Konstrukcija sklopa nosača kotača za Formula Student bolid s elektromotornim pogonom u kotačima

Milohanić, Darian

Undergraduate thesis / Završni rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:441551

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-28

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Darian Milohanić

Zagreb, 2021.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

KONSTRUKCIJA SKLOPA NOSAČA KOTAČA ZA FORMULA STUDENT BOLID S ELEKTROMOTORNIM POGONOM U KOTAČIMA

Mentor:

Doc. dr. sc. Rudolf Tomić, dipl. ing.

Zagreb, 2021.

Student:

Darian Milohanić

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru doc. dr. sc. Rudolfu Tomiću na savjetima i pomoći oko izrade rada te kolegama iz *FSB Racing Team*-a na kvalitetnim raspravama te podijeljenom znanju. Zahvaljujem se i svojoj obitelji zbog podrške tijekom studija.

Darian Milohanić

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za završne ispite studija strojarstva za smjerove: procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveučilište u Zagrebu					
Fakultet strojarstva i brodogradnje					
Datum Prilog					
Klasa: 602 - 04 / 21 - 6 / 1					
Ur.broj: 15 - 1703 - 21 -					

ZAVRŠNI ZADATAK

Student:	Darian Milohanić	Mat. br.: 0035216946
Naslov rada na hrvatskom jeziku:	Konstrukcija sklopa nosača kotača elektromotornim pogonom u kotač	a za Formula Student bolid s čima
Naslov rada na engleskom jeziku: Opis zadatka:	Design of the wheel upright assem vehicle with electric in-wheel drive	bly for a Formula Student racing

Članovi FSB Racing Team-a za međunarodno natjecanje Formula Student razvijaju novi bolid s elektromotorom i prijenosnikom snage smještenim u kotačima. Za tu namjenu potrebno je oblikovati sklop nosača kotača na koji će, osim kotača i elemenata za vođenje kotača, biti moguće pričvrstiti pogonski elektromotor s pripadajućim reduktorom.

Kako bi se oblikovanje sklopa nosača kotača moglo uspješno provesti, potrebno je:

- utvrditi rubne uvjete koji ograničavaju prostor raspoloživ za sklop nosač kotača dimenzije naplatka kotača, dimenzije elemenata kočionog sustava, položaj prihvata elemenata za vođenje kotača, dimenzije elektromotora i reduktora,
- dimenzionirati kritične elemente sklopa nosača kotača na temelju raspoloživih informacija o opterećenju kotača,
- odabrati standardne dijelove sklopa nosača kotača,
- oblikovati nestandardne elemente sklopa nosača kotača,
- napraviti tehničku dokumentaciju za izradu i montažu sklopa nosača kotača (sklopni crtež i radioničke crteže komponenti sklopa).

Pri izradi rada treba se pridržavati uobičajenih pravila za izradu završnog rada. U radu navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

30. studenoga 2020.

Zadatak zadao:

Datum predaje rada: 1. rok: 18 veljače 2021. 2. rok (izvanredni): 5. srpnja 2021. 3. rok: 23. rujna 2021. Predviđeni datumi obrane: 1. rok: 22.2. – 26.2.2021. 2. rok (izvanredni): 9.7.2021. 3. rok: 27.9. – 1.10.2021.

Predsjednik Povjerenstva:

Doc. dr. sc. Rudolf Tomić

Prof. dr. sc. Vladimir Soldo

SADRŽAJ

1. UVOD	. 11
1.1. FSB Racing Team	1
2. SKLOP KOTAČA S INTEGRIRANIM POGONOM	3
2.1. Usporedba sklopa kotača sa integriranim pogonom i pogonskog sustava prošlog bolida RT06R	3
2.1.1. Prednosti koncepta sklopa kotača sa integriranim pogonom	4
2.1.2. Nedostaci koncepta sklopa kotača sa integriranim pogonom	4
2.2. Geometrijska ograničenja sklopa kotača	5
2.3. Usporedba i odabir koncepta sklopa kotača sa integriranim pogonom	7
2.3.1. Koncept sklopa kotača sa integriranim pogonom K1	8
2.3.2. Koncept sklopa kotača sa integriranim pogonom K2	9
2.3.3. Koncept sklopa kotača sa integriranim pogonom K3	9
2.3.4. Usporedba koncepata pomoću matrice odlučivanja	. 10
3. KONSTRUKCIJA SKLOPA KOTAČA	. 12
3.1. Proračun i odabir ležajeva	. 13
3.1.1. Spektar opterećenja	. 16
3.1.2. Proračun vijeka trajanja ležajeva	. 19
3.2. Spoj glavčine i reduktora i proračun glavčine	23
3.3. Prihvat sklopa nosača kotača i kotača	36
3.4. Prihvat reduktora i elektromotora	40
3.5. Montaža sklopa	
4. ZAKLJUČAK	44

POPIS SLIKA

Slika 1.	Bolid Kuna (lijevo) i ArctosR (desno)	2
Slika 2.	Bolid StrixR	2
Slika 3.	Pogonski sustav bolida RT06R	3
Slika 4.	Dimenzije dvodijelnog naplatka	5
Slika 5.	Kočnica	6
Slika 6.	Koncept sklopa kotača sa integriranim pogonom K1	8
Slika 7.	Koncept sklopa kotača sa integriranim pogonom K2	9
Slika 8.	Koncept sklopa kotača sa integriranim pogonom K3	. 10
Slika 9.	Koordinatni sustav vozila i kotača	. 12
Slika 10.	Sile koje djeluju na kotač u kontaktnoj površini pneumatika i podloge	. 13
Slika 11.	Sile reducirane na os vrtnje glavčine i reakcije u ležajevima	. 15
Slika 12.	Kompletni spektar opterećenja za unutarnji ležaj A	. 18
Slika 13.	Kompletni spektar opterećenja za vanjski ležaj B	. 18
Slika 14.	2D spektar opterećenja za unutarnji ležaj A i vanjski ležaj B	. 19
Slika 15.	Spoj glavčine i nosača planetaa	. 23
Slika 16.	Opterećenje svornjaka momentom	. 23
Slika 17.	Opterećenje vijaka aksijalnom silom	. 25
Slika 18.	Glavčina	. 27
Slika 19.	Kritični presjeci glavčine	. 29
Slika 20.	Spoj glavčine i kotača	. 36
Slika 21.	Spoj nosača kotača i elektromotora	. 40
Slika 22.	Eksplodirani pogled sklopa kotača	. 43

POPIS TABLICA

Tablica 1.	Matrica odlučivanja	. 11
Tablica 2.	Tablica ponavljanja za unutarnji ležaj A	. 17
Tablica 3.	Tablica ponavljanja za vanjski ležaj B	. 17
Tablica 4.	Usporedba ležaja 61816 i W 61816	. 21
Tablica 5.	Sile koje djeluju na kotač za različite režime vožnje	. 28
Tablica 6.	Sile reducirane na os vrtnje glavčine	. 28
Tablica 7.	Sile u ležajevima	. 29
Tablica 8.	Udaljenosti kritičnih presjeka od ležajnih mjesta	. 30
Tablica 9.	Geometrijske karakteristike i faktori zareznih djelovanja kritičnih presjeka	. 31
Tablica 10.	Momenti savijanja oko osi x u pojedinim kritičnim presjecima	. 32
Tablica 11.	Momenti savijanja oko osi y u pojedinim kritičnim presjecima	. 32
Tablica 12.	Momenti savijanja oko osi z u pojedinim kritičnim presjecima	. 33
Tablica 13.	Reducirani momenti savijanja u pojedinim kritičnim presjecima	. 33
Tablica 14.	Reducirani momenti u pojedinim kritičnim presjecima	. 34
Tablica 15.	Reducirana naprezanja u pojedinim kritičnim presjecima	. 34
Tablica 16.	Postignute sigurnosti u pojedinim kritičnim presjecima	. 35
Tablica 17.	Sile u vijku	. 37
Tablica 18.	Ukupne sile, naprezanja i sigurnosti vijka za svaki režim rada	. 38
Tablica 19.	Vrijednosti površinskih pritisaka i sigurnosti vijka	. 39

POPIS TEHNIČKE DOKUMENTACIJE

- ZR-ASY Sklop kotača sa integriranim pogonom
- ZR-001 Nosač kotača
- ZR-002 Odstojnik ležajeva
- ZR-003 Glavčina
- ZR-008 Svornjak

POPIS OZNAKA

Oznaka	Jedinica	Opis			
а	mm	Udaljenost od centra kotača do spoja glavčine i felge			
A_{v}	mm^2	Površina poprečnog presjeka vijka			
b_1	$\frac{N}{mm^2}$	Reducirano naprezanje			
<i>b</i> ₂	$\frac{N}{mm^2}$	Reducirano naprezanje			
b	mm	Udaljenost od prihvata kotača do ležaja B			
<i>c</i> ₁	_	Faktor za izračun zareznog djelovanja na savijanje			
<i>C</i> ₂	_	Faktor za izračun zareznog djelovanja na uvijanje			
D	mm	Sljedeći veći promjer na kritičnom prejeku			
d_2	mm	Srednji promjer navoja			
d_3	mm	Unutarnji promjer navoja			
d_s	mm	Promjer svornjaka			
d_{sv}	mm	Promjer na kojem se nalaze svornjaci			
F_{x}	Ν	Sila podloge na kotač u smjeru x osi			
F_y	Ν	Sila podloge na kotač u smjeru y osi			
F_z	Ν	Sila podloge na kotač u smjeru z osi			
F_{Aa}	Ν	Aksijalna sila u unutarnjem ležaju A			
F _{Ar}	Ν	Radijalna sila u unutarnjem ležaju A			
F_{Ax}	Ν	Sila u unutarnjem ležaju A u smjeru <i>x</i> osi			
F_{Ay}	Ν	Sila u unutarnjem ležaju A u smjeru y osi			
F_{Az}	Ν	Sila u unutarnjem ležaju A u smjeru z osi			
F _{Ba}	Ν	Aksijalna sila u vanjskom ležaju B			
F_{Br}	Ν	Radijalna sila u vanjskom ležaju B			
F_{Bx}	Ν	Sila u vanjskom ležaju B u smjeru <i>x</i> osi			
F_{By}	Ν	Sila u vanjskom ležaju B u smjeru y osi			
F_{Bz}	Ν	Sila u vanjskom ležaju B u smjeru z osi			
F_t	Ν	Smična sila u svornjacima			
F_V	Ν	Sila u vijku			
$F_{V,max}$	Ν	Maksimalna sila u vijku			
l	mm	Udaljenost ležajnih mjesta			
L_A	mm	Udaljenost kritičnog presjeka od ležajnog mjesta A			
L_B	mm	Udaljenost kritičnog presjeka od ležajnog mjesta B			
L_{mh}	h	Kombinirani vijek trajanja ležaja			
L _{mhi}	h	Parcijalni vijek trajanja ležaja			
l_s	mm	Duljina svornjaka u dodiru			
М	Nm	Izlazni moment reduktora			
M_{EM}	Nm	Moment elektromotora			

M_{red}	Nmm	Reducirani moment					
M_s	Nmm	Reducirani moment savijanja					
M_{x}	Nmm	Momenta sila podloge u smjeru x osi					
M_{γ}	Nmm	Momenta sila podloge u smjeru y osi					
M_z	Nmm	Momenta sila podloge u smjeru z osi					
p	$\frac{N}{mm^2}$	Površinski pritisak					
p_{dop}	$\frac{N}{mm^2}$	Dopušteni površinski pritisak					
r	mm	Radijus kotača					
R _e	$\frac{N}{mm^2}$	Granica razvlačenja					
S	_	Faktor sigurnosti					
Spost	_	Postignuta sigurnost					
S _{potr}	_	Potrebna sigurnost					
t_i	_	Vremenski udio pojedinog perioda u ciklusu rada ležaja					
T_N	Nmm	Moment u vijku					
W	mm^3	Moment otpora poprečnog presjeka					
Ζ	_	Broj vijaka					
α	0	Kut uspona navoja					
α_0	_	Faktor čvrstoće materijala					
β_{kf}	_	Faktor zareznog djelovanja na savijanje					
β_{kt}	_	Faktor zareznog djelovanja na uvijanje					
β_{kt2}	—	Faktor za izračun zareznog djelovanja na uvijanje					
σ_{ekv}	$\frac{N}{mm^2}$	Ekvivalentno naprezanje					
σ_{fDN}	$\frac{N}{mm^2}$	Trajna dinamička čvrstoća za čisto naizmjenično naprezanje pri savijanju					
σ_{red}	$\frac{N}{mm^2}$	Reducirano naprezanje					
σ_{v}	$\frac{N}{mm^2}$	Naprezanje vijka					
τ	$\frac{1}{mm^2}$	Smično naprezanje					
$ au_{dop}$	$\frac{1}{mm^2}$	Dopušteno smično naprezanje					
μ	_	Faktor trenja					
φ	_	Faktor udara					
ho'	0	Korigirani faktor trenja					

U ovom je radu prikazan razvoj sklopa kotača s integriranim pogonom za *Formula Student* bolid *RT07*. Prvi korak je bila analiza prednosti i nedostataka konceptualnih rješenja sklopa kotača u svrhu odabira prikladnog rješenja. S obzirom na geometrijska ograničenja generirano je nekoliko koncepata. Ti koncepti su uspoređeni prema zadanim kriterijima te je odabran jedan koncept koji je detaljnije razvijen. Za odabrani koncept su provedeni analitički proračuni za komponente poput vijaka, svornjaka, ležajeva i glavčine. Uz rad je priložena tehnička dokumentacija razrađenog koncepta sklopa kotača s integriranim pogonom koja uključuje sklopni crtež i radioničke crteže pozicija sklopa kotača.

Ključne riječi: sklop kotača s integriranim pogonom, nosač kotača, glavčina, *FSB Racing Team*, *Formula Student*.

In this thesis, in-wheel motor concept development for a *Formula Student* vehicle *RT07* is shown. Firstly, advantages and disdvantages of in-wheel motor concepts are analysed in order to select suitable solution. Secondly, with respect to the geometric limitations few concepts were generated. Those concepts are then compared according to the given criteria and one is chosen for further development. For the chosen concept, analytical calculations for components such as bolts, pins, bearing and wheel hub are performed. The thesis is accompanied by technical documentation of the elaborated in- wheel motor concept which includes assembly drawings and engineering drawings of the wheel assembly parts.

Key words: in-wheel motors, upright, wheel hub, FSB Racing Team, Formula Student.

1. UVOD

Formula student je natjecanje studenata pretežno tehničkih studija u izradi trkaćeg bolida sukladno pravilniku *Formule studenta* [1]. Cilj je primjenom stečenog teorijskog znanja i pravilima dobre inženjerske prakse osmisliti, konstruirati i izraditi što bolji i brži bolid te skupiti što više bodova. Natjecanja *Formule student* održavaju se diljem svijeta dok su u Europi neka od većih natjecanja održavaju u Njemačkoj, Engleskoj, Austriji, Švicarskoj, Španjolskoj i Mađarskoj.

Samo natjecanje je podijeljeno na 3 klase: Vozila s motorom s unutarnjim izgaranjem, Električna vozila i Vozila bez vozača. Bodovanje se vrši putem statičkih i dinamičkih disciplina. U statičkim disciplinama je potrebno dokazati isplativost, proizvodnost i inovativnost projekta i tehničkih rješenja dok se u dinamičkim disciplinama testiraju sposobnosti ubrzanja, stabilnosti, izdržljivosti i upravljivosti bolida.

1.1. FSB Racing Team

FSB Racing Team je tim Sveučilišta u Zagrebu osnovan 2004. godine. Sastoji se od stotinjak članova gdje su najvećim udjelom studenti Fakulteta strojarstva i brodogradnje (FSB) a budući se razvija električni bolid sve je više studenata Fakulteta elektrotehnike i računarstva (FER) ali ima i studenata sa ostalih studija poput Filozofskog fakulteta (FFZG), Ekonomskog fakulteta (EFZG), Studij dizajna i sl.

Iz razloga što je ovakav projekt vrlo složen i vremenski zahtjevan, tim je podijeljen na 12 pod timova- Aerodinamika, Dinamika vozila, Dizajn, Električni motor, Električni pogon, Hlađenje, Marketing, Mehanički pogon, Ovjes i upravljanje, Proizvodnja, Šasija, Upravljački sustavi. Dosad je izrađeno 9 bolida od kojih su prvih 7 s pogonom na motor s unutarnjim izgaranjem dok su posljednja 2 električna što je donijelo dodatne probleme ali i mogućnosti za usvajanje novih znanja.

Trenutni projekti su razvoj električnog bolida RT07 i po prvi put razvoj bolida bez vozača RT06D.

Kroz godine se vidi napredak *FSB Racing Team*-a kroz postignute rezultate na natjecanjima te iako je tim iz male zemlje uspio se približiti najboljim timovima iz cijele Europe. Tako su neki ostvareni rezultati:

- 2007- FS UK, Silverstone, 48./69

- 2013- FS Germany, Hockenheimring, 56./75
- 2014- FS UK, Silverstone 10./97
- 2017- FS Hungary, Gyor, 13./41
- 2018- FS UK, Silverstone, 12./81
- 2020- FS Online, 6./21

Neki od izrađenih bolida su prikazani na slikama 1. i 2. preuzetih sa online stranice FSB Racing Team-a [2].

Slika 1. Bolid Kuna (lijevo) i ArctosR (desno)

Slika 2. Bolid StrixR

2. SKLOP KOTAČA S INTEGRIRANIM POGONOM

Svako dobro konstrukcijsko rješenje mora imati svoje razloge zašto je odabrano i razvijeno. Potrebno je iznijeti pozitivne i negativne strane koncepta i usporediti ga sa drugim konceptima kako bi se vidjelo koji koncept je najbolji. Zbog toga će se prije opisa i razrade sklopa kotača sa integriranim pogonom prvo reći zašto je takav koncept odabran. Cilj je svake godine unaprjeđivati bolid kako bi bio brži i bolji od prethodnog, razviti nova konstrukcijska rješenja koje će impresionirati sudce i donijeti više bodova na natjecanjima te u konačnici proširiti znanje i iskustvo studenata.

2.1. Usporedba sklopa kotača sa integriranim pogonom i pogonskog sustava prošlog bolida RT06R

U ovom dijelu biti će uspoređena generalna ideja koncepta pogonskog sustava smještenog u sklop kotača sa pogonskim sustavom prošlog bolida *RT06R*. Pogonski sustav prošlog bolida će služiti kao referenca za usporedbu sa novim konceptom.

Pogonski sustav bolida *RT06R*, prikazan na slici 3. se sastoji od 2 elektromotora koji snagu prenose preko prijenosnika snage (jednostupanjski reduktor) i pogonskog vratila na kotač. Elektromotori i reduktor su smješteni unutar šasije dok pogonsko vratilo prenosi snagu do kotača.

Reduktor

Slika 3. Pogonski sustav bolida RT06R

2.1.1. Prednosti koncepta sklopa kotača sa integriranim pogonom

Kako se pogon nalazi u sklopu kotača snaga se iz elektromotora preko reduktora direktno prenosi na glavčinu te nema potrebe za pogonskim vratilima. Sama izrada pogonskog vratila je komplicirana jer je potrebno izraditi šuplje vratilo koje je relativno velikog omjera promjera i duljine (omjer je veći od 1/10) pa se izostavljanjem pogonskog vratila ostvaruje ušteda mase od 1,848 kg.

Na bolidu *RT06R* se montaža baterijskog paket u šasiju bolida vrši sa donje strane bolida što znači da je potrebno imati veliki otvor i poklopac na dnu šasije te je na taj način narušena torzijska krutost šasije i nepraktično je jer je potrebno svaki put podizati bolid prilikom montaže i demontaže baterijskog paketa. Budući se pogonski sustav uklanja iz šasije moguće je baterijskom paketu, koji se nalazi između vozača i pogonskog sustava, pristupiti sa stražnje strane bolida. Time se olakšava montaža, demontaža i pristup baterijskom paketu.

Kao rezultat premještanja pogonskog sustava u kotač šasiju je moguće povoljnije oblikovati i smanjiti joj masu uz zadržavanje iste torzijske krutosti kao na bolidu *RT06R*. Moguće je i suziti stražnji kraj šasije kako bi se dobio aerodinamički povoljniji oblik bolida.

Dosadašnja izvedba s pogonskim motorima u stražnjem dijelu šasije bolida je zahtijevala i kućište u kojemu je smješten reduktor pogonskih elektromotora. Premještanjem reduktora u sklop kotača nosač kotača ujedno ima i ulogu kućišta reduktora pogonskog elektromotora. Time se izbacuje klasično kućište reduktora i moguće je smanjiti masu bolida.

2.1.2. Nedostaci koncepta sklopa kotača sa integriranim pogonom

Kako je kod koncepta sklopa kotača s integriranim pogonom pogonski sustav potrebno smjestiti unutar kotača i poprečnih vodilica, raspoloživi volumen za pogonski sustav je značajno manji nego kod koncepta s izdvojenim pogonskim sustavom što ujedno povećava kompleksnost konstrukcije.

Sljedeći nedostatak je da pogonski elektromotor može potencijalno zbog svojih dimenzija narušavati aerodinamiku vozila jer bi se dio njega mogao nalaziti u struji zraka.

Ukoliko se elektromotor i glavčina nalaze na istoj osi, potrebno je konstruirati reduktor sa prijenosom snage u liniji tj. potrebno je konstruirati planetarni prijenosnik. Kako se *FSB Racing Team* do sada nije susreo s konstrukcijom i izradom takvog tipa prijenosnika, taj element pogona zbog svoje kompleksnije konstrukcije predstavlja izazov.

Ugradnjom pogonskog sustava u sklop kotača povećava se masa sklopa kotača što rezultira povećanjem neovješene mase i povećanim momentom inercije kotača što nepovoljno utječe na

gibanje vozila odnosno narušava dinamičko ponašanje bolida. Na bolidu *RT06R* neovješene mase iznose približno 42 *kg* dok se na bolidu *RT07* procjenjuje da će iznositi oko 55 *kg*.

Kako se pogon nalazi u kotaču potrebno je izraditi 2 reduktora- za svaki kotač po jedan.

2.2. Geometrijska ograničenja sklopa kotača

Sklop nosača kotača je potrebno smjestiti u raspoloživi prostor unutar kotača. Taj raspoloživi prostor je definiran dimenzijama naplatka prikazanim na slici 4. Naplatak je dvodijelni stoga će osim unutarnjeg promjera naplatka i položaj spojnice dijelova naplatka definirati raspoloživi prostor za sklop nosača kotača. Unutarnji promjer naplatka iznosi 243,74 *mm* dok je širina desnog naplatka 132,81 *mm*.

Slika 4. Dimenzije dvodijelnog naplatka

Kočnica je standardna kupovna komponenta koja će se također nalazi u sklopu kotača stoga je potrebno uzeti njene dimenzije u obzir prilikom konstruiranja. Dimenzije kočnice, prikazane na slici 5., su 52x54x66 *mm*.

Slika 5. Kočnica

Na nosač kotača je potrebno prihvatiti vodilice kotača u točno određenim točkama. Definiranjem inicijalne kinematike kotača upotrebom programskog paketa *Lotus Suspension Analysis* dobivene su kinematičke točke ovjesa. Kako se nosač kotača veže na njih samim time će njegov položaj biti određen tim točkama.

Budući će se pogonski sustav nalaziti u kotaču potrebno je definirati određene volumene koje bi zauzimali elektromotor i reduktor. Elektromotor nije kupovna komponenta nego je u procesu razvoja od strane tima stoga nema konačne dimenzije. Procijenjene dimenzije elektromotora iznose ϕ 132x140 *mm*. Volumen koji bi zauzimao reduktor je procijenjen da iznosi ϕ 135x30 *mm*.

2.3. Usporedba i odabir koncepta sklopa kotača sa integriranim pogonom

Nakon što je odlučeno ići na koncept pogona integriranog u sklop kotača te su definirana geometrijska ograničenja, sljedeće je potrebno koncipirati sklop kotača sa integriranim pogonom. Napravljeno je nekoliko koncepata te će ih se dalje u tekstu opisati i usporediti. Koncepti nisu detaljno razrađeni nego su svi elementi sklopa kotača okvirno dimenzionirani i pozicionirani u sklop kako bi se vidjelo da li ih je moguće smjestiti u kotač bez kolizije. Glavni kriteriji usporedbe koncepata su:

- funkcionalnost
- opterećenje komponenata
- sklopljivost
- tehnološka zahtjevnost
- sposobnost brtvljenja
- masa

Funkcionalnost je bitna iz razloga što je ovo dosta složena konstrukcija te je potrebno konstruirati bolid na način da se izbjegnu potencijalni lomovi u konstrukciji čime bi natjecanje i testiranje bolida bilo otežano ili onemogućeno. Drugim riječima potrebno je osigurati veliku pouzdanost konstrukcije.

Sklop mora biti koncipiran tako da omogući što jednostavniji postupak sklapanja sklopa. Složen postupak sklapanja sklopa rezultira velikim utrošenim vremenom za montažu i demontažu te nepovoljno djeluje na strpljenje ljudi, ukoliko dođe do loma nekog elementa otežana je zamjena i popravak tog elementa.

Razina kompleksnosti geometrije komponenti sklopa kotača ne smije izlaziti iz okvira uobičajenih za slične komponente te mora biti usklađena s tehnološkim mogućnostima obližnjih tvrtki koje se bave strojnom obradom.

Reduktor nema standardno kućište nego kućište predstavlja nosač kotača dok se reduktoru s jedne strane nalazi elektromotor a s druge glavčina i naplatak kotača. Zbog toga sklop treba biti dobro zabrtvljen kako ne bi došlo do istjecanja ulja iz reduktora.

Budući da koncepti nisu detaljno razrađeni, masa koncepta je relativno gruba procjena no za predviđenu namjenu dovoljno dobra. Zbog niže razine detalja uspoređivanih koncepta masi koncepta se pridaje i manja važnost.

2.3.1. Koncept sklopa kotača sa integriranim pogonom K1

Sklop kotača s integriranim pogonom K1 prikazan je na slici 6. Iz elektromotora se preko vratila snaga dovodi na sunčanik (eng. *sun gear*) čijom se rotacijom pokreću i planeti. Sila se preko zupčaničkog para sunčanika i planeta prenosi na planete te ih zakreće. Planeti se nalaze između sunčanika i kolutnog zupčanika (eng. *ring gear*). Sunčanik je nepomično uležišten u nosač kotača. Rotacijom planeta, uležištenih u nosač planeta (eng. *carrier*), oko osi rotacije kotača rotira se i nosač planeta. Nosaču planeta se brzina vrtnje umanji dok se moment poveća za prijenosni odnos reduktora. Nosač planeta je spojen na jednu stranu glavčine te se snaga preko glavčine prenosi na naplatak koji je spojen s druge strane glavčine. Preko naplatka se moment prenosi na pneumatik te se stvaraju sile u dodirnoj površini pneumatika i podloge.

Slika 6. Koncept sklopa kotača sa integriranim pogonom K1

Kočnica (disk i kliješta) je smještena između nosača kotača i naplatka tj. na izlaznu stranu reduktora. Reduktor je smješten u nosač kotača koji je spojen na glavčinu preko ležajeva smještenih između reduktora i kočnice. Brtvljenje se ostvaruje O-prstenom na spoju elektromotora i nosača kotača te sa druge strane radijalnom brtvom koja se nalazi između ležajnih mjesta.

Koncept K1 ima jednostavnu konstrukciju koja može osigurati pouzdanost kao i jednostavnu montažu i demontažu. Problem je što elektromotor izlazi iz kotača te povećava aerodinamički otpor bolida.

2.3.2. Koncept sklopa kotača sa integriranim pogonom K2

Koncept K2, prikazan na slici 7., je vrlo sličan konceptu K1. Glavna razlika je što je tu reduktor smješten između ležajnih mjesta čime se dobiva da je zakrivenost elektromotora kotačem veća što rezultira manjim aerodinamičkim otporom. Time se dobiva nešto kompaktnija konstrukcija te se povećava udaljenost ležajnih mjesta što smanjuje sile koje se javljaju u njima. Problem je što ležajevi trebaju biti različite veličine. Nadalje konstrukcija nosača planeta postaje kompleksnija. Zbog smještanja reduktora nema mjesta za radijalnu brtvu što otežava brtvljenje.

Slika 7. Koncept sklopa kotača sa integriranim pogonom K2

2.3.3. Koncept sklopa kotača sa integriranim pogonom K3

Kod koncepta K3, prikazanog na slici 8., princip rada je isti kao i kod koncepata K1 i K2. Snaga se iz elektromotora do reduktora pa preko nosača planeta i glavčine prenosi na felgu te gumu. Razlika je što se ovdje elektromotor nalazi kompletno unutar kotača a glavčina se nalazi s vanjske strane nosača kotača te je konstrukcija još kompaktnija. Glavčina je direktno spojena na felgu te nije potreban središnji dio trodijelne felge tzv. srce (eng. *wheel center*). Budući su potrebni jako veliki ležajevi oni imaju veću masu te im je veća obodna brzina valjnih tijela što nepovoljno utječe na trajnost ležaja. S druge strane nosač kotač je

izdužen što rezultira velikom količinom otpadnog materijala prilikom obrade a i sama konstrukcija ima upitnu krutost. Budući se elektromotor nalazi u kotaču, a nosač kotača i glavčina oko njega, kočioni sklop je potrebno smjestiti izvan kotača.

Slika 8. Koncept sklopa kotača sa integriranim pogonom K3

2.3.4. Usporedba koncepata pomoću matrice odlučivanja

Prethodno opisani koncepti su uspoređeni upotrebom matrice odlučivanja na temelju kriterija iz točke 2.2. U matrici odlučivanja se koncepti uspoređuju na način da se za svaki kriterij dodjeli ocjena od 1-5. 1 znači da koncept ima izrazito loša svojstva za zadani kriterij dok 5 znači da ima izrazito dobra svojstva.

Kako nemaju svi kriteriji istu važnost, svaki kriterij se množi sa nekim faktorom ovisno o njegovoj važnosti. Zbroj svih težinskih faktora mora biti 1. Time se dobiva da koncepti koji, bez težinskih faktori, ne bi imali najveći zbroj mogu izaći kao najbolji koncept jer imaju bolja svojstva od drugih koncepata za neki bitniji kriterij.

Konačna ocjena koncepta se formira tako da se dobivenu ocjenu za pojedini kriterij pomnoži sa težinskim faktorom tog kriterija te se dobiva ponderirana ocjena. Zbroj svih ponderiranih ocjena daje konačnu ocjenu koncepta. Koncept koji ima najveću konačnu ocjenu se smatra najboljim.

U ovom slučaju kriterij funkcionalnosti je odabran kao najvažniji. Kriterij mase bi u općem slučaju bio važna stavka budući se radi o natjecateljskom vozilu ali zbog problema navedenih u točki 2.2. ovdje neće imati toliko veliku važnost. Od ostalih kriterija će samo kriterij sklopljivosti imati nešto veću važnost no ne kao kriterij pouzdanosti.

Kriterij	Težinski	Koncept	Koncept	Koncept
	faktor	K1	K2	K3
Funkcionalnost	0,35	5	3	2
Opterećenost komponenata	0,1	4	3	4
Sklopljivost	0,2	4	4	4
Tehnološka zahtjevnost	0,1	5	3	4
Sposobnost brtvljenja	0,1	4	2	3
Masa	0,15	3	2	3
Suma	1	4,3	2,95	3,05

Tablica 1. Matrica odlučivanja

Nakon usporedbe koncepata preko matrice odlučivanja najveći zbroj ima koncept K1. Time zaključujemo da on ima najviše izgleda za uspjeh. Njegova prednost leži u jednostavnosti konstrukcije koja osigurava pouzdanost. On će biti dalje razvijan te će njegov proračun komponenata biti prikazan u daljnjim poglavljima.

3. KONSTRUKCIJA SKLOPA KOTAČA

Prije početka proračuna potrebno je definirati koordinatni sustav bolida i kotača. U automobilskoj industriji, u literaturi i kod različiti CAE- alata (eng. *Computer Aided Engineering-* računalnom potpomognuto inženjerstvo) koriste se različiti koordinatni sustavi. Najčešće se koriste koordinatni sustav definirani prema međunarodnom standardu ISO 8855, njemačkoj normi DIN 70000 i standardu SAE J670. Prema tim standardima, odnosno normi definirani su smjerovi osi koordinatnog sustava.

Os X je uzdužna os vozila, a pozitivan smjer je u smjeru vožnje naprijed, os Y je poprečna os vozila, a pozitivan smjer pokazuje na lijevu stranu, dok je os Z vertikalna os vozila, a pozitivan smjer osi je prema gore. Ista stvar vrijedi i za koordinatni sustav kotača samo što su tamo oznake osi malim slovima.

Slika 9. Koordinatni sustav vozila i kotača

3.1. Proračun i odabir ležajeva

Budući bolid nije opterećen konstantnim silama nego se one mijenjaju po vremenu i iznosu potrebno je napraviti proračun ležajeva s obzirom na spektar opterećenja. Takvim proračunom se dobiva točniji i precizniji vijek trajanja ležajeva.

Kao ulazne podatke za određivanje spektra opterećenja dobiveni su podaci iz simulacije krugova dinamičkih disciplina koje se održavaju na natjecanjima. Drugim riječima u programskom paketu tvrtke AVL pod komercijalnim imenom VSM simulirani su odvoženi krugovi za dinamičku disciplinu Autocross te su dobivene sile u x, y i z smjeru (F_x , F_y , F_z) koje djeluju na svaki kotač u svakom koraku simulacije što rezultira iznosima sila u vremenskim intervalima od 0,01 s.

Zbog toga što je pneumatik deformabilno tijelo stvara se kontaktna površina na dodiru pneumatika i podloge (eng. *contact patch*) te se tamo javljaju sile koje djeluju na kotač. U stvarnosti često kotač nije okomit na podlogu nego je zbog kinematičkih veličina zakrenut što pomiče kontaktnu površinu iz sjecišta okomite ravnine i podloge. Radi pojednostavljenja proračuna je pretpostavljeno da sile djeluju na sjecištu okomite ravnine i podloge odnosno u točci projekcije centra kotača na podlogu .

Slika 10. Sile koje djeluju na kotač u kontaktnoj površini pneumatika i podloge

Prvo se sile iz kontaktne površine reducira na os vrtnje glavčine na mjesto spoja glavčine i naplatka. Kao posljedica redukcije sila na os vrtnje stvaraju se i momenti oko x, y i z osi (M_x, M_y, M_z) . Ti momenti su dobiveni jednadžbama:

$$M_x = F_y \cdot r + F_z \cdot a, \tag{1.1}$$

$$M_y = -F_x \cdot r_d, \tag{1.2}$$

$$M_z = -F_x \cdot a, \tag{1.3}$$

gdje je:

r = 207 mm- radijus kotača,

a = 27 mm- udaljenost od centra kotača do spoja glavčine i naplatka.

Potom je je potrebno izračunati reakcije u ležajevima za svaki korak simulacije. Na slici 11. točkom A je označen unutarnji a točkom B vanjski ležaj. Sile su dobivene jednadžbama:

$$F_{Ax} = \frac{F_x \cdot b - M_z}{l}, \qquad (1.4)$$

ukoliko je sila F_y pozitivnog iznosa,

$$F_{Ay} = F_y , \qquad (1.5)$$

$$F_{Az} = \frac{F_z \cdot b + M_x}{l},\tag{1.6}$$

$$F_{Bx} = \frac{-F_x \cdot (b+l) + M_z}{l} ,$$
 (1.7)

ukoliko je sila F_y negativnog iznosa,

$$F_{By} = F_y \tag{1.8}$$

$$F_{Bz} = \frac{-F_z \cdot (b+l) - M_x}{l} , \qquad (1.9)$$

gdje je:

 F_{Ax} - sila u unutarnjem ležaju u smjeru osi x,

 F_{Ay} - sila u unutarnjem ležaju u smjeru osi y,

 F_{Az} - sila u unutarnjem ležaju u smjeru osi z,

 F_{Bx} - sila u vanjskom ležaju u smjeru osi x,

 F_{By} - sila u vanjskom ležaju u smjeru osi y,

 F_{Bz} - sila u vanjskom ležaju u smjeru osi z,

b = 27 mm- udaljenost od prihvata kotača do točke B,

l = 34 mm- udaljenost ležajnih mjesta.

Završni rad

Slika 11. Sile reducirane na os vrtnje glavčine i reakcije u ležajevima

Iz dobivenih sila na ležajeve određuju se radijalna i aksijalna sila. Aksijalnu silu predstavlja sila u smjeru y osi dok se radijalna sila dobiva vektorskim zbrojem sila u smjeru osi x i z:

$$F_{Aa} = F_{Ay} , \qquad (1.10)$$

$$F_{Ba} = F_{By} , \qquad (1.11)$$

$$F_{Ar} = \sqrt{F_{Ax}^2 + F_{Az}^2} \,, \tag{1.12}$$

$$F_{Br} = \sqrt{F_{Bx}^2 + F_{Bz}^2} , \qquad (1.13)$$

gdje je:

 F_{Aa} - aksijalna sila ležaja A,

 F_{Ba} - aksijalna sila ležaja B,

 F_{Ar} - radijalna sila ležaja A,

*F*_{Br}- radijalna sila ležaja B.

Minimalni vijek trajanja ležaja koji se mora postići iznosi 45 sati. Naša pretpostavka je da će bolid voziti na 3 natjecanja gdje će biti vožen otprilike 2 sata po utrci. To je ukupno 6 sati za natjecanja te ostaje skoro 40 sati za testiranja.

3.1.1. Spektar opterećenja

Kada su određene radijalne i aksijalne sile koje djeluju na ležajeve u svakom koraku simulacije može se odrediti spektar opterećenja.

Prvo se od izračunatih radijalnih i aksijalnih sila svakog koraka simulacije odredi najveća i najmanja postignuta sila te se dobije raspon vrijednosti. Budući je radijalna sila dobivena vektorskim zbrojem ima sve pozitivne vrijednosti dok je najniža vrijednost 0 stoga je bitna samo najveća vrijednost. Kako ležajevi prenose aksijalnu silu samo u jednom smjeru za jedan ležaj je aksijalna sila negativna dok je za drugi biti pozitivna stoga je uzeta apsolutna vrijednost sile. Najveća vrijednost sila je zaokružena na sljedeći veći broj djeljiv sa 100.

U ovom slučaju za ležaj A najveća radijalna sila iznosi 13739,4 *N* te je zaokružena na 13800 *N* dok je za ležaj B najveća radijalna sila 12235,83 *N* te je zaokružena na 12300 *N*. Najveća aksijalna sila za ležaj A iznosi 911,43 *N* te je zaokružena na 1000 N dok je za ležaj B najveća aksijalna sila 2365,69 *N* te je zaokružena na 2400 *N*.

Od dobivenih zaokruženih vrijednosti radijalne i aksijalne sile uzete su veće vrijednosti te su podijeljene sa brojem vrijednosti spektra, n, koji se želi imati- veća podjela znači detaljniji i precizniji spektar ali i više posla oko proračuna- u ovom slučaju uzet je n = 10. Dobivene vrijednosti postaju vrijednosti koraka referentnih sila spektra.

Drugim riječima za radijalnu silu kao korak se uzima vrijednost 1380 te su referentne vrijednosti spektra: **1380**, **2760**, **4140**, **5520**, **6900**, **8280**, **9660**, **11040**, **12420**, **13800**.

Za aksijalnu silu kao korak uzeta je vrijednost 240 te su referentne vrijednosti spektra: **0**, **240**, **480**, **720**, **960**, **1200**, **1440**, **1680**, **1920**, **2160**, **2400** (vrijednost 0 je uzeta jer se često radijalna sila javlja kad u ležaju nema aksijalne sila).

Sljedeće su vrijednosti radijalnih i aksijalnih sila svakog koraka simulacije zaokružene na prvu veću referentnu vrijednost. Time je pretpostavljano da su sile veće nego što stvarno jesu i ostaje se na strani sigurnosti a dobiva se 10 vrijednosti radijalne i aksijalne sile umjesto nekoliko tisuća.

Zatim je određen broj ponavljanja svih referentnih vrijednosti radijalne i aksijalne sile. Iz dobivenih rezultat izrađena je tablica ponavljanja u kojoj je prikazan broj ponavljanja svake referentne vrijednost radijalne sile za svaku referentnu vrijednost aksijalne sile. To je prikazano za unutarnji ležaj A u tablici 1. te za vanjski ležaj B u tablici 2. gdje su u prvom retku referentne vrijednosti radijalne sile, u prvom stupcu referentne vrijednosti aksijalne sile te ostalo broj ponavljanja.

Darian Milohanić

Tablica 2.	Tablica	ponavljanja za	unutarnji ležaj A
------------	---------	----------------	-------------------

	1380	2760	4140	5520	6900	8280	9660	11040	12420	13800
0	1231	849	630	532	423	365	338	332	239	58
240	943	288	0	0	0	0	0	0	0	0
480	0	853	401	0	0	0	0	0	0	0
720	0	0	634	200	0	0	0	0	0	0
960	0	0	0	27	4	0	0	0	0	0
1200	0	0	0	0	0	0	0	0	0	0
1440	0	0	0	0	0	0	0	0	0	0
1680	0	0	0	0	0	0	0	0	0	0
1920	0	0	0	0	0	0	0	0	0	0
2160	0	0	0	0	0	0	0	0	0	0
2400	0	0	0	0	0	0	0	0	0	0

Tablica 3. Tablica ponavljanja za vanjski ležaj B

	1380	2760	4140	5520	6900	8280	9660	11040	12420	13800
0	553	872	1307	669	71	0	0	0	0	0
240	565	350	27	0	0	0	0	0	0	0
480	360	512	0	0	0	0	0	0	0	0
720	7	513	172		0	0	0	0	0	0
960	0	5	454	94		0	0	0	0	0
1200	0	0	5	372	71	0	0	0	0	0
1440	0	0	0	10	324	52	0	0	0	0
1680	0	0	0	0	9	294	64	0	0	0
1920	0	0	0	0	0	2	297	33	0	0
2160	0	0	0	0	0	0	0	220	25	0
2400	0	0	0	0	0	0	0	0	39	0

Broj ponavljanja je podijeljen sa ukupnim brojem koraka simulacije te je dobivena učestalost ponavljanja a naposljetku i kompletan spektar opterećenja.

Slika 12. Kompletni spektar opterećenja za unutarnji ležaj A

Iz 3D grafa kompletnog spektra opterećenja vidljivo je da se aksijalna sila javlja najčešće kod nižih vrijednosti radijalne sile. S obzirom na to da su glavčina i nosač kotača izrađeni iz aluminijske legure Al7075- T6, mijenjanje ležajeva bi dovelo do brzog trošenja površine te je sam proces montaže i demontaže ležajeva zahtjevan. Budući je ovo prvi put da se ovako proračunavaju ležajevi za bolid *FSB Racing* Team-a želi se izbjeći takva situacija stoga su uvodene određene pretpostavke.

S prethodno rečenim, zanemaren je prethodno dobiveni kompletni spektar opterećenja, te su uzete referentne vrijednosti radijalne sile dok je aksijalna sila pretpostavljena da je konstantna kroz sve cikluse i jednaka je maksimalnoj sili dobivenoj u simulaciji tj. 2400 *N*. Time je dobiven 2D dijagram spektra opterećenja s varijabilnom radijalnom i konstantnom aksijalnom silom.

Kao i prethodno napravljeno, zaokružene vrijednosti radijalne sile svakog koraka simulacije su zbrojene i podijeljene s brojem koraka simulacije. Rezultat je 2D spektar opterećenja, prikazan na slici 14., gdje je plavom bojom označena radijalna sila u ležaju A a narančastom bojom radijalna sila u ležaju B.

Slika 14. 2D spektar opterećenja za unutarnji ležaj A i vanjski ležaj B

3.1.2. Proračun vijeka trajanja ležajeva

Već je spomenuto kako se spektar opterećenja radi s obzirom na radijalnu dok se aksijalna pretpostavlja. Budući se u ovoj simulaciji javlja najveća aksijalna sila u ležajevima u iznosu od 2400 *N* onda je pretpostavljeno da ta sila djeluje konstantno kroz cijeli spektar opterećenja. Drugim riječima pretpostavljena je aksijalna sila u ležajevima kroz cijeli krug odvožene staze. To naravno nije slučaj ali tom pretpostavkom se ostaje na strani sigurnosti.

Ulazni podatak je da promjer glavčine, D_v , bude minimalno 80 *mm*, ukoliko je moguće tj. ukoliko daljnji proračuni pokažu da je potreban razmak ležajeva prevelik jer samim time i glavčina postaje preduga te elektromotor još više narušava aerodinamiku vozila. Ležaj sa unutarnjim promjerom 80 *mm* je 61816, mase 150 *g*, dok je sljedeći veći ležaj 61817, mase 260 *g*. Odabir ležaja 61817 rezultirao bi povećanjem mase od 220 *g* po kotaču što je previše. Budući su glavčina i nosač kotača izrađeni od aluminijske legure Al7075- T6 i Al6061- T6 bolje je malo povećati razmak ležajnih mjesta i produžiti glavčinu i nosač kotača jer će to vjerojatno rezultirati manjim povećanjem mase nego odabir većih ležajeva izrađenih od čelika.

Stoga je odabrani inicijalni ležaj za proračun 61816 2RS-1 (iz konstrukcijskih razloga moraju biti zabrtvljeni).

Za proračun vijeka trajanja ležajeva može se koristiti SKF-ov program *SimPro Quick* ili online program *Bearing select* [3]. Proračun je napravljen u oba programa i uspoređeni su rezultati.

Kod *SimPro Quick-*a je prvo izmodelirano vratilo, ležajna mjesta i podmazivajuće sredstvo. Zatim je odabrana opcija analize ležajeva preko spektra opterećenja i upisne su vrijednosti sila kao i njihova učestalost ponavljanja. Prednost ovog programa je što daje rezultate poput progiba vratila i vijeka trajanja podmazivajućeg sredstva no veliki nedostatak je što izračunate vijekove trajanja ležajeva zaokružuje na brojeve djeljive sa 100. To je vjerojatno iz razloga što su u ostalim granama strojarstva češći vijekovi trajanja ležajeva od nekoliko tisuća ili desetaka tisuća sati stoga je zanemariva razlika od par desetaka sati. U ovom slučaju to je pregrub izračun tj. ne daje dovoljno precizan vijek trajanja ležajeva.

Iz tog razloga korišten je SKF-ov online program *Bearing select*. Za svaki ciklus iz spektra opterećenja je izračunat parcijalni vijek trajanja ležaja. Drugim riječima računat je vijek trajanja ležajeva za svaku referentnu vrijednost sile iz spektra opterećenja. Takvim dobivenim parcijalnim vijekovima trajanja ležajeva je pomoću formule izračunat kombinirani vijek trajanja ležaja [4]:

$$L_{mh} = \frac{1}{\sum_{i=1}^{n} \frac{t_i}{L_{mhi}}}$$
(1.14)

gdje je:

L_{mh}- kombinirani vijek trajanja ležajeva,

 L_{mhi} - parcijalni vijek trajanja ležajeva za individualne vremenske periode sa konstantnim uvjetima rada,

Završni rad

 $\overline{t_i}$ - vremenski udjeli pojedinog perioda u ciklusu rada ležaja (učestalost ponavljanja).

Kroz proračun je zaključeno da je kritična stavka statička sigurnost ležaja stoga je umjesto ležaja 61816 2RS-1 odabran ležaj W 61816 2RS-1. Usporedba specifikacija ležajeva iz [10] je prikazana u tablici 4. Oznaka W znači da je ležaj antikorozivan no to svojstvo ovdje nije bitno. Razlika između običnog i antikorozivnog ležaja je ta da antikorozivni ležajevi imaju manje dinamičke ali veće statičke nosivosti u usporedbi s obični ležajem istih dimenzija. Takvim odabirom ležaja dobivene su veće radijalne sile na ležajeve odnosno razmak ležajnih mjesta je manji a samim time i glavčina kraća.

Tablica 4. Usporedba ležaja 61816 i W 61816

	61816	W 61816
Dinamička nosivost [kN]	12,7	11,1
Statička nosivost [kN]	11,2	14,3

Kod dinamičkog proračuna ležajeva osim vijeka trajanja ležaja potrebno je gledati i statičku sigurnost. Statička sigurnost svakog ciklusa opterećenja mora zadovoljiti SKF-ove kriterije [5] kako ne bi došlo do velikog utjecaja trajnih deformacija na performanse ležaja. U ovom slučaju statički faktor sigurnosti mora biti ≥ 1 .

Izračunate učestalosti ponavljanja za ležaj A iznose:

$$t_{1}^{A} = 0,2605, t_{2}^{A} = 0,2384, t_{3}^{A} = 0,1994, t_{4}^{A} = 0,0909, t_{5}^{A} = 0,0511,$$

$$t_{6}^{A} = 0,0437, t_{7}^{A} = 0,0407, t_{8}^{A} = 0,0398, t_{9}^{A} = 0,0286, t_{10}^{A} = 0,0069.$$
(1.15)

Izračunate učestalosti ponavljanja za ležaj B iznose:

$$t_1^B = 0,1779, t_2^B = 0,2698, t_3^B = 0,2354, t_4^B = 0,1372, t_5^B = 0,0569,$$

$$t_6^B = 0,0417, t_7^B = 0,0432, t_8^B = 0,0303, t_9^B = 0,0077, t_{10}^B = 0.$$
 (1.16)

Dobiveni parcijalni vijekovi trajanja ležaja u programu *Bearing select* iznose (parcijalni vijekovi trajanja ležajeva su isti za oba ležaja jer su uzete iste sile):

$$L_{mh6} = 22,9 h, L_{mh7} = 14,4 h, L_{mh8} = 9,67 h, L_{mh9} = 6,79 h, L_{mh10} = 4,95 h,$$

$$L_{mh6} = 22,9 h, L_{mh7} = 14,4 h, L_{mh8} = 9,67 h, L_{mh9} = 6,79 h, L_{mh10} = 4,95 h.$$
(1.17)

Izračunati kombinirani vijek trajanja ležaja za ležaj A iznosi:

$$L_{mh}^{A} = \frac{1}{\frac{t_{1}^{A}}{L_{mh1}} + \frac{t_{2}^{A}}{L_{mh2}} + \frac{t_{3}^{A}}{L_{mh3}} + \frac{t_{4}^{A}}{L_{mh4}} + \frac{t_{5}^{A}}{L_{mh5}} + \frac{t_{6}^{A}}{L_{mh6}} + \frac{t_{7}^{A}}{L_{mh7}} + \frac{t_{8}^{A}}{L_{mh8}} + \frac{t_{9}^{A}}{L_{mh9}} + \frac{t_{10}^{A}}{L_{mh10}}}{\frac{1}{\frac{0,2605}{261} + \frac{0,2384}{147} + \frac{0,1994}{91,2} + \frac{0,0909}{60,3} + \frac{0,0511}{39,6} + \frac{0,0437}{22,9} + \frac{0,0407}{14,4} + \frac{0,0398}{9,67} + \frac{0,0286}{6,79} + \frac{0,0069}{4,95}}, L_{mh}^{A} = 45,33 h.$$

$$(1.19)$$

Izračunati kombinirani vijek trajanja ležaja za ležaj B iznosi:

$$L_{mh}^{B} = \frac{1}{\frac{t_{1}^{B}}{L_{mh1}} + \frac{t_{2}^{B}}{L_{mh2}} + \frac{t_{3}^{B}}{L_{mh3}} + \frac{t_{4}^{B}}{L_{mh4}} + \frac{t_{5}^{B}}{L_{mh5}} + \frac{t_{6}^{B}}{L_{mh6}} + \frac{t_{7}^{B}}{L_{mh7}} + \frac{t_{8}^{B}}{L_{mh8}} + \frac{t_{9}^{B}}{L_{mh9}} + \frac{t_{10}^{B}}{L_{mh10}}}{\frac{1}{1}} = \frac{1}{\frac{0,1779}{0,0033} + \frac{0,2354}{0,0077} + \frac{0,1372}{0,00569} + \frac{0,0417}{0,0417} + \frac{0,0432}{0,0432} + \frac{0,0303}{0,0077} + \frac{0}{0}},$$
(1.20)

$$\frac{0.1779}{261} + \frac{0.2698}{147} + \frac{0.2354}{91,2} + \frac{0.1372}{60,3} + \frac{0.0569}{39,6} + \frac{0.0417}{22,9} + \frac{0.0432}{14,4} + \frac{0.0303}{9,67} + \frac{0.0077}{6,79} + \frac{0}{4,95}$$

$$L_{mh}^{B} = 55,88 \ h \ . \tag{1.21}$$

Pretpostavka o konstantnoj aksijalnoj sili gotovo ne utječe na L_{mhi} za veće vrijednosti radijalne sile dok za manje vrijednosti utječe značajno. No i usprkos tome L_{mhi} za manje vrijednosti radijalne sile nema velik utjecaj na L_{mh} stoga nije bitno hoće li L_{mhi} za manje vrijednosti radijalne sile biti nekoliko stotina ili nekoliko tisuća sati. Razlika u L_{mh} bi otprilike iznosila nekoliko sati.

Zaključak je da oba ležaja zadovoljavaju zahtjev za minimalnim vijekom trajanja.

3.2. Spoj glavčine i reduktora i proračun glavčine

Kao što je prije spomenuto reduktor je izveden kao planetarni prijenosnik. Ulaz snage je preko sunčanika dok je izlaz preko nosača planeta. Snaga se sa nosača planeta treba prenijeti na glavčinu te je stoga potrebno spojiti ta dva elementa. Spoj je izveden pomoću svornjaka i vijaka kao što je prikazano na slici 15. Moment se prenosi preko svornjaka dok vijci služe za aksijalno pričvršćivanje. Najveći izlazni moment iz reduktora iznosi 500 *Nm* te je on ulazni podatak za proračun svornjaka.

Slika 15. Spoj glavčine i nosača planetaa

Na slici 16. prikazan je moment koji opterećuje svornjake.

Slika 16. Opterećenje svornjaka momentom

Smična sila koja se javlja na svornjaku uslijed momenta iznosi:

$$F_t = \frac{2 \cdot M \cdot S}{d_{sv} \cdot z} = \frac{2 \cdot 500000 \cdot 1,2}{56 \cdot 3},$$
(1.22)

$$F_t = 7142,86 \, N \,, \tag{1.23}$$

gdje je:

 F_t - smična sila na svornjak,

M = 500 Nm- najveći izlazni moment iz reduktora,

S = 1,2- faktor sigurnosti prema [7],

 $d_{sv} = 56 \ mm$ - promjer na kojem se nalaze svornjaci,

z = 3- broj svornjaka.

_

Smično naprezanje koje se javlja u svornjaku iznosi:

$$\tau = \frac{F_t}{\frac{d_s^2 \cdot \pi}{4}} \le \tau_{dop} , \qquad (1.24)$$

$$\tau = \frac{7142,86}{\frac{10^2 \cdot \pi}{4}},\tag{1.25}$$

$$\tau = 70,87 \frac{N}{mm^2},$$
(1.26)

$$70,87 < 140$$
 , (1.27)

gdje je:

 τ - smično naprezanje u svornjaku,

 $d_s = 10 mm$ - promjer svornjaka,

$$\tau_{dop} = 140 \frac{N}{mm^2}$$
- dopušteno smično naprezanje za aluminij 7075- T6 iz [6].

Površinski pritisak koji djeluje na svornjak iznosi:

$$p = \frac{F_t}{d_s \cdot l_s} \le p_{dop} , \qquad (1.28)$$

$$p = \frac{7142,86}{10 \cdot 10} , \tag{1.29}$$

$$p = 71,43\frac{N}{mm^2},\tag{1.30}$$

gdje je:

p- površinski pritisak na svornjak,

 $d_s = 10 mm$ - promjer svornjaka,

 $l_s = 10 \text{ mm}$ - duljina svornjaka u dodiru s glavčinom/nosačem planeta, $p_{dop} = 150 \frac{N}{mm^2}$ - dopušteni površinski pritisak za aluminij 7075- T6 iz [6].

Vijci koji pričvršćuju glavčinu i nosač planeta zbog konstrukcijske izvedbe preuzimaju aksijalnu silu u pozitivnom smjeru *y* osi (slika 9.). Kad se pojavi aksijalna sila u pozitivnom smjeru osi *y* kako se unutarnji ležaj naslanja na nosač planeta i nosač kotača ta sila će htjeti razdvojiti nosač planeta i glavčine. Na slici 17. prikazana je aksijalna sila koja opterećuje vijke dok su za pritezanje tog spoja uzeta 3 vijka M6x0,5 čvrstoće 10.9.

Slika 17. Opterećenje vijaka aksijalnom silom

Sila pritezanja vijka iznosi:

$$F_{pr} = \sigma_{pr} \cdot A_V = 350 \cdot 22,79 \,, \tag{1.32}$$

$$F_{pr} = 7975,94 \, N \,, \tag{1.33}$$

gdje je:

 F_{pr} - sila pritezanja vijka,

 $\sigma_{pr} = 350 \frac{N}{mm^2}$ - naprezanje od predzatezanja vijka prema [9],

 $A_V = 22,79 \ mm^2$ - površina poprečnog presjeka vijka iz [8].

Završni rad

Najveća aksijalna sila koja se javlja na ležajeve iz točke *3.1.1.* iznosi 2400 *N*. Radna sila koja djeluje na vijak iznosi:

$$F_r = \frac{F_y}{z} = \frac{2400}{3},$$
 (1.34)

$$F_r = 800 N$$
, (1.35)

gdje je:

 F_r - radna sila u vijku,

 $F_y=2400$ N- najveća aksijalna sila na ležajeve,

z = 3- broj vijaka.

Ukupna sila u vijku onda iznosi:

$$F_V = F_{pr} + F_r = 7975,94 + 800, (1.36)$$

$$F_V = 8775,94 \, N \,, \tag{1.37}$$

gdje je:

 F_V - ukupna sila u vijku.

Naprezanje u vijku onda iznosi:

$$\sigma_V = \frac{F_V}{A_V} = \frac{8775,94}{22,79},\tag{1.38}$$

$$\sigma_V = 385,11 \frac{n}{mm^2},\tag{1.39}$$

gdje je:

 σ_V - naprezanje u vijku.

Sigurnost vijka je u tom slučaju:

$$S = \frac{\sigma_{dop}}{\sigma_V} = \frac{720}{385,11},\tag{1.40}$$

$$S = 1,87$$
, (1.41)

gdje je:

S- sigurnost vijka,

 $\sigma_{dop} = 0.8 \cdot R_e = 0.8 \cdot 900 = 720 \frac{N}{mm^2}$ - dopušteno naprezanje za vijak čvrstoće 10.9 prema [9].

Kako je vijak od čelika a navoj na nosaču planeta aluminijski potrebno je provjeriti pritisak na nosivoj površini boka navoja prema izrazu iz [9]:

$$p = \frac{F_V \cdot P}{m \cdot d_2 \cdot \pi \cdot H_1} = \frac{8775,94 \cdot 0,5}{15 \cdot 5,675 \cdot \pi \cdot 0,3125},$$

$$p = 52,5 \frac{N}{mm^2},$$
(1.42)
(1.43)

gdje je:

p- površinski pritisak navoja,

P = 0,5- korak navoj za vijak M6x0,5,

m = 15 mm- duljina navoja,

 $d_2 = 5,675 \ mm$ - srednji promjer navoja za vijak M6x0,5,

 $H_1 = \frac{5}{8} \cdot P = \frac{5}{8} \cdot 0,5 = 0,3125 \ mm$ - nosiva širina navoja.

Sigurnost navoja je u tom slučaju:

$$S = \frac{p_{dop}}{p} = \frac{150}{52,5},$$
(1.44)

$$S = 2,86,$$
(1.45)

gdje je:

S- sigurnost navoja,

 $p_{dop} = 150 \frac{N}{mm^2}$ - dopušteno površinski pritisak za Al7075-T6 iz [4].

Glavčina, prikazana na slici 18., je nešto složenije izvedbe no analitički se može izračunati naprezanja iako bi trebalo provjeriti i usporediti sa rezultatima dobivenima numeričkom metodom.

Slika 18. Glavčina

Uz pomoć programskog paketa *ADAMS Car* su izračunate sile na svaki kotač u *x*, *y* i *z* smjeru (F_x , F_y , F_z) za više režima vožnje. Ti režimi vožnje su:

- ubrzanje pod maksimalnom akceleracijom (u daljnjem tekstu "ACC")
- kočenje maksimalnom silom (u daljnjem tekstu "BRK")
- vožnja zavojem konstantnog radijusa (u daljnjem tekstu "CRC")
- prolaz preko rupe na cesti (u daljnjem tekstu "BUMP")
- kočenje u zavoju konstantnog radijusa (u daljnjem tekstu "BRK IN TURN").

Iznosi sila su prikazani u tablici 5.:

	$F_{\chi}[N]$	$F_{\mathcal{Y}}[N]$	$F_{z}[N]$
CRC	324,68	-1590,78	1602,51
BUMP	2464,27	244,27	3782,79
ACC	2029,07	140,82	1264,84
BRK	550,7	475,88	1536,5
BRK IN TURN	852,04	-2259,62	1758,62

Tablica 5. Sile koje djeluju na kotač za različite režime vožnje

Prema istom postupku kao i u (1.1), (1.2) i (1.3) reducirane su sile na os vrtnje glavčine.

Reducirane sile i momenti su prikazani u tablici 6.

	$F_{\chi}[N]$	<i>F</i> _y [<i>N</i>]	$F_{z}[N]$	M _x [Nmm]	M _y [Nmm]	M _z [Nmm]
CRC	324,68	-1590,78	1602,51	-286024,34	-67208,04	-8766,27
BUMP	2464,27	244,27	3782,79	152698,34	-510104,51	-66535,37
ACC	2029,07	140,82	1264,84	63300,58	-420017,12	-54784,84
BRK	550,7	475,88	1536,5	139992,7	-113993,95	-14868,78
BRK IN TURN	852,04	-2259,62	1758,62	-420257,51	-176372,69	-23005,13

Tablica 6. Sile reducirane na os vrtnje glavčine

Sile u ležajevima su izračunate prema (1.4), (1.5), (1.6), (1.7), (1.8) i (1.9) te su prikazane u tablici 7.

Darian Milohanić

Tablica 7. Sil	e u ležajevima					
	$F_{Ax}[N]$	$F_{Ay}[N]$	$F_{Az}[N]$	$F_{Bx}[N]$	$F_{By}[N]$	$F_{Bz}[N]$
CRC	143,24	-1590,78	10392,05	-467,92	0	-11994,55
BUMP	1087,18	0	181,73	-3551,45	244,27	-3964,52
ACC	895,18	0	-299,33	-2924,25	140,82	-965,50
BRK	242,95	0	-2219,40	-793,65	475,88	682,91
BRK IN TURN	375,90	-2259,62	14532,93	-1227,94	0	-16291,55

Kritični presjeci na glavčini su prikazani na slici 19.

Slika 19. Kritični presjeci glavčine

Udaljenosti kritičnih presjeka od ležajnog mjesta A i B su prikazane u tablici 8. gdje je:

 L_A - udaljenost ležajnog mjesta A od kritičnog presjeka,

L_B- udaljenost ležajnog mjesta B od kritičnog presjeka.

$L_{A1} \ [mm]$	$L_{A2} \ [mm]$	$L_{A3} \ [mm]$	$L_{A4} \ [mm]$	$L_{A5} \ [mm]$
71,6	46,4	43	39	34
$L_{B1} \ [mm]$	$L_{B2} \ [mm]$	$L_{B3} \ [mm]$	$L_{B4} \ [mm]$	$L_{B5} \ [mm]$
37,4	12,4	9	5	0

Tablica 8. Udaljenosti kritičnih presjeka od ležajnih mjesta

Za svaki kritični presjek su izračunate geometrijske karakteristike presjeka kao i faktori zareznog djelovanja koji su posljedica geometrije glavčine. Faktori zareznog djelovanja za savijanje i uvijanje računaju se prema izrazu iz [7]:

$$\beta_{kf} = 1 + c_1 \cdot (\beta_{kf2} - 1), \qquad (1.46)$$

$$c_1 = f(\frac{D}{d}), \qquad (1.47)$$

$$\beta_{kf2} = f(R_m) , \qquad (1.48)$$

$$\beta_{kt} = 1 + c_2 \cdot (\beta_{kt2} - 1) , \qquad (1.49)$$

$$c_2 = f(\frac{D}{d}), \qquad (1.50)$$

$$\beta_{kt2} = f(R_m) \,, \tag{1.51}$$

gdje je:

 β_{kf} - faktor zareznog djelovanja na savijanje,

 $c_1\mathchar`$ faktor za izračun zareznog djelovanja na savijanje,

 β_{kf2} - faktor za izračun zareznog djelovanja na savijanje,

 β_{kt} - faktor zareznog djelovanja na uvijanje,

 c_2 - faktor za izračun zareznog djelovanja na uvijanje,

 β_{kt2} - faktor za izračun zareznog djelovanja na uvijanje.

Faktori za izračun zareznih djelovanja su očitani iz tablice u [7].

Moment otpora za poprečni presjek kružnog vijenca se računa prema:

$$W = \frac{\pi \cdot (d_{\nu}^4 - d_u^4)}{32 \cdot D} , \qquad (1.52)$$

gdje je:

W- moment otpora poprečnog presjeka kružnog vijenca,

 d_v - vanjski promjer,

 d_u - unutarnji promjer.

U tablici 9. su prikazane geometrijske karakteristike kritičnih presjeka i faktori zareznih djelovanja. Veličina *D* označava sljedeći veći promjer kod kritičnog presjeka. Presjek 5 je stezni spoj glavčine i ležaja stoga su tu drugačiji faktori nego na ostalim presjecima.

Tablica 9. Geometrijske karakteristike i faktori zareznih djelovanja kritičnih presjeka

Presjek 1	D [mm]	d_v [mm]	d _u [mm]	R [mm]	W [mm ³]	β_{kf}	β_{kt}
	111	75	68	4	13429,33	1,53	1,5
Presjek 2	D [mm]	d_v [mm]	<i>d</i> _u [<i>mm</i>]	R [mm]	W [mm ³]	β_{kf}	β_{kt}
	98	75	68	4	13429,33	1,41	1,38
Presjek 3	D [mm]	d_v [mm]	d _u [mm]	R [mm]	W [mm ³]	β_{kf}	β_{kt}
	98	84	68	1	33199,15	1,56	2,15
Presjek 4	D [mm]	<i>d</i> _v [<i>mm</i>]	d _u [mm]	R [mm]	W [mm ³]	β_{kf}	β_{kt}
	75	8	68	0,6	24026,9	1,1	1,22
Presjek 5	D [mm]	<i>d</i> _v [<i>mm</i>]	d _u [mm]	R [mm]	<i>W</i> [<i>mm</i> ³]	β_{kf}	β_{kt}
	-	80	68	-	24026,59	2,5	1,75

Moment savijanja oko *x* osi računa se prema izrazu:

$$M_x = F_{Az} \cdot L_A + F_{Bz} \cdot L_B , \qquad (1.53)$$

gdje je:

 M_x - moment savijanja oko x osi.

U tablici 10. su prikazani momenti savijanja oko osi x u pojedinim kritičnim presjecima.

	M_{x1} [Nmm]	$M_{\chi 2}$ [Nmm]	$M_{\chi 3}$ [Nmm]	$M_{\chi4} [Nmm]$	M_{x5} [Nmm]
CRC	293395,87	333458.54	338907,06	345317,08	353329,62
BUMP	-135297,51	-40727,79	-27866,31	-12735,15	6178,79
ACC	-57482,32	-25861,37	-21560,92	-16501,56	-10177,37
BRK	-132924,8	-94512,32	-89288,23	-83142,23	-75459.74
BRK IN TURN	428347,17	472312,72	478292,04	485326,53	494119,64

Tablica 10. Momenti savijanja oko os
i \boldsymbol{x} u pojedinim kritičnim presjecima

Moment oko y osi, prikazan u tablici 11., je konstantan po cijeloj glavčini i jednak je momentu M_y iz tablice 6.

Tablica 11. Momenti savijanja oko osi y u pojedinim kritičnim presjecima

	M _y [Nmm]
CRC	-67208,04
BUMP	-510104,51
ACC	-420017,12
BRK	-113993,95
BRK IN	-176372.69
TURN	

Moment savijanja oko z osi računa se prema izrazu:

$$M_z = -F_{Ax} \cdot L_A - F_{Bx} \cdot L_B , \qquad (1.54)$$

gdje je:

 M_z - moment savijanja oko z osi.

U tablici 12. su prikazani momenti savijanja oko osi z u pojedinim kritičnim presjecima.

	<i>M</i> _{<i>z</i>1} [<i>Nmm</i>]	M _{z2} [Nmm]	M _{z3} [Nmm]	M _{z4} [Nmm]	M_{z5} [Nmm]
CRC	7272,75	-844,16	-1948,06	-3246,77	-4870,15
BUMP	55199,72	-6407,11	-14785,64	-24642,73	-36964,1
ACC	45451,13	-5275,58	-12174,41	-20290,68	-30436,02
BRK	12335,58	-1431,81	-3304,17	-5506,95	-8260,43
BRK IN TURN	19085,74	-2215,31	-5112,25	-8520,42	-12780,63

Tablica 12. Momenti savijanja oko osi z u pojedinim kritičnim presjecima

Reducirani moment savijanja računa se prema izrazu:

$$M_s = \sqrt{M_x^2 + M_z^2} , \qquad (1.55)$$

gdje je:

 M_s - reducirani moment savijanja.

U tablici 13. su prikazani reducirani momenti savijanja u pojedinim kritičnim prresjecima.

Tablica 13. Reducirani momenti savijanja u pojedinim kritičnim presjecima

	M _{s1} [Nmm]	M _{s2} [Nmm]	M _{s3} [Nmm]	M _{s4} [Nmm]	M _{s5} [Nmm]
CRC	293486	333459,6	338912,66	345332,35	353363,18
BUMP	146124,69	41228,68	31545,94	27738,93	37476,95
ACC	73280,44	26393,98	24760,64	26153,65	32092,53
BRK	133495,95	94523,17	89349,34	83324,41	75910,52
BRK IN TURN	428772,16	472317,92	478319,36	485401,31	494284,9

Reducirani moment računa se prema izrazu iz [7]:

$$M_{red} = \sqrt{(M_s \cdot \beta_{kf})^2 + 0.75 \cdot (\alpha_0 \cdot M_y \cdot \beta_{kt})^2},$$
(1.56)

gdje je:

M_{red}- postignuta sigurnost u kritičnom presjeku,

 $\alpha_0 = 1$ - faktor čvrstoće materijala (pretpostavljen).

U tablici 14. su prikazani reducirani momenti u pojedinim kritičnim presjecima.

	M _{red1} [Nmm]	M _{red2} [Nmm]	M _{red3} [Nmm]	M _{red4} [Nmm]	M _{red5} [Nmm]
CRC	456001,93	475674,68	543338,2	384791,37	889260,6
BUMP	699111,15	612383.33	951947,84	541570.92	778742.78
ACC	556945,17	503338,66	783732.75	446144.58	641590,87
BRK	251741,49	190322,13	254092,01	151413,18	256636,05
BRK IN TURN	692856,02	696729,15	815369.76	563436,58	1264292,05

Tablica 14. Reducirani momenti u pojedinim kritičnim presjecima

Reducirano naprezanje računa se prema izrazu:

$$\sigma_{red} = \frac{M_{red}}{W},\tag{1.57}$$

gdje je:

 σ_{red} - reducirano naprezanje.

U tablici 15. su prikazana reducirana naprezanja u pojedinim kritičnim presjecima.

Tablica 15. Reducirana naprezanja u poje	dinim kritičnim	presjecima
--	-----------------	------------

	$\sigma_{red1} \left[rac{N}{mm^2} ight]$	$\sigma_{red2} \left[\frac{N}{mm^2} \right]$	$\sigma_{red3} \left[\frac{N}{mm^2} \right]$	$\sigma_{red4} \left[\frac{N}{mm^2} \right]$	$\sigma_{red5} \left[\frac{N}{mm^2} \right]$
CRC	33,96	35,42	16,37	16,02	37,01
BUMP	52,06	45,6	28,67	22,54	32,41
ACC	41,47	37,48	23,61	18,57	26,7
BRK	18,75	14,17	7,65	6,3	10,68
BRK IN TURN	51,59	51,88	24,56	23,45	52,62

Postignuta sigurnost se računa prema izrazu:

$$S_{post} = \frac{b_1 \cdot b_2 \cdot \sigma_{fDN}}{\varphi \cdot \sigma_{red}} \ge S_{potr} , \qquad (1.58)$$

gdje je:

Spost- postignuta sigurnost u kritičnom presjeku,

 b_1 - faktor veličine strojnog dijela,

 b_2 - faktor kvalitete obrade površine,

 $\sigma_{fDN} = 159 \frac{N}{mm^2}$ - trajna dinamička čvrstoća za čisto promjenjivo naprezanje pri savijanju za Al7075- T6 iz [6],

 $\varphi = 1,5$ - faktor udara,

 $S_{potr} = 1,4$ - potrebna sigurnost u kritičnom presjeku.

Faktori b_1 i b_2 se očitani su iz tablice iz [7].

Postignute sigurnosti u pojedinim kritičnim presjecima prikazane su u tablici 16.

Tablica 16. Postignute sigurnosti u pojedinim kritičnim presjecima

	Presjek 1	Presjek 2	Presjek 3	Presjek 4	Presjek 5
CRC	2,24	2,15	4,59	4,69	2,03
BUMP	BUMP 1,46 ACC 1,83	1,67	2.62	3,33	2,32
ACC		2,03	3,18	4,04	2.81
BRK	4.06	5,37	9,81	11,92	7,03
BRK IN TURN	1,47	1,47	3,06	3,2	1,43

Iz tablica 15. i 16. je vidljivo da se najveća naprezanja javljaju kad vozilo prelazi preko rupa te kod kočenja u zavoju.

3.3. Prihvat sklopa nosača kotača i kotača

Sklop nosača kotača je preko glavčine spojen na kotač. Glavčina i kotač su spojeni preko vijčanog spoja kao što je prikazano na slici 20.

Slika 20. Spoj glavčine i kotača

Na vijčani spoj djeluju sile i momenti iz tablice 5. te u vijku stvaraju silu prema:

$$F_{V,Fy} = \left| F_y \right|, \tag{1.59}$$

$$F_{V,Fx,z} = \frac{\sqrt{F_x^2 + F_z^2}}{z \cdot \mu_{al-s}},$$
(1.60)

$$F_{V,Mx} = \frac{2 \cdot |M_x|}{d},$$
 (1.61)

$$F_{V,MZ} = \frac{2 \cdot |M_Z|}{d},\tag{1.62}$$

$$F_{V,My} = \frac{2 \cdot |M_y|}{z \cdot d \cdot \mu_{al-s}},\tag{1.63}$$

$$F_r = F_{V,Fy} + F_{V,Fx,z} + F_{V,Mx} + F_{V,Mz} + F_{V,My}, \qquad (1.64)$$

gdje je:

 $F_{V,Fy}$ - sila u vijku uslijed sile u smjeru y osi,

 $\overline{F_{V,Fx,z}}$ - sila u vijku uslijed sila u smjeru x i z osi,

 $F_{V,Mx}$ - sila u vijku uslijed momenta u smjeru x osi,

 $F_{V,Mz}$ - sila u vijku uslijed momenta u smjeru z osi,

 $F_{V,My}$ - sila u vijku uslijed momenta u smjeru y osi,

 F_r - radna sila u vijku,

z = 4- broj vijaka,

 $\mu_{al-s} = 0,6$ - faktor trenja za aluminij- čelik,

d = 95 mm- promjer na kojem se nalaze vijci.

U tablici 17. su prikazane sile u vijku iz (1.59), (1.60), (1.61), (1.62), (1.63) i (1.64).

Tablica	17.	Sile	u	viiku
Labitca	.		u	, i jisu

	$F_{V,Fy}[N]$	$F_{V,Fx,z}$ [N]	$F_{V,Mx}[N]$	$F_{V,Mz}$ [N]	$F_{V,My}[N]$	$F_r[N]$	
CRC	1590,78	681,28	6021,57	184,55	589,54	1590,78	
BUMP	244,27	1881,11	3214,7	1400,74	4474,6	244,27	
ACC	140,82 996,2	996,25	1332,64	1153,37	3684,36	140,82	
BRK	BRK 475,88	680,09	2947,21	313,03	999,95	475,88	
BRK IN TURN	2259,62	814,23	8847,53	484,32	1547,13	2259,62	

Sila pritezanja vijka iznosi:

 $F_{pr} = \sigma_{pr} \cdot A_V = 200 \cdot 42,85 \,, \tag{1.65}$

$$F_{pr} = 8570,48 \, N \,, \tag{1.66}$$

gdje je:

*F*_{pr}- sila pritezanja vijka,

 $\sigma_{pr} = 200 \frac{N}{mm^2}$ - naprezanje od predzatezanja vijka prema [9],

 $A_V = 42,85 \ mm^2$ - površina poprečnog presjeka vijka iz [8].

Ukupna sila u vijku onda iznosi:

$$F_V = F_{pr} + F_r \,, \tag{1.67}$$

gdje je:

 F_V - ukupna sila u vijku.

Naprezanje u vijku onda iznosi:

$$\sigma_V = \frac{F_V}{A_V},\tag{1.68}$$

gdje je:

 σ_V - naprezanje u vijku.

Sigurnost vijka je u tom slučaju:

$$S = \frac{\sigma_{dop}}{\sigma_V},\tag{1.69}$$

gdje je:

S- sigurnost vijka,

 $\sigma_{dop} = 0.8 \cdot R_e = 0.8 \cdot 900 = 720 \frac{N}{mm^2}$ dopušteno naprezanje za vijak čvrstoće 10.9 prema [9].

U tablici 18. su prikazane vrijednosti ukupne sile, naprezanja i sigurnosti u vijku za svaki režim rada.

Tablica 18. Ukupne sile, nap	rezanja i sigurnosti	vijka za svak	i režim rada
------------------------------	----------------------	---------------	--------------

	$F_V[N]$	$\sigma_V \left[\frac{N}{mm^2}\right]$	S
CRC	17638,2	411,6	1,75
BUMP	19785,9	461,72	1,56
ACC	15877,92	370,53	1,94
BRK	13986,63	326,39	2,21
BRK IN TURN	22523,3	525,6	1,37

Kako je vijak od čelika a navoj na glavčini aluminijski potrebno je provjeriti pritisak na nosivoj površini boka navoja prema izrazu iz [9]:

$$p = \frac{F_V \cdot P}{m \cdot d_2 \cdot \pi \cdot H_1},\tag{1.70}$$

gdje je:

p- površinski pritisak navoja,

P = 0,5- korak navoj za vijak M8x0,5,

m = 12 mm- duljina navoja,

 $d_2 = 7,675 \ mm$ - srednji promjer navoja za vijak M6x0,5,

 $H_1 = \frac{5}{8} \cdot P = \frac{5}{8} \cdot 0,5 = 0,3125 \text{ mm-}$ nosiva širina navoja.

Sigurnost navoja je u tom slučaju:

$$S = \frac{p_{dop}}{p},\tag{1.71}$$

gdje je:

S- sigurnost navoja,

 $p_{dop} = 150 \frac{N}{mm^2}$ - dopušteno površinski pritisak za Al
7075-T6 iz [4].

Vrijednosti površinskih pritisaka navoja i sigurnosti za svaki režim rada su prikazane u tablici 19.

	$p \left[\frac{N}{mm^2}\right]$	S
CRC	97,53	1,54
BUMP	109,41	1,37
ACC	87,8	1,71
BRK	77,34	1,94
BRK IN TURN	124,55	1,2

Tablica 19. Vrijednosti površinskih pritisaka i sigurnosti vijka

3.4. Prihvat reduktora i elektromotora

Elektromotor se nalazi sa unutarnje strane kotača te ga je potrebno prihvatiti na nosač kotača. Kako je nosač kotača kućište reduktora ujedno je i element na koji je prihvaćen elektromotor. Spoj elektromotora i nosača kotača je prikazan na slici 21.

Slika 21. Spoj nosača kotača i elektromotora

Elektromotor je razvijan od strane *FSB Racing Team-a* te proizvodi 40 *kW* snage sa najvećim izlaznim momentom od 60 *Nm*. Elektromotor je na nosač kotača prihvaćen pomoću vijaka. Najveći izlazi moment je ulazni podatak za proračun vijaka budući on stvara reakcijske sile u njima. Prema [1] vijci za prihvat elektromotora moraju biti minimalne veličine M6. Za prihvat će se koristiti vijci M6x0,5.

Sila pritezanja vijka iznosi:

$$F_{pr} = \sigma_{pr} \cdot A_V = 350 \cdot 22,79 \,, \tag{1.72}$$

$$F_{pr} = 7975,94 \, N \,, \tag{1.73}$$

gdje je:

*F*_{pr}- sila pritezanja vijka,

 $\frac{Darian \ Milohanić}{\sigma_{pr} = 350 \frac{N}{mm^2}}$ naprezanje od predzatezanja vijka prema [9], $A_V = 22,79 \ mm^2$ - površina poprečnog presjeka vijka iz [8].

Potrebna sila da se prenese moment trenjem iznosi:

$$F_r = \frac{2 \cdot M_{EM} \cdot S}{d \cdot z \cdot \mu} = \frac{2 \cdot 60000 \cdot 1,2}{150 \cdot 4 \cdot 0,1},$$
(1.74)

$$F_r = 2400 N$$
, (1.75)

gdje je:

 F_r - potrebna sila u vijku,

 $M_{EM} = 60 Nm$ - najveći moment koji stvara elektromotor,

S = 1,2- faktor sigurnosti,

d = 150 mm- promjer na kojem se nalaze vijci za prihvat elektromotora,

z = 4- broj vijaka,

 $\mu = 0,1$ - faktor trenja.

Ukupna sila u vijku onda iznosi:

$$F_V = F_{pr} + F_r = 7975,94 + 2400, \qquad (1.76)$$

$$F_V = 10375,94 \, N \,, \tag{1.77}$$

gdje je:

 F_V - ukupna sila u vijku.

Naprezanje u vijku onda iznosi:

 $\sigma_V = \frac{F_V}{A_V} = \frac{10375,94}{22,79},$ (1.78)

$$\sigma_V = 455,32 \frac{N}{mm^2},$$
(1.79)

gdje je:

 σ_V - naprezanje u vijku.

Sigurnost vijka je u tom slučaju:

 $S = \frac{\sigma_{dop}}{\sigma_V} = \frac{720}{455,32},$ (1.80)

$$S = 1,58$$
, (1.81)

gdje je:

S- sigurnost vijka,

 $\sigma_{dop} = 0.8 \cdot R_e = 0.8 \cdot 900 = 720 \frac{N}{mm^2}$ - dopušteno naprezanje za vijak čvrstoće 10.9 prema [9].

Kako je vijak od čelika a navoj na nosaču kotača aluminijski potrebno je provjeriti pritisak na nosivoj površini boka navoja prema izrazu iz [9]:

$$p = \frac{F_V \cdot P}{m \cdot d_2 \cdot \pi \cdot H_1} = \frac{10375,94 \cdot 0,5}{15 \cdot 5,675 \cdot \pi \cdot 0,3125},$$
(1.82)

$$p = 62,08 \frac{N}{mm^2},\tag{1.83}$$

gdje je:

p- površinski pritisak navoja,

P = 0,5- korak navoj za vijak M6x0,5,

m = 15 mm- duljina navoja,

 $d_2 = 5,675 \ mm$ - srednji promjer navoja za vijak M6x0,5,

$$H_1 = \frac{5}{8} \cdot P = \frac{5}{8} \cdot 0,5 = 0,3125 \ mm$$
- nosiva širina navoja.

Sigurnost navoja je u tom slučaju:

$$S = \frac{p_{dop}}{p} = \frac{150}{62,08},\tag{1.84}$$

$$S = 2,42$$
, (1.85)

gdje je:

S- sigurnost navoja,

 $p_{dop} = 150 \frac{N}{mm^2}$ - dopušteno površinski pritisak za Al7075-T6 iz [4].

3.5. Montaža sklopa

Na slici 22. je prikazan sklop kotača u eksplodiranom pogledu (eng. exploded- view).

Slika 22. Eksplodirani pogled sklopa kotača

Postupak montaže se izvodi na sljedeći način:

- 1. Uprešati jedan ležaje na pripadajuće mjesto s jedne strane nosača kotača.
- 2. Ubaciti odstojnik ležajeva između mjesta predviđenih za ležajeve.
- 3. Uprešati drugi ležaj na pripadajuće mjesto s druge strane nosača kotača.
- 4. Disk postaviti na za njega predviđeni promjer na glavčini, ubaciti čahure na predviđena mjesta između glavčine i diska te osigurati uskočnicima.
- 5. Glavčinu pothladiti te uležištiti u nosač kotača.
- 6. Ugraditi planete u nosač planeta na za to predviđeno mjesto.
- 7. Umetnuti svornjake u nosač planeta u pripadajuće utore.
- 8. Uležištiti kolutni zupčanik u nosač kotača na za to predviđeno mjesto.
- 9. Ugraditi radijalnu brtvu u nosač kotača na za to predviđeno mjesto.
- 10. Ugraditi nosač planeta u nosač kotača pazujući pritom da se poklope zupčani parovi kolutnog zupčanika i planeta te da svornjaci uđu u utore na glavčini predviđene za njih.
- 11. Spojiti glavčinu i nosač planeta za to predviđenim vijcima.
- 12. Spojiti prihvat gornjih vilica i nosač kotača za to predviđenim vijcima te umetnuti i pričvrstiti vijke za prihvat donjih vilica na za to predviđene utore na nosaču kotača.
- 13. Spojiti vanjski i unutarnji naplatak za to predviđenim vijcima.
- 14. Navuči pneumatika na naplatak.
- 15. Spojiti srce kotača i naplatak za to predviđenim vijcima.
- 16. Spojiti srce kotača i glavčinu za to predviđenim vijcima.

Darian Milohanić

4. ZAKLJUČAK

Pri odabiru novog koncepta pogonskog sustava uspoređeni su pogonski sustav, smješten u šasiji, prošlogodišnjeg bolida *RT06R* te novi koncept pogona integriranog u sklop kotača. Uz navedene prednosti i mane zaključeno je da koncept s pogonom integriranim u sklop kotača može rezultirati manjom masom te boljim performansama.

Kod sklopa kotača sa integriranim pogonom pogonski sustav je potrebno smjestiti u dosta manji volumen što je konstrukcijski izazovno. Prostor je osim dijelova ovjesa ograničen veličinom naplatka te kupovnim dijelovima poput kočnice. Uz navedena geometrijska ograničenja te procijenjene volumene koje bi zauzimali prijenosnik snage i elektromotor generirano je nekoliko koncepata. Koncepti su međusobno uspoređeni prema kriterijima poput funkcionalnosti, tehnološkoj zahtjevnosti i mase.

Kao najbolji koncept je odabran koncept *K1* prvenstveno zbog svoje jednostavnosti i pouzdanosti budući je funkcionalnost definirana kao najvažniji kriterij.

Iz simulacije bolida kroz dinamičku disciplinu *Autocross* u programskom paketu *VSM* dobivene su sile koje djeluju u kontaktu pneumatika i podloge. Te sile su ulazni podaci za proračun ležajeva. Ležajevi su proračunati preko spektra opterećenja, izrađenog iz ulaznih podataka simulacije, s zahtjevom da vijek trajanja ležajeva bude veći od 45 *h*. Napravljen je proračun vijčanih spojeva elektromotora i nosača kotača, srca kotača i glavčine te spoj glavčine i nosača planeta preko svornjaka i vijaka. Glavčina je nešto kompleksnije geometrije no moguće je napraviti analitički proračun, što je i napravljeno, te bi ga bilo dobro usporediti sa numeričkim rješenjem. Oblikovani su nosač i srce kotača no zbog svoje komplicirane geometrije moguće je samo numerički provjeriti njihovu čvrstoću i krutost.

Sklop kotača sa integriranim pogonom je složeno konstrukcijsko rješenje te predstavlja izazov za inženjere. Zbog svoje složenosti i problema koje nosi, konstruiranje ovakvog sklopa je dobar način dobivanja iskustva i proširivanja znanja za mlade inženjere poput nas.

- [1] Formula Student Rules 2020: https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf
- [2] FSB Racing Team online stranica: https://www.fsb-racing.com/projects
- [3] SKF Bearing select: https://skfbearingselect.com
- [4] Formula za izračun kombiniranog spektra opterećenja: https://www.mitcalc.com/doc/bearings/help/en/bearingskftxt.htm
- [5] Smjernice za izbor statičke sigurnosti ležaja: <u>https://www.skf.com/group/products/rolling-bearings/principles-of-rolling-bearing-selection/bearing-selection-process/bearing-size/size-selection-based-on-static-load</u>
- [6] Aune, P. A.: Four wheel drive system for a formula style electric racecar: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2384523
- [7] Vučković, K.: Vratila- predavanja
- [8] Kraut, B.: Strojarski priručnik, Tehnička knjiga Zagreb, 1970.
- [9] Decker, K. H.: Elementi strojeva, Tehnička knjiga Zagreb, 1975.
- [10] SKF katalog valjnih ležajeva: https://www.skf.com/binaries/pub12/Images/0901d196802809de-Rolling-bearings---17000_1-EN_tcm_12-121486.pdf

PRILOZI

- I. CD-R disc
- II. Tehnička dokumentacija

69			4
		1	7
			لع. ا
(9)	(31)	(32)	

Ç.

34	4 Vijak M6x30			2	DIN 912		10.9 Tvornica vijaka Zag		vijaka Zagreb	0.009
33	Vijak M8x30			4	DIN 7984		10.9	Tvornica vijaka Zagreb		0.015
32	Vijak M6x18			4	DIN 912		10.9 Tvorn		vijaka Zagreb	0.007
31	Elektromotor			1	-	Al	7075-T6	Ø	150x90	6.000
30	Vijak M6x25			12	DIN 7984		10.9	Tvornica	vijaka Zagreb	0.007
29	Srce kotača			1	ZR-012	Al	7075– <i>T6</i>	Ø 174	↓/Ø 72x15	0.335
28	Vanjski naplatal	k Kaizer	10x3	1	ZR-011	Alt	6061–T6	ŀ	aizer	0.777
27	Unutrašnji napla	atak Kaiz	er 10x5bc	1	ZR-010	Alt	6061–T6	ŀ	aizer	1.185
26	Pneumatik Hoos	ier 16x7,	5–10	1	-		R25B	Н	oosier	3.871
25	Kliješta			1	-	Al	7075 <i>-</i> T6		ISR	0,290
24	Matica M5			1	DIN 980		10	Tvornica	vijaka Zagreb	0.001
23	Vijak M5x25			1	ISO 7379		10.9	Tvornica	vijaka Zagreb	0.009
22	Matica M8			1	DIN 980		10	Tvornica	vijaka Zagreb	0.006
21	Podloška M5			1	DIN 125		Čelik	Tvornica	vijaka Zagreb	0.000
20	Vijak M8x25			1	ISO 7379		10.9	Tvornica	vijaka Zagreb	0.030
19	Matica M6			14	DIN 980		10	Tvornica	vijaka Zagreb	0.003
18	Podloška M8			5	DIN 125		Čelik	Tvornica	vijaka Zagreb	0.002
17	Vijak M6x30			2	DIN 7984		10.9	Tvornica	vijaka Zagreb	0.008
16	Matica M6			1	DIN 985		10	Tvornica	vijaka Zagreb	0.003
15	Vijak M6x25			1	ISO 7379		10.9	Tvornica	vijaka Zagreb	0.017
14	Podloška M6			29	DIN 125		Čelik	Tvornica	vijaka Zagreb	0.001
13	Prihvat gornjih	vilica		1	ZR-009	Al	7075 <i>-</i> T6	50	x30x27	0.024
12	Vijak M6x30			3	DIN 7984		10.9	Tvornica	vijaka Zagreb	0.008
11	85x105x10 CRW1	I V		1	ISO 6194	Al	7075–T6		SKF	0.025
10	Svornjak			3	ZR-008	X10	CrNi18-8	Ø) 10x20	0.036
9	Planetarni prijel	nosnik		1	ZR-007		Čelik	Ø	14 <i>0x30</i>	1,000
8	Nosač planeta			1	ZR-006	Al	Al7075-T6 Ø 120x5		120x55	0.683
7	Uskočnik			8	DIN 471		Čelik Seeger Orbis		ger Orbis	0,008
6	Čahura diska			8	ZR-005	Al	AI 70 75 – T6 Ø 10		10,5x7,2	0.001
5	Kočioni disk			1	ZR-004	MCZ	МС21ММС20 Ø175/Ø11		5/Ø 111x3	0,078
4	Glavčina			1	ZR-003	Ali	AI 7075-T6 $Ø$ 111/ $Ø$ 4		/Ø40x98	0.465
3	Odstojnik ležaje	va		1	ZR-002	Ali	7075-T6	<i>Ψ</i> 83/ <i>Ψ</i> 80x24		0.026
2	W 61816-2RS1			2	DIN 625		Čelik		SKF	0,300
1	Nosač kotača			1	ZR-001	Ali	7075 <i>-</i> T6	218x179x101		1.005
Poz.	Naziv dijela			Кот	Crtež broj	Ma	aterijal	Sirove	e dimenzije vizvođač	Masa
	Broi naziva -	rode		Datum	Ime i prezir	 De	Potr	is .		1/9/
			Projektirao	17.2.2021	Darian Milohanić				\bigcirc	
			Razradio	17.2.2021	Darian Milohanić				\preceq FSB Za	agreb
		-	Crtao Progladaa	17.2.2021	Darian Milohanić					-
		-	riegieuao							
	ISO - tolera	incije	Objekt:		1		Obiekt t	лоі:		
			2				P N br			
ŀ			Nanomena				IX. IN. DI	oj.		Копііа
			napoliiciia.							
			Materijal:		Masa: <i>16,4</i>	99 kg	7			
F				Naziv	<u> </u>		I		Pozicija: Form	
+					. Sklop kotača sa integriranim pogonom					
			הופרונס סרוקות					List	ova: 2	
Ī			M1:5	Crte	ž ^{broj:} ZR-AS	SY			List	1
7	1	I		1						

6)

0 10 20 30 40 50 60 70 80 90 100

SOLIDWORKS Educational Product. For Instructional Use Only.

34 yyar Normal 2 DIN 912 10.9 Yvarnica vijaka Zagreb 0.007 31 Vijak M6x30 4 DIN 9784 10.9 Fvarnica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 Ø.150x00 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Fvarnica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-011 Al6061-76 Kaizer 0.177 27 Jnutrašnji naplatak Kaizer 10x3 1 ZR-011 Al6061-76 Kaizer 1.185 26 Pneumatik Mosier 16x7,5-10 1 - R1075-76 USR 0.290 24 Matica M5 1 DIN 980 10 Tvarnica vijaka Zagreb 0.009 29 Vijak M6x25 1 DIN 980 10 Tvarnica vijaka Zagreb 0.002 20 Vijak M6x30 2 DIN 1984 10 Tvarnica vijaka Zagreb 0.002 21 Vijak M6x33 2			ϕ 10J7/h6	+0,017 -0,007	M1:2	Crtež	Crtež broj: ZR-ASY				
34 Vigak Mekzi0 2 UN 972 10.9 Tvornica vigakz Zagreb 0.005 32 Vigak Mekzi0 4 DIN 7944 10.9 Tvornica vigakz Zagreb 0.007 32 Vigak Mekzi0 4 DIN 7944 10.9 Tvornica vigakz Zagreb 0.007 33 Vigak Mekzi0 1 - Al7075-76 Ø.150.90 6.000 34 Vigak Mekzi0 1 27.010 Al7075-76 Ø.1777 0.037 29 Srce kolzá 1 27.011 Al705.76 Ø.1777 0.037 20 Unutrašnji naplatak Kaizer 10x5bc 1 27.010 Al6061-76 Kaizer 0.777 21 Unutrašnji naplatak Kaizer 10x5 1 DIN 980 10 Tvornica vigakz Zagreb 0.009 22 Matica M5 1 DIN 980 10 Tvornica vigakz Zagreb 0.009 22 Matica M5 1 DIN 980 10 Tvornica vigakz Zagreb 0.000 22 Matica M6 1 DIN 980 10 Tvornica vigakz Zagreb 0.003 21 Po				+0,002 +0,049 0	Mjerilo origina	ala p	klop kotača ogonom	sa integ	riranim List	stova: 2	
34 Vijak Mok20 2 UN 912 10.9 Tvornica vijaka Zagreb 0.007 32 Vijak Mok20 4 DN 1984 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 Ø 1508/0 6.000 04 Vijak Mok25 12 DN 1984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-76 Ø 1508/0 6.000 29 Srce kotača 1 ZR-011 Al6061-76 Kaizer 0.007 27 Unutrašnji naplatak Kaizer 10x50 1 ZR-010 Al6061-76 Kaizer 0.001 20 Matica M5 1 DN 980 10 Tvornica vijaka Zagreb 0.001 23 Vijak M5x25 1 ISO 1379 10.9 Tvornica vijaka Zagreb 0.000 24 Matica M5 1 DN 192 Celik Tvornica vijaka Zagreb 0.002 27 Matica M6 14 DN 192	0,05 0,00)2)1	Ф 80G8/k6	+0,054 -0,011 +0,021	Materijal:	Naziv:	Masa:16,49	9 kg	Pozicija: For		
34 Vijak Max30 2 UN 912 10.9 Tvernica vijaka Zagreb 0.009 32 Vijak Max30 4 DIN 7984 10.9 Tvernica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 © Diska Zagreb 0.007 30 Vijak Max25 12 DIN 7984 10.9 Tvernica vijaka Zagreb 0.007 20 Size kotača 1 ZR-011 Al7075-76 © 114/ © 12x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-76 Kaizer 1.835 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.811 25 Kilješta 1 DIN 798 10 Tvernica vijaka Zagreb 0.001 24 Matica M5 1 DIN 92 10.7 Tvernica vijaka Zagreb 0.000 21 Padloška M5 1 DIN 125 Čelik Tvernica vijaka Zagreb 0.000 21 <td< td=""><td>0,00 0,0</td><td>54 13</td><td>Ø 100N7</td><td>-0,01 -0,045</td><td>Napomena:</td><td></td><td>1</td><td></td><td></td><td>Kopija</td></td<>	0,00 0,0	54 13	Ø 100N7	-0,01 -0,045	Napomena:		1			Kopija	
34 Vijak Maxi0 2 UN 1912 10.9 Ivernica vijaka Zagreb 0.009 33 Vijak Maxi0 4 DIN 1984 10.9 Tvernica vijaka Zagreb 0.007 31 Elektromotor 1 - At7075-16 Ø DSbx90 6.000 30 Vijak Maxi2 1 - At7075-16 Ø DSbx90 6.000 30 Vijak Maxi2 1 ZR-012 At7075-16 Ø DT4// Ø DXx15 0.335 28 Cec kotača 1 ZR-011 At6661-76 Kaizer 1.777 27 Unutrašnji naplatak Kaizer 10x3 1 ZR-010 At6661-76 Kaizer 1.871 28 Hoasier 16x7,5-10 1 - At7075-16 ISR 0.029 24 Matica MS 1 DIN 192 10 Tvernica vijaka Zagreb 0.000 23 Vijak M5x25 1 ISO 7379 10.9 Tvernica vijaka Zagreb 0.000 24 Vijak M5x25	0,02 0	24	ISO - tol Ø 105H8	erancije <i>+0,054</i> 0	Objekt:			Objekt R. N. b	broj: roj:		
34 Vyak M6x30 2 UIN 912 10.9 Ivornica vijaka Zagreb 0.009 33 Vijak M6x18 4 DIN 7964 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 Ø IS0x90 6.000 30 Vijak M6x18 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 Ø IS0x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-76 Ø TI4/4 Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-76 Kaizer 1.881 26 Pneumätik Hoosier 16x7.5-10 1 DIN 980 10 Tvornica vijaka Zagreb 0.009 21 Vijak M5x25 1 ISO 7379 10.9 Tvornica vijaka Zagreb 0.000 21 Padioška M8 5	י ו	าล			Pregledao						
34 Vyak Mbx30 2 UIIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak Mbx30 4 DIN 7964 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 © 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-76 © 114/4 © 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-010 Al6061-76 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 1 - R25B Hoosier 3.871 26 Pneumätik Hoosier 16x75-10 1 - R25B Hoosier 0.891 24 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb 0.000 28 Vijak M5x25 1 ISO 7379 10.9 Tvornica vijaka Zagreb	S	е			Razradio Crtao	13.2.2021. 13.2.2021	Darian Milohanić Darian Milohanić		FSB Za	agreb	
34 Vijak M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.005 32 Vijak M6x30 4 DIN 994 10.9 Tvornica vijaka Zagreb 0.015 31 Elektromotor 1 - Al7075-76 Ø 150x90 6.000 30 Vijak M6x18 1 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 - Al7075-76 Ø 174/Ø 12x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-010 Al6061-76 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R7075-76 ISR 0,290 24 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb 0.001 23 Vijak M6x25 1 ISO 7379 10.9 Tvornica vijaka Zagreb 0.002 24 Matica M6 1 DIN 980 10 Tvornica vijaka Zagreb 0.000 21 Podloška M5<			Broj naziva	a – code	Projektirao	13.2.2021.	ime i prezir Darian Milohanić				
34 Vijak M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.005 33 Vijak M6x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 31 Elektromotor 1 - Al7075-76 Ø 150x90 6.000 30 Vijak M6x18 1 - Al7075-76 Ø 150x90 6.000 20 Sree kotača 1 2 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Sree kotača 1 ZR-011 Al10075-76 Ø 174/Ø 12x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-010 Al6061-76 Kaizer 1.185 26 Pneumatik Hoosier 16x7.5-10 1 - R17075-76 ISR 0.290 24 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb 0.001 23 Vijak M5x25 1 ISO 7379 10.9 Tvornica vijaka Zagreb 0.002 24 Matica M6 <td></td> <td>ruz.</td> <td></td> <td></td> <td> </td> <td>Datum</td> <td>Norma Í</td> <td></td> <td>Proizvođač´</td> <td>(kg)</td>		ruz.				Datum	Norma Í		Proizvođač´	(kg)	
34 Vijak Mbx30 2 DIN 912 10.9 Tvornica vijaka Zagreb 0.009 32 Vijak Mbx30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 32 Vijak Mbx18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-011 Al6061-76 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x3bc 1 ZR-010 Al6061-76 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kilješta 1 DIN 980 10 Tvornica vijaka Zagreb 0.009 24 Matica M8 1 DIN 980 10 Tvornica vijaka Zagreb 0.000 20 Vijak Mbx25 1 ISO 7379 <td>ł</td> <td>Poz</td> <td>Naziv diala</td> <td></td> <td></td> <td>, Korr</td> <td>Crtež broj</td> <td>Materijal</td> <td>Sirove dimenzije</td> <td>Masa</td>	ł	Poz	Naziv diala			, Korr	Crtež broj	Materijal	Sirove dimenzije	Masa	
34 Vijak Mbx30 2 DIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak Mbx30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 32 Vijak Mbx18 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 30 Vijak Mbx25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-76 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-010 Al6061-76 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x3 1 ZR-011 Al6061-76 Kaizer 0.871 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 DIN 980 10 Tvornica vijaka Zagreb 0.001 23 Vijak M5x25 1 ISO 7379 10.9 Tvornica vijaka Zagreb 0.002 21 Podioška M5 </td <td>╞</td> <td>∠ 1</td> <td>Nosař kotař:</td> <td>י ק</td> <td></td> <td> Z</td> <td>7R_001</td> <td>A/7075_T6</td> <td>218x179x101</td> <td>1005</td>	╞	∠ 1	Nosař kotař:	י ק		Z	7R_001	A/7075_T6	218x179x101	1005	
34 Vijak M8x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 32 Vijak M8x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø Tvornica vijaka Zagreb 0.007 30 Vijak M8x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-011 Al6061-T6 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x3 1 ZR-010 Al6061-T6 Kaizer 0.777 27 Vanjski naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 0.777 24 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb 0.001 23 Vijak M5x25 1 DIN 7980 10 Tvornica vijaka Zagreb 0.002 24 Matica	╞	ر د	W 61016 2DC	ajeva 1		2		A(1073-10	φ υλ φ υλ 24 σνε	0.020	
14 Vijak M6x30 2 UIN 912 10.9 I vornica vijaka Zagreb 0.009 32 Vijak M6x18 4 DIN 994 10.9 Tvornica vijaka Zagreb 0.007 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-011 Al6061-T6 Kaizer 0.777 20 Unutrašnji naplatak Kaizer 10x3 1 ZR-010 Al6061-T6 Kaizer 0.777 21 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.811 25 Kliješta 1 DIN 980 10 Tvornica vijaka Zagreb 0.000 22 Matica M5 1 DI	╞	4	Ulavcina Odstojnik lož			1	ZK-003	ALT075-16	Ψ 111/Ψ 40x98 Φ 82/Φ 80-21	0.465	
34 Vijak M8x30 2 UIN 912 10.9 Ivornica vijaka Zagreb 0.001 32 Vijak M6x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 34 Elektromotor 1 - Al7075-76 Ø 50x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-76 Ø 174./Ø 72x15 0.33 28 Vanjski naplatak Kaizer 10x3 1 ZR-010 Al6061-76 Kaizer 1.185 26 Pneumatik Hoosier 16.377 ISR 0.290 24 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb 0.000 22 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb <td>ļ</td> <td>5</td> <td>Kočioni disk</td> <td></td> <td></td> <td>1</td> <td>ZR-004</td> <td>MC21MMC20</td> <td>$\psi \qquad \psi \qquad 175/\psi \qquad 111x3$</td> <td>0,078</td>	ļ	5	Kočioni disk			1	ZR-004	MC21MMC20	$\psi \qquad \psi \qquad 175/\psi \qquad 111x3$	0,078	
14. Vyak Mbx30 2 UN 912 10.9 Ivornica vijaka Zagreb 0.0015 32 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-76 Ø 174./Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-76 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-76 Kaizer 1.185 26 Pneumatik Haosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kiješta 1 DIN 980 10 Tvornica vijaka Zagreb 0.000 22 Matica M5 1 <	ļ	6	Cahura diska			8	ZR-005	Al7075-T6	Ø 10,5x7,2	0.001	
34 Vyak Mbx30 2 UIN 912 10.9 Ivornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø Tsonica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø Tsonica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø Tsonica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø Tstaviska Zagreb 0.007 29 Srce kotača 1 ZR-011 Al6061-T6 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 3.871 25 Kliješta 1 - R275B Hoosier 3.871 25 Klijekta 10 T		7	Uskočnik			8	DIN 471	Celik	Seeger Orbis	0,008	
34 Vyak M6xs0 2 UIN 912 10.9 Ivornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø Tsovnica vijaka Zagreb 0.007 30 Vijak M6x18 1 - Al7075-T6 Ø Tsovnica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-T6 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 0.871 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 - Al7075-T6 ISR 0.290 24 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb 0.000 23 Vijak M8x25 1 ISO		8	Nosač planeta			1	ZR-006	A17075-T6	Ø 120x55	0.683	
34 Vijak M6x30 2 UN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-76 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-010 Al6061-76 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 - Al7075-76 ISR 0.290 24 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb 0.001 23 Vijak M5x25 1 ISO 7379 10.		9	Planetarni prijenosnik			1	ZR-007	Čelik	Ø 140x30	1,000	
34 Vyak M6x30 2 UIN 912 10.9 Ivornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/ Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-T6 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 - R17075-T6 ISR 0.202 24 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb 0.006 21 Podloška M5 1 DIN 980 10<		10	Svornjak			3	ZR-008	X10CrNi18-8	3 Ø 10x20	0.036	
34 Vyak M5x30 2 UIN 912 10.9 Ivornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 150x90 6.000 20 Vrjak M6x25 1 ZR-010 Al6061-T6 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 DIN 980 10		11	85x105x10 CR	W1 V		1	ISO 6194	NBR	SKF	0.025	
34 Vijak M8x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-76 Ø 174/Ø 72x15 0.335 28 Vajski naplatak Kaizer 10x3 1 ZR-011 Al6061-76 Kaizer 1.857 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 - Al7075-76 ISR 0,290 24 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb 0.006 21 Podloška M5 1 DIN 980 10 </td <td></td> <td>12</td> <td>Vijak M6x30</td> <td></td> <td></td> <td>3</td> <td>DIN 7984</td> <td>10.9</td> <td>Tvornica vijaka Zagreb</td> <td>0.008</td>		12	Vijak M6x30			3	DIN 7984	10.9	Tvornica vijaka Zagreb	0.008	
34 Vyak Mbx30 2 UIN 912 10.9 I vornica vijaka Zagreb 0.009 33 Vijak Mbx30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak Mbx18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-76 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-76 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-76 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.87 24 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb 0.009 22 Matica M8 1 <t< td=""><td></td><td>13</td><td>Prihvat gornj</td><td>jih vilica</td><td></td><td>1</td><td>ZR-009</td><td>A17075-T6</td><td>50x30x27</td><td>0.024</td></t<>		13	Prihvat gornj	jih vilica		1	ZR-009	A17075-T6	50x30x27	0.024	
34 Vyak M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M8x30 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-T6 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 1.887 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 DIN 980 10 Tvornica vijaka Zagreb 0.000 24 Matica M5 1 <td< td=""><td>ſ</td><td>14</td><td>Podloška M6</td><td></td><td></td><td>29</td><td>DIN 125</td><td>Čelik</td><td>Tvornica vijaka Zagreb</td><td>0.001</td></td<>	ſ	14	Podloška M6			29	DIN 125	Čelik	Tvornica vijaka Zagreb	0.001	
34 Vijak Mbx30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-T6 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 DIN 980 10 Tvornica vijaka Zagreb 0.009 24 Matica M5 1 <t< td=""><td>Ī</td><td>15</td><td>Vijak M6x25</td><td></td><td></td><td>1</td><td>ISO 7379</td><td>10.9</td><td>Tvornica vijaka Zagreb</td><td>0.017</td></t<>	Ī	15	Vijak M6x25			1	ISO 7379	10.9	Tvornica vijaka Zagreb	0.017	
34 Vijak M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-76 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-76 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10.3 1 ZR-011 Al6061-76 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x55c 1 ZR-010 Al6061-76 Kaizer 1.857 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 <t< td=""><td>Ī</td><td>16</td><td>Matica M6</td><td></td><td></td><td>1</td><td>DIN 985</td><td>10</td><td>Tvornica vijaka Zagreb</td><td>0.003</td></t<>	Ī	16	Matica M6			1	DIN 985	10	Tvornica vijaka Zagreb	0.003	
34 Vijak Mbx30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 7215 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-010 Al6061-T6 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 - Al7075-T6 ISR 0.290 24 Matica M5	f	17	Vijak M6x30			2	DIN 7984	10.9	Tvornica vijaka Zagreb	0.008	
34 Vijak M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.355 28 Vanjski naplatak Kaizer 10x3 1 ZR-010 Al6061-T6 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 - Al7075-T6 ISR 0,290 24 Matica M5 1 DIN 980 <td< td=""><td>ł</td><td>18</td><td>Podloška M8</td><td></td><td></td><td>5</td><td>DIN 125</td><td>Čelik</td><td>Tvornica vijaka Zagreb</td><td>0.002</td></td<>	ł	18	Podloška M8			5	DIN 125	Čelik	Tvornica vijaka Zagreb	0.002	
34 Vyak M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-T6 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 JIN 980 10 Tvornica vijaka Zagreb 0.009 23 Vijak M5x25 1 <	ł	19	Matica M6			14	DIN 980	10	Tvornica vijaka Zagreb	0.003	
34 Vijak M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-T6 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 DIN 980 10 Tvornica vijaka Zagreb 0.001 23 Vijak M5x25 1	ł	20	Vijak M8x25			1	ISO 7379	10.9	Tvornica vijaka Zagreb	0.030	
34 Vijak M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-T6 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 1.887 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 - Al7075-T6 ISR 0.290 23 Vijak M5x25 1 DIN 980	┟	21	Podloška M5			1	DIN 125	Čelik	Tvornica vijaka Zagreb	0.000	
34 Vijak M6x30 2 DIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-T6 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 1.185 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 - Al7075-T6 ISR 0,290 24 Matica M5 1 DIN 980 10 Tvornica vijaka Zagreb 0.001 23 Vi	╞	22	Matica M8			1	DIN 980	10	Tvornica viiaka Zaoreh	0.006	
34 VIJAK M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-T6 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 1.857 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 - Al7075-T6 ISR 0,290 24 Matica	ł	27	Viiak M5x25			1	150 7379	10.9	Tvornica vijaka Zagreb	0.009	
34 Vijak M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-T6 Kaizer 0.777 27 Unutrašnji naplatak Kaizer 10x5bc 1 ZR-010 Al6061-T6 Kaizer 1.85 26 Pneumatik Hoosier 16x7,5-10 1 - R25B Hoosier 3.871 25 Kliješta 1 - 0.12035 1.99 0.200	╞	25	Matira M5			1	 	10	Tvornica vijaka Zaoreh	0,290	
34 Vijak M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	+	20	Fliedinalik no	DUSTET TOXT,	,5-10	1	-	A17075_T6	ISP	0.290	
34 Vijak M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.017 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335 28 Vanjski naplatak Kaizer 10x3 1 ZR-011 Al6061-T6 Kaizer 0.777 31 Unutračniji poplatak Kaizer 10x5 1 ZR-010 Al6061-T6 Kaizer 0.777	╞	21		apiarak Kali		1	28-010	ALOUD 1-10	Hangies	כסו.ו 1 דס כ	
34 VIJAK M6x30 2 UIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.017 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007 29 Srce kotača 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335 38 Vazieli zazleteli Kajzez 1002 1 ZR-012 Al7075-T6 Ø 174/Ø 72x15 0.335	╞	20	Vanjski napla	arak Kaizer	7 10x3	1	ZR-011	ALOUDI-TO	Kaizer	U. † † † 1 10E	
34 VIJAK M6x30 2 DIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 30 Vijak M6x25 12 DIN 7984 10.9 Tvornica vijaka Zagreb 0.007	╞	29	Srce kotača Vanjski sesta	stak Kainan	10.2	1	ZR-012	ALF075-16	ψ 1/4/ ψ /2x15	0.335	
34 Vijak M6x30 2 DIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007 31 Elektromotor 1 - Al7075-T6 Ø 150x90 6.000 32 Vijak M6x18 12 DIN 912 10.9 Tvornica vijaka Zagreb 0.017		30	VIJAK M6x25			12	DIN 7984	10.9		0.007	
34 VIJAK M6x30 2 DIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015 32 Vijak M6x18 4 DIN 912 10.9 Tvornica vijaka Zagreb 0.007		31	Elektromotor			1	-	Al 7075-T6	<i>₩</i> 150x90	6.000	
34 VIJAK M6x30 2 DIN 912 10.9 Tvornica vijaka Zagreb 0.009 33 Vijak M8x30 4 DIN 7984 10.9 Tvornica vijaka Zagreb 0.015		32	Vijak M6x18			4	DIN 912	10.9	Tvornica vijaka Zagreb	0.007	
34 VIJAK M6x30 2 DIN 912 10.9 Tvornica vijaka Zagreb 0.009		33	Vijak M8x30			4	DIN 7984	10.9	Tvornica vijaka Zagreb	0.015	
		34	Vijak M6x30			2	DIN 912	10.9	Tvornica vijaka Zagreb	0.009	

SOLIDWORKS Educational Product. For Instructional Use Only.

 \triangle

Broj naziva – code			Datum		lme i prezime	Potpis		$\overline{\mathbf{a}}$	
-		Projektirao	12.2.2021.	Darian	Milohanić)	
		Razradio	12.2.2021.	Darian	Milohanić			兰 FSB	3 Zagreb
		Crtao	12.2.2021.	Darian	Milohanić				2
		Pregledao							
ISO - tol	erancije	Objekt:				Objekt broj:			
C 105H8	+0,054								
arphi טווכטו	0					R. N. Droj:			
C 100N7	-0,01	Napomena: Oboriti oštre bridove							Kopija
φ 1001 1	-0,045	0		53110					
<i>(</i> л 10H7	+0,015	Materijal: 1/3	laterijal 1/7075 TG		Masa: 1001 kg				
φ ion	0		075-70		1.000 Ng				
CT CH7	+0,012		_ Naziv:					Pozicija:	Format: A1
φ 0117	0	$\square \Psi$		• /	~ , , ~				
		Mjerilo origin	ala	NOS	sac kotaca			1	Listova: 1
		M1:1	Crtež	broi:	7R 001				List 1
				. <u>.</u>	211-001				
				0 1			60	70 8	
				v 1	·	-0 -0	50		

SOLIDWORKS Educational Product. For Instructional Use Only.

60 70 80

SOLIDWORKS Educational Product. For Instructional Use Only.