Aradski, David

Master's thesis / Diplomski rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:353035

Rights / Prava: <u>Attribution-ShareAlike 4.0 International/Imenovanje-Dijeli pod istim uvjetima 4.0</u> <u>međunarodna</u>

Download date / Datum preuzimanja: 2024-12-24

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje

DIPLOMSKI RAD

David Aradski

Zagreb, 2022.

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje

DIPLOMSKI RAD

AERODINAMIČKA ANALIZA PRANDTLD LETEĆEG KRILA

Mentor:

doc.dr.sc. Dubravko Matijašević

Student: David Aradski

Zagreb, 2022.

Zahvaljujem se svom mentoru doc.dr.sc. Dubravku Matijaševiću na stručnim savjetima pri izradi ovog rada.

Izjava

Izjavljujem da sam ovaj rad radio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zagreb, srpanj 2022.

David Aradski

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za završne i diplomske ispite studija zrakoplovstva

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje			
Datum	Prilog		
Klasa: 602 - 04	/ 22 - 6 / 1		
Ur.broj: 15 - 17	03 - 22 -		

DIPLOMSKI ZADATAK

Student:

David Aradski

JMBAG: 0035199190

Naslov rada na hrvatskom jeziku:

Aerodinamička analiza PrandtlD letećeg krila

Naslov rada na engleskom jeziku: PrandtlD flying wing aerodynamic analysis

Opis zadatka:

PrandtlD leteće krilo je napravljeno da se mogućnost leta u kvadratnom ispiranju (eng. normal-wash) istraži u naravi. S druge strane, većinu tih pitanja može se istraživati i numeričkim pokusima. Štoviše, numeričkim se metodama koje imaju visoku vjernost orginalu (eng. high-fidelity) dobije puno detaljniji uvid u strujno polje u odnosu na mogućnosti pokusa u naravi. Činjenica da je PrandtlD letjelica čija je geometrija javno dostupna nameće ju kao testnu platformu. Stoga se i u ovom radu ona koristi za dobivanje dubljeg poimanja o realizaciji leta u kvadratnom ispiranju, u viskoznom fluidu.

U okviru ovog rada potrebno je izvršiti analizu aerodinamičkih svojstava PrandtlD letećega krila. U tu svrhu potrebno je upotrijebiti numeričke metode različite vjernosti orginalu za dobivanje kompletnijeg uvida u aerodinamička svojstva. Posebno obratiti pažnju na inducirani otpor u proračunima kako neviskoznog tako i viskoznog fluida. Za eventualne analize aerodinamičkih utjecaja upravljačkih površina iskoristiti metode niže vjernosti orginalu (eng. low-fidelity).

U okviru rada potrebno je prezentirati problem i korištene metode, komentirati dobivene rezultate te navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

5. svibnja 2022.

Zadatak zadao:

Doc.dr.sc. Dubravko Matijašević

Math 2 Deir

Datum predaje rada:

7. srpnja 2022.

Predviđeni datumi obrane:

18. - 22. srpnja 2022.

Predsjednik Povjerenstva:

Prof. dr. sc. Milan Vrdoljak

L.I.

Sadržaj

	Sadržaj	v
	Popis slika	vii
	Popis tablica	ix
	Popis oznaka	x
	Sažetak	xii
	Summary	xiii
1.	Uvod	1
2.	Teorijska pozadina zvonolike raspodjele uzgona	3
	2.1. Inducirani otpor	. 3
	2.2. Minimalni inducirani otpor	. 5
	2.2.1. Zvonolika raspodjela	. 5
	2.2.2. Kvadratna brzina ispiranja	. 7
3.	PrandtlD krilo	9
4.	Numeričke metode i njihova razrada	12
	4.1. Metodologija	. 12
	4.2. Numerička adaptacija Prandtlove noseće linije za proizvoljna krila $\ .\ .$.	. 12

		4.2.1.	Intenzitet vezanog vrtloga i inducirane brzine	13
		4.2.2.	Određivanje aerodinamičke sile i momenta	17
	4.3.	Hermi	tska interpolacija radijalnim baznim funkcijama	18
		4.3.1.	Osnovni koncept metode	18
		4.3.2.	Polinomni članovi	19
	4.4.	Metod	a konačnih volumena	20
		4.4.1.	Matematički model fluida	20
		4.4.2.	Modeliranje turbulencije	21
		4.4.3.	Diskretizacija modela	22
		4.4.4.	Numeričke sheme za konvekcijski i difuzijski transport	24
5.	Nur	neričk	a Analiza	26
0.	5.1	3D nu	merička analiza metodom konačnih volumena	26
	0.1.	511	Kreiranie geometrije	26
		5.1.2	Kreiranje geometrije	30
		513	Rubni uvieti	32
		5.1.0.	Rezultati 3D proračuna	32
		515	Određivanje induciranog otpora iz rezultata MKV	34
	5.2	2D pro	oračun aeroprofila	38
	0.2.	5.2.1	Kreiranie geometrije	38
		5.2.1.	Kreiranje geometrije	39
		523	Rezultati proračuna	41
		5.2.0	Interpolacija HBBF metodom	41
	5.3	Prorač	un noseće linije za otklon upravljačkih površina	42
	0.0.	531	Otklon upravljačkih površina u istom smjeru	44
		5.3.2	Otklon u suprotnom smjeru	46
		0.0.2.		10
6.	Zak	ljučak		49
	Lite	eratura		51
А.	Jed	nodim	enzijski primjer HRBF metode	53

vi

Popis slika

2.1	Zvonolika raspodjela opterećenja	6
2.2	Usporedba bezdimenzijskih brzina ispiranja	7
3.1	Usporedba induciranih brzina eliptične i zvonolike raspodjele cirkulacije	
	krila	9
3.2	Izmjerene kutne brzine PrandtlD letjelice	10
3.3	PrandtlD leteće krilo	11
4.1	Krilo diskretizirano na Π segmente	13
4.2	Inducirana brzina u točki (x,y,z)	14
4.3	Newtonova metoda za funkciju s jednom varijablom 	16
4.4	Primjer dva konačna volumena	23
5.1	Aeroprofili različitih sekcija	27
5.2	Aeroprofili različitih sekcija sa strijelom	28
5.3	Aeroprofili različitih sekcija sa strijelom i postavnim kutom	28
5.4	3D geometrija krila	29
5.5	Domena za proračun metodom konačnih volumena	30
5.6	Proračunska mreža	31
5.7	Proračunska mreža oko krila	31
5.8	Polje iznosa brzine na gornjaci krila	32
5.9	Polje iznosa brzine na donjaci krila	33
5.10	Polje tlaka na gornjaci	33

POPIS SLIKA viii

5.11	Polje tlaka na donjaci	34
5.12	Diskretizacija noseće linije za ekstrakciju cirkulacije	35
5.13	Cirkulacija za napadni ku t 0° $\hfill \ldots$ $\hfill \ldots$ $\hfill \ldots$ $\hfill \ldots$ $\hfill \ldots$	36
5.14	Inducirana brzina za napadni ku t $0^{\circ}0$	37
5.15	Cirkulacija za napadni ku t 5° $\hfill \ldots$ $\hfill \ldots$ \hfill \hfi	38
5.16	Prikaz srednje linije s otklonima upravljačke površine $\ .\ .\ .\ .\ .$	39
5.17	Proračunska mreža za 2D proračun metodom konačnih volumena $\ .\ .\ .$	39
5.18	Profinjenje proračunske mreže oko aeroprofila	40
5.19	Profinjenje mreže uz noseću liniju	40
5.20	Polje tlaka oko noseće linije	41
5.21	Interpolacija koeficijenta uzgona	42
5.22	Uspored ba cirkulacije bez otklona s teorijskom cirkulacijom	43
5.23	Inducirana brzina bez otklona upravljačkih površina	44
5.24	Uspored ba cirkulacije bez otklona s teorijskom cirkulacijom	45
5.25	Inducirana brzina bez otklona upravljačkih površina	46
5.26	Ciruklacija za suprotan otklon upravljačkih od 5°	47
5.27	Inducirana brzina sa suprotnim otklonom upravljačkih površina od 5°	48
A.1	Primjer interpolacije radijalnim funkcijama	54

Popis tablica

3.1	Podaci o letjelici	10
3.2	Kut uvijanja na sekcijama krila	11
4.1	Klasične radijalne funkcije	20
5.1	Rubni uvjeti 3D proračuna	32
5.2	Rubni uvjeti 2D proračuna	41
5.3	Aerodinamičke sile	43
5.4	Aerodinamičke sile za isti otklon upravljačke od 5° $\ . \ . \ . \ . \ . \ .$	45
5.5	Aerodinamičke sile za suprotan otklon upravljačkih površina od 5° $$	47
5.6	Moment valjanja i skretanja	48

Popis oznaka

D_i	Inducirani otpor [N]
D_{ϕ}	Difuzivnost svojstva $\phi[\rm kg/ms]$
$oldsymbol{F}$	Vektor aerodinamičke sile $[{\rm N}]$
J	Jacobijeva matrica
KV	Kontrolni volumen $[\mathrm{m}^3]$
L	Uzgona $[N]$
M	Vektor aerodinamičkog momenta $[\mathrm{Nm}]$
S	Površina ruba kontrolnog volumena $[m^2]$
V_{∞}	Brzina iz beskonačnosti $[{\rm m/s^2}]$
a_0	Gradijent koeficijenta uzgona po napadnom kutu $[\text{-}]$ 4
b	Raspon krila $[m]$
С	Tetiva aeroprofila $[m]$
k	Kinetička energija turbulencije [J/kg]
l_i	Vektor vezanog segmenta $[m]$
p	${\rm Tlak}\;[{\rm Pa}]\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.$
$oldsymbol{v}_{ij}$	Bezdimenzijska brzina na koju segment i inducira na segmetnu j [-] 14
w_i	Brzina ispiranja $[{\rm m/s}]$
Γ	Intenzitet cirkulacije brzine oko vezanog vrtloga $[{\rm m/s^2}]$
Ω	Relaksacijski faktor[-]
α	Napadni kut brzine iz beskonačnosti [rad] \hdots
α_0	Napadni kut rezultantne brzine [rad]
α_i	Napadni kut inducirane brzine [rad]

POPIS OZNAKA xi

ϕ	Općenita fizikalna veličina
γ	Intenzitet cirkulacije brzine oko slobodne vrtložne niti $[{\rm m/s^2}]$
μ	Dinamička viskoznost $[\mathrm{Pas}]$
ν	Kinematička viskoznost $[m^2/s]$
ρ	gustoća fluida $\rm [kg/m^3]$
μ_t	Dinamička turbulentna viskoznost [Pas]
θ	Glauertova varijabla [rad]

Sažetak

U ovom radu analizirana je letjelica PrandtlD. PrandtlD leteće krilo je konstuirano kako bi se istražila mogućnost leta sa zvonolikom raspodjelom opterećenja te kako bi se testirali efekti koji se pojavljuju zbog pozitivne brzine ispiranja pri vrhovima krila. Rekonstuirana je geometrija letjelice, provedeni su proračuni krila i aeroprofila metodom konačnih volumena te je provedena analiza numeričkom adaptacijom noseće linije za otklon upravljačkih površina kako bi se istražila mogućnost povoljnog skretanja.

Ključne riječi: Numerička Prandtlova metoda noseće linije, Zvonolika raspodjela cirkulacije, PrandtlD leteće krilo, Povoljno skretanje, HRBFI aerodinamičkih svojstava aeroprofila s upravljačkom površinom

Summary

In this thesis, the PrandtlD aircraft was analyzed. PrandtlD flying wing was constructed to investigate the possibility of flight with a bell-shaped spanload and to test the effects that occur due to the upwash velocity at the wingtips. The geometry of the aircraft was reconstructed, wing and airfoil calculations were carried out using the finite volume method and numerical adaptation of the lifting line was used to analyze deflection of the control surfaces in order to investigate the possibility of a proverse yaw.

Keywords: Numerical Prandtl Lifting Line method, Bell-shaped circulation distribution, PrandtlD flying wing, Proverse yaw, HRBFI of airfoil with aileron aerodynamic properties

1 Uvod

Razvojem mikroprocesora, baterija, kamera, komunikacijske tehnologije, pojavila se mogućnost korištenja malih bespilotnih letjelica za razne praktične svrhe. Samo neki od primjera su nadgledanje granice i druge primjene video nadzora, prikupljanja podataka koji mogu biti korisni u različitim industrijama, te uspostavljanje komunikacijske povezanosti u nepristupačnim terenima. Od takvih letjelice se zahtjeva da mogu dugi vremenski period provesti u letu za što je vrlo važna minimizacija induciranog otpora.

Leteća krila se nameću kao najpovoljnija baza za takav koncept. Da bi se minimizirao inducirani otpor krilo treba biti vitko. Za vitko leteće krilo problematičan je način stvaranja momenta skretanja i on se uglavnom svodi na stvaranje dodatnog otpora u svrhu stvaranja željenog moment skretanja. Istovremeno je potrebno mnimizirati otpor za što je potrebno vitko krilo te upravljati smjerom leta bez vertikalnog stabilizatora. Kao moguća alternativa tradicionalnim krilima nameću se krila sa zvonolikom raspodjelom cirkulacije. Krila sa zvonolikom raspodjelom, uz minimiziranje induciranog otpora, na vrhovima krila imaju pozitivan smjer brzine ispiranja što otvara mogućnost upravljanja momentom skretanja poželjnim skretanjem (eng. provers yaw). No takva krila su još uvijek relativno neistražena te postoje brojni problemi za koja treba pronaći rješenja. Za let u viskoznom fluidu povećanje raspona će povećati viskozni dio otpora. Također, potrebno je letjeti u području što bliže idealnog napadnog kuta npr. unutar "drag bucketa". Također zvonolika raspodjela opterećenja stvara kvadratnu brzinu ispiranja što znači da svaka promjena cirkulacije može izazvati velike promjene induciranog napadnog kuta pri vrhovima krila. Takve promjene induciranog napadnog kuta mogu uzrokovati da vršni aeroprofili više ne budu u području oko idealnog napadnog kuta, čime se otpori

trenja i oblika mogu značajno povećavati i uzrokovati neočekivane momente skretanja. U ovom radu će biti analizirana platforma PrandtlD koja je konstruirana kao prva iteracija za testiranje leta sa zvonolikom raspodjelom opterećenja. U drugom poglavlju će se ukratko opisati teorijska pozadina minimizacije induciranog otpora, zatim će se u trećem poglavlju ukratko opisati PrandtlD letjelica, u četvrtom poglavlju opisane su numeričke metode koje se koriste u analizi, i u petom poglavlju su dani detalji i rezultati analize.

2 Teorijska pozadina zvonolike raspodjele uzgona

U ovom će se poglavlju ukratko pojasniti osnovni pojmovi i teorijska analiza koja je temelj za razvoj PrandtlD letjelice.

2.1. Inducirani otpor

Konačno krilo koje daje uzgon će stvarati razliku između tlakova na donjaci i gornjaci. Dok se kreće kroz fluid, konačno krilo oko sebe generira cirkulacijsko strujanje, te zbog promjene te crikulacije generira se i slobodna vrtložna plahta iza krila koja je definirana izrazom (2.1).

$$\gamma(y) = \frac{\mathrm{d}\,\Gamma(y)}{\mathrm{d}\,y} = \Gamma'(y) \tag{2.1}$$

gdje je Γ cirkulacija sekcije
 y,a Γ' označava njenu derivaciju.

Strujanje s takvom slobodnom vrtložnom plahtom ima vertikalnu komponentu brzine na vezani vrtlog koja se naziva brzina ispiranja na vezanom vrtlogu i za ravno krilo je dana izrazom (2.2).

$$w_i(y) = -\frac{1}{4\pi} \int_{-b/2}^{b/2} \frac{\gamma(y_0)}{y - y_0} \mathrm{d}\, y_0 \tag{2.2}$$

Ako se integrira brzina po krivulji koja obuhvaća krilo odredit će se intenzitet cirkulacije te se krilo može prikazati kao vezani vrtlog na jednoj četvrtini tetive s dobivenim intenzitetom cirkulacije. Za određivanje cirkulacije može se koristiti rješenje za beskonačno krilo tako da se napadni kut korigira za promjenu napadnog kuta koja nastaje uslijed brzine ispiranja. Što je dobra aproksimacija za krila velikih aspektnih odnosa, što je zadovoljeno za krila koja se ovdje promatraju.

$$\alpha_0 = \alpha + \alpha_i \tag{2.3}$$

$$\alpha_i = \frac{w_i}{V_{\infty}} \tag{2.4}$$

Koristeći tu korekciju, cirkulacija se određuje izrazom (2.5) [1].

$$\Gamma(y) = \frac{1}{2}a_0(y) c(y) V_{\infty} \left[\alpha(y) - \frac{1}{4\pi} \int_{-b/2}^{b/2} \frac{\Gamma'(y_0)}{y - y_0} \,\mathrm{d}\,y_0 \right]$$
(2.5)

Opće rješenje jednadžbe može se odrediti pomoću Fourrierovog reda prema izrazu (2.6). Uz pretpostavku takve Γ da zadovoljava rubne uvjete $\Gamma(y = \pm b/2) = 0$ na vrhovima krila.

$$\Gamma(\cos \theta) = 2bV_{\infty} \sum_{n=1}^{\infty} A_n \sin n\theta , \qquad (2.6)$$

gdje je:

$$y = -b/2\,\cos\,\theta\tag{2.7}$$

$$\mathrm{d}y = b/2\,\sin\,\theta\mathrm{d}\,\theta\,.\tag{2.8}$$

Sila uzgona definirana je izrazom (2.9) koji pomoću izraza (2.6) prelazi u izraz (2.10).

$$L = \rho V_{\infty} \int_{-b/2}^{b/2} \Gamma(y) \,\mathrm{d}y \tag{2.9}$$

$$L = \rho V_{\infty}^2 b^2 \sum_{n=1}^{\infty} A_n \int_{-\pi}^{0} \sin(n\theta) \sin(\theta) \,\mathrm{d}\,\theta$$
(2.10)

Iz izraza (2.10) slijedi:

$$L = \frac{\pi}{2} \rho V_{\infty}^2 b^2 A_1 .$$
 (2.11)

Brzina ispiranja nalazi se u vertikalnoj ravnini okomito na vezani vrtlog te će za posljedicu imati silu u smjeru brzine iz beskonačnosti koja je određena izrazom (2.12).

Poglavlje 2. Teorijska pozadina zvonolike raspodjele uzgona 5

$$D_i = \rho \int_{-b/2}^{b/2} w_i(y) \Gamma(y) \,\mathrm{d}y \tag{2.12}$$

Izraz (2.12) može se svesti na sljedeći izraz [2]:

$$D_{i} = \frac{\rho}{4\pi} \int_{-b/2}^{b/2} \int_{-b/2}^{b/2} \frac{\Gamma(y)\Gamma(y_{0})}{(y_{0} - y)^{2}} \,\mathrm{d}y_{0} \,\mathrm{d}y \,\,.$$
(2.13)

Razvojem u Fourrierov red izraza (2.13) dobiva se sljedeći izraz:

$$D_{i} = \frac{2\left(\frac{L}{b}\right)^{2}}{\pi\rho V_{\infty}^{2}} \sum_{n=1}^{\infty} n \frac{A_{n}^{2}}{A_{1}^{2}}.$$
(2.14)

Izraz (2.14) se može pojednostaviti korištenjem relacije $B_n = \frac{A_n}{A_1}$ te se dobiva konačan izraz za inducirani otpor:

$$D_i = \frac{2\left(\frac{L}{b}\right)^2}{\pi\rho V_{\infty}^2} \left(1 + \sum_{n=2}^{\infty} nB_n^2\right).$$
(2.15)

2.2. Minimalni inducirani otpor

Obzirom da je inducirani otpor neizbježna nepoželjna sila, potrebno ju je svesti na minimum. Iz izraza (2.15) vrlo se jasno vidi da će za određeni raspon krila i silu uzgona sila induciranog otpora biti minimalna kada su za sve B_n vrijedi $B_n = 0$. Opisana raspodjela cirkulacije naziva se eliptičnom i dana je u [3]:

$$\frac{b\,\overline{L}(\theta)}{L} = \frac{4}{\pi}\sin\theta\,. \tag{2.16}$$

Eliptična raspodjela cirkulacije stvara veliko opterećenje na konstrukciju što za posljedicu ima veću masu krila.

2.2.1. Zvonolika raspodjela

Alternativnu raspodjelu opterećenja ponudio je Prandtl u [4] gdje je za ograničenje u minimizacijskom problemu uzeo silu uzgona krila, linearno povezao moment savijanja s masom konstrukcije krila te dopustio da se raspon mijenja tako da ne dovodi do promjene u masi konstrukcije. Navedenim je postavljanjem minimizacijskog problema došao do zvonolike raspodjele koja bi uz postavljene pretpostavke imala najmanji inducirani otpor. Zvonolika raspodjela je dana u izrazu (2.17).

$$\frac{b\,\overline{L}(\theta)}{L} = \frac{4}{\pi} \left[\sin\,\theta - \frac{1}{3}\sin\,3\theta \right] \tag{2.17}$$

Za razliku od eliptične raspodjele opterećenja kod zvonolike raspodjele nisu svi B_n koeficijenti jednaki nuli već je $B_3 = -1/3$. Koeficijent Fourrierovog reda za inducirani otpor B_3 ima takva svojstva da svojim smanjivanjem smanjuje moment savijanja koji raspodjela opterećenja stvara te se njegovim smanjivanjem može povećati raspon bez povećanja mase. No, ne smije biti manji od $B_3 = -1/3$ jer bi se tada pri vrhovima krila počeo pojavljivati negativan uzgon, što bi polučilo kontra efekt u pokušaju smanjenja induciranog otpora.

Slika 2.1: Zvonolika raspodjela opterećenja

Na slici 2.1 su prikazane ekvivalentna zvonolika i eliptična raspodjela opterećenja. Ekvivalentne su u smislu toga da daju jednaku silu uzgona i da je prema Prandtlovim pretpostavkama potrebna jednaka težina konstrukcije krila za takvo opterećenje. Raspodjela opterećenja s $B_3 = -1/3$ dopušta povećanje raspona za 22.5% u odnosu na ekvivalentno krilo s eliptičnom raspodjelom te će stvarati 11.1% manji inducirani otpor [4].

2.2.2. Kvadratna brzina ispiranja

Izraz za bezdimenzijsku induciranu brzinu zvonolike cirkulacije krila je [5]:

$$\overline{w_i}(y) = \frac{3}{2} \left(y^2 - \frac{1}{2} \right) \tag{2.18}$$

Na slici 2.2 prikazana je usporedba induciranih brzina zvonolike i eliptične raspodjele cirkulacije za isti iznos uzgona. Za razliku od eliptične raspodjele cirkulacije gdje je brzina ispiranja konstantna po rasponu, kod zvonolike je brzina je kvadratna funkcija.

Slika 2.2: Usporedba bezdimenzijskih brzina ispiranja

Može se uočiti da inducirana brzina zvonolike raspodjele poprima pozitivan iznos pri vrhovima krila te će sekcije koje se nalaze u tom području pozitivne inducirane brzine imati smjer aerodinamičke sile zarotiran prema smjeru leta. To za posljedicu ima da je u tom području inducirani otpor u smjeru leta, tj. više nije otpor nego pogon (inducirana propulzija). Svakako treba naglasiti da se taj efekt ne može postići bez povećanja induciranog otpora pri korijenu krila, tako da je ukupni inducirani otpor i dalje u smjeru strujanja fluida i nepoželjna je sila. No, obzirom da se područje inducirane propulzije nalazi na velikom kraku, a povećanje induciranog otpora zbog te propulzije se nalazi pri korijenu krila, ova pojava ima potencijal biti mehanizam stvaranja momenta skretanja.

3 | PrandtID krilo

Kako bi se validirala zvonolika raspodjela opterećenja [4] u NASA Armstrong Flight Research Center konstuirano je leteće krilo PrandtlD koje je objavljeno u [5]. Platforma za razvoj je bilo leteće krilo Horten H Xc. Cilj ekperimenta je bio prikazati koordinirani let letjelice sa zvonolikom raspodjelom opterećenja i bez vertikalnih površina korištenjem povoljnog skretanja (eng.proverse yaw) koje zbog pozitivnog smjera brzine ispiranja na vrhovima krila omogućuje zvonolika raspodjela opterećenja. Usporedba brzina ispiranja eliptičnog i zvonolikog krila prikazana je na slici 3.1 koja je preuzeta iz[5])

Slika 3.1: Usporedba induciranih brzina eliptične i zvonolike raspodjele cirkulacije krila

Koristeći takvu konfiguraciju opterećenja i brzine ispiranja izmjerene su kutne brzine

prikazane na slici 3.2.

Slika 3.2: Izmjerene kutne brzine PrandtlD letjelice [5]

Crvenom bojom je prikazana brzina propinjanja i ona ima oscilacije uslijed turbulencija u nastrujavanju zraka, plavom bojom je prikazana kutna brzina valjanja, a zelenom kutna brzina skretanja. Može se uočiti da kutna brzina valjanja ima isti predznak kao i kutna brzina skretanja. Činjenica da su te dvije kutne brzine istog predznaka je veliku prednost u odnosu na tradicionalna krila kod kojih bi te dvije kutne brzine imale različit predznak i pojavilo bi se nepovoljno skretanje (eng. *adverse yaw*) koje je potrebno korigirati otklonom upravljačke površine na vertikalnom stabilizatoru.

U [5] su dani vršni i korjenski aeroprofili, ukupni kut uvijanja krila na sekcijama i ostali podaci o letjelici koji će biti navedeni u nastavku.

raspon b [m]	3.75m
kut strijele [°]	24°
korjenska tetiva c_r [m]	0.4m
vršna tetiva c_t [m]	0.1m

Tablica 3.1: Podaci o letjelici

0	8.3274	11	7.2592
1	8.5524	12	6.6634
2	8.7259	13	5.9579
3	8.8441	14	5.1362
4	8.9030	15	4.1927
5	8.8984	16	3.1253
6	8.8257	17	1.9394
7	8.6801	18	0.6589
8	8.4565	19	-0.6417
9	8.1492	20	-1.6726
10	7.7522		

Tablica 3.2: Kut uvijanja na sekcijama krila

Na PrandtlD letjelici od upravljačkih površina koriste se elevoni koji mogu imati jednak ili suprotan otklon kada se koriste kao krilca. Upravljačke površine se nalaze na vanjskih 14% raspona te zauzimaju 25% tetive. Na slici 3.3 je prikazano PrandtlD krilo u letu.

Slika 3.3: PrandtlD leteće krilo

4 Numeričke metode i njihova razrada

U ovom poglavlju rada opisat će se metodologija analize te će ukratko biti predstavljene numeričke metode koje će se koristiti za analizu PrandtlD krila.

4.1. Metodologija

PrandtlD letjelica analizirat će se nelinearnom numeričkom metodom noseće linije koja omogućuje analizu s otklonom upravljačkih površina. Za proračun su potrebni koeficijenti uzgona za vršni i korjenski aeroprofil s otklonom upravljačke površine. Za određivanju koeficijenta uzgona aeroprofila koristit će se 2D proračun metodom konačnih volumena. Dobiveni koeficijenti će se interpolirati HRBF metodom te će se dobivena interpolacija koristiti u nelinarnoj numeričkoj metodi noseće linije. Numerička metoda noseće linije također kao ulaz zahtjeva pretpostavku cirkulacije oko krila. Za određivanje ulazne cirkulacije koristit će se 3D proračun metodom konačnih volumena. Iz vremenski osrednjenog polja tlaka, koje se dobije iz 3D proračuna viskoznog strujanja oko krila, bit će napravljena ekstrakcija cirkulacije te će ona služiti kao ulazna cirkulacija u proračunu numeričkom metodom noseće linije.

4.2. Numerička adaptacija Prandtlove noseće linije za proizvoljna krila

Za analizu letjelice s upravljačkim površinama koristit će se numerička adaptacija klasične noseće linije koja je opisana u [6]. U metodi se krilo diskretizira s parnim brojem vrtložnih elemenata koji su definirani s tri točke, dvije koje su početak i kraj vezanog vrtloga i treća koja je evaluacijska i nalazi se između prve dvije na vezanom vrtlogu segmenta, a u njoj se računa brzina ispiranja za procjenu induciranog napadnog kuta prilikom računanja cirkulacije Γ . Iz prve i druge točke u beskonačnost se protežu vrtložne niti slobodnog vrtloga i one sa segmentom vezanog vrtloga čine Π vrtlog. Na slici 4.2. je prikazano krilo podijeljeno na segmente s točkama koje definiraju određeni segment.

Slika 4.1: Krilo diskretizirano na Π segmente

Za izračun brzine ispiranja u evaluacijskoj točki se se koristi brzina koju induciraju vrtložne niti slobodnog vrtloga te, kako bi se mogla analizirati krila sa strijelom, i inducirana brzina vezanog vrtloga. Smjer slobodnih vrtložnih niti je postavljen tako da budu kolinearni s brzinom iz beskonačnosti

4.2.1. Intenzitet vezanog vrtloga i inducirane brzine

Aerodinamička sila se određuje po trodimenzionalnom Kutta-Žukovski teoremu koji je dan izrazom (4.1).

$$\boldsymbol{F} = \rho(\boldsymbol{V} \times \boldsymbol{\Gamma}) \tag{4.1}$$

Za pojedinačni segment izraz (4.1) se može prikazati kao:

$$\mathbf{d}\mathbf{F}_i = \rho \Gamma_i \mathbf{V}_{tot_i} \times \mathbf{d}\mathbf{l}_i \,. \tag{4.2}$$

Potrebno je odrediti cirkulaciju Γ i rezultantnu brzinu V_{tot} . Brzina V_{tot} određuje se zbrojem brzine iz beskonačnosti V_{∞} i inducirane brzine V_{ind} .

$$\boldsymbol{V}_{tot_i} = \boldsymbol{V}_{\infty} + \boldsymbol{V}_{ind_i} \tag{4.3}$$

Inducirana brzina koju vrtlog Π inducira u određenoj točki je dana izrazom (4.4).

$$\boldsymbol{V} = \frac{\Gamma}{4\pi} \left[\frac{\boldsymbol{u}_{\infty} \times \boldsymbol{r}_2}{r_2(r_2 - \boldsymbol{u}_{\infty} \cdot \boldsymbol{r}_2)} + \frac{(r_1 + r_2)\boldsymbol{r}_2 \times \boldsymbol{r}_2}{r_1r_2(r_1r_2 + \boldsymbol{r}_1 \cdot \boldsymbol{r}_2)} - \frac{\boldsymbol{u}_{\infty} \times \boldsymbol{r}_1}{r_1(r_1 - \boldsymbol{u}_{\infty} \cdot \boldsymbol{r}_1)} \right]$$
(4.4)

Na slici 4.2 je prikazana inducirana brzina u proizvoljnoj točki.

Slika 4.2: Inducirana brzina u točki (x,y,z)

Bezdimenzijski oblik jednadžbe (4.4) je dan u izrazu (4.5).

$$\boldsymbol{v}_{ij} = \frac{c}{4\pi} \left[\frac{\boldsymbol{u}_{\infty} \times \boldsymbol{r}_{i2j}}{r_{i2j}(r_{i2j} - \boldsymbol{u}_{\infty} \cdot \boldsymbol{r}_{i2j})} + \delta_{ij} \frac{(r_{i1j} + r_{i2j})\boldsymbol{r}_{i2j} \times \boldsymbol{r}_{i2j}}{r_{i1j}r_{i2j}(r_{i1j}r_{i2j} + \boldsymbol{r}_{i1j} \cdot \boldsymbol{r}_{i2j})} - \frac{\boldsymbol{u}_{\infty} \times \boldsymbol{r}_{i1j}}{r_{i1j}(r_{i1j} - \boldsymbol{u}_{\infty} \cdot \boldsymbol{r}_{i1j})} \right]$$

$$(4.5)$$

U izrazu (4.5) \boldsymbol{v}_{ij} je inducirana brzina koju Π vrtlog *i* inducira u evaluacijskoj točki elementa *j*. Kada se sumiraju sve brzine koje induciraju *j* elementi određuje se lokalna brzina na Π vrtlogu *i*.

$$\boldsymbol{V}_{tot_i} = \boldsymbol{V}_{\infty} + \sum_{j=1}^{N} \frac{\Gamma_j \boldsymbol{v}_{ji}}{c_j}$$
(4.6)

Iz izraza (4.2) i (4.6) dobiva se izraz aerodinamičke sile za element *i*:

$$\mathbf{d}\mathbf{F}_{i} = \rho\Gamma_{i}\left(\mathbf{V}_{\infty} + \sum_{j=1}^{N} \frac{\Gamma_{j}\boldsymbol{v}_{ji}}{c_{j}}\right) \times \boldsymbol{d}\boldsymbol{l}_{i}$$

$$(4.7)$$

Izraz za silu d \mathbf{F}_i preko koeficijenta uzgona C_{L_i} je dan u izrazu (4.8).

$$|\mathbf{d}\mathbf{F}_i| = \frac{1}{2}\rho V_{tot_i}^2 C_{L_i}(\alpha_i, \delta_i) A_i, \ V_{tot_i} = \left| \left(\mathbf{V}_{\infty} + \sum_{j=1}^n \Gamma_j \boldsymbol{v}_{ji} \right) \right|$$
(4.8)

Ovakav način uvođenja koeficijenta uzgona C_{L_i} omogućuje korištenje metode i kada ne vrijedi linearna ovisnost između uzgona i napadnog kuta te omogućuje analizu s upravljačkim površinama.

Dolazi se do nelinarnog sustava jednadžbi kojima je definiran model, sustav je dan u izrazu (4.9).

$$2\left|\Gamma_{i}\left(\boldsymbol{V}_{\infty}+\sum_{j=1}^{n}\Gamma_{j}\boldsymbol{v}_{ji}\right)\times\mathrm{d}\boldsymbol{l}_{i}\right|-V_{tot_{i}}^{2}C_{L_{i}}(\alpha_{i},\delta_{i})A_{i}=0$$
(4.9)

Postoje brojne metode za rješavanje nelinearnih sustava jednadžbi, a ovdje se koristi Newtonova metoda. Princip metode se može prikazati na jednostavnom slučaju funkcije s jednom varijablom. Pretpostavi se da je rješenje x_n , tada se za taj x_n računa derivacija funkcije te se provlači pravac kroz točku $f(x_n)$ te se kao novo rješenje x_{n+1} uzima nultočka pravca. Iteracijskim postupkom metoda vrlo brzo konvergira prema rezultatu. Na slici 4.3 prikazane su prve dvije iteracije.

Slika 4.3: Newtonova metoda za funkciju s jednom varijablom

Za određivanje x_{n+1} koristi se jednadžba:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Metoda ne konvergira globalno ako postoje lokalni ekstremi, ali konvergira jako brzo kada ne postoje lokalni ekstremi. Cirkulacija oko konačnog krila nema lokalnih ekstrema te je metoda prikladna za korištenje.

Sustav prilagođen za rješavanje Newtonovom metodom dan je u izrazu (4.10).

$$f_i(\mathbf{\Gamma}) = \mathbf{R}$$

$$f_i(\mathbf{\Gamma}) = 2 \left| \Gamma_i \left(\mathbf{V}_{\infty} + \sum_{j=1}^n \Gamma_j \mathbf{v}_{ji} \right) \times \mathrm{d} \mathbf{l}_i \right| - V_{tot_i}^2 C_{L_i}(\alpha_i, \delta_i) A_i$$
(4.10)

Potrebno je pronaći vektor Γ uz koji će vektor reziduala R biti nulvektor. Određivanje započinje pretpostavkom za Γ i korištenjem Newtonove korekcijske jednadžbe iteracijskim postupkom se približava točnom rezultatu.

 $[J]\Delta\Gamma = -R$ $\Gamma = \Gamma + \Omega\Delta\Gamma$

Poglavlje 4. Numeričke metode i njihova razrada 17

 Ω je relaksacijski faktor, a $[\boldsymbol{J}]$ je Jacobijeva matrica definirana prema:

$$J_{ij} = \frac{\partial f_i}{\partial \Gamma_j} \,.$$

$$J_{ij} = \delta_{ij} 2|\boldsymbol{W}_i| + \frac{2\boldsymbol{W}_i \cdot (\boldsymbol{v}_{ji} \times \boldsymbol{dl}_i)}{|\boldsymbol{W}_i|} \Gamma_i - V_{tot_i}^2 A_i \frac{\partial C_{L_i}}{\partial \alpha_i} \frac{V_{a_i}(\boldsymbol{v}_{ji} \cdot \boldsymbol{u}_{n_i} - V_{n_i}(\boldsymbol{v}_{ji} \cdot \boldsymbol{u}_{a_i})}{V_{a_i}^2 + V_{n_i}^2}, \quad (4.11)$$
$$- 2A_i C_{L_i}(\alpha_i, \delta_i) (\boldsymbol{V}_{tot_i} \cdot \boldsymbol{v}_{ji})$$

gdje su W_i, V_{a_i} i V_{n_i} definirani izrazima (4.12), (4.13) i 4.14:

$$\boldsymbol{W}_{\boldsymbol{i}} = \left(\boldsymbol{V}_{\infty} + \sum_{j=1}^{n} \Gamma_{j} \boldsymbol{v}_{ji}\right) \times \mathrm{d}\boldsymbol{l}_{i}$$
(4.12)

$$V_{a_i} = \left(\boldsymbol{V}_{\infty} + \sum_{j=1}^n \Gamma_j \boldsymbol{v}_{ji} \right) \cdot \boldsymbol{u}_{a_i}$$
(4.13)

$$V_{n_i} = \left(\boldsymbol{V}_{\infty} + \sum_{j=1}^n \Gamma_j \boldsymbol{v}_{ji} \right) \cdot \boldsymbol{u}_{n_i} \,. \tag{4.14}$$

Pogađanje prvog Γ može se olakšati korištenjem lineariziranog oblika:

$$\frac{2}{A_i \frac{\partial C_{L_i}}{\partial \alpha_i}} \left| \Gamma_i (\boldsymbol{V_{\infty}} \times \boldsymbol{dl_i}) - V_{\infty} \sum_{j=1}^N \Gamma_j \boldsymbol{v_{ji}} \cdot \boldsymbol{u_{n_i}} = V_{\infty} (\boldsymbol{V_{\infty}} \cdot \boldsymbol{u_{n_i}} - \alpha_{L0_i}), \quad (4.15)$$

no neće biti potrebno jer će se u ovoj analizi kao početni Γ koristiti cirkulacija dobivena metodom konačnih volumena.

4.2.2. Određivanje aerodinamičke sile i momenta

Nakon određivanja Γ_i svakog segmenta određuju se sile na svakom segmentu te se njihovim zbrajanjem može odrediti rezultantna sila.

$$\boldsymbol{F} = \rho \sum_{i=1}^{n} \left[\Gamma_i \left(\boldsymbol{V}_{\infty} + \sum_{j=1}^{n} \Gamma_j \boldsymbol{v}_{ji} \right) \times \mathrm{d} \boldsymbol{l}_i \right].$$
(4.16)

Aerodinamički moment oko težišta se računa sljedećim izrazom:

$$\boldsymbol{M} = \rho \sum_{i=1}^{n} \boldsymbol{r_i} \times \left[\Gamma_i \left(\boldsymbol{V_{\infty}} + \sum_{j=1}^{n} \Gamma_j \boldsymbol{v_{ji}} \right) \times \mathrm{d} \boldsymbol{l_i} \right] + \delta \boldsymbol{M_i}.$$
(4.17)

Uz pretpostavku da je C_{M_i} konstantan na svakom segmentu, δM_i se računa po izrazu:

$$\delta \boldsymbol{M}_{i} = -\frac{1}{2} \rho V_{tot_{i}}^{2} C_{M_{i}} A_{i} \boldsymbol{u}_{s_{i}}, \qquad (4.18)$$

gdje je $\boldsymbol{u_{s_i}}$ jedinični vektor u smjeru raspona:

$$\boldsymbol{u}_{s_i} = \boldsymbol{u}_{a_i} \times \boldsymbol{u}_{n_i} \,. \tag{4.19}$$

4.3. Hermitska interpolacija radijalnim baznim funkcijama

Da bi se interpolirali višedimenzionalni raspršeni podaci razvijena je metoda interpolacije radijalnim baznim funkcijama. Prikladna je za interpolaciju takvih podataka jer se funkcija udaljenosti računa između svake točke podataka i njezinih susjeda, a jedino ograničenje je da dvije točke ne smiju biti iste te nema dodatnih ograničenja na njihov raspored.

4.3.1. Osnovni koncept metode

Radijalna funkcija je funkcija $g : \mathbb{R}^d \to \mathbb{R}$ čija vrijednost ovisi samo o magnitudi jednog argumenata. Na primjer $g(\boldsymbol{x}) = \phi(||\boldsymbol{x}||) = \phi(r)$, gdje je $\phi : [0, \infty) \to \mathbb{R}$ i rje duljina \boldsymbol{x} . Cilj je odrediti interpolant $s(\boldsymbol{x}), \boldsymbol{x} \in \mathbb{R}^d$ koji zadovoljava interpolacijske uvjete:

$$s(\boldsymbol{x}_i) = f_i, \ i = 1, 2, ..., n.$$
 (4.20)

Interpolant radijalne bazne funkcije $s(\boldsymbol{x}_i)$ je konveksna kombinacija radijalnih baznih funkcija $\phi(\boldsymbol{x})$.

$$s(\boldsymbol{x}) = \sum_{i=1}^{n} \lambda_i \phi(||\boldsymbol{x} - \boldsymbol{x}_i||), \ \boldsymbol{x} \in \mathbb{R}$$
(4.21)

Iz uvjeta (4.20) slijedi:

$$s(\boldsymbol{x}) = \sum_{i=1}^{n} \lambda_i \phi(||\boldsymbol{x} - \boldsymbol{x}_i||) = f_j, \ j = 1, 2, ...n.$$
(4.22)

Izraz (4.22) se može zapisati u sljedećem matričnom obliku:

$$\begin{bmatrix} \phi \left(\| \mathbf{x}_{1} - \mathbf{x}_{1} \| \right) & \phi \left(\| \mathbf{x}_{2} - \mathbf{x}_{1} \| \right) & \dots & \phi \left(\| \mathbf{x}_{n} - \mathbf{x}_{1} \| \right) \\ \phi \left(\| \mathbf{x}_{1} - \mathbf{x}_{2} \| \right) & \phi \left(\| \mathbf{x}_{2} - \mathbf{x}_{2} \| \right) & \dots & \phi \left(\| \mathbf{x}_{n} - \mathbf{x}_{2} \| \right) \\ \vdots & \vdots & \ddots & \vdots \\ \phi \left(\| \mathbf{x}_{1} - \mathbf{x}_{n} \| \right) & \phi \left(\| \mathbf{x}_{2} - \mathbf{x}_{n} \| \right) & \dots & \phi \left(\| \mathbf{x}_{n} - \mathbf{x}_{n} \| \right) \end{bmatrix} \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n} \end{bmatrix} = \begin{bmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{n} \end{bmatrix}, \quad (4.23)$$

ili skraćeno:

$$\Phi \boldsymbol{\lambda} = \boldsymbol{f} \,. \tag{4.24}$$

Očito je da je $n \times n$ matrica Φ simetrična te kako bi izraz (4.23) imao jedinstveno rješenje potrebno je da matrica Φ bude nesingularna.

4.3.2. Polinomni članovi

Korisno je u interpolaciju dodati polinomne članove nižeg reda tako da interpolant (4.21) prijelazi u sljedeći oblik:

$$s(\boldsymbol{x}) = \sum_{i=1}^{n} \lambda_i \phi(||\boldsymbol{x} - \boldsymbol{x}_i||) + \sum_{j=1}^{m} \chi_j p_j(\boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}.$$
 (4.25)

Zadaje se i dodatno ograničenje [7]:

$$\sum_{i=1}^{n} \lambda_i p_j(\boldsymbol{x}_i) = 0, \ j = 1, 2, ..., m..$$
(4.26)

Uz navedena ograničenja na interpolacijske uvjete i uvjete ortogonalnosti polinoma (4.26) dolazi se do sustava linearnih jednadžbi:

$$\begin{bmatrix} \Phi & P \\ P^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \lambda \\ \chi \end{bmatrix} = \begin{bmatrix} f \\ \mathbf{0} \end{bmatrix}, \qquad (4.27)$$

što se može zapisati i kao:

$$\boldsymbol{\Phi}\boldsymbol{\lambda} + P\boldsymbol{\chi} = \boldsymbol{f} , P^T\boldsymbol{\lambda} = \boldsymbol{0} .$$
(4.28)

Neki od klasičnih radijalnih baznih funkcija su prikazane u tablici 4.1.

Radijalna bazna fukncija	$\phi(r)$	Parametri	Red
Gaussove	$e^{-(cr)^2}$	c > 0	0
Poliharmonični spline	r^{2k-1}	$k \in \mathbb{N}$	m = k
	$r^{2k}\log(r)$	$k \in \mathbb{N}$	m = k + 1
Multikvadratik	$\sqrt{r^2 + c^2}$	c > 0	1
Inverzni multikvadratik	$\frac{1}{\sqrt{r^2+c^2}}$	c > 0	0
Inverzni kvadratik	$\frac{1}{r^2 +}c^2$	c > 0	0

Tablica 4.1: Klasične radijalne funkcije

4.4. Metoda konačnih volumena

U ovom dijelu rada prezentirat će se osnove metode konačnih volumena koja će se koristiti za 3D analizu krila i 2D analizu aeroprofila u viskoznoj struji fluida.

4.4.1. Matematički model fluida

Matematički model strujanja fluida definiran je s pet osnovnih zakona: zakon očuvanja mase, količine gibanja, očuvanja energije i drugi zakon termodinamike. Jednadžbe se mogu zapisati u obliku da se entropija pojavljuje samo u drugom zakonu termodinamike pa se on može izostaviti. Zakon očuvanja momenta količine gibanja kao posljedicu ima simetričnost tenzora naprezanja. Obzirom da se razmatra aerodinamika malih Machovih brojeva, fluid se može smatrati nestlačivim pa se i zakon očuvanja energije može izostaviti jer se za nestlačivi fluid može svesti na zakon očuvanja količine gibanja. Tako da je strujanje nestlačivog fluida opisano zakonom očuvanja količine gibanja i zakonom očuvanja mase, jednadžbe tih zakona se nazivaju Navier-Stokesove jednadžbe.

Zakon očuvanja mase

Obzirom da je fluid nestačiv diferencijalna jednadžba glasi:

$$\frac{\partial v_i}{\partial x_i} = 0, , \qquad (4.29)$$

što u integralnoj formi za kontrolni volumen s fiksnim rubom prelazi u oblik:

$$\int_{S} v_i n_i \mathrm{d}S = 0, \qquad (4.30)$$

gdje je S površina ruba kontrolnog volumena, a sumiranje po ponovljenom indeksu je implicitno.

Zakon očuvanja količine gibanja

Zakon očuvanja količine gibanja za newtonovski fluid u konzervativnoj diferencijalnoj Eulerovoj formi je dan izrazom:

$$\frac{\partial(v_i)}{\partial t} + \frac{\partial(v_j v_i)}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 v_i}{\partial x_j \partial x_j} + f_i, \qquad (4.31)$$

gdje je ν kinematička viskoznost:

$$\nu = \frac{\mu}{\rho} \tag{4.32}$$

Izraz (4.31) u integralnoj formi za kontrolni volumen s fiksnim rubom prelazi u oblik:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{KV} v_i \,\mathrm{d}KV + \int_{S} v_i v_j n_j \,\mathrm{d}S = -\int_{KV} \frac{1}{\rho} \frac{\partial p}{\partial x_i} \,\mathrm{d}KV + \int_{S} \nu \frac{\partial v_i}{\partial x_j} n_j \,\mathrm{d}S + \int_{KV} f_i \,\mathrm{d}KV \quad (4.33)$$

4.4.2. Modeliranje turbulencije

Za opis turbulencije u strujanju koristi se Reynoldsov broj Re koji je definiran kao omjer inercijskih sila i viskoznih sila.

Model turbulencije $k - \omega$ SST

Za rješavanje nekih problema u kojima se pojavljuje turbulencija prikladno je koristiti vremenski osrednjene jednadžbe gibanja fluida RANS (eng. *Reynolds-averaged Navier Stokes*) gdje se koristi statistički vremenski osrednjeno polje brzine i oscilirajuće polje brzine. Diferencijalni oblik osrednjenih jednadžbi zakona očuvanja mase i količine gibanja glase:

$$\frac{\partial \left(\rho \bar{v}_{i}\right)}{\partial x_{i}} = 0$$

$$\frac{\partial \left(\rho \bar{v}_{i}\right)}{\partial t} + \frac{\partial \left(\rho \bar{v}_{i} \bar{v}_{j}\right)}{\partial x_{j}} = -\frac{\partial \bar{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left(\mu \left(\frac{\partial \bar{v}_{i}}{\partial x_{j}} + \frac{\partial \bar{v}_{j}}{\partial x_{i}}\right) - \rho \overline{v'_{i} v'_{j}}\right).$$

$$(4.34)$$

Član $\rho \bar{v}'_i v'_j$ opisuje turbulentnu difuziju količine gibanja. Za njegovo određivanje se koristi Boussieqova hipoteza koja stvara analogiju s Newtonovim modelom viskoznosti, a za Reynoldsova naprezanja je predpostavljen linearni gradijent brzine:

$$-\rho \overline{v'_i v'_j} = \mu_t \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) - \frac{2}{3} \rho \bar{k} \delta_{ij}$$

$$(4.35)$$

U izrazu (4.35) k je kinetička energija turbulencije, a μ_t je turbulentna viskoznost. Takvim pristupom je za modeliranje turbulencije potrebno odrediti turbulentnu viskoznost.

 $k-\omega$ model turbulencije koristi se za zatvaranje sustava jednadžbi osrednjeg strujanja fluida. Obuhvaća dvije jednadžbe, jednadžbu transporta kinetičke energije k i jednadžbu specifične brzine disipacije turbulencije ω . Modelira efekte difuzije, transport efekata turbulencije osrednjenim stujanjem te nastajanje i nestajanje turbulencije. Izrazom (4.36) je definirana transportna jednadžba kinetičke energije turbulencije k, a izrazom (4.37) specifična brzina disipacije turbulencije ω [8].

$$\frac{D}{Dt}(\rho k) = \nabla \cdot (\rho D_k \nabla k) + \rho G - \frac{2}{3}\rho k (\nabla \cdot \mathbf{u}) - \rho \beta^* \omega k + S_k$$
(4.36)

$$\frac{D}{Dt}(\rho\omega) = \nabla \cdot (\rho D_{\omega} \nabla \omega) + \frac{\rho \gamma G}{\nu} - \frac{2}{3} \rho \gamma \omega (\nabla \cdot \mathbf{u}) - \rho \beta \omega^{2} - \rho (F_{1} - 1) C D_{k\omega} + S_{\omega} \quad (4.37)$$

4.4.3. Diskretizacija modela

Jednadžbe dane matematičkim modelom strujanja za većinu slučajeva su nerješive analitički te se za njihovo rješavanje koriste razne numeričke metode od kojih je jedna metoda konačnih volumena. Da bi se primjenila, potrebno je kontinuum domene diskretizirati s određenim brojem konačnih volumena. Nakon diskretizacije prostora potrebno je diskretizirati i jednadžbe tako da integralne jednadžbe cijele domene prelaze u sustav algebarskih jednadžbi za koje su rješenja približna vrijednost početnih nediskretiziranih jednadžbi. Na slici 4.4 je prikazan primjer dva konačna volumena. Poglavlje 4. Numeričke metode i njihova razrada 23

Slika 4.4: Primjer dva konačna volumena [9]

Na svaki konačni ili kontrolni volumen primjenjuje se integralni oblik jednadžbi i vrijednost srednje fizikalne veličine koja se uzima kao vrijednost u središnjem čvoru. Na primjer za fizikalnu veličinu ϕ u konačnom volumenu KV se računa njezina srednja vrijednost:

$$\int_{KV} \phi \mathrm{d}KV = \overline{\phi}KV_P \,, \tag{4.38}$$

te ako su težište i čvor volumena koincidiraju za osnovnu metodu konačnih volumena vrijedit će, do na grešku drugog reda:

$$\phi_P = \overline{\phi} \,. \tag{4.39}$$

Koristeći gornji izraz aproksimacija volumnog integrala u konačnom volumenu se može zapisati kao:

$$\int_{KV} \phi \mathrm{d}KV = \overline{\phi}KV_P \,. \tag{4.40}$$

Ovakva aproksimacija je točna ako je raspodjela fizikalne veličine linearna, a ako nije postojat će greška koja će se, smanjivanjem konačnog volumena, smanjivati s redom metode. Takav postupak se može provesti i na ostalim članovima transportne jednadžbe (4.41).

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{KV_P} \rho \phi \mathrm{d}KV = -\int_{\partial S_P} \left(\rho \phi v_j - D_\phi \frac{\partial \phi}{\partial x_j} \right) n_j \, \mathrm{d}S + \int_{KV_P} S_\phi \mathrm{d}KV \tag{4.41}$$

Nestacionarni član

Koristeći izraz (4.40) član vremenske promjene aprokisimiran je na sljedeći način:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{KV_P} \rho \phi \mathrm{d}KV = \rho \frac{\partial \phi_P}{\partial t} KV_p \,. \tag{4.42}$$

Konvektivni i difuzijski član

Protok fizikalne veličine kroz rub konačnog volumena je definiran konvektivnim i difuzijskim članom. Koristeći integralni teorem srednje vrijednosti konvektivni i difuzijski transport fizikalne veličine ϕ kroz rub volumena S_f je aproksimiran na sljedeći način:

$$\int_{\partial S_P} \left(\rho \phi v_j - D_\phi \frac{\partial \phi}{\partial x_j} \right) n_j \, \mathrm{d}S = \left[\rho \left(\overline{v_i n_i \phi} \right)_{S_f} - D_\phi \left. \frac{\overline{\partial \phi}}{\partial n} \right|_{S_f} \right] S_f \tag{4.43}$$

U izrazu (4.43) potrebno je aproksimirati iznos fizikalne veličine ϕ u točki f na rubu između konačnih volumena kao što je prikazano na slici 4.4. tako da izraz (4.43) prelazi u oblik:

$$\left[\rho v_{n_f} \phi_f - D_\phi \left. \frac{\partial \phi}{\partial n} \right|_f \right] S_f \tag{4.44}$$

Izvorski član

$$\int_{KV_P} S_{\phi} \mathrm{d}KV = S_{\phi_P} KV_P \tag{4.45}$$

4.4.4. Numeričke sheme za konvekcijski i difuzijski transport

Numeričke sheme povezuju vrijednost fizikalnih veličina centra konačnog volumena i vrijednost veličine na rubu konačnog volumena [10].

Uzvodna shema za konvekciju

Uzvodna shema (eng. *upwind*) je prvog reda točnosti i bezuvjetno je stabilna. Prema njoj se za vrijednost fizikalne veličine na rubu uzima vrijednost iz centra konačnog volumena koji se nalazi uzvodno kao što je pokazano izrazom (4.46).

$$\phi_f = \begin{cases} \phi_P & \text{za } v_n \ge 0\\ \phi_N & \text{za } v_n < 0 \end{cases}$$
(4.46)

Uzvodna shema uzrokuje numeričku difuziju što smanjuje njenu točnost.

Linearna uzvodna shema za konvekciju

Linearna uzvodna shema (eng. *linear upwind*) proširuje uzvodnu shemu tako da se za određivanje vrijednosti na rubu koristi i informacija o gradijentu fizikalne veličine u središtu uzvodnog volumena te se preko vrijednosti fizikalne veličine u centru i njezinog gradijenta određuje vrijednost na rubu konačnog volumena kao što je to dano u izrazu (4.47).

$$\phi_f = \begin{cases} \phi_P + \frac{\partial \phi}{\partial n} \Big|_P \left| x_j^f - x_j^P \right| & \text{Za } v_n \ge 0 \\ \phi_N + \frac{\partial \phi}{\partial n} \Big|_N \left| x_j^f - x_j^N \right| & \text{Za } v_n < 0 \end{cases}$$
(4.47)

Linearna uzvodna shema se često koristi jer poboljšava točnost, a nema tako stroge zahtjeve po pitanju stabilnosti kao linearna shema koja će biti nestabilna ako je Pelcetov broj veći od dva.

Shema centralnih diferencijala

Za određivanje gradijenta fizikalne veličine na rubu konačnog volumena, koji su potrebni za modeliranje difuzijskog toka fizikalne veličine koristi se shema centralnih diferencijala

$$\left. \frac{\partial \phi}{\partial n} \right|_f = \frac{\phi_N - \phi_P}{\left| x_j^N - x_j^P \right|} \tag{4.48}$$

5 | Numerička Analiza

U ovom poglavlju bit će dan pregled numeričke analize, ulazne postavke i pripreme proračune te njihovi rezultati.

5.1. 3D numerička analiza metodom konačnih volumena

Za 3D numeričku analizu krila metodom konačnih volumena koristi se softverski paket OpenFoam[11]. Za proračun je potrebno generirati gemoetriju, proračunsku mrežu konačnih volumena, te postaviti odgovarajuće rubne uvjete na rubu domene strujanja. Proračun se koristi kako bi se dobilo polje brzine, i tlaka iz kojeg se vrši ekstrakcija cirkulacije oko krila. Za taj potupak je pogodno bilo koje vremenski osrednjeno volumno polje, ali se u ovom slučaju koristi RANS jer zahtjeva najmanje računalne snage, a u ovom slučaju kada se to polje koristi samo za ekstrakciju cirkulacije daje zadovoljavajuću točnost.

5.1.1. Kreiranje geometrije

Geometrija PrandtlD letjelice je dana u [5]. Zadani su aeroprofili u korijenu i na vrhu krila. Aeroprofili su linearno interpolirani. Na dvadeset sekcija je dano ukupno uvijanje krila, zbroj aerodinamičkog i geometrijskog uvijanja. Potrebno je odrediti aerodinamičko uvijanje aeroprofila na danim sekcijama te tako iz danog kuta uvijanja odrediti geometrijski kut uvijanja krila. Nakon određivanja geometrijskog kuta uvijanja i interpoliranja aeroprofila po sekcijama krilo je definirano. Na slici 5.1 su prikazani aeroprofili korijena, jedne četvrtine poluraspona, polovice poluraspona tri četvrtine poluraspona, te vršni aeroprofil. Na slici 5.2 su prikazani s danom strijelom, a na slici 5.3 položaj nakon postavljanja na kut geometrijskog uvijanja.

Slika 5.1: Aeroprofili različitih sekcija

Slika 5.2: Aeroprofili različitih sekcija sa strijelom

Slika 5.3: Aeroprofili različitih sekcija sa strijelom i postavnim kutom

Slika 5.4: 3D geometrija krila

Generiranje 3D modela geometrije se provodi u programskom paketu SALOME koristeći modul SHAPER te je generirano krilo prikazano na slici 5.4. Generirana je i domena za proračun koja je prikazana na slici 5.5.

Slika 5.5: Domena za proračun metodom konačnih volumena

5.1.2. Kreiranje mreže

Mreža za proračun metodom konačnih volumena je generirana u *MESH* modulu *SA-LOME* programskog paketa te je kreirana nestrukturirana mreža korištenjem *NETGEN* mesh generatora koja se sastoji od devet milijuna konačnih volumena. Na slici 5.6 je prikazana cijela proračunska mreža, dok je na slici 5.7 prikazana proračunska mreža oko krila.

Slika 5.6: Proračunska mreža

Slika 5.7: Proračunska mreža oko krila

5.1.3. Rubni uvjeti

Obzirom da se pri proračunu proučava ograničena domena strujanja fluida, potrebno je na njezinim rubovima postaviti rubne uvjete. U tablici 5.1 su dani rubni uvjeti na rubu domene za proračun metodom konačnih volumena.

	ulaz/bočna strane	izlaz	krilo	ravnina simetrije
U	free stream Velocity	free stream Velocity	noSlip	symmetry
p	free stream Pressure	free stream Pressure	zeroGradient	symmetry
k	inletOutlet	inletOutlet	kqRW all Function	symmetry
ω	inletOutlet	inletOutlet	omega Wall Function	symmetry
nut	calculated	calculated	nut US palding Wall Function	symmetry

Tablica 5.1: Rubni uvjeti 3D proračuna

5.1.4. Rezultati 3D proračuna

Za proračun se koristi solver *simpleFoam* te proračun konvergira nakon četristo iteracija. Na slikama 5.8 i 5.9 je prikazana magnituda brzine na donjaci i gornjaci, dok je na slikama 5.10 i 5.11 prikazan iznos tlaka gornjaci i donjaci krila.

Slika 5.8: Polje iznosa brzine na gornjaci krila

Slika 5.9: Polje iznosa brzine na donjaci krila

Slika 5.10: Polje tlaka na gornjaci

Slika 5.11: Polje tlaka na donjaci

Nakon dobivanja polja brzina i tlaka potrebno je odrediti inducirani otpor prema postupku koji će biti opisan u sljedećem poglavlju.

5.1.5. Određivanje induciranog otpora iz rezultata MKV

Za određivanje induciranog otpora iz rezultata proračuna metodom konačnih volumena koristit će se metoda noseće linije [12]. Inače je ta metoda primjenjiva samo na ravna krila bez strijele, ali se u ovom slučaju za izračun cirkulacije oko krila koristi polje brzina iz proračuna metodom konačnih volumena, te će prema *Munkovu teoremu* $o \ staggeru$ [2] za isti raspored cirkulacije i isti raspon površine različitih oblika dati isti inducirani otpor kao i noseća linija. Time se inducirani otpor za svako krilo kojem se cirkulacija odredi MKV proračunom može računati modelom noseće linije ako se na ravnu noseću liniju istog raspona postavi cirkulacija određena za krilo sa strijelom. Postupak određivanja cirkulacije se svodi na dijeljenje krila na segmente i izračuna uzgona segmenata k po izrazu:

$$L_k = (\sin \alpha - \cos \alpha) \int_{S_k} \rho n_i \mathrm{d}S.$$
(5.1)

Prema zakonu Kutte i Žukovskog cirkulacija koja uzrokuje dobiveni uzgon je dana u izrazu (5.2).

$$\Gamma_k = \frac{L_k}{\rho V_\infty b_k} \tag{5.2}$$

Na slici 5.12 je prikazan model noseće linije koji se dobije takvim postupkom.

Slika 5.12: Diskretizacija noseće linije za ekstrakciju cirkulacije [12]

Inducirana brzina koju je potrebno odrediti za dobivanje induciranog otpora određuje se prema izrazu:

$$w_{i_k} = \sum_{j=0}^{n} \frac{\Delta \Gamma_j}{4\pi (y_j - y_k)} \,. \tag{5.3}$$

Koristeći dobivenu induciranu brzinu pomoću izraza (5.3) može se odrediti inducirani otpor prema izrazu (5.4).

$$C_{D_{i}} = \frac{2}{V_{\infty}^{2}} S_{ref} \sum_{k=1}^{n} w_{i_{k}} \Gamma_{k}$$
(5.4)

Za opisanu proceduru se koristi *Python* kod koji je dan u [13] koji se kao skripta pokreće iz sučelja programskog paketa *Paraview*. Na slici 5.13 prikazana je bezdimenzijska cirkulacija dobivena gore navedenim postupkom. Bezdimenzijska cirkulacija je izražena sljedećim izrazom:

$$\overline{\Gamma} = \frac{\Gamma}{V_{\infty}b} \tag{5.5}$$

Slika 5.13: Cirkulacija za napadni ku
t 0°

Može se uočiti da cirkulacija pri napadnom kutu 0° ima oblik zvonolike raspodjele. Na slici 5.14 je prikazana inducirana brzina određena iz proračuna metodom konačnih volumena te se može uočiti da prati oblik kvadratne funkcije i postaje pozitivna na otprilike 70% raspona.

Slika 5.14: Inducirana brzina za napadni kut 0°0

Na slici 5.15 je prikazana cirkulacija za stujanje oko krila pri napadnom kutu od 5°. Može se uočiti da raspodjela cirkulacije više nije zvonolika te je to jedan od glavnih problema za koji je potrebno pronaći rješenje. Povećanjem napadog kuta sekcije pri vrhovima krila počinju generirati sve veću cirkulaciju, a time gradijent cirkulacije na vrhu krila više neće biti jednak nuli te se pojavljuje izraženi vrtlog koji će kao posljedicu imati veći inducirani otpor. Na primjer, pri napadnom kutu od 0° koeficijent induciranog otpora iznosi $C_{D_i} = 0.01225$, dok se za napadni kut od 5° on značajno povećava te je $C_{D_i} = 0.01657$. Osim povećanja induciranog otpora degradacija zvonolike raspodjele će značajno povećati moment savijanja pa smanjenje mase konstrukcije nije moguće jer će krilo u nekim režimima leta biti opterećeno većim momentima savijanja zbog gubitka zvonolike raspodjele cirkulacije.

Slika 5.15: Cirkulacija za napadni kut 5°

5.2. 2D proračun aeroprofila

Proračun metodom konačnih volumena za vršni i korjenski aeroprofil će se računati za geometriju aeroprofila bez debljine, iz razloga što proračun oko srednje linije daje vrlo dobre rezultate te je geometrija jednoznačna, dok je opisivanje otklona zakrilca kod aeroprofila s debljinom znatno teže jednoznačno geometrijski opisati.

5.2.1. Kreiranje geometrije

Koristeći točke aeroprofila dane u [5] određuje se aeroprofil, zatim se računa srednja linija kroz koju se provlači *spline*. *Spline* se dijeli oko točke kod koje počinje upravljačka površine te se nakon toga upravljačka površina rotira oko te te točke za željeni kut.

Slika 5.16: Prikaz srednje linije s otklonima upravljačke površine

Generiranje geometrije se vrši u programskom paketu *SALOME*. Postupak je skriptiran te se geometrija eksportira u *fms* formatu koji je najpogodniji za korištenje u *cfMesh* alatu.

5.2.2. Kreiranje mreže

Za kreiranje mreže oko noseće linije aeroprofila koristi se softverski paket cfMesh.

Slika 5.17: Proračunska mreža za 2D proračun metodom konačnih volumena

Mreža je generirana s dvije zone profinjenja i dodatnim profinjenjem uz samu noseću liniju kao što je prikazano na slici 5.19. Na slici 5.18 je prikazana mreža oko noseće linije.

Slika 5.18: Profinjenje proračunske mreže oko aeroprofila

Slika 5.19: Profinjenje mreže uz noseću liniju

	ulaz	izlaz	aeroprofil	bočne strane
U	free stream Velocity	free stream Velocity	noSlip	empty
p	free stream Pressure	freestreamPressure	zzeroGradient	empty
nut	free stream	freestream	nut US palding Wall Function	empty

Tablica 5.2: Rubni uvjeti 2D proračuna

5.2.3. Rezultati proračuna

Na slici 5.20 je prikazano polje tlaka za napadni kut od 2°, s otklonom 5° upravljačke površine koja je 10% tetive.

Slika 5.20: Polje tlaka oko noseće linije

Cijeli postupak od generiranja gemetrije, postavljanja proračuna, njihovog pokretanja i ekstrakcije keoficijenata je skriptiran tako da je proračun napravljen za dvjestotinjak različitih konfiguracija napadnog kuta, duljine upravljačke površine i kuta otklona upravljačke površine za korjenski i vršni aeroprofil.

5.2.4. Interpolacija HRBF metodom

Za ekstrakciju koeficijenata uzgona, otpora i aerodinamičkog momenta korištena je funkcija *forcecoeffs1* koja je dio programskog paketa *OpenFOAM*. U programskom jeziku *Python* je napisan kod za HRBF interpolacijsku metodu podataka s tri varijable. Tako se dobije interpolacija koja kao ulaz koristi tri varijable: napadni kut, postotak tetive

koji zauzima upraljačka površina i kut otklona upravljačke površine, a vraća koeficijente uzgona, otpora i aerodinamičkog momenta.

Slika 5.21: Interpolacija koeficijenta uzgona

Na slici 5.21 je prikazana interpolacija koeficijenta uzgona bez otklona upravljačkih površina.

5.3. Proračun noseće linije za otklon upravljačkih površina

Dobiveni rezultat cirkulacije za strujanje oko krila i HRBF interpolacija koeficijenata implementirani su u numeričku metodu noseće linije za proizvoljna krila za koji je kod napisan u programskom jeziku *Python* i prilagođen tako da omogućuje unos otklona upravljačkih površina.

Na slici 5.22 je prikazana usporedba dobivene cirkulacije i teorijske cirkulacije za krilo bez otklona upravljačkih površina.

Slika 5.22: Usporedba cirkulacije bez otklona s teorijskom cirkulacijom

Inducirana brzina bez otkona upravljačkih površina ima gotovo pravilan oblik kvadratne funkcije te na $\sim 75\%$ raspona postaje pozitivna što je bilo i za očekivati na osnovu MKV proračuna. Njezina raspodjela po rasponu je prikazana na slici 5.23. U tablici 5.3 su dane aerodinamičke sile i koeficijent induciranog otpora.

L [N]	0.09394988
D [N]	0.00433227
C_{D_i}	0.0102113

Tablica 5.3: Aerodinamičke sile

Slika 5.23: Inducirana brzina bez otklona upravljačkih površina

5.3.1. Otklon upravljačkih površina u istom smjeru

Upravljačke površine se mogu otklanjati sinkronizirano u istom ili u suprotnom smjeru. Na slici 5.24 je dana cirkulacija za pozitivan otklon upravljačke površine od 5° . Može se uočiti povećanje cirkulacije pri vrhovima krila.

Slika 5.24: Usporedba cirkulacije bez otklona s teorijskom cirkulacijom

Otklonom zakrilaca se na njihovom početku javlja slobodni vrtlog koji za uzrok ima skok u induciranoj brzini. Skok u vrijednosti inducirane brzine umanjuje njen iznos u kojem se nalaze upravljačke površine što za posljedicu ima smanjenje kuta zakreta aerodinamičke sile prema smjeru leta, odnosno povećanje induciranog otpora. U tablici 5.4 su dane aerodinamičke sile i inducirani otpor.

Tablica 5.4: Aerodinamičke sile za isti otklon upravljačke od 5°

L [N]	0.09497606
D [N]	0.00451208
C_{D_i}	0.01068441

Slika 5.25: Inducirana brzina bez otklona upravljačkih površina

5.3.2. Otklon u suprotnom smjeru

Upravljačke površine je moguće otklanjati i u suprotnom smjeru te je na slici 5.26 prikazana cirkulacija za suprotan otklon upravljačkih površina od 5°. Suprotan otklon površina, osim što stvara približno suprotne efekte na vrhovima krila za cirkulaciju, imat će suprotan efekt i na induciranu brzinu. Na strani negativnog otklona na području upravljačke površine će doći do povećanja pozitivnog iznosa inducirane brzine, dok će na području pozitivno otklonjene površine doći do smanjenja pozitivnog iznosa inducirane brzine brzine što je prikazano na slici 5.27.

Slika 5.26: Ciruklacija za suprotan otklon upravljačkih od 5°

Promjena cirkulacije zbog otklona upravljačkih površina u suprotnom smjeru dovodi do povećanja induciranog otpora bez značajne promjene sile uzgona. Aerodinamičke sile za takav otklon su dane u tablici 5.5.

Tablica 5.5: Aerodinamičke sile za suprotan otklon upravljačkih površina od 5°

L [N]	0.09394841
D [N]	0.00434781
C_{D_i}	0.01024433

Slika 5.27: Inducirana brzina sa suprotnim otklonom upravljačkih površina od 5°

Momenti skretanja i valjanja

Za suprotan otklon upravljačkih površina cilj je stvoriti moment valjanja. PrandtlD krilo je konstuirano kako bi pri stvaranju momenta valjanja stvaralo moment skretanja istog predznaka. U tablici 5.6 su dani dobiveni moment skretanja M_s i moment valjanja M_v za suprotan otklon upravljačkih površina za kut od 5°.

Tablica 5.6: Moment valjanja i skretanja

M_v [Nm]	0.001715121
M_s [Nm]	0.000089457

Može se uočiti da su po predznaku momenti isti što je dokaz generiranja poželjnog momenta skretanja. Taj moment je iznosom mali jer se na strani krila na kojoj se pozitivna inducirana brzina povećava, cirkulacija smanjuje, dok na drugoj strani dolazi do suprotne pojave te se smanjuje iznos pozitivne inducirane brzine, a povećava cirkulacija. No ipak promjena u induciranoj brzini koja smanjuje moment skretanja nije toliko velika da bi ga potpuno poništila.

6 Zaključak

Letjelica PrandtlD, analizirana u ovom radu, prva je javno dostupna geometrija za istraživanje letećih krila sa zvonolikom raspodjelom opterećenja, koja minimiziraju inducirani otpor.

Koristeći dostupne podatke o letjelici rekonstuirana je geometrija letjelice. Da bi se dobilo polje brzina u viskoznom toku za određivanje cirkulacije, izvršen je proračun metodom konačnih volumena. Nadalje, metodom konačnih volumena su određeni i aerodinamički koeficijenti za aeroprofile referentnih sekcija krila koji su interpolirani s HRBF metodom. Interpolacija blago oscilira jer interpolirani podaci nisu potpuno glatki. Dobivena cirkulacija oko krila i interpolacija koeficijenata se koriste u numeričkoj metodi noseće linije za analizu otklona upravljačkih površina.

Ekstrakcijom cirkulacije brzine iz polja brzina dobivenog metodom konačnih volumena zaključuje se da krilo stvara zvonoliku raspodjelu opterećenja i da je brzina ispiranja kvadratnog oblika. Analizom suprotnih otklona upravljačkih površina dobiven je moment valjanja istog predznaka kao i moment skretanja. Isti predznak momenta valjanja i skretanja omogućuje kvadratna raspodjela brzine ispiranja jer zbog pozitivnog predznaka pri vrhu krila zakreće aerodinamičku silu u smjeru brzine leta na sekcijama koje se nalaze u tom području.

Iz proračuna za veće napadne kutove dobiva se cirkulacija koja više nije zvonolikog oblika. Ta pojava nastaje zbog povećanja ukupnog napadnog kuta pri vrhovima krila jer povećanjem napadnog raste inducirana brzina koja zbog pozitivnog iznosa dodatno povećava napadni kut pri vrhovima krila. Zbog tog efekta je približno zvonoliku raspodjelu moguće postići za uzak raspod napadnih kutova, a pri drugim napadnim kutovima gradijent cirkulacije na vrhovima krila nije jednak nuli u idealnom fluidu teži u beskonačnost što poništava pozitivne efekte zvonolike raspodjele. Za proširenje raspona napadnih kutova kod kojih je raspodjela opterećenja zvonolika potrebno je pronaći kompleksnu konfiguraciju upravljačkih površina ili neki drugi mehanizam promjene zakrivljanosti aeroprofila na sekcijama kako bi se očuvala zvonolika raspodjela cirkulacije. Modeliranje raspodjele upravljačkih površina, koja bi omogućila održavanje zvonolike raspodjele cirkulacije pri većem rasponu napadnih kutova, može biti tema daljnjeg istraživanja koje je moguće provesti integracijom HRBFI aerodinamičkih podataka i numeričke Prandtlove metode noseće linije, koja je korištena u ovom radu.

Literatura

- Petar Kesić. Osnove aerodinamike. Fakultet strojarstva i brodogradnje, Zagreb, 2003.
- [2] R. T. Jones. The spanwise distribution of lift for minimum induced drag of wing having given lift and a given bending moment. NACA Technical note 2249, 1963.
- [3] Max M. Munk. The Minimum Induce Drag of Aerofoils. NACA report 121, 1923.
- [4] L. Prandtl. Über Tragflügel kleinsten induzierten Widerstandes. Zeitschrift für Flugtechnik und Motorluftschiffahrt Vol. 24, No. 11, 1933.
- [5] Albion H. Bowers and Oscar J. Murillo. On Wings of the Minimum Induced Drag:Spanload Implications for Aircraft and Birds. NASA/TP-2016-219072, 2016.
- [6] D. O. Snyder and W. F. Phillips. Modern Adaptation of Prandtl's Classic Lifting-Line Theory. Journal of Aircraft Vol. 37., 2000.
- [7] Wilna du Toit. Radial Basis Function Interpolation. Department of Mathematical Sciences University of Stellenbosch, 2008.
- [8] Openfoam: User guide v2112. https://www.openfoam.com/documentation/ guides/latest/doc/guide-turbulence-ras-k-omega-sst.html. 15. 6. 2022.
- [9] Željko Tuković. Metoda kontrolnih volumena na domenama promjenjivog oblika. Fakultet strojarstva i brodogradnje, 2005.

- [10] Openfoam: User guide v2112. https://www.openfoam.com/documentation/ user-guide/6-solving/6.2-numerical-schemes. 15. 6. 2022.
- [11] Openfoam v2112. https://www.openfoam.com/. 17. 5. 2022.
- [12] T. Budanko. Leteće krilo za prikupljanje vegetacijskih indeksa. Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, 2020.
- [13] parainduced. https://github.com/tbudanko/paraInduced. 29. 5. 2022.

A Jednodimenzijski primjer HRBF metode

U dodatku će biti dan jednodimenzijski primjer HRBF interpolacije [7]. Ako se uzmu tri točke podataka: $x_1 = 1$, $x_2 = 3$ i $x_3 = 3.5$. Vrijednosti u danim točkama su dane kao: $f_1 = 1$, $f_2 = 0.2$ i $f_3 = 0.1$. Izabire se radijalna funkcija $\phi(r) = e^{-r^2}$. Da bi se izračunao interpolant s(x) potrebno je odrediti λ . Ako se podaci uvrste u (4.23) dobiva se sljedeća relacija:

$$\begin{bmatrix} \phi(0) & \phi(2) & \phi(2.5) \\ \phi(2) & \phi(0) & \phi(0.5) \\ \phi(2.5) & \phi(0.5) & \phi(0) \end{bmatrix} \boldsymbol{\lambda} = \begin{bmatrix} 1 & 0.02 & 0.002 \\ 0.02 & 1 & 0.78 \\ 0.002 & 0.78 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.2 \\ 0.1 \end{bmatrix} . \quad (A.1)$$

Rješavanjem izraza (A.1) određuje se $\lambda_1 = 0.995$, $\lambda_2 = 0.268$ i $\lambda_3 = -0.111$. Tako da je interpolant dan izrazom (A.2).

$$s(x) = 0.995\phi(|x-1|) + 0.268\phi(|x-3|) - 0.111\phi(|x-3.5|)$$
(A.2)

Slika A.1: Primjer interpolacije radijalnim funkcijama

Na slici A.1 [7] je prikazan dobiveni interpolant za dani primjer.