Numerička simulacija napredovanja pukotina u pločama izloženim cikličkom vlačnom opterećenju

Mlikota, Marijo

Master's thesis / Diplomski rad

2010

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:529277

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-01

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

Sveučilište u Zagrebu

Fakultet strojarstva i brodogradnje

DIPLOMSKI RAD

Marijo Mlikota

Zagreb, 2010.

Sveučilište u Zagrebu

Fakultet strojarstva i brodogradnje

DIPLOMSKI RAD

Voditelj rada: Prof. dr. sc. Željko Božić

Marijo Mlikota

Zagreb, 2010.

IZJAVA

Izjavljujem da sam diplomski rad na temu "Numerička simulacija napredovanja pukotina u pločama izloženim cikličkom vlačnom opterećenju" izradio samostalno uz potrebne konzultacije s mentorom i korištenjem stručne literature navedene na kraju rada.

U Zagrebu, studeni 2010.

Marijo Mlikota

ZAHVALE

Zahvaljujem svojoj obitelji, posebno roditeljima, Tomislavu i Ivanki, na bezuvjetnoj pomoći i podršci tijekom cjelokupnog školovanja.

Posebno zahvaljujem svome mentoru Prof. dr. sc. Željku Božiću na savjetima i pomoći tijekom izrade ovog rada.

Zahvalu također upućujem svim profesorima, kolegama i prijateljima s fakulteta na lijepim godinama studiranja.

SAŽETAK

Propagacija zamornih pukotina ima veliki utjecaj na životni vijek raznih konstrukcija. Kako bi se uspješno predvidio životni vijek ciklički opterećene konstrukcije, koriste se suvremene napredne simulacije koje uz praćenje rasta pukotine omogućavaju sigurniju eksploataciju konstrukcije. U prvih tri poglavlja je dan pregled iz područja analize zamora konstrukcije, te su u četvrtom poglavlju predstavljeni modeli napredovanja zamornih pukotina, kao i osnovne jednadžbe napredovanja pukotine koje uzimaju u obzir parametre mehanike loma ΔK , ΔJ i Δ CTOD. Jednadžbe se temelje na linearno elastičnoj (ΔK) i elasto-plastičnoj (ΔJ i Δ CTOD) mehanici loma. Ukazano je na važnost praga napredovanja pukotine na relativno napredovanje pukotine. U sedmom poglavlju je, koristeći Paris-ovu, Dowling i Begley-evu i jednadžbu temeljenu na parametru Δ CTOD, simuliran životni vijek za eksperimentalni uzorak ploče sa središnjom pukotinom uzet iz literature. Rezultati simulacija su uspoređeni s eksperimentalnim rezultatima.

SADRŽAJ

SA	ŽETAK	I
P	PPIS SLIKA	IV
P	PIS TABLICA	VI
Р	PIS OZNAKA	VII
1		1
1	DDIMIENA MEHANIKE LOMA ILANALIZI ŽIVOTNOC VIJEKA KONSTDUKCIJA	ביייי ר
1.	PRIMJENA MEHANIKE LOMA U ANALIZI ZIVOTNOG VIJEKA KONSTRUKCIJA	4
	1.1. OPĆENITO O MEHANICI LOMA	2
	1.1. I OLERANCIJA OSTECENJA I KONTROLA LOMA	
	1.2. DVA CILJA ANALIZE DOPUSTENOG OSTECENJA	4 o
	1.5. ΝΑΡΚΕΔΟΥ ΑΝΙΕ Ρυκυτικε 1 LOM	0 11
_	1.4. DOPOSTENO OSTECENTE I MEHANIKA LOMA.	11
2	KONCEPT LINEARNO ELASTICNE MEHANIKE LOMA	13
	2.1. NAPREZANJE PRI VRHU PUKOTINE	13
	2.2. OPĆI IZRAZ ZA FAKTOR INTENZITETA NAPREZANJA	15
	2.3. ENERGETSKI KRITERIJ	16
	2.4. PROMJENA ENERGIJE DEFORMIRANJA	18
	2.5. ZNACENJE ENERGETSKOG KRITERIJA LOMA	19
3	KONCEPT ELASTO-PLASTIČNE MEHANIKE LOMA	20
	3.1. ENERGETSKI KRITERIJ PLASTIČNOG LOMA	20
	3.2. PORAST ENERGIJE LOMA	23
	3.3. PARAMETRI KRIVULJE NAPREZANJE-DEFORMACIJA	24
	3.4. J-INTEGRAL	24
	3.5. OTVARANJE VRHA PUKOTINE (CTOD)	25
4	MODELI NAPREDOVANJA ZAMORNIH PUKOTINA	27
	4.1. Krivulja životnog vijeka	27
	4.2. KRIVULJA RELATIVNOG NAPREDOVANJA ZAMORNE PUKOTINE	28
	4.2.1. Opis područja I	28
	4.2.2. Opis područja 2	29
	4.2.3. Opis područja 3	29
	4.3. TEMELJNI KONCEPT RASTA PUKOTINE USLIJED ZAMORA MATERIJALA	30
	4.4. UTVRĐIVANJE FUNKCIJE RELATIVNOG NAPREDOVANJA PUKOTINE	32
	4.5. PREGLED MODELA NAPREDOVANJA ZAMORNIH PUKUTINA ZA METALNE KOMPONENTE	34 25
	4.5.1. Fullsov model	35 37
	4.5.3 Model napredovania pukotina temelien na parametru ACTOD	,
	4.5.4. Povezanost modela za opisivanie napredovania zamorne pukotine	38
	4.5.5. Određivanje pragova napredovanja zamornih pukotina za različite parametre mehanike loma.	39
5	ANALIZA PROBLEMA MEHANIKE LOMA U PROGRAMSKOM PAKETU ANSYS 12.1	40
-		40
	5.1. MODELIKANJE PODRUCJA OKO PUKOTINE	40 42
	5.2. RACUNANJE PARAMETARA MEHANIKE LOMA	42 43
	6.2.2 J-integral	
	5.2.3. Otvaranje vrha pukotine δ	47
6	SIMULACUA NAPREDOVANJA PUKOTINE ZA CIKI IČKI OPTEREĆENU PLOČU SA	
SI	EDIŠNJOM PUKOTINOM	50
		50
	 drsperimientalni podaci uzokka sa skedisnjom pukutinum Integracija Paris-ove jednadžre 	30 51
	6.3. INTEGRACIJA DOWLING I BEGLEY-EVE JEDNADŽBE	
	Linearno elastična analiza	55
	Elasto-plastična analiza	58
	6.4. INTEGRACIJA JEDNADŽBE TEMELJENE NA PARAMETRU Δ CTOD	60

7	ZAKLJUČAK	64
PRII	.OZI	5
LITE	CRATURA	6

POPIS SLIKA

Slika 2.1. Dijagram utjecaja veličine pukotine na čvrstoću	5
Slika 2.2. Shematski primjeri povijesti radnih opterećenja. (a) Uobičajena opterećenja puč	Sinskih
plovnih objekata, brodova, zrakoplova; (b) uobičajena opterećenja rotirajućih strojnih elem	ienata.
	6
Slika 2.3. Krivulja napredovanja pukotine (shematski prikaz)	8
Slika 2.4. Jedan od mogućih mehanizama zamornog napredovanja pukotine	9
Slika 2.5. Krhki lom započet u vrhu pukotine. Dolje: Lomne ravnine sjaje zbog odbijanja u	ıpadne
svjetlosti	10
Slika 2.6. Četiri faze napredovanja žilavog loma	11
Slika 2.7. Dijagram preostale čvrstoće temeljen na nominalnom naprezanju	12
Slika 2.8 Načini (modovi) otvaranja pukotina	12
Slika 3.1. Tijelo proizvoljnog oblika, proizvoljne pukotine i proizvoljnog opterećenja	prema
modu I	13
Slika 3.2. Centralna pukotina s jednolikim opterećenjem: (a) beskonačna ploča, (b) ko	onačna
ploča	14
Slika 3.3. Različite varijante položaja pukotine/a u konačnoj ploči i pripadni izra	azi za
geometrijski faktor	16
Slika 3.4. Dijagram opterećenja spram pomaka za linearno-elastično tijelo	17
Slika 3.5. Konstrukcija s pukotinom	18
Slika 3.6. Dijagram opterećenje-pomak prilikom nastanka pukotine pri konstantnom poma	aku (a)
i konstantnom opterećenju (b)	19
Slika 4.1. Dijagram naprezanje-deformacija	22
Slika 4.2. <i>J</i> -krivulje za različita naprezanja i $J_{\rm R}$ krivulja	23
Slika 4.3. Putanja <i>J</i> -integrala oko vrha pukotine	25
Slika 4.4. Zatvaranje vrha pukotine uslijed djelovanja sila	26
Slika 5.1. Nivo oštećenja za razne duljine pukotine kao funkcija broja ciklusa (opterećenja))27
Slika 5.3. ΔK područja propagacije pukotine. [6]	28
Slika 5.4. Parametri rasta pukotine uslijed zamora materijala: (a) Otupljivanje i po	novno
zaoštravanje vrha pukotine; (b) $\Delta \sigma$, ΔK	31
Slika 5.5. Epruveta i opterećenje pri utvrđivanju funkcije rasta pukotine	32
Slika 5.6. Dijagramski prikazi izmjerenih podataka	33
Slika 5.7. Brzina rasta pukotine pri različitim omjerima naprezanja	34
Slika 5.8. Paris-ova jednadžba	36

Slika 6.1. Vrh i fronta pukotine	40
Slika 6.2. Primjer singularnih elemenata za 2D modele. 4	1
Slika 6.3. Mreža oko vrha pukotine generirana naredbom KSCON	42
Slika 6.4. Model četvrtine ploče sa središnjom pukotinom za numeričku analizu	43
Slika 6.5. Podjela modela na četiri površine	44
Slika 6.6. Model sa središnjom pukotinom omrežen konačnim elementima	44
Slika 6.7. Lokalni koordinatni sustav i putanja za polovicu modela	45
Slika 6.8. Model sa središnjom pukotinom omrežen konačnim elementima	46
Slika 6.9. Putanje za računanje <i>J</i> -integrala. [9]	46
Slika 6.10. Iznos J-integrala u ovisnosti o konturama	47
Slika 6.11. Definicija CTOD (δ). [9]	
Slika 6.12. Metoda određivanja parametra δ . [10]	49
Slika 7.1. Dimenzije ploče sa središnjom pukotinom. [2]	50
Slika 7.2. Životni vijek ploče utvrđen eksperimentom. [2]	51
Slika 7.3. Promjena vrijednosti parametra ΔK s veličinom pukotine	
Slika 7.4. Dijagram relativnog napredovanja pukotine (nije uzet u obzir ΔK_{TH})	53
Slika 7.5. Simulirani životni vijek ploče (nije uzet u obzir ΔK_{TH})	53
Slika 7.6. Dijagram relativnog napredovanja pukotine (uzet je u obzir ΔK_{TH})	54
Slika 7.7. Simulirani životni vijek ploče (uzet je u obzir ΔK_{TH})	54
Slika 7.8. Ovisnost vrijednosti ΔJ o veličini pukotine	55
Slika 7.9. Dijagram relativnog napredovanja pukotine (nije uzet u obzir ΔJ_{TH})	56
Slika 7.10. Simulirani životni vijek ploče (nije uzet u obzir ΔJ_{TH})	56
Slika 7.11. Usporedba vrijednosti ΔJ i ΔJ_{TH}	57
Slika 7.12. Dijagram relativnog napredovanja pukotine (uzet je u obzir ΔJ_{TH})	57
Slika 7.13. Simulirani životni vijek ploče (uzet je u obzir ΔJ_{TH})	58
Slika 7.14. Ovisnost EP ΔJ o veličini pukotine, i usporedba s LE ΔJ	59
Slika 7.15. Dijagram relativnog napredovanja pukotine (uzet je u obzir ΔJ_{TH})	59
Slika 7.16. Simulirani životni vijek ploče (uzet je u obzir ΔJ_{TH})	60
Slika 7.17. Promjena vrijednosti Δ CTOD i Δ CTOD _{TH} s veličinom pukotine	61
Slika 7.18. Dijagram relativnog napredovanja pukotine (uzet je u obzir $\Delta \text{CTOD}_{\text{TH}}$)	61
Slika 7.19. Simulirani životni vijek ploče (uzet je u obzir $\Delta \text{CTOD}_{\text{TH}}$)	
Slika 7.20. Promjena faktora d _n s veličinom pukotine	63

POPIS TABLICA

Tablica 7-1	Svoistva	materijala nloč	e na kojoj je	nroveden (eksneriment	[11]	52
Tablica /-1.	. Svojstva	materijara proc	е па којој је	proveden	eksperment.	[11]	

POPIS OZNAKA

а	m	Polovična veličine pukotine
a _p	m	Dopuštena veličina pukotine
A	m^2	Površina poprečnog presjeka
Δa	m	Prirast veličine pukotine
В	m	Debljina uzorka ili modela ploče
$C_{\rm p}, m_{\rm p}$	-	Paris-ove konstante
$C_{\rm ctod}, m_{\rm ctod}$	-	Konstante jednadžbe temeljene na parametru $\Delta CTOD$
$C_{\rm db}, m_{\rm db}$	-	Dowling i Begley-eve konstante
CTOD	m	Otvaranje vrha pukotine
CTOD _{TH}	m	Prag napredovanja pukotine za CTOD
da/dN	m/ciklus	Relativno napredovanje pukotine
Ε	MPa	Young-ov modul elastičnosti
EPFM	-	Elasto-plastična mehanika loma
F	MPa	Vanjsko opterećenje
Fa	MPa	Prosječno radno opterećenje
$F_{\rm max}$	MPa	Maksimalna nosivost
$F_{\rm p}$	MPa	Maksimalno dopušteno opterećenje
$F_{\rm s}$	MPa	Maksimalno radno opterećenje
$F_{\rm res}$	MPa	Preostala čvrstoća (opterećenje)
F_{u}	MPa	Granično opterećenje
G	MPa	Modul smicanja
G, J	-	Promjena energije deformiranja
Н	-	Razdoblje sigurne eksploatacije
J	Mpam	J-integral
$J_{ m TH}$	Mpam	Prag napredovanja pukotine za J-integral
$k_{ m t}$	-	Faktor koncentracije naprezanja
Κ	MPa√m	Faktor intenzivnosti naprezanja
K _c	MPa√m	Lomna žilavost
K _{TH}	MPa√m	Prag faktora intenzivnosti naprezanja
$K_{\rm I}$	MPa√m	Faktor intenzivnosti naprezanja za prvi način otvaranja pukotine
K_{II}	MPa√m	Faktor intenzivnosti naprezanja za drugi način otvaranja pukotine
$K_{\rm III}$	MPa√m	Faktor intenzivnosti naprezanja za treći način otvaranja pukotine
ΔK	MPa√m	Raspon faktora intenzivnosti naprezanja

$\Delta K_{\rm eff}$	MPa√m	Efektivni faktor intenzivnosti naprezanja
L	m	Dužina uzorka ili modela ploče
LEFM	-	Linearno elastična mehanika loma
n	m	Faktor očvršćivanja deformacijom
Ν	-	Broj ciklusa
ΔN	-	Prirast broja ciklusa
Р	J	Rad utrošen na deformiranje
$R, J_{\rm R}$	-	Lomna otpornost
R	-	Omjer opterećenja
S	-	Faktor sigurnosti
и, v, w	m	Pomaci u x, y i z smjeru u pravokutnom koordinatnom sustavu
U	J	Unutarnja energija deformiranja
W	J	Rad uslijed širenja pukotine
W	m	Širina uzorka ili modela ploče
<i>x</i> , <i>y</i> , <i>z</i>	-	Koordinate u pravokutnom koordinatnom sustavu
β, Η	-	Faktor geometrijske korekcije kod faktora intenzivnosti naprezanja
δ	m	Otvaranje vrha pukotine
δ	m	Pomak hvatišta opterećenja
v	-	Poissonov koeficijent
$\sigma_{ m fc}$	MPa	Lomno naprezanje
$\sigma_{ m fr}$	MPa	Čvrstoća konstrukcije s pukotinom
$\sigma_{ m m}$	MPa	Srednje naprezanje
$\sigma_{ m max}$	MPa	Maksimalno naprezanje
$\sigma_{ m min}$	MPa	Minimalno naprezanje
$\sigma_{ m nom}$	MPa	Nominalno naprezanje
$\sigma_{ m p}$	MPa	Maksimalno dopušteno naprezanje
$\sigma_{ m s}$	MPa	Maksimalno radno naprezanje
$\sigma_{ m y}$	MPa	Naprezanje u smjeru osi y
$\sigma_{ m tu}$	MPa	Vlačna čvrstoća
$\sigma_{ m ty}$	MPa	Naprezanje tečenja (granica tečenja materijala)
$\Delta \sigma$	MPa	Raspon naprezanja

1 UVOD

Matematički alat koji se koristi u analizi tolerancije oštećenja temelji se na mehanici loma. Taj alat se sastoji od koncepcija i jednadžbi koje se koriste za određivanje načina rasta pukotina i načina na koji pukotine utječu na čvrstoću konstrukcije. Unazad 30 godina mehanika loma se razvila u praktičan inženjerski alat. Stvaranje plana kontrole pukotinskih oštećenja zahtijeva poznavanje čvrstoće strukture u kojoj postoje pukotine, kao i vrijeme koje je potrebno da pukotinska oštećenja narastu do veličina opasnih za cjelovitost strukture. Prema tome, analiza tolerancije pukotine ima dva cilja za određivanje: Prvi je utjecaj pukotina na čvrstoću konstrukcije, tj. sposobnost konstrukcije da i dalje podnosi radno opterećenje. Drugi cilj je rast pukotine kao funkcije vremena [1]

U ovom radu su predstavljene metode koje se koriste u analizi i simulaciji životnog vijeka konstrukcije nakon inicijacije pukotina, čime je moguće dobiti smjernice o intervalima pregleda odgovarajućih dijelova konstrukcije. U radu su primijenjeni koncepti linearno elastične i elastoplastične mehanike loma, koje nalaze praktična upotreba u analizi životnog vijeka konstrukcijskih elemenata. Jednadžbe napredovanja pukotina koje se spominju i koje su korištene u simulacijama su Paris-ova, Dowling i Begley-eva i jednadžba temeljena na parametru Δ CTOD. [2]

Iz literature [3] su uzeti eksperimentalni rezultati testova zamora ploče sa središnjom pukotinom. Za zadanu geometriju uzoraka, izrađeni su modeli konačnih elemenata u programskom paketu ANSYS 12.1. Simulacija životnog vijeka se temelji na numeričkoj integraciji diferencijalnih jednadžbi napredovanja pukotine. Numerička integracija je provedena koristeći programski paket MATLAB R2008a. Korištene numeričke procedure su objašnjene i dane u literaturi [3].

1. PRIMJENA MEHANIKE LOMA U ANALIZI ŽIVOTNOG VIJEKA KONSTRUKCIJA

1.1. Općenito o mehanici loma [4]

Pukotinska oštećenja se javljaju na konstrukcijama iz više razloga. Jedan od njih je mogućnost da materijal sadrži strukturne greške. Pukotine se također mogu stvoriti tijekom faze izrade konstrukcije, ili kasnije kao rezultat okolnih uvjeta. Prisutnost takvih pukotina ili napuklina može značajno degradirati integritet konstrukcije pod djelovanjem primijenjenih opterećenja i okolnih uvjeta.

Mehanika loma (e. *Fracture mechanics*) je tehnička disciplina koja se zasniva na disciplinama primijenjene mehanike i znanosti o materijalima sa svrhom razumijevanja polja naprezanja i deformacije oko vrha pukotine. Poznavanje polja naprezanja i deformacije pomaže u oblikovanju pouzdanih i sigurnih konstrukcija. Koncepti oblikovanja konstrukcije temeljeni na mehanici loma imaju široku primjenu, npr. u nuklearnoj industriji, zrakoplovstvu, građevinarstvu, strojarstvu itd.

Uobičajeni koncepti oblikovanja konstrukcije koriste pristup u kojem je čvrstoća materijala parametar na kojem se temelje. Međutim, ovaj pristup ne uzima u obzir povišene razine naprezanja uzrokovane postojanjem pukotina. Prisutnost takvih naprezanja može dovesti do katastrofalnih kvarova konstrukcije.

Mehanika loma objašnjava utjecaj pukotina ili napuklina na stanje konstrukcije. Oblikovanje konstrukcije uz pristup mehanike loma uzima veličinu pukotine kao jednu važnu varijablu, također se za mjerodavan parametar materijala umjesto čvrstoće materijala uzima postojanost na lom.

U svojem najosnovnijem obliku mehaniku loma se može primijeniti za uspostavljanje odnosa između najvećeg dopuštenog opterećenja komponente konstrukcije i lokacije i veličine pukotine (stvarne ili hipotetske) unutar te komponente. Isto tako može se koristiti za predviđanje brzine kojom će pukotina doseći kritičnu veličinu uslijed zamora ili utjecaja okoliša te za određivanje uvjeta pri kojima će brzo propagirajuća pukotina biti zaustavljena. Trenutne procedure procjene dopuštenog oštećenja mogu iskoristiti te sposobnosti za materijale koji se inače ponašaju linearno elastično.

U slučajevima gdje se prije loma može pojaviti ekstenzivna elasto-plastična ili vremenski ovisna deformacija, primjena linearno elastične mehanike loma je općenito neadekvatna. U današnje

vrijeme postaju dostupne procedure kojima se mogu tretirati takvi problemi, kao i još kompliciraniji problemi pucanja zavara heterogenih materijala (kompoziti), adheziva i drugih visko-elastičnih materijala unutar kojih su prisutna znatna zaostala naprezanja.

Analiza loma se uobičajeno odvija ili korištenjem energetskog kriterija ili kriterija faktora intenziteta naprezanja. Kada se koristi energetski kriterij, postojanost na lom se karakterizira energijom potrebnom za jedinično povećanje pukotine (promjena otpuštene energije). Kada se koristi kriterij faktora intenziteta naprezanja, postojanost na lom se karakterizira kritičnom vrijednošću amplitude polja naprezanja i deformacije. Ovi kriteriji su pod određenim uvjetima ekvivalentni.

1.1. Tolerancija oštećenja i kontrola loma [5]

Kontrola loma (e. *Fracture control*) konstrukcije je usklađeni trud konstruktora, metalurga, proizvodnih inženjera, inženjera zaduženih za održavanje i stručnjaka zaštite na radu kako bi osigurali rad sustava bez katastrofalnih pojava kolapsa uzrokovanih lomom. Vrlo rijetko se lom događa kao posljedica nepredviđenih preopterećenja na neoštećenoj konstrukciji. Obično lom nastupa zbog inherentnih strukturnih mana ili pukotina na konstrukciji. Zbog cikličkih ili konstantnih "normalnih" radnih opterećenja pukotina može napredovati (počevši od inherentne strukturne mane ili koncentracije naprezanja) tj. postepeno rasti. Pukotine i oštećenja narušavaju čvrstoću konstrukcije. Tako uslijed kontinuiranog napredovanja pukotine čvrstoća konstrukcije opada sve do razine pri kojoj ne može podnijeti radna opterećenja, nakon čega nastupa lom. Svrha kontrole loma je sprječavanje loma zbog pukotina i oštećenja pri (maksimalnim) opterećenjima konstrukcije tijekom eksploatacije.

Da bi se lom spriječio, čvrstoća ne smije pasti ispod određene sigurnosne vrijednosti. To znači da je potrebno spriječiti napredovanje pukotina do razine koja bi uzrokovala pad čvrstoće ispod prihvatljive vrijednosti. U svrhu određivanja veličine pukotine koja je dopustiva, neophodno je znanje relevantno za kvantificiranje utjecaja pukotina na čvrstoću konstrukcije (kao funkciju veličine pukotine), a da bi se odredilo razdoblje sigurne eksploatacije, potrebno je znati odrediti vrijeme u kojem pukotina raste do prihvatljive veličine. Da bi to bilo moguće, potrebno je locirati mjesta gdje bi pukotine mogla nastati. Dakle, analizom se trebaju dobiti podaci o vremenima napredovanja pukotine kao i ovisnost čvrstoće konstrukcije o veličini pukotine. Ovakva vrsta analize se naziva analizom dopuštenog oštećenja (e. *Damage tolerance analysis*).

Dopušteno oštećenje je svojstvo konstrukcije da sigurno podnosi oštećenja ili pukotine do trenutka kada se uklone. Uklanjanje se može ostvariti popravkom ili zamjenom napukle

konstrukcije ili dijela konstrukcije. U fazi konstruiranja poželjno je odabrati materijal koji je otporniji na nastajanje pukotina ili unaprijediti konfiguraciju konstrukcije, čime se osigurava da pukotine neće postati opasne tijekom očekivanog ekonomičnog razdoblja eksploatacije. Drugi način je da se konstrukcija pregledava u određenim vremenskim intervalima kako bi se u slučaju postojanja pukotina mogla na vrijeme popraviti ili dijelovi konstrukcije zamijeniti. Vremena uklanjanja (zamjene) ili vrste i intervali kontrole određuju se iz vremena napredovanja pukotine dobivenog iz analize dopuštenog oštećenja. Kontrole se mogu izvoditi nekom od tehnika nerazornog ili razornog ispitivanja.

Analiza dopuštenog oštećenja, tj. njeni rezultati čine osnovu za planiranje kontrole loma. Pregledi, popravci i zamjene moraju se racionalno vremenski planirati korištenjem podataka dobivenih analizom dopuštenog oštećenja. Kontrola loma je kombinacija mjera kojima se želi spriječiti lom uzrokovan pukotinama tijekom eksploatacije. Može sadržavati mjere kao što su: analiza dopuštenog oštećenja, odabir materijala, bolje oblikovanje konstrukcije, ispitivanje konstrukcije i plan održavanja/pregledavanja/zamjene. Opseg mjera kontrole loma ovisi o kritičnosti dijela, o ekonomskim posljedicama ukoliko je konstrukcija izvan pogona i o šteti koja bi nastala uslijed loma (uključujući gubitke života).

Matematički alat koji se koristi u analizi dopuštenog oštećenja zove se mehanika loma. Mehanika loma daje koncepte i jednadžbe vezano uz napredovanje pukotina i njihov utjecaj na čvrstoću konstrukcije. Iako mehanika loma nije apsolutno točna, svojim je razvojem kroz nekoliko proteklih decenija evoluirala u vrlo praktičan inženjerski alat zadovoljavajuće točnosti. Netočna rješenja u primjeni mehanike loma su najčešće rezultat loših ili krivih ulaznih podataka, a ne neadekvatnosti korištenih koncepata.

1.2. Dva cilja analize dopuštenog oštećenja [5]

Planiranje kontrole loma zahtijeva poznavanje utjecaja pukotina na čvrstoću konstrukcije i vremena potrebnog da pukotine narastu do neprihvatljive veličine. Prema tome, analiza dopuštenog oštećenja ima dva cilja:

- Odrediti utjecaj pukotina na čvrstoću;
- Odrediti napredovanje pukotine kao funkciju vremena.

Slika 1.1. Dijagram utjecaja veličine pukotine na čvrstoću.

Slika 1.1 daje kvalitativni dijagramski prikaz utjecaja veličine pukotine na čvrstoću. U mehanici loma veličina pukotine se uobičajeno označava oznakom *a*. Čvrstoća je izražena preko opterećenja, *F*, koje konstrukcija može izdržati prije nego što nastupi lom (opterećenje loma). Pod pretpostavkom da nova konstrukcija nema značajnih oštećenja (a = 0), njena čvrstoća je jednaka graničnoj projektnoj čvrstoći (opterećenju) F_u . Potrebno je naglasiti da je čvrstoća nove, neoštećene konstrukcije konačna. Lom bi trebao nastupiti kada se konstrukcija podvrgne opterećenju F_u , u protivnom se konstrukcija smatra predimenzioniranom.

U procesu konstruiranja uvijek se koristi neki oblik faktora sigurnosti *S*. U nekim tehničkim područjima faktor sigurnosti se veže uz opterećenje. Npr., ako je maksimalno predviđeno radno opterećenje F_s , konstrukcija se projektira da izdrži $SF_s = F_u$. Konstrukcija se dimenzionira na način da može podnijeti naprezanje jednako ili malo niže od granične vlačne čvrstoće pod djelovanjem opterećenja F_s (provjere plastične deformacije su obično također nužne). Drugi način je da se faktor sigurnosti veže uz dopušteno naprezanje, tj. ako je čvrstoća materijala (granična vlačna čvrstoća) jednaka σ_{tu} , konstrukcija se dimenzionira na način da je naprezanje pri najvećem radnom opterećenju F_s manje ili jednako σ_{tu}/S . Budući da su opterećenje i naprezanje obično proporcionalni, konstrukcija je u stvarnosti sposobna nositi $SF_s = F_u$. Plastičnost može narušiti proporcionalnost, no pošto je plastičnost uglavnom ograničena na mala područja oko vrha pukotine i mjesta koncentracija naprezanja, gornji izraz je približno točan. Konstrukcija se dimenzionira uz faktor sigurnosti tako da podnese opterećenja veća od najvećeg predviđenog radnog opterećenja. Faktor sigurnosti se najčešće nalazi u rasponu između 1,5 (zrakoplovi) i 3 (razne građevinske konstrukcije).

Radno opterećenje obično varira, ali je uglavnom većinu vremena mnogo manje od F_s . Npr. opterećenja na kranovima, mostovima, pučinskim plovnim objektima, brodovima i zrakoplovima su obično mnogo manja od F_s . Tek u iznimnim uvjetima (npr. oluje) radno opterećenje doseže vrijednost F_s (Slika 1.2a). Preostalo vrijeme radno opterećenje može biti tek dio F_s , tako da je rezerva sigurnosti od loma mnogo veća od faktora sigurnosti *S*. Radna opterećenja na nekim konstrukcijama, npr. cjevovodima, posudama pod tlakom, rotirajućim strojnim dijelovima uvijek dosežu otprilike iste vrijednosti, kako prikazuje Slika 1.2b.

Slika 1.2. Shematski primjeri povijesti radnih opterećenja. (a) Uobičajena opterećenja pučinskih plovnih objekata, brodova, zrakoplova; (b) uobičajena opterećenja rotirajućih strojnih elemenata.

Nova konstrukcija ima čvrstoću F_u uz faktor sigurnosti *S*. Njena čvrstoća je konačna i prema tome vjerojatnost pojave loma nije jednaka nuli. U slučaju da radno opterećenje dosegne vrijednost F_u (npr. u oluji) nastupa lom konstrukcije. Vjerojatnost da se to dogodi nije jednaka nuli, ali iskustvo je pokazalo da je prihvatljivo mala. Prisutnost pukotina uzrokuje pad čvrstoće ispod vrijednosti F_u . Ta čvrstoća, u prisutnosti pukotina, naziva se preostalom čvrstoćom (e. *Residual strength*), F_{res} , a dijagram koji prikazuje Slika 1.1 naziva se dijagramom preostale čvrstoće (e. *Residual strength diagram*). S preostalom čvrstoćom $F_{res} < F_u$ opada faktor sigurnosti, koji je u tom slučaju jednak: $S = F_{res} / F_s$, što je manje od $S = F_u / F_s$. Time vjerojatnost pojave loma postaje veća.

Kod pukotine veličine *a*, preostala čvrstoća iznosi F_{res} . Kod opterećenja manjih od F_{res} pukotina napreduje, a izjednačavanjem radnog opterećenja s preostalom čvrstoćom, $F = F_{res}$, nastupa lom konstrukcije u dva ili više dijela.

Kontinuiranim napredovanjem pukotina postaje veća, preostala čvrstoća manja, faktor sigurnosti također manji, a vjerojatnost loma veća. Ako se ništa ne poduzme i konstrukcija ostane u pogonu, postoji mogućnost izjednačavanja preostale čvrstoće s (najvećim) radnim opterećenjem F_s (ili s prosječnim radnim opterećenjem F_a , Slika 1.2), čime faktor sigurnosti poprima vrijednost 1 i lom nastupa već pri F_s ili čak pri F_a . To je ono što se treba spriječiti, tj. pukotina ne smije narasti tolika da lom nastupi pri radnim opterećenjima. Prema tome, konstrukcija ili njena komponenta moraju se zamijeniti prije nego što pukotina postane opasna, ili se pukotina mora otkriti i popraviti na vrijeme.

Ukoliko je poznat dijagram preostale čvrstoće i propisana minimalna dopuštena preostala čvrstoća (e. *Minimum permissible residual strength*), F_p , najveća dopuštena veličina pukotine se može odrediti iz samog dijagrama. Prema tome, prvi cilj analize dopuštenog oštećenja jest određivanje dijagrama preostale čvrstoće, koji je različit za različite dijelove konstrukcije i za različite lokacije pukotina, pri čemu su i dopuštene veličine pukotina također različite. Drugi cilj analize dopuštenog oštećenja jest određivanje krivulje napredovanja pukotine, koju prikazuje Slika 1.3. Dopuštena veličina pukotine a_p , koju prikazuje Slika 1.1, se može preslikati u krivulju koju prikazuje Slika 1.3. Pod uvjetom da se može odrediti krivulja napredovanja pukotine, moguće je odrediti razdoblje sigurne eksploatacije H (do postizanja a_p), nakon kojeg je nužno zamijeniti oštećenu konstrukciju ili njen dio. Interval kontrole konstrukcije mora biti manji od vremena H, obično se uzima kao H/2.

Slika 1.3. Krivulja napredovanja pukotine (shematski prikaz).

1.3. Napredovanje pukotine i lom [5]

Dijagrami preostale čvrstoće i napredovanja pukotine su bitno različiti, ne samo u obliku nego i u značenju. Lom je krajnji događaj koji često nastupa iznimno brzo i rezultira lomom konstrukcije u više dijelova. Nasuprot tome, pukotina napreduje sporo tijekom normalnog radnog opterećenja. Mehanizmi napredovanja pukotine i nastanka loma su također različiti. Napredovanje pukotine posljedica je jednog od sljedećih pet mehanizama:

- Zamora (e. *Fatigue*) uslijed cikličkog opterećenja;
- Naponske korozije (e. *Stress corrosion*) uslijed konstantnog opterećenja;
- Puzanja (e. *Creep*);
- Napredovanja pukotina u prisustvu vodika (e. *Hydrogen induced cracking*);
- Napredovanja pukotina uzrokovanog tekućim metalom (e. *Liquid metal induced cracking*).

Prva dva mehanizma i njihove kombinacije su najučestaliji uzroci napredovanja pukotine. Mehanizam zamornog napredovanja pukotine prikazuje Slika 1.4. Ostali mehanizmi su mogući, ali nisu bitno različiti. Čak i pri malim opterećenjima zbog velike koncentracije naprezanja postoji plastična deformacija na vrhu pukotine. Plastična deformacija nastaje klizanjem atomskih ravnina uslijed smičnih naprezanja (Slika 1.4, faza B). Kontinuiranim klizanjem komplementarnih ravnina vrh pukotine se zatupljuje (Slika 1.4, faze B-D). Već prvo klizanje u drugoj fazi uzrokuje jako malo povećanje pukotine Δa . Prilikom uklanjanja opterećenja (ili tlačnog opterećenja) vrh pukotine ponovno postaje oštar. U slijedećem ciklusu opterećivanja proces se ponavlja, pukotina raste ponovno za Δa . Povećanje pukotine po ciklusu, Δa , je veoma malo, reda veličine 10^{-10} – 10^{-6} m, međutim nakon dovoljno velikog broja ciklusa opterećivanja konstrukcije, npr. 10^4 – 10^8 ciklusa, pukotina može narasti za 20 do 30 mm. Pukotina može uzrokovati lom konstrukcije. Postoje tek dva mehanizma nastajanja loma: krhki lom (e. *Cleavage*) i žilavi lom (e. *Rupture*).

Krhki lom predstavlja razdvajanje atomskih ravnina. Svako zrno ima zasebnu ravninu pogodnu za razdvajanje atomskih ravnina što uzrokuje ravninski lom (Slika 1.5). Ravnine loma su dobri reflektori zraka upadne svjetlosti. Rezultat toga je da krhki lom sjaji dok je svjež, dok nakon nekog vremena gubi sjaj uslijed oksidacije.

Slika 1.4. Jedan od mogućih mehanizama zamornog napredovanja pukotine.

Slika 1.5. Krhki lom započet u vrhu pukotine. Dolje: Lomne ravnine sjaje zbog odbijanja upadne svjetlosti.

Drugi mehanizam, žilavi lom, prikazuje Slika 1.6. Svi konstrukcijski materijali sadrže čestice i uključine. Čestice su uglavnom složeni sastojci legirnih elemenata koji se koriste kako bi se poboljšala željena svojstva materijala. Ispočetka čestice ili ne prijanjaju, ili popucaju, čime se formiraju široke praznine u blizini vrha pukotine. U krajnjoj fazi više takvih manjih praznina se ujedine u jednu veliku i nastupa žilavi lom. Zbog nepravilne površine žilavi lom propušta svjetlost zbog čega ima tamno sivu boju.

Slika 1.6. Četiri faze napredovanja žilavog loma.

I krhki i žilavi lom su brzi procesi. Krhki lom može napredovati brzinama do 1600 m/s, dok žilavi lom napreduje brzinama od oko 500 m/s, iako može biti i sporiji. Lom konstrukcije je stabilan sve dok je uzrokovan nekim od mehanizama napredovanja pukotine. Nakon određenog vremena nastupaju krhki ili žilavi lom, tj. lom konstrukcije ulazi u nestabilnu fazu.

1.4. Dopušteno oštećenje i mehanika loma [5]

Metode mehanike loma su razvijene kako bi se omogućilo određivanje preostale čvrstoće konstrukcije i analiza napredovanja pukotina uzrokovanih nekim od mehanizama. Mehanika loma (kao i sve inženjerske mehanike) koriste naprezanja umjesto opterećenja. Prema tome, dijagram preostale čvrstoće se uobičajeno temelji na naprezanju koje konstrukcija može podnijeti prije pojave loma, σ_{res} .

Slika 1.7. Dijagram preostale čvrstoće temeljen na nominalnom naprezanju.

Dijagram preostale čvrstoće temeljen na naprezanju prikazuje Slika 1.7. Lom nastupa kada se naprezanje izjednači s σ_{res} . Budući da se događanja u vrhu pukotine temelje na lokalnim naprezanjima, potrebno je dovesti u vezu ta lokalna naprezanja s primijenjenim naprezanjem. S tim u vezi potrebno je razlikovati tri glavna načina otvaranja pukotine (Slika 1.8).

Slika 1.8 Načini (modovi) otvaranja pukotina.

Načini otvaranja pukotine se uobičajeno označavaju rimskim brojevima I, II i III. pri tome vrijedi sprega: odcjepni način (način I), smicanje (način II) i poprečno smicanje (način III). Jednadžbe naprezanja u vrhu pukotine su vrlo slične za sva tri moda. U praksi se većina pukotina otvara prema načinu I, dok se druga dva načina ne pojavljuju zasebno, ali se mogu pojaviti kao kombinacija s načinom I, npr. I-II, I-III, ili I-II-III.

2 KONCEPT LINEARNO ELASTIČNE MEHANIKE LOMA [6]

2.1. Naprezanje pri vrhu pukotine

Slika 2.1 prikazuje tijelo proizvoljnog oblika s pukotinom proizvoljne veličine i proizvoljnog opterećenja (mod I). Materijal tijela idealizira se elastičnim, tj. vrijedi Hookeov zakon. Za takav se slučaj može upotrijebiti teorija elastičnosti u svrhu utvrđivanja polja naprezanja. Razmatrati će se dvoosno stanje naprezanja s komponentama naprezanja u smjeru osi *x* i *y*. Može se razmatrati i troosno stanje naprezanja ako se uzme u obzir sprječavanje lokalnog smanjenja debljine.

Slika 2.1. Tijelo proizvoljnog oblika, proizvoljne pukotine i proizvoljnog opterećenja prema modu I.

Naprezanja u materijalnom elementu kojeg prikazuje Slika 2.1 može se odrediti pomoću sljedećih jednadžbi (zanemarujući ograničavanje smanjenja debljine):

$$\sigma_{x} = \frac{K}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right)$$

$$\sigma_{y} = \frac{K}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right)$$

$$\sigma_{z} = 0$$

$$\tau_{xy} = \frac{K}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2}$$

(2.1)

U slučaju kada je $\theta = 0$ (kut između ravnina presjeka i pukotine) vrijedi ($x = r \operatorname{za} \theta = 0$):

$$\sigma_{\rm x} = \frac{K}{\sqrt{2\pi x}}$$

$$\sigma_{\rm y} = \frac{K}{\sqrt{2\pi x}}$$
(2.2)

Za ravninu y = 0 (za koju gornje jednadžbe vrijede) poprečna i uzdužna naprezanja (σ_x i σ_y) su istog iznosa. Naprezanja ovise o udaljenosti *x* od vrha pukotine (što je veća udaljenost od vrha pukotine naprezanja su manja) i o faktoru intenzivnosti naprezanja (e. *Stress intensity factor*) *K*. *K* se obično označava sa K_I , K_{II} , K_{III} , sukladno modovima opterećenja I, II, III, ali s obzirom da se ovdje razmatra samo mod opterećenja I, *K* će se označavati kao K_I . Jednadžbe su izvedene za proizvoljno tijelo, opterećenje i pukotinu, stoga jed. (2.2) vrijede za bilo koje elastično tijelo i primjenjive su za svu problematiku vezano uz pukotine.

Razmatrati će se beskonačno velika ploča s centralnom pukotinom, opterećena jednolikim jednoosnim nominalnim naprezanjem σ (Slika 2.2a).

Slika 2.2. Centralna pukotina s jednolikim opterećenjem: (a) beskonačna ploča, (b) konačna ploča.

Veličina pukotine je 2*a*. Pukotine u mehanici loma koje imaju dva vrha se označavaju s 2*a*, dok se one s jednim vrhom označavaju s *a*. Naprezanje pri vrhu pukotine će biti proporcionalno narinutom opterećenju, a ovisit će i o veličini pukotine (što je veća pukotina, veća će biti i naprezanja), te vrijedi:

$$\sigma_{\rm y} = \frac{C\sigma\sqrt{a}}{\sqrt{2\pi x}} \tag{2.3}$$

gdje je C bezdimenzijski parametar, te za slučaj beskonačno velike ploče vrijedi $C = \pi^{1/2}$, te je stoga:

$$\sigma_{\rm y} = \frac{\sigma \sqrt{\pi a}}{\sqrt{2\pi x}} \tag{2.4}$$

Izjednačavanjem jedn. (2.2) i (2.4) zaključuje se da za konfiguraciju koju prikazuje Slika 2.2a vrijedi:

$$K = \sigma \sqrt{\pi a} \tag{2.5}$$

2.2. Opći izraz za faktor intenziteta naprezanja

Pristup korišten za prikaz značaja K nije limitiran samo za beskonačno veliku ploču. Kada je u pitanju ploča konačne širine (Slika 2.2b) dimenzije će imati utjecaj na naprezanje pri vrhu pukotine, tj. naprezanje će biti veće kada je W manji, a C mora biti funkcija od W i od a. Za konfiguraciju koju prikazuje Slika 2.2b vrijedi:

$$C = \sqrt{\pi \sec \frac{\pi a}{W}}$$

$$\sigma_{y} = \frac{\sqrt{\pi \sec \frac{\pi a}{W}} \sigma \sqrt{a}}{\sqrt{2\pi x}}$$

$$K = \sqrt{\pi \sec \frac{\pi a}{W}} \sigma \sqrt{a}$$

$$K = C\left(\frac{a}{L}\right) \sigma \sqrt{a}$$
(2.6)

gdje je *L* unificirana dimenzija duljine geometrije napuknutog dijela. Ako je *a* vrlo mali, a *W* vrlo velik, onda vrijedi $(sec(\pi a/W))^{1/2} = 1$. U praktičnoj primjeni gornjih jednadžbi svi *C* su podijeljeni s $\pi^{1/2}$, a funkcija $C(a/L)/\pi^{1/2}$ je preimenovana u β i dobiva se konačni izraz za geometrijski faktor (e. *Geometry factor*):

$$\sigma_{y} = \frac{\beta \sigma \sqrt{\pi a}}{\sqrt{2\pi x}} = \frac{K}{\sqrt{2\pi x}}$$

$$K = \beta \sigma \sqrt{\pi a}$$
(2.7)

Jednadžbe vrijede za sve vrste pukotina jer su izvedene iz proizvoljno odabranog tijela, pukotine i proizvoljnog opterećenja moda I. Za svaku pukotinu u praksi potrebno je jedino izvesti vrijednost ili funkciju β . Za mnoge slučajeve β je već unaprijed izračunat i može se naći u raznim priručnicima. U svim jednadžbama ovog poglavlja naprezanje σ je nominalno naprezanje u presjeku bez pukotine. Činjenica da su naprezanja veća u presjeku s pukotinom kada se *W* smanjuje je uzeta u obzir u izrazu za parametar β .

Slika 2.3. Različite varijante položaja pukotine/a u konačnoj ploči i pripadni izrazi za geometrijski faktor.

2.3. Energetski kriterij

Zakon očuvanja energije nalaže da je rad (P) utrošen na deformiranje neke konstrukcije jednak akumuliranoj unutarnjoj energiji deformiranja (U), tj.:

$$P - U = 0 \tag{2.8}$$

Rad uslijed djelovanja opterećenja jednak je $\int F d\delta$ gdje je *F* vanjsko opterećenje, a δ je pomak hvatišta opterećenja. U slučaju linearno-elastičnog materijala rad i/ili energija deformiranja jednaki su $\frac{1}{2}F\delta$ (Slika 2.4), ali se energija deformiranja također može odrediti i na drugi način.

Slika 2.4. Dijagram opterećenja spram pomaka za linearno-elastično tijelo.

Promatrat će se mali materijalni element jedinične veličine koji je podvrgnut jednoosnom razvlačenju. Ukupni rad naprezanja σ potreban da se pojavi deformacija veličine $d\varepsilon$ je $\int \sigma d\varepsilon$, što za linearno-elastični materijal iznosi $\frac{1}{2}\sigma\varepsilon$. Uvodeći Hooke-ov zakon u izraz i uzimajući u obzir cjelokupno tijelo ili konstrukciju (integral po cjelokupnom volumenu, odnosno u sva tri smjera), dobiva se:

$$U = \iiint \frac{\sigma^2}{2E} \,\mathrm{dx} \,\mathrm{dy} \,\mathrm{dz} \tag{2.9}$$

U slučaju linearno-elastičnog štapa opterećenog vlačno, naprezanje je jednako u svim volumnim elementima te je ukupna energija deformacije jednaka radu jednog materijalnog elementa pomnoženim s volumenom tijela *AL*, gdje je *A* površina poprečnog presjeka štapa, a *L* njegova duljina. Ako se dobivena energija deformacije za razmatrani štap uvrsti u zakon očuvanja energije, dobiva se:

$$\frac{1}{2}F\delta - \frac{\sigma^2}{2E}LA = 0 \tag{2.10}$$

Ova jednadžba je općenita i vrijedi za slučaj pukotine u konstrukciji duljine 2a (Slika 2.5). U slučaju ograničene plastifikacije odnos opterećenja i pomaka je i dalje linearan. Ako konstrukcija sadrži pukotinu nešto veće duljine a+da, njena krutost je manja (Slika 2.6). Ako se pukotina

produlji za *da*, zakon očuvanja energije sadržavati će i dodatni član koji opisuje rad uslijed širenja pukotine (*W*).

Slika 2.5. Konstrukcija s pukotinom.

$$\frac{\mathrm{d}}{\mathrm{d}a}(P-U) = \frac{\mathrm{d}W}{\mathrm{d}a} \tag{2.11}$$

Gornja jednadžba sada opisuje samo promjenu energije, a ne njen apsolutan iznos. Ako lom nije nastupio ova jednadžba ne vrijedi, a ako jest, jednadžba mora vrijediti. Drugim riječima, možemo je shvatiti kao kriterij nastanka loma.

2.4. Promjena energije deformiranja

Mogu se razmotriti dva različita slučaja: prvi, kada se pomak ne mijenja preko duljine *da* pri pojavi loma i drugi, kada je opterećenje konstantno preko duljine d*a* pri pojavi loma (Slika 2.6). U prvom slučaju je dF = 0, pošto nema pomaka, dok je u drugom rad jednak razlici pomaka prije i nakon nastanka pukotine. Za oba slučaja vrijedi:

$$\frac{\mathrm{d}U}{\mathrm{d}a} = \frac{\mathrm{d}W}{\mathrm{d}a} \tag{2.12}$$

Lijeva strana izraza naziva se promjenom energije deformiranja (e. *Strain energy release rate*), a desna strana energija loma (e. *Fracture energy or fracture resistance*). Kako je energija deformiranja pod utjecajem pukotine, može se pisati: $U = U_{\text{bez pukotine}} + U_{\text{uslijed pukotine}}$. Za vrlo veliku ploču jedinične debljine (s centralnom pukotinom duljine 2*a*) u konačnici se dobiva izraz:

$$U = \frac{\sigma^2}{2E}LW + \frac{\pi\sigma^2 a}{E}$$
(2.13)

Slika 2.6. Dijagram opterećenje-pomak prilikom nastanka pukotine pri konstantnom pomaku (a) i konstantnom opterećenju (b).

Ukoliko se izraz derivira po *a* i uzme u obzir pukotina s dva vrha, dobiva se sljedeći izraz po vrhu pukotine i po jedinici debljine:

$$\frac{\mathrm{d}U}{\mathrm{d}a} = \frac{\pi\sigma^2 a}{E} \tag{2.14}$$

Tako izraz za kriterij loma postaje:

$$\frac{\mathrm{d}W}{\mathrm{d}a} = \frac{\pi\sigma^2 a}{E} \tag{2.15}$$

Pri tome se d*W*/d*a* naziva otpornost lomu (e. *Fracture resistance*) i često označava s *R*, dok se d*U*/d*a*, tj. promjena energije deformiranja označava s *G*, te vrijedi G = R.

2.5. Značenje energetskog kriterija loma

Zadnja jednadžba pokazuje da se lom pojavljuje kada produkt $\pi\sigma^2 a$ dosegne vrijednost *ER*, pri čemu $\pi\sigma^2 a$ predstavlja kvadrat koeficijenta intenzivnosti naprezanja, *K*. Stoga, može se zaključiti da će doći do pojave loma kada vrijedi $K = (ER)^{1/2}$, pri čemu $(ER)^{1/2}$ predstavlja žilavost K_c , a otpornost lomu jest $R = K_c^2/E$. Možemo zaključiti da je kriterij loma izveden preko zakona očuvanja energije identičan kriteriju loma prethodno izvedenom na temelju naprezanja u vrhu pukotine.

3 KONCEPT ELASTO-PLASTIČNE MEHANIKE LOMA

Koncept poznat kao elasto-plastična mehanika loma (EPFM) koristi se u slučajevima kada je lom praćen značajnom plastičnom deformacijom. Kao relevantan parametar za EPFM najčešće se koristi *J*-integral, koji zapravo predstavlja promjenu energije deformiranja (e. *Strain energy release rate*). [6]

Energijski kriterij za linearno elastičnu mehaniku loma (LEFM) može se izravno koristiti i za elasto-plastični lom jednostavnim dodavanjem jednadžbe za opisivanje krivulje u nelinearnom području krivulje naprezanje-istezanje (σ - ε). To izravno dovodi do izraza za *J*-integral. [6]

Također će biti objašnjen i drugi parametar elasto-plastične mehanike loma, otvaranje vrha pukotine δ .

3.1. Energetski kriterij plastičnog loma [6]

Neovisno o tome razmatra li se materijal u elastičnom ili plastičnom području, zakon očuvanja energije mora vrijediti. U prethodnom poglavlju izveden je kriterij loma:

$$\frac{\mathrm{d}U}{\mathrm{d}a} = \frac{\mathrm{d}W}{\mathrm{d}a} \tag{3.1}$$

ili

$$G = R$$

Gdje R predstavlja energiju loma, dok G predstavlja promjenu energije deformiranja.

Za elastično ponašanje dobiven je izraz:

$$\frac{\beta^2 \pi \sigma^2 a}{E} = \frac{\mathrm{d}W}{\mathrm{d}a} \tag{3.2}$$

Uvrštavanjem Hooke-ovog zakona ($\sigma = \varepsilon E$) u gornju jednadžbu, promjena otpuštene energije, dU/da, može se napisati u pogledu naprezanja i deformacija:

$$\beta^2 \pi \sigma \varepsilon a = R \tag{3.3}$$

Jed. (3.3) može se transformirati u jed. (3.4), jer je poznata veza naprezanja i deformacije ($\sigma = \varepsilon E$).

$$\frac{\beta^2 \pi \sigma^2 a}{E} = R \tag{3.4}$$

Iz jed. (3.4) može se dobiti izraz za naprezanje kod kojeg nastupa lom:

$$\sigma_{\rm fr} = \sqrt{\frac{ER}{\beta^2 \pi a}} = \frac{K_{\rm c}}{\beta \sqrt{\pi a}}$$
(3.5)

U slučaju plastičnih deformacija geometrijski faktor β se mijenja, ali je i dalje bezdimenzionalan te se označava s oznakom *H*. U tom slučaju, izraz za promjenu energije deformiranja glasi:

$$H\sigma\varepsilon a = R \tag{3.6}$$

Jed. (3.3) i (3.6) daju identične rezultate, razlikuju se tek u obliku bezdimenzijskog faktora.

Nadalje, *G* se u slučaju nelinearnih materijala označava s *J*, dok se *R* kod nelinearnih materijala označava sa J_R . Time se jednadžbe dobivene za elastično ponašanje materijala pretvaraju u jednadžbe za plastično ponašanje materijala:

$$J = J_{\rm R} \tag{3.7}$$

$$H\sigma\varepsilon a = J_{\rm R}$$

Na umu treba imati da su to iste jednadžbe dobivene iz zakona očuvanja energije, samo su se promijenile pojedine oznake. Iako je u prethodnom poglavlju korišten Hookeov zakon za linearno ponašanje materijala (linearna veza između naprezanja i deformacije), iste jednadžbe se mogu primijeniti i na plastično područje ako postoji funkcija koja opisuje nelinearnu vezu između ε i σ , na taj način da odgovara ponašanju materijala. Najpogodnija (empirijska) funkcija nelinearnog odnosa naprezanja i deformacije (Slika 3.1) je eksponencijalna funkcija, poznata kao Ramberg-Osgood-ova jednadžba:

$$\varepsilon = \frac{\sigma}{E} + \frac{\sigma^n}{F}$$
(3.8)

ili

ili

 $\varepsilon = \varepsilon_{\rm el} + \varepsilon_{\rm pl}$

Slika 3.1. Dijagram naprezanje-deformacija.

S obzirom da se Ramberg-Osgood-ova jednadžba može koristiti za evaluaciju kriterija loma te kako prvi pribrojnik te jednadžbe predstavlja već diskutirani elastični (linearni) dio σ - ε krivulje, potrebno je razmotriti učinke plastičnog dijela (drugog pribrojnika) Ramberg-Osgood-ove jednadžbe:

$$\varepsilon_{\rm pl} = \frac{\sigma^n}{F} \tag{3.9}$$

Navedena jednadžba prelazi u Hooke-ov zakon za n = 1 (F = E).

Uvrštavanjem jed. (3.9) u jed. (3.7) dobiva se:

$$\frac{H\sigma^{n+1}a}{F} = J_{\rm R} \tag{3.10}$$

Za n = 1 (F = E) gornji izraz prelazi u jed. (3.4), čime se dolazi do zaključka da je $H = \pi \beta^2$. Kriterij loma, nakon što je definiran i plastični dio, se može zapisati na sljedeći način:

$$\frac{\beta^2 \pi \sigma^2 a}{E} + \frac{H \sigma^{n+1} a}{F} = \frac{\mathrm{d}W}{\mathrm{d}a} \tag{3.11}$$

U praksi se energija loma, dW/da, označava s oznakom J_R , što djeluje zbunjujuće jer ona zapravo iznosi $R + J_R$. Prema tome lom nastupa za slučaj:

$$J_{\rm el} + J_{\rm pl} = J_{\rm R}$$

odnosno

$$\frac{\beta^2 \pi \sigma^2 a}{E} + \frac{H \sigma^{n+1} a}{F} = J_{\rm R}$$
(3.12)

Energija loma J_R predstavlja lomnu postojanost materijala.

Iz prethodnih razmatranja vidi se da primjena EPFM u odnosu na LEFM nije ništa kompliciranija i/ili nezgodnija. Najveća razlika je u tome što se kod EPFM treba primijeniti iterativni postupak za rješavanje jed. (3.11) te što *H* ne ovisi samo o geometriji nego i o *n*, te je zbog toga *H* teže odrediti nego β .

3.2. Porast energije loma [6]

EPFM se bavi materijalima visoke žilavosti. Kod takvih materijala energija loma (J_R) se povećava tijekom procesa loma. To se očituje mogućim sporim i stabilnim lomom do određene točke kada se pojavi nestabilnost koja uzrokuje brz i nekontrolirani lom.

Slika 3.2. *J*-krivulje za različita naprezanja i J_R krivulja.

Slika 3.2 prikazuje rastuću J_R krivulju. Lom započinje kada se J izjednači s J_R . Za neku postojeću pukotinu može se nacrtati J krivulja za nekoliko vrijednosti naprezanja, na temelju lijevog dijela jed. (3.12). Slika 3.2 prikazuje nekoliko takvih krivulja prikazano. Za naprezanje σ_a vrijednost J(a) dana je točkom A. U tom slučaju je $J < J_R$ te lom nije moguć. Povećanjem naprezanja na vrijednost σ_i , J(a) se podiže do točke B. Lom se sada počinje odvijati jer je $J = J_R$. Međutim, lom je stabilan te ne može dalje napredovati ako naprezanje ostane jednako σ_i , jer bi se tada J povećao do točke C, dok bi se J_R povećao do točke D, time bi J bio manji od J_R . Da bi lom nastavio napredovati naprezanje se mora povećati na σ_b , čime se J podiže do točke D. Tijekom povećanje naprezanja od vrijednosti σ_i do σ_b lom se odvija stabilno od veličine pukotine a do $a + \Delta a_b$. Daljnji porast naprezanja uzrokuje nastavak napredovanja loma.
Konačno, kada naprezanje dosegne vrijednost σ_{fr} funkcija *J* tangira J_R u točki E nakon koje slijedi nestabilan lom ($J > J_R$).. Tada nastaje konačni lom konstrukcije. Ako se u bilo kojem trenutku između točaka B i E ukloni opterećenje konstrukcija će ostati čitava, iako će šteta biti veća za Δa . Jed. (3.13) prikazuje uvjete nestabilnosti:

$$J = J_R$$

odnosno

$$\frac{\mathrm{d}J}{\mathrm{d}a} = \frac{\mathrm{d}J_{\mathrm{R}}}{\mathrm{d}a}$$

(3.13)

koji označavaju tangiranje J(a) krivulje i J_R krivulje.

3.3. Parametri krivulje naprezanje-deformacija [6]

Unutar jed. (3.9) eksponent n naziva se eksponent očvršćivanja deformacije (e. *Strain hardening exponent*), dok F predstavlja konstantu proporcionalnosti na jednaki način kao što E predstavlja konstantu proporcionalnosti između naprezanja i deformacije u elastičnom području te ju nazivamo modul plastičnosti (e. *Plastic modulus*). Vrijednosti za n i F ovise o razmatranom materijalu te se dobivaju eksperimentalno.

3.4. *J*-integral [5]

Koncept *J*-integrala uveo je Rice. U jednostavnom dvodimenzionalnom obliku, *J* se može definirati kao linijski integral neovisan o putanji po kojoj se određuje, i koji mjeri jačinu singularnih naprezanja i deformacija u blizini vrha pukotine. Jed. (3.14) daje izraz za *J* u općem obliku:

$$J = \int_{\Gamma} W dy - \int_{\Gamma} \left(t_i \frac{\delta u_i}{\delta x} \right) ds$$
(3.14)

gdje je:

 Γ – proizvoljna putanja oko vrha pukotine

W – gustoća energije deformiranja (tj. energija deformiranja po jedinici volumena

- $t_i = \sigma_{ij}n_j \text{trakcijski vektor u smjeru osi}$
- σ komponenta naprezanja
- n vanjski jedinični vektor okomit na putanju Γ
- *u* vektor pomaka
- s dio putanje Γ

Za elastične materijale, W predstavlja gustoću elastične komponente energije deformiranja:

$$W = \frac{1}{2}\sigma_{ij}\varepsilon_{ij} \tag{3.15}$$

gdje je ε_{ij} infinitezimalni tenzor deformacije. Za elasto-plastične materijale, uobičajeno je da se *W* rastavi na elastični i plastični dio:

$$W = W^{e} + W^{p} \tag{3.16a}$$

gdje su:

$$W^{e} = \frac{1}{2} \sigma_{ij} \varepsilon^{e}_{ij}$$

$$W^{p} = \int_{0}^{\varepsilon^{p}} \sigma d\varepsilon^{p}$$
(4.16b)

U jed. (3.16a) oznake e i p označavaju elastične i plastične komponente; ε^{p} je oznaka za ekvivalentnu plastičnu deformaciju dok je σ ekvivalentno naprezanje.

Jed. (3.17) daje izraz za J u 2D obliku. Pretpostavlja se da pukotina leži u globalnom Kartezijevom koordinatnom sustavu xy, gdje je os x paralelna s pukotinom (Slika 3.3).

$$J = \int_{\Gamma} W dy - \int_{\Gamma} \left(t_x \frac{\delta u_x}{\delta x} + t_y \frac{\delta u_y}{\delta y} \right) ds$$
(3.17)

Slika 3.3. Putanja J-integrala oko vrha pukotine.

3.5. Otvaranje vrha pukotine (CTOD) [5]

Alternativni pristup rješavanju problema EPFM temelji se na metodi otvaranja vrha pukotine, δ (e. CTOD – *Cracktip opening displacement*).

Slika 3.4 prikazuje vrh pukotine u napregnutom tijelu. Sile djeluju na razdaljini d*a* iza vrha pukotine na takav način da zatvaraju pukotinu uzduž d*a*, pukotina je nakon zatvaranja kraća za

d*a*. Sile potrebne za zatvaranje moraju biti jednake naprezanju koje je inače prisutno na otvorenoj razdaljini d*a*. Može se pretpostaviti da su ta naprezanja približno jednaka vrijednosti granice tečenja.

Slika 3.4. Zatvaranje vrha pukotine uslijed djelovanja sila.

Tijekom zatvaranja sile prelaze udaljenost *v*. Time proizvode rad u iznosu od $dP = 2 \ge 0.5\sigma_{ty}vda$ (za ploču jedinične debljine). Budući da je pomak hvatišta sila *v* povezan s δ , rad će biti jednak $dP = mCTOD\sigma_{ty}da$. Uklanjanjem sila isti iznos energije će biti otpušten, te će pukotina ponovno narasti za da. Ovo otpuštanje energije, $dP/da = mCTOD\sigma_{ty}$, je ono što se naziva promjenom otpuštene energije deformiranja *G* ili *J*. Stoga:

$$G = m\sigma_{\rm ty} {\rm CTOD}$$
(3.18)
$$J = m\sigma_{\rm ty} {\rm CTOD}$$

Prvi od ovih izraza je primjenjiv za LEFM, dok drugi za EPFM.

ili

Naravno, na idućim razdaljinama d*a* naprezanja neće uvijek biti jednaka granici tečenja, kako se pretpostavlja, ali ako i nisu, to će utjecati samo na iznos bezdimenzijskog faktora *m*. Iznos faktora *m* je približno jednaka jedinici. U slučaju *J*-integrala Iznos faktora *m* će ovisiti o *n*. U svakom slučaju, navedene jednadžbe dovode do:

$$CTOD \approx \frac{G}{\sigma_{ty}} = \frac{K^2}{E\sigma_{ty}} \quad (LEFM)$$

$$CTOD \approx \frac{J}{\sigma_{ty}} \quad (EPFM)$$
(3.19)

Do loma dolazi na kritičnoj vrijednosti *G* (ili *K*) ili kritičnoj vrijednosti *J*-integrala. Prema izrazima (4.19), Do loma će doći na kritičnoj vrijednosti CTOD, koja je definirana kao CTOD_c. Prema tome, CTOD_c se može smatrati svojstvom materijala koje karakterizira otpornost na lom, odnosno "žilavost".

4 MODELI NAPREDOVANJA ZAMORNIH PUKOTINA

4.1. Krivulja životnog vijeka

Zamor materijala predstavlja tehnički najvažniji mehanizam rasta pukotine. Iako se kod metalnih konstrukcija zamor materijala vrlo teško ili nikako ne može spriječiti, svakako ga se treba kontrolirati. Oštećenje uslijed cikličkog opterećenja ima četiri razine: inicijacija pukotine, propagacija kratke pukotine, propagacija duge pukotine i konačni lom, što ilustrira Slika 4.1. [6]

Slika 4.1. Nivo oštećenja za razne duljine pukotine kao funkcija broja ciklusa (opterećenja).

Duljina pukotine od 1mm se obično uzima kao granica između stadija propagacije kratke i duge pukotine. Ta vrijednost je također prihvaćena i kao granična vrijednost duljine pukotine koja se može utvrditi nerazarajućim metodama testiranja na konstrukciji u eksploataciji. Općenito je primijećeno da komponenta u radu provede oko 80% svog životnog vijeka u stadiju propagacije kratke pukotine. Nakon što se prisutnost pukotine detektira važno je znati kako će napredovati da bi se mogao popraviti ili zamijeniti oštećeni dio. [6]

Slika 4.2 prikazuje faze zamornog života pukotine i relevantne faktore. [7]

Slika 4.2. Faze zamornog života pukotine i relevantni faktori. [7]

4.2. Krivulja relativnog napredovanja zamorne pukotine

Karakteristična krivulja relativnog napredovanja zamorne pukotine, obično navedena kao da/dN- ΔK krivulja, ilustrirana je na Slika 4.3. Prema literaturi, ispitivanja su pokazala da se u da/dN- ΔK dijagramu pojavljuju dvije vertikalne asimptote. Dijagramski prikaz koji daje Slika 4.3 pokriva tri područja, označena brojevima I, II i III. Odgovarajuća ΔK -područja nazivaju se redom: (I) Područje praga intenzivnosti naprezanja, (II) Parisovo područje, (III) Područje nestabilnog rasta pukotine. [6]

Slika 4.3. ΔK područja propagacije pukotine. [6]

4.2.1. Opis područja I [7]

Područje I predstavlja rani razvoj zamorne pukotine i brzinu napredovanja pukotine; da/dN je obično reda veličine 10^{-6} mm/ciklus ili manja. Ovo područje je vrlo osjetljivo i uvelike pod utjecajem značajki mikrostrukture materijala kao što su veličina zrna, srednje naprezanje primijenjenog opterećenja, radna temperatura i prisutno okruženje.

Najvažnija značajka ovog područja je postojanje raspona faktora intenzivnosti naprezanja u kojem se zamorne pukotine ne bi trebale širiti. Ova vrijednost je definirana kao prag napredovanja zamorne pukotine (e. *Threshold*) i označava se simbolom ΔK_{TH} . Poznat je efekt da kod cikličkog opterećenja do otvaranja pukotine dolazi tek kada ΔK dosegne vrijednost ΔK_{TH} . Ako ΔK padne ispod te vrijednosti, napredovanje pukotine usporava i pretpostavlja se da se u potpunosti zaustavlja. Njegova se vrijednost određuje eksperimentalno ispitivanjem padajućeg ΔK kako je opisano u ASTM E647¹ standardu (2000).

Prije navedeni čimbenici utječu na vrijednost ΔK_{TH} , ali iz dostupnih podataka za velike zamorne pukotine podvrgnute cikličnom opterećenju konstantne amplitude proizlazi da je omjer naprezanja najvažniji čimbenik koji utječe na veličinu ΔK_{TH} (Dowling, 1993). Za predviđanje napredovanja pukotine bilo bi praktično kad bi se mogla primijeniti ista veza između d*a*/d*N* i ΔK za vrlo male i za vrlo velike pukotine. Međutim, inženjerska važnost faktora ΔK_{TH} je ograničena. Ukoliko je zamorna pukotina pronađena u materijalu, pitanje je da li će ona dalje napredovati pod očekivanim spektrom opterećenja. Može se pretpostaviti da neće ukoliko se ne prijeđe prag intenzivnosti naprezanja ΔK_{TH} , ali to nije nužno sigurna pretpostavka.

4.2.2. *Opis područja 2* [7]

Područje II predstavlja srednju zonu napredovanja pukotine, gdje je veličina plastične zone ispred vrha pukotine usporediva sa srednjom veličinom zrna, ali je mnogo manja od veličine pukotine. Korištenje koncepata LEFM je prihvatljivo u ovom području, također podaci slijede linearnu vezu između $\log(da/dN)$ i $\log(\Delta K)$. Brzine napredovanja pukotine su obično reda veličine 10^{-6} do 10^{-3} mm/ciklus, prema većini rezultata ispitivanja metodom ASTM E647. Ovo područje odgovara stabilnom napredovanju pukotine gdje je utjecaj mikrostrukture, ekvivalentnog naprezanja, duktilnosti, okruženja i debljine malen. Utjecaj srednjeg naprezanja je vjerojatno najznačajniji i obično rezultira usko raspoređenim linijama paralelnim jedna na drugu. Utjecaj srednjeg naprezanja ovisi o vrsti materijala.

4.2.3. *Opis područja 3* [7]

Područje III predstavlja vrlo velike brzine napredovanja zamorne pukotine, $da/dN > 10^3$ mm/ciklus zbog naglog i nestabilnog napredovanja pukotine neposredno prije konačnog loma. Krivulja da/dN- ΔK postaje strma i asimptotski se približava lomnoj žilavosti materijal K_c . Odgovarajuća razina naprezanja je vrlo visoka i uzrokuje velike plastične zone u blizini vrha pukotine, u usporedbi s geometrijom uzorka. Zbog pojave velikog tečenja, ne može se zanemariti

¹ Standardna testna metoda za mjerenje brzine napredovanja zamorne pukotine.

utjecaj nelinearnih svojstava materijala. Dakle, u ovoj je fazi potrebno primijeniti nelinearnu mehaniku loma (EPFM) jer korištenje LEFM više nije u potpunosti ispravno. Srednje naprezanje, mikrostruktura materijala i debljina uzorka imaju veliki utjecaj u ovom području dok okružje ima neznatan utjecaj. Analiza napredovanja zamorne pukotine je vrlo složena u ovom području, ali se često ignorira jer ima malo značenje u većini zamornih situacija. Također je uključen razlog da su brzine napredovanja zamorne pukotine vrlo velike i vijek trajanja kratak.

4.3. Temeljni koncept rasta pukotine uslijed zamora materijala [6]

Da bi se u potpunosti opisala ciklička naprezanja uslijed opterećenja s konstantnom ili promjenjivom amplitudom dovoljna je jedna od kombinacija dvaju različitih parametara, kao što prikazuje Slika 4.4: $\Delta \sigma$ i R, σ_{\min} i R, σ_{\max} i R, σ_a i R te σ_m i R. σ_{\min} označava najmanje naprezanje, dok σ_{\max} označava najveće naprezanje unutar ciklusa. $\Delta \sigma$ predstavlja raspon naprezanja (e. *Stress range*), definaran kao $\Delta \sigma = \sigma_{\max} - \sigma_{\min}$. R označava omjer naprezanja (e. *Stress ratio*), definiran kao $R = \sigma_{\min}/\sigma_{\max}$, dok su σ_a i σ_m amplituda naprezanja (e. *Stress amplitude*) i srednje naprezanje (e. *Mean stress*).

Životni vijek pukotine (e. *Crack growth life*) izražava se kao broj ciklusa potreban da bi zamorna pukotina (e. *Fatigue crack*) narasla na određenu veličinu, pri čemu se broj ciklusa označava s N. Slika 4.4a prikazuje mehanizam napredovanja pukotine kao geometrijsku posljedicu otupljenja vrha pukotine sa svakim ciklusom opterećenja, dok ponovno zaoštravanje vrha pukotine prilikom rasterećenja uvjetuje povećanje pukotine tijekom sljedećeg ciklusa opterećenja. Može se zaključiti da će rast pukotine Δa po ciklusu biti veći ako je najveće naprezanje po ciklusu veće (veće otvaranje vrha pukotine) i ako je minimalno naprezanje po ciklusu manje (veće zaoštravanje vrha pukotine).

Lokalna naprezanja na vrhu pukotine mogu se opisati faktorom intenziteta naprezanja *K*, gdje je $K = \beta \sigma (\pi a)^{1/2}$, pri čemu σ predstavlja aplicirano nominalno naprezanje (e. *Nominal stress*).

Slika 4.4. Parametri rasta pukotine uslijed zamora materijala: (a) Otupljivanje i ponovno zaoštravanje vrha pukotine; (b) $\Delta\sigma$, ΔK .

Kako unutar ciklusa aplicirano naprezanje varira unutar $\Delta \sigma$ između σ_{max} i σ_{min} , tako će i lokalna naprezanja varirati u skladu s sljedećim izrazima:

$$K_{\min} = \beta \sigma_{\min} \sqrt{\pi a}$$

$$K_{\max} = \beta \sigma_{\max} \sqrt{\pi a}$$

$$\Delta K = \beta \Delta \sigma \sqrt{\pi a}$$
(4.1)

Iz gornjih jednadžbi slijedi da će rast pukotine po ciklusu biti veći ukoliko je K_{max} veći i/ili ukoliko je ΔK veći. Prema jed. (4.1) slijedi da za bilo koju veličinu pukotine *a* vrijednost omjera naprezanja iznosi:

$$R = \frac{\sigma_{\min}}{\sigma_{\max}} = \frac{K_{\min}}{K_{\max}} = \frac{K_{\max} - \Delta K}{K_{\max}}$$
(4.2)

Može se nadalje primijetiti da pukotina više raste u slučaju kada su ΔK i/ili R veći, tako da funkciju brzine rasta pukotine možemo općenito matematički zapisati u obliku:

$$\frac{\mathrm{d}a}{\mathrm{d}N} = f(\Delta K, R) \tag{4.3}$$

4.4. Utvrđivanje funkcije relativnog napredovanja pukotine [6]

Egzaktni oblik funkcije relativnog napredovanja pukotine nemoguće je dobiti teorijskim putem jer je riječ o iznimno složenom procesu ovisnom o mnoštvu parametara same strukture materijala (kristalna zrna materijala različite orijentacije, granice zrna, uključine, itd.). Jedini pouzdani način određivanja oblika tražene funkcije je ispitivanje materijala. Podaci o rastu pukotine dobivaju se ispitivanjem epruvete podvrgnute cikličkom opterećenju. Tip epruvete je irelevantan dok god je β poznata veličina, što omogućava razmatranje faktora intenziteta naprezanja. Dok god su pukotine male u odnosu na dimenzije epruvete (npr. a/W < 0,4) geometrijski faktor β jednak je jedinici, tako da je $K = \sigma(\pi a)^{1/2}$.

Slika 4.5. Epruveta i opterećenje pri utvrđivanju funkcije rasta pukotine.

Epruveta koju prikazuje Slika 4.5 sadrži mali i oštri centralni zarez, tako da će pukotine biti inicirane gotovo istovremeno s obje strane. Epruveta je podvrgnuta cikličkom opterećenju konstantne amplitude u stroju za ispitivanje zamora materijala tj. umaralici. Ako razmatramo slučaj kada je $\sigma_{\min} = 0$, tada će biti i R = 0, odnosno $\sigma_{\max} = \Delta \sigma$.

Napredovanje pukotine utvrđuje se mjerenjem duljine pukotine u jednakim vremenskim intervalima, npr. svakih 10000 ciklusa. Rezultati se prikazuju dijagramski, kao što prikazuje Slika 4.5, gdje su prikazani rezultati ispitivanja za različite iznose naprezanja. To su sve informacije koje se mogu dobiti izravno iz ispitivanja, a njihovom daljnjom interpretacijom dobiva se formalan oblik funkcije brzine rasta pukotine.

Slika 4.6. Dijagramski prikazi izmjerenih podataka.

Ako se promotri jedan konačno mali prirast pukotine, Δa_1 (Slika 4.6, lijevo), prema dobivenoj krivulji slijedi da je potrebno ΔN_1 ciklusa kako bi pukotina napredovala za Δa_1 . Prema tome, brzina napredovanja je ($\Delta a/\Delta N$)₁. Želja nam je dobiti ovisnost brzine napredovanja pukotine o ΔK , što zahtijeva određivanje raspona intenzivnosti naprezanja. Srednja veličina pukotine kod Δa_1 je a_1 . Raspon naprezanja je $\Delta \sigma$, tako da je $\Delta K_1 = \beta_1 \Delta \sigma (\pi a_1)^{1/2}$. Očito, vrijednost $\Delta K = \Delta K_1$ je proizvela rast pukotine brzinom ($\Delta a/\Delta N$)₁. Ova činjenica je prikazana kao točka u dijagramu kojemu su osi da/dN (odnosno $\Delta a/\Delta N$) i ΔK , (Slika 4.6, desno). Ova procedura se ponavlja za niz točaka duž krivulje napredovanja pukotine. Kod veće veličine pukotine a_2 , za iznos porasta Δa_2 potrebno je samo ΔN_2 ciklusa. Budući da je krivulja strmija, brzina napredovanja pukotine je veća. Stoga, zaključujemo da veći ΔK znači i veću brzinu napredovanja pukotine. Dobivene točke koje prikazuje Slika 4.6 to i potvrđuju.

U trećem poglavlju pokazano je da je raspodjela naprezanja na vrhu pukotine jedinstvena i da ovisi samo o faktoru intenzivnosti naprezanja. Ako dvije različite pukotine u istom materijalu imaju iste faktore intenzivnosti naprezanja, znači da imaju i jednaka polja naprezanja. Stoga, ako su intenzivnosti naprezanja jednake, odziv pukotina mora biti isti. To znači da će brzina rasta pukotine biti ista ukoliko je ΔK isti. Do sada razmatrani rezultati ispitivanja su svi bili za isti omjer naprezanja R, tj. R = 0. Prema jed. (4.3) brzina također ovisi i o R. Ova ovisnost se može utvrditi provođenjem ispitivanja za različite omjere naprezanja. Ako se rezultati prikažu u ovisnosti o ΔK , dobiva se dijagram koji prikazuje Slika 4.7.

Slika 4.7. Brzina rasta pukotine pri različitim omjerima naprezanja.

Uistinu, veći *R* rezultira većom brzinom rasta pukotine, međutim isti tako je razvidno da *R* nema tako značajan utjecaj na relativno napredovanje pukotine kao ΔK . Podaci se uvijek prikazuju u logaritamskom mjerilu, jer se brzina mijenja preko nekoliko redova veličina. Pored gore razmatranih parametara, na brzinu rasta pukotine značajan utjecaj mogu imati i okoliš (ambijent) konstrukcije, temperatura te učestalost opterećenja.

4.5. Pregled modela napredovanja zamornih pukotina za metalne komponente

Modeli za predviđanje napredovanja zamornih pukotina temeljeni na mehanici loma razvijeni su kako bi se dala podrška konceptima podnošenja oštećenja u metalnim konstrukcijama. Tijekom posljednjih desetljeća, objavljeni su brojni radovi na temu predviđanja napredovanja zamornih pukotina i zamornog vijeka trajanja pod stalnim i promjenjivim radnim opterećenjima. [7]

Uobičajena svrha analize napredovanja zamorne pukotine je opisivanje podataka diferencijalnom jednadžbom, koja se odnosi na jedan od zakona ili modela napredovanja zamorne pukotine. Integriranjem jednadžbe može se dobiti odnos duljine pukotine i broja ciklusa (*a-N* krivulja) i predvidjeti broj ciklusa potrebnih da pukotina naraste od početne do konačne veličine. [7]

Postoje različiti kriteriji za opisivanje napredovanja zamornih pukotina s obzirom na ponašanje materijala, tj. dali se radi o krhkom ili žilavom materijalu. U krhkim materijalima obično

dominiraju pretpostavke LEFM, a kriterij napredovanja pukotina je opisan faktorom intenziteta naprezanja *K*. [8]

Opisivanje ponašanja žilavih materijala često se temelji na elasto-plastičnoj mehanici loma (EPFM) gdje različiti parametri kao što su mjera otpuštene energije (G), *J*-integral ili otvaranje vrha pukotine (CTOD) predstavljaju kriterij napredovanja pukotine. Potrebno je napomenuti da je kriterij za žilave materijale također primjenjiv za krhke materijale. [8]

Postoje neki slučajevi u kojima LEFM ne opisuje brzinu napredovanja zamornih pukotina na zadovoljavajući način. Primjeri tih slučajeva su: problemi kratkih pukotina, napredovanje pukotina u zavarenim područjima, itd. U svrhu opisivanja navedenih problema, učinjeni su pokušaji da se brzina napredovanja zamornih pukotina opiše parametrima *J*-integral i CTOD. [8]

Kada se brzina napredovanja zamornih pukotina izražava preko parametara ΔJ i Δ CTOD, *R*-omjer ne mijenja općenitost jednadžbe, jer se ΔJ i Δ CTOD mijenjaju s promjenom *R*-omjera. *J*-integral i CTOD su parametri mehanike loma koji se primjenjuju i u LEFM i u EPFM, a time i predstavljanje jednadžbe za opisivanje relativnog napredovanja zamorne pukotine ovim parametrima uzrokuje da jednadžba pokriva oba područja mehanike loma. [8]

Glavni nedostatak modela za predviđanje napredovanja zamorne pukotine jest da njihovi parametari nemaju nikakvog fizičkog značenja, ali su nužni za opisivanje $da/dN-\Delta K$ krivulje. [8]

Analizu napredovanja zamornih pukotina na metalnoj konstrukciji koja je podvrgnuta opterećenju konstantne amplitude je najjednostavnije izvesti, jer se ne mora uzimati u razmatranje povijest opterećenja. Postoje brojni modeli za opisivanje napredovanja zamornih pukotina kojima je moguće prikazati relativno napredovanje pukotine. Oni se razlikuju u koeficijentima i broju parametara potrebnih za opisivanje krivulja. Slijedeći naslovi donose pregled modela za opisivanje napredovanja zamornih pukotina koji će biti korišteni u ovom radu. [7]

4.5.1. Paris-ov model [6]

Oblik jednadžbe relativnog napredovanja pukotine slijedi iz rezultata ispitivanja, jer se ne može dobiti teorijskom analizom, tj. funkcijski oblik dobiva se provlačenjem krivulje kroz dobivene podatke. Na temelju prethodnih slika vidljivo je da podaci o brzini rasta pukotine za jednu vrijednost omjera naprezanja formiraju približno ravnu liniju u logaritamskom prikazu, što se može prikazati jednadžbom pravca y = mx + b. Kako je y = log(da/dN), a $x = log(\Delta K)$, dolazimo do jednadžbe:

$$log\left(\frac{\mathrm{d}a}{\mathrm{d}N}\right) = m_{\mathrm{p}}log(\Delta K) + log(C_{\mathrm{p}}) \tag{4.4}$$

Antilogaritmiranjem dolazimo do poznate jednadžbe za predviđanje napredovanja zamornih pukotina, također poznate kao Paris-ova jednadžba, opisali su ju Paris i Erdogan (1963). Jednadžba, koja predstavlja prvu primjenu mehanike loma na problem zamora, dana je slijedećim izrazom:

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C_{\mathrm{p}}(\Delta K)^{\mathrm{m}_{\mathrm{p}}} \tag{4.5}$$

Parametri m_p i C_p lako se određuju pomoću točki A i B kako prikazuje Slika 4.8. Parametri se dobivaju tako da se koordinate točaka uvrste u jednadžbu relativnog rasta pukotine te se riješi dobiveni sustav od dvije jednadžbe s dvije nepoznanice. Parametar C_p predstavlja odsječak na vertikalnoj osi, a m_p je nagib pravca prikazanog na log-log da/dN- ΔK dijagramu. Jed (4.5) predstavlja pravac na log-log da/dN- ΔK dijagramu i na taj način opisuje područje II krivulje napredovanja zamorne krivulje. Vrijednost parametra m_p je za većinu materijala uglavnom između 3 i 5, dok vrijednost C_p puno više ovisi o vrsti materijala.

Slika 4.8. Paris-ova jednadžba.

Ograničenje Paris-ove jednadžbe je to što je s njom moguće opisati tek područje II (Slika 4.3). U slučajevima gdje je potrebno opisati prag napredovanja pukotine (područje I) ili ubrzano napredovanje (područje III), Paris-ova jednadžba ne daje adekvatne rezultate. Nadalje, Paris-ova jednadžba ne uzima u obzir učinak omjera naprezanja i također ovisi o korištenom materijalu. Za čelike testirane na različitim omjerima naprezanja, dobiva se set ravnih linija paralelnih jedna na drugu (Slika 4.7). To znači da je vrijednost m_p ista za sve omjere naprezanja, dok je vrijednost C_p karakteristika određenog *R*-omjera. Za mnoge materijale ovisnost C_p o *R* se može izraziti kao:

$$\frac{\mathrm{d}a}{\mathrm{d}N} = \frac{C_w}{(1-R)^{m_w}} \left(\Delta K\right)^{m_p} \tag{4.6}$$

Gornji izraz poznat je kao Walkerova jednadžba, gdje je C_w vrijednost C_p pri R = 0. Drugi od generaliziranih oblika Parisove jednadžbe uzima u obzir žilavost, odnosno kritičnu vrijednost K_c te se naziva Formanova jednadžba:

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C_{\mathrm{F}} \frac{(\Delta K)^{m_{\mathrm{F}}}}{(1-R)K_{\mathrm{c}} - \Delta K}$$
(4.7)

Prag faktora intenzivnosti naprezanja ΔK_{TH} svoju primjenu nalazi u jednadžbi napredovanja pukotine. Zheng i Hirt modificiraju generalni oblik Parisove jednadžbe kako bi izmodelirali gladak prijelaz kod uvjeta blizu praga faktora intenzivnosti naprezanja te se dobiva jedan od oblika jed. (4.5), tj. Zheng-Hirtova jednadžba:

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C_{\mathrm{p}} (\Delta K_{\mathrm{ef}})^{m_{\mathrm{p}}}$$

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C_{\mathrm{p}} (\Delta K - \Delta K_{\mathrm{TH}})^{m_{\mathrm{p}}}$$
(4.8)

4.5.2. Dowling i Begley-ev model [7]

Većina modela za opisivanje relativnog napredovanja zamornih pukotina koristi parametar ΔK , što znači da su njihove jednadžbe izvedene pod pretpostavkama LEFM. U situacijama napredovanja zamornih pukotina u kojima je prisutno veliko tečenje, gdje korištenje faktora intenzivnosti naprezanja više nije ispravno, Dowling i Begley (1976) sugeriraju da se kao parametar mehanike loma koristi ΔJ -integral. Njihov model opisuje napredovanje zamornih pukotina jednadžbom koja glasi:

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C_{\mathrm{db}}(\Delta J)^{m_{\mathrm{db}}} \tag{4.9}$$

Ova jednadžba je vrlo slična Paris-ovoj u tome što opisuje vrijednosti u području II i ne uključuje utjecaj *R*-omjera, međutim, ona se koristi u situacijama kada se napredovanje zamorne pukotine se događa u uvjetima velikog tečenja materijala.

4.5.3. Model napredovanja pukotina temeljen na parametru $\Delta CTOD$ [7]

Model napredovanja pukotina temeljen na parametru Δ CTOD opisan je jednadžbom:

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C_{\mathrm{ctod}} (\Delta \mathrm{CTOD})^{m_{\mathrm{ctod}}} \tag{4.10}$$

Ova se jednadžba, kao i prethodna Dowling i Begley-eva, koristi u situacijama kada se napredovanje zamorne pukotine događa u uvjetima velikog tečenja materijala.

4.5.4. Povezanost modela za opisivanje napredovanja zamorne pukotine [8]

Paris koristi parametar ΔK za opisivanje relativnog napredovanja zamorne pukotine u području LEFM. Međutim, parametri kao što su mjera otpuštene energije (G), *J*-integral i CTOD imaju veliku primjenu u EPFM, a također se mogu koristiti i u LEFM. Slijedi prikaz jednadžbi korištenih u ovom radu i njihovih pripadnih konstanti:

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C_{\mathrm{p}} (\Delta K)^{m_{\mathrm{p}}} \tag{4.11}$$

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C_{\mathrm{db}} (\Delta J)^{m_{\mathrm{db}}} \tag{4.12}$$

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C_{\mathrm{ctod}} (\Delta \mathrm{CTOD})^{m_{\mathrm{ctod}}}$$
(4.13)

gdje je $\Delta K = K_{\text{max}} - K_{\text{min}}$, $\Delta J = J_{\text{max}} - J_{\text{min}}$ i $\Delta \text{CTOD} = \text{CTOD}_{\text{max}} - \text{CTOD}_{\text{min}}$.

Kada se brzina napredovanja zamornih pukotina opisuje parametrima ΔJ i Δ CTOD, nije potrebno unositi parametar *R* direktno u pripadne jednadžbe jer se ΔJ i Δ CTOD mijenjaju s promjenom *R*-omjera. Međutim, zanimljivo je da su konstante pripadnih jednadžbi neovisne o opterećenju i prema tome mogu se smatrati konstantama materijala.

Mehanika loma daje veze između prije spomenutih parametra:

$$J = \frac{K^2}{E} \tag{4.14}$$

$$CTOD = \frac{J}{m\sigma_{\rm ty}} \tag{4.15}$$

Veze između konstanti jed. (4.11), (4.12) i (4.13) će se dobiti uvrštavanjem jednadžbi (4.14) i (4.15) u jed. (4.12) i (4.13) i usporedbom rezultata s jed. (4.11):

$$m_{\rm db} = \frac{m_{\rm p}}{2}$$

$$C_{\rm db} = \left(\frac{E}{\beta}\right)^{\frac{m_{\rm p}}{2}} C_{\rm p}$$
(4.16)

gdje je:

$$\beta = \frac{1+R}{1-R} \tag{4.17}$$

$$m_{\rm ctod} = m_{\rm db}$$

$$C_{\rm ctod} = \left(m\sigma_y\right)^{m_{\rm db}} C_{\rm db}$$

$$(4.18)$$

4.5.5. Određivanje pragova napredovanja zamornih pukotina za različite parametre mehanike loma [8]

Ovo poglavlje objašnjava određivanje pragova napredovanja zamorne pukotine za parametre: ΔK (ΔK_{TH}), ΔCTOD ($\Delta \text{CTOD}_{\text{TH}}$) i ΔJ (ΔJ_{TH}).

Ispitivanja su pokazala da ΔK_{TH} nije jedinstvena vrijednost koja ovisi samo o materijalu, već da ovisi i o omjeru naprezanja *R*. Preporuke za provođenje eksperimenata sa svrhom utvrđivanja ΔK_{TH} su navedene u standardu ASTM E647.

Kada je poznat ΔK_{TH} i vrijednost ΔK za određenu veličinu pukotine, lako se može izračunati ΔJ_{TH} preko jed. (4.19):

$$\Delta J_{\rm TH} = \frac{\Delta K_{\rm TH}}{E} (2\Delta K \cdot \Delta K_{\rm TH}) \tag{4.19}$$

Nadalje, poznavanjem ΔJ_{TH} , može izračunati $\Delta \text{CTOD}_{\text{TH}}$ preko jed. (4.20):

$$\Delta \text{CTOD}_{\text{TH}} = d_n \, \frac{\beta \Delta J_{\text{TH}}}{E} \tag{4.20}$$

5 ANALIZA PROBLEMA MEHANIKE LOMA U PROGRAMSKOM PAKETU ANSYS 12.1

U ovom su radu analize provođene korištenjem programskog paketa ANSYS 12.1. Mreže modela, koji predstavlja konkretnu ploču sa središnjom pukotinom, se razlikuju ovisno o tome koji se parametar mehanike loma određuje. A time ovise i o vrsti analize, tj. dali se radi o linearno elastičnoj analizi kod računanja parametra K, ili o elasto-plastičnoj analizi kod računanja parametara J-integrala i CTOD.

Kako je već navedeno, rješavanje problema mehanike loma uključuje provođenje linearno elastične ili elasto-plastične statičke analize i zatim korištenje specijaliziranih naredbi ili makroa kako bi se odredili željeni parametri mehanike loma. U ovom dijelu će biti objašnjena dva glavna aspekta postupka rješavanja:

- Modeliranje područja oko pukotine
- Računanje parametara mehanike loma [9]

U prilozima su dani makroi po kojima su računati različiti parametri.

5.1. Modeliranje područja oko pukotine [4] [9]

Zbog postojanja velikih gradijenata naprezanja u područje oko ruba pukotine, modeliranje komponente konačnim elementima koja sadrži pukotinu zahtijeva posebnu pažnju u ovom području. Ovisno dali se problem rješava 2D ili 3D modelom, rub pukotine se naziva vrhom pukotine (2D) ili frontom pukotine (3D). Ovo ilustrira Slika 5.1. Budući da će u ovom radu biti korišten 2D model, nadalje će se za rub pukotine koristiti izraz vrh pukotine.

Slika 5.1. Vrh i fronta pukotine.

Polja naprezanja i deformacije oko vrha pukotine obično imaju velike gradijente. Prava priroda ovih polja ovisi o materijalu, geometriji i drugim faktorima. Da bi se točno opisala brzorastuća

polja naprezanja i deformacije, potrebno je koristiti iznimno finu mrežu konačnih elemenata oko vrha pukotine. Za linearno elastične probleme, pomaci se u blizini vrha pukotine mijenjaju s \sqrt{r} , gdje je *r* udaljenost od vrha pukotine. Naprezanja na vrhu su singularna, mijenjajući se s $1/\sqrt{r}$. Da bi se ostvarila singularnost naprezanja deformacija, mreža oko vrha pukotine mora imati slijedeće karakteristike:

- Lica pukotine se trebaju podudarati.
- Elementi oko vrha pukotine trebaju biti kvadratni, sa srednjim čvorom pomaknutim na četvrtinu. (Takvi elementi se nazivaju singularnim, kako prikazuje Slika 5.2)

Slika 5.2. Primjer singularnih elemenata za 2D modele.

U linearno elastičnoj analizi, u prvom redu elemenata oko vrha pukotine moraju biti singularni elementi (Slika 5.2) dok u elasto-plastičnoj analizi to nije slučaj, tj. nije preporučljivo korištenje singularnih elemenata oko vrha pukotine.

U analizi loma, za dvodimenzionalni model se preporuča pravokutni element s 8 čvorova, u programskom paketu ANSYS naveden pod nazivom PLANE183. PREP7 naredba KSCON je iznimno korisna kod analize loma jer omogućava određivanje raspodjele elemenata oko čvora u vrhu pukotine. Naredba automatski generira elemente u obliku jednakokračnog trokuta oko željenog čvora. Dodatne funkcije naredbe omogućavaju kontrolu radijusa, broja te, ovisno o vrsti analize, singularnosti elemenata u prvom redu. Slika 5.3 daje prikaz generirane mreže oko vrha pukotine uz korištenje naredbe KSCON.

Slika 5.3. Mreža oko vrha pukotine generirana naredbom KSCON.

Ostale smjernice za 2D modele su slijedeće:

- Ako je moguće, preporučeno je koristiti simetriju. U mnogim slučajevima je moguće modeliranje polovice ili čak četvrtine modela, uz korištenje simetrijskih ili antisimetrijskih rubnih uvjeta, čime se osjetno skraćuje vrijeme proračuna.
- Za dobivanje prihvatljivih rezultata, prvi red elemenata oko vrha pukotine bi trebao imati radijus otprilike *a*/8 ili manji, gdje *a* veličina pukotine. Preporuča se jedan element svakih 30 do 40 stupnjeva.
- Elementi oko vrha pukotine ne smiju biti distordirani, i trebali bi imati oblik jednakokračnog trokuta.

5.2. računanje parametara mehanike loma

Nakon završetka statičke analize, postprocesor omogućava izračun parametara mehanike loma. Kako je prije spomenuto, parametri čije će računanje biti objašnjeno su faktor intenzivnosti naprezanja *K*, *J*-integral i otvaranje vrha pukotine CTOD.

5.2.1. Faktor intenzivnosti naprezanja

Opise geometrije, podjele površina i diskretizacije sa zadanim rubnim uvjetima i opterećenjem modela za računanje vrijednosti ΔK prikazuju Slika 5.4, Slika 5.5, Slika 5.6.

Slika 5.4. Model četvrtine ploče sa središnjom pukotinom za numeričku analizu.

Slika 5.5. Podjela modela na četiri površine.

Slika 5.6. Model sa središnjom pukotinom omrežen konačnim elementima.

POST1 naredbom KCALC se računaju faktori intenzivnosti naprezanja K_{I} , K_{II} i K_{III} . Ova naredba je ograničena na linearno elastične probleme s homogenim, izotropnim materijalima. [9]

Slijedi sažeti opis koraka nužnih za pravilno korištenje naredbe KCALC:

- 1. Definiranje lokalnog koordinatnog sustava s ishodištem u vrhu pukotine, kojem je os x paralelna s ravninom pukotine, a os y okomita na nju (Slika 5.7).
- Definiranje putanje naredbom LPATH. Putanja se definira s tri čvora, od kojih se prvi nalazi na vrhu pukotine, a druga dva duž lica pukotine. Slijedeća slika ilustrira slučaj kod 2D modela uz primjenu simetrije.

Slika 5.7. Lokalni koordinatni sustav i putanja za polovicu modela.

3. Naredbom KCALC računaju se faktori K_{I} , K_{II} i K_{III} . Dodatna funkcija KPLAN omogućava definiranje dali je naprezanje u modelu u ravninskom stanju naprezanja ili deformacije. [9]

Prilog 1 prikazuje kompletan makro koji je korišten u ovom radu za računanje faktora intenzivnosti naprezanja.

6.2.2. J-integral

Model za računanje *J*-integrala ima istu geometriju i raspodjelu površina kao i model za računanje ΔK . Razlika je u mreži konačnih elemenata koja je za ovaj model generirana znatno finije (Slika 5.8) kako bi se dobili što točniji rezultati, kako za *J*-integrala tako i za CTOD koji se određuje na istom modelu.

Slika 5.8. Model sa središnjom pukotinom omrežen konačnim elementima.

U jednostavnom dvodimenzionalnom obliku, *J*-integral se može definirati kao linijski integral neovisan o putanji po kojoj se određuje, i koji mjeri jačinu singularnih naprezanja i deformacija u blizini vrha pukotine. Slika 5.9 daje primjer putanja za računanje *J*-integral. [9]

Slika 5.9. Putanje za računanje J-integrala. [9]

U ovom radu, J-integral je računat za 14 različitih putanja koje su raspoređene oko vrha pukotine, kako ilustrira Slika 5.9. Uočeno je da se njegove vrijednosti stabiliziraju nakon

određenog odmaka od vrha pukotine. Drugim riječima, *J*-integral postaje neovisan o putanji po kojoj se računa, što i jest njegova definicija.

Slika 5.10. Iznos *J*-integrala u ovisnosti o konturama.

Prilog 2 prikazuje kompletan makro koji je korišten u ovom radu za računanje J-integrala.

5.2.3. Otvaranje vrha pukotine δ

Slijedeći parametar razmatran ovdje je otvaranje vrha pukotine (δ). Parametar δ je koristan za analiziranje pukotina koje su izložene umjerenoj i velikoj plastifikaciji. U 2D analizi konačnim elementima, mjerenje parametra δ se temelji na mehanizmu otupljivanja vrha pukotine. Metodu mjerenja δ prikazuje Slika 5.11.

Model za računanje vrijednosti δ je isti kao i model za računanje ΔJ .

Slika 5.11. Definicija CTOD (δ). [9]

Slika 5.12 prikazuje mjerenje parametra δ za veličinu pukotine od 68.5 mm koja modelirana na ploči analiziranoj u ovom radu. Postupak mjerenja se provodi tako da se ispišu pomaci čvorova nakon statičke analize i zatim odrede njihove nove koordinate koje se mogu iscrtati u nekom od grafičkih paketa. Time se dobiva kontura otupljenog vrha pukotine. Potom se iz samog vrha pukotine povlači linija pod kutom od 45^0 i tamo gdje ona siječe konturu pukotine nalazi se polovica vrijednosti δ . Postupak se može pojednostaviti tako da se iz grafičkog prikaza odredi čvor čiji pomak u smjeru osi y ima istu vrijednost kao δ . Time nije potrebno za svaku veličinu pukotine iscrtavati konturu nego se jednostavno za odabrani čvor očita pomak u smjeru osi y. Bitno je naglasiti da je za točno određivanje parametra δ potrebno model omrežiti s jako finom mrežom konačnih elemenata, u slučaju modela koji je korišten u ovom radu veličina elementa u prvom oko vrha pukotine iznosi tek 0,020 mm. U pokaznom primjeru (Slika 5.12) mreža je još finija kako bi bilo jasnije vidljiva kontura otupljenog vrha pukotine. [10]

Slika 5.12. Metoda određivanja parametra δ . [10]

6 SIMULACIJA NAPREDOVANJA PUKOTINE ZA CIKLIČKI OPTEREĆENU PLOČU SA SREDIŠNJOM PUKOTINOM

Simulacija je provedena za uzorak sa središnjom pukotinom. Eksperimentalni podaci su uzeti iz literature [3], te su komparirani s rezultatima simulacija. Korišteni programski paketi su, već navedeni, ANSYS 12.1 i MATLAB R2008a. Svi uzorci su od mekog konstrukcijskog čelika za zavarene konstrukcije sa slijedećim svojstvima: vlačna čvrstoća je iznad 400 MPa, čvrstoća tečenja je iznad 235 MPa, modul elastičnosti 206 GPa, modul plastičnosti 206 MPa te Poissonov omjer 0,3. [2]

6.1. Eksperimentalni podaci uzorka sa središnjom pukotinom

Uzorak ili ploča sa središnjom pukotinom (Slika 6.1) je simetrično opterećena na vlak silom koja je rezultirala nominalnim naprezanjem od 80 Mpa. Frekvencija naprezanja je 5 Hz. Životni vijek ploče (*a-N* krivulja), utvrđen eksperimentom, prikazuje Slika 6.2.

Slika 6.1. Dimenzije ploče sa središnjom pukotinom. [2]

Slika 6.2. Životni vijek ploče utvrđen eksperimentom. [2]

6.2. Integracija Paris-ove jednadžbe

U prvom slučaju provedena je linearno-elastična analiza za ravninsko stanje naprezanja (e. *Plane stress*) koje je karakteristično za tanke ploče. Analiza je provedena za pukotine različitih duljina, počevši od pukotine od 7.7 mm pa do pukotine od 68,5 mm, pri čemu je za svaku pojedinu duljinu pukotine izračunat parametar ΔK . Izračunava se samo $K_{\rm I}$ jer su u ovom slučaju $K_{\rm II}$ i $K_{\rm III}$ jednaki nuli. Vrijednosti ΔK dijagramski prikazuje Slika 6.3. Postupak računanje faktora intenzivnosti naprezanja opisan je u poglavlju 5.2.1.

Slika 6.3. Promjena vrijednosti parametra ΔK s veličinom pukotine.

Simulacija životnog vijeka provedena integracijom Paris-ove jednadžbe (Prilog 3) koja kao relevantan parametar koristi ΔK .

S dobivenim vrijednostima ΔK i s pretpostavljenim svojstvima materijala ploče, navedenim u Tablica 6-1, provedena je integracija Paris-ove jednadžbe.

Tablica 6-1. Svojstva materijala ploče na kojoj je proveden eksperiment. [11]

Prag intenzivnosti naprezanja, $\Delta K_{\rm TH}$	2,9 MPa√m
Koeficijenti Paris-ove jednadžbe (naprezanje u MPa, duljina u m)	$C = 1,43 \times 10^{-11}$
	m = 2,75

Integracija Paris-ove jednadžbe provedena je za dva slučaja. U prvom slučaju provedena je integracija uz primjenu svih navedenih parametara izuzev praga intenzivnosti naprezanja. Dobiveni rezultati su ilustrirani i uspoređeni s rezultatima eksperimenta (Slika 6.4 i Slika 6.5).

Postupak integracije Paris-ove jednadžbe je prikazuje Prilog 3.

Slika 6.4. Dijagram relativnog napredovanja pukotine (nije uzet u obzir ΔK_{TH}).

Slika 6.5. Simulirani životni vijek ploče (nije uzet u obzir ΔK_{TH}).

Iz prethodne dvije slike je vidljivo da opisivanje rezultata eksperimenta korištenim parametrima nije adekvatno. Stoga se u slijedećem koraku u integraciju Paris-ove jednadžbe uvrštava i prag intenzivnosti naprezanja, $\Delta K_{\text{TH}} = 2.9 \text{ MPa}\sqrt{\text{m}}$, koji je konstantan za sve veličine pukotine. Dobiveni rezultati su ilustrirani i uspoređeni s rezultatima eksperimenta (Slika 6.6 i Slika 6.7).

Slika 6.6. Dijagram relativnog napredovanja pukotine (uzet je u obzir ΔK_{TH}).

Slika 6.7. Simulirani životni vijek ploče (uzet je u obzir ΔK_{TH}).

Iz prethodne dvije slike je vidljivo da je opisivanje rezultata eksperimenta znatno bolje nego u prvom slučaju, međutim još uvijek postoji znatno odstupanje kod većeg broja ciklusa.

6.3. Integracija Dowling i Begley-eve jednadžbe

Linearno elastična analiza

U slučaju Dowling i Begley-eve jednadžbe kao relevantan parametar mehanike loma se koristi ΔJ -integral. Vrijednosti ΔJ dobivene su preračunavanjem vrijednosti parametra ΔK , korištenih kod integracije Paris-ove jednadžbe, prema jed. (4.14) pretvorbe za ravninsko stanje naprezanja u linearno elastičnoj mehanici loma

Slika 6.8 daje dijagramsku ovisnost ΔJ o veličini pukotine.

Slika 6.8. Ovisnost vrijednosti ΔJ o veličini pukotine.

Koeficijenti Dowling i Begley-eve jednadžbe, C_{db} i m_{db} , dobivene su uvrštavanjem Paris-ovih koeficijenata u jed. (4.16):

$$m_{\rm db} = \frac{m_{\rm p}}{2} = \frac{2,75}{2} = 1,375$$

$$C_{\rm db} = \left(\frac{E}{\beta}\right)^{\frac{m_{\rm p}}{2}} \cdot C_{\rm p} = \left(\frac{206000}{1}\right)^{\frac{2,75}{2}} \cdot 1,43 \cdot 10^{-11} = 2,8967 \cdot 10^{-4}$$
(6.1)

Integracija Dowling i Begley-eve jednadžbe provedena je za dva slučaja. U prvom slučaju provedena je integracija uz primjenu svih parametara izuzev praga napredovanja zamorne pukotine. Dobiveni rezultati su ilustrirani i uspoređeni s rezultatima eksperimenta (Slika 6.9 i Slika 6.10).

Integracija Dowling i Begley-eve jednadžbe se provodi na identičan način kao i integracija Parisove (Prilog 3), razlika je tek u ulaznim podacima.

Slika 6.9. Dijagram relativnog napredovanja pukotine (nije uzet u obzir ΔJ_{TH}).

Slika 6.10. Simulirani životni vijek ploče (nije uzet u obzir ΔJ_{TH}).

Iz Slika 6.5 i Slika 6.10 je vidljivo da se integracijama Paris-ove i Dowling i Begley-eve jednadžbe, uz zanemarivanje pragova napredovanja pukotine (ΔK_{TH} i ΔJ_{TH}), dobivaju identične *a-N* krivulje što se moglo i pretpostaviti s obzir da su parametri ΔK i ΔJ vezani jed. (4.14).

Uključenjem praga napredovanja pukotine za parametar ΔJ , ΔJ_{TH} , izračunatog jed. (4.19), u integraciju Dowling i Begley-eve također se dobivaju identični rezultati (Slika 6.13) kao u slučaju integracije Paris-ove jednadžbe kada se uzima u obzir prag intenzivnosti naprezanja (Slika 6.7).

Slika 6.11 daje dijagramsku usporedbu vrijednosti ΔJ i ΔJ_{TH} u ovisnosti o veličini pukotine.

Slika 6.11. Usporedba vrijednosti ΔJ i ΔJ_{TH} .

Slika 6.12. Dijagram relativnog napredovanja pukotine (uzet je u obzir ΔJ_{TH}).

Slika 6.13. Simulirani životni vijek ploče (uzet je u obzir ΔJ_{TH}).

Integracijama Paris-ove i Dowling i Begley-eve jednadžbe, uz primjenu pragova napredovanja pukotine (ΔK_{TH} i ΔJ_{TH}), se također dobivaju identični rezultati (Slika 6.7 i Slika 6.13).

Elasto-plastična analiza

U slijedećem slučaju se provodi integracija Dowling i Begley-eve jednadžbe, s time da se kao ulazni podaci uzimaju vrijednosti ΔJ dobivene elasto-plastičnom analizom (Prilog 2). Vrijednosti elasto-plastičnih ΔJ dijagramski su prikazane, i uspoređene s linearno elastičnim ΔJ (Slika 6.14). Koeficijenti Dowling i Begley-eve jednadžbe ostaju isti kao u slučaju linearno elastične analize (Jed. (6.1)). Pragovi napredovanja pukotine ΔJ_{TH} su također isti kao u linearno-elastičnoj analizi (Slika 6.11), te se odmah uvrštavaju u integraciju.

Slika 6.14. Ovisnost EP ΔJ o veličini pukotine, i usporedba s LE ΔJ .

Dobiveni rezultati su ilustrirani i uspoređeni s rezultatima eksperimenta (Slika 6.15 i Slika 6.16.

Slika 6.15. Dijagram relativnog napredovanja pukotine (uzet je u obzir ΔJ_{TH}).

Slika 6.16. Simulirani životni vijek ploče (uzet je u obzir ΔJ_{TH}).

U slučaju kada se kao relevantni parametri kod integracije Dowling i Begley-eve jednadžbe koriste elasto-plastične vrijednosti ΔJ , dobiven je kraći životni vijek od onog dobivenog integracijom Paris-ove jednadžbe i otprilike odgovara eksperimentalnom životnom vijeku uzorka.

6.4. Integracija jednadžbe temeljene na parametru ΔCTOD

Vrijednosti parametra Δ CTOD (δ) izračunate su iz modela, nad kojim je provedena elastoplastična analiza (Prilog 2), metodom koja je objašnjena u poglavlju 5.2.3. Vrijednosti dijagramski prikazuje Slika 6.17.

Koeficijenti potrebni za integraciju jednadžbe temeljene na parametru Δ CTOD, C_{ctod} i m_{ctod} , dobivene su uvrštavanjem Dowling i Begley-evih koeficijenata, C_1 i m_1 , u jed. (4.18):

$$m_{\text{ctod}} = m_{\text{db}} = 1,375$$

$$C_{\text{ctod}} = (\alpha \sigma_{\text{ty}})^{m_{\text{db}}} \cdot C_{\text{db}} = (1,1 \cdot 235)^{1,375} \cdot 2,8967 \cdot 10^{-4} = 0,6012$$
(6.2)

Integracija jednadžbe temeljene na parametru Δ CTOD se provodi na identičan način kao i integracija Paris-ove (Prilog 3), razlika je tek u ulaznim podacima.

Pragovi napredovanja pukotine za parametar Δ CTOD, Δ CTOD_{TH}, se računa prema jed. (4.20). Vrijednosti Δ CTOD_{TH} su dijagramski prikazane i uspoređene s vrijednostima Δ CTOD (Slika 6.17).

Slika 6.17. Promjena vrijednosti Δ CTOD i Δ CTOD_{TH} s veličinom pukotine.

Integracijom dobiveni rezultati su ilustrirani i uspoređeni s rezultatima eksperimenta (Slika 6.18 i Slika 6.19).

Slika 6.18. Dijagram relativnog napredovanja pukotine (uzet je u obzir $\Delta CTOD_{TH}$).

Slika 6.19. Simulirani životni vijek ploče (uzet je u obzir $\Delta \text{CTOD}_{\text{TH}}$).

Iz Slika 6.16 i Slika 6.19 je vidljivo da se integracijama Dowling i Begley-eve jednadžbe i jednadžbe temeljene na parametru Δ CTOD dobivaju skoro identične *a-N* krivulje što se moglo i pretpostaviti s obzir da su parametri *J* i CTOD linearno vezani jed. (3.18). Veza između δ i *J*-integrala je objašnjena u poglavlju 3.5. Njihov odnos se mijenja ovisno o veličini pukotine i prikazuje se preko faktora *m*. Faktor *m* također ovisi o geometriji, stanju naprezanja i razini očvršćivanja materijala. Često se koristi recipročna vrijednost faktora *m*, faktor *d*_n. Za konkretnu ploču sa središnjom pukotinom koja je analizirana u ovom radu, faktor *d*_n je prikazan dijagramski (Slika 6.20), dobiven je u elasto-plastičnoj analizi. Vidljivo je da se tek neznatno mijenja pa ne radi primjetnu razliku između rezultata parametara *J* i CTOD.

Slika 6.20. Promjena faktora d_n s veličinom pukotine.

7 ZAKLJUČAK

U analizi životnog vijeka ploče sa središnjom pukotinom primijenjeni su koncepti linearno elastične i elasto-plastične mehanike loma, a vrijednosti parametara mehanike loma ΔK , ΔJ i Δ CTOD su utvrđene koristeći programski paket ANSYS 12.1. S utvrđenim vrijednostima simuliran je životni vijek koristeći postupak numeričke integracije jednadžbi napredovanja pukotine u programskom paketu MATLAB. Korištene jednadžbe su Paris-ova, Dowling i Begley-eva i jednadžba temeljena na parametru Δ CTOD. [2]

Nakon propagacije pukotina do određene veličine (cca. 27% ligamenta je napuknuto) na eksperimentalnom uzorku je primijećen trend ubrzavanja napredovanja pukotine što može ukazivati na relativno veliku opterećenost ligamenta. [1]

Životni vijek dobiven integracijom Paris-ove jednadžbe je duži od eksperimentalnog životnog vijeka uzorka. Njihovo poklapanje je dobro do trenutka ubrzavanja napredovanja pukotine na eksperimentalnom uzorku. Životni vijek dobiven integracijom Dowling i Begley-eve jednadžbe, temeljene na linearno elastičnim vrijednostima ΔJ , je identičan Paris-ovom životnom vijeku. U slučaju kada se kao relevantni parametri kod integracije Dowling i Begley-eve jednadžbe koriste elasto-plastične vrijednosti ΔJ , dobiven je kraći životni vijek od onog dobivenog integracijom Paris-ove jednadžbe. Životni vijek dobiven integracijom jednadžbe temeljene na parametru Δ CTOD je skoro identičan životnom vijeku dobivenom integracijom Dowling i Begley-eve jednadžbe temeljene na elasto-plastičnim vrijednostima ΔJ .

PRILOZI

Prilog 1 Makro za računanje faktora intenziteta naprezanja (LEFM). [4] [2]

FINISH /CLEAR

/TITLE, FRACTURE MECHANICS STRESS INTENSITY - CRACK IN A 2D PLATE /COM ****** CRACK IN 2-DIMENSIONS USING 2-D PLANE183 ELEMENT ******

/PREP7 /UNITS,MPA

A=0.035 B=0.060 B2=(2*B)B3=(2*B/3) C=(5*B/2) D=(5*B) AS1=0.003 AS2=0.005 E1=206000 E2=206000*3 NU=0.3 SIG=80 ET,1,PLANE183,,,0 ! KEYOPT(3) - PLANE STRESS MP,EX,1,E1 MP,NUXY,1,NU MP,EX,2,E2 MP,NUXY,2,NU K,1 K,2,AS1 K,3,(B2-A) K,4,(B2-A),B3 K,5,(B2-A),C K,6,(B2-A),D K,7,-A,D K,8,-A,C K,9,-A,B3 K,10,-A K,11,-AS1 K,12,-AS1,AS2 K,13,AS1,AS2 L,11,1 L,1,2 L,2,3 L,3,4 L,4,5 L,5,6 L,6,7 L,7,8 L,8,9 L,9,10 L,10,11 L,11,12 L,12,13 L,13,2

L,4,9 L,5,8

MAT,1

ESIZE,B/150 KSCON,1,B/240,1,8 AL,1,2,14,13,12 DL,2,1,SYMM AMESH,1 ALLSEL,ALL MAT,2 ESIZE,B/5 AL,6,7,8,16 DL,8,2,SYMM AMESH,2 ALLSEL, ALL MAT,1 ESIZE,B/10 AL,5,9,15,16 DL,9,3,SYMM AMESH,3 ALLSEL,ALL ESIZE,B/30 AL,3,4,10,11,12,13,14,15 DL,3,4,SYMM DL,10,4,SYMM AMESH,4 ALLSEL,ALL WSORT,Y SFL,7,PRES,-SIG OUTPR,ALL FINISH /SOLU SOLVE FINISH /POST1 PATH,KI,3,,48 PPATH,1,2

PPATH,2,27 PPATH,3,26 KCALC,1,,.. *GET,KI,KCALC,,K,1 *STATUS,KI

FINISH

Prilog 2 Makro za računanje *J*-integrala (EPFM). [4]

FINISH /CLEAR

/TITLE, FRACTURE MECHANICS STRESS INTENSITY - CRACK IN A FINITE WIDTH PLATE /COM, ****** CRACK IN 2-DIMENSIONS USING 2-D PLANE183 *****

/PREP7 /UNITS,MPA	
$\begin{array}{l} A=0.035\\ B=0.060\\ B2=(2^*B)\\ B3=(2^*B/3)\\ CD=(5^*B/2)\\ D=(5^*B)\\ AS1=0.007\\ AS2=0.011 \end{array}$! (M)
E1=206000 E2=206000*3 NU=0.3 SIG=80	
SIGY=235	! YIELD STRESS = 235 MPA
ET,1,PLANE183,,,0	! KEYOPT(3) - PLANE STRESS
MP,EX,1,E1 MP,NUXY,1,NU TB,BISO,1 TBDATA,1,SIGY,206	! BISO - Bilinear Isotropic Hardening ! Tangent modulus = 206 MPa
MP,EX,2,E2 MP,NUXY,2,NU	
K,1 K,2,AS2 K,3,(B2-A) K,4,(B2-A),B3 K,5,(B2-A),CD K,6,(B2-A),D K,7,-A,D K,8,-A,CD K,9,-A,B3 K,10,-A K,11,-AS1 K,12,-AS1,AS2 K,13,AS2,AS2	
L,11,1 L,1,2 L,2,3 L,3,4 L,4,5 L,5,6 L,6,7 L,7,8 L,8,9 L,9,10 L,10,11 L,11,12 L,12,13	

L,13,2 L,4,9 L,5,8 MAT,1 ESIZE, B/100 KSCON,1,B/3000,0,8 AL,1,2,14,13,12 DL,2,1,SYMM AMESH,1 ALLSEL,ALL MAT,2 ESIZE,B/5 AL,6,7,8,16 DL,8,2,SYMM AMESH,2 ALLSEL, ALL MAT,1 ESIZE,B/10 AL,5,9,15,16 DL,9,3,SYMM AMESH,3 ALLSEL, ALL ESIZE,B/30 AL,3,4,10,11,12,13,14,15 DL,3,4,SYMM DL,10,4,SYMM AMESH,4 ALLSEL,ALL WSORT,Y SFL,7,PRES,-SIG OUTPR,ALL FINI /SOLU ANTYPE,STATIC **! NON-LINEAR ANALYSIS** NLGEOM,ON NSUBST,30,1000,30 TIME,1.0 SOLVE FINI /POST1 ETABLE,SENE,SENE **! RETRIEVE STRAIN ENERGY PER ELEMENT ! RETRIEVE VOLUME PER ELEMENT** ETABLE, VOLU, VOLU CSYS,1 NSEL,S,LOC,X,.0001,.0002 NSEL,R,LOC,Y,-1,1 *GET,NOD1,NODE,,NUM,MAX NSEL,S,LOC,X,.0001,.0002 NSEL,R,LOC,Y,40,50

*GET,NOD2,NODE,,NUM,MAX

NSEL,S,LOC,X,.0001,.0002 NSEL,R,LOC,Y,130,140 *GET,NOD3,NODE,,NUM,MAX NSEL,S,LOC,X,.0001,.0002 NSEL,R,LOC,Y,179,181 *GET,NOD4,NODE,,NUM,MIN NSEL,ALL CSYS,0 JSUM=0 *USE,JIN1,NOD1,NOD2,NOD3,NOD4 J1=JINT JSUM=JSUM+ABS(J1) CSYS,1 NSEL,S,LOC,X,.0004,.0006 NSEL,R,LOC,Y,-1,1 *GET,NOD5,NODE,,NUM,MAX NSEL,S,LOC,X,.0004,.0006 NSEL, R, LOC, Y, 40, 50 *GET,NOD6,NODE,,NUM,MAX NSEL,S,LOC,X,.0004,.0006 NSEL,R,LOC,Y,130,140 *GET,NOD7,NODE,,NUM,MAX NSEL,S,LOC,X,.0004,.0006 NSEL,R,LOC,Y,179,181 *GET,NOD8,NODE,,NUM,MIN NSEL,ALL CSYS,0 *USE,JIN1,NOD5,NOD6,NOD7,NOD8 J2=JINT JSUM=JSUM+ABS(J2) CSYS,1 NSEL,S,LOC,X,.0008,.001 NSEL,R,LOC,Y,-1,1 *GET,NOD9,NODE,,NUM,MAX NSEL,S,LOC,X,.0008,.001 NSEL,R,LOC,Y,40,50 *GET,NOD10,NODE,,NUM,MAX NSEL,S,LOC,X,.0008,.001 NSEL,R,LOC,Y,130,140 *GET,NOD11,NODE,,NUM,MAX NSEL,S,LOC,X,.0008,.001 NSEL,R,LOC,Y,179,181 *GET,NOD12,NODE,,NUM,MIN NSEL, ALL CSYS,0 *USE,JIN1,NOD9,NOD10,NOD11,NOD12 J3=JINT JSUM=JSUM+ABS(J3) CSYS,1 NSEL,S,LOC,X,.0012,.0014 NSEL,R,LOC,Y,-1,1 *GET,NOD13,NODE,,NUM,MAX NSEL,S,LOC,X,.0012,.0014 NSEL,R,LOC,Y,40,50 *GET,NOD14,NODE,,NUM,MAX NSEL,S,LOC,X,.0012,.0014 NSEL,R,LOC,Y,130,140 *GET,NOD15,NODE,,NUM,MAX NSEL,S,LOC,X,.0012,.0014 NSEL,R,LOC,Y,179,181

*GET,NOD16,NODE,,NUM,MIN NSEL,ALL CSYS,0 *USE,JIN1,NOD13,NOD14,NOD15,NOD16 J4=JINT JSUM=JSUM+ABS(J4)

CSYS,1 NSEL,S,LOC,X,.0016,.0020 NSEL,R,LOC,Y,-1,1 *GET,NOD17,NODE,,NUM,MAX NSEL,S,LOC,X,.0016,.0020 NSEL,R,LOC,Y,40,50 *GET,NOD18,NODE,,NUM,MAX NSEL,S,LOC,X,.0016,.0020 NSEL,R,LOC,Y,130,140 *GET,NOD19,NODE,,NUM,MAX NSEL,S,LOC,X,.0016,.0020 NSEL,R,LOC,Y,179,181 *GET,NOD20,NODE,,NUM,MIN NSEL,ALL CSYS.0 *USE,JIN1,NOD17,NOD18,NOD19,NOD20 J5=JINT JSUM=JSUM+ABS(J5)

CSYS,1 NSEL,S,LOC,X,.0026,.0030 NSEL,R,LOC,Y,-1,1 *GET,NOD21,NODE,,NUM,MAX NSEL,S,LOC,X,.0026,.0030 NSEL,R,LOC,Y,40,50 *GET,NOD22,NODE,,NUM,MAX NSEL,S,LOC,X,.0026,.0030 NSEL,R,LOC,Y,130,140 *GET,NOD23,NODE,,NUM,MAX NSEL,S,LOC,X,.0026,.0030 NSEL,R,LOC,Y,179,181 *GET,NOD24,NODE,,NUM,MIN NSEL.ALL CSYS.0 *USE,JIN1,NOD21,NOD22,NOD23,NOD24 J6=JINT JSUM=JSUM+ABS(J6)

CSYS,1 NSEL,S,LOC,X,.0036,.0040 NSEL,R,LOC,Y,-1,1 *GET,NOD25,NODE,,NUM,MAX NSEL,S,LOC,X,.0036,.0040 NSEL,R,LOC,Y,40,50 *GET,NOD26,NODE,,NUM,MAX NSEL,S,LOC,X,.0036,.0040 NSEL,R,LOC,Y,130,140 *GET,NOD27,NODE,,NUM,MAX NSEL,S,LOC,X,.0036,.0040 NSEL,R,LOC,Y,179,181 *GET,NOD28,NODE,,NUM,MIN NSEL,ALL CSYS,0 *USE,JIN1,NOD25,NOD26,NOD27,NOD28 J7=JINT JSUM=JSUM+ABS(J7)

CSYS,1 NSEL,S,LOC,X,.0046,.0050 NSEL,R,LOC,Y,-1,1 *GET,NOD29,NODE,,NUM,MAX NSEL,S,LOC,X,.0046,.0050 NSEL, R, LOC, Y, 40, 50 *GET,NOD30,NODE,,NUM,MAX NSEL,S,LOC,X,.0046,.0050 NSEL,R,LOC,Y,130,140 *GET,NOD31,NODE,,NUM,MAX NSEL,S,LOC,X,.0046,.0050 NSEL,R,LOC,Y,179,181 *GET,NOD32,NODE,,NUM,MIN NSEL,ALL CSYS,0 *USE,JIN1,NOD29,NOD30,NOD31,NOD32 J8=JINT JSUM=JSUM+ABS(J8) CSYS,1 NSEL,S,LOC,X,.0056,.0060 NSEL,R,LOC,Y,-1,1 *GET,NOD33,NODE,,NUM,MAX NSEL,S,LOC,X,.0056,.0060 NSEL,R,LOC,Y,40,50 *GET,NOD34,NODE,,NUM,MAX NSEL,S,LOC,X,.0056,.0060 NSEL,R,LOC,Y,130,140 *GET,NOD35,NODE,,NUM,MAX NSEL,S,LOC,X,.0056,.0060 NSEL,R,LOC,Y,179,181 *GET,NOD36,NODE,,NUM,MIN NSEL,ALL CSYS,0 *USE,JIN1,NOD33,NOD34,NOD35,NOD36 J9=JINT JSUM=JSUM+ABS(J9) CSYS.1 NSEL,S,LOC,X,.0066,.0070 NSEL,R,LOC,Y,-1,1 *GET,NOD37,NODE,,NUM,MAX NSEL,S,LOC,X,.0066,.0070 NSEL,R,LOC,Y,40,50 *GET,NOD38,NODE,,NUM,MAX NSEL,S,LOC,X,.0066,.0070 NSEL,R,LOC,Y,130,140 *GET,NOD39,NODE,,NUM,MAX NSEL,S,LOC,X,.0066,.0070 NSEL,R,LOC,Y,179,181 *GET,NOD40,NODE,,NUM,MIN NSEL,ALL CSYS,0 *USE,JIN1,NOD37,NOD38,NOD39,NOD40 J10=JINT JSUM=JSUM+ABS(J10) CSYS,1

NSEL,S,LOC,X,.0076,.0080 NSEL,R,LOC,Y,-1,1 *GET,NOD41,NODE,,NUM,MAX NSEL,S,LOC,X,.0076,.0080

*GET,NOD42,NODE,,NUM,MAX NSEL,S,LOC,X,.0076,.0080 NSEL,R,LOC,Y,130,140 *GET,NOD43,NODE,,NUM,MAX NSEL,S,LOC,X,.0066,.0070 NSEL,R,LOC,Y,179,181 *GET,NOD44,NODE,,NUM,MIN NSEL,ALL CSYS.0 *USE,JIN1,NOD41,NOD42,NOD43,NOD44 J11=JINT JSUM=JSUM+ABS(J11) CSYS,1 NSEL,S,LOC,X,.0086,.0090 NSEL,R,LOC,Y,-1,1 *GET,NOD45,NODE,,NUM,MAX NSEL,S,LOC,X,.0086,.0090 NSEL,R,LOC,Y,40,50 *GET,NOD46,NODE,,NUM,MAX NSEL,S,LOC,X,.0086,.0090 NSEL,R,LOC,Y,130,140 *GET,NOD47,NODE,,NUM,MAX NSEL,S,LOC,X,.0066,.0070 NSEL,R,LOC,Y,179,181 *GET,NOD48,NODE,,NUM,MIN NSEL,ALL CSYS,0 *USE,JIN1,NOD45,NOD46,NOD47,NOD48 J12=JINT JSUM=JSUM+ABS(J12) CSYS,1 NSEL,S,LOC,X,.0096,.0100 NSEL,R,LOC,Y,-1,1 *GET,NOD49,NODE,,NUM,MAX NSEL,S,LOC,X,.0096,.0100 NSEL,R,LOC,Y,40,50 *GET,NOD50,NODE,,NUM,MAX NSEL,S,LOC,X,.0086,.0090 NSEL,R,LOC,Y,130,140 *GET,NOD51,NODE,,NUM,MAX NSEL,S,LOC,X,.0066,.0070 NSEL,R,LOC,Y,179,181 *GET,NOD52,NODE,,NUM,MIN NSEL, ALL CSYS.0 *USE,JIN1,NOD49,NOD50,NOD51,NOD52 J13=JINT JSUM=JSUM+ABS(J13) CSYS,1 NSEL,S,LOC,X,.0106,.0110 NSEL,R,LOC,Y,-1,1 *GET,NOD53,NODE,,NUM,MAX NSEL,S,LOC,X,.0106,.0110 NSEL,R,LOC,Y,40,50 *GET,NOD54,NODE,,NUM,MAX NSEL,S,LOC,X,.0086,.0090 NSEL,R,LOC,Y,130,140 *GET,NOD55,NODE,,NUM,MAX NSEL,S,LOC,X,.0066,.0070

NSEL,R,LOC,Y,40,50

NSEL,R,LOC,Y,179,181 *GET,NOD56,NODE,,NUM,MIN NSEL,ALL CSYS,0 *USE,JIN1,NOD53,NOD54,NOD55,NOD56 J14=JINT JSUM=JSUM+ABS(J14)

JAVG=(JSUM/14)

CON1=E1 !CON1=E1/(1-(NU*NU)) KI_J=SQRT(CON1*JAVG) *STATUS,KI_J ! J-TO-KI CONVERSION FACTOR

! CALCULATE KI FROM J ! VIEW RESULTS

FINISH

Prilog 3 Makro za integraciju Paris-ove jednadžbe. [1] [2]

CLEAR ALL

% konstante Parisove jednadžbe - threshold C=1.43e-11; M=2.75;

N=10000;

A_RANGE=[7.7 8.3 8.9 9.9 11.0 12.1 13.0 14.1 15.2 18.9 20.1 25.8 27.5 29.9 31.2 32.4 34.0 35.0 37.9 39.1 40.7 43.5 44.3 46.5 49.3 54.0 59.3 63.8 68.5]/1000;

K_RANGE=[12.75772862 13.24968167 13.7250239 14.48474535 15.28010533 16.0398574 16.63863122 17.346151 18.03023886 20.19485303 20.86087906 23.86092471 24.71771567 25.90862529 26.54666913 27.13250691 27.91045561 28.39557627 29.80164539 30.38492539 31.16554394 32.54446981 32.94219351 34.04806316 35.48595094 37.99896209 41.03645581 43.84291411 47.06814194]-K_TH;

N_RANGE=[1.0200E+06 1.0630E+06 1.1333E+06 1.2148E+06 1.3007E+06 1.3644E+06 1.4333E+06 1.4941E+06 1.5407E+06 1.6741E+06 1.7052E+06 1.8222E+06 1.8467E+06 1.8741E+06 1.8852E+06 1.8926E+06 1.9037E+06 1.9126E+06 1.9222E+06 1.9281E+06 1.9333E+06 1.9422E+06 1.9459E+06 1.9533E+06 1.9593E+06 1.9667E+06 1.9741E+06 1.9800E+06 1.9830E+06];

%RATE DIAGRAM P1

DA_DN_1=[4.0452E-09 1.0591E-08 1.0540E-08 1.2545E-08 1.4706E-08 1.5083E-08 1.5420E-08 2.0484E-08 2.6667E-08 2.9787E-08 4.6590E-08 5.2297E-08 7.8998E-08 9.6104E-08 1.3514E-07 1.5135E-07 1.3000E-07 2.1081E-07 2.6452E-07 2.5225E-07 3.1206E-07 2.8571E-07 2.7027E-07 3.7313E-07 5.5970E-07 6.7568E-07 7.3684E-07 1.0337E-06 3.0645E-06];

%P1 EXPERIMENT

A_1_EXP=[7.7 8.3 8.9 9.9 11.0 12.1 13.0 14.1 15.2 18.9 20.1 25.8 27.5 29.9 31.2 32.4 34.0 35.0 37.9 39.1 40.7 43.5 44.3 46.5 49.3 54.0 59.3 63.8 68.5]/1000;

N_1_EXP=[1.0200E+06 1.0630E+06 1.1333E+06 1.2148E+06 1.3007E+06 1.3644E+06 1.4333E+06 1.4941E+06 1.5407E+06 1.6741E+06 1.7052E+06 1.8222E+06 1.8467E+06 1.8741E+06 1.8852E+06 1.8926E+06 1.9037E+06 1.9126E+06 1.9222E+06 1.9281E+06 1.9333E+06 1.9422E+06 1.9459E+06 1.9533E+06 1.9593E+06 1.9593E+06 1.9667E+06 1.9741E+06 1.9800E+06 1.9830E+06];

K_X=[9 54];

 $DA_DN_X(1)=C^*((K_X(1))^M);$ $DA_DN_X(2)=C^*((K_X(2))^M);$

 $N_{TOT}(1)=N_{RANGE}(1);$

N_PART=LENGTH(A_RANGE)-1;

FOR J=1:N_PART

A_0_SUB=A_RANGE(J); A_FIN_SUB=A_RANGE(J+1); DELTA_K_IN=K_RANGE(J); DELTA_K_FIN=K_RANGE(J+1);

A(1)=A_0_SUB; N(1)=0; DELTA_A=(A_FIN_SUB-A_0_SUB)/N; DELTA_K(1)=DELTA_K_IN;

FOR I=1:N DELTA_K(I+1)=DELTA_K(I)+((DELTA_K_FIN-DELTA_K_IN)/(N));

 $DELTA_K_SR(I) = (DELTA_K(I+1) + DELTA_K(I))/2;$ END FOR I=1:N $DA_DN(I)=C^{*}(DELTA_K_SR(I))^{M};$ DELTA_N(I)=(DELTA_A)/(DA_DN(I)); END FOR I=1:N $N(I+1)=N(I)+DELTA_N(I);$ END $N_JSL=N(N+1);$ $N_TOT(J+1)=N_TOT(J)+N_JSL;$ END N_TOT_P1=N_TOT(N_PART+1) FIGURE LOGLOG(K_RANGE,DA_DN_1,'O'); HOLD('ALL'); LOGLOG(K_X,DA_DN_X); XLABEL('DELTA K'); YLABEL('DA/DN'); TITLE ('RATE DIJAGRAM PARIS'); FIGURE PLOT(N_TOT,A_RANGE); GRID('ON'); HOLD('ALL'); PLOT(N_1_EXP,A_1_EXP,'R-O'); XLABEL('N (CIKLUSA)'); YLABEL('A(M)');LEGEND('SIMULACIJA', 'EKSPERIMENT', 'LOCATION', 'NORTHWEST'); TITLE ('P1 PARIS');

LITERATURA

- 1. Bitunjac, V.: *Diplomski rad*, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zagreb, 2007.
- 2. Vujica, D.: *Diplomski rad*, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zagreb, 2007.
- 3. Sumi, Y., Božić, Ž., Iyama, H., Kawamura, Y., *Multiple Fatigue Cracks Propagating in a Stiffened Panel*, Journal of The Society of Naval Architecturs of Japan, 1996;179.
- 4. ANSYS 12.1 Help.
- 5. Broek, D.: The Practical Use of Fracture Mechanics, Kluwer Academic Publishers, London, 1989.
- 6. Božić, Ž.: *Dinamička čvrstoća tankostjenih konstrukcija*, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zagreb, 2010.
- Beden, S. M., Abdullah, S., Ariffin, A. K.: *Review of Fatigue Crack Propagation Models for Metallic Components*, European Journal of Scientific Research, Vol.28 No.3 (2009), pp.364-397.
- 8. Shahani, A. R., Moayeri Kashani, H., Rastegar, M., Botshekanan Dehkordi, M.: *A unified model for the fatigue crack growth rate in variable stress ratio*, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran, 2008.
- ANSYS, Inc., Southpointe 275 Technology Drive Canonsburg, PA 15317 USA, ANSYS Theory manual, poglavlje 3.9: Fracture mechanics, str. 3-153;4-48
- Kudari, S. K., Kodancha, K.G.: On the relationship between J-integral and CTOD for CT and SENB Specimens, College of Engineering and Technology, Hubli-580031, India, 2008.
- Okawa, T., Sumi, Y., Mohri, M.: Simulation-based fatigue crack management of ship structural details applied to longitudinal and transverse connections, Marine Structures 19 (2006) 217–240.
- Schijve J.: Fatigue of structures and materials, Springer Science+Business Media, B.V., 2009.