Analiza prijelaza topline kod isparavanja i konstrukcija isparivača

Peček, Antonia

Undergraduate thesis / Završni rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:866141

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-27

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Antonia Peček

Zagreb, 2022.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ANALIZA PRIJELAZA TOPLINE KOD ISPARIVANJA I KONSTRUKCIJA ISPARIVAČA

Mentori:

Prof. dr. sc. Damir Dović, dipl. ing.

Student:

Antonia Peček

Zagreb, 2022.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru prof. Doviću na pomoći prilikom pisanja završnog rada te obitelji i prijateljima koji su mi bili podrška tijekom dosadašnjeg studiranja.

Antonia Peček

SVEUČILIŠTE U ZAGREBU

FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za završne i diplomske ispite studija strojarstva za smjerove:

Procesno-energetski, konstrukcijski, inženjersko modeliranje i računalne simulacije i brodostrojarski

Sveučilište u Zagrebu				
Fakultet strojarstva i brodogradnje				
Datum Prilog				
Klasa: 602 - 04 / 22 - 6 / 1				
Ur.broj: 15 - 1703 - 22 -				

ZAVRŠNI ZADATAK

Student:

Antonia Peček

JMBAG: 0035208482

Naslov rada na hrvatskom jeziku: Analiza prijelaza topline kod isparavanja i konstrukcija isparivača

Naslov rada na engleskom jeziku:

Analysis of evaporation heat transfer and design of evaporator

Opis zadatka:

Potrebno je konstruirati isparivač slijedećih karakteristika:

- toplinski učin: 200 kW
- radna tvar: R290
- temperatura isparavanja: 2°C
- ulazna/izlazna temperatura vode: 12°C/18°C

Potrebno je provesti i izraditi:

- analizu izraza za prijelaz topline kod isparavanja u shell&tube i pločastim izmjenjivačima topline
- termodinamički proračun potrebne površine izmjene topline za oba tipa izmjenjivača
- izračun pogonskih i investicijskih troškova za oba tipa izmjenjivača
- potrebne proračune čvrstoće shell&tube izmjenjivača
- sklopni i radioničke crteže shell&tube izmjenjivača
- tehničku dokumentaciju

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

30. 11. 2021.

Zadatak zadao:

Prof. dr. sc. Damir Dović

Datum predaje rada:

1. rok: 24. 2. 2022. 2. rok (izvanredni): 6. 7. 2022. 3. rok: 22. 9. 2022. Predviđeni datumi obrane:

rok: 28. 2. - 4. 3. 2022.
 rok (izvanredni): 8. 7. 2022.
 rok: 26. 9. - 30. 9. 2022.

Predsjednik Povjerenstva:

Prof. dr. sc. Vladimir Soldo

SADRŽAJ

1.	UVOD	1
2.	ULAZNI PODATCI	3
3.	ISPARIVANJE U SHELL AND TUBE ISPARIVAČIMA	6
4.	KONSTRUKCIJA SHELL AND TUBE ISPARIVAČA	. 13
5.	ISPARIVANJE U PLOČSTIM ISPARIVAČIMA	. 29
6.	DIMENZIONIRANJE PLOČASTOG ISPARIVAČA	. 33
7.	FINANCIJSKA ANALIZA	. 37
8.	ZAKLJUČAK	. 39

POPIS SLIKA

Slika 1.	Nukiyama dijagram	2
Slika 2.	Shematski prikaz suhog isparivača	6
Slika 3.	Shematski prikaz isparivanja u horizontalnoj cijevi	7
Slika 4.	Dijagramski prikaz iznosa koeficijenata prijelaza topline za različite autore	11
Slika 5.	Usporedba koeficijenata prijelaza topline u ovisnosti o sadržaju pare, prema	
	različitim autorima	12
Slika 6.	T, l dijagram za isparivač sa pregrijanjem	14
Slika 7.	Ravna prirubnica [8]	22
Slika 8.	Nerastavljivi pločasti izmjenjivač	29
Slika 9.	Geometrija lamele	29
Slika 10.	Dijagram usporedbe cijene	38

POPIS TABLICA

Tablica 1.	Točke rashladnog procesaPogreška! Knjižna oznaka nije definirana.
Tablica 2.	Značajke i paramteri potrebni za izračunavanje kofecijenta prijelaza topline7
Tablica 3.	Izračun potrebne izmjenjivačke površine16
Tablica 4.	Tablični prikaz proračuna potrebne izmjenjivačke površine

POPIS TEHNIČKE DOKUMENTACIJE

- 1 Prirubnica DN80
- 2 Cijevni priključak DN80
- 3 Lijeva podnica
- 4 Pregradna ploča
- 5 Ravna prirubnica DN300
- 6 Brtva
- 7 Cijevna stijenka
- 8 Plašt
- 9 U-cijevi
- 10 Segmentna pregrada
- 11 Cijevni priključak DN50
- 12 Prirubnica DN50
- 13 Desna podnica
- 14 Potporna šipka
- 15 Držač razmaka

POPIS OZNAKA

Oznaka	Jedinica	Opis		
t_1'	°C	ulazna temperatura vode		
$t_1^{}$	°C	izlazna temperatura vode		
Φ	W	Toplinski učin		
t _{sr}	°C	Srednja temperatura vode		
p_{voda}	Ра	tlak		
$ ho_{voda}$	Kg/m3	gustoća		
C _w	J/kgK	Specifični toplinski kapacitet vode		
λ_w	W/mK	Toplinska provodnost		
η	Pas	Dinamička viskoznost		
Pr	-	Prandtlov broj		
q_{m_voda}	kg/s	Maseni protok		
q_{v_voda}	m3/s	Volumni protok		
t _{isparivanje}	°C	Temperatura isparivanja		
$p_{kritičan}$	bar	Tlak zasićenja		
r	kJ/kgK	Specifična toplina isparivanja		
$ ho_{R290}'$	Kg/m3	Gustoća kapljevine propana		
c_{R290}'	J/kgK	Specifični toplinski kapacitet kapljevine propana		
λ_{R290}'	W/mK	Toplinska provodnost kapljevine propana		
η_{R290}'	Pas	Dinamička viskoznost kapljevine propana		
$ ho_{R290}$ "	kg/m3	Gustoća suhozasićene pare propana		
<i>C</i> _{R290} "	J/kgK	Specifični toplinski kapacitet suhozasićene pare propana		
λ_{R290} "	W/mK	Toplinska provodnost suhozasićene pare propana		
η_{R290} "	Pas	Dinamička viskoznost suhozasićene pare propana		
х	g/kg	Sadržaj pare na ulazu u isparivač		
h_4	kJ/kg	Specifična entalpija pare na ulazu i isparivač		
t _{pregrijanja}	°C	Temperatura pregrijanja		
h ₂	kJ/kg	Specifična entalpija radne tvari nakon pregrijanja		
NN_{R290_pr}		Indeks pr označava svojstva tvari nakon pregrijanja		
$\Delta artheta_m$	°C	Srednja logaritamska temperaturna razlika		
Bo	-	Boiling number		
Co	-	Convection number		
Fr	-	Freudov broj		
X_tt	-	Martinellijev parametar		
h_{LO}	W/m2K	Koeficijent prijelaza topline za kapljevitu fazu		
G	kg/m2s	Gustoća masenog toka		
А	m2	površina		
h_{TP}	W/m2K	Koeficijent prijelaza topline za dvije faze		

Završni rad

h _{nucl}	W/m2K	Koeficijent prijelaza topline za mjehurićasto vrenje
Е	-	Koeficijent uvećanja
h _{pool}	W/m2K	Koeficijent prijelaza topline za mjehurićasto vrenje
Nu _m	-	Nusseltova značajka (prosječna)
α	W/m2K	Koeficijent prijelaza topline za mjehurićasto vrenje
du	m	Unutarnji promjer cijevi
d _v	m	Vanjski promjer cijevi
W _{cijev}	m/s	Brzina strujanja u cijevi
q _{R290}	Kg/s	Maseni protok radne tvari
Ν	-	Broj cijevi
n_p	-	Broj prolaza
Re	-	Reynoldsova značajka
k	W/m2K	Koeficijent prolaza topline
L_{uk}	m	duljina
$R_{m(20^\circ)}$	N/mm2	Vlačna čvrstoća
$R_{p0.2}$	N/mm2	Granica tečenja
f_d	N/mm2	Proračunska čvrstoća
D_v	mm	Vanjski promjer plašta
D_u	mm	Unutarnji promjer plašta
Se	mm	Debljina stijenke
b _{brtva}	mm	Korisna širina brtve
S	-	Faktor sigurnosti
F	Ν	sila
Ζ	mm3	Pomoćna vrijednost
h_f	mm	Visina oboda prirubnice
ξ_1	-	Lokalni gubici
β	0	Kut žljebova
$\Delta \mathbf{p_{uk}}$	Pa	Pad tlaka
C _{struja}	kn	Cijena struje
N_h	-	Broj radnih sati kroz godinu
η_{pumpa}	-	Korisnost pumpe
Р	W	Snaga pumpe
p	%	Stopa rasta cijena

SAŽETAK

U ovom radu analizirani su koeficijenti prijelaza topline u *shell and tube* i pločastom isparivaču s propanom kao radnom tvari. Napravljen je termodinamički proračun *shell and tube* isparivača te je dana usporedba raznih modela koeficijenata prijelaza topline. Napravljen je hidrodinamički proračun, a na kraju i proračun čvrstoće prema čijim je rezultatima isparivač konstruiran. Termodinamički i hidraulički proračun provedeni su za pločasti isparivač te je dana usporedba koeficijenata prijelaza topline prema različitim modelima. Naposljetku je dana kratka financijska analiza i usporedba *shell and tube* i pločastog isparivača.

Ključne riječi: koeficijent prijelaza topline, shell and tube isparivač, pločasti isparivač, isparivanje, propan

Završni rad

SUMMARY

The thesis analyzes heat transfer coefficients in shell-and-tube and plate evaporators with propane as refrigerant. A thermodynamic calculation of the shell-and-tube evaporator was performed to compare different models of heat transfer coefficients. A hydrodynamic and a strength calculation were then performed, the results of which were used to construct the plate evaporator. Thermodynamic and hydraulic calculations were performed for the plate evaporator, followed by a comparison of heat transfer coefficients for different models. Lastly, a brief financial analysis and comparison of shell-and-tube and plate evaporators were given.

Key words: heat transfer coefficient; shell-and-tube evaporator; plate evaporator; evaporation; propane

1. UVOD

Isparivanje je promjena faze iz kapljevitog u parovito stanje. Osim u prirodi i u svakodnevnom životu, gdje primjerice isparavanjem morske vode dobivamo sol, isparavanje je važan proces za rashladnu industriju. Uz kompresor, kondenzator i prigušni ventil, isparivač je sastavni dio svakog ljevokretnog kružnog procesa u rashladnoj tehnici.

Do isparavanja dolazi kada je parcijalni tlak pare izjednačen sa tlakom iznad tekućine, a temperatura pri kojoj dolazi do isparivanja naziva se temperatura vrelišta. S obzirom na nametnutu razliku temperatura na ogrjevnoj plohi, isparivanje se odvija na tri načina:

- Isparivanje slobodnom konvekcijom
- Mjehurićasto isparivanje
- Filmsko isparivanje

Pri temperaturnoj razlici manjoj od 5°C, odvija se isparivanje slobodnom konvekcijom.

Povećanjem temperaturne razlike, dolazi do pojave mjehurića na ogrjevnoj ploči, a mjesta gdje se oni stvaraju nazivaju se klijališta mjehura. Mjehurići se stvaraju na hrapavoj površini, a veza između razlike tlakova i polumjera zakrivljenosti mjehurića dana je Thomsonovm jednadžbom

$$\Delta p_g = \frac{q'' 2\sigma}{\Delta q r}$$

Gdje je Δp_g razlika tlaka iznad tekućine i tlaka pare, σ površinsko naprezanje mjehura, koje je ovisno o temperaturi, a Δq izmijenjeni maseni protok između parne i kapljevite faze. Korištenjem Clausisu-Clayperonove jednadžbe kao uvjeta isparivanja, dolazi se do korelacije između radijusa zakrivljenosti parnog mjehurića i temperature pregrijanja:

$$r=\frac{2\sigma T_s}{q^{"}\Delta h_{\nu}\Delta\vartheta}\,.$$

Iz jednadžbe je vidljivo da se povećanjem pregrijanja radijus mjehurića smanjuje. Stoga na ogrjevnoj plohi gdje je razlika temperatura najveća imamo puno malih mjehurića, a takvo stanje kapljevine nazivamo pregrijana kapljevina. Odvajanjem mjehurića od ogrjevne plohe i smanjenjem razlike temperatura mjehurić raste sve do kad se temperatura mjehurića ne izjednači sa temperaturom zasićenja kapljevine i mjehurić kondenzira. Takav način vrenja naziva se pothlađeno vrenje.

Povećanjem temperature ogrjevne plohe dolazi do povećanja broja mjehurića na ogrjevnoj površini te stvaranja parovitog filma. Takav način isparivanja nazivamo filmsko isparivanje, a između ta dva načina isparivanja prolazi se kroz tranzicijsko područje. S obzirom da parni film predstavlja toplinski otpor, dolazi do smanjenja gustoće toplinskog toka što je u literaturi poznato pod nazivom Leidenfrostov efekt. [1]

Da postoje sva tri navedena načina isparavanja dokazao je Nukiyama svojim eksperimentom 1934.godine, a rezultat eksperimenta prikazan je dijagramom.

Slika 1. Nukiyama dijagram

U ovom je radu istraženo isparivanje u cijevima shell&tube te kanalima pločastog isparivača prilikom isparivanja propana.

2. ULAZNI PODATCI

Zadana radna tvar koja isparava je propan (R290), dok je sekundarna struja voda. Za oba medija očitana su fizikalna svojstva pomoću Coolprop [2] dodatka za excel tablicu. Podaci navedeni niže koristi će se za cjelokupni termodinamički i hidraulički proračun Shell&Tube te pločastog izmjenjivača.

Zadani toplinski učin je

 $\Phi = 200 \, kW$

2.1. Fizikalna svojstva ogrjevne vode

Ulazna temperatura vode

$$t'_1 = 18 \,^{\circ}\text{C}$$

Izlazna temperatura vode

$$t_1^{"} = 12 \,^{\circ}\text{C}$$

Srednja temperatura vode

$$t_{sr} = \frac{18 + 12}{2} = 15^{\circ}C$$

Očitana fizikalna svojstva vode za srednju temperaturu i tlak

 $p_{voda} = 6 bar$

Gustoća

$$\rho_{voda} = 999,33 \ kg/m^3$$

Specifični toplinski kapacitet

$$c_w = 4.176 \; kJ/kgK$$

Toplinska provodnost

$$\lambda_w = 0,5896 W/mK$$

Dinamička viskoznost

$$\eta = 0,011372 \ Pas$$

Prandtlov broj

$$Pr = 9,96$$

2.2. Protok vode

Maseni protok vode

$$q_{m_voda} = \frac{\phi}{c_w \cdot (t'_1 - t^{"}_1)} = \frac{200}{4,176*(18-12)} = 7,98 \ kg/s$$

Volumni protok vode

$$q_{v_voda} = \frac{q_{m_voda}}{\rho_{voda}} = \frac{7,98}{999,33} = 0,007987 \ m^3/s$$

2.3. Fizikalna svojstva propana

Temperatura isparivanja

$$t_{isparivanje} = 2 \,^{\circ}C$$

Tlak zasićenja

 $p_{kritičan} = 5,04 \ bar$

Specifična toplina isparivanja

 $r = 372,05 \, kJ/kg$

2.3.1. Fizikalna svojstva kapljevine propana

$$\rho_{R290}' = 525,88 \ kg/m^3$$

$$c_{R290}' = 2,5083 \ kJ/kgK$$

$$\lambda_{R290}' = 0,1051 W/mK$$

 $\eta = 0,000123 Pas$

```
2.3.2. Fizikalna svojstva suhozasićene pare propana
```

 ρ_{R290} " = 10,9755 kg/m³

 c_{R290} " = 1,7569 *kJ/kgK*

 λ_{R290} " = 0,01597 *W/mK*

 $\eta = 7,5069 \times 10^{-6} Pas$

2.3.3. Fizikalna svojstva propana na ulazu u isparivač

Za proračun stanja mokre pare u isparivač, zamišljen je proces hlađenja sa temperaturom kondenzacije 30°C te je određeno stanje propana nakon prigušnog ventila.

Sadržaj pare

x = 0,1762 g/kg

Antonia Peček

Specifična entalpija

 $h_4 = 270,56 \, kJ/kg$

2.3.4. Fizikalna svojstva pregrijane pare propana

Temperatura pregrijanja

 $t_{pregrijanja} = 5^{\circ}C$

Entalpija radne tvari nakon pregrijanja

$$\begin{split} h_2 &= 600,82 \ kJ/kg \\ \rho_{R290_pr} &= 10,2517 \ kg/m^3 \\ c_{R290_pr} &= 1,7594 \ kJ/kgK \\ \lambda_{R290_pr} &= 0,01628 \ W/mK \\ \eta_{R290_pr} &= 7,5920 \times 10^{-6} Pas \end{split}$$

2.3.5. Srednja logaritamska razlika temperatura

Srednja logaritamska temperaturna razlika izračunata je prema donjoj formuli.

$$\Delta \vartheta_m = \frac{\Delta \vartheta_V - \Delta \vartheta_M}{\ln(\frac{\Delta \vartheta_V}{\Delta \vartheta_M})} = \frac{16 - 10}{\ln(\frac{16}{10})} = 12,77 \ ^{\circ}C$$

2.4. Točke procesa

U tablici su dane točke procesa hlađenja, odabrani tlak kondenzacije je 10.79 bara, a pregrijanje 3 °C.

Toč	Točke rashladnog procesa								
	р	t	h	S	X	ro			
1	5.040999	278.15	600.8197506	2.454543918		10.25172411			
1"	5.040999	275.15	577.0634274						
2	10.78995	319.3822727	638.9550946	2.454543918					
3	10.78995	300.15	270.5647943						
4	5.040999	275.15	270.5647943	1.256320804	0.176182	56.75731074			

Antonia Peček

3. ISPARIVANJE U SHELL AND TUBE ISPARIVAČIMA

3.1. Shell&tube izmjenjivači

Shell&tube izmjenjivači su najkorišteniji izmjenjivači topline u industriji, a koriste se u rashladnoj tehnici, kemijskoj te prehrambenoj industriji. S obzirom na način isparavanja i dovođenja radne tvari u isparivač, shell&tube isparivače dijelimo na

- Suhe isparivače
- Potopljene isparivače

U suhim isparivačima radna tvar potpuno isparava u cijevi, a isparivač je dimenzioniran tako da u krajnjoj zoni dolazi do pregrijavanja radne tvari, kako bi zaštitili kompresor od mogućnosti usisa kapljica radne tvari.

U potopljenim isparivačima radna tvar isparava u plaštu, odnosno kapljevina se nalazi na dnu isparivača u kojem ogrjevni medij struji u cijevima te prenosi toplinu radnoj tvari u plaštu koja isparava u gornjem dijelu isparivača.

U ovom zadatku dimenzioniran je suhi isparivač.

Slika 2. Shematski prikaz suhog isparivača

3.1.1. Isparivanje u cijevima

Izmjena topline, pa tako i koeficijent prijelaza topline određeni su načinom strujanja, pa tako razlikujemo strujanje u vertikalnim i horizontalnim cijevima.

U ovom je poglavlju napravljen osvrt na strujanje u horizontalnoj cijevi s obzirom da su za taj slučaj napravljeni termodinamički i hidraulički proračun.

Collier je u svom istraživanju predložio sliku strujanja prema shemi na Slici 3.

Slika 3. Shematski prikaz isparivanja u horizontalnoj cijevi

3.2. Izrazi za koeficijent prijelaza topline

Koeficijenti prijelaza topline prilikom isparivanja relativno su slabo istraženi, zbog složenosti eksperimenta i mjerenja parametara. U ovom poglavlju dan je pregled modela izračuna koeficijenata prijelaza topline prema različitim autorima.

Analiza je napravljena sa vrijednostima zadanim u programsku zadatku, a zatim je dana grafički napravljena usporedba rezultata u ovisnosti o sadržaju pare. U modelima se koriste karakteristične vrijednosti prikazane u *Tablici* 2. [3] Indeks l odnosi se na kapljevitu fazu, a indeks g na parovitu. Koeficijenti prijelaza topline su prema autorima označeni slovom h, što bi u hrvatskoj literaturi uvriježeno kao grčki α .

Oznaka	Naziv	Formula	Izračunata vrijednost
Во	Boiling number	$Bo = \frac{q}{G \cdot r}$	0,000395
Со	Convection number	$Co = \left(\frac{1}{x} - 1\right)^{0.8} \cdot \left(\frac{\rho_g}{\rho_l}\right)^{0.5}$	0,49621
Fr_l	Freude number	$Fr_l = \frac{G^2}{\rho_l \cdot g \cdot d}$	0,52612
X_tt	Martinelli parameter	$X_{tt} = \left(\frac{1-x}{x}\right)^{0,9} \cdot \left(\frac{\rho_g}{\rho_l}\right)^{0,5} \cdot \left(\frac{\mu_L}{\mu_g}\right)^{0,1}$	0,8042

 Tablica 1.
 Značajke i paramteri potrebni za izračunavanje kofecijenta prijelaza topline

Koeficijent prijelaza za jednu fazu (kapljevitu) izračunat je prema formuli:

$$h_{LO} = 0,023 \cdot \left[\frac{G \cdot (1-x)d}{\mu_L}\right]^{0,8} Pr^{0,4} \cdot \frac{\lambda_l}{d} = 519,68 W/m^2 K$$

Gdje je G, gustoća masenog toka, izračunata prema formuli:

$$G = \frac{q_{m_RT}}{A_{presjek}}$$

3.2.1. Shah (1982) [3]

Shah je u svom eksperimentu 1976. proučavao isparivanje na osam različitih fluida u vertikalnim i horizontalnim cijevima, te je sa tim rezultatima i usporedbom sa drugim autorima napravljen model izračuna koeficijenta prijelaza topline.

$$h_{TP} = F_0 \cdot h_{LO}$$

Gdje je koeficijent F_0 određen prema sljedećim kriterijima:

 $F_{0} = Max(F_{nb}, F_{cb})$ $Za Fr_{l} > 0,04, N_{S} = Co$ $Za N_{S} = Co < 1$ $F_{cb} = \frac{1.8}{N_{S}^{0.8}}$

 $Za Bo > 1.9 \times 10^{-5}, F_{Cb} = 231Bo^{0.5}$

Izračunato: $h_{TP} = 2384,99 \text{ W/m}^2 \text{K}$

3.2.2. Kandlikar (1987) [3]

U Kandlikarovom modelu koeficijent prijelaza topline za dvije faze je izračunat kao zbroj koeficijenata prijelaza topline prilikom isparavanja konvekcijom i mjehurićastim vrenjem.

 $h_{TP} = h_{cov} + h_{nucl}$, a model za Co < 0.65 je:

$$\frac{h_{TP}}{h_{LO}} = C_1 (Co)^{C_2} (25Fr_L)^{C_5} + C_3 Bo^{C_4} F_{fl}$$

Koeficijenti od C1 do C5 očitani su prema [3]

$$C_1 = 1,1360$$

Antonia Peček $C_2 = -0,90$

 $C_2 = 0,00$ $C_3 = 667,2$ $C_4 = 0,7$

 $C_5 = 0,3$

$$F_{fl} = 1$$

Izračunato: $h_{TP} = 3839,60 W/m^2 K$

3.2.3. Gungor and Winterton (1986) [3]

Gungor i Winterton 1986. razvili su model izračuna koeficijentra prijelaza topline prema formuli:

 $h_{TP} = Eh_{LO} + Sh_{pool}$

E predstavlja koeficijent uvećanja koji se računa prema formuli:

$$E = 1 + 2.4 \times 10^4 Bo^{1.16} + 1.37 \left(\frac{1}{X_{tt}}\right)^{0.86} = 5.36 ,$$

Dok je S suppression faktor koji se računa po formuli:

$$S = \frac{1}{1 + 1,15 \times 10^{-6} E^2 R e_L^{1.17}} = 0,3417.$$

Koeficijent prijelaza topline koji se odnosi na mjehurićasto vrenje je izračunat prema Cooperu:

$$h_{pool} = 55Pr^{0,12}(-logPr)^{-0,55}M^{-0,5}q^{0,67} = 1571,06$$

Izračunato: $h_{TP} = 2246,46 W/m^2 K$

3.2.4. Pierre (1956) [3]

Jedan od najstarijih modela napravio je Pierre 1956. Prema navedenom autoru računa se Nusseltova značajka po formuli

$$Nu_m = 0.85 \times 10^{-0.2} (Re^2 Kf)^{0.4} = 780.17$$

Izračunata Nusseltova značajka ne zadovoljava uvjet modela Nu < 420, zbog čega koeficijent prijelaza topline

 $\alpha = 3154,94 W/m^2 K$ odskače od koeficijenata izračunati po ostalim modelima te nerelevantan. Zaključujem da se model ne može primijeniti na propan kao radnu tvar.

3.2.5. Ciconkov [21]

Ciconkov u svom priručniku koristi izraz:

 $\alpha = C \frac{G^{0.1}q^{0.7}}{d^{0.5}}$ za koji je dano objašnjenje u poglavlju 4.1.4.

Izračunato: $h_{TP} = 1728,09 \text{ W/m}^2\text{K}$

3.2.6. Kew and Cornwell (1997) [3]

Prema Kew and Cornwellu koji su mjerili rezultate na cijevima do 3.69 mm s isparavanjem radne tvari R141b napravljen je model:

$$h_{TP} = 30Re_l^{0.857}Bo^{0.714}(1-x)^{-0.143}\frac{\lambda_l}{D}$$

Izračunato: $h_{TP} = 2871,22 W/m^2 K$

3.2.7. Lazarek – Black (1982) [3]

$$h_{TP} = 30Re_L^{0,857}Bo^{0.714}\frac{\lambda_l}{D}$$

Izračunato: $h_{TP} = 2792,73 W/m^2 K$

3.2.8. Liu – Winterton (1991) [3]

$$h_{TP} = (Eh_{LO})^2 + ((Sh_{pool})^2)^{0.5}$$

Izraz je vrlo sličan izrazu iz poglavlja 3.2.3., gdje su navedene formule za izračun pojedinog faktora.

Izračunato: : $h_{TP} = 2834,57 W/m^2 K$

3.3. Usporedba koeficijenata prijelaza topline prema različitim autorima

Gore navedeni modeli analizirani su na temelju činjenice da pokazuju namjanje statističko odstupanje za mjerenja u eksperimentu sa propanom prema

Iz dijarama na *Slici 4.* vidljivo je odstupanje prema Pierrovom modelu, dok svi ostali modeli osim Ciconkova razlikuju za najviše 450 W/m²K. U prikazanom dijagramu izračunate su konkretne vrijednosti koeficijenta prijelaza topline prema zadanim parametrima zadatka (x=0,17). Najmanja vrijednost izračunata je prema Ciconkovu, pa je ujedno i po njemu napravljen daljnji proračun potrebne površine izmjenjivača i proračun čvrstoće, kako bi proračun bio na strani sigurnosti, jer su koeficijent prijelaza topline i potrebna izmjenjivačka površina u recipročnoj vezi.

Slika 4. Dijagramski prikaz iznosa koeficijenata prijelaza topline za različite autore

Na dijagramu prikazanom na *Slici 5*. uspoređeni su koeficijenti prijelaza topline u ovisnosti o sadržaju pare za pojedine autore. Za Shahovu korealciju vrijednosti prvo padaju, do uvjeta kada je Bo>1, a zatim ponovno rastu.

Kandlikarov i Kew and Cornwallov model se na dijelu dijagrama gdje je otprilike x=0,5 poklapaju, oba modela zbrajaju vrijednosti koeficijenata prijelaza topline u ovisnosti o načinu isparavanja.

Prema Shahovom, Kandlikarovom i Kew and Cornwallovom modelu koeficijent prijelaza topline raste sa porastom sadržaja pare.

Jedino za Gungor&Winterton model to nije slučaj, koeficijent prijelaza je najveći na početku, a s porastom sadržaja pare on lagano, skoro pa linearno pada.

Slika 5. Usporedba koeficijenata prijelaza topline u ovisnosti o sadržaju pare, prema različitim autorima

4. KONSTRUKCIJA SHELL AND TUBE ISPARIVAČA

4.1. Termodinamički proračun

4.1.1. Odabir cijevi

Odabrani materijal cijevi je CuZn. [8]

Toplinska provodnost $\lambda_{cijev} = 372 W/mK$ Vanjski promjer cijevi [8] $d_v = 15 mm$ Unutarnji promjer cijevi $d_u = 13 mm$

4.1.2. Potreban broj cijevi

Pretpostavljena brzina cijevi $w_{cijev} = 1,2 m/s$ Broj cijevi koje teoretski stanu u poprečni presjek $n = 0,75 \cdot \left(\left(\frac{t}{D_v}\right)^2 - 1\right) = 172$

Ukupni maseni protok radne tvari $q_{R290} = \frac{\Phi}{(h_2 - h_4)} = \frac{200}{600,82 - 270,56} = 0,6056 \ kg/s$

Potreban broj cijevi $N = \frac{4q_{R290}}{wd_u^2 \pi \rho_{R290_izlaz}} = \frac{4.0,6056}{1,2.0,013^2 \cdot \pi \cdot 56,76} = 51$

Odabrani broj cijevi je 67, broj prolaza $n_p = 2$.

4.1.3. Koeficijent prijelaza topline na strani vode

Koeficijent prijelaza topline izračunat je prema [18]

Ekvivalentan broj cijevi za šahovski raspored (60°) $N_{ekv} = 0,9904 \cdot \sqrt{N} = 8,11$

Poprečni presjek cijevi $A_{poprečno} = \frac{d_u^2 \cdot \pi \cdot N}{4n_p} = \frac{0.013^2 \cdot \pi \cdot 67}{4} = 0.007913541 m^2$

Reynoldsova značajka $Re = \frac{wD}{\eta} = 13229,58$

Prandtlov broj Pr=8,12

Nusseltova značajka $Nu = 0,036 \cdot Re^{0,6} \cdot Pr^{0,36} = 227,37$

Koeficijent prijelaza topline na strani vode $\alpha_{voda} = \frac{Nu \cdot \lambda}{d_v} = 8927,20 W/m^2 K$

4.1.4. Koeficijent prijelaza topline na strani radne tvari [21]

Koeficijent prijelaza topline izračunat je prema [21]

Gustoća masenog toka $G = \frac{q_{R290}}{A_{poprečno}} = 136,19 \ kg/sm^2$

Faktor C – ujedinjuje fizikalna svojstva radne tvari C = 0,17

Koeficijent prijelaza topline $\alpha_{RT} = \frac{G^{0,1} \cdot q^{0,7}}{\sqrt{d_u}} = 136,19 \ kg/sm^2$

4.1.5. Koeficijent prolaza topline

S obzirom na to da je dio izmjenjivačke površine namijenjen pregrijanju, proračun je podijeljen u dvije zone. Zona 1 se odnosi na isparavanje do stanja suhozasićene pare, dok se zona 2 odnosi na pregrijanje.

Slika 6. T, l dijagram za isparivač sa pregrijanjem

4.1.5.1. Zona 1

Specifični toplinski tok $q_1 = (h_1" - h_4) = 306,5 kJ/kg$ Toplinski tok $\phi_1 = 196,61 kW$ Temepratura vode nakon pregrijanja $t_{s1sup} = 13,32^{\circ}C$ Srednja logaritamska temperaturna razlika $\Delta t_{m1} = 10,64^{\circ}C$ Gustoća toplinskog toka $q_{1l} = \alpha_{voda} \cdot (t_{s1sup} - t_1") = 11813,77 W/m^2$ Koeficijent prolaza prve zone $k = \frac{q_{1l}}{\Delta t_{m1}} = 1109,5 W/m^2K$ Iteracijom do $k = 1479,82 W/m^2K$ Izmjenjivačka površina zone 1 $A_1 = \frac{\phi_1}{k \cdot \Delta t_{m1}} = 12,47 m^2$

4.1.5.2. Zona 2

Specifični toplinski tok $q_2 = (h_2 - h_1") = 5,28 \, kJ/kg$ Toplinski tok $\phi_2 = 3,39 \, kW$ Srednja logaritamska temperaturna razlika $\Delta t_{m2} = 12,14^{\circ}C$ Brzina radne tvari u zoni $2 \, w_2 = \frac{q_v}{A} = 7,03 \, m/s$ Reynoldsova značajka za zonu $2 \, Re = 12048,23$ Koeficijent $f_r = -0,0101183 \cdot (\frac{Re}{1000})^2 + 0,18978 \left(\frac{Re}{1000}\right) + 0,106247 = 0,9240$ Koeficijent $B_r = 0,023 \cdot \rho^{0,8} \cdot c^{0,4} \cdot \lambda^{0,6} \cdot \mu^{-0,4} = 10,94$ Koeficijent prijelaza topline za zonu $2 \, \alpha = f_r \cdot B_r \cdot \frac{w_2^{0,8}}{d_u^{0,2}} = 177,23 \, W/m^2 K$ Koeficijent prolaza druge zone $k = \frac{q_{21}}{\Delta t_{m2}} = 199,82 \, W/m^2 K$ Izmjenjivačka površina zone $2 \, A_2 = \frac{\phi_2}{k \cdot \Delta t_{m2}} = 1,4 \, m^2$ 4.1.5.3. Ukupna površina

Ukupna izmjenjivačka površina $A_{uk} = A_1 + A_2 = 13,87 m^2$

Ukupna duljina cijevi $L_{uk} = \frac{A_{uk}}{\pi \cdot d} = 339,7 m$

Ukupna duljina izmjenjivača $L_{izmjenjivač} = \frac{L_{uk}}{N \cdot 2} = 2,53 m$

Broj pregrada $n_{pregrade} = \frac{L_{izmjenjivač}}{0,2} = 13$

4.1.6. Potrebna izmjenjivačka površina

U ovom je odlomku prikazan detaljan proračun potrebne površine izmjenjivača. Analiza je napravljena po segmentima od x = 0,01 do x = 0,99, s korakom 0.1. Za svaki segment izračunat je maseni protok tvari te gustoća masenog toka. Prema gore navedenom izrazu za koeficijent prijelaza topline na strani radne tvari, izračunat je isti (po segmentu). Koeficijent prolaza topline osrednjen je za svaki segment, a iz formule

$$\Delta L = \frac{q \cdot r}{d_u \cdot \pi \cdot \Delta x \cdot \Delta t_m}$$

Izračunata je potrebna duljina segmenta kako bi isparila određena količina radne tvari. Rezultati analize dani su u *Tablici 3*.

Pojedine duljine segmenata su zbrojene, te one predstavljaju ukupnu duljinu cijevi iz kojih je izračunata potrebna izmjenjivačka površina, prema sljedećim formulama:

$$A_{potrebno} = L_{uk} \cdot \pi \cdot d_u = 15,58 \ m^2$$

Iz priloženog se vidi da je ukupna izmjenjivačka površina nešto veća nego izračunata u odlomku 4.1.5.3., a to je zato jer je za zadane i proračunate parametre u zadatku, sadržaj pare na ulazu u izmjenjivač $x \approx 0,17$ što je veće od početnog sadržaja pare iz tablice.

				k,	k _{srednji} ,	
х	qm_para, kg/s	G, kg/m ² s	α , W/m ² K	W/m^2K	W/m^2K	Δ L
0.01	0.006056	1.361944	1090.348	969.1391	969.1391	4.995481
0.1	0.060559	13.61944	1372.667	1185.938	1077.539	36.74039
0.2	0.121119	27.23888	1471.188	1258.767	1222.353	38.46077
0.3	0.181678	40.858321	1532.065	1303.069	1280.918	37.15318
0.4	0.242237	54.477761	1576.78	1335.276	1319.172	36.25705
0.5	0.302796	68.097201	1612.361	1360.703	1347.99	35.57951
0.6	0.363356	81.716641	1642.027	1381.771	1371.237	35.03702
0.7	0.423915	95.336082	1667.535	1399.79	1390.781	34.58601
0.8	0.484474	108.95552	1689.951	1415.552	1407.671	34.20091
0.9	0.545033	122.57496	1709.974	1429.573	1422.562	33.86547
0.99	0.599537	134.83246	1726.35	1441	1435.287	30.23722
						357.113

Tablica 2. Izračun potrebne izmjenjivačke površine

Proračun je proveden na način da je za pojedini sadržaj pare x izračunata gustoća masenog toka G, odnosno količina pare koja je isparila. Prema izračunatom G, izračunat je koeficijent prijelaza topline

$$\alpha = C \frac{G^{0,1} q^{0,7}}{d_i^{0,5}}$$

Gdje je q specifični toplinski tok po metru kvadratnom izračunat kao

$$q = \alpha_w (\Delta T_m - T_{w1})$$

, a d_i unutarnji promjer cijevi. Iz izračunatog koeficijenta prijelaza topline izračunat je koeficijent prolaza topline prema formuli:

$$k = \frac{1}{\frac{1}{\alpha_w} + \frac{d_u}{\lambda_c} + \frac{1}{\alpha}}$$

Taj koeficijent je osrednjen prema formuli

$$k_{n+1} = \frac{k_{n-1} + k_n}{2}$$

A iz njega je prema gore navedenoj formuli izračunat ΔL .

4.1.7. Dimenzioniranje priključaka

4.1.7.1. Priključak za dovod radne tvari Pretpostavljena brzina na ulazu radne tvari $w_{RT_dovod} = 10 \ m/s$ Volumni protok na ulazu $q_{v_{RT}_dovod} = 0,01066 \ m^3/s$ Izračunati unutarnji promjer $d_u = 38,86 mm$ Odabrani unutarnji promjer – cijev DN32 [8] $d_{u_stv} = 37,2 mm$ Debljina stijenke s = 2,6 mmVanjski promjer $d_{v_stv} = 42,4 mm$ Stvarna brzina strujanja $w_{RT \ dovod \ Stv} = 9,82 \ m/s$ 4.1.7.2. Priključak za dovod/odvod vode Pretpostavljena brzina na ulazu radne tvari $w_{voda} = 1,5 m/s$ Volumni protok na ulazu $q_{v_{RT}_{dovod}} = 0,007988 m^3/s$ Izračunati unutarnji promjer $d_u = 82,34 mm$ Odabrani unutarnji promjer – cijev DN80 [8] $d_{u \ stv} = 81,7 \ mm$ Debljina stijenke s = 3,6 mmVanjski promjer $d_{v_stv} = 76,1 mm$

Stvarna brzina strujanja $w_{RT_dovod_Stv} = 1,52 m/s$

4.1.7.3. Priključak za odvod radne tvari

Pretpostavljena brzina na ulazu radne tvari $w_{RT_odvod} = 10 \ m/s$ Volumni protok na ulazu $q_{v_RT_dovod} = 0,059077 \ m^3/s$ Izračunati unutarnji promjer $d_u = 86,73 \ mm$ Odabrani unutarnji promjer – cijev DN80 [8] $d_{u_stv} = 81,7 \ mm$ Debljina stijenke $s = 3,6 \ mm$ Vanjski promjer $d_{v_stv} = 88,9 \ mm$ Stvarna brzina strujanja $w_{RT_dovod_Stv} = 11,27 \ m/s$

4.2.1. Ulazni podatci

4.2.2. Odabrani materijal

Odabrani materijal: PH355 [16]

 $R_{p0.2} = 355 \ N/mm^2$ $R_{m(20^\circ)} = 490 \ N/mm^2$ (nema za temperaturu manju od 20°C)

4.2.3. Proračun plašta [6]

• Proračunska čvrstoća za radno stanje

$$f_d = \min\left(\frac{R_{p0.2}}{1.5}, \frac{R_{\rm m}}{2.4}\right) = 204, 17N/mm^2$$

• Proračunska čvrstoća za okolišno stanje

 $f_a = f_d$ jer je isto za 20°C

• Proračunski tlak

$$PT = \max\left(1,25 \cdot p_d \cdot \frac{f_a}{f_d}; 1,43 \cdot PS\right) = 8,58 \text{ bar}$$

• Proračunska čvrstoća za ispitni tlak

$$f_{TEST} = \frac{R_{p0,2(20^{\circ}C)}}{1,05} = 338,095 \ N/mm^2$$

4.2.4. Odabrane dimenzije plašta

Vanjski promjer: $D_v = 318 mm$ Unutarnji promjer: $D_u = 306 mm$ Debljina stijenke $s_e = 6 mm$ Uvjet: $\frac{D_v}{D_u} = 1,039 < 1,2$ Dodatak za dopušteno odstupanje lima za debele limove $c_1 = 0,4 mm$ Dodatak za koroziju i trošenje $c_2 = 1 mm$ Koeficijent valjanosti zavarenog spoja v = 0,85

4.2.5. Potrebna debljina stjenke [6]

• Za radno stanje

$$s_1 = \frac{D_v \cdot p}{20 \cdot f_d \cdot v + p} + c_1 + c_2 = 1,9488 \ mm < 6 \ mm$$

• Za ispitno stanje

$$\frac{D_{\nu} \cdot PT}{20 \cdot f_{TEST} \cdot \nu + PT} + c_1 + c_2 = 1,874 \ mm < 6 \ mm$$

4.2.6. Proračun izreza u plaštu [7]

Uvjet primjene norme:

$$0,002 < \frac{s_e - c_1 - c_2}{Dv} = 0,014465 < 0,1$$
 Uvjet je zadovoljen.

Na plaštu imamo priključke za dovod i odvod ogrjevne vode, odabrani su priključci DN 50.

Unutarnji promjer priključka d_{u,voda} = 54,5 mm Vanjski promjer priključka d_{v,voda} = 60,3 mm Debljina stjenke priključka s_s = 2,9 mm

Koeficijent oslabljenja izrezima

$$\nu_{A} = f(\frac{s_{s} - c_{1} - c_{2}}{s_{A} - c_{1} - c_{2}}, \frac{a_{u}}{\sqrt{(D_{u} + s_{A} - c_{1} - c_{2}) \cdot (s_{A} - c_{1} - c_{2})}})$$

$$\nu_{A} = f(\frac{2,9 - 0,4 - 1}{6 - 0,4 - 1}, \frac{54,5}{\sqrt{(306 + 6 - 0,4 - 1) \cdot (6 - 0,4 - 1)}})$$

$$\nu_{A} = f(0,326, 1,44)$$

$$\nu_{A} = 0,63 \text{ (očitano iz dijagrama u normi) [3]}$$

• Potrebna debljina stjenke za radno stanje

$$s_1 = \frac{D_v \cdot PT}{20 \cdot f_d \cdot v_A} + c_1 + c_2 = \frac{318 \cdot 8,58}{20 \cdot 204,17 \cdot 0,63} + 0,4 + 1 = 2,46 \text{ mm}$$

• Potrebna debljina stjenke za ispitno stanje

$$s_1 = \frac{D_v \cdot PT}{20 \cdot f_{\text{TEST}} \cdot v_A} + c_1 + c_2 = \frac{318 \cdot 8,58}{20 \cdot 338,095 \cdot 0,63} + 0,4 + 1 = 2,04 \text{ mm}$$

Odabrana debljina stjenke $s_e = 6 \text{ mm zadovoljava.}$

4.2.7. Proračun podnice bez izreza – M.E2.252 [9]

Odabrana vrsta podnice: plitka

Uvjet primjene norme: $0,001 < \frac{s_e - c_1 - c_2}{Dv} = 0,014465 < 0,$

 $\begin{array}{l} D_v = D_a = 318 \ mm \\ D_u = 306 \ mm \\ s = 6 \ mm \\ r_1 = 6 \ mm \\ r_2 = 0.1 \cdot D_a = 31.8 \ mm \\ h_1 > 3s = 18 \ mm \end{array}$

 $\begin{aligned} h_1 &= 30 \ mm \ (\text{odabrano}) \\ h_2 &= 0,1935 \cdot D_a - 0,455 \cdot s = 0,1935 \cdot 318 - 0,455 \cdot 6 = 58,803 \ mm \\ D_{kal} &= 2 \cdot (R+s) = 2 \cdot (318+6) = 648 \ mm \end{aligned}$

Dodatak za dopušteno odstupanje materijala [6] $c_1 = 0.4 mm$

Dodatak za smanjenje debljine uzrokovano korozijom i trošenjem [6] $c_2 = 1 mm$

Koeficijent valjanosti zavarenog spoja [6]

 $\nu = 1$ (jednodijelna podnica)

• Potrebna debljina stjenke kalotnog dijela podnice za radno stanje

$$s_{K,1} = \frac{D_{kal} \cdot p}{40 \cdot f_d \cdot \nu + p} + c_1 + c_2 = \frac{648 \cdot 6}{40 \cdot 204, 17 \cdot 1 + 6} = 2,35 \text{ mm}$$

• Potrebna debljina stjenke kalotnog dijela podnice za ispitno stanje

$$s_{K,2} = \frac{D_{kal} \cdot PT}{40 \cdot f_{TEST} \cdot \nu + PT} + c_1 + c_2 = \frac{648 \cdot 8,58}{40 \cdot 338,1 \cdot 1 + 8,58} = 2,22 \text{ mm}$$

Odabrana debljina stjenke s = 6 mm zadovoljava.

Koeficijent oblika podnice

$$d_{u} = 0 \text{ (podnica nema izreze)}$$

$$\beta = f(\frac{d_{u}}{D_{s}}; \frac{s - c_{1} - c_{2}}{D_{s}})$$

$$\beta = f(\frac{0}{318}; \frac{6 - 0.4 - 1}{318})$$

$$\beta(0, 0.014465)$$

$$\beta = 2.5 \text{ (očitano) [5]}$$

• Potrebna debljina stjenke torusnog dijela za podnice za radno stanje

$$s_{T,1} = \frac{D_s \cdot p \cdot \beta}{40 \cdot f_d \cdot \nu} + c_1 + c_2 = \frac{648 \cdot 6 \cdot 2,5}{40 \cdot 204, 17 \cdot 1} = 1,98 mm$$

• Potrebna debljina stjenke torusnog dijela za podnice za ispitno stanje

$$s_{T,2} = \frac{D_s \cdot PT \cdot \beta}{40 \cdot f_{TEST} \cdot \nu} + c_1 + c_2 = \frac{648 \cdot 6 \cdot 2,5}{40 \cdot 204, 17 \cdot 1} = 1,90 \ mm$$

Elastično ulubljivanje

Veličina koja se nalazi na apscisi

Završni rad

Antonia Peček

$$x = \frac{s - c_1 - c_2}{D_s} = \frac{6 - 0.4 - 1}{318} = 0.014465$$

Formula za ekstrapolaciju $y = \frac{p_b}{E} \cdot 10^5 = 4800 \cdot x - 8,2$ Tlak ulubljivanja $p_b = 61,23 \ bar$

Uvjet za tlak ulubljivanja $p_b \ge 1.5 \cdot p = 9 \ bar$ $61.23 \ge 9$ Uvjet je zadovoljen

4.2.8. Proračun podnice s izrezima [7]

Uvjet primjene norme: $0,001 < \frac{s_e - c_1 - c_2}{Dv} = 0,014465 < 0,1$ Izrez za priključak DN80 – ako zadovoljava njega, tada će zadovoljavati i DN 50.

Unutarnji promjer priključka $D_{u,pr} = 81,7 mm$ Debljina stijenke priključka $s_{pr} = 3,6 mm$ $D_{kal} = 648 mm$ $v_A = 636 mm$ $v_A = f(\frac{D_{u,pr}}{\sqrt{(D_u + s_A - c_1 - c_2)} \cdot (s_A - c_1 - c_2)}, \frac{s_{pr} - c_1 - c_2}{s_A - c_1 - c_2})$ $v_A = f(4,1,0,47)$ $v_A = 0,35$ (očitano iz dijagrama) [3]

• Potrebna debljina stijenke kalotnog dijela podnice za radno stanje

$$s_{K,1} = \frac{D_{kal} \cdot p}{40 \cdot f_d \cdot \nu + p} + c_1 + c_2 = 2,757 mm$$

• Potrebna debljina stijenke kalotnog dijela podnice za ispitno stanje

$$s_{K,2} = \frac{D_{kal} \cdot PT}{40 \cdot f_{TEST} \cdot \nu + PT} + c_1 + c_2 = 2,57 mm$$

Izrez izvan 0,6*Ds

• Potrebna debljina stijenke torusnog dijela za radno stanje

$$s_{T,1} = \frac{D_s \cdot p \cdot \beta}{40 \cdot f_d \cdot \nu} + c_1 + c_2 = \frac{648 \cdot 6 \cdot 2,5}{40 \cdot 204, 17 \cdot 1} = 1,98 \ mm$$

• Potrebna debljina stijenke kalotnog dijela za ispitno stanje

$$s_{T,2} = \frac{D_s \cdot PT \cdot \beta}{40 \cdot f_{TEST} \cdot \nu} + c_1 + c_2 = \frac{648 \cdot 6 \cdot 2.5}{40 \cdot 204.17 \cdot 1} = 1,90 \ mm$$

Odabrana debljina stjenke s = 6,3 mm zadovoljava.

4.2.9. Proračun vijaka

4.2.9.1. Odabir vijaka

Kvaliteta vijaka 6.6 Vlačna čvrstoća $R_m = 600 N/mm^2$ Granica tečenja $R_{p0.2} = 360 N/mm^2$

4.2.9.2. Odabir prirubnice

Odabrana prirubnica DN300 – ravna prirubnica [8] Geometrijski podaci prema slici: Vanjski promjer prirubnice $d_2 = 430 mm$ Unutarnji promjer prirubnice $d_{10} = d_u = 326 mm$ Promjer kružnice za provrte $d_3 = d_k = 385 mm$ Promjer provrta za vijke $d_4 = 23 mm$ Broj vijaka N = 12

Slika 7. Ravna prirubnica [8]

4.2.9.3. Odabir brtve

Odabrana brtva DN300 – klingerit [8] Vanjski promjer brtve $D_{v,brtva} = 373 mm$ Unutarnji promjer brtve $D_{u,brtva} = 325 mm$ Širina brtve $s_{brtva} = 3 mm$ Korisna širina brtve $b_{brtva} = 24 mm$ Srednji promjer brtve $D_{sr,brtva} = d_D = 349 mm$

4.2.9.4. Proračun sile u vijcima

Faktor sigurnosti S = 1.2

• Radno stanje

Sila uslijed djelovanja na gornju površinu

$$F_{RB,1} = \frac{p \cdot \pi \cdot d_u^2}{40} = \frac{6 \cdot \pi \cdot 326^2}{40} = 50055,996 N$$

Sila koja djeluje na prsten koji nije pokriven brtvom

$$F_{FB,1} = \frac{p \cdot \pi \cdot (d_D^2 - d_u^2)}{40} = \frac{6 \cdot \pi \cdot (349^2 - 325^2)}{40} = 7312,275 N$$

Sila u brtvi

$$F_{DB,1} = \frac{p}{10} \cdot \pi \cdot d_D \cdot S \cdot k_1 = \frac{6}{10} \cdot \pi \cdot 349 \cdot 1, 2 \cdot 24 = 18936, 46 N$$

Najmanja sila u vijcima za radno stanje

$$F_{SB,1} = F_{RB,1} + F_{FB,1} + F_{DB,1} = 76304,73 N$$

• Ispitno stanje

Sila uslijed djelovanja na gornju površinu

$$F_{RB,2} = \frac{PT \cdot \pi \cdot d_u^2}{40} = \frac{8,58 \cdot \pi \cdot 326^2}{40} = 71580,07N$$

Sila koja djeluje na prsten koji nije pokriven brtvom

$$F_{FB,2} = \frac{PT \cdot \pi \cdot (d_D^2 - d_u^2)}{40} = \frac{8,58 \cdot \pi \cdot (349^2 - 325^2)}{40} = 10456,55 N$$

Sila u brtvi

$$F_{DB,2} = \frac{PT}{10} \cdot \pi \cdot d_D \cdot S \cdot k_1 = \frac{8,58}{10} \cdot \pi \cdot 349 \cdot 1,2 \cdot 24 = 27079,14 N$$

Najmanja sila u vijcima za radno stanje

$$F_{SB,2} = F_{RB,2} + F_{FB,2} + F_{DB,2} = 109115,76 N$$

• Ugradbeno stanje

Svojstvo brtve $k_0 \cdot K_D = 15 \cdot b_{brtva} = 15 \cdot 24 = 360 N/mm$

Najmanja sila u vijcima za ugradbeno stanje

 $F_{DV,3} = \pi \cdot \overline{d_D \cdot K_D \cdot k_0} = 394509,6 \, N$

 $F_{DV,3} > F_{SB,1}$ možemo računati prema sljedećoj formuli

$$F_{DV,3} = 0,2 \cdot F_{DV} + \sqrt{F_{SB} \cdot F_{DV}} = 217703,53 N$$

4.2.9.5. Proračun promjera vijaka

Pomoćna vrijednost φ [10]

 $\varphi = 1$ (obrađena površina)

Pomoćna vrijednost Z [10]

Z = 1,51 radno stanje

Z' = 1,29 ugradbeno i ispitno stanje

• Radno stanje

Konstrukcijski dodatak

$$Z \cdot \sqrt{\frac{F_{SB}}{K \cdot n}} = 6,346 < 20$$

 $c_5 = 3 mm$

$$d_{v1} = Z \cdot \sqrt{\frac{F_{SB,1}}{K \cdot n}} + c_5 = 9,346 mm$$

• Ispitno stanje

$$d_{\nu 2} = Z \cdot \sqrt{\frac{F_{SB,2}}{K \cdot n}} = 6,483 mm$$

• Ugradbeno stanje

$$d_{v3} = Z \cdot \sqrt{\frac{F_{SB,3}}{K \cdot n}} = 9,158 \ mm$$

4.2.10. Proračun ravne prirubnice [11]

Materijal St.37.2.

Dimenzije – napisane iznad.

Faktor za izračun umanjenog promjera provrta za vijke $\nu = 0,6 - o$ čitano iz dijagrama [11]

$$d'_L = v \cdot d_l = 0.6 \cdot 23 = 13.8 \, mm$$

Korisna dvostruka širina prirubnice

$$b = d_s - d_u - 2 \cdot d'_L = 76,4$$

Pomoćna vrijednost Z

$$Z = (d_u + s) \cdot s^2 = 15696 \ mm^3$$

Krak djelovanja sile u vijku za radno i ispitno stanje

$$a = \frac{d_s - d_u - s}{2} = \frac{385 - 326 - 6}{2} = 26,5 mm$$

Krak djelovanje sile za ugradbeno stanje

$$a_d = \frac{d_s - d_D}{2} = \frac{385 - 349}{2} = 18 \ mm$$

Momenti otpora

• Moment otpora za radno stanje

$$W_1 = \frac{F_{SB,1}}{f_d} \cdot a = \frac{76304,73}{204,17} \cdot 26,5 = 9904,04 \ mm^3$$

• Moment otpora za ispitno stanje

$$W_2 = \frac{F_{SB,2}}{f_{TEST}} \cdot a = \frac{109115,76}{338,095} \cdot 26,5 = 8552,52 \ mm^3$$

• Moment otpora za ugradbeno stanje

$$W_3 = \frac{F_{DV}}{f_{TEST}} \cdot a_d = \frac{217703,53}{338,095} \cdot 18 = 11590,41 \, mm^3$$

Potrebna visina oboda prirubnice

$$h_f = \sqrt{1,42 \cdot \frac{W-Z}{b}} = \sqrt{1,42 \cdot \frac{11590,41 - 15696}{76,4}} = 3,16$$

Odabrano $h_f = 10 mm$

4.2.11. Proračun cijevne stjenke [12]

Unutarnji promjer plašta $D_1 = 306 \ mm$

Koeficijent C za neukrućene ploče s dodatnim istosmjernim momentom [12]

$$C_{1} = f(\frac{d_{t}}{d_{D}}, \delta)$$

$$C_{1} = f(\frac{d_{t}}{d_{D}}, 1 + 4 \cdot \frac{k_{1} \cdot S_{D}}{d_{D}})$$

$$C_{1} = f(\frac{d_{t}}{d_{D}}, 1 + 4 \cdot \frac{k_{1} \cdot S_{D}}{d_{D}})$$

$$C_{1} = f(\frac{385}{349}, 1 + 4 \cdot \frac{24 \cdot 1, 2}{349})$$

$$C_{1} = f(1,103; 1,33)$$

 $C_1 = 0,52$ očitano iz dijagrama [12]

Koeficijent oslabljenja [12]

$$\frac{d_s}{d_u} = \frac{15}{13} = 1,154 < 1,2$$
$$v = \frac{t - d_u}{t} = \frac{25 - 13}{25} = 0,48$$

• Debljina stjenke za radno stanje

$$s_1 = C_1 \cdot D_1 \cdot \sqrt{\frac{p}{10 \cdot \nu \cdot f_d}} = 0,52 \cdot 306 \cdot \sqrt{\frac{6}{10 \cdot 0,48 \cdot 204,17}} = 12,45 \ mm$$

• Debljina stjenke za ispitno stanje

$$s_2 = C_1 \cdot D_1 \cdot \sqrt{\frac{PT}{10 \cdot \nu \cdot f_{TEST}}} = 0,52 \cdot 306 \cdot \sqrt{\frac{8,58}{10 \cdot 0,48 \cdot 338,1}} = 11,57 \ mm$$

Odabrano $s_{prirubnice} = 15 mm$.

4.2.12. Minimalna širina zavara

Korisna površina zavara

$$A_R = t^2 - \frac{{d_s}^2 \cdot \pi}{4} = 25^2 - \frac{15^2 \cdot \pi}{4} = 448,375 \ mm^2$$

Sila koja djeluje na zavar

$$F_R = A_R \cdot p = 448,375 \cdot 10^{-6} \cdot 6 \cdot 10^5 = 269,025 N$$

Minimalna širina zavara oko cijevi

$$q = 0.4 \cdot \frac{F_R}{d_v \cdot f_d} = 0.4 \cdot \frac{269,025}{15 \cdot 204,17} = 0.0298 \ mm$$

Odabrana minimalna širina zavara q = 2 mm.

4.3. Hidraulički proračun [4]

Hidraulički proračun proveden je za pad tlaka na strani vode, prema Donhueu.

4.3.1. Pad tlaka na strani vode

4.3.1.1. Pad tlaka u uzdužnoj zoni

$$\xi_{1} = 0,5446$$

$$n_{r} = 14,29$$

$$f_{1} = 0,7$$

$$f_{2} = 0,6$$

$$\Delta p_{1} = \xi_{1} \cdot \frac{\rho_{voda} \cdot w_{voda}^{2}}{2} \cdot (0,8 \cdot n_{r}) \cdot n_{b} \cdot f_{1} \cdot f_{2} = 17302,17 Pa$$

$$\xi_2 = 2,2$$

 $A_{meduzona} = 0,009988349 \ m^2$

 $w_{meduzona} = 0,79 m/s$

$$\Delta p_{2} = \xi_{2} \cdot \frac{\rho_{voda} \cdot w_{meduzona}^{2}}{2} \cdot (n_{b} - 1) = 8437,17 \ Pa$$

4.3.1.3. Pad tlaka na priključcima

$$\xi_{ulaz}=0,5$$

$$\xi_{izlaz} = 1$$

$$w_{priključci} = 2,09 m/s$$

$$\Delta p_3 = (\xi_{ulaz} + \xi_{izlaz}) \cdot \frac{\rho_{voda} \cdot w_{priključci}^2}{2} = 3285,19 Pa$$

4.3.1.4. Ukupan pad tlaka

 $\Delta p_{ukupno} = \Delta p_1 + \Delta p_2 + \Delta p_3 = 29024,53 Pa$

Hidordinamičkim proračunom dovršen je proračun isparivača. Prema navedenom proračunu napravljena je tehnička dokumentacija.

5. ISPARIVANJE U PLOČSTIM ISPARIVAČIMA

5.1. Pločasti izmjenjivači

Pločasti izmjenjivači topline počeli su se koristiti tridesetih godina prošlog stoljeća, a napravljeni su od mnogo tankih ploča sa malim razmakom između njih, odnosno kanalima između kojih struje mediji te se na taj način izmjenjuje toplina. Zbog gusto poslaganih ploča dobiva se velika izmjenjivačka površina za male dimenzije izmjenjivača, što smanjuje ukupnu cijenu izmjenjivača. Ujedno im je prednost i što zauzimaju puno manje prostora za isti učin u izvedbi shell&tube izmjenjivača. Pločasti izmjenjivače topline se prema vrsti izvedbe dijele na rastavljive i nerastavljive. Njihova upotreba je raznolika, a najčešće se koriste za projektiranje HVAC sustava te u prehrambenoj i automobilskoj industriji.

Ploče izmjenjivača su orebrene žljebovima, koji mogu biti pod različitim kutovima. Prema načinu strujanja medija u pločastom izmjenjivaču, dijele se na U tip i Z tip.

Slika 8. Nerastavljivi pločasti izmjenjivač

5.2. Osnovni geometrijski podatci

Za proračun prema zadanim ulaznim parametrima zadatka, odabrana je lamela sa niže navedenim geometrijskim karakteristikama.

Promjer priključka

$$D_p = 200 mm$$

Debljina lamele

 $t_{S} = 1,2 mm$

Horizontalna udaljenost između priključaka

 $L_h = 200 mm$

Efektivna širina kanala

 $L_w = L_h + D_p = 200 + 200 = 400 \ mm$

Faktor povećanja [3]

$$\phi = 1,15$$

Kut žljebova

 $\beta = 60^{\circ}$

Dubina žljebova

b = 2 mm

Hidraulički promjer

$$D_h = \frac{2b}{\phi} = \frac{3 \cdot 2}{1,15} = 3,478 \ mm$$

Duljina valovitosti

 $Za \beta = 60^{\circ}$ $\frac{b}{l} = 0,27$

l = 4 mm

Toplinska provodnost lamele

Odabrani materijal lamele je nehrđajući čelik 316. [16]

$$\lambda = 16,5 W/mK$$

Uvjet primjene lamele

$$L_p > 1.8 \cdot L_w$$

Efektivna visina lamele L_p izračunata je u poglavlju 6.1.2.

5.3. Koeficijent prijelaza topline na strani radne tvari

Koeficijent prijelaza topline na strani radne tvari za pločasti isparivač sa propanom kao radnom tvari, izračunat je prema niže navedenim modelima. Samo u model Palmer et al. je korištena radna tvar propan, dok su ostala dva modela odabrana zbog najboljeg poklapanja sa rezultatima istraživanja prema [lit] koji eksperimentalno upotrebljava propan kao radnu tvar za analizu koeficijenta prijelaza topline kod pločastog izmjenjivača.

Značajke upotrebljavane u modelima izračunate su prema niže navedenim formulama:

$$Re_l = \frac{G \cdot D_h}{\mu_L} = 1515,92$$

Gdje je G

$$G = \frac{q_m}{A_{kan}} = 498,88 \ kg/sm^2$$
$$Pr_l = \frac{c_p \mu}{\lambda_l} = 2,94$$
$$Co = \left(\frac{\rho_g}{\rho_l}\right)^{0.5} \left(\frac{1-x}{x}\right)^{0.8} = 0,4962$$

$$G_{eqv} = G\left[1 - x + x\left(\frac{\rho_l}{\rho_g}\right)^{1/2}\right] = 1019,39 \ kg/sm^2$$

5.3.1. Yan and Lin (1999) [13]

Yan and Lin daju sljedeći model za izračun koeficijenta prijelaza topline:

$$h_{tp} = 1,055(1,056Co^{-0.4} + 1,02Bo^{0.9})x^{-0.12}h_{lo}^{0.98}$$

Za ovaj koeficijent prijelaza topline potrebno je poznavati *Bo*, a da bi smo izračunali tu značajku moramo poznavati izmjenjivačku površinu, koja je tek izračunata naknadno. Dakle, koeficijent prijelaza topline prema ovom modelu izračunat je kasnije radi potrebe analize.

5.3.2. Palmer et al. (2000) [13]

Palmer je 2000.godine objavio model za proračun Nusselotove značajke za slučaj isparavanja propana za pločasti izmjenjivač u komercijalnoj upotrebi.

$$Nu_{Palmer} = 2,7Re_l^{0.55}Pr_l^{0.5}$$
$$\alpha = \frac{Nu_{Palmer}\lambda}{d_h}$$

5.3.3. Hsieh and Lin. (2012) [13]

Ovaj istraživački rad daje sljedeći model izračuna koeficijenta prijelaza topline:

$$\alpha_{tn} = \alpha_1 88Bo^{0.5}$$

Gdje je koeficijent prijelaza topline za jednu fazu izračunat prema

$$\alpha_l = 0.2092 \left(\frac{\lambda_f}{D_h}\right) R e^{0.78} P r^{1/3} \left(\frac{\mu_m}{\mu_w}\right)^{0.14}$$

Isto kao i u model Yan and Lin potrebno je poznavati *Bo* pa je koeficijent prijelaza topline po tom modelu izračunat kasnije, za potrebe analize, a točan izračun i vrijednosti dane su u Prilogu.

5.4. Usporedba koeficijenata prijelaza topline

Graf prikazuje usporedbu koeficijenata prijelaza topline u ovisnosti o sadržaju pare, prema različitim autorima. Rezultati poprilično odskaču, Palmer je jedini napravio korelaciju prema eksperimentu sa propanom, dok ostali autori koriste druge radne tvari, pa se u pitanje dovodi njihova relevantnost. Još uvijek nisu dostupni modeli koji bi bili napravljeni sa propanom kao radnom tvari. Autor Garcia Cascales je 2007. napravio model za propan, no podatci nažalost nisu dostupni. Hiseh Lin model ne ovisi o sadržaju pare već se računa po osrednjenim vrijednostima, zbog toga je u grafu prikazan kao konstanta.

6. DIMENZIONIRANJE PLOČASTOG ISPARIVAČA

6.1. Termodinamički proračun

Maseni protok vode

$$q_{m,voda} = \frac{\phi}{c_p(T_1 - T_2)} = 0,3991 \ kg/s$$

Pretpostavljena brzina strujanja

w = 0.5 m/s

Površina kanala

$$A_{kanal} = L_w \cdot b = 0,0008 \ m^2$$

Volumni protok kroz kanal

$$q_v = 0,0004 \ m^3/s$$

Potreban broj kanala

$$N_{potrebno} = \frac{q_{v,voda}}{q_v} = 20$$

Ukupan broj kanala

$$N_{kan_uk} = 40$$

Ukupan broj lamela

 $N_{lam} = N_{kan_uk} - 1 = 39$

6.1.1. Koeficijenti prijelaza topline

6.1.1.1. Koeficijent prijelaza topline na strani vode

$$\alpha_{wat} = \frac{Nu_w \cdot \lambda_w}{D_h}$$
$$\alpha_{wat} = \frac{18,32 \cdot 0,588946}{0,003478}$$

 $\alpha_{wat}=3101{,}58\,W/m^2K$

Reynoldsova značajka za vodu

$$Re = \frac{G_w \cdot D_h}{\mu_w}$$

 $Re = \frac{498,88 \cdot 0,003478}{0,001145} = 1515,98$

Nusseltova značajka za vodu

 $Nu_w = C_h \cdot G_{w,kan}^n \cdot Pr^{1/3}$ Za Re>400 i $\beta = 60^\circ$ očitani su

 $C_h = 0,108$

n=0,703

 $Nu_w = 18,32$

6.1.1.2. Koeficijent prijelaza topline na strani radne tvari

Koeficijent prijelaza topline na strani radne tvari izračunat je prema poglavlju 6.3.2. i iznosi:

$$\alpha = \frac{Nu_{Palmer}\lambda}{d_h} = 1132,16 \, W/m^2 K$$

6.1.2. Potrebna izmjenjivačka površina

Kao i u proračunu shell&tube izmjenjivača provest će se proračun potrebne izmjenjivačke površine za pločasti izmjenjivač.

Proračun je proveden prema sadržaju pare od x=0.01 do x=0.99 s korakom od 0.01.

Koeficijent prijelaza topline računa se prema modelu Palmer et al.

Gustoća masenog toka radne tvari za odabrani broj kanala

$$G_{RT} = \frac{q_{m,RT}}{A_{kan}}$$

 $G_{RT} = 18,92 \ m^2$

Koeficijent prolaza topline izračunat je prema formuli

$$\frac{1}{k} = \frac{1}{\alpha_{wat}} + \frac{s}{\lambda_{lam}} + \frac{1}{\alpha}$$

Srednji koeficijent prolaza topline po pojedinom segmentu izračunat je kao aritmetička sredina koeficijenta prolaza topline dva susjedna segmenta.

$$k = \frac{\mathbf{k}_1 + \mathbf{k}_2}{2}$$

Potrebna površina po pojedinom segmentu izračunata je prema formuli

Završni rad

Antonia Peček

$$\Delta A = \frac{\Delta q_m \cdot r}{k \cdot \Delta \vartheta_m}$$

Х	qm_pare	G	Re	Nu	alfa_RT	k	k srednje	Alam
0.01	0.006056	7.5699091	213.9902	88.56336	2677.306	1300.976524	1300.977	0.15198
0.1	0.060559	75.699091	2139.902	314.2347	9499.44	1998.34956	1649.663	1.078708
0.2	0.121119	151.39818	4279.804	460.0665	13907.99	2141.122762	2069.736	0.955304
0.3	0.181678	227.09727	6419.706	575.0039	17382.6	2209.103157	2175.113	0.909023
0.4	0.242237	302.79636	8559.608	673.5767	20362.5	2250.967157	2230.035	0.886635
0.5	0.302796	378.49546	10699.51	761.531	23021.39	2280.078162	2265.523	0.872747
0.6	0.363356	454.19455	12839.41	841.8549	25449.61	2301.830168	2290.954	0.863059
0.7	0.423915	529.89364	14979.31	916.3429	27701.41	2318.879133	2310.355	0.855811
0.8	0.484474	605.59273	17119.22	986.1741	29812.44	2332.706265	2325.793	0.850131
0.9	0.545033	681.29182	19259.12	1052.174	31807.64	2344.211986	2338.459	0.845526
0.99	0.599537	749.421	21185.03	1108.801	33519.49	2353.068622	2348.64	0.757674

Rezultati proračuna prikazani su u Tablici 4.

Tablica 3	Tablični prikaz	proračuna	potrebne	izmjer	njivačke	površine
-----------	-----------------	-----------	----------	--------	----------	----------

Ukupna površina izmjenjivača za slučaj kada radna tvar ulazi sa x=0,17 iznosi

 $A_{pločasti} = 9,2 m^2$

Primijetimo da je to skoro duplo manja potrebna površina nego za shell&tube izmjenjivač za iste uvjete (učin i temperaturu isparavanja).

6.1.3. Visina lamele

$$L_p = \frac{A_{lam}}{L_w} = \frac{9,2/39}{0,4} = 0,59 \ m = 590 \ mm$$

6.2. Hidraulički proračun

Hidraulički proračun proveden je za strani ogrjevne vode.

6.2.1. Pad tlaka u kanalima

Pad tlaka prema [3] ovisi računa se prema

$$\Delta p_{kan} = 4 \cdot f \cdot \frac{L_p \cdot N_p}{D_h} \cdot \frac{{G_w}^2}{2 \cdot \rho_w}$$
$$\Delta p_{kan} = 11271,26 \text{ Pa}$$
$$K_p = 0,76$$

m = 0,215

$$f = \frac{K_p}{Re^m}$$

6.2.2. Pad tlaka na priključcima

Koeficijent otpora strujanju na ulazu u priključak

$$\xi_{ulaz} = 0,5$$

Koeficijent otpora strujanju na izlazu iz priključka

$$\xi_{izlaz} = 1$$

Formula za pad tlaka na priključcima je:

$$\Delta p_{pr} = (\xi_{ulaz} + \xi_{izlaz}) \cdot \frac{G_{w} pr^2}{2 \cdot \rho_w}$$

 $\Delta p_{pr} = 48,46 \ Pa$

6.2.3. Ukupan pad tlaka

Ukupan pad tlaka je zbroj tlaka na priključcima i kanalima, znatno je manji nego pad tlaka u *shell and tube* isparivaču.

$$\Delta p_{uk} = \Delta p_{pr} + \Delta p_{kan} = 11319,72 \ Pa$$

7. FINANCIJSKA ANALIZA

7.1. Investicijski troškovi

Na kalkulatoru dostupnom na izvoru [22] izračunate su približne kupovne cijene za Shell&Tube i za pločasti isparivač, s obzirom na potrebnu izmjenjivačku površinu.

Izmjenjivačka površina za Shell&Tube isparivač

 $A_{shell\&tube} = 13,87 \ m^2$

Izmjenjivačka površina za pločasti isparivač

 $A_{plate} = 9,2 m^2$

Cijena Shell&tube isparivača, preračunata u kn po tečaju 1\$=6,67 kn $C_{shell\&tube} = 33\ 350,00\ kn$

Cijena pločastog isparivača $C_{plate} = 14120,40 \ kn$

7.2. Pogonski troškovi

Broj radnih sati u godinu

 $N_h = 5120 \ h$

Cijena struje

 $C_{struja} = 1,15 \ kn/kWh$

Korisnost pumpe

 $\eta_{pumpa} = 0,7$

7.2.1. Potrebna snaga za pogon pumpe kod Shell& Tube izmjenjivača

$$P = \frac{\Delta p_{uk} \cdot q_v}{\eta_{pumpa}}$$

 $P_{shell\&tube} = 331,25 W$

7.2.2. Potrebna snaga za pogon pumpe kod pločastog izmjenjivača

 $P_{pločasti} = 129,19 W$

Za oba isparivača izračunata je godinja potrošnja struje prema formuli:

$$T_{god} = C_{struja} N_h P,$$

gdje je C cijena struje, N broj radnih sati i P potrebna snaga za pogon pumpe, čije su vrijednosti izračunate gore.

 $T_{god,shell\&tube} = 1950,41 \ kn$

 $T_{god,pločasti} = 760,67 \ kn$

Godišnja potrošnja za Shell&tube isparivač je više od 2,5 puta veća nego za pločasti isparivač.

7.3. Usporedba ukupnog troška kroz vremenski period

U dijagramu niže prikazana je ovisnost cijene kroz godine. Pločasti isparivač je isplativiji jer je njegova početna cijena manja, a porast cijene investicije kroz godine znatno blaži.

Godišnja stopa rasta cijena:

8. ZAKLJUČAK

Ovim radom dan je pregled termodinamičkih specifičnosti *shell and tube* i pločastog isparivača koji koristi propan kao radnu tvar. S obzirom da je propan nova radna tvar, mnoga istraživanja su još uvijek nedostupna ili neobjavljena, pa je usporedba koeficijenata bila ograničena s obzirom na dostupnost literature. Koeficijent prijelaza topline je izuzetno zahtjevna veličina za izmjeriti, a eksperimenti se provode u strogo kontroliranim uvjetima. Modeli ovise o vrsti radne tvari, geometriji isparivača, masenom protoku i temperaturi isparavanja, što je mnogo parametra koji mogu varirati.

Korišteni modeli za izračun koeficijenata prijelaza topline u usporedbi za *shell and tube* isparivač daju otprilike realne vrijednosti koje su usporedive i ne odskaču kao primjerice kod modela za pločasti isparivač. Kod pločastog isparivača potrebna je manja izmjenjivačka površina, što posljedično daje manju cijenu te dugoročnu isplativost.

LITERATURA

- A. Galović: Termodinamika 2, Fakultet strojarstva i brodogradnje, Zagreb, 2014., str. 126. – str. 132.
- [2] Coolprop, excel dodatak
- [3] S. Kakac, H. Liu, A. Pramuanjaroenkij; Heat Exhangers: Selection, Rating and Thermal Design: Third Edition, 2012.
- [4] M. M. Puček: Proračun pada tlaka kod Shell&Tube izmjenjivača, FSB, Termolab, Gradnja aparata
- [5] M.E2.250.
- [6] M.E2.253
- [7] M.E2.256.
- [8] IPIM: Tehnički priručnik za procesnu industriju
- [9] M.E2.252
- [10] M.E2.257
- [11] M.E2.258.
- [12] M.E2.259.
- [13] J. H. Thome, J. Kim:Encyclopedia of Two-Phase Heat transfer and Flow II: Special Topics and Applications, 2015.
- [14] J. R. Garcia-Cascales, F. Vera-Garcia, J. M Corberen-Salvador, J. Gonzalez-Macia: Assessment of boiling and condensation hear transfer correlations in the modelling of plate heat exhangers, Internation Journal of Refrigeration 30, 2007.
- [15] VDI Heat Atlas, Second Edition, Springer, 2010.
- [16] B. Kraut: Strojarski priručnik, Kratis, Zagreb, 1997.
- [17] J. R. Garcia-Cascales, F. Vera-Garcia, J. M Corberen-Salvador, J. Gonzalez-Macia: Assessment of boiling and condensation hear transfer correlations in the modelling of plate heat exhangers, Internation Journal of Refrigeration 30, 2007.
- [18] Liu, Sun, Zhang, Shi, Chen: Literature review of condensation and evaporation of R290, 2016.
- [19] B. Thonon: Design method for plate evaporators and condensers, 2018.
- [20] A.W. Mauro, G. Napoli, F. Pellella, L. Viscito: Flow pattern, condensation and boiling inside and outside smooth and enhanced surfaces of propane (R290), 2020.
- [21] R. Ciconkov: Refrigeration Solved examples, 2001.
- [22] http://www.mhhe.com/engcs/chemical/peters/data/

PRILOZI

- I. Tablice proračuna
- II. Tehnička dokumentacija

		140		
Projektirao Razradio Crtao 09 Pregledao	2022. Antonia Peček	Potpis	FSE	3 Zagreb
Objekt:		Objekt broj: R. N. broj:		
Napomena:				Kopija
Materijal: PH3	55 Masa:			
Mjerilo originala	Naziv: Cijevni priključc	ak DN80	Pozicija: 2	Format: A4 Listova:
	Crtež broj: FSB-term	oteh-1		List:

	Datum		me i prezime	Potpis		2	
Projektirao]) 7(()	
Razradio						≤FSE	3 Zagreb
Crtao	09.2022.	Anton	ia Peček				0
Pregledao							
Objekt:			Objekt broj:	oj:			
		R. N. broj:	N. broj:				
Napomena:							Kopija
Materijal: PH355 Masa:							
$\square \oplus$				Pozicija:	Format [.] A /		
						16	
							Listova:
1:5	Crte	Crtež broj: FSB-termoteh-10					

Naziv:

Crtež broj:

Držač razmaka

 \bigcirc

Mjerilo originala

1:1

Pozicija:

19

Format: A4

Listova:

List:

19	Držač razma	ka		1							
18	Matica M12	utica M12			ISO 4034	PH 355					
17	Potporna šipka			4	SB-termoteh-11	PH 355	M12	2 x 1210			
16	Desna podnica				SB-termoteh-10	PH 355	<i>d</i> 3	18 x 105			
15	Seamentna r	orearada		13	FSB-termoteh-9	PH 355	Ø2	99.4 x 3			
14	U-cijevi	<u> </u>	-	51	FSB-termoteh-8	Cu Zn 28.00					
13	Plašt			1	FSB-termoteh-7	PH 355	Ø31	8 x 1285			
12	Matica M24			12	ISO 4032	PH 355					
11	Podložna plo	očica M24	1	12	DIN 126	PH 355					
10	Cijevna stijer	nka		1	FSB-termoteh-6	PH 355	Ø.	460 x 15			
9	Brtva			1	FSB-termoteh-5	klingerit	Ø373	3/Ø325 x 3			
8	Ravna prirub	onica DN	300	2	DIN 2501 PN16	PH 355	Ø430	/Ø326 x 28	3		
7	Vijak M24			12	DN EN 24014	6.6	N	124 x 90			
6	Pregradna p	oloča		1	FSB-termoteh-4	PH 355	306	6 x 83 x 3			
5	<u>Lijeva podni</u>	ca		1	FSB-termoteh-3	PH 355	ØЗ	818 x 89			
4	<u>Cijevni priklju</u>	<u>čak DN32</u>	2	1	FSB-termoteh-2	PH 355	Ø42	2,4/Ø37,2x	60		
3	<u>Prirubnica DN</u>	132		1	DIN EN 1092/1	PH 355	Ø15	$5/\emptyset$ 110x60)		
2	<u>Cijevni priklju</u>	<u>čak DN8(</u>)	1	FSB-termoteh-1	PH 355	Ø88,9	9/ Ø81,/ x	130		
	1 Prirubnica DN80			1	DIN EN 1092/1	PH 355	φ_{23}	30/ Φ 180 x	/8		
Poz.	Nazi	iv dijela		Kom.	Norma	Materijal	Sirc	ove dimenzi Proizvođač	je	Masa	
Bro	j naziva - code	-	Datum	I	me i prezime	Potpis		2			
		Projektirao	09.2022	Antonia Peček					arab		
		Crtao	09.2022	Ante	onia Peček		_ <u> </u>			igien	
		Pregledao	07.2022	7							
	SO - tolerancije	Objekt:				Objekt broj:					
						R. N. broj:					
	Napomena:							×	Ko	opija ‱‱	
	Matarijal:				Masa:						
	Ivialerijai:										
Mjerilo originala					Pozicija:			Format: A2			
			ISP.	ISPARIVAC							
1.5							I	ISTO	va:		
Crtež				ž broj:				l	_ist:		

0 10 20 30 40 50 60 70 80 90 100

	Datum		me i prezime	Potpis		~			
Projektirao] \ 7(()	_		
Razradio						≤FSE	3 Zagreb		
Crtao	09.2022.	Anto	onia Peček				Ŭ		
Pregledao									
Objekt:				Objekt broj:	Objekt broj:				
				R. N. broj:					
Napomena:							Kopija		
Materijal:			Masa:						
$\square \oplus$	Naziv:					Pozicija:	Format: Λ Λ		
		مايما			ă ka	E			
Mjerilo origina	ala PO	Founica's izrezima za prikijučke 5							
Crtež broj: FSB-termoteh-3							List:		

I	me i prezime	Potpis		J		
onia Peček			FSB Zagre			
		Objekt broj:				
		R. N. broj:				
					Kopija	
	Masa:					
		Pozicija:	Format:			
gı	mentna pre	egrada		15	Listova:	
j:	FSB-termote		List:			
10 20 30 40 50 60 70 80 90 10						

Red	R	Н	kom
1	12,5	40	11
2	41,65	83,3	10
3	63,3	126,6	9
4	84,95	169,9	8
5	106,6	213,2	7
6	128,5	256,6	6

