Postupak podešavanja kaskadnog regulacijskog sustava elektronički komutiranog istosmjernog motora bez potrebe za modelom motora

Vitko, Jakov

Undergraduate thesis / Završni rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:387153

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-07

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Jakov Vitko

Zagreb, 2022.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentori:

Student:

Prof. dr. sc. Joško Deur, dipl. ing.

Jakov Vitko

Zagreb, 2022.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru prof. dr. sc. Jošku Deuru na pomoći i savjetima pri izradi završnog rada. Zahvaljujem se docentu Branimiru Škugoru na Simunlik modelima, docentu Mariu Hrgetiću na pomoći i pripremi eksperimentalnog postava, kolegi Filipu Kolariću na materijalim i savjetima za upravljanje motorom i asistentici Dariji Matković na sugestijama oko pisanja rada. Također se zahvaljujem svojoj obitelji i prijateljima.

Jakov Vitko

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povierenstvo za završne i diplomske ispite studija strojarstva za smjerove:

proizvodno inženjerstvo, računalno inženjerstvo, industrijsko inženjerstvo i menadžment, inženjerstvo

materijala i mehatronika i robotika

Sveuči Fakultat stroj	lište u Zagrebu		
Takunet stroj	arstva i brodogradnje		
Datum Prilog			
Klasa: 602 – 0	4 / 22 - 6 / 1		
Ur.broj: 15 - 1	703 - 22 -		

ZAVRŠNI ZADATAK

Student:

Jakov Vitko

JMBAG: 0035217782

Naslov rada na
hrvatskom jeziku:Postupak podešavanja kaskadnog regulacijskog sustava elektronički
komutiranog istosmjernog motora bez potrebe za modelom motora

Naslov rada na A model-free method of tuning the brushless DC motor cascade control engleskom jeziku: system

Opis zadatka:

Električni motori uobičajeno se reguliraju primjenom kaskadne strukture koja sadrži regulatore struje, brzine vrtnje i položaja. U literaturi su za potrebe podešavanja parametara ovih regulatora razvijeni analitički postupci zasnovani na praktičnim optimumima. U samopodesivim regulatorima koriste se postupci automatske identifikacije parametara modela procesa iz kojih se u realnom vremenu izračunaju parametri regulatora. U inženjerskoj je praksi ponekad pogodno analitičke postupke podešavanja regulatora temeljene na modelu motora zamijeniti praktičnim metodama sukcesivnog podešavanja parametara regulatora. U radu je potrebno:

- prezentirati strukturu kaskadne regulacije istosmjernog motora i formule za parametre regulatora dobivene primjenom praktičnih optimuma;
- razraditi i u simulacijskom okruženju ispitati postupak sukcesivnog podešavanja parametara kaskadnih regulatora struje, brzine vrtnje i položaja istosmjernog motora, koje će se približiti analitičkom podešenju;
- primijeniti razvijeni praktični postupak podešenja parametara regulatora na maketi elektronički komutiranog istosmjernog motora te prikazati i diskutirati dobivene eksperimentalne odzive;
- predložiti i eksperimentalno ispitati podešenje unaprijednih upravljačkih djelovanja za primjenu motora u slijednim sustavima.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

30. 11. 2021.

Zadatak zadao:

Prof. dr. sc. Joško Deur

Datum predaje rada: 1. rok: 24. 2. 2022. 2. rok (izvanredni): 6. 7. 2022. 3. rok: 22. 9. 2022. Predviđeni datumi obrane:

1. rok: 28. 2. - 4. 3. 2022. 2. rok (izvanredni): 8. 7. 2022. 3. rok: 26. 9. - 30. 9. 2022.

Predsjednik Povjerenstva:

Prof. dr. sc. Branko Bauer

Sung

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA II	[]
POPIS TABLICA	V
POPIS OZNAKA	Ί
SAŽETAKVI	Π
SUMMARY	II
1. UVOD	1
2. KASKADNA STRUKTURA ISTOSMJERNOG MOTORA I PODEŠAVANJE PARAMETARA REGULATORA	2
2.1. Kaskadna regulacija istosmjernog motora	2
2.2. Regulacijski krug struje armature	4 1
2.2.1. Struktura regulatora struje armature	+ 6
2.3. Regulacija brzine vrtnje brzine	0
2.3.1. Struktura regulacijskog kruga brzine vrtnje	0
2.3.2. Sinteza regulatora brzine vrtnje	1 3
2.4. Regulacija položaja 2.4.1. Struktura regulacijskog kruga položaja	3
2.4.2. Sinteza regulatora položaja	4
3. SUKCESIVNO PODEŠAVANJE PARAMETARA REGULATORA KASKADNE STRUKTURE ISTOSMJERNOG MOTORA	7
3.1. Sukcesivno podešavanje parametara regulatora struje armature1	7
3.1.1. Određivanje integralne vremenske konstante regulatora struje armature	7
3.1.2. Određivanje proporcionalnog pojačanja regulatora struje armature	0
parametara regulatora struje armature	1
3.2. Sukcesivno podešavanje parametara regulatora brzine vrtnje	2
3.2.1. Sinteza modificiranog regulatora brzine vrtnje	2
3.2.2. Određivanje proporcionalnog pojačanja regulatora brzine vrtnje	5 6
3.2.4. Usporedba odziva sustava sa sukcesivnim i analitičkim parametrima regulatora	U
brzine vrtnje	7
3.3. Sukcesivno određivanje parametra regulatora pozicije	8
3.3.2. Usporedba odziva sa sukcesivnim i idealnim parametrima regulatora u režimu	0
malih signala	9
4. PRIMJENA SUKCESIVNOG POSTUPKA PODEŠAVANJA REGULATORA	
KASKADNE STRUKTURE ELEKTRONICKI KOMUTIRANOG ISTOSMJERNOG MOTORA	1
4 1 Eksperimentalni postav 3	т 1
4.2. Rezultati podešavanja kaskadne regulacijske strukture EKM-a	4

Jakov Vitko	Završni rad
5. ZAKLJUČAK	
LITERATURA	
PRILOZI	

POPIS SLIKA

Slika 1.	Opća blokovska shema regulacije istosmjernog motora	2
Slika 2.	Kaskadna regulacijska struktura istosmjernog motora [6]	3
Slika 3.	Kompaktni regulator [6]	4
Slika 4.	Regulacijski krug struje armature	5
Slika 5.	Simulink model regulacijskog kruga struje armature	6
Slika 6.	Otvoreni regulacijski krug struje armature	6
Slika 7.	Odziv struje armature i referentnog napona na skokovitu promjenu reference	8
Slika 8.	Odziv napona armature i brzine vrtnje sa analitičkim podešenjem u strujnom	
	regulacijskom krugu	9
Slika 9.	Pojava pada struje armature nakon postizanja maksimalne brzine vrtnje	9
Slika 10.	Regulacijski krug brzine vrtnje s prefiltrom	10
Slika 11.	Usporedba odziva brzine vrtnje sa i bez prefiltra	10
Slika 12.	Simulink model regulacijskog kruga brzine vrtnje	11
Slika 13.	Otvoreni regulacijski krug brzine vrtnje	12
Slika 14.	Regulacijski krug položaja	14
Slika 15.	Simulink model regulacijskog krug položaja	14
Slika 16.	Otvoreni regulacijski krug položaja	14
Slika 17.	Kvazi-optimalni odziv položaja na skokovitu promjenu reference	16
Slika 18.	Pojednostavljeni krug struje armature	17
Slika 19.	Grafičko određivanje karakteristika strujne petlje	20
Slika 20.	Utiecaj podizanja proporcionalong pojačanja na odziv struje armature s P	
	regulatorom.	21
Slika 21.	Usporedba odziva struje na skokovitu referencu struje armature	22
Slika 22.	Modificirana PI struktura - P dielovanie izmiešteno u povratnu petliu	23
Slika 23.	Modificirana PI struktura - P dielovanie izmiešteno u direktnu granu podređeno	e – – – – – – – – – – – – – – – – – – –
201	netlie	23
Slika 24.	Regulacijski krug brzine vrtnje s modificiranim PI regulatorom	23
Slika 25.	Podređena petlia regulacijskog kruga brzine vrtnje s modificiranim PI regulato	rom
		24
Slika 26.	Nadređena petlia regulacijskog kruga brzine vrtnie s mojdificiranim PI	
	regulatorom	24
Slika 27.	Podizanie proporcionalnog pojačanja u regulatora brzine vrtnje.	
Slika 28.	Spuštanje integralne vremenske konstante regulatora brzine vrtnie	27
Slika 29.	- F	
21110 271	Usporedba odziva sustava na skokovitu referencu brzine vrtnie s različitim	
Slika 30.	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem	
Since 200	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja	28
Slika 31	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim	28 29
Slika 31.	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem	28 29 29
Slika 31.	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem Motor BG 65Sx25 MI [3]	28 29 29 29
Slika 31. Slika 32. Slika 33	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem Motor BG 65Sx25 MI [3] Izvodi 15-ninskog priključka motora BG 65Sx25 MI[3]	28 29 29 31 31
Slika 31. Slika 32. Slika 33. Slika 34	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem Motor BG 65Sx25 MI [3] Izvodi 15-pinskog priključka motora BG 65Sx25 MI[3] 12V akumulatori spojeni u seriju	28 29 29 31 32 32
Slika 31. Slika 32. Slika 33. Slika 34. Slika 35	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem Motor BG 65Sx25 MI [3] Izvodi 15-pinskog priključka motora BG 65Sx25 MI[3] 12V akumulatori spojeni u seriju Eksperimentalni postav	28 29 31 32 33 33
Slika 31. Slika 32. Slika 33. Slika 34. Slika 35. Slika 36	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem Motor BG 65Sx25 MI [3] Izvodi 15-pinskog priključka motora BG 65Sx25 MI[3] 12V akumulatori spojeni u seriju Eksperimentalni postav Programsko sučelje DA 2 16	28 29 31 32 33 33 33
Slika 31. Slika 32. Slika 33. Slika 34. Slika 35. Slika 36. Slika 37	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem Motor BG 65Sx25 MI [3] Izvodi 15-pinskog priključka motora BG 65Sx25 MI[3] 12V akumulatori spojeni u seriju Eksperimentalni postav Programsko sučelje DA 2.16 Integrirani osciloskop	28 29 31 32 33 33 34 34
Slika 31. Slika 32. Slika 33. Slika 34. Slika 35. Slika 36. Slika 37. Slika 38	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem Motor BG 65Sx25 MI [3] Izvodi 15-pinskog priključka motora BG 65Sx25 MI[3] 12V akumulatori spojeni u seriju Eksperimentalni postav Programsko sučelje DA 2.16 Integrirani osciloskop Regulacijski krug struje armature motora BG 65Sx25 MI [3]	28 29 31 32 33 33 34 34 34
Slika 31. Slika 32. Slika 33. Slika 34. Slika 35. Slika 36. Slika 37. Slika 38. Slika 39	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem Motor BG 65Sx25 MI [3] Izvodi 15-pinskog priključka motora BG 65Sx25 MI[3] 12V akumulatori spojeni u seriju Eksperimentalni postav Programsko sučelje DA 2.16 Integrirani osciloskop Regulacijski krug struje armature motora BG 65Sx25 MI [3]	28 29 31 32 33 33 34 34 35 35
Slika 31. Slika 32. Slika 33. Slika 34. Slika 35. Slika 36. Slika 37. Slika 38. Slika 39. Slika 40	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem Motor BG 65Sx25 MI [3] Izvodi 15-pinskog priključka motora BG 65Sx25 MI[3] 12V akumulatori spojeni u seriju Eksperimentalni postav Programsko sučelje DA 2.16 Integrirani osciloskop Regulacijski krug struje armature motora BG 65Sx25 MI [3] Odziv struja armature zakočenog motora Odziv motora BG 65Sx25 Mi na referencu struje od 2A	28 29 31 32 33 33 34 34 35 35 35
Slika 31. Slika 32. Slika 33. Slika 34. Slika 35. Slika 36. Slika 37. Slika 38. Slika 39. Slika 40.	Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem Motor BG 65Sx25 MI [3] Izvodi 15-pinskog priključka motora BG 65Sx25 MI[3] 12V akumulatori spojeni u seriju Eksperimentalni postav Programsko sučelje DA 2.16 Integrirani osciloskop Regulacijski krug struje armature motora BG 65Sx25 MI [3] Odziv struja armature zakočenog motora Odziv motora BG 65Sx25 Mi na referencu struje od 2A Regulacijska struktura brzine vrtnje motora BC 65Sx25 MI	28 29 31 32 33 33 33 34 34 35 35 36

Jakov Vitko	Završni ra	d
Slika 42.	Povećanje proporcionalnog pojačanja regulatora brzine vrtnje motora BG 65Sx25	
	Mi snizuje nadvišenje	7
Slika 43.	Odziv brzine sa odabranim podešenjem motora BG 655Sx25 MI	7
Slika 44.	Regulacijska struktura položaja motora BG 65Sx25 MI	8
Slika 45.	Odziv položaja motora BG 65Sx25 MI	8

POPIS TABLICA

Tablica 1.	Vrijednosti sukcesivnih i analitičkih parametara regulatora struje armature 2	2
Tablica 2.	Usporedba sukcesivnih i analitičkih parametara u krugu brzine vrtnje	28
Tablica 3.	Vrijednosti sukcesivnih i analitičkih parametara u regulacijskom kurugu položaja	a
		60
Tablica 4.	Glavne karakteristike motora BG 65Sx25 MI	52

POPIS OZNAKA

Oznaka	Jedinica	Opis
е	V	Inducirani napon, elektromotorna sila
$e_{(i,\omega,\varepsilon)}$	V	Regulacijska pogreška (struje, brzine vrtnje, položaja)
i _a	А	Struja armature
i _{am}	V	Mjerena struja
i _{aR}	V	Referentna struja
J	kgm ²	Moment tromosti motora
K _a	A/V	Pojačanje struje armature
$K_{c(i,\omega,\varepsilon)}$	V/V	Propocionalno pojačanje regulatora (struje, brzine vrtnje, položaja)
$K^*_{c(i,\omega,\varepsilon)}$	V/V	Sukcesivno proporcionalno pojačanje regulatora (struje, brzine vrtnje, pozicije)
K _{ch}	V/V	Pojačanje čopera
K_{DA}	V/V	Pojačanje digitalno analognog pretvornika
K _i	V/A	Pojačanje mjernog člana struje
K _m	Nm/A	Momentna konstanta
K_p	V/V	Pojačanje procesa
K_{ε}	V/V	Pojačanje mjernog člana položaja
K_{ω}	Vs/rad	Pojačanje mjernog člana brzine vrtnje
т	Nm	Moment motora
m_t	Nm	Moment tereta
T_a	S	Vremenska konstanta armature
$T_{c(i,\omega)}$	S	Integralna vremenska konstanta regulatora (struje, brzine vrtnje)
$T^*_{c(i,\omega)}$	S	Sukcesivna integralna vremenska konstanta regulatora (struje, brzine vrtnje)
T _{ch}	S	Vremenska konstanta čopera
$T_{e(i,\omega,\varepsilon)}$	S	Nadomjesna vremenska konstanta regulacijskog kruga (struje, brzine vrtnje, položaja)
$T_{(i,\omega)}$	S	Vremenska konstanta mjernog člana (struje, brzine vrtnje)
$T_{\Sigma(i,\omega,\varepsilon)}$	S	Parazitska vremenska konstanta (struje, brzine vrtnje, položaja)
<i>u</i> _a	V	Napon armature
u_{aR}	V	Referentni napon
ε	rad	Zakretni kut
\mathcal{E}_m	V	Referentni položaj
\mathcal{E}_R	V	Mjereni položaj
ω	rad/s	Brzina vrtnje
ω_m	V	Mjerena brzina vrtnje
ω_R	V	Referentna brzina vrtnje

Fakultet strojarstva i brodogradnje

U radu se razvija postupak sukcesivnog podešavanja parametara regulatora unutar kaskadnog regulacijskog sustava istosmjernog motora, kod kojeg nije potrebno poznavati parametre procesa. Prvo se opisuje kaskadna regulacijska struktura istosmjernog motora, uključujući analitičke izraze za izračun parametara regulatora struje, brzine vrtnje i položaja prema optimumu dvostrukog odnosa. Zatim se prikazuje razvijeni postupak sukcesivnog podešavanja parametara regulatora. Računalnim simulacijama se pokazuje da sukcesivni postupak podešavanja parametara daje slično ponašanje regulacijskih krugova motora u odnosu na nominalno, optimalno ponašanje. Konačno, sukcesivni postupak se implementira na laboratorijskom postavu elektronički komutiranog istosmjernog motora te se prikazuju i diskutiraju eksperimentalni odzivi.

Ključne riječi: istosmjerni motor, kaskadni regulacijski sustav, regulator struje, regulator brzine vrtnje, regulator položaja, podešavanje parametara regulatora

In this work a successive procedure of tuning the parameters of feedback controllers found within the DC motor cascade control system is developed. The tuning procedure does not require knowledge of process parameters. First, the DC motor cascade control system structure is described, including analytical expressions for current, speed and position controller parameters based on the damping optimum criterion. Next, the developed successive procedure of controller parameters tuning is presented. Computer simulations show that the successive parameter tuning procedure gives similar control loop behaviours when compared with the nominal, optimal behaviours. Finally, the successive procedure is implemented on a laboratory setup of brushless DC motor, and experimental results are shown and discussed.

Keywords: DC motor, cascade control system, current controller, speed controller, position controller, controller parameters tuning

1. UVOD

Kaskadna regulacijska struktura zbog svojih je prednosti i jednostavnosti prisutna u gotovo svakom električnom servopogonu [1], [2], [4], [5], [6]. Analitički način podešavanja regulatora kaskadne strukture električnih servopogona zasniva se na modelu motora zajedno s elektroničkim energetskim pretvaračem i senzorima, te se uobičajeno provodi prema optimumu dvostrukog odnosa [2], [6] kako bi se osigurali brzi i dobro prigušeni odzivi.

U praksi je vrlo čest slučaj da proizvođač ne isporuči parametre modela motora, koji su neophodni kako bi se regulatori podesili na analitički i optimalan način. Često nije dostupna niti funkcionalnost samopodešavanja regulatora (engl. auto-tunning). Konačno, nekada nije moguće ili nije praktično doći do pojedinih signala ili energetskih vodova kako bi se eksperimentalno identificirali parametri motora. Korisnicima tada preostaje da metodom pokušaja i promašaja podese niz parametara ukupno tri regulatora kaskadne strukture: regulatora struje, brzine vrtnje i položaja. Stoga je od interesa razraditi nezamršen postupak podešavanja parametara regulatora, koji bi ultimativno podešavao jedan po jedan parametar uz istovremenu eksperimentalnu provjeru kvalitete podešavanja. Takav, sukcesivni postupak podešavanja parametara regulatora razvija se u ovom radu i provjerava prvo simulacijom na računalu, a zatim i eksperimentalno na maketi elektronički komutiranog istosmjernog motora.

Rad je organiziran u pet poglavlja, uključujući uvod i zaključak. U drugom poglavlju opisuje se kaskadna struktura regulacije istosmjernih motora. Pritom se i prikazuje analitički postupak podešenja triju regulatora primjenom optimum dvostrukog odnosa, te se optimalno ponašanje regulacijskih sustava ilustrira simulacijskim odzivima. U trećem poglavlju prikazuje se razvijeni sukcesivni način podešavanja parametara procesa koji ne zahtijeva poznavanje parametara modela procesa. Za svaki regulacijski krug prikazuju se usporedni odzivi dobiveni analitičkim i sukcesivnim načinom podešavanja parametara regulatora. U četvrtom poglavlju opisuje se postav elektronički komutiranog istosmjernog motora te prikazuju i diskutiraju eksperimentalni rezultati sukcesivnog načina podešavanja parametara regulatora struje, brzine vrtnje i položaja.

2. KASKADNA STRUKTURA ISTOSMJERNOG MOTORA I PODEŠAVANJE PARAMETARA REGULATORA

2.1. Kaskadna regulacija istosmjernog motora

Kaskadna regulacija se odvija u više zatvorenih krugova ili razina i koristi se u slučajevima kada postoji više mjernih signala [1], [2], [4], [5], [6]. Opća blokovska shema regulacije istosmjernog motora prema [1] može se vidjeti na slici 1. Regulator vanjskog kruga naziva se primarni ili nadređeni regulator, a regulator koji je dio unutarnjeg kruga naziva se sekundarni i on je podređeni vanjskome regulatoru. Specifičnost za ovu regulacijsku strukturu je ta da nadređeni regulatori zadaju referentne vrijednosti podređenim krugovima, odnosno izlaz vanjskog regulatora mijenja referencu unutarnjeg. Naravno da svaki regulacijski krug zahtijeva mjerenje njegove vođene veličine kako bi se mogla povući povratna veza i signalom pogreške koji se korigira preko regulatora djelovati na proces. Kasakadna regulacija podrazumijeva da je dinamika unutarnjeg kruga brža 2 do 3 puta od dinamike vanjskog kruga. Kada to ne bi bio slučaj sustav bi mogao ići k nestabilnosti.

Slika 1. Opća blokovska shema regulacije istosmjernog motora

Model sustava je 3. reda, a varijable stanja su struja armature i_a , brzina vrtnje ω i položaj ili zakretni kut ε . U najpodređenijoj petlji obavlja se regulacija struja armature i ona ima najbrži odziv. Njoj je nadređena petlja za regulaciju brzine vrtnje koja je pak podređena vanjskoj i najsporijoj petlji za regulaciji položaja. Kako se ide od unutarnje petlje prema vanjskoj tako je obuhvaćeno sve više dinamičkih sklopova s kašnjenjem te je odziv vanjskih petlja sporiji. Također može se uvesti dodatna petlja za upravljanje motorom slabljenjem magnetskog toka za potrebe regulacije brzine vrtnje iznad nazivne brzine. U ovom radu ta petlja neće biti prikazana nego se pretpostavlja da je uzbudni magnetski tok konstantan, što i jest najčešći slučaj u primjenama.

Na slici 2 mogu se vidjeti i ostali članovi u regulacijskoj strukturi. Osim regulatora u upravljačkom uređaju, koji su danas najčešće implementirani kao digitalini što je omogućio razvoj mikroprocesora, u strukturi se nalaze senzori preko kojih upravljački uređaj prikuplja podatke o sustavu. U strukturi se nalaze i elektronički energetski pretvarač, električni motor i radni mehanizmom prema čijim se karakteristikama također podešavaju regulatori kako bi se ispunili svi zahjevi. Njima se izmjenjuje tok energije bez kojeg se ne bi mogla obavljati korisna djelatnost. Isto tako mehaničku energiju moguće je generatorski vratiti u elektroenergetsku mrežu što na slici 2 prikazuju zelene strelice.

Slika 2. Kaskadna regulacijska struktura istosmjernog motora [6]

Postoji mnogo razloga zbog čega je kaskadna struktura pronašla svoje mjesto u električnim servopogonima [1], [2], [6]. Poremećaji se otklanjaju lokalno u podređenim krugovima što znači i bržu kompenzaciju istih. Na primjer, regulacijska petlja brzine vrtnje kompenzira poremećaj momenta tereta. Modularna struktura omogućuje jednostavno prelaženje iz različitih načina rada. Jednostavan primjer je kada se u električnom vozilu prelazi iz klasičnog upravljanja strujom, odnosno momentom u način rada u kojemu se regulira brzina, tj. uključuje tempomat. Nadalje, moguće je eksplicitno limitirati varijable stanja na način da se limitraju izlazi nadređenih regulatora koji postavljaju referencu. Tako se štite motor i eneregetski pretvarač. Prednost je i jednostavno podešavanje i ispitivanje regulatora korak po korak, od podređenih prema nadređenim petljama. Postoji jedna alternativna kaskadnom regulatoru varijabli [6] koja se naziva kompaktni regulator, prikazan na slici 3. Taj regulator izravno iz reference položaja može dobiti napon koji se stavlja na motor, bez dodatnih podređenih kaskada

Fakultet strojarstva i brodogradnje

za regulaciju struje i brzine. Izvedba i sinteza takvog regulatora je nešto složenija te općenito ima brži odziv u odnosno na kaskadni. U većini slučajeva ubrzanje odziva kompaktnog regulatora nije toliko izraženo, i ne posjeduje izražene prednosti kaskadnog sustava regulacije, koji se stoga nalazi u većini primjena.

Slika 3. Kompaktni regulator [6]

Kako je već navedeno, sinteze regulatora kaskadne strukture se provode korak po korak, od regulatora struje do regulatora položaja. Podešavanju regulatora unutarnjuh petlji treba posvetiti veliku pažnju iz razloga što za kaskadnu regulaciju vrijedi da je regulacija vanjskih petlji dobra koliko je dobra reguliracija unutarnjih petlji. U regulacijskim petljama električnih motora najčešće se nalaze P ili PI regulatori. Unatoč suvremenim regulacijskim pristupima, kao što su neizrazita logika, neuronske mreže i drugi, PI regulatori su se kao jednostavni za implementaciju i za podešenje pogodni regulatori pokazali i dovoljno robusni za razne aplikacije servopogona.

2.2. Regulacijski krug struje armature

2.2.1. Struktura regulacijskog kruga struje armature

Strujna petlja je prva podređena petlja i ima zadaću da mjerena struja motora i_{am} što bolje prati referentnu vrijednost i_{aR} [2], [6]. Petlja se sastoji od PI regulatora, tranzistorskog pretvrača, armature istosmjernog motora i mjernog člana struje kako je prikazano na slici 4.

Slika 4. Regulacijski krug struje armature

Strujna petlja mora regulirati stvarnu struju motora i_a ovisno o pogonskim uvjetima tako da se postigne stacionarna točnost, dovoljna brzina i dobro prigušenje odziva te ne smiju prelaziti kratkotrajne ili dugotrajne maksimalne vrijednosti koje je odredio proizvođač. Kako je moment posljedica magnetske uzbude i armaturne struje, regulacijom struje pri konstantnoj magnetskoj uzbudi izravno se upravlja i momentom motora.

I dio osigurava stacionarnu točnost, a P komponenta regulatora struje zaslužna je za stabilnost i brzinu odziva sustava. Ovisno o brzini motora javlja se inducirani napon opisan oznakom *e* koji je posljedica elektromotrne sile. Inducirani napon razmatra se kao spori poremećaj kojeg regulator može otkloniti tj. njegovo I djelovanje i on se neće uzeti u obzir kod izvoda prijenosne funkcije za sintezu regulatora.

Svi članovi u petlji za regulaciju armaturne struje osim regulatora opisuju se strukturom P1 člana u kontinuiranom području koja se dobiva korištenjem Laplace-ove transformacije diferencijalnih jednadžbi pojedinih sklopova [5], [4]. Svaki P1 član definiran je pripadnim pojačanjem i vremenskom konstantom. Na primjer, armatura se opisuje P1 članom sa pojačanjem armature K_a i armaturnom vremenskom konstantom T_a .

Izlaz iz regulatora struje, odnosno referentni napon u_{aR} mora biti ograničen na vrijednost koju tranzistorski energetski pretvarač može pojačati. Tranzistorski pretvarač se brine za postavljanje napona armature u_a na motoru, tj. on je svojevrsno pojačalo referentnog napona u_{aR} .

U strujnom signalu pristutne su visokofrekvencijske smetnje koje su posljedica mehaničke komutacije kod kolektorskih istosmjernih motora te tranzistorskog načina pretvaranja napona. Zbog toga se izlazni strujni signal nakon mjerenja odgovarajućim senzorima treba filtrirati kao što je uključeno u dinamiku mjernog člana prema slici 4.

Odzivi struje koji će biti prikazani naknadno su na bazi Matlab Simulink modela koji se vidi na slici 5 [7]. U simulacijskom modelu zasićenje izlaza PI regulatora rješava se tako da se izlaz resetira na iznos koji zajedno s izlazom P djelovanja daje vrijednost zasićenog stanja. Parametri motora prema kojima se radila simulacija dani su u prilogu.

Slika 5. Simulink model regulacijskog kruga struje armature

2.2.2. Sinteza regulatora struje armature

Sinteza regulatora armaturne struje [2], [6] započinje se određivanjem prijenosne funkcije otvorenog kruga koji je prikazan na slici 6. Prijenosna funkcija otvorenog kruga $G_{oi}(s)$ dobiva se množenjem prijenosnih funkcija svih članova.

$$G_{oi}(s) = \frac{i_{am}(s)}{e_i(s)} = K_{ci} \frac{(T_{ci}s+1)}{T_{ci}s} \frac{K_{ch}K_i}{(T_{ch}s+1)(T_is+1)} \frac{K_a}{(T_as+1)}$$
(2.1)

Kako je najčešće vremenska konstanta armature T_a puno veća od vremenskih konstanti pretvarača T_{ch} i mjernog člana T_i , odnosno njihove sume, parazitske vremenske konstante mogu se aproksimirati jednim članom.

Fakultet strojarstva i brodogradnje

$$(T_{ch}s+1)(T_is+1) = 1 + (T_{ch}+T_i)s + T_{ch}T_is^2 \approx 1 + (T_{ch}+T_i)s = 1 + T_{\Sigma i}s$$
(2.2)

Vremenskom konstantom integratora T_{ci} krati se dominatni pol procesa T_a kako bi se ubrzao odziv zatvorenog regulacijskog kruga s obzirom na referencu [6], [1], [2].

$$T_{ci} = T_a \tag{2.3}$$

U slučaju izraženog poremećaja takvo kraćenje bi uzrokovalo značajno kašnjenje te tada nije preporučeno. Radi kraćeg zapisa umnožak svih pojačanja kruga zamjenjuje se pojačanjem otvorenog kruga K_{oi} koje sadrži još uvijek neodređeno pojačanje regulatora K_{ci} .

$$K_{oi} = \frac{K_{ci}K_{ch}K_{a}K_{i}}{T_{ci}}$$
(2.4)

Uvrštavanjem podešenja i pojednostavljenja dobiva se kraći zapis prijenosne funkcije otvorenog regulacijskog kruga struje armature :

$$G_{oi}(s) = \frac{i_{am}(s)}{e_i(s)} = \frac{K_{oi}}{s(T_{\Sigma i}s + 1)}$$
(2.5)

Postavljanjem integralne vremenske konstante T_{ci} na dominantni pol T_a postigao se brz odziv struje aramature te još preostaje podesiti propocionalno pojačanje K_{ci} kako bi se dobilo optimalno prigušenje. Kako bi se to postiglo naprije je potrebno postaviti prijenosnu funkciju zatvorenog regulacijskog kruga $G_{zi}(s)$:

$$G_{zi}(s) = \frac{G_{oi}(s)}{1 + G_{oi}(s)} = \frac{1}{\frac{T_{\Sigma i}}{K_{oi}}s^2 + \frac{1}{K_{oi}}s + 1} = \frac{1}{D_2 T_{ei}^2 s^2 + T_{ei}s + 1}$$
(2.6)

Koeficijenti karakterističnih polinoma prijenosne i modelske funkcije se izjednačavaju prema optimumu dvostrukih odnosa [2], [6] . Vremenska konstanta T_{ei} određuje brzinu prijelazne pojave, dok karakteristični odnos D_2 određuje prigušenje odziva i predstavlja dizajnerski parametar. Iz (2.6) slijedi :

$$K_{ci} = \frac{T_{ci}}{T_{\Sigma i}} \frac{D_2}{K_{ch} K_a K_i}$$

$$T_{ei} = \frac{T_{\Sigma i}}{D_2}$$
(2.7)

(2.8)

Postavljanjem karakterističnog odnosa D_2 na 0.5 dobiva se kvazi-aperiodski odziv na skokovitu promjenu reference struje sa približno 5% nadvišenja i vremenom porasta $t_{100\%} = 1.8T_{ei}$. Izjednačavanjem koeficijenata dobiva se sustav jedadžbi u kojemu se nalazi rješenje za proporcionalno pojačanje regulatora.

Na slici 7 vidi se odziv signala struje armature i_a i izlaznog referentnog napona u_{aR} s analitički podešenim parametrima na skok reference u trenutku t = 0.

Slika 7. Odziv struje armature i referentnog napona na skokovitu promjenu reference

Nakon što se struja stacionirala, a ne postoji primijenjeni moment tereta, postoji konstantno ubrzanje motora. Prema tome dobiva se linearni rast brzine vrtnje što se vidi na slici 8. Kako povećanjem brzine raste i elektromotorna sila, regulator automatski povećava napon armature koji nadoknađuje suprotstavljeni inducirani napon.

Slika 8. Odziv napona armature i brzine vrtnje sa analitičkim podešenjem u strujnom regulacijskom krugu

Ubrzanje ne može trajati u nedogled te nakon što napon armature, a time i brzina vrtnje postignu maksimalnu vrijednost, struja armature pasti će na vrijednost koja je proporcionalna momentu tereta, odnosno u ovom slučaju na 0. Takva pojava vidi se na slici 9.

Slika 9. Pojava pada struje armature nakon postizanja maksimalne brzine vrtnje

2.3. Regulacija brzine vrtnje brzine

2.3.1. Struktura regulacijskog kruga brzine vrtnje

Petlja za regulaciju brzine vrtnje podređena je petlji za regulaciju položaja, a nadređena petlji za regulaciju armaturne struje [1], [2], [6]. Regulacijski krug brzine vrtnje s klasičnom strukturom PI regulatora i prefiltrom je prikazana na slici 10.

Slika 10. Regulacijski krug brzine vrtnje s prefiltrom

Kako bi se uklonilo derivirajuće djelovanje nule u prijenosnoj funkciji zatvorenog regulacijskog kruga koje rezultira prebačajima referentne vrijednosti do visokih 45%, uvodi se prefiltar prvog reda prije samog kruga u granu reference brzine vrtnje kao što je prikazano na slici 10. Prefiltar je opisan dinamikom P1 člana. Kraćenjem nule dobiva se kvaziaperiodski odziv sa približno 5% nadvišenja prema optimumu dvostrukog odnosa. Odziv sa i bez prefiltra vidi se na slici 11.

Slika 11. Usporedba odziva brzine vrtnje sa i bez prefiltra

Za potrebe sinteze sporijeg nadređenog kruga brzine vrtnje, podređeni i brži regulacijski krug struje armature aproskimira se P1 članom.

$$G_{ei}(s) = \frac{i_a(s)}{i_{aR}(s)} = \frac{1}{K_i} \frac{i_{am}(s)}{i_{aR}(s)} = \frac{1}{K_i} G_{zi}(s) = K_{ei} G_{zi}(s) \approx \frac{K_{ei}}{T_{ei}s + 1}$$
(2.9)

U procesu postoji interni integrator $\frac{1}{Js}$ koji bi mogao osigurati stacionarnu točnost s obzirom na referentu vrijednost brzine vrtnje, no kako je u regulacijskom krugu prisutan izraženi poremećaj u obliku momenta tereta m_t s lijeve strane od integratora u procesu potrebno je dodatno I djelovanje. Proporcionalno pojačanje neophodna je za stabilnost i k tome uvodi nulu u prijenosnu funkciju čime se kompenzira kašnjenje zbog prisutstva dvaju integratora u procesu [6]. Izlaz iz PI regulatora koji predstavlja referntnu vrijednost struje armature je potrebno limitirati. Na slici 12 je prikazan Simulink model regulacijskog kruga brzine vrtnje prema kojima su dobiveni odzivi u ovome poglavlju [7].

Slika 12. Simulink model regulacijskog kruga brzine vrtnje

2.3.2. Sinteza regulatora brzine vrtnje

Sinteza regulatora brzine vrtnje [6] započinje definiranjem prijenosne funkcije otvorenog regulacijskog kruga $G_{o\omega}(s)$ bez prefiltra čija je struktura prikazana na slici 13.

Slika 13. Otvoreni regulacijski krug brzine vrtnje

$$G_{o\omega}(s) = \frac{\omega_m(s)}{e_{\omega}(s)} = K_{o\omega} = \frac{T_{c\omega}s + 1}{s^2(T_{ei}s + 1)(T_{\omega}s + 1)}$$
(2.10)

Pojačanje otvorenog regulacijskog kruga brzine vrtnje $K_{o\omega}$ ovisno je o oba parametra regulatora, integralnoj vremenskoj konstatni $T_{c\omega}$ i proporcionalnom pojačanju $K_{c\omega}$:

$$K_{o\omega} = \frac{K_{c\omega}K_mK_{\omega}}{T_{c\omega}J K_i}$$

Kako bi se pojednostavnio postupak sinteze regulatora brzine vrtnje, dva P1 člana s brzom ili parazitnom dinamikom, koji predstavljaju dinamiku struje armature i mjenog člana brzine vrtnje, mogu se aproksimirati jednim P1 članom te se tada dobiva pojednostavljena prijenosna funkcija otvorenog kruga :

$$(T_{ei}s + 1)(T_{\omega}s + 1) \approx T_{\Sigma\omega} + 1$$
 (2.12)

$$T_{\Sigma\omega} = T_{\omega} + T_{ei}$$

(2.13)

(2.11)

$$G_{o\omega}(s) = \frac{\omega_m(s)}{e_{\omega}(s)} \approx K_{o\omega} = \frac{T_{c\omega}s + 1}{s^2(T_{\Sigma\omega}s + 1)}$$
(2.14)

Kako bi direktna grana, odnosno otvoreni sustav bio stabilan integralnom vremenskom konstatnom $T_{c\omega}$ ne smije se kratiti pol procesa $T_{\Sigma\omega}$ zbog prisustva dvostrukog integratora [6], [2], već integralna vremenska konstanta mora biti veća čime dolazi do prethođenja u odnosu na pol procesa :

Fakultet strojarstva i brodogradnje

$$T_{c\omega} > T_{\Sigma\omega}$$

(2.15)

Nakon definiranja prijenosne funkcije otvorenog kruga $G_{o\omega}(s)$, prelazi se na zatvoreni regulacijski krug $G_{z\omega}(s)$.

$$G_{z\omega}(s) = \frac{\omega_m(s)}{\omega_{Rf}(s)} = \frac{G_{o\omega}(s)}{1 + G_{o\omega}(s)} = \frac{T_{c\omega}s + 1}{\frac{T_{\Sigma\omega}}{K_{o\omega}}s^3 + \frac{1}{K_{o\omega}}s^2 + T_{c\omega}s + 1}$$
(2.16)

Nakon definiranja prijenosne funkcije zatvorenog regulacijskijskog kruga $G_{z\omega}(s)$ kreće se s izjednačavanjem koeficijenta karakterističnog polinoma modelske i prijenosne funkcije prema optimumu dvostrukog odnosa, što se za ovaj specifični slučaj naziva i simetričnim optimumom.

$$\frac{T_{\Sigma\omega}}{K_{o\omega}}s^3 + \frac{1}{K_{o\omega}}s^2 + T_{c\omega}s + 1 = D_3D_2^2T_{e\omega}^3s^3 + D_2T_{e\omega}^2s^2 + T_{e\omega}s + 1$$
(2.17)

Izjednačavanjem koeficijenata dobio se sustav triju jednažbi s 3 nepoznanice čije rješenje daje iznose parametara integralne vremenske konstante $T_{c\omega}$ i proporcionalnog pojačanja $K_{c\omega}$ regulatora brzine vrtnje [6], [2] :

$$T_{c\omega} = T_{e\omega} = \frac{T_{\Sigma\omega}}{D_2 D_3}$$

$$K_{c\omega} = \frac{D_3}{T_{\Sigma\omega}} \frac{J K_i}{K_m K_\omega}$$
(2.18)
(2.19)

2.4. Regulacija položaja

2.4.1. Struktura regulacijskog kruga položaja

Krug za regulaciju položaja nadređeni je onome za regulaciju brzine vrtnje [1], [2]. Njegova struktura prikazana je na slici 14. Kako unutar regulacijskog kruga imamo integralno djelovanje, a nema poremećaja, nije potrebno uvoditi dodatni integrator te se za regulaciju

brzine koristi P regulator. Pošto je mjerenje pozicije digitalno u krugu se nalazi D/A pretvornik pri čemu se utjecaj diskretizacije nadomješta P1 članom s vremenskom konstatom iznosa pola vremena uzorkovanja $\frac{T_d}{2}$. Za sintezu regulatora podređeni se regulacijski krug brzine vrtnje aproksimira P1 članom s time da je prefiltar uključen u granu reference. Na slici 15 prikazan je Simulink model prema kojemu su dani analitički i sukcesivni odzivi [7].

Slika 14. Regulacijski krug položaja

Slika 15. Simulink model regulacijskog krug položaja

2.4.2. Sinteza regulatora položaja

Sinteza regulatora započinje se definiranjem prijenosne funkcije otvorenog kruga $G_{o\varepsilon}(s)$ koja je prikazana na slici 16.

Slika 16. Otvoreni regulacijski krug položaja

$$G_{o\varepsilon}(s) = \frac{\varepsilon_m(s)}{e_{\varepsilon}(s)} = \frac{K_{o\varepsilon}}{s(\frac{T_d}{2}s+1)(T_{e\omega}s+1)}$$
(2.20)

$$K_{o\varepsilon} = K_{c\varepsilon} \frac{K_{DA} K_{\varepsilon}}{K_{\omega}}$$
(2.21)

P2 član se pojednostavljuje P1 članom s pojačanjem otvorenog kruga $K_{o\varepsilon}$ kojemu je vremenska konstanta $T_{\Sigma\varepsilon}$ jednaka sumi dviju vremenskih konstanti :

$$T_{\Sigma\varepsilon} = \frac{T_d}{2} + T_{e\omega}$$

$$G_{oi}(s) \approx \frac{K_{o\varepsilon}}{s(T_{\Sigma\varepsilon}s + 1)}$$
(2.22)
$$(2.23)$$

Sada se može definirati i prijenosna funkcija zatvorenog regulacijskog kruga položaja $G_{zi}(s)$:

$$G_{z\varepsilon}(s) = \frac{\varepsilon_m(s)}{\varepsilon_R(s)} = \frac{G_{o\varepsilon}(s)}{1 + G_{o\varepsilon}(s)} = \frac{1}{\frac{T_{\Sigma\varepsilon}}{K_{o\varepsilon}}s^2 + \frac{1}{K_{o\varepsilon}}s + 1} = \frac{1}{D_2 T_{e\varepsilon}^2 s^2 + T_{e\varepsilon}s + 1}$$
(2.24)

Koeficijenti nazivnika prijenosne funkcije zatvorenog regulacijskog kruga pozicije prema optimumu dvostrukog odnosa izjednačuje sa karakterističnim polinomom modelske prijenosne funkcije [2], [6] iz čega se dobiva izraz za proporcionalno pojačanje $K_{c\varepsilon}$:

$$K_{c\varepsilon} = \frac{D_2}{T_{\Sigma\varepsilon}} \frac{K_{\omega}}{K_{DA}K_{\varepsilon}}$$

(2.25)

U primjenama se zahtijeva odziv položaja bez ikakvih nadvišenja kako bi se izbjeglo udaranje u graničnike. Iz tog se razloga parametar D_2 postavlja na vrijednost 0.35 čime se dobiva granični aperiodski odziv [6]. Na slici 17 prikazan je odziv položaja na skok reference u trenutku t = 0.

Slika 17. Kvazi-optimalni odziv položaja na skokovitu promjenu reference

Mora se naglasiti da je ovdje obrađena samo sinteza linearnog regulatora koja vrijedi samo u režimu signala gdje brzina i struja ne ulaze u limit.

3. SUKCESIVNO PODEŠAVANJE PARAMETARA REGULATORA KASKADNE STRUKTURE ISTOSMJERNOG MOTORA

3.1. Sukcesivno podešavanje parametara regulatora struje armature

3.1.1. Određivanje integralne vremenske konstante regulatora struje armature

Praktično određivanje parametara provoditi će se postupnim povećavanjem i smanjivanjem parametara zbog čega se za postupak koristiti i naziv sukcesivno podešavanje. Za određivanje integralne vremenske konstante regulatora struje armature T_{ci}^* potrebno je uvesti par pojednostavljenja. Ako se integralna vremenska konstanta T_{ci}^* postavi na veliku vrijednost, idealno beskonačnu vrijednost, I djelovanje je dovoljno malo da bi ga se zanemarilo, te se u krugu tada nalazi P regulator. Drugo pojednostavljenje je opisivanje svih ostalih članova kaskadne regulacije struje tzv. prijenosnom funkcijom procesa, odnosno jednim P1 članom. Pojačanje P1 člana ili pojačanje procesa K_p jednako je umnošku pojedinih pojačanja u regulacijskom krugu (slika 6). Vremenska konstanta struje armature puno je veća od parazitske vremenske konstante $T_{\Sigma i}$ te najviše određuje dinamiku procesa. Stoga je nadomjesna vremenska konstanta procesa T_a^* približno jednaka vremenskoj konstatni armature T_a .

$$K_p = K_{ch} K_a K_i$$

$$(3.1)$$

$$T_a^* = T_a + T_{\Sigma i} \approx T_a$$

Kada smo uveli oba pojednostavljenja, u regulacijskom krugu struje armature postoje samo 2 člana, P regulator i P1 član procesa što prikazuje slika 18. Parametri regulatora podešeni sukcesivnim postupkom svih regulatora biti će označeni sa oznakom * kako bi se razlikovali od analitičkih.

Slika 18. Pojednostavljeni krug struje armature

(3.2)

Pomoću pojednostavljenog regulacijskog kruga struje armature lako je pronaći prijenosnu funkciju otvorenog kruga $G_{oi}^{*}(s)$. Zbog toga što kod regulatora ne postoji I djelovanje, prijenosna funkcija zatvorenog regulacijskog kruga $G_{zi}^{*}(s)$ ostati će istoga reda kao što je prijenosna funkcija otvorenog kruga, a postojati će i stacionarna pogreška e_i .

$$G_{oi}^{*}(s) = \frac{i_{am}(s)}{e_{i}(s)} = \frac{K_{ci}^{*}K_{p}}{T_{a}^{*}s + 1}$$
(3.3)

$$G_{zi}^{*}(s) = \frac{G_{oi}^{*}(s)}{1 + G_{oi}^{*}(s)} = \frac{i_{am}(s)}{i_{aR}(s)} = \frac{K_{ci}^{*}K_{p}}{T_{a}^{*}s + K_{ci}^{*}K_{p} + 1}$$
(3.4)

Za referentnu struju $i_{aR}(s)$ vrijedi da je ona suma mjerene struje $i_{am}(s)$ i pogreške regulacije $e_i(s)$:

$$i_{aR} = i_{am}(s) + e_i(s)$$
 (3.5)

Kada se taj izraz uvrsti u pojednostavljenu prijenosu funkciju $G_{zi}^*(s)$ zatvorenog regulacijskog kruga (3.4) iz nje se preko pogreške $e_i(s)$ i mjerene struje $i_{am}(s)$ može izraziti pojačanje procesa K_p :

$$G_{zi}^{*}(s) = \frac{i_{am}(s)}{i_{am}(s) + e_{i}(s)} = \frac{K_{ci}^{*}K_{p}}{T_{a}^{*}s + K_{ci}^{*}K_{p} + 1}$$

$$K_{p} = \frac{i_{am}}{K_{ci}^{*}e_{i}}(T_{a}^{*}s + 1)$$
(3.6)

Odnosno za stacionarno stanje vrijedi :

$$K_p = \frac{i_{am}}{K_{ci}^* e_i} \tag{3.8}$$

(3.7)

Prijenosna funkcija zatvorenog kruga $G_{zi}^*(s)$ (3.4) može se dodatno srediti tako da slobodni član u nazivniku bude jednak 1, sa vremenskom konstantom *T* i pojačanjem *K* :

$$G_{zi}^{*}(s) = \frac{i_{am}(s)}{i_{aR}(s)} = \frac{1}{K_{ci}^{*}K_{p} + 1} \frac{K_{ci}^{*}K_{p}}{\frac{T_{a}^{*}}{K_{ci}^{*}K_{p} + 1}s + 1} = \frac{K}{Ts + 1}$$
(3.9)

$$K = \frac{K_{ci}^* K_p}{K_{ci}^* K_p + 1}$$
(3.10)

$$T = \frac{T_a^*}{K_{ci}^* K_p + 1}$$

(3.11)

Izlučivanjem vremenske konstante armature T_a^* , iz izraza za vremesnku konstantu T P1 (3.11) člana dobiva se :

$$T_a^* = T(K_{ci}^* K_p + 1)$$
(3.12)

Uvrštavanjem izraza za stacionarno stanje pojačanja procesa K_p (3.8) u dobiveni izraz za vremensku konstantu armature T_a^* , dobiva se izraz za približnu vrijednost integralne vremenske konstante T_{ci}^* regulatora struje armature prema (2.3) :

$$T_{ci}^{*} = T_{a}^{*} = T\left(K_{ci}^{*}\frac{i_{am}}{K_{ci}^{*}e_{i}} + 1\right) = T\left(\frac{i_{am}}{e_{i}} + 1\right)$$
(3.13)

Svi potrebni parametri određuju se grafički, a kako bi se pravilno odredila numerička vrijednost integralne vremenske konstane T_{ci}^* proporcionalno pojačanje K_{ci}^* se podiže i postavlja na vrijednost za koju će se sustav ponašati približno P1 članu, tj. bez značajnijeg nadvišenja stacionarne vrijednosti. Zatim se očitavaju stacionarna greška e_i i mjerena vrijednost struje i_{am} , a tangentom na P1 član se određuje vrijednost vremenske konstante *T* regulacijskog kruga struje armature [5].

Kako bi očitali stacionarnu pogrešku motor se mora zakočiti, a u simulaciji se to može napraviti i fiksiranjem poremećajnog ulaza e u 0. Na slici 19 vidi se da je odziv zaista sličan P1 članu. Na kraju se sve očitane vrijednosti uvrste u dani izraz (3.13) i dobiva numerička vrijednost integralne vremenske konstante T_{ci}^* regulatora struje armature. Postavljeno pojačanje za dani slučaj K_{ci}^* iznosi 0.19. Očitana je greška e_i u iznosu od 0.275A, i_{am} struja u iznosu od 0.225A i vremenska konstanta 0.0105s, prema (3.13) čemu se dobiva iznos integralne vremeske konstante regulatora T_{ci}^* .

$$e_i = 0.275 \text{A}$$

 $i_{am} = 0.225 \text{A}$
 $T = 0.0105 \text{s}$

 $T_{ci}^* = 0.0105s \left(\frac{0.225A}{0.275A} + 1\right) = 0.01909s$

Slika 19. Grafičko određivanje karakteristika strujne petlje

3.1.2. Određivanje proporcionalnog pojačanja regulatora struje armature

Nakon određivanja integralne vremenske konstante regulatora struje armature T_{ci}^* ona se postavlja na dobivenu vrijednost i kreće se sa povećavanjem proporcionalnog pojačanja K_{ci}^* sve dok iznos nadvišenja struje ne dosegne vrijednost od 5%. Na slici 20 vidi se kako povećavanjem pojačanja K_{ci}^* dolazi do ubrzavanja odziva te se nakon određene vrijednosti javlja i nadvišenje mjerene vrijednosti struje armature, a potom i oscilacije odziva zbog čega bi pri prevelikom pojačanju sustav postao nestabilan.

Slika 20. Utjecaj podizanja proporcionalong pojačanja na odziv struje armature s P regulatorom

Sa slike 20 vidi se da pojačanje $K_{ci}^* = 2.3$ za dani sustav daje nadvišenje od otprilike 5%. Taj iznos pojačanja predstavlja približnu aproksimaciju analitičke vrijednosti parametra proporcionalnog pojačanja K_{ci} te se postavlja u regulatoru.

3.1.3. Usporedba odziva sustava sa sukcesivnim i izvornim analitičkim podešenjem parametara regulatora struje armature

Nakon što su se približno odredili oba dijela PI regulatora dolazi red na usporedbu odziva struje armature u slučaju korištenja analitičkih (2.3, 2.7) i u slučaju korištenja sukcesivnih parametara regulatora. Slika 21 prikazuje usporedbu odziva sa sukcesivnim i analitičkim parametrima. Plavom bojom označeni su odzivi dobiveni sa sukcesivnim, a crvenom bojom odzivi dobiveni s izvornim analitičkim parametrima. U sva 3 slučaja razlike su zanemarive te se može reći da sukcesivni parametri približno opisuju analitičke parametre, a usporedba iznosa parametara za dani slučaj vidi se i u tablici 1.

Slika 21. Usporedba odziva struje na skokovitu referencu struje armature

	Parametri regulatora			
	Analitički		Sukcesivni	
Regulator	K _{ci}	T _{ci}	K_{ci}^*	T_{ci}^*
Struja	2.1175	0.0183s	2.3	0.01909s

Tablica 1. Vrijednosti sukcesivnih i analitičkih parametara regulatora struje armature

3.2. Sukcesivno podešavanje parametara regulatora brzine vrtnje

3.2.1. Sinteza modificiranog regulatora brzine vrtnje

Prebačaj se može spriječiti i na način da se umjesto klasične strukture PI regulatora koristi jedna od modificiranih struktura koja je ekvivalentna klasičnoj s prefilterom i uobičajeno je pogodnija za digitalnu realizaciju jer je jednostavnija (nema prefiltera). Izmještanjem P djelovanja u granu povratne veze smanjuje se energija upravljanja, pa tako i prebačaj. Takva struktura je prikazana na slici 22. Može se koristiti i varijacija te strukture tako da se P djelovanje izmjesti u novoformiranu podređenu petlju kao što je prikazano na slici 23.

Slika 22. Modificirana PI struktura - P djelovanje izmješteno u povratnu petlju

Slika 23. Modificirana PI struktura - P djelovanje izmješteno u direktnu granu podređene petlje

Na slici 24 prikazana je struktura regulacijskog kruga brzine vrtnje s modificiranim PI regulatorom danim u obliku kaskadne strukture. Sinteza takvog regulatora može se izvesti prema optimumu dvostrukog odnosa korak po korak, rješavanjem podređenog te onda nadređenog kruga što je pogodno za sukcesivno podešavanje regulatora uz nepoznate parametre procesa.

Slika 24. Regulacijski krug brzine vrtnje s modificiranim PI regulatorom

Rješavanjem podređenog kruga prikazanog na slici 25 opisanog prijenosnog funkcijom $G_{\omega p}(s)$ dobiva se izraz za propocionalno pojačanje regulatora $K_{c\omega}^*$.

Slika 25. Podređena petlja regulacijskog kruga brzine vrtnje s modificiranim PI regulatorom

$$G_{\omega p}(s) = \frac{\omega_{m}(s)}{\omega_{R}^{*}(s)} = \frac{1}{\frac{T_{\Sigma \omega}}{K_{o\omega}^{*}}s^{2} + \frac{1}{K_{o\omega}^{*}}s + 1}} = \frac{1}{D_{2}^{*}T_{e\omega}^{*2}s^{2} + T_{e\omega}^{*}s + 1}$$

$$K_{o\omega}^{*} = \frac{K_{c\omega}^{*}K_{m}K_{\omega}}{JK_{i}}$$
(3.14)
$$(3.15)$$

$$T_{e\omega}^* = \frac{T_{\Sigma\omega}}{D_2^*}$$

(3.16)

$$K_{c\omega}^* = \frac{D_2^*}{T_{\Sigma\omega}} \frac{J K_i}{K_m K_\omega}$$

(3.17)

Za sintezu nadređenog i sporijeg kruga prikazanog na slici 26 podređeni se krug može aproksimirati P1 članom i na kraju se dobiva izraz za podešenje integralne vremenske konstante.

Slika 26. Nadređena petlja regulacijskog kruga brzine vrtnje s moidificiranim PI regulatorom

Može se vidjeti da je prijenosna funkcija s modificiranom strukturom PI regulatora $G_{\omega}(s)$ jednaka umnošku prijenosne funkcije s klasičnom strukturom PI regulatora $G_{z\omega}(s)$ i prijenosne funkcije prefiltra.

(3.18)

$$G_{\omega}(s) = \frac{\omega_m(s)}{\omega_R(s)} = \frac{1}{T_{c\omega}^* T_{e\omega}^* s^2 + T_{c\omega} s + 1} = \frac{1}{T_{c\omega}^* \frac{T_{\Sigma\omega}}{D_2^*} s^2 + T_{c\omega}^* s + 1}$$

Izjednačavanjem koeficijenata karakterističnih polinoma modificirane prema optimumu dvostrukih odnosa [6], [2] za integralnu vremensku konstantu $T_{c\omega}^*$ i proporcionalno pojačanje regulatora $K_{c\omega}^*$ dobivaju se iste vrijednosti kao sintezom klasičnoga PI regulatora (2.18,2.19 i 3.17,3.19) ako se za karakteristične odnose uvrsti $D_3 = D_2 = D_2^* = 0.5$, a njegovo korištenje ne traži prefiltar za suzbijanje prebačaja reference brzine vrtnje :

$$T_{c\omega}^* = T_{e\omega} = \frac{T_{e\omega}^*}{D_2} = \frac{T_{\Sigma\omega}}{D_2 D_2^*}$$
(3.19)

3.2.2. Određivanje proporcionalnog pojačanja regulatora brzine vrtnje

Postupak određivanja proporcionalnog pojačanja $K_{c\omega}^*$ regulatora brzine vrtnje je jednostavan. Iz grane reference isključuje se prefiltar, a integralna vremenska konstanta $T_{c\omega}^*$ se postavlja na najveću moguću vrijednost kako bi integralno pojačanje težilo 0. Na taj način iz klasičnog PI regulatora dobiva P regulator, a regulacijski krug ima strukturu kao podređena petlja s modificiranim PI regulatorom kao što se već prikazalo na slici 25.

Proporcionalno pojačanje $K_{c\omega}^*$ se podiže i odabire se ona vrijednost za koju je prebačaj približnog iznosa od 5%. Podizanjem pojačanja ubrzava se odziv te rastu oscilacije, kao što se vidi na slici 27. Također se može vidjeti da je za dani simulacijski model motora rješenje za proporcionalno pojačanje $K_{c\omega}^* = 62$.

Slika 27. Podizanje proporcionalnog pojačanja u regulatora brzine vrtnje

3.2.3. Određivanje integralne vremenske konstante regulatora brzine vrtnje

Za razliku od određivanje proporcionalnog pojačanja $K_{c\omega}^*$, prilikom praktičnog određivanja integralne vremenske konstante $T_{c\omega}^*$ uključuje se prefiltar u granu reference brzine vrtnje. Nakon toga kreće se sa snižavanjem vremenske konstante čime se ubrzava odziv, a nadvišenje i oscilacije rastu. Kada se dođe na prebačaj referentne vrijednosti brzine vrtnje u iznosu od približno 5%, staje se sa snižavanjem integralne vremenske konstante $T_{c\omega}^*$ jer je upravo ta vrijednost aproksimacija analitičke vrijednosti. Sve to vidi se na slici 28 kao i da približno rješenje za integralnu vremensku konstantu iznosi $T_{ci}^* = 0.0135s$.

Slika 28. Spuštanje integralne vremenske konstante regulatora brzine vrtnje

3.2.4. Usporedba odziva sustava sa sukcesivnim i analitičkim parametrima regulatora brzine vrtnje

Koliko se sukcesivno podešenje regulatora približilo analitičkom podešenju može se vidjeti na slici 29, gdje su prikazani odzivi brzine vrtnje i struje armature s uključenim prefiltrom na skok reference u trenutku t = 0. Odziv brzine vrtnje sa sukcesivnim podešenjem za dani primjer čak je i brži od analitičkog koji je proizašao većom strujom, odnosno ubrzanjem. Razlike u stvarnim iznosima za dani model motora vide se u tablici 2 te se može zaključiti da sukcesivni parametri dobro opisuju analitičke.

Slika 29. Usporedba odziva sustava na skokovitu referencu brzine vrtnje s različitim podešenjem

Tablica 2.	Usporedba sukcesivnih	i analitičkih parametara	u krugu brzine vrtnje
------------	-----------------------	--------------------------	-----------------------

	Analitički		Sukcesivni	
Regulator	K	T _c	K_c^*	T_c^*
Struja	$K_{ci} = 2.1175$	$T_{ci} = 0.0183$ s	$K_{ci}^{*} = 2.3$	$T_{ci}^* = 0.01909 \mathrm{s}$
Brzina	$K_{c\omega} = 50.632$	$T_{c\omega} = 0.016 \mathrm{s}$	$K_{c\omega}^* = 62$	$T_{c\omega}^* = 0.0135 \mathrm{s}$

3.3. Sukcesivno određivanje parametra regulatora pozicije

3.3.1. Određivanje proporcionalnog pojačanja regulatora pozicije

Proporcionalno pojačanje $K_{c\varepsilon}^*$ će se podizati sve dok se ne dobije najbrži odziv bez ikakavih nadvišenja i pojačanje korišteno pri najbržem odzivu predstavlja odabrano sukcesivno podešenje. Na slici 30 vidi se kako se podizanjem pojačanja ubrzava odziv položaja te se za dani primjer pojačanjem iznosa $K_{c\varepsilon}^* = 0.255$ dobio granični aperiodski odziv.

Slika 30. Podizanje proporcionalnog pojačanja u regulacijskog krugu položaja

3.3.2. Usporedba odziva sa sukcesivnim i idealnim parametrima regulatora u režimu malih signala

Nakon što se odredio i posljednji parametar kaskadne regulacijske strukture prema slici 30, slijedi usporedba odziva položaja sa različitim podešenjima. Na slici 31 prikazane su usporedbe položaja, brzine vrtnje i struje armature. Vrijednosti sukcesivnih i analitičkih parametra dane su u tablici 3.

Slika 31. Usporedba odziva sustava na skokovitu promjenu položaja s različitim podešenjem

	Analitički		Sukcesivni	
Regulator	K	T_c	K_c^*	T_c^*
Struja	$K_{ci} = 2.1175$	$T_{ci} = 0.0183$ s	$K_{ci}^{*} = 2.3$	$T_{ci}^* = 0.01909s$
Brzina	$K_{c\omega} = 50.632$	$T_{c\omega} = 0.016 \mathrm{s}$	$K_{c\omega}^* = 62$	$T_{c\omega}^* = 0.0135 \mathrm{s}$
Položaj	$K_{c\varepsilon} = 0.19855$	-	$K_{c\varepsilon}^* = 0.255$	-

Tablica 3. Vrijednosti sukcesivnih i analitičkih parametara u regulacijskom kurugu položaja

4. PRIMJENA SUKCESIVNOG POSTUPKA PODEŠAVANJA REGULATORA KASKADNE STRUKTURE ELEKTRONIČKI KOMUTIRANOG ISTOSMJERNOG MOTORA

4.1. Eksperimentalni postav

Za ovaj rad i provjeru načina podešavanja koristio se elektronički komutirani istosmjerni motor tvrtke Dunkermotoren model BG 65Sx25MI koji je prikazan na slici 32.

Slika 32. Motor BG 65Sx25 MI [3]

Princip rada elektronički komutiranog istosmjernog motora je na bazi vektorske regulacije [1]. Rotor motora se sastoji od permanentnih magneta, dok je stator izveden trofaznim namotima. Elektronička komutacija, tj. uključenje i isključenje istosmjernih struja pojedinih faza u određenom redoslijedu i polaritetu će generirati okretno magentsko polje statora koje na rotor djeluje okretnim momentom. Neizostavni dio svakog elektronički komutiranog istosmjernog motora je senzor pozicije kako bi se učinkovito moglo upravljati strujama statorskog namota.

Korišteni motor posjeduje integrirani četverokvadranti upravljivi ispravljač (čoper) te programabilni kontroler i CANbus sučelje. Opremljen je sa inkrementalnim enkoderom rezolucije 4096 inkrementa po okretaju koji omogućuje visoku točnost pozicioniranja, minimalno $\pm 1^{\circ}$, i kvalitetnu regulaciju brzine. Osim kugličnih ležajeva na motoru nema drugih dijelova podložnih trošenju i prikladan je za kontinuirani režim rada. Motor je visokih dinamičkih performansi, niskog momenta inercija, kompaktnog dizajna i robusne konstrukcije. Od dodataka dostupni su planetarni i pužni prijenosnici različitih prijenosnih omjera. Iz motora Jakov Vitko

izlaze 2 priključaka. Jedan od njih je okrugli M16 15-pinski priključak čiji izvodi osim za dobavu priključka napona napajanja i logike, služi za spajanje digitalnih/analognih ulaza/izlaza i spajanje kočnog otpornika kako je prikazano na slici 33. Drugi priključak je CAN konektor koji služi za spajanje i upravljanje motorom pomoću računala ili drugog nadređenog uređaja. Glavne karakteristike motora mogu se vidjeti u tablici 4.

Slika 33. Izvodi 15-pinskog priključka motora BG 65Sx25 MI[3]

Nazivni napon	VDC	24
Nazivna struja	А	6.5
Nazivni moment	Nm	0.405
Maksimalni moment	Nm	0.83
Nazivna brzina	Nm	2900
Brzina praznog hoda	rpm	4210
Nazivna snaga	W	123
Maksimalna snaga	W	199
Maksimalna struja	А	16 (75s)
Radni raspon napona	VDC	10-50
Moment inercije	gcm ²	70
Masa	kg	1.2

Tablica 4. Glavne karakteristike motora BG 65Sx25 MI

Fakultet strojarstva i brodogradnje

Za izvor napajanja motora poslužila su 2 akumulatora napona 12V spojena u seriju kako se vidi na slici 34. Akumulatori dozvoljavaju rekuperaciju energije generatorskog režima rada. Za napajanje elektronike koristilo se besprekidno napajanje napona 24V. Na motor je preko elastične spojke spojena kočnica bicikla koja je kao teret poslužila u određivanju parametara regulatora struje armature. Cijeli eksperimentalni postav može se vidjeti na slici 35.

Slika 34. 12V akumulatori spojeni u seriju

Slika 35. Eksperimentalni postav

Motorom se parametriziralo i nadziralo pomoću računala CAN komunikacijom u programskom sučelju proizvođača naziva Driver Assistant 2.16 prikazanog na slici 36. Motor je upravljan Python skriptama naredbama proizvođača čijim pokretanjem se mogu očitavati i zadavati varijable stanja motora, ulaziti u različite načine rada i naravno podešavati parametri

regulatora. Osim zadavanja referentnih i čitanja stvarnih vrijednosti moguće je i baratati digitalnim/analognim ulaznim/izlaznim signalima što je pogodno za ugrađivanje motora u razne aplikacije. Programsko sučelje ima integrirani osciloskop koji je prikazan na slici 37. Vrijeme prijenosa CAN signala je približno 10 ms, što nije dostatno za snimanje brzih prijelaznih pojava struje te je granično dovoljno za snimanje prijelaznih pojava brzine vrtnje.

Drive Assistant 2.16 - V	ersion 1.4.0	
File Parameter Sprach	e Help	
	Update values	CANopen Parameter Demo Pos-Tuning Vel-Tuning Script
Device Information	Status Register	Contraction of the second seco
Device Information Product Information Note: 41 27 Note: 41 27 Roder Mappire Connection Note: 41 27 Baudrate 128 Note: 41 27 Baudrate 128 Device Litt San for devices ID Device	Status Register CA 402 Status Actual Values Position (counts) Velocity (prom) Phase Current (mA) Phase Current (mA) Dever Voltage (mV) Logic Voltage (mV) Electronic Temps) Status (provide the status) Status (provide the status	
	Warning Register	Velocity mode Target value 2 1000 [counts] Start 2 Stop
	El. In-/Outputs Digital Inputs 0 1 2 3 4 Digital Outputs 0 7 2 3 Analog Input (mV)	Target value 3 2000] (counts) Start 3 🍽
		Occillancence Sottings CAN Taxas Mandaura Cathings
		Decard Vision (Const Mode) - Constant and Entition
		Proceed Values (

Slika 36. Programsko sučelje DA 2.16

Slika 37. Integrirani osciloskop

4.2. Rezultati podešavanja kaskadne regulacijske strukture EKM-a

Struktura dijela regulacijskog kruga struje armature dana je na slici 38.

Slika 38. Regulacijski krug struje armature motora BG 65Sx25 MI [3]

Odziv struje armature potrebne za određivanje parametara regulatora za zakočeno stanje motora kako bi se očitala stacionarna pogreška i vremenska konstanta P1 člana prema cjelini 3.1.1. dane su na slici 39.

Slika 39. Odziv struja armature zakočenog motora

Kako je navedeno ranije, odziv struje armature brži je nego brzina prijenosa CAN signala T^* sa slike 39. Ne zna se pravo vrijeme odziva struje pa se za izračun integralne vremenske konstante T_{ci}^* regulatora struje armature (3.13) računalo sa vremenom brzine prijenosa CAN signala.

Proporcionalno pojačanje regulatora struje armature K_{ci}^* odabralo se tako da odziv struje na skokovitu referencu od 2A bude otprilike 5% kako je prikazano na slici 40. Vrijeme smirivanja struje je maksimalno 10 ms koliko je vrijeme uzorkovanja serijske veze, no nije moguće izravno

utvrditi u kojoj mjeri je brže od toga. Prema teorijskim rezultatima iz pogl. 2 se očekuje da iznosi nekoliko ms.

Slika 40. Odziv motora BG 65Sx25 Mi na referencu struje od 2A

Na slici 41 vidi se dio regulacijske strukture brzine vrtnje i ograničenja varijabli koje je moguće uvesti.

Slika 41. Regulacijska struktura brzine vrtnje motora BG 65Sx25 MI

Odziv brzine vrtnje suprotan je od očekivanja. Naime, povećavanjem proporcionalnog pojačanja $K_{c\omega}^*$ nadvišenje se počinje smanjivati, a niskofrekvencijske oscilacije prelaze u visokofrekvencijske što se vidi na slici 42. To je očito zbog toga što se regulacijska struktura razmatranog motora ne poklapa sa općom regulacijskom strukturom brzine vrtnje sa slike 10. U dokumentaciji motora ne daju se informacije o prijenosnoj funkciji PI regulatora, njegovoj strukturi (klasična ili modificirana) i postojanju prefiltra.

Slika 42. Povećanje proporcionalnog pojačanja regulatora brzine vrtnje motora BG 65Sx25 Mi snizuje nadvišenje

Smanjenje integralne vremenske konstante na odziv je utjecalo u skladu sa teorijskim pretpostavkama te je ubrzavalo odziv i povećavalo nadvišenje, no zbog navedenog se za brzinu sukcesivni način podešavanja nije mogao provesti u potpunosti. Odabralo se podešenje koje spriječava veliki prebačaj na način da se ograničila akceleracija motora, iako je to usporilo odziv brzine. Odziv brzine vrtnje na skokovitu referencu od 2900 okretaja po minuti je prikazan na slici 43 i vrijeme porasta iznosi oko 45 ms što je dulje od očekivanja. Razlog može biti u nedovoljno brzom regulacijskom krugu struje kao i nedorečenosti u podešavanju regulatora brzine vrtnje zbog nejasnoća oko strukture regulatora brzine vrtnje tj. definicije njegovih parametara.

Slika 43. Odziv brzine sa odabranim podešenjem motora BG 655Sx25 MI

Slika 44. Regulacijska struktura položaja motora BG 658x25 MI

Za razliku od brzine vrtnje odziv položaja se ponaša u skladu sa predviđenim (vrijeme smirivanja je samo 35 ms). U načinu rada u kojemu se regulira pozicija su se regulacijskom krugu brzine uklonila ograničenja akceleracije koja su se koristila za smanjenje prebačaja u krugu brzine, no to nije rezultiralo nadvišenjem pozicije u režimu malih signala. Na slici 45 je prikazan odziv položaja na skokovitu referencu od 45 stupnjeva.

Slika 45. Odziv položaja motora BG 65Sx25 MI

5. ZAKLJUČAK

U radu je razvijena praktična metoda sukcesivnog podešavanja parametara regulatora uključenih u kaskadnu strukturu regulacije električnih motora. Praktičnost metode se zasniva na činjenici da nije potrebno poznavanje parametara motora, koji se obično ne isporučuju od strane proizvođača motora, a njihova eksperimentalna identifikacija može biti nepraktična, nekad i mukotrpna. Podešavanje se provodi korak po korak, od podređenog PI regulatora struje, preko nadređenog PI regulatora brzine vrtnje i konačno najnadređenijeg P regulatora položaja. Pritom se parametri dvaju PI regulatora podešavaju sukcesivno, jedan po jedan, prema za tu svrhu pripremljenih teorijskih postavki. Razvijeni sukcesivnog postupak podešavanja parametara triju regulatora ispitan je simulacijom na računalu i uspoređen s nominalnom analitičkom metodom podešavanja zasnovanoj na optimumu dvostrukog odnosa. Rezultati ispitivanja pokazali su da sukcesivni postupak podešavanja daje vrlo slično ponašanje triju regulacijskih krugova kao u slučaju optimalno podešenih regulatora. Sukcesivni postupak podešenja implementiran je i eksperimentalno na laboratorijskom postavu elektronički komutiranog istosmjernog motora. Uspješnost implementacije tj. provjere je bila djelomična. S jedne strane, dobilo se solidno ponašanje regulacijskih krugova, posebno položaja motora. No, s druge strane, pojavile su se poteškoće u implementacije zbog kojih nije posve jasno je li ponašanje podešenih regulacijskih krugove vrlo blizu optimalnom. Ove poteškoće su povezane s niskom vremenskom rezolucijom akvizicije podataka (posebno struje) te nejasnoćama oko veze deklariranih parametara regulatorima s njihovom ulogom u nedostupnim prijenosnim funkcijama regulatora. Stoga je u budućem radu potrebno provesti detaljnije eksperimentalne provjere, po mogućnosti uz izravno mjerenje struje kao i signalno zadavanje referenci uz mogućnosti primjene nadređenih regulatora vanjskoj mikrokontrolerskoj jedinici.

Jakov Vitko

LITERATURA

- [1] Ambrožić, V., Zajec, P.: Električni servo pogoni, Graphis, Zagreb, 2019.
- [2] Deur, J., Pavković, D.: "Fundamentals of Electrical Drive Controls", UNESCO Encyclopedia of Life Support Systems, Chap. 6.39.21, 2012.
- [3] <u>https://www.dunkermotoren.com/en/</u> (22.02.2022.)
- [4] Petrić, J.: Automatska regulacija: uvod u analizu i sintezu, FSB, Zagreb, 2012.
- [5] Šurina, T.: Automatska regulacija, Školska knjiga, 1987
- [6] Deur, J., Škugor, B., Hrgetić, M.: Predavanja iz kolegija Elektromotorni servopogoni, FSB,Zagreb, 2020.
- [7] Škugor, B., Pavković, D.: Auditorne i računalne vježbe iz kolegija Elektromotorni servopogoni, FSB, Zagreb, 2020.

PRILOZI

I. Matlab skripta za inicijalizaciju parametara modela

P = 500; % [W] U = 220; % [V] n = 1500; % [1/min] IA = 3.4; % [A] RA = 16.35; % [Ohm] KA = 1/RA; % [1/Ohm] Ta = 18.3e-3; % [s]LA = Ta*RA; % [H] $J = 0.0157; \% [kg*m^2]$ om = n*pi/30; % [rad/s]M = P/om; %[Nm] Km = M/IA; % [Nm/A] Ke = (U-IA*RA)/om; % [Vs/rad]% Parametri tranzistorskog pretvaraca fch = 4e3; % [Hz] Kch = 45; % [V/V]Tch = 1/fch;% [s] % Parametri filtra signala struje Ki = 1.57; % [V/A] Ti = 0.75e-3; % [s]% Filter mjernog signala brzine vrtnje Kw = 0.065; % [Vs/rad] Tw = 2e-3; % [s]% Parametri DA pretvornika i mjernog clana pozicije Td = 4e-3; % [s]Keps = 8192/2/pi; % [1/rad] UDA_max = 10.0; % [V] KDA = 2*UDA_max/4096; % [V] % Limit napona choppera Uch_limit = U; % Limit struje IAR_limit = 2*IA*Ki;