Projektiranje sustava upravljanja autonomne bespilotne letjelice i njegova provjera primjenom simulacije leta

Perica, Ante

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:721814

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-10

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Ante Perica

Zagreb, 2023 godina.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Projektiranje sustava upravljanja autonomne bespilotne letjelice i njegova provjera primjenom simulacije leta

Mentor:

Prof. dr. sc. Milan Vrdoljak

Student:

Ante Perica

Zagreb, 2023 godina.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Ponajviše od svega zahvaljujem se svojem mentoru prof.dr.sc. Milanu Vrdoljaku na kontinuiranoj podršci. Svojim komentarima, kao i uloženom vremenom, pomogao je u podizanju kvalitete samoga rada.

Zahvaljujem se isto tako i svojoj obitelji, najbližima i svim kolegama koji su mi pružali podršku i davali savjete tijekom pisanja ovog diplomskog rada ujedno i tijekom cijelog studija.

Ante Perica

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne i diplomske ispite studija zrakoplovstva

Sveučilište	u Zagrebu
Fakultet strojarstv	a i brodogradnje
Datum	Prilog
Klasa: 602 - 04 / 23	-6/1
Ur.broj: 15 - 1703 -	23 -

DIPLOMSKI ZADATAK

Student:

Ante Perica

JMBAG: 0035211203

Naslov rada na hrvatskom jeziku: Projektiranje sustava upravljanja autonomne bespilotne letjelice i njegova provjera primjenom simulacije leta

Naslov rada na

Control system design for autonomous unmanned aerial vehicle and its review with flight simulation application engleskom jeziku:

Opis zadatka:

U ovisnosti o svojoj primjeni bespilotne letjelice opremljene su sustavom upravljanja koji, osim osnovne stabilizacije letjelice i popravljanja njenih dinamičkih značajki, uključuje i sustav vođenja koji pruža mogućnost autonomnog leta. Praktično rješenje za takvu zadaću komercijalno je dostupno ugrađenim kontrolerom za različite vrste letjelica (s fiksnim ili rotirajućim krilima) temeljenim na otvorenom kodu, poput PixHack-a ili PixHawk-a. Za projektiranje sustava stabilizacije i sustava vođenja uobičajeno se razmatra linearizirani model leta letjelice, no za praktičnu primjenu i provjeru rada autonomnog sustava upravljanja od velikog značaja je simulacija letjelice temeljem nelinearnog modela leta sa šest stupnjeva slobode gibanja (engl. six degrees of freedom, 6DOF). Za provjeru funkcionalnosti razvijenog sustava upravljanja implementiranog na odabrani ugrađeni kontroler moguće je njegovo uključivanje u simulacijsku petlju, tzv. hardver u petlji (engl. hardware-in-the-loop, HIL).

Za projektiranu letjelicu konfiguracije leteće krilo potrebno je odabrati misiju za koju bi se osmislio sustav upravljanja, imajući na umu njegovu implementaciju na ugrađeni kontroler temeljen na otvorenom kodu. Konkretno u diplomskom radu potrebno je:

- prikazati sve potrebne geometrijske i inercijske značajke promatrane letjelice;
- odrediti potrebne aerodinamičke značajke letjelice te značajke pogona;
- napraviti linearizirani model letjelice; .
- projektirati sustav stabilizacije i sustav vođenja za odabranu misiju promatrane letjelice;
- prilagoditi podatke određene za promatranu letjelicu za 6DOF model leta i provesti simulaciju . promatrane letjelice s razvijenim sustavom upravljanja na postojećoj simulacijskoj platformi.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

Datum predaje rada:

Predviđeni datumi obrane:

17. studenoga 2022.

19. siječnja 2023.

23.- 27. siječnja 2023.

Zadatak zadao:

Predsjednik Povjerenstva: Prof. dr. sc. Milan Vrdoljak

Prof. dr. sc. Milan Vrdoljak

SADRŽAJ

1.	Uvo)d	1
2.	Geo	ometrijske značajke letjelice	3
4	2.1.	Inercijske značajke letjelice	5
3.	Aer	odinamičke značajke letjelice	7
	3.1.	Razrada modela	7
	3.2.	Rezultati iz XFLR5	8
	3.3.	Procjena aerodinamičkih značajki projektnom metodom	.13
	3.4.	Procjena aerodinamičkih koeficijenata numeričkom metodom – XFLR5	.14
	3.5.	Usvojeni aerodinamički koeficijenti letjelice	.15
4.	Zna	nčajke pogona letjelice	.16
4	4.1.	Karakteristike propelera	.17
2	4.2.	Pogonska sila i moment	.19
5.	Lin	earizirani model letjelice	.21
4	5.1.	Linearizacija sila	.21
-	5.2.	Linearizacija komponenti aerodinamičkog momenta	.23
6.	Jed	nadžbe gibanja u prostoru stanja	.25
(5.1.	Modovi bočnog gibanja	.25
(6.2.	Linearizirani model bočnog gibanja	.26
(6.3.	Modovi uzdužnog gibanja	.31
(6.4.	Linearizirani model uzdužnog gibanja	.32
7.	Sus	tav stabilizacije i upravljanja	.36
-	7.1.	Sustav stabilizacije bočnog gibanja	.36
	7.1	.1. Povratna veza po kutnoj brzini valjanja p	.37
	7.1	.2. Povratna veza po kutu zanosa $\boldsymbol{\phi}$.39
	7.1	.3. Povratna veza po kutnoj brzini skretanja	.40
	Fakul	tet strojarstva i brodogradnje I	

7.1	.4.	Usvojena pojačanja povratnih veza	.41
7.2.	Sus	tav stabilizacije uzdužnog gibanja	.46
7.2	.1.	Povratna veza po kutu propinjanja $\boldsymbol{\theta}$.46
7.2	2.	Povratna veza po kutnoj brzini propinjanja q	.48
7.2	.3.	Povratna veza po visini leta h	.49
7.2	.4.	Usvojena pojačanja povratnih veza	.50
Sus	tavi	upravljanja trajektorijom	.53
8.1.	Sus	tav upravljanja smjerom leta	.54
8.2.	Sus	tav upravljanja visinom leta	.59
Imp	olem	entacija modela leta u Simulink	.63
9.1.	Blo	k PILOT	.65
9.1	.1.	Podsustav smjer leta	.66
9.1	.2.	Podsustav visina leta	.68
9.1	.3.	Podsustav brzinski koordinantni sustav	.69
9.2.	Rez	zultati simulacije	.70
9.3.	Dis	kusija o uvođenju Pixhawk – a u simulacijsku petlju	.74
). Zał	djuč	ak	.77
	7.1 7.2. 7.2 7.2 7.2 7.2 7.2 8.1. 8.2. Sus 8.1. 8.2. 9.1. 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	7.1.4. 7.2. Sus 7.2.1. 7.2.2. 7.2.3. 7.2.4. Sustavi 8.1. Sus 8.2. Sus Implem 9.1. Blo 9.1.1. 9.1.2. 9.1.3. 9.2. Rez 9.3. Dis D. Zaključ	 7.1.4. Usvojena pojačanja povratnih veza

POPIS SLIKA

Slika 1.1.	Prikaz letjelice Salus1
Slika 2.1.	Podjela krila
Slika 3.1.	Raspored aeroprofila
Slika 3.2.	Rezultati 2D analize aeroprofila9
Slika 3.3.	Prikaz geometrije Salus letjelice unesene u XFLR510
Slika 3.4.	Koeficijent uzgona u ovisnosti o napadnom kutu11
Slika 3.5.	Koeficijent momenta propinjanja u ovisnosti o napadnom kutu11
Slika 3.6.	Polara letjelice
Slika 3.7.	Finesa letjelice
Slika 4.1.	AS2317 Long Shaft16
Slika 4.2.	Efikasnost propelera 12x617
Slika 4.3.	Koeficijent pogonske sile propelera 12x618
Slika 4.4.	Koeficijent snage propelera 12x618
Slika 4.5.	Ovisnost koeficijenta pogonske sile o koraku napredovanja19
Slika 6.1.	Polovi (korijeni) sustava
Slika 6.2.	Elementi vektora stanja i bočne komponente brzine u ovisnosti o vremenu i otklonu
	krilaca $\Delta \delta l = 1^{\circ}$
Slika 6.3.	Polovi (korijeni) sustava
Slika 6.4.	Odziv na impulsnu pobudu otklona kormila visine $\Delta \delta m = 1^{\circ}$
Slika 7.1.	Sustav stabilizacije bočnog gibanja letjelice
Slika 7.2.	Pobuda sustava (Dirac)
Slika 7.3.	Povratna veza po kutnoj brzini valjanja <i>p</i>
Slika 7.4.	Povratna veza po kutu zanosa $\boldsymbol{\phi}$

Slika 7.5.	Povratna veza po kutnoj brzini skretanja r4	0
Slika 7.6.	Odziv kutne brzine valjanja <i>p</i> 4	.1
Slika 7.7.	Odziv kuta zanosa ϕ 4	2
Slika 7.8.	Odziv kutne brzine skretanja <i>r</i> 4	2
Slika 7.9.	Korijeni (polovi) sustava4	.4
Slika 7.10.	Dijagram kriterija direktnog upravljanja spregnutog moda skretanja i valjanj	ja
	prema MIL standardu (plavi dijamant - otvoreni sustav, crveni dijamant	_
	zatvoreni sustav)4	-5
Slika 7.11.	Sustav stabilizacije uzdužnog gibanja4	6
Slika 7.12.	Odziv kuta propinjanja zrakoplova $\boldsymbol{\theta}$ 4	7
Slika 7.13.	Odziv kutne brzine propinjanja \boldsymbol{q} 4	8
Slika 7.14.	Odziv visine leta <i>h</i> 4	.9
Slika 7.15.	Odziv kuta propinjanja zrakoplova $\boldsymbol{\theta}$	0
Slika 7.16.	Odziv kutne brzine propinjanja q	1
Slika 7.17.	Odziv visine leta <i>h</i>	1
Slika 8.1.	Prikaz sustava upravljanja smjerom leta5	4
Slika 8.2.	Promjena kuta skretanja pri pobudi $\chi = 20^{\circ}$	7
Slika 8.3.	Odziv varijabli bočnog gibanja na zadani kut skretanja $\chi = 20^{\circ}$	8
Slika 8.4.	Prikaz sustava upravljanja visinom leta5	9
Slika 8.5.	Promjena visine leta pri pobudi $h = 50 m$	1
Slika 8.6.	Odziv varijabli uzdužnog gibanja na zadanu visinu leta $h = 50 m$ 6	2
Slika 9.1.	Najviša razina strukture modela6	3
Slika 9.2.	Prikaz bloka PILOT6	5
Slika 9.3.	Podsustav smjer leta	6
Slika 9.4.	Pobuda sustava prilikom izvođenja simulacije6	7

Slika 9.5.	Podsustav visina leta	68
Slika 9.6.	Podsustav brzinski koordinatni sustav	69
Slika 9.7.	Prikaz putanje letjelice u 3D prostoru	70
Slika 9.8.	Otkloni upravljačkih površina	71
Slika 9.9.	Stav letjelice	71
Slika 9.10.	Odziv kutnih brzina letjelice	72
Slika 9.11.	Promjena visine u ovisnosti o vremenu	72
Slika 9.12.	Odziv napadnog kuta i kuta skretanja	73
Slika 9.13.	Komponente aerodinamičke brzine i njen iznos	73
Slika 9.14.	Prikaz kuta skretanja u usporedbi sa zadanom pobudom	74
Slika 9.15.	Povezivanje Pixhawk-a s Matlab-om[15]	76
Slika 9.16.	Povezivanje Pixhawk-a s Matlab-om uz mogućnost podešavanja alg	oritma
	autopilota[15]	76

POPIS TABLICA

Tablica 2.1.	Osnovni podatci - Salus	1
Tablica 2.2.	Inercijske značajke	5
Tablica 2.3.	Popis komponenti	5
Tablica 3.1.	Pozicije aeroprofila	3
Tablica 3.2.	Aerodinamički koeficijenti dobiveni projektom metodom13	3
Tablica 3.3.	Aerodinamički koeficijenti dobiveni u programu XFLR514	1
Tablica 3.4.	Usvojeni aerodinamički koeficijenti15	5
Tablica 4.1.	Karakteristike AS2317 Long Shaft KV88016	5
Tablica 6.1.	Korijeni karakterističnog polinoma	7
Tablica 6.2.	Vrijednosti prirodnih frekvencija i prigušenja)
Tablica 6.3.	Vremenske konstante i periode)
Tablica 6.4.	Korijeni karakterističnog polinoma	3
Tablica 6.5.	Vrijednosti prirodnih frekvencija i prigušenja	3
Tablica 7.1.	Parametri <i>Step</i> blokova	7
Tablica 7.2.	Korijeni karakterističnog polinoma43	3
Tablica 7.3.	Vrijednosti prirodnih frekvencija i prigušenja43	3
Tablica 7.4.	Korijeni karakterističnog polinoma	2
Tablica 7.5.	Vrijednosti prirodnih frekvencija i prigušenja	2
Tablica 8.1.	Korijeni karakterističnog polinoma s vrijednostima prirodnih frekvencija	i
prigu	šenja55	5
Tablica 8.2.	Pojačanja povratnih veza	5
Tablica 8.3.	Korijeni karakterističnog polinoma s vrijednostima prirodnih frekvencija	i
prigu	šenja60)
Tablica 8.4.	Pojačanja povratnih veza60)
Fakultet strojars	tva i brodogradnje VI	

Tablica 9.1.	Parametri Step blokova	6	57
--------------	------------------------	---	----

POPIS OZNAKA

Oznaka	Jedinica	Opis
α	rad	Napadni kut
β	rad	Kut klizanja
δ_l	rad	Otklon krilaca
δ_m	rad	Otklon kormila visine
A_b	-	Matrica bočnog gibanja sustava
A_u	-	Matrica uzdužnog gibanja sustava
AR	-	Vitkost krila
ω_n	rad/s	Prirodna frekvencija
$\phi heta \psi$	-	Kutovi stava letjelice
ρ	kg/m ³	Gustoća zraka
ζ	-	Faktor prigušenja
b	m	Raspon krila
B_b	-	Matrica upravljanja bočnog gibanja
B_u	-	Matrica upravljanja uzdužnog gibanja
C_A	m	Srednja aerodinamička tetiva
C_D	-	Koeficijent sile otpora
C_L	-	Koeficijent sile uzgona
C_l	-	Koeficijent momenta valjanja
C_m	-	Koeficijent momenta propinjanja
C_n	-	Koeficijent momenta skretanja
C_T	-	Koeficijent pogonske sile
C_X	-	Koeficijent aksijalne sile
C_Y	-	Koeficijent bočne sile
C_Z	-	Koeficijent normalne sile
C_{D0}	-	Nulti otpor
C_{m0}	-	Nulti moment propinjanja
D	m	Promjer propelera
$F_{P\sigma}$	Ν	Sila u ravnini diska propelera
8	m/s^2	Gravitacijsko ubrzanje
J	-	Korak napredovanja
K	-	Koeficijent induciranog otpora

Fakultet strojarstva i brodogradnje

VIII

L	Nm	Moment valjanja
М	Nm	Moment propinjanja
m	kg	Masa letjelice
Ν	Nm	Moment skretanja
n	s ⁻¹	Broj okretaja motora
N_B	-	Broj ploštica propelera
pqr	rad/s	Kutne brzine letjelice
$p^* q^* r^*$	-	Bezdimenzijske kutne brzine letjelice
S_P	m^2	Površina diska propelera
Т	Ν	Potisna sila propelera
u v w	m/s	Komponente brzine
V	m/s	Brzina
X	Ν	Aksijalna sila
x_{cg}	m	Koordinata težišta
Y	Ν	Bočna sila
Ζ	Ν	Normalna sila

Indeksi

()α	Gradijent po napadnom kutu
()β	Gradijent po kutu klizanja
() _p	Gradijent kutne brzine valjanja
()q	Gradijent kutne brzine propinjanja
() <i>r</i>	Gradijent kutne brzine skretanja
$()_{\delta_l}$	Gradijent po otklonu krilaca
$()_{\delta_m}$	Gradijent po otklonu kormila visine

Popis kratica

6DOF	Sustav sa šest stupnjeva slobode gibanja
ICUAS	International Conference on Unmanned Aircraft Systems
VLM	Vortice Lattice Method
LLT	Lifting Line Theory
HIL	Hardware-in-the-Loop

SAŽETAK

U ovom diplomskom radu projektirali su se sustavi stabilizacije uzdužnog i bočnog gibanja te sustavi upravljanja smjerom i visinom leta s ciljem postizanja autonomnog leta. Letjelica za koju su sustavi projektirani je konfiguracije letećeg krila nazvana Salus. Na početku rada dani su svi potrebni podaci o letjelici. Zatim su se odredile aerodinamičke značajke na dva različita načina, projektnom metodom i numeričkom metodom. Sljedeći korak bio je izrada lineariziranog modela letjelice, te njegova implementacija u sustave stabilizacije napravljene u programu Simulink. Nakon uspješne implementacije linearnog modela u projektirane sustave stabilizacije, pristupilo se izradi sustava upravljanja letjelice, odnosno navođenja letjelice. Kao posljednji korak su se ti sustavi upravljanja implementirali u 6DOF model leta letjelice i napravljena je simulacija u stvarnom vremenu pomoću programa za vizualizaciju FlightGear. U konačnici su se rezultati dobiveni simulacijom za zadanu putanju leta prikazali pomoću grafova.

Ključne riječi: sustavi stabilizacije, sustavi upravljanja, autonomni let, konfiguracija letećeg krila, linearizirani model letjelice, 6DOF model leta

SUMMARY

In this master thesis, longitudinal and lateral motion stabilization systems were designed as well as flight direction and altitude control systems with the aim of achieving autonomous flight. The aircraft for which the systems were designed is a flying wing configuration called the Salus. At the beginning of the thesis, all the necessary information about the aircraft is given. Then, the aerodynamic features were determined in two different ways, the design method and the numerical method. The next step was the creation of a linearized model of the aircraft, and its implementation in the stabilization systems created in the Simulink program. After the successful implementation of the linearized model in the designed stabilization systems, the design of the aircraft control system, i.e. the aircraft's guidance system, began. As a final step, these control systems were implemented in a 6DOF flight model of the aircraft and a real-time simulation for the given flight flight path were presented using graphs.

Key words: stabilization systems, control systems, autonomous flight, flying wing configuration, linearized aircraft model, 6DOF flight model

1. Uvod

Uslijed konstantnog, tj. kontinuiranog razvijanja tehnologije moguća je njezina implementacija u raznim područjima pa tako i u zrakoplovstvu. Električne komponente postaju sve manje i lakše dok zadržavaju iste performanse, ako ne čak i bolje. Upravo te električne komponente uz kompozitne materijale omogućavaju izradu sve lakših i manjih bespilotnih letjelica. Bespilotne letjelice više nisu tako teško dostupne i gotovo svatko ih može napraviti ako posjeduje potrebno znanje. Upravo te već spomenute bespilotne letjelice će se obrađivati u ovom radu. Točnije, analizirat će se letjelica imena Salus koja je bila projektirana u sklopu kolegija Osnivanje zrakoplova I i II na Fakultetu strojarstva i brodogradnje u Zagrebu.

Misija letjelice bila bi traženje osoba na teško dostupni mjestima, popularnijeg imena *Search and rescue*. Iz tog razloga letjelica je morala biti dovoljno mala po pitanju raspona krila, da se može lakše i jednostavnije prenositi, kao i rastavljiva i lagana da ne predstavlja probleme pilotima prilikom dužih i zahtjevnijih potraga.

Na slici 1.1 moguće je vidjeti spomenutu Salus letjelicu u izometriji.

Slika 1.1. Prikaz letjelice Salus

Fakultet strojarstva i brodogradnje

1

Ante Perica

U poglavlju 2 prikazale su se sve potrebne geometrijske i inercijske značajke promatrane letjelice. Potom su se u poglavlju 3 odredile aerodinamičke značajke letjelice, dok su značajke pogona obrađene u poglavlju 4. Nakon čega se napravio linearizirani model letjelice opisan u poglavlju 5, te se u poglavlju 6 linearizirao model bočnog i uzdužnog gibanja. Projektirali su se linearni sustavi stabilizacije i upravljanja trajektorijom za odabranu misiju i referentno gibanje promatrane letjelice opisanih u poglavljima 7 i 8. Završni korak bila je implementacija linearnih modela dobivenih u poglavlju 8 u nelinearni 6DOF model leta. Provela se simulacija promatrane letjelice i dobiveni rezultati nalaze se u poglavlju 9. Na kraju poglavlja napravila se diskusija glede implementacije Pixhawk autopilota.

Tijekom rada koristili su se programski paketi XFLR5 i Matlab/Simulink. Određeni programi su dostupni na internetu, dok su ostali korišteni pomoću licenca na fakultetu.

2. Geometrijske značajke letjelice

Budući da se radi o letjelici Salus koja se dizajnirala tijekom studija, svi potrebni podatci su dostupni[1]. Kako je gore navedeno, primarna misija ovakve letjelice je misija traženja osoba na teško dostupnim mjestima što je brže moguće.

Odabrana konfiguracija letjelice je leteće krilo (eng. *flying – wing*) zbog raznih odluka o kojima se raspravljalo s kolegama prilikom projektiranja same letjelice. Pošto je sama konfiguracija letjelice nekonvencionalna, tako je i njena geometrija. Zbog lakšeg snalaženja kasnije, kako se radi o složenijoj konfiguraciji, letjelica se podijelila na trupni dio i vršni dio. Samu podjelu moguće je vidjeti ispod na slici 2.1.

U tablici 2.1. moguće je vidjeti podatke vezane za geometriju ove letjelice.

Slika 2.1. Podjela krila

Fakultet strojarstva i brodogradnje

3

Površina krila S [m ²]	0,401
Aspektni odnos (vitkost krila)	6,69
Raspon krila b [m]	1,5
Masa baterija m _{battery} [kg]	0,67
Masa korisnog tereta $m_{payload}$ [kg]	0,45
Ukupna masa (MTOW) m_{total} [kg]	2,15
Maksimalni koeficijent uzgona $C_{L_{maks}}$	1,1
Maksimalna brzina V _{maks(cruise)} [m/s]	22
Brzina sloma uzgona V _{stall} [m/s]	9
Maksimalna visina leta $h_{ceiling}$ [m]	2500
Korijenska tetiva c_r [mm]	0,39
Vršna tetiva c_t [mm]	0,15
Suženje krila λ	0,385
Kut dihedrala [°]	5
Postavni kut [°]	2
Kut strijele krila [°]	29,25
Korijenska tetiva wingleta c_{rwg} [m]	0,15
Vršna tetiva wingleta c_{twg} [m]	0,15
Raspon jednog wingleta b_{wg} [m]	0,1
Površina jednog wingleta S_{wg} [m ²]	0,015

Tablica 2.1.	Osnovni podatci - Salus

2.1. Inercijske značajke letjelice

Osim geometrijskih značajki potrebno je bilo provjeriti i inercijske značajke koje će se kasnije koristiti u proračunu dinamičkih koeficijenata sile i momenata. XFLR5 omogućuje ubacivanje i definiranje različitih masa, izuzev samoga krila, kako bi se pobliže opisale inercijske značajke letjelice. S time na umu pošlo se u ubacivanje svih potrebnih komponenti na njihove predviđene pozicije u prijašnje izrađeni model letjelice. Sami popis komponenti moguće je vidjeti u tablici 2.3., gdje se ujedno nalazi i masa svake od komponenti izražena u gramima.

Vrijednosti momenata tromosti koji su se dobili takvim pristupom mogu se vidjeti u tablici 2.2. koja se nalazi ispod.

Tablica 2.2.	nereijske značajke
I_{xx} [kgm ²]	0,07036
I_{yy} [kgm ²]	0,02223
I_{zz} [kgm ²]	0,092

Tablica 2.2.	Inercijske	značajke
1 abiica 2.2.	петсіјѕке	гласајке

Komponenta	Opis	Masa [g]
NextVision Colibri-2	Gimbal + kamera (EO + IR)	180
Herelink Air Unit	Modul za telemetriju i prijenos slike + antene	95
CUBE + pixhawk4	Autopilot + flight controller	73
HerePro	Modul za navigaciju (GPS)	101
Savox SG	Servo motor (3 komada)	87
RF Design RFD 900x	Radio modem + antene	35
CUAV SKYE Airspeed Sensor	Pitotova cijev	22
Molicel P42-A	Baterijska ćelija (10 komada)	670
MAUCH Power Monitor	Modul za nadzor i kontrolu baterije	7
JETI Spin 44 pro	ESC	68
Here Flow	Optical flow senzor	2
AS2317 Long Shaft KV880	Motor	81
FWRB-48-S-4P-RW	Padobranski sustav	270
		\[= 1691

Tablica 2.3.Popis komponenti

3. Aerodinamičke značajke letjelice

Problem pri određivanju aerodinamičkih značajki ovakve letjelice, koja je *flying-wing* konfiguracije, je taj što ne postoje točno određeni empirijski izrazi kojima bi se dobile potrebne vrijednosti. Do tih vrijednosti se zato može doći korištenjem programskog paketa XFLR5 koji omogućava ubacivanje geometrije same letjelice s ciljem proračunavanja svih potrebnih aerodinamičkih značajki.

3.1. Razrada modela

U prethodnom poglavlju su navedene glavne, tj. osnovne geometrijske značajke, dok će se u ovom poglavlju pobliže objasniti uzeti aeroprofili i njihove pozicije.

Prilikom modeliranja letjelice koristila su se 4 različita aeroprofila MH60Phat, MH82Phat, MH60 i NACA 0012. MH60Phat i MH82Phat su nazvani tako jer su nastali od MH60 i MH82 aeroprofila, gdje se njihova debljina promijenila u XFLR5 kako bi se napravilo mjesta za teret koji letjelica mora nositi. Za više informacija vezano za odabir ovakve kombinacije aeroprofila moguće je pogledati u završnom izvještaju iz kolegija Osnivanje zrakoplova I i II [1].

Postoje tri značajne pozicije vezane za sami model letjelice. Prva pozicija je u samom središtu letjelice gdje se nalazi korijenska tetiva, tamo je MH82Phat korišteni aeroprofil. Druga pozicija je na samom kraju trupnog dijela, gdje je korišteni aeroprofil MH60Phat. Treća pozicija je na dijelu gdje počinju upravljačke površine čijim komandama se upravlja letjelicom po x i y osi (eng. *elevoni*), te je tamo korišten MH60 aeroprofil, kao i na ostatku krila. Prilikom modeliranja vertikalnih površina na vrhovima krila (eng. *wingleta*) koristio se simetrični NACA 0012 aeroprofil.

Prethodno objašnjene pozicije moguće je vidjeti na slici 3.1. ili u tablici 3.1 gdje je moguće vidjeti točne vrijednosti udaljenosti po Y osi gdje je uveden koji aeroprofil.

	aeroproma
Udaljenost na Y osi [mm]	Aeroprofil
0	MH82Phat
193	MH60Phat
476	MH60

Fablica 3.1.	Pozicije a	aeroprofila
--------------	------------	-------------

Slika 3.1. Raspored aeroprofila

3.2. **Rezultati iz XFLR5**

Prije nego što je moguće pogledati aerodinamičke značajke letjelice, potrebno je napraviti 2D analizu svakoga aeroprofila kroz određeni raspon Reynoldsovih brojeva (Re).

Promatrani raspon Reynoldsovih brojeva je od 7500 to 6000000 s gušćom podjelom u rasponu do 2000000.

Na slici 3.2. moguće je vidjeti rezultate svakoga aeroprofila za spomenuti raspon Re brojeva.

Slika 3.2. Rezultati 2D analize aeroprofila

Nakon provedbe 2D analize aeroprofila, pošlo se u analiziranje cijele letjelice. Prvo se definirala njena geometrija u XFLR5 te se potom izvršila njena analiza VLM2 metodom pri brzini od 15 m/s.

Geometriju letjelice iz XFLR5 moguće je vidjeti na slici 3.3, gdje je moguće vidjeti kako su već definirani *elevoni* koji će kasnije poslužiti prilikom trimanja letjelice. Isto tako su definirani i *wingleti* koji pomažu pri bočnoj stabilizaciji.

Na slikama 3.4,3.5,3.6 i 3.7 nalaze se rezultati VLM2 analize letjelice pri brzini od 15 m/s. Moguće je vidjeti kako je gradijent momenta propinjanja negativan, što je uvjet uzdužne statičke stabilnosti, a to ujedno znači kako će potrebni otklon *elevona* radi ostvarivanja ravnotežnog leta biti prema gore.

Diplomski rad

Slika 3.4. Koeficijent uzgona u ovisnosti o napadnom kutu

Slika 3.5. Koeficijent momenta propinjanja u ovisnosti o napadnom kutuFakultet strojarstva i brodogradnje11

Fakultet strojarstva i brodogradnje

12

3.3. Procjena aerodinamičkih značajki projektnom metodom

Procjena samih aerodinamičkih koeficijenata izvodila se preko empirijskih jednadžbi iz literature[2][3]. S obzirom na to da se radi o *flying – wing* konfiguraciji, što nije konvencionalna konfiguracija za takve jednadžbe, one su se morale izmijeniti kako bi se mogle koristiti za ovu letjelicu.

Tablica 3.2. prikazuje dobivene uzdužne i bočne aerodinamičke koeficijente. U samoj tablici nedostaje nekoliko koeficijenata koje se nije moglo proračunati pomoću empirijskih jednadžbi te će se njih dobiti pomoću XFLR5 programskog paketa.

Uzdužni		Bočni	
C_{D0}	0,0186	$C_{Y\beta}$	-0,1314
K	0,0703	$C_{l\beta}$	$-0,1279 - 0,1059C_L$
C_{L0}	0,1272	$C_{l\delta_l}$	0,3821
C_{Llpha}	4,2113	$C_{n\beta}$	$0,0188 + 0,0337C_L^2$
$C_{L\delta_m}$	0,6644	$C_{n\delta l}$	$-0,0335C_{L}$
C_{m0}	-0,0135		
$C_{m\alpha}$	-0,3897		
$C_{m\delta_m}$	-0,3505		

Tablica 3.2. Aerodinamički koeficijenti dobiveni projektom metodom

3.4. Procjena aerodinamičkih koeficijenata numeričkom metodom – XFLR5

XFLR5 je korisni programski paket koji omogućava dobivanje aerodinamičkih koeficijenata do kojih se ne može doći projektnom metodom. Odličan je za takvu namjenu, kao i za prvotno određivanje ponašanja letjelice tijekom leta, točnije hoće li imati stabilne ili nestabilne karakteristike. No, nije u mogućnosti točno procijeniti takve karakteristike te će se iz toga razloga koristiti samo za dobivanje potrebnih aerodinamičkih koeficijenata koji nedostaju[4].

Analize se obavljaju pomoću tri različite metode s obzirom na konfiguraciju letjelice. Postoje LLT (engl. *Lifting Line Theory*), VLM (engl. *Vortice Lattice Method*) i 3D panelna metoda.

Prilikom izvođenja analize za ovu letjelicu koristila se VLM2 metoda. Više detalja o svakoj metodi analiziranja moguće je pročitati u navedenoj literaturi[5].

Tablica 3.3. prikazuje dobivene koeficijente pomoću VLM2 metode.

Uzdužni		Bočni	
C_{D0}	0,0116	$C_{Y\beta}$	-0,1407
K	0,0703	C_{Yp}	-0,2014
C_{L0}	0,1267	C_{Yr}	0,0783
C_{Llpha}	4,1839	$C_{l\beta}$	-0,1315
$C_{L\delta_m}$	0	C_{lp}	-0,44
C_{m0}	0,0121	C _{lr}	0,0812
C _{ma}	-0,3872	$C_{n\beta}$	0,0162
$C_{m\delta_m}$	-0,4116	C_{np}	-0,0041
C_{mq}	-1,8879	C_{nr}	-0,0103

Tablica 3.3. Aerodinamički koeficijenti dobiveni u programu XFLR5

3.5. Usvojeni aerodinamički koeficijenti letjelice

Moguće je vidjeti kako se dobiveni koeficijenti razlikuju od onih dobivenih projektnom metodom, što je očekivano. Naglašeno je kako je program XFLR5 dobar za procjenu aerodinamičkih koeficijenata, ali naravno s nekom pogreškom. U literaturi[6] moguće je vidjeti usporedbu koeficijenata dobivenih u zračnom tunelu, kao i u XFLR5 za relativno sličnu konfiguraciju letjelice.

Zbog toga će usvojeni aerodinamički koeficijenti za ovu letjelicu biti oni dobiveni projektnom metodom, dok će se onima dobivenima iz XFLR5 popuniti potrebni za daljnje analize.

Tablica 3.4. prikazuje usvojene aerodinamičke koeficijente za ovu letjelicu.

Uzdužni		Bočni	
<i>CD</i> 0	0,0186	$C_{Y\beta}$	-0,1314
K	0,0703	C_{Yp}	-0,2014
<i>CL</i> 0	0,1272	C_{Yr}	0,0783
C _L a	4,2113	$C_{l\beta}$	-0,1694
$C_{L\delta_m}$	0,6644	C_{lp}	-0,44
<i>C</i> _{m0}	-0,0135	C _{lr}	0,0812
C _{ma}	-0,3897	$C_{l\delta_l}$	0,3821
$C_{m\delta_m}$	-0,3505	$C_{n\beta}$	0,024
C _{mq}	-1,8879	C_{np}	-0,0041
		C _{nr}	-0,0103
		$C_{n\delta l}$	-0,0131

Tablica 3.4. Usvojeni aerodinamički koeficijenti

4. Značajke pogona letjelice

Pogon letjelice sastojat će se od AS2317 Long Shaft KV880 motora i propelera 12x6. Motor je prikazan na slici 4.1, dok se njegove karakteristike mogu vidjeti u tablici 4.1.

Slika 4.1. AS2317 Long Shaft

	8
Masa [g]	81
Maksimalna snaga [W]	394
Unutarnji otpor [mΩ]	80
Konfiguracija	12N14P
Maksimalna struja [A]	26
Preporučena baterija	3 – 4 S
Struja nulte snage pri 10 V [A]	0,74

 Tablica 4.1.
 Karakteristike AS2317 Long Shaft KV880

4.1. Karakteristike propelera

Pošto promatrana letjelica koristi *pusher* konfiguraciju, sami utjecaj propelera nije moguće zanemariti u analizi dinamike. Takva konfiguracija pomaže pri bočnoj stabilnosti letjelice jer se motor nalazi iza aerodinamičkog centra te dodatno stabilizira letjelicu. Ujedno se ostvaruju manji potrebni otkloni *elevona* za ravnotežni let jer se smanjuje ukupan moment potreban za trimanje letjelice.

Prilikom pokušaja pronalaska karakteristika propelera, zaključilo se kako postoji jako malo dostupnih podataka te se zadovoljilo s podatcima propelera slične geometrije. Do tih podataka se došlo preko baze podataka na internetu [7], gdje su opisane karakteristike propelera raznih dimenzija testiranih u zračnom tunelu.

Na slikama 4.2, 4.3, 4.4 nalaze se karakteristike dobivene iz [7], tj. funkcija efikasnosti propelera, koeficijenta pogonske sile te koeficijenta snage u ovisnosti o koraku *J*.

Slika 4.2. Efikasnost propelera 12x6

Fakultet strojarstva i brodogradnje

17

Slika 4.3. Koeficijent pogonske sile propelera 12x6

Slika 4.4. Koeficijent snage propelera 12x6

Fakultet strojarstva i brodogradnje

18

4.2. Pogonska sila i moment

Pomoću internetske baze podataka [7] uspjela se pronaći funkcija koja opisuje ovisnost koeficijenta pogonske sile o koraku napredovanju. Pošto su testiranja rađena za razne vrijednosti RPM-a (*revolutions per minute*, tj. okretaja u minuti) promotrile su se karakteristike motora dostupne na internetu [8] te se funkcija aproksimirala za iznos RPM-a od 5007 min-1 pri kojim motor ostvaruje zadovoljavajuće karakteristike.

$$C_T(J) = -3,113J^4 + 4,796J^3 - 2,621J^2 + 0,3848J + 0,08073$$

Pomoću vrijednosti dostupnih na [7] dobila se matrica iznosa C_T za odgovarajuće iznose J te se funkcija aproksimirala polinomom četvrtog stupnja.

Slika 4.5. prikazuje gore navedenu funkciju u ovisnosti o kutu napredovanja kako bi se prikazala točnost same aproksimacije.

Slika 4.5. Ovisnost koeficijenta pogonske sile o koraku napredovanja

Ante Perica

U slučaju elisnog motora postoji sila u ravnini diska elise $F_{P\sigma}$. Ona je proporcionalna kutu između dolazeće zračne struje i osi rotacije elise, dok je eksperimentalno dobiven njen izraz.

$$F_{P\sigma} = \frac{\rho V^2}{2} N_B S_P \frac{\partial C_{N \ blade}}{\partial \alpha} f(T)$$
(4.1)

Kako bi se odredio koeficijent proporcionalnosti morali su se odrediti gradijent ploštice elise $\frac{\partial C_{N \ blade}}{\partial \alpha}$, kao i funkcija pogonske sile elise f(T).

Funkcija gradijenta ploštice elise dobila se aproksimacijom dijagrama sa slike 6-7 iz literature[2].

$$\frac{\partial C_{N \ blade}}{\partial \alpha} = 0,0007378J^3 - 0,009974J^2 + 0,05132J$$
(4.2)

Funkcija pogonske sile aproksimirala se na isti način pomoću dijagrama sa slike 6-8 iz iste literature.

$$f(T) = 0.04329 \left(\frac{T}{\rho V^2 D^2}\right)^3 - 0.2412 \left(\frac{T}{\rho V^2 D^2}\right)^2 + 0.7529 \left(\frac{T}{\rho V^2 D^2}\right) + 1.021$$
(4.3)

Izraz (4.1) bit će implementiran u model leta s ciljem što boljeg opisivanja pogona letjelice.
5. Linearizirani model letjelice

Poslije dobivenih aerodinamičkih koeficijenata i utjecaja pogona, pošlo se u definiranje lineariziranog 6DOF modela letjelice [2]. Pošlo se od linearizacije sila nakon čega se napravila i linearizacija momenata.

5.1. Linearizacija sila

S ciljem dobivanja matrice uzdužnog i bočnog gibanja sustava, kako bi se mogli napraviti sustavi stabilizacije i upravljanja, bilo je potrebno odrediti koeficijente dinamičke stabilnosti prema literaturi [9].

$$X_{u}^{0} = \frac{\rho V_{0} S_{ref}}{m} C_{X}^{0}$$
(5.1)

$$X_{\alpha}^{0} = \frac{\rho V_{0}^{2} S_{ref}}{2m} C_{X\alpha}^{0}$$
(5.2)

$$Y_{\beta}^{0} = \frac{\rho V_{0}^{2} S_{ref}}{2m} C_{Y\beta}^{0}$$
(5.3)

$$Y_p^0 = \frac{\rho V_0^2 S_{ref} b_{ref}}{2m} C_{Yp}^0$$
(5.4)

$$Y_r^0 = \frac{\rho V_0^2 S_{ref} b_{ref}}{2m} C_{Yr}^0$$
(5.5)

$$Y_{\delta_n}^0 = \frac{\rho V_0^2 S_{ref}}{2m} C_{\delta_n}^0$$
 (5.6)

$$Z_u^0 = \frac{\rho V_0 S_{ref}}{m} C_Z^0 \tag{5.7}$$

$$Z^{0}_{\alpha} = \frac{\rho V^{2}_{0} S_{ref}}{2m} C^{0}_{Z\alpha}$$
(5.8)

$$Z^{0}_{\dot{\alpha}} = \frac{\rho V_0 S_{ref} c_A}{2m} C^{0}_{Z\dot{\alpha}} \tag{5.9}$$

$$Z_q^0 = \frac{\rho V_0 S_{ref} c_A}{2m} C_{Zq}^0$$
 (5.10)

Diplomski rad

Ante Perica

$$Z^0_{\delta_m} = \frac{\rho V_0^2 S_{ref}}{2m} C^0_{Z\delta_m}$$
(5.11)

Uvrštavanjem svih potrebnih vrijednosti dobili su se sljedeći iznosi koeficijenta dinamičke stabilnosti.

$$X_{u}^{0} = 0,0042 \qquad Y_{\beta}^{0} = -3,009 \qquad Z_{u}^{0} = -5,875$$

$$X_{\alpha}^{0} = 3,3550 \qquad Y_{p}^{0} = -0,4612 \qquad Z_{\alpha}^{0} = -96,1316$$

$$Y_{r}^{0} = 0,1793 \qquad Z_{\alpha}^{0} = 0$$

$$Y_{\delta_{n}}^{0} = 0 \qquad Z_{q}^{0} = -1,9578$$

$$Z_{\delta_{m}}^{0} = -14,1358$$

5.2. Linearizacija komponenti aerodinamičkog momenta

Ovisnosti komponenata aerodinamičkog momenta o parametrima su:

$$L = \frac{\rho V^2}{2} S_{ref} C_l(\beta, p^*, r^*, \delta_l, \delta_n)$$
(5.12)

$$M = \frac{\rho V^2}{2} S_{ref} c_A C_m(\alpha, \alpha^*, q^*, \delta_m)$$
(5.13)

$$N = \frac{\rho V^2}{2} S_{ref} b C_n(\beta, p^*, r^*, \delta_l, \delta_n)$$
(5.14)

Koeficijenti dinamičke stabilnosti za moment odredili su se kao i u prethodnom poglavlju. Izostavljeni su koeficijenti vezani za kormilo pravca, kako ga letjelica ne posjeduje, te neće doprinijeti daljnjoj analizi.

$$L_{\beta}^{0} = \frac{\rho V_{0}^{2} S_{ref} b_{ref}}{2I_{x}} C_{l\beta}^{0}$$
(5.15)

$$L_{p}^{0} = \frac{\rho V_{0} S_{ref} b_{ref}^{2}}{2I_{x}} C_{lp}^{0}$$
(5.16)

$$L_r^0 = \frac{\rho V_0 S_{ref} b_{ref}^2}{2I_x} C_{lr}^0$$
(5.17)

$$L_{\delta_{l}}^{0} = \frac{\rho V_{0}^{2} S_{ref} b_{ref}}{2I_{x}} C_{l\delta_{l}}^{0}$$
(5.18)

$$M_{\alpha}^{0} = \frac{\rho V_{0}^{2} S_{ref} c_{A}}{2I_{y}} C_{m\alpha}^{0}$$
(5.19)

$$M^{0}_{\dot{\alpha}} = \frac{\rho V_0 S_{ref} c_A^2}{2I_y} C^{0}_{m\dot{\alpha}}$$
(5.20)

$$M_q^0 = \frac{\rho V_0 S_{ref} c_A^2}{2I_y} C_{mq}^0$$
(5.21)

$$M_{\delta_m} = \frac{\rho V_0^2 S_{ref} c_A}{2I_{\nu}} C_{m\delta_m}^0$$
(5.22)

Diplomski rad

Ante Perica

$$N_{\beta}^{0} = \frac{\rho V_{0}^{2} S_{ref} b_{ref}}{2I_{z}} C_{n\beta}^{0}$$
(5.23)

$$N_p^0 = \frac{\rho V_0 S_{ref} b_{ref}^2}{2I_z} C_{np}^0$$
(5.24)

$$N_r^0 = \frac{\rho V_0 S_{ref} b_{ref}^2}{2I_z} C_{nr}^0$$
(5.25)

$$N_{\delta_l}^{0} = \frac{\rho V_0^2 S_{ref} b_{ref}}{2I_z} C_{n\delta_l}^{0}$$
(5.26)

Uvrštavanjem svih potrebnih vrijednosti dobili su se sljedeći iznosi koeficijenata.

$L^0_\beta = -183,3247$	$M^0_{lpha} = -250,9878$	$N_{eta}^{0} = 19,7677$
$L_p^0 = -47,6275$	$M^0_{\dot{lpha}}=0$	$N_p^0 = -0,3382$
$L_r^0 = 8,7894$	$M_q^0 = -23,1020$	$N_r^0 = -0,8496$
$L^0_{\delta_I} = 413,6016$	$M_{\delta_m} = -225,7409$	$N_{\delta_l}^0 = -10,8184$

6. Jednadžbe gibanja u prostoru stanja

6.1. Modovi bočnog gibanja

Sustav diferencijalnih jednadžbi poremećaja zrakoplova s elisnim pogonom za bočno gibanje je sljedeći:

$$\Delta \dot{\beta} = \frac{Y_{\beta}^{0}}{u^{0}} \Delta \beta + \frac{Y_{p}^{0}}{u^{0}} \Delta p + \left(-1 + \frac{Y_{r}^{0}}{u^{0}}\right) \Delta r + \frac{g \cos \theta^{0}}{u^{0}} \Delta \phi + \frac{Y_{\delta_{n}}^{0}}{u^{0}} \Delta \delta_{n}$$
(6.1)

$$\Delta \dot{p} = L_{\beta}^{0} \Delta \beta + L_{p}^{0} \Delta p + L_{r}^{0} \Delta r + L_{\delta_{l}}^{0} \Delta \delta_{l} + L_{\delta_{n}}^{0} \Delta \delta_{n}$$
(6.2)

$$\Delta \dot{r} = N_{\beta}^{0} \Delta \beta + N_{p}^{0} \Delta p + N_{r}^{0} \Delta r + N_{\delta_{l}}^{0} \Delta \delta_{l} + N_{\delta_{n}}^{0} \Delta \delta_{n}$$
(6.3)

$$\Delta \dot{\phi} = \Delta p + tan\theta^0 \Delta r \tag{6.4}$$

$$\Delta \psi = \frac{\Delta r}{\cos \theta^0} \tag{6.5}$$

Bočno gibanje se sastoji od dva simultana gibanja, skretanja i valjanja. Ta dva gibanja nije moguće rastaviti na svako zasebno, jer su im jednadžbe spregnute, te će ih se tako i rješavati. Pošto se kut skretanja letjelice ne pojavljuje u prethodnim jednadžbama, zanemarit će ga se, tj. zanemarit će se zadnji gore navedeni izraz.

Zanemarujući taj izraz dobili smo nehomogene linearne diferencijalne jednadžbe koje je moguće raspisati u matričnom obliku u prostoru stanja.

Sama jednadžba stanja definirana je kao:

$$\Delta \dot{X} = A \Delta X + B \Delta e \tag{6.6}$$

gdje na matrica A matrica sustava, B je matrica upravljanja, ΔX je vektor stanja i e je vektor upravljanja, tj. ulaz sustava.

Vektor stanja ima četiri komponente

$$\Delta \boldsymbol{X} = [\Delta \boldsymbol{\beta} \ \Delta \boldsymbol{p} \ \Delta \boldsymbol{r} \ \Delta \boldsymbol{\phi}]^T \tag{6.7}$$

dok je vektor upravljanja definiran kao

$$\Delta \boldsymbol{e} = [\Delta \delta_l] \tag{6.8}$$

Matrica sustava i matrica upravljanja definirane su na sljedeći način

$$\boldsymbol{A}_{b} = \begin{bmatrix} \frac{Y_{\beta}^{0}}{u^{0}} & \frac{Y_{p}^{0}}{u^{0}} & \frac{Y_{r}^{0}}{u^{0}} - 1 & \frac{g \cos\theta^{0}}{u^{0}} \\ L_{\beta}^{0} & L_{p}^{0} & L_{r}^{0} & 0 \\ N_{\beta}^{0} & N_{p}^{0} & N_{r}^{0} & 0 \\ 0 & 1 & \tan\theta^{0} & 0 \end{bmatrix}, \qquad \boldsymbol{B}_{b} = \begin{bmatrix} 0 \\ L_{\delta_{l}}^{0} \\ N_{\delta_{l}}^{0} \\ 0 \end{bmatrix}$$
(6.9)

Indeks "b" označava da se radi o matrici upravljanja bočnog sustava, kao i kod same matrice sustava. Brzina u^0 u izrazu (6.9) definirana je kao konstanta iznosa $u^0 = 15$ [m/s].

Moguće je uočiti kako matrica upravljanja, kao i vektor upravljanja, ima samo članove vezane za otklon krilaca, što je specifično za konfiguraciju *flying-wing* letjelica koje ne posjeduju kormilo pravca.

Specifičnosti vezane za upravljanje ovakve letjelice moguće je pogledati u literaturi [10]. Upravo će se prema njoj napraviti veza između otklona krilaca i otklona kormila visine kako bi kasniji model bio što točniji.

6.2. Linearizirani model bočnog gibanja

Referentno gibanje ove letjelice opisano je sljedećim parametrima

$$h = 750 [m]$$

 $V = 15 [m/s]$

Visina leta letjelice odredila se pomoću literature [11], gdje je navedena prosječna nadmorska visine Republike Hrvatske 331 m. Pretpostavilo se kako će letjelica većinu svog života provesti na sličnim visinama.

Za takvo referentno stanje pronašle su se vrijednosti ravnotežnog napadnog kuta, kao i otklona kormila visine kako bi se ostvario horizontalni let.

$$\alpha_{rav} = 4,25^{\circ}$$

 $\delta_m = -2,52^{\circ}$

Kako bi se skratilo vrijeme proračunavanja svakog od koeficijenata, kao i omogućila mogućnost mijenjanja nekih od parametara, napravila se skripta u Matlab-u koja proračunava gore navedene matrice.

Nakon unosa svih potrebnih podataka dobila su se rješenja matrica A_b i B_b koje je moguće vidjeti ispod.

$$\boldsymbol{A}_{b} = \begin{bmatrix} -0,2099 & -0,03218 & -0,9875 & 0,6522 \\ -186,08 & -48,331 & 8,9194 & 0 \\ 20,162 & -0,34443 & -0,86527 & 0 \\ 0 & 1 & 0,074312 & 0 \end{bmatrix}$$
$$\boldsymbol{B}_{b} = \begin{bmatrix} 0 \\ 419,72 \\ -11,005 \\ 0 \end{bmatrix}$$

Idući korak bio je određivanje polova, odnosno korijena karakterističnog polinoma. Korištenjem naredbe "poly" u Matlab-u se definirao polinom iz matrice A_b . Ostalo je samo pronaći polove kako bi se procijenila stabilnost sustava, pri čemu se koristila naredba "roots".

Ŭ	01
r_1	-47,765 + 0i
r_2	-0,45942 + 4,823i
r_3	-0,45942 - 4,823i
r_4	0,0062911 + 0 <i>i</i>

Tablica 6.1. Korijeni karakterističnog polinoma

Tablica 6.1. prikazuje korijene karakterističnog polinoma, gdje je moguće vidjeti kako se radi o nestabilnom sustavu prouzrokovanom pozitivnim realnim dijelom jednog od korijena. Upravo taj korijen (r_4) djeluje destabilizirajuće na cijeli sustav, dok je moguće vidjeti još dva oscilirajuća rješenja i jedno aperiodsko rješenje s negativnim realnim dijelom.

Slika 6.1. prikazuje dobivene korijene sustave radi lakše vizualizacije. Crvenom bojom naznačen je aperiodski mod, čiji korijen ima pozitivni realni dio. Plavom bojom naznačeni su korijeni s imaginarnim dijelom, tj. oscilirajući modovi, dok je zelenom bojom označen aperiodski mod s negativnim realnim dijelom.

Slika 6.1. Polovi (korijeni) sustava

Bilo je potrebno i odrediti ostale dinamičke značajke, poput vrijednosti prirodnih frekvencija (ω_n) , kao i prigušenja (ζ) za svaki od korijena.

Tablica 6.2. prikazuje vrijednosti dobivene pomoću formula [9]. Lako je uočljiva vrijednost prigušenja oscilirajućih modova, tj. spregnutog moda (dutch - roll), koja je iznimno niska, te će se to morati riješiti sustavima stabilizacije.

	ω_n	ζ
r_1	47,765	1
r_2	4,8448	0,094827
r_3	4,8448	0,094827
r_4	0,0062911	/

 Tablica 6.2.
 Vrijednosti prirodnih frekvencija i prigušenja

Još su se odredile i vremenske konstante i periode takvog sustava pomoću formula [9], uzimajući u obzir da se vremenske konstante određuju zasebno s obzirom na realni dio aperiodskih korijena, kao i periode za svaki oscilirajući mod.

Tablica 6.3. prikazuje dobivene vrijednosti.

$ au_{(r_1)}$	0,020936
$ au_{(r_4)}$	158,95
$ au_{1/2(r_1)}$	0,014512
$ au_{2(r_4)}$	110,18
$T_{(r_2,r_3)}$	1,3028

Tablica 6.3.Vremenske konstante i periode

Potom su se provjerili elementi vektora stanja kako bi se potvrdila potreba za sustavima stabilizacije.

Slika 6.2. prikazuje dobivene rezultate odziva zrakoplova na otklon krilaca za 1°, gdje je vidljiv učinak nedovoljno prigušenog dutch - roll moda, kao i učinak nestabilnog spiralnog moda. S obzirom na to da su to dva nepoželjna moda koja unose nestabilnost u sustav potrebno će biti projektirati sustave stabilizacije kako bi se oni doveli pod kontrolu.

Same sustave stabilizacije obradilo se u poglavlju 7, gdje su se ujedno i prikazala rješenja sustava s otvorenim i zatvorenim povratnim vezama.

Slika 6.2. Elementi vektora stanja i bočne komponente brzine u ovisnosti o vremenu i otklonu krilaca $\Delta \delta_l = 1^\circ$

6.3. Modovi uzdužnog gibanja

Sustav diferencijalnih jednadžbi poremećaja zrakoplova s elisnim pogonom za uzdužno gibanje je sljedeći:

$$\Delta \dot{u} = \left(X_u^0 - \frac{T_0 \cos \alpha_T}{mu}\right) \Delta u + X_\alpha^0 \Delta \alpha - g \cos \theta^0 \Delta \theta \tag{6.10}$$

$$\Delta \dot{\alpha} = \frac{Z_u^0 - \frac{T_0 \sin \alpha_T}{mu}}{u^0 - Z_{\dot{\alpha}}^0} \Delta u + \frac{Z_{\alpha}^0}{u^0 - Z_{\dot{\alpha}}^0} \Delta \alpha + \frac{u^0 + Z_q^0}{u^0 - Z_{\dot{\alpha}}^0} \Delta q - \frac{g \sin \theta^0}{u^0 - Z_{\dot{\alpha}}^0} \Delta \theta + \frac{Z_{\dot{\alpha}}^0}{u^0 - Z_{\dot{\alpha}}^0} \Delta \delta_m$$

$$(6.11)$$

$$\Delta \dot{q} = M_{\dot{\alpha}}^{0} \frac{Z_{u}^{0} - \frac{T_{0} \sin \alpha_{T}}{mu}}{u^{0} - Z_{\dot{\alpha}}^{0}} \Delta u + \left(M_{\alpha}^{0} + \frac{M_{\dot{\alpha}}^{0} Z_{\alpha}^{0}}{u^{0} - Z_{\dot{\alpha}}^{0}} \right) \Delta \alpha + \left(M_{q}^{0} + M_{\dot{\alpha}}^{0} \frac{u^{0} + Z_{q}^{0}}{u^{0} - Z_{\dot{\alpha}}^{0}} \right) \Delta q$$

$$- \frac{M_{\dot{\alpha}}^{0} g \sin \theta^{0}}{u^{0} - Z_{\dot{\alpha}}^{0}} \Delta \theta + \left(M_{\delta_{m}}^{0} + \frac{M_{\dot{\alpha}}^{0} Z_{\delta_{m}}^{0}}{u^{0} - Z_{\dot{\alpha}}^{0}} \right) \Delta \delta_{m}$$

$$\Delta \dot{\theta} = \Delta q$$

$$(6.12)$$

Navedene jednadžbe uzdužnog gibanja mogu se zapisati kao linearni sustav diferencijalnih jednadžbi

$$\Delta \dot{X} = A_u \Delta X + B_u \Delta e \tag{6.14}$$

gdje je vektor stanja opisan na sljedeći način

$$\Delta \mathbf{X} = [\Delta u \ \Delta \alpha \ \Delta q \ \Delta \theta]^T \tag{6.15}$$

dok se vektor upravljanja svodi na skalar

$$\Delta \boldsymbol{e} = \Delta \delta_m \tag{6.16}$$

Matrice A_u i B_u opisane su prema literaturi [2]. Indeks "u" označava da se radi o matricama uzdužnog gibanja.

$$A_{u} = \begin{bmatrix} X_{u}^{0} - \frac{T_{0}cos\alpha_{T}}{mu} & X_{\alpha}^{0} & 0 & -gcos\theta^{0} \\ \frac{Z_{u}^{0} - \frac{T_{0}sin\alpha_{T}}{mu}}{u^{0} - Z_{\alpha}^{0}} & \frac{Z_{\alpha}^{0}}{u^{0} - Z_{\alpha}^{0}} & \frac{u^{0} + Z_{q}^{0}}{u^{0} - Z_{\alpha}^{0}} & \frac{gsin\theta^{0}}{u^{0} - Z_{\alpha}^{0}} \\ M_{\alpha}^{0} \frac{Z_{u}^{0} - \frac{T_{0}sin\alpha_{T}}{mu}}{u^{0} - Z_{\alpha}^{0}} & M_{\alpha}^{0} + \frac{M_{\alpha}^{0}Z_{\alpha}^{0}}{u^{0} - Z_{\alpha}^{0}} & M_{q}^{0} + M_{\alpha}^{0} \frac{u^{0} + Z_{q}^{0}}{u^{0} - Z_{\alpha}^{0}} & -\frac{M_{\alpha}^{0}gsin\theta^{0}}{u^{0} - Z_{\alpha}^{0}} \\ 0 & 1 & 0 \end{bmatrix}$$

$$B_{u} = \begin{bmatrix} 0 \\ \frac{Z_{\delta_{m}}^{0}}{u^{0} - Z_{\alpha}^{0}} \\ M_{\delta_{m}}^{0} + \frac{M_{\alpha}^{0}Z_{\delta_{m}}^{0}}{u^{0} - Z_{\alpha}^{0}} \\ M_{\delta_{m}}^{0} + \frac{M_{\alpha}^{0}Z_{\delta_{m}}^{0}}{u^{0} - Z_{\alpha}^{0}} \end{bmatrix}$$

$$(6.18)$$

Same vrijednosti matrica A_u i B_u će biti konstante jer su se jednadžbe dobile za pretpostavljeno stacionarno pravocrtno referentno gibanje. U sljedećem poglavlju će se proračunati obje matrice, kao što je bio slučaj kod bočnog gibanja, te će se odrediti korijeni tako dobivenog sustava i sve ostale bitne vrijednosti za daljnji rad.

6.4. Linearizirani model uzdužnog gibanja

Referentno gibanje definirano je na isto način kao i kod opisivanja lineariziranog modela bočnog gibanja u poglavlju 6.2.

Nakon definiranja svih potrebnih vrijednosti proračunale su se vrijednosti u matricama A_u i B_u .

$$\boldsymbol{A}_{\boldsymbol{u}} = \begin{bmatrix} -0,04254 & 3,5111 & 0 & -9,783 \\ -0,41126 & -6,7253 & 0,9394 & -0,0486 \\ 0 & -257,42 & -23,694 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$\boldsymbol{B}_{\boldsymbol{u}} = \begin{bmatrix} 0 \\ -0,9889 \\ -231,53 \\ 0 \end{bmatrix}$$

Daljnji postupak određivanja korijena sustava, prirodnih frekvencija i prigušenja napravio se na isti način kao kod bočnog gibanja.

Tablica 6.4. prikazuje dobivene korijene karakterističnog polinoma, dok tablica 6.5. prikazuje dobivene vrijednosti prirodnih frekvencija i prigušenja za svaki od korijena.

r_1	-14,81 + 12,933i
r_2	-14,81 - 12,933 <i>i</i>
r_3	0,0428 + 1,579i
r_4	0,0428 — 1,579 <i>i</i>

Tablica 6.4. Korijeni karakterističnog polinoma

Tablica 6.5.	Vrijednosti prirodnih frekvencija i prigušenja	
	ω _n	ζ
<i>r</i> ₁ , <i>r</i> ₂	19,662	0,7532
r ₃ ,r ₄	1,578	-0,0271

Prema rezultatima iz tablice 6.4. moguće je vidjeti kako se radi o nestabilnom sustavu s dva para oscilirajućih rješenja, od kojih je jedan par s pozitivnim realnim dijelom. Upravo taj par čini cijeli sustav nestabilnim.

Slika 6.3. prikazuje dobivene korijene, gdje su zelenom bojom označeni korijeni s negativnim realnim dijelom, dok su plavom bojom označeni korijeni s pozitivnim realnim dijelom.

Slika 6.3. Polovi (korijeni) sustava

Tablica 6.5. prikazuje vrijednosti dobivenih prirodnih frekvencija i prigušenja za proračunate korijene. Moguće je vidjeti kako je vrijednost prigušenja kod korijena s negativnim realnim dijelom zadovoljavajuća, čak relativno blizu idealne vrijednosti od $\frac{\sqrt{2}}{2} = 0,7071$, dok je za drugi oscilirajući korijen dobiveno negativno prigušenje, što znači da će sustav težiti u beskonačnost i nikada se neće stabilizirati sam od sebe.

Slika 6.4. upravo prikazuje taj slučaj, gdje je moguće vidjeti kako će se letjelica ponašati kada joj se da impulsna pobuda na kormilo visine u iznosu od $\delta_m = 1^\circ$.

Slika 6.4. Odziv na impulsnu pobudu otklona kormila visine $\Delta \delta_m = 1^\circ$

Zaključuje se kako je nužno projektirati sustav stabilizacije za uzdužno gibanje letjelice, kao i sustav upravljanja, kako bi se smanjio utjecaj nestabilnih korijena na sustav te kako bi se on u krajnju ruku stabilizirao.

Same sustave stabilizacije obradilo se u poglavlju 7, gdje su se ujedno i prikazala rješenja sustava s otvorenim i zatvorenim povratnim vezama.

7. Sustav stabilizacije i upravljanja

Općenito sustavi stabilizacije služe kako bi se popravila dinamika letjelice, tj. kako bi pomoglo letjelici da se što prije vrati u ravnotežni položaj. Isto tako služe pri pretvaranju nestabilnih modova u stabilne.

To sve se radi preko povratnih veza i odgovarajućih vrijednosti koeficijenata, odnosa pojačanja povratnih veza.

7.1. Sustav stabilizacije bočnog gibanja

Slika 7.1. prikazuje završni sustav stabilizacije koji se projektirao i koristio u daljnjem radu. Sama razrada ovog sustava obradila se u sljedećim poglavljima.

Slika 7.1. Sustav stabilizacije bočnog gibanja letjelice

7.1.1. Povratna veza po kutnoj brzini valjanja p

Kao prvu povratnu vezu uvela se povratna veza po kutnoj brzini valjanja *p*, gdje se prvo pokušala popraviti stabilnost moda valjanja.

Za pobudu sustava izabrala se jedinična impulsna (Dirac) pobuda, koja se napravila pomoću dva *Step* bloka, svaki s različitim unesenim parametrima.

Tablica 7.1. prikazuje korištene parametre, dok slika 7.2. prikazuje dobivenu pobudu.

Tablica 7.1.Parametri Step blokova			
	Step time	Initial value	Final value
Step 1	0.025	0	1
Step 2	0.05	0	-1

Slika 7.2. Pobuda sustava (Dirac)

Fakultet strojarstva i brodogradnje

Nakon definiranja pobude krenulo se u traženje pojačanja povratne veze koje će dati najbolje rezultate. Pošto su se promatrale samo karakteristike kutne brzine valjanja, pojačanja ostalih povratnih veza su $K_{\phi} = 0$ i $K_r = 0$. Postupak se izvodio iterativno pazeći na rezultate brzine odziva, kao i na broj oscilacija.

Slika 7.3. prikazuje dobivene rezultate otvorenog sustava kada je pojačanje povratne veze $K_p = 0$, kao i pojačanje povratne veze od $K_p = 0,55$ pri kojem su se dobili najbolji rezultati.

Moguće je vidjeti kako su se kompletno uklonile oscilacije izuzev startne pobude sustava, kao i puno brže smirivanje sustava na početnu vrijednost.

Time se da zaključiti kako se popravila dinamika moda valjanja.

Slika 7.3. Povratna veza po kutnoj brzini valjanja p

7.1.2. Povratna veza po kutu zanosa ϕ

Pobuda sustava je ostala nepromijenjena, kao i u prošlom koraku, samo što se ovdje uvela dodatna povratna veza po kutu zanosa ϕ . Pojačanje povratne veze po kutnoj brzini valjanja ostalo je ono prethodno odabrano $K_p = 0,55$, dok je pojačanje povratne veze po brzini skretanja i dalje imalo vrijednost $K_r = 0$.

Postupak se proveo iterativno, kao i u prethodnom slučaju, pazeći na iste odzivne karakteristike, broj oscilacija i vrijeme smirivanja.

Slika 7.4. prikazuje dobiveni odziv sustava na odabrano pojačanje povratne veze $K_{\phi} = 0.5$.

Slika 7.4. Povratna veza po kutu zanosa ϕ

Fakultet strojarstva i brodogradnje

7.1.3. Povratna veza po kutnoj brzini skretanja

Posljednja povratna veza koja se uvela je bila povratna veza po kutnoj brzini skretanja *r*. Ostala pojačanja povratnih veza su ostala kao što su gore navedena $K_p = 0,55$ i $K_{\phi} = 0,5$, kao i pobuda sustava.

Postupak traženja adekvatnog pojačanja se izveo iterativno te se pronašlo najbolje pojačanje povratne veze u iznosu od $K_r = 0,44$.

Slika 7.5. prikazuje dobiveni odziv sustava s odabranim pojačanjem povratne veze. Promatrala su se veća pojačanja, prilikom kojih se odgodilo smirivanje sustava te se iz tog razloga odlučilo za ovakvo rješenje.

Slika 7.5. Povratna veza po kutnoj brzini skretanja r

7.1.4. Usvojena pojačanja povratnih veza

Primijetilo se kako se odziv sustava po povratnoj vezi kutne brzine valjanja i kuta zanosa promijenio s uvođenjem povratne veze po kutnoj brzini skretanja. Iz tog razloga odabrana pojačanja morala su se prilagoditi kako bi se sami odziv sustava optimirao.

Usvojena pojačanja povratnih veza su sljedeća:

$$K_p = 0.3$$

 $K_{\phi} = 0.8$
 $K_r = 0.55$

Utjecaj usvojenih pojačanja na odziv sustava na jediničnu impulsnu pobudu moguće je vidjeti na slikama 7.6.,7.7.,7.8.

Slika 7.6. Odziv kutne brzine valjanja p

Fakultet strojarstva i brodogradnje

Fakultet strojarstva i brodogradnje

Nakon popravljanja odziva sustava ostalo je provjeriti kako sada izgledaju korijeni sustava, kao i njihova prigušenja i prirodne frekvencije. Takva provjera uvela se kako bi se numerički potvrdila stabilnost sustava.

Tablica 7.2. prikazuje dobivena rješenja korijena sustava, dok tablica 7.3. prikazuje dobivene prirodne frekvencije i faktore prigušenja.

r_1		-173,86 + 0i		
r_2		-1,9543 + 3,4532i		
r_3		-1,9543 - 3,4532i		
r_4			-0,92789	
Tablica 7.3. Vrijednosti prirodnih frekvencija i prigušenja				
Tablica 7.3.	v rijednosti prire		ija i pi igusenja	
1 ablica 7.3.	ω_{1}	ı	ija i pi iguseiija ζ	7
r_1	ν rijednosti prir ω ₁ 173	n 86	ζ	Z
rabiica 7.5. r_1 r_2	w ₁ 173 3,96	n 86 78	ι τρι igusenja ζ 1 0,49	253
rablica 7.3.	 V Hjednosti pri 4 ω, 173, 3,96 3,96 	n 86 78 78	ja i pi igusenja ; 1 0,49 0,49	253 253

Tablica 7.2. Korijeni karakterističnog polinoma

Iz obje tablice moguće je vidjeti kako se više ne radi o nestabilnom sustavu, već je sustav postao stabilan uvođenjem povratnih veza.

To se zaključuje iz činjenice kako više nema korijena s pozitivnim realnim dijelom, već su se dobila dva aperiodska moda i dva oscilirajuća, kod kojih su realni dijelovi negativnog iznosa.

Slika 7.9. prikazuje novodobivene korijene sustava radi lakše vizualizacije rješenja. Crvenom bojom naznačeni su oscilirajući modovi, dok su plavom bojom naznačeni aperiodski modovi.

Slika 7.9. Korijeni (polovi) sustava

Pomoću rezultata iz tablice 6.2. i 7.3. usporedili su se rezultati ocjene kvalitete spregnutog moda skretanja i valjanja prema MIL kriteriju za otvoreni i zatvoreni sustav.

Detalji vezani za ocjenu kvalitete prema MIL kriteriju uzeti su iz literature [9], dok se na slici 7.10. mogu vidjeti dobiveni rezultati za slučaj otvorenog i zatvorenog sustava. Plavim dijamantom naznačen je otvoreni sustav, dok je crvenim dijamantom naznačen zatvoreni sustav.

Moguće je uočiti kako je zatvoreni sustav bolji od otvorenog što se tiče MIL kriterija, jer se njegovo prigušenje nalazi dalje od minimalnog potrebnog prigušenja kako bi bila zadovoljena minimalna razina prigušenja 1.

Ujedno je vidljivo kako i otvoreni i zatvoreni sustav zadovoljavaju MIL kriterij za promatranu letjelicu.

Slika 7.10. Dijagram kriterija direktnog upravljanja spregnutog moda skretanja i valjanja prema MIL standardu (plavi dijamant – otvoreni sustav, crveni dijamant – zatvoreni sustav)

7.2. Sustav stabilizacije uzdužnog gibanja

Slika 7.11. prikazuje završni sustav stabilizacije uzdužnog gibanja koji se projektirao i koristio u daljnjem radu. Sama razrada ovog sustava se obradila u sljedećim poglavljima.

Slika 7.11. Sustav stabilizacije uzdužnog gibanja

Pobuda sustava je postavljena kao i kod bočnog gibanja u poglavlju 7.1.1. te se neće opet ovdje opisivati.

7.2.1. Povratna veza po kutu propinjanja θ

Kao prvu povratnu vezu uvela se povratna veza po kutu propinjanja. Postupak se izvodio iterativno, kao i kod bočnog gibanja, pazeći na rezultate brzine odziva i broj oscilacija.

Pošto je to prva promatrana povratna veza, pojačanja ostalih povratnih veza definirana su kao $K_H = 0$ i $K_q = 0$.

Pronađeno pojačanje povratne veze koje je davalo zadovoljavajuće rezultate je $K_{\theta} = 1,2$.

Slika 7.12. prikazuje odziv kuta propinjanja zrakoplova na impulsnu pobudu gdje je moguće vidjeti stabiliziranje sustava s odabranim pojačanjem.

Jasno se vidi da je sustavu potrebno malo vremena kako bi se stabilizirao i da nema velike oscilacije, izuzev izvorne pobude.

7.2.2. Povratna veza po kutnoj brzini propinjanja q

Druga povratna veza koja se uvela bila je po kutnoj brzini propinjanja q. Pojačanje povratne veze po kutu propinjanja ostalo je ono pronađeno $K_{\theta} = 1,2$, dok je pojačanje povratne veze po napadnom kutu i dalje postavljeno kao $K_{H} = 0$.

Iterativnim postupkom se pronašla zadovoljavajuća vrijednost pojačanja od $K_q = 1,1$.

Slika 7.13. prikazuje dobiveni odziv kutne brzine propinjanja na impulsnu pobudu, gdje je moguće vidjeti kako se uvođenjem povratne veze i određivanjem adekvatnog pojačanja odziv stabilizirao. Moguće je vidjeti kako su se odabranim pojačanjem uklonile bilo kakve oscilacije sustava te je odziv postao aperiodski.

7.2.3. Povratna veza po visini leta h

Posljednja povratna veza koja se uvela bila je po visini leta. Pojačanja ostalih povratnih veza su od prije poznata te su definirana kao $K_{\theta} = 1,2$ i $K_q = 1,1$.

Odabrano pojačanje povratne veze po visini leta dobilo se iterativnim postupkom te iznosi $K_H = 0,022.$

Slika 7.14. prikazuje dobiveni odziv na zadanu pobudu te je moguće vidjeti kako se sustav stabilizira uz vrlo malene oscilacije, izuzev izvorne pobude.

Slika 7.14. Odziv visine leta h

7.2.4. Usvojena pojačanja povratnih veza

Prema istome principu kao kod bočnog gibanja, primijetilo se kako su se odzivi sustava promijenili naspram onih promatranih nakon uvođenja svih triju povratnih veza. Iz tog razloga odabrana pojačanja morala su se prilagoditi kako bi se sami odziv sustava optimirao.

Usvojena pojačanja povratnih veza su sljedeća:

$$K_{\theta} = 2,5$$
$$K_{q} = 1,1$$
$$K_{H} = 0,022$$

Utjecaj usvojenih pojačanja na odziv sustava na jediničnu impulsnu pobudu moguće je vidjeti na slikama 7.15.,7.16.,7.17.

Kut propinjanja zrakoplova

Slika 7.15. Odziv kuta propinjanja zrakoplova θ

Fakultet strojarstva i brodogradnje

Slika 7.16. Odziv kutne brzine propinjanja q

Slika 7.17. Odziv visine leta h

Fakultet strojarstva i brodogradnje

Nakon popravljanja odziva sustava ostalo je provjeriti kako sada izgledaju korijeni sustava, kao i njihova prigušenja i prirodne frekvencije. Takva provjera uvela se kako bi se numerički potvrdila stabilnost sustava.

Tablica 7.4. prikazuje dobivena rješenja korijena sustava, dok tablica 7.5. prikazuje dobivene prirodne frekvencije i faktore prigušenja.

- as the second provide the seco	
r_1	-276,41 + 0i
r_2	-6,8608 + 0i
r_3	-1,4192 + 0i
r_4	-0,22528 + 0,19877i
r_5	-0,22528 - 0,19877i

Tablica 7.4. Korijeni karakterističnog polinoma

Tablica 7.5.	Vrijednosti prirodnih frekvenci	ija i prigušenja
	ω_n	ζ
r_1	276,41	1
r_2	6,8608	1
r_3	1,4192	1
r_4	0,30044	0,74986
r_5	0,30044	0,74986

Iz tablice 7.4.moguće je vidjeti kako su se dobila tri aperiodska moda i dva oscilirajuća nakon uvođenja svih triju povratnih veza.

Moguće je vidjeti kako je vrijednost prigušenja kod oscilirajućih modova zadovoljavajuće, čak relativno blizu idealne vrijednosti od $\frac{\sqrt{2}}{2} = 0,7071$.

8. Sustavi upravljanja trajektorijom

Sustavi upravljanja služe prilikom upravljanja letjelice, što i samo ime govori. Koriste se kada se želi postaviti i održati određena putanja letjelice ili kada se želi pomoći pilotu prilikom upravljanja vezano za situacije koje ne očekuje, kao naprimjer promjena smjera puhanja vjetra ili ostale situacije dinamičkog tipa.

Projektiranje sustava upravljanja slično je projektiranju sustava stabilizacije u smislu same izvedbe pomoću povratnih veza koje zatvaraju petlju i time pomažu pilotu u obavljanju njegovih dužnosti.

Za razliku od sustava stabilizacije prilikom projektiranja sustava upravljanja uveo se blok prijenosne funkcije aktuatora. Vrijednosti u bloku su procijenjene prema literaturi[12], dok se sami blok uveo u model kako bi se vidio utjecaj dinamike prvog stupnja na sustav. Kako bi se odredila točna dinamika tog bloka potrebno ju je testirati, ali pošto to nije bilo u sklopu zadatka te su vrijednosti ostale procijenjene.

Pojačanja regulatora u povratnim vezama su se morala modificirati, naspram onih u poglavlju 7, zbog uvedene dinamike aktuatora.

8.1. Sustav upravljanja smjerom leta

Ovakav sustav upravljanja koristi se kako bi se omogućilo letjelici da leti po unaprijed određenoj putanji (pravcu, tj. smjeru leta).

Slika 8.1. Prikaz sustava upravljanja smjerom leta

Simulink model ovog sustava upravljanja napravio se kombinirajući modele prikazane u literaturama[10][12], uzimajući u obzir potrebna pojačanja povratnih veza specifičnih za letjelicu promatranu u ovom radu. Sami model moguće je vidjeti na slici 8.1.

Prilikom definiranja dinamike ovog sustava morao se uzeti u obzir dodatak varijable χ kako bi se mogao pratiti odziv sustava na zadanu pobudu. Prvo se matrica **C** proširila uvođenjem petog reda te je bila definirana na sljedeći način

$$\boldsymbol{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & \frac{g}{u^0} \end{bmatrix}$$
(8.1)

Isto tako bilo je potrebno promijeniti matricu **D** ubacivanjem petog reda kojem je vrijednost bila nula, kako bi Simulink znao da sustav sada ima pet izlaznih varijabli. Kao pobudu sustava odabrala se vrijednost kuta skretanja $\chi = 20^{\circ}$, što je na slici 8.1. definirano konstantom iznosa 0,35. Tablica 8.1. prikazuje korijene ovako definiranog sustava, kao i prirodne frekvencije i faktore prigušenja.

		ω_n	ζ
r_1	-68,405 + 277,98 <i>i</i>	286,27	0,23895
r_2	-68,405 - 277,98 <i>i</i>	286,27	0,23895
r_3	-19,42 + 0i	19,42	1
r_4	-0,45175 + 3,8402 <i>i</i>	3,8666	0,11683
r_5	-0,45175 - 3,8402 <i>i</i>	3,8666	0,11683
r_6	-2,5666 + 0 <i>i</i>	2,5666	1
<i>r</i> ₇	-0,35026 + 0,22097i	0,41414	0,84575
r ₈	-0,35026 - 0,22097 <i>i</i>	0,41414	0,84575

Tablica 8.1.Korijeni karakterističnog polinoma s vrijednostima prirodnih frekvencija i
prigušenja

Iz tablice Tablica 8.1. može se vidjeti kako u sustavu ne postoji nijedan nestabilni mod te se sustav kao takav može proglasiti stabilnim. Pojačanja povratnih veza vidljiva na slici 8.1. odredila su se iterativnim postupkom kako bi se postigao željeni kut skretanja χ .

P vrijednosti predstavljaju proporcionalni član koji utječe na samo pojačanje povratne veze i tako utječe na iznos amplituda i brzinu odziva sustava. Vrijednosti D predstavljaju derivacijski član koji služi kako bi se sustavu smanjile oscilacije, ali na račun brzine odziva sustava. N vrijednosti su koeficijenti filtera. Integracijski član I nije korišten prilikom projektiranja sustava upravljanja smjerom leta, ali se koristio prilikom projektiranja sustava upravljanjem visinom leta. Njegova uloga je ubrzavanje odziva sustava uvođenjem nestabilnosti, tj. oscilacija u sustav.

Ante Perica

Glavni cilj projektiranja je pronaći dobar balans između sva tri člana kako bi se osigurao najbolji mogući odziv sustava. Izraz (8.2) prikazuje zapis generalnog PID regulatora koji se koristio u ovim modelima.

$$P + I\frac{1}{s} + D\frac{N}{1 + N\frac{1}{s}}$$
(8.2)

Tablica 8.2. prikazuje odabrana pojačanja regulatora korištenih na povratnim vezama koje je moguće vidjeti na slici 8.1.

Tabilca 0.2. Tojacanja povratnih veza		
P1	P = 0,3984	
	P = 3,7765	
PD1	D = 1,3129	
	N = 1,7233	
	P = 4	
PD2	D = 0,15	
	N = 100	

Tablica 8.2.	Pojačanja	povratnih	veza
	- • j = •	Po r autori	

Utjecaj gore navedenih pojačanja na odziv sustava moguće je vidjeti na slikama 8.2. i 8.3.

Slika 8.2. Promjena kuta skretanja pri pobudi $\chi = 20^{\circ}$

Prema rezultatima sa slika vidljivo je kako *dutch – roll* mod nije dobro prigušen, bez obzira kako se namjeste pojačanja povratnih veza, jer još uvijek sadrži oscilacije što nije poželjno.

Zaključuje se kako bi daljnja preporuka bila da se vrati u sami dio projektiranja letjelice te se sagledaju dvije solucije. Prva bi bila povećati površinu samih *wingleta*, dok bi druga bila ugradnja upravljačkih elemenata na iste *winglete* koji bi služili kao jedno veće kormilo pravca koje bi moglo poboljšati dinamiku takvoga *dutch – roll* moda.

Što se tiče ostalih rezultata, vidljiva je brza reakcija sustava na zadanu promjenu kuta skretanja prilikom koje ne postoje neželjene oscilacije.

8.2. Sustav upravljanja visinom leta

Ovakav sustav upravljanja koristi se kako bi se omogućilo letjelici da zadrži visinu leta ili ju promjeni ovisno o misiji i terenu preko kojega leti.

Simulink model ovog sustava upravljanja napravio se kombinirajući modele prikazane u literaturama[10][12], uzimajući u obzir potrebna pojačanja povratnih veza specifičnih za letjelicu promatranu u ovom radu. Sami model moguće je vidjeti na slici 8.4.

Slika 8.4. Prikaz sustava upravljanja visinom leta

Prilikom definiranja dinamike ovog sustava morao se uzeti u obzir dodatak varijable h kako bi se mogao pratiti odziv sustava na zadanu pobudu. Prvo se matrica C proširila uvođenjem petog reda te je ona definirana na sljedeći način

$$\boldsymbol{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -u^0 & 0 & u^0 \end{bmatrix}$$
(8.3)

Isto tako je bila potrebno promijeniti matricu D ubacivanjem petog reda kojem je vrijednost bila nula, kako bi Simulink znao da sustav sada ima pet izlaznih varijabli.

Vrijednosti u bloku prijenosne funkcije su procijenjene na isti način kao i kod sustava upravljanja smjerom leta. Pobuda ovog sustava postavila se kao konstanta h = 50 m prikazana na slici 8.4.

Tablica 8.3. prikazuje korijene ovako definiranog sustava, kao i prirodne frekvencije i faktore prigušenja.

		ω_n	ζ
r_1	-118,15 + 0i	118,15	1
r_2	-5,1669 + 64,763 <i>i</i>	64,969	0,079574
r_3	-5,1669 - 64,763 <i>i</i>	64,969	0,079574
r_4	-6,6126 + 0 <i>i</i>	6,6126	1
r_5	-4,103 + 0 <i>i</i>	4,103	1
r_6	-0,4343 + 0i	0,4343	1
r_7	-0,23177 + 0i	0,23177	1
r_8	-0,029146 + 0 <i>i</i>	0,029146	1
<i>r</i> 9	-0,0011705 + 0i	0,0011705	1

Tablica 8.3.Korijeni karakterističnog polinoma s vrijednostima prirodnih frekvencija i
prigušenja

Tablica 8.4. Pojačanja povratnih veza

	P = 0,01492
PID	D = -0,02178
	N = 0,34501
	I = 1,67e - 05
	P = 12
PD	D = 1
	N = 100

Ante Perica

Pojačanja povratnih veza vidljiva na slici 8.4. odredila su se iterativnim postupkom kako bi se postigla željena visina leta h. Tablica 8.4. prikazuje odabrana pojačanja povratnih veza za ovaj sustav upravljanja.

Utjecaj gore navedenih pojačanja na odziv sustava moguće je vidjeti na slikama 8.5. i 8.6.

Slika 8.5. Promjena visine leta pri pobudi h = 50 m

Fakultet strojarstva i brodogradnje

61

Slika 8.6. Odziv varijabli uzdužnog gibanja na zadanu visinu leta h = 50 m

Prema rezultatima sa slika vidljivo je kako avion nije najbolji što se tiče njegove vlastite dinamike, već su povratne veze nužne, ali ni one ne mogu popraviti spori odziv sustava uzrokovan dugo – periodičkim aperiodskim modom.

Što se tiče rezultata sa slike 8.6. moguće je zaključiti kako sustav dobro reagira na pobudu bez puno oscilacija, ali je odziv sporiji od željenog.

Na kraju samog rada će se dati neke ideje i naputci koji bi se mogli primijeniti na letjelicu s ciljem poboljšavanja njene dinamike, kako uzdužne tako i bočne.

9. Implementacija modela leta u Simulink

U ovom poglavlju proći će se kroz implementaciju sustava upravljanja koji su objašnjeni i razrađeni u prethodnim poglavljima.

Organizacija cjelokupnog modela provela se prema [13], jer je taj model već ranije provjeren.

Slika 9.1. prikazuje najvišu razinu modela leta zrakoplova Salus. Korišteni glavni podsustavi nazvali su se po funkcijama koje obavljaju u samome modelu leta. Postoji četiri podsustava koji su međusobno povezani sabirnicama koje služe prijenosu skupa podataka. Sabirnica Z-bus sadrži sve vrijednosti 6DOF modela koje su potrebne u samome autopilotu, kao i u računanju vrijednosti okoliša.

Autopilot je definiran pomoću sustava upravljanja trajektorijom obrađenih u poglavlju 8.

Radi lakše korekcije parametara, napravila se datoteka *simstart_salus.m* koja sadrži sve potrebne podatke kako bi se model uspješno pokrenuo. Parametri koji su definirani tom datotekom naznačeni su plavom bojom u modelu leta kao što je prikazano na slici 9.2.

Slika 9.1. Najviša razina strukture modela

Glavna razlika u modelu koji se ovdje koristio i modelu koji je služio kao vodilja [13] nalazi se u podsustavu PILOT, gdje su se uvele povratne petlje kako bi se osposobio autopilot.

U ostalim podsustavima nisu napravljene velike promjene, osim onih potrebnih kako bi se model prilagodio ovoj letjelici. Iz tog razloga neće se previše objašnjavati svaki dio ovoga modela, nego zadaća samo glavnih podsustava koji se vide na slici 9.1. Za detaljniji opis svakog podsustava čitatelju se preporučuje prolazak kroz literaturu[13].

Blok OKOLIŠ

Zadatak ovog bloka bio je zaprimanje vrijednosti visine letenje koja se nalazi u Z-bus sabirnici i pravilno računanje atmosferskih uvjeta te njihovo slanje dalje u model pomoću U-bus sabirnice.

Blok VIZUALIZACIJA

Koristeći ovaj blok bilo je moguće prikazati avion u letu pomoću *OpenSource* programa FlightGear, što je pomoglo prilikom izvođenja simulacija kako bi se pratilo ponašanje letjelice.

Blok SALUS LETJELICA

Zadaća ovog bloka je računanje svih potrebnih vrijednosti koje su se koristile prilikom leta zrakoplova. U sebi sadrži parametre leta, kao i dinamiku cijele letjelice kako bi se mogla što vjernije izračunati 6DOF model. Taj 6DOF model se dalje šalje na ostale blokove pomoću Zbus sabirnice kako bi se zatvorila povratna petlja te omogućilo letenje zrakoplova.

9.1. Blok PILOT

Prilikom projektiranja ovog bloka koristili su se modeli upravljanja visine i smjerom leta koji su se dobili u prijašnjim poglavljima.

Glavna zadaća ovog bloka je omogućiti letjelici autonomno letenje pri unaprijed zadanim parametrima leta.

Slika 9.2. prikazuje korišteni model pomoću kojega se uspjelo u tom naumu te je letjelica bila sposobna postići autonomni let.

Slika 9.2. Prikaz bloka PILOT

Glavne značajke bloka su podsustavi visina leta, smjer leta i brzinski_ks. Svaki od njih posjeduje potrebne povratne veze koje su ključne u postizanju autonomnog leta.

Osim njih moguće je vidjeti tri podsustava koji se nalaze odmah iza *Bus selectora* koji služe kako bi se dobile potrebne vrijednosti iz Z-bus sabirnice. Njihovi elementi se nisu prikazali jer svaki od njih sadrži jedan *Demux* element s potrebnim brojem izlaza i ulaza.

Podsustav naziva Virtualne komande vidljivog na slici 9.2., pretvara signale krilaca i kormila dubine u virtualne komande pomoću izraza iz literature [10], dok izlazne vrijednosti čine komande umanjenje za faktor nelinearnosti. Takav pristup potreban je pošto letjelica koristi *elevone* za upravljačke površine, te nije moguće razdvojiti komande za krilca i kormila dubine. Više detalja o samome bloku moguće je pronaći u prethodno navedenoj literaturi[13].

9.1.1. Podsustav smjer leta

Slika 9.3. prikazuje podsustav naziva smjer leta kojemu je zadaća promijeniti izvorni smjer leta i potom zadržati novi smjer, dok mu se ne da nova pobuda.

Vrijednosti pojačanja regulatora u povratnim vezama dani su u tablici 8.2., dok se sami sustav precrtao sa slike 8.1.

Slika 9.3. Podsustav smjer leta

Za pobudu sustava odabrala su se dva različita rješenja. Prvo rješenje je zadavanje fiksne vrijednosti kuta skretanja pomoću bloka chi_referentno, čiji bi se utjecaj vidio od samog početka simulacije.

Drugo rješenje osmišljeno je preko dva *Step* bloka koji su namješteni tako da zrakoplov prvih 10 sekundi leti horizontalno bez ikakve promjene kuta skretanja, nakon čega mu se zadaje željeni kut skretanja, koji je u ovom primjeru bio 35 °. Nakon te pobude pratilo se ponašanje zrakoplova kako bi se provjerila njegova stabilizacija po pitanju novog kuta skretanja koji se htio zadržati. Kao drugi dio te pobude zadao se kut skretanja u iznosu od -35 ° nakon proteklih 50 sekundi kako bi se letjelica vratila na početni pravac leta.

Gore opisanu pobudu moguće je vidjeti na slici 9.4., dok je vrijednosti svakog *Step* bloka moguće vidjeti u tablici 9.1.

	Step time	Initial value	Final value
Step 1	10	0	0,611
Step 2	50	0	-0,611

 Tablica 9.1.
 Parametri Step blokova

9.1.2. Podsustav visina leta

Slika 9.5. prikazuje podsustav visina leta kojemu je zadaća održavanje visine leta na kojoj se letjelica nalazi ili dovođenje letjelice na neku novu visinu koja se traži.

Vrijednosti pojačanja regulatora u povratnim vezama dani su u tablici 8.4., dok se sami sustav precrtao sa slike 8.4.

Pobuda ovog sustava ostvaruje se pomoću konstante h_referentno koja se postavlja prije samoga početka simulacije. Tijekom izrade rada referentna vrijednost visine postavila se kao početna visina leta od 750 m kako bi se provjerila sposobnost letjelice da zadrži predodređenu visinu leta.

9.1.3. Podsustav brzinski koordinantni sustav

Slika 9.6. prikazuje podsustav zadužen za proračunavanje vrijednosti kuta skretanja i kuta penjanja koje su se kasnije koristile.

Sustav kao takav definiran je preko izraza (9.1).

$$V_{K}^{0} = L_{OV}V_{K}^{V} = L_{\chi}(-\chi)L_{\gamma}(-\gamma) \begin{bmatrix} V_{K} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} V_{K}cos\chi cos\gamma \\ V_{K}cos\gamma sin\chi \\ -V_{K}sin\gamma \end{bmatrix}$$
(9.1)

Slika 9.6. Podsustav brzinski koordinatni sustav

9.2. Rezultati simulacije

Trajanje simulacije postavilo se u iznosu od 100 sekundi leta u realnom vremenu, dok se početna visina leta postavila na iznos od 750 m.

Slika 9.7. Prikaz putanje letjelice u 3D prostoru

Slika 9.7. prikazuje putanju letjelicu u 3D prostoru, dok su na slikama 9.8. - 9.13. prikazani parametri leta.

Slika 9.14. prikazuje usporedbu dobivenog i zadanog kuta skretanja.

Fakultet strojarstva i brodogradnje

71

Slika 9.11. Promjena visine u ovisnosti o vremenu

Slika 9.12. Odziv napadnog kuta i kuta skretanja

Slika 9.13. Komponente aerodinamičke brzine i njen iznos

Fakultet strojarstva i brodogradnje

73

Slika 9.14. Prikaz kuta skretanja u usporedbi sa zadanom pobudom

9.3. Diskusija o uvođenju Pixhawk – a u simulacijsku petlju

Tijekom pisanja rada razmatrala se ideja o implementaciji Pixhawk cube pilot-a koji bi poslužio prilikom izvođenja HIL (eng. *Hardware-in-the-Loop*) simulacije.

Pixhawk je komercijalno rješenje po pitanju autopilota za kojega su već napravljene razne biblioteke i modeli letjelica, od klasičnih zrakoplova, helikoptera, bespilotnih letjelica do quadcoptera.

Prilikom njegove implementacije blok PILOT sa slike 9.1 bio bi učitan na sami uređaj te više ne bi bio potreban u samome modelu.

Više detalja o samom uređaju i njegovim specifikacijama moguće je pročitati na njihovoj stranici i u danom User Guide-u[14]. Nažalost zbog manjka vremena ideja se nije implementirala već je ostala samo na razini diskusije.

Prilikom traženja instrukcija vezanih za povezivanje Pixhawk-a i izrađenog Simulink modela došlo se do spoznaje kako je ideja izvediva. Štoviše, postoji dovoljno literature na temu te se otvara mogućnost nadogradnje na ovaj rad po tom pitanju.

Glavna vodilja tijekom istraživanja bila je službena dokumentacija izdana od strane Matlaba [15]. U njoj je dan *step by step guide* za uspješno povezivanje Simulink modela i Pixhawk-a. Isto su dani koraci koje je potrebno napraviti kako bi se model letjelice i Pixhawk pripremili prije samog pokretanja.

U dokumentaciji su dane dvije izvedbe :

- Blok PILOT bio bi uploadan na Pixhawk, a model letjelice Salus bi radio u Matlabu na glavnom računalu koje bi bilo u komunikaciji s Pixhawk-om.
- Blok PILOT bio bi uploadan na Pixhawk i komunicirao bi s Matlab-om na glavnom računalu pomoću simulacije praćenja i podešavanja. Model letjelice Salus pokrenuo bi se na drugoj inačici Matlab-a na glavnom računalu preko koje bi komunicirao s Pixhawk-om.

Druga izvedba je bolja zato što je moguće mijenjati algoritam u stvarnom vremenu te pratiti kako promjene utječu na samo letjelicu. Problem koji se javlja prilikom takve izvedbe je pokretanja dva različita Simulink modela na istoj instanci Matlab-a što može narušiti njegove performanse. To je moguće riješiti pokretanjem dviju instanca Matlab-a koje bi radile u isto vrijeme i gdje bi na svakoj od njih bio pokrenut samo jedan Simulink model. Navedene izvedbe prikazane su na slikama 9.15. i 9.16.

Osim gore navedenih izvedbi što se tiče implementacije Pixhawk-a u simulacijsku petlju, moguća je i njegova implementacija na stvarnoj letjelici u realnom vremenu. Takva izvedba bila bi nadogradnja na gore spomenute no za nju je potrebno imati gotovu letjelicu koja još nije bila izrađena za vrijeme pisanja ovog rada. Izvedba kao takva bila bi odličan pokazatelj o svim

dobrim stvarima napravljenim u ovom radu, ali moguće i o nekim lošim, što su se možda predvidjele ili u krajnju ruku samo krivo pretpostavile tijekom pisanja rada.

Slika 9.15. Povezivanje Pixhawk-a s Matlab-om[15]

Slika 9.16. Povezivanje Pixhawk-a s Matlab-om uz mogućnost podešavanja algoritma autopilota[15]

10. Zaključak

Tijekom diplomskog rada napravio se model leta Salus letjelice kako bi se provjerile njezine karakteristike bočne i uzdužne stabilnosti, kao i njezine upravljivosti. Simulacija se izvela u programu Matlab/Simulink kako bi se što vjernije pratio njezin odziv.

Tijekom rada provedene su sljedeće zadaće:

- Napravljen je 3D model letjelice u programu XFLR5 i određene su inercijalne značajke nakon unošenja svih potrebnih komponenti.
- Napravljen je kompletan linearni aerodinamički model letjelice metodom projektne aerodinamike, nakon čega se napravio isti linearni model numeričkom metodom pomoću programa XFLR5.
- Projektirani su sustavi stabilizacije bočnog i uzdužnog gibanja.
- Projektirani su sustavi upravljanja visinom leta i smjerom leta.
- Sustav upravljanja implementiran je u postojeći Simulink model leta.
- Provela se simulacija leta u realnom vremenu pomoću programa FlightGear, koji je služio tijekom vizualizacije, te su se prikazali rezultati.

Nakon provedbe simulacija i proučavanja rezultata, zaključuje se kako je letjelica sposobna letjeti prema unaprijed zadanoj putanji. Prilikom leta uočili su se određeni problemi po pitanju odziva letjelice na zadanu pobudu.

- Prvi problem je i dalje oscilirajući *dutch roll* mod prilikom promjene pobude u bočnom gibanju koji se nije uspio u potpunosti riješiti, čak ni nakon uvođenja povratnih veza. Usprkos ocijeni MIL kriterija moguće ga je još poboljšati.
- Drugi problem bio bi spori odziv sustava na novozadanu visinu leta, što za letjelicu koja bi se koristila u misijama traženja osoba nije idealno
- Treći problem je gubitak visine leta koji nije jako izražen, ali je svejedno prisutan

Navedeni problemi prikazani su u tekstu grafičkim putem, te ih je moguće vidjeti na slikama 8.3., 8.5. i 9.11.

S ciljem rješavanja navedenih problema, i ujedno popravljanja same dinamike letjelice, potrebno se vratiti u sami početak procesa osnivanja letjelice gdje je moguće promijeniti neke njene značajke. Predlažu se sljedeće smjernice kako bi se popravila dinamike letjelice:

- Uvođenje upravljačkih površina na području *wingleta* koje bi služile kao kormilo pravca s ciljem poništavanja *dutch – roll* moda
- Povećanje površina wingleta
- Uvođenje većeg kuta strijela

Pošto se model leta pokazao adekvatnim što se tiče mogućnosti izvođenja autonomnog leta, postoji dovoljno mjesta za napredak, kao i njegovu daljnju uporabu.

Predlažu se sljedeće smjernice po pitanju primjene i daljnjeg razvoja ovog sustava upravljanja i elemenata zaslužnih za potpunu automatizaciju letjelice:

- Projektiranje sustava upravljanja po kutu propinjanja koji bi dodatno pomogao letjelici da održi zadanu visinu leta.
- Projektiranje sustava upravljanja polijetanja i slijetanja.
- Projektiranje sustava vođenja letjelice pomoću kojeg bi se izvodilo sistematsko pretraživanje mreže, tj. nekog područja.
- Projektiranje sustava izbacivanja padobrana koji bi automatski aktivirao padobran kada se zadovolje određeni parametri.
- Uvođenje poremećaja u prethodno navedene sustave upravljanja s ciljem poboljšavanja dinamike letjelice prilikom pojave vjetra. Implementacija takvog modela u sustav upravljanja letjelice.
- Primjena razvijenog 6DOF modela leta simulatora u svrhu obuke operatera bespilotnih letjelica.
- Implementacija razvijenog sustava upravljanja i modela leta na Pixhawk cube pilot u simulacijskoj petlji, kao i na stvarnoj letjelici u realnom vremenu.

LITERATURA

- [1] Butigan, A., Ćorić, D., Perica, A.: *Osnivanje zrakoplova I,II Salus letjelica*, Fakultet strojarstva i brodogradnje, Zagreb, 2021.
- [2] Janković, S.: *Mehanika leta zrakoplova*, Fakultet strojarstva i brodogradnje, Zagreb, 2001.
- [3] Janković, S., Vrdoljak, M.: *Performanse zrakoplova*, Fakultet strojarstva i brodogradnje, Zagreb, 2016.
- [4] Munyak, N. E.: Evaluation of XFLR5 for Predicting Stability and Dynamics of a Ready-To-Fly Trainer Aircraft, University of Alabama in Huntsville, 2020.
- [5] XFLR5. <u>http://www.xflr5.tech/xflr5.htm</u>, siječanj 2023.
- [6] Gryte, K., Hann, R., Alam, M., Rohač, J., Johansen, T. A., Fossen, T. I.: Aerodynamic modeling of the Skywalker X8 Fixed-Wing Unmanned Aerial Vehicle, ICUAS, Texas, 2018.
- [7] UIUC Propeller Database. <u>https://m-selig.ae.illinois.edu/props/volume-4/propDB-volume-4.html</u>, prosinac 2022.
- [8] T MOTOR. <u>https://store.tmotor.com/goods.php?id=938</u>, prosinac 2022.
- [9] Janković, S., Kostić, T., Vrdoljak, M.: *Stabilnost i upravljivost zrakoplova*, Fakultet strojarstva i brodogradnje, Zagreb, 2013.
- [10] Beard, R. W., McLain, T. W.: Small Unmanned Aircraft: Theory and Practice, Princeton University Press, Princeton and Oxford, 2012.
- [11] WorldData.info, <u>https://www.worlddata.info/europe/croatia</u>, siječanj 2023.
- [12] Kostić, T.: *Upravljanje i vođenje letjelica*, nastavni materijali, Fakultet strojarstva i brodogradnje, Zagreb, 2000.
- [13] Andrić, M.: Model leta bespilotne letjelice konfiguracije letećeg krila, Diplomski rad, Fakultet strojarstva i brodogradnje, Zagreb, 2014.
- [14] PX4 Autopilot, <u>https://docs.px4.io/main/en/</u>, siječanj 2023.
- [15] MathWorks, <u>https://www.mathworks.com/help/supportpkg/px4/ref/hitl-simulink-plant-example.html</u>, siječanj 2023.