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Abstract

Insect flight capabilities provide fascination for humans and fuel aspirations for devel-

opment and manufacturing of insect-type flapping wing aerial vehicles. However, complex

underlying aerodynamic phenomena limit our abilities in understanding insect flight and

producing aerial vehicle exploiting same phenomena. To this end, a novel mid-fidelity

approach to insect-type flapping vehicles modeling is proposed. Computational model

includes Helmholtz-Hodge decompositon of fluid velocity into curl-free and divergence-free

parts. Coupled multibody-fluid system equations of motion are derived, including added

inertia effects of the environmental fluid and viscous effects arising as an additional aero-

dynamic load on a multibody system. Curl-free vector field is utilized to accurately model

added inertia effects, while expressing coupled system dynamics by using multibody system

variables only, after employing symplectic reduction of the coupled multibody-fluid system.

On the other hand, unsteady viscous effects included in the divergence-free vector field are

modeled by a wake of irrotational point vortices, shed from both leading (important for

insect-type flapping flight) and trailing edges of the flapping wing. A proposed computa-

tional model is evaluated on two numerical examples involving insect-type flapping flight.

The first test case involves standstill hovering of fruit fly in Earth atmospheric environment,

propelled by flapping pattern characterized with smooth flapping angle functions. Second

test case involves insect-type flapping wing aerial vehicle performing hovering in Mars

atmospheric environment, with flapping pattern input in discrete form, resulting from opti-

mization algorithm. It is concluded from results analysis that the proposed computational

model exhibited near real time properties with high load prediction accuracy.

Keywords: Flapping wing aerial vehicle; Insect-type flapping; Symplectic reduction;

Added inertia; Vortex wake; Coupled multibody-fluid system; Flapping flight on Mars;
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Prošireni sažetak

Let insekata predstavlja inspiraciju za istraživanje u tehničkim i prirodnim znanostima,

zbog njihovih izvrsnih performansi letenja, koje se temelje na naglašenom korištenju nesta-

cionarnih ‘fluid-solid’ utjecaja. Mahokrila insektnog tipa omogućuju energetski efikasan let

i brze manevre, zadržavajući male dimenzije te predstavljajući letne performanse s kojima

se ne mogu usporediti performanse konstruiranih letjelica (tek su nedavno dizajnirane

prve letjelice koje u određenoj mjeri oponašaju let insekta). Razlog tomu jest složena

nestacionarna aerodinamika karakteristična za let insekata koja se počela razumijevati tek

u protekla tri desetljeća. Između ostalog, otkriveno je da insekti koriste vrtlog otpušten s

napadnog ruba krila kako bi dodatno povećali uzgon u usporedbi s istim krilom pri istom

napadnom kutu u stacionarnom strujanju bez vrtloga.

Fokus istraživača u posljednja dva desetljaća usmjeren je na razvoj i izradu mahokrilne

letjelice koja bi koristila iste nestacionarne aerodinamičke fenomene karakteristične za let

insekata. Složenost nestacionarnih i izrazito nelinearnih aerodinamičkih fenomena otežava

zadaću konstruiranja i optimiranja takve letjelice bez odgovarajućih računalnih alata. Zbog

visokih frekvencija mahanja i velike amplitude rotacije krila karakterističnih za let insekata

računalni modeli spregnutih zadaća temeljeni na metodi konačnih volumena za modeliranje

fluida i posebnih (odvojenih) numeričkih rješavača dinamike uronjenog kinematičkog lanca

pokazuju neoptimalne performanse i mogućnost pojava računalnih nestabilnosti. Osim

toga, računalno vrijeme potrebno za njihovo izvršavanje čini takve pristupe modeliranja

neupotrebljivima unutar konstrukcijskih petlji te unutar petlji za optimalno upravljanje.

Iz tog razloga javlja se potreba za računalnim modelom mahokrilne letjelice insektnog

tipa koji bi omogućio pouzdano modeliranje signifikantnih aerodinamičkih fenomena uz

zadržavanje računalne efikasnosti koja omogućuje primjenu unutar konstrukcijskih petlji

te unutar petlji optimalnog upravljanja.

U tu svrhu spregnuti sustav krilo-fluid promatra se iz perspektive geometrijske mehanike

koja omogućava redukcije spregnutog modela na zajedničkoj mognostrukosti, odnosno
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Lievoj grupi diskretnog mehaničkog sustava i ambijentalnog fluida. Brzina fluida se

dekomponira u vektorsko polje bez vrtložnosti te vektorsko polje bez divergencije korišten-

jem Helmholtz-Hodge dekompozicije. Značajke vektorskog polja bez vrtložnosti se zatim

koriste pri simplektičkoj redukciji multi-fizikalnog sustava za modeliranje dodane inercije

krila uronjenog u fluid - važan fenomen za mahokrila insektnog tipa zbog velikih vrijed-

nosti ubrzanja i složene kinematike krila insektnog tipa. Vektorsko polje bez divergencije

koristi se za modeliranje viskoznih utjecaja vrtložnim tragom.

I. Izvod jednadžbi gibanja spregnutog sustava

Za potrebe izvoda jednadžbi gibanja spregnutog sustava, konfiguracijski prostori

diskretnog sustava više tijela te idealnog fluida opisani su koristeći matematičke formu-

lacije na Lievim grupama polazeći od k tijela koji zajedno s fluidom pripadaju otvorenom

Euklidskom prostoru M. Pritom diskretni sustav pripada uniji individualnih domena

krutih tijela, tj. domena diskretnog sustava tijela može se opisati kao B =
k⋃
i=1
Bi ⊂ M.

Ako se osim toga domena fluida označi s F , domena spregnutog sustava može se opisati

kaoM = B⋃F =
k⋃
i=1
Bi
⋃F .

Konfiguracijski prostor spregnutog sustava Q može se definirati kao skup svih dovoljno

glatkih preslikavanjaM→M, a sastoji se od konfiguracijskog prostora diskretnog sustava

više tijela QB te konfiguracijskog prostora idealnog fluida QF .

Konfiguracijski prostor sustava k krutih tijela povezanih kinematičkim ograničenjima

predstavlja Lievu grupu GB = ∏k
i=1GBi

= R3 × SO(3)× · · · × R3 × SO(3) s elementima

qB = (x1,R1, . . . ,xk,Rk) ∈ GB. Pritom xi ∈ R3 odgovara pomaku središta mase tijela

i, dok Ri ∈ SO(3) predstavlja matricu rotacije u obliku 3 × 3 ortogonalne matrice,

koja pripada Lievoj grupi specijalnih ortogonalnih matrica. Lieva algebra grupe GB

može se definirati kao gB = ∏k
i=1 gBi

= R3 × so(3) × · · · × R3 × so(3) s elementima

v = (v1, ω̃1, . . . ,vk, ω̃k) ∈ gB, pri čemu vi ∈ R3 predstavlja vektor brzine središta mase

tijela i iskazan u inercijskom koordinatnom sustavu, dok ω̃i ∈ so(3) predstavlja kutnu

brzinu tijela i iskazanu u koordinatnom sustavu vezanom za tijelo, a u obliku antisimetrične

matrice.

S druge strane, konfiguracijski prostor idealnog fluida može se definirati kao Lieva

grupa u obliku difeomorfizma s očuvanjem volumena fluida Diffvol(F). Preslikavanje

povezano s momentnom mapom JF je sačuvano (invarijantno) s obzirom na djelovanje
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Diffvol(F) na konfiguracijski prostor Q pri čemu je i Lagrangian fluida invarijantan na

djelovanje Lieve grupe Diffvol(F) (posljedica simetrije ‘preimenovanja čestica’), odnosno

konačnim rezultatom postiže se simplektička redukcija spregnutog multi-fizikalnog ‘fluid-

solid’ sustava. U reduciranoj konačnoj formulaciji ukupna dinamika sustava izražava se

na kotangentnom svežnju diskretnog sustava uronjenih tijela T ∗GB dok eksplicitne fluidne

varijable iščezavaju iz spregnutog reduciranog modela (dinamičko djelovanje ambijentalnog

fluida na gibanje diskretnog sustava izražava se utjecajem dodane inercije uronjenih tijela

u gibanju). Osim fluidnog utjecaja dodane inercije, viskozni utjecaji strujanja fluida

modeliraju se odvojeno te se uključuju u jednadžbe gibanja kao dodatni vektor opterećenja.

Jednadžbe gibanja spregnutog sustava izvedene su u obliku diferencijalno-algebarskog

sustava jednadžbi indeksa 1, pri čemu vektor opterećenja uključuje konvencionalno vanjsko

opterećenje u obliku sila i momenata koji djeluju na tijela, vektor “opterećenja” uslijed

izvoda jednadžbi u rotirajućem koordinatnom sustavu, vektor “opterećenja” uslijed prom-

jenjivosti matrice dodane inercije u vremenu te vektor aerodinamičkog opterećenja uslijed

viskoznih utjecaja obuhvaćenih modeliranjem vrtložnog traga. Kinematička rekonstrukcija

orijentacije tijela izračunava se numeričkim algoritmom integracije u vremenskoj domeni

sintetiziranim izravno na odgovarajućoj Lievoj grupi i pripadajućoj Lievoj algebri.

II. Računanje dodane inercije i viskoznih utjecaja

Kako bi se izračunao fluidni utjecaj dodane inercije na tijela uronjena u ambijentalan

fluid, kinetička energija fluida može se zapisati u ovisnosti o potencijalu brzine idealnog

nestlačivog fluida φ, pri čemu vrijedi da je ∆φ = 0. U izrazu za izračunavanje kinetičke

energije, integracija na domeni fluida F zamjenjuje se integracijom po površini diskretnog

sustava više tijela ∂B = ∑k
i=1 ∂Bi korištenjem poopćenog Stokesovog teorema.

Daljnjom procedurom potencijal fluida može se rastaviti na komponente potencijala

vezane uz translacijsku i kutnu brzinu krutih tijela (šest komponenti za trodimenzionalni

problem ili tri komponente za dvodimenzionalnu zadaću) te se matrice dodane inercije

mogu izraziti u ovisnosti o komponentama potencijala te njihovim derivacijama u smjeru

normale na površinu tijela. Također se može pokazati da svaka komponenta potencijala

zadovoljava Laplaceovu jednadžbu. Uz primjenu rubnog uvjeta tangencijalnosti brzine

fluida na konturu tijela, zadaća računanja matrica dodane inercije može se zapisati kao

rubna zadaća (eng. boundary value problem). Za rješavanje formulirane rubne zadaće
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koristi se kolokacijska metoda rubnih elementata s analitičkim rješenjima za singularne

integrale. Primjenjena metoda je verificirana na geometrijskim oblicima s poznatim

analitičkim rješenjem.

Kako je već ranije opisano, osim matrice dodane inercije važno je modelirati i viskozne

utjecaje, koji se u ovom slučaju računaju modelom vrtložnog traga. Aeroprofili mahokrila

su općenito izrazito tanki, s debljinom aeroprofila manjom of 5% tetive krila. Stoga

se pretpostavlja besoknačno tanak aeroprofil, dok se u daljnjem istraživanju u slučaju

potrebe lako može uključiti i diskretizacija pravog oblika presjeka krila. Aeroprofil se

diskretizira pomoću vrtložnih elemenata, koji se sastoje od točkastog vrtloga pričvršćenog

na 1
4 elementa i koji se kreće zajedno s elementom te kolokacijske točke na 3

4 vrtložnog

elementa u kojoj se primjenjuju isti rubni uvjeti nepropusnosti površine kao i za računanje

dodane inercije.

Kako je već spomenuto, točkasti vrtlozi se otpuštaju i s napadnog i s izlaznog ruba.

Prednji vrtlog se ne otpušta u svakom vremenskom koraku, već samo kada je zadovoljen

uvjet otpuštanja na temelju uvedenog kriterija. S druge strane, vrtlog s izlaznog ruba

mahokrila otpušta se u svakom vremenskom koraku i to na način da su zadovoljeni uvjeti

nepropusnosti u svim kolokacijskim točkama, kao i Kelvinov cirkulacijski teorem koji

definira konstantni iznos ukupne cirkulacije (zbroj iznosa cirkulacije za pričvršćene vrtloge

te vrtloge u vrtložnom tragu) u svakom vremenskom koraku.

Točkasti vrtlozi u vrtložnom tragu smatraju se “slobodnima” i bez inercije. tj. kreću

se u skladu s brzinom fluida na položaju vrtloga, koja se računa kao inducirana brzina od

strane svih “pričvršćenih” vrtloga te vrtloga iz vrtložnog traga.

Aerodinamičko opterećnje uslijed vrtložnog traga se u svakom vremenskom trenutku

računa pomoću Kutta-Joukowski teorema, pri čemu se odgovarajuća sila računa za svaki

vrtložni element zasebno.

III. Numerički eksperimenti i zaključak

Provedena su dva numerička eksperimenta na letjelicama s morfologijom vinske mušice

(lat. Drosophila melanogaster), zbog dostupnih eksperimentalnih rezultata te aerodi-

namičkih modela s validiranim parametrima za primjer vinske mušice u određenom rasponu

Reynoldsovog broja. Prvi numerički primjer uključuje modeliranje nepomičnog lebdenja

vinske mušice na Zemlji s glatkim funkcijama koje opisuju kuteve mahanja tijekom jednog
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ciklusa. Funkcije kuteva preuzete su iz literature gdje su određene na temelju eksperime-

nata s krilom koje morfološki odgovara krilu promatranog biološkog sustava. Drugi nu-

merički primjer uključuje letjelicu s krilima koja morfološki odgovaraju krilima Drosophila

melanogaster, uz povećane geometrijske karakteristike u skladu sa zakonitostima energetski

efikasne fizike leta u bitno rjeđoj atmosferi planete Mars. Faktor skaliranja krila te funkcije

kuteva temelje se na rezultatima prethodnog istraživanja koje je uključivalo optimiranje

letjelice za nepomično lebdenje u atmosferi Marsa te su u ovom slučaju implementirane

izravno u diskretnom obliku.

Rezultati oba numerička eksperimenta uspoređeni su s rezultatima kvazistacionarnog

aerodinamičkog modela s eksperimentalno validiranim parametrima te su ostvarene izvrsne

korelacije s vrijednostima sila uzgona i otpora, čime je uspješno validiran predloženi

računalni model.

Na temelju ostvarenih rezultata doneseni su glavni zaključci disertacije:

• Aerodinamika mahorkila insektnog tipa može se pouzdano i efikasno modelirati ko-

rištenjem računalnog modela temeljenog na dekompoziciji brzine fluida na vektorsko

polje bez vrtložnosti (koje se koristi za modeliranje fluidnog utjecaja dodane inercije)

te vektorsko polje bez divergencije, koje se koristi za modeliranje viskoznih utjecaja

vrtložnim tragom. U skladu s prethodnim zaključcima iz literature, potvrđeno je da

zanemarivanje utjecaja rubnog sloja ne vodi do značajnih gubitaka na točnosti.

• Predloženi računalni model izvršava se na računalu u gotovo pa stvarnom vremenu

s pouzdanim računanjem aerodinamičkog opterećenja na mahokrilu. Pritom pred-

loženi računalni model ne zahtijeva određivanje nikakvih parametara modela na

temelju prijašnjih rezultata ili iskustva, za razliku od često korištenog numerički

efikasnog kvazistacionarnog aerodinamičkog modela. Ova svojstva čine predloženi

računalni model prikladnim za korištenje unutar konstrukcijskih petlji te unutar

petlji optimalnog upravljanja.

• Ispravno izvođenje jednadžbi gibanja spregnutog sustava koji se sastoji od sustava

više tijela te ambijentalnog fluida rezultira dodatnim članom u ‘aerodinamičkom

opterećenju’ zbog promjenjivosti dodane inercije u vremenu, za razliku od konstantne

matrice inercije krutog tijela. Ovaj član se često greškom ispušta i ne uključuje u

analizu u dostupnoj literaturi.

vii



Prošireni sažetak

• Utjecaji dodane inercije s modeliranjem međuzavisnosti između krutih tijela u

kinematičkom lancu, točne geometrije tijela te vremenske zavisnosti matrice do-

dane inercije mogu se pouzdano modelirati preko skupa Laplaceovih rubnih zadaća.

Kolokacijska metoda rubnih elemenata validirana je za rješavanje rezultirajućih rub-

nih problema, računanjem dodane inercije za jednostavne geometrijske oblike, za

koje su poznata analitička rješenja.

• Viskozni utjecaji fluida na mahokrilo mogu se pouzdano i efikasno računati korišten-

jem predložene metode modeliranja vrtložnog traga, temeljene na metodi s vrtložnim

elementima. Metoda je prilagođena za primjenu na mahokrilne letjelice insektnog

tipa dodavanjem modela otpuštanja i razvoja vrtloga s napadnog ruba krila.

• Numerički eksperimenti u značajno različitim atmosferama Zemlje i Marsa upućuju

da se predložena metoda može koristiti za modeliranje mahokrilnih letjelica insektnog

tipa u nepoznatim okruženjima, bez izmjena u parametrima modela.

Zaključno, najvažniji ostvareni znanstveni doprinosi su:

• Razvoj novog računalnog modela dinamike leta mahokrilne letjelice insektnog tipa

koji se može koristiti za pouzdano i efikasno modeliranje najvažnijih složenih aero-

dinamičkih fenomena fizike leta mahokrilnih sustava, temeljenog na Hamiltonovim

geometrijskim redukcijama na zajedničkoj mnogostrukosti (Lievoj grupi) spregnu-

tog sustava ’fluid-solid’, uz dodatni numerički model opisivanja značajnih viskoznih

utjecaja mahokrila u ambijentalnom fluidu.

• Razvoj i numerička implementacija modela za izračunavanje fluidnog utjecaja dodane

inercije uronjenog mahokrila pri gibanju u ambijentalnom fluidu, temeljenog na

simplektičkoj redukciji spregnutog sustava te numeričkoj metodi rubnih elemenata.

• Prilagodba konvencionalne nestacionarne metode vrtložnih elemenata za primjenu

pri modeliranju mahokrila insektnog tipa, razvojem i implementacijom numeričkog

modela otpuštanja vrtloga s napadnog i izlaznog ruba krila.

• Sinteza numerički efikasnog računalnog okruženja koje se može koristiti za multi-

fizikalno optimiranje dinamike leta mahokrilne letjelice u različitim atmosferskim

uvjetima, kao što su odabrani uvjeti fizike leta zemaljskog okruženja, ali također i

naročito zahtjevni uvjeti leta u atmosferskim uvjetima planete Mars.

viii



Prošireni sažetak

Ključne riječi: Mahokrilna letjelica; Mahokrilo insektnog tipa; Simplektička redukcija;

Fluidni utjecaj dodane inercije; Vrtložni trag; Spregnut sustav dinamike fluida i sustava

više tijela; Mahokrilni let na Marsu;

ix



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Hypothesis and research objectives . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical framework 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Lagrangian mechanics elementary concepts . . . . . . . . . . . . . . . . . . 8

2.3 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Coordinate transformations . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Curves and functions . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Tangent vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.5 Tangent bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.6 One-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Lie derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Lie group definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Rigid body motion in Lie group setting . . . . . . . . . . . . . . . . . . . . 23

2.6 Ideal fluid in Lie group setting . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Coupled multibody-fluid equations of motion 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

x



Contents

3.2 Coupled multibody-fluid system in Lie group framework . . . . . . . . . . 31

3.3 Multibody system equations of motion . . . . . . . . . . . . . . . . . . . . 33

3.4 Kinematic reconstruction of position and orientation from velocity field . . 38

3.5 Equations of motion for the coupled mutibody-fluid system . . . . . . . . . 41

4 Added inertia 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Lagrangian of the coupled multibody-fluid system . . . . . . . . . . . . . . 47

4.3 Boundary value problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Boundary element method . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Singular integral with collocation point at the beginning of element 59

4.4.2 Singular integral with collocation point at the end of element . . . . 63

4.4.3 Regular integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Vorticity effects 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Wake evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Vortex shedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Leading edge vortex shedding . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 Trailing edge vortex shedding and update of attached vortex circu-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Vortex wake-induced aerodynamic load . . . . . . . . . . . . . . . . . . . . 80

6 Numerical experiments 82

6.1 Fruit fly-like aerial vehicle hovering . . . . . . . . . . . . . . . . . . . . . . 82

6.1.1 Physical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.3 Aerodynamic phenomena pertinent to fruit fly-like flapping flight . 87

6.1.4 Quasi steady aerodynamic model used for benchmarking . . . . . . 88

6.1.5 Benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.6 Results of the analysis with proposed computational model . . . . . 93

6.1.7 Results comparison and conclusions . . . . . . . . . . . . . . . . . . 98

xi



Contents

6.2 Flapping flight in Mars environmental conditions . . . . . . . . . . . . . . 100

6.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.2 Physical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.3 Quasi steady aerodynamic model used for benchmarking . . . . . . 103

6.2.4 Benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.5 Results of the analysis with proposed computational model . . . . . 107

6.2.6 Results comparison and conclusions . . . . . . . . . . . . . . . . . . 112

7 Conclusion 114

7.1 Main scientific contributions and hypothesis confirmation . . . . . . . . . . 116

7.2 Outlook and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 119

Curriculum Vitae 128

xii



List of Figures

2.1 Illustration of the mapping from open neighborhood U ∈ M to local Eu-

clidean space f (U) ∈ Rn or in other words, illustration of the (U, f) chart. 12

2.2 Illustration of two overlapping charts (U1, f1) and (U2, f2) and relation for

coordinate transformation from one to another. . . . . . . . . . . . . . . . 13

2.3 Illustration of the curve on manifold, mapping from the open region R to

a curve inM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Illustration of tangent spaces with respective basis vectors at three different

points on sphere surface (manifoldM). . . . . . . . . . . . . . . . . . . . . 16

2.5 Illustration of one-dimensional manifold together with few tangent spaces,

drawn tangent to the manifold (a) or parallel to each other (b). . . . . . . 17

2.6 Illustration of left translation La mapping the neighborhood of e onto the

neighborhood of a, with illustrations of point, curve and tangent vector

mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Description of any point P as sum of mass center position vector and vector

pointing from center of mass to point P . . . . . . . . . . . . . . . . . . . . 24

2.8 Illustration of transformation β from the material (m1,m2,m3) to the

spatial (e1, e2, e3) reference frame and depiction of the body-fixed reference

frame (b1, b2, b3), moving together with rigid body. . . . . . . . . . . . . . 25

2.9 Illustration of the ideal fluid “particle” mapping βF from material to spatial

reference frame and spatial velocity vector v. . . . . . . . . . . . . . . . . . 29

3.1 Illustration of the algorithm for kinematic reconstruction of orientation

(rotation matrix) from the angular velocity field, operating in Lie algebra,

i.e. tangent space of the rigid body Lie group. . . . . . . . . . . . . . . . . 46

xiii



List of Figures

4.1 Illustration of two dimensional shape discretization with N boundary ele-

ments E, and associated N discretization nodes P . . . . . . . . . . . . . . 53

4.2 Illustration of ith linear 2D boundary element, with its associated unit normal. 54

4.3 Illustration of singular integral positions in matrices A and B for one body. 58

4.4 Two circumstances under which singular integration occurs: (a) when col-

location point is at the begining of element (s = 0) or (b) when collocation

point is at the end of element s = 1. . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Illustration of replacing collocation point Pi with Pε,i and resulting distance

vector r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Relative error of non-zero added inertia components, with respect to the

number of boundary elements used on the example of unit circle. . . . . . . 67

4.7 Relative error of non-zero added inertia components, with respect to the

number of boundary elements used on the example of ellipse with semi-major

and semi-minor axes equal to a = 3 and b = 1. . . . . . . . . . . . . . . . . 68

4.8 Relative error of non-zero added inertia components, with respect to the

number of boundary elements used on the example of unit square. . . . . . 69

4.9 Relative error of non-zero added inertia components, with respect to the

number of boundary elements used on the example of rectangle with large

aspect ratio (side lengths equal to a = 40 and b = 1 ). . . . . . . . . . . . . 70

5.1 Flowchart illustrating tasks involved in one time step of vortex effects mod-

eling algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Illustration of thin flapping airfoil disretization with Nv vortex elements,

each consisting of attached vortex and collocation point, together with newly

shed vortex from both leading and trailing edge. . . . . . . . . . . . . . . . 74

5.3 Illustration of velocity induced by irrotational point vortex at a distance

larger than vortex core radius. . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Illustration of Kutta Joukowski force calculation for each of the vortex

elements, based on the velocity in collocation point and circulation of the

attached vortex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Illustration of the fruit fly model flapping, with stroking α, pitching β and

deviation γ angles indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xiv



List of Figures

6.2 Evolution of stroking angle function α(t) over one flapping period for a fruit

fly-like aerial vehicle hovering. . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Evolution of pitching angle function β(t) over one flapping period for a fruit

fly-like aerial vehicle hovering. . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Lift force components over one flapping cycle, calculated by quasi steady

aerodynamic model for fruit fly-like aerial vehicle flapping with angle func-

tions presented in Fig. 6.2 and Fig. 6.3. Force components values correspond

to one wing, while the forces are equal on each wing, due to the symmetrical

flapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Drag force components over one flapping cycle, calculated by quasi steady

aerodynamic model for fruit fly-like aerial vehicle flapping with angle func-

tions presented in Fig. 6.2 and Fig. 6.3. Force components values correspond

to one wing, while the forces are equal on each wing, due to the symmetrical

flapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 Total value of the lift force per one wing, calculated for fruit fly-like vehicle

hovering with quasi steady aerodynamic model. Plot includes both total

lift force evolution and cycle-averaged lift force value. . . . . . . . . . . . . 92

6.7 Total value of the drag force per one wing, calculated for fruit fly-like vehicle

hovering with quasi steady aerodynamic model. Plot includes both total

drag force evolution and cycle-averaged drag force value. . . . . . . . . . . 92

6.8 Illustration of the modeled flapping wing cross section with spatial O and

body-fixed O′ reference frames. . . . . . . . . . . . . . . . . . . . . . . . . 94

6.9 Evolution of added mass force components in the body-fixed reference frame

(O′ in Fig. 6.8) over one flapping cycle for a fruit fly-like aerial vehicle hovering. 94

6.10 Evolution of added mass torque over one flapping cycle for a fruit fly-like

aerial vehicle hovering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.11 Added mass lift and drag force components over one flapping cycle for a

fruit fly-like aerial vehicle hovering. . . . . . . . . . . . . . . . . . . . . . . 95

6.12 Snapshots of wing airfoil and vortex wake at different points in flapping

period T . Blue points denote vortices that are shed from trailing edge,

while orange points represent vortices shed from wing leading edge. . . . . 96

xv



List of Figures

6.13 Lift and drag force due to vorticity wake effects over one flapping period

for a fruit fly-like aerial vehicle hovering. . . . . . . . . . . . . . . . . . . . 97

6.14 Total value of the lift force per one wing, calculated for fruit fly-like vehicle

hovering with proposed computational model. Plot includes both total lift

force evolution and cycle-averaged lift force value. . . . . . . . . . . . . . . 97

6.15 Total value of the drag force per one wing, calculated for fruit fly-like vehicle

hovering with proposed computational model. Plot includes both total drag

force evolution and cycle-averaged drag force value. . . . . . . . . . . . . . 98

6.16 Comparison of lift force calculated by proposed approach to the lift force

calculated by the benchmarking quasi steady aerodynamic model. . . . . . 99

6.17 Comparison of drag force calculated by proposed approach to the drag force

calculated by the benchmarking quasi steady aerodynamic model. . . . . . 99

6.18 Illustration of the fruit fly with standard-sized wings and wings uniformly

scaled by n = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.19 Evolution of stroking angle function α(t) over one flapping period for stand-

still hovering in Mars environmental conditions. . . . . . . . . . . . . . . . 102

6.20 Evolution of pitching angle function β(t) over one flapping period for stand-

still hovering in Mars environmental conditions. . . . . . . . . . . . . . . . 102

6.21 Lift force components over one flapping cycle, calculated by quasi steady

aerodynamic model for fruit fly like aerial vehicle in Martian atmosphere,

flapping with angle functions presented in Fig. 6.19 and Fig. 6.20. Force

components values correspond to one wing, while the forces are equal on

each wing, due to the symmetrical flapping. . . . . . . . . . . . . . . . . . 105

6.22 Drag force components over one flapping cycle, calculated by quasi steady

aerodynamic model for fruit fly like aerial vehicle in Martian atmosphere

flapping with angle functions presented in Fig. 6.19 and Fig. 6.20. Force

components values correspond to one wing, while the forces are equal on

each wing, due to the symmetrical flapping. . . . . . . . . . . . . . . . . . 105

6.23 Total value of lift force per one wing, calculated for fruit fly-like vehicle

hovering on Mars with quasi steady aerodynamic model. Plot includes both

total lift force evolution and cycle-averaged lift force value. . . . . . . . . . 106

xvi



List of Figures

6.24 Total value of drag force per one wing, calculated for fruit fly-like vehicle

hovering on Mars with quasi steady aerodynamic model. Plot includes both

total drag force evolution and cycle-averaged drag force value. . . . . . . . 106

6.25 Evolution of added mass force components in the body-fixed reference frame

(O′ in Fig. 6.8) over one flapping cycle in Martian atmosphere. . . . . . . . 107

6.26 Evolution of added mass torque over one flapping cycle in Martian atmosphere.108

6.27 Added mass lift and drag force components over one flapping cycle in

Martian atmosphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.28 Snapshots of wing airfoil and vortex wake at different points in flapping

period T , for standstill hovering on Mars. Blue points denote vortices that

are shed from trailing edge, while orange points represents vortices shed

from wing leading edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.29 Lift and drag force due to vorticity wake effects in Martian atmosphere over

one flapping period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.30 Total value of the lift force per one wing, calculated for fruit fly like vehicle

hovering on Mars with proposed computational model. Plot includes both

total lift force evolution and cycle-averaged lift force value. . . . . . . . . . 111

6.31 Total value of the drag force per one wing, calculated for fruit fly like vehicle

hovering on Mars with proposed computational model. Plot includes both

total drag force evolution and cycle-averaged drag force value. . . . . . . . 111

6.32 Comparison of lift force on flapping wing in Martian atmosphere, calculated

by proposed approach to the lift force calculated by the benchmarking quasi

steady aerodynamic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.33 Comparison of drag force on flapping wing in Martian atmosphere, calcu-

lated by proposed approach to the drag force calculated by the benchmark-

ing quasi steady aerodynamic model. . . . . . . . . . . . . . . . . . . . . . 113

xvii



List of Tables

4.1 Values of weight and node positions for 4-point Gaussian quadrature. . . . 66

6.1 Relevant fruit fly model parameters . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Angle function parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Properties of the fruit fly and Martian atmosphere . . . . . . . . . . . . . . 103

xviii



Nomenclature

Roman letters

λ Vector of Lagrange multipliers [-]

A Matrix on the left-hand side of boundary element method final equations [-]

B Matrix on the right-hand side of boundary element method final equations [-]

C Constraint Jacobian matrix [-]

D Vortex influence matrix [1/m]

F Force [N]

J ′i Inertia matrix of ith rigid body expressed in body-fixed coordinate frame [-]

l Angular momentum [kgm2/s]

MB Inertia block matrix of a multibody system [-]

MF Added inertia block matrix [-]

Mellipse Added inertia matrix for ellipse [-]

M f
ij Block matrix representing added inertia contribution of body i on body j [-]

Mrectangle Added inertia matrix for rectangle [-]

Munit_circle Added inertia matrix for unit circle [-]

Munit_square Added inertia matrix for unit square [-]

M Overall inertia block matrix of a multibody system submerged in fluid [-]

ni Unit normal pointing inward to ith body [-]

xix



Nomenclature

p Linear momentum [kgm/s]

QAM “Load” due to time-changing nature of added inertia [-]

Qext General external load acting on bodies [-]

Qspatial Total applied load [-]

Qvel “Load” resulting from expressing equations in rotating frame [-]

Qvort Aerodynamic load due to vorticity effects [-]

rvi Distance vector from vortex center point to position where velocity is induced [m]

ri Position of ith particle [m]

R Rotation matrix [-]

T Torque [Nm]

u Fluid velocity vector [m/s]

vvori Overall velocity of ith vortex [m/s]

vb Velocity in body-fixed reference frame [m/s]

vc Velocity of mass center [m/s]

vin Vortex-induced velocity [m/s]

V Lagrangian (material) velocity [m/s]

v Eulerian (spatial) velocity [m/s]

x̂0 Pitching axis position (in chord lengths) [-]

Rn n-dimensional Euclidean space [-]

c Mean chord length [m]

Diffvol(F) Group of volume-preserving diffeomorphisms [-]

Re Reynolds number [-]

b Wing thickness [m]

xx



Nomenclature

CR Rotational force coefficient [-]

CDT Translational drag coefficient [-]

CLT Translational lift coefficient [-]

DKJ Vortex wake-induced drag force [N]

DA Added mass drag [N]

DV Drag due to vorticity effects [N]

DQS Drag force calculated by quasi steady aerodynamic model [N]

Erel Relative error of numerically calculated value [-]

f Frequency [Hz]

FA Added mass force [N]

FR Rotational force [N]

FTD Translational drag force [N]

FTL Translational lift force [N]

G Lie group [-]

g Lie algebra [-]

GL Green’s function for Laplace problem [-]

GBi
Lie group of a ith rigid body configuration space [-]

gBi
Lie algebra of GBi

[-]

GB Lie group of a multibody system configuration space [-]

gB Lie algebra of GB [-]

gMars Gravitational acceleration on Mars [m/s2]

Iw Wing inertia matrix [kgm2]

J Boundary element Jacobian [-]

xxi



Nomenclature

JF Momentum map associated with action of Diffvol(F) [-]

Kα Stroking function shape parameter [-]

Kβ Pitching function shape parameter [-]

LKJ Vortex wake-induced lift force [N]

LA Added mass lift [N]

LV Lift due to vorticity effects [N]

LQS Lift force calculated by quasi steady aerodynamic model [N]

Lref Reference length [m]

m Mass [kg]

mb Main body mass [kg]

mw Wing mass [kg]

Q Generalized force [-]

q Generalized coordinate [-]

R Wing length [m]

S Multibody system state space [-]

Si State space of ith rigid body [-]

SO(3) Special orthogonal Lie group [-]

so(3) Lie algebra of SO(3) [-]

T Flapping period [-]

T Kinetic energy [J]

TF Kinetic energy of the fluid [J]

TA Added mass torque [Nm]

TBi
Kinetic energy of ith body [J]

xxii



Nomenclature

V Potential energy [J]

vref Reference velocity [m/s]

Greek letters

α Stroking angle [-]

αm Stroking anfle amplitude [-]

β Pitching angle [-]

βa Average pitching value offset [-]

βm Pitching angle amplitude [-]

βp Pitching phase offset [-]

ηi Rotational fluid velocity potential vector related to ith body [m2]

Ω Angular velocity in spatial reference frame [1/s]

ω Angular velocity in body-fixed reference frame [1/s]

Π Total impulse of a coupled system [-]

θi Translational fluid velocity potential vector related to ith body [m]

∆t Time step size [s]

δ Angle of attack [-]

Γ Circulation [m2/s]

γ Deviation angle [-]

ΓLEV Leading edge vortex circulation [m2/s]

ΓTEV Trailing edge vortex circulation [m2/s]

µ Dynamic viscosity [kg/ms]

µMars Mars atmoshpere dynamic viscosity [kg/ms]

φ Fluid velocity potential [m2/s]

xxiii



Nomenclature

ψ1 First shape function [-]

ψ2 Second shape function [-]

ψv Stream function [m2/s]

ρF Fluid density [kg/m3]

ρMars Mars atmospheric density [kg/m3]

Callygraphy letters

B Rigid body domain [-]

F Ideal fluid domain [-]

L Lagrangian [J]

LS Lagrangian of the coupled mutibody-fluid system [J]

M Manifold [-]

QB Rigid body configuration space [-]

QF Configuration space of ideal fluid [-]

TM Tangent bundle [-]

TPM Tangent space to manifoldM in point P [-]

xxiv



Chapter 1

Introduction

1.1 Motivation

Insect flight is a source of fascination for researchers in both aerospace and zoology

fields. Their unmatched flight performance has generated an ever-growing interest in

insect flight research. Their flapping wings enable them to efficiently hover, to perform

relatively quiet quick agile maneuvers, while keeping a small size - the capabilities not

nearly matched by any man-made aerial vehicle. Despite the fact that their capabilities

are known for a very long time, one of the pioneering papers in unraveling insect flight

physics [1] emerged relatively recently, starting with a famous quote “Insects cannot fly,

according to the conventional laws of aerodynamics...”. The paper includes description

of a very important phenomenon in insect-type flapping flight - the leading edge vortex

(LEV), discovered by experimenting with hawkmoth hovering in wind tunnel. It is found

that the investigated hawkmoth uses intense LEV to generate extra lift, the phenomenon

unknown to that time, and required for description of surprisingly high lift force values.

Since then, there is a persistent effort from many research groups to develop a flapping

wing aerial vehicle (FWAV), utilizing the same aerodynamic phenomena pertinent to

insect flight. However, the highly complex and unsteady aerodynamic phenomena involved

significantly complicate the modeling and development of such vehicles. Complex, unsteady

and highly nonlinear (and therefore sometimes counter-intuitive) phenomena render design

of such aerial vehicles by hand almost impossible. On the other hand, high flapping

frequencies and large amplitudes of wing rotation characteristic for insect flight render

the fluid-structure modeling approaches based on conventional CFD methods, involving

finite volume discretization, unstable and highly inefficient. In addition to this, high

computational cost characteristic for finite volume-based CFD methods renders them
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inapplicable for utilization within design optimization or optimal control loops [2]. This

naturally leads to the requirement for an efficient and reliable (mid-fidelity) computational

model of a flapping wing aerial vehicle, capable of capturing most important aerodynamic

phenomena, while still being efficient enough to be used within both optimal control and

design optimization loops.

1.2 Literature review

As already described, there are significant efforts invested in insect flight research, both

from the fundamental perspective, trying to describe aerodynamic phenomena utilized

within insect flight and from the application perspective, trying to develop computational

tools for insect-type flapping aerial vehicle development.

The effect of petiolate wings on the LEV is investigated in [3] and it is shown that

wing petiolation has positive effects on LEV size and intensity, which may be the reason

why many insect species have petiolate wings. On the other hand, in [4] it is argued that

it is better to consider LEV as a mechanism of preventing stall at high angles of attack

than to consider it as a lift increasing mechanism. It can be concluded that the modeling

and complete understanding of the LEV effects on insect flight is still an open topic.

In order to better understand underlying physical phenomena, it is crucial to develop

a model that is capable of representing both the multibody system of the flapping wing

aerial vehicle and the fluid flow around its wings with sufficient accuracy. Lift and drag

coefficients and vortex distribution for flapping wing in 2D were analyzed in [5] using

a CFD software FLUENT. An in-house developed CFD tool based on finite volumes

method was used in [6] to model flapping wing aerial vehicle and it has been verified by

experiment that the computational procedure can be used for a quantitative prediction of

aerodynamic force production. Additionally, different in-house fluid-structure interaction

(FSI) code based on coupling between solver for Navier-Stokes equations and structural

solver was used in [7] to analyze wing flapping for different wing flexibilities and flapping

frequencies.

Reduced-order model of the MAV was developed in [8] based on measured wing defor-

mation. The importance of using a morphologically accurate insect-wing cross-section in

aerodynamic simulations was studied in [9]. The importance of accurately describing added

masses as well as importance of using 3D model are assessed in [10] by calculating added
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masses of flapping wings for 2D and 3D case, and compared it with total aerodynamic

force calculated by CFD method.

In order to obtain more numerically efficient MAV model, a number of researchers

choose a different approach to fluid modeling. One of the most often used approaches is

unsteady vortex-lattice (UVL) method. In [11] results of unsteady vortex-lattice method

with different load estimation techniques were analyzed and it is concluded that none

of the methods investigated represent flow physics successfully in all cases. However,

this does not mean that the method is useless for flapping wing aerial vehicle modeling,

especially if tailored for specific application, instead of using a general purpose method.

For example, an UVL method was extended in [12] for simulating dynamics of insect

flapping wing by adding models taking into account leading-edge suction and vortex-core

growth. Also, a co-simulation strategy for flapping wing aerial vehicle in hovering flight,

consisting of multiple flexible bodies on structural side of simulation, coupled with UVL

method to calculate aerodynamic forces was developed in [13]. A numerically efficient

computational framework for modeling flapping wing aerial vehicle based on multibody

code coupled with unsteady vortex-lattice fluid model is developed in [14]. A different

approach was taken in [15], where immersed boundary-lattice Boltzmann method was

used to analyze aerodynamic performance of a butterfly-like wing flapping. One of the

challenges in modeling flow around insects’ flapping wings is description of LEV, and a

closed form solution for a vortex shedding from a revolving plate at 90° angle of attack

is derived in [16] with the goal of using that technique in flapping wing aerial vehicle

modeling.

The main application of accurate and numerically efficient flapping wing aerial vehicle

computational model is design optimization, since it is almost impossible to approach

optimal design by hand-tuning flapping mechanism, mainly due to the fluid flow complexity.

The results of using an inviscid lattice method and Navier-Stokes solver with accurate

representation of flapping wing geometry were compared in [17] and it is concluded that

the lattice method in many cases provides accurate prediction od aerodynamic forces and

can therefore be used to aid design optimization. In [18] UVL method was used to optimize

design of actively morphing flapping wings in forward flight with a goal of maximizing

propulsive efficiency under lift and thrust constraints. Similar methodology was used in

[19] to obtain maximum efficiency defined as ratio of propulsive power and aerodynamic
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power. The method was also used for shape optimization of the flapping wings in [20].

In [21] UVL method coupled with plate finite element model was used to perform both

shape and structural optimization of plate-like flapping wing. Unsteady blade element

theory model for flapping wing aerodynamics modeling, developed in [22], was used in

[23] to design and analyze six-bar flapping wing mechanism. On the other hand, wing

optimization of a flapping MAV was performed in [24], by using a computational tool

based on coupling between fluid and solid model described by finite volumes and finite

elements.

In addition to UVL-based aerodynamic models, the quasi steady (QS) models, char-

acterized by low computational costs, have also been extensively used for flapping wing

applications. The examples of QS aerodynamic model utilization for flapping wing kine-

matics optimization for flight on Earth and Mars can be found in [25, 26]. Most of the QS

models are based on model presented in [27, 28], developed by experimenting on a scaled

model of fruit fly wing. The QS models provide a rapid estimation of aerodynamic load,

but are not well suited to describe highly unsteady aerodynamic phenomena pertinent

to flapping flight, and can therefore be used only to simulate flight regimes for which

experiments were conducted (and for which the model parameters were fitted).

In the field of underwater bio-inspired robots, the geometric approach has proven

to be an effective tool for obtaining numerically efficient FSI models. The two-stage

geometric reduction on fluid-solid system was used in [29] to obtain boundary value model

of multibody system for an ideal fluid with zero circulation. In [30], the similar reduced

fluid-solid system was appended with vortex shedding mechanism on a trailing edge of free

pitching hydrofoil with internal rotor. The various benefits of using geometric approach to

modeling of locomotion dynamics of different animals are described in [31]. Although some

of the tools for analyzing multibody system dynamics of bio-inspired robots developed

in that paper are also suggested for flying animals, the real computational framework for

geometric modeling of insect flying has yet to be developed.

1.3 Hypothesis and research objectives

The goal of this research was to develop a computational model of the flapping wing

micro aerial vehicle (MAV), mimicking insect flight, based on the geometric reductions

on manifolds and Lie groups of the fluid-solid system supplemented with vortex shedding
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mechanism. The purpose of the model is to enable efficient and accurate computation of

MAV performance, allowing for mechanism design optimization.

To this end research hypothesis has been formulated as: “Modeling of multi-physical

dynamical system based on geometric reductions of the coupled Hamiltonian system,

supplemented with mechanism for describing significant viscous effects, can be used for

numerically more efficient computational modeling of the flapping wing MAV dynam-

ics, while keeping the same level of accuracy as conventional approach, based on full

discretization of the fluid domain.”

1.4 Methodology

With the goal of developing efficient and reliable computational model of an insect-type

flapping wing aerial vehicle, coupled wing fluid system is considered from a geometric

mechanics framework, enabling important computational model reductions. However, in

order to prepare the model suitable for performing reductions, certain assumptions have to

be introduced. Although the insect-type flapping wing aerodynamics is characterized by

low values of Reynolds number, the boundary layer effects are neglected. Although counter-

intuitive at first glance, this is justifiable because, due to the high flapping frequencies

involved (and consequently large values of Strouhal number), there is no time for thick

boundary layer to form. To this end, fluid flow around flapping wings can be modeled as

potential and incompressible, while viscous effects can effectively be captured by modeling

vortex wake, shed from both leading and trailing edges [32].

By following this approach, fluid velocity can be decomposed by Helmholtz-Hodge

decomposition into curl-free and divergence-free parts. The first, curl-free part, is then

used to model added inertia “felt” by wing because of being sumberged in surrounding

fluid - this is an important phenomenon in insect-type flapping flight, due to large values of

wing accelerations and highly complex wing kinematics. The second, divergence-free, part

is used to model viscous effects of the fluid, by means of modeling vortex wake shedding,

evolution and influence on the flapping wing.

Based on these assumptions, reduced coupled multibody-fluid system equations of mo-

tion for a flapping wing aerial vehicle are derived, where added inertia effects are captured

by performing Hamiltonian symplectic reduction, while viscous effects are accounted as

an external load, modeled by the means of a vortex wake.
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1.5 Thesis outline

The Introduction chapter, presenting motivation. literature review, hypothesis and

research objectives, methodology and this thesis outline, is followed by six chapters.

Second chapter presents an introduction to the mathematical and physical concepts

most important for development of reduced order coupled multibody system-fluid com-

putational model of a flapping wing aerial vehicle. This includes a brief recap of the

most important concepts of Lagrangian mechanics, while involved Lagrangian function is

later utilized for modeling of a coupled wing-fluid system. Manifolds are introduced as a

framework in which configuration spaces of both multibody system and ideal fluid evolve.

This is followed by discussion on Lie group properties, with Lie group being a differentiable

manifold, satisfying group properties. The chapter concludes with definitions of both rigid

body and ideal fluid configuration spaces in Lie group frameworks.

Third chapter includes a derivation of the coupled multibody-fluid system equations of

motion. Chapter starts with introduction of coupled multibody-fluid system configuration

space in Lie group framework. This is followed by derivation of multibody system equations

of motion in form of DAE index 1 system, together with kinematic reconstruction algorithm

based on Munthe-Kaas type. The equations of motion are then finally derived for a coupled

multibody-fluid system, taking into account the often neglected time-dependent nature of

the added inertia matrix.

Fourth chapter introduces algorithm for added inertia calculation, based on symplectic

reduction of coupled multibody-ideal fluid system, reducing out fluid variables by utilizing

“particle relabeling” symmetry. By performing reduction, ideal fluid effects are captured

solely by added inertia effects on the multibody system and the added inertia calculation

problem is defined as exterior Laplace boundary value problem. This is followed by dis-

cussion of collocation boundary element method, with derivations of analytic solutions for

singular integrals. The chapter concludes with validation of proposed added inertia effects

calculation algorithm by comparison with analytical results for simple airfoil geometries.

Fifth chapter deals with modeling effects of divergence-free part of fluid velocity from

Helmholtz-Hodge decomposition. To this end, discretization of infinitely thin airfoils

with lumped vortex elements is introduced. This is followed with description of method

for irrotational point vortex wake evolution, leading and trailing edge vortex shedding
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techniques and vortex element circulation update. The chapter concludes with presentation

of vortex wake-induced aerodynamic load calculation method, completing discussion of

overall vortex effects modeling algorithm.

Sixth chapter presents numerical experiments for proposed insect-type flapping wing

aerial vehicle computational model demonstration and validation. Due to the availability

of benchmarking solutions, both numerical examples are based on fruit fly-like morphology.

First test case includes analysis of smooth flapping pattern, leading to the fruit fly standstill

hovering. Second test case involves an aerial vehicle with enlarged flapping wings of fruit

fly morphology in Mars environmental conditions. The analyzed flapping pattern is

characterized by non-smooth flapping angle functions, resulting from an earlier research

and optimization of fruit fly-like aerial vehicle for standstill hovering flight on Mars.

Seventh and final chapter presents the most important thesis conclusions and possibil-

ities for further research and improvements.
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Chapter 2

Theoretical framework

2.1 Introduction

This chapter includes discussion of mathematical and physical concepts, required for

understanding and deriving mathematical models and algorithms presented in subsequent

chapters. Lagrangian mechanics is briefly introduced as a framework from which the

coupled multibody-ideal fluid system is considered, for formulating added inertia effects.

This is followed by definitions of manifolds and Lie groups, very important concepts for

this thesis, since configuration space of the coupled multibody-fluid system evolves on a

Lie group. Finally, rigid body and ideal fluid configuration spaces in Lie group frameworks

are described.

2.2 Lagrangian mechanics elementary concepts

In order to briefly introduce the framework of Lagrangian mechanics, equations of

motion for a system of (many) particles are introduced as [33]

ṗ =
∑
i

Fi = F , (2.1)

l̇ =
∑
i

Ti = T , (2.2)

where Fi represents force acting on ith particle, Ti stands for torque acting on ith particle,

while p and l represent linear and angular momentum.

Linear momentum for a system of particles is defined as

p = mvc, (2.3)
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where m = ∑
imi represents sum of all particles masses, while vc represents velocity of

mass center defined by

rc =
∑
imiri∑
imi

. (2.4)

Angular momentum for a system of particles can be defined similarly as

l = rc ×mvc +
∑
i

rci ×mivc. (2.5)

These equations govern the system of “free” particles motion under the influence of

both externally applied and internal (acting between particles) forces. However, in order

to capture wider range of applications, the constraints have to be introduced. At this

point constraints are assumed to be holonomic, or in other words, constraint equation

depends only on particles position and time

f (r1, r2, . . . , rN , t) = 0. (2.6)

Holonomic constraints allow the generalization from a system of particles to rigid bodies,

by considering rigid body as consisting of infinitely many particles with fixed distances,

leading to constraints

‖ri − rj‖ − cij = 0, (2.7)

where cij represents Euclidian distance between particles i and j.

If k constraints in the form (2.6) are introduced for N particles, the system variables

can be reduced to N − k generalized coordinates in addition to time variable, without

explicit constraints as

r1 (x1, x2, . . . , xN , t)→ r1 (q1, q2, . . . , qN−k, t) ,
... (2.8)

rN (x1, x2, . . . , xN , t)→ rN (q1, q2, . . . , qN−k, t, ) ,

where qi represents ith generalized coordinate.

The overall work done by the constraint forces is assumed to be zero, since it is

valid for rigid body constraint and for ideal kinematic constraints (without friction) due

to the perpendicularity of constraint force to the allowed motion. Virtual infinitesimal
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displacement for particle i is introduced as δri, such that it is consistent with the constraints

imposed on the system. D’Alembert’s principle can now be defined as[33]

∑
i

(Fi − ṗi) · δri = 0. (2.9)

However, in order to be useful, the equation needs to be transformed to generalized

coordinates, based on constraint equations (2.8). Individual terms are transformed by

using calculus rules as

vi = dri
dt =

N−k∑
j=1

∂ri
∂qj
· dqj

dt + ∂ri
∂t
, (2.10)

δri =
N−k∑
j=1

∂ri
∂qj

δqj, (2.11)

N∑
i=1
Fi · δri =

N∑
i=1

N−k∑
j=1

Fi ·
∂ri
∂qj

δqj =
N−k∑
j=1

Qjδqj, (2.12)

where Qj = ∑N
i=1 Fi · ∂ri

∂qj
represents jth component of the generalized “force”, i.e. the

“force” acting in “direction” of jth generalized coordinate.

Utilizing expressions (2.10)-(2.12) and calculus identities, d’Alembert’s principle (2.9)

can be reformulated as

N∑
i=1

miv̇i · δri −
N∑
i=1
Fi · δri = 0,

N∑
i=1

N−k∑
j=1

miv̇i ·
∂ri
∂qj

δqj −
N−k∑
j=1

Qjδqj = 0,

N∑
i=1

N−k∑
j=1

d
dt

(
mivi ·

∂vi
∂q̇j

)
δqj −

N∑
i=1

N−k∑
j=1

mivi ·
∂vi
∂qj

δqj −
N−k∑
j=1

Qjδqj = 0,

N−k∑
j=1

 d
dt

 ∂

∂q̇j

 N∑
i=1

1
2mivi · vi


− ∂

∂qj

 N∑
i=1

1
2mivi · vi

−Qj

 δqj = 0, (2.13)

where T = ∑N
i=1

1
2mivi ·vi can be recognized as total kinetic energy of the system, leading

to
N−k∑
j=1

 d
dt

(
∂T

∂q̇j

)
− ∂T

∂qj
−Qj

 δqj = 0. (2.14)

Since the constraints are assumed to be holonomic, leading to N − k independent

generalized coordinates and consequently independent virtual displacements δqj, the only
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way to enforce expression (2.14) is to enforce coefficients for each individual virtual dis-

placement to vanish. This results in following N − k Lagrange’s equations (or generalized

equations of motion)

d
dt

(
∂T

∂q̇j

)
− ∂T

∂qj
−Qj = 0, for j = 1, 2, . . . , N − k. (2.15)

In order to obtain what is usually known as Lagrange’s equations of second kind (or

Euler-Lagrange equations of motion), generalized forces are assumed to be conservative,

and therefore defined by the scalar potential function V

Qj = −∂V
∂qj

. (2.16)

After noticing that the potential function is not the explicit function of generalized velocity

(but only of generalized positions), leading to ∂V
∂q̇j

= 0, Lagrange’s equations (2.15) can be

rewritten as

d
dt

(
∂ (T − V )

∂q̇j

)
− ∂ (T − V )

∂qj
= 0, for j = 1, 2, . . . , N − k. (2.17)

By definition, the Lagrangian is introduced as a difference between kinetic and potential

energy L = T −V , leading to the final expression for Lagrange’s equations of second kind

d
dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= 0, for j = 1, 2, . . . , N − k. (2.18)

2.3 Manifolds

2.3.1 Definition

The conventional approach in describing motion is to utilize Euclidean vector space

(n-dimensional space of real numbers Rn, equipped with dot product), as also used in

section 2.2. However, many physical phenomena evolve on more complicated structure,

while the Euclidean space is only a locally valid assumption. Probably the most intuitive

phenomenon to consider is a particle motion constrained to a sphere surface of two

dimensions S2, which cannot be described with single two-dimensional Cartesian-like

coordinate system, but can be covered with a number of overlapping two-dimensional
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local Cartesian coordinate systems [34]. To this end, n-dimensional manifoldM can be

modeled by n-dimensional hypersurface in p-dimensional Euclidean vector space Ep, with

n ≤ p.

To be more mathematically rigorous in manifold definition, a set (x1, x2, . . . , xn) de-

scribing all points in Rn is considered. The set is a manifoldM if each point P ∈M has

a continuous one-to-one mapping on open set in Rn[35]. Definition requires only the open

set, therefore leading to local mappings on Rn and not requiring one global mapping of

M to Rn. The continuous one-to-one mapping requirement ensures continuity of both the

function describing mapping from open neighborhood of point in M to open region in

Rn, and the function inverse - mathematical concept named homeomorphism. Therefore,

manifold is by definition locally homeomorphic to vector space.

Figure 2.1: Illustration of the mapping from open neighborhood U ∈M to local
Euclidean space f (U) ∈ Rn or in other words, illustration of the (U, f) chart.

As shown in Fig. 2.1 illustrating mapping f from an open neighborhood U ∈ M to

f (U) ∈ Rn, map is used to associate point P ∈ U with n-tuple
(
x1(P ), . . . , xn(P )

)
∈ f (U)

[35]. The neighborhood and its map together are usually called chart.

2.3.2 Coordinate transformations

Naturally, there are overlaps between different neighborhoods, since each point inM is

included in at least one open region. The overlaps between neighborhoods provide impor-

tant insights on manifold properties. Suppose U1 and U2 are overlapping neighborhoods,

with respective mappings f1 and f2 to open regions of Rn. As illustrated in Fig. 2.2, the

regions f1(U1), f2(U2) ∈ Rn can be completely distinct, with f1 and f2 mapping to two
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Figure 2.2: Illustration of two overlapping charts (U1, f1) and (U2, f2) and relation for
coordinate transformation from one to another.

different coordinate systems [35]. However, because of overlaps, there is an expression

relating these coordinate systems. If the point P ∈ U1∩U2 in the intersection is considered,

it obviously maps to a point in both coordinate systems. In order to derive the expression

for transformation from f1(U1) to f2(U2), the point (x1, x2 . . . , xn) ∈ f1(U1) is introduced

as mapping of point P by f1. As illustrated in Fig. 2.2, the point (x1, x2 . . . , xn) can then

be transformed by inverse function f−1
1 to point P , and subsequently mapped by function

f2 to point (y1, y2 . . . , yn) ∈ f2(U2). The expression for transformation between charts

(Rn → Rn) is therefore a composite map f2 ◦ f−1
1 , providing functional relationship for

coordinate transformation in the form

y1 = y1 (x1, x2, . . . , xn)

y2 = y2 (x1, x2, . . . , xn)
...

yn = yn (x1, x2, . . . , xn) . (2.19)

If all functions yi have continuous partial derivatives up to order k, with respect to all

variables xi, then the charts (U1, f1) and (U2, f2) are by definition Ck related. If an atlas

(set of all charts) can be constructed such that every point in manifoldM is included in

at least one neighborhood and all overlapping charts are Ck related, the manifoldM is
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defined to be Ck related, while manifolds of class Ck, with k ≥ 1 are called differentiable

manifolds.

2.3.3 Curves and functions

Curve on the manifold is defined as a differentiable mapping c : R →M from open

set in R toM. As illustrated in Fig. 2.3, each point ξ ∈ (a, b) is associated with a point

P ∈M, therefore rendering a curve, parametrized by ξ [35]. Differentiability introduced

in definition of curve in manifold ensures that the functions for image point coordinates

(x1(ξ), x2(ξ), . . . , xn(ξ)) are differentiable with respect to parameter ξ.

Figure 2.3: Illustration of the curve on manifold, mapping from the open region R to a
curve inM.

On the other hand, the function on manifold f : M→ R associates a value to each

point in manifold P ∈ M. The function can be represented as f(P ) = f(x1, x2, . . . , xn)

and if the expression is differentiable with respect to all its arguments, the function is

differentiable.

2.3.4 Tangent vector spaces

First, the curve on manifoldM is introduced, which passes trough a point P ∈ M,

which can be described by equations

xi = xi(ξ), for i = 1, 2, . . . , n. (2.20)

In addition to this, a differentiable function f(x1, x2, . . . , xn) is introduced for manifold
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M, associating a scalar value with each point on the curve. However, if the relations (2.20)

are taken into account, the function f can also be parameterized by ξ and considered as

giving the value of function f at point on the curve with parameter value ξ. The function

f can now be differentiated with respect to parameter ξ, by using the chain rule as

df
dξ =

n∑
i=1

dxi
dξ

∂f

∂xi
, (2.21)

where terms dxi

dξ can be considered as components of the vector in Euclidean space, that

is tangent to the curve defined by (2.20).

Since each curve is parameterized by unique parameter ξ, there is also a unique set of

components dxi

dξ for each given curve, and therefore each curve has a unique tangent vector.

On the other hand, each vector is obviously tangent to an infinite number of different

curves, and is by no means unique to the given curve.

In order to demonstrate that directional derivatives along curves at M form vector

space in point P ∈ M, scalars a and b are introduced, together with another curve

xi = xi(µ), for i = 1, 2, . . . , n, going through P . Derivative along the curve, with respect

to parameter µ, is then calculated as

d
dµ =

n∑
i=1

dxi
dµ

∂

∂xi
, (2.22)

which together with (2.21) leads to

a
d

dξ + b
d

dµ =
n∑
i=1

(
a

dxi
dξ + b

dxi
dµ

)
∂

∂xi
. (2.23)

It can be noticed that the term adxi

dξ + bdxi

dµ represents components of a new vector, tangent

to curve going through P . Therefore, there exists a parameter λ such that derivative along

curve at P is equal to

d
dλ =

n∑
i=1

(
a

dxi
dξ + b

dxi
dµ

)
∂

∂xi
= a

d
dξ + b

d
dµ, (2.24)

therefore demonstrating closure under linear combination.

It follows from (2.21) that d
dξ can be written for any ξ as linear combination of terms

∂
∂xi

, which therefore from a basis of the vector space, with dxi

dξ as respective components.
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This leads to the interesting conclusion that there is a one-to-one correspondence between

space of tangent vectors and derivatives along curves at point P .

Since curve tangents are vectors, different vectors at P can be added together. However,

it is very important to note that the vectors at two different points, in general, lie in

different vector spaces and therefore cannot be added together. This is because vectors

lie in tangent space to M in point P , usually denoted TPM, as illustrated in Fig. 2.4

for tangent spaces with respective basis vectors at three different points on surface of the

sphere representing manifold [34]. It is obvious from the basis vectors in figure that the

summation of vectors at two different points is completely meaningless operation. The

term vector is therefore used to denote a vector at specific point P ∈M, while the term

vector field is introduced to denote a rule defining a vector at each point inM.

Figure 2.4: Illustration of tangent spaces with respective basis vectors at three different
points on sphere surface (manifoldM).

2.3.5 Tangent bundles

A manifold M, combined with all its tangent spaces TPM, constitutes a tangent

bundle (or fiber bundle) TM. The illustration of a one dimensional manifold (curve)M,

with three points P1, P2, P3 and respective tangent spaces TP1M, TP2M, TP3M is shown

in Fig. 2.5. Tangent spaces in this particular case are lines, tangent to each point on

the curve, and of infinite length to be capable of “accommodating” vector of any size.

The tangent bundle is illustrated by two different representations, the representation in
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Fig. 2.5(a) includes a natural tangent representation, while Fig. 2.5(b) represents vector

spaces as vertical lines (not tangent to the curve) to illustrate the fact that individual

tangent vector spaces do not intersect in mathematical sense, i.e. each vector space is

“parallel” to another and intersects a manifold M only at the point of tangent space

definition. The name fiber bundle, comes from this illustration, which includes “bundling”

of all presented “fibers” (tangent vector spaces).

Let variable x be the coordinate of the one dimensional manifold M, illustrated in

Fig. 2.5. In order to find coordinates for tangent spaces TPi
M in open region a < x < b,

for some scalars a and b, tangent vector v is defined as

v = y
∂

∂x
, (2.25)

where y is a coordinate for tangent space TPi
M, while ∂

∂x
represents basis vector as

discussed in previous subsection.

Figure 2.5: Illustration of one-dimensional manifold together with few tangent spaces,
drawn tangent to the manifold (a) or parallel to each other (b).

Each fiber has a fixed (and unique) value of x since it is uniquely defined for only one

point on manifold and x is manifold coordinate. In addition to variable x defining a point

at which the tangent space is defined, variable y defines a particular vector in this tangent

space. Since each vector can therefore be defined by coordinates (x, y), and since this is

valid for any point on manifold, and any vector in tangent space, the tangent bundle TM

is also a manifold. In this case, the manifold dimension is two, while in the general case
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it can be shown that the dimension of tangent bundle manifold TM will be m+ n if m

represents dimensions of base manifoldM, while n represents dimension of tangent space

TPi
M [35].

2.3.6 One-forms

A one-form is defined as a linear function associating a real value with each vector.

To be more precise, one-form α at point P ∈M associates a real number α(v) ∈ R with

vector v ∈ TP .

Because of the linearity assumption, any one-form operation on n-dimensional vector

can be represented as

α(v) = α1v1 + α2v2 + · · ·+ αnvn (2.26)

and therefore one-form obviously satisfies vector space axioms (this can be trivially proved

from expression (2.26)). The one-form is therefore named dual vector, and the space of

one-forms in point P is named cotangent bundle and denoted T ∗PM (dual space to TPM).

Probably one of the most well-known one-forms is a gradient of the function. Although

gradient is often considered a vector, it is more correct to consider it a one-form in

differential geometry sense [35]. Another way to look at the distinction between vectors and

one-forms is in the context of linear algebra, where vectors are conventionally represented

by column arrays, while in this framework one-forms (such as gradient) appear as row

arrays.

2.4 Lie groups

Lie groups, introduced and described in this section, represent an important frame-

work in which a configuration space, as well as phase state space, of a proposed coupled

multibody-fluid computational model evolves.

2.4.1 Lie derivatives

It is necessary to introduce the concept of congruence before defining Lie derivatives.

Vector fields has been defined as a rule for defining a vector in each point of the manifold.

This can be reversed to define a problem of defining a curve through a point, for which a

respective tangent vector always satisfies the given vector field. For this purpose, vector

field is defined as a function of position P , as vi(P ) = vi(xi), while tangent vector to
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the curve parameterized by ξ is defined as dxi

dξ , leading to the set of first-order ordinary

differential equations (ODEs)
dxi
dξ = vi(xi). (2.27)

A unique solution always exists for a given set of ODEs (2.27) in some neighborhood

of point P [36], leading to the fact that the resulting integral curves cannot intersect each

other. In addition to this, this also ensures that there exists an integral curve passing

through any P ∈ M, because set of ODEs can be solved with P as the initial solution.

Therefore, for each n-dimensional manifold, there is a (n− 1)-dimensional family of curves

“filling” entire manifold, called congruence [35].

These curves provide a mapping of manifold onto itself, because at any ξ, there is

a (sufficiently small) number ∆ξ, defining a mapping from P ∈ M to the point on the

manifold that is at ∆ξ distance along the curve. If such mapping exists for any ∆ξ, then it

can be said that there exists a one-dimensional family of mappings, with composition law

allowing for addition of different ∆ξ. This kind of mapping is usually called Lie dragging

in literature, for the illustration of “dragging” something along congruence by ∆ξ.

In the example of a function f defined on manifold, “dragging” along congruence

defines new function f∆ξ such that if point P1 with parameter along the curve ξ maps by

“Lie dragging” to P2 with parameter ξ + ∆ξ, function values are

f(P1) = f∆ξ(P2). (2.28)

If the function f is constant along congruence
(

df
dξ = 0

)
, then it is also invariant under

presented mapping.

Since the manifolds in general do not necessary include any metrics, it is difficult to

define derivatives on manifolds. However, with congruence introduced, if there exists a

curve between points “distance” can be represented by the difference in parameter value,

therefore providing possibility of defining derivative with respect to curve parameter.

If the scalar function is evaluated at ξ0 and then “dragged” (2.28) along the curve by

∆ξ, derivative with respect to parameter ξ in point ξ0 can then be defined as

lim
∆ξ→0

f∆ξ(ξ0)− f(ξ0)
∆ξ = lim

∆ξ→0

f(ξ0 + ∆ξ)− f(ξ0)
∆ξ = df

dξ (ξ0) . (2.29)

In other words, Lie derivative of scalar function is equal to the conventional derivative of
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the function with respect to curve parameter.

For the sake of clarity, Lie derivatives are usually expressed in LY notation, where Y

in the subscript represents the vector field generating congruence (mapping). Therefore,

Lie derivative of scalar function along the congruence (with curve parameters ξ) generated

by vector field Y can be represented as

LY f = df
dξ . (2.30)

In the similar procedure [35], Lie derivative of the vector field X along the congruence

generated by vector field Y can be derived. The result is now expressed as

LYX = [Y,X] , (2.31)

where [Y,X] represents Lie bracket of vector fields Y and X, which is here equal to

[Y,X] = d
dξX −

d
dµY, (2.32)

where µ represents parameter of the curve generated by vector field X.

Lie derivative of vector field, along the congruence defined by other vector field is

obviously antisymmetric, resulting in

LYX = LXY, (2.33)

for any two vector fields X and Y .

Very important concept (and important use of Lie derivatives) in physics is the invari-

ance of tensor under a vector field, or

LY T = 0, (2.34)

where T represents tensor that is invariant with respect to vector field Y . Invariance of

tensor representing physically meaningful quantity under a vector field leads to the con-

servation of this quantity in respective transformation (symmetry which can be exploited

in mathematical modeling, as will be shown in later sections).
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2.4.2 Lie group definition

In order to be a group, set (collection of elements) G, equipped with binary operation ·

combining two elements of the group and resulting with another element of group (closure

under ·), must satisfy following axioms [37]:

• Associativity: For a, b, c ∈ G

a · (b · c) = (a · b) · c. (2.35)

• Identity element: There is an identity element e ∈ G such that for any a ∈ G

a · e = e · a = a. (2.36)

• Inverse element: For any element a ∈ G, there exists an inverse element a−1 ∈ G

for which

a · a−1 = a−1 · a = e, (2.37)

where e ∈ G represents identity element.

Now that both differentiable manifolds and groups are introduced, the important

concept of a Lie group G can be introduced as a group that is also a differentiable

manifold, with the group operation generating a differentiable map of manifold onto itself.

If element a ∈ G is inducing a map of G onto itself, it maps any other element b ∈ G as

b 7→ ab (known as left translation of b by a) or b 7→ ba (known as right translation of b by

a). The Lie group does not have to be Abelian, meaning that the left and right translation

generally don’t have the same result (ab 6= ba in general).

Interesting properties can be revealed by considering the neighborhood of identity

element e ∈ G. Since by definition of a group identity element is mapped with (left

or right) translation by a into a itself (2.36), the neighborhood of e is mapped on a

neighborhood of a, as illustrated in Fig. 2.6 for the case of left translation [35].

Since the map is differentiable, it can be used to map not only the elements but also

curves and tangent vectors. Therefore, a specific map describing left translation of tangent

vectors at e into tangent vectors at a denoted La : Te → Ta can now be defined (original

and mapped curve and tangent vector are also illustrated in Fig. 2.6). Any vector field V
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Figure 2.6: Illustration of left translation La mapping the neighborhood of e onto the
neighborhood of a, with illustrations of point, curve and tangent vector mappings.

on Lie group G is left-invariant if previously defined La maps vector field V at identity e

to same vector field V at a, i.e. La : V (e) 7→ V (a) ∀ a.

It can be shown that if V1 and V2 are two left-invariant vector fields, then their Lie

bracket is also a left-invariant vector field, i.e. La : [V1, V2] 7→ [V1, V2] [35]. This is an

important result, because it can be said that left-invariant vector fields form a Lie algebra,

usually denoted g.

2.4.3 Lie algebras

A Lie algebra is only mentioned in previous subsection, without explanation or defini-

tion. Actually, every Lie group G has the associated Lie algebra g. Formally, Lie algebra

is defined as a real vector space V , together with a binary operation denoted [·, ·], which

for any two input vector produces result in g (i.e. operation with g × g → g), satisfying

the following properties [38]:

• Bilinearity: For any scalars a, b, and vectors x, y, z ∈ g

[ax+ by, z] = a [x, z] + b [y, z] ,

[z, ax+ by] = a [z, x] + b [z, y] . (2.38)
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• Alternativity: For any x ∈ g

[x, x] = 0. (2.39)

• Jacobi identity: For any x, y, z ∈ g

[
x [y, z]

]
+
[
y [z, x]

]
+
[
z [x, y]

]
= 0. (2.40)

Presented properties also imply an important and not mentioned property of anticommu-

tativity, which can be derived from bilinearity and alternativity properties, for any x, y ∈ g

as

[x+ y, x+ y] = 0,

[x, x] + [y, x] + [x, y] + [y, y] = 0,

[y, x] + [x, y] = 0,

[x, y] = −[y, x]. (2.41)

Binary operation [·, ·] is named Lie bracket. One Lie bracket operator, commutator

of vector fields (2.32) has already been mentioned, but without precise definition of Lie

bracket necessary properties. However, there are many useful Lie brackets that will be

encountered for Lie groups presented in following chapters.

2.5 Rigid body motion in Lie group setting

An important concept in any multibody system analysis is the concept of rigid body,

where the rigidity can be defined as the property constraining any two points of the body

to be constant distance apart during any motion.

A motion of any point on the unconstrained rigid body in R3 can be described by six

degrees of freedom (DoF) - 3 DoF for position of the rigid body mass center and 3 DoF

for orientation (attitude) of rigid body. As illustrated in Fig. 2.7, position of any point P

on rigid body can be described as sum of position vectors for body center of mass C (due

to rigid body translation) and vector pointing from C to P (due to rigid body rotation)

xP = xC + xC→P , (2.42)
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where all vectors are expressed in inertial (spatial, fixed) reference frame.

Figure 2.7: Description of any point P as sum of mass center position vector and vector
pointing from center of mass to point P .

Since the center of mass translation description presents a trivial task, governed by

Newton’s law, further discussion focuses on the rigid body rotation, assuming the fixed

center of mass, while all presented conclusions remain valid if the center of mass motion

is included in analysis.

There are usually three coordinate frames interesting for consideration in framework of

rigid bodies: material, spatial and body-fixed coordinate frame. Let B denote a reference

configuration of rigid body, as an open set in R3. Set B is assumed to have piecewise smooth

boundary. Let material points of rigid body be denoted X = (X1, X2, X3) ∈ B, with Xi

being ith coordinate in material reference frame with orthonormal basis (m1,m2,m3).

A mapping β : B → R3 results with a configuration of B in spatial reference frame

(spatial points of rigid body), with orthonormal basis (e1, e2, e3) [39]. Spatial points

coordinates are denoted x = (x1, x2, x3) ∈ R3. Mapping of rigid body from reference

configuration (material coordinate frame) to (spatial) configuration (spatial coordinate

frame) is illustrated in Fig. 2.8.

In addition to these coordinate systems, it is also important to introduce body-fixed
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Figure 2.8: Illustration of transformation β from the material (m1,m2,m3) to the
spatial (e1, e2, e3) reference frame and depiction of the body-fixed reference frame

(b1, b2, b3), moving together with rigid body.

reference frame. As illustrated in Fig. 2.8, as rigid body rotates, spatial coordinate system

is fixed in space, while the body-fixed reference frame rotates with the body and is usually

anchored at the center of mass.

Since the origin (center of mass) is assumed to be fixed, and since any isometry of R3

that leaves the origin fixed can be considered rotation, which can be expressed as [39]

x (X, t) = R(t)X, (2.43)

for any rotation from the reference configuration. MatrixR(t) represents a rotation matrix

with property

RTR = RRT = I, (2.44)

where I represents 3×3 identity matrix. Determinant of the rotation matrix is det
(
R(t)

)
=

1. Configuration space of the rigid body rotation can therefore be identified with special

orthogonal group R(t) ∈ SO(3). The group is closed under matrix multiplication, since

for any A,B ∈ SO(3), matrix product AB ∈ SO(3), since determinant of the matrix

product equals to the product of individual determinants. Group identity is 3× 3 identity

matrix I, while the inverse element is matrix transpose RT . Lie algebra so(3) of the group

25



Chapter 2. Theoretical framework

SO(3) contains the elements in form of the skew symmetric matrix

ω̃ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3). (2.45)

Tilde operator ·̃ maps the vector ω ∈ R3 to Lie algebra so(3). It is interesting to note

connection between symmetric matrices and vector product

ũv = u× v, (2.46)

for any u,v ∈ R3. Since the vector product is anticommutative and satisfies Jacobi identity

[38] following expression can be derived for any u,v,w ∈ R3

(̃ũv)w = (u× v)×w = −w × (u× v)

= u× (v ×w) + v × (w × u)

= u× (v ×w)− v × (u×w)

= ũṽw − ṽũw = (ũṽ − ṽũ)w = [u,v]w. (2.47)

Therefore, so(3) is identified with R3, while the cross product in R3 is equivalent to Lie

bracket in so(3).

The velocity phase space of a rigid body rotation is identified with tangent bundle

TSO(3), while the momentum phase space is identified with T ∗SO(3)[39].

The velocity at a material point X can be defined as

V (X, t) = ∂x (X, t)
∂t

= ∂

∂t

(
R(t)X

)
= Ṙ(t)X, (2.48)

where the resulting V (X, t) is often called material or Lagrangian velocity.

In addition to this, spatial or Eulerian velocity can be defined in similar manner, but

based on the position in spatial frame x, instead of the material position X

v(x, t) = V (X, t) = Ṙ(t)R−1(t)x = Ṙ(t)RT (t)x. (2.49)

On the other hand, the velocity can also be defined by assuming the X is time
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dependent, while x is fixed (i.e. “looking at the motion from body-fixed reference frame”),

leading to

vb(X, t) = −∂X(x, t)
∂t

= − ∂

∂t

(
R−1(t)x

)
, (2.50)

where derivative of the inverse matrix ∂
∂t

(
R−1(t)

)
can be calculated from

RR−1 = I,

∂

∂t

(
RR−1

)
= ∂I

∂t
,

ṘR−1 +R ∂

∂t
R−1 = 0,

R
∂

∂t
R−1 = −ṘR−1,

∂

∂t
R−1 = −R−1ṘR−1. (2.51)

By utilizing (2.51), expression (2.50) can be reformulated as

vb(X, t) = R−1ṘR−1x

= R−1ṘX

= RTV = RTv. (2.52)

Similarly as for derivation of (2.51), derivatives of RRT = I and RTR = I (2.44)

leads to expressions

d
dt
(
RRT

)
= d

dt (I)

ṘRT +RṘT = 0

ṘRT +
(
ṘRT

)T
= 0, (2.53)

d
dt
(
RTR

)
= d

dt (I)

ṘTR+RT Ṙ = 0(
RT Ṙ

)T
+RT Ṙ = 0, (2.54)

leading to the conclusion that both ṘRT and RT Ṙ are skew-symmetric.

Classical definition of angular velocity in spatial (fixed) reference frame can be inferred
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from

v = Ω× x = Ω̃x. (2.55)

By combining (2.55) and (2.49), angular velocity in spatial reference frame can be

formulated as

Ω̃ = ṘRT , (2.56)

while the angular velocity in body-fixed reference frame can be defined as

ω̃ = RT Ṙ, (2.57)

with relations between angular velocities Ω,ω ∈ R3 and Ω̃, ω̃ ∈ so(3)

Ω = Rω, (2.58)

Ω̃ = Rω̃RT . (2.59)

Dynamics of rigid body, evolving on TSO(3) cam therefore be reconstructed from

(2.57), by formulating system of linear differential equations for R ∈ SO(3)

Ṙ = Rω̃. (2.60)

2.6 Ideal fluid in Lie group setting

If the ideal fluid domain is denoted F , the configuration space QF constitutes a group of

volume-preserving diffeomorphisms QF = GF = Diffvol(F). This is an infinite dimensional

Lie group with composition as group closure operation.

Each mapping βF in group G is a mapping of domain F to itself (βF : F → F). Any

fluid “particle” (point) from initial (material) configuration X ∈ F is mapped by βF

to a current point position x = βF (X) ∈ F . Therefore, defining βF provides enough

information to prescribe motion of each fluid “particle” - it describes a fluid configuration.

The fact that βF is volume-preserving corresponds to the incompressibility property of

ideal fluids, while diffeomorphism assumption ensures that there are no discontinuities in

fluid domain (such as cavities for example).

Motion of the fluid can be considered as a family of time dependent mappings of

individual fluid particles, giving the position of material point X in the spatial coordinate
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frame, at time t as x = βF (X, t). Fluid material velocity field can be defined, similar to

the rigid body velocity definition (2.48), as partial derivative of the mapping

V = ∂βF (X, t)
∂t

. (2.61)

Again similarly as for the rigid body case, spatial velocity field can be defined as

v = V = ∂βF (β−1
F x, t)
∂t

, (2.62)

or in a different notation, without explicit writing of variables

v = β̇F ◦ β−1
F , (2.63)

where ◦ represents function composition operator (the operator of the Diffvol(F) Lie group).

Transformation of the fluid “particle” from the material to spatial reference frame is

illustrated in Fig. 2.9, with spatial velocity vector indicated.

Figure 2.9: Illustration of the ideal fluid “particle” mapping βF from material to spatial
reference frame and spatial velocity vector v.

The interesting property of ideal fluids (or even more generally, incompressible fluids)

is invarance of fluid kinetic energy with respect to the right translation on the pertinent

group Diffvol(F). In other words, the right translations Ry : GF → GF in the form

(Rh(g) = g ◦ h). This can be explained according to [40] as being due to the fact that

right translation by h acts before a diffeomorphism g that evolves with velocity ġ. The

volume-preserving diffeomorphism h can be therefore considered as “renumeration” of

particles at the initial position. However, this “renumeration” changes only the “label” of
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the point occupying certain position in time, but the velocity, and consequently kinetic

energy, at that position remains unchanged, i.e. invariant to the right translation. This

property is often named “particle relabeling” symmetry.

The invariance of spatial velocity (2.63) to the right translation by (time-independent)

volume-preserving diffeomorphism h ∈ Diffvol(F) can be shown mathematically by chang-

ing βF with y = βF ◦ h, leading to

v = ∂y(y−1x, t)
∂t

= ẏ ◦ y−1

= ∂

∂t
(βF ◦ h) ◦ (βF ◦ h)−1

= β̇F ◦ h ◦ h−1 ◦ β−1

= β̇F ◦ β−1, (2.64)

leading to the same result as (2.63), therefore proving right-invariance of ideal fluid spatial

(Eulerian) velocity and, consequently, kinetic energy.

Material (Lagrangian) description of fluid motion belongs to the tangent bundle of the

volume preserving diffeomorphism (X,V ) ∈ TDiffvol(F), while the switch to the spatial

(Eulerian) description is done by right translation, as shown in (2.62).
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Coupled multibody-fluid equations of
motion

3.1 Introduction

As already introduced in section 1.4, flow around flapping wings will be considered

potential and incompressible, leading to the added inertia that fluid exerts on the multibody

system, while viscous effects will be accounted for by modeling vortex wake, leading to

external aerodynamic load on the multibody system. To this end, coupled multibody-fluid

system, with the assumption of potential and incompressible fluid is first introduced from

a Lie group framework perspective. This is then used to derive equations of motion for

a coupled multibody-fluid system in DAE index 1 form, with description of kinematic

reconstruction algorithm operating on Lie groups and pertinent Lie algebras. The resulting

equations of motion take into account the often mistakenly neglected “aerodynamic load”

due to the time-changing nature of added inertia.

3.2 Coupled multibody-fluid system in Lie group
framework

A system of k constrained (connected by kinematic joints) rigid bodies, submerged

in ideal fluid is considered. At any time t, coupled system consisting of multiple rigid

bodies and ideal fluid occupies an open connected region of Euclidean space, denoted

M. If domain occupied by ith rigid body is denoted Bi, the multibody system can be

said to occupy union of individual rigid body domains as B =
k⋃
i=1
Bi ⊂ M. If the fluid

occupies a connected region F ⊂M, such that the only “voids” in F correspond to rigid

bodies, the open connected region M can be represented as M = B⋃F =
k⋃
i=1
Bi
⋃F .
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The configuration space of the coupled system Q is defined as a set of all appropriately

smooth mappingsM→M, corresponding to the combination of individual configuration

spaces of multibody system QB and ideal fluid QF , which will be discussed in following

paragraphs.

The configuration space of ith rigid body can be represetned byQBi
, with the properties

of Lie group GBi
= R3 × SO(3), where xi ∈ R3 models center of mass translation in the

form of three-dimensional position vector, while Ri ∈ SO(3) captures rigid body rotation

in the form of 3× 3 orthogonal rotation matrix. Element of the rigid body configuration

space (Lie group) is therefore qBi
= (xi,Ri) ∈ GBi

. Identity element of the group is

eBi
= (0, I), where I stands for 3× 3 identity matrix, while the left multiplication on the

group is defined as Lq : GBi
→ GBi

, qBi
→ qBi

· q. Lie algebra (as introduced in section 2.5)

of group GBi
is defined as gBi

= R3 × so(3), where vi ∈ R3 models velocity of ith body

center of mass, while ω̃i ∈ so(3) represents angular velocity of ith rigid body in the form

of skew-symmetric 3 × 3 matrix. Element of ith rigid body tangent space can therefore

be defined as vi = (vi, ω̃i) ∈ gBi
. State space of ith rigid body can therefore be defined as

Si = GBi
× gBi

= R3 × SO(3)× R3 × so(3).

Multibody system, consisting of rigid bodies connected by kinematic constraints (joints),

can be modeled in a similar framework as one rigid body. The configuration space of the

whole multibody chain (with k bodies as introduced earlier) is comprised of individual rigid

body configuration spaces in the form GB = ∏k
i=1 GBi

= R3 × SO(3)× · · · × R3 × SO(3),

with elements in the form qB = (x1,R1, . . . ,xk,Rk) ∈ GB. Configuration space GB is

also Lie group, with Lie algebra defined as gB = ∏k
i=1 gBi

= R3 × so(3) × · · · × R3 ×

so(3), with elements in the form v = (v1, ω̃1, . . . ,vk, ω̃k) ∈ gB. A multibody system

state space can therefore be defined as SB = GB × gB = ∏k
i=1GBi

× ∏k
i=1 gBi

= R3 ×

SO(3) × · · · × R3 × SO(3) × R3 × so(3) × · · · × R3 × so(3) ∼= TGB, with elements in

the form xB = (x1,R1, . . . ,xk,Rk,v1, ω̃1, . . . ,vk, ω̃k) ∈ SB [41]. It is interesting to note

that SB is a Lie group itself, with Lie algebra defined as sB = ∏k
i=1 gBi

× ∏k
i=1 R3 =

R3 × so(3) × · · · × R3 × so(3) × R3 × R3 × · · · × R3 × R3, with elements in the form

zB = (v1, ω̃1, . . . ,vk, ω̃k, v̇1, ω̇1, . . . , v̇k, ω̇k) ∈ sB.

As already introduced in section 2.6, configuration space of ideal fluid (fluid particles

position field) is represented by volume-preserving diffeomorphism Diffvol(F), also having

the properties of a Lie group. A “particle relabeling” symmetry, introduced in section 2.6
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can now be utilized to perform an important reduction of the coupled system. Let JF
represent a momentum map associated with action of Diffvol(F) on configuration space Q,

which can be said to represent vorticity advection [42]. The momentum map is conserved

with respect to the action, since the Lagrangian of the fluid [43] is invariant to actions

of Diffvol(F), as discussed in section 2.6. This property can also be described by the fact

that action of Diffvol(F) has no influence on the multibody system configuration space Lie

group GB, but influences only the fluid configuration. To this end, symplectic reduction

at zero vorticity results in [29, 44]

J−1
F (0) /Diffvol (F) = T ∗

(
Q/Diffvol (F)

)
= T ∗GB, (3.1)

indicating an important conclusion that the whole dynamics of the coupled system evolves

in multibody system cotangent bundle T ∗GB, i.e. fluid variables are reduced out, while

fluid effects are accounted for solely by added inertia “felt” by the multibody system

due to the environmental fluid. It is important to note that this conclusion is made for

the assumption of no vorticity. However, the vorticity will be included in our analysis

as previously introduced and further discussed in Chapter 5. In this case, symplectic

reduction (3.1) is still valid, but is now not performed at zero vorticity level, but instead

at a certain circulation momentum map level in the discretised setting [45, 44]. Since

Diffvol(F) is a full symmetry Lie group, fluid variables are reduced in the same manner and

Hamiltonian dynamics of the coupled system is again represented by multibody system

variables only, while the vorticity (circulation) ‘additional’ effects are included via vector

Qvort [44].

3.3 Multibody system equations of motion

Let us first consider one “free” (without any kinematical constraints) rigid body, as

illustrated in Fig. 2.7. As previously introduced, any point P on a rigid body can be

represented as a sum of center of mass position vector and vector pointing from center of

mass to point P (2.42), where all terms in the equation are expressed in spatial coordinate

frame. However, the equation can be reformulated as

xP = xC +Rx′C→P , (3.2)
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where x′C→P ∈ R3 is now expressed in body-fixed reference frame, while R ∈ SO(3)

represents rotation matrix.

Since the body is considered rigid, vector x′C→P is constant and taking derivative in

time of equation (3.2) results with

vP = vC + Ṙx′C→P , (3.3)

where vP represents velocity of any point P , while vC represents velocity of mass center.

Transforming vector x′C→P to the spatial reference frame results with

vP = vC + ṘRTxC→P , (3.4)

and using definition of angular velocity in spatial reference frame (2.56) results with

vP = vC + Ω̃xC→P . (3.5)

In order to derive equations of motion for rotation of one rigid body (denoted by

subscript i), we start from the law of angular momentum conservation

l̇i = ti, (3.6)

where li represents angular momentum, while ti represents torque vector, all expressed

in spatial reference frame. Angular momentum is defined as li = JiΩi, but the time-

dependent inertia matrix Ji makes the calculation in this form difficult. To this end,

angular momentum is usually expressed in body-fixed reference frame as l′i = J ′iωi. Ex-

pression (3.6) can now be rewritten and expanded as

d
dt(Ril

′
i) = Rit

′
i,

d
dt(RiJ

′
iωi) = Rit

′
i,

ṘiJ
′
iωi +RiJ

′
iω̇i = Rit

′
i, (3.7)

and multiplication of the equation from the left side with RT
i and applying equation (2.57)
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results with

RT
i ṘiJ

′
iωi +RT

i RiJ
′
iω̇i = RT

i Rit
′
i,

J ′iω̇i + ω̃iJ ′iωi = t′i. (3.8)

In addition to this, Newton’s equations of motion govern the translational dynamics

of “free” rigid body in the form

ṗi = fi

miv̇i = fi, (3.9)

where pi represents linear momentum of rigid body i, fi represents force acting on the

body and mi stands for rigid body mass. Expressions (3.8) and (3.9) represent set of

ordinary differential equations (ODE), that can be solved for vi and ω̃i to obtain velocity

field of single “free” rigid body.

If k rigid bodies are considered, with the assumption of no constraints still valid, motion

equations can be expressed in matrix form as

Mv̇ = Q, (3.10)

whereM represents inertia matrix, v is a set of all (both translation and rotation) velocities,

while Q is generalized “load” vector, which also includes the effects of expressing equations

in rotational (body-fixed) reference frame. Individual terms are equal to

M =



m1I3×3 0 0 0 . . . 0 0

0 J ′1 0 0 . . . 0 0

0 0 m2I3×3 0 . . . 0 0

0 0 0 J ′2 . . . 0 0
... ... ... ... . . . ... ...

0 0 0 0 · · · mkI3×3 0

0 0 0 0 · · · 0 J ′k



, (3.11)
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v =



v1

ω1

v2

ω2
...

vk

ωk



, (3.12)

Q = QF −Qvel, (3.13)

QF =



f1

t1

f2

t2
...

fk

tk



, Qvel =



0

ω̃1J
′
1ω1

0

ω̃2J
′
2ω2
...

0

ω̃kJ
′
kωk



. (3.14)

At this point, previously introduced k rigid bodies are constrained by m kinematical

constraints in the form of functions

g(x, t) = 0 (3.15)

depending only on positions x (translational position of mass centers and orientation of

rigid bodies) and time t, i.e. holonomic constraints, as introduced in section 2.2. Derivative

of constraint equations with respect to time results with

dg(x, t)
dt = 0

∂g

∂x
v + ∂g

∂t
= 0

Cv = −∂g
∂t
, (3.16)

where C represents constraint m× 6k dimensional Jacobian matrix. Resulting constraint

forces and torques can now be represented in the form of Lagrange multipliers as CTλ,

where λ represents vector of Lagrangian multipliers, resulting in the Newton-Euler equation
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for constrained multibody system

Mv̇ +CTλ = Q. (3.17)

Although not necessary, further analysis will be limited to the scleronomous constraints,

i.e. constraints not explicitly depending on time t. Rheonomous constraints can be

conventionally introduced by expanding equations in a straightforward manner, but here

this discussion is omitted for the sake of clarity and because implemented numerical

examples include scleronomous constraints only.

Scleronomous onstraint mapping g(x) : GB → Rm imposes geometric constraints

on the configuration space GB. Therefore, multibody system can be said to evolve on

(6k−m)-dimensional sub-manifold, defined as N = {x ∈ GB : g = 0}. The unconstrained

configuration space of multibody system GB is sometimes named ambient configuration

space [46].

In order to formulate a (differential algebraic equations) DAE system of index 1, equa-

tion (3.16) (with ∂g
∂t

= 0 because of scleronomous constraint assumption) is differentiated

again with respect to time, resulting with contraint equation at acceleration level

C(x)v̇ = ζ(x,v). (3.18)

DAE index 1 system of equations in matrix form can now be formulated as

M CT

C 0


v̇
λ

 =

Q
ζ

 . (3.19)

System (3.19) can be solved for v̇ and then kinematic reconstruction on SB = GB × gB
can be performed by utilization of Munthe-Kaas type of ODE integrators [47] (discussed

in subsequent section). However, the position constraints (3.15) are included in dynamical

equations at the acceleration level, while the constraint equations should also be satisfied

at both position and velocity level (well-researched issue of constraint drift, discussed in

[48, 49, 50]). The constraint equation at position and velocity level are often denoted

hidden constraints, because they do not appear in the system (3.19) directly, but should be

satisfied by utilizing dedicated techniques, often called constraint stabilization procedures.
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The constraint equations at acceleration level are, of course, satisfied during (3.19) solving,

because they are explicitly included in the system.

3.4 Kinematic reconstruction of position and
orientation from velocity field

Solving a DAE index 1 system of equations (3.19), results with the acceleration field

(both translational and angular acceleration). This can be further integrated - basically

with any vector-based method for ordinary differential equations (ODE), such as Runge

Kutta for example - together with the constraint stabilization on velocity level (3.16) to

obtain velocity field. Kinematical reconstruction is then required to obtain positions and

orientations of rigid bodies in the multibody system.

Reconstruction of positions is a straightforward task, performed again by integration

with any vector-based ODE solver, together with enforcing constraints at the position level

(3.15), since position of ith rigid body is actually represented by a vector in Euclidean

space vi ∈ R3.

On the other hand, reconstruction of orientation is a more involving task since, as

already introduced in section 2.5, three dimensional rotation is not a vector, but a more

nonlinear manifold, i.e. rotation (orientation) matrix of ith rigid body belongs to the special

orthogonal group Ri ∈ SO(3) (most rigorously, it belongs to Lie group, see Chapter 2).

Because of this, a conventional ODE integrators would introduce errors in the structure

of the rotation matrices, i.e. rotation matrix would “loose” orthogonality property very

soon during integration process if conventional vector space based solver (such as Runge

Kutta) is used. This could of course be “repaired” by a stabilization algorithm, artificially

enforcing matrix orthogonality, but this approach results with six non-trivial algebraic

equations for each rigid body, that would lead to the unnecessary complications and

inefficiencies in the algorithm (although some authors in recent liretature advocate this

approach [51, 52]).

As opposed to the conventional approach, including solution with standard vector-

based ODE solvers, the solution of kinematic reconstruction for ith rigid body is expressed,

following a theorem by Magnus [53], in the form

R(t) = R(0) exp(ũ(t)), (3.20)
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where exp represents the exponential mapping operator, while u(t) ∈ R3 represents an

instantaneous rotation vector at time t given in its skew-symmetric form, as an element

of the pertinent Lie algebra ũ ∈ so(3). This vector could also be called scaled rotation

vector, distinguishing this representation from the classical description of axis-angle pa-

rameters with unit vector and angle, while here the angle is represented by the norm of

the instantaneous rotation vector φrot = ‖u‖.

It can be shown that the exponential mapping for rigid body kinematic reconstruction,

introduced in (3.20) is equivalent to the Rodrigues formula [54] and can be formulated as

[55]

exp(ũ) = I3×3 + sin(‖u‖)
‖u‖

ũ+ 1− cos(‖u‖)
‖u‖2 ũ2. (3.21)

Pertinent to the Munthe-Kaas Lie group numerical method (basically Runge Kutta

algorithm based method but designed to operate in Lie groups instead of vector spaces),

described in detail in [56, 53, 47], scaled instantaneous vector u can be defined as a solution

to the following ODE system

˙̃u = dexp−1
−ũ (ω̃) , ũ0 = 0, (3.22)

where dexp represents a differential of the exponential mapping introduced in (3.20), which

can be defined as [57]

dexp−1
−ũ (ω̃) = ω̃ + 1

2 [ũ, ω̃] + 1
12
[
ũ, [ũ, ω̃]

]
+ · · · = ω̃ +

∞∑
j=1

(−1)jBj

j! adjũ(ω̃), (3.23)

where Bj represents jth Bernoulli number [56], while ‘ad’ represents an adjoint operator,

corresponding to the Lie bracket [·, ·] (introduced in section 2.4.1), such that for any

ũ, ṽ ∈ so(3) adjoint operator results with

w̃ = adũ(ṽ) = [ũ, ṽ] = ũṽ − ṽũ, (3.24)

where resulting w̃ is also element of so(3), since

w̃T = (ũṽ − ṽũ)T = ṽT ũT − ũT ṽT

= ṽũ− ũṽ = −(ũṽ − ṽũ) = −w̃, (3.25)
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therefore proving that w̃ ∈ so(3).

Importantly, there is also a closed-form solution for the series (3.23) resulting in [57]

dexp−1
−ũ (ω̃) = ω̃ + 1

2ũω̃ −
‖u‖ cot

(
‖u‖

2

)
− 2

2‖u‖2 ũ2ω̃. (3.26)

The underlying differential equation (3.22) can be solved with any vector space based

ODE solver and the overall method order of accuracy will be depending directly on the

order of accuracy of the method utilized for solving (3.22). Interestingly, it can be shown

[53, 58] that if ODE solver used is of order p it enough to use ≥ p− 2 number of elements

in the sum on the right hand side of (3.23), in order to keep the order of accuracy p.

Therefore, if 2nd order accuracy method is to be used, it is enough to set the derivative of

scaled instantaneous rotation vector to be equal to the angular velocity of the rigid body,

expressed in body-fixed reference frame, i.e. ˙̃u = dexp−1
−ũ (ω̃) = ω̃.

This defines everything needed to formulate an algorithm for kinematic reconstruction

of rigid body rotation from a given velocity field. One time step of the algorithm (starting

from ith time step), based on fourth order Runge Kutta method as an ODE solver for

(3.22) can be represented as

k1 = ∆t · dexp−1
0 (ω̃i)

K1 = ∆t · f(ti)

k2 = ∆t · dexp−1
− 1

2k1

(
ω̃i + 1

2K1

)

K2 = ∆t · f
(
ti + 1

2∆t
)

k3 = ∆t · dexp−1
− 1

2k2

(
ω̃i + 1

2K2

)

K3 = ∆t · f
(
ti + 1

2∆t
)

k4 = ∆t · dexp−1
−k2

(ω̃i +K3)

K4 = ∆t · f (ti + ∆t)

ωi+1 = ωi + 1
6 (K1 + 2K2 + 2K3 +K4)

Ri+1 = Ri · exp
(

1
6 (k1 + 2k2 + 2k3 + k4)

)

40



Chapter 3. Coupled multibody-fluid equations of motion

where f(ti) represents the function for calculating angular velocity derivative at time step

ti, i.e. a solution to the Euler’s rotational dynamics equation, such as (3.19).

This update can also be illustrated in the form of “lifting” from the manifold to tangent

space, making an update on the Lie algebra and “pulling back” to the manifold, as shown

in Fig. 3.1.

3.5 Equations of motion for the coupled
mutibody-fluid system

Up until this point, multibody system dynamics and kinematics are analyzed as if

evolving in vacuum. As already introduced, symplectic reduction of ideal fluid (3.1) allows

for exclusion of fluid variables from the model and coupled system dynamics evolves in

multibody system cotangent bundle T ∗GB, while the fluid influence on the coupled system

motion is modeled by added inertia effects.

However, it is important to note that the added inertia, due to the effects of the

ideal fluid on multibody system, is not constant in general (as opposed to the standard

rigid body inertia) and the overall inertia matrix “felt” by the multibody system can be

expressed as

M = MB +MF (t), (3.27)

with MB representing a block matrix with masses and inertia matrices of multibody

system rigid bodies as diagonal block elements, expressed in body-fixed reference frame,

while MF (t) represents added inertia matrix, capturing all effects of ideal fluid on the

multibody system.

Multibody system inertia matrix, expressed in the body-fixed reference frame, can be

expressed in block matrix form as

MB =



m1I3×3 0 0 0 · · · 0 0

0 J1 0 0 · · · 0 0

0 0 m1I3×3 0 · · · 0 0

0 0 0 J2 · · · 0 0
... ... ... ... . . . ... ...

0 0 0 0 · · · mkI3×3 0

0 0 0 0 · · · 0 Jk



, (3.28)
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where mi represents mass of the ith rigid body, while Ji represents inertia of ith body,

expressed in body-fixed reference frame.

Elements of matrix MF (t) in each time step are calculated by boundary element

method, as described in Chapter 4. The fact that the added inertia matrix is time-

dependent should be taken into account when deriving coupled system equations of motion,

while it is often neglected in the literature.

The added inertia matrix for a multibody system, with k bodies submerged in fluid

can be represented by a block inertia matrix in the form

MF =



mv1v1
f mv1ω1

f mv1v2
f mv1ω2

f · · · mv1vk
f mv1ωk

f

mω1v1
f mω1ω1

f mω1v2
f mω1ω2

f · · · mω1vk
f mω1ωk

f

mv2v1
f mv2ω1

f mv2v2
f mv2ω2

f · · · mv2vk
f mv2ωk

f

mω2v1
f mω2ω1

f mω2v2
f mω2ω2

f · · · mω2vk
f mω2ωk

f

... ... ... ... . . . ... ...

mvkv1
f mvkω1

f mvkv2
f mvkω2

f · · · mvkvk
f mvkωk

f

mωkv1
f mωkω1

f mωkv2
f mωkω2

f · · · mωkvk
f mωkωk

f



, (3.29)

where individual block matrix elements correspond to the added inertia in the “direction”

of first superscript, due to the motion in direction of second superscript - this will be

discussed in detail in Chapter 4.

Defining a linear and angular momenutm for the coupled multibody-fluid system is

not a trivial task to the infinite domain of the surrounding fluid. However, Lord Kelvin

introduced concepts of linear and angular impulse of the coupled system [59], which is not

equivalent to the coupled system momentum, but varies under external load in the same

way the momentum does, i.e.
dΠ
dt = Qspatial, (3.30)

where Π represents total coupled system impulse, while Qspatial represents total applied

load (forces and torques), expressed in spatial coordinate frame.

Total impulse of the coupled system can be defined as

Π = MinertialV , (3.31)

whereM represents overall inertia of the multibody system expressed in the inertial (spa-
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tial or fixed) reference frame, while V =
(
vT1 ωT1 vT2 ωT2 · · · vTk ωTk

)T
represents

linear and angular velocities of the multibody system. Total impulse Π represents both

linear and angular impulses of the coupled system.

Expression (3.31) can be further rewritten by including (3.28) and (3.29) as

Π =



R1

(
m1v1 +∑k

i=1

(
mv1vi

f vi +mv1ωi
f ωi

))
R1

(
J1ω1 +∑k

i=1

(
mω1vi

f vi +mω1ωi
f ωi

))
R2

(
m2v2 +∑k

i=1

(
mv2vi

f vi +mv2ωi
f ωi

))
R2

(
J2ω2 +∑k

i=1

(
mω2vi

f vi +mω2ωi
f ωi

))
· · ·

Rk

(
mkvk +∑k

i=1

(
mvkvi

f vi +mvkωi
f ωi

))
Rk

(
Jkωk +∑k

i=1

(
mωkvi

f vi +mωkωi
f ωi

))



. (3.32)

Taking a differential with respect to t of (3.32) results in (separated by matrix block

rows for readability, i.e. Πi represents ith block row of total impulse (3.32))

dΠ1

dt = Ṙ1

m1v1 +
k∑
i=1

(
mv1vi

f vi +mv1ωi
f ωi

)
+R1

m1v̇1 +
k∑
i=1

(
ṁf

v1vivi +mv1vi
f v̇i + ṁf

v1ωiωi +mv1ωi
f ω̇i

)
dΠ2

dt = Ṙ1

J1ω1 +
k∑
i=1

(
mω1vi

f vi +mω1ωi
f ωi

)
+R1

J1ω̇1 +
k∑
i=1

(
ṁf

ω1vivi +mω1vi
f v̇i + ṁf

ω1ωiωi +mω1ωi
f ω̇i

)
...

dΠ2k−1

dt = Ṙk

mkvk +
k∑
i=k

(
mvkvi

f vi +mvkωi
f ωi

)
+Rk

mkv̇k +
k∑
i=k

(
ṁf

vkvivi +mvkvi
f v̇i + ṁf

vkωiωi +mvkωi
f ω̇i

)
dΠ2k

dt = Ṙk

Jkωk +
k∑
i=k

(
mωkvi

f vi +mωkωi
f ωi

)
+Rk

Jkω̇k +
k∑
i=k

(
ṁf

ωkvivi +mωkvi
f v̇i + ṁf

ωkωiωi +mωkωi
f ω̇i

) . (3.33)
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The equations of motion for the first block row can now be derived from (3.30) and

(3.33), after multiplying equation from the left by pertinent rotation matrix transpose RT
1

RT
1 Ṙ1

m1v1 +
k∑
i=1

(
mv1vi

f vi +mv1ωi
f ωi

)
+
m1v̇1 +

k∑
i=1

(
ṁf

v1vivi +mv1vi
f v̇i + ṁf

v1ωiωi +mv1ωi
f ω̇i

) = Qext,1m1 +
k∑
i=1
mv1vi

f

 v̇1 +
k∑
i=1
mv1ωi

f ω̇i

+ ω̃1

m1v1 +
k∑
i=1

(
mv1vi

f vi +mv1ωi
f ωi

)+

+
k∑
i=1

(
ṁf

v1vivi +mv1vi
f v̇i + ṁf

v1ωiωi
)

= Qext,1m1 +
k∑
i=1
mv1vi

f

 v̇1 +
k∑
i=1
mv1ωi

f ω̇i +Qvel,1 +QAM,1 = Qext,1. (3.34)

Equivalent derivation can be made for other block rows, leading to the equations of

motion for the unconstrained multibody system submerged in the ideal fluid

Mv̇ = Qext −Qvel −QAM , (3.35)

where, as already introduced and demonstrated in (3.34) for first block row,Qext represents

general external forces and torques acting on the body (in extended Kirchoff equations

[59]), Qvel represents “load” resulting from expressing equations in rotating body-fixed

reference frame, while QAM represents “load” due to the added inertia time-dependence.

All quantities are expressed in body-fixed reference frame.

As already mentioned, the vorticity effects will be introduced in the model in the form

of external forces and torques (represented here by Qvort), leading to the final equations

of motion for unconstrained coupled system

Mv̇ = Qext +Qvort −Qvel −QAM . (3.36)

Introduction of kinematic constraints results in the same equations of motion system

as introduced in (3.19), with the differences in inertia matrix and force vector. Inertia

matrix now consists of body inertia, together with added inertia “felt” by the multibody
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system due to the surrounding fluid (3.27). The force vector Q in (3.19) now consists of

multiple elements and can be expressed in the form

Q = Qext +Qvort −Qvel −QAM . (3.37)

Subsequent chapters will introduce the approaches to modeling added inertia matrix

and vorticity force vector.
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Figure 3.1: Illustration of the algorithm for kinematic reconstruction of orientation
(rotation matrix) from the angular velocity field, operating in Lie algebra, i.e. tangent

space of the rigid body Lie group.
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Chapter 4

Added inertia

4.1 Introduction

As already introduced in section 1.4, added inertia effects are important for an insect-

type flapping flight modeling due to the high accelerations involved and highly complex

wing kinematics. Proposed approach takes into account coupling effects, while also mod-

eling exact body shapes, opposed to the conventional low and mid-fidelity flapping wing

aerodynamics modeling approaches, usually capturing added inertia effects with simple

algebraic terms either neglecting phenomena important for flapping wing aerodynamics

or requiring experimental results. The equations of motion for coupled system, involving

added inertia are derived in Chapter 3, while this chapter focuses on calculation of the

added inertia effects for a given configuration and kinematics of multibody system, as well

as fluid density. This includes formulating the problem in the form of a set of exterior

Laplace boundary value problems, as well as description of collocation boundary element

method used for solving resulting boundary value problems.

4.2 Lagrangian of the coupled multibody-fluid
system

Lagrangian function, introduced in section 2.2, of the coupled system of rigid bodies

and ideal fluid is equal to total kinetic energy of the system if no external forces and

torques are imposed, i.e.

LS = TF +
N∑
i=1

TBi
, (4.1)

where TF represents kinetic energy of the fluid, while TBi
stands for kinetic energy of ith

body.
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Kinetic energy of the homogeneous fluid can be expressed as

TF = 1
2ρF

∫
F
‖u‖2 dV, (4.2)

where ρF represents fluid density, while u represents fluid velocity vector.

If the fluid is considered potential, as indicated in [29], the fluid velocity u can be

expressed as gradient of the potential function φ

u = ∇φ. (4.3)

Combining equations (4.2) and (4.3) leads to

TF = 1
2ρF

∫
F
‖∇φ‖2 dV,

= 1
2ρF

∫
F
∇φ · ∇φ dV.

(4.4)

By utilizing product rules for multiplication of vector field by scalar, the expression

under integral can be expressed as

∇φ · ∇φ = ∇ · (φ∇φ)− φ∆φ, (4.5)

while Laplacian of φ is zero due to the assumed fluid incompressibility

∆φ = 0, (4.6)

leading to expression for fluid kinetic energy

TF = 1
2ρF

∫
F
∇ · (φ∇φ) dV. (4.7)

Since the fluid is taken to be at rest in infinity - this is physically justified since any

non-zero value of the fluid velocity at infinity leads to infinite values of kinetic energy -

divergence theorem (also known as Gauss-Ostrogradsky theorem, or Green’s theorem in

two dimensions), a special case of more general Stokes formula [40], can be applied to

transform the expression in (4.7) from volume integral over the fluid domain F to the
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surface integral over boundary of the multibody system ∂B = ∑k
i=1 ∂Bi

TF = 1
2ρF

∫∑k

i=1 ∂Bi

φ∇φ · ni dS, (4.8)

where ni represents the unit normal vector to ∂Bi, pointing inward to the body, or outwards

to the fluid domain F .

Since velocity potential at any point depends only on the configurations and velocities

pertinent to the multibody system [60], the potential can be formulated as

φ =
k∑
i=1

(vi · θi + ωi · ηi) , (4.9)

where θi represents the vector of translational velocity potentials related to ith body, ηi
represents the vector of rotational velocity potentials related to ith body, while vi and

ωi represent respectively translational and rotational velocity of ith body in body-fixed

reference frame.

Since body velocities do not depend on the positional coordinates, the directional

derivative of the potential function along the unit normal of ith body is equal to

∇φ · n
∣∣∣∣∣
∂Bi

= ∂φ

∂n

∣∣∣∣∣
∂Bi

=
k∑
i=1

(
vi ·

∂θi
∂ni

+ ωi ·
∂ηi
∂ni

)
. (4.10)

The expressions for calculating normal derivatives of the velocity potentials can be

obtained by imposing the non-penetrability condition, constraining the fluid flow on the

surface of the multibody system to tangential component only, requiring the components

of fluid flow and body velocity in normal direction to be equal

∂φ

∂n

∣∣∣∣∣
∂Bi

= vpoint · ni = (vi + ωi × ri) · ni, (4.11)

where vpoint represents the velocity of the point on the ith body surface, ri denotes position

of the point and ni represents unit normal, all expressed in Bi-fixed reference frame.

Combining equations (4.10) and (4.11) leads to the expression

k∑
i=1

(
vi ·

∂θi
∂ni

+ ωi ·
∂ηi
∂ni

)
= (vi + ωi × ri) · ni, (4.12)

which has to be satisfied for any possible combination of velocities vi and ωi, therefore
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requiring that

vi ·
∂θi
∂ni

= vi · ni

ωi ·
∂ηi
∂ni

= (ωi × ri) · ni
(4.13)

The expression (ωi × ri) · ni can be rewritten as

(ωi × ri) · ni = (ω̃iri)Tni = − (r̃iωi )Tni = −ωT
i r̃i

Tni = ωT
i r̃ini

= ωi · (ri × ni) ,
(4.14)

where ·̃ operator represents a skew symmetric matrix with properties

ãb = a× b, ãT = −ã ∀a, b ∈ R3. (4.15)

Expressions (4.13) and (4.14) can be combined to obtain values for the normal deriva-

tives of velocity potentials on ∂Bj as

∂θi
∂nj

=


ni i = j,

0 i 6= j,

∂ηi
∂nj

=


ri × ni i = j,

0 i 6= j.

(4.16)

The expression for fluid kinetic energy (4.8) can now be rewritten, by using (4.9), (4.10)

and (4.16), as

TF = 1
2ρF

∫∑k

j=1 ∂Bj

k∑
i=1

(vi · θi + ωi · ηi)
(
∂θj
∂nj

· vj + ∂ηj
∂nj

· ωj
)

dS,

= 1
2ρF

k∑
i=1

k∑
j=1

∫
∂Bj

vT
i θi

∂θj
∂nj

T
vj + vT

i θi
∂ηj
∂nj

T
ωj

+ ωT
i ηi

∂θj
∂nj

T
vj + ωT

i ηi
∂ηj
∂nj

T
ωj

 dS.

(4.17)

If Vi =
(
vT
i ωT

i

)T
is introduced to represent translational and rotational velocity of

ith body, and matrix defining added inertia contribution of the body i on the body j is
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introduced in block matrix form as

M f
ij =


mf,vv

ij mf,vω
ij

mf,ωv
ij mf,ωω

ij


, (4.18)

where elements are equal to

mf,vv
ij =

∫
∂Bj

θi
∂θj
∂nj

T
dS, mf,vω

ij =
∫
∂Bj

θi
∂ηj
∂nj

T
dS,

mf,ωv
ij =

∫
∂Bj

ηi
∂θj
∂nj

T
dS, mf,ωω

ij =
∫
∂Bj

ηi
∂ηj
∂nj

T
dS,

(4.19)

the expression (4.17) can be reformulated as

TF = 1
2ρF

k∑
i=1

k∑
j=1

(
vT
i m

f,vv
ij vi + vT

i m
f,vω
ij ωi + ωT

i m
f,ωv
ij vi + ωT

i m
f,ωω
ij ωi

)
,

= 1
2ρF

k∑
i=1

k∑
j=1
V T
i M

f
ijVj . (4.20)

The matrix M f
ij represents the added inertia that body j experiences due to the

influence from body i.

4.3 Boundary value problem

Derivatives of translational and rotational parts of fluid velocity potential in (4.19)

are known from non-penetrability boundary conditions (4.16). However, values of the

potentials along the surface of the multibody system have to be calculated. It is important

to note that each of the potentials also has to satisfy divergence-free assumption (4.6), in

order for the formulation (4.9) to be valid for any combination of body velocities. This

leads to 6k exterior Laplace problems with boundary constraints (4.16).

Following the approach in [61], since ∆θ1 = 0, the expression

∫
F
f∆θ1 dV = 0 (4.21)

holds for any sufficiently well behaved function f , with position as only variable.
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It is now useful to mention Green’s second identity, which can be expressed as [62]

∫
F

(f∆θ1 − θ1∆f) dV =
∫
∂B

(
f
∂θ1

∂n
− θ1

∂f

∂n

)
dS, (4.22)

which can be applied to expression (4.21), resulting in

∫
∂B

(
f
∂θ1

∂n
− θ1

∂f

∂n

)
dS +

∫
F
θ1∆f dV = 0. (4.23)

If function f is taken to be fundamental solution, satisfying Laplace solution ∆f = 0,

expression (4.23) is defined by using boundary domain only, as

∫
∂B

(
f
∂θ1

∂n
− θ1

∂f

∂n

)
dS = 0. (4.24)

Fundamental solution, usually named Green’s function GL, for the Laplace equation

in three dimensions can be taken as [61]

GL (P, T ) = 1
4πr , (4.25)

where P, T ∈ ∂(B) represent points on the boundary of the multibody system, while

r = ‖r‖ = ‖T − P‖ represents distance between points P and T .

The boundary value problem can now be defined for any point on the multibody system

boundary point P , as

P(P ) = lim
PE→P

∫
∂B

(
GL (PE, T ) ∂θ1

∂n
(T )− θ1(T )∂GL

∂n
(PE, T )

)
dT = 0, (4.26)

where limit is necessary, because of the singularity in Green’s function, and its derivative,

for P = T . However, the integral itself is not singular, as shown for the chosen discretization

in the following sections.

4.4 Boundary element method

In order to solve (4.26) for value of potential θ1 over the multibody system boundary,

the surface is discretized by boundary elements. The following discussion and derivation

is presented for the case of two dimensions, for the sake of clarity and brevity. However,

algorithm for analysis in three dimensions is derived equivalently.
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If the boundary of the two dimensional geometry is discretized by N boundary elements

(and nodes), as illustrated in Fig. 4.1, there are multiple approaches that can be taken

in order to solve for the boundary value problem (4.26). Probably the most intuitive

approach is to enforce (4.26) in each of the discretization nodes Pi


P(P1)

P(P2)
...

P(PN)


= 0, (4.27)

leading to what is usually called collocation boundary element method.

P
2

P
1

E
1

P
3

P
N

E
2

E
N

Figure 4.1: Illustration of two dimensional shape discretization with N boundary
elements E, and associated N discretization nodes P .

In order to solve the boundary value problem (4.26), two integrals need to be discretized,

namely

I1
i = lim

PE→Pi

∫
∂B
GL (PE, T ) ∂θ1

∂n
(T ) dT,

I2
i = lim

PE→Pi

∫
∂B
θ1(T )∂GL

∂n
(PE, T ) dT.

(4.28)

If two dimensional shape is discretized by boundary elements, the integrals can be

approximated as

I1
i ≈

N∑
j=1

∫
Ej

GL (Pi, T ) ∂θ1

∂n
(T ) dT,

I2
i ≈

N∑
j=1

∫
Ej

θ1(T )∂GL

∂n
(Pi, T ) dT,

(4.29)

while equality sign = will be used instead of approximation sign ≈ in further discussion,

to simplify reading.
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The boundary elements are taken to be linear, but it is important to note that higher

order approximations can easily be implemented by changing shape functions and adding

nodes as necessary, while the rest of the method remains unchanged.

The boundary element numbering is set to increase in the anticlockwise direction, as

shown in Fig. 4.1, while the normal to the elements points inward to the shape, in order to

be equivalent to (4.8). This means that if the boundary element is traversed from its lower

numbered node to higher numbered node (except for the last element), normal points to

the left. The linear 2D boundary element is illustrated in Fig. 4.2. Parametric variable s

is defined as 0 ≤ s ≤ 1, for each element.

Pj

Ej

Pj+1

nj

s

Figure 4.2: Illustration of ith linear 2D boundary element, with its associated unit
normal.

The approximation of values for the potential and its derivative over the element can

now be defined as

θ1(s) = ψ1(s)θ1(Pi) + ψ2(s)θ1(Pi+1),
∂θ1

∂n
(s) = ψ1(s)∂θ1

∂n
(Pi) + ψ2(s)∂θ1

∂n
(Pi+1),

(4.30)

where ψ1(s) and ψ2(s) represent linear shape functions, defined as

ψ1(s) = 1− s,

ψ2(s) = s.
(4.31)

If the linear approximations of potential and its derivative (4.30) are used and inte-

gration variable changed to parametric variable s, the integrals (4.29) can be formulated

as

I1
i =

N∑
j=1

∫ 1

0
GL

(
Pi, T (s)

) (
ψ1(s)∂θ1

∂n
(Pj) + ψ2(s)∂θ1

∂n
(Pj+1)

)
J(s) ds,

=
N∑
j=1

∫ 1

0
GL

(
Pi, T (s)

) 2∑
k=1

(
ψk(s)

∂θ1

∂n
(Pj+k−1)

)
J(s) ds,
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=
2∑

k=1

N∑
j=1

∂θ1

∂n
(Pj+k−1)

∫ 1

0
ψk(s)GL

(
Pi, T (s)

)
J(s) ds,

=
N∑
j=1

2∑
k=1

∂θ1

∂n
(Pj+k−1)I1,j

ik , (4.32)

I2
i =

N∑
j=1

∫ 1

0

(
ψ1(s)θ1(Pj) + ψ2(s)θ1(Pj+1)

) ∂GL

∂n

(
Pi, T (s)

)
J(s) ds,

=
N∑
j=1

∫ 1

0

∂GL

∂n

(
Pi, T (s)

) 2∑
k=1

(
ψk(s)θ1(Pj+k−1)

)
J(s) ds,

=
2∑

k=1

N∑
j=1

θ1(Pj+k−1)
∫ 1

0
ψk(s)

∂GL

∂n

(
Pi, T (s)

)
J(s) ds,

=
N∑
j=1

2∑
k=1

θ1(Pj+k−1)I2,j
ik , (4.33)

while J = ‖dT
ds ‖ represents Jacobian, which is constant for a linear element, being equal to

element’s length. It is also important to take into account when implementing algorithm

that PN+1 occurs in the above expressions, and should be set to P1, because of the closed

chain of boundary elements - this has been omitted from the presented formal expressions

to avoid introducing unnecessary confusion.

The collocation equations (4.27) can now be formulated as



I2
1

I2
2
...

I2
N


=



I1
1

I1
2
...

I1
N


, (4.34)

resulting in the linear system of N equations with N unknowns. The problem of formu-

lating the final system of linear equations can now be approached as

A



θ1(P1)

θ1(P2)

...

θ1(PN)


= B



∂θ1
∂n

(P1)

∂θ1
∂n

(P2)

...

∂θ1
∂n

(PN)


, (4.35)
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where matrices A and B are equal to

A =



I2,N
12 + I2,1

11 I2,1
12 + I2,2

11 · · · I2,N−1
12 + I2,N

11

I2,N
22 + I2,1

21 I2,1
22 + I2,2

21 · · · I2,N−1
22 + I2,N

21
... . . . ...

I2,N
N2 + I2,1

N1 I
2,1
N2 + I2,2

N1 · · · I
2,N−1
N2 + I2,N

N1


, (4.36)

B =



I1,N
12 + I1,1

11 I1,1
12 + I1,2

11 · · · I1,N−1
12 + I1,N

11

I1,N
22 + I1,1

21 I1,1
22 + I1,2

21 · · · I1,N−1
22 + I1,N

21
... . . . ...

I1,N
N2 + I1,1

N1 I
1,1
N2 + I1,2

N1 · · · I
1,N−1
N2 + I1,N

N1


. (4.37)

The Green function, involved in calculation of integral I1,j
ik for two dimensional Laplace

problem can be defined as

GL (P, T ) = − ln(r)
2π , (4.38)

where r = ‖r‖ = ‖T − P‖.

In order to determine directional derivative required for computing integral I2,j
ik , the

gradient of the Green function is calculated as

∇GL = − 1
2π


1
r

∂
∂xT

(√
(xT − xP )2 + (yT − yP )2

)

1
r

∂
∂yT

(√
(xT − xP )2 + (yT − yP )2

)


=

= − 1
2πr2


xT − xP

yT − yP


= − r

2πr2 .

(4.39)

Directional derivative of the Green function with respect to unit normal can now be

formulated as
∂GL

∂n
= ∇GL · n = −r · n2πr2 . (4.40)

It is now important to note that both Green’s function GL (P, T ) (and consequently

integral I1,j
ik ) together with its directional derivative with respect to unit normal ∂GL

∂n
(and
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consequently integral I2,j
ik ) depend only on the shape of bodies and the configuration of

the multibody system. Because of this, matrices A and B do not depend on the velocity

potential considered in analysis and same matrices can be used for all velocity potential

components, as long as the shape or multibody system configuration (most often caused

by relative rotation between bodies) is not changed. Therefore, in each time step matrices

A and B are formulated only once and then used to solve for three velocity components

A



θ1(P1)

...

θ1(PN)


=B



∂θ1
∂n

(P1)

...

∂θ1
∂n

(PN)


,A



θ2(P1)

...

θ2(PN)


= B



∂θ2
∂n

(P1)

...

∂θ2
∂n

(PN)


,

A



η(P1)

...

η(PN)


= B



∂η
∂n

(P1)

...

∂η
∂n

(PN)


.

(4.41)

This is important since formulating matrices A and B consumes the most of the

computational time required to run the algorithm, due to computation of 2N integrals for

each matrix.

However, some of the integrals involved in populating matrices A and B are not as

trivial as it may seem at a first glance. If the collocation point Pi also belongs to the element

Ej over which integrations in I1,j
ik and I2,j

ik are performed the underlying functions (Green’s

function and its directional derivative with respect to unit normal) become singular,

because at some point r → 0, causing GL (P, T ) → ∞ and ∂GL/∂n → −∞. In total,

there are four singular integrals for each collocation point (each row of matrix A or B),

two occurring on the main diagonal, and two on the neighboring matrix elements, as

illustrated on the Fig. 4.3 for one body. For the case of multibody chain, matrices like one

illustrated in Fig. 4.3 are supplemented with nonsingular block matrices, since no singular

integral occurs for the combination of collocation point Pi on one body and element Ej
on another.

Although the functions under integral diverge, the integrals themselves are convergent
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No singular integrals

1 singular integral

2 singular integrals

Figure 4.3: Illustration of singular integral positions in matrices A and B for one body.

and analytic solutions can be found. Singular integrals occur under two circumstances,

when collocation point Pi is at the lower numbered node of element Ej (Fig. 4.4a), or

when the point Pi is at the higher numbered node of element Ej (Fig. 4.4b). The problem

of singular integrals is approached by replacing collocation point P by

Pε,i = P + εnj , (4.42)

as illustrated in Fig. 4.5, and taking the limit of the integral as ε→ 0. Analytic integration

of eight singular integrals (four for each matrix A or B) is presented in next subsections,

followed by subsection on regular integral calculation.

Ej

Tj+1

nj

s

T=Pj i

s=0

s=1

(a)

Ej

T =Pj i+1

nj

s

Tj

s=0

s=1

(b)

Figure 4.4: Two circumstances under which singular integration occurs: (a) when
collocation point is at the begining of element (s = 0) or (b) when collocation point is at

the end of element s = 1.
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Ej

Tj+1

nj

s

T=Pj i

s=0

s=1
Pε,i

εnj

r

(a)
Ej

T =Pj i+1
nj

s

Tj

s=0

s=1

Pε,i

εnj

r

(b)

Figure 4.5: Illustration of replacing collocation point Pi with Pε,i and resulting distance
vector r.

4.4.1 Singular integral with collocation point at the beginning
of element

The first case considered is the collocation point Pi at the beginning of element Ej
over which the integration occurs (Fig. 4.4a).

Singular integral of GL with shape function ψ1

The first sigular integral considered is

I1,i
i1 =

∫ 1

0
ψ1(s)GL

(
Pε,i, T (s)

)
J ds

= J
∫ 1

0
(1− s)− ln(r)

2π ds

= − J

4π

∫ 1

0
(1− s) ln(r2) ds, (4.43)

where r2 can be expressed as (see Fig. 4.5a)

r2 = J2s2 + ε2. (4.44)

The integral can now be formulated as

I1,i
i1 = − J

4π lim
ε→0

∫ 1

0
(1− s) ln(J2s2 + ε2) ds (4.45)
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and now utilization of symbolic integration results with

I1,i
i1 = 1

8Jπ lim
ε→0

(J2s2 − 2J2s+ ε2
)

ln
(
J2s2 + ε2

)

−4Jε arctan
(
Js

ε

)
− J2s2 + 4J2s

∣∣∣∣∣∣
s=1

s=0

.

(4.46)

There are two terms involving ε variable and the limits are equal to

lim
ε→0

((
J2s2 − 2J2s+ ε2

)
ln
(
J2s2 + ε2

))
= 2(J2s2 − 2J2s) ln (Js) , (4.47)

lim
ε→0

4Jε arctan
(
Js

ε

) = 4J · 0 · π2 = 0. (4.48)

The integral can now finally be evaluated as

I1,i
i1 = 1

8Jπ
(
2(J2s2 − 2J2s) ln (Js)− J2s2 + 4J2s

) ∣∣∣∣∣∣
s=1

s=0

,

= J

8π
(
3− 2 ln(J)

)
.

(4.49)

It may be useful to note that final calculation also involved term

lim
s→0

(s ln(Js)) = lim
s→0

ln(Js)
1
s

= lim
s→0

1
s
−1
s2

= lim
s→0

(−s) = 0. (4.50)

Singular integral of GL with shape function ψ2

Similar approach is used to derive analytic solution to integral

I1,i
i2 =

∫ 1

0
ψ2(s)GL

(
Pε,i, T (s)

)
J ds

= − J

4π

∫ 1

0
s ln(r2) ds

= − J

4π lim
ε→0

∫ 1

0
s ln(J2s2 + ε2) ds, (4.51)
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and symbolic integration then results with

I1,i
i2 = − 1

8Jπ lim
ε→0

((
J2s2 + ε2

)
ln
(
J2s2 + ε2

)
− J2s2

) ∣∣∣∣∣∣
s=1

s=0

. (4.52)

There is only one term consisting of ε and the limit is equal to

lim
ε→0

((
J2s2 + ε2

)
ln
(
J2s2 + ε2

))
= 2J2s2 ln(Js). (4.53)

If the similar rule as (4.50) is applied, the integral is evaluated as

I1,i
i2 = − 1

8Jπ
(
2J2s2 ln(Js)− J2s2

) ∣∣∣∣∣∣
s=1

s=0

(4.54)

= J

8π
(
1− 2 ln(J)

)
. (4.55)

Singular integral of ∂GL/∂n with shape function ψ1

Singular integral of ∂GL/∂n with first shape function is formulated as

I2,i
i1 =

∫ 1

0
ψ1(s)∂GL

∂n

(
Pε,i, T (s)

)
J ds

= J
∫ 1

0
(1− s)−r · n2πr2 ds

= − J

2π

∫ 1

0
(1− s)r · n

r2 ds. (4.56)

It can be concluded from Fig. 4.5a that distance vector can be formulated as r = −εn+

Jsn⊥, where n⊥ represents unit vector in direction of variable s growth (perpendicular

to n), and therefore the expression r · n is equal to

r · n = (−εn+ Jsn⊥) · n = −ε, (4.57)

since n represent unit vector. With this expression derived and r2 expression from (4.44),

integral can be formulated as

I2,i
i1 = J

2π lim
ε→0

∫ 1

0
(1− s) ε

J2s2 + ε2 ds. (4.58)
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Symbolic integration of this expression results with

I2,i
i1 = 1

2π lim
ε→0

arctan
(
Js

ε

)
−
ε ln

(
J2s2 + ε2

)
2J


∣∣∣∣∣∣
s=1

s=0

, (4.59)

with terms in limit equaling to

lim
ε→0

arctan
(
Js

ε

)
= π

2 , (4.60)

lim
ε→0

ε ln
(
J2s2 + ε2

)
2J2 = 0. (4.61)

Finally, the integral is equal to

I2,i
i1 = 1

2π ·
π

2 = 1
4 . (4.62)

Singular integral of ∂GL/∂n with shape function ψ2

Similar approach is again used to derive analytic solution to integral with shape function

ψ2

I2,i
i2 =

∫ 1

0
ψ2(s)∂GL

∂n

(
Pε,i, T (s)

)
J ds

= − J

2π

∫ 1

0
s
r · n
r2 ds

= J

2π lim
ε→0

∫ 1

0
s

ε

J2s2 + ε2 ds. (4.63)

Symbolic integration now results with

lim
ε→0

(
ε

2J2

(
ln
(
ε2 + J2

)
− 2 ln (ε)

)) ∣∣∣∣∣∣
s=1

s=0

, (4.64)

which results in limit with

I2,i
i2 = 0. (4.65)

62



Chapter 4. Added inertia

4.4.2 Singular integral with collocation point at the end of
element

This sections focuses on singular integrals occurring when the collocation point Pi
is at the end of element Ej over which the integration is performed (Fig. 4.5b). Since

the procedure is similar to the one presented in Sect. 4.4.1 for collocation point at the

beginning of element, main differences will be discussed here and then the solutions for

singular integrals will be presented with minimal discussion.

The difference occurs in calculation of distance vector, which can be expressed as (see

Fig. 4.5b)

r = −εn− J(1− s)n⊥. (4.66)

Terms r2 and n · r, required for calculating singular integrals can now be expressed as

r2 = J2(1− s)2 + ε2, (4.67)

n · r = −ε. (4.68)

Integrals can now be calculated as follows.

Singular integral of GL with shape function ψ1

I1,i−1
i1 =

∫ 1

0
ψ1(s)GL

(
Pε,i, T (s)

)
J ds

= − J

4π

∫ 1

0
(1− s) ln(r2) ds

= − J

4π lim
ε→0

∫ 1

0
(1− s) ln(J2(1− s)2 + ε2) ds. (4.69)

Symbolic integration results with

I1,i−1
i1 = 1

8Jπ lim
ε→0

 ln
(
J2 (1− s)2 + ε2

) (
J2 (1− s)2 + ε2

)

−J2 (1− s)2

∣∣∣∣∣∣
s=1

s=0

(4.70)
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Taking into account limits and integral bounds, singular integral is calculated as

I1,i−1
i1 = 1

8Jπ

(
2 ln

(
J (1− s)

) (
J2 (1− s)2

)
− J2 (1− s)2

) ∣∣∣∣∣∣
s=1

s=0

= 1
8Jπ

(
−2 ln(J)J2 + J2

)
= J

8π
(
1− 2 ln(J)

)
. (4.71)

Singular integral of GL with shape function ψ2

I1,i−1
i2 =

∫ 1

0
ψ2(s)GL

(
Pε,i, T (s)

)
J ds

= − J

4π

∫ 1

0
s ln(r2) ds

= − J

4π lim
ε→0

∫ 1

0
s ln(J2(1− s)2 + ε2) ds. (4.72)

Symbolic integration now results with

I1,i−1
i2 = − 1

8Jπ lim
ε→0

4Jε arctan
(
J (s− 1)

ε

)
− J2s2 − 2J2s

+ ln
(
J2 (s− 1)2 + ε2

) (
J2 (s− 1) (s+ 1) + ε2

)∣∣∣∣∣∣
s=1

s=0

(4.73)

Taking into account limits and integral bounds, singular integran can be calculated as

I1,i−1
i2 = − 1

8Jπ

(
−J2s2 − 2J2s+ ln

(
J2 (s− 1)2

) (
J2
(
s2 − 1

))) ∣∣∣∣∣∣
s=1

s=0

= − 1
8Jπ

(
2 ln(J)J2 − 3J2

)
= J

8π
(
3− 2 ln(J)

)
. (4.74)

Singular integral of ∂GL/∂n with shape function ψ1

I2,i−1
i1 =

∫ 1

0
ψ1(s)∂GL

∂n

(
Pε,i, T (s)

)
J ds
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= − J

2π

∫ 1

0
(1− s)r · n

r2 ds

= J

2π lim
ε→0

∫ 1

0
(1− s) ε

J2(1− s)2 + ε2 ds. (4.75)

Symbolic integration results with

I2,i−1
i1 = − J

2π lim
ε→0

ε ln
(
J2 (s− 1)2 + ε2

)
2J2

∣∣∣∣∣∣∣
s=1

s=0

, (4.76)

which after taking limit into account, results with

I2,i−1
i1 = 0. (4.77)

Singular integral of ∂GL/∂n with shape function ψ2

I2,i−1
i2 =

∫ 1

0
ψ2(s)∂GL

∂n

(
Pε,i, T (s)

)
J ds

= − J

2π

∫ 1

0
s
r · n
r2 ds

= J

2π lim
ε→0

∫ 1

0
s

ε

J2(1− s)2 + ε2 ds. (4.78)

Symbolic integration results with

I2,i−1
i2 = J

2π lim
ε→0

arctan
(
J(s−1)

ε

)
J

+
ε ln

(
J2 (s− 1)2 + ε2

)
2J2


∣∣∣∣∣∣∣
s=1

s=0

. (4.79)

Limits and integral bounds are utilized to calculate final value as

I2,i−1
i2 = J

2π ·
π

2J = 1
4 . (4.80)

4.4.3 Regular integrals

When the element Ej over which the integration in I1,j
ik or I2,j

ik occurs does not incor-

porate collocation point Pi, the integral is regular (all white cells in illustrated matrix in

Fig. 4.3 contain only regular integrals) and any standard quadrature method can be used.

Here, the Gauss quadrature with four integration points is used.

65



Chapter 4. Added inertia

Table 4.1
Values of weight and node positions for 4-point Gaussian quadrature.

Number g Node position ζg Weight wg

1 1
2 −

1
2

√
3
7 + 2

7

√
6
5

18−
√

30
72

2 1
2 −

1
2

√
3
7 −

2
7

√
6
5

18+
√

30
72

3 1
2 + 1

2

√
3
7 −

2
7

√
6
5

18+
√

30
72

4 1
2 + 1

2

√
3
7 + 2

7

√
6
5

18−
√

30
72

The regular integrals are therefore solved as

I1,j
ik =

∫ 1

0
ψk(s)GL

(
Pi, T (s)

)
J ds

= J
4∑
g=1

wgψk(ζg)GL

(
Pi, T (ζg)

)
, (4.81)

I2,j
ik =

∫ 1

0
ψk(s)

∂GL

∂n

(
Pi, T (s)

)
J ds

= J
4∑
g=1

wgψk(ζg)
∂GL

∂n

(
Pi, T (ζg)

)
, (4.82)

while values of weights wg and node positions ζg can be found in Table 4.1 (values can be

found in [61]).

4.5 Validation

In order to validate proposed approach for calculating added inertia matrix, analytic

solutions for added inertia values for simple forms will be used. All solutions are taken

for two dimensional forms with unit thickness, due to availability of data in literature and

unit density for simplicity, since this has no effect on solutions because density only causes

linear scaling of all added inertia component values.

First form considered is unit circle, as the simplest form possible, for which the ana-

lytical added inertia matrix is equal to [63]

Munit_circle =


π 0 0

0 π 0

0 0 0

 . (4.83)
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The proposed algorithm is validated on the two non-zero values and the relative error is

reported in diagrams. Relative error is calculated as

Erel =
∣∣∣∣∣mnumeric −manalytic

manalytic

∣∣∣∣∣ , (4.84)

where mnumeric represents numerically calculated value of the analyzed added inertia

component, while manalytic stands for the respective analytic solution.

The convergence of the numeric solution towards analytically calculated value is pre-

sented in Fig. 4.6 for two non-zero added inertia components and for number of elements

ranging from N = 20 to N = 480. It can be concluded that numeric solution quickly

converges to the analytic, and it took only 100 boundary elements to converge under 2%

relative error.

Figure 4.6: Relative error of non-zero added inertia components, with respect to the
number of boundary elements used on the example of unit circle.

A bit more complicated second analyzed test case is ellipse with semi-major and semi-

minor axes equal to a = 3 in x direction and b = 1 in y direction, for which the analytic
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added inertia matrix can be calculated as [63]

Mellipse =


πb2 0 0

0 πa2 0

0 0 1
8π
(
a2 − b2

)2

 =


π 0 0

0 9π 0

0 0 8π

 . (4.85)

The convergence of numeric solution towards analytic is similarly presented for growing

number of elements (again ranging from N = 20 to N = 480) and now for three non-zero

added inertia components in Fig. 4.7. The convergence was a bit slower, when compared

to the unit circle, but nevertheless the solution quickly converged to under 2% relative

error.

Figure 4.7: Relative error of non-zero added inertia components, with respect to the
number of boundary elements used on the example of ellipse with semi-major and

semi-minor axes equal to a = 3 and b = 1.

The first two test cases analyzed involved blunt shapes, without sharp edges, which

may often arise in flapping airfoil modeling. Therefore, in order to validate the method

for sharp-edged shapes, the first (simplest) test case with sharp edges analyzed is unit
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square, for which the added inertia matrix can be calculated as [63]

Munit_square =


4.754 0 0

0 4.754 0

0 0 0.725

 . (4.86)

The convergence of numeric solution is again presented for boundary elements number

ranging from N = 20 to N = 480, for three non-zero added inertia components in Fig. 4.8.

The convergence for translational components was very fast and only N = 20 boundary

elements (smallest number tested) was enough to almost exactly represent added mass. On

the other hand, rotational component converged a bit slower, but nevertheless converged

towards analytic solution relatively fast.

Figure 4.8: Relative error of non-zero added inertia components, with respect to the
number of boundary elements used on the example of unit square.

Finally, the rectangle with large aspect ratio (side lengths equaling a = 40 and b = 1)

is analyzed. However, no closed form solutions for the rectangle have been found, but

analytical solution for the second translational (largest) component is found to be equal

to [64]

Mrectangle,22 = 1
4 · 1.05πa2 = 420π. (4.87)
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The convergence is now presented only for the known second value of added inertia,

again for boundary elements number ranging from N = 20 to N = 480 in Fig. 4.9. It can

be noticed that the value again very rapidly converged towards almost exact solution.

Figure 4.9: Relative error of non-zero added inertia components, with respect to the
number of boundary elements used on the example of rectangle with large aspect ratio

(side lengths equal to a = 40 and b = 1 ).
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Vorticity effects

5.1 Introduction

This section focuses on modeling viscous aerodynamic effects on the insect-type flapping

wings. As already mentioned, due to the high flapping frequency (large Strouhal number),

thick boundary layer is not formed on the wing surface and boundary layer-induced forces

can usually be neglected, although the low Reynolds number involved suggests otherwise.

To this end, the viscous effects will be captured by modeling unsteady vortex wake,

shed by the flapping wings, only. Mathematically, this leads to the Helmholtz-Hodge

decomposition of fluid velocity into curl-free and divergence-free parts, as follows

u = ∇φ+∇×Ψ, (5.1)

where φ corresponds to the velocity potential introduced and described in Chapter 4, while

Ψ is equal to

Ψ =


0

0

ψv

 , (5.2)

where ψv represents stream function.

The vortex wake has influence only on the second term in (5.1), while the effects of

first term are modeled in Chapter 4. It is important to emphasize that ∇φ and ∇×Ψ

represent orthogonal components of fluid velocity and therefore the effects of each term

can be modeled separately and effects added - no aerodynamic effect is therefore modeled

twice.

Insect-type flapping aerodynamics is characterized by vortex shedding from leading
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edge, considered as an important phenomenon for increasing lift [1] or preventing stall [4],

together with the trailing edge vortex shedding, present also in the conventional fixed-wing

aerodynamics.

Effects of the vortex wake on a multibody system are expressed as an external aerody-

namic load Qvort in (3.36). This chapter focuses on description of the method for vortex

wake modeling and calculation of aerodynamic load Qvort.

It is important to note again, as explained after symplectic reduction is introduced in

(3.1), that introduction of the vorticity effects via load vector Qvort does not compromise

previously utilized symplectic reduction of the Hamiltonian system, reducing out fluid

variables, since the equivalent reduction can be performed at different level of circulation.

Therefore, derived equations of motion remain valid even after introduction of the vorticity

effects.

Vortex wake consists of irrotational point vortices and the proposed method for vorticity

effects modeling is inspired by lumped-vortex element method presented in [65]. However,

the approach taken here is tailored for utilization in insect-type aerodynamics modeling.

One step in algorithm loop consists of wake evolution step, where vortex wake positions

and intensities are updated, vortex shedding steps, modeling shedding of new point vortex

from both leading and trailing edge of the wing and final step calculating aerodynamic load

induced by current vortex wake. Algorithm tasks are illustrated by flowchart in Fig. 5.1

and explained in respective sections.

5.2 Discretization

The cross sections of flapping wing airfoils are generally very thin, with wing thickness

being less than 5% of wing chord. Therefore, the wing section is here considered as a line

(infinitely thin airfoil), but shape discretization can easily be incorporated if needed for

certain application, with all discussion presented here staying the same.

Each vortex element consists of a vortex that is constantly attached at 1
4 of element

length and moves together with element and collocation point at 3
4 of vortex element, at

which the boundary conditions are enforced. The illustration of wing dicretized with Nv

vortex elements is presented in Fig. 5.2. In addition to vortex elements and nodes, the

figure also includes the illustration of newly shed vortex from both leading and trailing

edge.
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Leading edge vortex
shedding

Geometry and kinematics

Shedding of trailing
edge vortex and

update of attached
vortices circulation

Wake evolution

Calculating vortex
wake-induced

aerodynamic load

Vo
rte

x 
sh

ed
di

ng

Figure 5.1: Flowchart illustrating tasks involved in one time step of vortex effects
modeling algorithm.

5.3 Wake evolution

The irrotational point vortices in vortex wake are considered “free” and having no

inertia, i.e. point vortices move according to the velocity at center point. The velocity at

vortex point is induced by all attached and all other “free” wake vortices.

Irrotational point vortices by definition (in order to satisfy generation of irrotational

flow) induce velocity in the form [66]

‖vin‖ = Γ
2πr , (5.3)

where Γ represents vortex circulation, while r presents distance from the vortex center

point.

However, in order to reduce numerical issues with instability near the vortex center

point (when r → 0) due to the singularity, the vortex core in which the induced velocity
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Figure 5.2: Illustration of thin flapping airfoil disretization with Nv vortex elements,
each consisting of attached vortex and collocation point, together with newly shed vortex

from both leading and trailing edge.

does not change is introduced. In the vortex core, the velocity is constant and equal to the

velocity at the core boundary. Therefore, as illustrated in Fig. 5.3, the velocity induced

at position Pi by irrotational point vortex Vi, with circulation Γi, is equal to

vin (Pi, Vi) =



Γi

2π‖rv
i
‖2

−r
v
iy

rvix

 , if ‖rvi ‖ > rvc ,

Γi

2πrv
c ‖rv

i
‖

−r
v
iy

rvix

 , if ‖rvi ‖ ≤ rvc ,

(5.4)

where rvi is distance vector from vortex center point to position at which the velocity is

induced, calculated as

rvi = pPi − pVi , (5.5)

where pVi is vortex position and pPi is position of point Pi. Vortex core radius is here set

to be equal to rvc = 10−8.

The overall velocity of each vortex can now be calculated as

vvori =
Nv∑
j=1
vin

(
Wi, Vj

)
+

Nw∑
j=1,j 6=i

vin
(
Wi,Wj

)
, for i = 1, 2, ..., Nw, (5.6)

where Wi represents i-th “free” vortex, while Vj represents j-th attached vortex and Nw

is total number of point vortices in vortex wake at a current time step. The velocity at

infinity is here taken to be zero v∞ = 0, without any loss of generality, since any velocity

at infinity can be added to the current body velocity.
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Figure 5.3: Illustration of velocity induced by irrotational point vortex at a distance
larger than vortex core radius.

The (updated) position of each wake vortex in time step t can now be calculated as

pvori (t) = pvori (t− 1) + ∆t · vvori , for i = 1, ..., Nw, (5.7)

where ∆t represents time step size.

The vortex wake dissipation is neglected and each vortex has a constant circulation

from the time it is shed from the wing edge. Therefore, wake vortex circulation in time

step t is calculated as

Γwi (t) = Γwi (t− 1), for i = 1, ..., Nw. (5.8)

5.4 Vortex shedding

In order to realistically model insect-type flapping aerodynamics, vortex wake is shed

from both leading and trailing wing edge. In the proposed algorithm, vortex is first shed

from the leading edge and subsequently trailing edge vortex shedding is performed in

conjunction with the update of attached vortex ciruclations, as described in following

subsections.
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5.4.1 Leading edge vortex shedding

The idea for leading edge vortex (LEV) shedding is found in [67]. However, the

method proposed here does not involve any time step-dependent factors, that may induce

instabilities and result divergence in the case of highly unsteady flows, pertinent to insect-

type flapping aerodynamics.

A newly shed LEV is placed on the line traveled by wing leading edge from the last time

step, but closer to the current edge position. To be more precise, new LEV is placed at a

0.3 distance traveled, measured from the current edge position, leading to the expression

for calculating position of new LEV, created in time step i

pLEVi = pLEi + 0.3 ·
(
pLEi−1 − pLEi

)
, (5.9)

where pLEi represents position of wing leading edge in time step i.

To understand why the vortex is not placed at the middle of the distance traveled,

equation (5.3) should be taken into account. If more than one time step is considered for the

same distance traveled, with one shed vortex for each time step, due to the nonlinearity

of expression (5.3), vortex influence on the induced velocity exponentially drops with

distance. If one vortex with circulation equal to the overall sum of all vortex circulations

is to be placed at the middle point of the distance, the overall influence of the vortex

wake would be underestimated. To mitigate this issue numerically, position in the range

between 0.2 and 0.3 distance traveled is usually used [65].

The circulation of this newly shed vortex is determined from the circulation of the

attached vortex, closest to the leading edge, in previous time step. Informally, this can

be considered as releasing part of the attached circulation from the leading part of airfoil

into the wake. However, as the experimental data and previous experience suggest, LEV

is not released into the wake for small angles of attack, and therefore threshold for LEV

shedding is introduced. Circulation of the newly created LEV can therefore be calculated

as

ΓLEV = 0, if α < αth,

ΓLEV = Γ1

2 , if α ≥ αth,
(5.10)

where α represents instantaneous angle of attack, while αth represents threshold for shed-
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ding leading edge vortex (chosen to be αth = π
4 in the proposed algorithm).

5.4.2 Trailing edge vortex shedding and update of attached
vortex circulations

After releasing LEV in the wake, new trailing edge vortex (TEV) can be created and

attached vortices updated to satisfy boundary and physical conditions. Calculation of

new TEV circulation and updating attached vortex circulations is coupled task, requiring

satisfaction of two conditions: non-penetrability condition on the surface and Kelvin

circulation theorem.

Non-penetrability condition introduced in Chapter 4 by expression (4.11) ensured that

the first component in the Helmholtz-Hodge decomposition (5.1) of fluid velocity did not

generate non-physical “leaks” of the fluid through the surface. Equivalently, the second

component of Helmholtz-Hodge decomposition is required to generate only tangential flow

in vortex elements’ collocation points. To this end, non-penetrability condition of the

vortical part of fluid flow is introduced as

Nv∑
j=1
vin

(
Ci, Vj

)
+

Nw∑
j=1
vin

(
Ci,Wj

) · ni = (v + ω × rci ) · ni,

for i = 1, 2, ..., Nv, (5.11)

where Ci represents ith collocation point, v and ω represent wing translational and angular

velocity, while rci represents distance vector from body center of mass to collocation point

i. The velocity at infinity v∞ is again neglected here, and all translational velocity is

accounted for by body velocity v.

On the other hand, Kelvin circulation theorem, requiring that the overall circulation

of the multibody-fluid coupled system be preserved, was inherently satisfied by first com-

ponent in the Helmholtz-Hodge decomposition (5.1) of fluid velocity, since no circulation

is generated at all. However, the second component of Helmholtz-Hodge decomposition

causes the circulation about the body (due to attached vortices) and in the surrounding

fluid (due to “free” wake vortices) to be non-zero. These circulations have to be balanced,

leading to another constraint in the form

Nv∑
j=1

Γj +
Nw∑
j=1

Γwj = 0, (5.12)
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where Γj represents circulation of j-th attached vortex, while Γwj represents circulation of

j-th wake vortex.

The Kelvin circulation theorem, represented in the algorithm by constraint (5.12), is

a direct consequence of vorticity advection condition, i.e. Diffvol (F) invariance of the

momentum map JF introduced in (3.1).

Similarly as the LEV, the TEV is placed on the line travel by trailing edge since the

previous time step, and again at 0.3 distance for the same reasons discussed for LEV. The

position of new TEV can therefore be calculated as

pTEVi = pTEi + 0.3 ·
(
pTEi−1 − pTEi

)
, (5.13)

where pTEi represents position of wing trailing edge in time step i.

Since the end of last time step, when both boundary condition and Kelvin circulation

theorem were satistfied, new LEV and TEV are shed into wake and the wake vortex

positions are updated. The circulation of LEV is known, while the circulation of TEV

needs to be calculated, together with the new values of circulation for all attached vortices,

leading to Nv + 1 unknowns. Nv equations arise from the non-penetrability boundary

condition (5.11) in the from

Nv∑
j=1
vin

(
Ci, Vj

)∣∣∣∣
Γj=1

Γj +
Nw−1∑
j=1

vin
(
Ci,Wj

)∣∣∣∣
Γw

j =1
Γwj

 · ni
+ vin (Ci,WTEV )

∣∣
ΓT EV =1 ΓTEV = (v + ω × rci ) · ni, for i = 1, 2, ..., Nv,Nv∑

j=1
vin

(
Ci, Vj

)∣∣∣∣
Γj=1

Γj

 · ni + vin (Ci,WTEV )
∣∣
ΓT EV =1 ΓTEV

=
v + ω × rci −

Nw−1∑
j=1

vin
(
Ci,Wj

)∣∣∣∣
Γw

j =1
Γwj

 · ni, for i = 1, 2, ..., Nv. (5.14)

This system ofNv equations is supplemented with the equation enforcing Kelvin circulation

theorem to result with solvable system of Nv + 1 equations with Nv + 1 unknowns. The

equation (5.12) in time step i can be expressed as

Nv∑
j=1

Γj,i +
Nw,i∑
j=1

Γwj,i = 0, (5.15)

and since the wake circulation change since the previous time step occurred only be-
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cause two new vortices are shed (existing vortices do not dissipate in time, as previously

described), the equation can be reformulated as

Nv∑
j=1

Γj,i + ΓTEV,i + ΓLEV,i +
Nw,i−1∑
j=1

Γwj,i−1 = 0. (5.16)

The Kelvin circulation theorem was also satisfied in the previous time step, and therefore

the overall vortex wake circulation in the previous time step can be replaced by the

negative overall attached vortices circulation, leading to the final expression

Nv∑
j=1

Γj,i + ΓTEV,i + ΓLEV,i −
N∑
j=1

Γj,i−1 = 0,

Nv∑
j=1

Γj,i + ΓTEV,i =
N∑
j=1

Γj,i−1 − ΓLEV,i. (5.17)

The linear system of equations can now be defined as



D1,1 D1,2 · · · D1,Nv
D1,Nv+1

D2,1 D2,2 · · · D2,Nv
D2,Nv+1

... ... . . . ... ...

DNv,1 DNv,2 · · · DNv,Nv
DNv,Nv+1

1 1 · · · 1 1





Γ1,i

Γ2,i
...

ΓN,i
ΓTEV,i


(5.18)

=



v + ω × rc1 −
∑Nw−1
j=1 vin

(
C1,Wj

)∣∣∣∣
Γw

j =1
Γwj

 · n1v + ω × rc2 −
∑Nw−1
j=1 vin

(
C2,Wj

)∣∣∣∣
Γw

j =1
Γwj

 · n2

...v + ω × rcNv
−∑Nw−1

j=1 vin
(
CNv ,Wj

)∣∣∣∣
Γw

j =1
Γwj

 · nNv

∑N
j=1 Γj,i−1 − ΓLEV,i



, (5.19)

where D represents (Nv ×Nv + 1) influence matrix, with components equal to

Di,j = vin
(
Ci, Vj

)∣∣∣∣
Γj=1
· ni. (5.20)
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Solving system of equations (5.18) results with value of circulation for the newly shed

trailing edge vortex ΓTEV , while all the attached vortex circulations are updated to ensure

satisfaction of both non-penetrability (5.11) and Kelvin circulation (5.12) constraints.

5.5 Vortex wake-induced aerodynamic load

The calculation of aerodynamic load induced by vortex wake is based on the Kutta-

Joukowski theorem (Kutta-Joukowski force has an interesting interpretation in the geo-

metric mechanics setting, being the result of the curvature of Neumann connection [68]),

relating circulation around the airfoil and velocity as [66]

FKJ
def = ρvKJΓ, (5.21)

where ρ represents fluid density, vKJ is the value of velocity, while Γ represents circulation

around wing. The resulting force FKJ
def is perpendicular to velocity vKJ .

Figure 5.4: Illustration of Kutta Joukowski force calculation for each of the vortex
elements, based on the velocity in collocation point and circulation of the attached vortex.

For discretized airfoil, the Kutta-Joukowski force contribution from jth vortex element

(illustrated in Fig. 5.4) is then calculated as

FKJ
j = ρvKJj Γj, (5.22)

while the fluid velocity at each element collocation point vKJj is calculated by combining
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body velocity and overall induced velocity (from all atached and “free” vortices) as

vKJj =
∥∥∥∥∥− v − ω × rcj +

Nv∑
i=1
vin

(
Cj, Vi

)
+

Nw∑
i=1
vin

(
Cj,Wi

) ∥∥∥∥∥. (5.23)

The resulting force is perpendicular to the vortex element, since the velocity at colloca-

tion point is necessarily tangential to the vortex element (enforced by boundary condition

(5.11)). Vortex wake-induced lift and drag force can now be calculated as

LKJ =
Nv∑
j=1

ρvKJj Γj cos(γj), (5.24)

DKJ = −
Nv∑
j=1

ρvKJj Γj sin(γj), (5.25)

where γj represents the the angle between vortex element j and x axis.
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Numerical experiments

This chapter presents results of numerical experiments aimed to demonstrate perfor-

mance of proposed insect-type flapping wing aerial vehicle computational model. Both

numerical experiments involve fruit fly-like morphology due to the availability of experi-

ments and experimentally fitted parameters for quasi steady aerodynamic models. First

test case involves standstill hovering of the fruit fly on Earth, with the flapping pattern

as suggested in the literature, involving smooth angle functions. Second test case involves

aerial vehicle with fruit fly-like wings, enlarged to enable flight in much thinner Martian

atmosphere, with Mars selected due to the recent increased interest in Mars atmospheric

flight and flapping wing concept potential in Martian atmosphere. Standstill hovering of

this aerial vehicle on Mars is analyzed with flapping pattern characterized by non-smooth

angle functions in discrete form, obtained by optimization in previous research.

6.1 Fruit fly-like aerial vehicle hovering

First numerical experiment considered is based on the hovering of the fruit fly (lat.

Drosophila melanogaster), due to the availability of both numerical results and validated

aerodynamic models [69, 27]. The benchmarking aerodynamic model is based on the

experiments with dynamically scaled wing and surrounding fluid.

6.1.1 Physical properties

A dynamically scaled apparatus for experiments included a slightly different shape

of the wing, compared to D. melanogaster, but mostly in the wing root area and the

difference shouldn’t affect the results significantly [69]. However, descriptions provided

in [69, 27] are too basic and insufficient for replicating wing shape. To this end, fruit fly
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Table 6.1
Relevant fruit fly model parameters

Notation Parameter Value
mb main body mass (kg) 9.6× 10−7

mw wing mass (kg) 2.4× 10−9

Iw Wing inertia matrix
(
kg ·m2

)  2.889 −8.368 0
−8.368 48.255 0

0 0 51.144

 · 10−16

R wing length (m) 2.5× 10−3

b wing thickness (m) 2.5× 10−5

c mean chord length (m) 6.7× 10−4

x̂0 pitching axis position (in chord lengths) 0.25
ρ air density

(
kg/m3

)
1.184

CR rotational force coefficient 1.55

wing is modeled based on real world fruit fly wing photography. Dimensions of the fruit

fly wing on the photography are determined such that the wing length corresponds to

the value indicated in [70]. A wing length to thickness ratio, used in [27], is adopted. No

reliable data for D. melanogaster wing mass has been found in literature and therefore

the value of D. virilis wing mass [71] is used for analysis. It can be noticed that D. virilis

wing is slightly larger than D. melanogaster wing and therefore probably heavier, but the

difference should be negligible. A wing from the photographs, with dimensions determined

as explained, is then modeled in CAD software as a homogeneous body to calculate wing

inertia values.

Fruit fly main body is modeled as fully symmetrical with center of mass positioned

exactly in the middle between wing joints, with main body mass found in [70]. All physical

properties pertinent to the aerodynamic modeling are given in Table 6.1.

6.1.2 Kinematics

Fruit fly motion can be described as the motion of the main body, together with the

relative motion of each wing with respect to the main body. All entities (main body

and wings) are modeled as rigid bodies. To this end, relative motion of each wing with

respect to the main body can be described by three relative angles, namely stroking angle

α describing horizontal motion of the wing, pitching angle β describing twist of the wing

and deviation angle γ describing motion of the wing in the vertical plane. These flapping

angles are shown in Fig. 6.1 illustrating fruit fly flapping in three dimensions.
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Figure 6.1: Illustration of the fruit fly model flapping, with stroking α, pitching β and
deviation γ angles indicated.

Deviation angle γ is taken to be zero during the analyzed test case, in order to enable

comparison of results to the results available in literature [27]. The justification for

neglecting angle in aerodynamic model utilized in [27] is based on the experimental results

in [72], indicating that this angle significantly influences aerodynamic force development

over one flapping cycle, but has no significant effect on the value of the overall (cycle-

averaged) aerodynamic force. In other words, neglecting deviation angle leads to the

different plot of the force value over a flapping cycle, but almost the same value of the

average force over a full flapping cycle. In addition to this, high values of flapping

frequencies, compared to the fruit fly motion frequency, allow for utilization of cycle-

averaged forces instead of instantaneous forces, with negligible loss in accuracy [73]. To

this end, wing relative motion is described by stroking α and pitching β angles.

The flapping pattern analyzed is based on a optimal flapping pattern for a fruit fly

hovering, obtained in [74]. Stroking angle function α(t) is modeled by smoothed triangular

function, which can be described by expression

α(t) = αm
arcsin (Kα) arcsin

(
Kα sin(2πft)

)
, (6.1)

where αm corresponds to the stroking angle amplitude, f represents flapping frequency,

while shape of the function is controlled by factor 0 < Kα < 1. As Kα → 1, angle function

α(t) converges towards triangular function, i.e. wing stroking motion is characterized by
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Table 6.2
Angle function parameters

Notation Parameter Value

αm stroking angle amplitude π

2
Kα stroking function shape parameter 0.7

βm pitching angle amplitude 7π
18

βa average pitching value offset π

2
βp pitching phase offset 0

Kβ pitching function shape parameter 2

greater acceleration and deceleration at onset and end of stroke.

Pitching angle evolution in time t is modeled by smoothed trapezoidal function, at

flapping frequency f , as

β(t) = βm

tanh
(
Kβ

) tanh
(
−Kβ cos(2πft+ βp)

)
+ βa, (6.2)

where βm corresponds to pitching function amplitude, βp is phase offset, while βa represents

offset of the pitching angle average value. Factor 0 < Kβ < ∞ again controls the shape

of the function, where as Kβ →∞, shape of the function β(t) converges towards a step

functin, i.e. wing experiences infinite pitching velocities.

The parameters in angle functions (6.1) and (6.2) for the flapping pattern analyzed in

this numerical test case are shown in table 6.2.

Hovering with physical properties defined in subsection 6.1.1 at flapping angle functions

defined by (6.1) and (6.2) occurs at flapping frequency equal to f = 167.3 Hz and the

resulting angle functions α(t) and β(t) are illustrated in Fig. 6.2 and Fig. 6.3 respectively.
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Figure 6.2: Evolution of stroking angle function α(t) over one flapping period for a fruit
fly-like aerial vehicle hovering.
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Figure 6.3: Evolution of pitching angle function β(t) over one flapping period for a fruit
fly-like aerial vehicle hovering.
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6.1.3 Aerodynamic phenomena pertinent to fruit fly-like
flapping flight

The experiments in [72] indicated that the aerodynamic force on a flapping wing is

almost perpendicular to the wing surface at any point in time, leading to the conclusion

that the pressure forces are main drivers of aerodynamic load, while the shear forces

can mostly be neglected. In addition to this, with the aim of simplifying description

of complex aerodynamic phenomena, the insect flight aerodynamics can be decomposed

into five smaller aerodynamic phenomena [75]. Aerodynamic phenomena are named:

translational circulation, rotational circulation, added mass, wing-wake interaction and

clap and fling. Naming of individual aerodynamic phenomena is adopted from [25], where

an explanation for the naming is also given.

Translational circulation phenomenon describes effects of stall avoidance due to the

creation and reattachment of leading edge vortex (LEV). Stroking at large angles of attack

causes the separation of the flow at leading edge of the wing, thus generating a stable

vortex - LEV [76]. The reattachment of the flow to the wing is described as a means of

avoiding the stall that would occur in the steady flow for the same airfoil at the same angle

of attack [77]. The LEV can therefore be thought as increasing the curvature of the wing

and therefore circulation, leading to the increase in aerodynamic force [78]. Aerodynamic

load stemming from a described phenomenon is denoted by the term translational forces,

while the “translational” in the name is utilized to emphasize the fact that these forces

are mainly caused by the translational (forward and backward) part of wing motion.

Rotational circulation describes the effect caused by the wing pitching during flapping.

Although the lift force value is found to be largest for steady flapping at 45° [73], the

increase in angle of attack during flapping causes short, but significant, jump in the lift

force. This is caused by slowdown of the fluid below pitching axis and acceleration of the

fluid above, driving the increase in LEV volume and creation of trailing edge vortex (TEV).

LEV growth leads to the larger circulation, consequently causing larger lift force values.

However, in addition to the lift force increase, a significant jump in the drag force can also

be observed observed. Since these effects are driven by the wing pitching rotation during

flapping, the phenomenon is named rotational circulation and resulting forces rotational

forces.

Added mass phenomenon has already been described as the additional inertia “felt” by
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the wing because of the acceleration (and deceleration) while submerged in fluid, instead

of moving in vacuum. In other words, the wing acceleration inherently causes acceleration

in the surrounding fluid, which has to be taken in the account for inertia forces calculation.

Wing-wake interaction phenomenon is used to describe effects of the wing passing

through the wake generated during previous flapping cycles. The change between upstroke

and downstroke phase causes shedding of LEV and TEV, creating a complex unsteady

wake through which wing passes in subsequent stroke phase [79]. This phenomenon may

have a significant influence on the aerodynamic forces, and up to 23% of the lift force at

certain point can be due to the wing-wake interaction phenomenon [78].

Clap and fling phenomenon describes effects happening due to the wings coming close

to each other and then separating. As described in [80], the phenomenon starts as wings

decelerate and wing leading edges come close to each other (clap phase). This is followed

by the wings pitching about leading edge, squeezing the fluid between wings. After wings

become parallel and close to each other over whole chord, fling phase starts by pitching

about the trailing edge, creating an “empty”space, that the fluid fills. The phenomenon is

highly unsteady and can cause the increase in instantaneous lift force by up to 17% [81].

6.1.4 Quasi steady aerodynamic model used for benchmarking

A benchmarking aerodynamic model [27] is based on the quasi steady algebraic equa-

tions for force modeling. The parameters of aerodynamic model have been determined

by fitting the quasi steady model results to the experimental measurements, obtained in

[72]. Therefore, if the flapping pattern analyzed is similar to flapping pattern used for

experimental measurements, model can be used as a benchmarking tool. However, it is

important to note that the results are fitted in the cycle-averaged manner, i.e. only the

average lift and drag force can be deemed reliable, while the evolution of the force over a

flapping cycle is not validated.

It has been shown that three of the five aerodynamic phenomena mentioned in sub-

section 6.1.3, namely translational circulation, rotational circulation and added mass, can

be well approximated by quasi steady aerodynamic model [27]. On the other hand, quasi

steady model is not suitable for modeling highly unsteady phenomena, such as wing-wake

interaction and clap and fling. However, as discussed in [73], effects of the highly unsteady

aerodynamic phenomena may not have significant influence on the overall cycle-averaged
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forces, despite having significant influence at the instantaneous lift and drag force. This

is because these effects cause significant change in force at the beginning and end of each

stroke, but with effects at the beginning and end often canceling each other. However,

this cannot be taken as a general consideration and quasi steady models developed in this

manner should be used only for flow condition similar to those used in the experiment,

because as shown in [81], the clap and fling phenomenon can significantly increase value

of the total lift.

It is also important to note that, although the process of both creation and evolution

of LEV is an inherently unsteady process that couldn’t be modeled by a quasi steady

method, it is demonstrated in [1] that the overall forces caused by LEV can be reliably

modeled by quasi steady model (here captured by translational forces modeling).

Quasi steady aerodynamic model utilized here is based has been initially developed in

[69] and improved in a number of subsequent papers by the same group of authors and

recently in [25].

Translational lift FTL and drag FTD forces are calculated based on the blade element

theory, analogous to the approach in [82], leading to the expressions

FTL =
∫ R

0

1
2ρr

2α̇2c(r)CTL(δ)dr, , (6.3)

FTD =
∫ R

0

1
2ρr

2α̇2c(r)CTD(δ)dr, , (6.4)

where R corresponds to wing length, ρ represents fluid density, r is the current radial

position along the wing, α̇ represents stroking velocity, c(r) is the chord length at radial

position r from the wing root, while CLT and CDT represent translational lift and drag

coefficients. Dependence of coefficients on the angle of attack δ is determined based on

the experimental data in [69] and can be expressed as

CLT (δ) = 0.225 + 1.58 sin(2.13δ − 7.2°), (6.5)

CDT (δ) = 1.95− 1.55 cos(2.04δ − 9.82°), (6.6)

with δ in trigonometric functions expressed in degrees.

On the other hand, no explicit expression for calculating rotational force coefficient

is given in [27]. It is discussed that the coefficient depends on two variables, namely
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pitching velocity and pitching axis position. However, in the end pitching axis has been

fixed (as indicated in table 6.1) and the coefficient value is selected for the combination of

selected axis position and highest pitching velocity experienced. This procedure resulted

in a constant value of the rotational force coefficient, simplifying calculaton, while having

a small effect on accuracy. The rotational force FR can now, based on the given discussion,

be expressed as

FR = ρCRR
2α̇β̇c2

∫ 1

0
r̂ĉ2 (r̂) dr, (6.7)

where CR represents discussed rotational force coefficient (given in table 6.1), β̇ denotes

pitching velocity, c is a wing mean chord length, while r̂ = r

R
and ĉ = c

c
represent

non-dimensional values for radial position along the wing and chord length, respectively.

The added mass force expression can be found in [72] (with the correction of the

misprint in the paper, denoting a stroking acceleration where stroking velocity is supposed

to be)

FA =π4ρR
2c2

(
α̈ sin δ + α̇δ̇ cos δ

) ∫ 1

0
r̂ĉ2 (r̂) dr

− π

16ρδ̈c
3R
∫ 1

0
ĉ2 (r̂) dr, (6.8)

where α̈ represents stroking acceleration, while δ̇ and δ̈ denote angle of attack first and

second derivative with respect to time.

6.1.5 Benchmark results

Quasi steady-based aerodynamic model presented in subsection 6.1.4 is applied on the

fruit fly-like vehicle flapping with kinematics as introduced in subsection 6.1.2 (flapping anle

functions depicted in Fig. 6.2 and Fig. 6.3) to obtain benchmark results for validation of the

proposed method. Evolution of the lift and drag force components over one flapping period

are presented in Fig. 6.4 and Fig. 6.5 for all three aerodynamic phenomena (described

in subsection 6.1.3) captured by quasi steady aerodynamic model. Plots of the overall

lift and drag force evolution over one flapping period are given in Fig. 6.6 and Fig. 6.7,

respectively, together with designation of the average lift and drag force values.
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Figure 6.4: Lift force components over one flapping cycle, calculated by quasi steady
aerodynamic model for fruit fly-like aerial vehicle flapping with angle functions presented
in Fig. 6.2 and Fig. 6.3. Force components values correspond to one wing, while the

forces are equal on each wing, due to the symmetrical flapping.
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Figure 6.5: Drag force components over one flapping cycle, calculated by quasi steady
aerodynamic model for fruit fly-like aerial vehicle flapping with angle functions presented
in Fig. 6.2 and Fig. 6.3. Force components values correspond to one wing, while the

forces are equal on each wing, due to the symmetrical flapping.
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Figure 6.6: Total value of the lift force per one wing, calculated for fruit fly-like vehicle
hovering with quasi steady aerodynamic model. Plot includes both total lift force

evolution and cycle-averaged lift force value.
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Figure 6.7: Total value of the drag force per one wing, calculated for fruit fly-like
vehicle hovering with quasi steady aerodynamic model. Plot includes both total drag

force evolution and cycle-averaged drag force value.
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As previously explained, quasi steady aerodynamic model is experimentally validated

in terms of the average force, while the exact force evolution over a flapping cycle might

not be reliable, since certain neglected aerodynamic phenomena might have a significant

influence on the force evolution, with negligible influence on average force values (see

discussion in subsection 6.1.4).

6.1.6 Results of the analysis with proposed computational
model

As introduced, proposed computational model of an insect type flapping wing aerial

vehicle consists of two distinct procedures for modeling effects of added inertia (Chapter 4)

and vortex wake (Chapter 5), performed in conjunction to model aerodynamics of insect

type flapping wing aerial vehicles.

For the purpose of added inertia effects modeling, cross section of the wing is set

to be ellipse, due to the unavailability of better fruit fly wing cross section data. The

ellipse semi-major axis is equal to half the chord c

2 at the radial position r along the wing,

while the semi-minor axis corresponds to the assumed constant wing thickness (table 6.1).

Boundary of the ellipse is discretized with 300 boundary elements. Flapping wing cross

section is illustrated in Fig. 6.8, with indication of pitching angle, together with spatial

and body-fixed reference frames. Since the vehicle is assumed to be in standstill hovering,

coordinate system fixed to the fruit fly like vehicle main body is equivalent to the spatial

(fixed) reference frame.

Kinematics of the flapping is introduced in subsection 6.1.2, while each flapping cycle is

discretized with 100 time steps. Summing the effects ofMF v̇ andQAM in (3.36) results in

the overall aerodynamic load due to the added inertia of the surrounding fluid. Resulting

force components and torque, all expressed in the body-fixed reference frame (illustrated

in Fig. 6.8 as O′), are shown in Fig. 6.9 and Fig. 6.10.

It may seem from the Fig. 6.9 that the added mass in x′ direction is surprisingly

zero. However, it is nonzero, but approximately three orders of magnitude smaller than

the added mass y′ components, due to the high ellipse eccentricity (large ratio between

semi-major and semi-minor axis). After taking into account the orientation of the flapping

wing in each time step, the lift and drag added mass components (added mass forces in x

and y direction on Fig. 6.8), can be calculated resulting in plot shown in Fig. 6.11.
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Figure 6.8: Illustration of the modeled flapping wing cross section with spatial O and
body-fixed O′ reference frames.

0.0 0.2 0.4 0.6 0.8 1.0
Flapping period, T [-]

−3

−2

−1

0

1

2

3

Ad
de

d 
m

as
s f

or
ce

 c
om

po
ne

n 
, F

A
* [

N]

1e−6 Added mass force in body-fixed frame
FAx′

FAy′

Figure 6.9: Evolution of added mass force components in the body-fixed reference
frame (O′ in Fig. 6.8) over one flapping cycle for a fruit fly-like aerial vehicle hovering.

As expected, symmetrical flapping pattern (shown in Fig. 6.2 and Fig. 6.3) produced

symmetric added mass lift and drag components in Fig. 6.9, which cancel over whole

94



Chapter 6. Numerical experiments

0.0 0.2 0.4 0.6 0.8 1.0
Flapping period, T [-]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Ad
de
d 
m
as
s t
or
qu
e,
 T

A
 [N
m
]

1e 9 Added mass torque
TA

Figure 6.10: Evolution of added mass torque over one flapping cycle for a fruit fly-like
aerial vehicle hovering.
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Figure 6.11: Added mass lift and drag force components over one flapping cycle for a
fruit fly-like aerial vehicle hovering.

flapping cycle.

For the purpose of vorticity effects modeling airfoil is discretized with 10 vortex elements
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(described in Chapter 5) of equal length. Kinematics of the flapping is, naturally, also same

as introduced in subsection 6.1.2, while each flapping cycle is again discretized with 100

time steps. Vortex wake generation and evolution for these 100 time steps are illustrated

in selected snapshots of wing and vortex wake, at different points in flapping period T , in

Fig. 6.12.

T = 0.00 T = 0.18 T = 0.24

T = 0.53 T = 0.75 T = 0.90

Figure 6.12: Snapshots of wing airfoil and vortex wake at different points in flapping
period T . Blue points denote vortices that are shed from trailing edge, while orange

points represent vortices shed from wing leading edge.

A vortex wake illustrated in Fig. 6.12 generates a circulation in airfoil-attached vortices,

which can be used to calculate lift and drag force, due to the vorticity effects (Qvort in

(3.36)). Resulting lift and drag forces, due to vorticity effects, are presented in Fig. 6.13.

The overall computational procedure took approximately 40 ms for modeling of one

flapping cycle, lasting T = 1
f

= 1
167.3 ≈ 6 ms. However, it is important to note that the

computational procedure could be further numerically improved and there are parts of

the proposed algorithm that could be efficiently computed in parallel. Nevertheless, this

is already multiple orders of magnitude computationally faster than conventional CFD

algorithms, not applicable for use in simulation, control study and optimization [2]. Values

of the total lift and drag force, calculated by the proposed computational model of insect

type flapping wing aerial vehicle, can be obtained by summing added mass (Fig. 6.11) and

vorticity effects (Fig. 6.13) lift and drag components, resulting with the force evolution

presented in Fig. 6.14 and Fig. 6.15.
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Figure 6.13: Lift and drag force due to vorticity wake effects over one flapping period
for a fruit fly-like aerial vehicle hovering.
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Figure 6.14: Total value of the lift force per one wing, calculated for fruit fly-like
vehicle hovering with proposed computational model. Plot includes both total lift force

evolution and cycle-averaged lift force value.
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Figure 6.15: Total value of the drag force per one wing, calculated for fruit fly-like
vehicle hovering with proposed computational model. Plot includes both total drag force

evolution and cycle-averaged drag force value.

6.1.7 Results comparison and conclusions

With the aim of validating proposed flapping wing vehicle computational model, re-

sults of the computation (subsection 6.1.6) are compared to the results obtained with

benchmarking method (subsection 6.1.5). Fig. 6.16 includes the comparison of lift force

values over one flapping period, together with average values of lift force results. It is

obvious that, although evolution of lift force over the flapping cycle is not same (probably

due to the fact that the benchmarking quasi steady aerodynamic model neglects certain

phenomena significant to the force evolution, see subsection 6.1.4), the average values of

lift force match almost perfectly.

In the same manner as for lift, Fig. 6.17 includes the comparison of drag force values

over one flapping period, together with average values of lift force results. It can again

be noticed that the calculated drag force evolution over the flapping period is not same

for both methods, average values are almost the same, validating a method in terms of

cycle-averaged results.
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Figure 6.16: Comparison of lift force calculated by proposed approach to the lift force
calculated by the benchmarking quasi steady aerodynamic model.
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Figure 6.17: Comparison of drag force calculated by proposed approach to the drag
force calculated by the benchmarking quasi steady aerodynamic model.
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Since the average values of the quasi steady-based aerodynamic models are only reliable

values, agreement of calculated cycle-averaged lift and drag forces (almost perfect agree-

ment of lift force in Fig. 6.16 and very good agreement of drag force Fig. 6.17) indicates

that the proposed computational model is validated for the numerical example of fruit fly

like aerial vehicle hovering.

6.2 Flapping flight in Mars environmental conditions

Advances in the space travel have enabled researchers to not only observe space from

a distance, but to also take samples and investigate space objects from vicinity. Recently,

Mars has been high on the list of priorities for exploration. Geology of early Mars is

well preserved, even for more than 3.5 billion years ago when approximately life on Earth

began [83]. To this end, exploring Mars geological record could provide insights in time

of life evolution and the possibilities of life starting somewhere else in the solar system.

Reaching Mars is not an insurmountable task anymore, with multiple space agencies

demonstrating capabilities of reaching Mars. On the other hand, efficient exploration of

Mars by gathering as much data possible imposes a challenge and is in the focus of recent

developments. Mars exploration evolved through the stages of using flyby, orbiter, rover

[84], and recently also NASA’s “Ingenuity” rotorcraft unmanned aerial vehicle, making the

first powered flight on another planet [85]. Usual state-of-the-art combination for Mars

exploration consisted of rover and orbiter. However, the rover exploration limits due to

the rugged and hazardous surface, together with the orbiter limits in image resolution

and incapability of taking samples, indicate vertical takeoff and landing aerial vehicle

as the natural extension of the “Mars exploration fleet”, by providing faster movement,

possibilities of reaching areas inaccessible by rovers and also provide greater field of view

for steering rover.

Low Martian atmosphere density (about 1 % of atmosphere density on Earth’s sea

level) renders fixed-wing aircraft insensible because of large flying velocities required for

sustaining lift. This indicated rotorcraft as the logical concept for first Mars flight, due to

the current technological state-of-the-art, where completely novel flight concepts are not

ready for such application. However, novel flight concepts with different type of propulsion

are expected to replace rotorcraft in the future, due to the low efficiency of rotors in low

Reynolds number conditions, experienced during Mars flight [86]. To this end, insect-type
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flapping wings analyzed in the thesis, present themselves as the most promising future

concept, because insects utilize this concept to fly efficiently in low Reynolds number

regime on Earth for very long time. As an extreme example, alpine bumblebees are

capable of flight at very low density (from Earth flight perspective) at an altitude of 9000

m [87]. To this end, this section includes the analysis of the fruit fly-like aerial vehicle

flying in Mars environmental conditions.

6.2.1 Kinematics

The wing is modeled as having the same morphology as the fruit fly wing in previous

section. However, due to the significantly lower values of atmosphere densities observed

on Mars, the required wing is expected to be larger. Wing scaling is performed uniformly,

i.e. all wing dimensions are multiplied by the same scaling factor n. Uniform scaling,

preserving wing morphology, is required in order to keep using the same fruit fly-based

quasi steady aerodynamic model for benchmarking purposes. Wing morphology and

scaling is presented for scaling factor n = 2 in Fig. 6.18.

Figure 6.18: Illustration of the fruit fly with standard-sized wings and wings uniformly
scaled by n = 2.

Wing shape (i.e. scaling factor) and flapping pattern are adopted from [26], where the

optimal solution for fruit fly-like vehicle hovering is obtained. As in the previous section,

fruit fly is modeled as a main body with two rigid wings attached. Optimal scaling factor

is found to be n = 4.2, while the stroking and pitching angle functions, characterizing
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flapping pattern, are presented in Fig. 6.19 and Fig. 6.20, respectively. The flapping

frequency for hovering in Martian environment with these flapping angle functions is equal

to f = 50.9 Hz.

0.0 0.2 0.4 0.6 0.8 1.0
Flapping period, T [-]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

St
ro

ki
ng

 a
ng

le
, α

 [-
]

Stroking angle function

Figure 6.19: Evolution of stroking angle function α(t) over one flapping period for
standstill hovering in Mars environmental conditions.
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Figure 6.20: Evolution of pitching angle function β(t) over one flapping period for
standstill hovering in Mars environmental conditions.
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Table 6.3
Properties of the fruit fly and Martian atmosphere

Description Label Value Source
Gravitational acceleration [m

s2 ] gMars 3.72 [88]
Atmospheric density [ kg

m3 ] ρMars 1.55 · 10−2 [88]
Dynamic viscosity [ kg

ms
] µMars 1.5 · 10−5 [88]

Wing length [m] R 2.5 · 10−3 · n [72]
Mean chord length [m] c̄ 6.68 · 10−4 · n [72]
Wing thickness [m] b 2.3 · 10−5 · n [72]
Wing surface [m2] S 0.0167 · 10−4 · n2 [72]
Body mass [kg] mb 0.96 · 10−6 [70]
Wing mass [kg] mw 2.4 · 10−9 · n3 [71]

Wing inertia matrix [kg ·m2] Iw

 2.889 −8.368 0
−8.368 48.255 0

0 0 51.144

 · 10−16n5 -

Rotational force coefficient CR 1.55 [27]

6.2.2 Physical properties

The wing is assumed to be homogeneous, with density calculated from the fruit fly

wing mass (already reported in Table 6.3). The properties of a an enlarged flapping wing

for Mars environment can now be obtained by scaling the values pertinent to initial wing.

Properties of the scaled wing, depending on the scaling factor n, are presented in Table 6.3,

together with the sources for obtained data. Only value without source is wing inertia

matrix, calculated from CAD model of fruit fly wings with the assumption of uniform

density.

As already mentioned, Martian atmosphere density is significantly (almost 100 times)

lower than Earth’s atmosphere density. However, beneficial for flight performance, gravity

is also lower than Earth’s (almost three times). These values, together with dynamic

viscosity of Martian atmosphere, and sources for all values are given in Table 6.3.

6.2.3 Quasi steady aerodynamic model used for benchmarking

Same quasi steady model introduced in subsection 6.1.4 is again here utilized as

a benchmarking method. Although model parameters are fitted and model validated

based on experiments conducted on Earth, the application of the model in this case is

appropriate in these circumstances. In order to justify this claim it should be noted

again that the experiments were performed on a dynamically scaled model of fruit fly-like
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wings, by keeping the values of Reynolds number preserved. This has been achieved

by utilizing enlarged wings submerged in oil [69]. Thus created model has proven to

be reliable for aerodynamic force prediction of both the real life fruit fly wings and the

experimental enlarged fruit fly-like wing submerged in oil, as long as Reynolds number

value is preserved. Therefore, it can be concluded that the described quasi steady model

can be used as a reliable method for aerodynamic load prediction on fruit fly-like wings

in Martian atmosphere as long as the Reynolds number is kept in the validated range.

Reynolds number in the case of a insect-type flapping wing vehicles is often given as

Re = ρvrefLref
µ

, (6.9)

where ρ stands for atmosphere density, vref represents reference velocity (here taken to be

mean wing tip velocity [83]), Lref is the reference length (here equal to the mean chord

length c̄), while µ represents the value of dynamic viscosity. A range of appropriate values

of Reynolds number for this model is taken to be from 100 to 1400, as indicated in [76].

6.2.4 Benchmark results

Quasi steady-based aerodynamic model presented in subsections 6.1.4 and 6.2.3 is ap-

plied on the fruit fly-like vehicle flapping with kinematics as introduced in subsection 6.2.1

(flapping angle functions depicted in Fig. 6.19 and Fig. 6.20) to obtain benchmark results

for validation of the proposed method in the Mars environment. Evolution of the lift

and drag force components over one flapping period for described case are presented in

Fig. 6.21 and Fig. 6.22 for all three aerodynamic phenomena (described in subsection 6.1.3)

captured by quasi steady aerodynamic model. Plots of the overall lift and drag force evo-

lution over one flapping period are given in Fig. 6.23 and Fig. 6.24, respectively, together

with designation of the average lift and drag force values.
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Figure 6.21: Lift force components over one flapping cycle, calculated by quasi steady
aerodynamic model for fruit fly like aerial vehicle in Martian atmosphere, flapping with
angle functions presented in Fig. 6.19 and Fig. 6.20. Force components values correspond
to one wing, while the forces are equal on each wing, due to the symmetrical flapping.

0.0 0.2 0.4 0.6 0.8 1.0
Flapping period, T [-]

−6

−4

−2

0

2

4

6

Dr
ag

 fo
rc
e 
co

m
po

ne
nt
 , 
F *

D
 [N

]

1e−6 Drag force component  per wing
Tran lational drag force FTL
Rotational drag force FRL
Added ma   drag force FAL

Figure 6.22: Drag force components over one flapping cycle, calculated by quasi steady
aerodynamic model for fruit fly like aerial vehicle in Martian atmosphere flapping with
angle functions presented in Fig. 6.19 and Fig. 6.20. Force components values correspond
to one wing, while the forces are equal on each wing, due to the symmetrical flapping.
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Figure 6.23: Total value of lift force per one wing, calculated for fruit fly-like vehicle
hovering on Mars with quasi steady aerodynamic model. Plot includes both total lift

force evolution and cycle-averaged lift force value.

0.0 0.2 0.4 0.6 0.8 1.0
Flapping period, T [-]

−6

−4

−2

0

2

4

6

To
ta
l d
ra
g 
fo
rc
e,
 D

Q
S [
N]

1e−6 Total q asi steady model drag force per wing
Total drag force
Average of drag force

Figure 6.24: Total value of drag force per one wing, calculated for fruit fly-like vehicle
hovering on Mars with quasi steady aerodynamic model. Plot includes both total drag

force evolution and cycle-averaged drag force value.
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6.2.5 Results of the analysis with proposed computational
model

As introduced and already applied in subsection 6.1.6, proposed computational model of

an insect type flapping wing aerial vehicle consists of two distinct procedures for modeling

effects of added inertia (Chapter 4) and vortex wake (Chapter 5), performed in conjunction

to model aerodynamics of insect type flapping wing aerial vehicles.

For the purpose of added inertia effects modeling, cross section of the wing is again

set to be ellipse, due to the unavailability of better fruit fly wing cross section data. The

ellipse semi-major axis is equal to half the chord c

2 at the radial position r along the wing,

while the semi-minor axis corresponds to the assumed constant wing thickness (table 6.3).

Boundary discretization and coordinate systems are equivalent to previous numerical

example (subsection 6.1.6).

Kinematics of the flapping is introduced in subsection 6.2.1, while each flapping cycle

is again discretized with 100 time steps. Summing the effects ofMF v̇ and QAM in (3.36)

results in the overall aerodynamic load due to the added inertia of the surrounding fluid.

Resulting force components and torque, all expressed in the body-fixed reference frame

(illustrated in Fig. 6.8 as O′), are shown in Fig. 6.25 and Fig. 6.26.
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Figure 6.25: Evolution of added mass force components in the body-fixed reference
frame (O′ in Fig. 6.8) over one flapping cycle in Martian atmosphere.
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Figure 6.26: Evolution of added mass torque over one flapping cycle in Martian
atmosphere.
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Figure 6.27: Added mass lift and drag force components over one flapping cycle in
Martian atmosphere.
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Similarly as before, added mass in x′ direction (presented in Fig. 6.25) is not zero,

but approximately three orders of magnitude smaller than the added mass y′ components,

due to the high ellipse eccentricity (large ratio between semi-major and semi-minor axis).

After taking into account the orientation of the flapping wing in each time step, the lift

and drag added mass components (added mass forces in x and y direction on Fig. 6.8),

can be calculated resulting in plot shown in Fig. 6.27.

Opposed to the symmetrical flapping pattern in previous numerical example (sec-

tion 6.1), a non-symmetrical flapping pattern found to be optimal for standstill hovering

on Mars [26] utilized here produces non-symmetric added inertia lift and drag components

(Fig 6.27).

Regarding vorticity effects modeling, despite the fact that the wings have been enlarged

by factor n = 4.2, airfoil discretization with 10 vortex elements (described in Chapter 5)

of equal length was again enough for results convergence. Flapping kinematics introduced

in subsection 6.2.1 is again discretized with 100 time steps. Vortex wake generation

and evolution for these 100 time steps in Martian atmosphere are illustrated in selected

snapshots of wing and vortex wake, at different points in flapping period T , in Fig. 6.28.

T = 0.00 T = 0.18 T = 0.24

T = 0.53 T = 0.65 T = 0.98

Figure 6.28: Snapshots of wing airfoil and vortex wake at different points in flapping
period T , for standstill hovering on Mars. Blue points denote vortices that are shed from

trailing edge, while orange points represents vortices shed from wing leading edge.

A vortex wake illustrated in Fig. 6.28 generates a circulation in airfoil-attached vortices,

which can be used to calculate lift and drag force, due to the vorticity effects (Qvort in

(3.36)). Resulting lift and drag forces, due to vorticity effects in Martial atmosphere, are
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presented in Fig. 6.29.
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Figure 6.29: Lift and drag force due to vorticity wake effects in Martian atmosphere
over one flapping period.

The overall computational procedure again (since the same number of boundary el-

ements and time steps are employed) took approximately 40 ms for modeling of one

flapping cycle, now lasting T = 1
f

= 1
50.9 ≈ 20 ms, which is very close to the real time

behavior. Values of the total lift and drag force, calculated by the proposed computational

model of insect type flapping wing aerial vehicle, can be obtained by summing added mass

(Fig. 6.27) and vorticity effects (Fig. 6.29) lift and drag components, resulting with the

overall force components evolution presented in Fig. 6.30 and Fig. 6.31.
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Figure 6.30: Total value of the lift force per one wing, calculated for fruit fly like
vehicle hovering on Mars with proposed computational model. Plot includes both total

lift force evolution and cycle-averaged lift force value.
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Figure 6.31: Total value of the drag force per one wing, calculated for fruit fly like
vehicle hovering on Mars with proposed computational model. Plot includes both total

drag force evolution and cycle-averaged drag force value.

111



Chapter 6. Numerical experiments

6.2.6 Results comparison and conclusions

In the previous example (section 6.1), proposed approach has been validated for the

fruit fly hovering on Earth, which included relatively smooth flapping angle functions.

Here, on the other hand, standstill hovering of fruit fly-like aerial vehicle (same wing

morphology but different size) in Martian environment has been considered. This also

included non-smooth flapping angle functions (Fig. 6.19 and Fig. 6.20), obtained in discrete

form from the optimization presented in [26]. To validate proposed flapping wing vehicle

computational model in this environment, results of the computation (subsection 6.2.5) are

compared to the results obtained with benchmarking method (subsection 6.2.4). Fig. 6.32

includes the comparison of lift force values over one flapping period in Martian atmosphere,

together with average values of lift force results. It is obvious that, although evolution

of lift force over the flapping cycle is not same (again probably due to the fact that the

benchmarking quasi steady aerodynamic model neglects certain phenomena significant to

the force evolution, see subsection 6.1.4), the average values of lift force match almost

perfectly.
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Figure 6.32: Comparison of lift force on flapping wing in Martian atmosphere,
calculated by proposed approach to the lift force calculated by the benchmarking quasi

steady aerodynamic model.
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In the same manner as for lift, Fig. 6.33 includes the comparison of drag force values

over one flapping period in Martian atmosphere, together with average values of lift force

results. It can again be noticed that, although the calculated drag force evolution over

flapping period is not same for both methods, average values match almost perfectly,

validating a method in terms of cycle-averaged results.
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Figure 6.33: Comparison of drag force on flapping wing in Martian atmosphere,
calculated by proposed approach to the drag force calculated by the benchmarking quasi

steady aerodynamic model.

Since the average values of the quasi steady-based aerodynamic models are only re-

liable values, agreement of calculated cycle-averaged lift and drag forces (almost perfect

agreement of lift force in Fig. 6.32 and drag force Fig. 6.33) indicates that the proposed

computational model is validated for the numerical example of fruit fly like aerial vehicle

hovering. In addition to this, it is important to again emphasize that due to the high

values of flapping frequencies exact evolution of the aerodynamic force over the flapping

cycle has negligible influence on the overall accuracy [73], therefore not being in the focus

of most insect-type flapping aerodynamics computational models.
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Conclusion

Thesis has been focused on development of mid-fidelity computational model for insect-

type flapping wing aerial vehicle, capable of reliable aerodynamic load modeling, while

being efficient enough to be used within design optimization and optimal control loops.

The computational model is founded on the findings that, due to the high flapping fre-

quencies (and consequently high values of Strouhal number) boundary layer modeling can

be neglected, despite the low Reynolds number characterizing flow around insect-type

flapping wings. This allows the fluid viscosity effects on flapping wings to be modeled by

vortex wake.

Helmohltz-Hodge decomposition is utilized to decompose fluid velocity vector field into

curl-free and divergence-free parts. Curl-free part of the fluid velocity is then used to

model added inertia effects of the fluid, important in the context of insect-type flapping

due to the high wing accelerations and complex wing kinematics. On the other hand,

divergence-free part is utilized for viscosity effects modeling, based on the vortex wake.

Equations of motion for the flapping wing aerial vehicle, as a coupled multibody-fluid

system, are derived in DAE index 1 form. Effects of the curl-free part of fluid velocity

vector field (added inertia effects) are modeled in terms of multibody system variables only,

after performing symplectic reduction, exploiting “particle relabeling symmetry” property,

to reduce out fluid variables. The time-dependent nature of the added inertia matrix is

taken into account in deriving equations, leading to the additional “aerodynamic load”

term. On the other hand, effects of the divergence-free fluid velocity component arise in

the coupled system equations of motion as an external load to the multibody system.

Calculation of added inertia effects is formulated as an Exterior Laplace boundary value

problem, with non-penetrability constraints on surfaces. This is done after decomposing

the respective part of fluid velocity potential in six (or three in 2D) components for each
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rigid body. Resulting boundary value problem is solved by in-house developed collocation

boundary element method with analytic solutions for singular integrals, and validated on

geometric shapes with analytic added inertia solutions.

Viscosity effects modeling is approached with vortex wake modeling algorithm, based

on lumped vortex element method with irrotational point vortices. However, the method

is tailored for use in insect-type flapping wing aerodynamics modeling by introducing

leading edge vortex shedding, if certain thresholds are satisfied. Aerodynamic load on

the aerial vehicle, due to the resulting irrotational point vortex wake, is calculated from

kinematics and vortex elements circulation by using Kutta-Joukowski theorem.

The overall insect-type flapping wing computational model is tested on two numer-

ical examples. Both examples are based on fruit fly morphology, due to availability of

benchmarking quasi steady aerodynamic models with validated parameters for the flow

characterized by certain range of non-dimensional numbers. First example involves fruit fly

standstill hovering with smooth flapping angle functions, found in literature. Second exam-

ple involves fruit fly-like aerial vehicle with uniformly enlarged flapping wing, analyzed for

hovering in Mars atmospheric environment. Both numerical examples demonstrated near

real time properties of the computational model with high accuracy of load prediction.

Main thesis conclusions can be summarized as:

• Insect-type flapping wing aerodynamics can be accurately and efficiently modeled by

computational model based on decomposition of the fluid velocity vector field into

curl-free part, modeling added inertia effects, and divergence-free part, describing

viscosity effects in terms of irrotational point vortex wake. As previously suggested

in literature, it is confirmed that neglecting boundary layer effects does not lead to

significant loss in accuracy.

• Proposed computational model has a near real-time computation properties with

reliable insect-type flapping wing aerodynamic load prediction, while requiring no

parameter fitting based on previous experience or results, as opposed to the often

used numerically efficient quasi steady aerodynamic model. This makes the model

suitable for use in design optimization and optimal control loops.

• Correct derivation of equations of motions for a coupled multibody-fluid system

leads to the additional term in the “aerodynamic load” components due to the

115



Chapter 7. Conclusion

time-dependent nature of the added inertia matrix, opposed to the standard rigid

body inertia matrix. This term is often mistakenly overlooked and not included in

analysis.

• Added inertia effects, including influence of the coupling between rigid bodies in

multibody chain, exact body geometries and time-dependence can be accurately

modeled by formulating problem as a set of exterior Laplace boundary value problems.

Collocation boundary element method is validated for solving the resulting set of

boundary value equations on the simple geometric shapes, for which analytic solution

exists.

• Insect-type flapping flight viscosity effects can be reliably and efficiently calculated by

proposed irrotational point vortex wake model, based on the conventional unsteady

lumped vortex element method, tailored for insect-type flapping flight by adding

leading edge vortex shedding and evolution.

• Numerical experiments in the significantly different Earth and Mars atmosphere

suggest that the proposed method can be used for flapping flight modeling in unknown

environments, without any change in parameters.

7.1 Main scientific contributions and hypothesis
confirmation

Main scientific contribution of the research is a novel computational model of an insect-

type flapping wing aerial vehicle, based on geometric reductions of the coupled multibody-

fluid system on manifolds and Lie groups, supplemented with mechanism for describing

significant viscous effects in the form of vortex wake modeling. The computational model

enables accurate and reliable calculation of flapping wing aerial vehicle performance, while

still being numerically efficient enough to be used in design optimization and optimal

control loop. To this end, main scientific contributions can be summarized as:

• Development of a novel computational model for insect-type flapping wing aerial

vehicle, capable of reliable and efficient modeling of most important complex aero-

dynamic phenomena pertinent to insect-type flapping flight physics. Computational

model is based on Hamiltonian geometric reductions on fluid-solid coupled system
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manifold (Lie group), supplemented with numerical model for describing important

viscous effects of flapping wings in ambiental fluid.

• Development and numerical implementation of the model for calculating added

inertia effects of insect-type flapping wings submerged in ambiental fluid, based on

symplectic reduction of the coupled system and numerical boundary element method.

• Tailoring of the conventional unsteady lumped vortex element method for insect

type flapping wing utilization, by developing and implementing numerical model for

leading and trailing edge vortex shedding and evolution.

• Synthesis of numerically efficient computational environment which can be used

for multiphysical optimization of insect-type flapping wing aerial vehicle in differ-

ent atmospheric environments, such as in physical environment pertinent to Earth

flight, but also in the especially challenging flight conditions pertinent to Martian

atmosphere.

Developed computational model properties confirm the hypothesis introduced in sec-

tion 1.3.

7.2 Outlook and future work

There is no question that the research of the insect-type flapping will continue with

the aim of both understanding all the intricate aerodynamic phenomena that insect utilize

to achieve great performance capabilities, and also with the aim of manufacturing aerial

vehicle utilizing as much of these phenomena as possible. Further development of the com-

putational models for insect-type flapping wings is of great importance for achieving such

goals. To this end, for different goals and different research phases, computational models

with various levels of accuracy will have its use, from quasi steady models with experi-

mentally fitted parameters, through tailored computational model such as one proposed

in the thesis, to conventional computationally expensive volume-discretizing methods.

Proposed model could be improved by considering:

• Reducing computational time of the proposed method by parallelization of appro-

priate parts of the algorithm, such as collocation boundary element method.
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• Improving accuracy of the computational model in certain use cases by introducing

vortex dissipation. This may be important for the cases in which vortices evolve

near flapping wings for long time, introducing inaccurately large influence on the

wings, by the “old” vortices that would have been dissipated in nature due to fluid

viscosity.

• Different methods for modeling fluid viscosity effects, such as unsteady vortex lattice

method or DUST [89] - a recently introduced particles wake approach.

• Implementation and testing of proposed computational model within design opti-

mization and optimal control loops.
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