (65)

Tablica 19. veličine parcijalnog faktora $\gamma_{p,1}$ za težinu konstrukcije [5]

Način određivanja	Proračunske kombinacije opterećenja										
	A	A	B	C. A.	C						
težine i položaja težišta	nepovoljno	povoljno	nepovoljno	povoljno	nepovoljno	povoljno					
računanjem	1,22	0,95	1,16	0,97	1,1	1,00					
vaganjem	1,16	1,00	1,10	1,00	1,05	1,00					

Parcijalni faktor sigurnosti za težinu tereta prema tablici 20. iznosi:

$$\gamma_{p,2} = 1,34$$
 (66)

Tablica 20.Proračunske kombinacije grupe opterećenja A i B s dinamičkim faktorima i
parcijalnim faktorima sigurnosti [5]

Vrsta	Pojedinačna opterećenja		Proračunske kombinacije A					Proračunske kombinacije B					
opterećenja			$\gamma_{p,j}^{1)}$	A1	A2	A3	A4	$\gamma_{p,j}^{1)}$	B1	B2	B3	B4	B5
	Težina granika, G		$\gamma_{p,1}$	ø	ϕ_1	1	-	$\gamma_{p,l}$	ϕ_1	ø ₁	1	-	-
	Težina te	ereta, Q	1,34	ϕ_2	<i>\$</i> 3	1		1,22	ϕ_2	<i>\$</i> 3	1	-	-
Redovita opterećenja (I.)	Težina granika i tereta, G+Q; vožnja po neravnoj podlozi.		1,22	1.2	-	-	ϕ_4	1,16	-	-	-	ϕ_4	ϕ_4
	Inercijske sile pri pokretanju s teretom, G+Q	bez rada mehanizma dizanja	_ 1,34	\$	<i>\$</i> 5	-	\$	1,22	<i>\$</i> 5	<i>\$</i> 5	1 I.	Ø5	-
		rade svi mehanizmi		-	-	<i>\$</i> 5	- 6		-	-	øs	-	-
	Opterećenja od pomaka, ø=1		$\gamma_{p,6}$	1	1	1	1	$\gamma_{p,6}$	1	1	1	1	1
	Vjetar tijekom rada, $\phi=1$							1,22	1	1	1	1	1
Povremena opterećenja (II.)	Vođenje po tračnicama, $\phi = 1$		44.00				1,16	-	-	-	-	1	
	Promjena temperature, $\phi=1$							1,16	1	1	1	1	1
	Snijeg i led, $\phi_{10}=1$		-				1,22	1	1	1	1	1	

4.2.1.4. Provjera uvjeta čvrstoće dohvatnika

Temeljem izračunatih vrijednosti faktora opterećenja i parcijalnog faktora sigurnosti, slijedi da je opterećenje u najnepovoljnijem slučaju s kojim se ulazi u proračun nosive konstrukcije jednako:

$$F_{\rm P} = G \cdot \gamma_{p,1} \cdot \phi_1 + Q \cdot \gamma_{p,2} \cdot \phi_2$$

$$F_{\rm P} = 20012 \cdot 1,22 \cdot 1,1 + 9810 \cdot 1,34 \cdot 1,114$$

$$F_{\rm P} = 41500 \,\,{\rm N}$$
(67)

gdje je:

G = 20012 N - vlastita težina dohvatnika.

Na slici 34. prikazan je statički model dohvatnika i opterećenja koja djeluju na njega te dijagrami unutarnjih sila i momenta.

Slika 34. Dijgrami unutrnjih sila i momenta dohvatnika

Kontinuirano opterećenje koje djeluje po duljini glavnog nosača iznosi:

$$q = \frac{G}{L_{doh}} = \frac{20012}{12000} = 1,6677 \text{ N/mm}$$
(68)

Iz dijagram se može zaključiti da je najveći moment savijanja upravo na mjestu prihvata hidrauličnog cilindra. Budući da je naprezanje prouzrokovano momentom savijanja najveće na mjestima gdje su smična naprezanja jednaka nuli, njih ni ne uzimamo u obzir kod provjere čvrstoće. Upravo to može se vidjeti na dijagramima ispod:

Slika 35. Usporedba smičnog i naprezanja uzrokovanog savijanjem

Kao što se može iščitati iz dijagrama, na mjestima gdje su najveća naprezanja uzrokovana momentom savijanja, smična naprezanja su jednaka nuli te se stoga kod proračuna uzima samo vrijednost vlačno/tlačnog naprezanja.

Koristeći se metodom presjeka na statičkom model dohvatnika dobije se da se najveći moment savijanja u najnepovoljnijem slučaju nalazi na spoju s hidrauličnim cilindrom i iznosi:

Slika 36. Metoda presjeka nad dohvatnikom

Kao što se iz slike može vidjeti, moment savijanja raste sa dimenzijom x, sve do mjesta gdje je prihvat hidrauličnog cilindra. Zbog suprotnog djelovanja sile u cilindru, moment savijanja se smanjuje. Stoga, najveći moment savijanja je upravo na mjestu prihvata cilindra što je ujedno i kritičan presjek.

$$M_{s,max} = Q \cdot 1,34 \cdot 1,114 \cdot (12000 - 2400) + \frac{G \cdot 1,22 \cdot 1,1}{2 \cdot L} \cdot (12000 - 2400)^2$$

$$M_{s,max} = 140\ 590\ 760\ \text{Nmm}$$
(69)

Naprezanje uslijed savijanja na kritičnom presjeku iznosi:

$$\sigma_{s,max} = \frac{M_{s,max}}{W_x} = \frac{140590760}{2620164} = 53,66 \text{ N/mm}^2$$
(70)

gdje je:

 W_x – moment otpora presjeka (presjeka prve razine teleskopa) i iznosi:

$$W_x = \left(\frac{350 \cdot 530^3}{12} - \frac{330 \cdot 510^3}{12}\right) \cdot \frac{2}{530} = 2\ 620\ 164\ \mathrm{mm^3} \tag{71}$$

Glavne mjere poprečnog presjeka prve razine teleskopa (najopterećeniji dio) prikazane su na slici 37.:

Slika 37. Poprečni presjek prvog segmenta dohvatnika

Materijal glavnog nosača je konstrukcijski čelik E360 pa dopušteno naprezanje iznosi:

$$\sigma_{dop_doh} = \frac{\sigma_{fDI}}{S} = \frac{500}{2.5} = 200 \text{ N/mm}^2$$
(72)

gdje je:

 $\sigma_{fDI} = 500 \text{ N/mm}^2 - \text{trajna dinamička čvrstoća kod savijanja čistim istosmjernim ciklusom za čelik E360.}$

Slika 38. Naprezanja dohvatnika dobivena u SolidWorks-u

Naprezanja su dobivena i u *SolidWorks*-u kako bi se usporedili rezultati i vidimo da se na kritičnom presjeku javlja naprezanje (\approx 54 MPa) gotovo isto onom računskom. Najveća naprezanja javljaju se u kliznim pločicama zbog njihove relativno male površine (\approx 85 MPa). Budući da vrijedi da je $\sigma_{s,max} < \sigma_{dop_doh}$ zaključujemo da glavni nosač zadovoljava kriterij čvrstoće.

4.2.1.5. Provjera uvjeta krutosti dohvatnika

Uvjet krutosti također se provjerava za kritični slučaj, a to je kada je dohvatnika maksimalno izvučen, u horizontalnom položaju i maksimalno opterećen.

$$w_{dop} = \frac{L_{doh}}{200} = \frac{12000}{200} = 60 \text{ mm}$$
 (73)

Model nosača za izračun krutosti prikazan je na slici ispod. Konačni pomak profila dobije se metodom superpozicije tako da se pomaci pojedinih segmenata zbroje. Zbog točnosti rezultata korišten je software za izračun pomaka za zadani model.

Slika 39. Pomaci dohvatnika dobiveni u SolidWorks-u

Ako se usporede pomaci dobiveni računalnom analizom s dopuštenim vrijednostima, vidimo da je krutost dohvatnika unutar dopuštenih granica. Između pojedinih segmenata postoji određena zračnost kako bi bilo dovoljno prostora za lanac, ugradnju i zbog ostalih faktora. Tako je drugi segment dimenzija 470x310x10, a treći 410x270x10. Duljina segmenata iznosi 4.8 metara, a izvlače se za tri četvrtine svoje duljine.

4.3. Provjera spojeva konstrukcije

4.3.1. Određivanje sile u hidrocilindru za promjenu nagiba kraka

Sila u cilindru za promjenu nagiba kraka neprestano se mijenja u ovisnosti od kuta dohvatnika, tj. samog kuta cilindra u odnosu na horizontalu. U pitanju je složena kinematika dobivena preko jednadžbi ravnoteže čija je shema prikazana na slici 40.

Za teret se uzima nazivna vrijednost od jedne tone, dok su ostale dimenzije definirane konstrukcijom dizalice. Kutovi nagiba dohvatnika i cilindra povezani su izrazom:

$$\tan \varphi_1 = \frac{y_0 + a \cdot \sin \varphi_2}{a \cdot \cos \varphi_2 - x_0} = \frac{800 + 2400 \cdot \sin \varphi_2}{2400 \cdot \cos \varphi_2 - 1300}$$
(74)

gdje je:

a = 2400 mm - dužina između prihvata cilindra i prihvata dohvatnika

 $x_0 = 1300 \text{ mm} - \text{pozicija prihvata cilindra na postolje u prema koordinatnom sustavu}$

 $y_0 = 800 \text{ mm} - \text{pozicija}$ prihvata dohvatnika na postolje u prema koordinatnom sustavu

Slika 40. Analiza dohvatnika i cilindra za promjenu nagiba

Prema sumi momenta oko točke C i matematičke manipulacije dobije se izraz koji povezuje silu u cilindru i teret:

$$F = Q \cdot \frac{l \cdot \cos(\varphi_2 + \alpha)}{a \cdot \sin(\varphi_1 - \varphi_2)} = 9810 \cdot \frac{12000 \cdot \cos(\varphi_2 + 9)}{2400 \cdot \sin(\varphi_1 - \varphi_2)}$$
(75)

gdje je:

l = 12000 mm - ukupna duljina dohvatnika

 $\alpha_{doh} = 9^{\circ}$ – kut između osi dohvatnika i prihvatne ušice

Spajanjem izraza (74) i (75) i postavljanjem dodatnog uvjeta: $\varphi_{1,max} = 90^{\circ}$ možemo izraziti silu u cilindru u ovisnosti o kutu dohvatnika, kao što je prikazano na slici 41. Kao što možemo vidjeti sila u cilindru je najveća kada je dohvatnik u horizontalnom položaju što je i logično jer je i kut cilindra najmanji u odnosu na horizontalu u tom položaju, pa je potrebna veća ukupna sila kako bi se ostvarila potrebna vertikalna komponenta sile u cilindru zbog statičke ravnoteže.

Slika 41. Sila u cilindru u ovisnosti o kutu nagiba dohvatnika

Kut nagiba cilindra u odnosu na kut nagiba dohvatnika prikaz je na slici 42. Grafovi su dobiveni u Microsoft Excelu pomoću kojeg su i zapisane iste formulacije.

Slika 42. Kuta nagiba cilindra u ovisnosti o kutu nagiba dohvatnika

Dakle, kao što možemo vidjeti iz priložene slike, najveći kut koji dohvatnik može postići je oko 70 stupnjeva u odnosu na horizontalu jer je cilindar tada okomit s podlogom.

4.3.1.1. Odabir hidrauličnog cilindra za promjenu nagiba i fiksiranje kraka

Prema najvećoj sili koja se javlja u cilindru i potrebnim dimenzijama, odabire se standardni cilindar. Prema traženim parametrima odabire se cilindar tvrtke Liebherr-Components AG kodne oznake ISO MP3/140/100*1837-1062/GK/A/Z/1/B1/D0/W0/N0/E3/G.

Slika 43. Liebherr hidraulični cilindra za promjenu nagiba i fiksiranje kraka dohvatnika

Maksimalni tlak cilindra iznosi 250 bara, maksimalna tlačna sila 384.8 kN, a maksimalna vlačna sila 188.5 kN. Ugradbena duljina iznosi 1837 mm, a hod cilindra iznosi 1062 mm. Detaljnije informacije dane su u prilogu I.

Budući da je sila koju cilindar može ostvariti puno veća od potrebne, zaključuje se da hidraulični cilindar za promjenu nagiba dohvatnika zadovoljava potrebne parametre.

4.3.2. Proračun spoja hidrocilindra za promjenu nagiba kraka

Kako je već prije navedeno, najveća sila u cilindru javlja se kad je dohvatnik u horizontalnom položaju, s najvećim nazivnim teretom i najvećim dohvatom. Sukladno tome radi se proračun spoja cilindra na dohvatnik i na postolje.

4.3.2.1. Proračun zavara ušice prihvata cilindra za dohvatnik

Zavar je opterećen tlačno i smično, te momentom savijanja, a proračunski presjek zavara prikazan je na slici 44. Prvo je potrebno odrediti težište zavara kako bi mogli reducirati opterećenje.

Slika 44. Proračunska skica zavara prihvatne ušice cilindra na dohvatnika

Zavar je simetričan oko y osi te je s toga koordinata težišta $x_0 = 0$, ali je potrebno odrediti koordinatu y_0 koja se računa prema formuli za geometrijsko težište:

$$y_{0} = \frac{\sum_{i=0}^{n} A_{i} \cdot y_{i}}{A_{uk}} = \frac{2 \cdot (A_{1} \cdot y_{1} + A_{2} \cdot y_{2} + A_{3} \cdot y_{3})}{A_{uk}}$$

$$y_{0} = \frac{2 \cdot (2910 \cdot 242, 5 + 1980 \cdot 500 + 1320 \cdot 620)}{12420} = 404,84 \text{ mm}$$
(76)

U kritičnom položaju kut koji zatvaraju cilindar i ploha zavara je $\varphi_1 - \varphi_2 - \alpha = 33 - 0 - 9 = 24^\circ$. Opterećenja koja djeluju na zavar ušice iznose:

$$F_{h_cil} = F_{cil,max} \cdot \cos(24^\circ) = 210842 \cdot \cos(24^\circ) = 192614 \text{ N}$$
(77)

$$F_{v_cil} = F_{cil,max} \cdot sin(24^\circ) = 210842 \cdot sin(24^\circ) = 85757 \text{ N}$$
(78)

Fakultet strojarstva i brodogradnje

$$M_{s_cil} = F_h \cdot h = 192614 \cdot 110 = 21\ 187\ 540\ \text{Nmm}$$
(79)

gdje je:

 $h_{us} = 100 \text{ mm} - \text{udaljenost osi osovine ušice u odnosu na zavar.}$

Naprezanja uzrokovana opterećenjem zavara iznose:

$$\sigma_v = \frac{F_v}{A} = \frac{85757}{12420} = 6.9 \frac{N}{mm^2}$$
(80)

$$\tau = \frac{F_h}{A_{\rm II}} = \frac{192614}{8460} = 22,77 \,\frac{\rm N}{\rm mm^2} \tag{81}$$

$$\sigma_s = \frac{M_s}{W_x} \tag{82}$$

gdje je:

 $A_{\text{II}} = 16920 \text{ mm}^2 - \text{površina paralelnih zavara, tj. onih koji nose smično opterećenje}$ W_x – moment otpora presjeka, a računa se prema:

$$W_x = \frac{I_{uk}}{h_{max}} \tag{83}$$

Ukupni moment tromosti iznosi:

$$I_{uk} = 2 \cdot (I_1 + a_1^2 \cdot A_1 + I_2 + a_2^2 \cdot A_2 + I_3 + a_3^2 \cdot A_3)$$
(84)

gdje je:

$$I_1 = 2 \cdot \left(\frac{485^3 \cdot 3}{12}\right) = 57\ 042\ 063\ \mathrm{mm}^4 \tag{85}$$

$$I_2 = 2 \cdot \left(\frac{3^3 \cdot 330}{12}\right) = 990 \ mm^4 \tag{86}$$

$$I_3 = 2 \cdot \left(\frac{220^3 \cdot 3}{12}\right) = 5\ 324\ 000\ mm^4 \tag{87}$$

Potrebno je odrediti i Steinerove dodatake jer se momenti tromosti reduciraju u os težišta zavara.

$$a_1^2 \cdot A_1 = (404,84 - 242,5)^2 \cdot 2910 = 76\,690\,942\,\mathrm{mm}^4$$
 (88)

$$a_2^2 \cdot A_2 = (404,84 - 500)^2 \cdot 1980 = 17\ 929\ 743\ \mathrm{mm}^4$$
 (89)

$$a_3^2 \cdot A_3 = (404,84 - 620)^2 \cdot 1320 = 61\ 107\ 850\ \mathrm{mm^4}$$
 (90)

Slijedi da ukupni moment tromosti iznosi:

$$I_{uk} = 2 \cdot (57\ 042\ 063\ +\ 76\ 690\ 942\ +\ 990\ +\ 17\ 929\ 743\ +\ 5\ 324\ 000\ +\ 61\ 107\ 850) = 436\ 191\ 176\ \mathrm{mm}^4 \tag{91}$$

Pa je moment otpora presjeka zavara jednak:

$$W_x = \frac{436\ 191\ 176}{404,84} = 1\ 077\ 441\ \mathrm{mm}^3 \tag{92}$$

Naprezanje uslijed savijanja moment na kritičnom dijelu zavara iznosi:

$$\sigma_s = \frac{M_s}{W_x} = \frac{21\ 187\ 540}{1\ 077\ 441} = 19,66\frac{N}{mm^2}$$
(93)

Reducirano naprezanje zavara na kritičnom mjestu iznosi:

$$\sigma_{red} = \sqrt{(\sigma_v + \sigma_s)^2 + 3 \cdot (\alpha_0 \cdot \tau)^2} = \sqrt{(6.9 + 19.66)^2 + 3 \cdot (1 \cdot 22.77)^2}$$

= 47.55 $\frac{N}{mm^2}$ (94)

gdje je:

 $\alpha_0 = 1 - za$ čisto istosmjerno naprezanje prema [10]

Za materijal zavara uzima se konstrukcijski čelik S235JR, a dopušteno naprezanje iznosi:

$$\sigma_{dop} = \frac{R_e}{S} = \frac{235}{2,5} = 94 \frac{N}{mm^2}$$
(95)

S obzirom da vrijedi da je $\sigma_{dop} > \sigma_{red} \rightarrow 94 \frac{N}{mm^2} > 47,55 \frac{N}{mm^2}$, zaključujemo da zavar zadovoljava kriterij čvrstoće.

4.3.2.2. Proračun osovine ušice prihvata cilindra za dohvatnik

Osovina je osigurana od rotacije, a opterećena je primarno na savijanje. Proračunska shema osovine prikaza je na slici 45. Osovina je opterećena na savijanje i na odrez, no uzima se u obzir samo naprezanje uzrokovano savijanjem jer je dominantno i jer je gledajući prema poprečnom presjeku naprezanje savijanjem najvećeg iznosa gdje je smično naprezanje jednako nuli.

Slika 45. Skica uz proračun čvrstoće osovine cilindra [14]

Maksimalno savijanje osovine je na središnjoj osi i iznosi:

$$M_{s,\max_os} = \frac{F_{cil,max} \cdot (t_p + 2 \cdot t_v)}{8} = \frac{210842 \cdot (80 + 2 \cdot 20)}{8}$$
(96)
= 3 162 630 Nmm

gdje je:

 $t_p = 80 \text{ mm} - \text{kontaktna duljina cilindra i osovine}$

 $t_v = 20 \text{ mm} - \text{kontaktna duljina ušice i osovine}$

Moment otpora osovine iznosi:

$$W = \frac{\pi \cdot d^3}{32} = \frac{\pi \cdot 90^3}{32} = 71\,569\,\,\mathrm{mm^3} \tag{97}$$

gdje je:

d = 90 mm - promjer osovine.

Naprezanje uslijed savijanja osovine hidro-cilindra za promjenu nagiba i fiksiranje kraka iznosi:

$$\sigma_{f,os} = \frac{K_A \cdot M_{s,max}}{W} = \frac{1.5 \cdot 3162630}{71569} = 66,28 \frac{N}{mm^2}$$
(98)

gdje je:

 $K_A = 1,5 - \text{faktor primjene.}$

Materijal osovina je čelik S235 pa dopušteno naprezanje iznosi:

$$\sigma_{dop} = \frac{R_e}{S} = \frac{235}{2.5} = 94 \frac{N}{mm^2}$$
(99)

S obzirom da vrijedi da je $\sigma_{dop} > \sigma_{red} \rightarrow 94 \frac{N}{mm^2} > 66,28 \frac{N}{mm^2}$, zaključujemo da osovina hidrocilindra za promjenu nagiba i fiksiranje kraka zadovoljava kriterij čvrstoće.

4.3.2.3. Proračun nosivog lima ušice cilindra za dohvatnik na dodirni pritisak

Proračun se radi tako da se uzima srednji dodirni pritisak i projicira se na površinu čahure kao što je prikazano na slici 46.

Slika 46. Proračunska skica nosivog lima ušice cilindra

Maksimalna sila kojom je bočni lim ušice cilindra opterećen iznosi:

$$F_{lim,max} = \frac{F_{cil,max}}{2} = \frac{210842}{2} = 105421 \,\mathrm{N}$$
 (100)

Projicirana površina ušice iznosi:

$$A_{proj} = 2 \cdot s_{u\breve{s}} \cdot d_{os_cil} = 2 \cdot 20 \cdot 90 = 3600 \text{ mm}$$
(101)

gdje je:

 $s_{u\check{s}} = 20 \text{ mm} - \text{debljina pojedine u\check{s}ice}$

 $d_{os_cil} = 90 \text{ mm} - \text{promjer osovine ušice}$

Srednji iznos dodirnog pritiska na lim ušice iznosi:

$$p_{sr} = \frac{K_A \cdot F_{lim,max}}{A_{proj}} = \frac{1.5 \cdot 105421}{3600} = 43,93 \frac{N}{mm^2}$$
(102)

gdje je:

 $K_A = 1,5 - \text{faktor primjene.}$

Dopušteni površinski tlak prema [2], tablica 2.22. za materijal S235JR (Č.0361) iznosi $p_{dop} =$ 98 $\frac{N}{mm^2}$. S obzirom da vrijedi da je $p_{dop} > p_{sr} \rightarrow 98 \frac{N}{mm^2} > 43,93 \frac{N}{mm^2}$, zaključujemo da nosivi lim osovine hidro-cilindra za promjenu nagiba i fiksiranje kraka zadovoljava kriterij čvrstoće.

Na lim dohvatnika i ušice dodatno su zavarene čahure čija je uloga povećanje površine kako bi se smanjio pritisak, a isto tako u čahurama se nalaze klizni elementi.

4.3.3. Određivanje sile u hidrauličnom cilindru za promjenu duljine dohvata

Hidro-cilindar se nalazi unutar prve razine teleskopa i spaja se na drugu razinu teleskopa. Sustavom lanaca omogućeno je istovremeno izvlačenje treće razine teleskopa prilikom izvlačenja druge razine.

Cilindar mora savladati težinu tereta i otpore gibanju kao što su sila trenja.

Na slici 47. je prikaza proračunska skica te se radi suma sila kako bi se odredila potreba sila u cilindru. Nakon sređivanja jednadžbe statike dobije se izraz kojim možemo odrediti silu u cilindru za izvlačenje. Ovisnost sile u cilindru o kutu nagiba dohvatnika prikaza je na slici ispod.

Formulacija je izvedena iz jednadžbe ravnoteže s tim da treba uzeti u obzir da se treći segment zbog mehanizma za izvlačenje, izvlači duplo većom brzinom nego li drugi segment (i cilindar). Stoga, zbog očuvanja energije, odnosno snaga u sustavu, sila koje kojom cilindar mora djelovati je duplo veća.

Slika 47. Sila u cilindru za izvlačenje teleskopa u ovisnosti o kutu nagiba dohvatnika

Iz grafa se može zaključiti da sila u cilindru raste s kutom nagiba dohvatnika, što je i logično jer mase dolaze do izražaja pod većim kutom u odnosu na horizontalu. Iz grafa se iščita maksimalna vrijednost u cilindru s kojom se ulazi u proračun prihvata cilindra i iznosi:

$$F_{cil2,max} = 41302 \text{ N}$$
 (103)

4.3.3.1. Odabir hidrauličnog cilindra za promjenu duljine dohvata

Prema najvećoj sili koja se javlja u cilindru i potrebnim dimenzijama, odabire se standardni cilindar. Prema traženim parametrima odabire se cilindar tvrtke Bosch Rexroth kodne oznake CDH1MP3/100/56/3000A3X/B11CSDMZWFWWBFW.

Slika 48. Bosch cilindar za izvlačenje teleskopa

Hod cilindra iznosi 3000 mm. Detaljnije informacije dane su u prilogu II. Budući da je sila koju cilindar može ostvariti puno veća od potrebne, zaključuje se da hidraulični cilindar za promjenu nagiba dohvatnika zadovoljava potrebne parametre.

4.3.3.2. Proračun zavara prihvatne čahure cilindra za izvlačenje

Proračunski presjek zavara prikazan je na slici 49. Najveća sila kojom je zavar opterećen jednaka je najvećoj sili u cilindru, razdijeljene na dvije čahure.

Slika 49. Proračunska skica zavara prihvatne čahure cilindra za izvlačenje

Budući da je zavar kružni, uzima se da smično opterećenje prenosi samo 2/3 ukupne površine. Stoga, površina zavara iznosi:

$$A_{zav} = \frac{D^2 \cdot \pi}{4} - \frac{d^2 \cdot \pi}{4} = \frac{135^2 \cdot \pi}{4} - \frac{125^2 \cdot \pi}{4} = 2042 \text{ mm}^2$$
(104)

Dok je nosiva površina zavara jednaka:

$$A_{zav,II} = \frac{2}{3} \cdot A_{zav} = \frac{2}{3} \cdot 2042 = 1361 \text{ mm}^2$$
 (105)

Po čahuri se nalaze dva kružna zavara, jedna s unutarnje i jedna s vanjske strane. Smično naprezanje zavara iznosi:

$$\tau = \frac{\frac{F_{cil2,max}}{2}}{2 \cdot A_{zav,II}} = \frac{\frac{41302}{2}}{2 \cdot 1361} = 7,59 \frac{N}{mm^2}$$
(106)

4.3.4. Proračun zavara sklopa užnice

Zavar sklopa užnice primarno je opterećen težinom tereta. Proračunska skica zavara s reduciranim opterećenjem prikazana je na slici 50.

Slika 50. Proračunska skica zavara sklopa užnice

Najgore opterećenje po zavar javlja se kada je dohvatnik u najnižem položaju (u horizontalnom položaju) jer je tada opterećen najviše na smik i savijanje. Dakle, uzimaju se opterećenja upravo za taj slučaj i iznose:

$$F_{\perp} = Q = 9810 \text{ N}$$
 (107)

$$F_{\parallel} = Q = 9810 \, N \tag{108}$$

$$M_f = Q \cdot (l_1 - l_3) = 9810 \cdot (465 - 285) = 1\,765\,800\,\text{Nmm}$$
 (109)

Geometrijske karakteristike zavara:

$$A_{zav} = a \cdot l = 4 \cdot 510 = 2040 \text{ mm}^2 \tag{110}$$

$$I_x = 2 \cdot \frac{a \cdot l^3}{12} = 2 \cdot \frac{4 \cdot 510^3}{12} = 88\,434\,000\,\mathrm{mm}^4$$
 (111)

$$W_x = \frac{2 \cdot I_x}{l} = \frac{2 \cdot 88434000}{510} = 346\ 800\ \mathrm{mm^3}$$
 (112)

Naprezanja u zavaru iznose:

$$\sigma_t = \frac{F_\perp}{A_{zav}} = \frac{9810}{2040} = 4,81 \frac{N}{mm^2}$$
(113)

$$\tau = \frac{F_{\parallel}}{A_{zav}} = \frac{9810}{2040} = 4,81 \frac{N}{mm^2}$$
(114)

$$\sigma_s = \frac{M_f}{W_x} = \frac{1\,765\,800}{346\,800} = 5,09\,\frac{\mathrm{N}}{\mathrm{mm}^2} \tag{115}$$

Reducirano naprezanje zavara iznosi:

$$\sigma_{red} = \sqrt{(\sigma_v + \sigma_s)^2 + 3 \cdot (\alpha_0 \cdot \tau)^2} = \sqrt{(4.81 + 5.09)^2 + 3 \cdot (1 \cdot 4.81)^2}$$

= 12.94 $\frac{N}{mm^2}$ (116)

gdje je:

 $\alpha_0 = 1 - za$ čisto istosmjerno naprezanje prema [10]

Za materijal zavara uzima se konstrukcijski čelik S235JR, a dopušteno naprezanje iznosi:

$$\sigma_{dop} = \frac{R_e}{S} = \frac{235}{2.5} = 94 \frac{N}{mm^2}$$
(117)

S obzirom da vrijedi da je $\sigma_{dop} > \sigma_{red} \rightarrow 94 \frac{N}{mm^2} > 12,94 \frac{N}{mm^2}$, zaključujemo da zavar zadovoljava kriterij čvrstoće.

4.3.5. Proračun mase protuutega

Prema Pravilniku o tehničkim normativima za dizalice (SL 65/91), članak 171. masa protuutega određuje se stabilnošću unatrag i to na čvrstoj i ravnoj površini kod najkraćeg dohvata kraka pri najmanjem radijusu, a s kukom, koloturnikom ili grabilicom na tlu i s podupiralima podignutima od tla. [18]

Fakultet strojarstva i brodogradnje

Mobilni granik opterećen je momentom savijanja koji generiraju težina samog dohvatnika te težinom tereta. Moment će se prenijeti do baze što uzrokuje prevrtanje. Ideja protuutega je dodati moment sile na suprotnu stranu dodavanjem protuutega na krak koji će smanjiti ukupni moment.

Ovo se uzima kao prvi granični slučaj kod određivanje mase protuutega, a drugi granični slučaj je kada je dohvatnik u horizontalnom položaj i s najvećim radijusom. Primjenjuje se ista logika kao za izračun mase protuutega kod građevinskog granika prema slici 51.

Slika 51. Proračunska skica za određivanje mase protuutega [4]

Redukcija tereta na os rotacije (os zakretnog ležaja) rezultira vertikalnom silom i momentom prevrtanja. Opterećenje preuzima zakretni ležaj. Da se odredi moment savijanja i aksijalna sila na postolje, prvo je potrebno izračunati masu protuutega.

Prvi slučaj:

$$M_1 = G_2 \cdot l_{2,min} = 20400 \cdot 727 = 14\,830\,800\,\text{Nmm}$$
(118)

gdje je:

 $G_2 = 20400 \text{ N} - \text{težina dohvatnika}$ $l_{2,min} = 5400 \cdot \cos(70) - 1120 = 727 \text{ mm} - \text{krak težine dohvatnika za prvi granični slučaj.}$

Fakultet strojarstva i brodogradnje

Drugi slučaj:

$$M_2 = G_2 \cdot l_{2,max} + Q_{max} \cdot l_Q = 20400 \cdot 5067 + 9810 \cdot 10880$$

= 210 099 600 Nmm (119)

gdje je:

 $l_{2,max} = 6187 - 1120 = 5067 \text{ mm} - \text{krak}$ težine dohvatnika za drugi granični slučaj $l_Q = 12000 - 1120 = 10880 \text{ mm} - \text{krak}$ težine tereta za drugi granični slučaj. Težina dohvatnika i težište dobiveni su u računalnom *software*-u *Solidworks*. Iz dobivenog slijedi da je moment protuutega jednak:

$$M_u = \frac{M_1 + M_2}{2} = \frac{14\,830\,800 + 210\,099\,600}{2} = 112\,465\,200\,\text{Nmm}$$
(120)

Pa je potrebna težina utega:

$$G_u = \frac{M_u}{l_u} - G_{bub} = \frac{112465200}{3065} - 2650 = 34\ 043\ \text{N}$$
 (121)

gdje je:

 $G_{bub} = 2650 \text{ N} - \text{masa bubnja}$

 $l_u = 3065 \text{ mm} - \text{krak}$ težine utega, odnosno bubnja.

Ovo je masa za dva granična slučaja, no kako mobilni granici mogu prilagođavati radijus i krak vlastite težine i težine tereta, kao i samu težinu tereta, prema tome varira i težina utega. Iz tog razloga oblikovan je prihvat protuutega preko hidrauličnog cilindra pa se tako mogu, ovisno o potrebi, dodavati i uklanjati protuutezi.

4.3.6. Proračun spoja postolja i okretnog ležaja

Okretni ležaj je veza za postolje preko cilindrične prirubnice i vijčane veze. Potrebno je provjeriti vijčani spoj i samu konstrukciju. Sam ležaj ne može direktno podnijeti savijanje te je uloga cilindrične prirubnice upravo prijenost savojnih opterećenja. Moguća opterećenja ležaja i prijenos opterećenja s ležaja na podlogu prikazana su na slikama ispod.

Slika 52. Aksijalno opterećenje na okretni ležaj [16]

Slika 53. Savojno opterećenje na okretni ležaj [16]

4.3.6.1. Odabir okretnog ležaja

Primjer okretnog ležaja prikazan je na slici 54. ispod. Jedan prsten ležaja fiksiran je za podlogu, a drugi je povezan s postoljem koje rotira. U pravilu ležaj može imati unutarnje ili vanjsko ozubljenje, u ovom slučaju odabire se vanjsko ozubljenje zbog lakšeg održavanje, montaže, uporabe i sl. Na postolje je spojena jedinica za rotaciju na kojoj se nalazi pogonski zupčanik.

Slika 54. Zakretni ležaj postolja [16]

Proračun zakretnog ležaja radi se prema preporuci proizvođača, u ovom slučaju to je SKF. Opterećenje je potrebno pomnožiti s faktorom primjene. Iznos faktora prikazan je na slici ispod.

	Table 1
Load factor f _L	
Application	Load factor f _L
Aerial platforms	1,33
Carrousels	2
Cement mixers	1,33
Compactors	2
Concrete pumps	1,5
Handling workshops	1,15
Mobile cranes	1.5
Mini excavators	1,33
Sedimentation tanks	1,25
Service cranes	1,33
Turntables	1,15
Welding positioners	1,15

Slika 55. Odabir faktora primjene [16]

Slijedi da je:

$$F_{ar} = f_L \cdot F_a = 1.5 \cdot 82253 = 123\ 380\ \text{N} \tag{122}$$

$$M_{tr} = f_L \cdot M_t = 1.5 \cdot 96766905 = 145\ 150\ 358\ \text{Nmm}$$
 (123)

Koristeći dobivene vrijednosti radi se odabir ležaja iz tablice proizvođača. Uz tablice, dani su dijagrami koji iz kojih se očitavaju vrijednosti potrebne za odabir. Svaki dijagram sastoji se od

dvije krivulje. Prva krivulja ovisi o opterećenju vijaka, a druga o opterećenju linije dodira kuglica. Odabrani ležaj mora ispunjavati oba uvjeta kao što je prikazano na slici 56.

Slika 56. Primjer ispravnog odabira zakretnog ležaja [16]

Slika 57. Odabir zakretnog ležaja na temelju parametara [16]

Odabran je ležaj kodne oznake RKS.161.14.1094 sa valjnim tijelima te su dimenzije i parametri prikazani na slikama ispod.

Slika 58. Prikaz dimenzija zakretnog ležaja [16]

Dimensi	ons				Attachment bolt holes Outer ring			Inner ring			Mass	Designation
d _m	D	D_1	d	d1	J _e	K _e	N _e	J _i	K _i	Ni		
mm					mm		-	mm		-	kg	-
414	504	416	344	412	455	M12	20	368	14	24	32,0	RKS.161.14.0414
544	640,8	546	474	542	585	M12	28	498	14	32	44,0	RKS.161.14.0544
644	742,8	646	574	642	685	M12	32	598	14	36	52,0	RKS.161.14.0644
744	838,8	746	674	742	785	M12	36	698	14	40	59,0	RKS.161.14.0744
844	950,4	846	774	842	885	M12	36	798	14	40	71,0	RKS.161.14.0844
944	1046,4	946	874	942	985	M12	40	898	14	44	77,0	RKS.161.14.0944
1 094	1198,4	1096	1024	1092	1 135	M12	44	1048	14	48	91,0	RKS.161.14.1094

Slika 59. Dimenzije odabranog zakretnog ležaja [16]

Antonio	Strahija
-	

Diplomski rad

Designation	Gear Dimens	ions			Permissibleaxial		Basic loa	ad ratings	Static limiting load diagram	
	d0 ¹⁾	m	Z	k∙m	tooth force T _{fnormal} ²⁾	tooth forces T _{fnormal} ²⁾ T _{fmax}		C C		curves
-	mm		-	mm	kN		kN		-	
RKS.161.14.0414	495	5	99	-0,5	12	46	167	595	r1	b1
RKS.161.14.0544	630	6	105	-0,6	16	54	194	784	r2	b2
RKS.161.14.0644	732	6	122	-0,6	16	54	210	919	r3	b3
RKS.161.14.0744	828	6	138	-0,6	16	54	228	1 070	r4	b4
RKS.161.14.0844	936	8	117	-0,8	21	72	244	1 220	r5	b5
RKS.161.14.0944	1032	8	129	-0,8	21	72	258	1 250	r6	b6
RKS.161.14.1094	1 184	8	148	-0.8	21	72	279	1 450	r7	b7

Slika 60.	Parametri odabran	og zakretnog	ležaja	[16]
-----------	-------------------	--------------	--------	------

4.3.6.2. Vijci okretnog ležaja

Koriste se vijci razreda čvrstoće 10.9 koji su napregnuti na 70% granice vlačne čvrstoće. Svi dijagrami nosivosti i životnog vijeka ležaja napravljeni su upravo s pretpostavkom korištenja ovakvih vijaka. Korišteni su vijci M14.

Prema katalogu proizvođača (SKF) vijci moraju biti pritegnuti odgovarajućim momentom pritezanja i prenapregnuti određenom silom kao što je prikazano na slici 61.

$$M_{prit} = 185 \text{ Nm}$$
 (124)

$$F_{pred} = 77 \text{ kN} \tag{125}$$

Podaci su dani za faktor trenja navoja:

$$\mu_G = 0,14 \tag{126}$$

Kako bi se osigurao faktor trenja, vijke je potrebno premazati tankim filmom odgovarajućeg ulja.

			Table 1				
Tightening torq	ue and prel	oad of atta	achment bolts				
Attachment bolts/nuts Size ¹)	Tighten for bolts M _A ²)	Tightening torque and assembly preload for bolts to strength grade 10.9 (EN ISO 898) $M_A{}^2$) $F_M{}^3$) $F_M{}^4$)					
-	Nm	kN	kN				
M 6	14	13.2	-				
M 8	34	24.2					
M 10	67	38.5					
M 12	115	56	-				
M 14	185	77	-				
M 16	285	106	-				
M 18	395	129					
M 20	560	166					
M 22	770	208					
M 24	970	239	283				
M 27	1 420	315	372				
M 30	1 930	385	454				
M 33	2 630	480	564				
M 36	3 380	560	664				
¹⁾ ISO general purpose metric threads (DIN 13-1) ²⁾ Tightening torque for coefficient of friction in the bolt head/nut contact surface and the thread μ_{k} - μ_{G} = 0,14. In case of different friction coefficients the tightening torque should be adjusted accordingly ³⁾ Bolt preload corresponding to coefficient of friction in the thread μ_{G} = 0,14 ⁴⁾ Bolt preload to 90% of the yield point stress. For torsion free tightening, use an HYDROCAM bolt tensioner							

Slika 61. Moment pritezanja za vijke zakretnog ležaja [16]

Proizvođač garantira da preporučene vrijednosti pritezanja pružaju siguran i pouzdan rad u normalnim uvjetima. Proizvođač temelji proračun vijaka na praktičnim saznanjima i standardiziranom proračunu vijaka. [16]

4.3.6.3. Glavne mjere spoja okretnog ležaja

Glavne mjere spoja definirane su prema proizvođaču kao što je prikazano na slici 62.

Slika 62. Glavne mjere spoja zakretnog ležaja [16]

Minimalna debljina prirubnice, S_p , iznosi:

$$S_p \ge 0.04 \cdot d_m = 0.04 \cdot 950 = 38 \text{ mm}$$
 (127)

gdje je:

 $d_m = 950 \text{ mm} - \text{srednji radijus zakretnog ležaja}$

Minimalna debljina stijenke prirubnice iznosi:

$$S_1 \ge 0.35 \cdot S = 0.35 \cdot 38 = 13.3 \text{ mm}$$
 (128)

Konstrukcijski je odabrano tako da se vijak gornjeg prstena ležaja uvrće u prirubnicu na kojoj je narezan navoj, zbog toga da bi bilo kompaktnije rješenje, a i nema prostora za prihvat matice sa druge strane.

Potrebna dubina navoja, za materijal vijka 42 CrMo 4 V, računa se prema slici 63.:

$$H_{nav} \ge 1,0 \cdot d_v = 1,0 \cdot 14 = 14 \text{ mm}$$
(129)

gdje je:

 $d_{v} = 14 \text{ mm} - \text{nazivni}$ promjer pričvrsnog vijka.

 Table 2:
 Minimum screw-in depth with blind-hole thread for medium tolerance class (6 H)

 Different tolerance classes require corresponding allocated screw-in depths

Bolt strength class	8.8/10.9	10.9/12.9	12.9		
Thread fineness d/P	≥ 9/< 9	≥ 9/< 9	≥ 9	d –	Thread external Ø [mm]
St 37	1,25 · d				ISO thread (standard thread)
St 50, C 45 N,46 Cr 2 N, 46 Cr 4 N	1,0 · d	1,2 · d	1,4 · d	P –	Pitch of the thread [mm]
C 45 V, 46 Cr 4 V,42 CrMo 4 V	0,9 · d	1,0 · d	1,1 · d		up to M 30 have a d/P < 9 > M 30 have a d/P < 9

4.3.6.4. Proračun konstrukcije okretnog ležaja

Kako bi se osigurao pravilan rad nužno je provjeriti čvrstoću konstrukcije na koju će se učvrstiti ležaj kako uslijed pritezanja ne bi došlo do loma konstrukcije. Dopuštene vrijednosti površinskih tlakova dane su na slici 64.

Material	p _g boundary surface pressure
S 235 JR + AR	260 N/mm ²
E 295, C 45 N, 46 Cr 2 N, 46 Cr 4 N	420 N/mm ²
C 45, profile rolled (Series 23, 25, 28)	700 N/mm ²
C 45 V, 46 Cr 4 V, 42 CrMo 4 V	700 N/mm ²
GG 25	800 N/mm ²

Slika 64. Dopuštene vrijednosti površinskih tlakova [16]

Za materijal konstrukcije postolja odabran je čelik oznake S235JR kod kojeg dopušteni površinski tlak iznosi 260 N/mm².

Provjerava se naprezanje uslijed tlaka izazvanog pritezanjem vijaka prema izrazu:

$$p_{le\check{z}} = \frac{\frac{F_M}{0.9}}{A_p} = \frac{\frac{77000}{0.9}}{439} = 194,87 \text{ N/mm}^2$$
 (130)

gdje je:

 $F_M = 77000 \text{ N} - \text{ugradbena sila prednaprezanja}$

 A_p – kontakta površina između vijka i konstrukcije, a računa se prema:

$$A_p = \frac{\pi}{4} \cdot (d_w^2 - d_h^2) = \frac{\pi}{4} \cdot (28^2 - 15^2) = 439 \text{ mm}^2$$
(131)

gdje je:

 $d_w = 28 \text{ mm} - \text{vanjski}$ promjer kontaktne površine podloške $d_h = 15 \text{ mm} - \text{promjer rupe}$

Kako bi površinski tlak ostao u dopuštenim granicama, potrebno je koristiti podloške za vijak. Budući da je $p_{dop} > p_{lež} \rightarrow 260 \frac{N}{mm^2} > 194,87 \frac{N}{mm^2}$, zaključujemo da prirubnica i konstrukcija zadovoljavaju kriterij čvrstoće.

4.3.6.5. Proračun potrebne snage za ostvarivanje rotacije

Snaga potrebna za savladavanje otpora rotaciji izračunava se iz momenta trenja, čija jednadžba za zakretne ležajeve s valjnim tijelima glasi (prema Rothe Erde):

$$M_r = \frac{\mu}{2} \cdot (4, 1 \cdot M_t + F_a \cdot D_L + 2,05 \cdot F_r \cdot D_L) = \frac{0.003}{2} \cdot (4, 1 \cdot 96,766905 + 82253 \cdot 1,184 + 0)$$
(132)
= 146,68 Nm

Nadalje, potrebno je odrediti moment inercije oko osi zakretnog ležaja. Riječ je o momentu koji je potreban za pokretanje svih masa na dizalici.

Dinamički moment inercije oko osi zakretnog ležaja računa se prema:

$$I_K \cong m_Q \cdot r_Q^2 + m_u \cdot r_u^2 + m_p \cdot r_p^2 + I_{doh}$$
(133)

gdje je:

 $r_0 = 10,880 \text{ m} - \text{krak}$ težišta tereta u odnosu na os rotacije

 $r_u = 3,065 \text{ m} - \text{krak}$ težišta utega u odnosu na os rotacije

 $r_p = 0,815 \text{ m} - \text{krak}$ težišta postolja u odnosu na os rotacije

 $m_Q = 1000 \text{ kg} - \text{masa tereta}$

 $m_u = 3670 \text{ kg} - \text{masa utega}$

 $m_p = 1535 \text{ kg} - \text{masa postolja}$

 I_{doh} – moment inercije dohvatnika, a računa se prema:

$$I_{doh} \cong \frac{m_{doh}}{3} \cdot \frac{r_2^3 - r_1^3}{r_2 - r_1} = \frac{2040}{3} \cdot \frac{10,880^3 - (-1,120)^3}{10,880 - (-1,120)} = 73061,4 \, \mathrm{kgm^2}$$
(134)

Pa slijedi da je dinamički moment inercije oko osi rotacije jednak:

$$I_K \cong 1000 \cdot 10,880^2 + 3670 \cdot 3,065^2 + 1535 \cdot 0,815^2 + 73061,4$$

= 226932 kgm² (135)

Sada je potrebno reducirati taj moment inercije na osovinu pogonskog motora, gdje iznosi:

$$I_{red} = \frac{I_K}{\eta_{rot}} \cdot \left(\frac{n_K}{n_{mot}}\right)^2 = \frac{226932}{0.95} \cdot \left(\frac{1}{33.4 \cdot 11.84}\right)^2 = 1.53 \text{ kgm}^2$$
(136)

gdje je:

 $\eta_{rot} = 0.95 - stupanj efikasnosti prijenosa$

Dinamički moment za savladavanje otpora motora iznosi:

$$M_{din} = I_{red} \cdot \varepsilon = I_{red} \cdot \frac{\omega_{mot}}{t_{pr}} = 1,53 \cdot \frac{10,35}{3} = 5,27 \text{ Nm}$$
 (137)

gdje je:

Fakultet strojarstva i brodogradnje

 $\omega_{mot} = 10,35$ rad/s – kutna brzina hidromotora

 $t_{pr} = 3 \text{ s} - \text{vrijeme pokretanja}$

Ukupni moment pokretanja motora iznosi:

$$M_p = M_{st} + M_{din} = 0.4 + 5.27 = 5.67 \text{ Nm}$$
(138)

gdje je:

$$M_{st} = \frac{M_r}{\eta_{rot}} \cdot \frac{\omega_K}{\omega_{mot}} = \frac{146,68 \cdot \frac{\pi}{2 \cdot 60}}{0,95 \cdot 10,35} = 0,4 \text{ Nm}$$
(139)

Snaga hidromotora računa se na temelju:

$$P_{n,p} = \frac{M_p}{1,7} \cdot \omega_{mot} = \frac{5,67}{1,7} \cdot 10,35 = 34,52 \,\mathrm{W}$$
(140)

Za pogon zupčanog para koristi se hidraulični motor s planetarnim reduktorom tvrtke Bosch Rexroth kodnog imena GFB 9 T2 2000/2. Pogonski hidraulični motor je kodne oznake A2FM 56 aksijalni klipni motor.

Slika 65. Pogonska jedinica za rotaciju GFB 9 T2 2000/2

Karakteristike pogonske jedinice za rotaciju prikazane su u tablici 21.

Izlazni okretni moment, T _{2,max}	7000 Nm
Prijenosni omjer, i	33.4
Kočioni okretni moment, T _{Br,max}	245 Nm
Masa, <i>m</i>	85 kg

 Tablica 21.
 Karakteristike pogonske jedinice za rotaciju

Osnovne dimenzije dane su u tablici 22., a slika s pripadajućim dimenzijama prikazana je ispod.

Slika 66. Osnovne dimenzije pogonske jedinice za rotaciju

Tablica 22.	Osnovne dimenzije pogonske jedinice za rotaciju
-------------	---

D1	175 mm
D2	260 mm
D3	288 mm
D4	12x 17.5 mm
L1	40 mm
L2	325.5 mm
L3	365.5 mm
L4	26 mm
L5	22 mm

Slika 67. Hidraulični aksijalni klipni motor Bosch A2FM 56

 Tablica 23.
 Karakteristike hidrauličnog motora

Zapremnina	56 cm ³
Nominalni tlak	300 bar
Maksimalni tlak	350 bar

4.3.7. Proračun zupčastog para na mehanizmu za ostvarivanje rotacije

Broj zubi gonjenog zupčanika iznosi $z_2 = 148$, a modul m = 8. Zahvatni kut je standardi i iznosi $\alpha = 20^{\circ}$.

Kako bi se postigao što veći prijenosi omjer zupčanog prijenosa odabire se minimalni broj zubi pogonskog zupčanika prema [17]:

$$z_1 = 14$$
 (141)

Zupčasti par izvest će se kao nulti par iz čega slijede osnovne mjere pogonskog zupčanika:

$$d_1 = m \cdot z_1 = 8 \cdot 14 = 112 \text{ mm} \tag{142}$$

$$d_{a1} = d_1 + 2 \cdot m = 112 + 2 \cdot 8 = 128 \, mm \tag{143}$$

$$d_{f1} = d_1 - 2 \cdot m - 2 \cdot c = 112 - 2 \cdot 8 - 2 \cdot 1,25 = 93,5 \text{ mm}$$
(144)

$$d_{w1} = d_1 = 112 \ mm \tag{145}$$

$$d_{b1} = d_1 \cdot \cos\alpha = 112 \cdot \cos(20^\circ) = 105,3 \text{ mm}$$
(146)

Razmak između osi zupčanika:

$$a = m \cdot \frac{z_1 + z_2}{2} = 8 \cdot \frac{14 + 148}{2} = 648 \text{ mm}$$
 (147)

Zupčanici su površinski kaljeni tako da se proračuna prema savijanju u korijenu zuba. Naprezanje uslijed savijanja u korijenu zuba računa se prema:

$$\sigma_F = \frac{F_{tw}}{b \cdot m} \cdot Y_{F1} \cdot Y_{\varepsilon} \cdot K_{F\alpha 1} \le \sigma_{FP1}$$
(148)

Tangencijalna sila na pogonskom zupčaniku iznosi:

$$F_{tw} = \frac{2 \cdot M}{d_{w1}} = \frac{2 \cdot 5670}{112} = 101,25 \text{ N}$$
(149)

4.3.7.1. Odabir proračunskih faktora

 $Y_{F1} = 3,35 - \text{faktor oblika prema dijagram 5., stranica 72. [17]}$ Faktor udijele opterećenja se računa prema:

$$Y_{\varepsilon} = \frac{1}{\varepsilon_{\alpha}} = \frac{1}{1,676} = 0.6$$
(150)

gdje je stupanj prekrivanja:

$$\varepsilon_{\alpha} = \frac{1}{2\pi} \cdot \left[\sqrt{\left(\frac{z_1 + 2}{\cos\alpha}\right)^2 - z_1^2} + \sqrt{\left(\frac{z_2 + 2}{\cos\alpha}\right)^2 - z_2^2} - (z_1 + z_2) \cdot tan\alpha \right]$$

$$\varepsilon_{\alpha} = \frac{1}{2\pi} \cdot \left[\sqrt{\left(\frac{14 + 2}{\cos20}\right)^2 - 14^2} + \sqrt{\left(\frac{148 + 2}{\cos20}\right)^2 - 148^2} - (14 + 148) \cdot tan20 \right]$$

$$\varepsilon_{\alpha} = 1,676$$
(151)

Faktor raspodijele opterećenja:

$$K_{F\alpha} = q_L \cdot \varepsilon_\alpha = 1 \cdot 1,676 = 1,676 \tag{152}$$

gdje je:

 $q_L = 1$ prema dijagram 6., stranica 73. [17] Slijedi da je:

$$\sigma_F = \frac{101,25}{45 \cdot 8} \cdot 3,35 \cdot 0,6 \cdot 1,676 = 0,95 \text{ N/mm}^2$$
(153)

Fakultet strojarstva i brodogradnje

Dopušteno naprezanje na savijanje korijena zuba iznosi:

$$\sigma_{F,dop} = \frac{\sigma_{f,lim}}{S_F} = \frac{270}{1,75} = 154,3 \text{ N/mm}^2$$
(154)

gdje je:

 $\sigma_{f,lim} = 270 \text{ N/mm}^2 - \text{za materijal Č.1531}$ (prema DIN Ck 45) koji je plameno kaljen $S_F = 1,3 \dots 2,0 - \text{faktor sigurnosti za interminirajući pogon, tablica 36. [17]}$

S obzirom da vrijedi $\sigma_F \leq \sigma_{F,dop}$ zaključujemo da zupčanik zadovoljava kriterij čvrstoće.

4.3.8. Proračun zavara postolja hidrauličnog cilindra za nošenje protuutega

Zavar je opterećen smično i momentom savijanja, a proračunski presjek zavara prikazan je na slici 68.

Slika 68. Proračunska skica zavara nosive ploče protuutega

Prvo je potrebno odrediti težište zavara kako bi mogli reducirati opterećenje. Zavar je simetričan oko y osi te je s toga koordinata težišta $x_0 = 0$, ali je potrebno odrediti koordinatu y_0 koja se računa prema formuli za geometrijsko težište:

$$y_{0} = \frac{\sum_{i=0}^{n} A_{i} \cdot y_{i}}{A} = \frac{A_{1} \cdot y_{1} + 2 \cdot A_{2} \cdot y_{2}}{A}$$

$$y_{0} = \frac{2910 \cdot 10.5 + 2 \cdot 1980 \cdot 193}{6870} = 115.7 \text{ mm}$$
(155)

Najveća opterećenja koja djeluju na zavar javljaju se kod cijelog iznosa ovješenog protuutega i iznose:

$$G_u = 34043 \text{ N}$$
 (156)

$$M_s = \frac{G_u \cdot h}{2} = \frac{34043 \cdot 200}{2} = 3\ 404\ 300\ \text{Nmm}$$
(157)

gdje je:

 $h = 200 \text{ mm} - \text{udaljenost osi djelovanja sile u odnosu na položaj zavara, a dijeljeno je s 2 jer je zavar na svakoj strani.$

Naprezanja uzrokovana opterećenjem zavara iznose:

$$\tau = \frac{G_u/2}{A_{\rm II}} = \frac{17022}{3960} = 4.3 \frac{\rm N}{\rm mm^2}$$
(158)

$$\sigma_s = \frac{M_s}{W_x} \tag{159}$$

gdje je:

 $A_{\text{II}} = 3960 \text{ mm}^2 - \text{površina paralelnih zavara, tj. onih koji nose smično opterećenje}$ W_x – moment otpora presjeka, a računa se prema:

$$W_x = \frac{I_{uk}}{h_{max}} \tag{160}$$

Ukupni moment tromosti iznosi:

$$I_{uk} = I_1 + a_1^2 \cdot A_1 + I_2 + a_2^2 \cdot A_2$$
(161)

gdje je:

$$I_1 = \frac{3^3 \cdot 485}{12} = 1091 \text{ mm}^4 \tag{162}$$

$$I_2 = 2 \cdot \left(\frac{330^3 \cdot 3}{12}\right) = 17\,968\,500\,\,\mathrm{mm^4}$$
 (163)

Potrebno je odrediti i Steinerove dodatake jer se momenti tromosti reduciraju u os težišta zavara.

$$a_1^2 \cdot A_1 = (115,7 - 10,5)^2 \cdot 2910 = 32\ 205\ 086\ \mathrm{mm}^4$$
 (164)

$$a_2^2 \cdot A_2 = (115,7 - 193)^2 \cdot 3960 = 23\ 662\ 148\ \mathrm{mm}^4$$
 (165)

Slijedi da ukupni moment tromosti iznosi:

$$I_{uk} = 1091 + 32205086 + 17968500 + 23662148 = 73\,836\,825\,\mathrm{mm}^4 \tag{166}$$

Pa je moment otpora presjeka zavara jednak:

$$W_x = \frac{73\,836\,825}{242,3} = 300\,733\,\mathrm{mm}^3$$
 (167)

Naprezanje uslijed savijanja moment na kritičnom dijelu zavara iznosi:

$$\sigma_s = \frac{M_s}{W_x} = \frac{3\,404\,300}{300\,733} = 11,32\frac{N}{mm^2} \tag{168}$$

Reducirano naprezanje zavara na kritičnom mjestu iznosi:

$$\sigma_{red} = \sqrt{\sigma_s^2 + 3 \cdot (\alpha_0 \cdot \tau)^2} = \sqrt{11,32^2 + 3 \cdot (1 \cdot 4,3)^2} = 13,55 \frac{N}{mm^2}$$
(169)

gdje je:

 $\alpha_0 = 1 - za$ čisto istosmjerno naprezanje prema [10]

Za materijal zavara uzima se konstrukcijski čelik S235JR, a dopušteno naprezanje iznosi:

$$\sigma_{dop} = \frac{R_e}{S} = \frac{235}{2.5} = 94 \frac{N}{mm^2}$$
(170)

S obzirom da vrijedi da je $\sigma_{dop} > \sigma_{red} \rightarrow 94 \frac{N}{mm^2} > 13,55 \frac{N}{mm^2}$, zaključujemo da zavar zadovoljava kriterij čvrstoće.

4.3.9. Proračun svornjaka za prihvat bubnja i protuutega

Svornjaci su opterećeni momentom savijanja uzrokovanog zbog težine bubnja i utega, a statički model je prikazan na slici 69.

Slika 69. Proračunska skica svornjaka sklopa bubnja

Kao reakcija, javlja se spreg sila koji je iznosom jednak momentu savijanja, te se preko jednadžbe ravnoteže dobije sila koja djeluje na svornjake:

$$F_{sv,uk} = \frac{G_{uk} \cdot l_1}{l_2} = \frac{36693 \cdot 285}{400} = 26144 \text{ N}$$
(171)

gdje je:

 $G_{uk} = G_{bu} + G_{ut} = 2650 + 34043 = 36693 \text{ N} - \text{težina bubnja i utega}$ $l_{sv,1} = 285 \text{ mm} - \text{krak djelovanja težine}$ $l_{sv,2} = 400 \text{ mm} - \text{krak sprega sila}$

Sila na pojedinom svornjaku iznosi:

$$F_{sv} = \frac{F_{sv,uk}}{n_{sv}} = \frac{26144}{4} = 6536 \text{ N}$$
(172)

gdje je:

 $n_{sv} = 4 - broj$ svornjaka

Površina poprečnog presjeka svornjaka iznosi:

$$A_{sv} = \frac{d_{sv}^2 \cdot \pi}{4} = \frac{24^2 \cdot \pi}{4} = 452,4 \text{ mm}^2$$
(173)

gdje je:

 $d_{sv} = 24 \text{ mm} - \text{promjer svornjaka}$

Naprezanje na odrez iznosi:

$$\tau_{sv} = \frac{F_{sv}}{A_{sv}} = \frac{6536}{452,4} = 14,45 \frac{N}{mm^2}$$
(174)

Površinski pritisak svornjaka iznosi:

$$p_{sv} = \frac{F_{sv}}{A_{sv,proj}} = \frac{F_{sv}}{d_{sv} \cdot s_{sv}} = \frac{6536}{24 \cdot 20} = 13.6 \frac{N}{mm^2}$$
(175)

Dopuštena naprezanje svornjaka za materijal S235JR prema [2] iznosi:

$$\tau_{sv,dop} = 54 \frac{N}{mm^2}$$
(176)

$$p_{sv,dop} = 30 \ \frac{N}{mm^2} \tag{177}$$

S obzirom da vrijedi da je $\tau_{sv,dop} > \tau_{sv} \rightarrow 54 \frac{N}{mm^2} > 14,45 \frac{N}{mm^2}$, te da vrijedi da je $p_{sv,dop} > p_{sv} \rightarrow 30 \frac{N}{mm^2} > 13,6 \frac{N}{mm^2}$, zaključujemo da svornjak zadovoljava kriterij čvrstoće.

4.3.10. Proračun zavara postolja na temeljnu ploču

Postolje je zavareno na temeljnu ploču koja pak je preko vijčane veze spojena za okretni ležaj. Okretni ležaj, tj. donja cilindrična ploča okretnog ležaja dalje je na neki način (zavarena ili vijčana veza) pričvršćen za šasiju vozila.

Proračunski presjek zavara s reduciranim opterećenjima prikazan je na slici 70.

Slika 70. Proračunska skica zavara postolja

Budući da dohvatnik stalno mijenja smjer, opterećenje, kut zakreta i nagib, zavar je opterećen dinamički. Za dinamički proračun zavara uzimaju se dva granična slučaja.

Prvo je potrebno odrediti težište zavara i geometrijske karakteristike. Zavar je simetičan oko y osi i dimenzija zavara iznosi a4.

Udaljenost težišta od ishodišta koordinatnog sustava računa se prema:

$$y_0 = \frac{\sum_{i=0}^n A_i \cdot y_i}{A}$$
(178)

gdje je:

 A_i – površina pojedinog zavara

 $y_i - y$ koordinata težišta pojedinog zavara

Slijedi da je:

$$y_0 = \frac{A_i \cdot y_i}{A} = \frac{27\,496\,456}{51952} = 529,27 \,\mathrm{mm}$$
 (179)

Moment otpora presjeka, W_x , računa se prema:

$$W_x = \frac{I_x}{h_{max}} \tag{180}$$

gdje je:

 $h_{max} = 1004,73 \text{ mm} - \text{najveća udaljenost od težišta zavara.}$

Ukupni moment tromosti iznosi:

$$I_x = \sum_{i=0}^n I_{x,i} + a_i^2 \cdot A_i$$
 (181)

gdje je:

 $I_{x,i}$ – moment tromosti pojedinog dijela zavara oko osi x.

 a_i – Steinerov dodatak momentu tromosti pojedinog dijela zavara.

Kada se izračunaju i odrede svi momenti tromosti i Steinerovi dodaci slijedi je ukupni moment tromosti oko osi x:

$$I_x = 1,497255346 \cdot 10^{10} \text{ mm}^4 \tag{182}$$

Pa je moment otpora presjeka zavara jednak:

$$W_x = \frac{1,497255346 \cdot 10^{10}}{1340,73} = 11\ 167\ 464\ \mathrm{mm^3} \tag{183}$$

Opterećenje na zavar jednako je poput opterećenja na okretni ležaj jer se težišta zavara i okretnog ležaja gotovo poklapaju.

Dakle, opterećenja na zavar za prvi granični slučaj su jednaka:

$$F_a = \sum F_v = G_{post} + G_1 + G_{doh} + Q = 82\ 253\ \text{N}$$
(184)

gdje je:

 $G_{post} = 15350 \text{ N} - \text{težina postolja}$

$$M_{s} = Q \cdot l_{Q} + G_{doh} \cdot l_{doh} - G_{1} \cdot l_{1} - G_{post} \cdot l_{post}$$

$$M_{s} = 9810 \cdot 10880 + 20400 \cdot 5067 - 36693 \cdot 3065 - 15350 \cdot 815$$

$$M_{s} = 96766905 \text{ Nmm}$$
(185)

Naprezanje u kritičnoj točki zavara iznosi:

$$\sigma_s = \frac{M_s}{W_x} = \frac{96766905}{11167464} = 8,67 \frac{N}{mm^2}$$
(186)

$$\sigma_t = \frac{F_a}{A_{zav}} = \frac{-82253}{51952} = -1,58 \frac{N}{mm^2}$$
(187)

Pa je ukupno naprezanje u kritičnoj točki:

$$\sigma_{uk} = \sigma_s + \sigma_t = 8,67 - 1,58 = 7,09 \frac{N}{mm^2}$$
(188)

Opterećenja na zavar za drugi granični slučaj su jednaka:

$$F_a = \sum F_v = G_{post} + G_1 + G_{doh} = 72\ 443\ \text{N}$$
(189)

$$M_{s} = G_{doh} \cdot l_{doh} - G_{1} \cdot l_{1} - G_{post} \cdot l_{post}$$

$$M_{s} = 20400 \cdot 727 - 36693 \cdot 3065 - 15350 \cdot 815$$

$$M_{s} = -110\ 143\ 495\ \text{Nmm}$$
(190)

Naprezanje u kritičnoj točki zavara iznosi:
Diplomski rad

$$\sigma_s = \frac{M_s}{W_x} = \frac{-110143495}{11167464} = -9,86 \frac{N}{mm^2}$$
(191)

$$\sigma_t = \frac{F_a}{A_{zav}} = \frac{-72443}{51952} = -1,39 \frac{N}{mm^2}$$
(192)

Pa je ukupno naprezanje u kritičnoj točki:

$$\sigma_{uk} = \sigma_s + \sigma_t = -9,86 - 1,39 = -11,25 \frac{N}{mm^2}$$
 (193)

Prema tome, odnos graničnih naprezanja je:

$$r = \frac{7,09}{-11,25} = -0,63\tag{194}$$

Dopušteno naprezanje zavara za slučaj naizmjeničnog naprezanje u tlaku iznosi:

$$\sigma_{Dt(r)dop} = \frac{2}{1-r} \cdot \sigma_{Dv(-1)dop} = \frac{2}{1-(-0.63)} \cdot 127.3 = 156.2 \frac{N}{mm^2}$$
(195)

gdje je:

 $\sigma_{D\nu(-1)dop} = 127,3 \frac{N}{mm^2}$ – dopušteno naprezanja zavara za čisto naizmjenično naprezanje, za pogonsku grupu B3, grupu zareznog djelovanja K3 i materijal S235JR. [10]

Kvaliteta	S:	K2
Kvaliteta	l:	K3

Slika 71. Kvaliteta zavara [10]

S obzirom da vrijedi da je $\tau_{s,dop} > |\tau_{sv}| \rightarrow 156, 2\frac{N}{mm^2} > 11,25\frac{N}{mm^2}$, zaključujemo da zavar zadovoljava kriterij čvrstoće.

4.3.10.1. Klizne pločice teleskopa

Između razina teleskopa nalaze se klizne pločice čija je uloga smanjenje trenja, osiguranje dovoljno prostora između dijelova teleskopa te djeluju kao oslonci dijelova teleskopa. Pločice su izrađene od legirane bronce (aluminijske) koja ima izrazito dobra klizna svojstva, a opet je jednako tako i čvrsta te se slabo troši.

Bronca/čelik kombinacija ima statički koeficijent trenja koji se kreće oko 0,08 - 0,14 u suhim uvjetima može doseći i vrijednosti oko 0,30 te je iz tog razloga vrlo važno pravilno podmazivanje. U pločice se dodatno umeće grafit kako bi ona bila samo-podmazujuća.

Slika 72. Samopodmazujuća brončana pločica s grafitom

4.3.11. Odabir lanca na mehanizmu za izvlačenje

Na mehanizmu za izvlačenje dohvatnika odabran je tzv. pločasti lanac (eng. *leaf chain*) prema normi DIN 8152/ISO 4347. Karakteristika ovih lanaca je kompaktnost jer nisu namijenjeni za lančanik i velika nosivost zbog mogućeg većeg broj lamela. Treba imati na umu da je dopuštena manja brzina gibanja oko valjkastih skretnih elementa, no brzina nije ni potrebna u ovom slučaju.

Kako bi se produljio vijek trajanja lanca, potrebno je koristiti skretne valjke čim veće promjera, u ovom slučaju to je ograničeno konstrukcijskom izvedbom na 80 mm. Prema preporuci proizvođača (*FB Leaf Chain*) promjer skretnih valjaka, trebao bi biti barem:

$$d_{valj,min} \ge 5 \cdot p_l = 5 \cdot 15,875 = 79,375 \tag{196}$$

gdje je:

dvalj,min – minimalni promjer skretnih valjaka

 $p_l = 15,875 \text{ mm} - \text{korak lanca, razmak osi između svornjaka}$

Odabrani promjer skretnih valjaka je:

$$d_{valj} = 90 \text{ mm} \tag{197}$$

Odabran je lanac proizvođača SKF kodne oznake LH1088/BL588 (vidi prilog III). Lanac se sastoji od osam pločica kao što je prikazano na slici 73.

Slika 73. Konfiguracija lanca za izvlačenje [16]

Slika 74. Prikaz osnovnih dimenzija lanca [16]

gdje je: $h_{2.lan} = 15,09 \text{ mm} - \text{visina lanca}$

 $d_{2,lan} = 5,96 \text{ mm} - \text{promjer svornjaka}$

Fakultet strojarstva i brodogradnje

 $T_{lan} = 2,44 \text{ mm} - \text{debljina pločice}$ $L_{lan} = 42,57 \text{ mm} - \text{duljina svornjaka}$

Nosivost lanca iznosi:

$$Q_{lan} = 133,4 \text{ kN}$$
 (198)

Ako se u obzir uzme faktor sigurnosti, maksimalno opterećenje na lanac iznosi:

$$F_{lan,dop} = \frac{Q_{lan}}{S_{lan}} = \frac{133,4}{2,5} = 53,36 \text{ kN}$$
 (199)

gdje je:

 $S_{lan} = 2,5 - faktor sigurnosti lanca$ Specifična masa lanca:

$$q_{lan} = 3,50 \text{ kg/m}$$
 (200)

Maksimalna sila koja se javlja u lancu je prilikom izvlačenja pri najvećem kutu nagiba dohvatnika i iznosi:

Slika 75. Sila u lancu u ovisnosti o kutu nagiba dohvatnika Budući da vrijedi da je:

$$F_{lan,max} \le F_{lan,dop} \to 17,444 \text{ kN} \le 53,36 \text{ kN}$$
 (202)

Zaključujemo da lanac zadovoljava uvjet čvrstoće.

Fakultet strojarstva i brodogradnje

4.4. Proračun opterećenja na oslonce

Konstrukcija se oslanja na četiri oslonaca koji se izvlače sa strane vozila. U pitanju je statički neodređen asimetrični slučaj te se za izračun opterećenja koristi Montagnonova metoda. Kod spomenute metode opterećenje se iz ekscentra reducira na geometrijsko središte oslonaca. Slika 76. prikazuje proračunsku skicu za odabranu metodu.

Slika 76. Montagnonova metoda – ilustracija [5]

Pojedini momenti računaju se prema:

$$M_x = -M \cdot \sin \psi = F_0 \cdot e \cdot \sin \psi \tag{203}$$

$$M_{y} = -M \cdot \cos \psi = F_{0} \cdot e \cdot \cos \psi \tag{204}$$

Svaki oslonac sada preuzima ¼ rezultantne sile te silu iz sprega sila koju generira pojedini moment na razmaku između oslonaca.

Sile u pojedinim osloncima iznose:

$$F_1 = \frac{R}{4} - \frac{M_x}{2 \cdot a} + \frac{M_y}{2 \cdot b}$$
(205)

$$F_2 = \frac{R}{4} - \frac{M_x}{2 \cdot a} - \frac{M_y}{2 \cdot b}$$
(206)

$$F_{3} = \frac{R}{4} + \frac{M_{\chi}}{2 \cdot a} - \frac{M_{y}}{2 \cdot b}$$
(207)

$$F_4 = \frac{R}{4} + \frac{M_x}{2 \cdot a} + \frac{M_y}{2 \cdot b}$$
(208)

Slika 77. prikazuje opterećenje na granik uz važne proračunske dimenzije. Slika prikazuje okretni granik, no princip je jednak te se može primijeniti i za mobilni granik sa stopama.

Slika 77. Opterećenje na granik uz važne proračunske dimenzije [5]

Četiri su granična slučaja opterećenja, ovisno o mogućim kombinacija raspona i tereta.

4.4.1.1. Granični slučajevi opterećenja kod Montagnonove metode

Prvi granični slučaj prikazan je na slici 78.

Slika 78. Kombinacija najveći raspon/najveći teret

Iz sume vertikalni sila slijedi:

$$F_0 = Q + G_4 + G_0 = 9810 + 36693 + 35750 = 82253 \text{ N}$$
(209)

Iz sume momenata oko središnjice slijedi:

$$F_0 \cdot e = G_0 \cdot e_{01} + Q \cdot r_{max} - G_4 \cdot l_4$$
(210)

Kombinirajući ta dva izraza dobije se:

$$e = \frac{G_0 \cdot e_{01} + Q \cdot r_{max} - G_4 \cdot l_4}{Q + G_4 + G_0}$$

$$e = \frac{35750 \cdot 3845 + 9810 \cdot 10880 - 36693 \cdot 3065}{9810 + 36693 + 35750} = 1,592 \text{ m}$$
(211)

gdje je:

 $G_0 = G_{doh} + G_{post} = 20400 + 15350 = 35750$ N – težina rotirajućih dijelova granika

 $G_4 = 36693 \text{ N} - \text{težina protuutega i sklopa bubnja}$ $e_{01} = 3845 \text{ mm} - \text{udaljenost težišta rotirajućih masa od osi rotacije kod najvećeg raspona}$ $r_{max} = 10880 \text{ mm} - \text{maksimalna udaljenost tereta od osi rotacije}$ $l_4 = 3065 \text{ mm} - \text{udaljenost težišta protuutega od osi rotacije}$ Sada je potrebno odrediti *e* za preostale slučajeve.

Slika 79. Kombinacija najmanji raspon/najveći teret

Slijedeći logiku iz prethodnog slučaja, dobije se da je *e* za ovaj slučaj jednak:

$$e = \frac{G_0 \cdot e_{02} + Q \cdot r_{min} - G_4 \cdot l_4}{Q + G_4 + G_0}$$

$$e = \frac{35750 \cdot 676 + 9810 \cdot 4076 - 36693 \cdot 3065}{9810 + 36693 + 35750} = -0,587 \text{ m}$$
(212)

Za slučaj najveći raspon/najmanji teret:

$$e = \frac{G_0 \cdot e_{01} - G_4 \cdot l_4}{G_4 + G_0}$$

$$e = \frac{35750 \cdot 3845 - 36693 \cdot 3065}{36693 + 35750} = 0,345 \text{ m}$$
(213)

Za slučaj najmanji raspon/najmanji teret:

e =

$$e = \frac{G_0 \cdot e_{02} - G_4 \cdot l_4}{G_4 + G_0}$$

$$\frac{35750 \cdot 676 - 36693 \cdot 3065}{36693 + 35750} = -1,219 \text{ m}$$
(214)

gdje je:

Fakultet strojarstva i brodogradnje

 $e_{02} = 676 \text{ mm} - \text{udaljenost}$ težišta rotirajućih masa od osi rotacije kod najmanjeg raspona $r_{min} = 4076 \text{ mm} - \text{minimalna}$ udaljenost tereta od osi rotacije.

Slijedi kako su sila i moment jednaki:

$$R = F_0 = G_0 + Q + G_4 \tag{215}$$

$$M = F_0 \cdot e \tag{216}$$

$$M_x = -M \cdot \sin\psi = -F_0 \cdot e \cdot \sin\psi \tag{217}$$

$$M_{y} = M \cdot \cos\psi = F_{0} \cdot e \cdot \cos\psi \tag{218}$$

Sila u osloncima su tada jednake:

$$F_{1o} = \frac{F_o}{4} - \frac{M_x}{2 \cdot a} + \frac{M_y}{2 \cdot b}$$
(219)

$$F_{2o} = \frac{F_o}{4} - \frac{M_x}{2 \cdot a} - \frac{M_y}{2 \cdot b}$$
(220)

$$F_{3o} = \frac{F_o}{4} + \frac{M_x}{2 \cdot a} - \frac{M_y}{2 \cdot b}$$
(221)

$$F_{4o} = \frac{F_o}{4} + \frac{M_x}{2 \cdot a} + \frac{M_y}{2 \cdot b}$$
(222)

Zaključujemo kako će najveće opterećenje biti u osloncu broj 1, a točan iznos ovisit će o horizontalnom kutu okretnog dijela granika:

$$F_{1o} = \frac{F_o}{4} + \frac{F_0 \cdot e \cdot \sin\psi}{2 \cdot a} + \frac{F_0 \cdot e \cdot \cos\psi}{2 \cdot b}$$
(223)

Ekstremne vrijednosti opterećenja će poprimiti kada derivacije po kutu budu jednake 0. Traženi kut kod kojeg će opterećenje biti maksimalno iznosi:

$$\frac{dF_{1o}}{d\psi} = 0 \to F_o \cdot \frac{e}{2a} \cdot \cos\psi_m - F_o \cdot \frac{e}{2b} \cdot \sin\psi_m = 0$$
(224)

Slijedi da je:

$$tan\psi_m = \frac{b}{a} \tag{225}$$

Fakultet strojarstva i brodogradnje

Nakon uvrštavanja i sređivanja izraza slijedi kako je najveće opterećenje uzrokovano teretom jednako [5]:

$$F_{1o} = \frac{F_o}{4} + \frac{F_o \cdot e}{2ab} \cdot \sqrt{a^2 + b^2} = \frac{82253}{4} + \frac{82253 \cdot 1,592}{2 \cdot 4,5 \cdot 5} \cdot \sqrt{4,5^5 + 5^2}$$

= 40,138 kN (226)

gdje je:

 $a_{os} = 4500 \text{ mm}$ $b_{os} = 5000 \text{ mm}$

U tablici 24. prikazani su rezultati opterećenja u sva četiri oslonca za sva četiri granična slučaja:

e	<i>F</i> ₁₀	F ₂₀	F ₃₀	F_{4o}
1,592	40,138	20,564	1,097	20,562
-0,587	13,346	20,562	27,740	20,564
0,345	16,321	20,563	16,345	20,563
-1,219	5,575	20,562	35,469	20,264

 Tablica 24.
 Opterećenja u osloncima prema graničnim slučajevima u kN

Sada je još potrebno pridodati opterećenje izazvano težinom vozila. U tom slučaju najveće i najmanje opterećenje je:

$$F_{max} = F_{1o} + \frac{G_{voz}}{4} = 40,138 + \frac{150,000}{4} = 77,64 \text{ kN}$$
 (227)

$$F_{min} = F_{3o} + \frac{G_{voz}}{4} = 1,097 + \frac{150,000}{4} = 38,60 \text{ kN}$$
 (228)

gdje je:

 $G_{voz} = 150\ 000\ \text{N} - \text{pretpostavljena težina vozila}$

Proračunsko opterećenje je stoga jednako:

$$F = \frac{2F_{max} + F_{min}}{3} = \frac{2 \cdot 77,64 + 38,60}{3} = 64,63 \text{ kN}$$
(229)

To je upravo zbog toga jer se dohvatnik može rotirati te stoga u nekom trenutku svi oslonci mogu biti u ulozi oslonac 1, tj. oslonca iznad kojeg se nalazi dohvatnik.

5. ZAKLJUČAK

U ovom diplomskom radu obrađena je tema projektiranja teleskopskog mobilnog granika i konstrukcijske razrade istog. Konstrukcija teleskopskog granika rađena je prema pravilima struke, normama, ali i u skladu s pravilnikom o tehničkim normativima za dizalice u Republici Hrvatskoj.

Teleskopski granik sastoji se od tri segmenta koji se izvlače pomoću hidrauličnog cilindra i mehanizma s beskonačnim pločastim lancem. Ovaj mehanizam omogućava brži rad jer se svi segmenti teleskopa izvlače u isto vrijeme. Dohvatnik, kao i postolje, izrađeni su u zavarenoj izvedbi. Rotacija postolja omogućena je preko zakretnog ležaja s vanjskim ozubljenjem koji je fiksiran na šasiju vozila. Na postolju se nalazi planetarni prijenosnik pogonjen hidrauličnim aksijalnim klipnim motorom te preko pogonskog zupčanika rotira postolje. Svi mehanizmi pogonjeni su hidraulikom kao što je to i uobičajeno kod mobilnih izvedbi.

Na dizalici postoji mehanizam za prihvat, dizanje, premještaj i spuštanje tereta. Teret se prihvaća pomoću ovješenog sklopa kuke, a za dizanje se koristi čelično uže koje se namata na bubanj. Bubanj je smješten na suprotnom kraju od dohvatnika kako bi svojom težinom djelovao kao protuuteg, a i konstrukcijski je to rješenje najprihvatljivije. Bubanj je pogonjen hidrauličnim radijalnim klipnim motorom na koji je povezan vijčanom vezom. Ispod bubnja predviđeno je mjesto za prihvat modularnih protuutega, te se tako masa protuutega može mijenjati ovisno o teretu.

Dizalica je opremljena dodatnom sigurnosnom opremom poput *anti-two-block* sistema koji sprječava prekomjerno dizanje tereta užetom i potencijalnog sudara sklopa kuke s dohvatnikom. Postoje i razni sistemi za praćenje opterećenja, kuta nagiba, duljinu izvučenog teleskopa i drugi.

Treba imati na umu da su nosivosti ipak nešto manjeg iznosa od onih kod klasičnih izvedbi teleskopskih dizalica sličnih dimenzija, ali je jeftinija proizvodnja i održavanje. Konačna masa dizalice je manja i na temelju tih parametara dugoročno gledano dolazi do uštede. Zbog svega navedenog, ovakav tip teleskopskog granika idealan je za lakše montažne i građevinske radove gdje njegove prednosti dolaze do izražaja.

Slika 80. Teleskopski dohvatnik – završni 3D CAD model

Slika 81. Mobilni teleskopski dohvatnik – završni 3D CAD model

Slika 82. Mobilni teleskopski dohvatnik – render 1

Slika 83. Mobilni teleskopski dohvatnik – render 2

Slika 84. Mobilni teleskopski dohvatnik – render 3

LITERATURA

- [1] Kraut, B.: Strojarski priručnik, Tehnička knjiga Zagreb, 1970.
- [2] Decker, K. H.: Elementi strojeva, Tehnička knjiga Zagreb, 1975.
- [3] Herold, Z.: Računalna i inženjerska grafika, Zagreb, 2003.
- [4] Herold, Z., Ščap, D., Hoić, M.: Prenosila i dizala knjiga 1, Fakultet strojarstva i brodogradnje, 2020.
- [5] Herold, Z., Ščap, D., Hoić, M.: Prenosila i dizala knjiga 2, Fakultet strojarstva i brodogradnje, 2020.
- [6] Ernst H.: Die Hezeuge, Bemessungsgrundlagen Bauteile Antriebe, Friedr. Vieweg & Sohn, Verlag Braunschweig, 1973.
- [7] Kranjčević, N.: Vijci i navojna vretena, Fakultet strojarstva i brodogradnje, 2014.
- [8] Ščap, D.: Prenosila i dizala podloge za konstrukciju i proračun, Fakultet strojarstva i brodogradnje, 1988.
- [9] Horvat Z. i suradnici: Vratilo (proračun), Fakultet strojarstva i brodogradnje, Zagreb.
- [10] Kranjčević, N.: Elementi strojeva, Fakultet strojarstva i brodogradnje, 2012.
- [11] Štorga, M., Škec, S.: Funkcijsko modeliranje proizvoda, Fakultet strojarstva i brodogradnje, 2020.
- [12] Štorga, M., Škec, S.: Generiranje koncepata proizvoda, Fakultet strojarstva i brodogradnje, 2020.
- [13] Štorga, M., Škec, S.: Vrednovanje i odabir koncepata, Fakultet strojarstva i brodogradnje, 2020.
- [14] Vučković, K.: Osovine (podloge uz predavanja za internu uporabu), Fakultet strojarstva i brodogradnje, 2020.
- [15] Oberšmit, E.: Ozubljenja i zupčanici, SNL, Zagreb, 1982.
- [16] SKF: Slewing bearings catalogue, svibanj 2022.
- [17] Milan Opalić, Petar Rakamarić: REDUKTOR. FSB, Zagreb, studeni 2001.
- [18] Pravilnik o tehničkim normativima za dizalice (SL 65/91)
- [19] <u>https://www.liebherr.com/</u> kolovoz 2022.
- [20] https://www.palfinger.com/ kolovoz 2022.
- [21] https://www.boschrexroth.com/en/dc/ lipanj 2023.
- [22] <u>https://www.skf.com/hr</u> srpanj 2023.
- [23] <u>https://gosan.net/</u> srpanj 2023.

PRILOZI

- I. Liebherr-Components AG hidraulični cilindar za fiksiranje kraka
- II. Bosch Rexroth hidraulični cilindar za izvlačenje teleskopa
- III. SKF pločasti lanac prema DIN 8152 za izvlačenje teleskopa
- IV. Bosch Rexroth planetarni prijenosnik MOBILEX GFB 9 T2 2000/2
- V. Bosch Rexroth hidraulični aksijalni klipni motor A2FM 56
- VI. Bosch Rexroth hidraulični radijalni klipni motor MCR3
- VII. Bosch Rexroth hidraulični radijalni klipni motor MCR3 kočnica
- VIII. SKF ležaj okretnih valjaka lanca
- IX. SKF okretni ležaj postolja RKS.161.14.1094
- X. SKF aksijalni ležaj kuke
- XI. SKF ležaj bubnja
- XII. Gosan užnica s kugličnim ležajevima
- XIII. Liebherr sistem protuutega
- XIV. Cranesmart systems senzor vjetra
- XV. Cranesmart systems senzor nagiba i duljine teleskopa
- XVI. Cranesmart systems senzor granične točke dizanja (anti-two-block)
- XVII. Cranesmart systems senzor opterećenja
- XVIII. Midstream osvjetljenje za dizalicu
- XIX. Dijagram dosega
- XX. Tehnička dokumentacija

I. Liebherr-Components AG hidraulični cilindar za fiksiranje kraka

Product key: ISO MP3/140/100*1837-1062/GK/A/Z/1/B1/D0/W0/N0/E3/G

Series	ISO
Mounting type	Fixed bushing eye at base (MP3)
Piston diameter	140 [mm]
Piston rod diameter	100 [mm]
Installation length	1837 [mm]
Stroke length	1062 [mm]
Piston rod connection	Pre-assembled swivel head
Piston rod version	Single chrome coating NSS with 120 h Rating 9
Hydraulic port	Inch threaded connection acc. to 1179-1
Hydraulic port location at head	Top - piston rod side view
Control block assembly	Both sides
End of stroke cushioning (adjustable)	Without
Position measuring system	Without
Proximity switch	Without
Vent port	VSTI screw plug on both sides
Paint	Primed white
Max. pressure	250 [bar]
Max. compressive force	384.8 [kN]
Max. tensile force	188.5 [kN]

II. Bosch Rexroth hidraulični cilindar za izvlačenje teleskopa

Configuration docum Mill type cylinder	nentation	A Bosch Company
Model code	CDH1MP3/100	/56/3000A3X/B11CSDMZWFWWWBFW
Link to configuration		
Hint: Link to configurat	tion valid until 202	3-12-10
Description		
Mode of operation	CD	Single rod cylinder
Range	H1	Range H1
Mounting types	MP3	Plain rear clevis at cap end
Bore diameter	100	D = 100 mm
Piston rod diameter	56	d = 56 mm
Stroke length	3000	mm
Design principle	A	Flanged head and cap
Component series	3Х	30 to 39 unchanged installation and connection dimensions
Port connection / types	В	according to ISO 1179-1 (pipe thread ISO 228-1) EE = G 1 D4 = 47 (max. 0.5 mm deep)
Port location at head	1	Top - viewed on the piston rod
Port location at cap	1	Top - viewed on the piston rod
Piston rod version	С	Hard chromium-plated
Piston rod end	8	With self-aligning clevis fitted CGAS KK = M50x3 CH = 135 CN = 50
End position cushioning	D	Both sides, self adjusting Cushioning length, head end 25 mm Cushioning length, base end 25 mm
Seal version	м	Standard seal system (for mineral oil HI, HI P and HEA)
Option	z	Additional options
Proximity switch	w	Without
Guide rings	F	Guide rings
Screwed coupling	w	Without
Ball and socket joint opti	ion W	Standard version: Conical grease nipple DIN71412 form A
Piston rod extension	w	Without
Corrosion category	в	Class CP4

											Table 1
SKF Leaf (Chains - ANS	5I BL422-BL	.888								
		1 h ₂ 1 2×2			000 3×4		4×6	- 6x6			
ANSI Chain number	BS/ISO Chain number	Dimensior Pitch	ns Plate lacing	Plate height	Plate thickness	Pin diameter	Pin length	Ultimate tensile strength	Average tensile strength	Weight per meter	Designation
		Ρ		h ₂ max	T max	d ₂ max	L max	Q min	Q ₀	q	
-		mm	-					kN		kg/m	-
BL422 BL423 BL434 BL444 BL446 BL466 BL488	LH0822 LH0823 LH0834 LH0844 LH0846 LH0866 LH0888	12,7	2 × 2 2 × 3 3 × 4 4 × 6 6 × 6 8 × 8	12,07	2,08	5,09	11,05 13,16 17,40 19,51 23,75 27,99 36,45	22,2 22,2 33,4 44,5 44,5 66,7 89,0	27,6 27,6 41,4 56,0 56,0 81,7 109,4	0,64 0,80 1,12 1,28 1,60 1,92 2,56	PHC BL422 PHC BL423 PHC BL434 PHC BL434 PHC BL446 PHC BL466 PHC BL468
BL522 BL523 BL534 BL544 BL546 BL566 BL588	LH1022 LH1023 LH1034 LH1044 LH1046 LH1066 LH1088	15,875	2 × 2 2 × 3 3 × 4 4 × 4 4 × 6 6 × 6 8 × 8	15,09	2,44	5,96	12,90 15,37 20,32 22,78 27,74 32,69 42,57	33,4 33,4 48,9 66,7 66,7 100,1 133,4	43,1 43,1 65,6 84,5 125,1 169,5	0,88 1,10 1,50 1,80 2,20 2,65 3,50	PHC BL522 PHC BL523 PHC BL534 PHC BL544 PHC BL546 PHC BL566 PHC BL588
BL622 BL623 BL634 BL644 BL646 BL666 BL688	LH1222 LH1223 LH1234 LH1244 LH1246 LH1266 LH1288	19,05	2 × 2 2 × 3 3 × 4 4 × 4 4 × 6 6 × 6 8 × 8	18,11	3,30	7,94	17,37 20,73 27,43 30,78 37,49 44,20 57,61	48,9 48,9 75,6 97,9 97,9 146,8 195,7	63,6 63,6 102,8 120,9 120,9 190,8 238,8	1,45 1,80 2,50 2,90 3,60 4,30 5,80	PHC BL622 PHC BL623 PHC BL634 PHC BL644 PHC BL646 PHC BL666 PHC BL688
BL822 BL823 BL834 BL844 BL846 BL846 BL888	LH1622 LH1623 LH1634 LH1644 LH1646 LH1666 LH1688	25,4	2 × 2 2 × 3 3 × 4 4 × 4 4 × 6 6 × 6 8 × 8	24,13	4,09	9,54	21,34 25,48 33,76 37,90 46,18 54,46 71,02	84,5 84,5 129,0 169,0 253,6 338,1	108,2 108,2 170,0 214,6 214,6 324,5 432,7	2,20 2,70 3,80 4,30 5,40 6,50 8,60	PHC BL822 PHC BL823 PHC BL834 PHC BL844 PHC BL846 PHC BL866 PHC BL888

III. SKF pločasti lanac prema DIN 8152 za izvlačenje teleskopa

ØD4

D1 h8 Ø D2

Ø D3

13

f GFB T2/T3 2000 • X = The gearing of the output pinion (modul, number of teeth, tooth width, etc.) is governed by the customer's ring gear.

Dimensions

6

MOBILEX GFB | Swing Drives Dimensions, Technical Data

Type/Version	Output	Torque	Gear Ratio	Holding	Hydraulic Motor	
GFB	Excavator	Crane		Torque		
	T _{2 max}			T _{Br max}		
	N	m	i	Nm		
GFB 9 T2 2000/2	4,000	7,000	33.4	245	A6VM 55 / A2FM 56	
FB 17 T2 1000 7,700 12,700		12,700	32.5 • 45.7	390	A2FE 45 • 56	
GFB 17 T2 2000	17 T2 2000 7,700 12,700		45.7	45.7 390		
GFB 24 T2 1000/1	B 24 T2 1000/1 10,600 17,500		149.1	249	A2FM 32	
GFB 26 T2 1000	FB 26 T2 1000 10,000 16,500		10,000 16,500 43.9 • 51.5 613		A2FE 80	
GFB 26 T2 2000 10,000 16,500		16,500	43.9 • 51.5 6		A2FE 80	
GFB 36 T3 1000/1	17,500	28,500	117.6 • 153.6	117.6 • 153.6 332		
GFB 36 T3 1000/2	17,500	28,500	117.6 • 153.6	332	A2FE 45 • 63	

GFB 9 T2 2000/2 = Identification number for different overall lengths, diameters resp. motor attachment variants

Bosch Rexroth AG, RE 77201/02.2016

MOBILEX GFB | Swing Drives 7 Dimensions, Technical Data

Dimensions,	Technical Data

Dimensions, Bearing	imensions, Bearing Load Capacities and Mass									
Type/Version GFB	D1	D2	D3	D4	D5	Mass				
			mm			kg				
GFB 9 T2 2000/2	175	260	288	12x 17.5	-	85				
GFB 17 T2 1000	256	290	320	16x 17.5	225	130				
GFB 17 T2 2000	250	305	340	16x 17.5	-	130				
GFB 24 T2 1000/1	265	315	355	20x 17.5	230	165				
GFB 26 T2 1000	280	350	380	20x 17.5	250	225				
GFB 26 T2 2000	275	335	365	20x 17.5	-	240				
GFB 36 T3 1000/1	280	350	380	20x 17.5	250	210				
GFB 36 T3 1000/2	280	350	380	18x 17.5	280	175				

-	-
6	55
-	-
8	75
10	85
-	-
5	85
5	85
	- 6 - 8 10 - 5 5 5

Product attributes	
Product (axial piston unit)	A2FM
Type of actuation	Motor
Size (displacement) [cm³]	56
Series	61
Direction of rotation	alternating
Sealing material	FKM
Low temperature version	no
Shaft end	A (splined shaft DIN 5480)
Mounting flange	4-hole ISO 3019-2
Working ports	02 (port A, B;SAE lat.opp.)
Speed sensing	without
Pressure relief valve	without
Rotary group, hydraulic part	Standard
Drive shaft bearing	Standard bearing
Shaft seal	Standard WDR
Housing ports	Leakage oil port T1
Housing port, status	Leakage oil port T1 plugged
Installation version of port plate	Installation version 1 (standard)

V. Bosch Rexroth hidraulični aksijalni klipni motor A2FM 56

Mounting bolts	Standard
Port plate	A-Standard
Classification society (external)	Standard (without acceptance)
Test certificate	without
Test certificate language code	Without
Paint/base coat	RAL 9005 deep black
Paint/top coat	without
Weight [kg]	19.5

VI. Bosch Rexroth hidraulični radijalni klipni motor MCR3

Technical data

Frame size			MCR31)	MCR5	MCR10	L)				
Type of mounting			Flange r	nounting,	face more	unting				
Pipe connections ²⁾³⁾			Threade	d per SA	E J514; Fl	anged pe	r SAE J51	8		
Shaft loading			see pag	e 9						
Weight			MCR3D	MCR5D	MCR5E	MCR10D)			
Single speed (1L)	m	kg	21	39	36	62				
Two speed (2WL)	m	kg	27	47	44	67				
Hydraulic fluid ⁴⁾			Mineral oil type HLP/HLVP to DIN 51524							
Fluid cleaniness			ISO 440	6, Class 2	20/18/15					
Fluid viscosity range	$\nu_{min/max}$	mm²/s	10 to 20	00						
Fluid temperature range ⁵⁾	$\theta_{\min/\max}$	°C	-20 to +	85						
Pressure			Low dis	placemen	t		High dis	placemer	nt	
Maximum differential pressure ⁶⁾⁷⁾	$\Delta p_{\rm max}$	bar	450				400			
Maximum pressure at port A or B ⁶⁾⁷⁾	p _{max}	bar	470				420			
Maximum case drain pressure	p _{case max}	bar	10				10			
Motor performance MCR3										
Displacement	Vg	cm ³ /rev	160	225	255	280	325	365	400	
Specific torque		Nm/bar	3	4	4	4	5	6	6	
Maximum torque ⁶⁾¹²⁾	T _{max}	Nm	1146	1500	1500	1500	1500	1500	1500	
Minimum speed for smooth running ⁸⁾	n_{\min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Maximum speed (1L) ⁹⁾¹⁰⁾	n _{max}	rpm	670	475	420	385	330	295	270	
Maximum speed (2WL) ⁹⁾¹⁰⁾	n _{max}	rpm	875	620	550	500	430	385	350	
Motor performance MCR5										
Displacement	Vg	cm ³ /rev	380	470	520	565	620	680	750	820
Specific torque		Nm/bar	6	7	8	9	10	11	12	13
Maximum torque ⁶⁾¹²⁾	T _{max}	Nm	2722	3000	3000	3000	3000	3000	3000	3000
Minimum speed for smooth running ⁸⁾	n _{min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Maximum speed (1L) ⁹⁾¹⁰⁾	n _{max}	rpm	475	385	350	320	290	265	240	220
Maximum speed (2WL) ⁹⁾¹⁰⁾	n _{max}	rpm	570	465	420	385	350	320	290	265
Motor performance MCR10										
Displacement	Vg	cm ³ /rev	780	860	940		1120	1250	1340	
Specific torque		Nm/bar	12	14	15		18	20	21	
Maximum torque ⁶⁾¹²⁾	T _{max}	Nm	4800	4800	4800		4800	4800	4800	
Minimum speed for smooth running ⁸⁾	n_{\min}	rpm	0.5	0.5	0.5		0.5	0.5	0.5	
Maximum speed (1L and 2WL) ⁹⁾¹⁰⁾	n _{max}	rpm	215	195	180		150	135	125	
Brake			MCR3D		MCR5D	, MCR5E	MCR5D	MCR5E	MCR10	D
Holding brake (disc brake)			B2		B2		B4		B7	
Minimum holding torque	t _{min/max}	Nm	2200		2200		4400		7000	
Release pressure (min)	prel min	bar	11		11		11		11	
Release pressure (max)	p _{rel max}	bar	15		15		15		15	
Maximum pressure at brake port "Z"	p _{max}	bar	40		40		40		30	
Oil volume to operate brake	V _{rel}	cm ³	23		23		46		36	

Footer on page 6

RE 15196/02.2017, Bosch Rexroth AG

Motor	D1	D2	D3	D4	D5	D6	D7	D8	L1	L2	L3	L4	L5	L6
MCR3	ø40	ø125	ø134	-	ø180	-	ø14	ø160	281.3	114.4	167	84.5	133	9
MCR5	ø50	ø152.4	ø189	ø225	ø223	ø225	ø22	ø229	304	96	197	82	181	10.5
MCR10	ø60	ø152.4	ø189	ø264	ø262	ø262	ø20.5	ø229	407	123	259	105	223	10.5
Motor	L7	L8	L9	L10	L11	L12	L13	L14	L15	S1	S2			
MCR3	112	5	70	14	113	43	140	12	66.5	63.5	90°			
MCR5	145	5	70	18	162	53.5	200	14	76	75	45°			
MCR10	182	6	80	19	162	64	200	18	98	89	45°			
Notor	D1	D2	D3	D4	D5	D6	D7	D8	L1	L2	L3	L4	L5	L6
Notor	D1	D2	D3	D4	D5	D6	D7	D8	L1	L2	L3	L4	L5	L6
ICR3	Ø40	-	Ø134	-	ø180	-	Ø14	ø160	341	114.4	226.7	84.5	105.7	9
ICR5	Ø50	Ø152.4	ø189	0225	0223	ø225	Ø22	ø229	343	96	237	82	159	10.
icitio	1000	0152.4	2103	8204	0202	0202	820.3	0223	452	125	200.0	105	247.5	10.
Motor	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	S1	S2	
MCR3	112	5	70	14	113	43	140	12	67.5	26	65	63.5	30°	
ACR5	-	5	70	18	162	53.5	200	14	105	23.5	78	75	45°	
ACR10	180.5	5	80	19	162	64	200	18	88	25	107	89	45°	
orts								6 1						. 2)
		Designation Port function		Code			Size			p _{max} [bar]			ate ²⁾	
Notor	Design	ation	Port fi	unction	С	ode		3120				-		
Motor MCR3	A, B	ation	Port fu	unction outlet	s	ode AE J514		7/8-14 U 1 1/16-1	NF ⁴⁾ 2 UNF ⁵⁾		470/420	1)	0	
Aotor ACR3	A, B	ation	Port fu Inlet, c Case d	unction outlet Irain	s s	ode AE J514 AE J514		7/8-14 U 1 1/16-1 9/16-18	NF ⁴⁾ 2 UNF ⁵⁾ UNF		470/420	L)	0	
Aotor ACR3	A, B L F	ation	Port fu Inlet, c Case d Filler p	unction outlet Irain oort	s s	ode AE J514 AE J514 AE J514		7/8-14 U 1 1/16-1 9/16-18 3/4-16 U	NF ⁴⁾ 2 UNF ⁵⁾ UNF		470/420 ³ 10 10	.)	0 0 X	
Motor MCR3	A, B L F X	ation	Port fu Inlet, c Case d Filler p 2 spee	outlet drain oort d port	s s s	AE J514 AE J514 AE J514 AE J514 AE J514		7/8-14 U 1 1/16-1 9/16-18 3/4-16 U 9/16-18	NF ⁴⁾ 2 UNF ⁵⁾ UNF NF UNF		470/420 10 10 35		0 0 X 0	
Motor MCR3 MCR5	A, B L F X A, B	ation	Port fu Inlet, c Case d Filler p 2 spee Inlet, c	Irain oort d port outlet	s s s s	AE J514 AE J514 AE J514 AE J514 AE J514 AE J514		7/8-14 U 1 1/16-1 9/16-18 3/4-16 U 9/16-18 1 1/16-1	NF ⁴⁾ 2 UNF ⁵⁾ UNF UNF UNF 2 UNF		470/420 10 10 35 470/420	L)	0 0 X 0	
Motor MCR3 MCR5	A, B L F X A, B L L	ation	Port fu Inlet, c Case d Filler p 2 spee Inlet, c Case d	d port d port d port d port d port	5 5 5 5 5 5 5 5	AE J514 AE J514 AE J514 AE J514 AE J514 AE J514 AE J514		7/8-14 U 1 1/16-1 9/16-18 3/4-16 U 9/16-18 1 1/16-1 3/4-16 U	NF ⁴⁾ 2 UNF ⁵⁾ NF UNF 2 UNF 2 UNF		470/420 10 10 35 470/420 10	L)	0 0 X 0 0	
Motor MCR3 MCR5	A, B L F X A, B L F F	ation	Port fu Inlet, c Case d Filler p 2 spee Inlet, c Case d Filler p	unction outlet lrain d port outlet lrain oort	5 5 5 5 5 5 5 5 5 5	AE J514 AE J514 AE J514 AE J514 AE J514 AE J514 AE J514		7/8-14 U 1 1/16-1 9/16-18 3/4-16 U 9/16-18 1 1/16-1 3/4-16 U 3/4-16 U	NF ⁴⁾ 2 UNF ⁵⁾ UNF UNF 2 UNF 2 UNF NF		470/420 10 10 35 470/420 10 10 10	.)	0 X 0 0 0 X	

3/4 in

3/4-16 UNF

3/4-16 UNF

9/16-18 UNF

MCR10	А, В	Inlet, outlet	SAE J518 ³⁾
	L	Case drain	SAE J514
	F	Filler port	SAE J514
	x	2 speed port	SAE J514

1) Depends on nominal size

2) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

a) Only dimensions according to SAE J518

(Code 62 - high pressure series)

4) Valid for MCR3 single speed
 5) Valid for MCR3 two speed

RE 15196/02.2017, Bosch Rexroth AG

0

0

х

0

470/4201)

10

10

35

Dimensions

MCR-D

Before finalizing your design, request a binding installation drawing.

Diplomski rad

MCR5

MCR10

Motor

MCR3

MCR5

MCR10

Holding brake (multi-disc brake) L18 L19 Reference brake interface þ þ Housing type D മ Ħ Housing type E þ þ þ Motor Brake L18 L19 D9 MCR3 **B2** 67.3 22 ø174

ø174

ø215

ø251

Size

9/16-18 SAE

9/16-18 SAE

9/16-18 SAE

Code

SAE J515

SAE J515

SAE J515

VII. Bosch Rexroth hidraulični radijalni klipni motor MCR3

1) O = Must be connected (plugged on delivery)

Designation

B2

B4

B7

z

z

z

67.3

80.7

97.8

Port function

Brake port

Brake port

Brake port

22

29

26.5

Before finalizing your design, request a binding installation drawing.

p_{max} [bar]

40

40

30

State¹⁾

0

0

0

Bosch Rexroth AG, RE 15196/02.2017

VIII. SKF ležaj okretnih valjaka lanca

6208-2RS1

Deep groove ball bearing with seals or shields

Single row deep groove ball bearings with seals or shields are particularly versatile, have low friction and are optimized for low noise and low vibration, which enables high rotational speeds. They accommodate radial and axial loads in both directions, are easy to mount, and require less maintenance than many other bearing types. The integral sealing can significantly prolong bearing service life because it keeps lubricant in the bearings and contaminants out.

- Integral sealing prolongs bearing service life
- Simple, versatile and robust design
- Low friction and high-speed capability
- · Accommodate radial and axial loads in both directions
- Require little maintenance

Overview

Dimensions

Bore diameter	40 mm
Outside diameter	80 mm
Width	18 mm

Performance

Basic dynamic load rating	32.5 kN
Basic static load rating	19 kN
Limiting speed	5 600 r/min
SKF performance class	SKF Explorer

Properties

Without
1
None
Cylindrical
Sheet metal
No
CN
Bearing steel
Without
Seal on both sides
Contact
Grease
Without

IX. SKF okretni ležaj postolja RKS.161.14.1094

Dimens	Vimensions A O				Attachr Outer ri	Attachment bolt holes Outer ring			Inner ring			Designation
d _m	D	D_1	d	d1	J _e	K _e	N_{e}	J_{i}	Ki	Ni		
mm					mm		-	mm		-	kg	-
14	504	416	344	412	455	M 12	20	368	14	24	32,0	RKS.161.14.0414
44	640,8	546	474	542	585	M 12	28	498	14	32	44,0	RKS.161.14.0544
44	742,8	646	574	642	685	M 12	32	598	14	36	52,0	RKS.161.14.0644
4	838,8	746	674	742	785	M 12	36	698	14	40	59,0	RKS.161.14.0744
4	950,4	846	774	842	885	M 12	36	798	14	40	71,0	RKS.161.14.0844
4	1046,4	946	874	942	985	M 12	40	898	14	44	77,0	RKS.161.14.0944
094	1 198,4	1096	1024	1092	1135	M 12	44	1048	14	48	91,0	RKS.161.14.1094

Designation	Gear Dimensions d ₀ 1) m z k∙m		Permissible axial tooth forces T _{fnormal} ²⁾ T _{fmax}		Basic lo dynamic C	Basic load ratings dynamic static C C ₀		niting Jram Bolt curves		
-	mm		-	mm	kN		kN		-	
RKS.161.14.0414	495	5	99	-0,5	12	46	167	595	r1	b1
RKS.161.14.0544	630	6	105	-0,6	16	54	194	784	r2	b2
RKS.161.14.0644	732	6	122	-0,6	16	54	210	919	r3	b3
RKS.161.14.0744	828	6	138	-0,6	16	54	228	1 070	r4	b4
RKS.161.14.0844	936	8	117	-0,8	21	72	244	1 220	r5	b5
RKS.161.14.0944	1 0 3 2	8	129	-0,8	21	72	258	1 250	r6	b6
RKS.161.14.1094	1 184	8	148	-0,8	21	72	279	1 450	r7	b7

Fakultet strojarstva i brodogradnje

X. SKF aksijalni ležaj kuke

51108

SKF.

Single direction thrust ball bearing

Single direction thrust ball bearings can accommodate axial loads in one direction. They must not be subjected to any radial load. Their separable components facilitate mounting/dismounting and maintenance inspections. Many of the components are interchangeable. The shaft washers have a ground bore that enables an interference fit.

- Separable design facilitates mounting/dismounting and maintenance inspections
- Interchangeable components
- · Ground bore of shaft washers enable interference fit

Overview

Dimensions

Bore diameter	40 mm
Outside diameter	60 mm
Height	13 mm

Performance

Basic dynamic load rating	25.5 kN
Basic static load rating	63 kN
Reference speed	5 000 r/min
Limiting speed	7 000 r/min

Properties

Axial load capability	Single-direction
Number of rows	1
Cage	Sheet metal
Housing washer type	Flat
Tolerance class	Normal
Material, bearing	Bearing steel
Coating	Without

XI. SKF ležaj bubnja

Pillow block roller bearing unit, two-bolt, SKF ConCentra locking

Pillow (plummer) block roller bearing units and take-up roller bearing units consist of a spherical or tapered roller bearing mounted in a non-split housing that can be bolted to a support surface. This variant has a spherical roller bearing, a two-bolt base and SKF ConCentra locking, creating a true concentric tight fit, and setting the correct internal clearance within the bearing. The units are sealed and lubricated and ready to use. This bearing unit covers a wide range of requirements, in metric dimensions.

Ready to mount

SYNT 40 F

- Robust
- · Factory lubricated and sealed
- Quick mounting
- Long service life

Overview

Dimensions

Shaft diameter	40 mm
Centre height (pillow block)	60 mm
Housing overall width	60 mm
Centre distance between bolt holes	170 mm
Attachment bolt diameter	12 mm
Bearing width, total	65 mm

Performance

Basic dynamic load rating	96.5 kN
Basic static load rating	90 kN
Limiting speed	3 800 r/min

Properties

Housing type	Pillow block
Number of bolt holes for fasteners	2
Bearing insert	Spherical roller bearing
Retaining feature, inner ring	SKF ConCentra
Bearing position	Locating
Bore type	Cylindrical
Material, housing	Cast iron
Material, bearing	Bearing steel
Coating	Without

Technisch transportierbar - Tec

XI. Liebherr sistem protuutega

6,5 t

Ballast Variante 1/Counterweight Version 1 Contrepoids Variante 1/Zavorra Variante 1 Contrapeso Variante 1/Противовес Вариант 1

Ballast Variante 2/Counterweight Version 2 Contrepoids Variante 2/Zavorra Variante 2 Contrapeso Variante 2/Противовес Вариант 2

	go			D				SHEAVE	S MC	DEL A	Sho.	
	gosan											
REF.: 030.101 - With bronze bushing											000	
	M		SHEAVE N	ØWIRE	d1	d2	d3	L1	b		5	,
			1	9	225	260	45	78	30		2.	
			2	11	280	320	55	88	35			t i
		ATA	3	13	315	360	60	88	39			
	1 1 1 1 1	L D	5	14	400	455	75	108	47		2 i	,
		AIC/	6	18	450	510	80	108	54		0	
		E	7	20	500	570	90	118	59		- 9	÷
		Ħ	* Under s	special order.	we will be a	able to produ	ice other m	easures.	-		- P	;
BEE: 030 102 - With hall bearings form 71												
			SHEAVE N	ØWIRE	d1	d2	d3	BEARING	L2	ь	2	
			1	6-7	125	150	25	6205	32	23	<u> </u>	
			2	7-8	150	175	30	6206	34	24		
		ATA	3	9-10	180	215	40	6208	38,5	30	ر ر	·
		LD	4	11-12	200	240	50	6210	43	34	2	
	+++ 358	ICA	6	14-15	240	330	70	6212	52	42	5	
		HN	7	16	290	345	80	6216	56	45	- P)
		Ē	8	17-18	355	415	80	6216	56	51	C	ţ
			9	20-21	400	460	90	6218	64	66		
* Under special order, we will be able to produce other measures.												
		A	SHEAVE N		d1	d2	d3	BEARING	12	b		
		DAT.	1	24	430	505	100	5020	54	65		
		IICAL	2	26	470	550	100	5020	54	71		
		TECHI	* Under s	special order,	we will be a	able to produ	ice other m	easures.				
							1			N		
	It complies with Material (steel) Rim and p Hub: E355	h the Ir : lates: \$;	nternational S	tandards	 Standard Default fin 	hardness: 20	0-250 HB (RAL 9005	(higher if reque:	sted) tings by rec	DESCRIPTIO		
										chap. 02	חו	

XII. Gosan užnica s kugličnim ležajevima

XIV. Cranesmart systems senzor vjetra

Information subject to change without notice. Consult the factory for the most current data and part numbers.

Component dimensions are shown in inches.

Wind Speed Indicator Datasheet

Overview

The Wind Speed Indicator is a wireless component that measures wind speed, within a range of 15-80 MPH. It is traditionally used in situations where operations are required to shut down if the wind factor becomes too extreme.

Operating time

100% (continuous duty)

Voltage type Powered by a 3.6 volt D cell lithium battery

Operating temperature -40°C to +60°C

Operating Frequency Range

900-928 MHz in North America 868-870 MHz in Europe

Material

Body material – Ultramid 8333G Hi-Polyamide 6 Seals – ROHS compliant silicon rubber, 60 durometer shore-A, compound # SIM40160

Connection

No connection, component provides a wireless signal

Mounting options Custom fitted to each application

Hazardous locations Not rated for hazardous zones

Cranesmart Systems, Inc. 4908 97 St. Edmonton, AB T6E 5S1 Ph: 780.437.2986 Email: info@cranesmart.com

XV. Cranesmart systems senzor nagiba i duljine teleskopa

Cable Reel Datasheet

Overview

A wireless component which transmits positional information to a central display panel.

Operating time 100% (continuous duty)

Voltage type Powered by a 3.6 volt D cell lithium battery

Operating temperature -40°C to +60°C

Operating Frequency Range

900-928 MHz in North America 868-870 MHz in Europe

Material

Transducer material – Ultramid 8333G Hi-Polyamide 6 Seals – ROHS compliant silicon rubber, 60 durometer shore-A, compound # SIM40160 Anodized aluminum and stainless steel construction High-tensile strength stainless steel cable, ¼" diameter

Connection

No connection, component provides a wireless signal

Mounting options

Mounting brackets are custom fit to the equipment monitored

Hazardous locations

Exia IIB T4 Intrinsically Safe per IEC CAN/CSA E60079-11:02

Cranesmart Systems, Inc. 4908 97 St. Edmonton, AB T6E 5S1 Ph: 780.437.2986 Email: info@cranesmart.com

Information subject to change without notice. Consult the factory for the most current data and part numbers.

Component dimensions are shown in inches.

XVII. Cranesmart systems senzor opterećenja

XVIII. Midstream osvjetljenje za dizalicu DOCKER 300

Heavy Duty LED floodlight designed to replace HID lighting in applications requiring high performance and high durability.

Electronic: LED control gear driving 72 LEDs at 1A with symmetrical and Asymmetrical distributions. IP67, Class I protection with 10 kV Surge Protection.

Body: recyclable, extruded aluminum and powder - coated AISI 316 stainless steel.

Optic Enclosure: 4mm Tempered Glass and PMMA Weatherproof lenses.

Performance

Heatsinks

Bracket

Weight

Dimensions (L-W-H)

Protection Level

Impact Resistance

Vibrations Resistance

ANSI C136.31-2010

Luminaire Output (Flux)	Up to 29.000 lm
Power Absorption	220 W
Lumen Maintenance [L80 B10]	119.000h
Lumen Maintenance [L70 B50]	190.000h
Optoelectronics	70,00,00
CRI	70 - 80 - 90
Colour Temperature	 3000K Warm White 4000K Neutral White 5000K Pure White 5700K Cool White
Secondary Optics	Weather proof, Anti-yellowing PMMA refraction matrix
Protective Screen	4mm Tempered Glass
No of LEDs	72
Luminaire Body	
Chassis and Bracket	AISI 316 Stainless Steel
Motol Einich	Powder Coating

Anodized Extruded Aluminum

(Copper Content < 0.1%)

Customizable AISI 316

7.9L x 14.8W x 8.4H in

IP67 - UL1598 Suitable for Wet

Up to 6G for 100.000 cycles

28 lb

Locations

K10

UL 1598A:2000	Salt Spray ASTM B117 for 1000 hours with 5% salinity
Electronics	
Voltage input	277 - 480 VAC 50-60Hz
Active Power F.C.	0.97
Surge Protection	10kV
Insulation class	IEC Class I
Short Circuit Protection	Auto-recovery
Over Heat Protection	Drops output current
Operation Conditions	
Working temperature	-40°F/+130°F
Humidity Banda	0% - 94%

Normative reference

Corrosion Resistance

UL 1598 / CSA C22.2 No. 250.0-08 – Luminaires UL 8750 – Standard for Light Emitting Diode (LED) Equipment for Use in Lighting Products CFR part 15 class B – EMI ANSI C136.25-2013 – American National Standard for Roadway and Area Lighting Equipment - Ingress Protection (Resistance to Dust, Solid Objects, and Moisture) for Luminaire Enclosures IEC 60068-2-52:1996 Environmental Test – Part 2: Tests - Test Kb - Salt mist cyclic (sodium chloride solutions) ANSI/EEE C62.41.2 – 2002 IEEE Recommended Practice on characterization of Surge Voltages in Low Voltage AC Power Circuits CSA C22.2 No. 250.13-17 - LED Equipment for Use in Lighting Applications

MIDSTREAM

Midstream Lighting Ltd, 1 Chesham Street, London SW1X 8ND UK Tel +44 207 584 8310 Email info@midstreamlighting.com www.midstreamlighting.com

XIX. Dijagram dosega

1	Ó.	Ŋ	
		\overline{V}	
		/	
alj i	Ē		
1:2			

^{0 10 20 30 40 50} 90 100 60 70 80

			_		
7		8	\square		
360 M12					
	<u>a4</u> T				
85.5	55 47				
			!		
	<u>↓</u>	<u> </u>)		
		Ø 18	4		
	(15)		'		
		1011.2	_		
AS-01-04-02-024	\$235JR	40x10x3			
DIN 933	8,8	M3x10			
AS-01-04-02-022	S235JR	Ø 45/Ø 40x44			
AS-01-04-02-021	S235JR	Ø 45/Ø 40x20			
AS-01-04-02-020	\$235JR	Ø 45/Ø 40x15	Τ		
AS-01-04-02-019	S235JR	Ø40x120	\neg		
AS-01-04-02-018	S235JR	Ø100x80			
DIN 934	8	M12x1,25	\neg		
DIN 933	8,8	M12x1,25x35	\neg		
AS-01-04-02-015	\$235.JR	85.5x55x30			
AS-01-04-02-014	\$235 IR	60x60x5	\neg		
AS-01-04-02-013	\$235 IR	Ø125/Ø90x30	\dashv		
AS-01-04-02-013	\$235 IR	450x220x10	\dashv		
AS-01-04-02-011	\$235 IR	450x290x10	\neg		
,	CuSn10	Bronzeoilless			
	0	6101120011033	-		
	0 00		\neg		
2000	0,0	M8X8U			
02U0	CODE ID	SKF			
AS-01-04-02-006	SOJE ID	ψ 4UX 36U	\neg		
AS-01-04-02-005	3235JK	Ψ/U/Ψ4UX15 310x240x5	\dashv		
AS-01-04-02-004	5233JK	310x50x10	\neg		
AS_01_04_02_003	\$235 IR	61.5x350x10	\dashv		
AS-01-04-02-002	\$235JR	470x310x10	\neg		
Crtež broj	Matanial	Sirove dimenzije Maaa	\exists		
Norma		Proizvođačí	а —		
Antonio Strahiia	Potpis				
Antonio Strahija] 🖊 🛎 FSB Zagreb	ן נ		
Antonio Strahija		-			
		-			
	Objekt broi:		┨		
dohvatnik	R. N. broi:		\neg		
		Kopija	\dashv		
I			\otimes		
Masa:					
		Pozicija:	<u></u>		
	imor	+ Format: A	.3		
	JIIEI	II Z Listova: 1	1		
· •) :_+. 1	\exists		
· A3	-01-04-02		<u> </u>		
10 20 30	40 50	60 70 80 90	10		

7			8		
	I				
	B 928 40	510			<u>370</u>
1	4			A	
DIN 933	8,8	, , , , , , , , , , , , , , , , , , ,	M3x10		
AS-01-04-03-012	S235JR	Ø.	45/Ø40x4	44	
AS-01-04-03-012	S235JR	Ø	Ø 45/ Ø 40x5		
DIN 471	S235JR	(Ø 40x1,75		
AS-01-04-03-010	S235JR		Ø 40x120		
6208			SKF		
AS-01-04-03-008	S235JR		Ø100x80		
AS-01-04-03-007	S235JR		60x60x5		
AS-01-04-03-006	S235JR	39	390x220x10		
AS-01-04-03-005	S235JR	39	390x250x10		
AS-01-04-03-004	S235JR	5	510x370x10		
AS-01-04-03-003	S235JR	1	500x70x10)	
AS-01-04-03-002	S235JR	5	10x370x10)	
AS-01-04-03-001	\$235JR	4) 711-	
n. Norma	Materijal		Proizvođač	zije	Masa
Ime i prezime Antonio Strahija Antonio Strahija	Potpis			Zag	greb
		St	tudij stro	jarst	tva
	Nhiekt broi				
dohvatnik	R N hroi	•			
	Smjer: Kons	trukciisk	;i	Ka	opija XXXXXXX
Masa:	DIPLON	1SKI I	RAD		
eći seg	men	n†	Pozicija: 3	Form Listo	at: A3 va: 1
j: AS	-01-04-03	3		List:	1
10 20 30	40 50	60	70 8	0	90 1

