Rašić, Branko

Undergraduate thesis / Završni rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:136576

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-03

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Voditelj rada: izv. prof. dr. sc. Nenad Ferdelji

Branko Rašić

Zagreb, 2023.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Želio bih se zahvaliti izv. prof. dr. sc. Nenadu Ferdeljiju na menstorstvu, strpljenju, razjašnjavanju svih nedoumica tijekom pisanja ovog rada i na cjelokupnom prenesenom znanju tijekom studiranja.

Također, želio bih se zahvaliti tvrtki Probotica i njezinim zaposlenicima, što je u suradnji s mentorom predložila temu ovog rada te na pruženoj pomoći.

Nadalje, želio bih zahvaliti tvrtki Sinitech Industries na povjerenju pri privremenom zaposlenju tijekom studija i svim njezinim zaposlenicima koji su mi prenijeli praktična znanja i dodatno me zbližili s procesnom tehnikom.

Hvala mojim prijateljima uz koje je svaki dan prilikom studiranja, pa i onaj najteži bio popraćen smijehom.

Konačno, najviše bih se zahvalio svojoj obitelji, prvenstveno roditeljima i bratu te mojoj Iris za svu pruženu podršku, ljubav i sreću tijekom života i studiranja.

Branko Rašić

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za završne i diplomske ispite studija strojarstva za smjerove.

Sveučilište u Zagrebu		
Fakultet strojarstva i brodogradnje		
Datum	Prilog	
Klasa: 602 – 04 / 23 – 6 / 1		
Ur.broj: 15 - 1703 - 23 -		

ZAVRŠNI ZADATAK

Student:

Branko Rašić

JMBAG: 0035216855

Naslov rada na hrvatskom jeziku:

Izdvajanje alkohola iz otpadnih smjesa

Naslov rada na engleskom jeziku:

Separation of alcohol from waste mixtures

Opis zadatka:

U postrojenju za destilaciju alkohola se iz otpadnih smjesa (industrijske boje) izdvaja korisno otapalo (alkohol) koje se koristi kao sirovina u daljnjim industrijskim procesima.

Proces destilacije započinje ubacivanjem otpadnih smjesa iz IBC spremnika u posudu destilatora. Destilator je zamišljen kao posuda s duplostijenim konusnim završetkom koji predstavlja komoru za zagrijavanje otpadne smjese kondenzacijom suhozasićene vodene pare.

Unošenjem topline u destilator dolazi do izdvajanja korisnog otapala kao lakše hlapive komponente.

Destilator koristi sporu miješalicu sa samopodešavajućim strugačima. Oni održavaju unutarnju stjenku posude čistom i tako omogućavaju kvalitetniji prijenos topline na otpadno (uprljano) otapalo te na taj način odstranjuju neželjene primjese koje se zadržavaju na stijenci.

Alkoholne pare po izlazu iz destilatora prolaze kroz odvajače kapljica u kojem se zadržavaju moguće nečistoće otpadne smjese te se potom vode u kondenzator u kojemu se alkohol pothlađuje na 40 °C. Kondenzirani se alkohol skuplja u predviđenoj razdjelnoj posudi, a zatim upumpava u IBC spremnike. Tehnički podaci postrojenja:

- Kapacitet destilacije: 760 l/h
- Korisno otapalo: etanol ili butanol
- Radni tlak: 0,5 bar
- Ogrjevni medij: suhozasićena vodena para maksimalnog tlaka 5 bar
- Maksimalni protok ogrjevnog medija: 900 kg/h
- Rashladni medij u kondenzatoru: voda, 7/12 °C
- Maksimalni protok rashladne vode: 1000 kg/h
- U sklopu rada je potrebno:
 - Pregled i opis opreme koja se koristi u postrojenju
 - izraditi P&ID dijagram procesa
 - dimenzionirati ogrjevnu površinu destilatora
 - izraditi toplinski proračun i tehničke crteže kondenzatora

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

 Zadatak zadan:
 Datum predaje rada:
 Predviđeni datumi obrane:

 30. 11. 2022.
 1. rok: 20. 2. 2023.
 1. rok: 27. 2. - 3. 3. 2023.

 2. rok (izvanredni): 10. 7. 2023.
 2. rok (izvanredni): 14. 7. 2023.

 3. rok: 18. 9. 2023.
 3. rok: 25. 9. - 29. 9. 2023.

 Zadatak zadao:
 Predsjednik Povjerenstva:

Izv. prof. dr. sc. Nenad Ferdelji

Prof. dr. sc. Vladimir Soldo

SADRŽAJ

	SADRŽAJIPOPIS SLIKAIIPOPIS TABLICAIIPOPIS OZNAKAIISAŽETAKVISUMMARYVI
1	UVOD 1
2	PREGLED POSTROJENJA 2 2.1 Opis komponenti 3 2.1.1 Destilator 3 2.1.2 Vakuum pumpa s tekućim prstenom 4 2.1.3 Odvajač kapljica 6 2.1.4 Kondenzator 7 2.1.5 Membranska pumpa 8 2.1.6 IBC spremnik 9 2.2 Opis podsustava 10 2.2.1 Priprema pare 10 2.2.2 Krug tekućine za vakuum pumpu 11 TOPLINSKI PRORAČUN DESTILATORA 12 3.1 Toplinski tokovi 12 3.2 Koeficijent prijelaza topline unutar posude 14
	3.3 Koeficijent prijelaza topline u međuprostoru 14 3.3.1 Vertikalna cijev 15 3.3.2 Nagnuta stijenka 16 3.4 Osvrt na rezultate 18
4	KONDENZATOR 19 4.1 Toplinski proračun 19 4.1.1 Toplinski tok 19 4.1.2 Srednja logaritamska temperaturna razlika 21 4.1.3 Koeficijent prijelaza topline na strani vode 21 4.1.4 Koeficijent prijelaza topline na strani etanola 24 4.2 Proračun čvrstoće 26 4.2.1 Proračunska čvrstoća 26 4.2.2 Plašt 28 4.2.3 Plitka podnica 32 4.2.4 Izrez u plaštu 34 4.2.5 Plitka podnica s priključcima 38 4.2.6 Izrezi u podnici s priključcima 41 4.2.7 Prirubnički spoj 44 4.3 Hidraulički proračun 59 4.3.1 Pad tlaka na strani vode 59 4.3.2 Pad tlaka na strani etanola 59
5	ZAKLJUČAK 67 LITERATURA 68

POPIS SLIKA

1	Konceptualna shema postrojenja	2
2	3D model destilatora	3
3	Vakuum pumpa s tekućim prstenom [3]	4
4	Radno područje vakkum pumpi s tekućim prstenom [4]	5
5	Geometrija filamenta	6
6	Poprečni presjek 3D modela kondenzatora	7
7	Princip rada dvoradne membranske pumpe [6]	8
8	IBC spremnici [11]	9
9	Shema pripreme pare	0
10	Shema sustava vakuum pumpe	1
11	Presjek konusa	2
12	Definicija veličine w $[1]$	9
13	Dimenzije L i w za prirubnicu DN350 22	9
14	Pomoćna veličina ε	0
15	Tlak urušavanja	1
16	Dimenzije podnice	2
17	Karakteristične dimenzije za proračun "set-in" priključka	4
18	Koeficijent podnice β	9
19	Izrezi u podnici	2
20	Prirubnički spoj	4
21	Karakteristične veličine cijevne stijene 55	2
22	Spoj cijevi i cijevne stijene	3
23	Efektivni modul elastičnosti i efektivni Poissonov omjer	5
24	Koeficijent otpora pri ustrujavanju u cijevni snop	1
25	Faktor otpora pri ustrujavanju u cijev, ovisno o izvedbi priključka	3

POPIS TABLICA

1	Rezultati proračuna kondenzacije oko vertikalne cijevi	16
2	Rezultati proračuna kondenzacije na nagnutoj stijenci	17
3	Koeficijent prijelaza i prolaza topline u kondenzatoru	26
4	Pad tlaka pri ustrujavanju iz priključka u prostor podnice	60
5	Pad tlaka pri ustrujavanju u cijevni snop	61
6	Pad tlaka pri strujanju kroz cijevi	62
7	Pad tlaka pri ustrujavanju iz cijevnog snopa u prostor podnice	63
8	Pad tlaka pri ustrujavanju iz cijevnog snopa u prostor podnice	64
9	Pad tlaka ustrujavanja u plašt	65
10	Pad tlaka istrujavanja iz plašta	66

POPIS OZNAKA

OZNAKA	MJERNA JEDINICA	VELIČINA
A	m^2	površina
A	mm	vanjski promjer prirubnice
a	/	geometrijski faktor
В	mm	unutarnji promjer prirubnice

POPIS OZNAKA

OZNAKA	MJERNA JEDINICA	VELIČINA
b	m	širina
c	kJ/kg	specifični toplinski kapacitet
D	mm	vanjski promjer
d	mm	unutarnji promjer
d	mm	vanjski promjer
E	MPa	modul elastičnosti
E^*	MPa	efektivni modul elastičnosti
f	$ m N/mm^2$	proračunska čvrstoća
f	/	pomoćna veličina
G	mm	promjer reakcije brtve
g	m/s^2	ubrzanje sile teže
Н	mm	visina
Н	N	hidrostatska sila
h	kJ/kg	specifična entalpija
k	$ m kW/(m^2K)$	koeficijent prolaza topline
L	m	duljina
l	mm	duljina
M	Nmm/mm	moment po jedinici duljine
m	/	faktor brtve
Nu	/	Nusseltova značajka
n	/	broj
P	/	broj prolaza
P	MPa	tlak
Pr	/	Prandtlova značajka
p	bar	tlak
r	kJ/kg	specifična toplina isparavanja
Re	/	Reynoldsova značajka
$q_{ m m}$	m kg/s	maseni protok
$q_{ m v}$	l/h	volumni protok
R	mm	polumjer
$R_{ m p1,0}$	$ m N/mm^2$	konvencionalna granica razvlačenja
S	mm	visina

 $Fakultet\ Strojarstva\ i\ Brodogradnje$

POPIS OZNAKA

OZNAKA	MJERNA JEDINICA	VELIČINA
W	Ν	opterećenje na vijke
w	m/s	brzina
y	MPa	minimalano naprezanje pri ugradnji
z	/	koeficijent zavarenog spoja
α	$\rm kW/(m^2K)$	koeficijent prijelaza topline
δ	mm	debljina stijenke
ϵ	mm	debljina stijenke
ζ	/	faktor otpora
θ	$^{\circ}\mathrm{C}$	temperatura
λ	kW/(mK)	toplinska provodnost
μ	$Pa \cdot s$	dinamička viskoznost
u	/	Poissonov omjer
$ u^*$	/	efektivni Poissonov omjer
Φ	kW	toplinski tok
arphi	0	kut
ho	$\mathrm{kg/m^3}$	gustoća
ho	/	pomoćna veličina
σ	N/mm^2	normalno naprezanje
au	$ m N/mm^2$	tangencijalno naprezanje

INDEKS	ZNAČENJE
1,2,3	toplinsko stanje tvari
1,2,3	komponenta pada tlaka
b	priključak
с	cijev
е	$\operatorname{plašt}$
е	etanol
е	vanjski
k	konus
р	$\operatorname{plašt}$
S	$\operatorname{plašt}$
S	stanje zasićenja
S	stijenka
u	unutarnji
V	vanjski
W	voda
ϑ	svojstvo pri toj temperaturi
gr	zagrijavanje
sr	svojstvo pri srednjoj temperaturi
isp	isparavanje
test	ispitno stanje

POPIS INDEKSA

Napomena: ovdje nisu navedeni svi indeksi, osim najčešćih, u potpoglavlju 3.2 sve oznake su napisane kao u [1], pa su zbog skraćivanja popisa indeksa navedeni samo neki, a svako značenje indeksa je razjašnjeno na mjestu uvođenja pojedine fizikalne veličine.

SAŽETAK

U sklopu završnog rada dan je pregled postrojenja za izdvajanje otapala iz otpadnih smjesa, opisane su komponente sustava i karakteristični podsustavi. Proveden je toplinski proračun destilatora te su objašnjene poteškoće pri izračunu zbog kompleksnosti uvjeta prijenosa topline. Proveden je potpuni toplinski i hidraulički proračun te proračun čvrstoće kondenzatora etanola. U prilogu su tehnički crtež kondenzatora i P&ID procesa.

Ključne riječi: destilacija, izdvajanje otapala, kondenzator, shema postrojenja

SUMMARY

As part of this final thesis, an overview of a solvent recovery plant is given. Components and specific subsystems are described. A heat transfer area calculation of the distiller has been conducted with an explanation of the difficulties due to complex heat transfer conditions. A complete thermodynamic, hydraulic and stress calculation of the ethanol condenser is given. In the appendix are the P&ID of the plant and the technical drawing of the condenser.

Keywords: distillation, solvent recovery, condenser, plant scheme

1 UVOD

Izdvajanje otapala iz otpadnih smjesa (eng. solvent recovery) je tehnološka operacija kojom se izdvajaju korisne tvari iz nekog otpada npr. prilikom skidanja industrijskih boja s neke opreme, otapalo se iz smjese može izdvojiti i ponovo korisiti, dok se ostatak zbrinjava na adekvatan način. Iako nema puno podataka o povijesnom razvoju, u novije vrijeme sve više tvrtki u industriji investira u postrojenja za regeneraciju otpala, kako bi minimizirale otpad i povećale prihode. Izvedbi ovakvih sustava ima puno, a najviše se razlikuju po tri kriterija. Prvi je kriterij način grijanja odnosno ogrjevni mediji koji predaju toplinu za isparavanje. U industriji su trenutno zastupljena tri načina: električno grijanje, grijanje termalnim uljem te grijanje vodenom parom. Drugi kriterij odnosi se na to je li sustav pretlačni ili vakuumski, što ovisi o vrsti medija. Treći kriterij je izvedba kondenzatora, koji ovisno o kapacitetu destilacije može biti zrakom hlađeni kondenzator ili vodom hlađeni kondenzator, koji je najčeće izveden kao elementarni kondenzator cijev u cijevi ili kao kondenzator s U-cijevima.

Kapacitet destilacije (količina izdvojenog korisnog otapala) kreće se od 7-20 l/h uz potrošnju energije za grijanje od 6 kW i potrošnju električne energije za pogon vakuum pumpe od 1,1 kW za manje kompaktne sustave, do kapaciteta 1000 l/h uz potrošnju toplinske energije od 200 kW i potrošnju električne energije za vakuum pumpu od 3,6 kW za velika postrojenja. Potrošnja rashladne vode režima 8/12 °C kreće se u rasponu od 0,5 m³/h za kompaktne sustave do 20 m³/h za najveće sustave [2].

2 PREGLED POSTROJENJA

Postrojenje za izdvajanje alkohola iz otpadnih smjesa se sastoji od niza aprata, uređaja, sigurnosne i regulacijske armature i popratnih upravljača - kontrolera za efikasno upravljanje postrojenjem u promjenjivim uvjetima. Srce postrojenja je destilator otpadnih smjesa u kojem se isparuje korisno otapalo - etanol. Pri izlasku iz destilatora pare etanola prolaze kroz odvajač kapljica, kako bi se odvojile kapljice koje para odnosi sa sobom. Para nakon toga ulazi u vakuum pumpu s tekućim prstenom gdje se tlači na viši tlak te ulazi u kondenzator. U kondenzatoru etanol kondenzira i ulazi u pothlađivač gdje se pothlađuje na zadanu temperaturu, te se membranskom pumpom transportira u čiste IBC spremnike.

U nastavku će biti dan opis podsustava, pojednihih komponenti, način rada, konstrukcija, prednosti i mane, te eventualna druga rješenja koja bi mogla obavljati istu funkciju. S obzirom da ovaj sustav radi šaržno te će dolaziti do promjene raznih parametara procesa u vremenu prikazane će biti samo osnovne sheme podsustava bez konkretnih vrijednosti, a način regulacije prikazan je u P&I dijagramu u prilogu.

Slika 1: Konceptualna shema postrojenja

1 - destilator, 2 - vakuum pumpa, 3 - odvajač kapljica, 4 - kondenzator, 5 - membranska pumpa

2.1 Opis komponenti

2.1.1 Destilator

Destilator je aparat u kojem se odvija glavni proces postrojenja, a to je separacija korisnog otapala (etanola) od otpadnih smjesa. Izveđen je kao posuda s cilindričnim plaštem, podnicom na vrhu i konusnim duplostijenim dnom. U posudu se ubacuje otpadna smjesa koja se grije kondenzacijom suhozasićene vođene pare između untarnje i vanjske stijenke. Unutar posude nalazi se mješalica sa samopodešavajućim strugačima koji poboljšavaju prijenos topline na strani otpadnih smjesa, a ujedno i čište stijenku, kako bi minimizirali zagaranje i oštećivanje stijenke. Vratilo mješalice pogojneno je motorreduktorom. Motorreduktor je uređaj u kojem je integriran elektromotor i reduktor koji smanjuje brzinu okretaja na prihvatljivu vrijednost. Na dnu se nalazi nožasti zasun koji služi za ispust ostatka destilacije koji je u pretežno krutom stanju. Priključak kroz koji izlazi para je T-komad cjevovoda u koji je ugrađen odvajač kapjica koji odstranjuje kapljice neželjenih primjesa koje para odnosi sa sobom. T-komad je na jednoj prirubnici spojen na cjevovod kojim para dalje odlazi u kondenzator, a na drugoj je slijepa prirubnica, koja se može skinuti kako bi se što lakše zamijenio odvajač kapljica.

Slika 2: 3D model destilatora

2.1.2 Vakuum pumpa s tekućim prstenom

U kućištu koje je djelomično potopljeno radnim medijem nalazi se ekscentrično ugrađeni rotor. Prilikom rotacije rotora, radni medij i kućište tvore tekući prsten. Pare etanola ulaze u prostor između lopatica rotora i tekućeg prstena, a s obzirom da je rotor ugrađen ekscentrično, prostor u kojem se nalazi para postupno će se smanjivati od usisa do ispuha uzrokujući kompresiju pare. Medij koji tvori tekući prsten najčešće je voda, ali može biti i neki drugi, ovisno o procesu. U ovom postrojenju ugrađena je jednostupanjska vakuum pumpa, ali moguća je i dvostupanjska izvedba kada je potrebno ostvariti više vakuume. Moguće ih je ugraditi kao protočni sustav ili kao sustave s potpunom ili parcijalnom reciruklacijom. Isto tako, mogu raditi i kao kompresori, odnosno mogu tlačiti na tlak viši od atmosferskog, ovisno o procesu.

Slika 3: Vakuum pumpa s tekućim prstenom [3]

Prednosti vakuum pumpe s tekućim prstenom [4]

- Malo trošenje s obzirom da rotor nije u dodiru s kućištem, nego se između njih nalazi tekući prsten, trošenje je svedeno na minimum
- Izotermna kompresija prirast temperature zbog kompresije može se zanemariti, jer medij koji tvori tekući prsten, ujedno i hladi paru prilikom kompresije
- Krute čestice u slučaju da para sa sobom odnese fine čestice, smanjena je mogućnost oštećivanja dijelova vakuum pumpe, upravo zbog tekućeg prstena

Nedostaci vakuum pumpe s tekućim prstenom [5]

Potrošnja energije - zahtjevaju više snage kako bi održavali tekući prsten, koriste 20 do 25 % više snage u odnosu na jednostavniju vakuum pumpu. Ako treba ugraditi sustav za hlađenje tekućine koja tvori

tekući prsten, potrebno je ugraditi dodatni izmjenjivač i popratnu opremu, koja povećava pogonske, ali i investicijske troškove. Iako imaju mali trošak održavanja, pogonski troškovi mogu biti do pet puta veći u odnosu na kupovnu cijenu vakuum pumpe.

Kavitacija - vakuum koji se može ostvariti ograničen je tlakom pare medija koji tvori tekući prsten. Ovo
je posebno važno prilikom ljetnih mjeseci, kada je temperatura medija viša. Ako koristimo ulje kao medij
koji tvori tekući prsten, smanjena je opasnost od kavitacije, ali treba imati na umu kontaminaciju radnog
medija.

Razne izvedbe vakuum pumpi pokrivaju široko područje rada koje zahtijeva procesna indsutrija. Na narednoj slici prikazano je radno područje više tipova pumpi jednog proizdvođača.

Slika 4: Radno područje vakkum pumpi s tekućim prstenom [4]

2.1.3 Odvajač kapljica

Odvajač kapljica, poznatiji po engleskom nazivu "demister", je pomoćna komponenta u mnogim procesnim postrojenjima. Njegova funkcija je odvajanje kapljica i sitnih čestica krutina iz parovite faze, slično kao filter zraka. Funkcioniranje demistera biti će objašnjeno na primjeru ovog postrojenja. Prilikom destilacije smjese, parna faza sa sobom neminovno odnosi kapljice, a ponekad i sitne čestice krutina. Unutrašnjost demistera sačinjena je od filamenta složene geometrije, koja je izvedena tako da se više puta mijenja smjer strujanja. Parna faza lako prolazi kroz složenu geometriju, no kapljice i krutine zbog svoje inercije ne mogu tako lako skrenuti te se sudaraju sa stijenkama filamenta i gube kinetičku energiju, odnosno usporavaju se i lijepe za stijenku. Konstantan protok pare i dotok novih kapljica uzrokuje rast kapljijca, koje s vremenom toliko narastu da se gravitacijski slijevaju natrag u destilator. Primjenu pronalaze u destilacijskim kolonama, skruberima, trofaznim separatorima itd. Materijal izrade filamenta najčeće je nehrđajući čelik, a može biti i ugljični čelik, bakar ili čelična legura titana. Postoje i filamenti izrađeni od plastičnih materijala poput PVC-a i PTFE-a.

Slika 5: Geometrija filamenta

2.1.4 Kondenzator

Kondenzator etanola izveden je kao izmjenjivač topline s U-cijevima. Sastoji se od cilindričnog plašta na koji je s jedne strane zavarena plitka podnica prema, a s druge strane na plašt je zavarena prirubnica DN 350. Na plašt je s gornje strane zavaren priključak za dovod pare etanola DN 100, na koji je zavarena prirubnica. Na suprotnoj strani i na dnu, zavaren je priključak za odvod kondenziranog etanola. Cijevna stijena je slijepa prirubnica DN 350, u kojoj su izbušene rupe za 44 bešavne cijevi DN 20, koje će se umetnuti u cijevnu stijenu i zavariti brtvenim zavarom. Na prvi red cijevi točno ispod dovoda pare, U vijcima je montirana zaštitna ploča koja sprječava lokalno temperaturno preopterećenje cijevi i povećanu eroziju materijala. Na cijevnoj stijeni se isto tako nalazi utor za brtvu spoja plašta i cijevne stijene, a na drugoj strani se nalazi utor za dvostruku brtvu koja brtvi spoj cijevne stijene i podnice s priključcima za dovod i odvod rashladne vode. Na tu podnicu su zavareni priključci DN 65. Na podnicu je s unutarnje strane zavarena i pregrada koja odvaja prostore ulaza i izlaza voda. Podnice su izvedene sukladno DIN 28011, priključci, kao i U-cijevi sukladno EN 10027-2, a prirubnice sukladno DIN 1092-1.

Slika 6: Poprečni presjek 3D modela kondenzatora

2.1.5 Membranska pumpa

Membranska pumpa je vrsta pumpe koja koristi komprimirani zrak i fleksibilnu membranu kako bi ostvarila efekt pumpanja. Membrana se nalazi između prostora u kojem je komprimirani zrak i radnog prostora u kojem se nalazi radni medij. Najčešća izvedba je dvomembranska pumpa koja ima jedan usisni i tlačni vod, dva radna prostora i dvije membrane zajednički povezane jednom osovinom. U prvom taktu komprimirani zrak ulazi u područje iza jedne membrane, membrana se zbog visokog tlaka širi u područje radnog prostora gdje komprimirar radni medij. Kada se postigne željeni tlak, kuglasti ventil na ulazu u tlačni vod se podiže, a stlačeni medij se istiskuje. U isto vrijeme druga membrana se skuplja u unutrašnjost pumpe, dolazi do stvaranja vakuuma, podizanja kuglastog ventila i usisvanja medija iz usisnog voda. Kada se podigne ventil u tlačnom vodu, dolazi do prekretanja zračnog ventila, koji sada pušta komprimirani zrak u prostor iza druge membrane, a komprimirani zrak iza prve membrane se u isto vrijeme ispušta u atmosferu. Sada se na prvoj membrani odvija takt usisa, a na drugoj takt kompresije, te se taj proces naizmjenično ponavlja.

Slika 7: Princip rada dvoradne membranske pumpe [6]

Pogodne su za razne vrste fluida kao što su agresivne i korozivne kemikalije, zapaljiva otapala, viskozne i ljepljive fluide, fluide s udjelom krutina veličine do 25mm, gelove, ulja itd. S obzirom da za pogon koriste komprimirani zrak, a ne elektromotor, odnosno uopće ne koriste struju, savršen su izbor za primjenu u eksplozivnim atmosferama. Ovisno o potrebama procesa primjenjuju se za volumne protoke od 60 do 1200 l/min, uz maksimlani izlazni tlak od 8,6 bar [7].

2.1.6 IBC spremnik

Prema Međunarodnoj organizaciji za standardizaciju (ISO) spremnik se smatra IBC spremnikom (eng. Intermediate bulk container), ako zadovoljava sljedeće uvjete [8]:

- maksimalni kapacitet 3000 litara
- mehanički upravljivi s ili bez ugrađenih ili odvojivih uređaja
- sadrže kapljevine, paste ili krutine (npr. praške ili granule)
- otporni na naprezanja prilikom rukovanja i transporta

Koncept IBC spremnika patentirao je 1992. godine izumitelj Olivier J.L. D'Hollander dok je radio za tvrtku Dow Corning [9]. Primjenjuju se u prehrambenoj industriji za skladištenje tekućih, granuliranih ili praškastih sastojaka, sirupa itd. Koriste se za skladištenje industrijske boje i raznih premaza, petrokemijskih proizvoda, farmaceutskih pripravaka, gnojiva, biootpada, pa i za skladištenje kišnice.

Najčešće su izvedeni kao kockasta posuda oko koje je metalni okvir, a na dnu paleta. Metalni okvir omogućava slaganje više spremnika jedan na drugi, a paleta jednostavniji transport npr. viličarem. Ovisno o primjeni najčešći materijali izrade su polietilen visoke gustoće (HDPE), ugljični čelici ili nehrđajući čelici [10].

Slika 8: IBC spremnici [11]

2.2 Opis podsustava

2.2.1 Priprema pare

Para koja služi za zagrijavanje smjese predviđeno je da bude suhozasićena. S obzirom da para iz kotla redovito izlazi kao pregijana, treba ju ohladiti do suhozasićenog stanja i tek onda pustiti u međuprostor konusa. Međutim, veći problem predstavlja činjenica da su otpala zapaljiva te da bi temperatura nakon ohlađivanja i dalje mogla biti previsoka za potrebe procesa. Suhozasićenoj vodenoj pari tlaka 5 bar odgovara temperatura zasićenja 152 °C, dok je temperatura zapaljenja etanola 120 °C. Rješenje za ovaj problem nalazi se u kombinaciji prigušivanja i naknadnog ohlađivanja pare. Paru tlaka 5 bar i 152 °C prigušujemo na tlak 2 bar, koji odgovara temperaturi zasićenja 120 °C. Bitno je primijetiti da će u tom slučaju, pri kondenzaciji pare u destilatoru, zbog toplinskih otpora sigurno doći do pada temperature prilikom prolaska topline s pare na otpadnu smjesu, odnosno temperatura na unutarnjoj stijenci konusa zasigurno će biti manja od navedenih 120 °C. Neizbježno je da će se suhozasićena para nakon prigušivanja pregrijati te ju moramo ohladiti do suhozasićenog stanja. Prigušivanje se događa u prigušnom ventilu, a do ohlađivanja dolazi pri miješanju pregrijane pare i kondenzata.

Slika 9: Shema pripreme pare

2.2.2 Krug tekućine za vakuum pumpu

Princip rada same vakuum pumpe s tekućim prstenom objašnjen je u prethodnom potpoglavlju, a ovdje će biti objašnjeno kako je ona integrirana u sustav. Neizbježno je da vakuum pumpa u radu dio tekućine koja tvori tekući prsten izbacuje u tlačni vod, stoga je potrebno tu količinu nadoknaditi. Ta količina nadoknaditi će se iz spremnika u koji vakuum pumpa ubacuje nekondenzirajuće plinove i dio tekućine koja tvori prsten. Tekućina se gravitacijski slijeva prema dolje, a nekondenzirajući plinovi se nakupljaju iznad slobodne površine i izbacuju u atmosferu ili poseban spremnik, ako su u pitanju štetni plinovi. Vakuum pumpa je izravno spojena na kondenzator te će ona osim nekondenzirajućih plinova sigurno usisavati i dio pare etanola. Taj dio etanola predstavljao bi gubitak, no u spremnik je ugrađen hladnjak koji rashladnom vodom hladi sadržaj spremnika, kondenzira paroviti etanol i omogućava minimiziranje gubitaka korisnog otapala. Dio tako kondenziranog otapala vodi se dalje u spremnik gdje se miješa s glavnom strujom pothlađenog etanola, a dio se vraća u vakuum pumpu kao nadoknada. Prilikom rada vakuum pumpe dolazi i do zagrijavanja, pa se u povratni vod ugrađuje izmjenjivač topline, koji dodatno pothlađuje kondenzirani etanol i omogućuje bolje hlađenje vakuum pumpe. Ovdje je bitno napomenuti da je količina etanola koja se vodi u mješalište puno manja od količine glavne struje koja u spremnik ulazi iz pothlađivača te to miješanje neće uzrokovati zamjetno zagrijavanje. Odnosno, može se pretpostaviti da će temperatura nakon miješanja biti jednaka temperaturi na ulazu glavne struje.

Slika 10: Shema sustava vakuum pumpe

3 TOPLINSKI PRORAČUN DESTILATORA

Čest je slučaj u procesnoj tehnici da su uvjeti prijenosa topline izrazito složeni, te se projektanti redovito oslanjaju na iskustvene podatke. I ovdje je to tako, s obzirom da se na strani ogrjevne pare odvija kondenzacija uz konusnu stijenku, a na strani radnog medija odvija se zagrijavanje, a potom isparavanje višekomponentne smjese u konusnoj posudi uz prisutnost mješalice. U literaturi nije pronađen model koji bi obuhvatio sve moguće utjecajne parametre na prijenos topline na obje strane, stoga su uvedena određena pojednostavljenja, kako bi se izračunali koeficijenti prijelaza topline. Fizikalna svojstva vode i etanola izračunata su pomoću programskog paketa "CoolProp".

- visina konusa: $H=850~\mathrm{mm}$
- kut konusa: $\varphi=60^\circ$
- polumjer osnovice: $R = H \cdot \tan\left(\frac{\varphi}{2}\right) = 490,7 \text{ mm}$
- visina pobočke: $s = \sqrt{R^2 + H^2} = 981,5 \text{ mm}$
- oplošje plašta konusa: $A_{\rm k}=R\pi s=1,51~{\rm m}^2$
- debljina stijenke: $\delta = 5 \text{ mm}$

Slika 11: Presjek konusa

3.1 Toplinski tokovi

Teško je odrediti točnu količinu toplinskog toka koji treba dovoditi u destilatoru, s obzirom da je otpadna smjesa nepoznatog sastava te je teško definiranti i toplinska svojstva mješavine. Stoga, uvest ćemo pretpostavku da se u destilatoru nalazi samo etanol, a u stacionarnom stanju ulazni i izlazni maseni protoci biti će jednaki masenom protoku koji odgovara zadanom kapacitetu destilacije.

- kapacitet destilacije: $q_{\rm v,e} = 760 \text{ l/h}$
- gustoća etanola pri temperaturi 40 °C: $\rho_{\rm e,40}=772,09~\rm kg/m^3$

Maseni protok etanola:

$$q_{\rm me} = \rho_{\rm e,40} \cdot q_{\rm v,e} \tag{1}$$

$$q_{\rm me} = \frac{772,09 \cdot 760}{1000 \cdot 3600}$$

$$q_{\rm me} = 0,163 \text{ kg/s}$$

Može se pretpostaviti da etanol ulazi u destilator pri okolišnoj temperaturi, što znači da se prvo treba zagrijati do temperature zasićenja, a onda i u potpunosti ispariti.

- radni tlak u destilatoru: $p=0,5~{\rm bar}$
- temperatura etanola na ulazu: $\vartheta_{\rm e1}=20~^{\circ}{\rm C}$
- temperatura zasićenja, odnosno izlazna temperatura etanola pri radnom tlaku: $\vartheta_{\rm e2}=61,52~^\circ{\rm C}$
- ulazna entalpija etanola: $h_{\rm e1}=-154,79~{\rm kJ/kg}$
- entalpija vrele kapljevine etanola: $h_{\rm e2}=-48,10~{\rm kJ/kg}$
- entalpija suhozasićene pare etanola: $h_{\rm e3}=827,28~{\rm kJ/kg}$

Toplinski tok zagrijavanja etanola do stanja vrele kapljevine:

$$\Phi_{\rm gr} = q_{\rm me} \cdot (h_{\rm e2} - h_{\rm e1})$$

$$\Phi_{\rm gr} = 0,163 \cdot (-48,10 - (-154,79))$$
(2)

$$\Phi_{\rm gr} = 17,39 \; {\rm kW}$$

Toplinski tok za isparavanje etanola:

$$\Phi_{\rm isp} = q_{\rm me} \cdot (h_{\rm e3} - h_2) \tag{3}$$
$$\Phi_{\rm isp} = 0,163 \cdot (827,28 - (-48,10))$$

 $\Phi_{\rm isp} = 142,68~{\rm kW}$

Φ

Ukupni toplinski tok koji je potrebno izmijeniti u destilatoru:

$$\Phi = \Phi_{\rm gr} + \Phi_{\rm isp}$$
(4)

= 17, 39 + 142, 68

 $\Phi = 160, 07 \text{ kW}$

3.2 Koeficijent prijelaza topline unutar posude

Koeficijent prijelaza topline pri isparavanju etanola:

$$\alpha_{\rm u} = 4500 \ \frac{\rm W}{\rm m^2 K}$$

Gornji iznos koeficijent prijelaza topline dobiven je eksperimentalno, pri ispitivanju koeficijenta prijelaza topline prilikom isparavanja tankog filma, detaljno u [12]. S obzirom da se unutar posude nalazi smjesa više komponenti raznih toplinskih svojstava, ionako kompleksan proračun koeficijenta prijelaza topline dodatno se komplicira. Također, poznato je da postojanje mehaničkog agitatora poboljšava prijelaz topline, no nije poznato koliki je utjecaj pri isparavanju.

3.3 Koeficijent prijelaza topline u međuprostoru

Za izračun koeficijenta prijelaza topline u međuprostoru korištena su dva modela. Model kondenzacije oko vertikalne cijevi [13] i model kondenzacije na nagnutoj stijenci [13]. Konusna geometrija će u modelu kondenzacije oko vertikalne cijevi biti uzeta u obzir tako da će se računati s ekvivalentnom cijevi. U modelu kondenzacije na nagnutoj stijenci računati će se s visinom konusa, a kut pod kojim je stijenka nagnuta odgovarati će kutu konusa. Svi modeli za izračun koeficijenta prijelaza topline pri promjeni faze zahtijevaju poznavanje temperature

14

Završni rad

stijenke, koja je nepoznata, te su takvi proračuni iterativni. Proračuni su provedeni u Pythonu-u. U nastavku biti će opisani pojedini modeli, a prikazani će biti samo konačni rezultati.

3.3.1 Vertikalna cijev

Prije samog proračuna biti će definiran pojam ekvivalentne cijevi. Ekvivalentna cijev imati će unutarnji polumjer jednak polovici polumjera osnovice, a visina cijevi jednaka je visini konusa.

- unutarnji polumjer cijevi: $R_{\rm u}=0,5\cdot R=0,5\cdot 490,7=245,35~{\rm mm}$
- debljina stijenke cijevi: $\delta = 5 \ mm$
- vanjski polumjer cijevi: $R_{\rm v}=R_{\rm u}+\delta=245,35+5=250,35$

Koeficijent prijelaza topline pri kondenzaciji oko vertikalne cijevi:

$$\alpha_{\mathbf{v},\mathbf{c}} = 0,943 \cdot \sqrt[4]{\frac{\rho^2 \cdot g \cdot r \cdot \lambda^3}{\mu \cdot (\vartheta_{\mathbf{w}} - \vartheta_{\mathbf{s}}) \cdot H}}$$
(5)

Koeficijent prolaza topline sveden na unutarnju stijenku cijevi:

$$k_{\rm u} = \frac{1}{\frac{1}{\alpha_{\rm u}} + \frac{R_{\rm u}}{\lambda_{\rm s}} \ln\left(\frac{R_{\rm v}}{R_{\rm u}}\right) + \frac{R_{\rm u}}{\alpha_{\rm v} \cdot R_{\rm v}}}\tag{6}$$

Toplinski tok:

$$\Phi = k_{\rm u} \cdot A_{\rm u} \cdot \Delta \vartheta \tag{7}$$

Temperatura stijenke cijevi:

$$\vartheta_{\mathbf{v},\mathbf{n}} = \vartheta_{\mathbf{w}} - \frac{\Phi}{\alpha_{\mathbf{v},\mathbf{c}} \cdot A_{\mathbf{v}}} \tag{8}$$

Razlika temperatura stijenke u prethodnom koraku (pretpostavljena) i u trenutnom koraku iteracije:

$$\Delta \vartheta_{\mathbf{v}} = \vartheta_{\mathbf{v},\mathbf{n}} - \vartheta_{\mathbf{v},\mathbf{n}-1} \tag{9}$$

Kriterij zaustavljanja iteracija je razlika temperature stijenke u prošlom koraku i temperature stijenke u trenutnom koraku manji od 0,001 °C. Koeficijent prolaza topline sveden je na unutarnju površinu cijevi. Rezultati proračuna nakon iteracija dani su u tablici 1 u nastavku:

VELIČINA	SIMBOL	VRIJEDNOST	MJERNA JED.
gustoća kondenzata	ρ	951, 30	$\rm kg/m^3$
ubrzanje sile teže	g	9,80665	m/s
specifična toplina isparavanja vode	r	2202,11	kJ/kg
toplinska provodnost kondenzata	λ	0,68	W/(mK)
dinamička viskoznost kondenzata	μ	$25,576 \cdot 10^{-5}$	$Pa \cdot s$
temperatura zasićenja	ϑ_{s}	120	°C
temperatura stijenke	ϑ_{w}	99,07	°C
koeficijent prijelaza topline	$\alpha_{ m v,c}$	5718,35	$W/(m^2K)$
koeficijent prolaza topline	k_{u}	2087,92	$W/(m^2K)$
toplinski tok	Φ	160,0	kW
kriterij zaustavljanja	$\Delta \vartheta_{\mathrm{u}}$	0,0008	°C

Tablica 1: Rezultati proračuna kondenzacije oko vertikalne cijevi

Komentar: toplinski tok dobiven ovim modelom izrazito dobro se slaže s ukupno izračunatim toplinskim tokom prema jednadžbi (4).

3.3.2 Nagnuta stijenka

Nagnuta stijenka bit će iste duljine kao visina konusa, a širina će biti izračunata tako da površina nagnute stijenke odgovara oplošju konusa. Kut pod kojim je stijenka nagnuta odgovara kutu konusa.

$$A_{\rm s} = A_{\rm k} \tag{10}$$
$$b \cdot L = A_{\rm k}$$
$$= \frac{A_{\rm k}}{L} = \frac{1,51}{0,850} = 1,776 \text{ m}$$
$$\varphi = 60^{\circ}$$

Koeficijent prijelaza topline pri kondenzaciji na nagnutoj stijenci:

b

$$\alpha_{\rm v,s} = 0,943 \cdot \sqrt[4]{\frac{\rho^2 \cdot g \cdot r \cdot \lambda^3}{\mu \cdot (\vartheta_{\rm w} - \vartheta_{\rm s}) \cdot L} \cdot \sin\varphi}} \tag{11}$$

Koeficijent prolaza topline:

Fakultet Strojarstva i Brodogradnje

$$k = \frac{1}{\frac{1}{\alpha_{\rm u}} + \frac{\delta}{\lambda_{\rm s}} + \frac{1}{\alpha_{\rm v,s}}} \tag{12}$$

Toplinski tok:

$$\Phi = k \cdot A \cdot \Delta \vartheta \tag{13}$$

Temperatura stijenke cijevi:

$$\vartheta_{\mathbf{v},\mathbf{n}} = \vartheta_{\mathbf{w}} - \frac{\Phi}{\alpha_{\mathbf{v},\mathbf{s}} \cdot A} \tag{14}$$

Razlika temperatura stijenke u prethodnom koraku (pretpostavljena) i u trenutnom koraku iteracije:

$$\Delta \vartheta_{\mathbf{v}} = \vartheta_{\mathbf{v},\mathbf{n}} - \vartheta_{\mathbf{v},\mathbf{n}-1} \tag{15}$$

Kriterij zaustavljanja iteracija jednak je kao i kod vertikalne cijevi. Rezultati proračuna dani su u tablici 2 u nastavku.

VELIČINA	SIMBOL	VRIJEDNOST	MJERNA JED.
gustoća kondenzata	ρ	951, 63	$\rm kg/m^3$
ubrzanje sile teže	g	9,80665	m/s
specifična toplina isparavanja vode	r	2202, 11	kJ/kg
toplinska provodnost kondenzata	λ	0,68	W/(mK)
dinamička viskoznost kondenzata	μ	$25,684 \cdot 10^{-5}$	$Pa \cdot s$
temperatura zasićenja	ϑ_{s}	120	°C
temperatura stijenke	ϑ_{w}	98,20	°C
koeficijent prijelaza topline	$\alpha_{ m v,c}$	5454,55	$W/(m^2K)$
koeficijent prolaza topline	k_{u}	2033,50	$W/(m^2K)$
toplinski tok	Φ	179,53	kW
kriterij zaustavljanja	$\Delta \vartheta_{\mathrm{u}}$	0,0002	°C

Tablica 2: Rezultati proračuna kondenzacije na nagnutoj stijenci

Komentar: toplinski tok izračunat ovim modelom veći je za oko 20 kW u odnosu na jednadžbu (4).

3.4 Osvrt na rezultate

Vidljivo je da oba modela rezultiraju podjednakim koeficijentima prijelaza i koeficijentima prolaza topline. Problem zapravo predstavlja koeficijent prijelaza topline na strani etanola koji je teško odrediti, a pretpostavljena vrijednost dobivena je eksperimentalno pri drugačijim uvjetima prijelaza topline od onih koji vladaju u destilatoru. Ne postoji model koji uključuje utjecaj mješalice odnosno samopodešavajućih strugača na prijelaz topline kada dolazi do promjene faze. Koeficijent prijelaza topline na strani etanola utječe na temperaturu stijenke na toj strani, a posljedično i na temperaturu stijenke na strani ogrjevne pare. U oba modela kondenzacije vidi se da koeficijent prijelaza topline raste sa smanjenjem temperaturne razlike temperature zasićenja i temperature stijenke. U oba modela kondenzacije svojstva kondenzata određuju se za srednju temperaturu između temperature zasićenja i temperature stijenke. Pri višim temperaturama gustoća kapljevina opada, kao i dinamička viskoznost, a toplinska provodnost raste. Bitno je naglasiti činjenicu da su u modelima korištene unaprijed poznate geometrijske karakteristike površine, koja se u standardnim proračunima izračunava tek nakon što smo odredili koeficijent prolaza topline. Isto tako, vidi se da u oba modela koeficijent prijenosa topline na strani vode opada s povećanjem karakteristične geometrijske veličine, no u tom slučaju opada i ukupna površina za izmjenu topline, pa može doći do podimenzioniranja ogrjevne plohe.

4 KONDENZATOR

Etanol isparen u destilatoru potrebno je kondenzirati i pothladiti. Pothlađivanje se odvija u zasebnom U cijevnom izmjenjivaču topline, a u kondenzatoru samo kondenzacija. Izmjenjivači koriste dvije različite struje rashladne vode koja u izmjenjivače ulazi sa 7 stupnjeva, a izlazi s 12 stupnjeva. U nastavku bit će dan toplinski proračun i proračun čvrstoće kondenzatora. Zbog iterativnog karaktera proračuna cjelokupni proračun proveden je pomoću Pythona uz korištenje paketa 'CoolProp', koji zamjenjuje očitavanje svojstava i veličina stanja iz tablica dostupnih u literaturi.

4.1 Toplinski proračun

Toplinskim proračunom određuje se potrebna površina za izmjenu topline. Treba odrediti potreban toplinski tok, srednju logaritamsku temperaturnu razliku, i koeficijente prijenosa topline odgovarajućim modelima.

4.1.1 Toplinski tok

Toplinski proračun započinje određivanjem ulaznih/izlaznih temperatura i pripadajućih entalpija struja etanola i rashladne vode. S obzirom da se u kondenzatoru odvija samo kondenzacija etanola, njegova temperatura ostaje konstantna duž izmjenjivača. Temperatura je funkcija tlaka pare etanola.

- temperatura etanola na ulazu u kondenzator: $\vartheta_{\mathrm{e1}} = 61,52\ ^{\circ}\mathrm{C}$
- temperatura etanola na izlazu iz kondenzatora: $\vartheta_{\rm e2}=61,52~^{\circ}{\rm C}$
- temperatura etanola nakon pothlađivanja: $\vartheta_{\mathrm{e3}} = 40~^{\circ}\mathrm{C}$
- temperatura vode na ulazu u kondenzator: $\vartheta_{w1}=7\ ^{\circ}C$
- temperatura vode na izlazu iz kondenzatora: $\vartheta_{w2} = 12~^\circ\mathrm{C}$
- specifična entalpija etanola na ulazu u kondenzator: $h_{\rm e1}=827,28~{\rm kJ/kg}$
- specifična entalpija etanola na izlazu iz kondenzatora: $h_{e2} = -48, 10 \text{ kJ/kg}$
- specifična entalpija etanola na izlazu iz pothlađivača: $h_{\rm e3} = -105, 28 \text{ kJ/kg}$
- specifična entalpija vode na ulazu u kondenzator: $h_{\rm w1}=29,62~{\rm kJ/kg}$
- specifična entalpija vode na izlazu iz kondenzatora: $h_{\rm w2}=50,60~{\rm kJ/kg}$

Prije početka detaljnog toplinskog proračuna kondenzatora potrebno je odrediti maseni tok etanola, odnosno rashladne vode. Maseni tok etanola određen je kapacitetom destilacije, a maseni tok vode režima 7/12 °C određuje se postavljanjem granice sustava tako da se unutar sustava nalazi kondenzator i pothlađivač.

- kapacitet destilacije: $q_{\rm ve}=760$ l/h
- gustoća etanola pri 40°C i atmosferskom tlaku: $\rho_{\rm e}=772,09~{\rm kg/m^3}$

 Φ

Maseni tok etanola:

$$q_{\rm me} = \rho_{\rm e} \cdot q_{\rm ve} \cdot \frac{1}{3600 \cdot 1000}$$
(16)
$$q_{\rm me} = 760 \cdot 772, 09 \cdot \frac{1}{3600 \cdot 1000}$$

$$q_{\rm me} = 0,163 \text{ kg/s}$$

Maseni tok rashladne vode:

$$q_{\rm mw}h_{\rm w1} + q_{\rm me}h_{\rm e1} = q_{\rm mw}h_{\rm w2} + q_{\rm me}h_{\rm e2}$$
(17)

$$q_{\rm mw} = q_{\rm me}\frac{h_{\rm e1} - h_{\rm e2}}{h_{\rm w2} - h_{\rm w1}}$$

$$q_{\rm mw} = 0,163 \cdot \frac{827,28 - (-48,10)}{50,60 - 29,62}$$

$$q_{\rm mw} = 6,801 \frac{\rm kg}{\rm s}$$
Toplinski tok koji je potrebno izmijeniti u kondenzatoru izračunava se postavljanjem energetske bilance na kondenzator, gdje se razlika ulazne i izlazne entalpije vode zamjenjuje upravo tim toplinskim tokom:

$$\Phi = q_{\rm me}(h_{\rm e1} - h_{\rm e2})$$
(18)
= 0, 163 \cdot (827, 28 - (-19, 16))
$$\Phi = 142, 68 \text{ kW}$$

Fakultet Strojarstva i Brodogradnje

4.1.2 Srednja logaritamska temperaturna razlika

$$\Delta \vartheta_{\rm M} = \frac{\Delta \vartheta_{\rm v} - \Delta \vartheta_{\rm m}}{\ln \frac{\Delta \vartheta_{\rm v}}{\Delta \vartheta_{\rm m}}} \tag{19}$$

• veća temperaturna razlika struja:

$$\Delta \vartheta_{\rm v} = \vartheta_{\rm e1} - \vartheta_{\rm w1}$$
$$\Delta \vartheta_{\rm v} = 61, 52 - 7$$

$$\Delta \vartheta_{\rm v} = 54, 52 \ ^{\circ}{\rm C}$$

• manja temperaturna razlika struja:

$$\Delta \vartheta_{\rm m} = \vartheta_{\rm e1} - \vartheta_{\rm w2}$$
$$\Delta \vartheta_{\rm m} = 61, 52 - 12 \ ^{\circ}{\rm C}$$
$$\Delta \vartheta_{\rm m} = 49, 52 \ ^{\circ}{\rm C}$$
$$\Delta \vartheta_{\rm M} = \frac{54, 52 - 49, 52}{\ln\left(\frac{54, 52}{49, 52}\right)}$$
$$\Delta \vartheta_{\rm M} = 51, 98 \ ^{\circ}{\rm C}$$

4.1.3 Koeficijent prijelaza topline na strani vode

Model prijelaza topline proveden je prema izrazima iz [14].

Srednja temperatura vode u kondenzatoru prema kojoj određujemo svojstva vode:

$$\vartheta_{w,sr} = \frac{\vartheta_{w2} + \vartheta_{w3}}{2}$$

 $\vartheta_{w,sr} = \frac{7+12}{2}$

$$\vartheta_{\rm w,sr} = 9,5$$
 °C

Svojstva vode pri srednjoj temperaturi vode u kondenzatoru:

 $Fakultet\ Strojarstva\ i\ Brodogradnje$

- gustoća: $\rho_{\vartheta_{\rm w,sr}}=999,72~{\rm kg/m^3}$
- dinamička viskoznost: $\mu_{\vartheta_{\rm w,sr}} = 13, 13\cdot 10^{-4}~{\rm Pa}\cdot{\rm s}$
- toplinska provodnost: $\lambda_{\vartheta_{w,sr}}=0,578~\frac{W}{mK}$
- specifični toplinski kapacitet: $c_{\vartheta_{\rm w,sr}}=4,195~\frac{\rm kJ}{\rm kgK}$

Nadalje, potrebno je odrediti dimenzije cijevi i njihov raspored.

- vanjski promjer cijevi: $D_{\rm c}=25~{\rm mm}$
- debljina stijenke cijevi: $s_{\rm c}=2~{\rm mm}$
- unutranji promjer cijevi $d_{\rm c}=21~{\rm mm}$
- broj prolaza (određen izvedbom s U cijevima): ${\cal P}=2$
- odabrana brzina strujanja vode u cijevima (preporuka: 0,5 do 1,5): $w_{\rm wc}=1~{\rm m/s}$

Broj cijevi u jednom prolazu:

$$n_{\rm c} = \frac{4 \cdot q_{\rm mw}}{\rho_{\vartheta_{\rm w,sr}} \cdot w_{\rm wc} \cdot d_{\rm c} \cdot \pi}$$

$$n_{\rm c} = \frac{4 \cdot 7,483}{999,72 \cdot 1 \cdot 0,021 \cdot \pi}$$
(20)

$$n_{\rm c} = 21, 61$$

Odabrani broj cijevi i broj redova cijevi u cijevnom snopu:

$$n_{\rm c} = 22$$

 $n_{\rm rc} = 4$

Brzina strujanja s obzirom na odabrani broj cijevi:

$$w_{\rm wc} = \frac{4 \cdot q_{\rm mw}}{\rho_{\vartheta_{\rm w,sr}} n_{\rm c} \cdot d_{\rm c} \cdot \pi}$$

$$w_{\rm wc} = \frac{4 \cdot 7,483}{999,72 \cdot 22 \cdot 0,021 \cdot \pi}$$
(21)

 $w_{\rm wc}=0,982~{\rm m/s}$

Reynoldsova značajka:

$$Re = \frac{\rho_{\vartheta_{w,sr}} \cdot w_{wc} \cdot d_c}{\mu_{\vartheta_{w,sr}}}$$

$$Re = \frac{999,72 \cdot 0,982 \cdot 0,021}{13,13 \cdot 10^{-4}}$$
(22)

$$Re = 15072$$

Prandtlova značajka:

$$Pr = \frac{c_{\vartheta_{w,sr}} \cdot \mu_{\vartheta_{w,sr}}}{\lambda_{\vartheta_{w,sr}}}$$

$$Pr = \frac{4195 \cdot 13, 13 \cdot 10^{-4}}{0,578}$$

$$(23)$$

$$Pr = 9,62$$

Pomoćna veličina:

$$f = \left(1, 5635 \cdot \ln \frac{Re}{7}\right)^{-2}$$
(24)
$$f = \left(1, 5635 \cdot \ln \frac{15702}{7}\right)^{-2}$$
$$f = 0,00695$$

Nusseltova značajka:

$$Nu = \frac{(f/2)(Re - 1000)Pr}{1 + 12, 7\sqrt{(f/2} \cdot (Pr^{2/3} - 1))}$$
(25)
$$Nu = \frac{\frac{0,00695}{2} \cdot (15072 - 1000) \cdot 9,62}{1 + 12, 7\sqrt{\frac{0,00695}{2}} \cdot (9,62^{2/3} - 1)}$$
$$Nu = 129,27$$

Koeficijent prijelaza topline na strani vode:

$$\alpha_{\rm u} = Nu \cdot \frac{\lambda_{\vartheta_{\rm w,sr}}}{d_{\rm c}}$$

$$\alpha_{\rm u} = 129,27 \cdot \frac{0,578}{0,021}$$

$$\alpha_{\rm u} = 3556,6 \frac{\rm W}{\rm m^2 K}$$

$$(26)$$

4.1.4 Koeficijent prijelaza topline na strani etanola

Proračun koeficijenta prijelaza topline na strani etanola je iterativan. Većina svojstava određuje se za srednju temperaturu između temperature stijenke i temperature zasićenja etanola. Temperaturu stijenke treba pretpostaviti, izračunati koeficijent prijelaza topline, izračunati dobiveni toplinski tok, iz njega izračunati novu temperaturu te usporediti s prepostavljenom. Model je preuzet iz [14]. Kriterij zaustavljanja iteracija je razlika temperature stijenke u prošlom koraku i temperature stijenke u trenutnom koraku manji od 0,001 °C.

U nastavku bit će opisan tijek proračuna, a prikazani će biti rezultati zadnje iteracije i usvojeni koeficijent prijelaza topline.

- gustoća pri srednjoj temperaturi filma: $\rho_{\rm f}$
- toplinska provodnost pri srednjoj temperaturi filma: $\lambda_{\rm f}$
- specifična toplina kondenzacije/isparavanja etanola: Δh
- dinamička viskoznost pri srednjoj temperaturi filma: $\mu_{\rm f}$
- temperatura stijenke: $\vartheta_{\rm w}$
- temperatura zasićenja etanola (pri tlaku 0,5 bar): $\vartheta_{\rm s} = 61,52\ ^{\circ}{\rm C}$
- ubrzanje sile teže: $g = 8,80665 \text{ m/s}^2$
- toplinska provodnost čelika: $\lambda_{\rm s} = 58~\frac{\rm W}{\rm mK}$
- vanjski promjer cijevi: $D_{\rm c} = 25 \text{ mm}$
- vanjski polumjer cijevi: $R_{\rm c}=12,5~{\rm mm}$
- unutarnji polumjer cijevi: $r_{\rm c}=10,5~{\rm mm}$

• broj redova cijevi: $n_{\rm rc} = 4$

Koeficijent prijelaza topline prema modificiranom Nusseltovom modelu za kondenzaciju oko horizontalnih cijevi u cijevnom snopu:

$$\alpha_{\rm v} = 0,725 \cdot \left(\frac{\rho_{\rm f}^2 \cdot \lambda_{\rm f}^3 \cdot g \cdot \Delta h}{\mu_{\rm f} \cdot (\vartheta_{\rm s} - \vartheta_{\rm w}) \cdot D_{\rm c}}\right)^{\frac{1}{4}} \cdot (n_{\rm rc})^{-\frac{1}{6}}$$
(27)

Koeficijent prolaza topline sveden na vanjsku površinu cijevi:

$$k_{\rm v} = \frac{1}{\frac{R_{\rm c}}{r_{\rm c} \cdot \alpha_{\rm u}} + \frac{r_{\rm c}}{\lambda_{\rm s}} \cdot \ln\left(\frac{R_{\rm c}}{r_{\rm c}}\right) + \frac{1}{\alpha_{\rm v}}}$$
(28)

Toplinski tok po jedinici duljine cijevi:

$$\Phi_{\rm L} = k_{\rm v} \cdot D_{\rm c} \cdot \pi \cdot \Delta \vartheta_{\rm M} \tag{29}$$

Izračunata temperatura stijenke cijevi:

$$\vartheta_{\rm s,n} = \vartheta_{\rm e} - \frac{\varPhi_{\rm L}}{\alpha_{\rm v} \cdot D_{\rm v} \cdot \pi} \tag{30}$$

Razlika temperatura stijenke u prethodnom koraku (pretpostavljena) i u trenutnom koraku iteracije:

$$\Delta \vartheta_{\rm s} = \vartheta_{\rm s,n} - \vartheta_{\rm s,n-1} \tag{31}$$

Za ostvarenje gore navedenog uvjeta zaustavljanja potrebno je 5 koraka. Tako izračunati koeficijent prijelaza topline iskustveno se umanjuje za 60 posto kako bi se uračunao znatan utjecaj na njegovo smanjenje zbog prisutnosti nekondenzirajućih plinova. Rezultati proračuna dani su u tablici 3 u nastavku.
VELIČINA	SIMBOL	VRIJEDNOST	MJERNA JED.
gustoća kondenzata	$ ho_{ m f}$	764, 76	$ m kg/m^3$
specifična toplina isparavanja etanola	Δh	875, 38	KJ/kg
toplinska provodnost kondenzata	$\lambda { m f}$	0,159	W/(mK)
dinamička viskoznost kondenzata	$\mu { m f}$	$7,102 \cdot 10^{-4}$	$Pa \cdot s$
koeficijent prijelaza topline na strani etanola	$\alpha_{\rm v}$	588,88	$W/(m^2K)$
koeficijent prolaza topline	k_{u}	439,99	$W/(m^2K)$

Tablica 3: Koeficijent prijelaza i prolaza topline u kondenzatoru

Potrebna duljina cijevi:

$$L = \frac{\Phi}{k_{\rm v} \cdot \Delta \cdot \vartheta_{\rm M} \cdot \pi \cdot D_{\rm c} \cdot n_{\rm c} \cdot P}$$

$$L = \frac{142,68 \cdot 1000}{483,99 \cdot 51,98 \cdot \pi \cdot 0,025 \cdot 22 \cdot 2}$$
(32)

 $L=1,645~\mathrm{m}$

4.2 Proračun čvrstoće

Proračun čvrstoće u potpunosti je proveden prema normi HRN EN 13445-3. Rezultat proračuna čvrstoće su minimalne debljine stijenki pojedinih dijelova aparata. Većina dijelova ima značajno veće debljine stijenki od proračunatih s obzirom na umjerene temperature i nizak radni tlak. Većina dijelova kondenzatora izvedena je prema odgovarajućem standardnu uz minimalne dorade. Proračunati su plašt, podnice, cijevna stijena, prirubnice, brtva, cijevi u snopu i priključci. Materijal gradnje je nehrđajući čelik 1.4404 (AISI 316L).

4.2.1 Proračunska čvrstoća

Proračunski tlak dijelova koji nisu u vakuumu ne smije biti niži od najvišeg pretlaka koji se može javiti u radu aparata, ispitni tlak je dvostruko veći od radnog tlaka, a proračunska temperatura je najvišta temperatura toplije struje. Proračunski tlak dijelova izloženih vanjskom tlaku (u vakuumu) jednak je 0,1 MPa, osim ako nije ugrađen uređaj koji bi ograničavao vakuum, no to ovdje nije slučaj. Proračunska temperatura je povećana na 100 °C, kako bi očitali točnu vrijednost iz dostupnih tablica [15], a i usvajanjem više temperature odlazimo na stranu sigurnosti. Kondenzator etanola dijelom dijelom je u vakuumu, dijelom u pretlaku, stoga postoje dva radna tlaka koja će se uzimati u obzir pri proračunu pojednih dijelova, a s kojim radnim tlakom računamo biti će naglašeno.

- radni tlak u dijelu s vodom: $P_{\rm w}=2\ bar=0,2$ MPa
- ispitni tlak u dijelu s vodom: $P_{\rm w,test} = 0,4$ MPa
- radni tlak u dijelu s etanolom (vanjski tlak): $P_{\rm e}=1\ bar=0,1$ MPa
- radna temperatura: $\vartheta = 100~^{\circ}\mathrm{C}$

Napomena: dijelovi aparata u vakuumu uvijek se proračunavaju na potpuni vakuum, što je najgori mogući slučaj opterećenja te se ne provodi proračun za ispitno stanje.

Proračunska čvrstoća je funkcija temperature i izračunava se posebno za radno i ispitno stanje. Relevantna mehanička svojstva nehrđajućeg čelika 1.4404 za radno i ispitno stanje [15]:

- granica razvlačenja pri radnoj temperaturi: $R_{p1,0/\vartheta}=199~\rm N/mm^2$
- granica razvlačenja pri ispitnim uvjetima ($\vartheta=20^{\circ}{\rm C}):~R_{\rm p1,0}=235~{\rm N/mm^2}$

Proračunska čvrstoća za radno stanje:

$$f = \frac{R_{\rm p1,0/\vartheta}}{1,5}$$

$$f = \frac{199}{1,5}$$

$$f = 132 \text{ N/mm}^2$$

$$(33)$$

Proračunska čvrstoća za ispitno stanje:

$$f_{\text{test}} = \frac{R_{\text{p}1,0}}{1,05}$$
(34)
$$f_{\text{test}} = \frac{235}{1,05}$$

$$f_{\text{test}} = 223 \text{ N/mm}^2$$

4.2.2 Plašt

Plašt kondenzatora je u vakuumu, pa će se za proračunski tlak uzimati vrijednost $P_{\rm e}$. Odabrana debljina stijenke je 4 milimetara, kako bi se poklapala sa debljinom stijenke podnice i prirubnice.

- vanjski promjer plašta: $D_{\rm e}=355,6~{\rm mm}$
- odabrana debljina stijenke: $e=4~\mathrm{mm}$
- srednji polumjer plašta: $R=179,8~\mathrm{mm}$

Za austenitne čelike nominalna granica elastičnosti dana je izrazom:

$$\sigma_{\rm e} = \frac{R_{\rm p1,0/\vartheta}}{1,3} \tag{35}$$
$$\sigma_{\rm e} = \frac{199}{1,3}$$

$$\sigma_{\rm e} = 153 \, \mathrm{N/mm^2}$$

Faktori sigurnosti:

- faktor sigurnosti za radno stanje: S = 1, 5
- faktor sigurnosti za ispitno stanje: S = 1, 1

Proračun će se prvo provesti za neukrućeni plašt, a ovisno o rezultatu proračuna dodati će se ukrute. Nepoduprta dužina računa se prema izrazu:

$$L = L_{\rm p} + 0, 4h'' + L_{\rm prir} - w \tag{36}$$

- duljina plašta: $L_{\rm p}=1638~{\rm mm}$
- visina podnice: h'' = 90, 4 mm
- duljina prirubnice: $L_{\rm prir}=62~{\rm mm}$
- pomoćna veličina: w = mm

Slika 12: Definicija veličine w $\left[1\right]$

Slika 13: Dimenzije L ${\rm i}$ w za prirubnicu DN350

Nepodurpta dužina (22):

$$L = 1638 + 0, 4 \cdot 90, 4 + 62 - 37, 1$$

$L=1699~\mathrm{mm}$

Tlak pri kojem naprezanje u cilindru na srednjem radijusu plašta dostiže vrijdenost granice razvlačenja:

$$P_{\rm y} = \frac{\sigma_{\rm e} \cdot e}{R} \tag{37}$$

 $Fakultet\ Strojarstva\ i\ Brodogradnje$

$$P_{\rm y} = \frac{153 \cdot 4}{179,8}$$

$$P_{\rm y} = 3,36 \ {\rm MPa}$$

U daljnjem proračunu treba izračunati pomoćnu vrijednost ε iz narednog dijagrama:

Slika 14: Pomoćna veličina ε

$$\frac{L}{2R} = \frac{1699}{2 \cdot 179,8} = 4,67$$

$$\frac{2R}{e} = \frac{2 \cdot 179, 8}{4} = 91$$

$$\varepsilon = 0,0003$$

Modul elastičnosti u ovisnosti o temperaturi za austenitne čelike [1]

$$E_{\vartheta} = \left(201, 66 - 8, 48 \cdot 10^{-2} \cdot \vartheta\right) \cdot 10^3$$

$$E_{\vartheta} = \left(201, 66 - 8, 48 \cdot 10^{-2} \cdot 100\right) \cdot 10^3$$
(38)

 $E_{\vartheta} = 193260$ MPa

Tlak teoretski elastične nestabilnosti urušavanja cilindra:

$$P_{\rm m} = \frac{E_{\vartheta} \cdot e \cdot \varepsilon}{R}$$

$$P_{\rm m} = \frac{193260 \cdot 4 \cdot 0,0003}{179,8}$$

$$(39)$$

 $P_{\rm m}=1,29~{\rm MPa}$

Izračunata donja granica tlaka urušavanja isčitava se iz naredne tablice:

P _m /P _y	0	0,25	0,5	0,75	1,0	1,25	1,5	1,75	2,0	2,25	2,5	2,75	3	3,25	3,5
P_r/P_y	0	0,125	0,251	0,375	0,5	0,605	0,68	0,72	0,755	0,78	0,803	0,822	0,836	0,849	0,861
$P_{\rm m}/P_{\rm y}$		3,75	4,0	4,25	4,5	4,75	5,0	5,25	5,5	5,75	6,0	6,25	6,5	6,75	<u>≥</u> 7,0
$P_{\rm r}/P_{\rm y}$		0,87	0,879	0,887	0,896	0,905	0,914	0,917	0,923	0,929	0,935	0,941	0,947	0,953	0,959

Slika 15: Tlak urušavanja

$$\frac{P_{\rm m}}{P_{\rm y}} = \frac{1,29}{3,36} = 0,38$$

linearnom interpolacijom:

$$P_{\rm r} = 0,191 \cdot P_{\rm y} = 0,191 \cdot 3,36 = 0,64$$
 MPa

Uvjet koji mora biti zadovoljen:

$$P < \frac{P_{\rm r}}{S} \tag{40}$$

$$0, 1 < \frac{0,64}{1,5}$$

 $Fakultet\ Strojarstva\ i\ Brodogradnje$

0, 1 < 0, 43

Odabrana debljina stijenke, ukrućena podnicom i prirubnicom zadovoljava i nije potrebno ugrađivati dodatne ukrute.

4.2.3 Plitka podnica

Odabrana je plitka podnica DN350 prema DIN 28011, koja se proračunava na vanjski tlak.

Slika 16: Dimenzije podnice

- vanjski promjer podnice: $D_{\rm e}=355,6~{\rm mm}$
- odabrana debljina stijenke: $e=4~\mathrm{mm}$
- visina cilindričnog dijela: $h_1 = 17 \text{ mm}$
- ukupna visina podnice: H = 90, 4 mm
- unutarnji polumjer kuglastog dijela: $R=D_{\rm e}=355,6~{\rm mm}$
- unutarni polumjer prijelaznog dijela: $r=0,1\cdot D_{\rm e}=35,56~{\rm mm}$

Tlak pri kojem naprezanje u kuglastom dijelu na srednjem radijusu dostiže vrijednost granice razvlačenja:

$$P_{\rm y} = \frac{2 \cdot \sigma_{\rm e} \cdot e}{R + 0, 5 \cdot e} \tag{41}$$

$$P_{y} = \frac{2 \cdot 153 \cdot 4}{355, 6 + 0, 5 \cdot 4}$$
$$P_{y} = 3,31 \text{ MPa}$$

Tlak teoretski elastične nestabilnosti urušavanja kugle:

$$P_{\rm m} = \frac{1, 21 \cdot E_{\vartheta} \cdot e^2}{(R+0, 5 \cdot e)^2}$$

$$P_{\rm m} \frac{1, 21 \cdot 193260 \cdot 4}{(355, 6+0, 5 \cdot 4)^2}$$
(42)

$$P_{\rm m} = 7,31$$
 MPa

Iz slike 15 određujemo donju granicu tlaka urušavanja:

$$\frac{P_{\rm m}}{P_{\rm y}} = \frac{7,31}{3,31} = 2,21$$

linearnom interpolacijom:

$$P_{\rm r}=0,761\cdot P_{\rm y}=0,761\cdot 3,31=2,52$$
 MPa

Uvjet koji mora biti zadovoljen (40):

$$0, 1 < \frac{2, 52}{1, 5}$$

Odabrana debljina stijenke podnice zadovoljava i nije ju potrebno ukrućivati.

4.2.4 Izrez u plaštu

Odabranu debljinu stijenke plašta potrebno je provjeriti i po potrebi ojačati oko najvećeg izreza. To je izrez za priključak dovoda pare etanola DN100. Vrsta spoja priključka je takozvani "set-in" u kojem se priključak zavaruje i na vanjsku i na unutranju stranu plašta te djelomično prodire u unutarnji prostor plašta.

Slika 17: Karakteristične dimenzije za proračun "set-in" priključka

Napomena: gornja slika prikazuje priključak na kuglastom plaštu, no može se primijeniti i na priključak na cilindričnom plaštu

- vanjski promjer priključka: $d_{\rm eb} = 114, 3~{\rm mm}$
- unutarnji promjer priključka: $d_{\rm ib}=106,3~{\rm mm}$
- debljina stijenke priključka: $e_{\rm a,b}=4~{\rm mm}$
- debljina stijenke plašta: $e_{\rm a,s}=4~{\rm mm}$
- duljina priključka: $l_{\rm b}=150~{\rm mm}$ (na tehničkom crtežu)
- duljina dijela priključka koji ulazi u prostor plašta: $l_{\rm bi}=12~{\rm mm}$
- udaljenost od vanjskog brida priključka do diskontinuiteta plašta: $l_{\rm s} = 92,5$ mm (na tehničkom crtežu)

 $\bullet\,$ unutarnji radijus plašta: $r_{\rm is}=177,8~{\rm mm}$

Maksimalna duljina plašta koja pridonosi ojačanju izreza:

$$l_{\rm so} = \sqrt{(2r_{\rm is} + e_{\rm c,s}) \cdot e_{\rm c,s}}$$
(43)
$$l_{\rm so} = \sqrt{(2 \cdot 177, 8 + 4) \cdot 4}$$

 $l_{\rm so} = 37,93 \text{ mm}$

Efektivna duljina plašta koja pridonosi ojačanju:

$$l'_{s} = \min(l_{so}; l_{s})$$
(44)
= min (37, 93; 92, 5)

 $l'_{\rm s} = 37,93 \text{ mm}$

 $l'_{\rm s}$

Maksimalna duljina priključka koja pridonosi ojačanju izreza:

$$l_{\rm bo} = \sqrt{(d_{\rm eb} - e_{\rm a,b}) \cdot e_{a,b}}$$
(45)
$$l_{\rm bo} = \sqrt{(114, 3 - 4) \cdot 4}$$

 $l_{\rm bo}=21,00~{\rm mm}$

Efektivna duljina priključka koja pridonosi ojačanju:

$$l'_{\rm b} = \min(l_{\rm bo}; l_{\rm b})$$
 (46)
 $l'_{\rm b} = (21; 150)$

$$l'_{\rm b} = 21 \text{ mm}$$

35

Efektivna duljina dijela priključka koji ulazi u prostor plašta koja pridonosi ojačanju izreza:

$$l'_{\rm bi} = \min(l_{\rm bi}; 0, 5 \cdot l_{\rm bo})$$
(47)
$$l'_{\rm bi} = \min(12; 0, 5 \cdot 20, 39)$$
$$l'_{\rm bi} = 10, 19 \text{ mm}$$

Površina poprečnog presjeka plašta izložena naprezanju koja djeluje kao ojačanje:

$$Af_s = l'_{\rm s} \cdot e_{\rm a,s} \tag{48}$$
$$Af_{\rm s} = 37,93 \cdot 4$$
$$Af_{\rm s} = 151,72 \ \rm mm^2$$

Površina poprečnog presjeka priključka izložena naprezanju koja djeluje kao ojačanje:

$$Af_{\rm b} = e_{\rm b} \cdot \left(l'_{\rm b} + l'_{\rm bi} + e'_{\rm a,s} \right)$$

$$Af_{\rm b} = 4 \cdot (21 + 10, 19 + 4)$$

$$Af_{\rm b} = 140,76 \text{ mm}^2$$
(49)

Površina poprečnog presjeka plašta na koju djeluje tlak:

$$Ap_{\rm s} = r_{\rm is} \cdot \left(l_{\rm so} + \frac{d_{\rm eb}}{2} \right)$$

$$Ap_{\rm s} = 177, 8 \cdot \left(37,93 + \frac{114,3}{2} \right)$$
(50)

 $Ap_{\rm s}=16905~{\rm mm^2}$

Površina poprečnog presjeka priključka na koju djeluje tlak:

$$Ap_{\rm b} = \frac{d_{\rm ib}}{2} \cdot (l'_{\rm b} + e_{\rm a,s}) \tag{51}$$

Fakultet Strojarstva i Brodogradnje

$$Ap_{\rm b} = \frac{106,3}{2} \cdot (21+4)$$

 $Ap_{\rm b} = 1328,7 \text{ mm}^2$

Poprečni presjek zavara na mjestu spoja:

$$Af_{\rm w} = 7,84 \text{ mm}^2$$

Konačna formula za provjeru izreza:

$$(Af_{\rm s} + Af_{\rm w}) (f_{\rm s} - 0, 5P) + Af_{\rm b} (f_{\rm s} - 0, 5P) \ge P (Ap_{\rm s} + Ap_{\rm b})$$

$$(151, 72 + 7, 84) \cdot (126 - 0, 5 \cdot 0, 1) + 140, 76 \cdot (126 - 0, 5 \cdot 0, 1) \ge 0, 1 \cdot (16905 + 1328, 7)$$

$$(52)$$

37825 N ≥ 1823 N

Debljina stijenke plašta oko izreza uz "set-in" izvedbu spoja priključka zadovoljava i nije potrebno dodatno ojačanje.

4.2.5 Plitka podnica s priključcima

Podnica DN350 identična je onoj koja se zavaruje na plašt, ali se provjerava na unutarnji tlak. Radna temperatura prema normi trebala bi biti 12 °C, ali je ona povećana na 20 °C, kako bi se očitala točna vrijednost mehaničkih svojstava materijala iz dostupnih podataka [15]. Razlika svojstava za razliku od 8 °C je zanemariva.

- radni tlak: $P=0,2~\mathrm{MPa}$
- ispitni tlak: $P_{\text{test}} = 0, 4 \text{ MPa}$
- radna temperatura: $\vartheta = 20~^{\circ}\mathrm{C}$
- ispitna temperaura: $\vartheta_{\text{test}} = 20 \ ^{\circ}C$
- proračunska čvrstoća u radnom i ispitnom stanju: $f=f_{\rm test}=233~{\rm N/mm^2}$

Koeficijent zavarenog spoja:

$$z = 0,85$$

S obzirom da će se samo 10-25 zavara pregledati nekom od metoda nerazornih ispitivanja, gornji koeficijent je svojevrstan faktor sigurnosti.

Minimalna debljina stijenke cilindričnog dijela potrebna za ograničavanje membranskog naprezanja u kaloti:

$$e_{\rm s} = \frac{P \cdot R}{2f \cdot z - 0, 5 \cdot P}$$

$$e_{\rm s} = \frac{0, 2 \cdot 355, 6}{2 \cdot 233 \cdot 0, 85 - 0, 5 \cdot 0, 2}$$
(53)

 $e_{\rm s}=0,18~{\rm mm}$

Koeficijent podnice β očitava se iz narednog dijagrama:

Slika 18: Ko
eficijent podnice β

$$\frac{r}{D_{\rm i}} = \frac{35,56}{347,6} = 0,10$$

$$(0,75+0,2\cdot\frac{D_{\rm i}}{R})\frac{P}{f} = (0,75+0,2\cdot\frac{347,6}{355,6})\cdot\frac{0,2}{233} = 0,001$$

 $\beta = 1,15$

Minimalna debljina stijenke torusa za sprječavanje osnosimetričnih elastičnih deformacija:

$$e_{\rm y} = \frac{\beta \cdot P \cdot (0, 75 \cdot R + 0, 2 \cdot D_{\rm i})}{f}$$
(54)
$$e_{\rm y} = \frac{1, 15 \cdot 0, 2 \cdot (0, 75 \cdot 355, 6 + 0, 2 \cdot 347, 6)}{233}$$

 $e_{\rm y}=0,32~{\rm mm}$

Konvencionalna granica razvlačenja:

$$R_{\mathrm{p}0,2/\vartheta} = 190 \mathrm{\ N/mm^2}$$

Parametar ovisan o konvencionalnoj granici razvlačenja:

$$f_{\rm b} = \frac{R_{\rm p0,2/\vartheta}}{1,5}$$
(55)
$$f_{\rm b} = \frac{190}{1,5}$$

 $f_{\rm b} = 126 \ {\rm N/mm^2}$

Minimalna debljina stijenke torusa za sprječavanje plastičnih deformacija:

$$e_{\rm b} = (0,75 \cdot R + 0, 2 \cdot D_{\rm i}) \cdot \left[\frac{P}{111 \cdot f_{\rm b}} \cdot \left(\frac{D_{\rm i}}{r}\right)^{0,825}\right]^{\frac{1}{1,5}}$$
(56)
$$e_{\rm b} = (0,75 \cdot 355, 6 + 0, 2 \cdot 347, 6) \cdot \left[\frac{0,2}{111 \cdot 126} \cdot \left(\frac{347,6}{35,56}\right)^{0,825}\right]^{\frac{1}{1,5}}$$
$$e_{\rm b} = 0,69 \text{ mm}$$

Minimalna debljina stijenke:

$$e = \max(e_{s}; e_{y}; e_{b})$$
(57)
$$e = \max(0, 32; 0, 33; 0, 69)$$

$$e = 0,69 \text{ mm}$$

Debljina podnice zadovoljava radno stanje.

Minimalna debljina stijenke za ispitno stanje određuje se istim izrazima za radno stanje, osim što se umjesto radnog tlaka računa s ispitnim. Proračunska čvrstoća ostaje ista, jer su temperature u radnom i ispitnom stanju bliske. U slučaju velike razlike temperatura u radnom i ispitnom stanju, mijenjala bi se i proračunska čvrstoća.

Minimalna debljina stijenke cilindričnog dijela potrebna za ograničavanje membranskog naprezanja u kaloti u ispitnom stanju prema (53) uz $P = P_{\text{test}}$:

$$e_{\rm s,test} = \frac{0,4\cdot 355,6}{2\cdot 132\cdot 0,85-0,5\cdot 0,2}$$

$$e_{\rm s,test} = 0,32~{\rm mm}$$

Minimalna debljina stijenke torusa za sprječavanje osnosimetričnih elastičnih deformacija prema (54) uz $P = P_{\text{test}}:$

$$e_{\rm y,test} = \frac{1, 15 \cdot 0, 4 \cdot (0, 75 \cdot 355, 6 + 0, 2 \cdot 347, 6)}{233}$$

 $e_{\rm y,test} = 0,64 \text{ mm}$

Minimalna debljina stijenke torusa za sprječavanje plastičnih deformacija:

$$e_{\rm b,test} = (0,75 \cdot 355, 6+0, 2 \cdot 347, 6) \cdot \left[\frac{0,2}{111 \cdot 126} \cdot \left(\frac{347,6}{35,56}\right)^{0,825}\right]^{\frac{1}{1,5}}$$

 $e_{\rm b,test} = 1,10 \text{ mm}$

Minimalna debljina stijenke u ispitnom stanju:

$$e = \max(e_{s,test}; e_{y,test}; e_{b,test})$$
(58)
$$e_{test} = \max(0, 32; 0, 64; 1, 10)$$

 $e_{\text{test}} = 1,10 \text{ mm}$

Odabrana debljina stijenke od 4 mm, zadovoljava i radno i ispitno stanje.

4.2.6 Izrezi u podnici s priključcima

Osim provjere debljine stijenke podnice, potrebno je provjeriti i oslabljivanje uslijed izreza za priključke ulaza i izlaza rashladne vode. Proračun je proveden sukladno navedenoj normi za bliske izreze u kuglastom plaštu ili torisferičnim podnicama. Provjerava se je li ojačanje kojem doprinose priključci dovoljno ili treba primijeniti ojačanja oko izreza.

• radni tlak: P = 0, 2 MPa

- ispitni tlak: $P_{\text{test}} = 0, 4$ MPa
- radna temperatura: $\vartheta = 20$ °C
- ispitna temperaura: $\vartheta_{\text{test}} = 20 \ ^{\circ}C$
- proračunska čvrstoća za radno i ispitno stanje: $f=f_{\rm test}=223~\rm N/mm^2$

Dimenzije priključaka i podnice:

- vanjski promjer priključka: $d_{\rm eb}=76,1~{\rm mm}$
- debljina stijenke priključka: $e_{\rm a,b}=2,9~{\rm mm}$

Površine relevantne za proračun izreza označene su na donjoj slici. Donja slika prikazuje priključak 1 čija os nije normala na podnicu, i priključak 2 čija os je normala na podnicu. S obzirom da su u podnici oba priključka ista i jednake izvedbe kao priključak 1 na slici, računati će se površine za jedan priključak, a u konačnoj formuli za provjeru ojačanja one će se množiti s 2. Sve označene površine zbog jednostavnosti i skraćivanja proračuna izračunate su pomoću funkcije "measure" programskog paketa "Autodesk Inventor" u kojem je kondenzator modeliran i pomoću kojeg su izrađeni tehnički crteži.

Slika 19: Izrezi u podnici

Za određivanje površina $A_{\rm fb}$
i $A_{\rm pb}$ potrebno je prethodno izračunati duljinu priključka koja pridonosi ojačanju:

$$l_{\rm bo} = \sqrt{(d_{\rm eb} - e_{\rm b}) \cdot e_{\rm b}}$$
(59)
$$l_{\rm bo} = \sqrt{(76, 1 - 2, 9) \cdot 2, 9}$$

 $l_{\rm bo}=14,56~{\rm mm}$

Izmjerene površine:

- površina podnice između priključaka $Af_{\rm Ls}=498,11~{\rm mm}^2$
- površina priključka koja doprinosi ojačanju: $Af_{\rm b}=54,01~{\rm mm^2}$
- površina unutar podnice opterećena tlakom: $Ap_{\rm Ls} = 36143, 55 \text{ mm}^2$
- površina priključka opterećena tlakom: $Ap_{\rm b}=663,99~{\rm mm^2}$
- dodatna površina priključka opterećena tlakom: $Ap_{\varphi}=652,36~{\rm mm^2}$

Uvjet koji mora biti zadovoljen u radnom stanju::

$$Af_{Ls} \cdot (f - 0, 5 \cdot P) + 2 \cdot (f - 0, 5 \cdot P) \ge P \cdot (Ap_{Ls} + 2 \cdot Ap_{b} + Ap_{\varphi})$$
(60)

 $498, 11 \cdot (223 - 0, 5 \cdot 0, 2) + 2 \cdot (223 - 0, 5 \cdot 0, 2) \ge 0, 2 \cdot (36143, 55 + 2 \cdot 663, 99 + 652, 36)$

111475 N ≥ 7625 N

Debljina stijenke u radnom stanju zadovoljava i nije potrebno dodatno ojačati podnicu.

Uvjet koji mora biti zadovoljen u ispitnom stanju:

$$Af_{\rm Ls} \cdot (f_{\rm test} - 0, 5 \cdot P_{\rm test}) + 2 \cdot (f_{\rm test} - 0, 5 \cdot P_{\rm test}) \ge P_{\rm test} \cdot (Ap_{\rm Ls} + 2 \cdot Ap_{\rm b} + Ap_{\varphi}) \tag{61}$$

 $498, 11 \cdot (223 - 0, 5 \cdot 0, 4) + 2 \cdot (223 - 0, 5 \cdot 0, 4) \ge 0, 4 \cdot (36143, 55 + 2 \cdot 663, 99 + 652, 36)$

$$111425 \text{ N} \ge 15250 \text{ N}$$

Fakultet Strojarstva i Brodogradnje

4.2.7 Prirubnički spoj

Prirubnički spoj sadrži 3 prirubnice koje su međusobno povezane s 12 vijaka istog materijala kao ostatak aparat. Pororačun se provodi posebno za spoj prirubnice zavarene na plašt i cijevne stijene, te spoj cijevne stijene i prirubnice zavarene na podnicu s priključcima za dovod i odvod vode. S obzirom da na prirubnicu zavarenu na plašt djeluje atmosferski tlak, a unutarnji tlak na prirubnicu zavarenu na podnicu s priključcima za rashladnu vodu, proračun se provodi posebeno za svaku od njih. Prvo proračunavamo prirubnicu na koju djeluje unutarnji tlak.

Slika 20: Prirubnički spoj

Odabrana je prirubnica s grlom za zavarivanje DN350 PN6, prema EN 1092-1, koja se zavaruje na podnicu.

- vanjski promjer pri
ubnice: $A=490~\mathrm{mm}$
- unutarnji promjer prirubnice: B = 347, 6 mm
- $\bullet\,$ promjer do središnje osi vijaka: $C=445~\mathrm{mm}$
- debljina prirubnice: $e=18~\mathrm{mm}$
- debljina prirubnice na spoju s plaštem: $g_0=4~\mathrm{mm}$

- najveća debljina na grlu za zavarivanje: $g_1=13,9~\mathrm{mm}$
- visina grla za zavarivanje: h = 25 mm
- udaljenost od središnje osi vijka do sredine brtve: $h_{\rm G}=17,5~{\rm mm}$

Odabrana je gumena brtva sljedećih dimenzija:

- vanjski promjer brtve: $D_{\rm b,v}=415~{\rm mm}$
- unutarnji promjer brtve: $D_{\rm b,u}=365~{\rm mm}$
- debljina brtve: $e_{\rm b} = 3 \text{ mm}$
- faktor brtve: m = 0, 50 [1]
- minimalno naprezanje pri ugradnji: $y=1,4~\mathrm{MPa}~[1]$

Ispitni i radni tlak za ovu prirubnicu:

- P = 0, 2 MPa
- $P_{\text{test}} = 0, 4 \text{ MPa}$

Kontaktna širina brtve jednaka je razlici vanjskog i unutarnjeg polumjera brtve:

$$w = 0, 5 \cdot (D_{b,v} - D_{b,u})$$
(62)
$$w = 0, 5 \cdot (415 - 365)$$

$$w = 25 \text{ mm}$$

Pomoćna veličina:

$$b_0 = \frac{w}{2} \tag{63}$$
$$b_0 = \frac{25}{2}$$

$$b_0 = 12,5 \text{ mm}$$

Efektivna širina brtve:

$$b = 2,52\sqrt{b_0}$$
 (64)
 $b = 2,52 \cdot \sqrt{12,5}$
 $b = 8,90 \text{ mm}$

Promjer na kojem djeluje reakcija brtve:

$$G = D_{b,v} - 2 \cdot b$$
 (65)
 $G = 415 - 2 \cdot 8,90$
 $G = 397,2 \text{ mm}$

Ukupna hidrostatska sila u radnom stanju:

$$H = \frac{\pi}{4} \cdot \left(G^2 \cdot P\right) \tag{66}$$
$$H = \frac{\pi}{4} \cdot \left(397, 2^2 \cdot 0, 2\right)$$
$$H = 24782 \text{ N}$$

Ukupna hidrostatska sila u ispitnom stanju:

$$H = \frac{\pi}{4} \cdot (G^2 \cdot P_{\text{test}})$$
(67)
$$H = \frac{\pi}{4} \cdot (397, 2^2 \cdot 0, 4)$$

$$H = 49564 \text{ N}$$

Tlačna sila na brtvu kako bi osgurali čvrsti spoj u radnom stanju:

$$H_{\rm G} = 2\pi \cdot G \cdot b \cdot m \cdot P$$

$$H_{\rm G} = 2\pi \cdot 397, 2 \cdot 8, 90 \cdot 0, 50 \cdot 0, 2$$

$$H_{\rm G} = 2222 \text{ N}$$
(68)

46

Tlačna sila na brtvu kako bi osgurali čvrsti spoj u ispitnom stanju:

$$H_{\rm G,test} = 2\pi \cdot G \cdot b \cdot m \cdot P_{\rm test}$$

$$H_{\rm G,test} = 2\pi \cdot 397, 2 \cdot 8, 90 \cdot 0, 50 \cdot 0, 2$$

$$H_{\rm G,test} = 4444 \text{ N}$$
(69)

Minimalno opterećenje na vijke u radnom stanju:

$$W_{\rm op} = H + H_{\rm G}$$
 (70)
 $W_{\rm op} = 24782 + 2222$
 $W_{\rm op} = 27004 \text{ N}$

Minimalno opterećenje na vijke u ispitnom stanju:

$$W_{\text{test}} = H_{\text{test}} + H_{\text{G,test}}$$

$$W_{\text{test}} = 49564 + 4444$$

$$(71)$$

 $W_{\rm A} = 54008~{\rm N}$

Minimalno opterećenje na vijke pri ugradnji:

$$W_A = \pi b \cdot G \cdot y \tag{72}$$

 $W_{\rm A} = \pi \cdot 8,90 \cdot 397, 2 \cdot 1, 4$

$$W_{\rm A} = 15548 \ {\rm N}$$

Proračunska čvrstoća vijaka u radnom stanju:

$$f_{\rm B} = \frac{R_{\rm m\vartheta}}{4} \tag{73}$$

 $Fakultet\ Strojarstva\ i\ Brodogradnje$

$$f_{\rm B} = \frac{420}{4}$$
$$f_{\rm B} = 105 \text{ N/mm}^2$$

Proračunska čvrstoća vijaka u ugradbenom i ispitnom stanju:

$$f_{\rm B,A} = \frac{R_{\rm m,20}}{4}$$
 (74)
 $f_{\rm B,A} = \frac{480}{4}$
 $f_{\rm B,A} = 120 \text{ N/mm}^2$

Minimalna površina poprečnog presjeka vijaka:

$$A_{\rm B,min} = \max\left(\frac{W_{\rm op}}{f_{\rm B}}; \frac{W_{\rm test}}{f_{\rm B,A}}; \frac{W_{\rm A}}{f_{\rm B,A}}\right)$$
(75)
$$A_{\rm B,min} = \max\left(\frac{27004}{105}; \frac{54008}{120}; \frac{15548}{120}\right)$$

$$A_{\rm B,min} = \max\left(257; 450; 129\right)$$

$$A_{\rm B,min} = 129 \text{ mm}^2$$

Odabrana je standardna prirubnica, stoga se koristi 12 vijaka M20, kako je i definirano u standardu.

- površina jez
gre jednog vijka: $A_{\rm B,1}=225~{\rm mm}^2$
- broj vijaka: $n_{\rm B}=12$
- ukupna površina vijaka: $A_{\rm B} = n_{\rm B} \cdot A_{{\rm B},1} = 2700 \ {\rm mm^2}$

Vidimo da je ukupna površina vijaka puno veća od minimalne, što se moglo i očekivati s obzirom na male temperature i tlakove.

Završni rad

U nastavku slijedi proračun prirubnice izložene djelovanju vakuuma. Ona je ista kao ona prikazana na slici 20, jedino je radni tlak drugačiji.

• $P_{\rm e} = 0, 1$ MPa

Kontaktna širina brtve jednaka je razlici vanjskog i unutarnjeg polumjera brtve:

$$w = 0, 5 \cdot (D_{b,v} - D_{b,u})$$
(76)
$$w = 0, 5 \cdot (415 - 365)$$

$$w = 25 \text{ mm}$$

Pomoćna veličina:

$$b_0 = \frac{w}{2} \tag{77}$$
$$b_0 = \frac{25}{2}$$

$$b_0 = 12,5 \text{ mm}$$

b

Efektivna širina brtve:

$$b = 2,52\sqrt{b_0}$$
(78)
= 2,52 \cdot \sqrt{12,5}
b = 8,90 mm

Promjer na kojem djeluje reakcija brtve:

$$G = D_{b,v} - 2 \cdot b$$
 (79)
 $G = 415 - 2 \cdot 8,90$
 $G = 397,2 \text{ mm}$

Ukupna hidrostatska sila u radnom stanju:

$$H = \frac{\pi}{4} \cdot (G^2 \cdot P)$$

$$H = \frac{\pi}{4} \cdot (397, 2^2 \cdot 0, 1)$$

$$H = 12391 \text{ N}$$

$$(80)$$

Tlačna sila na brtvu kako bi osgurali čvrsti spoj u radnom stanju:

$$H_{\rm G} = 2\pi \cdot G \cdot b \cdot m \cdot P$$

$$H_{\rm G} = 2\pi \cdot 397, 2 \cdot 8, 90 \cdot 0, 50 \cdot 0, 1$$

$$H_{\rm G} = 1111 \text{ N}$$
(81)

Minimalno opterećenje na vijke u radnom stanju:

 $W_{\rm op} = 0$

Sukladno normi, ovo je konzervativna pretpostavka, jer bilo koje opterećenje na vijke smanjuje moment koji se javlja na prirubnici.

Minimalno opterećenje na vijke pri ugradnji:

$$W_{\rm A} = \pi b \cdot G \cdot y \tag{82}$$
$$W_{\rm A} = \pi \cdot 8,90 \cdot 397, 2 \cdot 1,4$$
$$W_{\rm A} = 15548 \ {\rm N}$$

Proračunska čvrstoća vijaka u radnom stanju:

$$f_{\rm B} = \frac{R_{\rm m\vartheta}}{4} \tag{83}$$
$$f_{\rm B} = \frac{420}{4}$$

$$f_{\rm B} = 105 \ {\rm N/mm^2}$$

Proračunska čvrstoća vijaka pri ugradbenom stanju:

Fakultet Strojarstva i Brodogradnje

$$f_{\rm B,A} = \frac{R_{\rm m,20}}{4}$$
(84)
$$f_{\rm B,A} = \frac{480}{4}$$
$$f_{\rm B,A} = 120 \text{ N/mm}^2$$

Minimalna površina poprečnog presjeka vijaka:

$$A_{\rm B,min} = \frac{W_{\rm A}}{f_{\rm B,A}}$$

$$A_{\rm B,min} = \frac{15548}{120}$$

$$\tag{85}$$

$A_{\rm B,min} = 130 \text{ mm}^2$

Odabrana je standardna prirubnica, stoga se koristi 12 vijaka M20, kako je i definirano u standardu.

- površina jez
gre jednog vijka: $A_{\rm B,1}=225~{\rm mm}^2$
- broj vijaka: $n_{\rm B} = 12$
- ukupna površina vijaka: $A_{\rm B}=n_{\rm B}\cdot A_{{\rm B},1}=2700~{\rm mm}^2$

Vidimo da je ukupna površina vijaka puno veća od minimalne, što se moglo i očekivati s obzirom na male temperature i tlakove.

4.2.8 Cijevna stijena

Cijevna stijena izvedena je kao slijepa prirubnica DN350, prema DIN 1092-1 u kojoj su izbušene rupe za cijevi DN20, prema EN 10027-2. Cijevi su uvaljane u cijevnu stijenu. S obzirom da je odbrana standardna prirubnica, proračun se svodi na provjeru naprezanja koja se javljaju u cijevnoj stijeni pri normiranoj debljini prirubnice. Alternativno, proračun bi se mogao provesti iterativnim postupkom koji rezultirao minimalnom debljinom cijevne stijene za postojeće uvjete opterećenja. Proračun se provodi za radno i ispitno stanje, a u oba stanja tlak koji na cijevnu stijenu djeluje sa strane plašta biti će potpuni vakuum.

- $\bullet\,$ proračunski tlak na strani kanala: $P_{\rm c}=0,2$ MPa
- $\bullet\,$ proračunski tlak u cijevima: $P_{\rm t}=0,2$ MPa

- proračunski tlak na strani plašta: $P_{\rm s}=-0,1~{\rm MPa}$
- $\bullet\,$ ispitni tlak na strani kanala: $P_{\rm c,test}=0,4~{\rm MPa}$
- ispitni tlak u cijevima: $P_{\rm t,test}=0,4~{\rm MPa}$

Slika 21: Karakteristične veličine cijevne stijene

- promjer kružnice koja tangira najudaljeniju rupu za cijevi: $D_{\rm o}=294,46\ mm$
- debljina cijevne stijene: $e=26~\mathrm{mm}$
- utor za brtvu: $h_{\rm G} = 1 \ {\rm mm}$
- horizontalni razmak rupa za cijevi: $p=37,5~\mathrm{mm}$
- najveći vertikalni razmak između rupa za cijevi: $U_{\rm L}=50~{\rm mm}$

Slika 22: Spoj cijevi i cijevne stijene

- vanjski promjer cijevi: $d_{\rm t}=25~{\rm mm}$
- debljina cijevne stijene: e = 260 mm
- debljina cijevi: $e_{\rm t} = 2 \text{ mm}$
- duljina cijevi koja je uvaljana u cijevnu stijenu: $l_{\rm t,x}=13~{\rm mm}$

Veličina $l_{t,x}$ odabrana je konstrukcijski kao pola debljine cijevne stijene. U nastavku pod pojom ligament smatra se dio cijevne stijene između rupa za cijevi. Efikasnost ligamenta za posmično naprezanje:

$$\mu = \frac{p - d_{\rm t}}{p}$$
(86)
$$\mu = \frac{37, 5 - 25}{37, 5}$$

$$\mu = 0, 33$$

Efektivni razmak između cijevi:

$$p^* = \frac{p}{\sqrt{1 - \frac{4 \cdot U_{\rm L}}{\pi \cdot D_{\rm o}}}} \tag{87}$$

$$p^* = \frac{37,5}{\sqrt{1 - \frac{4 \cdot 50}{\pi \cdot 294,46}}}$$
$$p^* = 42,34 \text{ mm}$$

Efektivni promjer cijevi:

$$d^* = max \left[\left(d_{t} - 2 \cdot e_{t} \cdot \frac{l_{t,x}}{e} \right); \left(d_{t} - 2 \cdot e_{t} \right) \right]$$

$$d^* = max \left[\left(25 - 2 \cdot 2 \cdot \frac{13}{26} \right); \left(25 - 2 \cdot 2 \right) \right]$$

$$d^* = max \left[23; 21 \right]$$
(88)

 $d^*=23~\mathrm{mm}$

Efektivna efikasnost ligamenta za savijanje:

$$\mu^* = \frac{p^* - d^*}{p^*}$$

$$\mu^* = \frac{42,34 - 23}{42,34}$$
(89)

Pomoćna veličina za isčitavanje vrijednosti iz naredna dva dijagrama:

$$\frac{e}{p} = \frac{26}{37,5} = 0,69$$

 $\mu^*=0,46$

Slika 23: Efektivni modul elastičnosti i efektivni Poissonov omjer

- modul elastičnosti za čelik: $E=210000~\mathrm{MPa}$
- efektivni modul elastičnosti: $E^* = 0, 56 \cdot E = 117600 \; \mathrm{MPa}$
- Poissonov omjer: $\nu = 0, 3$
- efektivni Poissonov omjer: $\nu^*=0,28\cdot\nu=0,084$

Promjer na kojem djeluje reakcije brtve (iz prethodnog poglavlja):

G = 397, 2 mm

Pomoćna veličina:

$$\rho = \frac{G}{D_{o}}$$
(90)
$$= \frac{397, 2}{294, 46}$$

$$\rho = 1,35$$

 ρ

Moment zbog djelovanja tlakova na dio cijevne stijene bez rupa:

$$M_{\rm TS} = \frac{D_{\rm o}^2}{16} \left[(\rho - 1)(\rho^2 + 1) \cdot (-P_{\rm s}) - (\rho - 1)(\rho^2 + 1)P_{\rm t} \right]$$
(91)
294 43² -

$$M_{\rm TS} = \frac{294,43}{16} \left[(1,35-1)(1,35^2+1) \cdot (-0,1) - (1,35-1)(1,35^2+1) \cdot 0,2 \right]$$

 $M_{\rm TS}=-1226,45~{\rm Nmm/mm}$

Omjer vanjskog promjera cijevne stijene i $D_{\rm o}$:

$$K = \frac{A}{D_{o}}$$

$$K = \frac{490}{294, 43}$$

$$K = 1,66$$
(92)

Koeficijent koji ovisi o načinu spajanja prirubnice s kanalom i plaštem:

$$F = \frac{1 - \nu^*}{E^*} (E \ln K)$$
(93)
$$F = \frac{1 - 0,084}{117600} \cdot (210000 \cdot 1,66)$$

$$F = 2,72$$

Proračunsko opterećenje vijaka za ovu vrstu spoja, jedako je većem radnom opterećenju vijaka jedne od dviju prirubnica između koji se cijevna stijena nalazi. Ovdje je to prirubnica na strani kanala.

$$W_{\rm max} = 27004 \ {\rm N}$$

Moment koji djeluje na rubu dijela cijevne stijene opterećenog tlakovima:

$$M_{\rm p} = \frac{M_{\rm TS} - \frac{D_{\rm o}^2}{32} \cdot F \cdot (P_{\rm s} - P_{\rm t})}{1 + F}$$
(94)
$$M_{\rm p} = \frac{-1226, 45 - \frac{294, 43^2}{32} \cdot 2, 72 (-0, 1 - 0, 2)}{1 + 2, 72}$$

$$M_{\rm p}=264,55~{\rm Nmm/mm}$$

Moment koji djeluje u središtu cijevne stijene:

$$M_0 = M_{\rm p} + \frac{D_{\rm o}^2}{64} \cdot (3 + \nu^*) \left(P_{\rm s} - P_{\rm t}\right)$$

$$M_0 = 264,55 + \frac{294,43^2}{64} \cdot (3 + 0,084) \cdot (-0,1 - 0,2)$$
(95)

 $M_0=-988,65~\mathrm{Nmm/mm}$

Maksimalni moment savijanja:

$$M = \max(|M_{\rm p}|; |M_{\rm 0}|)$$

$$M = \max(|264, 55|; |-988, 65|)$$
(96)

M = 988,65 Nmm/mm

Maksimalno radijalno savojno naprezanje u cijevnoj stijeni:

$$\sigma = \frac{6 \cdot M}{\mu^* \cdot (e - h_{\rm G})^2}$$
(97)
$$\sigma = \frac{6 \cdot 988, 65}{0, 46 \cdot (26 - 1)^2}$$
$$\sigma = 20, 63 \text{ N/mm}^2$$

Savojno naprezanje mora biti manje od dvostruke vrijednosti proračunske čvrstoće u radnom stanju:

$$\sigma \le 2 \cdot f \tag{98}$$
$$20,63 \le 2 \cdot 132$$

$$20,63 \text{ N/mm}^2 \le 264 \text{ N/mm}^2$$

Cijevna stijena zadovoljava uvjete opterećenja na savijanje u radnom stanju.

Maksimalno posmično naprezanje na cijevnoj stijeni:

$$\tau = \frac{D_{\rm o}}{4 \cdot \mu \cdot e} | P_{\rm s} - P_{\rm t} |$$

$$\tau = \frac{294, 43}{4 \cdot 0, 33 \cdot 26} \cdot | -0, 1 - 0, 2 |$$

$$\tau = 2,57 \text{ N/mm}^2$$
(99)

Uvjet koji mora biti zadovoljen:

$$au \le 0, 8 \cdot f$$
 (100)
2,57 $\le 0, 8 \cdot 132$

 $2,57~{\rm N/mm^2} \le 105,6~{\rm N/mm^2}$

Cijevna stijena zadovoljava uvjete posmičnog naprezanja u radnom stanju.

4.3 Hidraulički proračun

Rezultat hidrauličkog proračuna je pad tlaka pri strujanju kroz aparat, koji nam služi za dimenzioniranje i odabir pogonskog uređaja koji će savladati izračunate otpore strujanju. Pogonski uređaj za rashladnu vodu je centrifugalna pumpa, a za etanol vakuum pumpa. Otpori strujanju koji će biti izračunati u ovom potpoglavlju predstavljaju samo dio ukupno pada tlaka koji navedeni pogonski uređaji moraju savladati, ovdje nisu uračunati padovi tlaka uslijed strujanja kroz cjevovode, ventile i ostale aparate, koji bi zasigurno rezultirali puno većom ukupnom razlikom tlaka koju pogonski uređaji trebaju savladati. Proračun se provodi posebno na strani rashladne vode i na strani etanola. Cjelokupni proračun proveden je prema izrazima iz [16]. S obzirom da prilikom strujanja dolazi do promjene temperature vode, odnosno promjene faze etanola, računati će se s različitim svojstvima ovisno o temperaturi odnosno fazi za pojedinu komponentu pada tlaka svakog od dva medija. S kojom temperaturom i svojstvima računamo biti će naglašeno pri računu za svaku komponentu. Opća formula za izračun pada tlaka glasi:

$$\Delta p = \zeta \cdot a \cdot \frac{\rho w^2}{2} \tag{101}$$

U kojoj ζ predstavlja faktor otpora, *a* predstavlja faktor koji ovisi o geometriji i prirodi strujanja, ρ je gustoća pri određenoj temperaturi ili srednjoj temperaturi, ako prilikom strujanja dolazi i do izmjene topline, a *w* je brzina strujanja.

4.3.1 Pad tlaka na strani vode

Ukupni pad tlaka na strani vode sastoji se od sljedećih komponenti: pad tlaka uslijed ustrujavanja iz ulaznog priključka u prostor podnice, pad tlaka uslijed ustrujavanja u cijevni snop, pad tlaka strujanja kroz cijevi, pad tlaka zbog istrujavanja iz cijevnog snopa u područje podnice i pad tlaka zbog istrujavanja iz prostora podnice u izlazni priključak.

$$\Delta p_{\rm w} = \Delta p_{\rm w1} + \Delta p_{\rm w2} + \Delta p_{\rm w3} + \Delta p_{\rm w4} + \Delta p_{\rm w5} \tag{102}$$

Pad tlaka ustrujavanja iz ulaznog priključka u prostor podnice

U ovom slučaju pad tlaka ovisi samo o geometrijskim karakteristikama presjeka, stoga modificirani izraz (101) glasi:

$$\Delta p_{\rm w1} = \left(1 - \frac{A_1}{A_2}\right)^2 \cdot \frac{\rho w^2}{2} \tag{103}$$

Površina A_1 predstavlja površinu poprečnog presjeka priključka, a A_2 poprečni presjek podnice. S obzirom na kompliciranu geometriju podnice, površina A_2 izračunata je pomoću funkcije "meassure", u programu "Inventor". U ovom dijelu nema izmjene topline, stoga će temperatura za očitavanje svojstava biti jednaka ulaznoj temperaturi rashladne vode.

S obzirom da dolazi do promjene presjeka, mijenja se i brzina strujanja. Pri proračunima pada tlaka gdje dolazi do promjene poprečnog presjeka, uvijek se računa s brzinom u manjem presjeku, jer je ona tamo veća i proračun će dati veći iznos pada tlaka, a time odlazimo na stranu sigurnosti. Brzina strujanja u priključku određena je njegovim unutarnjim promjerom i masenim protokom rashladne vode koji je izračunat u jednadžbi (17):

$$w = \frac{4 \cdot q_{\rm mw}}{\rho \cdot d_{\rm i}^2 \cdot \pi} \tag{104}$$

VELIČINA	SIMBOL	VRIJEDNOST	MJERNA JED.
temperatura vode	ϑ_{w1}	7	$^{\circ}\mathrm{C}$
gustoća	ρ	999, 86	$\rm kg/m^3$
unutarnji promjer priključka	d_{i}	70,3	mm
brzina strujanja u priključku	w	1,752	m/s
površina poprečnog presjeka priključka	A_1	$3,88 \cdot 10^{-3}$	m^2
površina poprečnog presjeka dijela podnice	A_2	0,0464	m^2
pad tlaka	$\Delta p_{\rm w1}$	1406,22	Pa

Tablica 4: Pad tlaka pri ustrujavanju iz priključka u prostor podnice

Pad tlaka uslijed ustrujavanja u cijevni snop

Modificirani izraz za pad tlaka u
za=1glasi:

$$\Delta p = \zeta \cdot \frac{\rho w^2}{2} \tag{105}$$

U ovom slučaju faktor otpora ovisi o rasporedu i unutarnjem promjeru cijevi, a očitava se iz narednog dijagrama:

Slika 24: Koeficijent otpora pri ustrujavanju u cijevni snop

Brzina se određuje prema izrazu (104) uz naknadno dijeljenje s brojem cijevi $n_{\rm c} = 22$. Rezultati proračuna dani su u tablici u nastavku.

VELIČINA	SIMBOL	VRIJEDNOST	MJERNA JED.
temperatura vode	$\vartheta_{\mathrm{w}1}$	7	°C
gustoća	ρ	999, 86	$\rm kg/m^3$
unutarnji promjer cijevi	d_{i}	21	mm
brzina strujanja u cijevi	w	0,893	m/s
razmak između središta cijevi	S	37,5	mm
faktor otpora	ζ	0,23	/
pad tlaka	Δp_{w2}	1524,30	Pa

Tablica 5: Pad tlaka pri ustrujavanju u cijevni snop
Pad tlaka strujanja kroz cijevi

Faktor trenja ovisi o Reynoldsovoj značajki, a za izračunatiRe,izraz glasi:

$$\zeta = \frac{0.3164}{\sqrt[4]{Re}} \tag{106}$$

Geometrijski faktor u ovom slučaju glasi:

$$a = \frac{l}{d_{\rm i}} \tag{107}$$

Veličina *l* predstavlja duljinu cijevi. S obzirom da u izmjenjivaču s U-cijevima, sve cijevi nisu iste dujine, računati će se s najvećom duljinom cijevi, s obzirom da ćemo tako dobiti pad tlaka u najgorem slučaju. Temperatura, potrebna svojstva, Reynoldsova značajka i brzina strujanja izračunati su ranije u radu, pri

proračunu koeficijenta prijelaza topline na strani vode. Stoga će samo biti prepisana, a rezultati će biti prikazani u tablici 8.

VELIČINA	SIMBOL	VRIJEDNOST	MJERNA JED.
srednja temperatura vode u aparatu	$\vartheta_{ m sr}$	9,5	$^{\circ}\mathrm{C}$
gustoća	ρ	999,72	$\rm kg/m^3$
dinamička viskoznost	μ	$13, 13 \cdot 10^{-4}$	$Pa \cdot s$
brzina strujanja u cijevi	w	0,982	m/s
unutarnji promjer cijevi	d_{i}	21	mm
Reynoldsova značajka	Re	15072	/
faktor otpora	ζ	0,0286	/
duljina cijevi	l	3675	mm
geometrijski faktor	a	175	/
pad tlaka	$\Delta p_{\rm w3}$	2412,5	Pa

Tablica 6: Pad tlaka pri strujanju kroz cijevi

Pad tlaka uslijed istrujavanja iz cijevnog snopa u podnicu

Ova komponenta pada tlaka računa se prema izrazu (103), gdje w predstavlja brzinu strujanja u U-cijevi, A_1 površinu poprečnog presjeka cijevi, a A_2 površinu poprečnog presjeka prostora u podnici. Temperatura je jednaka izlaznoj temperaturi vode.

VELIČINA	SIMBOL	VRIJEDNOST	MJERNA JED.
temperatura vode	ϑ_{w2}	12	$^{\circ}\mathrm{C}$
gustoća	ρ	999, 45	$\rm kg/m^3$
unutarnji promjer cijevi	d_{i}	21	mm
brzina strujanja u cijevi	w	0,982	m/s
površina poprečnog presjeka cijevi	A_1	$3,46\cdot10^{-4}$	m^2
površina poprečnog presjeka dijela podnice	A_2	0,0464	m^2
pad tlaka	$\Delta p_{\rm w4}$	478,30	Pa

Tablica 7: Pad tlaka pri ustrujavanju iz cijevnog snopa u prostor podnice

Pad tlaka uslijed istrujavanja iz podnice u izlazni priključak

Pad tlaka računa se prema izrazu (105), uz faktor otpora: $\zeta=0,5$ prema slici 25.

Angular inlet	Very sharp Normal chamfer	$\begin{aligned} \zeta_{\text{in}} &= 0.5\\ \zeta_{\text{in}} &= 0.25 \end{aligned}$	
Widely projecting angular inlet	Very sharp Normal chamfer	$\zeta_{in} = 3$ $\zeta_{in} = 0.56$	
Rounded inlet	Depending on Smoothness ζ _{ir} Normal	$\zeta_{in} = 0.005$ n up to 0.06 $\zeta_{in} = 0.05$	
Angular inlet inclined at angle δ	$\zeta_{in} = 0.5 + 0.3 \cos \delta$ $+ 0.2 \cos^2 \delta$		10 mmmmmmm

Slika 25: Faktor otpora pri ustrujavanju u cijev, ovisno o izvedbi priključka

Brzina strujanja je jednaka onoj u ulaznom priključku, s obzirom da je došlo do male promjene temperature, a

VELIČINA	SIMBOL	VRIJEDNOST	MJERNA JED.
temperatura vode	ϑ_{w2}	12	$^{\circ}\mathrm{C}$
gustoća	ρ	999, 45	$\rm kg/m^3$
brzina strujanja u priključku	w	1,752	m/s
faktor otpora	ζ	0,5	/
pad tlaka	$\Delta p_{\rm w5}$	766,95	Pa

time i do male promjene gustoće. Pri većim temperaturnim razlikama, trebalo bi se iz jednadžbe kontinuiteta (104) izračunati novu brzinu u priključku i nju uvrstiti u jednadžbu za pad tlaka.

Tablica 8: Pad tlaka pri ustrujavanju iz cijevnog snopa u prostor podnice

Ukupni pad tlaka na strani vode

Uvrštavanjem svih izračunatih komponenti pada tlaka u jednadžbu (102) dobiva se ukupni pad tlaka na strani vode:

$$\Delta p_{\rm w} = 1406, 22 + 1524, 30 + 2412, 5 + 478, 30 + 766, 95$$

$$\Delta p_{\rm w} = 6588, 27$$
 Pa

4.3.2 Pad tlaka na strani etanola

Ukupni pad tlaka na strani etanola sastoji se od pada tlaka uslijed ustrujavanja u plašt, pada tlaka pri prolasku kroz plašt i pad tlaka pri istrujavanju iz plašta u izlazni priključak:

$$\Delta p_{\rm e} = \Delta p_{\rm e1} + \Delta p_{\rm e2} + \Delta p_{\rm e3} \tag{108}$$

Pretpostaviti će se da u kondenzator ulazi suhozasićena para, a iz kondenzatora vrela kapljevina etanola. Komponenta pada tlaka pri strujanju kroz plašt Δp_{e3} izrazito je kompleksna za izračun zbog dvofaznog strujanja, stoga se ovdje neće računati, ali je bitno naglasiti da ona postoji.

Pad tlaka u ulaznom priključku

Pad tlaka u ulaznom priključku računa se prema izrazu:

$$\Delta p = \zeta \cdot \frac{\rho \cdot w^2}{2} \tag{109}$$

Gdje se faktor otpora računa prema izrazu:

$$\zeta = 3,308 \cdot \left(\frac{A_{\rm N}}{A_{\rm F}}\right)^{1,14} \cdot \left(\frac{d_{\rm N}}{D_{\rm i}}\right) \cdot \left(\frac{D_{\rm BE}}{d_{\rm N}}\right)^{2,4} \tag{110}$$

Površina $A_{\rm N}$ predstavlja površinu poprečnog presjeka unutrašnjosti priključka:

$$A_{\rm N} = \frac{d_{\rm N}^2 \cdot \pi}{4} \tag{111}$$

Površina $A_{\rm F}$ predstavlja slobodnu površinu u plaštu, odnosno površinu poprečnog presjeka unutrašnjosti plašta umanjenu za površinu koju zauzimaju cijevi:

$$A_{\rm F} = \frac{\pi}{4} \cdot \left(D_{\rm i}^2 - n_{\rm c} \cdot d_{\rm i}^2 \right) \tag{112}$$

Brzina strujanja u priključku određuje se iz jednadžbe kontinuiteta:

$$w = \frac{4 \cdot q_{\rm m,e}}{\rho \cdot d_{\rm N}^2 \cdot \pi} \tag{113}$$

Gdje je $q_{\rm me}$ izračunat u jednadžbi (1).

VELIČINA	SIMBOL	VRIJEDNOST	MJERNA JED.
unutarnji promjer priključka	$d_{ m N}$	106,3	mm
unutarnji promjer plašta	D_{i}	347,6	mm
promjer kružnice koja tangira najudaljeniju rupu za cijev	D_{BE}	294,463	mm
površina poprečnog presjeka unutrašnjosti priključka	$A_{\rm N}$	8875	mm^2
unutarnji promjer cijevi	d_{i}	21	mm
broj cijevi	$n_{ m c}$	44	/
slobodna površina u plaštu	$A_{\rm F}$	87276	mm^2
temperatura	ϑ	61,52	°C
maseni protok etanola	$q_{ m me}$	0,163	$\rm kg/s$
gustoća pri navedenoj temperaturi	ρ	0,845	$\rm kg/m^3$
brzina u priključku	w	21,74	m/s
faktor otpora	ζ	0,34	/
pad tlaka	$\Delta p_{\rm e1}$	67,89	Pa

Tablica 9: Pad tlaka ustrujavanja u plašt

Pad tlaka u izlaznom priključku

Pad tlaka računa pri istrujavanja iz plašta u izlazni priključak računa se isto kao i kod ulaznog priključka, osim što je prvi faktor u jednadžbi (114) drugačiji:

$$\zeta = 2,482 \cdot \left(\frac{A_{\rm N}}{A_{\rm F}}\right)^{1,14} \cdot \left(\frac{d_{\rm N}}{D_{\rm i}}\right) \cdot \left(\frac{D_{\rm BE}}{d_{\rm N}}\right)^{2,4} \tag{114}$$

VELIČINA	SIMBOL	VRIJEDNOST	MJERNA JED.
unutarnji promjer priključka	$d_{ m N}$	37,2	mm
unutarnji promjer plašta	$D_{\rm i}$	347,6	mm
promjer kružnice koja tangira najudaljeniju rupu za cijev	D_{BE}	294,463	mm
površina poprečnog presjeka unutrašnjosti priključka	$A_{\rm N}$	1087	mm^2
unutarnji promjer cijevi	$d_{\rm i}$	21	mm
broj cijevi	n _c	44	/
slobodna površina u plaštu	$A_{\rm F}$	87276	mm^2
temperatura	θ	61,52	°C
maseni protok etanola	$q_{ m me}$	0,163	kg/s
gustoća pri navedenoj temperaturi	ρ	752,58	$ m kg/m^3$
brzina u priključku	w	0,2	m/s
faktor otpora	ζ	0,26	/
pad tlaka	$\Delta p_{\rm e2}$	3,9	Pa

Tablica 10: Pad tlaka istrujavanja iz plašta

Ukupni pad tlaka na strani etanola

$$\Delta p_{\rm e} = 67, 89 + 3, 9$$

$$\Delta p_{\rm e} = 71,79$$
 Pa

5 ZAKLJUČAK

Pregledom postrojenja dan je uvid u može se reći standardne komponente postrojenja za izdvajanje otapala iz otpadnih smjesa. Vidljivo je da se postrojenje sastoji od niza podustava koje je potrebno kvalitetno dimenzionirati i predvidjeti njihovo ponašanje, pogotovo u slučaju promjena u radu, npr. porasta tlaka, nedovoljne količine rashladnog medija itd. Mogući način regulacije i vođenja procesa dan je u shemi u prilogu. Provođenjem termodinamičkog proračuna naglašena su pojednostavljenja i problematika određivanja koeficijenta prijelaza topline na strani ogrjevnog i na strani radnog medija uslijed složenih uvjeta prijenosa topline. Stoga se u praksi pribjegava pojednostavljenjima ili vrijednostima koje su se ustalile iskustvom. Prilikom konstrukcije kondenzatora težilo se korištenju standardnih dijelova: bešavnih cijevi, podnica i prirubnica, kako bi se pojednostavila konstrukcija.

LITERATURA

- [1] European committee for standardization. HRN EN 13445-3:2021. Hrvatski zavod za norme, 2021.
- [2] www.ofru.com/en/.
- [3] process-technology-online.com.
- [4] www.gardnerdenver.com/en-hr/nash/liquid-ring-vacuum-pumps.
- [5] www.leybold.com.
- [6] www.castlepumps.com.
- [7] www.verderliquids.com.
- [8] International standardization organization. ISO 25867:2003(en).
- [9] www.nanolike.com.
- [10] www.ibctanks.com/material.
- [11] https://con-techinternational.com/industry/intermediate-bulk-container-tote-tank/.
- [12] Islamova A. Experimental determination of the heat transfer coefficient during evaporation and boiling of thin liquid film. National Research Tomsk Polytechnic University, Tomsk, 2018.
- [13] Galović A. Termodinamika II. Fakultet strojarstva i brodogradnje, Zagreb, 2019.
- [14] Karwa R. Heat and Mass Transfer. Springer Nature Singapore Pte Ltd, Singapur, 2020.
- [15] woite-edelstahl.com.
- [16] Verein Deutscher Ingenieure. Heat Atlas. Springer-Verlag Berlin Heidelberg, 2010.

	15	16		17		18
						MEMBRANSKA PUMPA
— Korisno o	tapalo					CENTRIFUGALNA PUMPA
—— Ogrjevna —— Rashladna	para voda		-			VAKUUM PUMPA
Nekonden: Otpadna s	zirajući plir smjesa	iovi	-		×.	RUČNI ZAPORNI VENTIL
—— Kruti osta Regulacijs	atak ki signal		-		\times	NOŽASTI ZASUN
					\sum	TROPUTNI VENTIL
				¢.		NEPOVRATNI VENTIL
						PNEUMATSKI VENTIL
	H	7				SIGURNOSNI VENTIL
		7	-		FT FT	PROTOKOMJER
				(LT	MJERAČ RAZINE
						MJERAČ TEMPERATURE
		7		(ТАН	ALARM PREVISOKE TEMPERATURE
				(KONDENZNI LONAC
	Iz spremnika	_ otpadne smjese	-		G	REDUKTOR
					M	ELEKTROMOTOR
				ſ		MJEŠALICA
		PC				
*****			z	kotla		
10						
	Г	Datum		rezime	11 10 9 8 7 6 5 4 3 2 1 Poz. Potnis	Posuda za kondenzat pare Razdjelna posuda za pari Posuda tekućine za VP Hladnjak Posuda za uzimanje uzoraka Mješalište Pothlađivač Kondenzator Odvajač kapljica Motorreduktor Destilator Naziv
		Projektirao Razradio Crtao Pregledao	Branko Branko Branko	Rašić Rašić Rašić		FSB Zagreb
	 	U Objekt: P&ID postr otapala iz	ojenja za izdv otpadnih smje	ajanje sa	Objekt broj: R. N. broj:	D-2023-00

.

(5)

F	POPIS PRIKLJUČAKA				
Х	Ulaz pare etanola				
Y	Izlaz kapljevitog etanola				
Z	Ulaz rashladne vode				
W	Izlaz rashladne vode				

.

	► A	
0		
	- A	

 \bigcirc

24 Matica za U vijak 4 ISO 4032 1.4404 M12 23 Matica 12 ISO 4032 1.4404 M20 22 Vijak 12 ISO 4014 1.4404 M20x110 21 Podloška 24 ISO 7089 1.4404 M20 20 Prirubnica DN 65 2 EN 1092-1 1.4404 DN 65 PN 6	
23 Matica 12 ISO 4032 1.4404 M20 22 Vijak 12 ISO 4014 1.4404 M20x110 21 Podloška 24 ISO 7089 1.4404 M20 20 Prirubnica DN 65 2 EN 1092-1 1.4404 DN 65 PN 6	
22 Vijak 12 ISO 4014 1.4404 M20x110 21 Podloška 24 ISO 7089 1.4404 M20 20 Prirubnica DN 65 2 EN 1092-1 1.4404 DN 65 PN 6	
21 Podloška 24 ISO 7089 1.4404 M20 20 Prirubnica DN 65 2 EN 1092-1 1.4404 DN 65 PN 6	
20 Prirubnica DN 65 2 EN 1092-1 1.4404 DN 65 PN 6	
	1
19 Cijev DN 65 2 EN 10027-2 1.4404 Ø76,1x2,9x13	2
18 Prirubnica DN 32 1 EN 1092-1 1.4404 DN 32 PN 6	
17 Cijev DN 32 1 EN 10027-2 1.4404 Ø42,4x2,6x5	7
16 Prirubnica DN 100 1 EN 1092-1 1.4404 DN 100 PN 6	5
15 Cijev DN 100 1 EN 10027-2 1.4404 Ø114,3x4x165	5
14 U vijak 2 1.4404 M12x113	
13 Zaštitna ploča 1 1.4404 160x120x3	
12 Cijev R4 4 EN 10027-2 1.4404 Ø25x2x3675	
11 Cijev R3 5 EN 10027-2 1.4404 Ø25x2x3573	
10 Cijev R2 6 EN 10027-2 1.4404 Ø25x2x3471	
9 Cijev R1 7 EN 10027-2 1.4404 Ø25x2x3369	
8 Pregrada 1 1.4404 348x146x6	
7 Podnica s priključcima 1 DIN 28011 1.4404 Φ355,6x4	
6 Dvostruka brtva 1 Guma Ø415x25	
5 Brtva 1 Guma Ø415x25	
4 Cijevna stijena 1 EN 1092-1 1.4404 DN 350 PN 6	5
3 Prirubnica 2 EN 1092-1 1.4404 DN 350 PN 6	5
2 Podnica 1 DIN 28011 1.4404 Ø355,6x4	
1 Plašt 1 EN 10027-2 1.4404 Ø355,6x1638x	:4
Poz. Naziv dijela Kom. Crtež broj Materijal Sirove dimen: Poz. Norma Materijal Proizvođač	zije Masa
Broj naziva – code Datum Ime i prezime Potpis	
Projektirao 20.2.2023 Branko Raŝić	7-arob
Crtao 20.2.2023 Branko Rašić	zayi eb
Pregledao	
ISO – tolerancije Objekt: Objekt broj:	
	Konija
Procesno-energetski	
Materijal: Masa:	
	Format: A1
Mjerilo originala NUNDENZATUK ETANULA	Listova: 1
I:D Crtež broj: 2023-KE-00	List: 1