Žganec, Benjamin

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:105853

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-10-03

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Benjamin Žganec

Zagreb, 2023.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Student:

Prof. dr. sc. Matija Hoić, mag. ing.

Benjamin Žganec

Zagreb, 2023.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru doc. dr. sc. Matiji Hoiću na svim savjetima, sugestijama, pomoći i izdvojenom vremenu tijekom izrade ovog diplomskog rada.

Također se zahvaljujem svojoj obitelji, prijateljima i kolegama na svakoj vrsti pomoći i razumijevanju tijekom trajanja studija.

Benjamin Žganec

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za diplomske ispite studija strojarstva za smjerove:

Procesno-energetski, konstrukcijski, inženjersko modeliranje i računalne simulacije i brodostrojarski

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje	
Datum	Prilog
Klasa: 602 - 04	4/23-6/1
Ur heni: 15 - 2	3.

DIPLOMSKI ZADATAK

Student:

Benjamin Žganec

JMBAG: 0035205662

Naslov rada na hrvatskom jeziku: Podizač na temelju mehanizma Tusijevog para

Naslov rada na engleskom jeziku:

Lift based on the mechanism of the Tusi couple

Opis zadatka:

Potrebno je konstruirati podizač za komadni teret čiji se mehanizam za dizanje bazira na mehanizmu Tusijevog para. Pretpostaviti da će teret uvijek biti na sredini podizne platforme. Ciljano konstrukcijsko rješenje mora imati sljedeće karakteristike:

1)	Najveći teret:	Q = 0.5 t
2)	Brzina podizanja:	v = 10 m/min
3)	Visina podizanja	$\Delta H = 0.5 \text{ m}$
4)	Dimenzije podizne platforme:	$L \ge K = 1 \ge 2 m$
5)	Pogon:	elektromotorni

Rad treba sadržavati:

1) Uvodni pregled podizača u primjeni

- 2) Opis razmatranih koncepcija rješenja te odabir rješenja uz obrazloženje
- 3) Proračun mehanizma za dizanje
- 4) Proračun nosive konstrukcije
- 5) Sklopni crtež podizača s potrebnim presjecima i detaljima
- 6) Radioničku dokumentaciju prema dogovoru s mentorom

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan: 2. ožujka 2023. Datum predaje rada: 4. svibnja 2023.

Predviđeni datumi obrane: 8. – 12. svibnja 2023.

Zadatak zadao:

Izv. prof. dr. sc. Matija Hoić

Hoic

Predsjednik Povjerenstva: Prof. dr. sc. Tanja Jurčević Lulić

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA	III
POPIS TEHNIČKE DOKUMENTACIJE	IV
POPIS OZNAKA	. V
SAŽETAK	٧II
SUMMARY	III
1. UVOD	. 1
1.1. Općenito o prenosilima i dizalima	. 1
1.2. Podizne platforme	2
1.2.1. Radne platforme	2
1.2.2. Pretovarne platforme	3
1.2.3. Podizni stolovi	3
1.3. Mehanizmi podizanja	4
1.3.1. Tusi par mehanizam	
2. RAZVOJ KONCEPTUALNOG RJEŠENJA	8
2.1. Ograničenja pri izradi koncepta	8
2.2. Odabir konceptualnog rješenja	9
3. KINEMATSKA ANALIZA MEHANIZMA DIZANJA	11
4. PRORAČUN MEHANIZMA ZA DIZANJE	14
4.1. Odabir elektromotora i reduktora za pogon	14
4.2. Odabir spojke	15
4.3. Proračun vratila i odabir ležajeva	16
4.3.1. Odabir ležaja za oslonac A	18
4.3.2. Odabir ležaja za oslonac B	19
4.4. Proračun osovine planetarnog zupčanika i odabir ležajeva	20
4.4.1. Odabir ležajeva za osovinu planetarnog zupčanika	21
4.5. Proračun osovine 2	23
4.5.1. Odabir ležajeva za osovinu 2	23
5. PRORAČUN ZUPČANIČKOG PARA MEHANIZMA	25
5.1. Orijentacijski proračun modul	25
5.2. Dimenzije zupčanika	26
5.2.1. Zupčanik 1	26
5.2.2. Zupčanik 2	26
5.3. Tolerancije zupčanika	26
5.3.1. Nazivna mjera preko nekoliko zubi za kontrolu graničnih odstupanja	26
5.4. Izbor kružne zračnosti	27
5.5. Izbor graničnih odstupanja razmaka osi vratila	27
5.6. Granična odstupanja debljine zubi	27
5.7. Kontrola naprezanja	28
6. PRORAČUN NOSIVE KONSTRUKCIJE	30

Benjamin Žganec	Diplomski rad
6.1. Odabir elemenata i dimenzioniranje nosive konstrukcije	
6.2. Analitička kontrola čvrstoće i krutosti nosive konstrukcije	
6.3. FEM analiza nosive konstrukcije	
6.4. Proračun vertikalnih poluga nosive konstrukcije	
6.4.1. Proračun zavara vertikalne poluge nosive konstrukcije	
7. ZAKLJUČAK	
LITERATURA	
PRILOZI	

POPIS SLIKA

Slika 1. Radna platforma [2]	. 2
Slika 2. Pretovarna rampa [3]	.3
Slika 3. Podizni stol s ručnim pogonom [4]	.4
Slika 4. Mehanizmi podizanja: a) teleskopski dohvatnik, b) škarasti mehanizam, c) zglobni	
paralelogram, d) stupna podizna platforma	. 5
Slika 5. Koncept kreiranje hipocikloide [5]	.6
Slika 6. Koncept hipocikloide sa zupčaničkim parom [6]	.6
Slika 7. Tusijev par u primjeni kod motora s unutrašnjim izgaranjem [6]	.7
Slika 8. Koncept mehanizma bez razvijenog pogona	. 8
Slika 9. Odabrano konceptualno rješenje pogona	.9
Slika 10. Potencijalno konceptualno rješenje sa pužnim prijenosnikom	10
Slika 11. Uvjeti ravnoteže mehanizma za općeniti slučaj u ovisnosti o kutu zakreta φ	11
Slika 12. Dijagram ovisnosti tangencijalne sile Ft o kutu zakreta φ	12
Slika 13. Vektori brzine na karakterističnim točkama mehanizma	13
Slika 14. Karakteristike odabranog motora i reduktora [9]	14
Slika 15. Karakteristike odabrane kandžaste spojke [10]	15
Slika 16. Vratilo s ucrtanim opterećenjima i Q, M, T dijagrami	16
Slika 17. Karakteristike ležaja SKF 61813-2RS1 [14]	18
Slika 18. Karakteristike ležaja SKF 61814-2RS1 [14]	20
Slika 19. Osovina s ucrtanim opterećenjima	21
Slika 20. Karakteristike ležaja SKF 61806-2RS1 [14]	22
Slika 21. Osovina 2 s ucrtanim opterećenjima	23
Slika 22. Karakteristike ležaja SKF 61805-2RS1 [14]	24
Slika 23. Geometrijske karakteristike UPN140 profila [18]	30
Slika 24. Geometrijske karakteristike IPN140 profila [19]	31
Slika 25. Pojednostavljeni 2D model opterećenja IPN140 profila	31
Slika 26. Raspodjela naprezanja nosive platforme	33
Slika 27. Raspodjela vertikalnih pomaka nosive platforme	33
Slika 28. Geometrijske karakteristike kvadratnog 50x50x8 profila [21]	34
Slika 29. Model izvijanja za slučaj s uklještenjem na oba kraja	34
Slika 30. Zavar vertikalne poluge nosive konstrukcije s ucrtanim opterećenjima	36
Slika 31. 3D CAD model sklopa podizača u izometriji	38

POPIS TEHNIČKE DOKUMENTACIJE

- BZ-023-000 Podizač na temelju Tusi par mehanizma
- BZ-023-001 Mehanizam za podizanje_L
- BZ-023-003 Nosiva platforma
- BZ-023-004 Podnožje

POPIS OZNAKA

Oznaka	Jedinica	Opis
A	mm^2	Površina
a	mm	Osni razmak zupčanog para
b	mm	Širina zupčanika
С	mm	Tjemena zračnost
С	Ν	Dinamička nosivost ležaja
C_0	Ν	Statička nosivost ležaja
d	mm	Promjer
d_a	mm	Tjemeni promjer
d_b	mm	Temeljni (osnovni) promjer
d_f	mm	Podnožni promjer
f	mm	Progib
F_t	Ν	Tangencijalna (pogonska) sila na ručicu mehanizma
Fos	Ν	Radijalna sila na osovinu
G	Ν	Težina
i	mm	Polumjer tromosti presjeka
Imin	mm^4	Minimalni moment tromosti presjeka
j	mm	Kružna zračnost
l	mm	Duljina
lo	mm	Slobodna duljina izvijanja
L10h	h	Nazivni vijek trajanja ležaja
т	kg	Masa tereta
т	mm	Modul
Mos	Nmm	Moment savijanja osovine
Mred	Nmm	Reducirani moment
n	min ⁻¹	Brzina vrtnje
Р	W	Snaga
P_{0r}	Ν	Statičko ekvivalentno radijalno opterećenje
Q_t	Ν	Težina tereta
r	mm	Polumjer
Re	N/mm ²	Granica tečenja materijala
Rm	N/mm ²	Vlačna čvrstoća materijala
<i>S0</i>	-	Statična sigurnost ležaja
STet	-	Sigurnost na izvijanje prema Tetmajeru
Т	Nmm	Moment torzije
v	m/s	Linearna brzina
Vdiz	m/s	Brzina dizanja tereta
W	mm ³	Moment otpora presjeka

Fakultet strojarstva i brodogradnje

Benjamin Žganec

x	-	Faktor pomaka profila
Z.	-	Broj zubi
Z,k	-	Značajka pojedinačnog zahvata
α	0	Zahvatni kut (normirani = 20°)
$lpha_o$	-	Faktor čvrstoće materijala
β	0	Kut nagiba boka na diobenoj kružnici (za čelnike s ravnim zubima = 0°)
λ	-	Faktor širine zuba = b/m
λ	-	Vitkost profila
σ	N/mm ²	Normalno naprezanje
σ_{f}	N/mm ²	Savojno (fleksijsko) naprezanje
σ_F	N/mm ²	Naprezanje na savijanje u korijenu zuba
$\sigma_{\!f\!D\!N}$	N/mm ²	Trajna dinamička čvrstoća kod savijanja čistim naizmjeničnim ciklusom
σ FLim	N/mm ²	Dinamička čvstoća kod naprezanja na savijanje korijena zuba
<i>σ</i> _{FP}	N/mm ²	Praktički dozvoljena vrijednost naprezanja u korijenu zuba
$ au_{tDN}$	N/mm ²	Trajna dinamička čvrstoća kod uvijanja čistim naizmjeničnim ciklusom
arphi	0	Kut zakreta mehanizma
ω	rad/s	Kutna brzina

SAŽETAK

Cilj ovog diplomskog rada je konstruiranje podizača čiji se mehanizam bazira na Tusijevom paru. Na temelju uvodnog pregleda podizača u primjeni i analize radnog principa Tusijevog para, kreirano je koncepcijsko rješenje koje zadovoljava određene konstrukcijske zahtjeve i karakteristike. Odrađena je kinematska analiza mehanizma te proračun dijelova mehanizma i konstrukcije na temelju kojih su odabrane i konstruirane pojedine komponente podizača. Na kraju je izrađen 3D model podizača sa pripadajućom tehničkom dokumentacijom unutar programskog paketa *Solidworks*.

Ključne riječi: podizač, platforma, mehanizam Tusijevog para

SUMMARY

The aim of this graduate thesis is designing a lift based on mechanism of Tusi couple. Based on introductory review of lifts in usage and analysis of working principle of Tusi couple, a conceptual solution was created which meets certain design requirements and characteristics. A kinematic analysis of mechanism and calculation of parts of mechanism and structure were done, on which basis components of lift were selected and designed. At the end, a 3D model of the lift was created with associated technical documentation within *Solidworks* software package.

Key words: lift, platform, Tusi couple mechanism

1. UVOD

1.1. Općenito o prenosilima i dizalima

Pojam transportna tehnika odnosi se na transport robe i ljudi te se dijeli na dvije vrste transporta:

- Javni transport ili prometna tehnika
- Unutrašnji transport ili dobavna tehnika

Na temelju prethodne podjele pod tehnička sredstva javnog transporta smatraju se prometna sredstva, a tehnička sredstva unutrašnjeg transporta odnose se na dobavna sredstva ili prenosila i dizala.

Dobavna tehnika obuhvaća premještanje robe u proizvoljnom smjeru i na ograničenim udaljenostima pomoću prikladnih sredstava, transport ljudi i proučavanje dobavnih sredstava i metoda njihove uporabe. Što se tiče tehničkih sredstava dobavne tehnike, odnosno prenosila i dizala, njihova uporaba našla je primjenu u sustavu transporta za dizanje, rukovanje i prijevoz materijala, predmeta i ljudi na kraćim udaljenostima.

Zbog sve veće potrebe za mehanizacijom, racionalizacijom i automatizacijom prijenosa materijala i predmeta, ali i povećanja područja primjene dobavne tehnike, nužno je konstantno razvijati prenosila i dizala koja mogu biti izrađene kao jednostavni uređaji ili mehanizmi, ali ujedno i vrlo složeni mehanizmi čije upravljanje može biti ručno, automatski ili poluautomatsko.

Dobavni postupak sastoji se od zahvata, prijenosa i odlaganja materijala pomoću prenosila i dizala, a može se obavljati prekidno i neprekidno.

Podjela dizala i prenosila prema dobavnom postupku:

- Sredstva prekidne ili povremene dobave (dizala ili liftovi, dizalice, granici, industrijska vozila, manipulatori)
- Sredstva neprekidne dobave

Kao osnovni projektni parametri sredstava prekidne dobave smatraju se: nosivost ili nazivni teret (izražen u t ili kg), geometrijski parametri kojima je definirano radno područje prenosila i dizala (npr. dohvat granika, visina podizanja, raspon tračnica i sl.), kinematički parametri (brzina dizanja, vožnje, okretanja i sl.), pogonski parametri kojima se uzimaju u obzir stvarni uvjeti rada prenosila i dizala (npr. broj radnih ciklusa na sat, relativno opterećenje koje

predstavlja odnos stvarnog i nazivnog tereta, relativno trajanje uključenja, vijek trajanja, dinamički utjecaji, itd.) i vrsta tereta i način njegovog zahvaćanja.

1.2. Podizne platforme

Primarna funkcija podiznih platformi je precizno i sigurno držanje osoba ili predmeta na zahtijevanoj visini te se prema [1] mogu podijeliti na radne platforme, pretovarne platforme i podizne stolove.

1.2.1. Radne platforme

Svojom funkcijom radne platforme omogućavaju podizanje radnika na visine (3 do 15 m) gdje je potrebno obavljanje kratkotrajnih poslova popravaka, održavanja ili manjih montažnih radova i sl. Podizanje manjih platforma omogućeno je ručno pomoću vijčanog vretana ili hidrauličkog cilindra dok se veće platforme pogone pomoću motora s hidrauličkim prijenosom sila na pokretne dijelove i one sadrže dvostruke ili višestruke škaraste mehanizme. Radi zadovoljavanja kriterija stabilnosti i sigurnosti, platforme obavezno moraju imati zaštitnu ogradu i dodatne oslonce. Nosivost radnih platformi kreće se između 120 do 500 kg što omogućava smještaj do 4 radnika s pripadajućim alatom.

Slika 1. Radna platforma [2]

1.2.2. Pretovarne platforme

Pretovarne platforme imaju mogućnost jednostavnog, brzog i lakog rukovanja robom na način da podižu i spuštaju terete pri pretovaru na vozilima ili pretovarnoj rampi i to samo u jednom smjeru na maksimalnu visinu od 1,5 do 2m. Uglavnom se radi o hidraulički pogonjenim niskoprofilnim podiznim platformama ili podiznim platformama ugrađenim u rupu (pretovarna rampa) kao što je prikazano na slici 2. Nosivost pretovarnih platformi kreće se između 0,5 i 20 t.

Slika 2. Pretovarna rampa [3]

1.2.3. Podizni stolovi

Glavna funkcija podiznih stolova je podizanje i spuštanje tereta unutar industrijskih proizvodnih sustava prilikom posluživanja strojeva, rukovanja materijala i sl., dok je sekundarna funkcija ergonomski pravilno postavljanje tereta što za posljedicu ima sprječavanje pojave umora i fizičkog napora, ali i ozljeda na radnom mjestu čime se stvara sigurnije radno okruženje i postiže veća razina zaštite na radu. Kod manjih tereta hidraulički cilindri su ručno ili nožno pogonjeni dok su kod većih tereta mehanizmi pogonjeni elektromotorom. Raspon nosivosti podiznih stolova kreće se između 0,5 i 5 t pa sve do 50 t dok se visina podizanja mjeri do 1,45 m.

Slika 3. Podizni stol s ručnim pogonom [4]

1.3. Mehanizmi podizanja

Kao posljedica sve većeg razvoja industrije i povećanja zahtjeva za jednostavnim, preciznim i sigurnim radom na visinu došlo je do razvitka različitih mehanizama podiznih platformi, od kojih su najčešći:

- Podizne platforme s teleskopskim dohvatnikom
- Podizne platforme sa škarastim mehanizmom
- Podizne platforme sa zglobnim paralelogramom
- Stupne podizne platforme

Slika 4. Mehanizmi podizanja: a) teleskopski dohvatnik, b) škarasti mehanizam, c) zglobni paralelogram, d) stupna podizna platforma

1.3.1. Tusi par mehanizam

Glavni zahtjev ovog zadatka je konstruirati podizač za komadni teret čiji se mehanizam za dizanje bazira na mehanizmu Tusijevog para te je iz tog razloga u ovom poglavlju analiziran upravo taj mehanizam i njegove karakteristike.

Tusijev par, odnosno Tusijev mehanizam je matematički uređaj prema kojem se manja kružnica kotrlja unutar dvostruko veće fiksirane kružnice. Radi se o posebnom slučaju hipocikloide, odnosno ravninske krivulje koja se generira prateći put neke određene točke s opsega manje kružnice koja se kotrlja unutar veće kružnice kao što je prikazano na slici 5. Kada je riječ o Tusijevom paru, odnosno kada je omjer veće i manje kružnice jednak 2, hipocikloidna krivulja postaje ravna linija. Na taj način omogućeno je da se rotacijsko gibanje pretvori u linearno.

Slika 5. Koncept kreiranje hipocikloide [5]

Na slici 6. prikazan je koncept hipocikloide primjenom zupčaničkog para s vanjskim i unutrašnjim ozubljenjem te su prikazane pozicije s inkrementima kuta zakreta φ u iznosu od 45°. Zupčanik s unutrašnjim ozubljenjem je fiksiran. Vidljivo je kako se točka s oboda manjeg zupčanika pomiče samo u vertikalnom smjeru.

Slika 6. Koncept hipocikloide sa zupčaničkim parom [6]

Prema [7] parametarske jednadžbe hipocikloide, odnosno koordinate točke u Kartezijevom sustavu glase:

$$x = (r_a - r_b) \cdot \cos \varphi + r_b \cdot \cos \left(\frac{r_a - r_b}{r_b} \cdot \varphi \right)$$
(1)

$$y = (r_a - r_b) \cdot \sin \varphi - r_b \cdot \sin \left(\frac{r_a - r_b}{r_b} \cdot \varphi \right)$$
(2)

Gdje je r_a polumjer veće kružnice, r_b polumjer manje kružnice, a φ se odnosi na kut između osi x i linije koja prolazi kroz središte manje i veće kružnice.

Tusijev mehanizam ima svoju primjenu i kod motora s unutrašnjim izgaranjem s obzirom da postoje određene sličnosti s klipno koljenastim mehanizmom koji također rotacijsko gibanje pretvara u linearno.

Slika 7. Tusijev par u primjeni kod motora s unutrašnjim izgaranjem [6]

2. RAZVOJ KONCEPTUALNOG RJEŠENJA

2.1. Ograničenja pri izradi koncepta

Kako bi podizač djelovao na temelju Tusi par mehanizma dolazi do određenih ograničenja. Princip djelovanja Tusijevog para temeljen je na kotrljanju manje kružnice po većoj kružnici te je iz tog razloga kao mehanizam koji rotacijsko gibanje pretvara u linearno odabran zupčanički par s vanjskim i unutrašnjim ozubljenjem. Visina podizanja u rasponu od 0,5 m limitira mehanizam na način da diobeni, odnosno kinematski promjer većeg zupčanika (s unutrašnjim ozubljenjem) također iznosi 0,5 m. Dimenzija podizne platforme 1 x 2 m također prostorno ograničava s obzirom da bi konstrukcija bila stabilna, podizna platforma mora se oslanjati na mehanizam podizanja u četiri točke što znači da je potrebno imati četiri zupčanička para s unutrašnjim i vanjskim ozubljenjem. Zahtijevani elektromotorni pogon, brzina podizanja tereta u iznosu od 10 m/min kao i težina najvećeg tereta od 0,5 t faktori su koji određuju na koji način će biti riješen pogon samog mehanizma, odnosno koji prijenosnik će biti odabran. Na slici 8. prikazan je koncept, ali bez razvijenog pogona mehanizma.

Slika 8. Koncept mehanizma bez razvijenog pogona

2.2. Odabir konceptualnog rješenja

Iz provedene kinematske analize mehanizma dizanja u sljedećem poglavlju dobiven je odnos momenta i sile tereta, kao i brzine te su na temelju toga kao pogon mehanizma odabrana dva elektromotora s reduktorom sa stožnicima sa kosim zubima. Vrlo mala brzina okretaja na izlazu iz reduktora (koja je dvostruko manja od brzine dizanja tereta) i relativno velika težina tereta zahtijevaju reduktor s velikim prijenosnim omjerom. Uz prethodno navedena geometrijska ograničenja problematično je pozicioniranje elektromotora i reduktora unutar pogona te je iz tog razloga odabran reduktor s dva izlazna vratila na oba dvije strane. Na slici 9. prikazano je odabrano konceptualno rješenje za pogon koje zadovoljava sve zahtjeve i ograničenja.

Slika 9. Odabrano konceptualno rješenje pogona

Kao potencijalno moguće rješenje koje bi također zadovoljilo uvjete velikog prijenosnog omjera razmatran je i pužni prijenosnik, ali analizom tržišta nije pronađeno nijedno validno rješenje koje bi zadovoljilo sva prostorna i kinematska ograničenja i zahtjeve. Na slici 10. prikazan je koncept s elektromotorom i pužnim prijenosnikom.

Slika 10. Potencijalno konceptualno rješenje sa pužnim prijenosnikom

3. KINEMATSKA ANALIZA MEHANIZMA DIZANJA

Prema konceptu određena je struktura mehanizma za oslanjanje podizne platforme na mehanizam podizanja u četiri točke te se iz tog razloga uvjeti ravnoteže mehanizma postavljaju samo za jedan od četiri mehanizama za podizanje. S obzirom na zadanu pretpostavku da teret uvijek djeluje na sredini podizne platforme, ujedno je i pretpostavljeno da svaki od četiri oslonaca nosi jednaki udio, tj. četvrtinu tereta.

Prema slici 11. postavljeni su uvjeti ravnoteže mehanizma za općeniti slučaj djelovanja tangencijalne sile F_t na ručicu R čije kružno gibanje u ovisnosti o kutu zakreta φ omogućava da se manja kružnica kotrlja unutar dvostruko veće i fiksirane kružnice.

Slika 11. Uvjeti ravnoteže mehanizma za općeniti slučaj u ovisnosti o kutu zakreta φ Uvjet ravnoteže mehanizma glasi:

$$Q_{uk} \cdot dy = F_t \cdot r_B \cdot d\varphi \tag{3}$$

Gdje je ukupna sila koju mehanizam mora savladati zbroj težine tereta i konstrukcije:

$$Q_{uk} = Q_t + G_{uk} = 1226,25 + 971,78 = 2198 \,\mathrm{N} \tag{4}$$

Deriviranjem izraza (2) za pomak točke u smjeru y po kutu zakreta φ dobije se:

$$dy = 2 \cdot r_B \cdot \cos \varphi \cdot d\varphi \tag{5}$$

Sređivanjem prethodnih izraza dobiven je izraz za tangencijalnu silu F_t u ovisnosti o kutu zakreta φ :

$$F_t = 2 \cdot Q_{uk} \cos \varphi \tag{6}$$

Fakultet strojarstva i brodogradnje

Na slici 12. prikazan ja dijagram ovisnosti tangencijalne sile o kutu zakreta φ iz kojeg je vidljivo kako je najveće opterećenje u trenutku kada je kut zakreta $\varphi = 0^\circ$ i $\varphi = 180^\circ$.

Slika 12. Dijagram ovisnosti tangencijalne sile F_t o kutu zakreta φ

Na temelju zahtjeva za vertikalnom brzinom podizanja tereta $v_{diz} = 10$ m/min provedena je analiza i određivanje iznosa linearnih i kutnih brzina na karakterističnim točkama mehanizma za dizanje. Na slici 13. prikazani su vektori brzina na karakterističnim točkama mehanizma u ovisnosti o kutu zakreta φ . Kako bi mehanizam djelovao na temelju mehanizma Tusijevog para ograničeno je kretanje veće kružnice ($\omega_2 = 0$) kao i da je ($r_c = 2r_B$). Dvostruka vrijednost linearne brzine u točki A u odnosu na točku B, tj. $v_A = 2v_B$ rezultat je prethodnog ograničenja jer kako bi bilo zadovoljeno $\omega_2 = v_c = 0$, manja kružnica se mora zarotirati o svoju os u suprotnom smjeru od rotacije ručice na koju je vezana manja kružnica te tako dolazi do kraćenja vektora brzine.

Slika 13. Vektori brzine na karakterističnim točkama mehanizma

Za najjednostavniji slučaj kada je kut zakreta $\varphi = 0^{\circ}$ vektor linearne brzine točke A poklapa se s vektorom vertikalne brzine podizanja tereta, odnosno vrijedi $v_A = v_{diz} = 10 \text{ m/min.}$ Kutna brzina ručice R dobivena je pomoću linearne brzine točke B:

$$\omega_R = \frac{v_B}{r_B} = \frac{\frac{5}{60}}{0,125} = \frac{2}{3} \text{ rad/s}$$
(7)

Kutna brzina manje kružnice dvostruko je veća nego kutna brzina ručice R, ali i suprotnog smjera:

$$\omega_1 = \frac{v_A}{r_B} = \frac{\frac{10}{60}}{0,125} = \frac{4}{3} \text{ rad/s}$$
(8)

Prijenosni omjer mehanizma podizanja tako iznosi:

$$i = \frac{\omega_1}{\omega_R} = 2 \tag{9}$$

Ovakav mehanizam može se razmatrati i kao jednostavni planetarni prijenosnik za koji prema [8] izraz za prijenosni omjer glasi:

$$i_{1/R} = \frac{n_1}{n_R}$$
 (10)

Za slučaj $\varphi = 0^{\circ}$ iznos tangencijalne sile na ručicu prema jednadžbi (6) iznosi $F_{t,max} = 4396$ N te moment uvijanja koji je potrebno savladati iznosi:

$$T_{max} = F_{t,max} \cdot r_B = 4396 \cdot 0,125 = 549,5 \text{ Nm}$$
(11)

Brzina vrtnje ručice R izražena u okretajima u minuti iznosi:

$$n_R = \frac{30 \cdot \omega_R}{\pi} = \frac{30 \cdot \frac{2}{3}}{\pi} = 6,366 \text{ min}^{-1}$$
(12)

Fakultet strojarstva i brodogradnje

4. PRORAČUN MEHANIZMA ZA DIZANJE

4.1. Odabir elektromotora i reduktora za pogon

Kako je prilikom odabira konceptualnog rješenja objašnjeno, iz konstrukcijskih razloga te kako bi se ispunili svi zahtjevi zadatka, za pogon mehanizma odabrana su dva elektromotora s reduktorom s paralelnim osima vratila. Svaki elektromotor pogoni polovicu mehanizma i zbog toga reduktor ima izlazna vratila na oba dvije strane.

Uzimajući u obzir gubitke na spojci od 2,5% te gubitke po uležištenom vratilu od 0,5% maksimalni moment torzije koji elektromotor mora ukupno savladati iznosi:

$$T_{max,EM} = \frac{2 \cdot T_{max}}{\eta_S^2 \cdot \eta_L^2} = \frac{2 \cdot 549,5}{0,975^2 \cdot 0,995} = 1168 \text{ Nm}$$
(13)

Odabran je reduktor sa kosim stožnicima i IEC motorom proizvođača NORD, tip SK 9053.1LX - IEC90 – 90SP/4 TF snage $P_{\text{EM}} = 1,1$ kW i izlaznog momenta torzije $T_{\text{izl}} = 1682$ Nm. Na slici 14. prikazane su detaljne karakteristike odabranog motor reduktora.

1 Helical Bevel Gearmotor with NORD IEC Motor SK 9053.1LX - IEC90 - 90SP/4 TF Product Name Helical Bevel Gears BLOCK 1430 1/min Input Speed Motor Inverter Speed Range Standard Line Powered - Inverter Capable Ratio 229.07 6.2 1/min Output Speed Service Factor 2.9 Output torque 1682 Nm Overhung load 29.4 kN Axial Load 45 kN Power 1.1 kW Voltage 230/400 V Frequency 50 Hz Efficiency Class IE3 Current 1 4.12 A Current 2 2 38 A Cosinus 0 78 Motor Duty S1 - Continuous Enclosure IP55 F Insulation Mounting Pos M1 Housing Material Cast Iron Housing Type of housing Foot Mount IEC Motor Adapter IEC90 Output Shaft Side A and B Side Output Shaft Solid Double Shaft Output Shaft Dia 70X140 mm Output Shaft Material Standard Gearbox Breather Options Open Vent Gearbox Sealing Options Standard **Bearing Design** Standard Bearings

Slika 14. Karakteristike odabranog motora i reduktora [9]

1

TEFC - Totally Enclosed Fan Cooled

Motor Cooling Terminal Box Pos Izlazna brzina od 6,2 min⁻¹ uvrštava se u izraz za kutnu brzinu:

$$\omega = \frac{n \cdot \pi}{30} = \frac{6.2 \cdot \pi}{30} = 0,6493 \text{ rad/s}$$
(14)

Obodna brzina na radijusu rB iznosi:

$$v_B = \omega \cdot r_B = 0,6493 \cdot 0,125 = 0,08116 \frac{\text{m}}{\text{s}} = 4,87 \text{ m/min}$$
 (15)

Kako vrijedi $v_A = 2v_B$ tada iznosi $v_A = 9,74$ m/min što uz minimalno odstupanje odgovara traženoj vertikalnoj brzini podizanja tereta u ovom zadatku $v_{diz} = 10$ m/min.

4.2. Odabir spojke

Izlazno vratilo iz elektromotora povezano je s vratilom mehanizma pomoću GAS/SG-ST kandžaste spojke s poliuretanskim umetkom 98Sh-A proizvođača CominTec. Na slici 15. dane su karakteristike odabrane kandžaste spojke.

Slika 15. Karakteristike odabrane kandžaste spojke [10]

Provrt na spojci za izlazno vratilo reduktora iznosi d = 70 mm dok je provrt za vratilo mehanizma određen prema sljedećem proračunu.

4.3. Proračun vratila i odabir ležajeva

Na vratilo se preko kandžaste spojke dovodi moment torzije kojim je vratilo opterećeno cijelom svojom duljinom do ručice R preko koje se moment torzije odvodi s vratila. Vratilo je također na svojem kraju opterećeno u radijalnom smjeru silom težine $Q_{uk} = 2198 N$ u koju su prema jednadžbi (4) uračunate 1/4 težine tereta, 1/4 težine nosive platforme, težina ručice, težina zupčanika Z_1 te težine ostalih dijelova mehanizma koje su određene pomoću opcije *Mass properties* unutar programskom paketa *Solidworks* u kojem su modelirani dijelovi sklopa mehanizma za dizanje. Sila težine Q_{uk} izaziva savojno naprezanje vratila.

Prema slici 16. postavljaju se uvjeti ravnoteže, odnosno suma sila u radijalnom smjeru i suma momenata oko točke B. R_A i R_B predstavljaju radijalne reaktivne sile u osloncima te je njihov smjer pretpostavljen.

$$\sum F_V = 0$$

$$Q_{uk} + R_A - R_B = 0$$

$$\sum M_B = 0$$
(16)

$$Q_{uk} \cdot b + R_A \cdot a = 0 \tag{17}$$

Iz konstrukcije slijedi kako je a = 100 mm i b = 129,5 mm te se pomoću izraza (16) i (17) dobivaju sljedeće sile reakcija u osloncima:

$$R_A = 2846 \,\mathrm{N}$$
 (18)

$$R_B = 5044 \,\mathrm{N} \tag{19}$$

Kritični presjek je na mjestu oslonca B gdje je vratilo opterećeno momentom savijanja $M_B =$ 284 600 Nmm i moment torzije $T_{max} =$ 549 500 Nmm.

Reducirani moment vratila opterećenog na savijanje i torziju na mjestu oslonca B izračunava se pomoću izraza:

$$M_{red,B} = \sqrt{M_B^2 + 0.75 \cdot (\alpha_0 \cdot T_{max})^2}$$
(20)

Faktor čvrstoće materijala računa se prema izrazu:

$$\alpha_0 = \frac{\sigma_{fDN}}{\sqrt{3} \cdot \tau_{tDN}} = \frac{300}{\sqrt{3} \cdot 180} = 0,9623$$
(21)

Gdje je:

 $\sigma_{fDN} = 300 \text{ N/mm}^2 \text{ prema [11] za materijal vratila E335}$

 $\tau_{tDN} = 180 \text{ N/mm}^2$ prema [11] za materijal vratila E335

Uvrštavanjem vrijednosti u izraz dobiven je iznos reduciranog momenta:

$$M_{red,B} = \sqrt{284\ 600^2 + 0.75 \cdot (0.9623 \cdot 549\ 500)^2} = 539\ 172\ \text{Nmm}$$
(22)

Promjer vratila na kritičnom presjeku za slučaj opterećenja na savijanje i uvijanje prema [11]:

$$d = \sqrt[3]{\frac{10 \cdot M_{red,B}}{\sigma'_{f,dop}}} = \sqrt[3]{\frac{10 \cdot 539\,172}{75}} = 41,6 \text{ mm}$$
(23)

Gdje je prema [12] približni izraz za određivanje dopuštenog naprezanja na savijanje:

$$\sigma'_{f,dop} = \frac{\sigma_{fDN}}{4} = \frac{300}{4} = 75 \text{ N/mm}^2$$
(24)

Iz konstrukcijskih razloga odabran je promjer vratila na kritičnom presjeku d = 70 mm.

Na dijelu vratila između spojke i oslonca A djeluje samo torzijsko opterećenje te se promjer vratila opterećenog samo na uvijanje računa također prema prethodnom izrazu (23), ali se u izraz za reducirani moment (20) unosi moment savijanja $M_f = 0$:

$$M_{red} = \sqrt{0.75 \cdot (\alpha_0 \cdot T_{max})^2} = \sqrt{0.75 \cdot (0.9623 \cdot 549\ 500)^2} = 457\ 940\ \text{Nmm}$$
(25)

Uvrštavanjem izraza (25) dobiven je promjer vratila opterećenog samo na uvijanje:

$$d \ge \sqrt[3]{\frac{10.457\,940}{75}} = 39,38 \text{ mm}$$
(26)

Odabran je promjer vratila mehanizma na mjestu spoja sa kandžastom spojkom d = 55 mm.

4.3.1. Odabir ležaja za oslonac A

Kako je brzina vrtnje vratila n = 6,2 min⁻¹ manja od 10 min⁻¹ prema [13] vrši se statički proračun ležajeva u osloncima A i B. Statičko ekvivalentno radijalno opterećenje $P_{0,r}$ za jednoredne kuglične ležajeve prema proizvođaču SKF [14] računa se izrazom:

$$P_{0r} = 0.6 \cdot F_r + 0.5 \cdot F_a \tag{27}$$

Za ležajno mjesto A odabran je jednoredni kuglični ležaj sa zaštitnom brtvom proizvođača SKF 61813-2RS1 čije su karakteristike prikazane na slici 17.

Technical Specification

Dimensions

d	65 mm	Bore diameter
D	85 mm	Outside diameter
В	10 mm	Width
d ₁	= 71.4 mm	Shoulder diameter
D ₂	= 80.5 mm	Recess diameter
r _{1.2}	min. 0.6 mm	Chamfer dimension

Abutment dimensions

^d a min. 68.2 mm	Diameter of shaft abutment
d _a max. 71.5 mm	Diameter of shaft abutment
D _a max. 81.8 mm	Diameter of housing abutment
^r a max. 0.6 mm	Radius of shaft or housing fillet

Calculation data

Basic dynamic load rating	С	12.4 kN
Basic static load rating	C ₀	12.7 kN
Fatigue load limit	P _u	0.54 kN
Limiting speed		4 500 r/min
Minimum load factor	k _r	0.015
Calculation factor	f ₀	17

Slika 17. Karakteristike ležaja SKF 61813-2RS1 [14]

U prethodni izraz (27) uvrštava se sila reakcije u osloncu A, tj. $R_A = F_{rA} = 2846$ N te s obzirom kako nema aksijalne komponente sile u osloncu A dobije se:

$$P_{0r,A} = 0.6 \cdot 2846 = 1707.6 \text{ N}$$
 (28)

Kako je statičko ekvivalentno radijalno opterećenje manje od reakcije u osloncu, tj. $P_{0r,A} < R_A$, u proračun ležaja ulazi se s vrijednošću reakcije u osloncu, tj. $P_{0r,A} = R_A$.

Statička sigurnost ležaja za radijalne ležajeve računa se kao omjer statičke nosivosti ležaja i statičkog ekvivalentno radijalnog opterećenja:

$$s_0 = \frac{C_0}{P_{0r}} \ge s_{0_min} \tag{29}$$

Gdje je:

 $s_{0_{min}} = 2,5$ – najmanja potrebna statička sigurnost valjnog ležaja pri velikim zahtjevima za mirnoćom hoda [15]

Za odabrani ležaj u osloncu A statička sigurnost iznosi:

$$s_0 = \frac{C_{0,A}}{P_{0r,A}} = \frac{12\,700}{2846} = 4,46 > 2,5 \tag{30}$$

Vidljivo je kako odabrani ležaj u osloncu A zadovoljava.

4.3.2. Odabir ležaja za oslonac B

Odabir i proračun ležaja za oslonac B proveden je analogno kao i za ležaj u osloncu A. Odabran je jednoredni kuglični ležaj sa zaštitnom brtvom SKF 61841-2RS1 čije su karakteristike prikazane na slici 18.

Technical Specification

0					
1.1	m	on	CI	on	
		CII	2		5

Bore diameter	70 mm	d
Outside diameter	90 mm	D
Width	10 mm	в
Shoulder diameter	= 76.4 mm	d ₁
Recess diameter	2 = 85.5 mm	D ₂
Chamfer dimension	2 min. 0.6 mm	r _{1,2}

Abutment	dimensions

d _a min. 73.2 mm	Diameter of shaft abutment
d _a max. 76.5 mm	Diameter of shaft abutment
D _a max. 86.8 mm	Diameter of housing abutment
r _a max. 0.6 mm	Radius of shaft or housing fillet

Calculation data

Basic dynamic load rating	С	12.4 kN
Basic static load rating	Co	13.2 kN
Fatigue load limit	Pu	0.56 kN
Limiting speed		4 300 r/min
Minimum load factor	k _r	0.015
Calculation factor	f ₀	17.2

Slika 18. Karakteristike ležaja SKF 61814-2RS1 [14]

Kako nema aksijalnog opterećenja u osloncu B, također vrijedi $P_{0r,B} = R_B$. Statička sigurnost za ležaj B iznosi:

$$s_0 = \frac{C_{0,B}}{P_{0r,B}} = \frac{13\,200}{5044} = 2,62 > 2,5 \tag{31}$$

Zaključeno je kako odabrani ležaj u osloncu B također zadovoljava.

4.4. Proračun osovine planetarnog zupčanika i odabir ležajeva

Dimenzioniranje osovine planetarnog zupčanika potrebno je proračunati za najnepovoljniji slučaj opterećenja. Na osovinu djeluju iste sile kao na vratilu mehanizma, osim što nema težine ručice koja je vijčanom vezom vezana na osovinu planetarnog zupčanika. Radijalna sila osovine u tom slučaju iznosi $F_{OS} = 2144$ N. Na slici 19. prikazana je osovina planetarnog zupčanika s ucrtanim opterećenjima.

Slika 19. Osovina s ucrtanim opterećenjima

Najveći moment savijanja javlja se na polovici udaljenosti između ležajnih mjesta, tj. oslonaca. Iz konstrukcije je vidljivo kako l = 95 mm te slijedi izraz za maksimalni moment savijanja na osovini planetarnog zupčanika:

$$M_{os} = F_{os} \cdot \frac{l}{2} = 2144 \cdot 47,5 = 101\,840\,\text{Nmm}$$
 (32)

Minimalni promjer osovine opterećene na savijanje iznosi:

$$d_{os} \ge \sqrt[3]{\frac{M_{os}}{0,1 \cdot \sigma'_{f,dop}}} = \sqrt[3]{\frac{101\,840}{0,1 \cdot 75}} = 23,9 \text{ mm}$$
 (33)

Odabran je promjer osovine na kritičnom dijelu d = 30 mm.

4.4.1. Odabir ležajeva za osovinu planetarnog zupčanika

Sukladno kinematskoj analizi, brzina zupčanika u odnosu na vratilo dvostruko je većeg iznosa (i suprotnog smjera) u odnosu na brzinu vratila te iznosi 12,4 min⁻¹ što je veće od 10 min⁻¹ te se odabir i proračun ležajeva provodi s obzirom na njegovu dinamičku nosivost C. Odabran je jednoredni kuglični ležaj sa zaštitnom brtvom proizvođača SKF 61806-2RS1. Karakteristike odabranog ležaja prikazane su na slici 20.

Technical Specification

Dimensions

d	30 mm	Bore diameter
D	42 mm	Outside diameter
в	7 mm	Width
D ₂	= 39.4 mm	Recess diameter
r _{1,2}	min. 0.6 mm	Chamfer dimension

Abutment dimensions

d _a min. 32 mm	Diameter of shaft abutment
d _a max. 32.5 mm	Diameter of shaft abutment
D _{a max} . 40 mm	Diameter of housing abutment
r _a max. 0.3 mm	Radius of shaft or housing fillet

Calculation data

Basic dynamic load rating	С	4.1 kN
Basic static load rating	Co	2.9 kN
Fatigue load limit	Pu	0.146 kM
Limiting speed		9 500 r/mir
Minimum load factor	k _r	0.015
Calculation factor	f _o	13.9

Slika 20. Karakteristike ležaja SKF 61806-2RS1 [14]

Pretpostavlja se da svako ležajno mjesto preuzima polovinu radijalne sile osovine F_{os} te tako imamo sile reakcije u osloncima osovine $R_A = R_B = P = 1072$ N. Kontrolni proračun vršimo preko nazivnog vijeka trajanja. Prema [16] zahtijevani vijek trajanja iznosi $L_{10h_min} = 10\ 000$ h. Uvrštavanjem vrijednosti u izraz za nazivni vijek trajanja dobije se:

$$L_{10h} = \frac{10^6}{60 \cdot n_{m,z}} \cdot \left(\frac{C}{P}\right)^{\varepsilon} = \frac{10^6}{60 \cdot 12.4} \cdot \left(\frac{4100}{1.072}\right)^3 = 75\ 196\ h$$
(34)

Gdje je:

 $\varepsilon = 3 - \text{eksponent}$ vijeka trajanja za ležajeve s teorijskim dodirom u točki

S obzirom da je $L_{10h} = 75$ 196 h > $L_{10h_min} = 10$ 000 h ležaj zadovoljava.

4.5. Proračun osovine 2

Osovina 2 je na svojem kraju vijčanom vezom povezana s nosačem zupčanika i to na način da se os osovine podudara s diobenim promjerom zupčanika kako bi bio zadovoljen uvjet mehanizma Tusijevog para. Osovina je opterećena radijalno i to četvrtinom težine tereta, četvrtinom težine nosive platforme, težinom kućišta za osovinu te težinom kvadratnog profila i pločice u iznosu $F_{os2} = 1774$ N kao što je prikazano na slici 21.

Slika 21. Osovina 2 s ucrtanim opterećenjima

Proračun maksimalnog momenta savijanja vrši se analogno proračunu osovine iz prošlog poglavlja te je on maksimalan na polovici udaljenosti između ležajeva. Iz konstrukcije vidimo kako je $l_2 = 47$ mm te tako jednadžba za maksimalni moment savijanja osovine glasi:

$$M_{os2} = F_{os2} \cdot \frac{l_2}{2} = 1774 \cdot 23,5 = 41\,689\,\text{Nmm}$$
(35)

Minimalni promjer osovine opterećene na savijanje iznosi:

$$d_{os2} \ge \sqrt[3]{\frac{M_{os2}}{0,1 \cdot \sigma'_{f,dop}}} = \sqrt[3]{\frac{41\,689}{0,1 \cdot 75}} = 17,7 \text{ mm}$$
 (36)

Odabran je promjer osovine d = 25 mm.

4.5.1. Odabir ležajeva za osovinu 2

Svako ležajno mjesto preuzima polovinu radijalnog opterećenja osovine, tj. $R_A = R_B = P =$ 887 N. Za oba dva ležajna mjesta odabran je jednoredni kuglični ležaj sa zaštitnom brtvom proizvođača SKF 61805-2RS1 čije su karakteristike prikazane na slici 22.

Technical Specification

Dime	ensio	ns
Dinn	11510	115

d	25 mm	Bore diameter
D	37 mm	Outside diameter
В	7 mm	Width
D ₂	= 34.2 mm	Recess diameter
r _{1,2}	min. 0.3 mm	Chamfer dimension

Abutment dimensions

d _{a 1}	min. 27 mm	Diameter of shaft abutment
d _{a 1}	max. 27.3 mm	Diameter of shaft abutment
D _{a 1}	max. 35 mm	Diameter of housing abutment
r _{a 1}	max. 0.3 mm	Radius of shaft or housing fillet

Calculation data

Basic dynamic load rating	С	4.36 kN
Basic static load rating	Co	2.6 kN
Fatigue load limit	Pu	0.125 kN
Limiting speed		11 000 r/min
Minimum load factor	k _r	0.015
Calculation factor	f ₀	14.2

Slika 22. Karakteristike ležaja SKF 61805-2RS1 [14]

Nazivni vijek trajanja iznosi:

$$L_{10h} = \frac{10^6}{60 \cdot n_{m,z}} \cdot \left(\frac{C}{P}\right)^{\varepsilon} = \frac{10^6}{60 \cdot 12.4} \cdot \left(\frac{4.36}{0.887}\right)^3 = 159\ 630\ h$$
(37)

Kako je nazivni vijek trajanja veći od zahtijevanog nazivnog vijeka trajanja $L_{10h_min} =$ 10 000 h, odabrani ležaj zadovoljava.

5. PRORAČUN ZUPČANIČKOG PARA MEHANIZMA

Zahtjev za visinom podizanja tereta $\Delta H = 0,5$ m određuje dimenzije zupčanika kako bi mehanizam djelovao na temelju Tusijevog para. Tako je promjer diobene kružnice zupčanika s vanjskim ozubljenjem (Z₁) $d_1 = 250$ mm dok je promjer diobene kružnice zupčanika s unutrašnjim ozubljenjem (Z₂) $d_2 = 500$ mm.

5.1. Orijentacijski proračun modul

Kao materijal zupčanika odabran je plameno kaljeni čelik za poboljšavanje C45 te je iz tog razloga proračun proveden po kriteriju opteretivosti korijena zuba.

Prema [8] izraz za orijentacijsku vrijednost modula:

$$m \ge \sqrt[3]{\frac{2 \cdot T_{max}}{z_1 \cdot \lambda \cdot \sigma_{FP}}} \cdot Y_F \cdot Y_{\varepsilon} \cdot K_{F\alpha} \cdot K_{F\beta} \cdot K_I \cdot K_V$$
(38)

Gdje se kao predračunske vrijednosti faktora odabire:

 $Y_F = 2,2 - \text{faktor oblika}$

 $Y_{\varepsilon} = 1 - \text{faktor stupnja prekrivanja}$

 $K_{F\alpha} = 1 - \text{faktor raspodjele opterećenja kod opteretivosti korijena}$

 $K_{F\beta} = 1 - \text{faktor raspodjele opterećenja kod opteretivosti korijena}$

 $K_I = 1,25 - \text{vanjsko}$ dodatno dinamičko opterećenje (za slučaj s umjerenim udarima)

 $K_V = 1 -$ unutrašnje dodatno dinamičko opterećenje

 $\lambda = 15$ – odnos širine zuba (mali zupčanik konzolno uležišten)

 $\sigma_{FP} = \frac{\sigma_{F \, lim}}{s_F} = \frac{270}{2.5} = 108 \text{ N/mm}^2 - \text{dopušteno naprezanje korijena zuba za materijal C45 [17]}$ Iz jednadžbe (38) vidljivo je kako je broj zubi manjeg zupčanika u funkciji modula s obzirom

da vrijedi:

$$z_1 = \frac{d_1}{m} \tag{39}$$

Potrebno je napraviti iteraciju vrijednosti modula kako bi se dobio broj zubi manjeg zupčanika koji mora biti cijeli broj. Odabrano je m = 5 te iz izraza (39) slijedi:

$$z_1 = \frac{250}{5} = 50 \tag{40}$$

Analogno se računa broj zubi većeg zupčanika:

$$z_2 = \frac{d_2}{m} = \frac{500}{5} = 100 \tag{41}$$

Uvrštavanjem predračunskih vrijednosti faktora i $z_1 = 50$ u jednadžbu (38) dobije se:

$$m \ge \sqrt[3]{\frac{2 \cdot 549 \, 500}{50 \cdot 15 \cdot 108}} \cdot 2, 2 \cdot 1 \cdot 1 \cdot 1 \cdot 1, 25 \cdot 1 = 3,34 \tag{42}$$

Kako je zadovoljen uvjet da odabrani modul m = 5 > m = 3,34 jasno je kako odabrani modul zadovoljava.

5.2. Dimenzije zupčanika

Odabrani su čelnici s ravnim zubima ($\beta = 0^{\circ}$) i bez pomaka profila za koje su poznati sljedeći podaci: m = 5, $\alpha = 20^{\circ}$, $z_1 = 50$, $z_2 = 100$

5.2.1. Zupčanik 1

$$d_1 = z_1 \cdot m = 50 \cdot 5 = 250 \text{ mm} \tag{43}$$

$$d_{a1} = d_1 + 2m = 250 + 2 \cdot 5 = 260 \text{ mm}$$
(44)

$$d_{f1} = d_1 - 2,5m = 250 - 2,5 \cdot 5 = 237,5 \text{ mm}$$
(45)

$$d_{b1} = d_1 \cdot \cos \alpha = 250 \cdot \cos 20^\circ = 234,9 \text{ mm}$$
(46)

5.2.2. Zupčanik 2

$$d_2 = z_2 \cdot m = 100 \cdot 5 = 500 \text{ mm} \tag{47}$$

$$d_{a2} = d_2 - 2m = 500 - 2 \cdot 5 = 490 \text{ mm}$$
(48)

$$d_{f2} = d_2 + 2,5m = 250 + 2,5 \cdot 5 = 512,5 \text{ mm}$$
⁽⁴⁹⁾

$$d_{b2} = d_2 \cdot \cos \alpha = 250 \cdot \cos 20^\circ = 469,9 \text{ mm}$$
(50)

Širina zupčanika određuje se preko odnosa širine zuba $\lambda = 15$. Odatle slijedi širina zuba:

$$b = \lambda \cdot m = 15 \cdot 5 = 75 \text{ mm} \tag{51}$$

Osni razmak zupčanika računa se kao:

$$a = \frac{d_2 - d_1}{2} = \frac{500 - 250}{2} = 125 \text{ mm}$$
(52)

Postojeća tjemena zračnost za zupčani par s vanjskim i unutrašnjim ozubljenjem:

$$c = \frac{d_{f_2} - d_{a_1}}{2} - a = \frac{512, 5 - 260}{2} - 125 = 1,25 \text{ mm}$$
(53)

Minimalna tjemena zračnost iznosi:

$$c_{min} = 0,12 \cdot m = 0,12 \cdot 5 = 0,6 \text{ mm}$$
 (54)

Kako je postojeća zračnost veća od minimalne zračnosti nije potrebno skraćenje profila zuba:

$$c = 1,25 mm > c_{min} = 0,6 mm$$
 (55)

5.3. Tolerancije zupčanika

5.3.1. Nazivna mjera preko nekoliko zubi za kontrolu graničnih odstupanja

Nazivna mjera preko nekoliko zubi je izmjera razmaka zubi koji se mogu mjeriti i za

zupčanike bez pomaka računa se kao:

$$W_{1,2} = m \cdot \cos \alpha \cdot \left(\pi \cdot \left(z_{W1,2} - 0,5\right) + z_{1,2} \cdot ev \,\alpha\right) \tag{56}$$

Mjerni broj zubi za zupčanike bez pomaka računa se prema sljedećem izrazu te se zaokružuje na cijeli broj:

$$z_{W1,2} = \frac{z_{1,2}}{\pi} \cdot (\tan \alpha - ev \,\alpha) + 0,5 \tag{57}$$

Za zupčanik 1 dobiva se:

$$z_{W1} = \frac{50}{\pi} \cdot (\tan 20^\circ - ev \ 20^\circ) + 0.5 = 6.1 \approx 7$$
(58)

$$W_1 = 5 \cdot \cos 20^\circ \cdot (\pi \cdot (7 - 0.5) + 50 \cdot ev \ 20^\circ) = 99.45 \text{ mm}$$
(59)

Analogno se postupak ponavlja i za zupčanik 2:

$$z_{W2} = \frac{100}{\pi} \cdot (\tan 20^\circ - ev \ 20^\circ) + 0.5 = 11.61 \approx 12$$
(60)

$$W_2 = 5 \cdot \cos 20^\circ \cdot (\pi \cdot (12 - 0.5) + 100 \cdot ev \ 20^\circ) = 176.75 \text{ mm}$$
(61)

5.4. Izbor kružne zračnosti

Orijentacijska veličina kružne zračnosti za zupčanike bez posebnih zahtjeva za m = 5 mm prema [17] iznosi:

$$j_{max} = 245 \,\mu\text{m} \tag{62}$$

$$j_{min} = 150 \,\mu\text{m} \tag{63}$$

5.5. Izbor graničnih odstupanja razmaka osi vratila

Za odabranu kvalitetu obrade zupčanika = 8 i razmak osi vratila a = 125 mm prema [17] odabiru se granična odstupanja razmaka osi vratila:

$$A_{a,g,d} = \pm 32 \,\mu\mathrm{m} \tag{64}$$

Odnosno vrijedi:

$$a = a \pm A_{a,q,d} = 125 \pm 0,032 \text{ mm}$$
(65)

5.6. Granična odstupanja debljine zubi

Prema [17] odabrana su granična odstupanja mjere preko nekoliko zubi za m = 5 mm, $d_1 = 250$ mm, $d_2 = 500$ mm i kvalitetu zupčanika 8:

$$A_{W1,g} = -108 \,\mu\text{m}$$
 (f); $A_{W2,g} = -180 \,\mu\text{m}$ (e) (66)

$$A_{W1,d} = -162 \,\mu\text{m}$$
 (e); $A_{W2,d} = -240 \,\mu\text{m}$ (d) (67)

Kako bi se izbjeglo zaglavljivanje zuba o zub zupčanika u zahvatu mora biti ispunjen sljedeći uvjet:

Fakultet strojarstva i brodogradnje

$$j_{min} > 2 \cdot (T''_{i1} + T''_{i2}) \cdot \tan \alpha$$
 (68)

Gdje je dozvoljeno odstupanje $T''_{i1,2}$ prema [17] za za m = 5 mm, $d_1 = 250$ mm, $d_2 = 500$ mm i kvalitetu zupčanika 8:

$$T''_{i1} = 121 \,\mu m$$
 (69)

$$T''_{i2} = 133 \,\mu m$$
 (70)

Sređivanjem izraza (68) dobiva se:

$$j_{min} > 2 \cdot (121 + 133) \cdot \tan 20^{\circ} \tag{71}$$

$$j_{min} > 185 \,\mu m$$
 (72)

Provedena je kontrola:

$$j_{min} = -\frac{(A_{W1,g} + A_{W2,g})}{\cos \alpha} + 2 \cdot A_{a,d} \cdot \tan \alpha$$
(73)

$$j_{min} = -\frac{(-108 - 180)}{\cos 20^{\circ}} + 2 \cdot (-32) \cdot \tan 20^{\circ}$$
(74)

$$j_{min} = 283 \ \mu m > 185 \ \mu m$$
 (75)

$$j_{max} = -\frac{(A_{W1,d} + A_{W2,d})}{\cos \alpha} + 2 \cdot A_{a,g} \cdot \tan \alpha$$
(76)

$$j_{max} = -\frac{(-162 - 240)}{\cos 20^{\circ}} + 2 \cdot 32 \cdot \tan 20^{\circ}$$
(77)

$$j_{max} = 451 \,\mu\text{m} > 185 \,\mu\text{m}$$
 (78)

Odabrana granična odstupanja mjere preko nekoliko zubi zadovoljavaju tražene uvjete i prema tome su konačne vrijednosti graničnih odstupanja (tolerancije) mjere preko nekoliko zubi kod izrade zupčanika:

Zupčanik z1: kvaliteta 8 fe $A_{W1,g} = -108 \ \mu\text{m}, A_{W2,g} = -180 \ \mu\text{m}$ Zupčanik z2: kvaliteta 8 ed $A_{W1,d} = -162 \ \mu\text{m}, A_{W2,d} = -240 \ \mu\text{m}$

5.7. Kontrola naprezanja

Kako je za materijal zupčanika odabran plameno kaljeni čelik za poboljšavanje C45 kontrola naprezanja izvršena je u odnosu na dozvoljeno naprezanje na savijanje u korijenu zuba manjeg zupčanika z₁:

$$\sigma_{F1} = \frac{F_t}{b \cdot m} \cdot Y_F \cdot Y_{\varepsilon} \cdot K_{F\beta} \cdot K_{F\alpha} \cdot K_I \cdot K_V \le \sigma_{FP}$$
(79)

Gdje je:

$$F_t = \frac{2 \cdot T_{max}}{d_1} = \frac{2 \cdot 549\,500}{250} = 4396\,\,\mathrm{N} \tag{80}$$

$$Y_F = f(z_1 = 50, x_1 = 0, \beta = 0^\circ) = 2,35$$
 (81)

$$z_{k1} = \frac{2 \cdot d_1}{d_{a1} - d_1} = \frac{2 \cdot 250}{260 - 250} = 50$$
(82)

$$\varepsilon'_{k1} = f(\alpha = 20^\circ, z_{k1} = 50) = 0.85$$
 (83)

$$\varepsilon_{k1} = \varepsilon'_{k1} \cdot \frac{z_1}{z_{k1}} = 0.85 \cdot \frac{50}{50} = 0.85$$
 (84)

$$z_{k2} = \frac{2 \cdot d_2}{d_2 - d_{a2}} = \frac{2 \cdot 500}{500 - 490} = 100$$
(85)

$$\varepsilon'_{k2} = f(\alpha = 20^{\circ}, z_{k1} = 100) = 0,89$$
(86)

$$\varepsilon_{k2} = \varepsilon'_{k2} \cdot \frac{z_2}{z_{k2}} = 0.89 \cdot \frac{100}{100} = 0.89$$
 (87)

$$\varepsilon_{\alpha 1} = \varepsilon_{k1} + \varepsilon_{k2} = 0,85 + 0,89 = 1,74$$
 (88)

$$Y_{\varepsilon} = \frac{1}{\varepsilon_{\alpha 1}} = \frac{1}{1,74} = 0,575$$
(89)

$$q_{L1} = f\left(d_2 = 500 \text{ mm}, m = 5, \text{kvaliteta } 8, \frac{F_t}{b} = 58, 6\right) = 1$$
 (90)

$$K_{F\alpha} = q_L \cdot \varepsilon_{\alpha} = 1,3 \tag{91}$$

Uvrštavanjem vrijednosti u izraz (79) dobije se naprezanje u korijenu zuba:

$$\sigma_{F1} = \frac{4396}{75\cdot5} \cdot 2,35 \cdot 0,575 \cdot 1 \cdot 1,3 \cdot 1,25 \cdot 1 = 25,74 \frac{N}{mm^2} < \sigma_{FP} = 108 \frac{N}{mm^2}$$
(92)

Kako je naprezanje u korijenu zuba manje od dozvoljenog naprezanja na savijanje u korijenu zuba, zupčanik zadovoljava.

6. PRORAČUN NOSIVE KONSTRUKCIJE

6.1. Odabir elemenata i dimenzioniranje nosive konstrukcije

Prema tekstu zadatka podizna platforma mora imati dimenzije 1 x 2 m tako da su za okvir nosive konstrukcije odabrana dva UPN140 profila duljine 1010 mm u poprečnom smjeru dok su za uzdužni smjer odabrana pet IPN140 profila duljine 1890 mm. Na okvir nosive konstrukcije je položena i zavarena limena ploča debljine 4 mm. Uzdužni i poprečni profili su također zavareni jedni za druge, kao što su i četiri pločice s navojnim provrtima zavarene za donji okvir nosive konstrukcije, a koje služe za ostvarivanje veze s vertikalnim polugama koje su zavarene za mehanizam podizanja.

Identification	Nominal weight 1m		Nominal dimensions			Cross-section Dimensions for detailing						Surface					
UNP		b	h	s	t=R1	R2	e	A		d	ø	emin	em	ах	AL	AG	
	kg/m			m	im			cm2		mm		mm	mr	n n	n2/m	m2/t	
UPN 30	4,27	33	30	5,0	7,0	3,5	-	5,4		-	-	-	-		-	-	
UPN 40x20	2,86	20	40	5,0	5,5	2,5	-	3,7		-	-	-	-		-	-	
UPN 40	4,87	35	40	5,0	3,5	7,0	-	6,2		-	-	-	-		-	-	
UPN 50	5,59	38	50	5,0	7,0	3,5	13,7	7,12		21	-	-	-	C	,232	42,22	
UPN 65	7,09	42	65	5,5	7,5	4,0	14,2	9,03		34	-	-	-	C	,273	39,57	
UPN 80	8,64	45	80	6,0	8,0	4,0	14,5	11,00		47	-	-	-	C	,312	37,10	
UPN 100	10,6	50	100	6,0	8,5	4,5	15,5	13,50		64	-	-	-	C	,372	35,10	
UPN 120	13,4	55	120	7,0	9,0	4,5	16	17,00		82	-	-	-	C	,434	32,52	ĺ
UPN 140	16,0	60	140	7,0	10,0	5,0	17,5	20,40		98	M12	33	emin emax AL AG mm mm m2/m m2/t - - - - - - - - - - - - - - - - - - - 0,232 42,22 - 0,312 35,10 - 0,312 35,10 - 0,312 35,10 - 0,434 32,52 33 37 0,489 30,54 34 42 0,546 28,98 Mm Cm Cm 28,98 Cm <				
UPN 160	18,8	65	160	7,5	10,5	5,5	18,4	24,00		115	M12	34	42	2 0	,546	28,98	1
Identification	ı							Section pr	opertie	s, static	data						
	Ix	Wel.x	v	VpI.x	ix		Avz	ly	Wel.y	Wel.y	iy	Ss	It	lw	Ys	Ym	
	cm	cm3	0	cm3	cm		cm2	cm4	cm3	cm3	cm	mm	cm	cm2	mm	cm	
UPN 30	6,39	4,26		-	1,0	в	-	5,33	2,68	-	0,99	-	-	-	-	-	
UPN 40x20	7,58	3,79		-	1,4	4		1,14	0,86		0,56	-	-	-	-	-	
UPN 40	14,1	7,05		-	1,5	D	-	6,68	3,08	-	1,04	-	-	-	-	-	
UPN 50	26,4	10,6		13,1	1,9	2	2,77	9,12	3,75	6,78	1,13	16,7	1,12	0,03	1,37	2,47	
UPN 65	57,5	17,7	:	21,7	2,5	2	3,68	14,1	5,07	9,38	1,25	18,0	1,61	0,08	1,42	2,60	
UPN 80	106	26,5	:	32,2	3,10	о .	4,90	19,4	6,36	11,90	1,33	19,4	2,20	0,18	1,45	2,67	
UPN 100	206	41,2	4	49,0	3,9	1	6,47	29,3	8,49	16,20	1,47	20,3	2,81	0,41	1,55	2,93	
UPN 120	364	60,7	1	72,6	4,6	2	8,80	43,2	11,12	21,20	1,59	22,2	4,15	0,90	1,60	3,03	1
UPN 140	605	86,4	1	03,0	5,4	5	10,4	62,7	14,8	28,30	1,75	23,9	5,68	1,80	1,75	3,37	
LIDNI 160	0.05	44.0		120	6.2	1	10.0	05.2	10.2	25.2	1.00	25.2	7.20	2.26	1.04	2.50	f

Slika 23. Geometrijske karakteristike UPN140 profila [18]

Diplomski rad

Slika 24. Geometrijske karakteristike IPN140 profila [19]

6.2. Analitička kontrola čvrstoće i krutosti nosive konstrukcije

Pretpostavlja se da sila tereta djeluje na sredini podizne platforme te se iz tog razloga kontrola čvrstoće i krutosti nosive konstrukcije provodi kao za 2D slučaj grede na dva oslonca opterećene na sredini polovinom težine tereta i težinom uzdužnog IPN140 profila $F_g = \frac{Q_t}{2} + Q_{IPN140} = 2717,4$ N kao što je prikazano na slici 25.

Slika 25. Pojednostavljeni 2D model opterećenja IPN140 profila

Maksimalni moment savijanja javlja se na sredini grede:

$$M_{max,g} = F_g \cdot \frac{L_{AB}}{2} = 2717, 4 \cdot \frac{1833}{2} = 2\,490\,497\,\text{Nmm}$$
 (93)

Moment otpora presjeka IPN140 profila prema [19]:

$$W_{\gamma} = 81\,900\,\mathrm{mm^3}$$
 (94)

Naprezanje uslijed savijanja iznosi:

$$\sigma_f = \frac{M_{max,g}}{W_y} = \frac{2\,490\,497}{81\,900} = 30,41\,\text{N/mm}^2 \tag{95}$$

Za materijal profila S355JR prema [20] očitana su sljedeća mehanička svojstva:

$$R_e = 360 \text{ N/mm}^2$$
$$R_m = 570 \text{ N/mm}^2$$

Za određivanje dopuštenog naprezanja uzet je u obzir faktor sigurnosti S = 1,5:

$$\sigma_{dop} = \frac{R_e}{S} = \frac{360}{1.5} = 240 \text{ N/mm}^2 \tag{96}$$

Tako je zadovoljen uvjet čvrstoće: $\sigma_f = 30,41 \text{ N/mm}^2 < \sigma_{dop} = 240 \text{ N/mm}^2$

Prema [11] za opće strojarstvo dopušteni progib iznosi:

$$f_{dop} = (0,3 \dots 0,35) \cdot 10^{-3} \cdot L_{AB} = 0,3 \cdot 10^{-3} \cdot 1833 = 0,55 \text{ mm}$$
(97)

Za slučaj grede opterećene na sredini između dvaju oslonca vrijedi izraz za progib:

$$f = \frac{F_g \cdot L_{AB}^3}{48 \cdot E \cdot I_{y,IPN140}} = \frac{2717,4 \cdot 1833^3}{48 \cdot 210\ 0000 \cdot 5\ 730\ 000} = 0,29\ \mathrm{mm}$$
(98)

S obzirom da vrijedi: $f = 0,29 \text{ mm} < f_{dop} = 0,55 \text{ mm}$ zadovoljen je i kriterij krutosti. Valja napomenuti kako je ovakav proračun na strani sigurnosti jer nisu uzeti u obzir tri uzdužna IPN140 profila što znači da je u stvarnosti progib grede, odnosno platforme još i manji.

6.3. FEM analiza nosive konstrukcije

S obzirom da se sklop nosive platforme sastoji od više međusobno zavarenih pozicija, numerička analiza pomoću metode konačnih elemenata (FEM) provest će se pomoću programskog paketa *Solidworks*. Od rubnih ograničenja zadana su uklještenja na donjim površinama pločica s navojnim provrtima na kojima je ostvarena veza nosive platforme s ostatkom mehanizma. Dodana je sila na površinu horizontalne ploče uslijed težine tereta mase 500 kg koja iznosi 4905 N i generirana je mreža od 18 974 elemenata. Iz slike 26. vidljivo je da maksimalno naprezanje po von Misesu iznosi 3,742 N/mm² što je višestruko manje od dopuštenog naprezanja.

Slika 26. Raspodjela naprezanja nosive platforme

Progib izračunat u prethodnom poglavlju je na strani sigurnosti kao što je i objašnjeno, a raspodjela pomaka u vertikalnom smjeru prema slici 27. to i potvrđuje s obzirom da maksimalni pomak nosive platforme iznosi 0,04276 mm (negativna vrijednost označava suprotan smjer u odnosu na definirani koordinatni sustav).

Slika 27. Raspodjela vertikalnih pomaka nosive platforme

6.4. Proračun vertikalnih poluga nosive konstrukcije

Oslanjanje nosive konstrukcije na mehanizam podizanja izvedeno je pomoću 4 kvadratna profila dimenzije 50x50x8 mm i duljine l = 550 mm čije su geometrijske karakteristike prikazane na slici 28.

Slika 28. Geometrijske karakteristike kvadratnog 50x50x8 profila [21]

Profil je zavaren na izlaznu čahuru mehanizma i pločicu koja je vijčanom vezom povezana na nosivu konstrukciju te je potrebno kontrolirati izvijanje kvadratnih profila za slučaj uklještenja na oba kraja kao što je prikazano slici 29.

Slika 29. Model izvijanja za slučaj s uklještenjem na oba kraja

Vitkost profila vertikalne poluge mehanizma:

$$\lambda = \frac{l_0}{i} = \frac{275}{16,8} = 16,37\tag{99}$$

Slobodna duljina izvijanja za slučaj uklještenja na oba oslonca:

$$l_0 = \frac{l}{2} = \frac{550}{2} = 275 \text{ mm}$$
(100)

Polumjer tromosti presjeka profila:

$$i = \sqrt{\frac{I_{min}}{A}} = 16,8 \text{ mm}$$
 (101)

Gdje je:

 $I_{min} = 360\ 000\ \mathrm{mm^4}$ – najmanji moment tromosti presjeka profila

 $A = 1280 \text{ mm}^2 - \text{površina presjeka profila}$

Za materijal kvadratnog profila odabran je čelik E355 za koji su prema [22] vrijednosti za proračun na izvijanje:

$$\lambda_p = 90$$

$$\sigma_{kr,Tet} = \sigma_0 - k \cdot \lambda = 350 - 0.6 \cdot \lambda$$
(102)

Kako vrijedi $\lambda = 16,37 < \lambda_p = 90$ proračun se provodi po Tetmajeru:

$$\sigma_{kr,Tet} = 350 - 0.6 \cdot 16.37 = 340.2 \text{ N/mm}^2 \tag{103}$$

Naprezanje profila opterećenog četvrtinom težine tereta i četvrtinom težine nosive konstrukcije $F_p = \frac{Q_t}{4} + \frac{Q_{nos.konstr.}}{4} = 1678 \text{ N iznosi:}$

$$\sigma = \frac{F_p}{A} = \frac{1678}{1280} = 1,31 \text{ N/mm}^2 \tag{104}$$

Sigurnost profila s obzirom na izvijanje prema Tetmajeru:

$$S_{Tet} = \frac{\sigma_{kr}}{\sigma} = \frac{340.2}{1.31} = 260 > S_{potr,Tet} = 2 \dots 4$$
(105)

Vidljivo je kako vertikalni kvadratni profil zadovoljava proračun na izvijanje.

6.4.1. Proračun zavara vertikalne poluge nosive konstrukcije

Zavari su opterećeni tlačnom silom $F_p = 1678$ N te momentima savijanja oko oba dvije osi koje uzrokuje polovina težine tereta i polovina težine konstrukcije, tj. $2F_p = 3356$ N na polovicama udaljenosti od oslonaca platforme. Proračunski presjek zavara s ucrtanim opterećenjima prikazan je na slici 30. Odabran je kutni zavar debljine a = 5 mm te kako se radi o zavaru na oba kraja poluge proračunske vrijednosti zavara se množe s dva.

Slika 30. Zavar vertikalne poluge nosive konstrukcije s ucrtanim opterećenjima

Momenti savijanja iznose:

$$M_{s1} = 2F_p \cdot \frac{l_{p1}}{2} = 3356 \cdot \frac{1833}{2} = 3\ 075\ 774\ \text{Nmm}$$
(106)

$$M_{s2} = 2F_p \cdot \frac{l_{p2}}{2} = 3356 \cdot \frac{590}{2} = 990\ 020\ \text{Nmm}$$
 (107)

Moment tromosti presjeka zavara jednak je za oba dvije osi:

$$I_1 = I_2 = 2 \cdot \left(\frac{60^4}{12} - \frac{50^4}{12}\right) = 1\ 118\ 333,33\ \mathrm{mm}^4 \tag{108}$$

Moment otpora presjeka zavara također je jednak za oba dvije osi za:

$$W_1 = W_2 = \frac{I_{1,2}}{e} = \frac{1\,118\,333,33}{30} = 37\,277,78\,\mathrm{mm}^3$$
 (109)

Površina proračunskog presjeka zavara:

$$A_{zav} = 2 \cdot (60^2 - 50^2) = 2200 \text{ mm}^2 \tag{110}$$

Tlačno naprezanje zavara iznosi:

$$\sigma_t = \frac{2F_p}{A_{zav}} = \frac{3356}{2200} = 1,53 \text{ N/mm}^2 \tag{111}$$

$$\sigma_{f1} = \frac{M_{s1}}{W_1} = \frac{3\ 075\ 774}{37\ 277,78} = 82,51\ \text{N/mm}^2 \tag{112}$$

$$\sigma_{f2} = \frac{M_{s2}}{W_2} = \frac{990\ 020}{37\ 277,78} = 26,56\ \text{N/mm}^2 \tag{113}$$

Reducirano naprezanje kritične točke A jednako je zbroju normalnih naprezanja:

$$\sigma_{red} = \sigma_{zav,A} = 1,53 + 82,51 + 26,56 = 110,6 \text{ N/mm}^2$$
(114)

Dopušteno naprezanje kutnog zavara:

$$\sigma_{z,dop} = \beta \cdot \sigma_{dop} = 0.96 \cdot 240 = 230.4 \text{ N/mm}^2$$
(115)

Gdje je:

$$\beta = 0.8 \cdot \left(1 + \frac{1}{a}\right) = 0.8 \cdot \left(1 + \frac{1}{5}\right) = 0.96 \tag{116}$$

 $\sigma_{dop} = 240 \text{ N/mm}^2 - \text{dopušteno naprezanje za osnovni materijal S355 prema [23]}$

S obzirom da vrijedi: $\sigma_{red} = 110,6 \text{ N/mm}^2 < \sigma_{z,dop} = 230,4 \text{ N/mm}^2$, zavar zadovoljava.

7. ZAKLJUČAK

Zahtjevi za visinu podizanja od 0,5 m te dimenzije podizne platforme 1 x 2 m, kao i potrebna snaga za pogon samog sustava mehanizma uvelike su geometrijski ograničavali ovu konstrukciju. Relativno mala brzina dizanja tereta i zahtjev za elektromotornim pogonom za sobom povlači potrebu za velikim prijenosnim omjerom reduktora kao što je objašnjeno u poglavlju 2. prilikom odabira koncepcijskog rješenja. Veličina reduktora (i elektromotora) proporcionalna je prijenosnom omjeru što uz prethodno navedene zahtjeve predstavlja problem kod pozicioniranja pogona unutar sustava.

Kinematskom analizom određena je veza između pogonske sile, tj. tangencijalne sile na ručicu mehanizma u ovisnosti o kutu zakreta. Kao najgori slučaj za cjelokupnu konstrukciju podizača pokazalo se kada je iznos tangencijalne sile maksimalan, odnosno kada je njezin vektor vertikalan u odnosu na horizontalnu ravninu podizača te je na temelju iste izvršen proračun i dimenzioniranje svih elemenata mehanizma i konstrukcije.

Na kraju je izrađen 3D CAD model cjelokupnog sklopa podizača temeljenog na mehanizmu Tusijevog para (slika 31). kao i pripadajuća tehnička dokumentacija.

Slika 31. 3D CAD model sklopa podizača u izometriji

- Serdar, J., Prenosila i dizala, Izvadak iz Tehničke enciklopedije, Leksikografski zavod "Miroslav Krleža", 1995.
- [2] https://trigon-dizalotehnika.hr/
- [3] <u>https://delacco.hr/pretovarna-rampa-2700kg/</u>
- [4] https://webgradnja.hr/katalog/podizni-stolovi-i-platforme/1100
- [5] Ray, P., Redkar, S., Analysis and simulation of Wiseman hypocycloid engine, Cogent Engineering, 2014., 1:988402
- [6] Conner, T., Critical evaluation and optimization of a hypocycloid Wiseman engine (Master's thesis), Arizona State University, Mesa, AZ., 2011.
- [7] Meng-Hui Hsu, Planetary Hypocycloid (Epicycloid) Mechanisms Design, IAENG International Journal of Applied Mathematics, 2008., 38:4, IJAM_38_4_06.
- [8] Oberšmit, E.: Ozubljenja i zupčanici, SNL Zagreb 1982.
- [9] https://www.nord.com/en/home.jsp
- [10] https://www.comintec.com/download/cataloghi/sezioni/couplings/GAS-SG_GAS_EN.pdf
- [11] Vučković, K.,: Vratila, podloge uz predavanja, FSB, Zagreb, 2018.
- [12] H. Haberhauer, F. Bodenstein, Maschinenelemente, 15., bearbeitete Auflage, Springer, 2009.
- [13] Vučković, K.,: Valjni i klizni ležajevi, podloge uz predavanja, FSB, Zagreb, 2018.
- [14] https://www.skf.com
- [15] K.H. Decker, K. Kabus, Maschinenelemente, 18. Auflage, Carl Hanser Verlag München, 2011.
- [16] K.H. Decker, Elementi strojeva, Golden marketing Tehnička knjiga, Zagreb, 2006.
- [17] Opalić, M., Rakamarić, P., Reduktor Proračun i konstrukcija jednostupanjskog zupčanog prijenosnika, Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu, Zagreb, 2001.
- [18] http://www.b2bmetal.eu/u-sections-unp-specification
- [19] http://www.b2bmetal.eu/i-sections-inp-specification
- [20] Kraut, B.: Strojarski priručnik, Tehnička knjiga Zagreb, 1970.
- [21] http://www.b2bmetal.eu/en/pages/index/index/id/108/
- [22] D. Muhs, H. Wittel, D. Jannasch, J. Vossiek, Roloff / Matek Maschinenelementen, Vieweg, Wiesbaden, 2007.
- [23] Norma HRN.U.E7.150

Fakultet strojarstva i brodogradnje

PRILOZI

- I. CD-R disc
- II. Tehnička dokumentacija

12	manee				0	DIN 754	10		11124					
11	Vijak					DIN 933	10.9	10.9 M24x100						
10	Vijak	Vijak			16	DIN 7984	10.9		M12x20					
9	Matica				16	DIN 934	10		M20					
8	Vijak				16	DIN 931	10.9		M20x80					
7	Vijak	<			Vijak			8	DIN 933	10.9		M6x10		
6	Spojka	x			4	GAS/SG-ST 6(65)	98Sh-A	С	ominTec					
5	Elektro	motor	s reduktoror	n	2	SK 9053.1LX - IEC9	90 - 90SP/4		NORD					
4	Podno	Podnožje			1	BZ-023-004								
3	Nosiva	a platfo	rma		1	BZ-023-003								
2	Mehar	nizam z	za podizanje	e_D	2	BZ-023-002								
1	Mehar	Mehanizam za podizanje_L			2	BZ-023-001								
Poz.	Naziv dijela			Kom.	Crtež broj Norma	Materijal	Sii	rove dimer Proizvođa	nzije ač	Masa				
Broj naziva – code				Datum		lme i prezime	Potpis		$\widehat{}$					
Projektirao 3.5			3.5.2023.	Ber	njamin Zganec									
			Razradio	3.5.2023.	Benjamin Zganec FSB						gred			
				3.5.2023.	Ber	ijamin zganec								
			Fregledau											
15	0 – toleran	cije	Objekt:				Objekt broj:							
							R. N. broj:							
			Napomena:							K	opija XXXXXXXX			
	Materijal:					Masa:								
	Naziv:				Pc	dizač na te	Pozicija: Pozicija:				at: A2			
			Mjerilo origin	ala	pc	ar mehanizr	na			Listo	va: 1			
			MI:10	Crtež	ź broj:	BZ-023-00	00			List:	1			

 \triangle

11

12

13

Ø150H8/h8 Ø65M7/k6 Ø85H8/m7 Ø90H8/m7 Ø70M7/k6 Ø90H8/h8

 \triangle

-0.0

	30	Pero					DIN 6885		16x10x63			
	29	Vijak				4	DIN 933	10.9	j	M6x20		
	28	Limeni poklopac za kućište				1	BZ-023-117	\$235JR	Ø	560x121		
	27	Pločica za prihvat nosive platforme				1	BZ-023-116	E355	90	x130x12		
	26	Vertikalna poluga				1	BZ-023-115	E355	50	x50x550		
	25	Vijak				6	DIN 7984	10.9	N	√16x30		
	24	Sklop	nosača m	nehanizma		1	BZ-023-010					
	23	23 Vijak M12x100				6	DIN 7984	10.9	N	112x100		
	22	Vaniski prsten kućišta				1	BZ-023-114	E335	Ø	580x160		
	21					1	B7-023-113	E335	Ø	565x20		
	20	Kućište osovine2				1	B7-023-112	E335	10	0x60x90		
	19	Uskočnik				1	DIN 471	2000	.е 	25x1 2		
	18					2	61805-2RS1		<i>\V</i>	SKE		
	17					1	B7_023_111	E335				
	17					1	BZ-023-110	C45	$\downarrow \phi$	540275		
	10					1	DIN 471	C43	φ	$\frac{360 \times 15}{20 \times 15}$		
	15					1	DIN 47 1	5225	φ	30X1,5		
	14	Usovina I					DZ-UZ3-109	E333	Ψ35X165			
	13	Lezaj				2	61806-2RS1	0.15	4	SKF		
	12	Zupco	anik I	-			BZ-023-108	C45	φ	250x80		
	11	Nosa	č zupčanil	ka 1			BZ-023-107	E335	φ	250x115		
	10	Vijak				1	DIN 7984	10.9	M16x90			
	9	9 Polužna ručica			1	BZ-023-106	E335	220x110x40 M10x25 Ø140x16 SKF SKF Ø75x90 SKF				
	8	 8 Vijak 7 Poklopac za ležaj 6 Matica za ležaj 5 Ležaj 4 Odstojna čahura 				4	DIN 7984				10.9	
	7					1	BZ-023-105				E335	
	6					1	KMFE 13					
	5					1	61813-2RS1					
	4					1	BZ-023-104				E335	
	3	3 Ležaj			1	61814-2RS1						
	2	Vratil	01			1	BZ-023-102	E335	Ø	75x302		
	1	Čahu	ıra za kući	šte		1	BZ-023-101	E335	Ø	210x115		
	Poz.	Naziv dijela				Kom.	Crtež broj Norma	Materijal	Sir I	ove dimer Proizvođa	ızije ač	Masa
	Вго	oj naziva	a – code	Datum		lme i prezime		Potpis				
				Projektirao 3.5.2023.		Benjamin Zganec				ᆚᇊ	3 7agab	
				Crtao	3.5.2023.	. Benjamin Žagnec						yı en
	Pregledao					220. Donjanim Zganoo						
04	ISO – tolerancije Obje		Objekt:				Objekt broj:					
20	Ø30N	30M7/k6 -0.036					R. N. broj:					
)3	(h 10)	+0,030		Napomena:		Masa:		,			K	opija
68	Ψ42F	42H8/m/ -0,034		1								
41 48	Ø560	Ø 560H7/k6 +0,070 -0.044		Materijal:								
	Ø 37H8/m7 +0,030			Naziv:			1	Pozicija:		<u>Λ1</u>		
41	-0,034				Meh	anizam za	nodizanie I			Format: AI		
41 18	Ψ3/Γ			Mjerilo originala					< <u>−</u> -			~
41 48)2	Ø37F Ø25⊦	17/k6	+0,019	Mjerilo origin	iala						Listo	va: 2
41 48)2 51 08	Ø25⊦	17/k6	+0,019 -0,015 +0.026	Mjerilo origin	iala						Listo	va: 2
41 48 02 51 08	Ø25⊢ 16P9	17/k6 1/h9	+0,019 -0,015 +0,026 -0,061	Mjerilo origin M1:5	Crtež	Ьгој:	BZ-023-00)1			Listo List:	1

SECTION B SCALE 1 :

10

9

max 1142 min 642

	11		12		13	
B-B :2			9			
	Poz. Nazi	v dijela	Kom. Crtež broj	Materijal	Sirove dimenzije	Masa
	ISO - tolerancije	v dijela Projektirao 3.5.2023. Razradio 3.5.2023. Crtao 3.5.2023. Pregledao Objekt: Napomena: Materiial:	Kom. Norma Norma Ime i prezime Benjamin Žganec Benjamin Žganec	Materijal Potpis Objekt broj: R. N. broj:	Proizvođač FSB Za	igreb
		Mjerilo originala M1:5	Mehanizam za p broj: BZ-023-00	podizanje_L	Pozicija: Pozicija: I Listo List:	Jat: A1 Jva: 2 2

0 10 20 30 40 50 60 70 80 90