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Preface

The last six years or so were dynamic, to say the least. The effort put into research
in relation to research progress is highly out of phase, with the largest gain typically
occurring in the high-frequency range, i.e. around deadlines. But, in the end, I’m
happy to say that I was able to reject the dissipative nature of mundane routine and get
back on my feet to learn a plethora of new talents and gain a vast amount of valuable
knowledge. Earning a doctorate degree was no easy feat and I hope my dissertation
will serve as a valuable resource for others and a moving reminder of how far I’ve
come and for what and to whom I should to be thankful.

First and foremost, I’d like to thank my supervisor, associate professor Marko Jokić,
PhD: ever since writing my master’s thesis and now throughout the entire PhD course,
you haven’t once said that you don’t have time for me — and all that time you gave me
is absolutely indispensable — it helped me with the research, narrowing things down,
focusing on the important topics, obtaining meaningful results, and being, above all,
a practical engineer and a realist. I would not have made it to the end without your
direction and patience — thank you for this wild voyage through my PhD course.

In addition, I would like to take this opportunity to extend my sincere gratitude to
the members of the committee who are as follows: associate professor Neven Alujević,
PhD; full professor Hinko Wolf, PhD; and full professor Sanjin Braut, PhD, for the
significant amount of time they spent reviewing this dissertation and the insightful
comments they provided on how it could be improved.

I’m grateful to my bachelor’s degree supervisor and a man I look up to, full professor
Zdenko Tonković, PhD. Because of you, I’ve returned to academia, eager to learn and
research, to teach and share knowledge with the same zeal that you do, and to inspire
future generations of engineers at FSB. I’ve learnt from you that being more socially
involved, both politically and voluntarily, is important, and that honesty, openness,
and everyday kind words to others are vital.

I am also grateful to my FSB colleagues. Nino Horvat, PhD, who was there to help and
give his time, motivated and inspired me to complete my study and this dissertation.
I’ve learned from you to be more patient, to write more often, and to do the smart
work that leads to success. Damjan Čakmak, PhD, whose scientific writing I have
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always loved and who was my go-to when I was stuck with any writing or publishing
difficulty. From you, I learned to be systematic in my thinking and behaviors, as well as
to be critical and pragmatic. Big kudos to my INŽMOD friends - Andrija Buljac, PhD,
Mihael Cindori, PhD, Gregor Cvijetić, PhD, Krešimir Duvnjak, Martin Mikulčić, Filip
Putar, PhD, and Matko Ribičić - who have made my student life enjoyable, productive,
and rewarding. I’ve learned from you that learning may be (nearly) as enjoyable as
going out. Even now, the effectiveness of our learning methods is clear, and it has
shown to be successful, with many of us obtaining PhDs and excellent careers in the
engineering industry! I also thank Sara, Josip, Neven and Stanko for helping me
out with math related problems. Thank you to our (late) Begi and Jelena for every
kind word and laugh, as well as help with bureaucracy and valuable work related
insights. Thank you professor Sušić for your help and all the accommodations made
with regards to classes. Thank you professor Jurčević-Lulić for a pleasant stay and the
help provided for all of us at the Chair for applied mechanics.

I’m glad and thankful to have close family and friends. To my mom Ika and dad
Niko, who always had high hopes and expectations for me, but you never had any
doubts about me. This has made me resilient and inspired to keep going from early
days. From you two, I’ve learned everything I need to know to be a good man and to
put knowledge and kindness above everything else. I’m also thankful to my brother
Elgar and my sisters Erika, Ema, and Klaudia. From you I have learned to take better
care for others. I’m grateful to my mother-in-law Višnja and father-in-law Danimir
for accepting me as their own and treating me like family. You taught me to work
hard and to see people for who they really are. My sincere appreciation goes to Marija
and Igor, my sister and brother-in-law, who welcomed me into the family and were
always there to provide a helping hand without expecting anything in return. You
have taught me how to remain modest while still pushing myself to my limits.

I’m also thankful to our wedding godfathers Vedran and Tomislav, our wedding god-
mothers Sara and Ivana, and our children’s godparents Jurica and Anamarija, for all
of you were unconditionally there to support both me and my family. Even though
life always finds a way of tearing us apart we fortunately get back together with smiles
and hugs. Now that I’ve handed in my dissertation, I have no excuse not to visit you
guys more regularly; I look forward to our time together and helping each other even
more. Thanks to you, I now know that there are people who will answer the phone
at all hours. I would also like to mention Hrvoje and Ðurd̄ica with whom I simply
clicked and thank them for giving me opportunity to be a "naštrigani kum".

My profound gratitude goes to God, who saved my life at least twice and has blessed
me with the health, willpower, strength, and intelligence to see me through this PhD
program and all else I have set my mind to. To Saint Marta, I am truly thankful for
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strengthening my faith and bringing both comfort and a way out to my family during
difficult times.

But above everything, I will be forever thankful to my wonderful wife Katarina for her
love, unflinching support, and the amazing pleasure of being her husband. I was a
young man trying to figure things out when I first met you. But it turns out that you
have this remarkable ability to bring out the best in me. Not only that, but I can always
count on you in times of uncertainty and self-doubt. We stuck together and made
it through hard times and this persistence was blessed with marriage and healthy
beautiful children. Now, as of writing this dissertation, I can say I have become a man,
a husband, a father and a doctor of philosophy (or “doktor znanjo” as Andrija would
call me). Katarina, you both showed me and taught me what love really means and
each day you give me opportunity and inspiration to grow and become a better man.
I’ve picked up the habits of acting with speed and simplicity from you - or to be more
"fleten" as you would say. Our children have taught me to be more selfless, to laugh
loudly and more often, and to not be afraid to dare - because kids do it, just because
they like it. My dearest, you make waking up each day a pleasure and going to bed
each night something for which I am eternally grateful.
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Summary

This dissertation focuses on uncertainty modeling, robust stability, and performance
analysis of coupled multi-input multi-output (MIMO) reduced-order dissipative dy-
namical systems. Large-scale structural dynamics systems, micro-electro-mechanical
systems (MEMS), flexible multi-body dynamics systems (FMBDS), and similar sys-
tems are examples of such systems. For modeling and analyzing such systems, spatial
discretization techniques (SDMs) such as the finite element method (FEM) are com-
monly used. With the introduction of supercomputers, finite element analysis (FEA)
engineers are now able to conduct analyses with reasonably high fidelity, but at the
expense of lengthy computation times and models of a very high order. In contrast,
the strong need for real-time robust control - with the advent of digital twin models -
necessitates relatively low order models. Herein lies the significance of model order
reduction (MOR) strategies. The accuracy of reduced order models (ROM) determines
the accuracy of the coupled model. The dissipation theory is fundamental to all aspects
of modern robust control, including mathematical (numerical) modeling, analysis, and
synthesis. Complex couplings (interconnections) of a large number of mutually in-
teracting dissipative dynamical systems can be efficiently analyzed with tools such
as semi-definite programming (SDP), linear matrix inequalities (LMIs), and integral
quadratic constraints (IQCs). With appropriate parametrizations and relaxations, this
boils down to a convex optimization problem (COP). A viable solution to this COP
ensures robust stability and robust performance, which is sometimes referred to as ro-
bustness. The behavioral approach, which incorporates zooming, tearing, and linking,
was recently proposed as a viable method for analyzing (coupled) dynamical sys-
tems. It supports the modeling of coupled dynamical systems in a more natural way,
providing an advantage when dealing with coupled dynamical systems’ complicated
interconnections. While conducting research for this dissertation, the following discov-
eries were made: (i) a novel concept of multi-scale structure preservation is introduced
to emphasize the importance of both global structure preservation and local structure
preservation at the subsystem level; (ii) errors introduced into analysis via SDMs and
MOR can be modeled as unstructured linear time-invariant dynamic uncertainties; (iii)
uncertainty conservatism at the subsystem level can be reduced for a special class of
interconnected dissipative dynamical systems; (iv) preserved structure can be used to
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Summary

account for the dissipative dynamics of the surroundings in analysis and (uncertainty)
modeling; and (v) systematic modeling of the uncertainty and model order reduction
(MOR) at the level of a subsystem gives both modeling freedom and the ability for
obtaining less conservative uncertainties on the level of a subsystem. To generate low-
order, robustly stable coupled systems, a new structure-preserving procedure using
subsystem partitioning and subsystem MOR through the balanced truncation method
(BTM) is presented. Resulting systems are well suited for practical decentralized and
distributed robust controller synthesis. The suggested method is also flexible. The
suggested design approach allows users to control conservatism reduction or coupled
model order. Local structure preservation may be exploited to optimize the dynamical
response of large-scale subsystems. Using IQCs and µ-analysis, a robustness analysis
was conducted on several numerical experiments to support the findings. Multiple
configurations of spatially discretized vibration dynamical systems composed of a
series of simply supported Euler beams coupled with springs and dampers are inves-
tigated. The results suggest that the dissipative behavior of subsystems may be taken
into consideration effectively when numerically modeling coupled dynamical systems.
The suggested technique is almost certain to produce suboptimal models due to its
heuristic approach, yet it represents an appealing design technique that brings up
several relevant research questions.

Keywords: coupled dynamical systems; structure preserving; robustness analysis;
uncertainty modelling; model order reduction; dissipative dynamical systems; second

order dynamical systems; spatial discretization error modelling; finite element
method;
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Prošireni sažetak

Tema ovog istraživanja je razvoj numeričke metode za analizu spregnutih dinamičkih
sustava. Metoda se razvija u okviru teorije automatskog upravljanja i regulacije. Me-
toda se implementira numerički korištenjem MATLAB-a i odgovarajućih proširenja
(eng. toolbox). Spregnuti dinamički sustavi su sustavi sačinjeni od više med̄usobno
povezanih podsustava s višestrukim ulazima i izlazima. Primjeri ovakvih sustava su,
izmed̄u ostalog, sustavi dobiveni u okviru dinamike sustava više deformabilnih tijela
(eng. flexible multi-body dynamics systems), mikro-elektro-mehaničke sustavi (eng.
micro-electro-mechanical systems), višeagentni robotski sustavi (eng. multi-agent ro-
botic systems) te raspodjela temperature unutar toplinski vodljivih materijala. Svaki
podsustav je prostorno diskretiziran korištenjem metode konačnih elemenata (MKE)
koji se može zapisati kao linearni dinamički sustav drugog reda. Ubrzanim poveća-
njem računalne snage, moguće je vršiti analizu sustava dobivenih pomoću MKE, sa
gotovo proizvoljno visokom točnošću, na uštrp dužih vremena simulacije uz modele s
jako velikim brojem konačnih elemenata.

Za takve sustave, sve je veća potreba za stvaranjem sustava upravljanja i regulacije
koji rade efikasno i robustno u realnom vremenu. Moderan pristup ovom problemu je
stvaranje vjerne digitalne replike stvarnog sustava, tzv. digitalni blizanac (eng. digital
twin) koji zahtjeva da se sustav modelira na fleksibilan način kako bi se dinamika
sustava, po potrebi, mogla relativno jednostavno prilagoditi promjenama na stvarnom
modelu. Za linearne vremenski invarijatne sustave prvog reda razvijeni su mnogi
korisni alati za sintezu sustava upravljanja i regulacije, stoga se takvi modeli najčešće
koriste u okviru modernog upravljanja. Pri pretvorbi prostorno diskretiziranih sus-
tava u sustave u prostoru stanja, najveći nedostatak je izrazito veliki broj stanja (reda
modela) rezultirajućeg sustava, koji lako naraste do desetaka tisuća ili više. S tako
velikim brojem stanja, nemoguće je ili nepraktično pristupiti modeliranju, analizi i
sintezi u okviru automatskog upravljanja i regulacije. Iz tog razloga, gotovo neizos-
tavno, koriste se metode redukcije reda modela (RRM). Zbog velike potrebe za RRM,
ovo znanstveno područje gotovo je neiscrpno i popraćeno je stalnim i intenzivnim
razvojem novih metoda RRM.

Ovdje je bitno za naglasiti sljedeće, iako su modeli u prostoru stanja najzastupljeniji
u teoriji upravljanja, takod̄er se intenzivno razvijaju i metode upravljanja za sustave
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Prošireni sažetak

koji nisu zapisani u prostoru stanja. Tu je veliki naglasak stavljen na linearne sustave
drugog reda - jer takvi sustavi se direktno dobivaju rješavanjem mnogih fizikalnih
problema (kao što je i slučaj sa mehaničkim sustavima koji su prostorno diskretizirani).
Ovakva potreba nastala je uz činjenicu da se, izmed̄u ostalog, nastoje očuvati posebne
značajke i struktura podsustava, koji se obično djelomično ili potpuno gube prilikom
pretvorbe u sustav prvog reda. Očuvanjem strukture podsustava moguće je dobiti
izrazito točne modele niskog reda, pa je ta činjenica popraćena i razvojem RRM za
sustave drugog reda. Iako još ne postoji razvijeno robusno sučelje za analizu i sintezu
linearnih sustava drugog reda, valja uočiti kako je nedugo (u 2021.), u programskom
paketu MATLAB uvedena sveobuhvatna podrška za modeliranje linearnih (mehanič-
kih) sustava drugog reda. Za modele drugog reda, da se pokazati da su matrice
potrebne za opis linearne dinamike izrazito rijetke (eng. sparse), pa se dinamički sus-
tavi vrlo visokog reda u teoriji mogu analizirati efikasno, čak i bez primjene redukcije
reda modela. Sve su ovo pokazatelji koji ukazuju na značaj linearnih modela drugog
reda, ali i očuvanje strukture modela.

Takod̄er je interesantno za uočiti da se mijenja trenutna paradigma razmatranja di-
namičkih sustava, a to je modeliranje sustava kao tzv. crne kutije (eng. black-box).
Pri ovakvom pristupu, fizikalni (ali i ostali dinamički) sustavi, modeliraju se kao
procesor informacija (eng. signal processor). Klasična iterpretacija ulaz-izlaz (eng.
input-output) dinamičkih sustava, koja je započela s uvod̄enjem prijenosnih funkcija
(eng. transfer function), polako se odbacuje za modeliranje fizikalnih sustava. Uz ulaz-
stanje-izlaz (eng. input-state-output) interpretaciju koja je trenutno najzastupljenija i
koju je uveo R. E. Kálman u šezdesetim godinama prošlog stoleja, u zadnjih tridesetak
godina, razvijaju se i drugi pristupi modeliranju dinamičkih sustava. Izrazito je obe-
ćavajuće razmatranje ponašanja (eng. behavioral approach, u nastavku behavioralni
pristup) dinamičkog sustava, temeljen na približavanju, raščlanjivanju i spajanju (eng.
zooming, tearing and linking) koje je, paralelno sa opisom disipativnih dinamičkih
sustava, uveo J. C. Willems. Ova dva koncepta predstavljaju polaznu točku za razvoj
novih metoda u svim fazama izučavanja dinamičkih sustava - matematičkom (i nume-
ričkom) modeliranju, analizi i sintezi. Utjecaj koji je Willems sa svojim istraživanjem
ostavio na cijelu zajednicu "kontrolaša" (eng. control engineers) biti će uskoro prikazan.
Razvojem dvaju spomenutih principa, razvio se i tzv. port-Hamiltonijanski (eng. port-
Hamiltonian) način izučavanja i modeliranja fizikalnih dinamičkih sustava. Kod ovog
pristupa, dinamički sustav razmatra se kao sustav otvorenog tipa u kojem se preko
portova (eng. port) u dinamički sustav uvodi energija koja se jednim dijelom gubi
(disipira) van granica sustava, a preostalim dijelom unutar sustava pretvara u druge
oblike energije. Pri čemu se, slično kao i kod behavioralnog pristupa, ne proučava
izmjena informacija (odnosno signala) med̄u spregnutim sustavima, nego izmjena
energije - što svakako ima jasniju intepretaciju, ali i praktičniju primjenu za fizikalne
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sustave. Svi ovi navedeni pristupi omogućavaju bolji uvid u dinamiku fizikalnih sus-
tava jer se temelje na osnovnim zakonitostima fizike i prvim principima (eng. first
principles). Uz ovo treba spomenuti još i modeliranje dinamičkih sustava korištenjem
računalnog učenja (eng. machine learning) i neuro-neizrazitih-genetskih (eng. neuro-
fuzzy-genetic) sustava, koji predstavljaju najmoderniji pristup modeliranju, analizi i
sintezi, med̄utim više su orijentirani ka izrazito nelinearnim dinamičkim problemima.
Za prethodno navede pristupe, koji su argumentativno u mnogim slučajevima bolji za
modeliranje fizikalnih spregnutih dinamičkih sustava od modela opisanim prostorom
stanja, metode upravljanja za takve matematičke modele tek dostižu razinu praktične
primjenjivosti.

Od navedenih metoda i pristupa, fokus ove disertacije zadržan je na behavioralnom
pristupu i teoriji disipativnosti te do neke mjere na korištenju linearnih sustava drugog
reda i popratnim metodama koje se mogu povezati sa trenutno dostupnim metodama
u okviru teorije upravljanja. Behavioralni pristup u samoj svojoj definiciji (kroz ko-
rake raščlanjivanja i povezivanja) sadrži očuvanje strukture sustava. Važnost očuvanja
strukture sustava vidljiv je i kroz značajan interes znanstvenika u posljednih dvade-
setak godina. Treba napomenuti kako se očuvanje strukture kroz literaturu najčešće
odnosi ili na strukturu unutar podsustava (u nastavku lokalno očuvanje strukture) ili
na strukturu unutar spregnutog sustava (globalno očuvanje strukture). Behavioralni
pristup koji je postavio Willems naglašava važnost očuvanja strukture prilikom mode-
liranja. Med̄utim, u okviru teorije upravljanja, zanimljivo je za uočiti kako, uz najbolje
autorovo znanje, nije izučavan sveobuhvatni pristup očuvanja strukture - i lokalne i
globalne strukture istovremeno. Stoga autor ovom prilikom uvodi pojam višeskalnog
očuvanja strukture (eng. multi-scale structure preservation) za spregnute dinamičke
sustave.

O značaju temeljnih principa teorije disipativnosti koje je postavio Willems 1972., prije
točno pedeset godina od danas, govori i činjenica da su upravo u sklopu tog važnog
dogad̄aja, izdana dva opsežna broja (2 i 3), u svesku 42, od strane IEEE. Svezak 42 i
brojevi 2 i 3 su dio IEEE Control Systems (Magazine), a nose naziv 50 Years of Dissipa-
tivity, Part I (Part II). Autori koji su sudjelovali u izradi navedenih brojeva, takod̄er
su doprinjeli razvoju mnogih grana teorije upravljanja upravo korištenjem spomenute
teorije disipativnosti. Kao istaknute autore, med̄u ostalima, treba navesti C. W. Sche-
rera, S. Weilenda, M. Arcaka, L. Grünea, B. Brogliatoa, T. H. Hughesa i R. Patesa, na
čijim radovima počiva dobar dio ove disertacije. Osim navedenih znanstvenika, autor
bi još izdvojio i A. Megretskog koji je u devedesetima izdao članak (takod̄er usko
vezan za teoriju disipativnosti) vezan za teoriju integralnih kvadratnih ograničenja
(IKO) i time postavio temelje za analitički pristup analizi nesigurnih sustava. IKO
omogućavaju razmatranje nesigurnosti odvojeno od nominalnog sustava. IKO defini-
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rana su nejednakostima koja se koriste za opisivanje (parcijalno) mogućih kombinacija
signala unutar nekog dinamičkog sustava u zatvorenom krugu. Iako IKO predstavljaju
izrazito koristan alat u dokazivanju teorema, glavni značaj imaju pri izvod̄enju algo-
ritama temeljenih na konveksnoj optimizaciji koji se koriste za traženje dozvoljenih
rješenja (kandidata) kojima se potvrd̄uje i dokazuje stabilnost i robusnost nesigurnih
dinamičkih sustava.

Osim ovog recentnog dogad̄aja, veliku važnost teorije disipativnosti pokazuje i veliki
projekt Njemačke Znanstvene Institucije (njem. Deutsche Forschungsgemeinschaft,
DFG) pod nazivom Calm, Smooth and Smart - Novel Approaches for Influencing Vibrations
by Means of Deliberately Introduced Dissipation, koji je započeo 2016., a pod okriljem
kojega se odvijaju desetci (uz desetke već završenih) projekata vezanih za dissipativ-
nost općenitno, ali i mnogi s naglaskom na primjeni u teoriji upravljanja i usmjereni
upravo na mehaničke sustave. Med̄u takvim projektiva valja izdvojiti projekt, koji
je u trenutku pisanja rada još uvijek aktivan, a kojeg vodi P. Benner, pod nazivom
Structure-Preserving Model Reduction for Dissipative Mechanical Systems. U okviro
tog projekta izdan je veliki broj članaka i razvijen veliki broj algoritama vezanih za
redukciju reda modela. Kako je vidljivo i iz samog naziva projekta, fokus je na di-
sipativnim sustavima. U okviru projekta, takod̄er je razvijen i alat za programski
paket MATLAB pod nazivom MORLab koji je izdašno korištem u ovoj disertaciji pri
izvod̄enu numeričkih eksperimenata.

Kako je vidljivo iz dosadašnjeg pregleda, ova disertacija bavi će se sljedećim podru-
čjima:

– Metodama prostorne diskretizacije (prvenstveno metoda konačnih elemenata) i
teorijom sustava za numeričko modeliranje spregnutih dinamičkih sustava.

– Metodama redukcije reda modela (prvenstveno metode bazirane na redukciji
reda modela u prostoru stanja, s naglaskom na metode očuvanja posebnih svoj-
stava sustava, kao što su stabilnost, disipativnost i pasivnost, te metode reduckije
očuvanja strukture sustava) u svrhu dobivanja podobnih modela nižeg reda.

– Modeliranjem greške koja nastaje uslijed prostorne diskretiacije i/ili redukcije
reda modela (u okviru teorije robusnog upravljanja uz provod̄enje analize ro-
bustnosti nesigurnih sustava korištenjem integralnih kvadratnih ograničenja i
strukturirane singularne vrijednosti).

Prostorna diskretizacija parcijalnih diferencijalnih jednadžbi koje opisuju dinamiku
sustava, provoditi će se isključivo metodom konačnih elemenata. Valja napomenuti
da se i druge metode diskretizacije kao što je metoda konačnih volumena (eng. finite
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volume method) i metoda konačnih razlika (eng. finite difference method), takod̄er
mogu uklopiti u okviru predloženih metoda.

Hipoteze istraživanja

Hipoteze istraživanja su:

1. Mehanički dinamički sustavi opisani parcijalnim diferencijalnim jednadžbama
mogu se modelirati kao niz med̄usobno povezanih linearnih vremenski-
invarijantnih podsustava s nesigurnostima, te je takvim modelom moguće do-
voljno točno opisati dinamičko ponašanje ključno za sintezu učinkovitog sustava
upravljanja.

2. Moguće je iskoristiti činjenicu da su podsustavi spregnuti da bi se dobilo bolji
model nesigurnosti, te time dodatno povećati učinkovitost sustava upravljanja.

Ciljevi istraživanja

Glavni cilj ovog istraživanja je razviti numeričku metodu za ocjenu točnosti i greške
prostorne diskretizacije spregnutih dinamičkih sustava. Uz lokalnu grešku diskreti-
zacije dodatno se uzima u obzir i točnost spregnutog dinamičkog sustava, te se tako
dobiva poboljšani model nesigurnosti za spregnute dinamičke sustave. Očekivani
cilj, stoga je i unaprijed̄enje učinkovitost sustava robustnog upravljanja spregnutih
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dinamičkih sustava.

I. Matematički model spregnutog
dinamičkog sustava

Matematičko modeliranje provodi se u okviru teorije sustava i upravljanja. Razmatrani
dinamički sustavi diskretizirani metodom konačnih elemenata, rezultiraju linearnim
sustavima drugog reda. Dobiveni linearni sustavi drugog reda pretvaraju se u linearne
vremenski-invarijantne sustave prvog reda. Za linearne vremenski-invarijatne sustave
prvog reda dostupan je velik broj robusnih alata za modeliranje, analizu i sintezu. U
okviru ovoga doktorata izdašno se koriste metode redukcije reda modela. Metoda
koja predstavlja temelj u razvijenom algoritmu je metoda uravnoteženog skraćivanja
(eng. balanced truncation method), stoga je toj metodi posvećena posebna pažnja.
Diskretizirani i reducirani modeli povezuju se pomoću algebarskih izraza, pri čemu se
zadržava struktura modela. Uz ovako očuvanu strukturu spregnutog sustava, može se
pristupiti modeliranju i mijenjanju svakog od podsustava, koje se nakon modeliranja
ponovno spaja spregnutom sustavu. Ovakav pristup daje dodatnu slobodu kod mo-
deliranja pri čemu se svaki od podsustava može modelirati na način da zadovoljava
lokalne zahtjeve, ali i globalne.

II. Analiza robusnosti spregnutog
disipativnog dinamičkog sustava

Za opisivanje greške diskretizacije i greške redukcije reda modela korišteni su alati iz
područja robusnog upravljanja. Netočnost u dinamičkom odzivu i trajektoriji redu-
ciranog sustava u odnosu na nereducirani sustav visokog reda, može se modelirati
kao nestrukturirana nesigurnost. U ovom radu korištene su aditivna i multiplika-
tivna nesigurnost. Uz očuvanu globalnu strukturu sustava, moguće je korištenjem
linearne frakcijske transformacije (eng. linear fractional transformation) izdvojiti ne-
sigurnosti svih podsustava i na taj način dobiti jednu, blok dijagonalnu nesigurnu
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matricu, koja je u povratnoj vezi povezana sa preostalim nominalnim dijelom ne-
sigurnog spregnutog sustava. Za takav sustav, moguće je korištenjem integralnih
kvadratnih ograničenja (IKO) i/ili strukturirane singularne vrijednosti (SSV) pristupiti
analizi robustnosti. Osim navedenih nesigurnosti koje nastaju uslijed diskretizacije i
redukcije reda modela, moguće je istovremeno vršiti analizu robustnosti uslijed drugih
tipova nesigurnosti. Za mehaničke sustave to su najčešće parametarske nesigurnosti i
odred̄eni tipovi nelinearnosti.

III. Numerička analiza, numerički
eksperimenti i zaključak

Uz prethodno navedene metode, moguće je iskoristiti strukturu sustava kako bi se,
osim modelirala nesigurnost za svaki podsustav, takod̄er i smanjila njena konzerva-
tivnost na nivou podsustava. Konzervativnost nesigurnog modela ima za posljedicu
smanjenje performansi robusnog sustava upravljanja. Smanjenje konzervativnosti pro-
vodi se na način da se u obzir uzimaju okolni sustavi. Pri tome se koriste saznanja iz
teorije disipativnosti kako bi se odbacio dio nesigurnosti koji se zbog same disipativ-
nosti u spregnutom sustavu prigušuje. Predložena numerička metoda provedena je
na nizu numeričkih primjera. Primjeri su takvi u kojima se disipativnost manifestira
kroz modalno Rayleighevo prigušenje unutar samih diskretiziranih podsustava i kroz
prigušne elemente koji spajaju podsustave odnosno Analiza robustnosti potvrd̄ena
je korištenjem poznate i u literaturi dostupne metode temeljenje na strukturiranim
singularnim vrijednostima (eng. structured singular values), odnosno tzv. µ-analize,
ali i modernijom i sofisticiranijom metodom integralnih kvadratnih ograničenja. In-
tegralnim kvadratnim ograničenjima efikasno se rješavaju i problemi pod utjecajem
više vrsta nesigurnosti (eng. mixed uncertainties). Gotovo svi problemi postavljeni
na temeljima integralnih kvadratnih ograničenja u konačnici se mogu formulirati kao
sustav linearnih matričnih nejednadžbi (eng. linear matrix inequalities), odnosno pro-
blem postaje konveksni optimizacijski problem (eng. convex optimization problem).
Ovo daje veliku prednost integralnim kvadratnim ograničenjima u analizi robusnosti,
jer osim što postoji veliki niz razvijenih i praktičnih alata za rješavanje takve klase pro-
blema, dobivena rješenja garantiraju robusnu stabilnost i željenje robusne perofrmanse
rezultirajućeg nesigurnog modela niskog reda koji je dobiven spajanjem velikog broja
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Prošireni sažetak

prostorno diskretiziranih podsustava niskog reda.

Ostvareni znanstveni doprinosi

Na osnovu prikazanih numeričkih rezultata, diskusije i zaključaka, potvrd̄ene su i
prethodno postavljene hipoteze istraživanja.

Osim potvrd̄enih hipoteza, iz ove doktorske disertacije proizašli su i sljedeći znanstveni
doprinosi:

– Razvijen je originalni koncept modeliranja dinamičkih sustava s očuvanjem struk-
ture na više razina, koji osigurava očuvanje strukture modela dinamičkog sustava
na globalnoj razini te na razini podsustava.

– Pokazano je kako se greške modeliranja sustava koje su posljedica prostorne
diskretizacije i posljedica redukcije reda modela mogu učinkovito modelirati kao
nestrukturirane linearne vremenski-invarijantne dinamičke nesigurnosti.

– Pokazano je kako se konzervatizam u modeliranju greške na nivou podsustava
može učinkovito smanjiti za posebnu klasu spregnutih disipativnih dinamičkih
sustava.

– Pokazano je kako se očuvanje strukture modela dinamičkog sustava može učin-
kovito iskoristiti u analizi i modeliranju (nesigurnog) dinamičkog sustava koji se
nalazi u sprezi s disipativnim sustavom ili sustavima koji predstavljaju njegovu
okolinu.

– Razvijena je metoda sustavnog modeliranja nesigurnosti i redukcije reda modela
na razini podsustava koja omogućava slobodu modeliranja i manju konzervativ-
nost modela nesigurnosti na nivou podsustava.

Ključne riječi: spregnuti dinamički sustavi; očuvanje strukture; analiza robustnosti;
modeliranje nesigurnosti; redukcija reda modela; disipativni dinamički sustavi;

integralna kvadratna ograničenja; dinamički sustavi drugog reda; modeliranje greške
prostorne diskretizacije; metoda konačnih elemenata;
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1.1 Motivation

Mathematical and numerical modeling is an essential tool in many technological disci-
plines. Complex dynamical systems are composed of multiple-input, multiple-output
(MIMO) subsystems, each of which can be driven by a distinct physical principle. Each
subsystem can be formally characterized using ordinary differential equations (ODE),
differential-algebraic equations (DAE), and partial differential equations (PDE), and
then linked together using additional algebraic connections. Large-scale structural
dynamics systems, micro-electromechanical systems (MEMS), flexible multi-body dy-
namics systems (FMBS), multi-agent robotic systems (MARS), very large system inte-
grated (VLSI) chip design, smart structures, and networks of embedded systems (NES)
are examples of such systems. These and many other related systems belong to a class
of spatially distributed dynamical systems that have acquired prominence in a variety
of scientific and technological domains, including control theory applications.

There is a rising demand for real-time robust control, real-time system monitoring,
and real-time adaptation of a model to reflect changes in a real physical system for
the previously identified coupled dynamical systems. This can be accomplished by
creating a replica of a physical system and a real-time information exchange interface
between the replica and the physical system, such that both evolve in tandem over
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time. A digital twin modelling is becoming increasingly popular [1]. An effective
digital twin model should roughly satisfy the following requirements: (i) be adaptable,
i.e. easy to change, (ii) have relatively low order, i.e. the real time simulation should
require a small amount of computer resources, (iii) be accurate, i.e. have a dynami-
cal behavior similar to that of a physical system, and (iv) be robust, i.e. capable of
handling unknown external disturbances and changes within the model. A notable
example of building such digital twin models is being carried out as part of an ongoing
research project led by Z. Tonković, called Protection of Structural Integrity in Energy
and Transport Industries, which is dealing with structural health monitoring of wind
turbines, among other things.

One method for making models adaptive is to preserve the important properties of
each subsystem in the coupled model. Among other things, these could be model
parameters (e.g., mass, damping, stiffness, and so on) that can be altered if necessary,
and then other properties should be kept intact for such a changed model - for example,
subsystem stability, passivity, reciprocity, and so on. Couplings (interconnections)
between subsystems can also be preserved, allowing a subsystem to be readily altered,
replaced, or eliminated as necessary.

Designing a low order model that is understood and can be dealt with efficiently -
a linear and possibly time-invariant model - is a control engineer’s goal as old as
control and systems theory itself. On the contrary, the models resulting from spatial
discretization are often large-scale and of high order. To address this in a practical
manner, one can employ model order reduction methods. However, not all model
order reduction methods satisfy the first requirement, leaving us with only a subset
of methods to deal with – those that do preserve important properties.

The third criteria is a little more difficult to cope with. To begin with, obtaining an
accurate model is a difficulty in and of itself - how much of the dynamics of the real
system should be included in the model for it to be an accurate description of the
real model? Second, a trade-off must be made because the first two conditions are
fundamentally opposed to this one. To deal with this, one must frequently prioritize
which aspects of the subsystem to focus on, such as preserving only some of the prop-
erties or only important parameters, preserving only necessary couplings, employing
a model order reduction method that results in a model with high fidelity in a specific
frequency range or yielding a model with good correlation in time domain simulations,
and so on.

However, the fourth requirement provides considerable relief from all of the preceding
requirements. If the coupled dynamical system is modeled within the robust control
theory framework, it is possible to robustify the model by introducing uncertainty
- a set of dynamical responses that were not included in the original model but are
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anticipated the model might exhibit. This uncertainty set should be as (mathematically)
simple as possible while also not being overly conservative - that is, it should not
include too much of the excluded dynamics. Uncertainty can be thought of as a safety
factor: too little of it has no effect, too much of it causes the resulting system to be
excessively conservative.

Because the eventual goal of mathematical modeling is typically merely a first step
in a much bigger engineering problem, it should be approached both systematically
and pragmatically. According to the details provided thus far, numerical modeling
of coupled dynamical systems proves to be challenging task. This dissertation is an
attempt to tackle at least some of the challenges acknowledged above. The main focus
of this dissertation will be on uncertainty modeling and the uncertainty conservatism
reduction for coupled dynamical systems comprised of uncertain low order discretized
subsystems. The resulting coupled systems should be robustly stable and meet the
specified robust performance criteria, and as such, be suitable for practical robust
control.

1.2 Literature review

In order to model, analyze, and synthesize such systems in an acceptable amount of
time, spatial (and occasionally temporal) discretization is necessary [2]. The body of
knowledge in the field of spatial discretization methods, as well as the availability of
robust software solutions for finite element analysis (FEA), reflect the field’s maturity
[3], [4], [5]. Most common spatial discretization methods (SD) are the finite differ-
ence method (FDM), finite volume method (FVM), and finite element method (FEM).
Continuous spatially distributed interconnected dynamical systems are relatively eas-
ily discretized using FEM. The main concept in the application of SD methods is
to achieve solution convergence by constructing a sequence of finer discretizations
(meshes, grids) [6]. The idea that finer discretizations result in more accurate solutions
is extensively documented in the literature [3]. Regardless of mesh density, discretiza-
tion error (DE) is unavoidable; the only question is when and in what amount it is
acceptable. Traditional DE estimation approaches could be used in some situations [7].
Many cases and finite element types have well-known error limitations for structural
analysis [8]. There are a number of examples where the error bounds are known for
dynamical and vibration problems, but as can be seen, those are fairly problem partic-
ular [9], [10]. As a result, conventional DE estimation bounds have been demonstrated
to be difficult or impractical to execute for the challenges addressed in this dissertation
- numerical modeling of coupled dynamical systems in a system and control theoretic
setting.
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From the standpoint of a FEA engineer, the question is not if a mesh that offers an
accurate solution to the problem will be found, but when it will be found. That is,
arbitrarily accurate finite element models can be designed with a relatively large num-
ber of nodes (elements) at the expense of longer calculation times. These FEM models
with a large number of nodes ultimately become high-order dynamical systems. By
contrast, when a control engineer considers the identical problem (i.e., a spatially dis-
tributed dynamical system discretized using FEM), the shift in priority occurs quite
early. Due to typically amount of the available computing resources for an average
controller, in order for a control engineer to model and synthesize an effective con-
troller, a low-order dynamical system must be considered. As a result, the following
question inspires the study of control of spatially distributed and discretized systems:

"When is discretization of spatially distributed systems good enough for
control?"

Jones has addressed this question and shown in his work [11], through the usage of
the ν-gap metric developed by Vinnicombe [12], that a level of discretization (and
consequently the order of a resulting dynamical system), for small to middle sized
systems, can be chosen such that the robustly synthesised controller for the original
system, will have good performance for the lower discretization (order) system as
well. The paper by Jones also considered a rather specific system and the obtained
results did not scale as well for large-scale problems such as discretized mechanical
systems with multiple inputs and outputs. Part of the dissertation, as it will be shown
in the sequel, will still rely on the cognition made by Jones. Although not directly for
modeling but rather for evaluation and verification of to be presented method.

Evidently, dealing with extremely large order dynamical systems in a system and
control theoretic framework is rather peculiar. To remedy this, one should incorporate
model order reduction theory, methods and algorithms [13]. Model order reduction
(MOR) plays an essential role in the mathematical modelling of large-scale dynamical
systems [14]. Similar to spatial discretization, MOR renders many real world problems
analysable in a reasonable time [15]. Using reduced order models (ROM) does come at
the expense of introducing MOR errors (MORE) into the analysis. As one can observe,
there are similarities with discretization orders and chosen orders for ROMs. Low
order discretized models introduce significant amount of error into the analysis and
low order ROM introduce significant amount of error into the analysis as well. Again,
interesting motivational question arise:

"When are reduced order models of spatially discretized distributed sys-
tems good enough for control?"
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Figure 1.1: A figure dedicated to Jan Camiel Willems and his work on dissipative
dynamical systems. Figure represents the fields influenced by the theory of

dissipative dynamical systems. Image altered from source [20].

This question appears to be fairly abstract and broad, and one should should be more
explicit about the types of dynamical systems that will be dealt with in order to provide
an appropriate answer. Let us consider a subclass of dissipative dynamical systems for
this purpose.

The research of dissipative dynamic systems represents one of the cornerstones in
development of new tools and methods for system analysis in modern robust control
theory. One of the classical approaches to analysis of stability of systems - which
is tightly related to dissipativity - was introduced by Lyapunov through his studies
of linear autonomous systems [16]. However, arguably the most important work
(at least for modern control theory) was done by Willems with two of his seminal
papers [17], [18] published in 1972. The importance of his work is recognized in
the control community by many. Willems’s work was considered to be one of the
25 most important works published between 1931 and 1981, according to a review
report written by Başar [19]. A more recent appreciation for the work of late prof.
Willems was acknowledged by two issues (2 and 3) in the volume 42 of the IEEE
Control Systems (Magazine). Issues are named 50 Years of Dissipativity Part I and Part
II. Variations of a figure that is particularly fascinating are often featured throughout
both issues of the magazine. Figure 1.1 illustrates a snippet of one of these figures,
which shows how his work has influenced so many different fields.
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Many influential and regarded academics (mainly from control theory, but also from
other fields) have expressed their admiration and provided important insights into
how the theory of dissipative systems assisted them in achieving their research goals.
A body of high-quality knowledge can be discovered in these two issues. Authors,
whose works are tightly related to this dissertation, who contributed to making these
two (indeed special) issues, alphabetically ordered, are: M. Arcak [21], B. Brogliato
[22], L. Grüne [23], D. J. Hill [24], T. H. Hughes [25], R. Pates [26], C. W. Scherer
[27] and S. Weiland [28]. The works listed for each author, although directly related
to dissipativity, and thus referenced here, will be explained in more details later
throughout the dissertation in appropriate places.

Another indicator of the importance of theory of dissipativity in general, but also
highly associated control theory and mechanical systems is the research project, with
dozens of highly influental smaller projects, supported by German Research Foun-
dation (ger. Deutsche Forschungsgemeinschaft, DFG) under the name Calm, Smooth
and Smart - Novel Approaches for Influencing Vibrations by Means of Deliberately Introduced
Dissipation [29]. Perhaps, one of the major developmental breakthroughs, that highly
infuenced and is relevant to this dissertation, was done with P. Benner and his team.
Their research resulted in a numerous of problem specific MOR techniques based on
theory of dissipation and special subsystem properties preservation. More details on
these MOR techniques are given later.

So far, the investigation has been restricted to a single large-scale spatially discretized
system. The treatment of a single discretized spatially distributed large-scale dynam-
ical system or one produced by coupling numerous subsystems was the same. That
is, even though one discusses a complex interconnected systems, it was still viewed
as a single large-scale system. This type of modeling and analysis does have advan-
tages, as the black-box approach can be particularly useful for analysis of specific
systems. However, as will be demonstrated in the following section, it is critical to
preserve these interconnections and evaluate such a system as a dynamical system
comprised of subsystems that can interact with one another through their interconnec-
tions. This is known as a structure-preserving framework, and it is an essential part
of this dissertation. The importance of this will be revised in a sequel.

From now on, the focus will be shifted more on how to systematically model each sub-
system to obtain overall accurate and appropriate coupled system. Coupled systems
are often also called composite or interconnected as well. The coupled systems under
consideration will be the ones that are comprised (mostly) of dissipative dynamical
subsystems. Once more, it is interesting to note that Willems had a significant interest
in this area of research as well [30], [31], [32], [33], [34], with some of these papers
having high influence in the field. The following is a central idea from Willems’ work
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that is related to both dissipativity and coupled systems and is heavily used in this
dissertation: "It is shown that dissipative systems which are interconnected via a neu-
tral interconnection constraint define a new dissipative dynamical system and that the
sum of the storage functions of the individual subsystems is a storage function for the
interconnected system" [17].

Perhaps what had a bigger impact, not only on the field of control and systems,
but on other fields as well, was another important concept that he introduced, a
that is a concept of behavioral approach to dynamical systems [35], [36], [37], [38],
[39]. The behavioral approach (BA) is tightly intertwined with the study and analysis
of coupled dynamical systems [40], [41], [33], willems2009, [42]. Although the BA
was not employed directly or to its full extent, the dissertation author believes it
had a significant impact on both his understanding of dissipative systems and later
assumptions about the dissipative nature of linked dissipative systems. The main
principle behind BA is to not evaluate the system’s dynamics as an input/output
response (i.e classical transfer function). Willems emphasized that Kálman’s work and
the introduction of input/state/output (or today’s classical state-space representation)
was a significant step toward unifying representation and modeling of dynamical
systems. Due to other works of Willems even the input/state/output is lacking and
could be approached in a more simpler yet more powerful manner. The intricate details
and theory behind the BA is out of scope for this dissertation and the interested readers
are referred to the previously cited papers and these [43], [44].

One can now arrive at yet another interpretation of coupled systems that Willems
introduced. It deals with a three step modelling procedure called tearing, zooming
and linking (also referred to as juxtaposition and interconnection). The concepts
presented in [45], [46], [47] and [48] serve a purpose of another central point for this
dissertation, that are nicely summarized as: "In general it is not possible to speak
about the energy that flows in and out of a mechanical system along a set of terminals.
In order for one to be able to speak about the energy transferred, certain conditions
on the forces that act on these terminals have to be satisfied, namely, the sum of the
forces that act on the terminals has to be zero. One can refer to a set of terminals
that satisfies this condition as a ‘port’." [48]. Two most important concepts from the
previous citation are the energy transfer and the choice of the couplings (connections,
or ports and terminals) between the subsystems. For now only, thing to keep in mind
is that energy (in the papers also regarded as systemic property) is not a local property
but rather involves the couplings as it is transferred accros the terminals inside the
system. This will be elaborated in greater detail later in the dissertation.

Until now, only modeling details regarding the known parts of the coupled systems
were considered. Let us now tackle the unknowns - the unknown DE and MORE.
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In a system and control theoretic framework, the way to deal with the unknowns is
through the robust control theory [49], [50], [51], [52]. Robust control environment
demands modeling of the uncertainty - an unknown or a trouble-making part of the
system. Uncertainty modeling is a subtle yet powerful way to include the deviations
in dynamical behavior between the real model (a physical system, a chemical process
or a plant) and a modeled uncertain dynamical system [53]. In this definition the real
physical plant is considered, for which the dynamical behavior is unavailable to the
control engineer - this in turns requires a leap of faith to be taken when modeling
of uncertain dynamical system is done [49]. When modeling uncertainty in this
dissertation, a fact that an arbitrairily fine discretization will eventually lead to and
arbitrarily good approximation of the dynamical behavior will be used, such that the
’real’ plant will be the finest available discretization. In this scenario, when a reduced
order discretized dynamical system is compared to its ’real’ representation, a typical
divergence in dynamical repsonse in higher frequency and overall dynamics similar
to those of unmodeled and discarded dynamics can be observed. It is well known
in the literature that these kind of deviations can be modeled using unstructured
uncertainties (UU) [49], [51], [52]. Typical uncertainty models used to describe the
UU (which will also be used herein) are additive uncertainty (AU) and multiplicative
uncertainties (MU). The implementation of AU and MU depends highly on the choice
of frequency weighted filters (or usually called just weights) used [49], [51]. The
importance of weights, in general, is recognized as an important topic for decades
since the choice of a weight design directly influences the robustness and performance
of a controller.

Now that the uncertainty (coming from DE and MORE) modeled for each subsystem
was carried out and an uncertain coupled system obtained, the crucial step remains.
This is includes proving robust stability and robust performance - often shortened to
just robustness analysis . A well received and extensively used tool, readily available
in MATLAB as part of the Robust Control Toolbox™[54], that relies on calculation
of the so call structured singular value is the so called µ-tools introduced by Doyle
in 1982 [55]. It was extended to include complex structured singular value [56] and
in general relies heavily on the linear fractional transformation (LFT) (also known as
the Redheffer star product [57]. LFT unifies the frequency-domain and state-space
methods and is used to ’pull-out’ the uncertainties (’unknown’ part) from the uncertain
system. This in turn results in the nominal (’known’) system being connected in
feedback with a block-diagonal (and usually complex) matrix that includes all the
uncertainties.

In the 1997, yet another powerful tool for robustness analysis was introduced, namely
the integral quadratic constraints (IQCs) by Megretski and Ratzner [58]. Introduction
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of the IQCs has given the study of uncertainties a broader and analytical analysis
approach. Indeed, IQC allow separate analysis of a nominal and the trouble making
part, which was proven to introduce analysis flexibility when compared to classical
methods [58], [59], [60]. Together with dissipativity theory, research development in
recent years, yielded practical tools based on the powerful framework of IQC, suitable
for usage in both frequency and time domains [61], [62], [63], [64], [27]. Veenman et
al. recently bridged the gap between IQC theory and its practical usage and wrote
a summary with examples of practical applicability of the IQC, that can be found
[65]. What makes the usage of IQC particularly attractive, is that they essentially
boil down to convex optimization problems, linear matrix inequalities (LMI) [60], and
semi-definite programs (SDP) [66], [67]. These can be efficiently solved with many
of the available tools. IQCs might soon reach the deserved engineering recognition
and start being used as often as the popular µ-tools. Robust stability and performance
analysis - robustness analysis - via IQC becomes a viable and practical option by using
recently developed "IQClab: A new IQC based toolbox for robustness analysis and
control design" [68]. Together with LMI parsers such as LMILab [69],[70] (available
in MATLAB Robust Control Toolbox™[71], YALMIP [72], [73] or CVX [74], [75], and
SDP/LMI solvers such as mincx (part of MATLAB LMILab), SeDuMi [76], SDPT3 [77],
and MOSEK [78]. According to the presented literature, the rapid development of
(robust) control theory, both in theoretical and practical aspects, is firmly based on the
theory of dissipativity and elegant mathematical proofs that, for numerous practical
cases, reduce to a convex optimization problem (COP), such as LMIs and SDPs. The
significance of convex optimization within control theory cannot be overstated, since it
would require at least as much text to explain as the famous dissipation theory. Here,
convex optimization will be viewed as a practical and powerful tool for confirming
the modeling results. In conclusion, one can hope that the reader is left with the
impression that the focus of this dissertation is on modeling, but convex optimization
may be more relevant in the realm of robust analysis and synthesis. Let us continue
the investigation.

The two previously posed questions can now be stated more accurately and in com-
bination with all of the previously stated important ideas. This dissertation’s prime
motivating question is as follows:

How may uncertainties in coupled systems made of spatially discretized,
reduced order, and dissipative dynamical subsystems be modeled in or-
der to construct a low order robustly stable coupled uncertain system
suited for practical robust control?

With all of the important ingredients laid out previously, let us expand a bit on each
of them to find specific tools needed to answer to this question.
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First let us consider on how to preserve the structure of dynamical system. Even
though the importance of structure preservation is evident from the given literature it
seems quite unusual that, other than Willems who indirectly speaks about structure
preservation on both a level of a subsystem (from now on called local structure preser-
vation) as well as on a level of a coupled system (from now on called global structure
preservation), there aren’t any, to the best of authors knowledge, unified frameworks
that explicitly state the importance of this is neither how to approach it for some
specific modeling problem. The author of this dissertation would like to take this
opportunity to coin a name for this framework - a multi-scale structure preservation
framework. Some of the examples that state the importance of such a framework and
in what way it may be exploited will be given later, together with other main results
of this dissertation.

The local structure preservation is usually tightly linked with MOR and other approx-
imation techniques. Important for the content of this dissertation are the structure
preserving techniques reflected on the preservation of the mass, stiffness and damp-
ing matrices structure for the second-order linear (often called mechanical) dynamical
systems [79], , [80], [81], [82], [83], [84], [85]. While second-order systems can readily
be converted to the first-order linear descriptor state-space models, there is a lack of
robustness analysis tools - for example IQCs are not suitable for such systems. Some
interesting results will still be shown for these systems, using mu-analysis, based on
[86]. On the other hand, usage of linear second-order systems, although presented
attractive, are still heavily hampered by the lack ready-made and robust solutions
for both analysis as well as synthesis within the current control and system theoretic
framework. In this dissertation, the results are mainly derived using first-order linear
dynamical system in its explicit form (i.e E = I). By doing so, the local structure
will be lost, but justified in the discussion. There are also local structure preservation
techniques for first-order explicit systems, but with the previous statement, there is no
practical usage of such methods in this case.

The conclusions and key outcomes of this dissertation, on the other hand, will heavily
rely on the results from the body of knowledge available with regard to global structure
preservation of coupled (interconnected) systems. The following works are related to
either general structure preservation, MOR reduction of coupled systems [87], [88],
[89], control of interconnected systems [90], [91], stability of dissipative couplings
[92], [93], [94], [21], decentralized and distributed control of coupled systems [95],
[96], [97], [98] or combination of any [90], [99], [100]. Most of these works were
used to familiarize with the topic of coupled dynamical systems and to recognize
the important properties a resulting model must have in order to be suitable for
further steps in control (i.e robust and/or decentralized and/or distributed controller

10



Introduction

synthesis). Details from some of these works are used while deriving the main results
and thus mentioned at these appropriate places as well.

Besides the structure preservation, it is usually important to preserve some special
subsystem properties in a ROM. Perhaps the most important property to preserve is
the stability and this fact is clearly stated for each MOR technique (i.e does it preserve
stability or not)[101]. Since this dissertation only deals with LTI stable dynamical sys-
tems, only such MOR techniques were utilized. Sometimes, it is also important for a
MOR technique to preserve some other vital properties. This is especially important in
decentralized and distributed controller synthesis, because decentralized/distributed
controller synthesis can be carried out easier and the controller performance readily
improved. Some of these properties, and works related to these are, passivity preser-
vation [102], [103], [104], [105], [106], phase preservation [107] and frequency response
preservation in a limited frequency range . A work that plays an important role in
this dissertation is dealing with the strictly dissipative state-space representation of
second-order (mechanical) systems [108].

Few books that served for building fundamental knowledge about dissipative (cou-
pled) systems, (robust) stability are by Gupta [109], Siljak [110], Zečević and Siljak
[111], Mohhamadpour and Grigoriadis [112], Molyan [113], Arcak et al. [114] and
Brogliato et al. [115].

Few last word should be given to other concurrent approaches. State-of-the-art op-
ponents to the approach presented in this dissertation - i.e modeling of spatially
discretized and reduced order coupled dynamical systems in control and system theo-
retic framework - are listed next. As a first opponent, author of this thesis would pick a
behavioral approach. A lot was already said about behavioral approach, but to summa-
rize, behavioral approach offers interpretation of the physics and physical system on
a rather simplistic level, based on first principles and not the exchange of information
but rather the exchange of energy between the system and it’s environment (through
the dissipation theory) and throughout the system with systemic energy flow (or as
power) [43], [44]. The second opponent is taken to be port-Hamiltonian dynamical
system modeling. Port-Hamiltonian dynamical system modeling is continuation of the
classical Hamiltonian approach, but directly influenced by behavioral approach (the
main reason author first picked behavioral approach). As of date, the port-Hamiltonian
approach is arguably superior to behavioral approach - mainly due to larger scientific
community and longer history (due to classical Hamiltonian approach) [116]. The
main advantage over behavioral approach lies in the rapid development of control
schemes, specifically tailored towards control of port-Hamiltonian systems [117]. The
uncertainties can also be dealt with within this framework [118]. Similar to behavioral
approach it is based on the direct notion of dissipativity together with energy storage
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and energy transfer to and from thecoupled systems, but between the subsystems as
well [119]. Another beauty of the port-Hamiltonian approach is that it can be repre-
sented as an input-state-output system with some (and in some cases all) properties
preserved [120], [121]. Port-Hamiltonian systems tolerate model order reduction with
structure and parameter preservation [83].

1.3 Dissertation objective and hypotheses

The objective of this research is to develop a numerical method for modeling coupled
dynamical systems. The coupled dynamical systems are influenced by uncertain-
ties occurring from spatial discretization and model order reduction. The uncertain-
ties will be modeled on the level of a subsystem in a newly developed structure-
preserving scheme. This preserved structure together with subsystems’ unique prop-
erties - namely the dissipativity - will be used in conjunction to reduce uncertainty
conservatism. The resulting uncertain coupled system will be of low order, robustly
stable and meet the specified robust performance criteria. As a result, improved
performance of robust control system for coupled dynamical systems is achieved.

To this day, the following hypotheses for this dissertation are:

• Mechanical dynamical systems described with partial differential equations can
be modeled as series of coupled linear time-invariant subsystems with uncertain-
ties and by obtaining this model it is possible to describe, with sufficient accuracy,
dynamic behavior crucial for synthesis of efficient control system.

• The fact that each subsystem is coupled with other subsystems may be used
to obtain better uncertainty model and thus additionally improve efficiency of
control system.

1.4 Dissertation outline

In this first chapter the main motivation is given, possible difficulties and challenges
when approaching the problem of numerical modeling of coupled dynamical systems
are highlighted and a thorough literature overview, including both seminal works
and body-of-knowledge is given. State-of-the-art in the field of system theoretic and
robust control theory approach to modeling of coupled dynamical systems, both highly
related to the dissertation as well as on overview of possible other approaches to
modeling of coupled dynamical systems, was laid out.
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In the second chapter, necessary mathematical concept will be given, followed by
the definition of dynamical systems used in this dissertation — specifically, first-
order and second-order linear (and time-invariant) dynamical systems are defined.
The definition of coupled dynamical systems is also given with the emphasis on
the structure preserving modeling of coupled dynamical systems. After that a brief
overview of model order reduction methods is given with the emphasis on balanced
truncation method. A details on how to apply balanced truncation method within
structure preserving framework is presented as well.

The third chapter focuses on uncertainty modeling and robustness analysis. The er-
rors resulting from spatial discretization and model order reduction methods can be
considered as modeling error or neglected higher order dynamics. These types of
errors can be efficiently modeled using unstructured uncertainties, the first part of this
chapter deals exactly with this — how are unstructured uncertainties modeled and
the necessary ingredients for obtaining uncertain models is given. Next, an important
mathematical machinery, required for setting up the problem for the robustness anal-
ysis — linear fractional transformation — is presented and explained. With the model
being represented through a linear fractional representation in the following part, first
an introduction to the robustness analysis is given. Then the robustness analysis using
integral quadratic constraints is explained, together with the mathematical machinery
behind it.

Fourth chapter deals with numerical modeling of coupled dynamical systems. Two
scenarios are represented. First scenario serves as a motivation and introduction into
modeling of dissipative coupled dynamical systems. It is based on non structure-
preserving approach and highlights the possibility of exploiting dissipativity and
intricate couplings of the system in reducing the uncertainty conservatism using clas-
sical methods without emphasis on robustness analysis. It was shown that with rather
simple representation of the uncertainty using multiplicative uncertainty model, that
it is possible to reduce the conservatism of the uncertainty that is result of spatial
discretization. Then, the structure-preserving approach to uncertainty modeling and
uncertainty conservatism reduction is given. A detailed design procedure for ap-
proaching the numerical modeling of dissipative coupled dynamical systems is given.
Highlights of the benefits of structure-preservation and the flexibility of the proposed
design method, as well as possible shortcomings are given.

In the fifth chapter, a numerical experiments on a more practical physical example is
given. A series of simply supported Euler beams coupled by springs and dampers
are considered in a structure preserving manner. On a number of different cases, the
importance of spatial distribution and position, the amount of dissipativity and other
details, is exploited to draw conclusions on the efficacy, practicability and limitations of

13
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the proposed method. In the discussion section of this chapter, previously highlighted
aspects are further investigated.

In the final section the conclusions of this dissertation are presented. Main scientific
contributions of the dissertation are outlined as well as the limitations of the used
methods and procedures.

14



Chapter 2

Mathematical modelling of coupled
dynamical systems

Chapter Contents

2.1 Notation and preliminary mathematical concepts . . . . . . . . . . . 15

2.2 First-order and second-order linear dynamical systems . . . . . . . . 15

2.3 Coupled dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . 17
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2.1 Notation and preliminary mathematical concepts

Let L2 denote the space of vector-valued square integrable functions with a fixed
number of components (depending on the context) and that it represents signals with
finite energy. L2 is equipped with standard inner product and norm. A space of
real rational and proper transfer matrices RH ∞ without poles in the closed right half
plane that have a finite H∞-norm and a space RH ∞ without poles one the imaginary
axis is also needed. Operators (or dynamical systems) are maps G : L2 → L2, that
take any input w ∈ L2 into the output z ∈ L2. For linear G one can denote the output
as z = Gw. One can denote the induced L2-gain norm as ‖G‖—which for LTI systems
equals the H∞ norm, ‖G‖H∞

).

2.2 First-order and second-order linear dynamical
systems

Let us consider k interconnected structural spatially distributed dynamical subsystems
discretized with finite elements. For each subsystem, governing equations of motion

15



Chapter 2. Mathematical modelling of coupled dynamical systems

written in second-order form [3, 2] are

Mjq̈j(t) + Pjq̇j(t) +Kiqj(t) = Fj(t), (2.1)

where qj(t) represents the generalized coordinates at nodes (i.e., displacements and
rotations), q̇j(t) represents the generalized velocities at nodes (i.e., linear and angular
velocities), q̈j(t) represents the generalized accelerations at nodes (i.e., linear and
angular accelerations), whileMj is the mass matrix, Pj is the damping matrix, Kj is
the stiffness matrix, and Fj(t) is the vector of applied external nodal forces [3, 2, 122]
at the j-th subsystem with number of systems being j = 1, . . . , k. The above equation
can be written in the first-order descriptor state-space form [122], a first order system
can be as well represented as

Ej︷ ︸︸ ︷[
Mj 0

0 I

]
ẋj(t) =

AjD︷ ︸︸ ︷[
−Pj −Kj

I 0

]
xj(t) +

BjD︷ ︸︸ ︷[
Bj1

0

]
wj(t),

zj(t) =

[
Cj1 0
0 Cj1

]
︸ ︷︷ ︸

Cj

xj(t),

(2.2)

where Bj1 is the matrix defining node locations at which external inputs (i.e., forces) are
applied, Cj1 is the matrix defining node locations at which the generalized velocities
and generalized coordinates are measured. It can be shown that for nonsingular Ej

this system can be represented and used in its state-space form as

ẋj(t) = Ajxj(t) + Bjwj(t),

zj(t) = Cjxj(t),
(2.3)

where Aj = Ej
−1AjD is the state matrix, Bj = Ej

−1BjD is the input matrix, and Cj is
the output matrix.

A starting point for obtaining equations 1 2 3 4 was the spatial discretization of a
mechanical subsystem The focus in this dissertation is on FEM, but arguably, similar
conclusions with regards to discretization errors can be made for FVM and FDM as
well. Also, the proposed methods and procedures in the sequel should in theory be
applicable for these discretizations methods as well.
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2.3 Coupled dynamical systems

Consider a system of k interconnected continuous LTI state-space subsystems defined
with Equation (2.3) that are interconnected through the relation

wj(t) = Kj1z1(t) + . . . + Kjkzk(t) + Hjw(t),

z(t) = R1z1(t) + . . . + Rkzk(t), j = 1, . . . , k.
(2.4)

where uj(t) are internal inputs and zj(t) are internal outputs, Kjl ∈ Rmj,pl , Hj ∈ Rmj,m

and Rj ∈ Rp,pj are interconnection matrices, while w(t) is an external input and
z(t) is an external output of a subsystem. Interconnected systems represented by
Equations (2.3) and (2.4) are often also called interconnected systems or composite systems
[102, 87].

Let n = n1 + . . . + nk , p0 = p1 + . . . + pk, and m0 = m1 + . . . + mk. Now consider the
coupling matrices

R = [R1, . . . , Rk] ∈ Rp,p0 ,

H =
[

HT
1 , . . . , HT

k

]T
∈ Rm0,m,

K = [Kj,l]
k
j,l=1 ∈ Rm0,p0 ,

(2.5)

together with the block diagonal matrices

A = diag (A1, . . . , Ak) ∈ Rn,n,

B = diag (B1, . . . , Bk) ∈ Rn,m0 ,

C = diag (C1, . . . , Ck) ∈ Rp0,n.

(2.6)

Then a state-space representation of the interconnected system is given by

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(2.7)

where

A = A + BKC ∈ Rn,n,

B = BH ∈ Rn,m,

C = RC ∈ Rp,n.

(2.8)

There are attempts in the literature to exploit the structure of the system through
these interconnection matrices. However, in the case of this dissertation, author relied
on a robust approach that is already implemented in MATLAB. The function called
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connect allows one to make interconnected model by defining names of inputs and
outputs for each subsystem. The connections are defined through algebraic relations.
Algebraic relations can be created with the so called summing blocks with a function
named sumblk. As it will be seen in the sequel, systems that are interconnected in
this way are suitable in the step of uncertainty modelling and refinement.

2.4 Balanced truncation method

he balanced truncation method (BTM) is one of the most studied reduction
techniques [14], [79], [103]. It was developed primarily for the reduction of the state
space models, which are arguably the most suitable models for most numerical ap-
plications [60], [66], [67]. The main disadvantage of this method is that generalized
Lyapunov equations have to be solved, which can be computationally demanding for
high order systems [14], [79]. There is development on low rank approximations to the
solutions of the Lyapunov matrix equations that make balanced truncation attractive
for large-scale problems as well [102, 79].

Since each subsystem can be governed by completely different physical laws and act
in different spaces and time scales, applying the BTM directly on the interconnected
system completely destroys the structure (or interconnections) [123]. Changing the
interconnected model even slightly requires recalculation and reduction of the entire
model once again. Opting for BTM for each subsystem can thus be advantageous.
Specific reduction criteria can be applied to each subsystem while preserving the
structure and properties of the resulting reduced interconnected system as well [106],
[124], [125], [126], [127], [84].

The main paradigm in applying the BTM can be explained in the frequency
domain [14, 102]. The model reduction problem can be formulated as follows.
For a given subsystem Gj(s) = Cj

(
sI − Aj

)−1 Bj find an approximation G̃j(s) =

C̃j(sI − Ãj)
−1B̃j where Ãj ∈ Rlj,lj for some lj � nj such that ||G̃j − Gj||H∞ is small.

The BTM method is related to the controllability Gramian Pj and observability
Gramian Qj that are, for each subsystem, unique symmetric, positive semi-definite
solutions of the generalized Lyapunov equations

AjPj + Pj AT
j + BjBT

j = 0, (2.9)

AT
j Qj +Qj Aj + CT

j Cj = 0. (2.10)

A system is called balanced if Pj = Qj = diag(σj,1 . . . , σj,nj) where σj,i =
√

λj,i(PjQj)

are the Hankel singular values of the subsystem described by the Equation (2.3). The
general idea behind BTM is to transform the subsystem (2.3) into a balanced form
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and to truncate the states that correspond to the small Hankel singular values (HSV).
Balancing and truncation can be performed in a numerically efficient way with the
following algorithm [102], [79].

Although Algorithm 1 can be relatively easily implemented, the author would like to
suggest using already available routines in the software of choice, as those are probably
more robust solutions–especially when reducing the system of extremely high orders
[107]. As such, Algorithm 1 still serves a purpose of explaining the balanced truncation
method and main reasons to opt for such a method in the proposed procedure–which
one can restate here, are–(i) Hankel singular values have to be calculated only once and
a series of different orders of reduced order models can be obtained at no additional
numerical cost, and (ii) stability of the reduced order system is preserved.

Algorithm 1: Generalized square root balanced truncation method.

1 For the subsystem defined with the Equation (2.3) with the transfer function calculated

as Gj(s) = Cj
(
sI − Aj

)−1 Bj compute the reduced order system.
2 Compute the (lower) Cholesky factors LPj end LQj of the Gramians Pj = LPj L

T
Pj

and Qj = LQj L
T
Qj

, that satisfy the generalized Lyapunov Equations (2.9) and (2.10).

3 Compute the singular value decomposition

LT
Pj

LQj =
[
Uj,1, Uj,2

] [Σj,1 0
0 Σj,2

] [
Vj,1, Vj,2

]T ,

where
[
Uj,1, Uj,2

]
and

[
Vj,1, Vj,2

]
have orthonormal columns, Σj,1 =

diag(σj,1, . . . , σj,lj) and Σj,2 = diag(σj,lj+1, . . . , σj,rj) with r = rank(LT
Pj

LQj).

4 Compute the reduced order system

˙̃xj(t) = Ãj x̃j(t) + B̃jw̃j(t),

z̃j(t) = C̃j x̃j(t),
(2.11)

with Ãj =WT
j AjTj, B̃j =WT

j Bj and C̃j = CjTj, whereWj = LQjVj,1Σ−1/2
j,1 and

Tj = LPjUj,1Σ−1/2
j,1 .
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Uncertainty modelling and robustness
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Chapter Contents
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3.1 Unstructured uncertainties

In order to capture the unknown effect that spatial discretization and MOR have on
the resulting discretized and reduced order subsystems, the uncertainty is introduced.
The type of uncertainty that is introduced into the analysis with spatial discretization
and MOR can be considered as a modelling error [128, 60]. This type of uncertainty can
be modelled using input- or output-multiplicative uncertainty or additive uncertainty
[66], [60], [128].

Due to the nature of the problem, having to model absolute gaps between the nominal
and the uncertain model, and in order to preserve the structure of an interconnected
system, an additive uncertainty model is used [128]. The absolute error between the
original model and the reduced order discretized model can be calculated as Gj − G̃j,
and adding it back to the reduced order discretized model G̃j, clearly results in a
nominal model Gj. The absolute error and this type of addition is represented in
Figure 3.1a.
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Chapter 3. Uncertainty modelling and robustness analysis

Figure 3.1: Modelling the absolute error between the original model and the reduced
order discretized model as an uncertain dynamical system with additive uncertainty:
(a) Adding the absolute error Gj − G̃j to the reduced order discretized model G̃j. (b)

Representing the absolute error as an additive uncertainty Wj,2∆jWj,1.

The uncertainty can be introduced to the system as shown in Figure 3.1b. This uncer-
tain system can be written by replacing the absolute error Gj − G̃j with an appropriate
uncertainty model as

Gu
j = G̃j + Wj,2∆jWj,1, (3.1)

where Gu
j is the resulting uncertain subsystem, G̃j represents a discretized and/or re-

duced order subsystem, Wj,1 and Wj,2 are assumed to be stable frequency weights, and∥∥∆j
∥∥

H∞
≤ 1 is the uncertainty.

3.2 Linear fractional transformation

Let us now consider the system represented as in Figure 3.2. The frequency weights
Wj,1 and Wj,2 can be incorporated into the nominal system, and together with the
nominal part of the system are now defined as Γ. This augmentation, shown in
Figure 3.2, can be performed with linear fractional transformation (LFT) as[

q
z

]
=

[
Γqp Γqw

Γzp Γzw

]
︸ ︷︷ ︸

Γ

[
p
w

]
, p = ∆(q), (3.2)

which is often denoted using the Redheffer star product [128], or the ? operator, as
z = (∆ ? Γ)w, where

∆ ? Γ := Γzw + Γzp∆
(

I − Γqp∆
)−1 Γqw,

and which is assumed to be well-posed for all ∆ ∈ ∆, where ∆ represents some set in
which ∆ can take values, that identifies the nature and structure of uncertainties (for
more details see [65]). Here Γ ∈ RH ∞ is a stable LTI system where p→ q represents
the uncertainty channel and w→ z represents the performance channel.
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Figure 3.2: Standard feedback interconnection for robustness analysis.

With simple rearranging of the terms represented in Equation (3.1), and rewriting it
as Equation (3.2), the expression for the LFT of an uncertain system with additive
uncertainty reads as [

qj

zj

]
=

[
0 Wj,1

Wj,2 G̃j

] [
pj

wj

]
. (3.3)

3.3 IQC analysis

Integral quadratic constraints (IQC) [58] represents an established unifying framework
for the analysis of both robust stability and robust performance of uncertain systems.
IQC essentially allow the analysis of a rich class of uncertainties by detaching the
uncertainty ∆ from the nominal part Γ. The IQC analysis can be carried out without
the explicit knowledge of the uncertainty ∆ but rather with limited overall information
of the energy transfer concerning its input-output properties. As shown in [58], this
usually applies to a much larger set of uncertain operators that belong to a certain
class ∆. The IQC analysis can be carried out in the frequency domain by finding
solutions to frequency domain inequality (FDI) on a fixed grid of finite frequencies
(thus making this semi-infinite problem). It was proven that this FDI can be turned
into a finite convex feasibility problem with suitably parametrizing the multipliers
[65], [60], [63], [27]. After applying the so called Kalman–Yakubovich–Popov (KYP)
lemma, the IQC problem can also be analysed in time domain [65], [60], [63], [27]. A
summary in details of steps required to transform this rather abstract concept into a
computationally tractable problem can be found in [65], while here only some key
points will be outlined. To illustrate this concept, let us examine the system as shown
in Figure 3.2. First, the behaviour on the channel p→ q representing the uncertainty
channel is studied.

Two signals p ∈ L2 and q ∈ L2 are said to satisfy the IQC defined by the multiplier
Π [65] if

I(Π, q, p) :=

〈(
q
p

)
,

(
Π11 Π12

Π∗12 Π22

)(
q
p

)〉
≥ 0, (3.4)
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where Π is said to satisfy Π = Π∗ ∈ RL ∞. With p = ∆(q) IQC now reads

I(Π, q, ∆(q)) ≥ 0 ∀q ∈ L2 (3.5)

it becomes possible to capture useful properties of uncertainties ∆ ∈ ∆ and describe its
input-output energy transfer relations. In order to carry out a practical robust stability
analysis, it is usual to construct a whole family of multipliers Π ⊂ RL ∞ such that
Equation (3.4) holds for all Π ∈ Π ⊂ RL ∞ and for all ∆ ∈ ∆.

In complete analogy, let us also examine the behaviour of the channel w→ z on which
one wants to impose certain performance criteria, such that two signals signals w ∈ L2

and z ∈ L2 are said to satisfy the IQC defined by the multiplier Πp [65] if

Ip(Πp, z, w) :=

〈(
z
w

)
,

(
Πp11 Πp12

Π∗p12 Πp22

)(
z
w

)〉
≥ −ε ‖w‖2 , (3.6)

where ε > 0 is used to capture strict a version of the imposed performance specification.
In order to carry out a practical robust performance analysis, it is usual to construct
a whole family of multipliers Πp ⊂ RL ∞ such that Equation (3.6) holds for all
Πp ∈ Πp ⊂ RL ∞, while the Πp is confined to the set

Πp ⊂
{

Πp ∈ RL ∞ : Πp11 < 0
}

where the Πp11 < 0 is required in order to perform robust stability and performance
at the same time, which one will often call just robustness analysis [65].

Let us now state the central theorem, through a frequency domain inequality, as
obtained in [58]. In all the FDIs one can use short notation where G = G(iω), Π =

Π(iω) and Πp = Πp(iω).

Theorem 3.1 Assume that

1. for all τ ∈ [0, 1] the interconnection defined with Equation (3.2), with omitted
performance channels w and z, is well posed for ∆ replaced by τ∆;

2. for all τ ∈ [0, 1] and some Π = Π∗ ∈ RL ∞, the IQC defined with Equation (3.4)
is satisfied for ∆ replaced by τ∆;

3. the following FDI is satisfied:(
Γ
I

)∗
Π

(
Γ
I

)
≺ 0 ∀ω ∈ R∪ {∞} . (3.7)
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Then the interconnection defined by Equation (3.2), with omitted performance chan-
nels w and z, is stable.

With that in mind, the IQC for robustness analysis can be represented through a FDI
as outlined in [65] which is an extension of Theorem 3.1.

Corollary 3.2 Assume that

1. for all ∆ ∈ ∆ the interconnection defined by Equation (3.2), with omitted perfor-
mance channels w and z, is well posed;

2. for all ∆ ∈ ∆ and for all Π ∈ Π the IQC defined by Equation (3.4) is satisfied.

Then the interconnection defined with Equation (3.2) is robustly stable and robust
performance on the channel w→ z is guaranteed if there exists a Π ∈ Π and Πp ∈ Πp

such that 
Γqp Γqw

I 0
Γzp Γzw

0 I


∗(

Π 0
0 Πp

)
Γqp Γqw

I 0
Γzp Γzw

0 I

 ≺ 0. (3.8)

The proof can be found in Appendix A in [65]. Robustness analysis, according to
Corollary 3.2, simply boils down to checking if there exists a Π ∈ Π and Πp ∈ Πp

such that FDI defined with Equation (3.7) holds true, under the assumptions that both
conditions in Corollary 3.2 are met. If so, then the robust performance is achieved and
the uncertain system is robustly stable.

To render the presented IQC framework for robustness analysis computationally
tractable, a suitable parametrization of Π and Πp is required, such that Equation (3.8)
results in a linear constraint on some set of unknown variables [65, 63]. This can be
achieved if the families of multipliers are parametrized as

Π = {Ψ∗PΨ : P ∈ P} , (3.9)

Πp =
{

Ψ∗pPpΨp : Pp ∈ Pp

}
, (3.10)

with an LMIable sets P and Pp of real symmetric matrices P ∈ S and Pp ∈ S, respec-
tively, and some fixed and typically tall transfer matrices Ψ ∈ RH ∞ and Ψp ∈ RH ∞.
A set is LMIable if it can be represented as the feasible set of an LMI constraint [60,
67]. Now the robustness analysis can be characterized as follows.

Corollary 3.3 Assume that
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1. for all ∆ ∈ ∆ the interconnection defined with Equation (3.2) is well posed;

2. for all ∆ ∈ ∆ and for all P ∈ P the IQC defined with Equation (3.4) is satisfied
with Π = Ψ∗PΨ.

Then the interconnection defined with Equation (3.2) is robustly stable and robust
performance on the channel w → z is guaranteed if there exists a P ∈ P and Pp ∈ Pp

such that 
Γqp Γqw

I 0
Γzp Γzw

0 I


∗(

Ψ∗PΨ 0
0 Ψ∗pPpΨp

)
Γqp Γqw

I 0
Γzp Γzw

0 I

 ≺ 0. (3.11)

The obtained FDI defined with Equation (3.11) is affine in the matrix variables P and
Pp. Therefore, if both sets P and Pp are LMIable, one obtain a semi-infinite convex
robustness analysis feasibility test of the system represented with Equation (3.2) [65,
63]. This FDI needs to hold true for all ω ∈ R∪ {∞}, or on the fixed grid of properly
distributed frequencies. To avoid this, at the cost of the increased computation, it
is possible to satisfy Equation (3.11) for all frequencies ω ∈ R ∪ {∞} by using the
Kalman–Yakubovich–Popov (KYP) lemma (often called positive-real and bounded-
real lemma).

Lemma 3.4 Let P ∈ S and let Γ ∈ RL ∞ admit the realization (AΓ, BΓ, CΓ, DΓ) with
AΓ ∈ R and eig(AΓ) ∩C0 = ∅. The following two statements are equivalent:

1. Γ∗PΓ ≺ 0.

2. There exists a matrix X ∈ S such that I 0
AΓ BΓ

CΓ DΓ


T  0 X 0

X 0 0
0 0 P


 I 0

AΓ BΓ

CΓ DΓ

 ≺ 0. (3.12)

The corresponding equivalence persists to hold for

• non-strict inequalities, if, in addition, the pair (AΓ, BΓ) is controllable,

• equalities, if, in addition, AΓ is Hurwitz and the pair (AΓ, BΓ) is controllable.

Proof and the details of the KYP lemma can be found in [65, 60, 63] and the references
therein. Now the FDI defined with the Equation (3.11) can be checked numerically.
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For this purpose let us introduce the following realization

(
Ψ 0
0 Ψp

)
Γqp Γqw

I 0
Γzp Γzw

0 I

 =

AR BR1 BR2

CR1 DR11 DR11

CR2 DR21 DR22

 (3.13)

where AR ∈ R, eig(AR) ⊂ C−, and state the following.

Corollary 3.5 Assume that

1. for all ∆ ∈ ∆ the interconnection defined by Equation (3.2) is well posed;

2. for all ∆ ∈ ∆ and for all P ∈ P the IQC defined by Equation (3.4) is satisfied with
Π = Ψ∗PΨ. Then the interconnection defined with the Equation (3.2) is robustly
stable and robust performance on the channel w→ z is guaranteed, if there exist
X ∈ S, P ∈ P and Pp ∈ Pp such that


I 0 0

AR BR1 BR2

CR1 DR11 DR12

CR2 DR21 DR22


T 

0 X 0 0
X 0 0 0
0 0 P 0
0 0 0 Pp




I 0 0
AR BR1 BR2

CR1 DR11 DR12

CR2 DR21 DR22


 I 0

AΓ BΓ

CΓ DΓ

 ≺ 0.

(3.14)

Hence, if P and Pp are LMIable sets, a finite dimensional convex feasibility test for
robustness analysis is obtained.

To complete the analysis via IQC, let us also formulate multiplier classes suitable for
uncertainties dealt with in this paper as well as a multiplier class suitable for perfor-
mance cost in this paper. Throughout the paper a basis-function ψv ∈ RH

(v+1)×1
∞ that

is fixed and has a McMillan degree of v is used, to obtain inner approximations (i.e.,
subsets) of the multipliers defined with the Equations (3.9) and (3.10), defined as

ψv(iω) :=
(

1 1
(iω−ρ)

1
(iω−ρ)2 . . . 1

(iω−ρ)v

)T
(3.15)
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with the minimal state-space realization

ψv =

(
Av Bv

Cv Dv

)
=



ρ 0 . . . . . . 0

1 . . . . . . . . . . . .

0 . . . . . . . . . . . .
... . . . . . . . . . . . .
0 . . . 0 1 ρ

1
0
...
...
0

0
Iv

1
0


(3.16)

where ρ < 0 represents the location of the pole and v ∈ N. By changing ρ over
line search with for example v ∈ {1, 2, 3, 4, 5} allows for dynamics in the multipliers
and gives freedom in search for the feasible solution of Equation (3.14). This implies
that the parametrization using such basis function is sufficiently rich to approximate
general sets of multipliers. For other basis-functions that can be used, readers are
referred to [65, 68]).

Unstructured uncertainties belong to a class of an uncertain LTI dynamics for which
it can be said that ∆ is confined to a set of LTI dynamic full-block uncertainties

∆lti,dyn,fb := {∆ ∈H∞ : ‖∆‖∞ ≤ 1} . (3.17)

Uncertainties of this form can be captured with the following multiplier class. For all
the ∆ ∈ ∆lti,dyn,fb the IQC (3.5) holds with

Ψ∗PΨ :=

(
ψv ⊗ I 0

0 ψv ⊗ I

)∗(
P11 ⊗ I 0

0 −P11 ⊗ I

)(
ψv ⊗ I 0

0 ψv ⊗ I

)
, (3.18)

if

ψ∗v P11ψv ≥ 0. (3.19)

Here, P11 ∈ Sv+1 is a free matrix variable and ψv is a fixed basis-function as defined
with Equation (3.15). By using the basis-function as defined with Equation (3.16) in
its state-space form, one can infer that Equation (3.19) is equivalent to the existence of
some matrix Xv ∈ Sv such that the following LMI holds true

 I 0
Av Bv

Cv Dv


T  0 Xv 0

Xv 0 0
0 0 P11


 I 0

Av Bv

Cv Dv

 < 0. (3.20)
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As it will be stated in the next chapter, one also needs a performance criterion on the
channel w→ z for the reduced order interconnected system to be kept as close as pos-
sible to the original (i.e., unreduced) interconnected system. The class of performance
criteria, suitable for this matter, can be expressed in terms of induced L2-gain. Con-
sider the stable system Γzw ∈ RH ∞ and suppose there exists some γ > 0 and some
small ε > 0 such that for all trajectories of z = Γzww, with w ∈ L2, the performance
IQC defined with Equation (3.6) is satisfied with

Ψ∗pPpΨp :=

(
I 0
0 I

)(
γ−1 I 0

0 −γI

)(
I 0
0 I

)
. (3.21)

Then the induced L2-gain from w to z is less than γ > 0. Equa-
tion (3.21) can be linearised using Schur-complement [65]. In our case,
the interest is on the best achievable induced L2-gain of the uncertain sys-
tem defined with the Equation (3.2), while guaranteeing robust stability for
all ∆ ∈ ∆lti,dyn,fb. This can be achieved by applying Corollary 3.5 with
Equations (3.18), (3.19) and (3.21).

3.4 Robustness analysis under mixed uncertainties

Besides tackling both robust stability and robust performance at the same time, another
useful aspect of the IQC framework advantage is the possibility to perform robust
stability of the interconnected systems where each of the subsystem can be affected by
multiple uncertainties. A standard IQC framework can be expanded relatively with Γ
and ∆ being

(
Γqp Γqw

Γzp Γzw

)
:=


Γq1 p1 . . . Γq1 pk Γq1w

... . . . ...
...

Γqk p1 . . . Γqk pk Γqkw

Γzp1 . . . Γzpk Γzw

 (3.22)

and

∆(q) := col (∆1(q1), . . . , ∆k(qk)) (3.23)

where subsystems j = 1, . . . , k have linear fractional dependency on ∆1, . . . , ∆k and ∆j

take their values in the sets ∆j [65]. Then Equation (3.2) needs to be well-posed for
all ∆j ∈ ∆j, where individual ∆i blocks satisfy the IQC I(Πi, qi, ∆i(qi)) ≥ 0, ∀qi ∈ L2,
but also the composite IQC I(Π, q, ∆(q)) ≥ 0, ∀q ∈ L2 holds, with q := col (q1, . . . , qk)
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and

Π =

(
diag(Π1,11, . . . Πk,11) diag(Π1,12, . . . Πk,12)

diag(Π∗1,12, . . . Π∗k,12) diag(Π1,22, . . . Πk,22)

)
.
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4.1 Uncertainty conservatism reduction without
structure preservation

In this motivational example, let’s consider vibrations of a mechanical system com-
prised of a finite number of simply supported Euler beams. The beams are mutually
interacting and are coupled with springs as shown in Figure 4.1. Each beam has a
circular cross-section and is defined by the geometric and material properties given in
Table 4.1, where l is length, d is the diameter of the cross-section, ρ is mass density, E
is the modulus of elasticity and ν is Poisson’s coefficient. Each beam is connected to
two neighboring beams at one third and two thirds of their lengths with a spring of
stiffness k, also given in Table 4.1.
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Figure 4.1: Spatially distributed mechanical system comprised of simply supported
Euler beams coupled with springs

Table 4.1
Subsystem properties

l d ρ E k
m mm2 kg/m3 GPa N/m

0.6 1 7800 210 × 109 500

Each beam is modeled using finite element method and for each beam a series of
successively finer discretizations are made. A beam is discretized with 3, 6, 12, 24,
48 and 96 finite elements. For each discretization, a proportional Rayleigh damping
matrix is constructed such that modal damping ratio is approximately 0.05 for the
first 6 beam vibration modes. Discretized beams are then connected with springs at
specified points in order to obtain a series of successively finer dynamical models. Dis-
cretized subsystem models consisting of a single beam and springs is then converted
into a linear time-invariant (LTI) descriptor state space (DSS) model with two inputs
and two outputs. Inputs are displacements of two spring ends and outputs are beam
deflections at one third and two thirds of its length. Based on the obtained LTI models
one constructs a nominal model and a series of uncertainty models corresponding to
each discretization, as follows. Nominal subsystem model is obtained by reducing
the 96 finite element model, that is, nominal model is the reduced most accurate LTI
model available. The reduction of the model is obtained by means of a balanced trun-
cation. The criteria for reducing the model is removing all states that have Hankel
singular values less than a prescribed value of 10−2. This results in reducing the 576
number of states for the full model (obtained from 96 finite elements) to 19 states for
the reduced model. The reduced model is suitable to be used as a nominal model for
constructing unstructured uncertainty weights as it will be shown in the next section.
By using model reduction, the efficiency of numerical modeling is improved. Perhaps
the most widely used tools in robust control design are weights. Weights allow a con-
trol designer to capture the system uncertainties and to determine over what frequency
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ranges the performance is desired. Weights can be viewed as a way to tune the control
design to achieve a desired level of performance and robustness without having to
explicitly consider the system stability. “The design of a robust and high-performance
control system relies heavily on the choice of weights used in the design. [129]”. The
analysis is started by considering uncertainty caused by unmodeled dynamics and
assume that the real plant is obtained by combining the nominal plant Psys with a
transfer function of the kind W1∆W2. Where ∆ is uncertainty block and W1 and W2 are
frequency weights that adjust the amount of uncertainty at each frequency. Such kind
of uncertainty is denoted as unstructured. The procedure of constructing unstructured
uncertainty models for the presented case is as follows.

4.1.1 Unstructured uncertainties for a single subsystem

For each discretization level, input multiplicative error models are constructed. An
input multiplicative error model consists of an unstructured uncertainty block ∆ of
a unit-gain and a diagonal, stable, minimum-phase shaping frequency weights W1

and W2. The described input multiplicative model is schematically shown in Figure
4.2a. At each input denoted by w, a frequency weight is constructed such that the
response from w-th input to z-th output covers the relative error between nominal
model and discretized model. Throughout the procedure an order (number of states)
of frequency weights has been kept constant at each input. In order to make the size of
the uncertainty model small, a low order of 8 for diagonal entries in weight W1 at each
input, whereas weight W2 is a scalar of magnitude 1, is used. Psys is an interconnection
transfer matrix function such that a linear fractional transformation with uncertainty
block yields input multiplicative uncertainty model. Input multiplicative uncertainty
[49] is expressed by

G = Psys(I + W1∆W2) (4.1)

where G is an uncertain system obtained by using the input multiplicative uncertainty
model to alter the response of a system Psys.

In a different study made in [130] the authors obtained similar results by using an
additive uncertainty model. In a similar fashion they constructed ∆ with norm equal
to 1 but used a scalar weight W. Additive uncertainty model is usually used to model
an absolute error or to model a modest difference in responses of two systems. Scalar
weights are used to cover the net response from each input to each output of the error
between the nominal model and the discretized model. Uncertainty modeling using
scalar weights is more conservative than using a weight at each input of the system.
A less conservative uncertainty model can be obtained by using diagonal weights.
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Figure 4.2: Input multiplicative uncertainty model: a) a subsystem, b) linear fractional
representation of a subsystem

Author stresses that, by different choice of Psys, different uncertainty models can be
used in a straightforward fashion. In robust control theory one wants to obtain a
system in linear fractional transformation (LFT). For constructing LFT it is important
to separate a normed uncertainty part ∆ and connect it in feedback to a nominal LTI
system. For input multiplicative error model, uncertainty separation can be done as it
is shown in Figure 4.2b. By doing so one can now consider a system Gsys that has an
uncertainty block delta connected in feedback. In the next section one can show how
to refine the uncertainty model by examining a coupled system.

4.1.2 Subsystem coupling and uncertainty refinement for
coupled system

Up until now the author only considered modeling uncertainty for a single subsystem.
One can stress that this series of successively better subsystems models are essentially
local since one didn’t take into the account that the overall system is comprised of a se-
ries of coupled individual instances. To address this issue, let us propose a procedure
for modeling uncertainty weights for a single subsystem that takes into the account
the neighboring subsystems coupling. Information about the coupled neighboring
subsystems is used to further reduce the previously obtained uncertainty weights. A
reduction of required uncertainty weights means a reduction in conservatism of an un-
certain system. Since the author is analyzing passive and dissipative coupled system
author is assuming that a portion of individual subsystem uncertainty is damped by
the neighboring subsystems and may be discarded. It needs to be kept in mind that
this reduction of uncertainty might not be the case for spatially distributed system in
general. Reduction of uncertainty using this presented approach may even vary for
different passive and dissipative systems depending on the system structure and prop-
erties. The procedure for obtaining unstructured uncertainty for a single subsystem
can be used with a minor extension in a following manner.
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Figure 4.3: Input multiplicative uncertainty model: a) subsystem Gsys coupled with
reduced model of neighboring subsystems Gred, b) representation as a general

framework for an uncertain feedback system

First, one needs to take into the account the neighboring systems. The neighboring
systems are series of a final number of previously obtained reduced nominal models.
If one further reduces this series, one can obtain a reduced model Gred that represents
the neighboring systems. For reduction of a series one can use balanced truncation
with same criteria used for obtaining the nominal (single subsystem) model. Finally,
one complete the modeling by connecting Gred into feedback loop with the uncertain
individual subsystem Gsys as shown in Figure 4.3a. The resulting model can be viewed
as a general framework for robust control, where an uncertain feedback system (i.e.
Gsys with delta in feedback) has Gred as a controller on a system as shown in Figure
4.3b. With this model one can study the effect of neighboring systems on unstructured
uncertainty model refinement by essentially changing the number of surrounding
systems in Gred. Author stresses that the number of neighboring systems needed for
this certainly depends on the problem at hand. For this case study one can chose
that the number of surrounding subsystems change, i.e. connect a different number
of reduced nominal models in a feedback loop. For each number of neighboring
subsystems, that is 1,3, 5 or 10 reduced nominal models, one can recompute input
multiplicative frequency weights W1 and W2 in a similar fashion as it was done for
a single subsystem. It is important to note that Gred for each number of neighboring
systems becomes bigger in size but is nevertheless kept reasonably low. Gred has 19,
25, 29 and 40 states for 1, 3, 5 and 10 neighboring systems, respectively. With the
complete mathematical model, let us present results as shown in next chapter.
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Figure 4.4: Frequency response of the most accurate model from 96 FE and a nominal
reduced model

4.1.3 Discussion of results for the motivational example

To keep the size of a nominal model small, let us reduce the most accurate system (i.e.
the one with 96 FE). The response of a 96 FE model and that of a reduced model is
shown in Figure 4.4 where it can be seen that the reduced model accurately describes
the response of the full model.

First, let us study frequency weights obtained for single subsystem. A comparison of
H∞ norms of frequency weights for each discretization level is shown in Figure 4.5.
As expected, the frequency weights norm decreases with finer discretization. This
provides us quite straightforward criteria for deciding which discretization should be
used. For example, a criterion could be such that the frequency weight norm is less
than some prescribed value.

Next, let us compare H∞ norms for coupled subsystems when one adds 1, 3, 5 and 10
neighboring subsystems. A comparison of H∞ norms of frequency weights for both
single and coupled subsystems for different levels of discretization is shown in Figure
4.5 as well. It is evident that new H∞ norms obtained for coupled dynamical systems
are decreasing. Most prominent decrease can be seen for low discretization levels.
When analyzing obtained frequency weights for individual subsystem and coupled
subsystem it is seen that the newly obtained frequency weights for coupled subsystem
have lower magnitude of the frequency response in wide frequency ranges as shown in
Figure 4.6. In other words, the frequency weights of individual uncertainty models are
“scaled” such that the uncertainty information that does not affect the overall system
dynamics is discarded.
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Figure 4.5: Comparison of H∞ norms of frequency weights for a single subsystem
and a different number of coupled subsystems for each discretization level

Figure 4.6: Comparison of frequency response of frequency weights for a single
subsystem and a coupled subsystem for: a) 3 FE model, b) 12 FE model
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Figure 4.7: Comparison of frequency response of frequency weights for a single
subsystem and a different coupled subsystem for: a) 3 FE model, b) 24 FE model

When changing the number of surrounding systems (i.e. by adding more neighboring
subsystems), uncertainty model can be further reduced, but this time only in a specific
spectrum, as seen in Figure 4.7. For this example, higher frequency dynamics at
around 103 rad/s is discarded from uncertainty model when adding more neighboring
subsystems.

Numeric algorithm used for obtaining input multiplicative uncertainty weights cal-
culates optimal weights on a frequency grid. It is interesting to investigate how well
different order of weights covers the relative error between the nominal system and
the LTI model for some discretization as it is shown in Figure 4.8. An increase in order
of weights from 8 to 10 and then to 16 results in higher order weights more closely
matching the response of relative error. This increase in weight order comes at cost of
increase in size of the uncertain model and an increase in numeric calculation times.

An interesting observation is made when applying ν-gap analysis by Vinnicombe [12].
For the problem at hand a reduced series of neighboring systems can be viewed as
a controller on an uncertain system as shown in Figure 4.4b. It is thus interesting to
observe upper bounds on the Vinnicombe gap and distances between each controller
model when let us increase the number of neighboring systems. That is, one can
measure upper bounds on ν and ν-gap between one system connected as a controller
and 3 systems connected as a controller on an uncertain system, and so on. It was
shown that even controller models obtained by adding 1 subsystem and 2 subsystems
in feedback are far apart in the sense that ν-gap is approximately 0.96. Between
each other combination of controllers ν and ν-gap are practically equal to 1 which
translates into systems being far apart [131]. Also, to exclude possible errors in ν and
ν-gap calculation instead of using reduced controller, analysis was carried out on a
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Figure 4.8: Comparison of frequency response of frequency weights for coupled
subsystem and a different order of weights for 12 FE
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full model as well and yielded identical results. It would be interesting to further
investigate these results as well.

The presented are results on the modeling of unstructured uncertainty for spatially
distributed (coupled) vibration systems. Finite element mesh refining technique is
used to obtain a series of successively finer spatial discretizations of an infinite dimen-
sional vibrational mechanical system. This refining provides enough information for
constructing a series of successively better uncertain linear time-invariant models. The
resulting uncertain linear time-invariant model of a single subsystem can be further
refined for a special class of passive and dissipative vibration systems by taking into
account that it is coupled with a small number if neighboring subsystems that are
passive and dissipative as well. By increasing the number of neighboring systems, it
was shown that the magnitude in frequency response of required uncertainty on the
single subsystem is decreasing. This reduces conservatism of the uncertainty model of
individual subsystem which improves performance when dealing with robust control
of passive and dissipative coupled dynamical vibration systems.

4.2 Structure Preserving Uncertainty Modelling

To model uncertainties for spatially discretized and reduced order spatially distributed
dissipative dynamical systems that are suitable for (distributed) robust controller syn-
thesis, an coupled system consisting of many subsystems with as low-order and as
least conservative uncertainties as possible, arising from both discretization and MOR,
has to be obtained.

As seen from Equation (3.1) and the definition of ∆j only being bounded by the H∞-
norm, this type of uncertainty is often called unstructured uncertainty. With this in
mind, the uncertainty modelling essentially boils down to choosing the appropriate
weights that essentially adjust (or scale) the amount of required uncertainty at each fre-
quency. In practice, the weights are usually some combination of low-pass, band-pass
and high-pass filters [60, 128]. Indeed, as it is recognized in the literature, modelling
of appropriate weighting filters (in general) is perhaps one of the most important
jobs of a system engineer [129]: “. . . design of a robust and high-performance control
system relies heavily on the choice of weights used in the design. . . ”. Modelling the
frequency weights, allows the control designer to capture the system uncertainties
and to determine over what frequency ranges the performance is desired. Weights
can be viewed as a way to fine tune the control design to achieve a desired level of
performance and robustness without having to explicitly consider the system stability
[132].

The author stresses that the uncertainty conservatism reduction method presented so
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far is essentially local [133]. As it will be shown in the sequel, uncertainties modelled
with structure preservation in mind can be further improved, thus, the subsystem un-
certainty conservatism can be further reduced. Due to the mutual interconnections of
the subsystems, and the fact that the subsystems and/or interconnections are dissipa-
tive, part of the uncertainty (especially in the high frequency range) can be discarded.
The theoretical part regarding the definition of dissipative systems can be found in
[60], while the simple explanation can be given in terms of energy loss throughout the
system. The idea is to reduce the uncertainty conservatism of each subsystem, thus
reducing the conservatism of the overall coupled system as well, by studying energy
losses throughout the system. However, in the meantime, it is also important to keep
the order of the coupled system as low as possible. While doing both of these things,
the following mandatory things need to be achieved: (i) the reduced order discretized
coupled subsystem needs to be robustly stable; (ii) the order of the coupled system
should be kept as low as possible and; (iii) robust performance of the reduced order
discretized coupled system needs to be as close as possible to the performance of the
reference coupled system. To achieve the points stated previously, author proposes a
novel design procedure that is explained in the next section.

4.2.1 Design procedure

The newly developed deign procedure will be written out as ready to implement in
MATLAB philosophy, so wherever appropriate, useful MATLAB commands and routines
will be highlighted. For the complete usage and compatibility, latest (as of date of
article publishing) version of MATLAB, Control system toolbox™ and Robust control
toolbox™ should be used. In the IQC robustness analysis part of the procedure,
commands from the IQCLab Toolbox (V3.0) [68] are also mentioned.

To calculate the absolute error and additive uncertainty, an array of models is created.
Reference models Gj are obtained from the finest discretization. The discretized re-
duced order models are distinguished by the discretization using index nj = 1, . . . , nD

j
and the order (states kept) using index mj = 1, . . . , mHSV

j . For simplicity one will
often omit these indexes and just write G̃j := G̃j,nj,mj . This process of obtaining an
array of reference and discretized reduced order models is shown in Figure 4.9 and
represented with steps (i) to (iv) therein.

Let us continue by choosing appropriate discretizations (nj) and orders (mj) of reduced
order models for each subsystem. After that, the idea is to scale both the reference
model and the discretized reduced order model to obtain a scaled version of the
absolute error denoted as Gj,e − G̃j,e for each subsystem. Author stresses that these
scalings can be directly calculated from the structure of the system and the fact that
the subsystems are dissipating energy will be potentially beneficial—one can call these
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scalings input-output transfer functions (IOTFs) and details on how to obtain these
are detailed later in Sections 5.2.2 and 5.2.3. This process is shown in Figure 4.10 and
denoted as a step (v). Besides the novelty of the overall procedure—or the approach
to the discretization and model order reduction error uncertainty modelling—this
step (i.e., (v)) also represents a first major novelty of the procedure. The fact that
using only the existing structure of the system it is possible to reduce the uncertainty
conservatism is something not yet seen.

With scalings (IOTFs) calculated, a scaled version of the absolute error, Gj,e − G̃j,e, can
be calculated for each subsystem. Due to the dissipative nature of the coupled system,
some of the energy is lost when coming to and from each subsystem, such that if
one compared the gain of Gj,e − G̃j,e in comparison to the unscaled version of it, i.e.,
Gj − G̃j, a significantly lower gain over a wide frequency range can be observed. As
stated before, the main idea of additive uncertainty modelling is to replace these errors
with the appropriate frequency weights—thus let us introduce weights Wj,1e and Wj,1

to capture the dynamic behaviour of the aforementioned errors. Steps for obtaining
the uncertainty weights, a scaled version and an unscaled version, for each subsystem,
are shown in Figure 4.12 denoted with (vi) and (vii), respectively. The second main
novel part if being two fold. First, by observing the dynamic behaviour, of the scaled
absolute error particularly, and to a lesser degree of the unscaled absolute error as
well—there usually are no high peaks in gain. As such, it makes sense to use the
weights of low order to capture such a behaviour. This can efficiently be obtained
using low order logarithmic-Chebyshev magnitude filter design—the details on this
particular choice of filter are elaborated in Section 5.2.1. The second part of the second
major novelty comes from the observation, that in many cases, one can completely
reduce the order of the filter—by simply choosing a filter of static (constant) gain—thus
no additional states are introduced in the model at increase in conservatism.
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Figure 4.9: A preprocessing step for obtaining and storing of arrays of LTI models:
reference models (Gj) and discretized reduced order models (G̃j,nj,mj). For each

discretized system, nj = 1, . . . , nD
j discretized LTI models are made. For discretized

models, a reference model is created by choosing the best available discretization (i.e.,
nj = nD

j ) that is reduced using high fidelity balanced truncation method—a step
analogous to obtaining a minimal realization. For each reduced order model, Hankel
singular values are calculated and only first mj = 1, . . . , mHSV

j models are stored. It
should be noted that the discretization step (i) can be carried out using readily

available FEA/FEM or meshing software.

Since this fact (of not increasing the order of the uncertain system) comes with prac-
tical usability, from now on, the focus is put mostly on these weights, i.e., Wj,1s, to a
lesser degree on the scaled (refined) weights Wj,1e and only keep in mind the unscaled
(unrefined) weights Wj,1 that are overly conservative for a comparison, to demonstrate
the results. All the dynamic behaviour will be captured only by weights Wj,1s (or Wj,1e

or Wj,1), while the second weight will be kept to be identity. A more elaborate descrip-
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tion on when one might use Wj,2 is given in Section 5.2.4. Moreover, ∆j per subsystem
always stays the same. With that being said, an array of uncertain subsystems can be
created.

With the arrays of reference models and uncertain systems ready, as shown in
Figure 4.11, denoted as a process (vii), one can obtain coupled models. Here it should
be noted that interconnection matrices R, K and H can be reused to calculate reference
coupled system G (used only for comparison and verification) and uncertain coupled
system(s). Again, let us keep the attention at the uncertain coupled system Gu

j,s, while
the other uncertain system Gu

j,e can have practical usage, the uncertain system Gu
j is

only used to demonstrate the effect of uncertainty conservatism reduction (often called
uncertainty refinement).

The last step of the process is to carry out robustness analysis. In this paper, the focus
is on the robustness analysis using integral quadratic constrains (IQCs). Without going
into details, the key point can be explained as follows. For a given coupled uncertain
system (previously converted to a LFT form)—again, focus is on Gu

j,s)—find a feasible
solution to prove that the given uncertain system is robustly stable. After that, check
the best achievable γ and compare it to the induced L2-gain of a reference coupled
system. This part of the procedure is shown in Figure 4.14 and denoted as (x).
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Figure 4.10: Structure of the system is used to obtain the insight into how energy is
being dissipated (damped) inside the system. Interconnection matrices are used to

create coupled reference system and coupled uncertain systems. Complex
interconnections (or surroundings, environment) around each subsystem are

essentially acting as scaling filters at input and output of each subsystem (input
output transfer functions-IOTFs). These scaling filters (IOTFs) are reduced and used
to calculate a low order scaled versions of both the reference model and discretized

reduced order model.
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Figure 4.11: Structure of the system is used to obtain the insight into how energy is
being dissipated (damped) inside the system. Interconnection matrices are used to

create coupled reference system and coupled uncertain systems. Once the
interconnection matrices R,K and H have been created, and a reference coupled

system is obtained (i.e., G)-uncertain coupled system(s) can also be obtained using the
same interconnection matrices and replacing the appropriate reference subsystems

with the relevant uncertain subsystems (i.e., replace Gj with Gu
j,s, Gu

j,e or Gju).

45



Chapter 4. Numerical modeling of dissipative coupled dynamical systems

(v
i)

ca
lc

ul
at

io
n

of
re

fin
ed

an
d

st
at

ic
w

ei
gh

ts
(v

ii
)

ca
lc

ul
at

io
n

of
in

it
ia

l(
co

ns
er

va
ti

ve
)

w
ei

gh
ts

ca
lc

ul
at

io
n

of
W

j,2
(o

pt
io

na
l)

ma
ke

we
ig

ht

fi
tm

ag
fr

d

no
rm

fi
tm

ag
fr

d

A
5

N
2

D
2

o j
,e

A
5

j
=

j+
1

j<
=

k

C
al

cu
la

te
th

e
sc

al
ed

ab
so

lu
te

er
ro

r
(G

j,e
−

G̃
j,e
)

W
j,1

e
=

lo
gc

he
b(

G
j,e
−

G̃
j,e
)

of
or

de
r

o j
,e

C
al

cu
la

te
th

e
st

at
ic

(c
on

st
an

t
ga

in
)

w
ei

gh
t

W
j,1

s
=
||W

j,1
e||

N
3

C
al

cu
la

te
W

j,2
(s
)(

e)
to

sp
ec

if
y

ne
ed

s
(l

ow
-,

hi
gh

-,
or

ba
nd

-p
as

s)

Fu
rt

he
r

un
ce

rt
ai

nt
y

re
fin

em
en

t
re

qu
ir

ed
?

D
efi

ne
∆

j
an

d
W

j,2
(s
)(

e)
=

I

A
rr

ay
of

un
ce

rt
ai

n
m

od
el

s:
G

u j,s
=

G̃
j
+

W
j,2

∆
jW

j,1
s

G
u j,e

=
G̃

j
+

W
j,2

∆
jW

j,1
e

G
u j
=

G̃
j
+

W
j,2

∆
jW

j,1

M
2

j
=

j+
1

j<
=

k

C
al

cu
la

te
th

e
ab

so
lu

te
er

ro
r
(G

j
−

G̃
j)

W
j,1

=
lo

gc
he

b(
G

j
−

G̃
j)

of
or

de
r

o j

A
6

N
2

D
2 o j A
6

j=
1

FA
LS

E

Y
ES

j=
1

FA
LS

E

TR
U

E

N
O

T
R

U
E

Figure 4.12: Process of uncertainty modelling and uncertainty refinement through the
creation of weights Wj,1 and Wj,1e. Calculating the absolute error and obtaining

weights for each subsystem, without taking into account the (dissipative)
surroundings of the subsystem yields conservative results (i.e., Wj,1, a process

denoted as (vii)). Calculating the absolute errors for each subsystem that is scaled by
its surroundings and turning it into refined weights Wj,1e, results in lower magnitude
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in frequency response in wide frequency range—hence less conservative uncertainty
model was achieved. The scaled weights can often be further simplified by simply
replacing it by its peak response—this offers a flexible and useful trade-of—reduce

the order of the weights (i.e., no additional states are introduced with weights of
static (constant) gain response) at introduction of some conservatism, or vice versa.

The steps needed to obtain the weights of static gain Wj,1s, are denoted as (vi).

It should be noted that since the proposed procedure deals with the uncertainty mod-
elling (or modelling in general), many parts of the process require manual operation.
For example, the initial guess of the required discretization and/or orders of reduced
order models (i.e., nj and mj, respectively) a feasible solution might be found imme-
diately and the performance criteria met easily. On the other hand, it might be a
complete miss. Here, however, a main paradigm when choosing discretization and
orders is to model systems close to the external inputs and outputs with relatively fine
discretization and relatively high orders; and the one far away with coarse mesh and
low orders. This also intuitively makes sense to do, since the dynamics of the distant
subsystems is not affected by the external inputs or does not influence the measured
outputs. With that being said, one can complete the design procedure by proposing a
useful decision making process (DMP), as shown in Figure 4.16, that can be used to
efficiently find an uncertain coupled system for which a robustness will be guaranteed.

Author stresses that carrying out robustness analysis using µ-tools instead of IQC anal-
ysis is as easy as reformulating questions in the decision making process of the IQCs
analysis (see (xi) DMP2 in Figure 4.14)—where “Feasible solution found?” becomes
“Robust stability margin greater then 1?”| and “γ ≈ ||Γw→z||?” becomes “Worst case
gain close to ||Γw→z||?”.

One more note will be given before proceeding to the numerical example. While
in the proposed design procedure one exclusively used either static Wj,1s or refined
Wj,1e weights to obtain the uncertain coupled system—an important advantage of the
structure preserving approach is that one can combine static and refined weights per
each subsystem (i.e., some subsystems’ uncertainty is modelled using static weights
and for some other using refined weights). This gives the opportunity to further fine
tune a trade-of between reduction in the uncertainty conservatism and the order of
the coupled uncertain system. It is left to the interested readers as a mental exercise to
see how this can be utilised properly for a specific problem—because the modelling
of each new complex coupled dynamical system is a problem for itself.
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Figure 4.13: Carry out IQC analysis and optional postprocessing (if the IQC analysis
was successful) for a given nominal parts of uncertain system(s) Γs (Γe, Γ) and check if

all the robustness criteria are satisfied. Decision making process 1 (DMP1) — if a
feasible solution cannot be found and/or performance criterion cannot be met with a

Γs, try Γe or Γ.
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Figure 4.14: Carry out IQC analysis and optional postprocessing (if the IQC analysis
was successful) for a given nominal parts of uncertain system(s) Γs (Γe, Γ) and check if

all the robustness criteria are satisfied. IQC analysis process and decision making
process 2 (DMP2)-if there is no feasible solution found to the IQC analysis appropriate

changes have to be made; either to the IQC analysis parameters or the uncertain
system (see Figure 4.16 for further details), if there was feasible solution found, but

the specified performance criterion has not been met, then the discretizations and/or
orders of the reduced order models are too low and have to be adjusted.
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Figure 4.15: Carry out IQC analysis and optional postprocessing (if the IQC analysis
was successful) for a given nominal parts of uncertain system(s) Γs (Γe, Γ) and check if

all the robustness criteria are satisfied. Continue to optional post-processing—i.e.,
carry out robustness analysis using µ-tools instead of IQCs, run ν-gap analysis or

perform frequency and/or time domain simulations to confirm the desired behaviour
of the obtained uncertain coupled system.
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Figure 4.16: Decision making process 3 (DMP3) — The suggested order of
adjustments that have to be made to the IQC analysis parameters and to the uncertain
coupled system to satisfy a given robustness criteria. First decision (D1) reflects the

changes are being made to the IQC parameters (i.e., v and ρ). Other decisions reflect
the changes are being made to the uncertain coupled system. Changes are being

made to the orders of uncertainty weights first (D2), then to the orders of reduced
order IOTFs (D3) and after that to the level of discretizations of subsystems (i.e., nj)
and/or to the orders of the model order reduced subsystems (i.e., mj)—collectively

the fourth decision (D4).
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5.1 Series of simply supported Euler beams coupled
by springs and dampers: A structure preserving

approach

All the code needed to replicate the results shown in the sequel is available in
GitHub [134] and archived in Zenodo [135].

Let us now consider the application of the proposed procedure on the practical
example—a series of simply supported Euler beams mutually interconnected by
springs and dampers. Such a system is shown in Figure 5.1a. All beams of equal
length l, divided into three (ns = 3) equal length segments, the same circular cross
section with diameter of d, the same mass density ρ and the same Young’s modulus
of elasticity E. On the uppermost beam, at one third and two thirds of its length,
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two dynamical vertical forces F1(t) and F2(t) are applied. At the same locations, dis-
placements of the beam d1(t) and d2(t), and velocities v1(t) and v2(t), respectively,
are measured. On those same locations, spring-damper pairs are connected to the
next successive beam. Internal inputs to the beams are forces acting from spring and
dampers to the nodes at the beams, while the internal outputs are displacements
and velocities of nodes at beams. Material properties of the beams, as well as stiff-
nesses of the springs and viscous damping coefficient of the dampers, are shown in
Table 5.1 for three different test cases. The zero values for c1, c2 or k1, k2, mean com-
pletely disconnected dampers or springs, respectively, thus obtaining systems with
less internal outputs. The beams are discretized using 2D Euler–Bernoulli beam fi-
nite elements. Ten (nd = 10) successively finer discretizations are made, such that
each of discretized models have a number of 2D beam finite elements (FE) defined as
nFE ∈ {3nsnd | nd = 1, . . . , 10}. FE nodes are equally distributed along the length of
the beam. After constructing the global mass and stiffness matrices, a proportional
Rayleigh damping matrix is calculated such that the modal damping for the first 8
beam vibration modes ratio is approximately ζ.
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Figure 8. A series of simply supported Euler beams mutually interconnected by springs and dampers:
(a) Mechanical schematic of an interconnected system. (b) Block diagram representation of the system,
where the systems with odd indices, i.e G1, G3, Gj, . . . , Gk are dynamical systems representing LTI
models of discretized beams, while the systems with even indices, i.e G2, G4, Gj−1, . . . , Gk−1 are the
systems of static gain representing springs and dampers between each beam.

-200

-150

-100

-50

0

To
:z

(1
)

From: w(1)

105102

RO
original

RW
SW

-250

-200

-150

-100

-50

0

To
:z

(1
)

From: w(1)

-250

-200

-150

-100

-50

0

To
:z

(2
)

From: w(2)

Frequency (rad/s)

M
ag

ni
tu

de
(d

B)

RO
original

RW
SW

10510 102 1052102-200

-150

-100

-50

0

To
:z

(2
)

From: w(2)

105
Frequency (rad/s)

M
ag

ni
tu

de
(d

B)

(a) (b) (c)

-100

-50

0

To
:z

(1
)

From: w(1)

-100

-50

0

To
:z

(2
)

-200

-150

-100

-50

0

To
:z

(3
)

105

-200

-150

-100

-50

0

To
:z

(4
)

From: w(2)

105
Frequency (rad/s)

M
ag

ni
tu

de
(d

B)

RO
original

RW
SW

Figure 9. Frequency response of the original (unreduced) interconnected system compared to RO
(Reduced Order with initially calculated weights Wj,1), RW (reduced order with Refined Weights Wj,1e)
and SW (reduced order with Static Weights Wj,1s). (a) Case #1, beams mutually interconnected only by
dampers, representing a highly dissipative case. (b) Case #2, beams mutually interconnected only by
springs, representing the least dissipative (stiffest) case. (c) Case #3, beams mutually interconnected
by both dampers and springs, representing the most complex interconnections case (with most
uncertainty channels).

Figure 5.1: A series of simply supported Euler beams mutually interconnected by
springs and dampers: (a) Mechanical schematic of an interconnected system. (b)

Block diagram representation of the system, where the systems with odd indices, i.e.,
G1, G3, Gj, . . . , Gk are dynamical systems representing LTI models of discretized
beams, while the systems with even indices, i.e., G2, G4, Gj−1, . . . , Gk−1 are the
systems of static gain representing springs and dampers between each beam.

Table 5.1
Material properties of the beams, springs and dampers.

Case l d ρ E c1 k1 c2 k2 ζ
# m m2 kg/m3 GPa N · s/m N/m N · s/m N/m -

1 2 0.018 7800 210 × 109 10−4 0 10−6 0 0.08

2 2 0.01 7800 210× 109 0 7× 100 0 3× 101 0.08

3 1 0.01 7800 210× 109 10−2 2× 102 10−1 101 0.05

All the discretized systems are converted to LTI state-space systems using
Equations (2.1) to (2.3). Using Equations (2.3) to (2.8), interconnection matrices
are obtained, with input to each subsystem being wj(t) = [F1,j(t), F2,j(t)]T, out-
put of the each subsystem being zj(t) = [v1,j(t), v2,j(t), d1,j(t), d2,j(t)]T, Fj(t), while
w(t) = [F1(t), F2(t)]T and z(t) = [v1(t), v2(t), d1(t), d2(t)]T, being performance (exter-
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nal) inputs and outputs, respectively. Spring-damper pairs between each beam can be
represented as systems of static gain. This interconnected system can be represented
as shown in Figure 5.1b. From coarsest to finest mesh, LTI state space models have 36,
72, 108, 144, 180, 216, 252, 288, 324 to 360 states, respectively. The HSV are calculated
(but also stored for later usage) and high fidelity MOR is carried out such that all the
states with HSV less than 10−12 are truncated, resulting in systems that has 24, 40, 46,
50, 52, 54, 57, 58, 60 and 62 states. Comparing the systems to the original ones, no
difference was observed in the frequency range of interest (0 ≤ ω ≤ 105 rad/s), so
these systems are chosen to be the reference systems, while the one with the most
states (i.e., 62) is chosen to be the exact (correct) system. Closely following the rest of
the proposed procedure outlined in Section 4.2.1, the results of the final iteration—i.e.,
when the feasible solution is obtained and robust performance confirmed—are shown
in Table 5.4.
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Table 5.2
Results for case # 1. Results after the feasible solution in the IQC robustness analysis
is found. Different number of beams (nb) are considered. Acronyms are used for the

resulting interconnected systems: RO (Reduced Order with initially calculated
weights Wj,1), RW (reduced order with Refined Weights Wj,1e) and SW (reduced order
with Static Weights Wj,1s). The McMillan degree v of basis-function needed to achieve

solution is also displayed. The numerical simulations were carried out on a Linux
64bit machine with Dual Core Intel i5-3317U 2.6GHz and 8Gb RAM, in Matlab

version 9.11 and IQCLab Toolbox V3.0.

Case # 1 nb = 10

discretization number nj per beam 2 [6, 6, 5, 4, 4, 3, 3, 3, 2, 1]

orders of reduced order models mj per
beam

[4, 3, 3, 2, 2, 2, 1, 1, 1, 1]

orders oj of initial weights Wj,1 per
beam

[3, 3, 2, 2, 2, 2, 1, 1, 1, 1]

orders oj,e of refined weights Wj,1e per
beam

[3, 3, 2, 2, 2, 2, 2, 2, 2, 1]

number of: inputs × outputs, states of
[reference] and (reduced order) system,
and decision variables to the IQC COP
3

22× 22 [433]
RO: (92) 4280v=0
RW: (92) 4280v=0
SW: (32) 530v=0

calculation times of the IQC convex
optimization problem LMIlab + mincx
(YALMIP + MOSEK)

RO: 1337.8s (39.4s)
RW: 1199.2s (38.8s)

SW: 8.5s (4.6s)

induced L2-gains of the [nominal sys-
tem] 4, the best achievable γ (worst case
gain using µ-tools) for

RO: [0.0643] 0.06462 (0.0657)
RW: [0.0643] 0.06593 (0.0657)
SW: [0.0643] 0.06594 (0.0657)

obtained [robust stability margins using
µ-tools] 5 and (ν-gaps) 6 for

RO: [5.5192] 0.0118
RW: [992.4105] 0.0118
SW: [992.4107] 0.0118

1

The case was practically unable to perform due to RAM limitations, because number of decision
variables was roughly 35k for the RO model. 2 The discretization orders were chosen manually with
the premise that systems further from the performance channel, in general, can be discretized using

lower orders. 3 Convex optimization problem (COP). 4 Nominal systems are the corresponding Γ. 5 A
robust stability margin greater than 1 means that the system is robustly stable for all values of its

modelled uncertainty. 6 Calculated ν-gaps represent a measure of the robust stability for
interconnected systems that are to be controlled with a closed loop controller. ν-gap close to zero

indicates good robustness.
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Table 5.3
Results for case # 2. Results after the feasible solution in the IQC robustness analysis
is found. Different number of beams (nb) are considered. Acronyms are used for the

resulting interconnected systems: RO (Reduced Order with initially calculated
weights Wj,1), RW (reduced order with Refined Weights Wj,1e) and SW (reduced order
with Static Weights Wj,1s). The McMillan degree v of basis-function needed to achieve

solution is also displayed. The numerical simulations were carried out on a Linux
64bit machine with Dual Core Intel i5-3317U 2.6GHz and 8Gb RAM, in Matlab

version 9.11 and IQCLab Toolbox V3.0.

Case # 2 nb = 7

discretization number nj per beam 2 [10, 9, 8, 7, 6, 4, 3]

orders of reduced order models mj per
beam

[6, 3, 3, 2, 2, 2, 2]

orders oj of initial weights Wj,1 per
beam

[4, 3, 2, 2, 2, 2, 2]

orders oj,e of refined weights Wj,1e per
beam

[3, 3, 2, 2, 2, 1, 1]

number of: inputs × outputs, states of
[reference] and (reduced order) system,
and decision variables to the IQC COP
3

16× 16 [387]
RO: (88) 6791v=1
RW: (88) 6791v=1
SW: (36) 668v=0

calculation times of the IQC convex
optimization problem LMIlab + mincx
(YALMIP + MOSEK)

RO: 55822s (123s)
RW: 18824.24s (35.6s)

SW: 33.6s (4.4s)

induced L2-gains of the [nominal sys-
tem] 4, the best achievable γ (worst case
gain using µ-tools) for

RO: [0.0670] 0.06969 (0.0671)
RW: [0.0670] 0.06695 (0.0670)
SW:[0.0670] 0.06696 (0.0670)

obtained [robust stability margins using
µ-tools] 5 and (ν-gaps) 6 for

RO: [3.7588] 3.1686× 10−5

RW: [159.7053] 3.1686× 10−5

SW: [91.2962] 3.1690× 10−5

1

The case was practically unable to perform due to RAM limitations, because number of decision
variables was roughly 35k for the RO model. 2 The discretization orders were chosen manually with
the premise that systems further from the performance channel, in general, can be discretized using

lower orders. 3 Convex optimization problem (COP). 4 Nominal systems are the corresponding Γ. 5 A
robust stability margin greater than 1 means that the system is robustly stable for all values of its

modelled uncertainty. 6 Calculated ν-gaps represent a measure of the robust stability for
interconnected systems that are to be controlled with a closed loop controller. ν-gap close to zero

indicates good robustness.
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Table 5.4
Results for case # 3. Results after the feasible solution in the IQC robustness analysis
is found. Different number of beams (nb) are considered. Acronyms are used for the

resulting interconnected systems: RO (Reduced Order with initially calculated
weights Wj,1), RW (reduced order with Refined Weights Wj,1e) and SW (reduced order
with Static Weights Wj,1s). The McMillan degree v of basis-function needed to achieve

solution is also displayed. The numerical simulations were carried out on a Linux
64bit machine with Dual Core Intel i5-3317U 2.6GHz and 8Gb RAM, in Matlab

version 9.11 and IQCLab Toolbox V3.0.

Case # 3 nb = 5

discretization number nj per beam 2 [10, 10, 10, 10, 10] 1

orders of reduced order models mj per
beam

[6, 3, 3, 2, 2]

orders oj of initial weights Wj,1 per beam [4, 3, 2, 2, 2]

orders oj,e of refined weights Wj,1e per
beam

[4, 3, 2, 2, 2]

number of: inputs × outputs, states of
[reference] and (reduced order) system,
and decision variables to the IQC COP 3

12× 24 [310]
RO: (120), n/a
RW: (120), n/a

SW: (48) 5896v=2

calculation times of the IQC convex
optimization problem LMIlab + mincx
(YALMIP + MOSEK)

RO: n/a
RW: n/a

SW: 10600.6 (113.2s)

induced L2-gains of the [nominal sys-
tem] 4, the best achievable γ (worst case
gain using µ-tools) for

RO: [4.6115] n/a (4.6324)
RW: [4.6115] n/a (4.6124)
SW: [4.6115] 4.622 (4.6138)

obtained [robust stability margins using
µ-tools] 5 and (ν-gaps) 6 for

RO: [2.7540] 0.0263
RW: [348.1343] 0.0263
SW: [80.8150] 0.0265

1 The case was practically unable to perform due to RAM limitations, because number of decision
variables was roughly 35k for the RO model. 2 The discretization orders were chosen manually with the
premise that systems further from the performance channel, in general, can be discretized using lower
orders. 3 Convex optimization problem (COP). 4 Nominal systems are the corresponding Γ. 5 A robust
stability margin greater than 1 means that the system is robustly stable for all values of its modelled
uncertainty. 6 Calculated ν-gaps represent a measure of the robust stability for interconnected systems
that are to be controlled with a closed loop controller. ν-gap close to zero indicates good robustness.

An interesting observation can be made—for the systems near the external inputs and
outputs discretization level, as well as the order of the reduced order model, needs
to be higher when compared to the systems that are further away form the external
inputs and outputs. A physical explanation for this phenomenon is that most of the
dynamics for those systems (i.e., further away) is dissipated thorough the system and
as such these systems have small influence on the overall dynamic response on the

58



Chapter 5. Numerical Experiments and Discussion

channel w → z—thus their dynamics can be chosen to be of lower order. This is
especially true for higher order dynamics that naturally get damped relatively fast.

In Figures 5.2, 5.3 and 5.4, it can be seen that the frequency response is highly corre-
lated in the lower frequency range with acceptable discrepancy in higher frequency
range. Despite noticeably lower order for the interconnected system that uses the
static weights Wj,1s (SW), the results are basically the same as the other two reduced
order systems (i.e., RO and RW). From Table 5.4, the best achievable induced L2-gains
are very well correlated with the unreduced interconnected system. The same can
be observed for the results obtained using µ-tools and for the ν-gaps. These results
confirm the achieved robustness using IQC analysis and IQCLab toolbox.

Figure 5.2: Case # 1 — Frequency response of the original (unreduced) interconnected
system compared to RO (Reduced Order with initially calculated weights Wj,1), RW

(reduced order with Refined Weights Wj,1e) and SW (reduced order with Static
Weights Wj,1s). Case # 1, beams mutually interconnected only by dampers,

representing a highly dissipative case.
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Figure 5.3: Case # 2 — Frequency response of the original (unreduced) interconnected
system compared to RO (Reduced Order with initially calculated weights Wj,1), RW

(reduced order with Refined Weights Wj,1e) and SW (reduced order with Static
Weights Wj,1s). Case # 2, beams mutually interconnected only by springs,

representing the least dissipative (stiffest) case.
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Figure 5.4: Case # 3 — Frequency response of the original (unreduced) interconnected
system compared to RO (Reduced Order with initially calculated weights Wj,1), RW

(reduced order with Refined Weights Wj,1e) and SW (reduced order with Static
Weights Wj,1s). Case # 3, beams mutually interconnected by both dampers and

springs, representing the most complex interconnections case (with most uncertainty
channels).

When the obtained weights are compared, as seen in Figures 5.5 to 5.13, it can be seen
in the first row of results (for case # 1), the refined uncertainty can easily be chosen as
static and perhaps even discarded altogether as it has low gain. Case # 1 represents
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a passive system and this property might be additionally exploited for even better
results [27]. The greatest challenge was to obtain suitable weights for the system that
has two inputs and four outputs per subsystem, i.e., case # 3. All the IQC robustness
analyses shown that it is possible to use static filters (model SW) for guaranteed robust
stability and robust performance.

Results obtained on the previously compared cases should be considered only repre-
sentative. It is important to point out that this is a modelling technique. As such, it is
dependent on the peculiarities of the problem at hand. The choice for discretization
level nj, reduced model order mj, as well as the order for the obtained weights oj,e (that
define a static weight Wj,1s), per subsystem, at first might seem completely heuristic.
However, author stresses that these choices can be chosen intuitively and even lever-
aged as an advantage, if more precise modelling criteria are given. To illustrate what
the author means by this, let us reconsider Case #1.

Figure 5.5: Frequency response of the with initially calculated weights Wj,1 (solid
black line), refined weights Wj,1e (dash-dot red line) and static weights Wj,1s (dashed

green line). Case # 1, system 3.
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Figure 5.6: Frequency response of the with initially calculated weights Wj,1 (solid
black line), refined weights Wj,1e (dash-dot red line) and static weights Wj,1s (dashed

green line). Case # 1, system 11.
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Figure 5.7: Frequency response of the with initially calculated weights Wj,1 (solid
black line), refined weights Wj,1e (dash-dot red line) and static weights Wj,1s (dashed

green line). Case # 1, system 19.
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Figure 5.8: Frequency response of the with initially calculated weights Wj,1 (solid
black line), refined weights Wj,1e (dash-dot red line) and static weights Wj,1s (dashed

green line). Case # 2, system 3.
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Figure 5.9: Frequency response of the with initially calculated weights Wj,1 (solid
black line), refined weights Wj,1e (dash-dot red line) and static weights Wj,1s (dashed

green line). Case # 2, system 7..
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Figure 5.10: Frequency response of the with initially calculated weights Wj,1 (solid
black line), refined weights Wj,1e (dash-dot red line) and static weights Wj,1s (dashed

green line). Case # 2, system 13.
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Figure 5.11: Frequency response of the with initially calculated weights Wj,1 (solid
black line), refined weights Wj,1e (dash-dot red line) and static weights Wj,1s (dashed

green line). Case # 3, system 3.
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Figure 5.12: Frequency response of the with initially calculated weights Wj,1 (solid
black line), refined weights Wj,1e (dash-dot red line) and static weights Wj,1s (dashed

green line). Case # 3, system 5.
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Figure 5.13: Frequency response of the with initially calculated weights Wj,1 (solid
black line), refined weights Wj,1e (dash-dot red line) and static weights Wj,1s (dashed

green line). Case # 3, system 9.

Let us assume that the divergence in the higher frequencies is not meeting the desired
criteria, despite the obtained system met the robustness criteria. Let us further assume
that the order of the resulting reduced order (uncertain) interconnected system is
satisfactory and that there is room for a slight increase in the overall order of the
interconnected system. Thus, a better correlation in the broader frequency range (for
this specific example), can be achieved with an increase in reduced model order for
the first subsystem. One could also argue that most of the uncertainty, for this specific
case, can be captured by only modelling uncertainty for the few systems near the
external inputs and outputs. By observing Figures 5.5 to 5.13 it can be concluded that
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the amount of refined uncertainty for the beams number 2 to 10 is negligible (gain of
around −150 dB or lower). As such, one can completely discard the uncertainty for
these systems and only keep static weight for the first system. As a results, one can
try to carry out a robustness analysis for a reduced order (uncertain) interconnected
system that has nj = [10, 6, 5, 2, 2, 2, 2, 1, 1, 1]nb=10, mj = [18, 3, 2, 1, 1, 1, 1, 1, 1, 1]nb=10

and oj,e = [3,−,−,−,−,−,−,−,−,−] (dashes (−) indicate no uncertainty is modeled
for a particular subsystem). Frequency response of the newly obtained interconnected
system is shown in Figure 5.14.

Figure 5.14: Case #1 with different nj and mj. Using higher discretization and higher
order for the first subsystem, results in a better correlation in the frequency response
when compared to the original system. Few random uncertainty samples are shown

to give an idea of the frequency response of the uncertain interconnected system.

Indeed, one does obtain a feasible solution to the IQC analysis (and a robust stabil-
ity margin greater then one, having value of 6.7219× 104) confirming the system is
robustly stable. One can also achieve γ = 0.064511, and as such being close to a nom-
inal value of 0.0643 (and also confirmed using µ-tools by calculating worst case gain
that has a value of 0.0645). The ν-gap (when compared to the reference model) also
drastically decreased to a value of 2.9522× 10−4, further demonstrating that a newly
obtained uncertain dynamical system is close to a reference system—if the systems
are to be controlled by a same controller—indicating good robustness in a closed loop
scenario.

A better correlation when compared to the reference (original) system is now evident
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up to roughly 104 rad/s can be seen in Figure 5.14 (when compared to case #1 in
Figures 5.5 to 5.7, there was good correlation only up to roughly 102 rad/s). To get
a sense of the overall uncertain behaviour of the system, few random samples of the
uncertain model are plotted as well—showing an (expected) increase in the uncertainty
in the higher frequencies due to discretization and reduced order subsystems. It should
be noted that the obtained results are still sub-optimal, but suitable for the specified
criteria. Moreover, this case of weakly coupled systems (i.e., beams interconnected
with only viscous dampers) might seem extreme, but to a point serve to demonstrate
how modelling of a very large scale system (i.e., consisting of thousands of dissipative
systems) might be approached. Amount of the required uncertainty, for dynamical
systems that are distant from the external inputs and outputs, can often be drastically
reduced or in some cases even completely discarded as shown above—this, in turn,
results in reducing the conservatism of the uncertain interconnected system.

5.2 Discussion

5.2.1 On the choice of weight design

Most often, the discrepancy between the nominal and the reduced order discretized
model is evident in the high frequency range. One simple way to scale the uncertainty
with the frequency weights Wj,1 and Wj,2, is to model them as high-pass filters. Perhaps
a bit more sophisticated and robust design is to use logarithmic-Chebyshev magnitude
design, as outlined in [136, 67], that guarantees stability of the weight Wj,1, while also
being minimum phase-shaping and can be chosen such that it is low-order and covers
the modelled absolute error from above in the important frequency range. This gives
the advantage of not missing the high frequency dynamics at the expense of modest
to none increase in conservatism. It should be noted that there is no single recipe
for designing any weight for that matter, and the choice of a weight is often a result
of design experience, experimentation or perhaps even obtained via trial and error.
Let us examine an example of a high order system that has a frequency response as
shown in Figure 5.15. As it can be observed, independent of the order of the filter, its
response always lies above the original system, thus making this type of cover filter
useful for unstructured uncertainty modelling [128, 60]. From Figure 5.15, it can also
be seen that the magnitude of the filter that has order two (2nd order cover fit) is larger
in wide frequency range than that of filter that has order six (6th order cover fit) and
order eight (8th order cover fit). One could imagine that the given original system
of order fifteen (15th order) was an absolute error that one wants to model using
(unstructured) additive uncertainty and that lower order cover filters (2nd, 6th and
8th order cover fit) are weights Wj,1. For this particular example, a general conclusion
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would be that the conservatism of the 8th order filter would thus be lower than the
conservatism of 6th order cover filter and especially lower than that of 2nd order
cover filter. The explanation for this lies in the fact that the 2nd order filter (when
multiplied by a dynamic system of norm less then 1—i.e., unstructured uncertainty)
includes more dynamics than the other two that are more closely covering the original
dynamical system. In Figure 5.15, it can also be seen that the 8th order cover filter
still has significantly larger gain in lower frequencies—thus, the uncertainty in lower
frequencies, for this example, would still be conservative. One way to tackle this
problem would be to use one more frequency weight (filter)—i.e., Wj,2 multiplying
uncertainty from the left—and model it in such a way to further scale the uncertainty
in the lower frequencies. In the case of discretized and reduced order models, lower
order dynamics is usually correlated well when compared to the higher order models,
so in this case, a possible benefit of Wj,2 might be to reduce conservatism at higher
frequencies.

Figure 5.15: Examples of the different low-order weights (filters)—modelled using
logarithmic-Chebyshev filter design—that cover the frequency response of a high

order dynamical system in the desired frequency range. All lower order filters are
stable and modelled in such a way to have gain larger than the original high order
dynamical system. This makes such a filter useful when modelling unstructured

uncertainties (e.g., additive uncertainty).

5.2.2 Defining the unique paths of energy transfer throughout
the system

Let us now consider an example of an interconnected dynamical system, that is as-
sumed to be dissipative, as represented with Figure 5.16. Dissipativity of the intercon-
nected system manifests itself with the dissipativity on the subsystem level and/or
through dissipative interconnections between them. For the example at hand, let us
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assume that there are two performance (external) inputs w = (w(1), w(2))T and two
performance (external) outputs z = (z(1), z(2))T. Similar vector expansion of inter-
nal inputs wj ∈ L

nwj
2 and internal outputs zj ∈ L

nzj
2 is assumed, where nwj and nzj

represent the number of inputs and the number of outputs of the Gj-th subsystem,
respectively. The main idea is to define all the unique paths through which the energy
can transferred. To do so, one can examine the inputs and outputs of each subsystem.
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Figure 13. Example of the interconnected dissipative dynamical system. Defining the paths of energy
transfer to and from the subsystem Gj.

4.3. Replacing the surroundings of a subsystem with input-output transfer functions 694

After all the distinct paths of energy transfer for the system at hand (i.e Gj in this case) 695

are obtained, we can calculate the input-output transfer functions (IOTF) for each path of 696

energy transfer. By doing so, it is possible to find the minimum number of systems that 697

will be connected directly to the internal inputs and outputs of the subsystem at hand, 698

replacing the complex structure of the overall environment of one particular subsystem at 699

hand. To simplify the explanation and calculation for the example shown in Figure 13, let 700

us examine the calculation in the complex frequency domain (s-domain) with signals w, 701

wj, z and zj by taking the Laplace transform of external inputs signals w, internal inputs 702

signals wj, external outputs signals z and internal outputs signal zj, respectively. For the 703

case of LTI systems, calculation for the IOTF of the subsystem Gj can be carried out as 704

Gw(1)→wj(1) =
wj(1)
w(1)

= G3G2, (35)

Gw(2)→wj(2) =
wj(2)
w(2)

= G1, (36)

Gzj(1)→z(1) =
z(1)
zj(1)

= G2, (37)

Gzj(2)→wj(3) =
wj(3)
zj(2)

= Gk−1Gk, (38)

Gzj(1)→z(2) =
z(1)
zj(1)

= I, (39)

Gw(1)→z3(1) =
z3(1)
w(1)

= G3G2, (40)

where G1, G2G3, Gk−1 and Gk are transfer functions of G1, G2, G3, Gk−1 and Gk, respectively. 705

The summation points s1 and s2 are defined as algebraic relations 706

z(1) = zj(1) + z3(1) (41)

wk(1) = zj(2) + z3(1). (42)

Figure 5.16: Example of the interconnected dissipative dynamical system. Defining
the paths of energy transfer to and from the subsystem Gj.

Let us for that purpose focus on the j-th subsystem Gj that has three inputs
wj = (wj(1), wj(2), wj(3))T and two outputs zj = (zj(1), zj(2))T. Let us can start by
examining the energy transfer from external inputs w to the internal inputs wj, of the
subsystem Gj, and from internal outputs zj to the external outputs z. In order for the
energy to transfer from the external input w(1) to the first input of the subsystem Gj

it needs to take the path through the subsystems G2 and G3—this is the green coloured
energy transfer path in Figure 5.16. Following the same procedure for the external
input w(2), the energy passes through the system G1—before landing on the second
input of the subsystem Gj—following the red coloured energy transfer path shown in
Figure 5.16. On the other hand, if the energy path is followed from the first output of
the subsystem Gj, it can be observed that it needs to pass through the subsystem G2,
before reaching the external output z(1)—following the blue coloured energy transfer
path, as shown in Figure 5.16. It can also be observed that part of the energy is also
transferred from the second internal output zj(2) of the subsystem Gj to the the third
internal input wr(3) of the subsystem Gj, and doing so passes through the subsystems
Gk and Gk−1—following the orange coloured path of energy transfer. It is also possible
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to take into account the branching points and summation points together with the
accompanying energy transfer paths following the dashed pink coloured in Figure 5.16.
By doing so, the following can be observed. Some of the energy is directly transferred
from subsystem output zj(1) through the branching point b1 and the summation point
s1 to the external output z(2). Note, in this case, although the inputs to the summation
point s1 are z1(2) and zj(1), one is only interested in the energy transferred from the
system at hand to the external output z(2). Then again, some of the energy coming
from the external input w(1) passes through the subsystems G2 and G3 before arriving
at the summation point s2 and transferring energy through the subsystems Gk and
Gk−1 towards the internal input wj(3) of the subsystem Gj. In this case, since some
of the energy from the external input w(1) is being dissipated, one does include this
channel at the summation point s2.

5.2.3 Replacing the surroundings of a subsystem with
input-output transfer functions

After all the distinct paths of energy transfer for the system at hand (i.e., Gj in this
case) are obtained, one can calculate the input-output transfer functions (IOTF) for
each path of energy transfer. By doing so, it is possible to find the minimum number
of systems that will be connected directly to the internal inputs and outputs of the
subsystem at hand, replacing the complex structure of the overall environment of
one particular subsystem at hand. To simplify the explanation and calculation for the
example shown in Figure 5.16, let us examine the calculation in the complex frequency
domain (s-domain) with signals ŵ, ŵj, ẑ and ẑj by taking the Laplace transform of
external inputs signals w, internal inputs signals wj, external outputs signals z and
internal outputs signal zj, respectively. For the case of LTI systems, calculation for the
IOTF of the subsystem Gj can be carried out as

Gw(1)→wj(1) =
ŵj(1)
ŵ(1)

= Ĝ3Ĝ2, (5.1)

Gw(2)→wj(2) =
ŵj(2)
ŵ(2)

= Ĝ1, (5.2)

Gzj(1)→z(1) =
ẑ(1)
ẑj(1)

= Ĝ2, (5.3)

Gzj(2)→wj(3) =
ŵj(3)
ẑj(2)

= Ĝk−1Ĝk, (5.4)

Gzj(1)→z(2) =
ẑ(1)
ẑj(1)

= I, (5.5)

Gw(1)→z3(1) =
ẑ3(1)
ŵ(1)

= Ĝ3Ĝ2, (5.6)
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where Ĝ1, Ĝ2, Ĝ3, Ĝk−1 and Ĝk are transfer functions of G1, G2, G3, Gk−1 and Gk, respec-
tively.

The summation points s1 and s2 are defined as algebraic relations

z(2) = zj(1) + z1(1) (5.7)

wk(1) = zj(2) + z3(1). (5.8)

The interconnected system defined by Equations (5.1)–(5.8) can be represented as
shown in Figure 5.17. For such an interconnected system, interconnection matrices can
be made using the same procedure as outlined in Section 2.3. To make a distinction
between the interconnection matrices for interconnecting the whole system, which
from now on will be called global interconnection matrices, these will simply be called
local IOTF connection matrices.
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The interconnected system defined by Equations (35)-(42) can be represented as shown 707

in Figure 14. For such an interconnected system, interconnection matrices can be made 708

using the same procedure as outlined in Section 2.3. To make distinction between the 709

interconnection matrices for interconnecting the whole system, which from now on will 710

be called global interconnection matrices, we will simply call these local IOTF connection 711

matrices. 712
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Figure 14. Obtaining the composite subsystems Gj,e and G̃j,e, scaled by it’s environment, by con-
necting the reduced order input-output transfer functions (IOTF) to the inputs and outputs of the
examined subsystem Gj or reduced order subsystem G̃j, respectively.

4.3.1. On the calculation of the IOTF and it’s practical applicability 713

Although the example shown in Figure 13 had taken into consideration many possible 714
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clustered together (i.e in the top part of the interconnected system) in a sense that, some 717

external signal is injected close to where it is measured — the example of this might be 718

active car suspension i.e measurements include the tyre kinematics while forces are acting 719

on the active suspension, and car body representing the overall distant part of the system. 720

Then there might be systems that have external inputs on one side and at a distant side the 721

outputs are measured — for this kind of systems the procedure is practically the same, and 722

will, arguably, also result in relatively small number of IOTF systems. Practical example 723

of such a system might include active cruise control, i.e measurements are taken at the 724

tyre, some energy is carried throughout the power-train system and some action is taken 725

on the engine side. However, if the external inputs and outputs are highly dispersed 726

— i.e everywhere in the system there are external inputs and everywhere in the system 727

measurements are taken — this procedure might not yield the expected results and might 728

not give major practical advantage over regular non-preserving methods. It should be 729

noted that this type of input-output arrangement is not a typical case in practical application 730

of the control. Also, finding all the energy transfer paths for all the subsystems might be 731

cumbersome. Although there might not be fully automatic way to create IOTF, there are 732

ready made solutions that greatly improve the applicability as it will be mentioned in the 733

numerical example. It should also be noted that, if some of the energy paths are omitted, 734

the only consequence will be a (slightly) more conservative uncertainty model [17,38,43]. 735

4.4. Refining the additive uncertainty model 736

After all the IOTF are defined, we stress that it is possible to recalculate the new addi- 737

tive uncertainty models for the subsystem Gj, that is essentially scaled by its environment. 738

Assuming that the subsystem Gj is somehow discretized and of reduced order (by 739

using some MOR method) such that we have G̃j. All the energy transfer paths are defined 740

(as in Figure 13) and all the needed IOTF are calculated. If we also define all the local 741

IOTF connection matrices we can than examine two composite systems with either Gj or 742

Figure 5.17: Obtaining the composite subsystems Gj,e and G̃j,e, scaled by its
environment, by connecting the reduced order input-output transfer functions (IOTF)
to the inputs and outputs of the examined subsystem Gj or reduced order subsystem

G̃j, respectively.

On the calculation of the IOTFs and its practical applicability

Although the example shown in Figure 5.16 had taken into consideration many pos-
sible scenarios of interconnections, this part remains to be explored for other combi-
nations of interconnection. For this particular example, all the external inputs and
outputs are highly clustered together (i.e., in the top part of the interconnected system)
in a sense that some external signal is injected close to where it is measured—the
example of this might be active car suspension, i.e., measurements include the tyre
kinematics while forces are acting on the active suspension, and car body representing
the overall distant part of the system. Then there might be systems that have external
inputs on one side and at a distant side the outputs are measured—for these kinds
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of systems the procedure is practically the same, and will, arguably, also result in
relatively small number of IOTF systems. A practical example of such a system might
include active cruise control, i.e., measurements are taken at the tyre, some energy is
carried throughout the power-train system and some action is taken on the engine side.
However, if the external inputs and outputs are highly dispersed—i.e., everywhere in
the system there are external inputs and everywhere in the system measurements are
taken—this procedure might not yield the expected results and might not give major
practical advantage over regular non-preserving methods. It should be noted that this
type of input-output arrangement is not a typical case in practical application of the
control. Moreover, finding all the energy transfer paths for all the subsystems might be
cumbersome. Although there might not be fully automatic way to create IOTF, there
are ready made solutions that greatly improve the applicability as it will be mentioned
in the numerical example. It should also be noted that, if some of the energy paths
are omitted, the only consequence will be a (slightly) more conservative uncertainty
model [60, 67, 128].

5.2.4 Refining the additive uncertainty model

After all the IOTF are defined, author stresses that it is possible to recalculate the
new additive uncertainty models for the subsystem Gj, that is essentially scaled by its
environment.

Assuming that the subsystem Gj is somehow discretized and of reduced order (by
using some MOR method) such that one has G̃j. All the energy transfer paths are
defined (as in Figure 5.16) and all the needed IOTF are calculated. If one also defines
all the local IOTF connection matrices one can than examine two composite systems
with either Gj or G̃j being central to our examination (as in Figure 5.17). Due to the
dissipative nature of the subsystems and their mutual interconnections, from now
on, let us assume that a significant amount of the energy throughout the system was
dissipated (damped)—in a sense, that if the response in the frequency domain is to
be evaluated for any IOTF, the response will be rather smooth (without peaks of
significant gain). For that matter, it makes sense not to use large order IOTF, initially
obtained with unreduced subsystems. So, in the next stage of uncertainty design,
reduced order IOTF will be used. For each IOTF defined with the Equations (5.1)–(5.8),
one can obtain a low-order cover filters by using logarithmic-Chebysev magnitude
design. With this laid out, one has obtained two composite subsystems Gj,e and G̃j,e

(here index e will stand for environment). Now, as already explained in Section 5.2.3,
one can proceed with the calculation of the refined uncertainty model, with refined
weighting filters Wj,2e and Wj,1e now being as shown in Figure 5.18.

77



Chapter 5. Numerical Experiments and Discussion

Version June 14, 2022 submitted to Mathematics 28 of 31

G̃j being central to our examination (as in Figure 14). Due to dissipative nature of the 743

subsystems and their mutual interconnections, from now on, we assume that significant 744

amount of the energy throughout the system was dissipated (damped) — in a sense, that if 745

the response in the frequency domain is to be evaluated for any IOTF, the response will be 746

rather smooth (without peaks of significant gain). For that matter, it makes sense not to 747

use large order IOTF, initially obtained with unreduced subsystems. So, in the next stage 748

of uncertainty design, reduced order IOTF will be used. For each IOTF defined with the 749

Equations (35)-(42), we obtain a low-order cover filters by using logarithmic-Chebysev 750

magnitude design. With this laid out, we obtained two composite subsystems Gj,e and 751

G̃j,e (here index e will stand for environment). Now, as already explained in Section 2.5, we 752

can proceed with the calculation of the refined uncertainty model, with refined weighting 753

filters Wj,2e and Wj,1e now being as shown in Figure 15. 754
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Figure 15. Uncertainty refinement — calculating the scaled frequency weighting filter Wj,1e: (a)
Representation of the absolute error between the nominal scaled subsystem Gj,e and the reduced
order scaled subsystem G̃j,e. (b) Representing the absolute error as an additive uncertainty with the
new refined frequency weighting filters Wj,2e and Wj,1e

5. Conclusions and future work 755

In this paper it is shown that it is possible to systematically model uncertainties arising 756

both from spatial discretization and model order reduction. To obtain least conservative un- 757

certainty models, a structure of the interconnected system needs to be preserved. Structure 758

preserving algorithm that consists in partitioning the interconnected system is presented. 759

For each subsystem of interest, partitions are made such that the input-output transfer func- 760

tions (IOTF) are calculated. IOTF represent the energy transfer from external performance 761

input to internal subsystem input, from internal subsystem output to external performance 762

output, as well as from the internal subsystem output to the internal subsystem input (i.e 763

some feedback connection). These IOTFs are later approximated with low-order weights 764

that essentially scale the amount of uncertainty, rendering obtained uncertainties less con- 765

servative, while keeping the overall order of the interconnected system low. This approach 766

is shown not only to produce less conservative uncertainty models by making appropriate 767

frequency weights for the originally obtained uncertainties, but also to introduce flexi- 768

bility in both overall system modelling and uncertainty modelling. Finally, in order to 769

validate if the models are suitable for controller synthesis, a robustness test for closed loop 770

controller synthesis is carried out using the ν-gap metric. The obtained ν-gaps between 771

newly obtained low-order robustly stable models and the nominal unreduced models, 772

were relatively close to zero, which implies that a controller that stabilizes the original 773

(unreduced) interconnected system will tend to stabilize the new low-order interconnected 774

system as well [7,48]. 775

An important advantage of this structure preserving algorithm lies in the flexibility 776

of the design process - a single subsystem can be easily modified and reconnected using 777

same connections to be re-evaluated in the robustness analysis. This fact comes especially 778

useful if a spatially invariant interconnected dynamic system is analysed or a system 779

that has repeating subsystems with the same geometric and material properties, as for 780

such systems memory requirements can drastically reduce. It is also possible to use 781

Figure 5.18: Uncertainty refinement—calculating the scaled frequency weighting filter
Wj,1e: (a) Representation of the absolute error between the nominal scaled subsystem
Gj,e and the reduced order scaled subsystem G̃j,e. (b) Representing the absolute error
as an additive uncertainty with the new refined frequency weighting filters Wj,2e and

Wj,1e
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6.1 Conclusion

In this dissertation it is shown that it is possible to systematically model uncertainties
arising both from spatial discretization and model order reduction. To obtain less
conservative uncertainty models, a structure of the interconnected system needs to
be preserved. A structure preserving algorithm that consists in partitioning the inter-
connected system is presented. For each subsystem of interest, partitions are made
such that the input-output transfer functions (IOTFs) are calculated. IOTFs repre-
sent the energy transfer from external performance input to internal subsystem input,
from internal subsystem output to external performance output, as well as from the
internal subsystem output to the internal subsystem input (i.e., some feedback con-
nection). These IOTFs are later approximated with low-order weights that essentially
scale the amount of uncertainty, rendering obtained uncertainties less conservative,
while keeping the overall order of the interconnected system low. This approach is
shown not only to produce less conservative uncertainty models by making appropri-
ate frequency weights for the originally obtained uncertainties, but also to introduce
flexibility in both overall system modelling and uncertainty modelling. Finally, in
order to validate if the models are suitable for controller synthesis, a robustness test
for closed loop controller synthesis is carried out using the ν-gap metric. The obtained
ν-gaps between newly obtained low-order robustly stable models and the nominal
unreduced models, were relatively close to zero, which implies that a controller that
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stabilizes the original (unreduced) interconnected system will tend to stabilize the new
low-order interconnected system as well.

An important advantage of this structure preserving algorithm lies in the flexibility of
the design process—a single subsystem can be easily modified and reconnected using
same connections to be re-evaluated in the robustness analysis. This fact comes espe-
cially useful if a spatially invariant interconnected dynamic system is analysed or a
system that has repeating subsystems with the same geometric and material properties,
as for such systems memory requirements can drastically reduce. It is also possible to
use other or combine different MOR methods on a subsystem level. Another advantage
of the proposed algorithm lies in the flexibility of uncertainty modelling—depending
on the available allowed size for the distributed robust controller to be synthesized—a
trade off can be made in terms of the uncertainty conservatism versus the controller
size. Usage of integral quadratic constraints framework for robustness analysis and
uncertainty modelling is in itself highly attractive—besides fitting conveniently with
the proposed structure-preserving scheme—it can be used to capture other types of
uncertainties that can be included in the overall robustness analysis with relative ease.
Some typical uncertainties that might occur and can readily be analysed, in paral-
lel with the current analysis, include norm-bounded nonlinearities (that are used to
model neglected dynamics and modelling errors), sector bounded and slope-restricted
nonlinearities (that can be used for, e.g., modelling nonlinearities in material prop-
erties), passive uncertainties/nonlinearities and parametric uncertainties (concretely
in the presented example this might be used to model unknown parameters in mass,
stiffness and damping) [65]. Another advantage of the IQC analysis is the guaranteed
robust stability and robust performance achieved by finding feasible solution of convex
optimization problem.

6.2 Scientific contributions

Based on the presented mathematical and numerical results, discussion and finally
conclusions, the hypotheses, that are once more presented below are successfully
confirmed. Confirmed hypotheses are:

• Mechanical dynamical systems described with partial differential equations can
be modeled as series of coupled linear time-invariant subsystems with uncertain-
ties and by obtaining this model it is possible to describe, with sufficient accuracy,
dynamic behavior crucial for synthesis of efficient control system.

• The fact that each subsystem is coupled with other subsystems may be used
to obtain better uncertainty model and thus additionally improve efficiency of
control system.
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Besides the confirmed hypotheses, a number of the scientific contributions resulting
from this dissertation can be summarized as following:

– A novel concept of multi-scale structure preservation is introduced to empha-
size the importance of both global structure preservation and local structure
preservation at the subsystem level.

– Errors introduced into analysis via SDMs and MOR can be modeled as unstruc-
tured linear time-invariant dynamic uncertainties.

– Uncertainty conservatism at the subsystem level can be reduced for a special
class of interconnected dissipative dynamical systems.

– Preserved structure can be used to account for the dissipative dynamics of the
surroundings in analysis and (uncertainty) modeling

– Systematic modeling of the uncertainty and model order reduction (MOR) at the
level of a subsystem gives both modeling freedom and the ability for obtaining
less conservative uncertainties on the level of a subsystem.

– ν-gap analysis can be used efficiently for verification of closed loop gain of the
obtained low order robustly stable uncertain coupled dynamical system and the
reference coupled dynamical system.

6.3 Limitations

Based on the presented, the limitations of the proposed methods and procedures are:

– The proposed method for systematical uncertainty modeling and uncertainty
conservatism reduction at a level of a subsystem, although practical, is still a
heuristic approach. As such it is only guaranteed to result in a sub-optimal
robustly stable uncertain dynamical system.

– The local structure cannot be preserved when a first-order explicit LTI models
are used. Although, arguably the local structure doesn’t play a crucial role
in the proposed algorithm and in a general sense, still, this problem can be
partially alleviated with usage of descriptor state-space models, in which case
the the only robustness analysis tool available is µ-analysis (IQCs don’t handle
descriptor state-space models).

– Due to iterative nature of the proposed heuristic method and the fact that the
computationally intensive IQCs are used for robustness analysis, the numerical
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efficiency can be questioning. For particular problems (mainly if one only deals
with unstructured uncertainties and not with mixed uncertainties) this can be
alleviated by the usage of µ-tools which were proven to give comparable results
to IQCs at a fraction of calculation times.

6.4 Future work

A possible and attractive directions for future works include:

– With the recent development and implementation of robust control and model
order reduction techniques for linear second-order dynamical systems, a clear
path towards robustness analysis of proposed multi-scale structure-preserved
models will be available. This could in turn yield promising results and perhaps
even less conservative uncertainty models at the level of a subsystem for reduced
order coupled systems. Due to local structure preservation, a lower order sub-
systems could be obtained with well preserved dynamics and special subsystem
properties.

– A construction of an a-priori frequency weighted filters for refined uncertainty
models based on energy storage functions of partitioned input-output transfer
functions through the dissipation theory and integral quadratic constraints. This
would be constructed from mathematical theoretic principals and a proof might
be done by deriving certain LMI conditions. Solutions to LMI conditions might
prove the existence of optimal stable weights for each subsystem that would a-
priori guarantee the robustness of the reduced order uncertain coupled system.

– Provide mathematical proof (or carry out case study analyses, which might be
rather difficult) that a current set of unstructured uncertainties can be expanded
(or enriched) by modeling uncertainties as, e.g strictly dissipative uncertainty,
passive uncertainty/nonlinearity or as norm bounded uncertainty/nonlinearity.
For more details please see chapters 6.6 and 6.7 in [65].

– Another interested approach was also hinted in [65] in example 6. This way the
weighting filters might be incorporated into performance specification using the
input weighting filters through the IQCs for generalized performance.

– The heuristic nature and a large number of user decision (as shown in the
flowcharts for the design procedure) gives the opportunity to consider modeling
the system within the (neuro) fuzzy logic framework.
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– Developing a ready to use toolbox for uncertainty modeling of reduced order spa-
tially discretized coupled systems is something that would serve both academia
as well as industry.

– A final research direction, that is most appealing to the dissertation author and
in which he will hopefully embark on, relies on creating a rich enough data
set through creation of a series of discretizations and reduced order models,
that could be used within machine-learning framework. If an obtained data-set
is to be sufficiently rich, perhaps an optimal discretization and reduced order
per subsystem might be achieved. Tools that might be used, that with current
authors knowledge on the topic of data-driven control come to the authors mind,
include singular value decomposition, Koopman operator theory, dynamic mode
decomposition and Lowener framework.
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Bruno Dogančić was born on 29th of June, 1991, in Tuzla, Bosnia and Herzegovina. In
2009, he enrolled at the Faculty of Mechanical Engineering and Naval Architecture,
Zagreb, where he received his bachelor’s degree and master’s degree with cum laude
honor, in March 2014 and December 2015, respectively. Throughout his studies, he
participated in (and won) a number of case study competitions on topics ranging
from product design to smart traffic monitoring and the implementation of adaptive
smart education. In March 2016, he began working in the technical department of
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