Estimacija Eulerovih kutova pomoću inercijske jedinice i metodologije senzorske fuzije

Šiktar, Luka

Undergraduate thesis / Završni rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:282208

Rights / Prava: Attribution 4.0 International/Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-04-02

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

FAKULTET STROJARSTVA I BRODOGRADNJE

Luka Šiktar

ESTIMACIJA EULEROVIH KUTOVA POMOĆU INERCIJSKE JEDINICE I METODOLOGIJE SENZORSKE FUZIJE

ZAVRŠNI RAD

Mentor: Izv. prof. dr. sc. Danijel Pavković

Komentor: Dr. sc. Matija Krznar

ZAGREB, 2022.

FAKULTET STROJARSTVA I BRODOGRADNJE

Luka Šiktar

ESTIMATION OF EULER ANGLES USING AN INERTIAL MEASUREMENT UNIT AND SENSOR FUSION METHODOLOGY

ZAVRŠNI RAD

Mentor: Izv. prof. dr. sc. Danijel Pavković

Komentor: Dr. sc. Matija Krznar

ZAGREB, 2022.

Izjavljujem da sam ovaj završni rad izradio samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem mentoru prof.dr.sc Danijelu Pavkoviću na odabiru teme. Također se zahvaljujem komentoru dr.sc. Matiji Krznaru na pruženoj stručnoj pomoći i korisnim savjetima pri izradi završnog rada.

Luka Šiktar

\mathbb{D}

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za završne i diplomske ispite studija strojarstva za smjerove:

proizvodno inženjerstvo, računalno inženjerstvo, industrijsko inženjerstvo i menadžment, inženjerstvo

materijala i mehatronika i robotika

Sveuči Fakultet stro	lište u Zagrebu jarstva i brodogradnje
Datum	Prilog
Klasa: 602 – 0	4/22 - 6/1
Ur.broj: 15 - 1	703 - 21 -

ZAVRŠNI ZADATAK

Student:	Luka Siktar	JMBAG:	35219285
Naslov rada na hrvatskom jeziku:	Estimacija Eulerovih kuteva pomoću i senzorske fuzije	inercijske jedinio	ce i metodologije

Naslov rada na engleskom jeziku: **Estimation of Euler angles using an inertial measurement unit and sensor fusion methodology**

Opis zadatka:

Eulerovi kutovi određuju relativni položaj dvaju koordinatnih sustava sa zajedničkim ishodištem, te se koriste za određivanje orijentacije tijela u prostoru. Korištenjem senzora u sklopu inercijske mjerne jedinice (engl. inertial measurement unit, IMU) moguće je precizno izračunavati Eulerove kuteve primjenom algoritama sažimanja (fuzije) mjerenja sa senzora (engl. sensor fusion). U radu je potrebno:

- Izvesti simulacijski model IMU jedinice (na primjer MPU6050 ili neke slične).
- Implementirati simulacijski model sažimanja signala iz žiroskopa i akcelerometra primjenom komplementarnog filtra te Kalmanovog filtra u klasičnoj i proširenoj formi.
- Implementirati prethodno navedene algoritme korištenjem mjerenja sa realne IMU jedinicu (npr. MPU6050 ili sličnu) korištenjem prikladnog mikrokontrolerskog sustava (na primjer Arduino).
- Usporediti simulacijske i eksperimentalne rezultate.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

Datum predaje rada: 1. rok: 24. 2. 2022.

2. rok (izvanredni):6. 7. 2022.

3. rok: 22. 9. 2022.

30. 11. 2021.

Zadatak zadao:

Izv. prof. dr. sc. Danijel Pavković Danijel Pavlicić Dr. sc. Matija Krznar Predviđeni datumi obrane:

rok: 28. 2. - 4. 3. 2022.
 rok (izvanredni): 8. 7. 2022.
 rok: 26. 9. - 30. 9. 2022.

PredsjednikPovjerenstva: zu Prof. dr. sc. Branko Bauer

SADRŽAJ

SADRŽAJi
POPIS OZNAKAiii
POPIS SLIKAv
POPIS TABLICAvi
ABSTRACT1
SAŽETAK
UVOD
2. MJERNA OPREMA
2.1 Akcelerometar
2.1.1 Model akcelerometra6
2.1.2 Model MEMS akcelerometra
2.1.3 Svojstva i vrste MEMS akcelerometara9
2.2 Žiroskop11
2.2.1.Model MEMS žiroskopa11
2.3 Magnetometar
2.3.1. Model magnetometra
2.4 Eulerovi kutovi14
2.4.1 Koordinatni sustavi i matrice rotacija15
2.4.2 Ograničenje Eulerovih kutova18
2.4.3 Transformacije podataka senzora18
3. OBRADA INFORMACIJA SENZORA
3.1. Kalmanov filtar20
3.1.1. Algoritam Kalmanovog filtra22
3.2. Prošireni Kalmanov filtar25
3.2.1 Algoritam proširenog Kalmanovog filtra26
3.3 Komplementarni filtar

4. SIMULACIJSKI MODEL IMU MODULA
4.1. Simulacijski model akcelerometra
4.2. Simulacijski model žiroskopa32
5. SIMULACIJSKI MODELI SAŽIMANJA PODATAKA S AKCELEROMETRA I ŽIROS-
КОРА
5.1 Komplementarni filtar
5.2 Kalmanov filtar
5.2.1 Model Kalmanovog filtra u Simulinku
5.3 Prošireni Kalmanov filtar44
5.3.1 Model proširenog Kalmanovog filtra u Simulinku
6. IMPLEMENTACIJA FILTARA NA REALNI IMU
7. USPOREDBA REZULTATA
8. ZAKLJUČAK
PRILOZI
Prilog 1:
Prilog 2:64
LITERATURA

POPIS OZNAKA

Oznaka:	Mjerna jedinica:	Opis:
<i>a</i> (<i>t</i>)	$[m/s^2]$	akceleracija
v(t)	[m/s]	brzina
r(t)	[m]	pozicija
G	[<i>N</i>]	težina
g	$[m/s^2]$	akceleracija gravitacijskog polja
m	[kg]	masa
М	[kg]	inercijska masa
F _i	[N]	inercijska sila
a_m	$[m/s^2]$	izmjerena akceleracija
D	[Ns/m]	faktor prigušenja
Κ	[N/m]	konstanta opruge
ω _r	[Hz]	vlastita neprigušena frekvencija
ξ	-	faktor prigušenja sustava
$ec{\omega}$	[rad/s]	kutna brzina
ψ	[°]	Eulerov kut, skretanje
θ	[°]	Eulerov kut, nagib/poniranje
arphi	[°]	Eulerov kut, kotrljanje/valjanje
$\dot{\psi}$	[°/s]	brzina promjene kuta skretanja
θ	[°/s]	brzina promjene kuta nagiba/posrtanja
\dot{arphi}	[°/s]	brzina promjene kuta kotrljanja

δ	-	koeficijent komplementarnog filtra
\hat{x}_k^-	-	a-priori procjena stanja
\hat{x}_k	-	a-posteriori procjena stanja
Z _k	-	mjerenje stanja
P_k	-	kovarijanca stanja procesa
Q	-	kovarijanca šuma procesa
R	-	kovarijanca šuma mjerenja
K_k	-	Kalman pojačanje
Α	-	matrica sustava
В	-	matrica ulaza
Н	-	matrica izlaza

POPIS SLIKA

Slika 2.1: SparkFun OpenLog Artemis 9DOF IMU [6]4
Slika 2.2: 3DOF akcelerometar i pripadni kontrolni dio [2]5
Slika 2.3: Pojednostavljeni model akcelerometra [2]7
Slika 2.4: engl. Cross-axis misalingnment, sivo- pretpostavljene osi, plavo- prave osi žiroskopa,
vrijedi i za akceleroemtar [7]8
Slika 2.5: Mehanički model sustava [2]9
Slika 2.6: a) Piezorezistivni akcelerometar [8], b) Kapacitivni akcelerometar, detalj sheme[2] i
c) struktura [9]10
Slika 2.7: Coriolisova akceleracija na objekt brzine \vec{v} promatran iz rotirajućeg koord. sust. Oko
osi z brzinom $\vec{\omega}(\vec{\Omega})[2]$
Slika 2.8: a) i b)[2] djelovanje Coriolisove sile na mehaničku strukturu12
Slika 2.9: NED koordinatni sustav u odnosu na Zemljin koordinatni sustav[11]16
Slika 2.10: Prikaz globalnog i lokalnog koordinatnog sustava te redoslijed rotacija prema z –
y - x konvenciji
Slika 2.11: Redoslijed Eulerovih zakreta[12]17
Slika 4.1: GY-521/ MPU6050 modul[17]28
Slika 4.2: Model akcelerometra izveden u Simulinku
Slika 4.3: Stvarna (ulazna) akceleracija i očitana akceleracija
Slika 4.4: Obrađena očitana akceleracija i usporedba stvarne(ulazne) i očitane akceleracije
Slika 4.5: Model žiroskopa izveden u Simulinku32
Slika 4.6: Stvarna kutna brzina i očitana kutna brzina
Slika 4.7: Obrađena kutna brzina i usporedba obrađene i stvarne kutne brzine
Slika 5.1: Eulerov kut poniranja/nagiba θ izmjeren akcelerometrom pri zakretu 0° 34
Slika 5.2 Eulerov kut poniranja/nagiba θ izmjeren žiroskopom pri zakretu 0°
Slika 5.3: Komplementarni filtar
Slika 5.4: Eulerov kut poniranja/nagiba $ heta$ izračunat kopmelentarnim filterom pri zakretu 0°
Slika 5.5: Kalmanov filtar42

Slika 5.6: : Eulerov kut poniranja/nagiba θ izračunat Kalmanovim filtrom pri zakretu 0°44
Slika 5.7. Prošireni Kalmanov filtar47
Slika 5.8: Eulerov kut poniranja/nagiba θ izračunat proširenim Kalmanovim filtrom pri zakretu
0°48
Slika 6.1: Eulerov kut poniranja θ izračunat komplementarnim filtrom pri zakretu 0° 50
Slika 6.2: Eulerov kut poniranja θ izračunat Kalmanovim filtrom pri zakretu 0° 50
Slika 6.3:Eulerov kut poniranja θ izračunat proširenim Kalmanovim filtrom pri zakretu 0°
Slika 7.1: Eulerov kut poniranja θ za slučaj mirovanja a) i naglog skoka b)
Slika 7.2: Eulerov kut poniranja θ za slučaj a) sinusne promjene i b) klizanja po hrapavoj
podlozi
Slika 7.3: Eulerov kut poniranja θ za slučaj mirovanja a) i naglog skoka b)
Slika 7.4: Eulerov kut poniranja θ za slučaj a) sinusne promjene i b) klizanja po hrapavoj
podlozi

POPIS TABLICA

Tablica	1: Usporedba	srednjih k	vadratnih p	ogreški		51
---------	--------------	------------	-------------	---------	--	----

ABSTRACT

The position of an object in space is information described by its position and orientation in a tri-axial coordinate system. Location information is used to track and manage various mobile objects. Determining position and orientation is a very complex problem and in order to solve it, a special group of electronic components is being intensively developed, which includes accelerometers, gyroscopes, magnetometers, global navigation systems, inertial units and other. In order to determine the position of the object, it is necessary to collect and process information from the listed electronic components in an appropriate manner so that it is accurate, reliable and usable. Today, there are different approaches to solving this problem. For the purpose of accuracy and reliability, different methods of signal processing will be presented. Furthermore, the procedures for processing and recording position information will be carried out in simulation and experimentally. The simulation will be performed in MATLAB and Simulink environment. An Arduino Uno R3 microcontroller and a GY-521 inertial measurement unit with an MPU-6050 microprocessor will be used to perform the experimental tests. Finally, simulation and experimentally obtained solutions will be compared and evaluated.

Keywords: Euler angles, sensor fusion, accelerometer, gyroscope, MPU-6050, complementary filter, Kalman filter, extended Kalman filter

SAŽETAK

Položaj objekta u prostoru je informacija opisana pozicijom i orijentacijom u troosnom koordinatnom sustavu. Informacija o položaju se koristi za praćenje i upravljanje različitim mobilnim objektima. Određivanje pozicije i orijentacije je vrlo složen problem i u svrhu njegovog rješavanja se intenzivno razvija posebna skupina elektroničkih komponenti u koje spadaju akcelerometri, žiroskopi, magnetometri, globalni navigacijski sustavi, inercijske mjerne jedinice i ostali. Kako bi se utvrdio položaj objekta potrebno je informaciju s navedenih elektroničkih komponenti prikupiti i obraditi na odgovarajući način kako bi ona bila točna, pouzdana i upotrebljiva. Danas postoje različiti pristupi rješenju ovog problema. U svrhu točnosti i pouzdanosti će u ovom završnom radu biti prikazani različiti načini obrade signala, a u svrhu upotrebljivosti će biti prikazan zapis položaja u Eulerovim kutovima. Nadalje, postupci obrade i zapisa informacije o položaju će biti provedeni simulacijski i eksperimentalno. Simulacija će se koristiti Arduino Uno R3 mikrokontroler i inercijska mjerna jedinica GY-521 s MPU-6050 mikroprocesorom. Na kraju će simulacijska i eksperimentalno dobivena rješenja biti uspoređena i evaluirana.

Ključne riječi: Eulerovi kutovi, fuzija signala, akcelerometar, žiroskop, MPU-6050, komplementarni filtar, Kalmanov filtar, prošireni Kalmanov filtar

1. UVOD

Estimacija kutova zakreta primjenom metoda senzorske fuzije je vrlo značajno područje obrade signala, posebice u robotici i navigaciji mobilnih objekata. Bez preciznih podataka o poziciji i orijentaciji objekta nije moguće upravljati njime na pravi način. U realnim situacijama postoji velik broj željenih i neželjenih utjecaja na položaj objekta koji se giba. Uređaji kojima se mjeri položaj su također pod različitim utjecajima koji mogu bitno smanjiti njihovu točnost mjerenja. U praksi postoji više dostupnih mjernih uređaja koji mogu sažimanjem svojih mjerenja davati neusporedivo bolje rezultate isticanjem prednosti i potiskivanjem nedostataka svakoga od njih. U svrhu rješenja navedenog problema se primjenjuju različite metode sažimanja, odnosno fuzije mjerenja koje će biti prikazane u ovome radu. U najznačajnije metode senzorske fuzije spadaju komplementarni, Kalmanov te prošireni Kalmanov filtar.

Kratki osvrt na literaturu započinje s P. S. Maybeckom koji daje teorijsku podlogu korištenju stohastičkih modela te rješenje problema stohastičkog modeliranja sustava koje se koristi u algoritmima Kalmanovog filtra[14]. U nastavku daje primjer estimacije položaja objekta koji se giba u smjeru jedne osi. G. Welch i G. Bishop također daju rješenje primjene stohastičke procjene stanja koja se koristi kod Kalmanovog i proširenog Kalmanovog filtra[13]. Osim toga daju opise i primjere utjecaja parametara filtara na procjenu stanja. B. McCarron daje primjere i usporedbu implementacije Kalmanovog i komplementarnog filtra na problemu estimacije Eulerovih kutova[16].

U ovom radu je dan teorijski pregled navedenih algoritama fuzije signala koji će biti implementirani simulacijski i eksperimentalno te uspoređeni kako bi se zaključilo o prednostima i nedostatcima algoritama u određenim situacijama. Cilj rada je implementirati algoritme za problem estimacije Eulerovih kutova zakreta te izvesti simulacijske modele. U drugom poglavlju je dan osvrt na mjernu opremu i modele mjernih uređaja koji se koriste za izvođenje simulacijskih modela. U trećem poglavlju je opisan postupak računanja Eulerovih kutova iz dostupnih mjerenja i opisani su algoritmi filtriranja signala. U četvrtom poglavlju su izvedeni simulacijski modeli mjernih uređaja prema specifikacijama MPU-6050 modula koji će se koristiti u eksperimentu. U nastavku su izvedeni modeli filtara i dana je usporedba filtriranih mjerenja s nefiltriranim mjerenjima izravno s mjernih uređaja. Na kraju su modeli filtara uspoređeni s eksperimentalnim rezultatima fuzije te je dan zaključak o njihovom radu.

2. MJERNA OPREMA

U sklopu ovog rada će se od mjerne opreme koristiti inercijska mjerna jedinica koja objedinjuje veći broj mjernih uređaja. Inercijska mjerna jedinica, engl. Inertial Measurement Unit (IMU) je elektronička komponenta za određivanje orijentacije i pozicije te brzine i smjera gibanja objekta. IMU mjeri akceleraciju i kutnu brzinu, a ovisno o konfiguraciji može dodatno mjeriti jakost magnetskog polja. Za mjerenje akceleracije se koristi akcelerometar, za kutnu brzinu žiroskop, a za jakost magnetskog polja magnetometar. Podatci se kombiniraju i sažimaju (engl. fusion) kako bi se izračunala točnija i pouzdanija informacija. Naknadno se brzine, smjerovi gibanja i položaji u koje spadaju pozicije i orijentacije objekta, izračunavaju iz dostupnih informacija.

Inercijska mjerna jedinica se najčešće izvodi kao komponenta sastavljena od akcelerometra i žiroskopa koja sadrži šest stupnjeva slobode/6 DOF (engl. Degrees Of Freedom), akcelerometar tri i žiroskop tri stupnja. S podatcima senzora se računaju linearna akceleracija (akcelerometrom), brzina zakreta (žiroskopom) i kutovi zakreta sa svakim od senzora zasebno ili sažimanjem podataka oba senzora kako bi se uklonili određeni nedostatci kao što su osjetljivost na šum akcelerometra i skretanje (engl. drift) žiroskopa [1]. Nadalje, kombiniranjem s dodatnim magnetometrom dolazi do smanjenja skretanja žiroskopa, ali postoji opasnost od utjecaja vanjskih objekata koji mogu deformirati magnetsko polje i dovesti do pogrešnih informacija na izlazu. Uz navedene senzore moguće je kombinirati i engl. Global Positioning System (GPS), senzor tlaka i druge.

Slika 2.1: SparkFun OpenLog Artemis 9DOF IMU [6]

Kombinacijom senzora inercijske mjerne jedinice i sažimanjem njihovih podataka iskorištavaju se komplementarne prednosti navedenih senzora. Žiroskop osigurava kratkotrajnu stabilnost i neosjetljivost prema vibracijama, akcelerometar pouzdano očitavanje akceleracije, a magnetometar informacije o pravcu kretanja [2]. Osim prema stupnju slobode gibanja, inercijske mjerne jedinice se razlikuju prema tehnologijama izrade od kojih su najčešće i najekonomičnije MEMS (engl. Micro ElectroMechanical Systemes) tehnologije. MEMS senzori se izrađuju na siliciju pouzdanim tehnologijama izrade zbog čega pružaju brojne prednosti nad senzorima izrađenim ostalim tehnologijama. MEMS senzori su vrlo maleni i lagani što doprinosi mobilnosti objekata. Nadalje, senzori su točni, precizni i pouzdani u dugotrajnom radu [2].

Slika 2.2: 3DOF akcelerometar i pripadni kontrolni dio [2]

Uz samu mjernu jedinicu za prikupljanje i procesiranje informacija sa senzora potrebno je i procesno računalo, u ovom slučaju Arduino Uno R3 mikrokontroler. Komunikacija za razmjenu podataka među više komponenata, kao u ovom slučaju, se provodi pomoću komunikacijskih protokola koji sadrže pravila načina, smjera i formata prijenosa te metoda uspostavljanja i prekidanja komunikacije. Za komunikaciju između mikroprocesora i IMU-a se koristi I^2C (engl. Inter-Integrated Circuit Communication) serijska sinkrona komunikacija s dvije linije koja radi na master-slave principu. Osim komunikacije, bitna je i kalibracija senzora koja ispravlja pogreške i nedostatke senzora. Kalibracija će biti prikazana uz model svakog navedenog senzora.

2.1 Akcelerometar

Akcelerometar je senzor kojemu je izlaz linearna akceleracija objekta u smjeru *x*, *y* i *z* koordinatne osi vlastitog (lokalnog) koordinatnog sustava. Osim linearne akceleracije na izlazu daje i akceleraciju gravitacijskog polja. Akcelerometar zapravo mjeri inercijske sile koje nastaju prilikom akceleracije tijela u određenom smjeru te gravitacijsku silu koja djeluje prema središtu zakrivljenosti Zemlje. Iz mjerenih sila se izračunavaju akceleracije prema modelu prikazanom u nastavku, a iz akceleracija se integracijom izračunavaju brzina i pozicija s time da se uzimaju u obzir različite nesigurnosti modela, pogreške mjerenja senzora i drugo.

Linearna akceleracija objekta u smjeru osi je promjena brzine objekta u vremenu, odnosno derivacija brzine. Brzina se dalje može zapisati kao derivacija položaja objekta. Ovime su dobivene relacije između vrijednosti koje će se izračunavati:

$$a(t) = \frac{dv(t)}{dt} = \dot{v}(t) \tag{2.1}$$

$$v(t) = \frac{dr(t)}{dt} = \dot{r}(t) \tag{2.2}$$

U navedenim izrazima a(t) je akceleracija, v(t) brzina, a r(t) položaj objekta. Akceleracija gravitacijskog polja je vezana za tijelo u gravitacijskom polju na koje djeluje sila težine G (G = mg). Iz navedenog izraza proizlazi da je akceleracija gravitacijskog polja gjednaka:

$$g = \frac{G}{m} \tag{2.3}$$

U izrazu (2.3) *m* predstavlja masu objekta. Akceleracija gravitacijskog polja je konstantna za svako tijelo unutar gravitacijskog polja i konstantno je prisutna u informaciji o akceleraciji koja se očitava. Akceleracija Zemljinog gravitacijskog polja iznosi $g = 9.80665 \text{ m/s}^2$.

2.1.1 Model akcelerometra

Za izračunavanje akceleracije iz očitanih inercijskih sila je potrebno postaviti model akcelerometra [3]. Model troosnog akcelerometra će se rastaviti na 3 identična modela oko svake

od osi. Akcelerometar se pojednostavljeno modelira kao inercijska masa M ovješena o okvir sastavljen od opruge konstante K i prigušnice koeficijenta D. Na okviru se mjere iznosi inercijske i sile težine predmeta:

Slika 2.3: Pojednostavljeni model akcelerometra [2]

Na tijelo mase *M* djeluje težina *G* iznosa G = Mg i inercijska sila $F_i = Ma_m$ prema 2. Newtonovom zakonu. Težina *G* je konstantna i izaziva pomak inercijske mase i deformaciju okvira i u slučaju u kojem tijelo ne ubrzava. Zbog toga je potrebno težinu ukloniti iz mjerenja sile deformacije okvira pa se od sile deformacije okvira $F_{uk} = G + F_i$ oduzme težina. Prema 2. Newtonovom zakonu slijedi [3]:

$$a_m = \frac{1}{M}(F_{uk} - G) \tag{2.4}$$

Gdje je a_m izmjerena akceleracija. Akcelerometar neizravno mjeri težinu inercijske mase i inercijsku silu. Mjere se normalne sile na uklještenju okvira koji sprječava gibanje inercijske mase prema središtu Zemlje. Iako se modelom akcelerometra (2.4) uklonio utjecaj težine *G*, ona je jedini potreban podatak pri izračunu kutova zakreta objekta pomoću smjera vektora težine, odnosno smjera akceleracije gravitacijskog polja u troosnom koordinatnom sustavu. Preko projekcije smjera težine na osi akcelerometra se određuju Eulerovi kutovi.

Na odziv akcelerometra utječu brojne pogreške kao što su sustavna pogreška (engl. bias), nesigurnost pojačanja senzora (engl. scale factor) i nepreciznost položaja koordinatnih osi akcelerometra (engl. cross-axis misalignment). Cross-axis misalignment je pogreška nepreciznih položaja tri jednoosna akcelerometra koja nastaje prilikom montaže.

Slika 2.4: engl. Cross-axis misalignment, pretpostavljene osi (sivo) i prave osi žiroskopa(plavo), vrijedi i za akcelerometar [7]

Dane pogreške se uvrštavaju u model odziva akcelerometra za dano ubrzanje. Pogreške su zapisane u matričnom zapisu [3]:

$$a_m = M_a(\frac{1}{M}S_a(T)(F_{uk} - G)) - \beta(T)$$
(2.5)

Gdje je M_a matrica nesigurnosti, $S_a(T)$ matrica osjetljivosti senzora, a $\beta(T)$ vektor posmaka (engl.bias). Matrica nesigurnosti modelira sve navedene pogreške i ne ovisi o temperaturi dok osjetljivost i posmak senzora ovise. Navedene matrice se određuju eksperimentalno. Kako bi se izračunalo stvarno ubrzanje senzora $a_{m,c}$ bez pogrešaka koristi se izraz (2.6) u kojem se pogreške uklanjaju iz očitane informacije. Ovaj postupak se naziva kalibracija senzora:

$$a_{m,c} = S_a^{-1}(T) \left(M_a^{-1} a_m + \beta_a(T) \right) = \frac{1}{M} (F_{uk} - G)$$
(2.6)

2.1.2 Model MEMS akcelerometra

Akcelerometri izrađeni MEMS tehnologijama zauzimaju najveći dio masovne i profesionalne upotrebe zbog raznih prednosti nad drugim tehnologijama izrade. Koriste se u automobilskoj i vojnoj industriji, robotici, sportu, medicini i praktički svim granama industrije. Zbog njihove važnosti u suvremenoj industriji model rada će biti dan za MEMS akcelerometre. MEMS akcelerometri se sastoje od inercijske mase M (engl. proof mass) vezane za nepomičnu okolinu mehaničkim okvirom koji se sastoji od opruge konstante K i prigušenja faktora D.

Slika 2.5: Mehanički model sustava [2]

Model se može promatrati kao MDS sustav na koji djeluju težina i sila inercije na inercijsku masu. Primjenom 2. Newtonovog zakona i modela akcelerometra dobiva se prijenosna funkcija MDS sustava :

$$G(s) = \frac{y(s)}{a(s)} = \frac{1}{s^2 + \frac{D}{M}s + \frac{K}{M}} = \frac{1}{\frac{1}{\omega_r^2}s^2 + \frac{\xi}{\omega_r}s + 1}$$

$$\omega_r = \sqrt{\frac{K}{M}} - \text{vlastita neprigušena frekvencija}$$

$$\xi = \frac{\sqrt{KM}}{D} - \text{prigušenje sustava}$$

$$y(s) - \text{pomak mase}$$

$$a(s) - \text{akceleracija mase}$$

$$(2.7)$$

MEMS akcelerometri se dakle deformiraju analogno MDS sustavu, a deformacija je opisana pomakom y(s). Deformacijom dolazi do pojave naprezanja u uklještenjima okvira za nepomičnu okolinu, a naprezanja se mjere i interpretiraju kao akceleracija senzora. Glavni mehanički izvor šuma MEMS senzora je uzrokovan Brownovim gibanjem čestica oko mase *M* i okvira.

2.1.3 Svojstva i vrste MEMS akcelerometara

Akcelerometri imaju osjetljivost, maksimalni raspon očitavanja, ograničenja odziva na različite frekvencije (zbog vlastite frekvencije mehaničkog sustava), rezoluciju, linearnost na određenom dijelu raspona očitavanja, signal na izlazu pri izostanku ulaznog signala (engl. offset), mogućnosti izdržavanja šoka i ostalo. Nedostatci senzora su osjetljivost na temperaturu i kratkotrajna pouzdanost. Senzori mogu raditi u otvorenoj i zatvorenoj petlji. Pri otvorenoj petlji se koristi linearni dio karakteristike senzora čija je širina pojasa očitanja (engl. bandwidth) konstantna i određena parametrima senzora. Pri zatvorenoj petlji moguće je 'povećavanje' linearnog dijela karakteristike i širine pojasa tako da se očitava podatak sa senzora te se povratnom vezom masa vraća u početni položaj i tako proširuje pojas očitanja. Navedena svojstva se razlikuju od vrste do vrste pa se razlikuju i primjene u industriji.

Prva značajnija vrsta su piezorezistivni senzori koji imaju piezorezistore na okviru inercijske mase. Piezorezistori deformacijom mijenjaju otpor koji se interpretira kao akceleracija senzora. Kapacitivni senzori se sastoje od fiksnih elektroda koje se postavljaju oko inercijske mase. Akceleracijom i promjenom položaja dolazi do približavanja mase jednoj od elektroda čime se mijenja kapacitet (elektrode su spajaju na strujni krug) između inercijske mase i elektroda s obje strane mase što se interpretira kao akceleracija. Kapacitivni senzori su jednostavni, jeftini, visoke osjetljivosti, malog skretanja signala i niske promjene osjetljivosti ovisno o promjeni temperature. Nadalje, postoje engl. tunneling senzori koji očitavaju pojavu akceleracije na temelju pomaka mase i provođenja struje kroz tanku membranu pri čemu se očitava napon struje. Rezonantni i termalni senzori se također primjenjuju ali u manjoj količini. MEMS senzori se obavezno montiraju u vakuumu kako bi se smanjio šum i utjecaj kućišta.

Slika 2.6: a) Piezorezistivni akcelerometar [8], b) Kapacitivni akcelerometar, detalj sheme[2] i c) struktura [9]

2.2 Žiroskop

Žiroskop je senzor koji na izlazu daje brzinu vrtnje oko *x*, *y* i *z* koordinatnih osi vlastitog (lokalnog) koordinatnog sustava. Iz poznate brzine vrtnje se integracijom izračunavaju kutovi zakreta objekta oko pojedinih osi. Kutovima zakreta se dobiva informacija o orijentaciji objekta koja je ključna za poznavanje položaja i upravljanje njime. Osnovne skupine su mehanički, optički, rezonantni i vibracijski žiroskopi. Najveća skupina žiroskopa je kao i kod akcelerometara, izrađena MEMS tehnologijom, a gotovo svi MEMS žiroskopi su vibracijski pa će u nastavku najveća pažnja biti posvećena upravo njima.

2.2.1 Model MEMS žiroskopa

MEMS vibracijski žiroskopi se baziraju na prijenosu energije između dva načina vibracije strukture na kojoj se nalazi inercijska masa. Do prijenosa energije dolazi zbog pojave Coriolisove akceleracije i Coriolisove sile na inercijsku masu. Coriolisova sila i akceleracija su prividne i baziraju se na Coriolisovom efektu. Coriolisov efekt je pojava djelovanja sile na objekt u gibanju promatran relativno iz referentnog koordinatnog sustava koji rotira kutnom brzinom ω . Promatrani objekt se giba brzinom v pod nekim kutom u odnosu na os rotacije. U tom slučaju se na objekt javlja prividna sila koja djeluje okomito na kutnu brzinu ω i brzinu objekta v. Coriolisova sila F_c je dakle vektorski produkt ω i v pomnožen iznosom inercijske mase M [2]:

$$F_c = M * 2\vec{v} \times \vec{\omega} = M * \vec{a}_{coriolis}$$
(2.8)

Slika 2.7: Coriolisova akceleracija na objekt brzine \vec{v} promatran iz rotirajućeg kord. sust. Oko osi z brzinom $\vec{\omega}(\vec{\Omega})$ [2]

Izmjerena Coriolisova sila je proporcionalna brzini rotacije žiroskopa. Vibracijski žiroskopi se sastoje od vibracijskih vilica s 2 zupca povezana zajedničkim stablom. Na zupce se primjenjuju različita vibracijska opterećenja fiksnih amplituda. Kada dolazi do rotacije žiroskopa, javlja se Coriolisova sila koja uzrokuje sinusoidalno opterećenje na svakome zupcu, ortogonalno na vibracijska opterećenja. Zbog djelovanja sile dolazi do savijanja zubaca ili do torzijske vibracije stabla koje povezuje zupce [2]. Oko inercijske mase i okvira s vilicama se postavljaju elektrode povezane u strujnom krugu. Deformacijom uslijed Coriolisove sile dolazi do primicanja vilica elektrodama i dolazi do promjene kapaciteta među njima. Promjena kapaciteta je proporcionalna Coriolisovoj sili, a sila brzini zakreta žiroskopa ω .

Slika 2.8: a) i b)[2] djelovanje Coriolisove sile na mehaničku strukturu

Vrijednosti brzina zakreta žiroskopa oko pojedinih osi se može zapisati vektorom p:

$$p = \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

Analogno akcelerometru, žiroskop ima različite nesavršenosti i pogreške pri očitavanju kuta zakreta. Odziv na promjenu brzine zakreta nije trenutan zbog dinamike mehaničkog vibracijskog sustava jer vibracija mora zauzeti konstantnu vrijednost što također ograničava frekvenciju očitanih podataka na svega nekoliko Hertza. Pojačanje odziva je ovisno o temperaturi na što utječe i Brownovo gibanje čestica koje također uzrokuje šum. Vrlo važan nedostatak žiroskopa je izlaz različit od nule pri kojem je ulaz (brzina zakreta) nula (engl. zero-rate output). Do zero-rate outputa dolazi zbog nesavršenosti mehaničke strukture, nesavršenosti pobude vibracijskog opterećenja i nesavršenosti elektroda. Nadalje, žiroskop ima tendenciju skretanja u dugotrajnom radu (engl. long term drift) i pojavi zamora materijala zbog vibracija[2].

Nesavršenosti i pogreške se u sustavu eliminiraju prema izrazu (2.9). Postupak eliminacije pogrešaka se naziva kalibracija žiroskopa [3]:

$$p = S_g^{-1}(T)(M_g^{-1}p_m + \beta_y(T) - c_{y,a}a_{m,c})$$
(2.9)

U izrazu (2.9) p_m je mjereni vektor p, $S_g(T)$ je matrica osjetljivosti o temperaturi, M_g je matrica nesigurnosti, $\beta_y(T)$ je vektor posmaka, a $C_{y,a}$ je matrica osjetljivosti žiroskopa ovisna o akceleraciji. Mjereni vektor p_m je informacija direktno sa žiroskopa i sadrži navedene nesigurnosti i pogreške koje se uklanjaju kalibracijom. Matrice nesigurnosti, osjetljivosti $S_g(T)$ i $C_{y,a}$ te vektor posmaka se određuju eksperimentalno.

2.3 Magnetometar

Magnetometar je senzor koji o ovom slučaju mjeri prvu rotaciju Eulerovih kutova, skretanje ψ (engl. yaw). Inercijska mjerna jedinica može raditi bez magnetometra ali on daje dodatnu pouzdanost izlaznoj informaciji pozicije i orijentacije tako da anulira skretanje žiroskopa. Mana njegove primjene je opasnost od utjecanja vanjskih metalnih objekata, ali i samog kućišta i ostalih senzora inercijske mjerne jedinice. Vanjski objekti deformiraju magnetsko polje i utječu na ispravnost podataka magnetometra [1, 3]. Zbog nedostataka se često ne koristi pa će u nastavku biti dan samo izraz za kalibraciju nedostataka i pogrešaka koje se kod magnetometra javljaju.

2.3.1. Model magnetometra

Pogreške odziva magnetometra se javljaju zbog nepreciznosti položaja koordinatnih osi senzora, pojačanja senzora koje je pod utjecajem temperature i sustavne pogreške. Magnetometar detektira varijacije smjera Zemljinog magnetskog polja mjerenjem gustoće magnetskog polja, to jest indukcije. Smjer vektora magnetskog polja je usmjeren od južnog prema sjeverom polu Zem-

lje. Varijacije smjera magnetskog polja koje mogu biti uzrokovane zakretnom senzora ili pak utjecajem metalnih objekata, elektromagnetskim valovima i različitim drugim signalima. Navedene pogreške se eliminiraju izrazom [3]:

$$b = D_s S_b^{-1}(T) \Big(M_b^{-1} b_m + \beta_b(T) \Big) - \beta_h$$
(2.10)

Gdje je b_m očitano magnetsko polje, D_s i β_h su korekcije magnetizacije željeza, S_b je matrica osjetljivosti senzora prema temperaturi, M_b je matrica nesigurnosti i $\beta_b(T)$ vektor posmaka.

2.4 Eulerovi kutovi

Prikupljanjem informacija s akcelerometra, žiroskopa i magnetometra (prema mogućnostima) dobivaju se podatci o orijentaciji i poziciji objekta koji su poprilično beskorisni ako ih se ne transformira u razumljiv oblik. Najčešće se za transformaciju informacije inercijske mjerne jedinice koriste dva pristupa. Zapis položaja u kvaternionima i zapis u Eulerovim kutovima. Kvaternioni su prihvatljivo i pouzdano rješenje koje je ujedno vrlo neintuitivno i matematički zahtjevno pa se zbog toga ne koristi u ovom radu. Kvaternion se sastoji od vektora s četiri elementa. Prvi element je realan/skalarni dio koji predstavlja iznos rotacije oko vektora u kompleksnoj 3D ravnini koji je zapisan s ostala tri elementa kvaterniona. S druge strane, Eulerovi kutovi su jednostavni i intuitivni zbog čega su pogodni za kontrolu i analizu orijentacije predmeta. Svaka orijentacija jednog koordinatnog sustava u drugi je određena s tri Eulerova kuta zakreta: ψ , θ i φ . Eulerovi kutovi imaju različita značenja ovisno o konvenciji koja ih određuje. Postoji 12 konvencija koje se dijele na dvije skupine [5]:

U svakoj konvenciji su redom navedene tri osi oko kojih se vrši rotacija. Rotacija se vrši točno navedenim redoslijedom jer u suprotnom ne vrijede dogovorene oznake i transformacije svake od konvencija. Najčešće konvencije u primjeni su z - y - z i z - y - x. U nastavku će se koristiti konvencija z - y - x. Prema z - y - x konvenciji postoje 3 zakreta i to zakret ψ oko z

osi u pozitivnom smjeru koji se naziva skretanje (engl. yaw), zakret θ oko "nove" y osi u pozitivnom smjeru koji se naziva nagib ili poniranje (engl. pitch) i zakret φ oko "nove" x osi u pozitivnom smjeru koji se naziva kotrljanje ili valjanje (engl. roll). Kako ne bi došlo do nesporazuma između "novih" i "starih" koordinatnih osi, prema [3] uvest će se četiri trodimenzionalna koordinatna sustava:

- engl. inertial frame referentni koordinatni sustav vezan za Zemlju, globalni koordinatni sustav
- engl. body frame- koordinatni sustav kruto vezan za senzor/ objekt, lokalni koordinatni sustav
- 3) engl. vehicle-1 frame- prijelazni koordinatni sustav 1
- 4) engl. vehicle-2 frame- prijelazni koordinatni sustav 2

2.4.1 Koordinatni sustavi i matrice rotacija

Globalni koordinatni sustav je onaj vezan za Zemljinu površinu, nepomičan je zbog relativno sporog gibanja Zemlje u odnosu na gibanje objekta. Osi koordinatnog sustava su orijentirane na način: os x_E u smjeru sjevera, y_E u smjeru istoka i z_E prema središtu Zemlje. U stranim literaturama se navedeni redoslijed naziva desni NED koordinatni sustav (engl. North-East-Down). Matematički alat za transformaciju koordinatnih sustava su matrice rotacija. Matrica rotacije množenjem s vektorom rotira taj isti vektor pri čemu modul ostaje nepromijenjen[5]. Tako se povezuje zapis vektora u više koordinatnih sustava. Isto vrijedi i za koordinatne sustave. Dva vektora/koordinatna sustava su obično i translatirana jedan od drugoga, tj. ishodišta su im udaljena. Za pomak među njima se koristi matrica translacije. U općem slučaju će dva vektora/koordinatna sustava biti udaljena jedan od drugoga te će biti zakrenuti jedan u odnosu na drugi. Stoga se kombiniranjem matrice translacije i rotacije dobiva matrica transformacije. Za početak će se promatrati samo rotacije bez translacija.

Slika 2.9: NED koordinatni sustav u odnosu na Zemljin koordinatni sustav[11]

Slika 2.10: Prikaz globalnog i lokalnog koordinatnog sustava te redoslijed rotacija prema z - y - x konvenciji[11]

Rotacijom u pozitivnom smjeru oko osi z_E , skretanjem (engl. yaw) sustava za kut ψ dolazi do transformacije u prijelazno stanje, prijelazni koordinatni sustav 1. Zakret koordinatnog sustava se definira matricom rotacije[3,5,12]:

$$R_E^{E1}(\psi) = \begin{bmatrix} \cos\psi & \sin\psi & 0\\ -\sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(2.11)

Daljnjom rotacijom oko osi y_{E1} prijelaznog koordinatnog sustava 1, nagibom (engl. pitch) za kut θ dolazi do transformacije u prijelazni koordinatni sustav 2. Zakret je definiran matricom rotacije:

$$R_{E1}^{E2}(\theta) = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix}$$
(2.12)

Zatim rotacijom oko osi x_{E2} prijelaznog koordinatnog sustava 2, kotrljanjem (engl. roll) za kut φ dolazi do transformacije u lokalni koordinatni sustav objekta. Zakret je definiran matricom rotacije:

$$R_{E2}^{B}(\varphi) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\varphi & \sin\varphi\\ 0 & -\sin\varphi & \cos\varphi \end{bmatrix}$$
(2.13)

Lokalni koordinatni sustav je kruto vezan za objekt, a osi koordinatnog sustava su određene prema glavnim osima letjelica jer se ovaj pristup najčešće koristi za određivanje njihovih orijentacija i pozicija : x_B u smjeru nosa aviona, y_B u smjeru desnog krila i z_B okomito na x_B i y_B osi (prema dolje).

Slika 2.11: Redoslijed Eulerovih zakreta[12]

U primjeni se transformacija vrši iz lokalnog direktno u globalni ili iz globalnog u lokalni korištenjem matrice transformacija dobivene množenjem izraza (2.11), (2.12) i (2.13). Matrica prikazuje relativnu transformaciju iz globalnog u lokalni koordinatni sustav[3, 12]:

$$R_E^B(\psi,\theta,\varphi) = R_{E2}^B(\psi)R_{E1}^{E2}(\theta)R_E^{E1}(\varphi) =$$

Γ cosψcosθ	$\cos heta \sin \psi$	–sin <i>θ</i> ן	
$= \cos\psi\sin\varphi\sin\theta - \cos\varphi\sin\psi$	$\cos\varphi\cos\psi + \sin\varphi\sin\psi\sin\theta$	$\cos\theta\sin\varphi$	(2.14)
$sin\varphi sin\psi + cos\varphi cos\psi sin\theta$	$\cos\varphi\sin\psi\sin\theta - \cos\psi\sin\theta$	$\cos\varphi\cos\theta$	

Za relativnu transformaciju iz lokalnog u globalni koordinatni sustav koristi se matrica:

$$R_B^E = (R_E^B)^{-1} = (R_E^B)^T$$
(2.15)

2.4.2 Ograničenje Eulerovih kutova

Efekt zaključavanja gimbala (engl. gimbal lock) je glavni nedostatak primjene Eulerovih kutova. Gimbal lock je situacija u kojoj dolazi do gubitka jednog stupnja slobode gibanja. Naime, svaka konvencija Eulerovih kutova propisuje točan redoslijed izvođenja rotacija. U slučaju da druga rotacija prema konvenciji iznosi $\pm 90^{\circ}$ dolazi do poklapanja osi rotacije prve (z_E) i treće (x_{E2}) rotacije promatrano na slici 2.10. U tom slučaju orijentacija senzora ne može biti jednoznačno određena pomoću Eulerovih kutova. U z - y - x konvenciji se Gimbal zaključavanje javlja kod zakreta $\theta = \pm 90^{\circ}$ pa se isti položaj objekta može odrediti na više načina: $\psi + \theta$ ili $\theta + \varphi$. Zbog ovog razloga se strogo izbjegava zakret $\theta = \pm 90^{\circ}$. Kod većine letjelica ovo ograničenje ne predstavlja problem jer gotovo nikad ne ulaze u nagibe navedenih kutova[3, 5].

2.4.3 Transformacije podataka senzora

Za slučaj izračunavanja pozicije, brzine, akceleracije i kutnih brzina oko globalnog koordinatnog sustava pri transformacijama se koristi samo matrica rotacija jer informacija o poziciji vektora u prostoru u ovom slučaju ne daje nikakvu korisnu informaciju. Potrebno je transformirati podatke senzora iz lokalnog u globalni koordinatni sustav.

Za transformaciju akceleracije se koristi izraz:

$$a_E = R_B^E(\psi, \theta, \varphi) a_B \tag{2.16}$$

U navedenom izrazu a_E je akceleracija u globalnom koordinatnom sustavu, a a_B je akceleracija u lokalnom koordinatnom sustavu.

Iz akceleracije se integracijom dobiva brzina, a dvostrukom integracijom pozicija objekta u globalnom koordinatnom sustavu:

$$v_E = \int a_E \qquad r_E = \int v_E = \int \int a_E \qquad (2.17)$$

Transformacija brzine vrtnje s podatcima žiroskopa se izvodi na drugačiji način. Brzina vrtnje se mora transformirati u odgovarajućim koordinatnim sustavima kako bi se dobile brzine vrtnje (derivacije) Eulerovih kutova. Skretanje ψ se izvodi u globalnom koordinatnom sustavu, nagib θ u prijelaznom koordinatnom sustavu 1, a kotrljanje φ u prijelaznom koordinatnom sustavu 2. Za pretvorbu brzina zakreta objekta u brzine zakreta Eulerovih kutova se koristi matrica rotacije $R_{B,q}^E$ [3, 5]:

$$R_{B,g}^{E} = \begin{bmatrix} 1 & \frac{\sin\varphi\sin\theta}{\cos\theta} & \frac{\cos\varphi\sin\theta}{\cos\theta} \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \frac{\sin\varphi}{\cos\theta} & \frac{\cos\varphi}{\cos\theta} \end{bmatrix}$$
(2.18)

Navedene brzine zakreta Eulerovih kutova se računaju izrazom:

$$\begin{bmatrix} \dot{\varphi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = R_{B,g}^E \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$
(2.19)

Za slučaj određivanja orijentacije, kutovi zakreta se mogu dobiti integriranjem brzina zakreta Eulerovih kutova izračunatih u izrazu (2.19) ali i izračunavanjem pomoću akcelerometra. Iz modela akcelerometra (2.4) dobivaju se podatci o akceleracijama u smjerovima osi lokalnog koordinatnog sustava. U slučaju u kojem objekt miruje opaža se akceleracija gravitacije g u smjeru centra zakrivljenosti Zemlje. U globalnom koordinatnom sustavu akceleracija gravitacije djeluje u pozitivnom smjeru osi z_E :

$$a_E = \begin{bmatrix} 0\\0\\g \end{bmatrix} \tag{2.20}$$

Za poznate vektore akceleracija globalnog i lokalnog koordinatnog sustava a_E i a_B vrijedi izraz iz kojega je moguće izračunati tražene Eulerove kutove[3]:

	Γ cosψcosθ	$\cos heta \sin \psi$	–sin <i>θ</i> ן	ר0]	1
$a_B = R_E^B a_E =$	$\cos\psi\sin\varphi\sin\theta - \cos\varphi\sin\psi$	$\cos\varphi\cos\psi + \sin\varphi\sin\psi\sin\theta$	$cos\varphi sin\theta$	0	
	$\sin\varphi\sin\psi + \cos\varphi\cos\psi\sin\theta$	$\cos \varphi \sin \psi \sin \theta - \cos \psi \sin \theta$	$\cos\varphi\cos\theta$	<u>g</u>	
		(2.21)			

(2.21)

3. OBRADA SIGNALA SENZORA

Nakon prikupljanja podataka s dostupnih senzora, potrebno je podatke obraditi kako bi dobili željeni oblik i smisao. Podatci izravno sa senzora su neupotrebljivi zbog šuma i različitih vanjskih smetnji koje su navedene u prethodnom poglavlju. Matematičke operacije koje se provode nad podatcima također stvaraju određenu grešku.

U nastavku će biti prikazane metode obade i fuzije signala. Fuzija je proces sažimanja i kombiniranja podataka iz više različitih izvora, u ovom slučaju akcelerometra i žiroskopa, kako bi se iskoristile individualne kvalitete i uklonili nedostatci podataka. U ovom radu će biti prikazani Kalmanov filtar u osnovnoj i proširenoj formi te komplementarni filtar. Kalmanov filtar je odabran zbog vrlo visoke točnosti procjene stanja traženog podatka, relativno malih procesorskih zahtjeva i zahtjeva memorije. Komplementarni filtar je odabran zbog jednostavnosti u odnosu na Kalmanov filtar kako bi se pobliže objasnio smisao fuzije podataka mjerenja.

3.1 Kalmanov filtar

Kalmanov filtar je rekurzivni algoritam za obradu podataka i procjenu traženih varijabli stanja. Algoritam filtra je 1960. godine objavio R.E. Kalman, a naknadno je više puta modificiran ali je osnova algoritma prikazanog u nastavku ostala ista. Kalmanov filtar uzima u obzir znanje o dinamici sustava i mjernih uređaja, nesigurnost dinamičkog modela sustava, stohastički opis šuma sustava i šumova mjernih uređaja te informacije o početnim stanjima traženih varijabli kako bi procijenio optimalne vrijednosti varijabli stanja s najmanjom mogućom greškom [4]. Opći oblik filtra određuje procjenu varijabli stanja linearnog modela sustava diskretnog u vremenu, na temelju informacija prethodnog koraka i mjerenja senzora [13,15]:

$$x_k = Ax_{k-1} + Bu_k + \omega_k \tag{3.1}$$

$$z_k = H x_k + \nu_k \tag{3.2}$$

U navedenim izrazima x_k predstavlja traženi vektor varijabli stanja koraka k, x_{k-1} vektor varijabli stanja koraka k - 1, u_k predstavlja vektor kontrolnih varijabli, a ω_k procesni šum, odnosno, vektor perturbacija stanja. U izrazu za mjerenje z_k predstavlja vektor izlaznih varijabli, a v_k vektor šuma mjerenja. U modelima se također koriste i matrica sustava A, matrica ulaza B i matrica izlaza H. Matrice A, B i H izraza (3.1) i (3.2) povezuju varijable stanja i ulazne varijable s novom varijablom stanja i mjerenjem. Izraz (3.1) je model sustava kojim se procjenjuje tražena varijabla stanja x_k , a izraz (3.2) je model mjerenja kojim se procjenjuje podatak sa senzora, mjerenje z_k .

Model sustava je stohastički pa su tražene varijable stanja stohastičke varijable. Procesni šum ω_k i šum mjerenja v_k su neovisni, bijeli šumovi s normalnom Gaussovom distribucijom vjerojatnosti. Bijeli šum se primjenjuje zbog svoje neovisnosti sa svim ostalim signalima u bilo kojem vremenskom trenutku te zbog toga što vrlo dobro aproksimira realne smetnje (šum mjerenja i stohastičke perturbacije u sustavu) unutar frekvencijskog pojasa samog dinamičkog modela sustava [14]. Motivacija za primjenu Gaussove raspodjele varijabli/stohastičkog modela proizlazi iz jednostavnosti računanja s varijablama Gaussove raspodjele/gustoće vjerojatnosti. Za opis varijable stanja su dovoljni samo prvi i drugi moment stohastičke varijable, odnosno srednja vrijednost μ i kovarijanca varijable σ^2 . Prvi i drugi moment varijable će biti definirani kasnije. Nadalje, stvarni šum sustava je obično uzorkovan nizom izvora, a zbrajanjem više različitih slučajnih varijabli s Gaussovom raspodjelom vjerojatnosti također se dobiva stohastička varijabla opisana Gaussovom gustoćom vjerojatnosti. Ukratko, takve karakteristike varijabli, u ovom slučaju za šumove ω i vsu zapisane na način:

$$p(\omega) \sim N(0, Q), \qquad p(\nu) \sim N(0, R)$$

N označuje Gaussovu gustoću vjerojatnosti, 0 za oba šuma označuje μ , srednju vrijednost varijable (engl. mean), Q je matrica kovarijanci stohastičkih perturbacija u varijablama stanja, kraće matrica šuma procesa, a R matrica kovarijanci stohastičkih perturbacija u varijablama šuma mjerenja ili kraće matrica kovarijanci mjerenja. Stohastički pristup izradi modela se koristi jer u realnim uvjetima postoje djelovanja unutar objekta upravljanja i izvan njega koja nisu unaprijed poznata a često imaju slučajni (nedeterministički) karakter. Pri izradi modela se često određene karakteristike zanemaruju, bilo zbog nepoznavanja ili radi pojednostavljenja. Senzori također ne daju savršene i potpune podatke zbog vlastitih dinamičkih svojstava i problema navedenih u poglavlju 2. Kalmanov filtar dakle, provodi uvjetnu propagaciju gustoće vjerojatnosti za probleme opisane linearnim stohastičkim modelom[13,14,15].

3.1.1 Algoritam Kalmanovog filtra

Algoritam vremenski diskretnog Kalmanovog filtra najprije procjenjuje stanje procesa u diskretnom trenutku k koju potom korigira na temelju zašumljenih mjerenja te njihovom kombinacijom daje konačnu procjenu varijabli stanja. Početna procjena stanja \hat{x}_k^- ili lat. a-priori procjena stanja u koraku k izračunata je s podatcima iz koraka k - 1. Konačna procjena stanja \hat{x}_k ili lat. a-posteriori procjena stanja u koraku k je izračunata nakon što se mjerenja senzora uzmu u obzir. Za određivanje kvalitete navedenih procjena, računaju se greške procjene stanja [13]:

$$e_k^- = x_k - \hat{x}_k^- \tag{3.3}$$

$$e_k = x_k - \hat{x}_k \tag{3.4}$$

U navedenim izrazima e_k^- predstavlja a-priori grešku procjene varijabli stanja, a e_k a-posteriori grešku procjene varijabli stanja. Kako Kalmanov filter procjenjuje varijable stanja stohastičkog sustava, a-priori i a-posteriori greške procjene stanja je potrebno zapisati u obliku kovarijanci grešaka procjene stanja. Za taj slučaj je potrebno definirati očekivanu vrijednost varijable stanja x_k kao[13]:

$$E(x_k) = \hat{x}_k \tag{3.5}$$

 \hat{x}_k je u ovom slučaju srednja vrijednost tražene varijable stanja i naziva se prvi moment statičke varijable x_k . Kovarijanca je u ovome slučaju varijanca tražene varijable stanja (varijanca je kovarijanca sa svim izvan dijagonalnim elementima različitim od nule) ili drugi moment statičke varijable x_k koji je definiran izrazom[13,15]:

$$\sigma^2 = E(x_k - \hat{x}_k)^2$$

ili vektorski:

$$P_{k} = E[(x_{k} - \hat{x}_{k})(x_{k} - \hat{x}_{k})^{T}]$$
(3.6)

Kovarijanca je određena količinom šuma prisutnog u varijabli stanja. Drugim riječima kovarijanca definira širinu Gaussove krivulje u smjeru osi apscise. Naravno, što je kovarijanca manja to je veća sigurnost i manja količina šuma u podatku.

Sada se može a-posteriori procjena varijabli stanja zapisati kao[13,15]:

$$p(x_k) \sim N(E(x_k), E[(x_k - \hat{x}_k)(x_k - \hat{x}_k)^T]) = N(\hat{x}_k, P_k)$$
(3.7)

Algoritam Kalmanovog filtra se dijeli na računanje a-priori procjene varijable tanja \hat{x}_k^- u vremenskom koraku k na temelju podataka o varijablama stanja \hat{x}_{k-1} i procesnog šuma ω_k (3.8), te računanje a-priori kovarijance grešaka varijabli stanja P_k^- iz kovarijance P_{k-1} i kovarijance perturbacija u varijablama stanja Q (3.9). Matrica Q osigurava da kovarijanca P_k^- ne ode u nulu što bi značilo da je model sustava savršen. Ovaj dio se još naziva predikcijski dio algoritma filtra [13,15]:

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1} + Bu_{k} \tag{3.8}$$

$$P_k^- = A P_{k-1} A^T + Q (3.9)$$

Nakon predikcijskog dijela slijedi računanje a-posteriori procjene stanja \hat{x}_k dodavanjem otežane razlike mjerenja z_k i a-priori procjene varijable stanja \hat{x}_k^- (3.11). Razlika je otežana Kalmanovim pojačanjem K_k koje se računa prema izrazu (3.10). Na kraju se izrazom (3.12) računa a-posteriori kovarijanca varijabli stanja P_k . Drugi dio se naziva i korekcijski dio algoritma filtra [13,15]:

$$K_{k} = \frac{P_{k}^{-} H^{T}}{H P_{k}^{-} H^{T} + R}$$
(3.10)

$$\hat{x}_k = \hat{x}_k^- + K_k (z_k - H \hat{x}_k^-)$$
(3.11)

$$P_k = (I - K_k H) P_k^-$$
(3.12)

U izrazu (3.12) *I* predstavlja jediničnu matricu. Pojačanje filtra K_k ovisi o a-priori kovarijanci P_k^- koja se procjenjuje modelom a definira količinu greške a-priori procjene stanja. Pojačanje K_k također ovisi o kovarijanci mjerenih podataka *R* koja definira količinu greške, odnosno šuma mjerenih podataka. U praktičnoj primjeni se matrice kovarijanci P_k^- i *R* određuju procesom koji se naziva Podešavanje Kalmanovog filtra [15]. Podešavanje Kalmanovog filtra je postupak kojim se izračunava Kalmanovo pojačanje K_k takvo da kovarijanca pogreške P_k bude minimalna i da putem što prije konvergira u minimalnu vrijednost. Kalmanov filtar radi samo ako postoji razumna greška u procjeni varijable stanja, dakle ako vrijedi $P_k > 0$. Kovarijanca P_k^- sa svakim korakom teži što manjim vrijednostima. Ako kovarijanca R teži prema nuli, znači da su podatci mjerenja vrlo točni. U tom slučaju se može primijetiti da prema izrazu (3.10) K_k teži prema vrijednosti $K_k = \frac{P_k^- H^T}{HP_k^- H^T} = H^{-1}$, gdje je *H* matrica koja mapira vektore u odgovarajući izlazni oblik, a obično je to jedinična matrica odgovarajućih dimenzija. Zbog težnje matrice $R \rightarrow 0$ se "više vjeruje" podatcima mjerenja pa će razlika ($z_k - H\hat{x}_k^-$) izraza (3.11) značajno promijeniti a-posteriori stanje \hat{x}_k . Nadalje, za veliku matricu R će K_k težiti u nulu i vjerovat će se više a-priori procjeni varijabli stanja, odnosno drugi član izraza (3.11) neće imati pretjerani utjecaj na krajnju procjenu. Matrica kovarijanci mjerenih podataka *R* je dijagonalna matrica koja objedinjuje kovarijance svih podataka sa senzora.

Dijagonalni elementi matrice predstavljaju varijance određenih signala mjerenja σ^2 , a definirane su prema izrazu (3.6) dok izvan-dijagonalni elementi predstavljaju kovarijance dva različita signala mjerenja $\hat{x}_{k,i}$ i $\hat{x}_{k,j}$ za koja je pretpostavljeno da su neovisna jedna o drugima pa je njihova kovarijanca jednaka nuli [18]:

$$\sigma_i \sigma_j = E\left[\left(x_k - \hat{x}_{k,i} \right) \left(x_k - \hat{x}_{k,j} \right)^T \right] = 0$$
(3.13)

Ovako sastavljena matrica omogućuje fuziju signala i računanje zajedničkog Kalmanovog pojačanja prema izrazu [18]:

$$K_{k} = P_{k}^{-} H^{T} (HP_{k}^{-} H^{T} + \begin{bmatrix} R_{k_{1,1}} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & R_{k_{i,j}} \end{bmatrix}$$
(3.14)

3.2 Prošireni Kalmanov filtar

Većina realnih procesa su nelinearni i na njih se ne može primijeniti osnovni model Kalmanovog filtra već prošireni Kalmanov filtar (engl. Extended Kalman filter) ili EKF. Prošireni Kalmanov filtar se koristi za realne probleme i minimum je u praćenju objekata u robotici u današnje vrijeme. U slučaju EKF-a jednadžbe nelinearnog sustava su dane izrazima[13]:

$$x_{k} = f(x_{k-1}, u_{k}, \omega_{k})$$
(3.15)

$$z_k = h(x_k, \nu_k) \tag{3.16}$$

f i h su nelinearne funkcije. U praktičnim primjenama su šumovi procesa ω_k i mjerenja ν_k nepoznati i slabog utjecaja pa ih možemo zanemariti i proglasiti da su jednaki nuli. Realne vrijednosti su onda dane izrazima:

$$\bar{x}_k = f(\hat{x}_{k-1}, u_k, 0) \tag{3.17}$$

$$\bar{z}_k = h(\hat{x}_k, 0) \tag{3.18}$$

 \bar{x}_k i \bar{z}_k su srednje vrijednosti stohastičkih varijabli stanja i mjerenja. Korištenjem nelinearnih funkcija s ulazima koji su varijable normalnih/ Gaussovih raspodjela vjerojatnosti, na primjer x_k , ω_k i ν_k , izlazi sustava više nisu varijable normalnih raspodjela vjerojatnosti što znači da nisu zadovoljene pretpostavke za provođenje algoritma Kalmanovog filtra o normalnoj raspodjeli varijabli stanja. Kako bi se ipak primijenio Kalmanov filtar potrebno je napraviti lokalne linearizacije sustava/varijabli stanja. Linearizirani model sustava za procjenu varijabli stanja je definiran izrazima[13]:

$$x_k \approx \bar{x}_k + A(x_{k-1} - \hat{x}_{k-1}) + W\omega_k$$
(3.19)

$$z_k \approx \bar{z}_k + H(x_k - \bar{x}_k) + V\nu_k \tag{3.20}$$

Matrice A i H su Jacobijeve matrice nelinearnih funkcija f i h parcijalno deriviranih po parametru x_{k-1} , matrica W je Jacobijeva matrica funkcije f parcijalno derivirana po ω , a V je Jacobijeva matrica funkcije h po parametru ν . Matrica A je oblika:

$$A = \frac{\partial f(\hat{x}_{k-1}, u_k, 0)}{\partial x_{k-1}}$$
(3.21)

Fakultet strojarstva i brodogradnje
Ostale matrice se računaju analogno matrici A.

3.2.1 Algoritam proširenog Kalmanovog filtra

Algoritmu proširenog Kalmanovog filtra analogno standardnom filtru uvodimo grešku procjene varijabli stanja \bar{e}_{x_k} i grešku procjene mjerenja \bar{e}_{z_k} [13]:

$$\bar{e}_{x_k} = x_k - \bar{x}_k \tag{3.22}$$

$$\bar{e}_{z_k} = z_k - \bar{z}_k \tag{3.23}$$

Zamjenom x_k za izraz (3.19) i z_k za izraz (3.20), te dodatno $\varepsilon_k = W \omega_k$ i $\eta_k = V \nu_k$ dobivaju se izrazi za računanje grešaka sustava. ε_k , η_k i \bar{e}_{z_k} su varijable normalne raspodjele sa srednjom vrijednosti μ jednakom nula:

$$\bar{e}_{x_k} \approx A(x_{k-1} - \hat{x}_{k-1}) + \varepsilon_k \tag{3.24}$$

$$\bar{e}_{z_k} \approx H\bar{e}_{x_k} + \eta_k \tag{3.25}$$

Težnja sustava je da $\bar{e}_{x_k} \rightarrow 0$, a u tom slučaju vrijedi da je pogreška sustava definirana kao $\hat{e}_k = K_k \bar{e}_{z_k}$ pa za sustav vrijedi izraz (3.26) koji se naziva korekcija mjerenjem i analogan je izrazu (3.11) za standardni Kalmanov filtar [13,15]:

$$\hat{x}_k = \bar{x}_k + \hat{e}_k = \bar{x}_k + K_k \bar{e}_{z_k} = \bar{x}_k + K_k (z_k - \bar{z}_k)$$
(3.26)

Algoritam se konačno dijeli na predikcijski i korekcijski dio kao i kod Kalmanovog filtra. U predikcijskom dijelu algoritma se primjenjuje nelinearna funkcija f za a-priori procjenu, dok se za računanje a-priori kovarijance pogreški varijabli stanja koriste Jacobijeve matrice funkcije f prema danim izrazima:

$$\hat{x}_{k}^{-} = f(\hat{x}_{k-1}, u_{k}, 0) \tag{3.27}$$

$$P_k^- = AP_{k-1}A^T + WQ_{k-1}W^T (3.28)$$

U korekcijskom dijelu se primjenjuje nelinearna funkcija h za procjenu mjerenja, a za računanje ostalih veličina Jacobijeve matrice funkcije h prema danim izrazima:

$$z_k = h(x_{k-1}, 0) \tag{3.29}$$

$$K_{k} = P_{k}^{-} H^{T} (H P_{k}^{-} H^{T} + V R V^{T})$$
(3.30)

$$\hat{x}_k = \hat{x}_k^- + K_k (z_k - \hat{x}_k^-) \tag{3.31}$$

$$P_k = (I - K_k H) P_k^-$$
(3.32)

Linearizacijom su zadovoljene sve pretpostavke za korištenje algoritma Kalmanovog filtra koji se ovom modifikacijom može koristiti na vrlo širokom rasponu problema.

3.3 Komplementarni filtar

Komplementarni filtar je metoda obrade i fuzije signala koja koristi sporo promjenjive signale s akcelerometra i brzo promjenjive podatke sa žiroskopa tako da signale akcelerometra propušta kroz niskopropusni filtar, a signale žiroskopa propušta kroz visokopropusni filtar. Signali se zatim sažimaju zajedno kako bi se izračunala orijentacija objekta u prostoru. Akcelerometar u ovom slučaju mjeri smjer vektora gravitacijske sile G iz kojega se određuje zakret. Akcelerometar u pokretu će mjeriti i sile uzrokovane akceleracijama tijela koje u ovome slučaju predstavljaju poremećaj i smanjuju preciznost signala akcelerometra kod naglih kretanja, tj. akcelerometar je nepouzdan na kratki vremenski period (nagle pomake) ali će zato biti vrlo pouzdan na duži. Kako bi se signalima s akcelerometra uklonilo utjecaj poremećaja visokih frekvencija, oni se propuštaju kroz niskopropusni filtar prijenosne funkcije $G(s) = \frac{1}{1+Ts}$. Žiroskop mjeri kutnu brzinu koja se integrira kako bi se dobili podatci o zakretima senzora. Integracija žiroskopa izaziva skretanje (engl.drift) signala pa signal postaje vrlo nepouzdan na duži vremenski period, ali je pouzdan na kraći. Kako bi se signalima žiroskopa uklonio utjecaj skretanja oni se propuštaju kroz visokopropusni filtar prijenosne funkcije $G(s) = \frac{Ts}{1+Ts}$. Zaključno se može reći da podatak akcelerometra omogućuje grublje određivanje promjene orijentacije senzora s obzirom na silu gravitacije, a žiroskop omogućuje određivanje točnijeg kutnog zakreta. Nakon što se signali obrade na opisani način, slijedi postupak fuzije ili sažimanja komplementarnim filterom definiranim izrazom[16,17]:

$$\alpha_k = \delta \left(\alpha_{k-1} + \alpha_g \right) + (1 - \delta) \alpha_a \tag{3.33}$$

U navedenom izrazu α_k je kut zakreta u koraku k, α_{k-1} kut zakreta u koraku k - 1. Kut zakreta žiroskopa $\alpha_g = \omega_g \Delta t$ se računa tako što se provodi integracija podatka o brzini vrtnje žiroskopa ω_g s periodom uzorkovanja Δt . Kut zakreta akcelerometra α_a se računa prema izrazima iz poglavlja 2.4 Eulerovi kutovi. Koeficijent δ zamjenjuje uloge niskopropusnog i visokopropusnog filtra tako da određuje granicu gdje pojedini od podataka senzora preuzima većinsku ulogu u izračunatom kutu zakreta. Koeficijent δ se računa prema izrazu[16]:

$$\delta = \frac{\tau}{\tau + \Delta t} \tag{3.34}$$

 τ –vremenska konstanta dinamike senzora

4. SIMULACIJSKI MODEL IMU MODULA

Za izvođenje simulacijskog modela inercijske mjerne jedinice, engl. IMU, će se u ovom slučaju koristiti MPU-6050 odnosno GY-521 modul. MPU-6050 je MEMS inercijska mjerna jedinica sa šest stupnjeva slobode. Šest stupnjeva slobode čine akcelerometar i žiroskop koji imaju po tri stupnja slobode. Akcelerometar se nadalje sastoji od tri akcelerometra gdje je svaki orijentiran u smjeru jedne od osi lokalnog koordinatnog sustava modula. Analogno akcelerometru se i žiroskop sastoji od tri žiroskopa, svaki u smjeru jedne od osi lokalnog koordinatnog sustava modula. Komunikacija MPU-6050 modula s vanjskim mikroračunalom se vrši I^2C sinkronom serijskom komunikacijom ostvarenom sa SDA i SCL linijama prikazanima slikom 4.1.

Slika 4.1: GY-521/ MPU6050 modul[17]

Na lijevoj stani senzora se nalaze pinovi redom [18]:

- VCC napajanje, 5V (iznimno 3.3V)
- GND engl. ground pin
- SCL engl. Serial Clock, linija za prijenos impulsa I^2C sabirnicom
- SDA engl. Serial data, linija za prijenos podataka I^2C sabirnicom
- XDA engl. Auxiliary serial data
- XCL engl. Auxiliary clock data
- ADO pin za određivanje adrese za spajanje na sabirnicu
- INT engl. Interrupt pin

4.1. Simulacijski model akcelerometra

MEMS kapacitivni akcelerometar MPU-6050 modula je opisan modelom u poglavlju 2. Za rješavanje problema određivanja kutova zakreta će se koristiti mogućnost mjerenja projekcije vektora gravitacijske sile, odnosno akceleracije gravitacijskog polja u odnosu na mjerne osi. Simulacijski model akcelerometra se izvodi kao MDS sustav. Za izvođenje parametara se koristi izraz (2.7):

$$G(s) = \frac{y(s)}{a(s)} = \frac{1}{s^2 + \frac{D}{M}s + \frac{K}{M}} = \frac{1}{\frac{1}{\omega_r^2}s^2 + \frac{\xi}{\omega_r}s + 1}$$
(4.1)

U ovom slučaju je a(s) akceleracija gravitacije, a y(s) je pomak mase uslijed inercijskih sila i sile gravitacije.

Vlastita neprigušena frekvencija se računa izrazom (4.2) gdje su koeficijent opruge K = 5.5 N/m i iznos inercijske mase $M = 1.7 * 10^{-6}$ kg [19]:

$$\omega_r = \sqrt{\frac{K}{M}} = \sqrt{\frac{5.5}{1.7 \times 10^{-6}}} = 2.3452 \times 10^3 \text{ Hz}$$
 (4.2)

Prigušenje sustava se računa izrazom:

$$\xi = \frac{\sqrt{KM}}{D} = \frac{\sqrt{5.5 \times 1.7 \times 10^{-6}}}{3.5 \times 10^{-4}} = 6.7006 \tag{4.3}$$

Koeficijent prigušenja iznosi $D = 3.5 * 10^{-4} \text{ Ns/m} [19].$

Dinamika MDS sustava utječe na pomak mase i odziv sustava, odnosno očitanu akceleraciju. Na sami odziv također utječe i skretanje signala (engl. drift) i šum pri mjerenju kojemu je glavni uzrok Brownovo gibanje čestica zraka unutar MEMS senzora. Drift za MPU-6050 akcelerometar iznosi 0.0057*g*, a šum je određen spektrom snage (engl. Power spectral density) koja iznosi 0.0004 m/ $\sqrt{\text{Hz}}$ i frekvencijom izlaza koja iznosi 1000Hz [20]. Navedene veličine će biti modelirane kao konstante koje utječu na pomak inercijske mase. Akceleracija se može izračunati iz danog pomaka mase tako da se pomak pomnoži s osjetljivošću akcelerometra koja za slučaj MPU6050 modula iznosi 16 384 LSB/*g*. LSB je oznaka za engl. least significant bit, najmanje značajan bit koji definira najmanju razliku između dvije susjedne veličine mjerenja, a *g* je oznaka akceleracije gravitacijskog polja *g* = 9.80665 m/s². Zatim se signal ograničava na 16 bitova što odgovara veličini podatka koji se sprema u dva 8-bitna registra MPU-6050 modula. Drugim riječima, raspon očitanog signala je određen s ukupno 2¹⁶ diskretnih vrijednosti, a nalazi se u rasponu od -2^{15} do 2¹⁵. Na samom kraju se signal pretvara u 16-bitni integer podatak. Izvedeni model akcelerometra kod kojeg su uzete u obzir sve navedene pretpostavke i karakteristike je prikazan slikom 4.2 [20, 21]:

Slika 4.2: Model akcelerometra izveden u Simulinku

U nastavku je prikazana ulazna, stvarna akceleracija senzora s amplitudom 1g=9.80665m/ s^2 . Na desnoj strani slike je prikazan očitani podatak akceleracije koji se kao takav sprema u registre mikroračunala. Očitana akceleracija je za četiri reda veća upravo zbog osjetljivosti akcelerometra od 16 384 LSB/g. Navedena akceleracija ne daje stvarnu vrijednost akceleracije u g što znači da ju je potrebno obraditi.

Slika 4.3: Stvarna (ulazna) akceleracija i očitana akceleracija

Kako bi se postigla stvarna očitana vrijednost akceleracije potrebno je očitani podatak podijeliti s osjetljivošću od 16 384 LSB/g. Na sljedećoj slici su prikazane obrađena akceleracija te usporedba obrađene očitane akceleracije i stvarne ulazne akceleracije u model:

Slika 4.4: Obrađena očitana akceleracija i usporedba stvarne(ulazne) i očitane akceleracije

Kako bi se odredila kvaliteta simulacijskog modela senzora, proveden je izračun srednje kvadratne pogreške na 8000 uzoraka zabilježenih u 10 sekundi simulacije. Srednja kvadratna pogreška modela akcelerometra iznosi 0.0141 g. Raspon očitanja akcelerometra iznosi $\pm 2g$. S obzirom na veličinu srednje kvadratne pogreške u odnosu na raspon može se zaključiti da će šum imati velik utjecaj na mjerenja.

4.2. Simulacijski model žiroskopa

MEMS vibracijski žiroskop MPU6050 modula je opisan u drugom poglavlju. U slučaju žiroskopa se promatra deformacija vibracijskog elementa koja se uzrokovana Coriolisovom akceleracijom i Coriolisovom inercijskom silom. Simulacijski model se izvodi kao MDS sustav. Za izvođenje parametra sustava se koristi izraz (2.7) [22] :

$$G(s) = \frac{y(s)}{a(s)} = \frac{1}{\frac{1}{\omega_r^2 s^2 + \frac{2\xi}{\omega_r} s + 1}}$$
(4.4)

Vlastita neprigušena frekvencija žiroskopa se računa prema izrazu (4.5) gdje f predstavlja srednju vrijednost mehaničke frekvencije žiroskopa [20, 22] :

$$\omega_r = f * 2\pi = 30000 * 2\pi = 1.885 * 10^5 \text{Hz}$$
(4.5)

Prigušenje modela iznosi [22]:

$$\xi = 0.7071$$

Na sami odziv također utječe i skretanje signala engl. drift i šum pri mjerenju koji se računaju prema specifikacijama žiroskopa[20]. Skretanje signala iznosi $-0.5983^{0}/s$, a šum je određen spektrom snage (engl. Power spectral density) koja iznosi $0.005^{0}/s/\sqrt{Hz}$ i frekvencijom izlaza koja iznosi 8000Hz [20]. Brzina zakreta se može izračunati iz dane deformacije vibracijskog elementa tako da se deformacija pomnoži s osjetljivošću žiroskopa koja za slučaj MPU-6050 modula iznosi 131 LSB/(⁰/s). Na kraju se signal ograničava na 16 bitova što odgovara veličini podatka koji se sprema u dva 8-bitna registra MPU-6050. Izveđeni model žiroskopa kod kojeg su uzete u obzir sve naveđene pretpostavke i karakteristike je prikazan slikom 4.5 [22]:

Slika 4.5: Model žiroskopa izveden u Simulinku

U nastavku je prikazana ulazna, stvarna kutna brzina senzora s amplitudom 1⁰/s. Na desnoj strani slike je prikazan očitani podatak kutne brzine koja se kao takva sprema u registre mikroračunala. Očitani podatak se također mora obraditi kako bi dao stvarnu vrijednost.

Slika 4.6: Stvarna kutna brzina i očitana kutna brzina

Kako bi se odredila stvarna očitana vrijednost kutne brzine, potrebno je podatak pomnožiti s osjetljivošću. Na sljedećoj slici su prikazane obrađena kutna brzina te usporedba obrađene očitane kutne brzine i stvarne kutne brzine na ulazu u model:

Slika 4.7: Obrađena kutna brzina i usporedba obrađene i stvarne kutne brzine

Kako bi se odredila kvaliteta simulacijskog modela senzora, proveden je izračun srednje kvadratne pogreške na 8000 uzoraka zabilježenih u 10 sekundi simulacije. Srednja kvadratna pogreška modela žiroskopa iznosi 0.7627^{0} /s. Raspon očitanja žiroskopa iznosi $\pm 250^{0}$ /s.

5. SIMULACIJSKI MODELI SAŽIMANJA PODATAKA S AKCE-LEROMETRA I ŽIROSKOPA

Sljedeći zadatak je izrada i primjena simulacijskih modela komplementarnog filtra, Kalmanovog filtra i proširenog Kalmanovog filtra. Osnovne teorijske pretpostavke navedenih filtara su dane u poglavlju 3, a u nastavku će biti izvedeni modeli filtara u programskom paketu MAT-LAB i Simulink. U sklopu komplementarnog filtra će biti definirani izrazi (5.2) do (5.5) kojima se računaju Eulerovi kutovi iz podataka senzora. Navedeni izrazi će vrijediti i koristit će se za sve ostale modele.

Na početku su priloženi stvarni podatci očitanja MPU-6050 modula kako bi se prikazali pretpostavljeni nedostatci i prednosti oba senzora te potvrdila pretpostavka o nužnosti fuzije danih podataka. Očitano mjerenje akcelerometra za Eulerov kut poniranja/nagiba $\theta = 0^{\circ}$ (engl. Pitch) je prikazano na slici 5.1. Na slici se mogu uočiti spomenuti nedostatci mjerenja zbog prisutnog šuma i prednosti dugotrajne točnosti očitanja akcelerometra.

Slika 5.1: Eulerov kut poniranja/nagiba θ izmjeren akcelerometrom pri zakretu 0°

Za dano mjerenje će biti izračunata srednja kvadratna pogreška kako bi se mogla kasnije usporediti sa srednjim kvadratnim pogreškama navedenih filtara u stvarnoj i simulacijskoj formi. Srednja kvadranta pogreška iznosi 0.2632 °.

Očitano mjerenje žiroskopa za Eulerov kut poniranja/nagiba $\theta = 0^{\circ}$ (engl. Pitch) je prikazano na slici 5.2. Na slici se može uočiti kratkotrajna stabilnost, odnosno manji utjecaj šuma ali se uočava skretanje i posmak žiroskopa.

Slika 5.2 Eulerov kut poniranja/nagiba θ izmjeren žiroskopom pri zakretu 0°

5.1 Komplementarni filtar

Komplementarni filtar je najjednostavniji i zahtijeva najmanje procesorskog vremena u odnosu na ostala dva filtra. Međutim, komplementarni filtar u svojoj osnovnoj formi koja je teorijski prikazana u prethodnim poglavljima, neadaptivan. Unatoč tom nedostatku, često je primjenjuje u komercijalnoj elektronici zbog sposobnosti sažimanja signala senzora.

Za izračun Eulerovog kuta zakreta komplementarnim filterom se primjenjuje izraz (3.33):

$$\alpha_k = \delta \big(\alpha_{k-1} + \alpha_g \big) + (1 - \delta) \alpha_a \tag{5.1}$$

U navedenom izrazu α_{k-1} je prethodno stanje Eulerovog kuta, a α_k je novo stanje. Sažimanje se sastoji od korištenja podataka o kutu zakreta sa žiroskopa α_g i akcelerometra α_a . Konačno, koeficijent komplementarnog filtra δ određuje pouzdanost određenog mjerenja.

Eulerovi kutovi iz podataka akcelerometra se izračunavaju pomoću izraza (2.21):

$$a_B = R_E^B a_E =$$

	Γ cosψcosθ	$\cos heta \sin \psi$	–sin <i>θ</i> ך	٢0	1	
=	$\cos\psi\sin\varphi\sin\theta - \cos\varphi\sin\psi$	$\cos\varphi\cos\psi + \sin\varphi\sin\psi\sin\theta$	$\cos\theta\sin\varphi$	0	=	=
	$\sin\varphi\sin\psi + \cos\varphi\cos\psi\sin\theta$	$\cos \varphi \sin \psi \sin \theta - \cos \psi \sin \theta$	$\cos\varphi\cos\theta$	lg	l	

$$a_{B} = \begin{bmatrix} a_{Bx} \\ a_{By} \\ a_{Bz} \end{bmatrix} = \begin{bmatrix} -\sin\theta \\ \cos\theta\sin\varphi \\ \cos\varphi\cos\theta \end{bmatrix} * g$$
(5.2)

Očitane akceleracije u smjerovima lokalnog koordinatnog sustava su označene sa a_{Bx} , a_{By} i a_{Bz} . Iz navedenih jednadžbi se izvode izrazi prema kojima je moguće odrediti engl. roll (valjanje) φ i engl. pitch (nagib) θ . Treći Eulerov kut engl. yaw (skretanje) ψ nije moguće odrediti s akcelerometrom. Nedostatak korištenja Eulerovih kutova je taj što vektor akceleracije gravitacijskog polja usmjeren u pozitivnom smjeru z_E (slika 2.10) osi globalnog koordinatnog sustava ostaje konstantan zakretom senzora za kut ψ oko z_B (slika 2.10) osi, odnosno akcelerometar usmjeren prema z_B osi očitava konstantnu vrijednost projekcije vektora akceleracije gravitacijskog polja na z os.

Izrazi za izračunavanje kutova su:

$$\frac{a_{By}}{a_{Bz}} = \frac{\cos\theta\sin\varphi g}{\cos\varphi\cos\theta g} = \tan(\varphi)$$
(5.3)

$$\frac{-a_{Bx}}{\sqrt{(a_{By})^2 + (a_{Bz})^2}} = \frac{\sin\theta}{\sqrt{(\cos\theta\sin\phi)^2 + (\cos\phi\cos\theta)^2}} = \frac{\sin\theta}{\cos\theta} = \tan(\theta)$$
(5.4)

Odnosno:

$$\varphi = \tan^{-1} \left(\frac{a_{By}}{a_{Bz}} \right)$$
$$\theta = \tan^{-1} \left(\frac{-a_{Bx}}{\sqrt{(a_{By})^2 + (a_{Bz})^2}} \right)$$

Eulerovi kutovi se izračunavaju iz podataka žiroskopa pomoću izraza (2.19) gdje se izvode tri jednadžbe koje integracijom izračunatih brzina zakreta Eulerovih kutova ($\dot{\phi}$, $\dot{\theta}$, $\dot{\psi}$) daju Eulerove kutove [23]:

$$\begin{bmatrix} \dot{\varphi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\sin\varphi\sin\theta}{\cos\theta} & \frac{\cos\varphi\sin\theta}{\cos\theta} \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \frac{\sin\varphi}{\cos\theta} & \frac{\cos\varphi}{\cos\theta} \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$
(5.5)

Za simuliranje modela komplementarnog filtra će se koristiti mjerenja stvarnog MPU-6050 modula koja se šalju Serial receive blokom u Simulink model. U dodatku 2. je dan Arduino kod za uspostavljanje veze Arduino sučelja i Simulinka. Cijeli blok za akviziciju signala s MPU-6050 modula je vidljiv na slici 5.3. Podatak je potrebno pretvoriti (engl. cast) u double kako bi se mogao koristiti u Simulinku. Zatim je podatak potrebno rastaviti na tri mjerenja akcelerometra označena varijablama ax, ay i az te tri mjerenja žiroskopa varijablama gx, gy i gz. Kako je komplementarni filtar rekurzivna metoda potrebno je na ulaz u filtar dovesti Eulerove kutove prethodnog koraka što je omogućeno blokom "Eulerovi kutovi prošlog koraka" na slici 5.3. Blok se sastoji od engl. Delay i engl. Initial Condition bloka. Delay blok omogućuje primjenu izlaza filtra u sljedećem koraku iteracije, a Initial Condition daje vrijednost Eulerovih kutova u početnoj iteraciji. Eulerovi kutovi u početnoj iteraciji su označeni varijablom $g = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$. Potrebno je definirati i period koraka iteracije dT koji je određen periodom akvizicije signala Serial receive blokom. Period je ograničen na 50 milisekundi. Na kraju se određuje koeficijent komplementarnog filtra koji je u ovom slučaju dobiven metodom pokušaja i pogrešaka i iznosi $\delta = 0.9$.

Slika 5.3: Komplementarni filtar

Blok "Komplementarni filtar" je Matlab function blok koji sadrži kod za izračunavanje Eulerovih kutova. Na početku se prema izrazu (5.5) računaju brzine zakreta Eulerovih kutova $\dot{\phi}, \dot{\theta}, \dot{\psi}$. Zatim se računaju Eulerovi kutovi prema izrazima (5.3) i (5.4). Na kraju se računaju Eulerovi kutovi prema izrazu (5.1) koji čine vektor stupac $[\varphi \quad \vartheta \quad \psi]^{T}$. Kako se ne može koristiti mjerenje akcelerometra za računanje skretanja ψ , kut se računa samo s mjerenjem žiroskopa. Potrebno je naglasiti da je on zbog toga manje precizan od ostalih i to je potrebno uzeti u obzir ako se koristi s inercijskim mjernim jedinicama sa šest stupnjeva slobode gibanja. Kod bloka je dan u nastavku:

```
function x = fcn(x,ax,ay,az,gx,gy,gz,dT,Koef)
%Kutne brzine Eulerovih kutova(ziroskop):
gxb=gx+(sin(x(1,1)*pi/180)*tan(x(2,1)*pi/180)*gy)+(cos(x(1,1)*pi/180)*gy);
gyb=(cos(x(2,1)*pi/180)*gy)-(sin(x(1,1)*pi/180)*gz);
gzb=((sin(x(1,1)*pi/180)/cos(x(2,1)*pi/180))*gy)+((cos(x(1,1)*pi/180)/cos(x(2,1)*pi/180))*gz);
%Eulerovi kutovi(akcelerometar):
accx=atan2(ay, sqrt(az^2 + 0.01*(ax^2)))*180/pi;
accy=atan2(-ax,sqrt(ay^2+az^2))*180/pi;
%Komplementarni filtar:
x(1,1)=Koef*(x(1,1)+gxb*dT)+ (1-Koef)*accx;
x(2,1)=Koef*(x(2,1)+gyb*dT)+ (1-Koef)*accy;
x(3,1)=x(3,1)+ gzb*dT;
```

Mjerenje Eulerovog kuta poniranja/nagiba θ pri mirovanju senzora na 0° filtrirano komplementarnim filtrom je prikazano na slici 5.4:

Slika 5.4: Eulerov kut poniranja/nagiba θ filtriran komplementarnim filtrom pri zakretu 0°

Kvaliteta i odstupanje mjerenja nakon filtriranja se provjerava srednjom kvadratnom pogreškom. Srednja kvadratna pogreška za dana mjerenja obrađena komplementarnim filtrom iznosi 0.0521° što je u odnosu na pogrešku akcelerometra od 0.2632 ° značajno smanjenje.

5.2 Kalmanov filtar

Kalmanov filtar je rekurzivni algoritam za procjenu stanja, u ovom slučaju Eulerovih kutova, koji je teorijski prikazan u poglavlju 3, a ovdje će biti dan detaljniji opis primjene za traženi problem. Opisani algoritam se primjenjuje za jedan od Eulerovih kutova zbog jednostavnosti izraza.

Inicijalno stanje sustava je definirano vektorom:

$$x_0 = \begin{bmatrix} \varphi_0 \\ \dot{\varphi}_{b0} \end{bmatrix} \tag{5.6}$$

Prvi član vektora stanja φ_0 predstavlja Eulerov kut, a drugi $\dot{\varphi}_{b0}$ predstavlja posmak mjerenja žiroskopa koje se dalje koristi kao kontrolna varijabla $u_k = \dot{\varphi}_{gk}$. Kontrolnom varijablom se ažurira a-priori stanje sustava s podatcima senzora prema linearnom modelu filtra. Stanje u trenutku k je oblika:

$$x_k = \begin{bmatrix} \varphi_k \\ \dot{\varphi}_{bk} \end{bmatrix} \tag{5.7}$$

Matrica sustava i matrica ulaza su oblika:

$$A = \begin{bmatrix} 1 & -\Delta t \\ 0 & 1 \end{bmatrix}$$
(5.8)

$$B = \begin{bmatrix} \Delta t \\ 0 \end{bmatrix} \tag{5.9}$$

A-priori procjena stanja prema linearnom modelu $\hat{x}_k^- = Ax_{k-1} + Bu_k$ iznosi:

$$\hat{x}_{k}^{-} = \begin{bmatrix} \varphi_{k}^{-} \\ \dot{\varphi}_{bk}^{-} \end{bmatrix} = \begin{bmatrix} 1 & -\Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \varphi_{k-1} \\ \dot{\varphi}_{bk-1} \end{bmatrix} + \begin{bmatrix} \Delta t \\ 0 \end{bmatrix} \dot{\varphi}_{gk} = \begin{bmatrix} \varphi_{k-1} - \dot{\varphi}_{bk-1} * \Delta t + \dot{\varphi}_{gk} * \Delta t \\ \dot{\varphi}_{bk-1} \end{bmatrix}$$
(5.10)

Kovarijanca šuma procesa Q i kovarijanca varijabli stanja P_{k-1} u koraku k-1 iznose:

$$Q = \begin{bmatrix} Q_{11} & 0\\ 0 & Q_{22} \end{bmatrix}$$
(5.11)

$$P_{k-1} = \begin{bmatrix} P_{11} & 0\\ 0 & P_{22} \end{bmatrix}$$
(5.12)

A-priori kovarijanca varijabli stanja prema izrazu $P_k^- = AP_{k-1}A^T + Q$ iznosi:

$$P_{k}^{-} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} = \begin{bmatrix} P_{11} + \Delta t^{2} P_{22} & -\Delta t * P_{22} \\ -2\Delta t * P_{22} & P_{22} \end{bmatrix} + \begin{bmatrix} Q_{11} & 0 \\ 0 & Q_{22} \end{bmatrix} = \begin{bmatrix} P_{11} + \Delta t^{2} P_{22} + Q_{11} & -\Delta t * P_{22} \\ -2\Delta t * P_{22} & P_{22} + Q_{22} \end{bmatrix}$$
(5.13)

 P_k^- opisuje Gaussovu raspodjelu nesigurnosti stanja procesa, a šumovi procesa su bijeli, pa je zbog tih pretpostavki potrebno ukloniti vandijagonalne elemente P_{12} i P_{21} . Mjerenje prema izrazu $z_k = Hx_k$ iznosi:

$$z_k = \begin{bmatrix} \varphi_{zk} \\ \dot{\varphi}_{bzk} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \varphi_k \\ \dot{\varphi}_{bk} \end{bmatrix}$$
(5.14)

Izlazna matrica H je jednaka jediničnoj matrici. Kovarijanca mjerenja iznosi:

$$R = \begin{bmatrix} R_{11} & 0\\ 0 & R_{22} \end{bmatrix}$$
(5.15)

 R_{11} predstavlja kovarijancu mjerenja akcelerometra, a R_{22} predstavlja kovarijancu mjerenja žiroskopa. Kalman pojačanje se računa prema izrazu:

$$K_k = P_k^- H^{\rm T} (H P_k^- H^{\rm T} + R)^{-1} =$$

$$= \begin{bmatrix} P_{11} + \Delta t^2 P_{22} + Q_{11} & 0\\ 0 & P_{22} + Q_{22} \end{bmatrix} \begin{bmatrix} P_{11} + \Delta t^2 P_{22} + Q_{11} + R_{11} & 0\\ 0 & P_{22} + Q_{22} + R_{22} \end{bmatrix} \Big]^{-1} =$$

$$= \begin{bmatrix} \frac{P_{11} + \Delta t^2 P_{22} + Q_{11}}{P_{11} + \Delta t^2 P_{22} + Q_{11} + R_{11}} & 0\\ 0 & \frac{P_{22} + Q_{22}}{P_{22} + Q_{22} + R_{22}} \end{bmatrix} = \begin{bmatrix} K_{11} & 0\\ 0 & K_{22} \end{bmatrix}$$
(5.16)

A-posteriori procjena stanja iznosi:

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(z_{k} - H\hat{x}_{k}^{-}) = \begin{bmatrix} \varphi_{k}^{-} \\ \dot{\varphi}_{bk}^{-} \end{bmatrix} + \begin{bmatrix} K_{11} & 0 \\ 0 & K_{22} \end{bmatrix} \left(\begin{bmatrix} \varphi_{2k} \\ \dot{\varphi}_{bzk} \end{bmatrix} - \begin{bmatrix} \varphi_{k}^{-} \\ \dot{\varphi}_{bk}^{-} \end{bmatrix} \right)$$
$$\hat{x}_{k} = \begin{bmatrix} \varphi_{k} \\ \dot{\varphi}_{bk} \end{bmatrix} = \begin{bmatrix} \varphi_{k}^{-} + K_{11}(\varphi_{2k} - \varphi_{k}^{-}) \\ \varphi_{bk}^{-} + K_{22}(\dot{\varphi}_{bzk} - \varphi_{bk}^{-}) \end{bmatrix}$$
(5.17)

A-posteriori kovarijanca procesa iznosi:

$$P_{k} = (I - K_{k}H)P_{k}^{-} = \begin{bmatrix} 1 - K_{11} & 0 \\ 0 & 1 - K_{22} \end{bmatrix} \begin{bmatrix} P_{11} + \Delta t^{2}P_{22} + Q_{11} & 0 \\ 0 & P_{22} + Q_{22} \end{bmatrix} = \begin{bmatrix} (1 - K_{11})(P_{11} + \Delta t^{2}P_{22} + Q_{11}) & 0 \\ 0 & (1 - K_{22})(P_{22} + Q_{22}) \end{bmatrix}$$
(5.18)

5.2.1 Model Kalmanovog filtra u Simulinku

Model Kalmanovog filtra se sastoji od bloka s ulaznim matricama A, B, Q, H, R i I koje su konstantne za svaku iteraciju procesa i matrice P_k koja se računa u svakom koraku, a u svakoj novoj iteraciji gdje korak k raste za jedan, P_k prelazi u matricu P_{k-1} . U početnoj iteraciji je matrica P_0 za računanje u koraku k = 1 definirana od strane korisnika.

Kako vektor stanja prema izrazu (5.7) predstavlja stanja oko samo jedne osi, u modelu se koriste tri takva vektora za sva tri Eulerova kuta, φ , roll, θ , pitch i ψ , yaw. Sva tri stanja se nalaze na izlazu bloka Kalmanovog filtra i prelaze iz stanja x_k , y_k i z_k u stanje x_{k-1} , y_{k-1} i z_{k-1} u novom koraku iteracije. Opet je važno naglasiti da nije moguće s potpunom točnošću odrediti ψ zbog korištenja IMU modula sa šest stupnjeva slobode. Kao i u slučaju komplementarnog filtra, mjerenja s MPU-6050 modula se dobivaju Serial receive blokom i dijele se na tri mjerenja akcelerometra, ax, ay i az, te tri mjerenja žiroskopa, gx, gy, gz. Period iteracije je definiran blokom dT i iznosi 50 milisekundi.

Početna vrijednost matrice P_0 te vrijednosti matrica Q i R su određene kvalitetom modela sustava, šumom/nesigurnosti sustava te šumom i nesigurnosti mjerenja. U ovom slučaju matrica kovarijance stanja sustava P_0 iznosi:

$$P_0 = \begin{bmatrix} 500 & 0\\ 0 & 500 \end{bmatrix}$$
(5.19)

U početnoj iteraciji je poželjno postaviti veću matricu P_0 kako ne bi stanja sustava pogrešno konvergirala i ovisila samo o modelu sustava što bi bilo pogrešno. Matrica kovarijanci šuma Q iznosi:

$$Q = \begin{bmatrix} 4 & 0\\ 0 & 1 \end{bmatrix}$$
(5.20)

Praktično značenje matrice Q je vrlo veliko. Matrica Q također osigurava da sustav ne konvergira pogrešno, odnosno da matrica P_k postane premala pa stanja postanu ovisna samo o modelu sustava. Matrica kovarijanci mjerenja R iznosi:

$$R = \begin{bmatrix} 2 & 0\\ 0 & 4 \end{bmatrix} \tag{5.21}$$

Blok "Kalmanov filtar" sadrži kod za izračunavanje Eulerovih kutova Kalmanovim algoritmom. Prema izrazu (5.5) se računaju brzine zakreta Eulerovih kutova iz podataka žiroskopa. Zatim se računaju Eulerovi kutovi iz podataka akcelerometra prema izrazima (5.3) i (5.4). Prema izrazima (5.10) i (5.13) se vrši estimacija, odnosno a-priori procjena. Zatim je potrebno spremiti mjerenja senzora u vektore zkx, zky i zkz koje se koriste u a-posteriori procjeni. Kalman pojačanje se računa prema izrazu (5.16). Na kraju se računa a-posteriori procjena stanja prema izrazu (5.17) i a-posteriori procjena kovarijance stanja prema izrazu (5.18).

Slika 5.5: Kalmanov filtar

U nastavku je prikazan opisani kod:

```
function [x, y, z, Pk] =
fcn(x,y,z,A,B,Pk,Q,H,R,I,ax,ay,az,gx,gy,gz,dT)
%Kutne brzine Eulerovih kutova(ziroskop):
gxb=gx+(sin(x(1,1)*pi/180)*tan(x(2,1)*pi/180)*gy)+(cos(x(1,1)*pi
/180) *tan(x(2,1) *pi/180) *gz);
gyb=(cos(x(2,1)*pi/180)*gy)-(sin(x(1,1)*pi/180)*gz);
gzb=((sin(x(1,1)*pi/180)/cos(x(2,1)*pi/180))*gy)+((cos(x(1,1)*pi
/180)/cos(x(2,1)*pi/180))*gz);
%Eulerovi kutovi(akcelerometar):
accx=atan2(ay, sqrt(az^2 + 0.01*(ax^2)))*180/pi;
accy=atan2(-ax, sqrt(ay^2+az^2))*180/pi;
%A-priori procjena stanja:
apriorix=A*x+B*qxb;
aprioriy=A*y+B*gyb;
aprioriz=A*z+B*gzb;
%A-priori procjena kovarijance stanja:
aprioriPk=A*Pk*A'+Q;
%Mjerenja senzora:
zkx=[accx; gx];
zky=[accy; gy];
zkz=[gz*dT; gz];
%Kalman pojacanje:
K=aprioriPk*H*((H*aprioriPk*H'+R)^-1);
%A-posteriori kovarijanca procesa:
Pk=(I-K*H) *aprioriPk;
%A-posteriori procjena stanja:
x=apriorix+K*(zkx-(H*apriorix));
y=aprioriy+K*(zky-(H*aprioriy));
z=aprioriz+K*(zkz-(H*aprioriz));
```

Mjerenje Eulerovog kuta poniranja/nagiba θ pri mirovanju senzora na 0° filtrirano standardnim Kalmanovim filtrom je prikazano na slici 5.6. Kvaliteta i odstupanje mjerenja nakon filtriranja se provjerava srednjom kvadratnom pogreškom. Srednja kvadratna pogreška za dana mjerenja filtrirana Kalmanovim filtrom iznosi 0.0321° što je preciznije od komplementarnog filtra gdje iznosi 0.0521°.

Slika 5.6: : Eulerov kut poniranja/nagiba θ filtriran Kalmanovim filtrom pri zakretu 0°

5.3 Prošireni Kalmanov filtar

Prošireni Kalmanov filtar je rekurzivni algoritam za procjenu stanja. Za razliku od Kalmanovog filtra, prošireni Kalmanov filtar koristi nelinearni model za procjenu stanja sustava što mu daje brojne prednosti u odnosu na standardni filtar. Filtar je teorijski opisan u poglavlju 3. U nastavku će biti dan prikaz nelinearnog algoritma i opis primjene za zadani problem. Opisani algoritam je dan za kutove kotrljanja/valjanja φ i nagiba/poniranja θ .

Inicijalno stanje sustava je definirano vektorom:

$$x_0 = \begin{bmatrix} \varphi_0 \\ \theta_0 \end{bmatrix} \tag{5.22}$$

Prvi član vektora stanja φ_0 engl. roll, a drugi član je θ_0 engl. pitch. Za slučaj proširenog Kalmanovog filtra je u izostavljen ψ zbog svojih nedostataka. Stanje u trenutku *k* je oblika:

$$x_k = \begin{bmatrix} \varphi_k \\ \theta_k \end{bmatrix}$$
(5.23)

Kod proširenog Kalmanovog filtra se radi o nelinearnom problemu pa a-priori procjena stanja sustava u trenutku *k* će biti određena izrazom (3.27). Nelinearna funkcija $f(x_{k-1}, u_k, 0)$ ovisi dakle o stanjima u k - 1 koraku i kontrolnoj varijabli stanja koju čine mjerenja žiroskopa transformirana u Eulerove kutne brzine prema izrazu (5.5) [23] :

$$\hat{x}_{k}^{-} = \begin{bmatrix} \varphi_{k}^{-} \\ \theta_{k}^{-} \end{bmatrix} = f(x_{k-1}, u_{k}, 0) = \begin{bmatrix} f_{1} \\ f_{2} \end{bmatrix} =$$
$$= \begin{bmatrix} \varphi_{k-1} + \Delta t * \left(\dot{\varphi} + \sin(\varphi_{k-1}) * \tan(\theta_{k-1}) * \dot{\theta} + \cos(\varphi_{k-1}) * \tan(\theta_{k-1}) * \dot{\psi}\right) \\ \theta_{k-1} + \Delta t * \left(\cos(\varphi_{k-1}) * \dot{\theta} - \sin(\varphi_{k-1}) * \dot{\psi}\right) \end{bmatrix} (5.24)$$

F /0 = 7

Matrica sustava je za slučaj proširenog Kalmanovog filtra Jacobijeva matrica prema izrazu (3.21):

$$A = \frac{\partial f(x_{k-1}, u_k, 0)}{\partial x_{k-1}} = \begin{bmatrix} \frac{\partial f_1}{\partial \varphi_{k-1}} & \frac{\partial f_1}{\partial \theta_{k-1}} \\ \frac{\partial f_2}{\partial \varphi_{k-1}} & \frac{\partial f_2}{\partial \theta_{k-1}} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
(5.25)

$$\frac{\partial f_1}{\partial \varphi_{k-1}} = 1 + \Delta t * (\cos(\varphi_{k-1}) * \tan(\theta_{k-1}) * \dot{\theta} - \sin(\varphi_{k-1}) * \tan(\varphi_{k-1}) * \dot{\psi})$$
$$\frac{\partial f_2}{\partial \varphi_{k-1}} = \Delta t * \left(-\sin(\varphi_{k-1}) * \dot{\theta} - \cos(\varphi_{k-1}) * \dot{\psi} \right)$$
$$\frac{\partial f_1}{\partial \theta_{k-1}} = \Delta t * \left(\frac{\sin(\varphi_{k-1})}{\cos^2(\theta_{k-1})} * \dot{\theta} + \frac{\cos(\varphi_{k-1})}{\cos^2(\theta_{k-1})} * \dot{\psi} \right)$$
$$\frac{\partial f_2}{\partial \theta_{k-1}} = 1$$

Početna kovarijanca procesa i kovarijanca šuma procesa su jednake izrazima (5.11) i (5.12). A-priori kovarijanca procesa prema izrazu (3.28) iznosi:

$$P_{k}^{-} = AP_{k-1}A^{\mathrm{T}} + Q =$$

$$= \begin{bmatrix} A_{11}A_{11}P_{11} + A_{12}A_{12}P_{22} + Q_{11} & A_{12}A_{2}P_{22} \\ A_{22}A_{12}P_{22} & A_{22}A_{22}P_{22} + P_{11}A_{12}A_{12} + Q_{22} \end{bmatrix}$$
(5.26)

Ponovno se uklanjaju vandijagonlani elementi zbog uvedenih pretpostavki o sustavu i šumovima sustava. Dakle a-priori kovarijanca stanja procesa iznosi:

$$P_k^- = \begin{bmatrix} P_{11} & 0\\ 0 & P_{22} \end{bmatrix}$$

Kovarijanca mjerenja se u ovom slučaju sastoji od mjerenja akcelerometra jer se mjerenja žiroskopa nalaze u kontrolnoj varijabli, dakle već su uključene u algoritam. Drugim riječima, za najbolju procjenu Eulerovih kutova je cilj koristiti podatke žiroskopa kako bi se izračunala procjena stanja koja se naknadno ispravlja podatcima akcelerometra.

Kalman pojačanje prema izrazu (3.30) iznosi:

$$K_k = P_k^- H^{\mathrm{T}} (H P_k^- H^{\mathrm{T}} + R)^{-1} =$$

$$= \begin{bmatrix} P_{11} + \Delta t^2 P_{22} + Q_{11} & 0 \\ 0 & P_{22} + Q_{22} \end{bmatrix} \begin{bmatrix} P_{11} + \Delta t^2 P_{22} + Q_{11} + R_{11} & 0 \\ 0 & P_{22} + Q_{22} + R_{22} \end{bmatrix}^{-1} = \\ = \begin{bmatrix} \frac{P_{11} + \Delta t^2 P_{22} + Q_{11}}{P_{11} + \Delta t^2 P_{22} + Q_{11} + R_{11}} & 0 \\ 0 & \frac{P_{22} + Q_{22} + R_{22}}{P_{22} + Q_{22} + R_{22}} \end{bmatrix} = \begin{bmatrix} K_{11} & 0 \\ 0 & K_{22} \end{bmatrix}$$
(5.27)

A-posteriori procjena stanja prema izrazu (3.31) iznosi:

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(z_{k} - H\hat{x}_{k}^{-}) = \begin{bmatrix} \varphi_{k}^{-} \\ \theta_{k}^{-} \end{bmatrix} + \begin{bmatrix} K_{11} & 0 \\ 0 & K_{22} \end{bmatrix} \left(\begin{bmatrix} \varphi_{zk} \\ \theta_{zk} \end{bmatrix} - \begin{bmatrix} \varphi_{k}^{-} \\ \theta_{k}^{-} \end{bmatrix} \right)$$
$$\hat{x}_{k} = \begin{bmatrix} \varphi_{k} \\ \theta_{k} \end{bmatrix} = \begin{bmatrix} \varphi_{k}^{-} + K_{11}(\varphi_{zk} - \varphi_{k}^{-}) \\ \theta_{k}^{-} + K_{22}(\theta_{zk} - \theta_{k}^{-}) \end{bmatrix}$$
(5.28)

A-posteriori kovarijanca stanja procesa prema izrazu (3.32) iznosi:

$$P_{k} = (I - K_{k}H)P_{k}^{-} = \begin{bmatrix} 1 - K_{11} & 0 \\ 0 & 1 - K_{22} \end{bmatrix} \begin{bmatrix} P_{11} + \Delta t^{2}P_{22} + Q_{11} & 0 \\ 0 & P_{22} + Q_{22} \end{bmatrix} = \begin{bmatrix} (1 - K_{11})(P_{11} + \Delta t^{2}P_{22} + Q_{11}) & 0 \\ 0 & (1 - K_{22})(P_{22} + Q_{22}) \end{bmatrix}$$
(5.29)

5.3.1 Model proširenog Kalmanovog filtra u Simulinku

Model proširenog Kalmanovog filtra se sastoji od bloka s konstantama Q, R, H i I i kovarijancom procesa P_k koji se dovođe na ulaz Matlab function bloka "Prošireni Kalmanov filtar". U ovom slučaju je se izlazni vektor stanja x_k sastoji od dva Eulerova kuta koji se dovođe na ulaz u novoj iteraciji pri čemu vektor prelazi u x_{k-1} . Kao i u slučaju standardnog Kalmanovog filtra, mjerenja s MPU-6050 modula se dobivaju Serial receive blokom. Period iteracije je definiran blokom dT, a iznosi 50 milisekundi.

Matlab kod bloka "Prošireni Kalmanov filtar" počinje inicijalizacijom matrica i vektora koje se koriste pri računanju. Zatim se računaju Eulerovi kutovi iz podataka akcelerometra prema izrazima (5.3) i (5.4). Prema izrazu (5.24) se vrši prvi dio Kalmanovog filtra, a-priori procjena stanja. Zatim je računa matrica sustava *A* koja se koristi za računanje a-priori kovarijance procesa. Mjerenje se sastoji samo od prethodno izračunatih mjerenja s akcelerometra. Kalman pojačanje se računa prema izrazu (5.27). Na kraju se računa a-posteriori procjena stanja prema izrazu (4.28) i a-posteriori procjena kovarijance stanja prema izrazu (5.29).

Slika 5.7. Prošireni Kalmanov filtar

U nastavku je prikazan opisani kod:

```
function [x,Pk] = fcn(x,ax,ay,az,gx,gy,gz,dT,Pk,Q,R,H,I)
%Inicijalizacija matrica i vektora:
apriorix=zeros(2,1);
aprioriPk=zeros(2,2);
A=zeros(2,2);
Zk=zeros(2,1);
K=zeros(2,2);
%Eulerovi kutovi(akcelerometar):
accx=atan2(ay, sqrt(az^2 + 0.01*(ax^2)))*180/pi;
accy=atan2(-ax,sqrt(ay^2+az^2))*180/pi;
%A-priori procjena stanja:
apririx(1,1) = x(1,1) + (dT*(gx+(sin(x(1,1)*pi/180)*tan(x(2,1)*pi/18
0) *gy) + (cos(x(1,1) *pi/180) *tan(x(2,1) *pi/180) *gz)));
apriorix(2,1) = x(2,1) + (dT*((cos(x(1,1)*pi/180)*qy) -
(sin(x(1,1)*pi/180)*qz)));
%Matrica sustava:
```

```
A(1,1) = 1 + (\cos(x(1,1) * pi/180) * \tan(x(2,1) * pi/180) * qy) -
(sin(x(1,1)*pi/180)*tan(x(2,1)*pi/180)*gz);
A(1,2) = (((sin(x(1,1)*pi/180)))/(cos(x(2,1)*pi/180)))*cos(x(2,1)*p)
i/180))*qy-
(((sin(x(1,1)*pi/180))/(cos(x(2,1)*pi/180))*(cos(x(2,1)*pi/180))
)*qz);
A(2,1) = (-\cos(x(1,1) * pi/180) * qy) + (\sin(x(1,1) * pi/180) * qz);
A(2,2) = 1;
%A-priori kovarijanca procesa:
aprioriPk(1,1) = (Pk(1,1) *A(1,1) ^2) + (Pk(2,1) *A(1,2) ^2) +Q(1,1);
aprioriPk(2,2) = (Pk(1,1)*A(2,1)^2) + (Pk(2,2)*A(2,2)^2) +Q(2,2);
%Mjerenje:
Zk=[accx;accy];
%Kalman pojacanje:
K=aprioriPk*H*((H*aprioriPk*H'+R)^-1);
%A-posteriori procjena stanja:
x=apriorix+K*(Zk-(H*apriorix));
%A-posteriori procjena stanja:
Pk=(I-K*H) *aprioriPk;
```

Mjerenje Eulerovog kuta poniranja/nagiba θ pri mirovanju senzora na 0° filtrirano proširenim Kalmanovim filtrom je prikazano na slici 5.8. Kvaliteta i odstupanje mjerenja nakon filtriranja se provjerava srednjom kvadratnom pogreškom. Srednja kvadratna pogreška za dana mjerenja filtrirana proširenim Kalmanovim filtrom iznosi 0.0245°, manje od Kalmanovog filtra iako odziv u određenim trenutcima ima značajnija odstupanja.

Slika 5.8: Eulerov kut poniranja/nagiba θ filtriran proširenim Kalmanovim filtrom pri 0°

6. IMPLEMENTACIJA FILTARA NA REALNI IMU

U ovom poglavlju će se navedeni filtri implementirati na realnoj MPU-6050 inercijskoj mjernoj jedinici korištenjem Arduino Uno R3 mikrokontrolera i pripadajućeg softwarea. U nastavku će biti dan opis operacija koje se provode nad podatcima s MPU-6050 modula, a kompletan kod je dan u prilogu 1.

Na početku je potrebno inicijalizirati biblioteke Wire.h i MPU6050.h koje omogućuju serijsku komunikaciju modula s Arduino mikrokontrolerom. Zatim se uvode potrebne varijable. Uvodi se varijabla za određivanje adrese MPU-6050 modula na serijskoj sabirnici (MPU=0x68), te varijable za spremanje podataka sa senzora, spremanje obrađenih podataka i varijabli koje se koriste u filtrima.

Zatim se u dijelu koda koji se izvršava samo na početku (void setup()) inicijalizira serijska komunikacija i I^2C komunikacija. Što se tiče I^2C komunikacije, potrebno je resetirati sve registre kako bi bili spremni za uspješnu daljnju komunikaciju. U nastavku se pristupa registrima koji određuju raspon očitanja senzora a samim time i osjetljivost. Postavljanjem svih bitova u nula registra GYRO_CONFIG postavlja se raspon žiroskopa na ± 250 %, a postavljenjem svih bitova u nula u nula registra ACCEL_CONFIG postavlja se raspon akcelerometra na $\pm 2g$.

U nastavku slijedi izvršavanje petlje void loop(). Prvo se očitavaju podatci sa šest 8bitnih registara koji spremaju tri 16-bitna podatka očitana sa svakog od senzora. Isti se postupak radi za oba senzora. Dane podatke je zbog načina spremanja potrebno "spojiti" tako da dva susjedna 8-bitna podatka čine kompletni 16-bitni podatak. Zatim je dobivene podatke potrebno podijeliti s osjetljivošću pojedinog senzora kako bi se dobilo stvarno mjerenje koje se može dalje obrađivati. Podatci s akcelerometra korištenjem izraza (5.3) i (5.4) daju Eulerove kutove. Podatci sa žiroskopa korištenjem izraza (5.5) daju brzine zakreta Eulerovih kutova. Korištenjem naredbe millis() se izračunava period iteracije Δt .

Komplementarni filtar je implementiran izrazima:

Roll_Komp=KomplKoef*(Roll_Komp+gXbK*dT)+(1-KomplKoef)*aRoll; Pitch_Komp=KomplKoef*(Pitch_Komp+gYbK*dT) + (1-KomplKoef)*aPitch; Yaw Komp= gZbK*dT; Kalmanov filtar je implementiran izrazima od (5.10) do (5.18), a prošireni Kalmanov filtar izrazima od (5.24) do (5.29). U nastavku je dano mjerenje Eulerovog kuta poniranja/nagiba θ pri mirovanju senzora na 0°, filtrirano komplementarnim filtrom.

Slika 6.1: Eulerov kut poniranja θ filtriran komplementarnim filtrom pri zakretu 0°

Srednja kvadratna pogreška za dano mjerenje iznosi 0.0563 °. Na slici 6.2 je prikazano mjerenje Eulerovog kuta poniranja θ filtrirano Kalmanovim filtrom pri mirovanju senzora na 0°.

Slika 6.2: Eulerov kut poniranja θ filtriran Kalmanovim filtrom pri zakretu 0°

Srednja kvadratna pogreška za dano mjerenje iznosi 0.0514 °. Na slici 6.3 je prikazano mjerenje Eulerovog kuta poniranja θ filtrirano proširenim Kalmanovim filtrom pri mirovanju senzora na 0°.

Slika 6.3: Eulerov kut poniranja θ filtriran proširenim Kalmanovim filtrom pri zakretu 0°

Srednja kvadratna pogreška za dano mjerenje iznosi 0.0336 °. Na temelju podataka za realne slučajeve i za simulacije uočljivo je smanjenje srednje kvadratne pogreške primjenom složenijih filtara što odgovara pretpostavkama. Srednja kvadratna pogreška filtriranih mjerenja u odnosu na mjerenja direktno sa senzora ukazuje na nužnost primjene filtara u bilo kakvoj primjeni navedenih senzora. Vrijednosti srednjih kvadratnih pogreški su prikazane tablicom 1.

Tablica 1:	Usporedba	srednjih	kvadratnih	pogreški
------------	-----------	----------	------------	----------

Srednja kvadratna pogreška kuta θ pri mirovanju na 0°									
	komplementarni	Kalmanov	Prošireni Kalmanov	bez filtra					
	filtar	filtar	filtar	(akcelerometar)					
Simulacija	0.0563 °	0.0514 °	0.0336 °	0.2632 °					
Eksperimentalno	0.0521°	0.0321°	0.0245°						

7. USPOREDBA REZULTATA

Na kraju je potrebno usporediti ponašanje navedenih filtara zasebno za realnu primjenu i simulaciju filtara te međusobno usporediti simulaciju i realne rezultate. Na početku su dana usporedna mjerenja filtrirana u Arduino paketu.

a) θ pri zakretu 0°

b) θ pri naglom skoku

Slika 7.1: Eulerov kut poniranja θ za slučaj mirovanja a) i naglog skoka b)

U slučaju mirovanja se uočava vrlo dobro filtriranje proširenog Kalmanovog filtra u odnosu na ostale. S obzirom na kompleksnost navedenih filtara i zahtjeve procesorske moći može se primijetiti zadovoljavajuće ponašanje komplementarnog filtra. U slučaju naglog skoka dolazi do izražaja brzina i točnost proširenog Kalmanovog filtra u odnosu na komplementarni, a posebno u odnosu na Kalmanov filtar. Pretpostavka o rastu točnosti standardnog Kalmanovog filtra s većim brojem podataka se potvrđuje kako filtar postiže stvarnu vrijednost kuta 100 koraka nakon ostalih filtara. Što se tiče komplementarnog filtra, brz je i dobro slijedi promjenu kuta ali nije točan i ne filtrira šum u potpunosti što je rezultat neadaptivnosti koeficijenta filtra.

Dodatna dva testa potvrđuju prethodne pretpostavke i prednosti proširenog Kalmanovog filtra koje daju opravdanje za njegovo upotrebljavanje u robotici i raznim granama industrije. Slijeđenje stvarne vrijednosti kuta zakreta je zadovoljavajuće, a šum je u potpunosti filtriran. Kalmanov filtar je i u ovim slučajevima najsporiji dok komplementarni filtar najlošije filtrira šum.

Slika 7.2: Eulerov kut poniranja θ za slučaj a) sinusne promjene i b) klizanja po hrapavoj podlozi U nastavku su dana mjerenja filtrirana u Simulink programskom paketu. Prednosti i nedo-

statci pojedinih filtara spomenute ranije se danim simulacijama dodatno potvrđuju:

a) θ pri zakretu 0°

b) θ pri naglom skoku

Slika 7.3: Eulerov kut poniranja θ za slučaj mirovanja a) i naglog skoka b)

Prošireni Kalmanov filtar pokazuje dobru sposobnost slijeđenja stvarne vrijednosti zakreta uz dobro filtriranje šuma. Kalmanov filtar je točan ali bitno sporiji od proširenog. Komplementarni filtar je u slučaju simulacija najsporiji i najmanje točan. Vidljive razlike simulacije i stvarnog mjerenja se pripisuju različitom periodu akvizicije signala koji je kod realnog modela 5 puta manji i iznosi 10 milisekundi.

Dodatna dva testa potvrđuju pretpostavke o prednosti proširenog Kalmanovog filtra nad ostalima. Standardni Kalmanov filtar je zadovoljavajuć samo za estimaciju konstantnih stanja i točan s većim brojem podataka. Komplementarni filtar pokazuje relativno zadovoljavajuće filtriranje u odnosu na kompleksnost.

a) Sinusna promjena kuta θ

b) θ pri klizanju po hrapavoj podlozi

Slika 7.4: Eulerov kut poniranja θ za slučaj a) sinusne promjene i b) klizanja po hrapavoj podlozi

Ako se uzmu svi simulirani odzivi u obzir može se zaključiti da je prošireni Kalmanov filtar neophodan za realne nelinearne probleme i zbog toga se preporučuje njegovo korištenje u realnim uvjetima mjerenja Eulerovih kutova zakreta. Kalmanov filtar se može koristiti za statičke probleme s velikom količinom dostupnih podataka gdje pokazuje svoja najbolja svojstva. Komplementarni filtar nije preporučljiv za profesionalnu upotrebu zbog svojih ograničenja. Međutim, njegova jednostavnost i brzina mogu u određenim slučajevima kada postoje precizna mjerenja koja su visoko dostupna (uzorkovana s visokom frekvencijom uzorkovanja) mogu dati vrlo dobre rezultate. Problem je što zbog manjka statističkog aspekta u odnosu na Kalmanove filtre nije moguće ukloniti utjecaj korisnika na filtriranje postavljanjem koeficijenta filtriranja signala.

8. ZAKLJUČAK

U ovom radu je prikazan kratki teorijski osvrt na mjernu opremu i estimaciju Eulerovih kutova primjenom inercijske mjerne jedinice i senzorske fuzije. Na temelju teorijskih pretpostavki su izvedeni modeli senzora inercijske mjerne jedinice i modeli fuzije signala s akcelerometra i žiroskopa primjenom komplementarnog i Kalmanovih filtara u osnovnoj i proširenoj formi. Izvedeni modeli su detaljno ispitani i uspoređeni s eksperimentalnim podatcima. Na temelju rezultata ispitivanja stvarnih i filtriranih mjerenja te estimacije kutova, zaključuje se vrlo dobro poklapanje rezultata simulacija i eksperimenata. Radi jednakih rezultata estimacije Eulerovih kutova, prikazani su rezultati samo za nagib/poniranje θ . Određene razlike između simulacijskih i eksperimentalnih rezultata se mogu pripisati različitom periodu uzorkovanja signala koji utječe na performanse pojedinog filtra.

Kod primjene navedenih filtara su uvedene određene preinake u odnosu na primjere iz navedenih literatura. U slučaju Kalmanovog filtra se u vektor stanja uključuje posmak žiroskopa. Kod proširenog Kalmanovog filtra se jedno od mjerenja uključuje u nelinearni model sustava, a drugo mjerenje se koristi za ispravljanje procjene stanja.

Na samom kraju rada su na temelju dobivenih rezultata dani uvjeti i preporuke za primjenu pojedinih tipova algoritama fuzije mjerenja. Komplementarni i standardni Kalmanov filtar u velikoj mjeri ovise o dostupnosti i kvaliteti mjerenja dok prošireni Kalmanov filtar pokazuje dobro ponašanje u svim uvjetima. Ovime je ispunjen zahtjev o procjeni algoritama fuzije i izabran je prošireni Kalmanov filtar kao najpogodniji za široku profesionalnu primjenu.

Nastavak istraživanja u ovome području može uključivati primjenu većeg broja mjernih uređaja, primjenu inercijskih mjernih jedinica s većim brojem stupnjeva slobode i primjenom ostalih modifikacija Kalmanovog filtra.

PRILOZI

Prilog 1:

```
//Inicijalizacija biblioteka
#include <Wire.h>
                                  //biblioteka za I2C komunikaciju
#include <MPU6050.h>
                                  //biblioteka za MPU6050 procesor
const int MPU=0x68;
                                  //MPU605 adresa na I2C sabirnici
//Inicijalizacija varijabli:
float aX, aY, aZ;
                                 //varijable za spremanje podataka s akcelerometra
float gX, gY, gZ;
                                 //varijable za spremanje podataka s ziroskopa
float aRoll, aPitch, aYaw;
                                 //varijable za spremanje kutova nakon transformacije
float gRoll, gPitch, gYaw;
                                 //varijable za spremanje kutova nakon integracije
float Roll Komp, Pitch Komp, Yaw Komp;
                                              //varijable komplementarnog filtra
float Roll Kalman, Pitch Kalman, Yaw Kalman; //varijable Kalmanovog filtra
float Roll EKF Kalman, Pitch EKF Kalman, Yaw EKF Kalman;
                                                           //varijable Extendend Kal-
manovog fitra
float gXbK, gYbK, gZbK;
                                //varijable za spremanje Eulerovih kutova
float gXbKF, gYbKF, gZbKF;
                               //varijable za spremanje Eulerovih kutova
float KomplKoef=0.9;
                                    //koeficijent komplementarnog filtra
float dT, trenutnoT, prethodnoT=0;
                                              // Varijable za integraciju
//Varijable Kalanovog filtra:
float RollKF[2][1],PitchKF[2][1],YawKF[2][1];
                                                     //Stanja sustava u koraku k/ a-
posteriori procjena stanja
float aprioriR[2][1],aprioriP[2][1],aprioriY[2][1];
                                                     //a-priori procjena stanja
float aprioriPk[2][1];
                                 //a-priori kovarijanca procesa
float Pk[2][1]={
                                  //inicijalna kovarijanca procesa
 {500},
 {500}
}:
float ZkR[2][1], ZkP[2][1], ZkY[2][1];
                                                      //mjerenja senzora
float R[2][1]={
                                  //kovarijanca mjerenja
 \{0.03\},\
  {0.03}
};
float Q[2][1]={
                                 //kovarijanca suma procesa
  \{0.003\},\
```

```
{0.003}
};
float K[2][1];
                                //Kalman pojacanje
//EKF varijable:
 float aprioriX EKF[2][1];
                                 //a-priori procjena stanja
 float X EKF[2][1];
                                 //a-posteriori procjena stanja
 float aprioriPkEKF[2][1];
                                 //a-priori kovarijanca procesa
float PkEKF[2][1];
                                 //a-posteriori kovarijanca procesa
float ZkEKF[2][1];
                                 //mjerenja senzora
float A_R[2][2];
                                 //matrica sustava
 float K R[2][2];
                                 //matrica Kalman pojacanja
MPU6050 accgyro(0x68);
                        //komponenta na adresi 0x68 se defirinira kao accgyro
//-----START-----//
void setup() {
  Serial.begin(115200);
                                //Inicijalizacija serijske komunikacije
                                //Inicijalizacija I2C komunikacije
  Wire.begin();
  Wire.beginTransmission(MPU); // Pocetak komunikacije s MPU6050, adresa je MPU=0x68
  Wire.write(0x6B);
                                // Komunikacija sa registrom 6B
  Wire.write(0x00);
                                // Reset registra, potrebno je postaviti 0 na sve
bitove registra
  Wire.endTransmission(true);
                               // Kraj I2C komunikacije
 Wire.beginTransmission(MPU);
 Wire.write(0x1B);
                                // Pristup registru 1B, komunikacja s registrom 1B
(GYRO_CONFIG)
                              // Postavljenje postavki na 0, postavljenje raspona na
  Wire.write(0x00);
+/- 250 deg/s
  Wire.endTransmission();
  Wire.beginTransmission(MPU);
  Wire.write(0x1C);
                                    // Pristup registru 1C, komunikacija s registrom
1C (ACCEL CONFIG)
                               // Poatavljanje postavki na 0, postavjanje raspona na
  Wire.write(0x00);
+/- 2g
 Wire.endTransmission();
}
```

```
void loop() {
```

// Ocitavanje podataka s akcelerometra: Wire.beginTransmission(MPU); // I2C komunikacija, pocetak Wire.write(0x3B); // Pristup registru 3B (ACCEL XOUT H) i ocitavanje informacije s njega Wire.endTransmission(false); // Nema prekida komunikacije // Ocitava se sljedecih 6 registara, pocetni je Wire.requestFrom(MPU, 6, true); 3B (podatci o kutu zakreta oko svake osi su zapisani u 2 registra pa imamo ukupno 6 registara za 3 osi) //Vektori gravitacije po osima: aX = (Wire.read() << 8 | Wire.read()) / 16384.0;</pre> // X-os // Y-os aY = (Wire.read() << 8 | Wire.read()) / 16384.0; aZ = (Wire.read() << 8 | Wire.read()) / 16384.0;</pre> // Z-os //Racunanje kutova iz zadanih vektora: aRoll=(atan2(aY,sqrt(pow(aZ,2)+0.01*pow(aX,2))))*180/PI; aPitch=(atan2(-1*aX, sqrt(pow(aY,2)+pow(aZ,2))))*180/PI; //aYaw (zakret oko Y osi) je nemoguće izračunati akcelerometrom //Ocitavanje podataka s ziroskopa: Wire.beginTransmission(MPU); // Pristup registru 43 (GYRO XOUT H) i ocitavanje Wire.write(0x43); informacije s njega Wire.endTransmission(false); // Nema prekida komunikacije Wire.requestFrom(MPU, 6, true); // Ocitava se 6 registara, pocetni je 43 (podatci o kutu zakreta oko svake osi su zapisani u 2 registra pa imamo ukupno 6 registara za 3 osi) //Brzine zakreta kutova: gX = (Wire.read() << 8 | Wire.read()) / 131;</pre> // X-os gY = (Wire.read() << 8 | Wire.read()) / 131;</pre> // Y-os qZ = (Wire.read() << 8 | Wire.read()) / 131;// Z-os //Transformacija koordinatnog sustava: //Komplementarni: gXbK=gX+(sin(gRoll*PI/180)*tan(gPitch*PI/180)*gY)+(cos(gRoll*PI/180)*tan(gPitch*PI/180))*qZ); gYbK=(cos(gPitch*PI/180)*gY)-(sin(gRoll*PI/180)*gZ); gZbK=((sin(gRoll*PI/180)/cos(gPitch*PI/180))*gY)+((cos(gRoll*PI/180)/cos(gPitch*PI/180)))*qZ); //Kalmanov filter qXbKF=qX+(sin(RolKF[0][0]*PI/180)*tan(PitchKF[0][0]*PI/180)*qY)+(cos(RollKF[0][0]*PI/180)*tan(PitchKF[0][0]*PI/180)*gZ); gYbKF=(cos(RollKF[0][0]*PI/180)*gY)-(sin(RollKF[0][0]*PI/180)*gZ);

```
gZbKF=((sin(RolKF[0][0]*PI/180)/cos(PitchKF[0][0]*PI/180))*gY)+((cos(Rol-
lKF[0][0]*PI/180)/cos(PitchKF[0][0]*PI/180))*qZ);
 // Varijable intregracije
 prethodnoT = trenutnoT;
                                 // Prethodno vrjeme = vrijeme proteklo do poccetka
trenutne iteracije petlje
 trenutnoT = millis(); // Trenutno vrijeme = vrijeme od pocetka izvođenja
programa
 dT = (trenutnoT - prethodnoT) / 1000; // Vremenski interval iteracije, u sekundama
//-----KOMPLEMENTARNI FILTAR-----//
 //Komplementarni filtar:
 Roll Komp=KomplKoef*(Roll Komp+gXbK*dT)+(1-KomplKoef)*aRoll; //Zakret oko X osi
 Pitch Komp=KomplKoef*(Pitch Komp+gYbK*dT)+(1-KomplKoef)*aPitch; //Zakret ono Y osi
 Yaw Komp= gZbK*dT;
                                               //Zakret oko Z osi
  /*
  //Ispis podataka filtritanih komplementarnim filterom:
 Serial.print("Roll Komplementarni:");
 Serial.print(Roll Komp);
 Serial.print(" ");
 Serial.print("Pitch Komplementarni:");
 Serial.print(Pitch Komp);
 Serial.print(" ");
 Serial.print("Yaw Komplementarni:");
 Serial.print(Yaw Komp);
 Serial.print("\n");
 Serial.println();
  */
//-----KOMPLEMENTARNI FILTAR-KRAJ-----//
//-----KALMANOV FILTAR- LINEARNI-----//
  //a-priori procjena stanja:
  aprioriR[0][0]=RollKF[0][0] - RollKF[1][0]*dT + gXbKF*dT;
                                                            //Roll
 aprioriR[1][0]=RollKF[1][0];
 aprioriP[0][0]=PitchKF[0][0] - PitchKF[1][0]*dT + gYbKF*dT;
                                                            //Pitch
 aprioriP[1][0]=PitchKF[1][0];
 aprioriY[0][0]=YawKF[0][0] - YawKF[1][0]*dT*dT + gZbKF*dT;
                                                            //Yaw
 aprioriY[1][0]=YawKF[0][0];
  //a-priori procjena kovarijance procesa:
```

```
aprioriPk[0][0]=Pk[0][0] + (dT*dT*Pk[1][0]) + Q[0][0]*dT;
 aprioriPk[1][0]=Pk[1][0] + Q[1][0]*dT;
 //Mjerenje:
 //Roll:
 ZkR[0][0]=aRoll;
                                //mjerenje akceleroetra (kut zakreta)
 ZkR[1][0]=gXbKF;
                                //mjerenje žiroskopa (brzina)
 //Pitch:
 ZkP[0][0]=aPitch;
 ZkP[1][0]=qYbKF;
 //Yaw:
 ZkY[0][0]=gYaw;
                             //koristi se podatak ziroskopa zbog nedostupnosti podataka
akcelerometra
 ZkY[1][0]=gZbKF;
 //Kalman pojacanje:
 K[0][0]=aprioriPk[0][0]/(aprioriPk[0][0] + R[0][0]);
 K[1][0]=aprioriPk[1][0]/(aprioriPk[1][0] + R[1][0]);
 //a-posteriori procjena stanja:
 RollKF[0][0]=aprioriR[0][0]+(K[0][0]*(ZkR[0][0]-aprioriR[0][0]));
                                                                        //Roll
 RollKF[1][0]=aprioriR[1][0]+(K[1][0]*(ZkR[1][0]-aprioriR[1][0]));
 Roll Kalman=RollKF[0][0];
 PitchKF[0][0]=aprioriP[0][0]+(K[0][0]*(ZkP[0][0]-aprioriP[0][0]));
                                                                        //Pitch
 PitchKF[1][0]=aprioriP[1][0]+(K[1][0]*(ZkP[1][0]-aprioriP[1][0]));
 Pitch Kalman=PitchKF[0][0];
 YawKF[0][0]=aprioriY[0][0]+(K[0][0]*(ZkY[0][0]-aprioriY[0][0]));
                                                                          //Yaw
 YawKF[1][0]=aprioriY[1][0]+(K[1][0]*(ZkY[1][0]-aprioriY[1][0]));
 Yaw Kalman=YawKF[0][0];
 //a-posteriori kovarijanca procesa:
 Pk[0][0]=(1-K[0][0])*(aprioriPk[0][0]);
 Pk[1][0] = (1-K[1][0]) * (aprioriPk[1][0]);
 /*
 //Ispis podataka filtriranih Kalmanovim filtrom:
 Serial.print("Roll Kalman:");
 Serial.print(Roll Kalman);
 Serial.print(" ");
 Serial.print("Pitch Kalman:");
 Serial.print(Pitch Kalman);
```

```
Serial.print(" ");
 Serial.print("Yaw Kalman:");
 Serial.print(Yaw Kalman);
 Serial.print("\n");
 Serial.println();
 */
//------KALMANOV FILTAR- LINEARNI- KRAJ-----//
//-----PROSIRENI KALMANOV FILTAR-----//
//a-prirori procjena stanja:
aprio-
riX EKF[0][0]=X EKF[0][0]+(dT*(qX+(sin(X EKF[0][0]*PI/180)*tan(X EKF[1][0]*PI/180)*qY)
+(cos(X EKF[0][0]*PI/180)*tan(X EKF[1][0]*PI/180)*qZ)));
aprioriX EKF[1][0]=X EKF[1][0]+(dT*((cos(X EKF[0][0]*PI/180)*gY)-
(sin(X EKF[0][0]*PI/180)*gZ)));
//matrica sustava:
A R[0][0]=1+dT*((cos(X EKF[0][0]*PI/180)*tan(X EKF[1][0]*PI/180)*gY)-
(sin(X EKF[0][0]*PI/180)*tan(X EKF[1][0]*PI/180)*gZ));
A_R[0][1]=dT*((sin(X_EKF[0][0]*PI/180)/((cos(X_EKF[1][0]*PI/180))*(cos(X_EKF[1][0]*PI/
180))))*gY)-
((sin(X EKF[0][0]*PI/180)/(cos(X EKF[1][0]*PI/180)*cos(X EKF[1][0]*PI/180)))*gZ);
 A R[1][0]=dT*(-sin(X EKF[0][0]*PI/180)*gY-cos(X EKF[0][0]*PI/180)*gZ);
 A R[1][1]=1;
 aprioriP-
kEKF[0][0]=(PkEKF[0][0]*A R[0][0])+(PkEKF[1][0]*A R[0][1]*A R[0][1])+Q[0][0]
*dT;
 aprioriP-
kEKF[1][0]=(PkEKF[0][0]*A R[1][0]*A R[1][0])+(PkEKF[1][0]*A R[1][1]*A R[1][1])+Q[1][0]
*dT;
//Mjerenje:
 ZkEKF[0][0]=aRoll;
 ZkEKF[1][0]=aPitch;
 //Kalman pojacanje:
 K R[0][0]=aprioriPkEKF[0][0]/(aprioriPkEKF[0][0] + R[0][0]);
 K R[1][0]=aprioriPkEKF[1][0]/(aprioriPkEKF[1][0] + R[1][0]);
 //a-posteriori procjena stanja:
 X_EKF[0][0]=aprioriX_EKF[0][0]+(K_R[0][0]*(ZkEKF[0][0]-aprioriX_EKF[0][0]));
 X_EKF[1][0]=aprioriX_EKF[1][0]+(K_R[1][0]*(ZkEKF[1][0]-aprioriX_EKF[1][0]));
 Roll EKF Kalman=X EKF[0][0];
 Pitch EKF Kalman=X EKF[1][0];
 //a-posteriori kovarijanca stanja:
```
```
PkEKF[0][0]=(1-K_R[0][0])*(aprioriPkEKF[0][0]);
 PkEKF[1][0]=(1-K R[1][0])*(aprioriPkEKF[1][0]);
/*
 //Ispis podataka filtiriranih prosirenim Kalman filtrom:
Serial.print("Roll EKF Kalman:");
 Serial.print(Roll_EKF_Kalman);
 Serial.print(" ");
 Serial.print("Pitch EKF Kalman:");
 Serial.print(Pitch_EKF_Kalman);
 Serial.print(" ");
 Serial.print("\n");
 Serial.println();
*/
//-----PROSIRENI KALMANOV FILTAR- KRAJ -----//
//Roll:
 /*
 Serial.print("Roll acc:");
 Serial.print(aRoll);
 Serial.print(" ");
 Serial.print("Roll ziro:");
 Serial.print(gRoll);
 Serial.print(" ");
 Serial.print("Roll_Komp:");
 Serial.print(Roll Komp);
 Serial.print(" ");
 Serial.print("Roll_Kalman:");
 Serial.print(Roll Kalman);
 Serial.print(" ");
 Serial.print("Roll EKF:");
 Serial.print(Roll_EKF_Kalman);
 Serial.print(" ");
 Serial.print("\n");
 Serial.println();
 */
 //Pitch:
```

```
/*
Serial.print("Pitch_acc:");
Serial.print(aPitch);
Serial.print(" ");
Serial.print("Pitch_ziro:");
Serial.print(gPitch);
Serial.print(" ");
Serial.print("Pitch_Komp:");
Serial.print(Pitch_Komp);
Serial.print(" ");
Serial.print("Pitch_Kalman:");
Serial.print(Pitch_Kalman);
Serial.print(" ");
Serial.print("Pitch_EKF:");
Serial.print(Pitch_EKF_Kalman);
Serial.print(" ");
Serial.print("\n");
Serial.println();
*/
```

Prilog 2:

```
//Inicijalizacija biblioteka
#include <Wire.h>
                                  //biblioteka za I2C komunikaciju
#include <MPU6050.h>
                                  //biblioteka za MPU6050 procesor
const int MPU=0x68;
                                  //MPU605 adresa na I2C sabirnici
//Inicijalizacija varijabli:
float aX, aY, aZ;
                                 //varijable za spremanje podataka s akcelerometra
float gX, gY, gZ;
                                 //varijable za spremanje podataka s ziroskopa
MPU6050 accgyro(0x68);
                                 //komponenta na adresi 0x68 se defirinira kao accgyro
// Unija
typedef union{
 float number;
 uint8 t bytes[4];
} FLOATUNION t;
//Varijable za slanje u Simulink
FLOATUNION_t ax;
FLOATUNION_t ay;
FLOATUNION t az;
FLOATUNION_t gx;
FLOATUNION_t gy;
FLOATUNION t gz;
void setup() {
 Serial.begin(115200);
                                     //Inicijalizacija I2C komunikacije
 Wire.begin();
                                    //Pocetak komunikacije s MPU6050, adresa je MPU=0x68
 Wire.beginTransmission(MPU);
                                     // Komunikacija sa registrom 6B
 Wire.write(0x6B);
 Wire.write(0x00);
                       //Reset registra, potrebno je postaviti 0 na sve bitove registra
 Wire.endTransmission(true);
                                     // Kraj I2C komunikacije
 Wire.beginTransmission(MPU);
 Wire.write(0x1B);
                         //Pristup registru 1B, komunikacja s registrom 1B (GYRO_CONFIG)
 Wire.write(0x00); //Postavljenje postavki na 0, postavljenje raspona na +/- 250 deg/s
 Wire.endTransmission();
 Wire.beginTransmission(MPU);
 Wire.write(0x1C); //Pristup registru 1C, komunikacija s registrom 1C (ACCEL_CONFIG)
```

```
Wire.write(0x00);
                          // Postavljanje postavki na 0, postavjanje raspona na +/- 2g
  Wire.endTransmission();
}
void loop() {
  Wire.beginTransmission(MPU);
                                       // I2C komunikacija, pocetak
  Wire.write(0x3B);
                           //Pristup registru 3B (ACCEL XOUT H) i ocitavanje informacije
  Wire.endTransmission(false);
                                       // Nema prekida komunikacije
  Wire.requestFrom(MPU, 6, true); // Ocitava se sljedecih 6 registara, pocetni je
3B (podatci o kutu zakreta oko svake osi su zapisani u 2 registra pa imamo ukupno 6
registara za 3 osi)
  //Vektori gravitacije po osima:
  aX = (Wire.read() << 8 | Wire.read())/16384.0;
                                                       // X-os
  aY = (Wire.read() << 8 | Wire.read())/16384.0;</pre>
                                                       // Y-os
  aZ = (Wire.read() << 8 | Wire.read())/16384.0;</pre>
                                                       // Z-os
  Wire.beginTransmission(MPU);
  Wire.write(0x43);
                                       // Pristup registru 43 (GYRO XOUT H) i ocitavanje
informacije s njega
  Wire.endTransmission(false);
                                       // Nema prekida komunikacije
                                      // Ocitava se 6 registara, pocetni je 43 (podatci
 Wire.requestFrom(MPU, 6, true);
o kutu zakreta oko svake osi su zapisani u 2 registra pa imamo ukupno 6 registara za 3
osi)
  //Brzine zakreta kutova:
  qX = (Wire.read() << 8 | Wire.read()) / 131;</pre>
                                                        // X-os
  gY = (Wire.read() << 8 | Wire.read()) / 131;</pre>
                                                        // Y-os
  gZ = (Wire.read() << 8 | Wire.read()) / 131;</pre>
                                                        // Z-os
  ax.number = aX;
  ay.number = aY;
  az.number = aZ;
  qx.number = qX;
  gy.number = gY;
  gz.number = gZ;
  //Pocetak:
  Serial.write('A');
  // Ispis podataka
  for (int i=0; i<4; i++) {
   Serial.write(ax.bytes[i]);
  }
  for (int i=0; i<4; i++) {
```

}

```
Serial.write(ay.bytes[i]);
}
for (int i=0; i<4; i++) {
 Serial.write(az.bytes[i]);
}
for (int i=0; i<4; i++) {
  Serial.write(gx.bytes[i]);
}
for (int i=0; i<4; i++) {
 Serial.write(gy.bytes[i]);
}
for (int i=0; i<4; i++) {
  Serial.write(gz.bytes[i]);
}
// Kraj
Serial.print('\n');
delay(50);
```

LITERATURA

[1] Norhafizan A., Raja Ariffin Raja G., Nazriah M.K., Vijayabaskar K.: Reviews on Various Inertial Measurement Unit (IMU) Sensor Applications, Malaysia, 2013.

[2] Yazdi N., Ayazi F., Najafi K.: Micromachined Inertial Sensors, IEEE 1998.

[3] CHRiobotics LLC: Sensors for Orientation Estimation, pristup: 4.12.2021.

[4] Samuel Fux: Development of a planar low cost Inertial Measurement Unit for UAVs and MAVs, Swiss Federal Institute of Technology Zurich, 2008.

[5] James Diebel: Representing Attitude: Euler angles, Unit Quaternions, and Rotation Vectors, Stanford University, California, 2006.

[6] Sparkfun OpenLog Artemis, pristup: prosinac 2021. [Internet] https://www.sparkfun.com/products/16832

[7] The Basics of MEMS IMU/ Gyroscope Alignment, pristup: prosinac 2021. [Internet] https://www.analog.com/en/analog-dialogue/articles/mems-imu-gyroscope-alignment.html

[8] Piezoresistive Accelerometer, pristup: prosinac 2021. [Internet] https://www.chegg.com/homework-help/questions-and-answers/consider-piezoresistiveaccelerometer-example-53-list-many-ways-possible-improve-noise-per-q19774620

[9] Triple-Axis MEMS Accelerometer, pristup: prosinac 2021. [Internet] <u>https://www.systemplus.fr/wp-content/uploads/2013/02/S+C_RM074_2011-12-12_Bosch-BMA250-3-axis-accel-MEMS_sample.pdf</u>

[10] MEMS: Microelectromechanical Systems, pristup: prosinac 2021. [Internet] https://courses.cs.washington.edu/courses/cse474/17wi/pdfs/lectures/MEMS%20Sensors.pdf

[11] John. A. Schaefer: 3D Visualization of Coopertive Trajectories, American Institute of Aeronautics and Astronautics

[12] M. Krznar: Modelling and control of hybrid propulsion systemes for multirotor unmanned aerial vehicles, FMENA(FSB), Zagreb, 2020.

[13]G. Welch, G.Bishop: An Introduction to the Kalman Filter, Universitiy of North Carolina at Chapel Hill, 2001.

[14] P.S. Maybeck: Stohastic models, estimation and control, volume 1, Dept. Of electrical engineering, Ohio, 1979.

[15] D. Pavković: Adaptivni Kalmanov filtar , FMENA(FSB), Zagreb

[16] B. McCarron: Low-Cost IMU Implementation via Sensor Fusion Algorithms in the Arduino Environment, San Lusi Obispo, 2013.

[17]T. Islam, M.S. Islam, M. Shajid-Ul-Mahmud, M. Hossam-E-Haider: Comparison of Complementary and Kalman Filter Based Data Fusion for Attitude Heading Reference System, ICEMAS, 2017.

[18] D. Pavković: Izvadak iz doktorata, poglavlje 3, State Estimation, FMENA(FSB), Zagreb

[17] Get orientation with Arduino and MPU6050. pristup: siječanj 2022. [Internet] https://www.teachmemicro.com/orientation-arduino-mpu6050/

[18] MPU6050 Accelerometer and Gyroscope module, pristup: siječanj 2022. [Internet] https://components101.com/sensors/mpu6050-module

[19] R. Wilcock, M.Kraft: Generic Algorithm for the Design od Electro-Mechanical Sigma Delta Modulator MEMS Sensors, University of Southampton, 2011.

[20] InvenSense Inc.:MPU-6000 and MPU-6050 Product Specification Revision 3.4, 8.09.2013.

[21] J. Soen, A. Voda, C. Condemine: Controller design for a closed-loop micromachined accelerometer

[22] E.H. Kapeel, A.M. Kamel. A.O. El farouk: Modeling and Simulation od Low Cosr MEMS Gyroscope Using MATLAB(SIMULINK) for UAV Autopilot Design, military techical college, Cairo

[23] M.Hrgetić: Inercijske mjerne jedinice, FSB, 2021., pristup: veljača 2022. [Internet]