Umjeravanje piezoelektričnih generatora pomaka

Srnec, Ivan

Master's thesis / Diplomski rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:352529

Rights / Prava: <u>Attribution-NoDerivatives 4.0 International/Imenovanje-Bez prerada 4.0</u> međunarodna

Download date / Datum preuzimanja: 2025-03-15

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Ivan Srnec

Zagreb, 2021.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Dr. sc. Vedran Šimunović, dipl. ing.

Student:

Ivan Srnec

Zagreb, 2021.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se prvenstveno mentoru dr. sc. Vedranu Šimunoviću, dipl. ing. te svim ostalim djelatnicima Laboratorija za precizna mjerenja dužina Fakulteta strojarstva i brodogradnje na spremnosti, prenesenom znanju, korisnim savjetima, strpljivosti i pomoći prilikom izrade ovog rada.

Posebno se zahvaljujem svojoj obitelji, djevojci te prijateljima na iznimnoj potpori i pomoći tijekom cijelog školovanja bez kojih ne bi postigao ovaj uspjeh.

Ivan Srnec

Ivan Srnec

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za diplomske radove studija strojarstva za smjerove: proizvodno inženjerstvo, računalno inženjerstvo, industrijsko inženjerstvo i menadžment, inženjerstvo materijala te mehatronika i robotika

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje			
Datum:		Prilog:	
Klasa:	602-04/21	-6/1	
Ur. broj:	15-1703-2	21	

DIPLOMSKI ZADATAK

Student:

IVAN SRNEC

Mat. br.: 0035208547

Naslov rada na hrvatskom jeziku:

Naslov rada na Calibration of piezoelectric displacement generator

Umjeravanje piezoelektričnih generatora pomaka

engleskom jeziku: Opis zadatka:

Primjena piezoelektričnih generatora pomaka u području dimenzionalnog mjeriteljstva dobro je poznata i uobičajena već duži niz godina. Međutim u recentnim istraživanjima, razvijaju se metode i postupci umjeravanja gdje se fizički realizirani etaloni duljine zamjenjuju upravljanim pomacima ostvarenim pomoću piezoelektričnih generatora. Temelj ovih metoda su ostvareni sljedivi pomaci, stoga je cilj ovog rada izraditi postupak umjeravanja piezoelektričnih generatora duljine.

U radu je potrebno:

1. Opisati piezoelektrične generatore pomaka.

2. Opisati interferencijski mjerni sustav.

- 3. Razraditi postupak umjeravanja piezoelektričnih generatora pomaka.
- 4. Procijeniti mjernu nesigurnost.
- 5. Provesti umjeravanje piezoelektričnog generatora pomaka (PI P 621.ZCD).
- 5. Donijeti zaključak.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan: 30. rujna 2021.

Zadatak zadao:

doc. dr. sc. Vedran Šimunović

Rok predaje rada: 2. prosinca 2021. Predviđeni datum obrane: 13. prosinca do 17. prosinca 2021.

Predsjednica Povjerenstva: prof. dr. sc. Biserka Runje

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA	III
POPIS TABLICA	V
POPIS OZNAKA	VI
SAŽETAKV	III
SUMMARY	IX
1. UVOD	. 1
 PIEZOELEKTRIČNI GENRATOR POMAKA 2.1. Uzdužni piezoelektrični generatori 2.2. Smični piezoelektrični generatori 2.3. Cijevni piezoelektrični generatori 2.4. Kontrakcijski piezoelektrični generatori 2.4.1. Generator savijanja 2.5. Piezoelektrični generator pomaka PI P – 621.ZCD 2.5.1. Značajke korištenog piezoelektričnog generatora pomaka 2.5.2. Područja primjene korištenog piezoelektričnog generatora pomaka 2.6. Kontroler E – 625 3. INTERFEROMETAR 3.1.1. Princip rada 	.3 .4 .5 .6 .7 .8 .9 10 11 12 13 13 13
 3.2. Laser "<i>Renishaw</i>" ML10	16 16 18 21 22
5 POSTUPAK UMIEREVANIA	22
 5.1. Mjerni sustav	24 25 29 29 37 41 45
6. MJERNA NESIGURNOST	62
 6.1. Procjena mjerne nesigurnosti GUM metodom	63 66 67 67 69

6.2.1.	Nesigurnost očitanja interferometra, u(Li)	70
6.2.2.	Pogreška dobivena kompenzacijom brzine svjetlosti, δ_{BS}	71
6.2.3.	Ograničenje laserskog sustava, δ_{LSL}	72
6.2.4.	Kosinus pogreška interferometra, δ _{CE}	73
6.2.5.	Utjecaj mrtvog hoda, δ _{DP}	78
6.2.6.	Stabilnost mjernog sustava, δ_{stab}	79
6.3. Prov	vedba nezavisnih mjerenja	
6.4. Kon	ačni rezultati umjeravanja	
7. ZAKLJU	ſČAK	
LITERATUR	RA	
PRILOZI		

POPIS SLIKA

Slika 1.	Piezoelektrični generator pomaka [3]	3
Slika 2.	Uzdužni piezoelektrični generatori pomaka [2]	5
Slika 3.	Smični piezoelektrični generator pomaka [2]	6
Slika 4.	Mogući pomaci cijevnih generatora [4]	7
Slika 5.	Kontrakcijski piezoelektrični generator pomaka [4]	8
Slika 6.	Generator savijanja [4]	8
Slika 7.	Piezoelektrični generator pomaka P – 621.ZCD tvrtke "Physik Instrumente"	9
Slika 8.	Kontroler $E - 625$	12
Slika 9.	Interferencijski uzorak [9]	14
Slika 10.	Pojednostavljeni prikaz Michelsonovog interferometra	15
Slika 11.	Laserska glava ML10	16
Slika 12.	Kompenzacijska jedinica EC10	19
Slika 13.	Senzori kompenzacijske jedinice EC10	19
Slika 14.	Sustav za potpunu interferenciju zrake svjetlosti	21
Slika 15.	Korišteni retroreflektori [12]	22
Slika 16.	Put zrake unutar retroreflektora [13]	23
Slika 17.	Mjerni sustav	25
Slika 18.	Podsustav mjernog sustava s laserom	26
Slika 19.	Podsustav s piezoelektričnim generatorom pomaka	27
Slika 20.	Podsustav s piezoelektričnim generatorom uz dodatak kutije	28
Slika 21.	Cjelokupni mjerni sustav	29
Slika 22.	Pomoćni iris na stalku	30
Slika 23.	Laser spreman za namještanje sustava	31
Slika 24.	Prvi korak namještanja mjernog sustava	32
Slika 25.	Korišteno ravno zrcalo	32
Slika 26.	Drugi korak namještanja mjernog sustava	33
Slika 27.	Korištena prizma	34
Slika 28.	Treći korak namještanja mjernog sustava	34
Slika 29.	Nenamješteni laser	35
Slika 30.	Namješten i stabilan laser	36
Slika 31.	Prozor računalnog programa lasera	37
Slika 32.	Prvi slučaj utjecaja laboratorija	38
Slika 33.	Drugi slučaj utjecaja laboratorija	39
Slika 34.	Treći slučaj utjecaja laboratorija	40
Slika 35.	Četvrti slučaj utjecaja laboratorija	41
Slika 36.	Prozor računalnog programa za drugi korak stabilnosti	43
Slika 37.	Izgled prozora računalnog programa "E-816 – PZT Control"	44
Slika 38.	Rezultati analize stabilnosti sustava	44
Slika 39.	Računalni program piezoelektričnog generatora pomaka s funkcijama	46
Slika 40.	Zadavanje pozicija piezoelektričnog generatora pomaka	47
Slika 41.	Prikaz odstupanja rezultata kod prvog mjerenja	48
Slika 42.	Prikaz odstupanja rezultata kod drugog mjerenja	49
Slika 43.	Prikaz odstupanja rezultata kod trećeg mjerenja	50
Slika 44.	Prikaz odstupanja kod četvrtog mjerenja	51
Slika 45.	Prikaz odstupanja kod petog mjerenja	52
Slika 46.	Prikaz odstupanja kod šestog mjerenja	53
Slika 47.	Prikaz odstupanja kod sedmog mjerenja	54

Slika 48.	Prikaz odstupanja kod osmog mjerenja	55
Slika 49.	Prikaz odstupanja kod devetog mjerenja	56
Slika 50.	Prikaz rezultata kod desetog mjerenja	57
Slika 51.	Prikaz odstupanja srednjih vrijednosti od srednjih vrijednosti pozicije	60
Slika 52.	Skalarni odnos između ulaznih veličina i mjerene veličine [16]	63
Slika 53.	Normalna razdioba [17]	66
Slika 54.	Pravokutna razdioba [1]	67
Slika 55.	Simetrična trokutasta razdioba [1]	68
Slika 56.	Odstupanje zrake u odnosu na horizontalnu ravninu	74
Slika 57.	Odstupanje zrake retroreflektora	75
Slika 58.	Prikaz odstupanja prvog nezavisnog mjerenja	84
Slika 59.	Prikaz odstupanja drugog nezavisnog mjerenja	85
Slika 60.	Prikaz odstupanja trećeg nezavisnog mjerenja	86
Slika 61.	Prikaz odstupanja srednjih vrijednosti od srednjih vrijednosti pozicije za tri	
	nezavisna mjerenja	87
Slika 62.	Odstupanje piezoelektričnog generatora pomaka	89

POPIS TABLICA

Tablica 1.	Značajke piezoelektričnog generatora pomaka PI P – 621.ZCD [6]	10
Tablica 2.	Ostale značajke piezoelektričnog generatora pomaka PI P - 621.ZCD [6]	11
Tablica 3.	Opće značajke laserske glave ML10 [10]	17
Tablica 4.	Mjerne mogućnosti lasera ML10 kod pokaznih mjerenja [11]	17
Tablica 5.	Izračunate mjerne mogućnosti lasera ML10 [11]	18
Tablica 6.	Opće značajke kompenzacijske jedinice EC10 [10]	20
Tablica 7.	Rezultati prvog mjerenja	48
Tablica 8.	Rezultati drugog mjerenja	49
Tablica 9.	Rezultati trećeg mjerenja	50
Tablica 10.	Rezultati četvrtog mjerenja	51
Tablica 11.	Rezultati petog mjerenja	52
Tablica 12.	Rezultati šestog mjerenja	53
Tablica 13.	Rezultati sedmog mjerenja	54
Tablica 14.	Rezultati osmog mjerenja	55
Tablica 15.	Rezultati devetog mjerenja	56
Tablica 16.	Rezultati desetog mjerenja	57
Tablica 17.	Rasponi i standardne devijacije za deset odrađenih mjerenja	58
Tablica 18.	Rasponi i standardne devijacije za pet odabranih mjerenja	59
Tablica 19.	Srednje vrijednosti srednjih vrijednosti odstupanja za odabranih pet mjerenja	60
Tablica 20.	Mjerna nesigurnost umjeravanja piezoelektričnih generatora pomaka GUM	
	metodom	80
Tablica 21.	Sastavnice mjerne nesigurnosti u ovisnosti o pomaku	81
Tablica 22.	Vrijednosti mjernih nesigurnosti za pojedinu poziciju	82
Tablica 23.	Rezultati prvog nezavisnog mjerenja	83
Tablica 24.	Rezultati drugog nezavisnog mjerenja	84
Tablica 25.	Rezultati trećeg nezavisnog mjerenja	85
Tablica 26.	Srednje vrijednosti srednjih vrijednosti odstupanja za tri nezavisna mjerenja	86
Tablica 27.	Razlike u dobivenim rezultatima	88

POPIS OZNAKA

Oznaka	Jedinica	Opis
а	nm	Granica intervala pojavljivanja prilikom izračuna standardne mjerne nesigurnosti
Ci	-	Koeficijent osjetljivosti
d	mm	Pomak zrake na dijelu podsustava s laserom
k	-	Faktor pokrivanja
L	mm	Udaljenost između dva podsustava mjernog sustava
L_{DP}	nm	Duljina mrtvog hoda
L_i	μm	Očitanje vrijednosti pozicije na laseru
L_I	nm	Pozicija interferometra u odnosu na retroreflektor
LL	nm	Donja granična pogreška
L _R	nm	Pozicija referentnog retroreflektora u odnosu na djelitelj snopa
l	μm	Stvarni pomak piezoelektričnog generatora pomaka
т	μm	Izmjereni pomak piezoelektričnog generatora pomaka
n	-	Broj ponovljenih mjerenja
<i>pos_{LASER}</i>	μm	Očitana pozicija lasera
<i>pos_{PIEZO}</i>	μm	Postavljena pozicija piezoelektričnog generatora pomaka
S		Procijenjeno standardno odstupanje
t	S	Vrijeme trajanja ispitivanja
U		Proširena mjerna nesigurnost
UL	nm	Gornja granična pogreška
$u(X_i)$		Standardna mjerna nesigurnost
u(y)		Sastavljena standardna nesigurnost
u		Sastavljena standardna nesigurnost na temelju rezultata
u_L	nm	Mjerna nesigurnost za pojedinu vrijednost pozicije
α	,	Iznos kuta pod kojim je laserska zraka pomaknuta u odnosu na stol
β	,	Iznos kuta koji zatvaraju stvarni i izmjereni pomak piezoelektričnog generatora
γ	,	Ukupno kutno odstupanje kod kosinus pogreške interferometra
Δn_{zraka}	-	Promjena indeksa loma zraka kroz postupak mjerenja

Fakultet strojarstva i brodogradnje

$\Delta PIEZO$	nm	Odstupanje pozicije piezoelektričnog generatora pomaka
δ_{BS}	nm	Sastavnica mjerne nesigurnosti kod pogreške dobivene kompenzacijom brzine svjetlosti
$\delta_{\scriptscriptstyle CE}$	nm	Sastavnica mjerne nesigurnosti kod kosinus pogreške interferometra
δ_{DP}	nm	Sastavnica mjerne nesigurnosti utjecaja mrtvog hoda
δ_{LSL}	nm	Sastavnica mjerne nesigurnosti ograničenja laserskog sustava
δ_{stab}	nm	Sastavnica mjerne nesigurnosti stabilnosti mjernog sustava
μ		Očekivana vrijednost populacije
σ		Standardna devijacija populacije

SAŽETAK

Tema ovog rada je umjeravanje piezoelektričnih generatora pomaka. Laboratorij za precizna mjerenja dužina Fakulteta strojarstva i brodogradnje ne posjeduje mjerni sustav i postupak za provedbu umjeravanja uređaja takve vrste. Cilj ovog rada je razviti mjerni sustav za provedbu umjeravanja piezoelektričnih generatora pomaka.

Postavljeni mjerni sustav se može podijeliti u dva podsustava, podsustav s piezoelektričnim generatorom pomaka te podsustav s laserskim interferometrom kojim je osigurana povezanost s definicijom metra.

U prvom dijelu rada su opisani osnovni elementi mjernog sustava, a to su: interferencijski laserski sustav, piezoelektrični generator pomaka i retroreflektor sa svim tehničkim podacima kasnije korištenim za procjenu mjerne nesigurnosti.

U drugom dijelu rada prikazan je osmišljeni mjerni sustav, opisan postupak njegovog namještanja, postupak provedbe samog mjerenja te rezultati uz procijenjenu mjernu nesigurnost.

Na kraju je izvršena analiza dobivenih rezultata koja prikazuje primjenu osmišljenog mjernog sustava za umjeravanje piezoelektričnih generatora pomaka.

Ključne riječi: piezoelektrični generator pomaka, interferencijski laserski sustav, pomak, mjerna nesigurnost

SUMMARY

This paper deals with the topic of calibration of piezoelectric displacement generator. The precise length measurements laboratory at the Faculty of Mechanical Engineering and Naval Architecture does not have a system of measurement and procedures to calibrate such instruments. The aim of this paper is to develop a system of measurements that will be used to calibrate piezoelectric displacement generators.

The system of measurements that was developed can be divided into two subsystems: the subsystem with the piezoelectric displacement generator and the subsystem with the laser interferometer that ensures the connection with the definition of metre.

The basic elements of the system of measurements are described in the first part of the paper and they are: interferential laser system, piezoelectric displacement generator and retroreflector with all the technical data later used to assess measurement uncertainty.

The second part of the paper presents the devised system of measurements, describes the procedure of its adjustment, the measuring procedure and the results with the assessed measurement uncertainty.

An analysis of the data that was measured was done in the end and it presents the application of the system of measurement for the calibration of piezoelectric displacement generator that was developed.

Key words: piezoelectric displacement generator, interferential laser system, displacement, measurement uncertainty

1. UVOD

Cilj svakog mjerenja je određivanje vrijednosti mjerene veličine. Mjerenja nisu savršena zbog brojnih utjecajnih faktora koji u manjoj ili većoj mjeri utječu na krajnji rezultata. Zbog te činjenice, dobiveni se rezultat smatra aproksimacijom ili procjenom vrijednosti mjerene veličine. Kako utjecaj pojedinih faktora u većini slučajeva nije poznat, krajnjem je rezultatu potrebno pridružiti promjene rezultata u uvjetima ponovljivosti, obnovljivosti te nesigurnosti koji zajedno pridonose ukupnoj mjernoj nesigurnosti mjernog rezultata. [1]

Mjerna nesigurnost je definirana kao parametar pridružen rezultatu mjerenja koji opisuje rasipanje vrijednosti mjerene veličine uz neku određenu vrijednost. Pokazuje koliki je utjecaj drugih faktora na krajnji rezultat te se procjenjuje radi [1]:

- nedvosmislenog iskazivanja i usporedbe mjernih rezultata u različitim ispitnim laboratorijima
- usporedbe rezultata sa specifikacijama proizvođača ili zadane tolerancije.

Napredovanjem i usavršavanjem tehnika mjerenja te razvojem samih tehnologija vrijednost mjerne nesigurnosti se sve više smanjuje, što znači da zahtjevi za točnost rezultata sve više rastu. Jedini način za postizanje velike točnosti je kombinacija kvalitetno postavljanog mjernog sustava te savjesnosti i koncentriranosti samog mjeritelja.

Razlikuju se tri načina za procjenu mjerne nesigurnosti, dok se izračun i analiza vrši temeljem rezultata dobivenih u skladu s potrebama odnosno postavljenim zahtjevima. Prema tome, rezultati se mogu dobiti mjerenjem okomitosti, kružnosti, pravocrtnosti, ravnosti te drugih tolerancija oblika i položaja koji su važan faktor svakog mjerenja.

Za procjenu mjerene nesigurnosti koriste se [1]:

- GUM metoda
- MCS metoda (Monte Carlo simulacija)
- procjena ponovljivosti i obnovljivosti rezultata mjerenja sukladno normi 21748:2004.

Naravno, da bi dobiveni rezultat sa svojom mjernom nesigurnosti bio pouzdan, potrebno je provesti umjeravanje svakog instrumenta, uređaja ili mjerila korištenog prilikom mjerenja.

Prema definiciji, umjeravanje je skup postupaka kojim se u zadanim uvjetima određuje odnos između rezultata mjerenja i neke referentne veličine, u najvećem broju slučajeva etalona, koji su umjereni i sljedivi. [1]

Umjeravanje je potrebno provesti na kvalitetan način jer se time olakšava daljnje mjerenje.

Piezoelektrični generatori pomaka prikladni su za korištenje za umjeravanje i kontrolu drugih uređaja zbog mogućnosti ostvarivanja vrlo malih pomaka na submikrometarskoj razini, čime je moguće zamijeniti čitav niz standardnih etalona. Naravno, kako bi se osigurala mjerna sljedivost i piezoelektrični generatori pomaka moraju biti umjereni. Sustavi umjeravanja ovakvih uređaja temelje se na primjeni interferometrije i samo laboratoriji na najvišoj svjetskoj razini (Nacionalni mjeriteljski instituti) imaju njihova umjeravanja. Metode umjeravanja piezoelektričnih generatora pomaka tema su brojnih recentnih istraživanja.

Cilj ovog rada je osmisliti mjerni sustav za umjeravanje piezoelektričnog generatora pomaka odnosno osiguravanje točnosti njegovog vertikalnog pomaka. Za tu svrhu, koristi se interferencijski laserski sustav za osiguranje sljedivosti te direktne povezanosti sa definicijom metra.

2. PIEZOELEKTRIČNI GENRATOR POMAKA

Piezoelektrični generatori pomaka su uređaji koji rade na principu piezoelektričnog efekta kako bi osigurali vrlo kratak pomak s visokim frekvencijama i brzim vremenom odziva. Ime su dobili prema materijalu od kojeg su načinjeni, a to je piezo materijal. Piezo materijal je posebna vrsta keramike koja se širi ili skuplja ovisno o primijenjenom naponu na temelju čega se ostvaruje gibanje odnosno sila, dok se s druge strane, primjenom mehaničkog naprezanja generira napon. Sami piezoelektrični generatori su male veličine što im u usporedbi s generiranim velikim silama daje značajan omjer snage i veličine. [2]

Ranije je navedeno da piezoelektrični generatori rade na principu piezoelektričnog efekta. Prema tome, piezoelektrični efekt ostvaruje gibanje paralelno električnom polju, dok neki generatori mogu djelovati poprečno na piezoelektrični efekt kod kojeg se gibanje ostvaruje okomito na električno polje. [2]

Svaki piezoelektrični generator se uglavnom sastoji od tri osnovna sloja, a to su:

- vanjska elektroda
- unutarnja elektroda
- piezo materijal.

Presjek piezoelektričnog generatora sa svojim dijelovima, prikazan je na slici 1.

Prema slici 1, između slojeva je prikazan smjer polarizacije. Da bi se ona dogodila, potrebno je spojiti vanjske elektrode na izvor napona čime se ostvaruju ranije navedene sile i gibanja.

Iako se piezoelektrični generatori sastoje od tri osnovna elementa prikazana na slici 1, oni se razlikuju po rasporedu piezo elemenata unutar uređaja i prema vrsti kretanja koje generiraju. Prema tome, piezoelektrični generatori pomaka se dijele na [2]:

- uzdužne piezoelektrične generatore
- smične piezoelektrične generatore
- cijevne piezoelektrične generatore
- kontrakcijske piezoelektrične generatore.

U nastavku će biti ukratko opisani svaki od njih.

2.1. Uzdužni piezoelektrični generatori

Uzdužni generatori su vrsta piezoelektričnih generatora pomaka koji se dobivaju slaganjem više piezo elemenata jedan na drugi čime se generira korisna sila i koristan pomak. Ukupan pomak je zbroj pomaka pojedinih slojeva piezo elemenata spojenih na napon. Koriste piezoelektrični efekt za generiranje linearnih pomaka od 0,1 do 0,15 posto duljine samog generatora. [2]

Također, ova vrsta generatora ima visoku gustoću sile te se ona kreće u rasponu od 30 N/mm². Iz te gustoće moguće je izvući korisnu silu koja se može kretati u tisućama njutna. Zbog visoke rezonantne frekvencije, moguće ih je koristiti i u dinamičke primjene. [2]

Konstrukcija uzdužnog generatora pomaka sa smjerovima polarizacije, električnog polja i pomaka prikazana je na slici 2.

Slika 2. Uzdužni piezoelektrični generatori pomaka [2]

2.2. Smični piezoelektrični generatori

Smični generatori su vrsta piezoelektričnih generatora pomaka načinjeni od više slojeva piezo elemenata poslaganih jedan na drugi, što ih ne razlikuje od ranije navedenih uzdužnih generatora. S druge strane, razlika između njih leži u primjeni napona i vrsti kretanja koja se ostvaruje. Kod smičnih generatora piezo elementi su polarizirani vodoravno, dok se električno polje primjenjuje okomito. Sam pomak se odvija u horizontalnoj ravnini odnosno stvara se smično gibanje. Visina ove vrste generatora pomaka može varirati ovisno o smičnim naprezanjima i savijanjem pa se često kombiniraju s uzdužnim generatorima za rješavanje problema u višeosnim sustavima. [2]

Na slici 3 je prikazana konstrukcija smičnog piezoelektričnog generatora pomaka sa smjerovima polarizacije, električnog polja te pomaka.

Slika 3. Smični piezoelektrični generator pomaka [2]

2.3. Cijevni piezoelektrični generatori

Cijevni generatori su vrsta piezoelektričnih generatora pomaka koji posjeduju radijalni smjer polarizacije te se pomak generira poprečnim piezoelektričnim efektom. Ovisno o načinu primjene napona u odnosu na poziciju elektrode, cijevni generatori mogu razviti aksijalno, radijalno ili bočno kretanje. Kako samo ime kaže, ovi generatori pomaka su cijevnog oblika te se prema tome razlikuju i njihove mogućnosti. Tako cijevni piezoelektrični generatori nisu prikladni za stvaranje sile, ali je pomoću njega moguće ostvariti mikrometarski pomak za skenirajuće mikroskope te svoju primjenu nalaze pri doziranju tekućina u vrlo malim količinama. [2]

Na slici 4 je prikazan cijevni piezoelektrični generator pomaka sa smjerovima mogućih pomaka.

Slika 4. Mogući pomaci cijevnih generatora [4]

Prema slici 4, lijeva slika prikazuje aksijalno kretanje, u sredini je prikazano radijalno kretanje, dok desna slika prikazuje mogućnost bočnog kretanja cijevnih piezoelektričnih generatora.

2.4. Kontrakcijski piezoelektrični generatori

Kontrakcijski generatori su ravni piezoelektrični generatori s dva piezo elementa koji zajedničkim djelovanjem mogu proizvesti kontrakcijsko (skupljajuće) ili proširujuće gibanje. Ono se ostvaruje djelovanjem poprečnog piezoelektričnog efekta i to obično samo u jednom smjeru. Ova vrsta piezoelektričnih generatora posjeduje velik omjer pomaka i sile što znači da su u mogućnosti generirati male pomake (najčešće do 20 µm) uz sile i do stotine njutna. [2] Na slici 5 je prikazana konstrukcija kontrakcijskog piezoelektričnog generatora pomaka sa smjerovima polarizacije, električnog polja te pomaka.

Slika 5. Kontrakcijski piezoelektrični generator pomaka [4]

2.4.1. Generator savijanja

Kontrakcijski piezoelektrični generatori se pri primjeni stavljaju na podlogu čime se stvara generator savijanja. Kod njega se primjenom napona jedan od piezo elemenata širi dok se drugi skuplja. Kao rezultat savijanja dobije se gibanje s relativno velikim pomakom (tipično nekoliko milimetara), ali se stvaraju i male sile. [2]

Na slici 6 prikazan generator savijanja.

Slika 6. Generator savijanja [4]

Kako je navedeno u uvodnom dijelu, cilj ovog rada je osigurati vertikalni pomak piezoelektričnog generatora pomaka. U tu svrhu, u Laboratoriju za precizna mjerenja dužina Fakulteta strojarstva i brodogradnje korišten je piezoelektrični generator pomaka tvrtke *"Physik Instrumente"* i oznake P – 621.ZCD koji će biti opisan u nastavku.

2.5. Piezoelektrični generator pomaka PI P – 621.ZCD

Piezoelektrični generator pomaka P – 621.ZCD tvrtke "*Physik Insturmente"* spada u skupinu uzdužnih generatora jer je moguće ostvariti pomak u osi Z odnosno vertikalnoj osi. Pomak može iznositi do 100 µm te se on ostvaruje pomoću kapacitivnog senzora koji je ugrađen u sam piezo generator. Tehnologija kapacitivnih senzora je jedna od četiri tehnologije (*PICMA* tehnologija, vakuum tehnologija, fleksibilni sustavi navođenja) koje pomažu u ostvarivanju pomaka samog piezoelektričnog generatora. Ona omogućuje beskontaktno i direktno mjerenje pozicije s nanometarskom točnošću. Pomak se detektira na način da se mjerenjem promjene kapaciteta određuje udaljenost između ploča generatora, dok kapacitivni senzori u sustavu preciznog mjerenja mjere stvarnu poziciju pokretnog dijela u odnosu na stacionarni dio generatora. [5]

Uz navedeni hod, točnost i kapacitivni senzor, piezoelektrični generator sadrži i Sub - D konektor koji omogućuje spajanje na računalo preko odgovarajućeg kontrolera i samim time omogućava kvalitetno mjerenje pomoću odgovarajućeg računalnog programa.

Korišteni piezoelektrični generator pomaka prikazan je na slici 7.

Slika 7. Piezoelektrični generator pomaka P – 621.ZCD tvrtke "Physik Instrumente"

2.5.1. Značajke korištenog piezoelektričnog generatora pomaka

Uz ranije navedene značajke korištenog piezoelektričnog generatora pomaka, u sljedećoj tablici, tablici 1, biti će detaljnije prikazane ostale, nespomenute značajke.

		Tolerancija		
Aktivne osi	Z			
Kretanje i pozicioni	ranje			
Integrirani senzor	kapacitivni			
Domet od -20 do 120 V, otvorena petlja	140 µm	20 %/ 0 %		
Domet, zatvorena petlja	100 µm			
Rezolucija, otvorena petlja	0,2 nm			
Rezolucija, zatvorena petlja	0,3 nm			
Linearna pogreška	0,02 %			
Ponovljivost	<u>+</u> 1 nm			
Nagib θ_x , θ_y	< 100 µrad			
Mehanička svojstva				
Krutost	0,6 N/µm	± 20 %		
Rezonantna frekvencija, bez opterećenja	790 Hz	± 20 %		
Rezonantna frekvencija, pod opterećenjem, 30 g	500 Hz	<u>+</u> 20 %		
Kapacitet sile potiskivanja/povlačenja	10 N/ 8 N			
Puno opterećenje	10 N			
Lateralno puno opterećenje	10 N			
Svojstva pogona				
Tip keramike	PICMA P - 885			
Električni kapacitet	3 μF	± 20 %		

Tablica 1. Značajke piezoelektričnog generatora pomaka PI P – 621.ZCD [6]

Naravno da uz prethodno navedena svojstva, vrlo bitnu ulogu u primjeni ima i masa te dimenzije samog piezoelektričnog generatora pomaka. Na temelju njih se može razmišljati o njegovoj integraciji u mjerni sustav da bi se dobili traženi rezultati.

Navedene značajke navedene su u tablici 2.

Raspon radne temperature	−20 °C/ 80 °C	
Materijal	aluminij	
Dimenzije	40 mm x 40 mm x 17,5 mm	
Masa	0,17 kg	± 5 %
Duljina kabla	1,5 m	<u>+</u> 10 mm
Senzor / naponski priključak	CD verzija: D – sub 7W2 (m)	
Schzor / haponski prikijučak	CL verzija: LEMO	
Preporučena elektronika	E-503, E-505, E-610, E-621,	
	E-625, E-665, E-709, E-754	

Tablica 2. Ostale značajke piezoelektričnog generatora pomaka PI P – 621.ZCD [6]

2.5.2. Područja primjene korištenog piezoelektričnog generatora pomaka

Kako je navedeno u poglavlju 2, svaka od vrsta piezoelektričnog generatora radi pomak u svojem smjeru čime se i razlikuje njihova primjena. Korišteni piezoelektrični generator je uzdužni generator pomaka što znači da je moguć vertikalni pomak.

Pa se tako korišteni piezoelektrični generator pomaka može primjenjivati u [6]:

- interferometriji
- mikroskopiji
- nano pozicioniranju
- biotehnologiji
- tehnologiji poluvodiča i dr.

Kako je navedeno ranije, da bi se moglo mjeriti pomoću piezoelektričnih genereatora, potrebno je imati kontroler preko kojeg se omogućuje spajanje s računalom te analiza rezultata na njemu. Za piezoelektrični generator pomaka P – 621.ZCD tvrtke *"Physik Instrumente"* korišten je kontoler E - 625.

2.6. Kontroler E – 625

Kontroler E – 625 jer jedno kanalni kontroler za piezoelektrične generatore koji sadrže kapacitivne senzore, kao što je korišteni piezoelektrični generator pomaka P – 621.ZCD. Navedeni kontroler je opremljen s dodatnim modulom E – 816, podmodulom računalnog sučelja, što mu omogućuje dodatne funkcije, kao što su [7]:

- upravljanje s nekoliko kontrolera sa istog sučelja
- spremanje funkcijskih vrijednosti u internu tablicu te jednostavan dolazak do njih, što omogućuje jednostavno i pouzdano ponavljanje profila gibanja
- jednolika kontrola sustava mikro i nano pozicioniranja općim skupom naredbi (GCS)
- upravljanje neovisno o hardveru što omogućuje zajedničko kontroliranje različitih sustava pozicioniranja ili korištenje novih sustava uz minimalno napora.

Također, ovim kontrolerom je moguće kontrolirati piezoelektrični generator uz zatvorenu ili otvorenu petlju i vršiti korekciju napona u svrhu postizanja što točnijeg pomaka.

Kontroler E – 625 prikazan je na slici 8.

Slika 8. Kontroler E – 625

3. INTERFEROMETAR

Kako je navedeno u uvodnom dijelu, cilj ovo rada je osmisliti mjerni sustav za umjeravanje piezoelektričnog generatora pomaka mjerenjem njegovog vertikalnog pomaka. Da bi se to moglo postići potrebno je koristiti mjerni sustav submikrometarske točnosti. Prema tome, uz opisani piezoelektrični generator, u mjerni sustav je potrebno uključiti mjerni uređaj koji to omogućuje. U ovom radu za mjerenje pomaka korišten je laserski interferometar "*Renishaw*" ML10. Ovim sustavom postiže se potrebna točnost i preciznost samih mjerenja.

3.1. Interferometrija

Interferometrija je mjerna metoda koja za mjerenje koristi interferenciju između dva vala. Interferencija valova podrazumijeva međudjelovanje dvaju ili više valova koji prolaze kroz određeni prostor, ali uz uvjet da su jednake valne duljine. Valovi mogu biti razne prirode, ali se najčešće promatraju radio valovi, zvučni valovi te svjetlosni valovi. Prilikom mjerenja potrebno je obratiti pažnju kako na karakteristike samih valova, tako i na karakteristike materijala s kojima valovi stupaju u kontakt. [8]

Danas postoji široka primjena interferometrije, ali u ovom radu će biti korištena interferometrija koja koristi svjetlosne valove jer je time moguće proučavati promjene pomaka te u konačnici provesti kalibraciju, umjeravanje i mehaničko upravljanje stupnjevima gibanja u preciznoj obradi. [8]

3.1.1. Princip rada

Princip kojim se stvara razlika između dva snopa odnosno prijeđena udaljenost ili pomak u suštini je vrlo jednostavan. Međudjelovanjem dvaju valova stvara se svjetlosni snop koji se obično razdvaja na dva snopa čijim se preklapanjem može stvoriti interferencijski uzorak. Budući da svijetlost kao val ima vrlo malo valnu duljinu od 380 nm do 780 nm, mjerenjem se mogu uočiti male promjene u optičkim putanjama između dva snopa te time stvoriti zamjetne promjene u interferencijskom uzorku. Prema tome, optička interferencija se pokazuje kao vrlo vrijedna mjerna tehnika čija točnost kroz godine raste izumom i razvojem lasera. [8]

U oku promatrača odnosno mjeritelja, interferencijski uzorci mogu izgledati različito ovisno o dijelovima samog postava za dobivanje interferencije dvaju valova. Tako, uzorci ovise o izvoru svijetla (valnoj duljini), poziciji izvora svijetla, poziciji zrcala te razdjelniku snopova. Jedan od primjera interferencijskog uzorka prikazan je na slici 9.

Slika 9. Interferencijski uzorak [9]

Postoji nekoliko vrsta interferometra te više osoba koje su sudjelovale u njegovom razvoju. Prvi interferometar je razvio Thomas Young pri istraživanju prirode svjetlosti dok je značajnu ulogu u njegovom razvitku odigrao Albert Abraham Michelson prilikom pokušaja mjerenja brzine svjetlosti. On je time prvi puta upotrijebio svjetlost kao mjerni alat. Današnjim brzim napretkom tehnologija interferometri se unaprjeđuju čime raste i točnost mjerenja, ali osnovni principi Michelsonovog interferometra ostaju u srži interferometrije. [8]

Kako je navedeno ranije, za dobivanje odgovarajućeg interferencijskog uzorka potrebno je pravilno postaviti nekoliko dijelova. Prema tome, osnovni dijelovi Michelsonovog interferometra su [8]:

- izvor svijetla
- djelitelj snopa
- dva zrcala (pomičnog i nepomičnog)
- zaslon odnosno detektor.

Na slici 10 je prikazan je pojednostavljeni prikaz Michelsonovog interferometra sa svim potrebnim dijelovima.

Slika 10. Pojednostavljeni prikaz Michelsonovog interferometra

Na prethodnoj slici su strelicama označeni putovi zrake koja dolazi iz izvora. Izvor svjetla šalje svjetlosnu zraku koja dolazi do djelitelja snopa te se zraka podijeli na dva različita snopa koja odlaze u različitim smjerovima ovisno o kutu pod kojim je djelitelj snopa postavljen. Ako je djelitelj snopa postavljen pod 45° kao na slici, tada će jedan snop zraka nastaviti vodoravno kroz djelitelj snopa prema zrcalu 1, dok će se drugi snop zraka spustiti okomito prema zrcalu 2. Svaki od dva navedena snopa zraka svjetlosti se reflektira od svojeg zrcala, ponovno spaja u djelitelju snopa i odlaze do detektora odnosno zaslona u ovom slučaju na slici. Razlika u prijeđenom putu između dvaju snopova predstavlja međusobnu razliku u fazi. Na temelju tih razlika u fazi dobiva se interferencijski uzorak, prikazan na slici 9, čiji oblik ovisi o karakteristikama izvora svjetlosti i uvjetima samog promatranja. Na temelju dobivenog uzorka moguće je odrediti valne karakteristike snopova svjetlosti, svojstva samih materijala ili pomak pomičnog ogledala ovisno o primjeni interferometra. [8]

Za ostvarivanje potrebne interferencije i povezivanja mjerenja sa definicijom metra, kao izvor svijetla je u Laboratoriju za precizna mjerenja dužina Fakulteta strojarstva i brodogradnje korišten ranije navedeni laser oznake ML10 tvrtke *"Renishaw plc"* te će on biti opisan u nastavku.

3.2. Laser "Renishaw" ML10

Laser ML10 tvrtke "*Renishaw*" je zapravo laserski interferencijski sustav sastavljen od dva dijela. Prvi dio je laserska glava oznake ML10 koja služi kao izvor svjetlosti, dok je drugi dio kompenzacijska jedinica oznake EC10 u koju su između ostalog integrirana dva senzora koja mogu pratiti i kompenzirati temperaturu i tlak okoline mjerenja.

3.2.1. Laserska glava MC10

Laserska glava ML10, predstavlja jezgru laserskog mjernog sustava. Unutar kućišta se nalazi helij – neon laserska cijev koja proizvodi lasersku zraku stabiliziranu na 633 nm. Laserska zraka je sigurna i ne izaziva štetno zračenje, što znači da nema potrebe za posebnom sigurnosnom opremom prilikom rukovanja. Laser je jedne frekvencije i sadrži svu potrebnu elektroniku za stabilizaciju lasera i detektore za brojanje razmaka između pruga unutar interferencijskog uzorka. Cjelokupni sklop glave lasera omogućuje mjerenje sa nanometarskom rezolucijom pri brzinama većim od 1 m/s. Prednost ovog sustava je da može poslati zraku svjetlosti daleko od same glave odnosno izvora što omogućuje kalibriranje osi duljina do 40 m. [10]

Na slici 11 je prikazana laserska glava ML10.

Slika 11. Laserska glava ML10

Uz neke navedene, u tablici 3 su prikazane ostale opće značajke laserske glave ML10.

Laserski izvor	Helij – neon laserska cijev	
Snaga lasera	< 1mW	
Valna duljina u vakuumu	632,9906 nm	
Izlaz	RS485 sa "Datalink" od 5 pinova	
Napajanje	100 V – 240 V	
Frekvencija	45 Hz – 65 Hz	
Radne temperature	0 °C – 40°C	
Vlažnost okoline	0 % – 95 % bez kondenzacije	
Masa	5,3 kg	
Dimenzije	355 mm x 176 mm x 75 mm	

Tablica 3. Opće značajke laserske glave ML10 [10]

Uz navedene opće značajke, za mjeritelja je vrlo važno znati i podatke o propisanim mjernim mogućnostima samog uređaja odnosno rasponima, točnosti te njegovoj rezoluciji. Navedene propisane vrijednosti je potrebno uzeti u obzir prilikom analize rezultata za što kvalitetniji konačni zaključak.

Prema tome, u tablici 4 i tablici 5 su navedene mjerne mogućnosti lasera ML10.

	Raspon	Točnost	Rezolucija
Linearni pomak	0 m – 40 m	±0,1 ppm ± 0,025 μm	0,001 µm
Linearna brzina	\pm 0,35 ms ⁻¹	±0,5 %	0,05 µms ⁻¹
Kut (razdaljina od 0 do 15 m)	<u>+</u> 0,175 rad	\pm 0,6 % \pm 0,5 \pm 0,1M µrad	0,1 µrad

Tablica 4. Mjerne mogućnosti lasera ML10 kod pokaznih mjerenja [11]

U trećem retku prikazane tablice, slovo M prikazuje razdaljinu između glave lasera i zrcala odnosno mjesta gdje se zraka odbija.

	Raspon	Točnost	Rezolucija
Ravnost (razdaljina od 0 do 15 m)	<u>+</u> 1,5 mm	<u>+</u> 0,02M ² μm	
Pravocrtnost, kratki domet	±2,5 mm	$\pm 0,5 \% \pm 0,5 \pm 0,15 M^2 \ \mu m$	0,01 µm
(razdaljina od 0,1 do 4 m)			
Pravocrtnost, dugi domet	±2,5 mm	$\pm 2,5~\% \pm 5 \pm 0,15 { m M}^2~\mu{ m m}$	0,1 µm
(razdaljina od 1 do 30 m)			
Okomitost, kratki domet	\pm 3/M mrad	\pm 0,5 % \pm 2,5 \pm 0,8M µrad	0,01 µrad
Okomitost, dugi domet	\pm 3/M mrad	$\pm 2,5 \% \pm 2,5 \pm 0,08$ µrad	0,01 µrad

Tablica 5. Izračunate mjerne mogućnosti lasera ML10 [11]

U prikazanoj tablici, slovo M u prvom retku prikazuje duljinu dijagonale u metrima, dok u ostalim redcima tablice slovo M prikazuje prijeđenu udaljenost laserske zrake u metrima.

Prilikom mjerenja pojavljuju se različite temperature i vlažnost zraka u prostoriji odnosno nemaju sve prostorije jednake uvjete u kojima provode mjerenja. Iz tog razloga uz lasersku glavu potrebno je posjedovati i kompenzacijsku jedinicu. Prema tome, prilikom izrade ovog rada, korištena je kompenzacijska jedinica oznake EC10 također tvrtke "*Renishaw plc*".

3.2.2. Kompenzacijska jedinica EC10

Kako je ranije navedeno u ovom poglavlju, kompenzacijska jedinica upravo služi tome da prati stanje temperature i tlak zraka. Prema dobivenim podacima sa senzora, odgovarajućom jednadžbom se preračunavaju dobiveni podaci na pravu lasersku valnu duljinu čime se vrši kompenzacija i dobiva se veća točnost te kvaliteta samog mjerenja. Uz to, za veću točnost, kompenzacijska jedinica kompenzira promjenu loma svjetlosti koja direktno utječe na valnu duljinu samog laserskog snopa. [10]

Kompenzacijskom jedinicom EC10 je moguće kompenzirati toplinsko širenje stroja pomoću čak tri senzora temperature koji se mogu postaviti direktno na poziciju stroja koji se testira. Takvim načinom se normaliziraju sva očitanja temperature na referentnu temperaturu koja iznosi 20 °C. Navedena kompenzacija toplinskog širenja je važna pri izvođenju linearnih

mjerenja na velikim strojevima ili strojevima izrađenim od materijala koji su podložni velikom toplinskom širenju. [10]

Na slici 12 jer prikazana kompenzacijska jedinica EC10.

Slika 12. Kompenzacijska jedinica EC10

Prilikom izvršavanja mjerenja u okviru ovog rada korištena su dva osjetnika, jedan senzor temperature te drugi senzor tlaka zraka.

Navedeni senzori su prikazani na slici 13.

Slika 13. Senzori kompenzacijske jedinice EC10

Na slici 13, lijevo je prikazan korišteni senzor temperature, dok je s desne strane korišteni senzor tlaka zraka.

Fakultet strojarstva i brodogradnje

Kako i kod svakog uređaja, uvijek postoje ograničenja u kojima on može raditi odnosno značajke samog uređaja. Prema tome, u tablici 6 su navedene opće značajke kompenzacijske jedinice EC10.

Raspon temperature zraka	0 °C – 40 °C	
Točnost temperature zraka	± 0,5 °C	
Raspon tlaka zraka	750 mbar — 1150 mbar	
Točnost tlaka zraka	± 2 mbar	
Raspon relativne vlažnosti	0 % – 95 % bez kondenzacije	
Točnost kompenzacije valne duljine	<u>+</u> 1 ppm	
Raspon temperature materijala	0 °C – 40 °C	
Točnost temperature materijala	± 0,1 °C	
Napajanje	(100 V, 110 V, 220 V, 240 V) ± 20 %	
Frekvencija	45 Hz – 65 Hz	
Masa	4 kg	
Dimenzije	335 mm x 176 mm x 75 mm	

Tablica 6. Opće značajke kompenzacijske jedinice EC10 [10]

Za postizanje potrebne interferencije odnosno dobivanja kvalitetne zrake za odvijanje mjerenja nije dovoljno samo imati prethodno objašnjen laser, već je potrebno imati i sustav odnosno skup elemenata da bi došlo do interferencije u potpunosti. U okviru ovog rada, će biti odrađena linearna mjerenja pa je iz tog razloga potrebno posjedovati laserski interferencijski sustav prilagođen toj vrsti mjerenja. Prema tome, u sljedećoj točki biti će ukratko opisan navedeni sustav.

3.2.3. Sustav za potpunu interferenciju zrake svjetlosti

Kako je navedeno ranije, za potpunu interferenciju zrake svjetlosti potreban je sustav koji se za linearna mjerenja sastoji od tri elementa, a to su [10]:

- linearni djelitelj snopa svjetlosti
- retroreflektori
- dijelovi za lakše optičko poravnavanje.

Navedeni korišteni sustav prikazan je na slici 14.

Slika 14. Sustav za potpunu interferenciju zrake svjetlosti

Sustav je spojen na način da je jedan retroreflektor pričvršćen na djelitelj snopa čime se dobiva krak interferometra fiksne duljine. S druge strane, drugi retroreflektor se može pomicati u odnosu na djelitelj snopa svjetlosti čime se tvori krak promjenjive duljine. Na temelju toga, laserski sustav može pratiti svaku promjenu između pomaka drugog retroreflektora i djelitelja snopa zrake svjetlosti i na taj način je usmjeravati na željeno mjesto. [10]

Od svih navedenih elemenata, u postavljanju samog sustava, veliku ulogu će odigrati retroreflektor. Prema tome, u nastavku će biti ukratko opisan njegova izvedba i princip rada.

4. RETROREFLEKTOR

Retroreflektori su optički elementi koji imaju mogućnost održavanja slike ili vraćanja slike pod 180° u smjeru izvora svjetlosti. Na koji način vraćaju snop zraka svijetlosti ovisi o tome koji oblik retroreflektora se koristi. Retroreflektori u obliku prizme vraćaju snop putem potpunih unutarnjih refleksija ili pak zrcalnih refleksija ovisno o tome jesu li lica reflektora premazana ili ne. *"Hollow"* retroreflektori za vraćanje snopa koriste zrcalne refleksije od prve dostupne površine jer se time eliminira mogućnost pojave kao što su disperzija svjetlosti, kromatska aberacija te apsorpcija koje su tipične za retroreflektore u obliku prizme. [12]

Neke od vrsta retroreflektora su [12]:

- retroreflektorske prizme i ogledala, tzv. kutne kocke odnosno kutni retroreflektor
- pravokutne prizme, tzv. porro prizme
- "*Hollow*" retroreflektori
- tzv. *Dove* prizme u obliku trapeza i dr.

U sustavu interferencije zrake svjetlosti korišten je kutni retroreflektor sa prizmom (lijevo), dok je za potrebe sastavljanja cjelokupnog mjernog sustava korišten retroreflektor u obliku prizme (desno) koji je postavljen u odgovarajući optički adapter. Prema tome, na slici 15 je prikazan svaki od njih.

Slika 15. Korišteni retroreflektori [12]
Retroreflektori u obliku prizme vraćaju sliku ili snop zraka svjetlosti u smjeru iz kojeg je ona došla, prilikom čega su odrađene tri refleksije zraka od površina unutar same prizme. Slika ili snop zraka svjetlosti će se vraćati na isti način neovisno o upadnom kutu same zrake što ih čini idealnom reflektirajućom optikom. Za ovu vrstu retroreflektora karakteristično je to da će upadna i odbijena zraka svjetlosti biti paralelne unutar tri kutne sekunde. Međutim, ako navedene zrake udare točno u središte prizme, tada se neće preklapati, već će biti pomaknute jedna u odnosu na drugu. Naprimjer, ako upadna zraka udari u retroreflektor tri milimetra desno od središta tada će se reflektirana zraka nalaziti tri milimetra lijevo od središta i obrnuto. Naravno da postoje ograničenja u reflektiranju zrake, odnosno prizme mogu reflektirati zrake one veličine kolika je maksimalan promjer zrake. Podaci o tome navedeni su za svaki pojedinačni retroreflektor unutar specifikacija danih od strane proizvođača. [12]

Na slici 16 je prikazan prethodno opisan put zrake unutar retroreflektora u obliku prizme.

Slika 16. Put zrake unutar retroreflektora [13]

5. POSTUPAK UMJEREVANJA

Postojeće norme i tehničke preporuke ne predlažu metode umjeravanja uređaja kao što je piezoelektrični generator pomaka, već su one tema recentnih znanstvenih radova. U tu svrhu, u okviru ovog rada, osmišljen je mjerni sustav kojim se provjerava točnost vertikalnog pomaka piezoelektričnog generatora pomaka uz pomoć lasera, koji je umjeren i kojim je osigurana sljedivost do definicije metra. Sam mjerni sustav se sastoji od nekoliko elemenata koji su se mijenjali ovisno o tome kakvi rezultati su dobiveni.

Postupak mjerenja i umjeravanje je rađen u Laboratoriju za precizna mjerenja dužina Fakulteta strojarstva i brodogradnje uz pomoć raspoložive opreme.

5.1. Mjerni sustav

Korišteni mjerni sustav se sastoji od:

- piezoelektričnog generatora pomaka
- interferencijskog laserskog sustava (glava lasera, kompenzacijska jedinica i sustav za potpunu interferenciju)
- pomičnog zrcala
- postolja s mogućnosti pomicanja po raznim osima
- retroreflektora i optičkog adaptera
- planparalelnih graničnih mjerki
- krutih ploča
- planparalelnih graničnih mjerki
- kutije
- računala.

Na slici 17 je prikazan cjelokupan postavljeni mjerni sustav sa vidljivim dijelovima.

Slika 17. Mjerni sustav

Kao što je vidljivo na prethodnoj slici, mjerni sustav se može podijeliti na dva dijela odnosno dva podsustava. Prvi podsustav je onaj s laserskim interferometrom, dok je drugi podsustav s piezoelektričnim generatorom pomaka te će biti objašnjeni u nastavku.

5.2. Postavljanje mjernog sustava

Kako je navedeno u prethodnom poglavlju, mjerni sustav se sastoji od dva podsustava, podsustava s laserskim interferometrom i podsustava sa piezoelektričnim generatorom pomaka.

Podsustav s laserskim interferometrom, prikazan na desnom dijelu slike 17, sastoji se od:

- He Ne laserske glave
- kompenzacijske jedinice lasera
- krutih ploča.

Svaki od navedenih dijelova ima svoju funkciju unutar samog sustava. Prema navedenom u poglavlju 3.2, preko laserske glave se dobiva zraka svjetlosti odnosno izvor svjetla pomoću kojeg je moguće mjeriti i dobiti odnos između pomaka piezoelektričnog generatora i laserskog interferometra, što je i cilj ovog rada. Time se povezuje mjerenje sa definicijom metra odnosno osigurava se sljedivost umjeravanja piezoelektričnog generatora pomaka. Laserska glava je postavljena na krute ploče čime se osigurava krutost sustava i sprječavaju vibracije lasera. Treća

komponenta ovog sustava je postavljena zasebno na stol i spojena na lasersku glavu te ona kompenzira temperaturu i tlak okoline.

Podsustav s laserom je prikazan na slici 18.

Slika 18. Podsustav mjernog sustava s laserom

Nadalje, podsustav s piezoelektričnim generatorom pomaka, prikazan na lijevom dijelu slike 17, sastoji se od:

- piezoelektričnog generatora pomaka
- pomičnog postolja
- retroreflektirajućeg zrcala
- sustava za potpunu interferenciju
- planparalelnih graničnih mjerki
- kutije
- okomitog stupa
- pomičnog zrcala
- senzora temperature i tlaka kompenzacijske jedinice lasera.

Pomično postolje je postavljeno na kruti stol na temeljima pomoću vijaka. Sastoji se od dva dijela, donji dio omogućava pomicanje po osi x odnosno osi u smjeru laserske zrake, dok gornji dio omogućava pomicanje po osi y odnosno okomito na smjer laserske zrake. Pomičnim postoljem se namješta piezoelektrični generator koji je direktno pomoću vijaka spojen na njega. Između piezoelektričnog generatora i samog pomičnog postolja nalaze se još dvije pločice koje služe isključivo za lakše vezanje pieza na postolje. Na piezoelektrični generator, s gornje strane, je postavljeno retroreflektirajuće zrcalo u obliku prizme koje se nalazi unutar odgovarajućeg kućišta za lakše postavljanje. Funkcija njega je da vraća zraku direktno u smjeru izvora i time vjerno oslikava vertikalni pomak samog piezoelektričnog generatora. Iznad retroreflektirajučeg zrcala nalazi se sustav za potpunu interferenciju koji je postavljen na planparalelne granične mjerke jednake duljine koje služe za postizanje potrebne visine te smanjenje utjecaja zraka prostorije na zraku svjetlosti. Zadnji dio ovog sustava je pomično zrcalo, koje se nalazi pričvršćeno na okomitom stupu i osigurava da se laserska zraka odbije točno na sustava potpune interferencije koja ga vodi od reflektirajućeg zrcala i piezoelektričnog generatora.

Na slici 19 je prikazan podsustav s piezoelektričnim generatorom pomaka.

Slika 19. Podsustav s piezoelektričnim generatorom pomaka

Pri podjeli ovog sustava, navedena je još i kutija. Kutija je dio sustava kojim se pokriva sam podsustav s piezoelektričnim generatorom. Na njoj je napravljen otvor koja služi kako za nesmetan ulazak laserske zrake prema ostalim dijelovima sustava, tako i za nesmetan izlazak zrake natrag prema laseru. Glavna funkcija kutije je smanjenje vanjskih utjecaja na sama mjerenja odnosno njihovu točnost. Utjecaji koji se javljaju su promjena temperature i tlaka zraka, utjecaj klima uređaja u laboratoriju te prolazak osobe prilikom procesa mjerenja.

Na slici 20 je prikazan prethodno opisan podsustav s piezoelektričnim generatorom uz dodatak kutije.

Slika 20. Podsustav s piezoelektričnim generatorom uz dodatak kutije

Da bi se mjerenje moglo uopće provoditi, uz navedene podsustave, u mjerni sustav uključuje se i računalo. Na njega su odgovarajućim priključcima priključeni laser i kontroler piezoelektričnog generatora. Računalom se pomoću odgovarajućih programa, koji će biti navedeni kasnije, postavlja pozicija odnosno pomak piezoelektričnog generatora i mjeri pomak laserske zrake u ovisnosti o tom pomaku.

Nakon svih navedenih dijelova te opisa na koji način su oni postavljeni, na slici 21 je prikazan mjerni sustav spreman za provođenje daljnjih mjerenja.

Slika 21. Cjelokupni mjerni sustav

5.3. Podešavanje mjernog sustava

Prije početka samog mjerenja, potrebno je podesiti mjereni sustav. Podešavanje postavljenog mjernog sustava sastoji se od nekoliko ključnih koraka, a to su:

- 1) namještanje elemenata u interferencijskom sustavu
- 2) sagledavanje utjecaja faktora unutar laboratorija
- 3) provjera stabilnost mjernog sustava.

Svaki od navedenih koraka biti će detaljnije opisani u nastavku.

5.3.1. Namještanje elemenata u interferencijskom sustavu

Kako je navedeno u poglavlju 3, interferencijski sustav se sastoji od lasera (laserska glava i kompenzacijska jedinica) i sustava za ostvarivanje potpune interferencije (retroreflektor i djelitelj snopa). Vrlo je važno da svi elementi interferencijskog sustava budu postavljeni na odgovarajući način jer se time dobiva kvalitetan interferencijski uzorak onog intenziteta koji se može registrirati na detektorima samog interferometra. Razina točnosti podešenja

interferencijskog sustava ovisi o točnosti postavljenog izvora laserske zrake odnosno glave lasera. Cilj ovog podešavanja je dobivanje ulazne laserske zrake u vodoravni položaj i osiguranje paralelnosti zrake u blizini lasera i u blizini podsustava s piezoelektričnim generatorom. Podešavanje elemenata interferencijskog sustava ključan je dio namještanja mjernog sustava i temelj za daljnja mjerenja.

U ovom radu, namještanje sustava se radi u četiri temeljna koraka. Za provedbu namještanja, kao pomoć, je korišten iris na stalku da bi se točno znala pozicija same laserske zrake u svakom trenutku u prostoru.

Pomoćni iris na stalku za namještanje sustava prikazan je na slici 22.

Slika 22. Pomoćni iris na stalku

Da bi se mjerni sustav mogao namjestiti na odgovarajući način, najprije je potrebno ostvariti kvalitetnu lasersku zraku, stoga je potrebno uključiti laser te pričekati određeno vrijeme koje ovisi o uvjetima u laboratoriju. Kada je laserska zraka stabilizirana, na glavi lasera je prikazano zeleno svijetlo te je on spreman za daljnje namještanje.

Na slici 23 prikazan je laser spreman za daljnje namještanje.

Slika 23. Laser spreman za namještanje sustava

Kada je laser spreman, može se krenuti u realizaciju koraka za namještanje mjernog sustava. Važno je još napomenuti da se namještanje sustava najprije provodi bez podsustava sa piezoelektričnim generatorom, a uz pomoć ravnog zrcala i prizme koja vraća zraku svjetlosti pod pravim kutom.

Četiri koraka namještanja mjernog sustava su:

1) Namještanje gornje zrake

Ovaj korak namještanja radi se na način da se pusti laserska zraka iz laserskog izvora (glave lasera) te se pomoću pomoćnog irisa na stalku provjeri paralelnost laserske zrake u blizini podsustava s laserom i u blizini podsustava s piezoelektričnim generatorom. Paralelnost se određuje na način da se odredi pozicija laserske zrake blizu izvora koja mora odgovarati poziciji zrake u blizini podsustava s piezoelektričnim generatorom kako je shematski prikazano na slici 24.

Slika 24. Prvi korak namještanja mjernog sustava

Na slici 24, ljubičastom bojom je prikazan smjer laserske zrake iz glave lasera. Rednim brojevima su označeni položaji pomoćnog irisa na stalku za provjeru paralelnosti. Kako je navedeno ranije, najprije se provjerava položaj zrake u blizini podsustava s laserom dok se nakon toga pomiče pomoćni iris te se provjerava je li zraka upada na isto mjesto unutar pomoćnog irisa u blizini podsustava s piezoelektričnim generatorom.

2) Namještanje pomoću ravnog zrcala

U ovom koraku namještanja potrebno je pomoću ravnog zrcala dobiti direktno vraćanje laserske zrake u smjeru odakle je ona došla. Uz ravno zrcalo, za ovaj korak je korišteno i pomično zrcalo na stupu. Ravno zrcalo služi da se zraka vraća točno onim putem odakle je došla, dok se vraćanje zrake u izvor osigurava postavljanjem pomičnog zrcala pod odgovarajućim kutom. Za potrebe ovog koraka namještanja korišteno je ravno zrcalo tvrtke *"Thorlabs"* te je ono prikazano je na slici 25.

Slika 25. Korišteno ravno zrcalo

Shematski prikaz puta laserske zrake kod drugog koraka prikazan je na slici 26.

Slika 26. Drugi korak namještanja mjernog sustava

Na slici 26, označeni su svi potrebni dijelovi za provođenje drugog koraka namještanja sustava dok je ljubičastom bojom i strelicama označen put laserske zrake odnosno njezino vraćanje u izvor na laserskoj glavi.

3) Dobivanje paralelnosti gornje i donje zrake

Za provođenje ovog koraka namještanja mjernog sustava, umjesto ravnog zrcala korištena je prizma unutar koje zrcalo stoji pod 45° te takvom konstrukcijom odbija zraku pod pravim kutom u odnosu na dolaznu zraku. Na temelju toga se može dobiti paralelnost zrake s gornje i donje strane, što je bitno da se dobije uvid u to koliko je svaki od podsustava dobro namješten i postoje li oscilacije zrake po vodoravnoj osi.

Za potrebe ovog koraka namještanja mjernog sustava korištena je prizma tvrtke "*Hilger & Watts*" te je ona prikazana na slici 27.

Slika 27. Korištena prizma

Shematski prikaz laserske zrake kod trećeg koraka prikazan je na slici 28.

Slika 28. Treći korak namještanja mjernog sustava

Na slici 28 označeni su svi potrebni dijelovi za provođenje trećeg koraka namještanja mjernog sustava te je ljubičastom bojom i strelicama naznačen put laserske zrake. Na slici su prikazani pomoćni irisi na stalku kao i u prvom koraku zbog toga, što se pomoću njih, u ovom slučaju, na isti način provjerava paralelnost zrake sa donje strane, samo što je potrebno iris prilagoditi visini donje zrake.

4) Ponovno provođenje drugog koraka i postavljanje ostalih dijelova mjernog sustava

U zadnjem koraku namještanja mjernog sustava potrebno je ponoviti postupak jednak onom koji se provodi u drugom koraku. Ponavljanje se radi zbog toga da ne bi došlo do eventualnog pomicanja korištenih dijelova sustava. Ponovnim postavljanjem ravnog zrcala potrebno je podesiti lasersku zraku točno u položaj iz kojeg ona dolazi. Ako to nije slučaj u potpunosti, moguće je korigirati poziciju pomoću pomičnog zrcala.

Nakon provedenog opisanog postupka, postavljaju se svi preostali dijelovi mjernog sustava čijim je pomicanjem potrebno dobiti puni signal lasera koji se vidi u računalnom programu korištenog lasera "*DX10 Dynamic measurement"*.

Ključan dio sustava za osiguranje stabilnosti je retroreflektirajuće zrcalo koje se nalazi direktno na piezoelektričnom generatoru pomaka te time osigurava vraćanje zrake u smjeru njezinog dolaska. Za dobivanje punog signala lasera, a time i kvalitetna mjerenja, nužno je da se vraćena laserska zraka poklopi s najdonjim otvorom na glavi lasera. Ako to nije slučaj odnosno kada se laserska zraka ne odbija direktno do svog izvora, tada je potrebno izvesti korekcije pomicanjem sustava za postizanje potpune interferencije i pomičnog postolja ispod piezoelektričnog generatora sve dok se laserska zraka odnosno laserski snop ne vrati u svoj izvor na odgovarajući način.

Na slici 29 je prikazan nenamješteni laser.

Slika 29. Nenamješteni laser

Na slici 30 je prikazan dobro namješteni i stabilan laser spreman za mjerenja.

Slika 30. Namješten i stabilan laser

Stabilnost lasera signalizira zeleno svijetlo na glavi prema slici 30, ali kao je ranije navedeno, za postizanje kvalitetnih rezultata mjerenja, poželjno je imati i što bolji signal laserske zrake. Signal laserske zrake vidljiv je u računalnom programu samog lasera.

Prema tome, na slici 31 je prikazan prozor računalnog programa lasera s punim signalom.

File Ca	pture Data Tools Configure Window	v Help				
Jačin	Pozicija/položaj Jačina laserskog signala					
_ / _			Exp. Coeff (ppm/deg C)	0.00	ppm/deg Celsius 💌	
	MEASUREMENT LINEAR	UNITS MILLIMETRES	Automatic compensation		Z	
_ S _	DYNAMIC MEA	SUREMENT	Air pressure	1005.10	mbar 💌	
G _			Air temperature	21.59	Celsius	
		EC10	Rel. humidity	60.83	%	
- L -			Mat. Temp. 1	21.53	Celsius	
			Mat. Temp. 2	NC	Celsius 💌	
			Mat. Temp. 3	NC	Celsius	
			Environment factor		0.63282124	
	ML10 ON	ML10 STABLE Oznaka stabilnosti	RENIS apply innovation	HAV	Faktori lasera	

Slika 31. Prozor računalnog programa lasera

5.3.2. Uvjeti okoliša

Nakon provedenog namještanja laserskog interferencijskog sustava potrebno je provjeriti preliminarnu stabilnost sustava, odnosno odrediti je li mjerni sustav dovoljno stabilan za provođenje samog mjerenja s obzirom na uvjete laboratorija. Okolišni uvjeti laboratorija moraju biti u sljedećim granicama kako bi se mjerenje moglo provesti:

- temperatura zraka: 20 °C \pm 1 °C
- tlak i vlažnost zraka nisu kontrolirani.

Prema postavu mjerenog sustava, postoji određena udaljenost između podsustava s piezoelektričnim generatorom i podsustava s laserskim interferometrom pa tako se razlikuju i uvjeti laboratorija u blizini elemenata. Također, unutar laboratorija postoji i klima uređaj koji se nalazi iznad samog postavljenog mjernog sustava. On se automatski pali i gasi ovisno o padu ili porastu temperature. Time se temperatura nastoji držati konstantna u rasponu navedenom ranije. Paljenjem klime dolazi do strujanja zraka pa je preliminarna analiza pokazala promjenu temperature kao jedan od najvažnijih utjecaja na rezultate mjerenja.

Na strani sustava s piezo elementom postavljeni su ranije navedeni senzori temperature i tlaka zraka u blizini piezoelektričnog generatora koji se kompenziraju i time smanjuju grešku mjerenja odnosno povećavaju njegovu točnost. S druge strane, na strani podsustava s laserom je taj dio teže osigurati. Za zaštitu zrake prvotno su postavljene samo planparelelne granične mjerke kao svojevrsna barijera, ali dobiveni rezultati nisu bili zadovoljavajući. Detaljnijom analizom, dodana je kutija kao zaštita cijelog podsustava s piezoelektričnim generatorom čime su se smanjili ranije navedeni utjecaju laboratorija i poboljšali rezultati mjerenja.

Određivanje utjecaja laboratorija se radi na način da se u računalnom programu lasera pomoću izbornika *Capture* odredi vrijeme trajanja ispitivanja (u ovom slučaju 10 s i 1 min), dok je pozicija piezoelektričnog generatora pomaka u odgovarajućem računalnom programu postavljena za slučaj maksimalne vrijednosti (100 μ m). Načini postavljanja navedenih parametara prikazani su u sljedećem poglavlju 5.3.3.

Najprije se analiziraju utjecaji laboratorija na sustav bez kutije na podsustavu s piezoelektričnim generatorom pa nakon toga utjecaju sa postavljenom kutijom.

Provedena mjerenja utjecaja i grafički prikazi rezultata prikazani su na sljedećim slikama.

Prvi promatrani slučaj je:

- vrijeme: t = 10 s
- mjerni sustav bez kutije
- pozicija piezoelektričnog generatora od 100 μm

Drugi promatrani slučaj je:

- vrijeme: $t = 1 \min$
- mjerni sustav bez kutije
- pozicija piezoelektričnog generatora od 100 μm

Na slikama 32 i 33 je vidljivo kako bez kutije postoje odstupanja od zadane pozicije ponegdje veća od rezolucije lasera što svakako nije dobro. Također u prvom slučaju se vidi blagi pad vrijednosti u kratkom razdoblju od svega deset sekundi, dok je u drugom slučaju vidljiv trend porasta kroz duže vremensko razdoblje što ukazuje na velik utjecaj promjene temperature okoliša u periodu od 10 sekundi i 60 sekundi.

Prema tome, potrebno je bilo poboljšati mjerni sustav da bi se dobili odgovarajući rezultati. Ranije je navedeno da je sustav poboljšan uvođenjem kutije kao zaštite. Treći promatrani slučaj je:

- vrijeme: t = 10 s
- mjerni sustav sa kutijom
- pozicija piezoelektričnog generatora od 100 μm

Slika 34. Treći slučaj utjecaja laboratorija

Četvrti promatrani slučaj je:

- vrijeme: $t = 1 \min$
- mjerni sustav sa kutijom
- pozicija piezoelektričnog generatora od 100 μm

Slika 35. Četvrti slučaj utjecaja laboratorija

Na slikama 34 i 35 vidljiva su poboljšanja u vidu pogreške odnosno odstupanja od zadane pozicije te ne postoji trend rasta ili pada vrijednosti rezultata čime se potvrđuje korisnost kutije kao elementa mjernog sustava u smanjenju utjecaja laboratorija.

5.3.3. Provjera stabilnosti mjernog sustava

Zadnji korak podešavanja mjernog sustava je provjera stabilnosti samog mjernog sustava u točno određenom okvirnom vremenu koje je potrebno za izvršavanje postupka mjerenja i čiji se rezultati uključuju u izračun mjerne nesigurnosti rezultata mjerenja. Stabilnost govori o tome koliko dobro osmišljeni mjerni sustav funkcionira odnosno da li postavljeni elementi odrađuju svoj zadatak na zadovoljavajući način i time doprinose točnosti samog mjerenja.

Problem stabilnosti može se dogoditi iz više razloga. Prvi je svakako problem vibracija piezoelektričnog generatora. Kako je navedeno u poglavlju 2, prilikom rada piezoelektričnog generatora, djelovanjem napona, stvara se električno polje koje djeluje na dinamički način i upravo to donosi određene vibracije. Tim vibracijama može doći do pomaka retroreflektirajućeg zrcala, koje je pričvršćeno na piezo generator u tom podsustavu postavljenog mjernog sustava. Kada se reflektirajuće zrcalo pomakne tada se laserska zraka ne reflektira nazad u laser pod kutom kojim je namješten laserski sustav opisan u poglavlju 5.3.1, već se kroz vrijeme njezina putanja mijenja i time dolazi do sve veće pogreške mjerenja koju

je potrebno anulirati. Drugi razlog bi bio indeks loma zraka. Prilikom ove vrste mjerenja, zraka prolazi određeni put kroz zrak. Karakteristike zraka nisu jednake, već se mijenjaju od mjesta do mjesta. Pošto je podsustav s laserom odnosno izvor zrake postavljen na određenoj udaljenosti od podsustava s piezoelektričnim generatorom, to također treba provjeriti.

Provjera stabilnosti se radi u nekoliko koraka, a to su:

1) Ispravno namještanje mjernog sustava

Namještanje mjernog sustava se radi prema postupku opisanom u poglavlju 5.3.1.

2) Određivanje vremena i pozicije

U ovom koraku provjere stabilnosti se određuje koliko vremena će se provjeravati stabilnost te na koji poziciju će se dovesti piezoelektrični generator. Za ove potrebe unutar računalnog programa "*DX10 Dynamic measurement*" postavljeno je da će se stabilnost provjeravati tri minute jer je toliko otprilike potrebno za odrađivanje seta mjerenja pa je bitno da i mjerni sustav bude stabilan u tom periodu.

Prema alatnoj traci prikazanoj na slici 31, odabran je izbornik *Capture* te su postavljeni parametri za odgovarajuće vrijeme provjere stabilnosti.

• *Capture rate* = 10 Hz

Navedenim parametrom se unosi željeni broj točaka u sekundi koji se želi ispitati. U ovom slučaju to iznosi 10 točaka u sekundi.

• Total points = 1800

Navedenim parametrom se unosi željeni broj točaka. U ovom slučaju to iznosi 1800 točaka.

Prema izrazu 1, uz navedene vrijednosti dobiva se vrijeme trajanja same provjere stabilnosti mjernog sustava.

$$t (vrijeme) = \frac{Total \ points}{Capture \ rate} \tag{1}$$

$$t (vrijeme) = \frac{1800 \text{ točaka}}{10 \text{ točaka/s}} = 180 \text{ s} = 3 \text{ min}$$

Izgled prozora za opisano postavljanje vremena provjere stabilnosti mjernog sustava prikazan je na slici 36.

Capture Initialization					
Capture rate		10 Hz 🔻			
Pre-trigger time	[17005.500]	0.000	s		
Post-trigger time	[17065.500]	60.000	s		
Total time	[17065.500]	60.000	s		
Points pre-trigger Points post-trigger Total points	[170055] [170655] [170656]	0 600 601			
Round up points to next power of 2 OK Title Info					

Slika 36. Prozor računalnog programa za drugi korak stabilnosti

3) Određivanje pozicije

U ovom koraku se piezoelektrični generator pomoću računalnog programa "E-816 - PZT Control" dovodi na određenu poziciju na kojoj se i zadržava cijelo vrijeme provjere stabilnosti sustava uz rad samo njegovih unutarnjih elemenata. Pozicija se postavlja pomoću određenih naredbi unutar programa. Za ove potrebe piezoelektrični generator je postavljen na maksimalnu poziciju odnosno visinu od 100 µm.

Izgled prozora računalnog programa piezoelektričnog generatora pomaka sa odgovarajućim postavljanjem na poziciju prikazan je na slici 37, dok će detaljniji opis biti prikazan u poglavlju 5.4.

PI E-816 - PZT Control		
<u>File Edit View E-816 Move/Position</u>	n Vo <u>l</u> tage Wave <u>T</u> able <u>H</u> elp	
日 🖻 🗙 🗸 🖬 🖓 🖓 🦂	BDR ERR IZC SVO DCO DCO	
SVA SVA SVR VOL MOV MVR MOV POS U∓ ? U+ ? → → P? ?		
Axis ServoOn Value Unit A I✓ -000.686 [μm]	mvr a100 POS2 P POS2 A mov a0 POS? A aktuatora na traženu POS? A visinu	Axis Voltage A 0.086900

Slika 37. Izgled prozora računalnog programa "E-816 – PZT Control"

Nakon uspješno namještenih parametara potrebnih za provjeru stabilnosti mjernog sustava, potrebno je pokrenuti samu analizu. Tijekom trajanja analize poželjno je da uvjeti laboratorija miruju odnosno da nema kretanja osoba unutar njega, kretanja i rada drugih strojeva i slično. Istekom vremena analize dobiveni su rezultati prikazani na slici 38.

Slika 38. Rezultati analize stabilnosti sustava

Prema dobivenim rezultatima vidljivo je da je sustav stabilan te da za navedeno vrijeme od tri minute pogreška iznosi 4 nm u pozitivnom smjeru dok u negativnom iznosi 2 nm što je s obzirom na rezoluciju lasera od 10 nm vrlo dobra stabilnost.

Nakon uspješnog provođenja sva tri koraka podešavanja mjernog sustava, može se krenuti u postupak mjerenja odnosno umjeravanja piezoelektričnog generatora pomaka praćenjem njegovog vertikalnog pomaka.

5.4. Postupak mjerenja

Postupak mjerenja je vrlo sličan postupcima provjere stabilnosti i utjecaja laboratorijskih uvjeta samo što se uzima više slučajeva odnosno više pozicija piezoelektričnog generatora kroz njegovo mjerno područje te se ono uspoređuje s očitanjima pozicije izmjerene laserom. Prema tome, postupak mjerenja se provodi prema sljedećim koracima:

- dovođenje piezoelektričnog generatora u željenu poziciju pomoću računalnog programa
- očitanje te iste pozicije pomoću računalnog programa lasera
- zapisivanje rezultata u tablicu
- izračun odstupanja promatranih vrijednosti i dobivenih vrijednosti
- analiza rezultata.

Radi točnosti i ponovljivosti samog mjerenja, piezoelektrični generator se postavlja na pozicije odnosno visine od 0, 20, 40, 60, 80 te 100 μ m u jednom smjeru te se vraća na isti način do nulte pozicije. Postavljanje se viši u računalnom programu "*E-816 – PZT Control"* pomoću odgovarajućih funkcija čiji je osnovni prozor informativno već prikazan na slici 37 u poglavlju 5.3.3., dok će njihov kratki opis biti dan u nastavku.

Unutar samog računalnog programa postoji široka paleta funkcija ovisno o tome koja je svrha samog mjerenja. Za ovu vrstu mjerenja korištene su funkcije:

- "mov" funkcija koja uz zadani argument odnosno brojčanu vrijednost odvodi piezoelektrični generator na željenu poziciju
- "*mvr*" funkcija koja također odvodi piezoelektrični generator na željenu poziciju, ali relativno u odnosu na prethodno postavljenu poziciju
- "POS?" funkcija koja ispisuje točnu poziciju piezoelektričnog generatora sa svim internim pogreškama

Na slici 39 je prikazan prozor računalnog programa piezoelektričnog generatora sa svim gore navedenim, korištenim funkcijama.

PI E-816 - PZT Control			
<u>File Edit View E-816 Move/Position</u>	n Vo <u>l</u> tage Wave <u>T</u> able <u>H</u> elp		
Image: System in the			
Axis Servo On Value Unit A I -000.686 [μm]	mvr a100 Željena pozicija POS? A Funkcija mov a0 Pos? A POS? A Pomak piezo aktuatora u nov a0 nulti (početni) položaj mvr a10 Pos? A PoS? A Pomak piezo aktuatora u nvr a10 Pos? A pos? A Pomak piezo aktuatora u mvr a20 Pomak piezo aktuatora pos? A na visinu od 20 μm mvr a20 Funkcija za ispis mvr a20 trenutne, točne pozicije Pos? A mvr a20	* 	Axis Voltage A 0.086900 A 0.08000
<u></u>	99.9802 99.9796 99.9811 Točne vrijednosti pozicije 99.9811 0.0126 0.0132 0.0124	^	

Slika 39. Računalni program piezoelektričnog generatora pomaka s funkcijama

Sam postupak mjerenja započinje postavljanjem piezoelektričnog generatora pomaka u njegov nulti položaj odnosno na 0 µm pomoću naredbe "mov a0" kao što je prikazano na slici 39. Nakon toga je potrebno u računalnom programu lasera resetirati vrijednost pozicije odnosno postaviti istu na nulu da se laserski sustav prilagodi trenutnom položaju i dobije izgled prozora kao što je prikazano ranije na slici 31.

Nakon postavljanja laserskog sustava na nulu može se krenuti u daljnja mjerenja. Ostatak mjerenja se odvija na način da se unutar računalnog programa piezoelektričnog generatora pomaka pomoću naredbe "mvr a20" vrši pomak piezoelektričnog generatora za 20 µm dok se ne dostigne maksimalna vrijednost od 100 µm. Da bi se piezoelektrični generator ponovno vratio u početni odnosno nulti položaj na 0 µm potrebno je umjesto funkcije "mvr a20" koristiti funkciju "mvr a-20". Takvim načinom mjerenja prolazi se kroz cijelo mjerno područje piezo generatora sa dovoljno malim intervalima da rezultati mjerenja budu relevantni za analizu. Na slici 40 je prikazano opisano zadavanje funkcija za potrebna mjerenja.

🔁 E-816 - PZT Control			
File <u>E</u> dit <u>V</u> iew E-816 Move/ <u>P</u> osition Vo <u>l</u> tage Wave <u>T</u> able <u>H</u> elp			
SVA SVA VI VIL MOV MYR MOV POS			
Axis Servo On Value Unit mov a 0	^	Axis	Voltage
A \overrightarrow{v} -000.686 [µm] mvr a20 mvr a20		A	0.086900
mvr a20			
mvr a20 mvr a20			
mvr a-20			
mvr a-20			
mvr a-20 mvr a-20			
		Axis	Position 0.012100
	_		
	=		
	-		

Slika 40. Zadavanje pozicija piezoelektričnog generatora pomaka

Nakon svake upisane funkcije odnosno odlaska piezoelektričnog generatora na određenu poziciju, u računalnom programu lasera očitava se izmjerena vrijednost te se dobiveni rezultati zapisuju u odgovarajuću tablicu. Oduzimanjem vrijednosti koju pokazuje laserski sustav od vrijednosti koja je postavljena pomakom piezoelektričnog generatora dobiva se pogreška mjerenja odnosno odstupanje od rezultata mjerenja prema izrazu 2.

$$odstupanje = pos_{LASER} - pos_{PIEZO}$$
(2)

Gdje je:

- *pos_{PIEZO}* postavljena pozicija piezoelektričnog generatora pomaka
- *pos_{LASER}* očitana pozicija lasera

Mjerenja su ponovljena deset puta u jednom i drugom smjeru te su pojedinačni rezultati sa svojim odstupanjima prikazani u odgovarajućim tablicama koje se nalaze u prilogu I, dok su u sljedećim tablicama prikazane srednje vrijednosti između istih vrijednosti postavljenih pozicija sa svojim odstupanjima. Prilikom analize samih rezultata utvrđeno je da ne postoji histereza te je opravdano odstupanje pojedine pozicije izraziti kao aritmetičku sredinu rezultata odstupanja iz oba smjera.

Uz tablice, u nastavku su dani i grafički prikazi dobivenih odstupanja od nominalne pozicije u jednom i u drugom smjeru sa srednjim vrijednostima i odstupanjima.

	Mjerenje prema gore od 0 μm do 100 μm	Mjerenje prema dolje od 100 μm do 0 μm	Srednja vrijednost,	Odstupanje,
<i>pos_{PIEZO}</i> , μm	pos _{LA}	_{SER} , μm	μm	
0	0,001	0,009	0,005	5
20	20,003	19,999	20,001	1
40	40,017	40,014	40,0155	15,5
60	60,023	60,022	60,0225	22,5
80	80,016	80,017	80,0165	16,5
100	99,989	99,989	99,989	-11

Tablica 7. Rezultati prvog mjerenja

Slika 41. Prikaz odstupanja rezultata kod prvog mjerenja

	Mjerenje prema gore od 0 μm do 100 μm	Mjerenje prema dolje od 100 μm do 0 μm	Srednja vrijednost,	Odstupanje,
<i>pos_{PIEZO}</i> , μm	pos _{LA}	_{SER} , μm	μm	11111
0	0	0,007	0,0035	3,5
20	20,012	20,014	20,013	13
40	40,032	40,033	40,0325	32,5
60	60,042	60,041	60,0415	41,5
80	80,037	80,034	80,0355	35,5
100	100,013	100,013	100,013	13

Tablica 8. Rezultati drugog mjerenja

Slika 42. Prikaz odstupanja rezultata kod drugog mjerenja

	Mjerenje prema gore od 0 μm do 100 μm	Mjerenje prema dolje od 100 μm do 0 μm	Srednja vrijednost,	Odstupanje,
<i>pos_{PIEZO}</i> , μm	pos _{LA}	_{SER} , μm	μm	
0	0,001	0,002	0,0015	1,5
20	20,012	20,010	20,011	11
40	40,032	40,028	40,030	30
60	60,040	60,038	60,039	39
80	80,034	80,033	80,0335	33,5
100	100,023	100,023	100,023	23

Tablica 9. Rezultati trećeg mjerenja

Slika 43. Prikaz odstupanja rezultata kod trećeg mjerenja

	Mjerenje prema gore od 0 μm do 100 μm	Mjerenje prema dolje od 100 μm do 0 μm	Srednja vrijednost,	Odstupanje, nm
<i>pos_{PIEZO}</i> , μm	pos_{LA}	_{SER} , μm	μm	
0	0	0,002	0,001	1
20	20,012	20,012	20,012	12
40	40,033	40,031	40,032	32
60	60,041	60,039	60,040	40
80	80,036	80,036	80,036	36
100	100,014	100,014	100,014	14

TT 11 10	D 14 4*	× , ,	• •
Tablica 10.	Rezultati	cetvrtog	mjerenja

Slika 44. Prikaz odstupanja kod četvrtog mjerenja

	Mjerenje prema gore od 0 μm do 100 μm	Mjerenje prema dolje od 100 μm do 0 μm	Srednja vrijednost,	Odstupanje,
<i>pos_{PIEZO}</i> , μm	pos _{LA}	_{SER} , μm	μm	
0	0	0,006	0,003	3
20	20,012	20,015	20,0135	13,5
40	40,033	40,032	40,0325	32,5
60	60,043	60,043	60,043	43
80	80,038	80,037	80,0375	37,5
100	100,017	100,017	100,017	17

Tablica 11.Rezultati petog mjerenja

	Mjerenje prema gore od 0 μm do 100 μm	Mjerenje prema dolje od 100 μm do 0 μm	Srednja vrijednost,	Odstupanje,
<i>pos_{PIEZO}</i> , μm	pos _{LA}	_{SER} , μm	μm	
0	0	0,009	0,0045	4,5
20	20,013	20,018	20,0155	15,5
40	40,033	40,036	40,0345	34,5
60	60,042	60,044	60,043	43
80	80,037	80,037	80,037	37
100	100,017	100,017	100,017	17

Tablica 12. Rezultati šestog mjerenja

Slika 46. Prikaz odstupanja kod šestog mjerenja

	Mjerenje prema gore od 0 μm do 100 μm	Mjerenje prema dolje od 100 μm do 0 μm	Srednja vrijednost,	Odstupanje,
<i>pos_{PIEZO}</i> , μm	pos _{LA}	μm		
0	0,001	0,006	0,0035	3,5
20	20,014	20,018	20,016	16
40	40,036	40,037	40,0365	36,5
60	60,044	60,045	60,0445	44,5
80	80,041	80,039	80,040	40
100	100,018	100,017	100,018	18

Tablica 13.Rezultati sedmog mjerenja

Slika 47. Prikaz odstupanja kod sedmog mjerenja

	Mjerenje prema gore od 0 μm do 100 μm	Mjerenje prema doljeSrednjaod 100 μm do 0 μmvrijednost,		Odstupanje, nm	
<i>pos_{PIEZO}</i> , μm	pos _{LA}	μm			
0	0	0,002	0,001	1	
20	20,014	20,014	20,014	14	
40	40,036	40,032	40,034	34	
60	60,044	60,040	60,042	42	
80	80,038	80,036	80,037	37	
100	100,019	100,019	100,019	19	

Tablica 14.Rezultati osmog mjerenja

Slika 48. Prikaz odstupanja kod osmog mjerenja

	Mjerenje prema gore od 0 μm do 100 μm	Mjerenje prema dolje od 100 μm do 0 μm	prema dolje Srednja m do 0 μm vrijednost,	
<i>pos_{PIEZO}</i> , μm	pos _{LA}	μm		
0	0	0,001	0,0005	0,5
20	20,014	20,012	20,013	13
40	40,036	40,032	40,034	34
60	60,044	60,040	60,042	42
80	80,038	80,036	80,037	37
100	100,020	100,020	100,020	20

Tablica 15.Rezultati devetog mjerenja

Slika 49. Prikaz odstupanja kod devetog mjerenja

	Mjerenje prema gore od 0 μm do 100 μm	a goreMjerenje prema doljeSrednja0 μmod 100 μm do 0 μmvrijednost,		Odstupanje,
<i>pos_{PIEZO}</i> , μm	pos _{LA}	μm	1111	
0	0	0,001	0,0005	0,5
20	20,014	20,012	20,013	13
40	40,035	40,032	40,0335	33,5
60	60,044	60,040	60,042	42
80	80,038	80,035	80,0365	36,5
100	100,020	100,020	100,020	20

Tablica 16.Rezultati desetog mjerenja

Slika 50. Prikaz rezultata kod desetog mjerenja

Prema dobivenim rezultatima mjerenja i danim grafičkim prikazima vidljivo je da u pojedinim slučajevima dolazi do većih odstupanja kod nulte vrijednosti, odnosno da se početna, nulta, očitana vrijednost razlikuje od dobivene vrijednosti prilikom povratka u nultu poziciju. Tako ne dolazi do zatvaranja rezultata mjerenja pa se radi utvrđivanja stvarnih vrijednosti mogu

izbaciti oni rezultati mjerenja kod kojih je to slučaj. Može postojati više razloga zbog kojih dolazi do takve pojave, ali svakako da je jedan od bitnijih promjena okolišnih uvjeta prilikom provedbe tog seta mjerenja.

Značajna i vidljiva razlika u vrijednostima nule vidljiva je kod prvog, drugog, petog, šestog i sedmog mjerenja pa se oni ne razmatraju u daljnjoj analizi. Da bi se tvrdnja potvrdila, to jest da bi se sa sigurnošću moglo reći da će se analiza poboljšati, potrebno je izračunati raspone *R* i procijenjeno standardno odstupanje *s* na temelju svih deset mjerenja za svaku poziciju i usporediti dobivene rezultate sa rasponima i procijenjenim standardnim odstupanjem pet preostalih, "točnijih", mjerenja. Raspon se određuje razlikom između minimalne i maksimalne vrijednosti odstupanja te govori o tome unutar koje vrijednosti se kreću rezultati mjerenja, dok procijenjeno standardno odstupanje označava raspršenost vrijednosti u odnosu na aritmetičku sredinu dobivenih odstupanja. Nužno je da dobivene vrijednosti budu čim manje da bi analiza u konačnici dala relevantne rezultate.

U tablici 17 su prikazani rasponi i standardne devijacije odstupanja za deset odrađenih mjerenja.

	<i>pos_{PIEZO}</i> , μm											
Br. mjerenja		0	20	40	60	80	100	80	60	40	20	0
1.		1	3	17	23	16	-11	17	22	14	-1	9
2.		0	12	32	42	37	13	34	41	33	14	7
3.		1	12	32	40	34	23	33	38	28	10	2
4.	um	0	12	33	41	36	14	36	39	31	12	2
5.	nje,	0	12	33	43	38	17	37	43	32	15	6
6.	tupa	0	13	33	42	37	17	37	44	36	18	9
7.	Ods	1	14	36	44	41	18	39	45	37	18	6
8.		0	14	36	44	38	19	36	40	32	14	2
9.		0	14	36	44	38	20	36	40	32	12	1
10.		0	14	35	44	38	20	35	40	32	12	1
<i>R</i> , nm	l	1	11	19	21	25	34	22	23	23	19	8
s, nm		0,5	3,3	5,6	6,4	7,0	9,6	6,2	6,4	6,4	5,4	3,2

 Tablica 17.
 Rasponi i standardne devijacije za deset odrađenih mjerenja
Prema dobivenim rasponima i procijenjenim standardnim odstupanjima za set od deset mjerenja vidljivo je da maksimalan raspon iznosi 34 nm, dok maksimalno procijenjeno standardno odstupanje iznosi 9,6 nm.

Uklanjanjem prethodno navedenih mjerenja, u daljnju analizu uključuju se treće, četvrto, osmo, deveto i deseto mjerenje te su njihova odstupanja od nominalne pozicije, rasponi i standardne devijacije prikazani u tablici 18.

		<i>pos_{PIEZO}</i> , μm										
Br. mjerenja		0	20	40	60	80	100	80	60	40	20	0
1. (3.)	u	1	12	32	40	34	23	33	38	28	10	2
2. (4.)	e, nr	0	12	33	41	36	14	36	39	31	12	2
3. (8.)	panj	0	14	36	44	38	19	36	40	32	14	2
4. (9.)	dstu	0	14	36	44	38	20	36	40	32	12	1
5. (10.)	0	0	14	35	44	38	20	35	40	32	12	1
<i>R</i> , nn	n	1	2	4	4	4	9	3	2	4	4	1
s, nn	1	0,4	1,1	1,8	1,9	1,8	3,3	1,3	0,9	1,7	1,4	0,5

 Tablica 18.
 Rasponi i standardne devijacije za pet odabranih mjerenja

Prema dobivenim rasponima i procijenjenom standardnom odstupanju za set od pet odabranih mjerenja vidljivo je da maksimalan R iznosi 9 nm i to kod maksimalne vrijednosti pozicije od 100 μ m, dok maksimalni *s* iznosi 3,3 nm kod iste vrijednosti pozicije. Dobiveni rezultati su bolji od prijašnjih za set od deset mjerenja te se potvrđuje pretpostavka i dobivaju se rezultati pomoću kojih je moguće analizu provesti na kvalitetniji i pouzdaniji način.

U konačnici da bi se odredilo konačno odstupanje po pozicijama, potrebno je izračunati odstupanja od srednje vrijednosti srednjih vrijednost pozicije čime se dolazi do vrijednosti odstupanja za svaku od postavljenih pozicija piezoelektričnog generatora pomaka. U račun ulaze samo podaci odnosno odstupanja za pet odabranih setova mjerenja te su dobivene vrijednosti prikazane u tablici 19.

		В					
<i>pos_{PIEZO},</i> μm	1. (3.)	2. (4.)	3. (8.)	4. (9.)	5. (10.)	Srednja vrijednost, μm	Odstupanje, nm
0	0,0015	0,001	0,001	0,0005	0,0005	0,001	0,9
20	20,011	20,012	20,014	20,013	20,013	20,013	12,6
40	40,030	40,032	40,034	40,034	40,0335	40,033	32,7
60	60,039	60,04	60,042	60,042	60,042	60,041	41
80	80,0335	80,036	80,037	80,037	80,0365	80,036	36
100	100,023	100,014	100,019	100,020	100,020	100,019	19,2

 Tablica 19.
 Srednje vrijednosti srednjih vrijednosti odstupanja za odabranih pet mjerenja

Dobivene vrijednosti odstupanja na temelju srednjih vrijednosti srednjih vrijednosti rezultata mjerenja prikazane su grafički na slici 51.

Slika 51. Prikaz odstupanja srednjih vrijednosti od srednjih vrijednosti pozicije

Iz slike 51 vidljivo je da odstupanje od nominalne vrijednosti u nultoj poziciji piezoelektričnog generatora pomaka iznosi 0,9 nm, na poziciji od 20 μm iznosi 12,6 nm, na 40 μm iznosi 32,7 nm, na 60 μm iznosi 41 nm, na 80 μm iznosi 36 nm te u konačnici na maksimalnoj visini iznosi 19,2 nm.

Odstupanja rastu s povećanjem vrijednosti pozicije što je posljedica okolišnih utjecaja i utjecaja pomaka dijelova sustava na koje nije moguće direktno utjecati, ali će oni biti procijenjeni te dani uz rezultat mjerenja unutar proračuna mjerne nesigurnosti u sljedećem poglavlju.

6. MJERNA NESIGURNOST

Kako bi se procijenila mjerna nesigurnost potrebno je široko znanje o postavljanom sustavu i svim faktorima koji mogu u većoj ili manjoj mjerni utjecati na krajnji rezultat provedenog mjerenja. Uz to, mjernom nesigurnosti se ocjenjuje kvaliteta provedenog mjerenja te rezultat postaje relevantan za usporedbu kako sa drugim rezultatima iz istog područja, tako i sa referentnim rezultatima koji se daju u specifikacijama i normama za određeno područje primjene.

Navedeni razlozi nisu jedini zbog kojih je potrebno izvršiti procjenu mjerne nesigurnosti, nego se mjerna nesigurnost procjenjuje i zbog [14]:

- nepotpune i nesvršene definicije mjerne veličine
- uvedenih pretpostavki prilikom provedbe postupka mjerenja
- djelovanja vanjskih faktora na mjerni postupak i mjerni sustav kao što su temperatura, tlak, nesavršenosti uređaja, itd.
- utjecaja mjeritelja odnosno različitosti očitanja rezultat od strane različitih mjeritelja.

U uvodnom dijelu je navedeno da se mjerna nesigurnost rezultata mjerenja može procjenjivati na tri osnovna načina, a to su [1]:

- GUM metoda
- MCS metoda (Monte Carlo simulacija)
- procjena ponovljivosti i obnovljivosti rezultata mjerenja sukladno normi 21748:2004.

U ovom radu će biti provedena procjena mjerne nesigurnosti GUM metodom. Prema tome, u nastavku će biti dan opis provedbe procjene mjerne nesigurnosti navedenom metodom.

6.1. Procjena mjerne nesigurnosti GUM metodom

Procjena mjerne nesigurnosti GUM metodom vrši se u četiri osnovna koraka [15]:

1) Postavljanje mjernog modela

U većini slučajeva mjerenja veličina Y se ne mjeri izravno nego se određuje iz N drugih veličina $X_1, X_2, X_3, ..., X_N$ na temelju funkcijskog odnosa koji predstavlja osnovni matematički model za potpuno određivanje mjerene veličine. [15]

Slika 52. Skalarni odnos između ulaznih veličina i mjerene veličine [16]

Matematički model se može izraziti na temelju funkcijskog odnosa f:

$$Y = f(X_1, X_2, ..., X_N)$$
(3)

Funkcija f prikazuje mjerni postupak kojim se određuje izlazna veličina Y iz vrijednosti izlaznih veličina X_i . Ulazne veličine X_i mogu se promatrati same kao mjerene veličine ili ovisiti o drugim veličinama, uključujući ispravke i faktore ispravka zbog sustavnih djelovanja. Kada se uz ulazne veličine X_i nalazi i faktor ispravka tada se dolazi do složenog funkcijskog odnosa f. Do traženog oblika funkcije f može se doći na eksperimentalan način ili ona može postojati kao odnos koji se mora brojčano proračunati. [15]

2) Određivanje standardne nesigurnosti procjenom ulaznih veličina

Određivanje standardne nesigurnosti $u(X_i)$ procjenom ulaznih veličina X_i može se vršiti na dva načina:

• Standardna nesigurnost A vrste

Standardna nesigurnost A vrste se određuje na temelju niza ponovljenih mjerenja uz primjenu bilo koje prihvatljive statističke metode. Neke od metoda su računanje standardnost odstupanja srednje vrijednosti mjernog niza, primjena metode najmanjih kvadrata, metoda ANOVA (analiza varijanci). Najčešće su rezultati analizirani normalnom i studentovom razdiobom. [15]

Formula prema kojoj se izračunava glasi [15]:

$$u(X_i) = s(\bar{X}_i) \tag{4}$$

$$s(\bar{X}_i) = \frac{s(X_i)}{\sqrt{n}} \tag{5}$$

Gdje je: $u(X_i)$ – standardna mjerna nesigurnost n – broj ponovljenih mjerenja

• Standardna nesigurnost B vrste

Standardna nesigurnost B vrste se određuje na temelju znanstvenih prosudbi svih raspoloživih podataka o mogućoj promjenjivosti veličine X_i . Pod znanstvenim prosudbama se misli na podatke prijašnjih mjerenja, iskustvo ili poznavanje ponašanja i svojstava instrumenata, tehničke podatke proizvođača instrumenata, podatke iz priručnika, itd. [15]

Procjena se zasniva na apriornim razdiobama vjerojatnosti odnosno funkcijama gustoće vjerojatnosti: normalnoj razdiobi, pravokutnoj razdiobi, trokutastoj razdiobi [15].

3) Određivanje sastavljene standardne nesigurnosti

Sastavljena standardna nesigurnost $u_c(y)$ određuje se odgovarajućim sastavljanjem standardnih nesigurnosti procjena ulaznih veličina. Može se određivati na dva različita načina ovisno o odnosu između ulaznih veličina. [15]

Ukoliko ulazne veličine nisu međusobno povezane [15]:

$$u_{\rm c}(y) = \sqrt{\sum_{i=1}^{N} c_i^2 u^2(X_i)}$$
(6)

Ukoliko su ulazne veličine međusobno povezane [15]:

$$u_{\rm c}(y) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial X_i}\right)^2 u^2(X_i) + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\partial f}{\partial X_i} \frac{\partial f}{\partial X_j} u(X_i, X_j)}$$
(7)

Gdje su:
$$c_i = \frac{\partial f}{\partial x_i}$$
 – koeficijenti osjetljivosti

4) Određivanje proširene nesigurnosti

Proširena mjerna nesigurnost (U) je veličina koja se dobiva množenjem složene standardne nesigurnosti $u_c(y)$ s faktorom pokrivanja k, a određuje interval oko mjernog rezultata za koji se može očekivati da obuhvaća velik dio razdiobe koje bi se razumno mogle pripisati mjerenoj veličini. [15]

$$U = k \cdot u_c(y) \tag{8}$$

U drugom koraku opisa procijene mjerne nesigurnosti GUM metodom spominju se funkcije gustoće vjerojatnosti koje su nužne da bi se kvalitetno procijenila mjerna nesigurnost. Prema tome, u nastavku će biti opisane one najčešće korištene.

6.1.1. Funkcije gustoće vjerojatnosti

Pod funkcijom gustoće vjerojatnosti smatra se razdioba vjerojatnosti ulaznih i izlaznih varijabli. Postoji velik broj razdioba vjerojatnosti, ali neke od najčešće korištenih su [1]:

- normalna razdioba
- pravokutna razdioba
- trokutasta razdioba.

6.1.1.1. Normalna razdioba

Normalna ili Gaussova razdioba je teorijska razdioba koja se koristi za proučavanje različitih varijabli koje ju ne aproksimiraju u potpunosti. Graf je zvonolikog i simetričnog oblika te je određena sa dva parametra (μ, σ) kojima je određena njezina funkcija gustoće prikazana sljedećim izrazom. [1]

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
(9)

Gdje je:

 μ – očekivana vrijednost populacije

 σ – standardna devijacija populacije

Izgled normalne razdiobe je prikazan na slici 53.

6.1.1.2. Pravokutna razdioba

Pravokutna odnosno jednolika ili uniformna razdioba je razdioba vjerojatnosti unutar čijih granica je vjerojatnost nekog događaja uvijek ista. [1]

Krajevi pravokutne razdiobe određuju područje unutar kojeg se događaj odvija s određenom vjerojatnosti dok s druge strane, izvan granica, vjerojatnost za odvijanje događaja je jednaka nuli.

Izgled pravokutne razdiobe prikazan je na slici 54.

Slika 54. Pravokutna razdioba [1]

Prema slici 54, funkcija gustoće vjerojatnosti pravokutne razdiobe glasi:

$$f(x) = \begin{cases} k, & a_- \le 0 \le a_+ \\ 0, & ostalo \end{cases}$$
(10)

Preko pravokutne razdiobe moguće je i izračunati sastavnicu standardne nesigurnosti koja se računa prema izrazu:

$$u(x_i) = \frac{a}{\sqrt{3}} \tag{11}$$

6.1.1.3. Trokutasta razdioba

Trokutasta razdioba je kontinuirana funkcija vjerojatnosti koja je u zahtjevnijem slučaju definirana s tri veličine kojima je određena funkcija gustoće vjerojatnost, dok je za potrebe Monte Carlo simulacije dovoljna simetrična trokutasta razdioba. Kod simetrične trokutaste razdiobe rubovi iznose $\mu \pm a$, dok je najvjerojatniji događaj iznosa μ , a događaju lijevo i desno

od te vrijednosti su manje vjerojatni. Ako se događaj nalazi izvan granica a_{-} i a_{+} tada oni nisu vjerojatni odnosno ne postoje. [1]

Izgled simetrične trokutaste razdiobe prikazan je na slici 55.

Slika 55. Simetrična trokutasta razdioba [1]

Kada se neki događaj promatra trokutastom razdiobom, moguće je izračunati i sastavnicu mjerne nesigurnosti koja se računa prema izrazu:

$$u(x_i) = \frac{a}{\sqrt{6}} \tag{12}$$

Opisana GUM metoda za procjenu mjerne nesigurnosti koristi se u ovom radu za dobivanje maksimalne pogreške, odnosno mjerne nesigurnosti za maksimalnu postavljenu poziciju piezoelektričnog generatora pomaka od $100 \,\mu\text{m}$ te za dobivanje procijenjene mjerne nesigurnosti za svaku od promatranih pozicija piezoelektričnog generatora pomaka.

6.2. Mjerna nesigurnost na temelju dobivenih rezultata mjerenja

Nakon što je opisana metoda za procjenu mjerne nesigurnosti moguće je krenuti u postavljanje matematičkog modela koji je temelj za izračunavanje ukupne nesigurnosti dobivenog rezultata mjerenja. Matematički model se određuje temeljem rezultata mjerenja i podataka dobivenih prilikom provođenja samog postupka mjerenja.

Matematički model mjerne nesigurnosti glasi:

$$\Delta PIEZO = (L_2 - L_1) + \delta_{BS} + \delta_{LSL} + \delta_{CE} + \partial_{DP} + \delta_{stab}$$
(13)

Gdje je:
$$\Delta PIEZO$$
 – odstupanje od nominalne vrijednosti pozicije piezo aktuatora, nm

 L_1, L_2 – očitanje vrijednosti pozicije na laseru, µm δ_{BS} – pogreška dobivena kompenzacijom brzine svijetlosti, nm δ_{LSL} – ograničenje laserskog sustava, nm δ_{CE} – kosinus pogreška interferometra, nm δ_{DP} – utjecaj mrtvog hoda, nm δ_{stab} – stabilnost mjernog sustava, nm

Prikazani model se sastoji od šest sastavnica koje su prilikom mjerenja označene kao utjecaji koji mijenjaju odnosno donose razliku između postavljene i izmjerene vrijednosti pomaka piezoelektričnog generatora. U nastavku će svaka pojedinačna sastavnica biti objašnjena te će biti izračunat njezin doprinos mjernoj nesigurnosti rezultata mjerenja. Najprije će biti izračunata pogreška i nesigurnost GUM metodom i to pri maksimalnom iznosu pomaka od 100 µm, dok će nakon toga nesigurnost biti prikazana kao ovisnost o postavljenoj poziciji.

6.2.1. Nesigurnost očitanja interferometra, $u(L_i)$

Nesigurnost očitanja interferometra određuje se temeljem rezolucije odnosno mogućnosti očitanja postavljene pozicije piezoelektričnog generatora pomaka u računalnom programu lasera. Unutar njega je moguće razlikovati pomak u veličini od jednog nanometra. Za potrebe izračunavanja ove sastavnice mjerne nesigurnosti može se procijeniti da će maksimalna razlika između očitane vrijednosti i izmjerene vrijednosti iznositi polovinu vrijednosti rezolucije očitanja.

Prema tome, pojedinačne nesigurnosti za ovu sastavnicu mjerne nesigurnosti uz pretpostavku pravokutne razdiobe iznose:

$$u(L_2) = \frac{0,001}{2 \cdot \sqrt{3}} = 0,0003 \ \mu\text{m} = 0,3 \ \text{nm}$$
 (14)

$$u(L_1) = \frac{0,001}{2 \cdot \sqrt{3}} = 0,0003 \ \mu\text{m} = 0,3 \ \text{nm}$$
 (15)

Gdje je: L_2 – izmjerena vrijednosti pozicije, nm

 L_1 – očitana vrijednost, nm

Koeficijenti osjetljivosti iznose:

$$c(L_2) = \frac{\partial \Delta PIEZO}{\partial L_2} = 1$$
(16)

$$c(L_1) = \frac{\partial \Delta PIEZO}{\partial L_1} = 1$$
(17)

Ukupna mjerna nesigurnost izračunava se prema sljedećem izrazu i iznosi:

$$u(L_i) = \sqrt{\sum_{i=1}^{N} c_i^2 u^2(X_i)}$$
(18)

$$u(L_i) = \sqrt{1^2 \cdot 0.3^2 + 1^2 \cdot 0.3^2} = 0.42 \text{ nm}$$
(19)

6.2.2. Pogreška dobivena kompenzacijom brzine svjetlosti, δ_{BS}

Kompenzacija brzine svjetlosti je pogreška koja je vezana uz pogrešku samog laserskog sustava koji je dio postavljenog mjernog sustava. Prema specifikacijama lasera, iznos ove pogreške je različit ovisno rasponu temperatura koje su se pojavljivale prilikom odvijanja mjerenja. Unutar laboratorija je kontrolirana temperatura zraka te je ona prilikom mjerenja iznosila oko 20 °C. Iznosi pogreška za određeni raspon temperatura su:

- 1,3 ppm za temperaturu od 19,5 °C do 20,5 °C
- 1,5 ppm za temperaturu od 15 °C do 25 °C
- 2,8 ppm za temperaturu od 0 °C do 40 °C

Navedene pogreške su preuzete iz specifikacija samog lasera pa su iz tog razloga u mjernoj jedinici ppm odnosno "*part per milion*".

Prema vrijednostima temperature zraka u laboratoriju iznos granične pogreške laserskog sustava dobivena kompenzacijom brzine svjetlosti iznosi 1,3 ppm.

Da bi se dobio iznos same pogreške, potrebno je odabrani iznos pogreške pomnožiti sa duljinom hoda odnosno maksimalne visine na koju je bio postavljen piezoelektrični generator prilikom mjerenja, a ta vrijednost iznosi $L = 100 \,\mu\text{m}$.

Prema tome, pogreška uslijed kompenzacije brzine svjetlosti pri maksimalnoj vrijednosti pozicije od 100 µm iznosi:

$$\delta_{BS} = \frac{1,3}{1\ 000\ 000} \cdot L \tag{20}$$

$$\delta_{BS} = \frac{1.3}{1\,000\,000} \cdot L = \frac{1.3}{1\,000\,000} \cdot 100 = 0,00013 \,\mu\text{m} = 0.13 \,\text{nm}$$

Uz pretpostavku pravokutne razdiobne procijenjena standardna nesigurnost tada iznosi:

$$u(\delta_{BS}) = \frac{0.13}{\sqrt{3}} = 0.075 \text{ nm}$$
 (21)

Koeficijent osjetljivosti jednak je:

$$c(\delta_{BS}) = \frac{\partial \Delta PIEZO}{\partial \delta_{BS}} = 1$$
(22)

6.2.3. Ograničenje laserskog sustava, δ_{LSL}

Prema specifikacijama korištenog lasera, iznos ove pogreške je jednoznačno određen te iznosi 0,1 ppm. Kao i u prethodnom slučaju, navedeni iznos je potrebno preračunati na način da se pomnoži s maksimalnom postignutom visinom piezoelektričnog generatora pomaka koja iznosi, kao i ranije, 100 µm.

Prema tome, nesigurnost odnosno standardno odstupanje za ovu utjecajnu komponentu pri maksimalnoj vrijednosti pozicije iznosi:

$$\delta_{LSL} = \frac{0.1}{1\ 000\ 000} \cdot L \tag{23}$$

$$\delta_{LSL} = \frac{0.1}{1\,000\,000} \cdot 100 = 0.00001 \,\mu\text{m} = 0.01 \,\text{nm}$$

Uz pretpostavku pravokutne razdiobne procijenjena standardna nesigurnost tada iznosi:

$$u(\delta_{LSL}) = \frac{0.01}{\sqrt{3}} = 0.006 \text{ nm}$$
 (24)

Koeficijent osjetljivosti jednak je:

$$c(\delta_{LSL}) = \frac{\partial \Delta PIEZO}{\partial \delta_{LSL}} = 1$$
(25)

Fakultet strojarstva i brodogradnje

6.2.4. Kosinus pogreška interferometra, δ_{CE}

Prilikom provedbe mjerenja pomoću interferencijskog laserskog sustava vrlo često dolazi do skretanja laserske zrake iz osi kretanja što rezultira pogreškom u vidu razlike između stvarne veličine i izmjerene veličine. Ta vrsta pogreške se naziva kosinus pogreška interferomera. Naziv je dobila prema tome što je iznos pogreške proporcionalan relaciji, $1 - \cos \alpha$, gdje kut α označava odstupanje laserske zrake od osi kretanja. [11]

Skretanjem laserske zrake laserski sustav nije više poravnat na način koji je relevantan za mjerenje čime se mjeri udaljenost koja je manja od stvarne mjerene udaljenosti. Iz tog razloga je ranije u radu navedeno da je poravnanje odnosno namještanje mjernog sustava jedan od glavnih koraka prije početka samog mjerenja jer se njegovim finim podešavanjem kosinus pogreška interferometra može svesti na minimum. [11]

Iznos pogreške sastoji se od dvije stavke:

- kut pod kojim je zraka postavljena u odnosu na horizontalnu ravninu
- kut pod kojim se piezoelektrični generator nalazi u odnosu na vertikalnu ravninu.

Kako se radi o vrlo malim pomacima, lako se može reći da je ukupna pogreška jednaka kombinaciji tih dvaju faktora.

Pogreška koja proizlazi iz odnosa zrake i stola na kojem se nalazi mjerni sustav ovisi o namještanju mjernog sustava koji je opisan u poglavlju 5.3.1. Kut se dobiva na način da se odredi približno odstupanje prolaskom kroz prostor između dva podsustava mjernog sustava. Uz to odstupanje, za račun pogreške potreban je razmak između dva navedena podsustava, a on iznosi približno jedan metar.

Na slici 56 su shematski prikazani potrebni podaci za procjenu pogreške prve stavke kosinus pogreške interferometra.

Slika 56. Odstupanje zrake u odnosu na horizontalnu ravninu

Prema prikazanom shematskom prikazu, samo odstupanje odnosno kut pod kojim se nalazi zraka svjetlosti u odnosu na horizontalnu ravninu računa se prema izrazu:

$$tg \alpha = \frac{d}{L}$$
(26)

Gdje je: d – pomak zrake na dijelu podsustava s laserom, mm

L – udaljenost između dva podsustava mjernog sustava, mm

Kao druga stavka kosinus pogreške interferometra spominje se kut pod kojem se piezoelekrični generator nalazi u odnosu na vertikalnu ravninu u podsustavu mjernog sustava s piezoelektričnim generatorom pomaka koji je prikazan na slici 19. Naime, prilikom dovođenja piezoelektričnog generatora u željenu poziciju vrlo je teško osigurati da se zraka s retroreflektora, koji se nalazi pričvršćen na piezoelektrični generator i prati njegov pomak, vraća točno istim putem nazad zbog vibracija i pomaka dijelova mjernog sustava. Tako se povratna zraka kreće pod određenim kutom u odnosu na vertikalnu os kretanja čime dolazi do pogreške samog mjerenja.

Na slici 57 je shematski prikazan pomak zrake u odnosu na željeni položaj.

Slika 57. Odstupanje zrake retroreflektora

Promatranjem karakterističnog trokuta sa slike 57 vidljivo je da će zapravo će izmjerena veličina biti manja od stvarne duljine koju je potrebno izmjeriti.

Prema tome, iznos kuta dobiven pogreškom odstupanja laserske zrake od vertikalne osi iznosi:

$$\cos\beta = \frac{m}{l} \tag{27}$$

Gdje je: m – izmjereni pomak piezoelektričnog generatora, µm l – stvarni pomak piezoelektričnog generatora, µm

U konačnici kombinacijom dvije navedene stavke potrebno je odrediti finalni kut γ koji je kombinacija izračunatih kutova α i β pomoću kojeg se može procijeniti mjerna nesigurnost. Pošto se radi o vrlo malim i oku nevidljivim pomacima, iznose navedenih veličina za izračun kutova potrebno je procijeniti jer ne postoje uređaji i metode pomoću kojih je moguće kontrolirati navedene korake.

Za prvu stavku kosinus pogreške interferometra procijenjene vrijednosti su:

- d = 1 mm
- L = 1 m = 1000 mm

Fakultet strojarstva i brodogradnje

Na temelju toga, a prema izrazu 26, iznos kuta pod kojim je laserska zrake pomaknuta u odnosu na stol odnosno horizontalnu ravninu iznosi:

$$\operatorname{tg} \alpha = \frac{1}{1000} = 0,057296 \rightarrow \alpha \approx 3'$$

Za drugu stavku kosinus pogreške interferometra, pogreška će ovisiti o pomaku odnosno izmjerenoj udaljenosti *m*. Pošto je kut u prvoj stavci vrlo mali, može se reći da je kut u drugoj stavci ove pogreške veći i dominantniji čime se ukupna pogreška kosinus pogreške interferometra računa prema izrazu:

$$\delta_{CE} = m - l = m - \frac{m}{\cos\gamma} \tag{28}$$

Ukupni kut γ , dobiven na temelju rezultata mjerenja i iskustvenih vrijednosti procijenjen je na iznos od 30'.

Prema tome, ukupna pogreška iznosi, prema izrazu 28:

$$\delta_{CE} = m \cdot \left(1 - \frac{1}{\cos \gamma}\right) = m \cdot \left(1 - \frac{1}{\cos 30'}\right) = -0,000038 \cdot m$$

Negativna vrijednost proizlazi iz toga što je izmjerena veličina manja od stvarne veličine. Uz pretpostavku pravokutne razdiobne i pri maksimalnoj vrijednosti pozicije od 100 µm procijenjena standardna nesigurnost tada iznosi:

$$u(\delta_{CE}) = \frac{0,000038 \cdot m}{\sqrt{3}} = 0,000022 \cdot m$$

$$u(\delta_{CE}) = \frac{0,000038 \cdot 100}{\sqrt{3}} = 0,0022 \ \mu\text{m} = 2,2 \ \text{nm}$$
(29)

Kako se prilikom mjerenja piezoelektrični generator pomicao za određeni pomak, u jednom smjeru i nazad u drugom smjeru, tako dolazi i do ranije opisanog pomaka u više od jedne Ako se pretpostavi da ukupna pogreška proizlazi iz kombinacije pogrešaka pomaka u dvije ravnine kretanja tada se ona može prikazati kao:

$$y = x_1 + x_2 \tag{30}$$

Gdje x_1 označava pogrešku pomaka u jednoj ravnini, dok x_2 označava pogrešku pomaka u drugoj ravnini.

Tada se ukupna mjerna nesigurnost računa prema izrazu:

$$u_{uk_CE}{}^{2} = c_{x_{1}}{}^{2}u_{x_{1}}{}^{2} + c_{x_{2}}{}^{2}u_{x_{2}}{}^{2}$$
(31)

Pojedinačni koeficijenti osjetljivosti jednaki su:

$$c_{x_1} = \frac{\partial y}{\partial x_1} = 1 \tag{32}$$

$$c_{x_2} = \frac{\partial y}{\partial x_2} = 1 \tag{33}$$

Nakon izračunatih vrijednosti pojedinačnih koeficijenata osjetljivosti i pod pretpostavkom da su nesigurnosti pomaka u obje ravnine jednake nesigurnosti izračunatoj prema izrazu 29, ukupna mjerna nesigurnost kosinus pogreške interferometra iznosi:

$$u_{uk_{CE}}(\delta_{CE}) = \sqrt{2} \cdot u(\delta_{CE}) = \sqrt{2} \cdot 2, 2 = 3,1 \text{ nm}$$
(34)

Koeficijent osjetljivosti jednak je:

$$c(\delta_{CE}) = \frac{\partial \Delta PIEZO}{\partial \delta_{CE}} = 1$$
(35)

6.2.5. Utjecaj mrtvog hoda, δ_{DP}

Pogreška mrtvog hoda definirana je kao pogreška interferencijskog sustava koja nastaje zbog razlike pozicija između dva optička elementa postavljenog mjernog sustava. Optički elementi koji se promatraju su retroreflektor te elementi sustava za postizanje potpune interferencije, a to su referentni reflektor i djelitelj snopa. Kada je interferometar postavljen na nulu, tada po definiciji duljina mrtvog hoda iznosi $L_{DP} = L_I - L_R$, gdje je L_I pozicija interferometra u odnosnu na retroreflektor, a L_R pozicija referentnog reflektora u odnosu na djelitelj snopa. Kako su referentni reflektor i djelitelj snopa spojeni zajedno u sustavu potpune interferencije, kako je prikazano na slici 14, može se reći da je vrijednost L_R približno jednaka nuli. Prema tome duljina mrtvog hoda u postavljenom mjernom sustavu jednaka je poziciji interferometra u odnosu na retroreflektor koji se nalazi na piezoelektričnom generatoru, $L_{DP} = L_I$. [18]

Kako prilikom provedbe mjerenja dolazi do promjena okolišnih uvjeta tako dolazi i do varijacije indeksa loma zraka. Prema tome, nužno je korigirati pogrešku mrtvog hoda prema izrazu:

$$\delta_{DP} = \Delta n_{zraka} \cdot L_I \tag{36}$$

Gdje je: δ_{DP} – pogreška mrtvog hoda, nm

 Δn_{zraka} – promjena indeksa loma zraka kroz postupak mjerenja L_I – duljina mrtvog hoda, nm

Da bi se dobila nesigurnost uslijed pogreške mrtvog hoda potrebno je pomnožiti mjernu nesigurnost dobivenu promjenom indeksa loma zraka sa duljinom mrtvog hoda.

Nesigurnost promjene indeksa loma zraka proizlazi iz kombinacije nesigurnosti indeksa loma na početku i na kraju postupka mjerenja koje su po pretpostavki jednakih iznosa. Iznos pojedinačne nesigurnosti indeksa loma zraka preuzet je iz doktorskog rada [18] te iznosi $u(n_{zraka}) = 12.9 \cdot 10^{-8}$.

Prema tome, nesigurnost promjene indeksa loma zraka iznosi:

$$u(\Delta n_{zraka}) = \sqrt{u(n_{zraka1})^2 + u(n_{zraka2})^2}$$
(37)

$$u(\Delta n_{zraka}) = \sqrt{2 \cdot (12.9 \cdot 10^{-8})^2} = 1.82 \cdot 10^{-7}$$

Gdje je: $u(n_{zraka1})$ – nesigurnost indeksa loma zraka na početku mjerenja $u(n_{zraka2})$ – nesigurnost indeksa loma zraka na kraju mjerenja

Na temelju dobivene vrijednosti nesigurnosti promjene indeksa loma zraka i duljine mrtvog hoda od 20 mm, ukupna nesigurnost pogreške mrtvog hoda iznosi:

$$u(\delta_{DP}) = u(\Delta n_{zraka}) \cdot L_I \tag{38}$$

$$u(\delta_{DP}) = 1,82 \cdot 10^{-7} \cdot 20 = 3,65 \cdot 10^{-6} \text{ mm} = 3,65 \text{ nm}$$

Koeficijent osjetljivosti jednak je:

$$c(\delta_{DP}) = \frac{\partial \Delta P I E Z O}{\partial \delta_{DP}} = 1$$
(39)

6.2.6. Stabilnost mjernog sustava, δ_{stab}

U poglavlju 5.3.3 opisan je postupak provjere stabilnosti jer je bitno da se dobi informacija kolika su odstupanja rezultata kroz vrijeme provedbe samog mjerenje radi lakše evaluacije rezultata. Prema podacima dobivenim iz računalnog programa lasera, kao gornja granica se dobiva vrijednost odstupanja od 4 nm, dok donja granica iznosi -2 nm.

$$UL = 0,004 \ \mu m = 4 \ nm$$

 $LL = -0,002 \ \mu m = -2 \ nm$
 $UL - LL = 4 - (-2) = 6 \ nm$

Prema izračunatoj razlici između maksimalne i minimalne vrijednosti odstupanja dobiva se da granica intervala pojavljivanja iznosi $a = \pm 3$ nm. Tada prema pretpostavci pravokutne razdiobe iznos standardnog odstupanja iznosi:

$$u(\delta_{stab}) = \frac{a}{\sqrt{3}} = \frac{3}{\sqrt{3}} = 1,73 \text{ nm}$$
 (40)

Koeficijent osjetljivosti iznosi:

$$c(\delta_{stab}) = \frac{\partial \Delta PIEZO}{\partial \delta_{stab}} = 1$$
(41)

U tablici 20 prikazane su izračunate vrijednosti sastavnica mjerne nesigurnosti te sastavljena standardna nesigurnost.

Sastavnica mjerne	Iznos standardne	Koeficijent	Doprinos standardnoj
nesigurnosti, x_i	nesigurnosti, $u(x_i)$	osjetljivosti, c _i	nesigurnosti, $u_i(y)$
Očitanje interferometra, δL_i	0,42 nm	1	0,42 nm
Kompenzacija brzine svjetlosti, δ_{BS}	0,075 nm	1	0,075 nm
Ograničenje laserskog sustava, δ_{LSL}	0,006 nm	1	0,006 nm
Kosinus pogreška interferometra, δ_{CE}	3,1 nm	1	3,1 nm
Mrtvi hod, δ_{DP}	3,65 nm	1	3,65 nm
Stabilnost mjernog sustava, δ_{stab}	1,73 nm	1	1,73 nm

Tablica 20.Mjerna nesigurnost umjeravanja piezoelektričnih generatora pomaka GUM
metodom

Prema sastavnici mjerne nesigurnosti, ukupna mjerna nesigurnost provedenog umjeravanja piezoelektričnih generatora pomaka, uz koeficijente osjetljivosti jednake jedinici, iznosi:

$$u = \sqrt{u(\delta L_i)^2 + u(\delta_{BS})^2 + u(\delta_{LSL})^2 + u(\delta_{CE})^2 + u(\delta_{DP})^2 + u(\delta_{stab})^2}$$
(42)

$$u = \sqrt{0,42^2 + 0,075^2 + 0,006^2 + 3,1^2 + 3,65^2 + 1,73^2} = 5,11 \text{ nm}$$

Proširena mjerna nesigurnost tada iznosi:

$$U = 2 \cdot u$$
 (43)
 $U = 2 \cdot 5,11 = 10,22 \text{ nm}$

Proširena mjerna nesigurnost je rezultat množenja sastavljene standardne nesigurnosti sa faktorom pokrivanja k = 2, koja za normalnu razdiobu odgovara vjerojatnost pokrivanja od približno 95 %.

Izračunata mjerna nesigurnost proizlazi iz procjene mjerne nesigurnost GUM metodom i to za maksimalnu vrijednost pozicije odnosno pomaka koja iznosi 100 µm.

Sagledavanjem onih sastavnica mjerne nesigurnosti koje ovise o pomaku dobiva se matematički model koji je funkcija tog pomaka. Sastavnice koje ovise o pomaku su kompenzacija brzine svjetlosti, ograničenje laserskog sustava te kosinus pogreška interferometra.

U tablici 21 su prikazane sastavnice standardne nesigurnosti u ovisnosti o pomaku.

Tablica 21.	. Sastavnice injerne nesigurnosti u ovisnosti o poinaku				
Sastavnica mjerne nesigurnosti, <i>x_i</i>	Iznos standardne nesigurnosti, $u(x_i)$ u nm	Koeficijent osjetljivosti, c _i	Doprinos standardnoj nesigurnosti, <i>u_i(y)</i> u nm, L u μm		
Očitanje interferometra, δL_i	0,42 nm	1	0,42 nm		
Kompenzacija brzine svjetlosti, δ_{BS}	0,00075 <i>L</i>	1	0,00075 <i>L</i>		
Ograničenje laserskog sustava, δ_{LSL}	0,00006 <i>L</i>	1	0,00006L		
Kosinus pogreška interferometra, δ_{CE}	0,031 <i>L</i>	1	0,031 <i>L</i>		
Mrtvi hod, δ_{DP}	3,65 nm	1	3,65 nm		
Stabilnost mjernog sustava, δ_{stab}	1,73 nm	1	1,73 nm		

Prema tome, ukupan model mjerne nesigurnosti u ovisnosti o poziciji L, uz sve koeficijente osjetljivosti jednake jedinici, iznosi:

$$u_{L}^{2} = u(\delta L_{i})^{2} + u(\delta_{BS})^{2} + u(\delta_{LSL})^{2} + u(\delta_{CE})^{2} + u(\delta_{DP})^{2} + u(\delta_{stab})^{2}$$
(44)
$$u_{L}^{2} = 0.42^{2} + 0.00075^{2}L^{2} + 0.00006^{2}L^{2} + 0.031^{2}L^{2} + 3.65^{2} + 1.73^{2}$$

Iz čega slijedi da izraz za proračun mjerne nesigurnosti za pojedinu poziciju glasi:

$$u_L^2 = 0,00096 \cdot L^2 + 16,49$$

$$u_L = \sqrt{0,00096 \cdot L^2 + 16,49}$$
(45)

Gdje je: L – vrijednost pozicije odnosno pomak piezoelektičnog generatora, µm u_L – mjerna nesigurnost za pojedinu poziciju, nm

Na temelju dobivenog modela nesigurnosti, moguće je odrediti mjernu nesigurnost za svaku od pozicija piezoelektričnog generatora pomaka. Iznosi mjernih nesigurnosti za pojedinu poziciju te proširene mjerne nesigurnosti uz faktor pokrivanja k = 2, prikazani su u tablici 22.

<i>pos_{PIEZO}</i> , μm	$u_L(y)$, nm	$U_L(y)$, nm uz $k = 2$ (95% pokrivanja)
0	4,06	8,12
20	4,11	8,22
40	4,25	8,49
60	4,47	8,93
80	4,76	9,52
100	5,11	10,22

 Tablica 22.
 Vrijednosti mjernih nesigurnosti za pojedinu poziciju

Prema izračunatim vrijednostima vidljivo je da se očekivane mjerne nesigurnosti kreću od 8,12 nm do maksimalno 10,22 nm te se razlikuju za pojedinu vrijednost pomaka. Mjerne nesigurnosti rastu s povećanjem pozicije zbog većeg utjecaja faktora koji su opisani ranije.

Da bi se dobio uvid u pouzdanost postavljenog mjernog sustava potrebno je uz provedeni set mjerenja provesti i još nezavisnih mjerenja te dobivene rezultate prikazati zajedno sa izračunatom mjernom nesigurnosti.

6.3. Provedba nezavisnih mjerenja

Nakon provedene analize pomoću odabranog seta od pet mjerenja, za provjeru točnosti postavljenog mjernog sustava proveden je još jedan set od tri nezavisna mjerenja prateći osmišljenu standardnu proceduru mjerenja. Takvim načinom se mogu utvrditi razlike koje daju uvid u to koliko je sustav pouzdan.

Postupak mjerenja je naravno isti te su rezultati analizirani na isti način kao u poglavlju 5.4, to znači na temelju srednjih vrijednosti između istih vrijednosti pozicije. Pojedinačna odstupanja za svaku od pozicija dana su u prilogu I.

U sljedećim tablicama su prikazani rezultati tri nezavisna provedena mjerenja te su dani grafički prikazi odstupanja za jedan i drugi smjer te srednja vrijednost između njih.

Rezultati prvog nezavisnog mjerenja:

	Mjerenje prema gore od 0 µm do 100 µm	Mjerenje prema dolje od 100 μm do 0 μm	Srednja vrijednost,	Odstupanje,
<i>pos_{PIEZO}</i> , μm	pos _{LA}	_{SER} , μm	μm	
0	0,001	0,004	0,0025	2,5
20	20,012	20,041	20,0265	26,5
40	40,023	40,041	40,032	32
60	60,027	60,041	60,034	34
80	80,020	80,032	80,026	26
100	99,997	99,997	99,997	-3

Tablica 23.Rezultati prvog nezavisnog mjerenja

Slika 58. Prikaz odstupanja prvog nezavisnog mjerenja

Rezultati drugog nezavisnog mjerenja:

	Mjerenje prema gore od 0 µm do 100 µm	Mjerenje prema dolje od 100 μm do 0 μm	Srednja vrijednost,	Odstupanje,
<i>pos_{PIEZO}</i> , μm	pos _{LA}	_{SER} , μm	μm	IIIII
0	0	0,007	0,0035	3,5
20	20,012	20,015	20,0135	13,5
40	40,032	40,036	40,034	34
60	60,034	60,042	60,038	38
80	80,030	80,035	80,0325	32,5
100	100,007	100,007	100,007	7

Tablica 24.Rezultati drugog nezavisnog mjerenja

Slika 59. Prikaz odstupanja drugog nezavisnog mjerenja

Rezultati trećeg nezavisnog mjerenja:

	Mjerenje prema gore od 0 μm do 100 μm	Mjerenje prema dolje od 100 μm do 0 μm	Srednja vrijednost,	Odstupanje,
<i>pos_{PIEZO}</i> , μm	pos _{LA}	_{SER} , μm	μm	11111
0	0	0,012	0,006	6
20	20,008	20,018	20,013	13
40	40,027	40,033	40,030	30
60	60,037	60,040	60,0385	38,5
80	80,033	80,034	80,0335	33,5
100	100,012	100,012	100,012	12

 Tablica 25.
 Rezultati trećeg nezavisnog mjerenja

Slika 60. Prikaz odstupanja trećeg nezavisnog mjerenja

Da bi se dobila konačna vrijednost odstupanja potrebno je izračunati odstupanja od srednje vrijednosti srednjih vrijednosti izmjerenih za pojedini pomak piezoelektričnog generatora pomaka.

U tablici 26 su prikazane opisane potrebne vrijednosti odstupanja.

		Broj mjerenja			
pos _{PIEZO} ,	1.	2	3	Srednja	Odstupanje,
μm		2.		vrijednost, μm	nm
0	0,0025	0,0035	0,006	0,004	4
20	20,0265	20,0135	20,013	20,018	17,7
40	40,032	40,034	40,030	40,032	32,0
60	60,034	60,038	60,0385	60,037	36,8
80	80,026	80,0325	80,0335	80,031	30,7
100	99,997	100,007	100,012	100,005	5,3

 Tablica 26.
 Srednje vrijednosti srednjih vrijednosti odstupanja za tri nezavisna mjerenja

Dobivene vrijednosti odstupanja na temelju srednjih vrijednosti srednjih vrijednosti rezultata tri nezavisna mjerenja prikazane su grafički na slici 61.

Slika 61. Prikaz odstupanja srednjih vrijednosti od srednjih vrijednosti pozicije za tri nezavisna mjerenja

Iz slike 61 i prema tablici 26 vidljivo je da odstupanja za tri nezavisna mjerenja od nominalne vrijednosti u nultoj poziciji piezoelektričnih generatora pomaka iznosi 4 nm, na poziciji od 20 μ m iznosi 17,7 nm, na 40 μ m iznosi 32 nm, na 60 μ m iznosi 36,8 nm, na 80 μ m iznosi 30,7 nm te u konačnici na maksimalnoj visini iznosi 5,3 nm.

Kako bi se usporedili rezultati te dobio uvid u kvalitetu postavljenog sustava i njegove pouzdanosti za umjeravanje piezoelektričnih generatora pomaka, potrebno je usporediti dobivene rezultata srednjih vrijednosti za prvi set od pet odabranih mjerenja i drugi set od tri nezavisna mjerenja. Izračunata je razlika u vrijednostima odstupanja dobivenih svakim od mjerenja te su rezultati prikazani u tablici 27.

pos _{PIEZO} , μm	Srednje vrijednosti odstupanja kod prvog seta mjerenja, nm	Srednje vrijednosti odstupanja kod drugog seta mjerenja, nm	Razlika u odstupanjima, nm
0	0,9	4,0	3,1
20	12,6	17,7	5,1
40	32,7	32,0	-0,7
60	41	36,8	-4,2
80	36	30,7	-5,3
100	19,2	5,3	-13,9

Tablica 27.Razlike u dobivenim rezultatima

Prema dobivenim rezultatima vidljivo je da maksimalna razlika između seta mjerenja s točnim namještanjem i drugog seta s tri nezavisna mjerenja iznosi 14 nm.

6.4. Konačni rezultati umjeravanja

Sagledavanjem sastavnica postavljenog matematičkog modela mjerne nesigurnosti dobivena je maksimalna mjerna nesigurnost rezultata mjerenja koja iznosi 10,22 nm. Usporedbom dobivenih srednjih vrijednosti rezultata mjerenja pojavljuje se odstupanje od maksimalno 14 nm što je zadovoljavajuće u odnosu na rezoluciju samog piezoelektičnog generatora pomaka te potvrđuje dovoljno anuliranje svih faktora koji utječu direktno na proces mjerenja.

Prema tome, na slici 62 prikazane su srednje vrijednosti rezultata umjeravanja za prvi set od pet odabranih mjerenja (crno) te drugi set od tri nezavisna mjerenja (žuto) uz odgovarajuću maksimalnu mjernu nesigurnost od 10,22 nm.

Slika 62. Odstupanje piezoelektričnog generatora pomaka

Sagledavanjem ukupnih rezultata umjeravanja vidljivo je da se rezultati dobiveni pažljivim namještanjem mjernog sustava i rezultati dobiveni provedbom nezavisnih mjerenja podudaraju. Prema tome se može reći da je postavljeni mjerni sustav primjenjiv za umjeravanje piezoelektričnih generatora pomaka mjernog područja od 0 do 100 µm uz mjernu nesigurnost od 10,22 nm.

7. ZAKLJUČAK

Postojeće norme i tehničke preporuke ne predlažu metode umjeravanja uređaja kao što je piezoelektrični generator pomaka, već su one tema recentnih znanstvenih radova. U tu svrhu, u okviru ovog rada osmišljen je mjerni sustav kojim se provjerava točnost vertikalnog pomaka piezoelektričnog generatora pomaka uz pomoć interferometra, koji je umjeren i kojim je osigurana sljedivost do definicije metra. Stoga je cilj ovog rada bio osmisliti mjerni sustav i postupak umjeravanja piezoelektričnih generatora pomaka korištenjem interferencijskog laserskog sustava te praćenjem vertikalnog pomaka generatora. Piezoelektrični generatori pomaka su vrlo zahvalni uređaji u dimenzionalnom mjeriteljstvu jer ostvaruju pomake na submikrometraskoj razini što omogućuje kontrolu i umjeravanje drugih uređaja manjih točnosti. Također, mali pomaci omogućuju njihovu primjenu u mikroskopiji, nano pozicioniranju te tehnologiji poluvodiča.

U eksperimentalnom dijelu rada provedena su mjerenja. Različiti pomaci piezoelektričnog generatora mjereni su laserskim interferometrom. Za nazivne vrijednosti pozicije odabrani su pomaci od 0, 20, 40, 60, 80 i 100 µm čime je pokriveno cijelo mjerno područje piezoelektičnog generatora koje iznosi 100 µm. Detaljnom analizom mjernog sustava naišlo se na više relevantnih utjecaja na proces mjerenja. Kao prvi se može navesti namještanje mjernog sustava koje je potrebno provesti na odgovarajući način kako bi se osiguralo da pomaci piezoelektričnog generatora budu (što je više moguće) u smjeru laserske zrake. Drugi utjecaj je utjecaj okolišnih uvjeta. Naime, prilikom provedbe mjerenja unutar laboratorija dolazi prvenstveno do promjene temperature ovisno o tome koliko ljudi se nalazi u njemu, koliko uređaja radi istovremeno i utjecaj drugih toplinskih faktora. Iz tog razloga, provjeravana je stabilnost sustava, odnosno na koji način se sustav ponaša kroz okvirno vremensko razdoblje potrebno za provođenje postupka mjerenja. Kao jedan od važnijih utjecaja koji utječe na rezultate mjerenja mogu se izdvojiti neželjene vibracije koje u određenim slučajevima mogu postati čak i dominantan utjecaj. Pomak generatora se ostvaruje kombinacijom napona i struje temeljem povratne veze ostvarene kapacitivnim mjernim senzorom. Prilikom rada može se pojaviti rezonancija s obzirom na masu i poziciju retroreflektora. Bilo kakva vibracija retroreflektora pričvršćenog na piezoelektrični generator dovodi do kontinuirane promjene smjera povratne laserske zrake i time do pogreške u mjerenjima.

Uz navedene okolišne utjecaje i utjecaje vezane uz piezoelektrični generator pomaka, postoje i utjecaji vezani uz interferencijski laserski sustav, a to su ograničenja laserskog sustava, njegovo

mjerno područje te promjena indeksa loma zraka koji utječe na svojstva laserske zrake. Svi navedeni utjecaju su uključeni u procjenu mjerne nesigurnosti rezultata mjerenja.

Na kraju eksperimentalnog dijela rada provedena su i tri nezavisna mjerenja.

Rezultati mjerenja su pokazali da je postavljeni mjerni sustav primjenjiv za umjeravanje piezoelektričnih generatora pomaka mjernog područja od 0 do 100 µm uz mjernu nesigurnost od 10,22 nm i uz pretpostavku normalne razdiobe koja odgovara vjerojatnosti pokrivanja od približno 95 %.

Temeljem analize rezultata mjerenja ostvarenih predloženim mjernim sustavom može se zaključiti se da su najveće prednosti ovog sustava postavljanje i očitavanje rezultata pomoću računalnih programa čime se izbacuje pogreška ljudskog faktora, brzina i jednostavnost postupka mjerenja te točnost dobivenih rezultata. S druge strane, najveći nedostatak je osjetljivost sustava na promjenu okolišnih uvjeta te nepoželjnih vibracija, te bi uz bolju kontrolu vanjskih utjecaja na sustav mjerenja rezultati umjeravanja mogli biti ostvareni uz niže mjerne nesigurnosti.

LITERATURA

- [1] Runje, B. Autorizirana predavanja iz kolegija Teorija i tehnika mjerenja. Zagreb: Fakultet strojarstva i brodogradnje; 2014.
 <u>https://bib.irb.hr/datoteka/764412.Predavanja_TTM.pdf</u>, Pristupljeno: 29. 7. 2021.
- [2] Collins, D. What are piezo actuators?; 2015.
 <u>https://www.linearmotiontips.com/what-are-piezo-actuators/</u>, Pristupljeno: 29. 7. 2021.
- [3] <u>https://www.researchgate.net/figure/The-structure-of-a-multilayer-</u> actuator_fig2_318031205, Pristupljeno: 29. 7. 2021.
- [4] Pomaci piezoelektričnih generatora: <u>https://www.physikinstrumente.com/en/technology/piezo-technology/properties-piezo-actuators/displacement-modes/</u>, Pristupljeno: 29. 7. 2021.
- [5] Kapacitivni senzor: <u>https://www.physikinstrumente.com/en/technology/sensor-technologies/capacitive-sensors/</u>, Pristupljeno: 16. 8. 2021.
- [6] Physik Instrumente: PIHera Vertical Precision Z Positioner; 2019. https://static.physikinstrumente.com/fileadmin/user_upload/physik_instrumente/files/da tasheets/P-62x.Z-Datasheet.pdf, Pristupljeno: 16. 8. 2021.
- [7] Kontorler piezoelektičnog generatora pomaka: https://www.physikinstrumente.com/en/products/controllers-anddrivers/nanopositioning-piezo-controllers/e-625-piezo-servo-controller-driver-604100/#description, Pristupljeno: 16. 8. 2021.
- [8] Objašnjenje interferometrije: <u>https://www.renishaw.com/en/interferometry-explained--</u> 7854, Pristupljeno: 17. 8. 2021.
- [9] <u>https://docplayer.gr/docs-images/75/72656392/images/42-0.jpg</u>, Pristupljeno: 17.8.2021.
- [10] Renishaw: Performance measurement system: <u>http://docplayer.net/15212424-</u> Performance-measurement-systems.html, Pristupljeno: 17. 8. 2021.
- [11] Renishaw. Laser measurement system PC10 user manual. Engleska; 1989.
- [12] Thorlabs: Retroreflectors: <u>https://www.thorlabs.com/navigation.cfm?guide_id=2539</u>, Pristupljeno: 18. 8. 2021.
- [13] <u>https://www.thorlabs.com/images/tabimages/Solid_Prism_Retroreflector_Primary_Bea</u> <u>m_Path_A6-350.gif</u>, Pristupljeno: 19. 8. 2021.

- [14] Mahović, S. Teorija i tehnika mjerenja. Zagreb: Fakultet strojarstva i brodogradnje; 2009. https://www.fsb.unizg.hr/atlantis/upload/newsboard/01_04_2010__10686_TTM2009.pdf,
 Pristupljeno: 18. 10. 2021.
- [15] EA-4/02: Izražavanje mjerne nesigurnosti pri umjeravanju. Zagreb: Državni zavod za mjeriteljstvo; 2008.
- [16] Srnec I. Umjeravanje koincidentnih libela [završni rad]. Zagreb: Fakultet strojarstva i brodogradnje; 2020.
- [17] https://stedy.hr/img/4.3.primjer3.0ae1e40f.svg, Pristupljeno: 18. 10. 2021.
- [18] Medić S. Razvoj sustava za umjeravanje mjernih skala [doktorski rad]. Zagreb: Fakultet strojarstva i brodogradnje; 2011.

PRILOZI

- I. Rezultati mjerenja
- II. CD-R disc
PRILOG I – rezultati mjerenja

<i>pos_{PIEZO}</i> , μm	<i>pos_{LASER}</i> , μm	odstupanje, µm	odstupanje, nm	
	1. mjerenje			
0	0,001	0,001	1	
20	20,003	0,003	3	
40	40,017	0,017	17	
60	60,023	0,023	23	
80	80,016	0,016	16	
100	99,989	-0,011	-11	
80	80,017	0,017	17	
60	60,022	0,022	22	
40	40,014	0,014	14	
20	19,999	-0,001	-1	
0	0,009	0,009	9	
	2. mjerenje			
0	0	0	0	
20	20,012	0,012	12	
40	40,032	0,032	32	
60	60,042	0,042	42	
80	80,037	0,037	37	
100	100,013	0,013	13	
80	80,034	0,034	34	
60	60,041	0,041	41	
40	40,033	0,033	33	
20	20,014	0,014	14	
0	0,007	0,007	7	

 Tablica 1.
 Rezultati prva dva provedena mjerenja

<i>pos_{PIEZO}</i> , μm	<i>pos_{LASER}</i> , μm	odstupanje, µm	odstupanje, nm	
	3. mjerenje			
0	0,001	0,001	1	
20	20,012	0,012	12	
40	40,032	0,032	32	
60	60,040	0,040	40	
80	80,034	0,034	34	
100	100,023	0,023	23	
80	80,033	0,033	33	
60	60,038	0,038	38	
40	40,028	0,028	28	
20	20,010	0,010	10	
0	0,002	0,002	2	
	4. mjerenje			
0	0	0	0	
20	20,012	0,012	12	
40	40,033	0,033	33	
60	60,041	0,041	41	
80	80,036	0,036	36	
100	100,014	0,014	14	
80	80,036	0,036	36	
60	60,039	0,039	39	
40	40,031	0,031	31	
20	20,012	0,012	12	
0	0,002	0,002	2	

 Tablica 2.
 Rezultati trećeg i četvrtog mjerenja

<i>pos_{PIEZO}</i> , μm	<i>pos_{LASER}</i> , μm	odstupanje, µm	odstupanje, nm
	5. mjerenje		
0	0	0	0
20	20,012	0,012	12
40	40,033	0,033	33
60	60,043	0,043	43
80	80,038	0,038	38
100	100,017	0,017	17
80	80,037	0,037	37
60	60,043	0,043	43
40	40,032	0,032	32
20	20,015	0,015	15
0	0,006	0,006	6
6. mjerenje			
0	0	0	0
20	20,013	0,013	13
40	40,033	0,033	33
60	60,042	0,042	42
80	80,037	0,037	37
100	100,017	0,017	17
80	80,037	0,037	37
60	60,044	0,044	44
40	40,036	0,036	36
20	20,018	0,018	18
0	0,009	0,009	9

Tablica 3.Rezultati petog i šestog mjerenja

<i>pos_{PIEZO}</i> , μm	<i>pos_{LASER}</i> , μm	odstupanje, µm	odstupanje, nm	
	7. mjerenje			
0	0,001	0,001	1	
20	20,014	0,014	14	
40	40,036	0,036	36	
60	60,044	0,044	44	
80	80,041	0,041	41	
100	100,018	0,018	18	
80	80,039	0,039	39	
60	60,045	0,045	45	
40	40,037	0,037	37	
20	20,018	0,018	18	
0	0,006	0,006	6	
	8. mjerenje			
0	0	0	0	
20	20,014	0,014	14	
40	40,036	0,036	36	
60	60,044	0,044	44	
80	80,038	0,038	38	
100	100,019	0,019	19	
80	80,036	0,036	36	
60	60,040	0,040	40	
40	40,032	0,032	32	
20	20,014	0,014	14	
0	0,002	0,002	2	

Tablica 4.	Rezultati sedmog i osmog	mierenia
I abiica 4.	Rezultati scallog i osillog	, mjerenja

<i>pos_{PIEZO}</i> , μm	<i>pos_{LASER}</i> , μm	odstupanje, µm	odstupanje, nm	
	9. mjerenje			
0	0	0	0	
20	20,014	0,014	14	
40	40,036	0,036	36	
60	60,044	0,044	44	
80	80,038	0,038	38	
100	100,020	0,020	20	
80	80,036	0,036	36	
60	60,040	0,040	40	
40	40,032	0,032	32	
20	20,012	0,012	12	
0	0,001	0,001	1	
	10. mjerenje			
0	0	0	0	
20	20,014	0,014	14	
40	40,035	0,035	35	
60	60,044	0,044	44	
80	80,038	0,038	38	
100	100,020	0,020	20	
80	80,035	0,035	35	
60	60,040	0,040	40	
40	40,032	0,032	32	
20	20,012	0,012	12	
0	0,001	0,001	1	

Tablica 5.	Rezultati devetog i desetog mjerenja
------------	--------------------------------------

<i>pos_{PIEZO}</i> , μm	<i>pos_{LASER}</i> , μm	odstupanje, µm	odstupanje, nm
	1. nezavisno mje	renje	
0	0,001	0,001	1
20	20,012	0,012	12
40	40,023	0,023	23
60	60,027	0,027	27
80	80,020	0,020	20
100	99,997	-0,003	-3
80	80,032	0,032	32
60	60,041	0,041	41
40	40,041	0,041	41
20	20,041	0,041	41
0	0,004	0,004	4

Tablica 6.	Pojedinačni rezultati prvog	nezavisnog mierenia
I ublicu 0	i ojeumuem i ezuntuti pi vog	nezu isnog mjerenju

Tablica 7.

7. Pojedinačni rezultati drugog nezavisnog mjerenja

<i>pos_{PIEZO}</i> , μm	<i>pos_{LASER}</i> , μm	odstupanje, µm	odstupanje, nm
	2. nezavisno mjere	enje	
0	0	0	0
20	20,012	0,012	12
40	40,032	0,032	32
60	60,034	0,034	34
80	80,030	0,030	30
100	100,007	0,007	7
80	80,035	0,035	35
60	60,042	0,042	42
40	40,036	0,036	36
20	20,015	0,015	15
0	0,007	0,007	7

<i>pos_{lASER}</i> , μm	odstupanje, µm	odstupanje, nm
3. nezavisno mje	renje	
0	0	0
20,008	0,008	8
40,027	0,027	27
60,037	0,037	37
80,033	0,033	33
100,012	0,012	12
80,034	0,034	34
60,040	0,040	40
40,033	0,033	33
20,018	0,018	18
0,012	0,012	12
	pos _{LASER} , μm 3. nezavisno mje 0 20,008 40,027 60,037 80,033 100,012 80,034 60,040 40,023 20,018 0,012	pos_{LASER} , µmodstupanje, µm3. nezavisno mjerenje0020,0080,00840,0270,02760,0370,03780,0330,033100,0120,01280,0340,03460,0400,04040,0330,03320,0180,012

Tablica 8.Pojedinačni rezultati trećeg nezavisnog mjerenja