Integracija elektroenergetskih sustava na hibridnim šumskim traktorima temeljena na paralelnom nizu pretvarača istosmjerne struje

Parčina, Ana

Master's thesis / Diplomski rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:962415

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-12

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Ana Parčina

Zagreb, 2021.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Doc. dr. sc. Mihael Cipek, dipl. ing.

Komentor:

Dr.sc. Matija Krznar, dipl.ing

Zagreb, 2021.

Student:

Ana Parčina

Izjavljujem da sam ovaj rad izradila samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mom mentoru doc.dr.sc. Mihaelu Cipeku te prof.dr.sc. Danijelu Pavkoviću na pruženoj pomoći prilikom izrade rada. Također, veliko hvala dr.sc. Matiji Krznaru na brojnim savjetima, smjernicama i konstruktivnim kritikama. Zahvaljujem se i prof. Marijanu Šušnjaru sa Šumarskog fakulteta čiji je projekt Razvoj hibridnog skidera -HiSkid (KK.01.1.1.04.0010) bio motivacija za ovaj rad. Zahvaljujem svojim roditeljima, bratu i ostaloj obitelji te prijateljima na pruženoj podršci.

Ana Parčina

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za diplomske radove studija strojarstva za smjerove:

proizvodno inženjerstvo, računalno inženjerstvo, industrijsko inženjerstvo i menadžment, inženjerstvo materijala te mehatronika i robotika

Fakult	Sveučiliš et strojars	te u Zagrebu stva i brodogradnje	100000
Datum:		Prilog:	
Klasa:	602-04/2	21-6/1	
Ur. broj:	15-1703	-21	The second second

DIPLOMSKI ZADATAK

Student:

Mat. br.: 0023115087

Naslov rada na hrvatskom jeziku: Integracija elektroenergetskih sustava na hibridnim šumskim traktorima temeljena na paralelnom nizu pretvarača istosmjerne struje

ANA PARČINA

Naslov rada na engleskom jeziku: Integration of electrical systems on a hybrid skidder based on parallelized direct current power converter array

Opis zadatka:

Terenska vozila, kao što su šumski zglobni traktori (tzv. skideri), sve su češće opremljena hibridnim električnim pogonima kako bi se smanjila potrošnja energije i goriva, te da bi se poboljšale vozne karakteristike uz istovremeno značajno smanjenje emisija stakleničkih plinova. Ova vozila za pogon koriste dodatnu snagu iz visokonaponskog istosmjernog sustava (tipično 400 V), dok dodatna oprema (radio, rasvjeta i slično) i dalje najčešće radi na niskonaponskoj (24 V) sabirnici. Stoga, kada niskonaponska sabirnica zahtijeva dodatnu ulaznu snagu (npr. za punjenje niskonaponskog akumulatora) može se iskoristiti električna energija iz baterijskog sustava za pohranu energije višeg napona i transformirati pomoću pretvarača snage istosmjerne struje (DC/DC pretvarača) na nižu naponsku razinu. Kako bi se povećala učinkovitost i pouzdanost pretvorbe energije, te istodobno umanjili problemi toplinskih gubitaka, može se razmotriti prikladan paralelni niz pretvarača i odgovarajuća strategija upravljanja koja minimizira gubitke pri pretvorbi energije. U radu je potrebno:

• Opisati visokonaponske i niskonaponske elektroenergetske sustave hibridnih električnih vozila s naglaskom na sustav hibridnog skidera te definirati strujna i naponska opterećenja.

• Predložiti koncept niza paralelnih pretvarača snage istosmjerne struje za integraciju visokonaponskog i niskonaponskog elektroenergetskog sustava.

• Izraditi računalni model sustava paralelnih pretvarača istosmjerne struje, definirati adekvatne sustave upravljanja te provesti detaljne simulacije.

· Karakteristike efikasnosti pretvarača provjeriti eksperimentalno na laboratorijskom postavu.

• Na temelju rezultata simulacija opisati učinkovitost jednog takvog paralelnog niskobudžetnog niza pretvarača istosmjerne struje u sustavu hibridnog skidera.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan: 4. ožujka 2021. Rok predaje rada: 6. svibnja 2021.

Zadatak zadao:

Komentor: Matija Krznar Predviđeni datum obrane: 10. svibnja do 14. svibnja 2021.

Predsjedniča Povjerenstva: prof. dr. sc. Biserka Runje

SADRŽAJ

SADRŽAJ		I
POPIS SLIK	ĀA	III
POPIS TAB	LICA	. V
POPIS OZN	AKA	VI
SAŽETAK		IX
SUMMARY		. X
1. UVOD.		1
2. KARAK	XTERISTIKE SKIDERA ECOTRAC 120V	1
2.1. Pog	gonski sustav skidera	3
2.2. Vit	lo skidera	4
3. ENERG	ETSKA ELEKTRONIKA I OSTALE KOMPONENTE	6
3.1. Pre	tvarači	8
3.1.1.	DC/AC inverter	8
3.1.2.	DC/DC pretvarač	11
3.1.3.	"Buck" DC/DC pretvarač	15
3.2. Bat	erije	17
3.3. Pur	ıjač	19
3.4. Izb	or energetske elektronike	20
3.4.1.	Izbor AC/DC invertera	22
3.4.2.	Izbor DC/DC pretvarača	22
3.4.3.	Izbor punjača	24
3.5. Ma	sa odabranih komponenti	25
4. ANALI	ZA TROŠKOVA	27
5. INTE	GRACIJA VISOKONAPONSKOG I NISKONAPONSKOG SUSTAVA	29
5.1. Rje	šenja za konvencionalni niskoenergetski sustav	29
5.2. Pre	gled rješenja niskonaponskog sustava kod hibridnih vozila	31
5.3. Dije	eljenje tereta između n DC/DC pretvarača spojenih na zajedničku DC sabirnicu	33
5.3.1.	Master-slave konfiguracija	35
5.3.2.	Metoda podjele prosječnog opterećenja	35
5.3.3.	Kružno lančano upravljanje	36
5.3.4.	Centralizirani upravljački sustav	36
5.3.5.	Metoda pada napona	37
5.4. Ana	aliza paralelnog rada pretvarača	38

Ana Parčina	Diplomski rad
5.5. Analiza efikasnosti pretvarača	
6. RAČUNALNI MODEL PRETVARAČA	
6.1. Osnovni načini rada pretvarača	
6.1.1. Kontinuirani način rada (CCM)	
6.1.2. Diskontinuirani način rada (DCM)	
6.1.3. Naponski način rada	
6.1.4. Strujni način rada	
6.2. Dinamički modeli pretvarača	
6.2.1. Trenutačni model	
6.2.2. Usrednjeni model	
7. REGULACIJA RADA PARALELNIH PRETVARAČA	
7.1. Pregled hijerarhijskog sustava upravljanja DC sustava	
7.2. Optimum dvostrukog odnosa	
7.3. Primarna razina upravljanja strujom/naponom	
7.4. Sekundarna razina upravljanja – podjela opterećenja	
7.5. Tercijarna razina upravljanja	
8. EKSPERIMENTALNA ISPITIVANJA	
8.1. Eksperimentalno ispitivanje učinkovitosti pretvarača	72
8.2. Eksperimentalna provjera sekundarne regulacije	76
ZAKLJUČAK	
LITERATURA	
PRILOG	

POPIS SLIKA

Slika 1.	Skider EcoTrac 120v [4]	1
Slika 2.	Skider izvlači trupce [6]	2
Slika 3.	Dizelski motor Deutz F6L-914 [7]	3
Slika 4.	Shema pogonskog sustava skidera	4
Slika 5.	Shematski prikaz tereta na kosini i vitla [5]	4
Slika 6.	P2 paralelna konfiguracija hibridnog pogona	6
Slika 7.	Topologija trofaznog DC/AC invertera [2]	8
Slika 8.	Valni oblici napona između faza [2]	10
Slika 9.	Topologija izoliranog dvosmjernog DC/DC pretvarača [10]	11
Slika 10.	Valni oblici struje i napona za $V_2 > nV_1$: (a) valni oblici za $i(t_0) < 0$; (b)	12
Slika 11.	Valni oblici struje i napona za $V_2 < nV_1$ i $V_2 = nV_1$; (a) standardno stanje; (b)	
granično	stanje; (c) ekstremno stanje $V_2 = nV_1$ [9]	14
Slika 12.	Topologija "buck" DC/DC pretvarača [2]	15
Slika 13.	Klasifikacija baterija s obzirom na gustoću energije i snagu [13]	17
Slika 14.	Ekvivalnetni strujni krug (a), naponska karakteristika (b) i otpor baterije (c) [5].	18
Slika 15.	Struktura punjača hibridnog vozila [10]	19
Slika 16.	Struktura PHC za punjač hibridnog vozila [10]	19
Slika 17.	Sinkroni reluktantni motor EM-PMI-300-T310 [15]	21
Slika 18.	DC/DC pretvarač <i>RedPrime</i> [17]	23
Slika 19.	"Buck" DC/DC pretvarač DVCH3003 [18]	24
Slika 20.	Punjač [19]	25
Slika 21.	Niskonaponski 24 V sustav traktora Caterpillar model 3054 [21]	30
Slika 22.	Adaptacija 48V sustava [25]	32
Slika 23.	Globalna proizvodnja automobila 20152030. [25]	33
Slika 24.	Blokovski dijagram paralelnog sustava s više invertera [30]	36
Slika 25.	Model paralelno spojenih DC pretvarača	38
Slika 26.	Topologija silaznog DC/DC pretvarača [39]	41
Slika 27.	Struja zavojnice (CCM)	42
Slika 28.	Struja zavojnice (DCM)	43
Slika 29.	Uspoređivanje pilastog singala s referencom [39]	44
Slika 30.	Uspoređivanje pilastog signala s padajućom referencom [39]	45
Slika 31.	Silazni pretvarač - CCM (sklopka S vodi) [39]	46
Slika 32.	Silazni pretvarač - CCM (sklopka S ne vodi) [39]	47
Slika 33.	Silazni pretvarač - DCM (sklopka S vodi) [39]	48
Slika 34.	Silazni pretvarač - DCM (sklopka S ne vodi) [39]	48
Slika 35.	Silazni pretvarač - DCM ($i_L = 0$) [39]	49
Slika 36.	Trenutačni model pretvarača u Simulinku	49
Slika 37.	Usrednjeni model u Simulinku	52
Slika 38.	Hijerarhijski sustav upravljanja DC sustava [28]	53
Slika 39.	Kaskadni regulacijski sustav silaznog DC/DC pretvarača s PI regulatorom	
struje/na	pona [28]	55
Slika 40.	Odziv regulacijskog sustava primarne regulacije	58

Ana Parčina	Diplomski r	ad
Slika 41.	Blokovski dijagram centraliziranog upravljačkog sustava podjele opterećenja [28 59	3]
Slika 42.	Odziv za režim malih signala	61
Slika 43.	Odziv za režim velikih signala	62
Slika 44.	Principijelna shema tercijarnog upravljanja	63
Slika 45.	Simulink implementacija tablice efikasnosti (lijevo), efikasnost ovisno o izlazno	j
snazi (desn	10)	65
Slika 46.	Shema za računanje ukupne ulazne snage	66
Slika 47.	Model tercijarnog upravljanja u Simulink programskom okruženju	67
Slika 48.	Funkcije pobude: odskočne funkcije (a), rampa (b)	67
Slika 49.	Broj aktivnih pretvarača (odskočne funkcije)	68
Slika 50.	Učinkovitost pojedinačnih pretvarača (odskočne funkcije)	68
Slika 51.	Ukupna učinkovitost (odskočne funkcije)	69
Slika 52.	Potrošnja energije pretvarača (odskočne funkcije)	69
Slika 53.	Broj aktivnih pretvarača (rampa)	70
Slika 54.	Učinkovitost pojedinih pretvarača (rampa)	70
Slika 55.	Ukupna učinkovitost (rampa)	71
Slika 56.	Potrošnja energije (rampa)	71
Slika 57.	Shema eksperimenta	72
Slika 58.	Eksperimentalni postav u laboratoriju	72
Slika 59.	Sheme spajanja otpornika	73
Slika 60.	Ovisnost ulazne struje o ulaznom naponu	74
Slika 61.	Ovisnost efikasnosti o izlaznoj struji	74
Slika 62.	3D prikaz efikasnosti	75
Slika 63.	Učinkovitost pretvarača s obzirom na izlaznu snagu	75
Slika 64.	Fotografije eksperimentalnog postava u laboratoriju [28]	76
Slika 65.	Eksperimentalni rezultati centralizirane regulacije podjele opterećenja za režim	
malih i vel	ikih signala: napon DC sabirnice (a), struja opterećenja, struja baterije i ukupna	
struja DC/I	DC pretvarača (b) [28]	77
Slika 66.	Eksperimentalni rezultati izlaznih struja pojedinih DC/DC pretvarača [28]	78

POPIS TABLICA

Tablica 1.	Specifikacije skidera [5]	1
Tablica 2.	Specifikacije elektromotora EM-PMI300-T310 [15]	. 20
Tablica 3.	Parametri baterije [13]	. 21
Tablica 4.	Parametri pomoćne baterije	. 21
Tablica 5.	Specifikacije invertera NXI 0140 5 A0T0CSS [16]	. 22
Tablica 6.	Specifikacije DC/DC pretvarača RedPrime [17]	. 23
Tablica 7.	Specifikacije pretvarača DVCH3003 [18]	. 24
Tablica 8.	Specifikacije punjača [19]	. 25
Tablica 9.	Masa komponenti sustava energetske elektronike	. 25
Tablica 10.	Cijene odabranih komponenti	. 27
Tablica 11.	Cijene odabranih komponenti s popustom	. 27
Tablica 12.	Parametri silaznog DC/DC pretvarača za izradu računalnih modela [40]	. 52
Tablica 13.	Parametri modela procesa [28]	. 57
Tablica 14.	Parametri regulatora struje/napona pretvarača i regulatora DC sabirnice [28].	. 57
Tablica 15.	Tehničke specifikacije komponenti [28]	.76

POPIS OZNAKA

Oznaka	Jedinica	Opis
С	F	kapacitet kondenzatora
C_{dc}	F	napon DC sabirnice
C_{RSS}	F	povratni kapacitet prijenosa
D		faktor popunjenosti
D _{2dc} , D _{3dc}		karakteristični odnosi optimuma dvostrukog odnosa
dSoC		promjena napunjenosti baterije
E	kWh	energija baterije
E	J	ukupna energija
E_{on}	J	energija kada je sklopka uključena
E_{on}	J	energija kada je sklopka isključena
ESR_{C_o}	Ω	ekvivalentni serijski otpor kondenzatora
F_N	Ν	normalna sila
f_s	Hz	frekvencija preklapanja
F_{tr}	Ν	sila trenja
F_{v}	Ν	sila za izvlačenje trupaca
$F_{v maks}$	Ν	najveća sila na vitlu
g	m/s^2	gravitacijsko ubrzanje
\overline{I}	А	prosječna struja gubitka induktiviteta
I_2	А	sekundarna struja
i _a	А	trenutna struja prve faze
i _b	А	trenutna struja druge faze
i _{bat}	А	struja baterije
i _c	A	trenutna struja treće faze
i _c	A	referenca struje kondenzatora
i _{cm}	A	izmjerena struja
i _{cR}	A	referenca struje
I_{GATE}	A	vršna struja sklopke
I _{izl}	A	izlazna struja
i_L	A	struja zavojnice
$\overline{\iota_L}$	A	prosječna struja zavojnice
I_{L2}	A	struja gubitka induktiviteta sekundarnog namota
$i_{L_{max}}$	A	maksimalna struja zavojnice
$i_{L_{min}}$	A	minimalna struja zavojnice
I _{max}	А	maksimalna struja
I _{OUTMAX}	А	maksimalna izlazna struja
I_{PEAK}	А	vršna struja
I_{ul}	А	ulazna struja
i_v		prijenosni omjer pužnog prijenosnika
K _{ci}		pojačanje PI regulatora struje
K _{cu}		pojačanje PI regulatora napona
K_R		pojačanje PI regulatora napona sabirnice
L	Н	induktivitet zavojnice

Oznaka	Jedinica	Opis
LIR	H/A	omjer induktiviteta i struje
m_{bat}	kg	masa baterije
M_m	Nm	ukupni moment motora
m_{v}	kg	masa vozila
M_{ν}	Nm	moment za izvlačenje trupca
n		broj namotaja transformatora
Ν		broj ćelija baterije
n_{conv}		broj pretvarača
N_p		broj namotaja primara
Ns		broj namotaja sekundara
P_0	W	izlazna snaga
P_1	W	ulazna snaga
P_{hat}	W	snaga baterije
P_{DIODF}	W	gubitci snage na diodi
P_{izl}	W	izlazna snaga pretvarača
Pmaks	kW	maksimalna snaga baterije
P_{nl}	W	ulazna snaga pretvarača
P_{n}	W	snaga vitla
Pumaks	W	maksimalna snaga vitla
0 maks	Ah	kapacitet baterije
r_h	m	radijus bubnja
$\tilde{R_{hat}}$	Ω	otpor baterije
$R_{DS(ON)HOT}$	Ω	maksimalni otpor na određenoj temperaturi
$R_{DS(ON)_{25^\circ C}}$	Ω	maksimalni otpor na 25°C
r_k	m	polumjer kotača
U_o	V	napon otvorenog strujnog kruga
U_{bat}	V	napon baterije
U_{ul}	V	ulazni napon
U_{izl}	V	izlazni napon
u_{Rp}	V	referenca napona
V_1	V	primarni napon transformatora
V_2	V	sekundarni napon
V_{AB}	V	međufazni napon
$V_{A'N}$	V	trenutni fazni napon
V_{in}	V	ulazni napon
v_L	V	napon zavojnice filtra L
V_0	V	napon otpornika
v_p	V	napon primara
$v_{v maks}$	m/s	maksimalna brzina privitlavanja
T_{eu}	ms	vremenska konstanta zatvorenog regulacijskog kruga napona
T_{ci}	ms	nadomjesna vremenska konstanta PI regulatora struje
T_{cu}	ms	nadomjesna vremenska konstanta PI regulatora napona
T_e	ms	nadomjesna vremenska konstanta
T_I	ms	vremenska konstanta PI regulatora napona sabirnice
t_{on}	S	vrijeme uključivanja

Oznaka	Jedinica	Opis
T_s	S	polovica vremena preklapanja
$T_{\Sigma i}$	ms	vremenska konstanta parazitske dinamike regulacijskog kruga struje
$T_{\Sigma u}$	ms	vremenska konstanta parazitske dinamike regulacijskog kruga napona
u_{Rp}	V	referenca napona
α	0	nagib kosine
μ_p		faktor trenja
η_i		učinkovitost <i>i</i> -tog pretvarača
η_{ukupno}		ukupna učinkovitost sustava
η_v		korisnost vitla

SAŽETAK

Hibridni kao i električni pogon su ekološki prihvatljivija rješenja u usporedbi s konvencionalnim pogonom, a s obzirom na ograničene zalihe nafte, postaju sve popularniji. Stoga, je upravo hibridni pogon razmotren u ovom radu, točnije razmotrene su komponente energetske elektronike za hibridni šumski traktor s naglaskom na integraciju visokonaponskog i niskonaponskog energetskog sustava.

U radu je dan pregled energetske elektronike za hibridna vozila te je predstavljen izbor svih komponenti potrebnih za hibridizaciju razmatranog vozila. Provedena je analiza troškova kako bi se odredila isplativost takve investicije.

Nadalje, kao rješenje za integraciju visokonaponskog i niskonaponskog energetskog sustava predstavljen je paralelni rad više silaznih DC pretvarača. Također je predložen hijerarhijski sustav upravljanja radom pretvarača koji obuhvaća primarnu, sekundarnu i tercijarnu regulaciju. Rad takvog sustava ispitan je simulacijski i eksperimentalno.

Rad je koncipiran u nekoliko poglavlja. U uvodu je ukratko opisana problematika rada. U drugom poglavlju nalazi se pregled značajki šumskog traktora. Treće poglavlje daje pregled energetske elektronike koja se koristi za hibridna vozila te komponenti koje su izabrane za razmatrani traktor. Četvrto poglavlje odnosi se na analizu troškova, a peto na rješenje za integraciju visokonaponskog i niskonaponskog energetskog sustava. Šesto poglavlje opisuje računalni model pretvarača. U sedmom poglavlju predstavljeno je rješenje za regulaciju paralelnog rada pretvarača, a osmo poglavlje sadrži eksperimentalne rezultate. Na kraju je dan osvrt na diplomski rad u cjelini.

Ključne riječi: energetska elektronika, hibridna vozila, paralelni rad silaznih DC pretvarača, učinkovitost

SUMMARY

Hybrid as well as electric propulsion are more environmentally friendly solutions compared to conventional propulsion, and given the limited oil reserves, they are becoming more popular. Therefore, the hybrid propulsion is considered in this paper, more specifically the components of power electronics for a hybrid forest tractor with emphasis on the integration of high voltage and low voltage power system.

The paper gives an overview of power electronics for hybrid vehicles and presents a selection of all components required for hybridization of the considered vehicle. A cost analysis was conducted to determine the profitability of such an investment.

Furthermore, as a solution for the integration of high-voltage and low-voltage power systems, the parallel operation of several buck DC converters is presented. A hierarchical control system of converter operation is also proposed, which includes primary, secondary and tertiary regulation. The operation of such a system was examined through the simulation and experimentally.

The paper is conceived in several chapters. The introduction briefly describes the issues of work. The second chapter provides an overview of the characteristics of a forest tractor. The third chapter provides an overview of the power electronics used for hybrid vehicles and the components selected for the considered tractor. The fourth chapter deals with cost analysis, and the fifth with a solution for the integration of high-voltage and low-voltage energy systems. Chapter six describes the computer model of the converter. The seventh chapter presents a solution for regulating the parallel operation of the inverter, and the eighth chapter contains experimental results. At the end, a review of the thesis is given.

Key words: efficiency, hybrid vehicles, parallel operation of buck converters, power electronics

1. UVOD

Posljednjih godina, veliki fokus stavlja se na hibridna i električna vozila s obzirom na prednosti koje one donose u uštedi potrošnje goriva, smanjenju emisija štetnih plinova te na taj način i očuvanju okoliša. Isto tako resursi nafte su ograničeni, stoga su stručnjaci počeli razmatrati druge načine pogona. Hibridna vozila koja koriste motor s unutarnjim izgaranjem (engl. *Internal Combustion Engine – ICE*) i elektromotor, cjenovno su prihvatljivija u odnosu na električna vozila, a isto tako nemaju problem s radnim dosegom kao električna vozila koja nakon određenog broja prijeđenih kilometara zahtijevaju punjenje [1].

Hibridna vozila kompleksan su mehanički i električni sustav. Mehanička energija prenosi se konvencionalnim pogonom, dok se električni pogon odnosi na protok električne energije. Kod hibridnih vozila zadaća elektromotora i elektronske energetike je da procesiraju i kontroliraju prijenos električne energije kako bi vozilo imalo dovoljnu snagu uz maksimalnu učinkovitost u različitim voznim režimima [1].

Energetska elektronika općenito kombinira elektroničke komponente, električnu snagu i metode upravljanja. Njihov rad utječe na potrošnju goriva vozila, vozne karakteristike, ali oni također mogu predstavljati veći dio materijalnih ulaganja u vozilo. Ovisno o tipu i konfiguraciji hibridnog vozila, elektromotor i energetska elektronika mogu obuhvaćati više od 25% ukupnih materijalnih ulaganja-troškova što je skoro jednako troškovima sustava za pohranu energije [2]. Budući da je pretvorba istosmjerne struje (engl. *Direct Current – DC*) implementirana pomoću energetske elektronike i da je učinkovitost pretvorbe jedan od najvažnijih značajki hibridnih vozila, kroz ovaj rad dat će se pregled komponenti energetske elektronike, zajedno s troškovima hibridizacije konvencionalnog vozila, a naglasak će se kasnije staviti na integraciju elektroenergetskih sustava vozila.

U drugom poglavlju opisane su karakteristike skidera EcoTrac 120V, potom u trećem poglavlju slijedi objašnjenje komponenti energetske elektronike koje se općenito koriste za hibridna vozila te koje komponente su izabrane za razmatrano vozilo. Nadalje, u četvrtom poglavlju prikazana je analiza troškova za izabranu energetsku elektroniku. Potom slijedi prijedlog rješenja za integraciju visokonaponskog i niskonaponskog energetskog sustava. U šestom poglavlju je objašnjena izrada računalnih modela, a u sedmom poglavlju regulacija paralelnog rada pretvarača. Osmo poglavlje opisuje napravljene eksperimente i rezultate istih, zaključku kroz nekoliko rečenica dan a u je osvrt na rad.

2. KARAKTERISTIKE SKIDERA ECOTRAC 120V

EcoTrac 120V je šumski zglobni traktor, bjelovarske tvrtke "Hittner" koji je dizajniran prema zahtjevima kupca (Hrvatske šume), spreman je za najteže zadatke, a koristi se za izvlačenje trupaca i prijevoz istih od mjesta eksploatacije do krajnjeg odredišta. Teren na kojem se koristi čine šume na brdovitim područjima [3]. Slika 1 prikazuje razmotreni skider, a tablica 1 sadrži specifikacije skidera EcoTrac 120v.

Slika 1. Skider EcoTrac 120v [4]

Opis	Vrijednost
Dužina (mm)	7130
Širina (mm)	2200
Visina (mm)	2950
Ukupna masa, <i>m_v</i> (kg)	7200
Polumjer kotača, <i>r_k</i> (mm)	710

Tablica 1.	Specifikacije skidera	[5]
------------	-----------------------	-----

EcoTrac traktor ima pogon na sve kotače što je nužno kod vozila ovakve namjene. Snaga motora prenosi se preko mjenjača i razvodnika pogona na pogonske mostove te naposlijetku na kotače. Kardanska vratila prenose pogon s razvodnika pogona na pogonske mostove. Svi su mostovi opremljeni hidrauličkim kočnicama i blokadama diferencijala. Upravljanje vozilom odvija se preko zgloba oko kojeg se šasija "lomi" na dva dijela vertikalne osi (z-os). Zglob je postavljen na sredini međuosovinskog razmaka kako bi prednji i stražnji kotači prilikom skretanja prelazili isti put te kako ne bi dolazilo do dodatnog proklizavanja. Stražnji most je kruto pričvršćen na šasiju, a prednji se može prilagođavati terenu preko zgloba (rotacija mostova oko uzdužne osi traktora, y-os) [5].

Skider posjeduje hidraulički sustav koji se napaja pomoću tri hidrostatske pumpe pogonjene od strane motora skidera. Pumpe služe i za pogon prednje odrivne i stražnje sidreno-zaštitne daske, servo-upravljača, hidromotora za pogon vitla te hidrauličkog otkočnog cilindra pojasne kočnice [3].

Slika 2. Skider izvlači trupce [6]

Prilikom izvlačenja trupaca, traktor treba biti stabiliziran i zakočen. Kako bi se stabilizirao skider, koriste se "ploče", odnosno "daske" koje su zapravo metalni odbojnici koje služe za čvrsto oslanjanje o tlo. Za stabilizaciju skidera također se koristi i parkirna kočnica koja je disk kočnica, a nalazi se na izvornom izlaznom vratilu razvodnika pogona [3].

Prilikom samog procesa izvlačenja trupaca, koristi se dvobubanjsko vitlo koje privuče trupac, prednja odrivna i stražnja sidreno-zaštitna daska služe za probijanje kroz prepreke na putu, ali

i kao zaštita od udaraca trupaca prilikom prevoženja [5]. Slika 2 prikazuje kako izgleda izvlačenje trupaca.

2.1. Pogonski sustav skidera

Traktor je pogonjen dizelskim motorom Deutz F6L-914, a hlađen je zrakom. Motor ima obujam od 6472 cm² te se sastoji od šest cilindara raspoređenih u liniju. Pri 1500 min⁻¹ ima snagu od 62 kW, a pri brzini 2500 min⁻¹ doseže maksimalnu snagu 85 kW. Maksimalni moment iznosi 400 Nm pri brzini 1500 min⁻¹ [7]. Slika 3 prikazuje dizelski motor kojim je skider opremljen.

Slika 3. Dizelski motor Deutz F6L-914 [7]

Slika 4 prikazuje shemu pogonskog sustava skidera. Motor daje mehaničku snagu za pokretanje vozila i hidrauličke pumpe. Odvojen je od mjenjačke kutije spojkom S1 kojom upravlja vozač. Izlazno vratilo iz mjenjačke kutije ulazi u razvodnik pogona koji raspodjeljuje snagu na prednji i stražnji most vozila. Hidraulička pumpa odvojena je od motora spojkom S2 te pokreće vitlo i hidrauličke aktuatore pod koje spadaju cilindri za zakret vozila i pogon prednje i stražnje odrivne daske [3].

Slika 4. Shema pogonskog sustava skidera

2.2. Vitlo skidera

Skider je opremljen dvobubanjskim vitlom čija maksimalna duljina izvlačenja iznosi 70 m, a brzina privlačenja je 1,26 m/s [6]. Prilikom dolaska na mjesto eksploatacije radnici privezuju trupce sajlama vitla, a skider se usidri na sigurnom mjestu kako ne bi došlo do pomicanja.

Slika 5. Shematski prikaz tereta na kosini i vitla [5]

Slika 5 prikazuje shematski prikaz vitla koje se modelira kao masa na kosini sa trenjem privezana na koloturu [5].

Nakon rastavljanja sila na kosini računa se normalna sila te sila trenja. Izrazi za računanje prethodno navedenih sila su sljedeći [5]:

$$F_{v} = F_{tr} , \qquad (1)$$

$$F_{tr} = F_N \cdot \mu_p = m_t \cdot \cos\alpha \cdot g \cdot \mu_p , \qquad (2)$$

gdje su F_{tr} sila trenja, F_N normalna sila, g gravitacijsko ubrzanje, α nagib kosine, a μ_p koeficijent trenja koji je jednak koeficijentu trenja koji se koristi pri računanju sile vuče trupaca.

Moment M_v potreban za izvlačenje trupca računa se prema izrazu [5]:

$$M_{\nu} = F_{\nu} \cdot r_b , \qquad (3)$$

gdje je r_b radijus bubnja za izvlačenje trupca.

Prijenos snage vrši se preko pužnog prijenosnika s prijenosnim omjerom $i_v = \frac{41}{2}$, a korisnost vitla iznosi $\eta_v = 0,86$ [8]. Prethodno navedeni podatci uvrštavaju se u izraz za ukupni moment motora M_m potreban za izvlačenje tereta pomoću vitla [5]:

$$M_m = M_v \cdot \eta_v \cdot \frac{1}{i_v}.$$
(4)

Snaga vitla P_{ν} računa se sljedećem izrazu [5]:

$$P_{\boldsymbol{v}} = F_{tr} \cdot \boldsymbol{v}_{\boldsymbol{v}} \,. \tag{5}$$

3. ENERGETSKA ELEKTRONIKA I OSTALE KOMPONENTE

Energetska elektronika je ključna tehnologija za elektroenergetsko povezivanje komponenata, stoga omogućava prijelaz s konvencionalnih vozila s dizelskim/benzinskim motorima na električna, hibridna i vozila s gorivim čelijama [10]. U ovom poglavlju dat će se pregled komponenti koje su nužne za hibridna vozila te će se naposlijetku napraviti izbor komponenti koje su potrebne za hibridizaciju razmatranog vozila.

Kako bi se objasnile komponente energetske elektronike, u radu je odabrana P2 paralelna konfiguracija hibridnog pogona koju prikazuje slika 6 [5, 11, 12] budući da skider razmatran u radu ima takvu konfiguraciju.

Slika 6. P2 paralelna konfiguracija hibridnog pogona

Za ovakvu konfiguraciju vrijedi da su motor s unutarnjim izgaranjem i elektromotor spojeni do konačnog pogonskog vratila pomoću više stepenog reduktora i odvojeni su spojkama. Takva konfiguracija omogućava da dizelski motor i elektromotor pogone vozilo odvojeno ili u kombiniranom načinu. Elektromotor se također koristi kao generator kod regenerativnog kočenja ili oduzimanja viška mehaničke snage dizelskom motoru [10]. Elektromotor je također potrebno odvojiti spojkama od dizelskog motora i kotača kako bi mogao raditi dok je vozilo stacionarno, a dizelski motor ugašen (spojke S1 i S2 na slika 6). Hidrauličku pumpu pokreće elektromotor te su oni odvojeni spojkom S3.

Kod konvencionalnih vozila, motor preko remena pogoni kompresor zraka za klimu. Kod naprednih hibridnih vozila, motor je isključen vrlo često zbog stani-kreni voznih režima. Kako bi kompresor zraka radio dok je motor isključen, njega treba pokretati elektromotor koji radi pomoću baterije. Također, hidraulička pumpa za vitlo, kočnice i servo upravljanje napajaju se električno. Pomoćne komponente kao što su svijetla, brisači itd. napajaju se iz pomoćne baterije. Između pomoćne baterije i glavne baterije nalazi se DC/DC pretvarač koji smanjuje napon glavne baterije na napon pomoćne baterije koji je uglavnom 12, 24 ili 48 V. Budući da se u ovom slučaju radi o punjivom hibridnom vozilu na slici 6 prikazano je da se spaja punjač koji potom iz mreže puni bateriju [10].

Drugi DC/DC pretvarač povezan je DC sabirnicom s DC/AC inverterom. DC/AC inverter bitan kod regenerativnog kočenja, dakle kada motor radi kao generator njegov izlaz je izmjenična struja (engl. *Alternating Current* – *AC*) koja se ispravlja u DC pomoću invertera te se koristi za punjenje baterije. S druge strane ako treba pokretati elektromotor, iz baterije se DC struja pomoću invertera pretvara u AC struju kojom se napaja elektromotor. Učinkovitost invertera i pretvarača ima značajan utjecaj na ukupnu učinkovitost vozila.

Iako postoje sličnosti između energetskih pretvarača korištenih kod hibridnih vozila te onih koji se koriste u industriji, komercijalne i stambene svrhe, postoje i neke posebne značajke kod primjene istih u motornim vozilima. Jedan primjer je širi raspon radne temperature (od - 20 do 50 °C), vibracije, elektromagnetna kompatibilnost i termalno upravljanje [10].

Energetski pretvarači se obično klasificiraju s obzirom na njihov ulaz i izlaz. S obzirom da izlazne i ulazne varijable mogu biti AC ili DC postoje četiri vrste pretvarača: DC/DC pretvarač, DC/AC inverter, AC/DC ispravljač i AC/AC pretvarači. Prve tri od navedenih vrsta pretvarača su one koje se najčešće koriste za hibridna vozila [10].

Glavni strujni krug energetskih pretvarača sastoji se od energetskih poluvodičkih uređaja (tranzistori i diode) i perifernih krugova. Poluvodičke sklopke preklapaju se na frekvenciji od nekoliko kHz do desetak kHz kod hibridnih vozila. Ovisno o razini napona sustava, uglavnom

Fakultet strojarstva i brodogradnje

se koriste MOSFET i IGBT kao energetski pretvarači. Energetski elektronički pretvarači obično imaju LC niskopropusni filtar koji ne propušta visokofrekvencijske komponente, a niskofrekvencijske komponente ili DC komponente propušta. Za upravljanje i povratne informacije koriste se mikrokontroleri i senzori. Kod hibridnih vozila pogonski dio obično ima povratnu spregu zakretnog momenta, stoga je potrebno imati i senzore za struju [10].

3.1. Pretvarači

U ovom podpoglavlju opisat će se detaljno tri vrste pretvarača koje se koriste za predloženu topologiju hibridnog vozila.

3.1.1. DC/AC inverter

U hibridnim vozilima, inverter pretvara DC struju baterije u AC struju za elektromotor te, također, pretvara AC struju u DC struju za punjenje baterije u slučaju regenerativnog kočenja. Stoga, DC/AC inverter je jedan od važnijih komponenti hibridnih, ali i električnih vozila. U ovom poglavlju detaljnije će biti opisan princip rada trofaznog DC/AC invertera [2].

Slika 7. Topologija trofaznog DC/AC invertera [2]

Slika 7 prikazuje strukturu trofaznog invertera. Svaka sklopka provodi 180 ° te su tri sklopke uključene u svakom trenutku. Ako se izlazni terminali označe s A, B i C, inverter daje trofaznu AC struju s valovima pravokutnog oblika povezanom trofaznom teretu koji može biti spojen u trokut ili zvijezdu. Postoji 8 prekidačkih režima rada (engl. *switching mode*) za predstavljeni strujni krug invertera, od stanja 0, gdje su svi izlazni terminali spojeni na negativnu DC sabirnicu, do stanja 7, gdje su svi spojeni na pozitivnu sabirnicu [2].

Budući da su V_{AB} , V_{BC} i V_{CA} faze razmaknute za 120 °, međufazni naponi mogu se izraziti Fourierovim nizom ako ωt počinje u 0 umjesto u $-\pi$ [2]:

$$V_{AB}(t) = \sum_{k=1}^{\infty} \left[\frac{4V_{in}}{k\pi} \sin\left(\frac{k\pi}{3}\right) \sin\left(k\left(\omega t + \frac{\pi}{6} - \pi\right)\right) \right], k = 1, 3, 5, ...,$$
(6)

$$V_{BC}(t) = \sum_{k=1}^{\infty} \left[\frac{4V_{in}}{k\pi} \sin\left(\frac{k\pi}{3}\right) \sin\left(k\left(\omega t + \frac{\pi}{2}\right)\right) \right], k = 1, 3, 5, ...,$$
(7)

$$V_{CA}(t) = \sum_{k=1}^{\infty} \left[\frac{4V_{in}}{k\pi} \sin\left(\frac{k\pi}{3}\right) \sin\left(k\left(\omega t - \frac{\pi}{6}\right)\right) \right], k = 1, 3, 5, \dots,$$
(8)

gdje je V_{in} ulazni napon, V_{AB} međufazni napon prve i druge faze, V_{BC} druge i treće, a V_{CA} treće i prve faze.

Iz prethodno navedenih jednadžbi, vidi se da je odsutan trostruki neparni harmonik sin $\left(\frac{k\pi}{3}\right)$ za k = 1,2,3,... Stoga, prethodne jednadžbe mogu se zapisati kao [2]:

$$V_{AB} = \frac{2\sqrt{3}V_{in}}{\pi}\sin(\omega t) = 1.103V_{in}\sin\left(\omega t - \frac{5\pi}{6}\right),$$
(9)

$$V_{BC} = 1.103 V_{in} \sin\left(\omega t + \frac{\pi}{2}\right),\tag{10}$$

$$V_{CA} = 1.103 V_{in} \sin\left(\omega t - \frac{\pi}{6}\right),\tag{11}$$

gdje je V_{in} ulazni napon, V_{AB} međufazni napon prve i druge faze, V_{BC} druge i treće, a V_{CA} treće i prve faze.

Ako je trofazni RL teret s impedancijom Z povezan u zvijezdu, trenutni fazni naponi i struja računaju se prema sljedećim izrazima [2]:

$$V_{A'N} = \frac{\dot{V_{AB}}}{\sqrt{3}} \angle \left(-\frac{\pi}{6}\right) = \frac{4V_{in}}{\pi\sqrt{3}} \sum_{k=1}^{\infty} \left[\frac{1}{k}\sin\left(\frac{k\pi}{3}\right)\sin(k\omega t - \pi)\right], k = 1, 3, 5, ...,$$
(12)

$$V_{B'N} = \frac{4V_{in}}{\pi\sqrt{3}} \sum_{k=1}^{\infty} \left[\frac{1}{k} \sin\left(\frac{k\pi}{3}\right) \sin\left(k\left(\omega t + \frac{\pi}{3}\right)\right) \right], k = 1, 3, 5, \dots,$$
(13)

$$V_{C'N} = \frac{4V_{in}}{\pi\sqrt{3}} \sum_{k=1}^{\infty} \left[\frac{1}{k} \sin\left(\frac{k\pi}{3}\right) \sin\left(k\left(\omega t - \frac{\pi}{3}\right)\right) \right], k = 1, 3, 5, \dots,$$
(14)

Fakultet strojarstva i brodogradnje

Ana Parčina

Diplomski rad

$$i_{a} = \frac{V_{A'N}}{Z} = \frac{4V_{in}}{\pi\sqrt{3}} \sum_{k=1}^{\infty} \left[\frac{1}{k\sqrt{R^{2} + (k\omega L)^{2}}} \sin\left(\frac{k\pi}{3}\right) \sin\left(k(\omega t - \pi) - \theta\right) \right], k = 1, 3, 5, ...,$$
(15)

$$i_{b} = \frac{V_{B'N}}{Z} = \frac{4V_{in}}{\pi\sqrt{3}} \sum_{k=1}^{\infty} \left[\frac{1}{k\sqrt{R^{2} + (k\omega L)^{2}}} \sin\left(\frac{k\pi}{3}\right) \sin\left(k\left(\omega t + \frac{\pi}{3}\right) - \theta\right) \right], k = 1, 3, 5, ...,$$
(16)

$$i_{c} = \frac{V_{C'N}}{Z} = \frac{4V_{in}}{\pi\sqrt{3}} \sum_{k=1}^{\infty} \left[\frac{1}{k\sqrt{R^{2} + (k\omega L)^{2}}} \sin\left(\frac{k\pi}{3}\right) \sin\left(k\left(\omega t - \frac{\pi}{3}\right) - \theta\right) \right], k = 1, 3, 5, ...,$$
(17)

gdje je $V_{A'N}$ trenutni fazni napon prve faze, $V_{B'N}$ druge i $V_{C'N}$ treće faze, i_a trenutna struja prve faze, i_b druge i i_c treće faze, Z impedancija RL tereta, R otpor tereta i L induktivitet tereta. Slika 8 prikazuje valne oblike međufaznog napona.

Ana Parčina

3.1.2. DC/DC pretvarač

DC/DC pretvarač s četverokvadratnim načinom rada u hibridnim vozilima se često naziva pretvarač upravljanja energijom ili "boost" DC/DC pretvarač. To je visoko energetski pretvarač koji povezuje glavnu bateriju s niskim naponom DC sabirnice. Tipični napon baterije je između 300 i 400 V. Napon pri kojem najbolje funkcioniraju motor i inverter je oko 600 V. Stoga, ovaj pretvarač koristi se za izjednačavanje napona sustava za pohranu energije (baterija) i pogonskog sustava. Ostale funkcije DC/DC pretvarača su optimizacija pogona, smanjenje oscilacija u struji baterije te održavanje napona DC sabirnice [10]. Slika 9 prikazuje strukturu DC/DC pretvarača.

Slika 9. Topologija izoliranog dvosmjernog DC/DC pretvarača [10]

Primarni most invertera prekida na 20 - 50 kHz s faktorom popunjenosti D = 50%. Izlaz primara je napon s pravokutnim valnim oblicima koji se primjenjuje na primarni namotaj izoliranog transformatora. Sekundarni namotaj transformatora tako će imati napon pravokutnog valnog oblika. Bez kontrole na ulazu sekundarnog mosta pretvarača, napon sekundara transformatora se ispravlja pomoću četiri diode slobodnog hoda. Izlazni napon oscilira s obzirom na primarni napon i stanje tereta [10].

U sljedećoj analizi, broj namotaja transformatora označen je s n, primarni napon transformatora je V_1 , a frekvencija preklapanja f_s . T_s definiran je kao polovica vremena preklapanja $T_s = 1/(2f_s)$. Faktor popunjenosti definiran je kao $D = t_{on}/T_s$. Stoga, DT_s je fazni pomak između dva mosta. Nadalje, I_{L2} je struja gubitka induktiviteta sekundarnog namotaja. Izlazni napon sekundarnog mosta je V_2 [10].

U svakom se ciklusu preklapanja pojavljuje šest različitih segmenata. Slika 10 prikazuje valne oblike struje i napona. U analizi koja slijedi pretpostavlja se da je $V_2 > nV_1$.

Slika 10. Valni oblici struje i napona za $V_2 > nV_1$: (a) valni oblici za $i(t_0) < 0$; (b) valni oblici za granične uvjete $i(t_0) = 0$; (c) valni oblici za $i(t_0) > 0$ [10]

- Segment 0 [t_0 , t_1]: Sklopke Q_1 i Q_4 primarnog mosta su uključene pa su naponi V_1 i nV_1 pozitivni, sklopke Q_6 i Q_7 sekundarnog mosta su uključene. Budući da je struja induktora negativna, diode D_6 i D_7 vode, a Q_6 i Q_7 ne provode struju, stoga $V_{L_s} = nV_1 + V_2$. Struja induktora linearno raste od negativne vrijednosti. U t_1 , struja induktora dostiže nulu [10].
- Segment 1 [t_1 , t_2]: Sklopke Q_1 i Q_4 primarnog mosta i Q_6 i Q_7 sekundarnog mosta su uključene pa je $V_{L_s} = nV_1 + V_2$, a struja nastavlja rasti [10].
- Segment 2 [t_2 , t_3]: Sklopke Q_1 i Q_4 primarnog mosta su i dalje uključene, ali sklopke Q_6 i Q_7 su isključene. Uključuju se sklopke Q_5 i Q_8 . Diode D_5 i D_8 vode jer je struja pozitivna [10].
- Segment 3 [t₃, t₄]: Sklopke Q₂ i Q₃ primarnog mosta i dalje su uključene kao i sklopke Q₅ i Q₈. Primarni napon transformatora je u odnosu na sekundarni napon suprotan i struja pada od *i*(t₃) na nulu. Diode D₅ i D₈ vode [10].
- Segment 4 [t₄, t₅]: Sklopke Q₂ i Q₃ primarnog mosta su uključene kao i sklopke Q₅ i Q₈. Struja linearno pada do svog negativnog maksimuma. Sklopke Q₅ i Q₈ vode struju [10].
- Segment 5[t_5 , t_6]: Sklopke Q_5 i Q_8 su isključene pa diode D_6 i D_7 počinju voditi [10].

Početna struja induktora može se izraziti kao [10]:

$$i(t_0) = \frac{1}{4f_s L_s} [(1 - 2D)V_2 - nV_1],$$
⁽¹⁸⁾

gdje je D faktor popunjenosti, V_2 napon sekundara, V_1 napon primara, n broj namotaja transformatora, f_s frekvencija preklapanja, L_s induktivitet sekundara. Maksimalna struja iznosi [10]:

$$I_{max} = i(t_2) = \frac{1}{4f_s L_s} [-(1-2D)V_2 - nV_1],$$
(19)

gdje je D faktor popunjenosti, V_2 napon sekundara, V_1 napon primara, n broj namotaja transformatora, f_s frekvencija preklapanja, L_s induktivitet sekundara, a I_{max} maksimalna struja.

Prosječna struja gubitka induktiviteta iznosi [10]:

$$\bar{I} = \frac{1}{2T_s} \left[(I_{max} + i(t_0))DT_s + (I_{max} - i(t_0))(1 - D)T_s \right] = \frac{1}{2f_s L_s} D(1 - D)V_2, \quad (20)$$

gdje je D faktor popunjenosti, V_2 napon sekundara, f_s frekvencija preklapanja, L_s induktivitet sekundara, T_s polovica vremena preklapanja, I_{max} maksimalna struja, a \overline{I} prosječna struja gubitka induktiviteta.

Ulazna snaga računa se prema sljedećem izrazu [10]:

$$P_1 = nV_1\bar{I} = \frac{nV_1V_2}{2f_sL_s}D(1-D),$$
(21)

gdje je D faktor popunjenosti, V_2 napon sekundara, V_1 napon primara, n broj namotaja transformatora, f_s frekvencija preklapanja, L_s induktivitet sekundara, \overline{I} prosječna struja gubitka induktiviteta, a P_1 ulazna snaga.

Ako se pretpostavi da teret ima fiksni otpor, izlazna snaga je [10]:

$$P_0 = \frac{V_2^2}{R_L},$$
 (22)

gdje je P_0 izlazna snaga, V_2 napon sekundara, a R_L otpor tereta.

Zanemare li se gubitci transformatora i sklopki, $P_1 = P_0$ pa slijedi da je [10]:

$$V_2 = \frac{nV_1}{2f_s L_s} R_L D(1-D),$$
(23)

$$I_2 = \frac{nV_1}{2f_s L_s} D(1-D),$$
(24)

gdje je *D* faktor popunjenosti, V_2 napon sekundara, V_1 napon primara, *n* broj namotaja transformatora, f_s frekvencija preklapanja, L_s induktivitet sekundara, R_L otpor tereta, a I_2 struja sekundara.

Slika 11 prikazuje valne oblike napona i struje te se vidi da kada napon V_2 padne ispod nV_1 , inicijalna struja induktora ima negativnu vrijednost te je valni oblik struje drugačiji u usporedbi sa slučajem kada je $V_2 > nV_1$.

Slika 11. Valni oblici struje i napona za $V_2 < nV_1$ i $V_2 = nV_1$; (a) standardno stanje; (b) granično stanje; (c) ekstremno stanje $V_2 = nV_1$ [9]

Regenerativno kočenje ima dvije topologije, jednu s DC/DC pretvaračem i jednu bez. U slučaju da nema DC/DC pretvarača, napon DC sabirnice oscilirat će tijekom prelaska s motorskog na generatorski način rada. Na primjer, ako motor radi na 50 kW unutarnji napon baterije je 400 V s unutarnjim otporom 0.5 Ω , tada je struja baterije 155 A, a napon DC sabirnice je 322 V. Ako motor radi u generatorskom režimu na 50 kW, tada je struja baterije 110 A, a napon DC sabirnice 455 V. Ova velika razlika napona DC sabirnice uzrokovat će otežano upravljanje motorom. S druge strane u sustavu koji koristi DC/DC pretvarač između

baterije i invertera, napon DC sabirnice ostat će relativno konstantan. Na taj način je prijelaz između generatorskog i motorskog režima rada jednostavniji za upravljanje [10].

3.1.3. "Buck" DC/DC pretvarač

Još jedan DC/DC pretvarač potreban je za pretvorbu visokog napona iz glavne baterije na niži napon (npr. 12, 24 ili 48 V) za punjenje pomoćne baterije. Budući da zbog sigurnosnih razloga sustav nižeg napona mora biti izoliran, DC/DC pretvarač mora biti izolirani "buck" pretvarač. Ovaj pretvarač ima dva prekidačka režima rada i četiri operativna načina rada. Tijekom prvog podintervala prvog perioda preklapanja, MOSFET sklopke Q_1 i Q_4 su u uključene dok su sklopke Q_2 i Q_3 isključene, tijekom drugog podintervala, sve sklopke su isključene. Tijekom prvog podintervala drugog prekidačkog perioda, MOSFET sklopke Q_1 i Q_4 su isključene dok su sklopke Q_2 i Q_3 uključene, tijekom drugog podintervala sve sklopke su isključene. AC napon je pravokutnog oblika, a generira se u primarnom namotaju uključivanjem i isključivanjem sklopki [2]. Slika 12 prikazuje topologiju "buck" (silaznog) pretvarača.

Slika 12. Topologija "buck" DC/DC pretvarača [2]

Tijekom prvog podintervala prvog prekidačkog perioda u kojem su Q_1 i Q_4 sklopke uključene, a Q_3 i Q_2 su isključene na vrijeme t_{on} , napon primarnog namotaja transformatora je jednak $v_p = V_{in}$ te dioda D_5 vodi. Tijekom ovog perioda vremena, napon sekundarnog namotaja transformatora spušta se na [2]:

$$v_s = k v_p = \frac{N_s}{N_p} v_p , \qquad (25)$$

gdje je N_s broj namotaja sekundara, N_p broj namotaja primara, a v_p napon primarnog namotaja transformatora.

Napon zavojnice filtra L se dobiva prema izrazu [2]:

$$v_L = v_s - V_0 = \frac{N_s}{N_p} v_p - V_0 = \frac{N_s}{N_p} V_{in} - V_0$$
, (26)

gdje je V_{in} ulazni napon, v_s napon sekundara, v_p napon primara, V_0 napon otpornika, a v_L napon zavojnice.

Tijekom drugog podintervala prvog prekidačkog perioda u kojem su sve sklopke Q_1 , Q_2 , Q_3 i Q_4 isključene na vrijeme t_{off} , napon primarnog namotaja transformatora jednak je nuli te obje diode D_5 i D_6 vode. Tijekom ovog perioda vremena, napon zavojnice filtra L iznosi [2]:

$$v_L = V_0 \,. \tag{27}$$

Struja koja ide kroz zavojnicu *L* može se prikazati kao [2]:

$$v_{L}(t) = L \frac{di_{L}(t)}{dt} \Rightarrow i_{L}(t)$$

$$= \begin{cases} \frac{1}{L} \int_{0}^{t} \left(\frac{N_{s}}{N_{p}} V_{in} - V_{0}\right) dt = i_{L}(0) + \frac{1}{L} \left(\frac{N_{s}}{N_{p}} V_{in} - V_{0}\right) t, 0 \le t \le t_{on} \\ \frac{1}{L} \int_{t_{on}}^{t} V_{0} dt = t_{L}(t_{on}) - \frac{V_{0}}{L} t, t_{on} \le t \le T_{s}, \end{cases}$$
(28)

gdje je L induktivitet zavojnice, t_{on} vrijeme uključivanja, v_L napon zavojnice L, i_L struja zavojnice L, N_s broj namotaja sekundara, N_p broj namotaja primara, V_{in} ulazni napon, V_0 napon otpornika.

Tijekom prvog intervala drugog prekidačkog perioda vremena, sklopke Q_1 i Q_4 su ugašene a sklopke Q_2 i Q_3 su uključene na vrijeme ton što rezultira naponom primarnog namotaja v_p koji je suprotan ulaznom naponu V_{in} pa dioda D_6 vodi na drugoj strani transformatora. Princip rada izlaznih filtera i tereta isti su kao kod prvog perioda prekidanja [2].

Ako se primjeni balans induktivne voltske sekcije za stacionarno stanje zavojnice *L*, dobiju se sljedeći izrazi za izlazni i ulazni napon [2]:

$$\left(\frac{N_s}{N_p}V_{in} - V_0\right)t_{on} - V_0t_{off} = 0 \Rightarrow V_0(t_{on} + t_{off}) = \frac{N_s}{N_p}V_{in}t_{on}$$

$$\Rightarrow V_0T_s = \frac{N_s}{N_p}V_{in}t_{on} \Rightarrow V_0 = \frac{N_s}{N_p}V_{in}\frac{t_{on}}{T_s} = \frac{N_s}{N_p}V_{in}D ,$$

$$(29)$$

gdje je N_s broj namotaja sekundara, N_p broj namotaja primara, V_{in} ulazni napon, V_0 napon otpornika, t_{on} vrijeme uključivanja, t_{off} vrijeme isključivanja, T_s polovica vremena preklapanja, a D faktor popunjenosti.

3.2. Baterije

Baterije su elektrokemijske ćelije koje pretvaraju kemijsku energiju koja se skladišti u aktivnim materijalima direktno u električnu energiju elektrokemijskom redoks reakcijom (oksidacija-redukcija) tijekom pražnjenja. U slučaju razmatranog skidera baterije su punjive stoga su kod njih uloge elektroda obrnute, dakle prilikom punjenja pozitivna elektroda je ona na kojoj se događa oksidacija, a negativna ona na kojoj se događa redukcija.

Najčešće korištene vrste baterije su:

- 1. litij-ionske (Li Ion) baterije,
- baterije na bazi nikla: nikal kadmij (Ni Cd) i nikal metal hidrid (NiMH) baterije,
- 3. visokotemperaturne baterije: natrij sumpor (NaS) i ZEBRA baterije,
- 4. olovo kiselina (engl. LA) i VRLA baterije,
- protočne baterije (engl. FB): vanadij redoks (VRB), natrij bromid (Na Br) i cink bromid (Zn – Br) baterije [2].

Slika 13 predstavlja klasifikaciju različitih tehnologija baterija ovisno o gustoći energije i snazi.

Slika 13. Klasifikacija baterija s obzirom na gustoću energije i snagu [13]

Kao što je prije navedeno, u ovom slučaju postoji glavna visoko naponska baterija i pomoćna nisko naponska baterija. Slika 14 prikazuje ekvivalentni strujni krug prema kojem se dobije model baterije [14].

Slika 14. Ekvivalnetni strujni krug (a), naponska karakteristika (b) i otpor baterije (c) [5] Pražnjenje baterije definira se kao [5]:

$$\frac{dSoC}{dt} = \frac{-i(t)}{Q_{maks}},\tag{30}$$

gdje je dSoC promjena napunjenosti baterije, i(t) struja baterije, a Q_{maks} maksimalni kapacitet baterije.

Ukupni napon ekvivalentnog strujnog kruga računa se prema [5]:

$$U_{bat} = R_{bat}(SoC, i) \cdot i_{bat} + U_0(SoC), \tag{31}$$

gdje je U_{bat} napon baterije, R_{bat} otpor baterije te U_0 napon otvorenog strujnog kruga, SoC stanje napunjenosti baterije.

Unutarnji otpor je funkcija stupnja napunjenosti baterije i smjera struje, a napon otvorenog kruga samo o stupnju napunjenosti baterije *SoC*.

Snaga baterije računa se prema izrazu [5]:

$$P_{bat} = i_{bat} \cdot U_{bat},\tag{32}$$

gdje je i_{bat} struja baterije, U_{bat} napon baterije, P_{bat} snaga baterije.

Uvrštavanjem izraza (31) u (32), izlučivanjem struje baterije i uvrštavanjem u (30) dolazi se do dobro poznatog izraza ovisnosti promjene napunjenosti baterije o njenim karakteristikama i snazi koju ona daje ili prima [5]:

$$P_{bat} = R_{bat}(SoC, i) \cdot i_{bat}^2 + U_0(SoC) \cdot i_{bat},$$
(33)

$$\frac{dSoC}{dt} = \frac{\sqrt{U_0^2(SoC) - 4R(SoC, i) \cdot P_{bat}} - U_0(SoC)}{2Q_{maks} \cdot R(SoC, i)},$$
(34)

gdje je je i_{bat} struja baterije, U_{bat} napon baterije, P_{bat} snaga baterije, U_0 napon otvorenog strujnog kruga, *SoC* stanje napunjenosti baterije.

3.3. Punjač

Razmatrani skider je tzv. plug-in hibridno vozilo, odnosno baterija mu se može puniti. Sustav za punjenje baterije bitan je kod takvih vozila. Slika 15 prikazuje opću strukturu jednosmjernog punjača. Sastoji se od ispravljača, faktora korekcije snage (PFC, engl. *Power Factor Correction*) i izoliranog DC/DC dijela [10].

Slika 15. Struktura punjača hibridnog vozila [10]

PFC se postavlja između DC/AC sklopovlja i ispravljača kako bi se izbjegli harmonički poremećaji u mreži te da se stabilizira napon DC naponske sabirnice. Slika 16 prikazuje tipični PFC strujni krug, a sastoji se od zavojnice induktiviteta L, aktivne sklopke S i diode slobodnog hoda D [10].

Slika 16. Struktura PHC za punjač hibridnog vozila [10]

Struja punjenja se kontrolira kontinuiranim praćenjem kritičnih parametara baterije, kao što su napon baterija, stupanje napunjenosti (SoC), temperatura i tako dalje.

Najčešće vrste punjača su:

- "naprijed/nazad" pretvarač (engl. Forward/Flyback Converter), •
- polu-most DC/DC pretvarač, •
- puni-most DC/DC pretvarač, •
- dvosmjerni punjači [10]. •

Također, postoji još i induktivno te bežično punjenje.

3.4. Izbor energetske elektronike

Izbor energetske elektronike temelji se na snagama uređaja povezanih na DC sabirnicu. Skider EcoTrac 120V ima dizelski motor maksimalne snage 84 kW. Elektromotor u potpunosti preuzima pogon hidrauličkih komponenti koje se odnose na pogon vitla i ostalih aktuatora (lom šasije, aktiviranje odrivnih daski) [5].

Odabrani elektromotor je EM-PMI300-T310 [5]. To je sinkroni reluktantni motor s permanentnim magnetima čija snaga je do 94 kW što ispunjava prethodno navedene zahtjeve. Hladi se vodom ili mješavinom vode i glikola, a tipično se primjenjuje kao motor/generator za hibridne sustave paralelne konfiguracije [5]. Tablica 2 sadrži osnovne specifikacije motora [15].

Opis	Vrijednost
Međufazni napon	500 VAC
Nominalna učinkovitost	96%
Broj pari polova	6
Masa	125 kg
Promjer	408 mm
Dužina	377 mm
Moment inercije	0.21 kgm ²

Tablica 2. Specifikacije elektromotora EM-PMI300-T310 [15]

Slika 17 prikazuje izabrani elektromotor.

Slika 17. Sinkroni reluktantni motor EM-PMI-300-T310 [15]

Za bateriju odabrane su litij – ionske čelije zbog njihove dostupnosti, velike gustoće energije i izdržljivosti što je vrlo bitno kod ovakve primjene. Broj ćelija odabran je u [5] na temelju toga da je baterija u mogućnosti isporučiti dovoljno snage pri maksimalno opterećenom vitlu (83 kW). Odabrano je 250 ćelija podijeljeno u dva paralelna bloka s po 125 ćelija u seriji koje zajedno mogu isporučiti 100 kW [5]. Tablica 3 prikazuje parametre visokonaponske baterije.

Tablica 3. Parametri baterije [13]

	Ν	E (kWh)	Q_{maks} (Ah)	P _{maks} (kW)	<i>m</i> _{bat} (kg)
Ćelija	1	0,06	15,9	0,4	0,63
Baterije	250	15	31,8	100	157,5

Napon jedne ćelije je od 3,4 – 4,2 V ovisno o materijalu katode. U ovom slučaj pretpostavljeno je da je napon jedne ćelije 4 V budući da je to napon koji daje većina materijala koja se koristi za katodu. Formula prema kojoj se računa napon baterije je sljedeća:

$$U_{baterije} = \frac{N}{2} \cdot U_{celije} = \frac{250}{2} \cdot 4 = 500V.$$
 (35)

Kako bi se dobio napon pomoćne baterije od 24 V spojit će se 6 ćelija u serijski spoj. Tablica 4 prikazuje parametre pomoćne baterije.

	Ν	E (kWh)	$Q_{\rm maks}$ (Ah)	P _{maks} (kW)	<i>m</i> _{bat} (kg)
Ćelija	1	0,06	15,9	0,4	0,63
Baterije	6	0,36	15,9	2,4	3,78

Tablica 4. Parametri pomoćne baterije

3.4.1. Izbor AC/DC invertera

Odabrani AC/DC inverter je NXI 0140 5 A0T0CSS [16]. Ovaj uređaj omogućava dvosmjeran protok energije te napaja i regulira rad izmjeničnih motora. Napaja se iz DC sabirnice. Tablica 5 prikazuje specifikacije odabranog uređaja.

Opis		Vrijednost
Masa (kg)		48
Dimenzije		758 x 289 x 344
Malo opterećenje	Kontinuirana struja (A)	140
	Struja tijekom jedne minute (A)	154
Veliko opterećenje	Kontinuirana struja (A)	105
	Struja tijekom jedne minute (A)	158
Maksimalna struja (A)		210

Tablica 5. Specifikacije invertera	NXI 0140 5 A0T0CSS [16]
------------------------------------	-------------------------

Budući da je nominalni napon motora 500 V, a DC napon invertera računa se prema izrazu:

$$U_{AC} = \frac{U_{DC}}{1,4},\tag{36}$$

gdje je U_{AC} izmjenični napon, a U_{DC} istosmjerni napon invertera. Stoga, DC napon mora biti 700 V.

3.4.2. Izbor DC/DC pretvarača

Potrebna su dva DC/DC pretvarača kao što je objašnjeno. Prvi DC/DC pretvarač koji je smješten između baterije i AC/DC pretvarača. U izboru pretvarača u obzir su se uzeli napon, snaga i struja. Odabrani pretvarač je *RedPrime* [17], a koristi se za mikromreže i instalaciju pametnih mreža, punjenje i pražnjenje akumulatora, gorivih ćelija i superkondenzatora, za hibridni/električno pogon itd.

Tablica 6 prikazuje specifikacije pretvarača, a slika 18 odabrani DC/DC pretvarač.

Slika 18. DC/DC pretvarač RedPrime [17]

Opis	Vrijednost
Nominalna snaga (kW)	200
Minimalni napon na niskonaponskom priključku (Vdc)	10
Maksimalni napon na niskonaponskom priključku (Vdc)	700
Maksimalna struja na niskonaponskom priključku (Adc)	400
Minimalni napon na visokonaponskom priključku (Vdc)	60
Maksimalni napon na visokonaponskom priključku (Vdc)	750
Maksimalna struja na visokonaponskom priključku (Adc)	300
Učinkovitost	~ 98%
Prijenos energije	dvosmjeran
Hlađenje	ventilatori
Dimenzije (širina x duljina x visina, mm)	366 x 465 x 240
Masa (kg)	30

Tablica 6.	Specifikacii	e DC/DC	pretvarača	RedPrime	[17]
I upiicu oi	Speemmuerj		protraiaca	neur i mie	L*'J

Drugi DC/DC pretvarač smješten je između glavne i pomoćne baterije. Budući da elektroinstalacije skidera rade na 24 V odabrana je pomoćna baterija istog napona. Izabrani pretvarač je DVCH3003 [18]. Koristi se najčešće u vozilima, a prikazuje ga slika 19.

Slika 19. "Buck" DC/DC pretvarač DVCH3003 [18]

Tablica 7 prikazuje specifikacije pretvarača DVCH3003.

Opis	Vrijednost
Ulazni napon (Vdc)	400-800
Nominalni izlazni napon (Vdc)	0-30
Maksimalna izlazna struja (A)	112
Radna temperatura (°C)	-40 +70
Masa (kg)	<5

Tablica 7.	Specifikacije	pretvarača	DVCH3003	[18]
------------	---------------	------------	----------	------

3.4.3. Izbor punjača

Punjač koji je izabran je OBC42 snage 22 kW, a podržava AC punjenje kao i punjenje velikom snagom (DC punjenje). Uz uobičajenu funkciju punjenja izmjeničnom strujom putem PWM komunikacije, OBC42 podržava i standardno PLC istosmjerno punjenje s izlaznom snagom ovisno o maksimalnom kapacitetu punjenja svakog električnog vozila [19]. Slika 20 prikazuje punjač, a tablica 8 specifikacije istog.

Slika 20. Punjač [19]

Opis	Vrijednost
Učinkovitost (%)	>94
Masa (kg)	18
Dimenzije(l x w x h, mm)	570 x 370 x 115
Ulazni napon (3~ AC, V)	380 - 480
Ulazni napon (1~ AC, V)	120-240
Ulazna struja (A)	32
Frekvencija (Hz)	50-60
Izlazni napon (V)	210-510
Izlazna struja (A)	do 70
Radna temperatura (°C)	-40+85

Tablica 8	8.	Specifikacije	punjača	[19]
Laonca	•••	speemmaeije	punjaca	1

3.5. Masa odabranih komponenti

Sada kada su odabrane sve komponente, bitno je spomenuti koliko one sve skupa teže. Tablica 9 prikazuje masu pojedinačnih komponenti i ukupnu masu.

Komponenta		Masa (kg)
Elektromotor	125	
Baterija	157,5	
AC/DC inverter	48	
DC/DC pretvarač	30	
"Buck" DC/DC pre	tvarač	5
Pomoćna baterija	3,78	
Punjač	18	
	Σ:	387,28

Tablica 9. Masa komponenti sustava energetske elektronike

Dakle, ukupna masa komponenti je 387,28 kg što je dodatnih 5,4% mase. Može se pretpostaviti kako dodatna masa neće stvarati probleme prilikom kretanja skidera, pogotovo jer je kod hibridne konfiguracije moguće ICE motoru dovesti i dodatnu električnu snagu (engl. *power boost*) te se dodatno opterećenje može smatrati zanemarivim.

4. ANALIZA TROŠKOVA

U ovom poglavlju bit će prikazani investicijski troškovi za odabranu energetsku elektroniku.

Cijena 1 kWh baterija je 200 € [20], odnosno 1.508,46 kn, pa je cijena glavne baterije koja ima 15 kWh jednaka iznosu od 22.626,87 kn. Pomoćna baterija ima 0,36 kWh, stoga je njena cijena 543,05 kn.

Tablica 10 prikazuje cijene svih odabranih komponenti za skider EcoTrac 120V. Cijene elektromotora i invertera prikazane su zajedno s pripadajućom opremom.

Komponenta		Cijena (kn)
Elektromotor [15]	45.241,20	
Baterija		22.626,87
AC/DC inverter [16]		52.781,40
DC/DC pretvarač [17]		31.103,33
"Buck" DC/DC pretvarač[18]	13.924,50	
Pomoćna baterija	543,05	
Punjač [19]		7.351,70
	Σ:	173.572,05

Tablica 10.Cijene odabranih komponenti

Treba naglasiti da su to cijene bez PDV-a jer, ako se radi o obrtnom sredstvu, PDV je prolazna stavka (plaća se, ali se vraća kada se naplati kroz konačan proizvod prema korisniku), stoga PDV se može izbaciti iz računa. Također, ako se uzme u obzir popust prilikom kupovine većeg broja jedinica, na primjer 30 posto, dobiju se manji troškovi što prikazuje tablica 11.

Tablica 11.	Cijene odabranih	komponenti s	popustom

Komponenta	Cijena (kn)	
Elektromotor	31.668,84	
Baterija	15.838,81	
AC/DC inverter	36.946,98	
DC/DC pretvarač	21.772,33	
"Buck" DC/DC pretvarač	9.747,15	
Pomoćna baterija	380,14	
Punjač		5.146,19
	Σ:	121.500,44

Dakle, trošak za sve potrebne komponente po jednom skideru, uzevši u obzir popust i zanemarujući PDV, iznosi 121.500,44 kn. Ako je godišnja ušteda korištenja hibridnog vozila u usporedbi s konvencionalnim 25.388,00 kn [5], investicijski troškovi bi se isplatili za nešto manje od 5 godina (ili 7 godina s porezom ako nema popusta).

5. INTEGRACIJA VISOKONAPONSKOG I NISKONAPONSKOG SUSTAVA

Nakon što su opisane komponente energetske elektronike, napravljen njihov odabir te naposljetku analiza troškova hibridizacije razmatranog skidera, u ovom poglavlju naglasak će se staviti na rješenje za integraciju visokoenergetskog i niskoenergetskog sustava. Nakon opisa strukture niskoenergetskog sustava te pregleda tehnologija koje se danas koriste za hibridna vozila slijedi prijedlog rješenja za integraciju dvaju sustava.

5.1. Rješenja za konvencionalni niskoenergetski sustav

Kao što je već opisano u poglavlju 3, hibridna vozila imaju visokonaponski elektroenergetski sustav koji, za razmatrani skider, radi na naponu od 450 (maksimalno 500) V, a niskonaponski elektroenergetski sustav radi na naponu od 24 V i napaja pomoćne sustave kao što su svjetla, grijanje itd.

Slika 21 prikazuje električnu shemu niskonaponskog sustava traktora Caterpillar model 3054 za koju se pretpostavlja da je slična shemi sustava razmatranog traktora. Sustav se sastoji od starter motora čije je pokretanje najvažnije funkcija električnog sustava vozila. Kada se uključi prekidač za pokretanje (engl. *ignition switch*), odnosno vozač okrene ključ u bravi, starter relej se postavlja u stanje uključeno. Električna energiju iz baterije pretvara se u mehaničku i na taj način pokreće elektropokretač. Starter relej je u stanju uključeno dok se motor ne pokrene, kasnije se vraća u stanje isključeno. Elektropokretač se sastoji od elektromotora koji pokreće zupčanik dizajniran za zahvaćanje zamašnjaka motora. Zamašnjak ujednačava kretanje radilice kako bi se smanjile vibracije.

Također, kada se uključi prekidač za pokretanje, relej pumpe za gorivo se uključi te se gorivo pumpa iz spremnika prema motoru. Nadalje, relej za grijače, koji pomažu pri pokretanju hladnog dizelskog motora, također se postavlja u stanje uključeno. Uključivanjem prekidača za pokretanje, pokreće se i pumpa za ubrizgavanje goriva. Radilica izvlači neke od klipova, stvarajući vakuum u svakom cilindru koji usisava gorivo i zrak, svjećica pali smjesu stvarajući izgaranje koje pokreće svaki klip i preuzima okretanje radilice. Elektropokretač više nije potreban. Kontakt od solenoida se otvara i prekida mu napajanje.

Alternator je mehanički uređaj koji generira struju za punjenje baterije i za napajanje određenih električnih opterećenja vozila. Kada se uključi prekidač za pokretanje (engl. *ignition switch*), struja baterije daje energiju alternatoru. Zatim, mehanička energija prenosi se

s motora na alternator preko pogonskog remena na remenici. Dobivena AC struja prenosi se na električni sustav vozila i puni bateriju. Bez alternatora, baterija ne bi se mogla puniti, a električne komponente poput radija, svjetala i sl. ne bi mogle funkcionirati. Električne komponente koje se napajaju preko alternatora su lampice za ulje, vodu te tahometar.

Slika 21. Niskonaponski 24 V sustav traktora Caterpillar model 3054 [21]

5.2. Pregled rješenja niskonaponskog sustava kod hibridnih vozila

Prethodno je opisano kako izgleda niskonaponski sustav kod konvencionalnih vozila te se u ovom poglavlju obrađuje niskonaponski sustav za slučaj hibridnih vozila.

Konvencionalna vozila s motorom s unutarnjim izgaranjem koriste alternator koji napaja 12 V sustav. Kod hibridnih i električnih vozila, njegovu ulogu obavlja DC/DC pretvarač koji napon glavne baterije snižava na napon 12 V za punjenje baterije i napajanje električnih tereta vozila. Kada se uključi prekidač za pokretanje, struja baterije počne napajati kontrolni i računalni sustav vozila. Zatim, provodi se sigurnosna provjera visokonaponskog kruga, sklopnici su zatvoreni kako bi se visokonaponski sustav napajao i radio, a DC/DC pretvarač pretvara visoki u niski napon i napaja pomoćne uređaje (svjetla, upravljački sustav itd.) [22].

Također, hibridna vozila koriste visokonaponski motor-generator za pokretanje dizelskog motora, odnosno ne koristi se tradicionalni starter motor (osim starijih modela Honda Hybrids) [22]. Dakle, motor-generator je taj koji okreće radilicu kako bi se motor s unutarnjim izgaranjem pokrenuo, ne samo pri pokretanju, nego i kada sustav prelazi iz čistog električnog pogona u hibridni način rada. Motor vrlo brzo pokreće radilicu, a ovakvo pokretanje motora je općenito mirnije (finije).

Ovaj generator može ponovno pokrenuti motor s unutarnjim izgaranjem. U slučaju potpuno ispražnjene 12 V baterije, vozaču je dostupan gumb za resetiranje koji se može koristiti za punjenje baterije iz visokonaponske baterije. 12 V baterija osigurava napajanje malih potrošača u mirovanju automobila za pokretanje računala i kontrolera automobila prije pokretanja. Važno je reći da je glavna razlika konvencionalnih automobila u usporedbi s HEV/PHEV u tome što zahtjeve za funkcijom start/stop osigurava visokonaponski električni sustav [23].

Danas se sve više počinje počinju spominjati i 48 V sustavi. Takvi sustavi koriste se kod "blagih" hibrida (engl. *mild hybrid vehicle*), odnosno kod vozila koja nemaju hibridni pogon što znači da nemaju niti visokonaponsku bateriju niti koriste ikakav električni pogon. Upotreba 48 V sustava omogućava učinkovitiji rad motora s unutarnjim izgaranjem, pokretanje pomoćnih funkcija kao što su servo upravljač, vakuumske pumpe kočnica, pumpe za vodu s elektromotorima (umjesto da se koristi snaga motora). To može biti energetski učinkovitije od mehaničkog pogona, budući da se rad ovih funkcija može prilagoditi potrebama vozila. Na primjer, isprekidani električni pogon učinkovitiji je od kontinuiranog mehaničkog pogona za klimatizaciju vozila jer je kompresor AC sustava češće isključen nego uključen. Zbog toga što je 12 V sustav kod vozila uglavnom standard te su sve pomoćne

komponente prilagođene, nije jednostavno niti ekonomski isplativo prijeći na 48 V sustav od jednom. Stoga se očekuje kako će prelazak ići postepeno uvođenjem 48 V infrastrukture koja će se izvoditi uz "naslijeđeni" 12 V sustav. 48 V sustav sadržavat će 48 V bateriju i kontroler baterije, motor-generator (engl. *belt-driven starter generator*) i inverter, sabirnicu napajanja i priključne točke kao i DC/DC pretvarač. Motor-generator se ponaša kao generator prilikom kočenja kada puni bateriju. Kada vozilo stane, motor-generator, pogonjen AC strujom kroz inverter iz baterije, može ponovno pokrenuti motor s unutarnjim izgaranjem. Ovakav pristup prema nekim procjenama može smanjiti potrošnju goriva za 10 do 20 posto po znatno nižim troškovima od potpuno hibridnog pristupa. Prebacivanje na 48 V zahtijevat će razvoj širokog spektra novih komponenti koje mogu raditi na višem naponu i udovoljavati zahtjevnim standardima automobilske industrije [24].

Slika 22 prikazuje adaptaciju 12 V sustava s 48 V sustavom. Lijevo je shema za vozilo koje ima samo 12 V sustav, a desno 12 V i 48 V s prethodno spomenutim dodatnim komponentama u odnosu na 12 V sustav [25]. Slika 23 prikazuje kakva su predviđanja za globalnu proizvodnju od 2015. do 2030. godine.

Slika 22. Adaptacija 48V sustava [25]

Slika 23. Globalna proizvodnja automobila 2015.-2030. [25]

5.3. Dijeljenje tereta između *n* DC/DC pretvarača spojenih na zajedničku DC sabirnicu

Vezu između niskonaponskog i visokonaponskog sustava predstavlja sklopovlje pretvarača pomoću kojeg visokonaponska baterija napaja niskonaponsku DC sabirnicu koja se može koristiti za razne namjene (npr. napajanje raznih trošila i punjenje niskonaponske baterije kada je potrebno). U razmatranom slučaju radi se o sustavi relativno visoke snage (redovito u kilovatnom području). DC/DC pretvarači obično se projektiraju za specifičnu namjenu prema specifikacijama kupca, imaju relativno visoku cijenu i masu [26]. U ovom radu se analizira primjena više paralelno spojenih DC/DC pretvarača manje snage, u svrhu dobivanja modularnosti i pojeftinjenja cjelokupnog sustava.

Paralelni spoj pretvarača koristi se kako bi se postigla viša pouzdanost niskonaponskog DC sustava napajanja. To znači da se koristi više pretvarača koji su uvijek na raspolaganju kako bi se mogla osigurati ista potrebna struja ako određeni broj pretvarača zakaže [26].

Ako paralelni pretvarači rade u redundantnim konfiguracijama i jedan modul zakaže, ostali preuzimaju opterećenje da bi se održala stabilnost napajanja kako bi potrošač mogao normalno funkcionirati [26].

Ako bi razmotrili sustav dva (radi jednostavnosti, a može se generalizirati na *n* pretvarača, detaljnije objašnjeno u podpoglavlju 5.4.) paralelno povezana, realna DC/DC pretvarača možemo zaključiti sljedeće:

• vrlo je teško napraviti jednoliku raspodjelu strujnog opterećenja,

- budući da sastavne komponente imaju toleranciju, izlazni naponi za isti ulazni napon neće biti u potpunosti jednaki,
- zbog razlike potencijala između paralelno spojenih izlaza pretvarača mogu se javiti struje koje teku iz jednog u drugi pretvarač.

Pretvarač koji ima viši izlazni napon obično preuzima cijelo opterećenje (maksimalnu struju koja odgovara limitu izlazne struje pretvarača) dok struja drugog pretvarača praktički pada na nulu. Takav disbalans opterećenja uzrokuje veće termalno opterećenje pretvarača koji je u limitu pa se očekuju problemi poput kraćeg očekivanog radnog vijeka, a u najgorem slučaju pregaranja komponenti. Korištenjem strategija dijeljenja strujnog opterećenja, ublažavaju se toplinski efekti, smanjuje se opterećenje pojedinačnog pretvarača te se povećava vijek trajanja svih pretvarača [26].

U konačnici, sustav upravljanja ima sljedeće zadatke:

- 1) održavanje napona DC sabirnice,
- 2) podjela opterećenja među pretvaračima,
- 3) kvaliteta snage [27].

Prema dostupnoj literaturi, obrađeni su sljedeći principi podjele opterećenja [28]:

- master-slave konfiguracija (jedan glavni pretvarač regulira napon DC sabirnice, dok ostali pretvarači signale od glavnog pretvarača tako da se raspodjeljuje opterećenje među pretvaračima),
- metoda podjele prosječnog opterećenja (prosječno opterećenje DC sabirnice uzima se kao referenca struje za individualne pretvarače čime se bolje određuje referenca struje koju daje nadređeni regulator napona),
- *kružni lančani upravljački sustav* (tipično se koristi za sustave s prstenastom topologijom kako bi se teret ravnomjerno raspodijelio na sve pretvarače),
- centralizirani upravljački sustav (može se implementirati pomoću regulatora varijabli stanja ili kaskadnim upravljačkim sustavom napona DC sabirnice, u potonjem direktna ili estimirana kompenzacija tereta i dinamička raspodjela opterećenja može se primijeniti na razini podređenog regulacijskog kruga struje),
- metoda pada napona (koristi se za sustave u kojima je potrebno izbjeći direktnu komunikaciju između modula, ali se oslanjaju na takozvanu signalizaciju napona DC sabirnice, ovakav pristup može uključivati i raspodjelu lokalnog napona i reference struje kako bi se postigao brzi odziv promjene tereta).

Izbor načina za podjelu opterećenja ovisi o mogućnostima mjerenja napona i struja individualnih modula te zahtjevima za koordinaciju individualnih pretvarača [27].

5.3.1. Master-slave konfiguracija

"Master-slave" konfiguracija koristi se u [29] gdje "master" pretvarač regulira glavni izlazni napon, dok ostali pretvarači-"slaves" aktivno reguliraju ulazni napon i izlaznu struju. Regulacijski krug master pretvarača sastoji se od nadređene petlje koja regulira glavni izlazni napon i podređene petlje koja regulira primarnu struju. Regulator napona je P ili PI regulator s dodatnim visokofrekventnim polom. Regulator struje temelji se na konstantnoj frekvenciji regulacije vršne struje. Upravljačka petlja "slave" pretvarača sastoji se od nadređene petlje koja regulira pogrešku napona i podređene petlje koja regulira trenutnu pogrešku razlike između prosječne izlazne struje pretvarača [29].

5.3.2. Metoda podjele prosječnog opterećenja

Ova metoda primijenjena je u [30] za podjelu opterećenja među paralelno spojenim inverterima. Slika 24 prikazuje blokovski dijagram sustava s paralelno spojenim pretvaračima. Izlaz pretvarača je spojen preko impedancije Z_{pj} na teret Z_L . Svaki pretvarač ima tri upravljačke petlje, podređena povratna petlja struje, povratna petlja napona i nadređena petlja podjele struje. Upravljačka shema sastoji se od povratne petlje napona i podređene povratne petlje struje čime se postižu dobre performanse u stacionarnom stanju i odzivu svakog pretvarača. Referenca naponske petlje u_{ij}^* trebala bi biti sinkronizirana kako bi davala izlazne napone svih pretvarača u fazi. Nadređena petlja struje dodana je kako bi svaki pretvarač doprinosio jednako opterećenju. Izlazna struja svakog pretvarača i_j treba se mjeriti kako bi se generirala referenca zajedničke struje i_s . Referenca može biti prosjek izlaznih struja, najveća izlazna struja ili struja pretvarača s najvišom taktnom frekvencijom. Pogrešku između reference struje i_s i izlazne struje individualnih pretvarača i_j prvo procesuira regulator struje H_j i onda se dodaje na naponsku referencu te ide na ulaz invertera. Što je veće pojačanje regulatora, pogreška između struje reference i pojedinih struja i_j teži nuli, stoga svaki pretvarač će imati jednaku izlaznu struju [30].

Slika 24. Blokovski dijagram paralelnog sustava s više invertera [30]

5.3.3. Kružno lančano upravljanje

Kružno lančano upravljanje detaljnije je razrađeno u [31]. Modul prati struju svakog prethodnog modula kako bi se postigla jednaka struja, a prvi modul prati posljednji kako bi stvorio kružnu lančanu vezu. U ovakvom sustavu izlazna struja i napon svakog pretvarača regulirana je podređenom strujnom petljom i nadređenom naponskom petljom. Podređena strujna petlja postiže brz dinamički odziv. Stoga, amplituda, frekvencija i faza moraju biti sinkronizirane kako bi se postigla odgovarajuća raspodjela struje među modulima. Nadalje, robusni regulator prilagođava se robusnosti sustava i smanjuje interaktivne efekte među pretvaračima, stoga izlazni napon se može dobro regulirati [31].

5.3.4. Centralizirani upravljački sustav

Kako bi se riješio problem neravnomjernog opterećenja na pretvaračima u radu koristi se centralizirani upravljački sustav koji je predstavljen kao rješenje u slučaju paralelno spojenih pretvarača za mikromrežu [32]. U tom slučaju središnja procesorska jedinica (engl. *central processing unit*, CPU) precizno upravlja opterećenjem i prijenosom snage između AC i DC sabirnice tako što generira naredbe za napajanje pretvarača. Broj aktivnih pretvarača također

određuje CPU [32]. Primjena ovog načina upravljanja nalazi se i u [33] gdje se primjenjuje za hibridne AC/DC mikromreže. Kaskadni sustav upravljanja funkcionira na način da postoji jedan glavni regulator koji je odgovoran za generiranje potrebnih naredbi za upravljanje napajanjem lokalnih regulatora. Lokalni regulatori primaju naredbe i izvršavaju potrebne radnje na pretvaračima kako bi se postigle odgovarajuće struje i naponi [33].

Takvoj regulaciji može se dodati i predupravljanje na temelju mjerenja opterećenja ili estimaciji kako bi se ubrzao odziv pri promjeni opterećenja [34].

5.3.5. Metoda pada napona

Konvencionalna metoda pada napona ostvaruje se tako da se izlazni napon linearno smanjuje kako raste jakost struje. Ova metoda ima dva ograničenja. Prvo ograničenje je da, budući da izlazni napon svakog pretvarača ne može biti potpuno isti, točnost izlazne struje pada. Drugo, događa se odstupanje napona. U izvoru [35] predloženo je korištenje ove metode bazirane na maloj širini pojasa komunikacije (engl. *low bandwidth communication, LBC*) kako bi se poboljšale performanse DC mikromotora. Za razliku od konvencijalnog pristupa, upravljački sustav ne treba sekundarni regulator, već se koristi lokalnim regulatorima i LBC mrežom za bolju izmjenu informacija između pretvaračkih jedinica [35].

Metoda pada napona detaljnije je opisana i u [36] za slučaj podjele opterećenja u niskonaponskim DC mikromrežama. Parametri metode pada napona postavljaju se sekundarnom regulacijom tako da se vraćaju odstupanja nastala kao posljedica metode pada napona i napon DC mikromreže se održava unutar dozvoljenih vrijednosti. Cilj ove regulacije je kompenzacija trenutnih razlika između zadane snage i snage koju zahtijevaju tereti. S obzirom na ove zahtjeve, regulacijom metode pada napona generira se referentni signal napona izvora. Regulacijom podređene petlje (napon i struja) osigurava se da stvarni napon PEC izvora bude jednak referentnoj vrijednosti [36].

Također, ovakva metoda primijenjena je u [37] gdje je predstavljen koncept signalizacije napona DC sabirnice, a koristi se upravo ta metoda kako bi svaki pretvarač radio na svojoj graničnoj (engl. *threshold*) vrijednosti za punjenje/pražnjenje. Razina promjene napona sabirnice, koja se očituje kao promjene u sistemu, prisiljava pretvarače da se prebace između načina rada s konstantom strujom ili konstantnim naponom [37].

5.4. Analiza paralelnog rada pretvarača

Ideja paralelnog rada pretvarača je da se koristi više jeftinijih pretvarača s manjom masom i većom učinkovitošću kako bi se postigla veća izlazna snaga. Budući da svi moduli ne mogu biti u potpunosti identični, za isto ulazno napajanje postojat će određena razlika u izlaznim naponima. Kada postoji razlika izlaznih napona između modula u paralenom spoju mogu se javiti velike struje koje će teći od izlaza višeg potencijala prema izlazu nižeg potencijala.

U tehničkoj dokumentaciji obično se može pronaći informacija o točnosti napona za pojedini modul. Ova brojka predstavlja prihvatljiv raspon vrijednosti unutar koji se izlazni napon može podesiti. Obično je tolerancija izlaznog napona oko $\pm 5\%$. To znači da nominalni napon, na primjer, od 24 V u stvarnosti može biti između 22,8 V i 25,2 V.

Kao primjer može se provesti analiza za četiri identična izvora od 24 V, snage 800 W, s izlaznim impedancijama povezanima paralelno za napajanje tereta. Slika 25 prikazuje generaliziran model paralelno spojenih DC/DC pretvarača. U_1 , U_2 , U_3 i U_4 su nominalni izlazni naponi neovisnih izvora napajanja, Ro_1 , Ro_2 , Ro_3 i Ro_4 su njihove izlazne impedancije, a *RL* otpor opterećenja.

Slika 25. Model paralelno spojenih DC pretvarača

Analiza izvedena principom superpozicije otkriva da je struja opterećenja zbroj struja koje dolaze od svakog od neovisnih izvora energije. Sljedeći izrazi vrijede za napon u_L i struju tereta i_L :

$$u_{L} = \frac{\frac{U_{1}}{R_{01}} + \frac{U_{2}}{R_{02}} + \frac{U_{3}}{R_{03}} + \frac{U_{4}}{R_{04}}}{\frac{1}{R_{01}} + \frac{1}{R_{02}} + \frac{1}{R_{03}} + \frac{1}{R_{04}}},$$
(37)

Fakultet strojarstva i brodogradnje

Diplomski rad

$$i_{L} = \frac{u_{L}}{R_{L}} = \frac{1}{R_{L}} \cdot \frac{\frac{U_{1}}{R_{01}} + \frac{U_{2}}{R_{02}} + \frac{U_{3}}{R_{03}} + \frac{U_{4}}{R_{04}}}{\frac{1}{R_{01}} + \frac{1}{R_{02}} + \frac{1}{R_{03}} + \frac{1}{R_{04}}}.$$
(38)

Koristeći ovaj zapis, izlazne struje *n*-tog izvora mogu se zapisati kao:

$$i_{n} = \left(U_{n} - \frac{\sum_{i=1}^{4} U_{i} \frac{1}{R}_{o,i}}{\frac{1}{R_{L}} + \sum_{i=1}^{4} \frac{1}{R}_{o,i}} \right) \frac{1}{R_{o,n}}.$$
(39)

Pretpostavimo da je prethodno opisani krug izveden sa dva stvarna različita napajanja, od kojih jedno ima nominalni napon 23,75 V, a drugog od 24,25 V. Kod regulacije napona tipično se gleda najgori slučaj, a u obzir se uzimaju i tolerancije komponenti, što znači da R_{out} neće uvijek biti jednak. Za prvo napajanje pretpostavljamo da ima manji izlazni otpor od 20 m Ω , a za drugo da ima veći izlazni otpor od 24 m Ω . U ovom realističnom primjeru vidi se da postoji potencijal od 500 mV na samo 44 m Ω . Prema Ohmovom zakonu više od 11,3 A teče između napajanja. Ako se napajanja ne iskjučuju, u teoriji napon tereta je većinom nepromjenjiv, što znači da kroz teret protječe struja od 41,27 A. Oba napajanja lako mogu biti preopterećena, čak i ako se pojavi razlika od samo nekoliko milivolta.

5.5. Analiza efikasnosti pretvarača

U ovom podpoglavlju prikazuje se analiza efikasnosti kroz četiri parametra: raspon ulaznog napona, regulirani izlazni napon, maksimalna izlazna struja i frekvencija preklapanja. Iako postoji više parametara koji utječu na gubitke odnosno efikasnost pretvarača, za okvirni proračun gubitaka mogu se koristiti sljedeće jednadžbe [38]:

gubitci snage za diodu se računaju prema:

$$P_{DIODE} = \left(1 - \frac{V_{OUT}}{V_{IN_{MAX}}}\right) \cdot I_{OUT_{MAX}} \cdot V_D, \tag{40}$$

gdje je V_D pad napona na diodi za $I_{OUT_{MAX}}$ (tipična vrijednost je 0.7 V za silikonsku diodu i 0.3V za Schottky diodu), $V_{IN_{MAX}}$ je maksimalni ulazni napon, V_{OUT} izlazni napon, a P_{DIODE} disipirana snaga.

gubitci zbog otpora na MOSFET-u računaju se prema [38]:

$$P_{D_{RDS}} = \frac{V_{OUT}}{V_{IN_{MIN}}} \cdot I_{OUT_{MAX}}^2 \cdot R_{DS(ON)_{HOT}},$$
(41)

gdje je V_{OUT} izlazni napon, $V_{IN_{MIN}}$ minimalni ulazni napon, $I_{OUT_{MAX}}$ maksimalna izlazna struja, $R_{DS(ON)_{HOT}}$ maksimalni otpor na temperaturi $T_{J_{HOT}}$, a gubitci zbog preklapanja prema sljedećem izrazu [38]:

$$P_{D_{SW}} = \frac{C_{RSS} V_{IN_{MAX}}^2 f_{SW} I_{OUT_{MAX}}}{I_{GATE}},$$
(42)

gdje je C_{RSS} povratni kapacitet prijenosa, I_{GATE} je vršna struja sklopke, f_{SW} frekvencija preklapanja, $I_{OUT_{MAX}}$ maksimalna izlazna struja, $V_{IN_{MAX}}$ maksimalni ulazni napon.

gubitci snage zavojnice računaju se prema sljedećem izrazu [38]:

$$P_{DCR_{RMS}} = (I_{OUT_{MAX}} + \Delta I_L \cdot \sqrt{2})^2 \cdot DCR_L,$$
(43)

gdje je $I_{OUT_{MAX}}$ maksimalna izlazna struja, ΔI_L raspon promjene struje zavojnice.

gubitci snage na kondenzatoru [38]:

$$P_{C_{O_{RMS}}} = (\Delta I_L \cdot \sqrt{3})^2 \cdot ESR_{C_O} , \qquad (44)$$

gdje je ΔI_L raspon promjene struje zavojnice, a ESR_{Co} ekvivalentni serijski otpor kondenzatora.

Gubitci u bakru se teško mogu precizno izračunati, ali može se dobiti gruba procjena količine otpora po kvadratnom metru površine pločice te koristiti jednostavna formula za disipaciju energije I^2R [38].

Prema sljedećem izrazu računa se učinkovitost pretvarača uzimajući u obzir sve gubitke [38]:

$$\eta = \frac{V_{OUT} \cdot I_{OUT}}{V_{OUT} \cdot I_{OUT} + P_{CO_{RMS}} + P_{DCR_{RMS}} + P_{D_{RDS}} + P_{D_{SW}} + P_{DIODE} + P_{CU}} \cdot 100\%, \quad (45)$$

gdje je η učinkovitost pretvarača, V_{OUT} izlazni napon, I_{OUT} izlazna struja, $P_{CO_{RMS}}$ gubitci snage na kondenzatoru, $P_{DCR_{RMS}}$ gubitci snage na zavojnici, $P_{D_{SW}}$ gubitci zbog preklapanja, $P_{D_{RDS}}$ gubitci zbog otpora MOSFET-a, P_{DIODE} gubitci snage na diodi, P_{CU} gubitci bakra.

6. RAČUNALNI MODEL PRETVARAČA

Prije same izrade računalnog modela pretvarača, treba naglasiti da će biti napravljena dva dinamička modela, a to su trenutačni i usrednjeni model. Isto tako pretvarač može raditi kontinuirano ili diskontinuirano, a također postoji i naponski i strujni način rada. Stoga, u ovom poglavlju će, za početak, biti objašnjeni osnovni načini rada pretvarača, a zatim će biti napravljeni modeli istog. Slika 26 prikazuje topologiju pretvarača koja će se koristiti za računalni model.

Slika 26. Topologija silaznog DC/DC pretvarača [39]

6.1. Osnovni načini rada pretvarača

Pomoću vremena vođenja *d* definira se koliko dugo sklopka unutar pretvarača vodi. Prilikom vođenja dolazi do energiziranja zavojnice što se može prikazati sljedećom jednadžbom [39]:

$$u_{on} = L \frac{i_{Lmax} - i_{Lmin}}{dT},\tag{46}$$

gdje je u_{on} napon u vrijeme vođenja sklopke, L induktivitet, T vrijeme perioda te i_{Lmax} i i_{Lmin} maksimalna i minimalna struja zavojnice unutar jednog perioda. Vrijeme perioda T je obrnuto proporcionalno frekvenciji uklapanja sklopke f_s . Uz pretpostavku da je $i_{Lmin} = 0$, dobije se maksimalni iznos struje zavojnice [39]:

$$i_{Lmax} = \frac{u_{on}}{L} dT.$$
 (47)

Kada istekne vrijeme vođenja, energija iz zavojnice mora se potrošiti. Budući da sklopka više ne vodi, strujni krug se zatvara i prazni preko diode [39].

Fakultet strojarstva i brodogradnje

6.1.1. Kontinuirani način rada (CCM)

Pretvarač je u kontinuiranom načinu rada kada je struja koja prolazi kroz zavojnicu i_L kontinuirana tijekom perioda *T*, dakle nema prekide/diskontinuitete. Slika 27 prikazuje dijagram na kojem se vidi struja zavojnice je uvijek strogo veća od nule [39].

Slika 27. Struja zavojnice (CCM)

Vrijedi da je srednja vrijednost struje zavojnice u ovakvom načinu rada [39]:

$$\bar{\iota}_{L} = \frac{i_{Lmax}}{2}d + \frac{i_{Lmax}}{2}(1-d),$$
(48)

$$\overline{\iota_L} = \frac{i_{Lmax}}{2},\tag{49}$$

gdje je i_{Lmax} maksimalna struja zavojnice, *d* faktor popunjenosti i $\overline{\iota}_L$ srednja vrijednost struje zavojnice.

6.1.2. Diskontinuirani način rada (DCM)

Za diskontinuirani/isprekidani način rada vrijedi da struja zavojnice pada na nulu prije završetka trajanja perioda *T*, to jest dolazi do prekida struje zavojnice. Stoga, potrebno je uzeti u obzir da se pojavljuje dodatni segment unutar perioda koji se promatra kada je struja zavojnice jednaka nuli. Slika 28 prikazuje struju zavojnice za ovakav način rada [39].

Slika 28. Struja zavojnice (DCM)

Srednja vrijednost struje zavojnice za diskontinuirani način rada dobiva se prema izrazu [39]:

$$\overline{\iota_L} = \frac{i_{Lmax}}{2}d + \frac{i_{Lmax}}{2}d_2 + \frac{0}{2}(1 - d - d_2),$$
(50)

$$\overline{\iota_L} = \frac{i_{Lmax}}{2}(d+d_2),\tag{51}$$

gdje je $\overline{\iota_L}$ srednja struja zavojnice, d faktor popunjenosti, d_2 drugi faktor popunjenosti i i_{Lmax} maksimalna vrijednost struje zavojnice.

Uvrštavanjem izraza (47) u (51) dobije se izraz [39]:

$$d_2 = \frac{2Lf_s\overline{\iota_L}}{du_{on}} - d,$$
(52)

gdje je L induktivitet zavojnice, f_s frekvencija uklapanja sklopke, u_{on} napon kada je sklopka uključena, $\overline{\iota_L}$ srednja vrijednost struje zavojnice.

Izraz (53) kasnije će se koristiti kako bi se eliminirao d_2 iz jednadžbe usrednjenih modela. Granica između kontinuiranog i diskontinuiranog načina rada je upravo iznos struje zavojnice. Pretvarač prelazi u diskontinuirani način rada kada vrijedi da je struja zavojnice strogo manje od nule. Uvrštavanjem u izraz (47) izraz (49) dobije se izraz za minimalnu struju zavojnice unutar jednog perioda [39]:

$$i_{Lmin} = \frac{\overline{\iota_L} - du_{on}}{2Lf_s}.$$
(53)

6.1.3. Naponski način rada

Kod naponskog načina rada izlazni napon postiže se tako da se definira vrijeme vođenja d idealne sklopke S. Vrijeme vođenja generira impulsno-širinski modulator koji uspoređuje pilasti signal s referencom V_{ref} . Uzme li se u obzir pretpostavka da pilasti signal ima period T, odnosno frekvenciju f_s i amplitudu V_p , faktor vođenja d definira se kao [39]:

$$d = \frac{V_{ref}}{V_p}.$$
(54)

Sklopka S vodi kada pilasti signal dosegne vrijednost reference.

Slika 29. Uspoređivanje pilastog singala s referencom [39]

Slika 29 prikazuje uspoređivanje pilastog signala s referencom.

6.1.4. Strujni način rada

Kada pretvarač radi u strujnom načinu rada, kontrolira se struja umjesto napona zavojnice. Strujni signali su stabilniji i otporniji na smetnje pa su zato i poželjniji način upravljanja. Slika 30 odnosi se na ovaj način rada u kojem se referenca struje uspoređuje s pilastim signalom, ali za razliku od naponskog upravljanja, ne čeka se da pilasti signal postigne željenu vrijednost kako bi se definiralo vrijeme vođenja, nego kada na početku perioda pilasti napon počinje rasti, istodobno referenca linearno pada po pravcu nagiba S_e . U trenutku presijecanja dva pravca, definira se vrijeme vođenja [39].

Slika 30. Uspoređivanje pilastog signala s padajućom referencom [39]

Za ovakvo upravljanje, koriste se dva umjesto jednog pravca čime se dobiva bolja dinamika, što je još jedna prednost ovog načina upravljanja. Pilasti signal može se prikazati jednadžbom [39]:

$$u_{on} = 2L \frac{i_{Lmax} - i_L}{dT},\tag{55}$$

gdje je i_{Lmax} maksimalna struja zavojnice, L induktivitet zavojnice, i_L struja zavojnice, a referenca se može prikazati kao [39]:

$$S_e = \frac{i_c - i_{Lmax}}{dT},\tag{56}$$

gdje je i_c referenca struje kondenzatora, S_e referenca. Pomoću izraza (47) i (48) izraza dobije se izraz za faktor vođenja d u strujnom načinu rada [39]:

$$d = f_s \frac{i_c - i_L}{S_e + \frac{u_{on}}{2L}},$$
(57)

gdje se d ograničava na vrijednost u intervalu [0, 1], f_s frekvencija preklapanja, i_L struja zavojnice. Može se zaključiti da, iako se zove strujno upravljanje, ovakvim načinom rada

upravlja vremenom vođenja *d*. Strujni način rada ostvaruje se na način da se naponskom načinu rada doda izraz (57).

6.2. Dinamički modeli pretvarača

U ovom poglavlju bit će objašnjeni trenutačni i usrednjeni model pretvarača, zajedno s izrazima koji pojašnjavaju njihov rad u određenim režimima rada.

6.2.1. Trenutačni model

Trenutačni model pretvarača modelira se na način da se predstavi diferencijalnim jednadžbama koje opisuju rad pretvarača, jednom naponskom i jednom strujnom. Simulacija tako dobivenih jednadžbi može se provesti u *Matlab Simulinku*. Trenutačni model predstavlja vjernu sliku odziva koji realni pretvarač daje na izlazu, ali za takav model vrijedi da trajanje same simulacije koje može biti višestruko duže od postavljenog vremenskog intervala simulacije [39].

Za kontinuirani način rada (CCM) vrijedi:

• izrazi za stanje kada sklopka S vodi $0 < t \le dT$ [39]:

$$L\frac{di_L}{dt} = u_{ul} - u_c,\tag{58}$$

$$C\frac{du_C}{dt} = i_L - \frac{u_C}{R},\tag{59}$$

gdje je L induktivitet zavojnice, C kapacitet kondenzatora, u_C napon kondenzatora, i_L struja zavojnice, u_{ul} ulazni napon i R otpor otpornika.

Slika 31. Silazni pretvarač - CCM (sklopka S vodi) [39]

Slika 31 prikazuje topologiju silaznog pretvarača u kontinuiranom načinu rada kada sklopka S vodi.

• izrazi za stanje kada sklopka S ne vodi $dT < t \le T$ [39]:

$$L\frac{di_L}{dt} = -u_c,\tag{60}$$

$$C\frac{du_C}{dt} = i_L - \frac{u_C}{R},\tag{61}$$

gdje je L induktivitet zavojnice, C kapacitet kondenzatora, u_C napon kondenzatora, i_L struja zavojnice i R otpor otpornika.

Slika 32. Silazni pretvarač - CCM (sklopka S ne vodi) [39]

Slika 32 prikazuje topologiju silaznog pretvarača u kontinuiranom načinu rada kada sklopka S ne vodi.

Prema zakonu o očuvanju energije slijedi relacija za silazni DC/DC pretvarač [39]:

$$\sum E = E_{on} + E_{off} = 0 , \qquad (62)$$

$$\frac{u_{ul}}{L}dT + \frac{u_{ul} - u_C}{L}(1 - d)T = 0/\frac{L}{T},$$
(63)

$$u_{ul}d - u_C = 0, (64)$$

$$u_C = u_{ul}d , (65)$$

gdje je E ukupna energija, E_{on} energija kada je sklopka uključena, E_{off} energija kada je sklopka isključena, L induktivitet zavojnice, u_{ul} ulazni napon, u_c napon kondenzatora, d faktor popunjenosti.

Budući je vrijednost vremena vođenja *d* kreće u intervalu [0, 1] iz izraza (62-65), slijedi da je izlazni napon u_c uvijek manji ili jednak ulaznom naponu i može poprimiti vrijednost u intervalu [0, u_{ul}], ovisno o odabranom vremenu vođenja.

Diskontinuirani način rada (DCM)

• izrazi kada sklopka *S* vodi $0 < t \le dT$ [39]:

$$L\frac{di_L}{dt} = u_{ul} - u_C , \qquad (66)$$

$$C\frac{du_C}{dt} = i_L - \frac{u_C}{R}, \qquad (67)$$

gdje je L induktivitet zavojnice, C kapacitet kondenzatora, u_C napon kondenzatora, i_L struja zavojnice, u_{ul} ulazni napon i R otpor otpornika.

Slika 33. Silazni pretvarač - DCM (sklopka S vodi) [39]

Slika 33 prikazuje topologiju silaznog pretvarača u diskontinuiranom načinu rada kada sklopka S vodi.

• izrazi kada sklopa *S* ne vodi na intervalu $dT < t \le (d + d_2)T$ [39]:

$$L\frac{di_L}{dt} = -u_C , \qquad (68)$$

$$C\frac{du_C}{dt} = i_L - \frac{u_C}{R},$$
(69)

gdje je *L* induktivitet zavojnice, *C* kapacitet kondenzatora, u_C napon kondenzatora, i_L struja zavojnice i *R* otpor otpornika.

Slika 34. Silazni pretvarač - DCM (sklopka S ne vodi) [39]

Slika 34 prikazuje topologiju silaznog pretvarača u diskontinuiranom načinu rada kada sklopa S ne vodi, na intervalu $dT < t \le (d + d_2)T$.

• izrazi kada sklopka S ne vodi na intervalu $(d + d_2)T < t \le T$ [39]:

$$L\frac{di_L}{dt} = 0, (70)$$

$$C\frac{du_C}{dt} = -\frac{u_C}{R},\tag{71}$$

gdje je L induktivitet zavojnice, C kapacitet kondenzatora, u_C napon kondenzatora, i_L struja zavojnice i R otpor otpornika.

Slika 35. Silazni pretvarač - DCM $(i_L = 0)$ [39]

Slika 35 prikazuje topologiju silaznog pretvarača u diskontinuiranom načinu rada kada sklopa S ne vodi, na intervalu $(d + d_2)T < t \le T$.

Uzimajući prethodno navedene izraze, napravljen je model pretvarača kojeg prikazuje slika 36. U modelu se mjeri ulazni napon, struja diode, napon zavojnice te izlazni napon.

6.2.2. Usrednjeni model

Budući da su trenutačni modeli često nepraktični zbog dugog trajanja simulacije, koriste se usrednjeni modeli pretvarača. Kako bi se dobio ovakav model, potrebno je usrednjiti struju zavojnice i izlazni napon po periodima T gdje se srednja struja zavojnice i srednji izlazni napon računaju kao [35]:

$$\overline{i_L} = \frac{1}{T} \int_0^T i_L dt , \qquad (72)$$

$$\overline{u_C} = \frac{1}{T} \int_0^T u_C dt , \qquad (73)$$

gdje je $\overline{\iota_L}$ usrednjena vrijednost struje zavojnice, $\overline{u_C}$ usrednjena vrijednost izlaznog napona, i_L struja zavojnice.

U obzir se uzima pretpostavka da struja zavojnice i_L unutar jednog perioda T linearno raste i pada te da je izlazni napon u_C konstantan radi lakšeg proračuna. Jednadžbe za trenutačni model se usrednjavaju. Potom slijedi eliminacija svih zavisnih varijabli tako da se supstituiraju s konstantama ili manje promjenjivim zavisnim varijablama. Primjer je izračun integrala:

$$\frac{1}{T} \int_0^{dT} i_L dt , \qquad (74)$$

koji nije jednak $\overline{t_L}(1-d)$ jer se struja zavojnice ne integrira na cijelom periodu već samo po jednom njezinom dijelu. Integral je površina ispod krivulje te vrijedi da je $i_{Lmax} = 2\overline{t_L}$. Nadalje, ako se uzme u obzir slika 27 i izraz 47 vrijedi da je [35]:

$$\frac{1}{T} \int_{0}^{dT} \frac{u_{on}d}{2Lf_s} dt = \frac{u_{on}d^2}{2Lf_s},$$
(75)

gdje u_{on} napon kada je sklopka uključena, f_s frekvencija preklapanja, d faktor popunjenosti, L induktivitet zavojnice.

Kada je sklopka *S* uključena i isključena, naponi u_{on} i u_{off} na zavojnici računaju se prema izrazima [35]:

$$u_{on} = u_{ul} - u_c , \qquad (76)$$

$$u_{off} = u_C , \qquad (77)$$

gdje je u_c napon kondenzatora, u_{ul} ulazni napon.

Kontinuirani način rada (CCM)

Za kontinuirani način rada, vrijede sljedeći izrazi [35]:

$$\frac{d\bar{\iota}_{L}}{dt} = \frac{1}{T} \left\{ \int_{0}^{dt} \frac{u_{ul} - u_{c}}{L} dt + \int_{dt}^{T} \left(-\frac{u_{c}}{L} \right) dt \right\} = \frac{1}{TL} \{ u_{ul} dT - \bar{u}_{c} T \} = \frac{u_{ul}}{L} d - \frac{\bar{u}_{c}}{L}, \quad (78)$$

$$\frac{d\bar{u}_{c}}{dt} = \frac{1}{T} \left\{ \int_{0}^{dT} \frac{1}{C} \left(i_{L} - \frac{u_{c}}{R} \right) dt + \int_{dT}^{T} \frac{1}{C} \left(i_{L} - \frac{u_{c}}{R} \right) dt \right\} = \frac{1}{TC} \left\{ \bar{\iota}_{L} T - \frac{\bar{u}_{c}}{R} T \right\} \quad (79)$$

$$= \frac{\bar{\iota}_{L}}{C} - \frac{\bar{u}_{c}}{RC},$$

gdje je $\overline{\iota_L}$ srednja struja zavojnice, u_C napon kondenzatora, u_{ul} ulazni napon, R otpor otpornika, C kapacitet kondenzatora, $\overline{u_C}$ srednji izlazni napon, i_L struja zavojnice, d faktor popunjenosti i T period.

Diskontinuirani način rada (DCM)

Za diskontinuirani način rada vrijede sljedeći izrazi [35]:

$$\frac{d\overline{u}_{L}}{dt} = \frac{1}{T} \left\{ \int_{0}^{dT} \frac{u_{ul} - u_{C}}{L} dt + \int_{dt}^{(d+d_{2})T} \left(-\frac{u_{C}}{L} \right) dt + \int_{(d+d_{2})}^{T} 0 dt \right\}$$

$$= \frac{1}{TL} \{ u_{ul} dT - \overline{u_{C}} (d+d_{2})T \} = \frac{u_{ul}}{L} d - \frac{\overline{u_{C}}}{L} (d+d_{2}),$$
(80)

gdje je $\overline{u_L}$ srednja struja zavojnice, u_C napon kondenzatora, u_{ul} ulazni napon, L induktivitet zavojnice, $\overline{u_C}$ srednji izlazni napon, i_L struja zavojnice, d faktor popunjenosti i T period. Supstituiranjem d_2 s izrazom (52) slijedi:

$$\frac{d\overline{\iota}_L}{dt} = \frac{u_{ul}}{L}d - \frac{2\overline{u_C}f_s\overline{\iota}_L}{du_{on}},$$
(81)

gdje je $\overline{\iota_L}$ srednja struja zavojnice, f_s frekvencija preklapanja, u_{ul} ulazni napon, L induktivitet zavojnice, $\overline{u_c}$ srednji izlazni napon, d faktor popunjenosti. Odnosno, uvrštavajući izraz (76):

$$\frac{d\bar{\iota}_L}{dt} = \frac{u_{ul}}{L}d - \frac{2\overline{u_C}f_s\bar{\iota}_L}{d(u_{ul} - \bar{u}_C)},$$
(82)

Fakultet strojarstva i brodogradnje

Diplomski rad

Ana Parčina

$$\frac{d\bar{u}_{C}}{dt} = \frac{1}{T} \left\{ \int_{0}^{dT} \frac{1}{C} \left(i_{L} - \frac{u_{C}}{R} \right) dt + \int_{dT}^{(d+d_{2})T} \frac{1}{C} \left(i_{L} - \frac{u_{C}}{R} \right) dt + \int_{(d+d_{2})T}^{T} \left(\frac{-u_{C}}{RC} \right) dt \right\}$$

$$= \frac{1}{TC} \left\{ \bar{\iota}_{L}T - \frac{\bar{u}_{C}}{R}T - \int_{(d+d_{2})T}^{T} i_{L} dt \right\} = \frac{\bar{\iota}_{L}}{C} - \frac{\bar{u}_{C}}{RC},$$
(83)

gdje je $\overline{\iota_L}$ srednja struja zavojnice, f_s frekvencija preklapanja, u_{ul} ulazni napon, L induktivitet zavojnice, $\overline{u_C}$ srednji izlazni napon, d faktor popunjenosti, T period, R otpor otpornika, C kapacitet kondenzatora, u_c napon kondenzatora.

Usrednjeni model za ulazne parametre uzima faktor popunjenosti d i ulazni napon V_{in} , a kao izlaz modela dobiju se izlazni napon V_{out} i izlazna struja I_{out} , a model je prikazuje slika 37.

Slika 37. Usrednjeni model u Simulinku

Tablica 12 sadržava parametre koji su se koristili pri izradi modela u Simulinku.

 Tablica 12.
 Parametri silaznog DC/DC pretvarača za izradu računalnih modela [40]

Opis	Vrijednost	
Model i izlazna snaga	AP-D5830A, max. 800W	
Ulazni napon / struja	20 – 70 VDC / max. 20 A	
Izlazni napon / struja	2,5 – 58 V / 0.1 – 30 A	
Induktivitet zavojnice	36,65 μH	
Kapacitet kondenzatora	4 mF, 63 V	
Učinkovitost (deklarirana)	0.93 - 0.97	
Frekvencija preklapanja	150 kHz (prema dokumentaciji)	
Izmjerena frekvencija preklapanja	115 kHz (mjereno osciloskopom)	
Dimenzije i masa	154 mm x 75 mm x 70 mm, 0,6 kg	

7. REGULACIJA RADA PARALELNIH PRETVARAČA

Ovo poglavlje opisat će primarnu i sekundarnu kontrolu DC sabirnice na temelju ugrađenih regulatora napona i struje unutar pojedinih DC/DC pretvarača i superponirane strategije upravljanja podjele tereta. Projektiranje pojedinih regulatora temelji se na optimumu dvostrukog odnosa [28].

7.1. Pregled hijerarhijskog sustava upravljanja DC sustava

Hijerarhijski sustav upravljanja koristi se u brojnim energetskim sustavima kao što su DC mikromreže. Slika 38 prikazuje hijerarhijski sustav upravljanja koji se sastoji od: primarne, sekundarne i tercijarne razine upravljanja (kontrolni slojevi) pri čemu primarna razina upravljanja regulira napon/struju, sekundarna razina se bavi kompenzacijom pada napona, podjelom opterećenja i mjerama za poboljšanje kvalitete električne energije, a najviša razina upravljanja (tercijarna razina) bavi se upravljanjem energijom i optimizacijom performansi energetskog sustava (na slici označeno kao EMS). Ovakav hijerarhijski sustav upravljanja olakšava se istodobnom uporabom koordinirane kontrole na temelju komunikacijske linije [28].

Slika 38. Hijerarhijski sustav upravljanja DC sustava [28]

Primarna i sekundarna razina upravljanja predstavljeni su u sljedećim podpoglavljima. Projektiranje PI regulatora za kontrolu napona i struje predstavljeno je za primarnu razinu upravljanja DC/DC pretvarača. Za sekundarnu razinu upravljanja, predstavljena je centralizirana podjela opterećenja pomoću PI regulatora napona DC sabirnice [28].

7.2. Optimum dvostrukog odnosa

Rješenje za sustav upravljanja provodi se na temelju optimuma dvostrukog odnosa. To je analitička metoda nalik postavljanju polova za projektiranje linearne kontinuirane zatvorene petlje, s postupkom podešavanja koji se temelji na sljedećem karakterističnom polinomu zatvorenog regulacijskog kruga [28]:

$$A(s) = D_2^{n-1} D_3^{n-2} \cdots D_n T_e^n s^n + \dots + D_2 T_e^2 s^2 + T_e s + 1,$$
(84)

gdje je T_e ekvivalentna vremenska konstanta zatvorene petlje, D_2 , D_3 , ..., D_n su takozvani karakteristični odnosi (određuju prigušenje odziva).

U optimalnom slučaju $D_i = 0,5$ (i = 2 ... n), zatvoreni regulacijski sustav bilo kojeg *n*-tog reda ima kvazi-aperiodski odziv kojeg karakterizira nadvišenje od otprilike 6% (nalik na sustav drugog reda s prigušenjem $\zeta = 0,707$) i približnim vremenom porasta (1,8 - 2,1) T_e . Podešavanje regulatora (izbor ekvivalentne vremenske konstante T_e) predstavlja kompromis između brzine odziva i dobrog potiskivanja šuma (i robusnosti na pogreške modeliranja) [28].

Podređeni zatvoreni regulacijski krug podešen prema optimumu dvostrukog odnosa može se aproksimirati ekvivalentnom prijenosnom funkcijom prvog reda s nadomjesnom vremenskom konstantom T_e [28]:

$$G_e(s) = \frac{1}{T_e s + 1}.$$
(85)

7.3. Primarna razina upravljanja strujom/naponom

Slika 39 prikazuje blokovski dijagram regulacijskog kruga napona i struje silaznog DC/DC pretvarača s PI regulatorom s takozvanim kaskadnom načinom upravljanja. PI regulator daje referencu struje za podređenu petlju struje koja se ograničava na limit struje I_{max} . Referenca napona u_{Rf} pretvarača zadaje se preko superponirane sekundarne razine upravljanja (vidi sljedeće potpoglavlje) pri čemu se referenca napona filtrira niskopropusnim filtrom kako bi se izbjegla nepotrebna nadvišenja napona na jedinični poremećaj zbog nula PI regulatora ($s_z = -1/T_{cu}$) [28].

Slika 39. Kaskadni regulacijski sustav silaznog DC/DC pretvarača s PI regulatorom struje/napona [28]

U svrhu projektiranja regulacijskog kruga struje, nadomjesna vremenska konstanta parazitske dinamike dobije se kao zbroj nadomjesne vremenske konstante PWM-a T_{sw} i senzora struje T_{fm} čime se dobije ekvivalentna parazitska vremenska konstanta $T_{\Sigma i} = T_{sw} + T_{fm}$, što može također kompenzirati vrijeme uzorkovanja regulatora ako se radi o digitalnom regulatoru. Nadalje, poprilično spora dinamika punjenja/pražnjenja kondenzatora (dinamika izlaznog napona u_{out}) može se zanemariti kod projektiranja regulatora struje. Budući da nule PI regulatora krate polove regulacijskog kruga, Ako se ponište nule, poništava se najveća vremenska konstantna (tj. vremenska konstanta induktora L/R), što rezultira sljedećim izrazom za vremensku konstantu PI regulatora struje [28]:

$$T_{ci} = \frac{L}{R}, \qquad (86)$$

što daje sljedeću prijenosnu funkciju regulacijskog kruga struje [28]:

$$G_{c}(s) = \frac{i_{cm}(s)}{i_{cR}(s)} = \frac{1}{1 + \frac{RT_{ci}}{K_{ci}}s + \frac{T_{ci}T_{\Sigma i}}{K_{ci}}s^{2}},$$
(87)

gdje je i_{cm} izmjerena struja, i_{cR} referenca struje, R otpor, T_{ci} nadomjesna vremenska konstanta PI regulatora struje, K_{ci} pojačanje PI regulatora struje, $T_{\Sigma i}$ vremenska konstanta parazitske dinamike.

Izjednačavanjem koeficijenata karakterističnog polinoma regulacijskog kruga s karakterističnim polinomom prema optimumu dvostrukog odnosa, slijede sljedeći izrazi za parametre PI regulatora [28]:

$$T_{ci} = \frac{T_{\Sigma i}}{D_{2i}},\tag{88}$$

$$K_{ci} = R \frac{T_{ci}}{T_{ei}},\tag{89}$$

gdje je *R* otpor, T_{ci} nadomjesna vremenska konstanta PI regulatora struje, K_{ci} pojačanje PI regulatora struje, $T_{\Sigma i}$ vremenska konstanta parazitske dinamike, T_{ei} vremenska konstanta zatvorene strujne petlje.

Slično tome, kod projektiranja povratne veze regulacijskog kruga napona, ekvivalentna vremenska konstanta strujnog regulacijskog kruga T_{ei} i regulatora napona T_{fm} predstavljaju se vremenskom konstantom $T_{\Sigma u} = T_{sw} + T_{fm}$ (s mogućnošću uključivanja vremena uzorkovanja regulatora, ako je potrebno). Primjenom optimuma dvostrukog odnosa na regulacijski krug napona kojeg karakterizira gornja aproksimacija dinamike unutarnje petlje, dobiveni su sljedeći izrazi za parametre PI regulatora napona [28]:

$$T_{cu} = T_{eu} = \frac{T_{\Sigma u}}{D_{2u} D_{3u}},$$
 (90)

$$K_{cu} = \frac{C}{D_{2u}T_{eu}},\tag{91}$$

gdje je T_{cu} vremenska konstanta PI regulatora napona, T_{eu} vremenska konstanta zatvorenog regulacijskog kruga napona, D_{2u} i D_{3u} takozvani karakteristični odnosi regulacijskog kruga napona, C kapacitet kondenzatora pretvarača, $T_{\Sigma u}$ vremenska konstanta parazitske dinamike, K_{cu} pojačanje PI regulatora napona.

Prethodno opisan regulacijski sustav simulacijski je ispitan u *Matlab* programskom okruženju. Tablica 13 i tablica 14 prikazuju parametre modela i regulatora gdje su parametri silaznog pretvarača i baterije uzeti na temelju podataka iz tehničke dokumentacije proizvođača *Droking Co.* (2020), *Gensace Co.* (2020), *ON Semiconductor* (2017), *Infineon Technologies* (2006) i *McPower Co.* (2020) [28].
Simbol	Opis	Iznos
С	Kapacitet kondenzatora pretvarača	4 mF
L	Induktivitet zavojnice pretvarača	36,65 µH
R	Unutarnji otpor zavojnice pretvarača	5 mΩ
T_{sw}	Vremenska konstanta PWM-a pretvarača	0,01 ms
T_{fw}	Vremenska konstanta senzora struje/napona pretvarača	0,5 ms
u_F	Napon blokirajuće diode	0,7 V
<i>r</i> _d	Otpor blokirajuće diode	20 mΩ
E_b	Elektromotorna sila baterije	24 V
R_b	Otpor baterije	20 mΩ
Imax	Maksimalna izlazna struja pretvarača	10 A
Umax	Maksimalni izlazni napon pretvarača	36 V
C_{dc}	Kapacitet kondenzatora DC sabirnice	47 mF
T_{dc}	Vremenska konstanta senzora napona DC sabirnice	1,5 ms

Tablica 13.	Parametri modela	procesa [28]
I doned Iet	I al alliett I life acta	process [=0]

 Tablica 14.
 Parametri regulatora struje/napona pretvarača i regulatora DC sabirnice [28]

Simbol	Opis	Iznos
K _{ci}	Proporcionalno pojačanje PI regulatora struje pretvarača	0,25 A/A
T_{ci}	Integracijska vremenska konstanta PI regulatora struje pretvarača	80 ms
K _{cu}	Proporcionalno pojačanje PI regulatora napona pretvarača	2,13 V/V
T_{cu}	Integracijska vremenska konstanta PI regulatora napona pretvarača	9,4 ms
u_{cmax}	Maksimalni izlazni napon DC sabirnice	36 V
u_{cmin}	Minimalni izlazni napon DC sabirnice	20 V
K_R	Proporcionalno pojačanje PI regulatora struje DC sabirnice	2,21 V/V
T_I	Vremenska konstanta PI regulatora struje DC sabirnice	7,1 ms

Slika 40 prikazuje odziv regulacijskog sustava na jedinični skok od nule do 8 A. Izlazni napon silaznog pretvarača karakterizira pad od 0,5 V (2.1% od referentne vrijednosti $u_R = 24$ V), a postiže referentnu vrijednost za 3,5 ms (gornji dijagram na slici). Takva dobra sposobnost potiskivanja poremećaja postiže se zbog brzog odziva podređenog strujnog regulacijskog kruga pod kaskadnim upravljanjem napona/struje.

Slika 40. Odziv regulacijskog sustava primarne regulacije

7.4. Sekundarna razina upravljanja – podjela opterećenja

Slika 41 prikazuje blokovski dijagram za sekundarnu razinu upravljanja, odnosno centralizirani upravljački sustav podjele opterećenja. Paralelno povezani pretvarači čiji je izlazni napon reguliran povezni su na zajedničku DC sabirnicu (koju karakterizira kondenzator kapaciteta C_{dc} za zaglađivanje napon) pomoću spojenih blokirajućih dioda D_{b1} , ... D_{b4} kako bi se spriječio obrnuti protok struje (iz sabirnice prema pretvaračima). Sustav za pohranu energije – baterija ima svoju karakterističnu elektromotornu silu E_b i unutarnji otpor R_b , a također je paralelno spojena na DC sabirnicu kroz vlastitu blokirajuću diodu D_{bb} , čime se olakšava samo pražnjenje akumulatora i sprječavaju neželjene visoke brzine punjenja koje bi se dogodile ako bi napon sabirnice u_{dc} premašio elektromotornu silu akumulatora E_b [28].

U normalnim radnim uvjetima, naponski regulirani "buck" (silazni) pretvarači mogu napajati istosmjernu sabirnicu do svojih unutarnjih limita struje I_{max} . Kada opterećenje sabirnice

premaši maksimalnu ukupnu struju max $(\Sigma i_{out}) = \max(i_{out1} + i_{out2} + i_{out3} + i_{out3}) = n_{conv}I_{max}(n_{conv} = 4$ je broj paralelno spojenih pretvarača), napon DC sabirnice trebao bi primjetno padati. Jednom kada razlika između elektromotorne sile akumulatora E_b i napona sabirnice pređe napon propusno polarizirane blokirajuće diode u_F (tj. $E_b - u_{dc} > u_F$) baterija se počinje prazniti, pri čemu je struja pražnjenja efektivno određena unutarnjim otporom R_b (tj. $i_b = (E_b - u_{dc} - u_F)/R_b$). U tom slučaju, napon sabirnice postiže ravnotežno stanje $u_{dc} = E_b - (i_L - n_{conv}I_{max})R_b - u_F$ pri čemu je opterećenje sabirnice učinkovito pokriveno zbrojem ukupne maksimalne struje paralelno spojenih pretvarača (tj. $i_L = n_{conv}I_{max} + i_b$) [28].

Slika 41. Blokovski dijagram centraliziranog upravljačkog sustava podjele opterećenja [28]

Centralizirani PI regulator projektira se prema optimumu dvostrukog odnosa. U tu svrhu pretpostavlja se da paralelno povezani pretvarači s regulacijom napona imaju jednaka statička i dinamička svojstva, tj. da se mogu koristiti jednake vremenske konstante T_{eu} , kao i napon propusno polarizirane blokirajuće diode u_F te dinamički otpor tijekom vođenja diode r_d .

U tom slučaju, paralelno povezani pretvarači mogu se predstaviti sljedećim modelom pod pretpostavkom da su sve blokirajuće diode propusno polarizirane [28]:

$$G_p(s) = \frac{\Sigma i_{out}(s)}{u_{R_p}(s)} = \frac{1}{n_{conv}^{-1} r_d C_{dc} s + 1} \cdot \frac{1}{T_{eu} s + 1},$$
(92)

gdje je Σi_{out} ukupna izlazna struja pretvarača, u_{R_p} napon koji zadaje PI regulator, C_{dc} kapacitet DC sabirnice, T_{eu} vremenska konstanta regulatora napona pretvarača, n_{conv} broj paralelno spojenih pretvarača, r_d otpor diode.

Zbrajanjem nadomjesne konstante senzora napona T_{dc} s konstantom vremena punjenja DC sabirnice $C_{dc}r_{d}/n_{conv}$, dobije se parazitska vremenska konstanta $T_{\Sigma dc} = T_{dc} + C_{dc}r_{d}/n_{conv}$ (što također može uključivati konstante uzorkovanja u slučaju digitalnog regulatora) koja se koristi kao temeljna varijabla za projektiranja PI regulatora prema optimumu dvostrukog odnosa. U tom slučaju, karakteristični polinom zatvorenog regulacijskog kruga prikazuje se sljedećim izrazom [28]:

$$A_{cl}(s) = \frac{T_{eu}T_{\Sigma dc}T_{l}}{K_{R}}s^{3} + \frac{(T_{eu} + T_{\Sigma dc})T_{l}}{K_{R}}s^{2} + \frac{1 + K_{R}}{K_{R}}T_{l}s + 1,$$
(93)

gdje je T_{eu} vremenska konstanta regulatora napona, $T_{\Sigma dc}$ vremenska konstanta parazitske dinamike, K_R pojačanje PI regulatora napona sabirnice, T_I vremenska konstanta PI regulatora napona sabirnice.

Izjednačavanjem gornjeg polinoma s polinomom optimuma dvostrukog odnosa, dobije se vremenska konstanta zatvorenog regulacijskog kruga, pojačanje i integracijska vremenska konstanta PI regulatora [28]:

$$T_{edc} = \frac{1}{D_{2dc} D_{3dc}} \frac{T_{eu} T_{\Sigma dc}}{T_{eu} + T_{\Sigma dc}},$$
(94)

$$K_R = \frac{T_{eu} + T_{\Sigma dc}}{D_{2dc} T_{edc}} - 1 ,$$
 (95)

$$T_I = T_{edc} \left(1 - \frac{D_{2dc} T_{edc}}{T_{eu} + T_{\Sigma dc}} \right), \tag{96}$$

gdje je T_{edc} vremenska konstanta zatvorenog regulacijskog kruga, K_R pojačanje PI regulatora napona sabirnice, D_{2dc} , D_{3dc} karakteristični odnosi polinoma prema optimumu dvostrukog odnosa, T_{edc} vremenska konstanta zatvorene petlje, $T_{\Sigma dc}$ vremenska konstanta parazitske dinamike.

Slika 42 prikazuje rezultate simulacije za centralizirani upravljački sustav podjele opterećenja za režim malih signala kojeg karakterizira relativno mala promjena opterećenja i rad pretvarača unutar limita struje/napona. U ovom slučaju, na jedinični poremećaj od 20 A, regulacijski sustav karakteriziraju blagi pad napona od 0,6 V (tj. samo 2,5% posto od ciljane vrijednosti od 24 V) s vremenom oporavka od 25 ms i smirivanjem unutar 70 ms što se vidi na gornjem dijagramu slike. Ovakve performanse regulacijskog sustava postižu se prvenstveno djelovanjem DC/DC pretvarača, čije izlazne struje Σi_{out} , koje određuje centralizirani PI regulator promjenom reference napona, kompenziraju pad napona DC sabirnice i stacionarno opterećenje i_L kako bi se održalo ravnotežno stanje DC sabirnice (dijagram u sredini na slici) [28].

Slika 42. Odziv za režim malih signala

Slika 43 pokazuje simulacijske rezultate za režim velikih signala kojeg karakterizira velika promjena opterećenja i rad pretvarača na strujnom/naponskom limitu. U ovom slučaju promjena struje iznosi 100 A, napon sabirnice ima odstupanje od referentne vrijednosti od 1.3

V (tj. 5,4% od referentne vrijednosti) što prikazuje gornji dijagram na slici. Ovaj pad napona potreban je kako bi se mogao nadvladati napon blokirajuće diode baterije, kao rezultat toga baterija može dati više struje s obzirom na ograničenje struje četiri paralelno spojena pretvarača ($n_{conv}I_{max} = 40$ A, vidi tablica 13), kao što je prikazano na srednjem dijagramu na slici. Zbog limita struje pojedinih silaznih pretvarača, željeni napon koji daje nadređeni PI regulator limitiran je učinkovito na maksimalnu vrijednost izlaznog napona pretvarača (donji dijagram na slici).

Slika 43. Odziv za režim velikih signala

7.5. Tercijarna razina upravljanja

Slika 44 prikazuje jednu od mogućnosti implementacije tercijarne razina upravljanja i služi za uključivanje i isključivanje paralelno spojenih DC/DC pretvarača u ovisnosti o uvjetima tereta na DC sabirnici. Pomoću mjerenja ulazne i izlazne snage određuju se radni uvjeti za svaki pretvarač, te se pomoću snimljenih mapa efikasnosti (npr. na način na koji je prikazano u podpoglavlju 8.1.) izračunava efikasnost svakog pojedinog pretvarača. Programska logika tada aktivira odnosno deaktivira rad pojedinih pretvarača, a ista se može implementirati na različite načine. Nadalje, moguće je realizirati optimizacijski algoritam poput održavanja najveće efikasnosti u sustavu ovisno o opterećenju, mjeriti vrijeme rada pojedinih pretvarača pa ujednačiti da su svi uključeni približno istu količinu vremena i slično.

Slika 44. Principijelna shema tercijarnog upravljanja

U ovom radu je radi ispitivanja prethodno opisanog koncepta implementiran jednostavan način tercijarnog upravljanja u programskom paketu *Matlab/Simulink* (vidi Slika 44), pomoću ograničavanja struja terete po pretvaraču na način da se održava visoka efikasnost, prema algoritmu danom u nastavku:

```
function [load per buck out, number of active buck, buck1 state,
buck2 state, buck3 state, buck4 state ] =
fcn(total_curr,init_num_of_buck)
%total curr - ukupni teret struje
persistent num of buck
persistent load per buck
if isempty(num of buck)
    num_of_buck = init_num_of_buck
    load per buck = total_curr / num_of_buck
end
load per buck = total curr / num of buck
% ako nema tereta sve je ugaseno
if (total curr == 0)
    buck1 state=0;
    buck2 state=0;
    buck3_state=0;
    buck4 state=0;
else
    %provjeri ako smo u intervalu dobre iskoristivosti i ne radi
nista2
```

```
Diplomski rad
```

```
Ana Parčina

if ((load_per_buck >= 10) && (load_per_buck <= 15))

    %hold value

elseif((load_per_buck < 7.5) && (num_of_buck>=2))

    num_of_buck = num_of_buck-1

elseif ((load_per_buck > 15) && (num_of_buck<=3))

    num_of_buck = num_of_buck+1

end
```

end

```
number_of_active_buck = num_of_buck
load_per_buck_out = load_per_buck
buck1_state=0;
buck2_state=0;
buck3_state=0;
buck4_state=0;
switch (number of active buck)
```

```
case 1
   buck1 state=1;
   buck2 state=0;
   buck3 state=0;
   buck4 state=0;
case 2
   buck1 state=1;
   buck2 state=1;
   buck3 state=0;
   buck4 state=0;
case 3
   buck1 state=1;
   buck2 state=1;
   buck3 state=1;
   buck4 state=0;
case 4
   buck1 state=1;
```

buck2_state=1; buck3_state=1; buck4_state=1;

end

Funkcija koja određuje broj aktivnih modula uzima ukupnu struju opterećenja na DC sabirnici ili početni broj uključenih modula kao ulazne parametre. Temeljem trenutno aktivnih pretvarača, odnosno broja aktivnih pretvarača, računa se strujno opterećenje po jednom pretvaraču (uz pretpostavku da sekundarna regulacija određuje jednoliku raspodjelu tereta po pretvaračima, vidi podpoglavlje 7.4.). Ako strujno opterećenje po pretvaraču prelazi 15 A, uključuje se još jedan pretvarač, ako je opterećenje manje od 7,5 A, gasi se jedan pretvarač. Ukoliko je opterećenje pretvarača unutar intervala između 7,5 i 15 A, ne mijenja se broj uključenih odnosno isključenih pretvarača. Funkcija kao izlazne parametre daje stanje svakog

pretvarača (*on/off*), broj aktivnih pretvarača i opterećenje svakog modula. Ulazni parametri modela silaznog pretvarača ("buck") su potrebno opterećenje, stanje pretvarača (*on/off*) i napon DC sabirnice.

```
if ((load_per_buck >= 10) && (load_per_buck <= 15))
    %hold value
elseif((load_per_buck < 7.5) && (num_of_buck>=2))
    num_of_buck = num_of_buck-1
elseif ((load_per_buck > 15) && (num_of_buck<=3))
    num_of_buck = num_of_buck+1
end</pre>
```

Dinamički model pretvarača pojednostavljen je na P1 član koji predstavlja prosječno kašnjenje potrebno da se izgradi napon prilikom promjene opterećenja. Mape efikasnosti dobivene mjerenjem u podpoglavlju 8.1. implementirane su pomoću preglednih tablica (engl. *LookUp table*), a prikazuje ih slika 45. Ulaz u mapu je izlazna snaga pretvarača, a izlaz je efikasnost pretvarača za tu izlaznu snagu.

Slika 45. Simulink implementacija tablice efikasnosti (lijevo), efikasnost ovisno o izlaznoj snazi (desno)

Množenjem izlazne struje, napona sabirnice i vremena dobije se potrošnja energije po pretvaraču, te ta informacija može poslužiti kao dodatno odlučivanje za ujednačenje rada pretvarača po vremenu kako ne bi uvijek radili isti pretvarači (u radu nije posebno odrađivan ovaj uvjet).

U konačnici, kompletni model kao izlazne parametre daje efikasnost i potrošnju energije za svaki pretvarač, te ukupnu efikasnost sustava. Efikasnost *i*-tog pretvarača računa se prema sljedećom izrazu:

$$\eta_i = \frac{P_{izl_i}}{P_{ul_i}},\tag{97}$$

pa slijedi da je ulazna snaga *i*-tog pretvarača:

$$P_{ul_i} = \frac{P_{izl_i}}{\eta_i}.$$
(98)

gdje je η_i učinkovitost *i*-tog pretvarača, P_{izl_i} izlazna snaga pretvarača, a P_{ul_i} ulazna snaga. Slika 46 prikazuje shemu prema kojoj se računa ukupna ulazna snaga sustava.

Slika 46. Shema za računanje ukupne ulazne snage

Izlazna snaga sustava s *n* pretvarača računa se prema sljedećem izrazu:

$$P_{izl} = \sum_{i=1}^{n} P_{izl_{i'}}$$
(99)

gdje je P_{izl} ukupna izlazna snaga, P_{izl_i} izlazna snaga *i*-tog pretvarača.

Ukupna efikasnost sustava s n pretvarača računa se prema sljedećem izrazu:

$$\eta_{ukupno} = \frac{P_{izl}}{\sum_{i=1}^{n} P_{ul_i}} = \frac{\sum_{i=1}^{n} P_{izl_i}}{\sum_{i=1}^{n} \frac{P_{izl_i}}{\eta_i}},$$
(100)

gdje je η_i učinkovitost pojedinog pretvarača, P_{izl_i} izlazna snaga *i*-tog pretvarača, a P_{ul_i} ulazna snaga *i*-tog pretvarača.

Cjelokupni model sastoji se od ulazne pobude, programske logike (algoritma), pojednostavljene dinamike pretvarača sa izračunom efikasnosti i mjerenjem potrošnje energije, što prikazuje slika 47.

Slika 47. Model tercijarnog upravljanja u Simulink programskom okruženju

Kod simuliranja se pretpostavlja da niži nivo regulacije održava DC napon konstantnim te dijeljenje tereta jednakim po svakom pretvaraču. Ispitivane su dvije vrste pobude modela: odskočne funkcije i rampa gdje opterećenje linearno raste, zatim je konstantno pa pada, a obje vrste pobude prikazuje slika 48.

Dobiveni odzivi sustava na odskočne funkcije prikazani su na sljedećim slikama. Slika 49 prikazuje kako se mijenja broj aktivnih pretvarača tijekom simulacije. Na početku je opterećenje jednako nuli i ne mijenja se broj aktivnih pretvarača, ali kada se pojavi opterećenje koje nije dovoljno veliko smanjuje se broj aktivnih pretvarača. Daljnjim povećanjem opterećenja, povećava se broj aktivnih pretvarača, pred kraj simulacije kako pada opterećenje, pada broj aktivnih pretvarača.

Slika 49. Broj aktivnih pretvarača (odskočne funkcije)

Slika 50 prikazuje učinkovitost svakog pretvarača posebno. Svi pretvarači su imali vrlo visoku učinkovitost (malo ispod 95 posto), a to je upravo ono što se trebalo postići ovom regulacijom.

Slika 51 prikazuje ukupnu učinkovitost pretvarača. Iz dobivenih rezultata možemo zaključiti da je učinkovitost oko 95 posto što je vrlo dobar rezultat. Porastom opterećenja, rasla je i učinkovitost, npr. nakon 600 ms za jedan posto. Objašnjenje za to je da pretvarači nemaju toliko dobru učinkovitost ako je opterećenje malo, ali isto tako, ako postanu preopterećeni, učinkovitost će pasti.

Slika 51. Ukupna učinkovitost (odskočne funkcije)

Slika 52 prikazuje potrošnju energije pojedinih pretvarača. Očekivano, najveći potrošnju imaju pretvarači koji su najviše uključeni. Porastom opterećenja, raste i potrošnja energije i obrnuto. Na dijelovima gdje je opterećenje konstantno, potrošnja blago linearno raste.

Slika 52. Potrošnja energije pretvarača (odskočne funkcije)

Dobiveni rezultati simulacije za slučaj rampe kao funkcije pobude prikazani su na sljedećim slikama. Slika 53 prikazuje broj aktivnih pretvarača ovisno o vremenu simulacije. Iz slike se da zaključiti da porastom opterećenja, raste broj aktivnih pretvarača i obrnuto.

Slika 53. Broj aktivnih pretvarača (rampa)

Slika 54 prikazuje učinkovitost pojedinih pretvarača. Iz prikazanih dijagrama, vidi se da je učinkovitost za pretvarače, kada su aktivni, vrlo visoka, oko 95 posto.

Slika 54. Učinkovitost pojedinih pretvarača (rampa)

Slika 55 prikazuje ukupnu učinkovitost paralelno spojenih pretvarača. Na početku simulacije, porastom opterećenja raste i učinkovitost. Kasnije tijekom simulacije učinkovitost je viša od 95 posto što je vrlo dobro. Najveće oscilacije u učinkovitosti događaju se prilikom uključivanja, odnosno isključivanja pretvarača.

Slika 55. Ukupna učinkovitost (rampa)

Slika 56 prikazuje potrošnju energije pretvarača tijekom simulacije. Kada se uključi novi pretvarač, događa se pad potrošnje energije za ostale pretvarače i obrnuto pa se zato javljaju oscilacije. S druge strane, kada je opterećenje konstantno, potrošnja energije linearno raste.

Fakultet strojarstva i brodogradnje

8. EKSPERIMENTALNA ISPITIVANJA

U ovom poglavlju bit će objašnjeni eksperimenti koji su korišteni za ovaj rad.

8.1. Eksperimentalno ispitivanje učinkovitosti pretvarača

Veća učinkovitost pretvarača znači da će biti potrebna manja baterija, dakle i manji pretvarač čime se smanjuju troškovi sustava. Stoga je jako bitno pratiti učinkovitost tijekom procesa izrade pretvarača, tako da se dobije najveća moguća. Prilikom mjerenja učinkovitosti pretvarača, nužno je mjeriti ulaznu i izlaznu snagu s velikom preciznošću. Također, potrebno je imati opremu koja je jako precizna [41].

Eksperiment se provodi tako da se spoji izvor s promjenjivim naponom na DC/DC pretvarač, a kao teret mreža otpornika. Slika 57 prikazuje shemu eksperimenta, a kako je to izgledalo u stvarnosti prikazuje slika 58.

Slika 57. Shema eksperimenta

Za različite terete, odnosno otpor, računat će se efikasnost. Koristit će se otpornici s otporom od 2 Ω . Slika 59 prikazuje različite sheme spajanja koje su se koristile za postizanje vrijednosti otpora 4 Ω , 3 Ω , 2 Ω , 1,67 Ω , 1,34 Ω i 1 Ω . Ulazni napon za svaki teret ide od 30 V do 60 V uz konstantno povećanje koje iznosi 5 V. Izlazni napon je uvijek isti i iznosi 24 V. Ulazna snaga računa se prema izrazu:

$$P_{ul} = I_{ul} \cdot U_{ul}, \tag{101}$$

gdje je I_{ul} ulazna struja, U_{ul} ulazni napon i P_{ul} ulazna snaga. Izlazna snaga računa se prema sljedećem izrazu:

$$P_{izl} = \frac{U_{izl}^2}{R},\tag{102}$$

gdje je P_{izl} izlazna snaga, U_{izl} izlazni napon, a *R* otpor tereta. U konačnici, učinkovitost se dobije dijeljenjem izračunatih snaga:

$$\eta = \frac{P_{izl}}{P_{ul}},\tag{103}$$

gdje je η učinkovitost, P_{izl} izlazna snaga, a P_{ul} ulazna snaga.

Slika 59. Sheme spajanja otpornika

Slika 60 prikazuje grafičke rezultate mjerenja ulaznih struja za odabrane vrijednosti ulaznog napona. Ulazna struja se smanjuje povećanjem ulaznog napona prema padajućoj krivulji.

Slika 60. Ovisnost ulazne struje o ulaznom naponu

Slika 61 prikazuje rezultate efikasnosti s obzirom na izlaznu struju. Iz dobivenih rezultata vidi se da efikasnost raste porastom izlazne struje do otprilike 14,5 A, a potom pada što je bilo očekivano jer pretvarač nema dobru efikasnost na malom opterećenju, a isto tako i na jako velikom.

Slika 61. Ovisnost efikasnosti o izlaznoj struji

Slika 62 prikazuje ovisnost efikasnosti pretvarača o ulaznom naponu i izlaznoj struji te se da zaključiti da je najveća učinkovitost postignuta za napon od 40 V i struju od otprilike 14 A. Za rubne slučajeve (veliko opterećenje i malo opterećenje) efikasnost je najmanja.

Slika 63. Učinkovitost pretvarača s obzirom na izlaznu snagu

Slika 63 prikazuje učinkovitost paralelno spojenih pretvarača s obzirom na izlaznu struju. Iz prethodno navedene slike može se zaključiti da je najveća učinkovitost pretvarača na otprilike 350 W.

8.2. Eksperimentalna provjera sekundarne regulacije

Slika 64 prikazuje eksperimentalni postav koji se sastoji od postolja, izvora DC napona, dva silazna DC/DC pretvarača, litij-polimerske baterije (LiPo), DC sabirnice i pripadnih kondenzatora, senzora struje i napona te upravljačka jedinica mikroračunala (ATmega 2560) koji omogućava prikupljanje i upravljanje podatcima na prijenosno računalo (kao što je prikazano desno na slici) [28].

Slika 64. Fotografije eksperimentalnog postava u laboratoriju [28]

Tablica 15 prikazuje tehničke specifikacije individualnih komponenti.

Komponenta	Opis
Silazni DC/DC pretvarač	800 W, neizolirana topologija, 20-70 V ulazni napon, 2,5-
	58 V izlazni napon, maksimalna ulazna struja 20 A,
	maksimalna izlazna struja 30 A
Napajanje pretvarača	Laboratorijsko visokonaponsko DC napajanje sa strujnim
	limitom i regulacijom napona, 0-30 V, 0-50 A
Senzor struje	ACS758 senzor hallovog efekta, 50 A
Senzor napona	Razdjelnik napona s omjerom razdiobe 11.0
Dioda	Visokonaponska Schottky ispravljačka dioda, $u_F = 0.37$ V,
	$I_{max} = 250 \text{ A}$
Kabel sa sklopkama	SPDT sklopke, 16 A, 250 V AC
Baterija	Litij-polimerska (LiPo) 5000 mAh, 5C

 Tablica 15.
 Tehničke specifikacije komponenti [28]

Ana Parčina	Diplomski rad	
Otpornici	2R2 (2.2 Ω) / 500 W (ukupno 10)	
Računalo i softver	Apple Macbook Pro 2018 i Matlab/Simulink 2020	
Mikrokontroler	Arduino Mega	
Ventilatori za hlađenje	PC ventilator poprečnog presjeka 60 mm, 12 V napajanje	
Izvor napajanja za ventilatore	Laboratorijsko napajanje, 0-30 V, 5 A	

Slika 65 prikazuje eksperimantalne rezultate sekundarne regulacije za režim velikih i malih signala, s željenom vrijednošću napona DC sabirnice od 24 V. U slučaju malog do srednjeg opterećenja (do 40 A, što odgovara limitu za sva četiri pretvarača), struja DC sabirnice je primarno napajana preko tih pretvarača. U slučaju velikog opterećenja, DC/DC pretvarači imaju maksimalne izlazne struje (10 A svaki), a preostala struja dobiva se od baterije nakon što napon DC sabirnice padne ispod željene vrijednosti napona. Ovakvi rezultati potvrđuju rezultate simulacije te su dobar pokazatelj da se predložena regulacija može koristiti za proizvoljan broj pretvarača [28].

Slika 65. Eksperimentalni rezultati centralizirane regulacije podjele opterećenja za režim malih i velikih signala: napon DC sabirnice (a), struja opterećenja, struja baterije i ukupna struja DC/DC pretvarača (b) [28]

Slika 66 prikazuje izlazne struje pojedinih DC/DC pretvarača koje ukazuju da se za paralelni rad silaznih pretvarača postiže jednaka podjela opterećenja. Neznatna odstupanja u jačini izlazne struje mogu se pojaviti na limitu izlazne struje zbog neidealnog upravljanja na navedenim ograničenjima struje putem odgovarajućih vanjskih referenci napona [28].

Slika 66. Eksperimentalni rezultati izlaznih struja pojedinih DC/DC pretvarača [28]

ZAKLJUČAK

U ovom radu prikazan je pregled komponenti energetske elektronike koje se koriste za hibridna vozila. Odabrane su komponente prikladne za hibridizaciju EcoTrac 120V te je provedena analiza troškova.

Nadalje, u radu je naglasak stavljen na integraciju visokonaponskog energetskog sustava te niskonaponskog energetskog sustava vozila. Kao rješenje, ponuđen je paralelni rad više silaznih DC/DC pretvarača. Ovakvim rješenjem postignuta je manja masa i veća učinkovitost u usporedbi s korištenjem samo jednog pretvarača. Regulacija rada pretvarača postignuta je hijerarhijskim sustavom upravljanja. Primarna regulacija daju zadovoljavajuće rezultate u postizanju zadanih referenci struje/napona, a sekundarna regulacija potvrđuje da sustav dobro funkcionira u slučaju poremećaja. Učinkovitost pretvarača ispitana je eksperimentalno te simulacijski, a kako bi imala što viši iznos korištena je tercijarna regulacija. Dobiveni rezultati ispitivanja potvrđuju da je učinkovitost vrlo visoka, stoga se može zaključiti kako bi se predloženi sustav mogao primijeniti u praksi uz zadovoljavajuće performanse.

Iz provedene analize troškova hibridizacije može se zaključiti kako se zbog uštede na gorivu investicija opravdava u roku od pet do sedam godina. Također trend smanjivanja cijena baterija utječe na smanjivanje cijene hibridizacije, stoga se može očekivati da će se i vrijeme opravdavanja investicije smanjivati. Osim što se ovakvim pogonom postiže financijska isplativost, treba napomenuti da se smanjuje i emisija CO₂.

LITERATURA

- Fuhs AE. Hybrid Vehicles and the Future of Personal Transportation. Taylor & Francis Group, LLC, ISBN-13: 978-1-4200-7534-2, 2009.,
- [2] Liu, W.: HYBRID ELECTRIC VEHICLE SYSTEM MODELING AND CONTROL, 2017.,
- [3] Knežević, I.: Diplomski rad, Zagreb, 2010.,
- [4] <u>https://www.agriexpo.online/de/prod/hittner-doo/product-169270-24078.html</u>, 8.5.2020.
- [5] Karlušić, J., Procjena isplativosti hibridizacije pogona šumskog zglobnog traktora,
 2020., Diplomski rad,
- [6] <u>https://www.youtube.com/watch?v=_DY3V7VfAnM&ab_channel=Hittnerd.o.o</u>., 8.5.2020.
- [7] <u>http://engine-family.com/Product.asp?PId=423, 8.5.2020.</u>
- [8] Seliž, A., Specifičnosti sigurnosti pri radu skidera u fazi II. Iskorištavanju šuma, Završni rad, Karlovac, 2016.
- [9] <u>https://www.youtube.com/watch?v=21KrLygVvWE&feature=youtu.be, 8.5.2020.</u>
- [10] Mi, C., Abdul Masrur, M., Wenzhong Gao, D.: Hybrid Electric Vechiles Principles and Applications with Practical Perspectives, 2011.
- [11] Karlušić, J., Cipek, M., Pavković, D, Benić, J, Šitum, Ž., Pandur, Z., Šušnjar, M, Simulation Models of Skidder Conventional and Hybrid Drive, Forests, 11 (2020).
- [12] Karlušić, J., Cipek, M., Pavković, D., Šitum, Ž., Benić, J., Šušnjar, M., Benefit Assessment of Skidder Power-train Hybridization utilizing a novel Cascade Optimization Algorithm, Sustainability, 12 (2020).
- [13] García-Garre, A., Gabaldón, A.: Analysis, Evaluation and Simulation of Railway Diesel-Electric and Hybrid Units as Distributed Energy Resources, 2019.
- [14] Liu, J., Peng, H.: Modeling and Control of Power-Split Hybrid Vechile, 2008.
- [15] <u>https://assets.danfoss.com/documents/DOC340734611991/DOC340734611991.pdf</u>,
 8.5.2020.
- [16] <u>http://files.danfoss.com/download/Drives/VACON-NX-Inverters-FI4-FI8-Operating-</u> <u>Guide-DPD00908D-EN.pdf</u>, 8.5.2020.

Ana Pa	<i>Trčina Diplomski rad</i>
[1/]	appropries 200km 750v 16.7.2020
F101	<u>converter-200kw-750v</u> , 10.7.2020.
[10]	https://www.deutronic.com/wp-content/uproads/2020/03/DVCH5005_ds.pdf,
[10]	10.7.2020.
[19]	<u>https://innoiectric.ag/on-board-charger-2-2/ hang-en</u> , 19.8.2020.
[20]	Cipek, M., Pavkovic, D., Kijaic, Z., Milnaric, T.J.: Assessment of battery-nybrid
	diesel-electric locomotive fuel savings and emission reduction potentials based on a
[01]	realistic mountainous fail route, 2019.
[21]	Starting & Charging, <u>https://nappynybridauto.com/12vBattery</u> , 10.1.2021.
[22]	https://www.energypower.com.au/live/extranet/Manuals/Electrical%20Wiring%20Dia
[00]	grams/Electrical%20Wiring%203054.pdf, 10.1.2021.
[23]	Cela, D., Alerman, P.: Study of a 12V Li-ion Battery Solution for Hybrid Vechiles,
FO (1)	http://publications.lib.chalmers.se/records/tulltext/255305/255305.pdf, 10.1.2021.
[24]	The shift to 48V in automotive systems: What you need to know,
	https://www.avnet.com/wps/portal/abacus/resources/article/the-shift-to-48v-in-
	automotive-systems/, 10.1.2021.
[25]	Kowalec, S.: 12V/48V Hybrid Vehicle Technology,
	https://www.psma.com/sites/default/files/uploads/tech-forums-transportation-power-
	electronics/presentations/is115-12v-48v-hybrid-vehicle-technology.pdf, 10.1.2021.
[26]	Lechner, P.: 5 things you need to know about paralleling DC-DC converters,
	https://www.electropages.com/blog/2015/09/5-things-know-about-paralleling-dc-dc-
	converters, 27.1.2021.
[27]	Gao. F., Kang, R. and Yang, T., Primary and secondary control in DC microgrids: a
	review, Journal of Modern Power Systems and Clean Energy, Vol. 7, pp. 227 – 242,
	2019.
[28]	Krznar, M., Pavković, D., Cipek, M., Crneković, M., Zorc, D.: Design of a low-cost
	DC/DC Converter Power Distribution System for a Hybrid Power Unit of the
	Multirotor Unmanned Aerial Vehicle
[29]	Grbović, P. J., Master/Slave Control of Input-Series and Output-Parallel-
	Connected Converters: Concept for Low-Cost High-Voltage Auxiliary Power
	Supplies, IEEE Transactions on Power Electronics, Vol. 24, No. 2, pp. 316 – 328,
	2009.

- [30] Sun, X., Lee, Y.-S. and Xu, D., Modeling, Analysis, and Implementation of Parallel Multi-Inverter Systems with Instantaneous Average-Current-Sharing Scheme, IEEE Transactions on Power Electronics, Vol. 18, No. 3, pp. 844 – 856, 2003.
- [31] Wu, T.-F., Chen, Y.-K. and Huang, Y.-H., 3C Strategy for Inverters in Parallel Operation Achieving an Equal Current Distribution, IEEE Transactions on Industrial Electronics, Vol. 47, No. 2, pp. 273 – 281, 2000.
- [32] Ambia, M. N., Al-Durra, A. and Muyeen, S. M., Centralized Power Control Strategy for AC-DC Hybrid Micro-Grid System using Multi-converter Scheme, Proceedings of 37thAnnual Conference on IEEE Industrial Electronics Society (IECON 2011), Melbourne, Australia, November 2011, pp. 843 – 848.
- [33] Rahman, M. S., Hossain, M. J. and Lu, J., Coordinated control of three-phase AC and DC type EV-ESSs for efficient hybrid microgrid operations, Energy Conversion and Management, Vol. 122, pp. 488 – 503, 2016.
- [34] Pavković, D., Lobrović, M., Hrgetić, M. and Komljenović, A., A Design of Cascade Control System and Adaptive Load Compensator for Battery/Ultracapacitor Hybrid Energy Storage-based Direct Current Microgrid, Energy Conversion and Management, Vol. 114, pp. 154 – 167, 2016.
- [35] Lu, X., Guerrero, J. M., Sun, K. and Vasquez, J. C., An Improved Droop Control Method for DC Microgrids Based on Low Bandwidth Communication with DC Bus Voltage Restoration and Enhanced Current Sharing Efficiency, IEEE Transactions on Power Electronics, Vol. 29, No. 4, pp. 1800 – 1812, 2014.
- [36] Anand, S., Fernandes, B. G. and Guerrero, J. M., Distributed Control to Ensure Proportional Load Sharing and Improve Voltage Regulation in Low-Voltage DC Microgrids, IEEE Transactions on Power Electronics, Vol. 28, No. 4, pp. 1900 – 1913, 2013. 21.
- [37] Schönberger, J., Duke, R. and Round, S. D., DC-Bus Signaling: A Distributed Control Strategy for a Hybrid Renewable Nanogrid, IEEE Transactions on Industrial Electronics, Vol. 53, No. 5, pp. 1453 – 1460, 2006. 22.
- [38] Schelle, D., Castoerna, J.: Buck-Converter Design Demystified
- [39] Skokna, K: Upravljanje energetskim pretvaračima u DC mikromreži, 2013.
- [40] Krznar, M.: Modelling and control of hybrid propulsion systems for multirotor unmanned aerial vehicles, Zagreb, 2020.
- [41] <u>https://www.rohde-schwarz.com/us/applications/verifying-dc-dc-converter-efficiency-application-card_56279-836096.html</u>, 9.3.2021.

PRILOG

- 1) Simulink model pretvarača
 - trenutačni

2) primarna regulacija (kod iz Matlab programskog okruženja)

```
Ana Parčina
```

```
Kc = 1/Rtot;
% Chopper
Tch = 0.025e-3; % [s]
Kch = 1.0;
            8 [-]
% Filter struje/napona
Tfilt = 0.01e-3; % [s]
% Izlazni kondenzator
Cout = 4.0e-3; % [F]
% Uzorkovanje
Ts = 0.05e-3;
                % [s]
% Nadomjesna vremenska konstanta procesa s utjecajem uzorkovanja
Tsigi = Tch + Tfilt + Ts;
% Proracun direktnog PI regulatora napona pretvaraca
D2u = 0.5; D3u = 0.5;
%Teu = (Tsigu*Rc + Lc)*Cout/(Tsigu + Rc*Cout)/D2u/D3u;
%Kcu = (Tsigu + Rc*Cout)/D2u/Teu - 1.0;
%Tcu = (1.0 - D2u*Teu/(Tsigu + Rc*Cout))*Teu;
% Proracun direktnog PID regulatora napona pretvaraca
% Proracun direktnog PID regulatora napona pretvaraca
%D2u = 0.5; D3u = 0.5; D4u = 0.5;
%Teu = Tsigu/(1 + Tsigu*Rc/Lc)/D2u/D3u/D4u;
%Kcu = Cout*(Tsigu*Rc + Lc)/D3u/D2u/D2u/Teu/Teu - 1;
%Tcu = (1 - D3u*D2u*Teu*Teu/Cout/(Tsigu*Rc + Lc))*Teu;
%Tdcu = (D2u*Teu*Cout*(Tsigu*Rc + Lc) - D3u*D2u*D2u*Teu*Teu*(Tsigu +
Rc*Cout))/(Cout*(Tsigu*Rc + Lc) - D3u*D2u*D2u*Teu*Teu);
D2u = 0.5; D3u = 0.5;
D2i = 0.5; D3i = 0.5;
Tei = Tsigi/D2i;
Tci = Lc/Rtot;
Kci = Rtot*Tci/Tei;
Tsiqu = Tei + Ts + Tfilt;
Teu = Tsigu/D2u/D3u;
Tcu = Teu;
Kcu = Cout/D2u/Teu;
% Limits
Umax = 70.0;
Umin = 20.0;
Imax = 30.0;
% Pocetni uvjeti
% Izlazni napon DC pretvaraca
UdcR = 24.0; % [V]
% Struja tereta
Iout0 = 0.0; % [A]
% Stanje napona na pretvaracu
Upc0 = Iout0*Rc + UdcR;
t sim = 400 * Ts;
sim buck primary level;
sim('sim_buck_primary_level');
```

```
Fakultet strojarstva i brodogradnje
```

```
figure(1),
subplot(311),plot(1000*t,u_ref,'k--','LineWidth',1.5),grid on,hold on
subplot(311),plot(1000*t,u_out,'r','LineWidth',1.5),grid on,hold on
legend('Referenca','Izlazni signal'),ylabel('u_{out} [V]')
subplot(312),plot(1000*t,upcR,'r','LineWidth',1.5),grid on,hold on
ylabel('u_c_R [V]')
subplot(313),plot(1000*t,ic,'r','LineWidth',1.5),grid on,hold on
subplot(313),plot(1000*t,iout,'k--','LineWidth',1.5),grid on,hold on
legend('i_c','i_{out}')
ylabel('i_c,i_{out} [A]'),xlabel('t [ms]')
```

3) sekundarna regulacija (kod iz *Matlab* programskog okruženja)

```
%Nelinearni model baterije
% Serijski otpor prigusnice i otpor baterije prema kojem je podesen PI
regulator struje
% baterije
Rb = 0.000; % [Ohm]
Rc = 0.005; % [Ohm]
%Ukupni otpor
Rtot = Rb + Rc;
%Induktivitet prigusnice
Lc = 0.03665e-3;
Tc = Lc/Rtot;
Kc = 1/Rtot;
% Chopper
Tch = 0.01e-3; % [s]
Kch = 1;
         % [−]
% Filter struje/napona
Tfilt = 0.0015e-3; % [s]
% Izlazni kondenzator
Cout = 4.0e-3; % [F]
% Uzorkovanje
Ts = 0.25e-3;
                % [s]
% Nadomjesna vremenska konstanta procesa s utjecajem uzorkovanja
Tsigi = Tch + Tfilt + Ts;
% Proracun direktnog PI regulatora napona pretvaraca
D2u = 0.5; D3u = 0.5;
%Teu = (Tsigu*Rc + Lc)*Cout/(Tsigu + Rc*Cout)/D2u/D3u;
%Kcu = (Tsigu + Rc*Cout)/D2u/Teu - 1.0;
%Tcu = (1.0 - D2u*Teu/(Tsigu + Rc*Cout))*Teu;
% Proracun direktnog PID regulatora napona pretvaraca
% Proracun direktnog PID regulatora napona pretvaraca
%D2u = 0.5; D3u = 0.5; D4u = 0.5;
%Teu = Tsiqu/(1 + Tsiqu*Rc/Lc)/D2u/D3u/D4u;
%Kcu = Cout*(Tsiqu*Rc + Lc)/D3u/D2u/D2u/Teu/Teu - 1;
%Tcu = (1 - D3u*D2u*D2u*Teu*Teu/Cout/(Tsigu*Rc + Lc))*Teu;
```

```
Diplomski rad
```

```
Ana Parčina
%Tdcu = (D2u*Teu*Cout*(Tsigu*Rc + Lc) - D3u*D2u*D2u*Teu*Teu*(Tsigu +
Rc*Cout))/(Cout*(Tsiqu*Rc + Lc) - D3u*D2u*D2u*Teu*Teu);
D2u = 0.5; D3u = 0.5;
D2i = 0.5; D3i = 0.5;
Tei = Tsiqi/D2i;
Tci = Lc/Rtot;
Kci = Rtot*Tci/Tei;
Tsiqu = Tei + Ts + Tfilt;
Teu = Tsigu/D2u/D3u;
Tcu = Teu;
Kcu = Cout/D2u/Teu;
% Limits
Umax = 36.0;
Umin = 0.0;
Imax = 25.0;
% Pocetni uvjeti
% Izlazni napon DC pretvaraca
UdcR = 24.0; % [V]
% Struja tereta
Iout0 = 0.0; % [A]
% Stanje napona na pretvaracu
Upc0 = Iout0*Rc + UdcR;
% Dinamicki otpor diode
rd = 0.02;
nbuck = 4.0;
% kapacitet DC medjukruga
Cdc = 47.0e-3;
D2dc = 0.5; D3dc = 0.5;
Tsiqdc = Ts + Tfilt + rd*Cdc/nbuck;
Tedc = Teu*Tsigdc/(Teu + Tsigdc)/D2dc/D3dc;
KR = (Teu + Tsigdc)/D2dc/Tedc - 1;
TI = Tedc*(1 - D2dc*Tedc/(Teu + Tsigdc));
t sim = 2000*Ts;
sim buck secondary level multiple;
sim('sim buck secondary level multiple');
figure(1),
subplot(311),plot(1000*t,udc ref,'k--','LineWidth',1.5),grid on,hold on
subplot(311),plot(1000*t,u dc, 'r', 'LineWidth',1.5),grid on,hold on
legend('Referenca', 'Izlazni signal'), ylabel('u {dc} [V]')
subplot(312),plot(1000*t,(i out1+i out2+i out3+i out4),'r','LineWidth',1.5)
,grid on, hold on
subplot(312),plot(1000*t,i L,'k--','LineWidth',1.5),grid on,hold on
legend('\Sigma i_{out}','i_L'), ylabel('i_L ,\Sigma i {out} [A]'),xlabel('t
[ms]')
subplot(313), plot(1000*t, u refc, 'k', 'LineWidth', 1.5), ylabel('u {Rp}
[V]'), xlabel('t [ms]'), grid on
```

```
kod za pokretanje modela
clc
clear
close all
run podaci.m
%% Za 30 V ulaza, variramo terete od min do max, izlazni napon je 24
V
Struja izl 1 = [I izl 1(1) I izl 2(1) I izl 3(1) I izl 4(1)
I izl 5(1) I izl 6(1) ]
Struja_ul_1 = [I_ul_1(1) I_ul_2(1) I_ul_3(1) I ul 4(1) I ul 5(1)
I ul 6(1) ]
eff 11 = (Struja izl 1 * 24) ./ (Struja ul 1 * 30)
%% Za 35 V ulaza, variramo terete od min do max, izlazni napon je 24
V
Struja_izl_2 = [I_izl_1(2) I_izl_2(2) I_izl_3(2) I_izl_4(2)
I izl 5(2) I izl 6(2) ]
Struja ul 2 = [I ul 1(2) I ul 2(2) I ul 3(2) I ul 4(2) I ul 5(2)
I ul 6(2) ]
eff 22 = (Struja izl 2 * 24) ./ (Struja ul 2 * 35)
%% Za 40 V ulaza, variramo terete od min do max, izlazni napon je 24
V
Struja izl 3 = [I izl 1(3) I izl 2(3) I izl 3(3) I izl 4(3)
I izl 5(3) I izl 6(3) ]
Struja_ul_3 = [I_ul_1(3) I_ul_2(3) I_ul_3(3) I_ul_4(3) I_ul_5(3)
I ul 6(3) ]
eff 33 = (Struja izl 3 * 24) ./ (Struja ul 3 * 40)
%% Za 45 V ulaza, variramo terete od min do max, izlazni napon je 24
77
Struja izl 4 = [I izl 1(4) I izl 2(4) I izl 3(4) I izl 4(4)
I izl 5(4) I izl 6(4) ]
Struja ul 4 = [I ul 1(4) I ul 2(4) I ul 3(4) I ul 4(4) I ul 5(4)
I ul 6(4) ]
eff_44 = (Struja_izl_4 * 24) ./ (Struja ul 4 * 45)
%% Za 50 V ulaza, variramo terete od min do max, izlazni napon je 24
V
Struja izl 5 = [I izl 1(5) I izl 2(5) I izl 3(5) I izl 4(5)
I izl 5(5) I izl 6(5) ]
Struja ul 5 = [I ul 1(5) I ul 2(5) I ul 3(5) I ul 4(5) I ul 5(5)
I ul 6(5) ]
eff 55 = (Struja izl 5 * 24) ./ (Struja ul 5 * 50)
%% Za 55 V ulaza, variramo terete od min do max, izlazni napon je 24
Struja izl 6 = [I izl 1(6) I izl 2(6) I izl 3(6) I izl 4(6)]
I izl 5(6) I izl 6(6) ]
Struja ul 6 = [I ul 1(6) I ul 2(6) I ul 3(6) I ul 4(6) I ul 5(6)
I ul 6(6) ]
```

4) tercijarna regulacija (kod iz *Matlab* programskog paketa)

Ana Parčina

```
%% Za 60 V ulaza, variramo terete od min do max, izlazni napon je 24
V
Struja izl 7 = [I izl 1(7) I izl 2(7) I izl 3(7) I izl 4(7)
I izl 5(7) I izl 6(7) ]
Struja ul 7 = [I ul 1(7) I ul 2(7) I ul 3(7) I ul 4(7) I ul 5(7)
I ul 6(7) ]
eff 77 = (Struja izl 7*24) ./ (Struja ul 7 *60)
%% UPROSJECENE SNAGE - za algoritam
average power in = [ mean(P ul 1) mean(P ul 2) mean(P ul 3)
mean(P_ul_4) mean(P_ul_5) mean(P_ul_6) ];
average power out = [ mean(P izl 1) mean(P izl 2) mean(P izl 3)
mean(P izl 4) mean(P izl 5) mean(P izl 6) ];
average curr out = [ mean(I izl 1) mean(I izl 2) mean(I izl 3)
mean(I izl 4) mean(I izl 5) mean(I izl 6) ];
efficiency data = average power out ./ average power in *100;
%% TERCIJARNO UPRAVLJANJE
sim('model tercijarno upravljanje 2015 novi.slx');
% dobivene varijable
t = ans.get('time');
ef1 = ans.get('EfficiencyBuck1');
ef2 = ans.get('EfficiencyBuck2');
ef3 = ans.get('EfficiencyBuck3');
ef4 = ans.get('EfficiencyBuck4');
pc1 = ans.get('PowerConsumption1');
pc2 = ans.get('PowerConsumption2');
pc3 = ans.get('PowerConsumption3');
pc4 = ans.get('PowerConsumption4');
n active = ans.get('n active');
uk ef = ans.get('ukupna efikasnost');
izl snaga = ans.get('uk izlazna snaga');
figure(1),
subplot(411), plot(t,ef1, 'Linewidth', 1), hold on, grid on,
xlabel('t [s]'), ylabel('\eta_{1}'),
subplot(412), plot(t, ef2, 'Linewidth', 1), hold on, grid on,
xlabel('t [s]'), ylabel('eta_{2}'),
subplot(413), plot(t, ef3, 'Linewidth', 1), hold on, grid on,
xlabel('t [s]'), ylabel('\eta {3}'),
subplot(414), plot(t, ef4, 'Linewidth', 1), hold on, grid on;
xlabel('t [s]'), ylabel('\eta {4}');
figure(2),
plot(t, n_active, 'Linewidth', 1.5), grid on;
xlabel('t [s]'), ylabel('broj aktivnih pretvaraca');
figure(3),
plot(t, uk ef, 'Linewidth', 1.5), grid on;
xlabel('t [s]'), ylabel('\eta_{ukupno}');
```

eff 66 = (Struja izl 6 * 24) ./ (Struja ul 6 * 55)

```
Fakultet strojarstva i brodogradnje
```

figure(4), subplot(411), plot(t, pc1, 'Linewidth', 1), hold on, grid on, xlabel('t [s]'), ylabel('\Delta E_{1} [W]'), subplot(412), plot(t, pc2, 'Linewidth', 1), hold on, grid on, xlabel('t [s]'), ylabel('\Delta E_{2} [W]'), subplot(413), plot(t, pc3, 'Linewidth', 1), hold on, grid on, xlabel('t [s]'), ylabel('\Delta E_{3} [W]'), subplot(414), plot(t, pc4, 'Linewidth', 1), hold on, grid on, xlabel('t [s]'), ylabel('\Delta E_{4} [W]'); figure(5), plot(t, izl_snaga, 'Linewidth', 1.5), grid on; xlabel('t [s]'), ylabel('ukupna izlazna snaga');

model silaznog pretvarača

• kod za funkciju modela

```
function [load per buck out, number of active buck, buck1 state,
buck2_state, buck3_state, buck4_state ] =
fcn(total curr, init num of buck)
%total curr - ukupni teret struje
persistent num of buck
persistent load per buck
if isempty(num of buck)
    num of buck = init num of buck
    load per buck = total curr / num of buck
end
load per buck = total curr / num of buck
% ako nema tereta sve je ugaseno
if (total curr == 0)
    buck1 state=0;
    buck2 state=0;
    buck3_state=0;
    buck4 state=0;
else
    %provjeri ako smo u intervalu dobre iskoristivosti i ne radi
nista2
    if ((load per buck >= 10) && (load per buck <= 15))
        %hold value
    elseif((load per buck < 7.5) && (num of buck>=2))
        num_of_buck = num_of_buck-1
    elseif ((load_per_buck > 15) && (num_of_buck<=3))</pre>
        num of buck = num of buck+1
    end
```

```
end
    9
% if ((load per buck) < 10 & num of buck>=2)
00
      num of buck = num of buck-1
% end
number of active buck = num of buck
load per buck out = load per buck
buck1 state=0;
      buck2 state=0;
       buck3 state=0;
       buck4 state=0;
switch (number_of_active_buck)
    case 1
       buck1 state=1;
       buck2 state=0;
       buck3_state=0;
       buck4 state=0;
    case 2
       buck1 state=1;
       buck2_state=1;
       buck3_state=0;
       buck4 state=0;
    case 3
       buck1 state=1;
       buck2 state=1;
       buck3 state=1;
       buck4 state=0;
    case 4
       buck1_state=1;
       buck2 state=1;
       buck3 state=1;
       buck4 state=1;
end
```

5) Matlab kod za eksperiment učinkovitosti pretvarača

```
clc
clear
close all
run podaci.m
%plot ulazni napon vs ulazna struja
figure
plot(U_ul_1,I_ul_1), hold
plot(U_ul_2,I_ul_2),
plot(U_ul_2,I_ul_2),
plot(U_ul_3,I_ul_3),
plot(U_ul_4,I_ul_4),
plot(U_ul_5,I_ul_5),
plot(U_ul_6,I_ul_6),
% plot(U_ul_7,I_ul_7)
% legend({'143.57W', '188.85W', '282.35W', '342.86W', '427.3W',
'568.61W'}, 'Location', 'northeast')
```

Fakultet strojarstva i brodogradnje

```
Ana Parčina
```

Diplomski rad

```
legend({'144 W', '189 W', '282 W', '345 W', '427 W', '569 W'},
'Location', 'northeast')
grid on
xlabel('Ulazni napon, V')
ylabel('Ulazna struja, A')
%% Za 30 V ulaza, variramo terete od min do max, izlazni napon je 24
Struja izl 1 = [I izl 1(1) I izl 2(1) I izl 3(1) I izl 4(1)
I izl 5(1) I izl 6(1) ]
Struja ul 1 = [I ul 1(1) I ul 2(1) I ul 3(1) I ul 4(1) I ul 5(1)
I ul 6(1) ]
eff 11 = (Struja izl 1 * 24) ./ (Struja ul 1 * 30)
%% Za 35 V ulaza, variramo terete od min do max, izlazni napon je 24
V
Struja izl 2 = [I izl 1(2) I izl 2(2) I izl 3(2) I izl 4(2)
I_izl_5(2) I_izl_6(2) ]
Struja ul 2 = [I ul 1(2) I ul 2(2) I ul 3(2) I ul 4(2) I ul 5(2)
I ul 6(2) ]
eff 22 = (Struja izl 2 * 24) ./ (Struja ul 2 * 35)
%% Za 40 V ulaza, variramo terete od min do max, izlazni napon je 24
V
Struja izl 3 = [I izl 1(3) I izl 2(3) I izl 3(3) I izl 4(3)
I_izl_5(3) I_izl 6(3) ]
Struja ul 3 = [I ul 1(3) I ul 2(3) I ul 3(3) I ul 4(3) I ul 5(3)
I ul 6(3) ]
eff 33 = (Struja izl 3 * 24) ./ (Struja ul 3 * 40)
%% Za 45 V ulaza, variramo terete od min do max, izlazni napon je 24
V
Struja_izl_4 = [I_izl_1(4) I_izl_2(4) I izl 3(4) I izl 4(4)
I izl 5(4) I izl 6(4) ]
Struja ul 4 = [I ul 1(4) I ul 2(4) I ul 3(4) I ul 4(4) I ul 5(4)
I ul 6(4) ]
eff 44 = (Struja izl 4 * 24) ./ (Struja ul 4 * 45)
%% Za 50 V ulaza, variramo terete od min do max, izlazni napon je 24
V
Struja_izl_5 = [I_izl_1(5) I_izl_2(5) I_izl_3(5) I_izl_4(5)
I izl 5(5) I izl 6(5) ]
Struja_ul_5 = [I_ul_1(5) I_ul_2(5) I_ul_3(5) I_ul_4(5) I_ul_5(5)
I ul 6(5) ]
eff 55 = (Struja izl 5 * 24) ./ (Struja ul 5 * 50)
%% Za 55 V ulaza, variramo terete od min do max, izlazni napon je 24
77
Struja izl 6 = [I izl 1(6) I izl 2(6) I izl 3(6) I izl 4(6)
I izl 5(6) I izl 6(6) ]
Struja ul 6 = [I ul 1(6) I ul 2(6) I ul 3(6) I ul 4(6) I ul 5(6)
I ul 6(6) ]
eff 66 = (Struja izl 6 * 24) ./ (Struja ul 6 * 55)
```
```
Ana Parčina
```

```
%% Za 60 V ulaza, variramo terete od min do max, izlazni napon je 24
Struja izl 7 = [I izl 1(7) I izl 2(7) I izl 3(7) I izl 4(7)
I izl 5(7) I izl 6(7) ]
Struja ul 7 = [I ul 1(7) I ul 2(7) I ul 3(7) I ul 4(7) I ul 5(7)
I ul 6(7) ]
eff 77 = (Struja izl 7*24) ./ (Struja ul 7 *60)
%% PLOT EFIKASNOSTI I IZLAZNIH STRUJA, ZA SVAKI ULAZNI NAPON, PO
TERETU
figure
plot(Struja_izl_1,eff_11), hold %30V
plot(Struja_izl_2,eff_22),
                                 %35V
plot(Struja izl 3, eff 33),
plot(Struja izl 4,eff 44),
plot(Struja_izl_5,eff_55),
plot(Struja_izl_6,eff_66),
plot(Struja izl 7,eff 77)
legend({'Uul:30V', 'Uul:35V', 'Uul:40V', 'Uul:45V', 'Uul:50V',
'Uul:55V', 'Uul:60V'}, 'Location', 'southeast')
grid on
xlabel('Izlazna struja, A')
ylabel('Efikasnost')
ylim([0.87 .98]);
%% 3d plot efikasnosti 1
DataEff = [eff 11' eff 22' eff 33' eff 44' eff 55' eff 66' eff 77']
DataStruja= Struja izl 1;
DataVoltsIn= U ul 1;
figure
surf(DataVoltsIn, DataStruja, DataEff)
view(-135,20)
xlabel('Ulazni napon, V')
ylabel('Izlazna struja, A')
zlabel('Efikasnost')
%% UPROSJECENE SNAGE - za algoritam
average power in = [ mean(P ul 1) mean(P ul 2) mean(P ul 3)
mean(P_ul_4) mean(P_ul_5) mean(P_ul_6) ];
average power out = [ mean(P izl 1) mean(P izl 2) mean(P izl 3)
mean(P izl 4) mean(P izl 5) mean(P izl 6) ];
average curr out = [ mean(I izl 1) mean(I izl 2) mean(I izl 3)
mean(I izl 4) mean(I izl 5) mean(I izl 6) ];
efficiency data = average power out ./ average power in *100;
figure
plot(average power out, efficiency data, 'Linewidth', 2);
grid
ylim([75 100])
xlim([0 700])
title('Ucinkovitost pretvaraca');
```

Fakultet strojarstva i brodogradnje

```
xlabel('izlazna snaga [W]');
ylabel('ucinkovitost [%]');
figure
plot(average_curr_out,efficiency_data,'Linewidth', 2);
grid
ylim([75 100])
xlim([0 30])
title('Ucinkovitost pretvaraca');
xlabel('izlazna struja [A]');
ylabel('ucinkovitost [%]'
```

Ana Parčina