Projektiranje i automatizacija projektiranja ventilacijskog sustava uredske zgrade u BIM okruženju

Ljuban, Marin

Master's thesis / Diplomski rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:410069

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-24

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Marin Ljuban

Zagreb, siječanj 2021.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Projektiranje i automatizacija projektiranja ventilacijskog sustava uredske zgrade u BIM okruženju

Mentor:

Student:

Doc. dr. sc. Darko Smoljan, dipl.ing.

Marin Ljuban

Zagreb, siječanj 2021.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem mentoru doc.dr.sc. Darku Smoljanu na strpljenju i pomoći u izradi diplomskog rada. Zahvaljujem i prijateljima za sve dobre trenutke tijekom studentskih godina.

Posebna zahvala mojim roditeljima, Marici i Milenku, braći, te cijeloj obitelji Jurković na strpljenju i bezuvjetnoj podršci.

Marin Ljuban

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za diplomske ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveučiliš Fakultet strojar	te u Zagrebu stva i brodogradnje
Datum:	Prilog:
Klasa: 602 - 04 /	21 - 6 / 1
Ur. broj: 15 - 170	03 - 20 -

DIPLOMSKI ZADATAK

Student:

Marin Ljuban

Mat. br.: 0035194906

Naslov rada na hrvatskom jeziku:

Projektiranje i automatizacija projektiranja ventilacijskog sustava uredske zgrade u BIM okruženju

Naslov rada na engleskom jeziku: Design and design automation of ventilation system for an office building

Opis zadatka:

U uvodu diplomskog rada potrebno je dati detaljan pregled trodimenzionalnog BIM (*eng. Building information modeling*) načina projektiranja strojarskih instalacija u zgradama. Također je potrebno usporediti BIM projektiranje s tradicionalnim dvodimenzionalnim načinom projektiranja uključujući prednosti i mane jednog i drugog načina.

Potrebno je opisati način izrade programskih skripti za automatizaciju projektiranja u modulu za vizualno BIM programiranje *Dynamo* sadržanog u programskom paketu za BIM projektiranje *Autodesk Revit*.

Korištenjem softverskog alata za vizualno programiranje *Dynamo* potrebno je izraditi programsku skriptu koja automatizira proračun potrebnog protoka zraka za ventilaciju prostorije, prema ventilacijskim potrebama različitih tipova prostorija. Također je potrebno izraditi skriptu za automatizaciju pozicioniranja dovodnih i odvodnih ventilacijskih otvora u prostoriji prema zadanoj geometriji prostorije i potrebnom protoku zraka.

Korištenjem skripte za automatizaciju proračuna ventilacije odrediti potrebne protoke zraka za ventilaciju svake prostorije u zadanoj uredskoj zgradi, te korištenjem *Revit* alata projektirati sustav zračnih kanala za mehaničku ventilaciju zgrade. Korištenjem skripte za automatizaciju projektiranja sustava distribucije zraka u prostoriji definirati položaje elemenata za ubacivanje zraka i odvod zraka.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan: 12. studenoga 2020.

Zadatak zadao:

Datum predaje rada: 14. siječnja 2021. Predviđeni datum obrane: 18. – 22. siječnja 2021.

Predsjednica Povjerenstva:

Prof. dr. sc. Tanja Jurčević Lulić

Doc. dr. sc. Darko Smoljan

SADRŽAJ

1. U	VOD		1
2. B	UILD	ING INFORMATION MODELLING (BIM)	3
2.1.	Po	vijest BIM-a	3
2.2.	Ko	ncepti projektiranja u BIM okruženju	5
2	.2.1.	Razina zrelosti (Level of Maturity)	6
2	.2.2.	Broj dimenzija BIM modela	7
2	.2.3.	Razina razvijenosti (Level of Development, LOD)	8
2.3.	Tre	endovi korištenja BIM-a u svijetu i Hrvatskoj	10
2.4.	Us	poredba BIM i 2D načina projektiranja	10
2.5.	Vi	zualno programiranje	12
2.6.	Pre	egled korištenih alata	12
2	.6.1.	Revit	12
2	.6.2.	Dynamo	13
2	.6.3.	Python	15
3. PI	ROJE	KTIRANJE I AUTOMATIZACIJA PROJEKTIRANJA	
V	ENTI	LACIJSKOG SUSTAVA UREDSKE ZGRADE	16
3.1.	Pri	prema strojarskog modela	16
3.2.	Pro	oračun potrebnog protoka zraka ventilacijskog sustava	18
3.3.	Po	zicioniranje i odabir distribucijskih jedinica	23
3.4.	Os	nivanje kanalnog razvoda	29
3.5.	Di	menzioniranje kanala	30
3.6.	Di	menzioniranje klimatizacijskh jedinica	
3	.6.1.	Zimski period	40
3	.6.2.	Ljetni period	45
3.7.	Au	tomatizacija modeliranja prodora u arhitektonskom modelu	49
3.8.	Au	tomatizacija izrade tehničke dokumentacije	52
4. Za	aključ	ak	
5. Li	teratu	ıra	59
6. Pr	ilozi.		61

6.1.	Prilo	og A: Priručnik za korištenje algoritama	61
6.1.	1.	Priprema sustava	61
6.1.	2.	1_Kreiranje Worksetova	62
6.1.	3.	2_Proračun ventilacijskih zahtjeva	62
6.1.	4.	3_Bilanca ventilacije po katovima	63
6.1.	5.	4_Postavljanje distributera	63
6.1.	6.	5_Postavljanje distributera na liniju	64
6.1.	7.	6_Proracun protoka po distributeru	64
6.1.	8.	7_Automatizacija stvaranja prodora	64
6.1.	9.	8_Kreiranje nacrta	64
6.1.	10.	9_Postavljanje parametara sastavnicama	65
6.1.	11.	10_Stvaranje pogleda	65
6.1.	12.	11_Postavljanje granica pogleda	65
6.2.	Prilo	og B: ASHRAE tablica za proračun ventilacijskih zahtjeva	66
6.3.	Prilo	og C: Tehnička dokumentacija	68

POPIS SLIKA

Slika 1 Sučelje ArchiCAD-a 1984. godine [5]	4
Slika 2 Povijest pojma BIM [6]	5
Slika 3 Razine zrelosti BIM suradnje, preuzeto i prilagođeno prema [8]	7
Slika 4 Dimenzije informacija BIM modela, preuzeto i prilagođeno prema [11]	8
Slika 5 Razine razvijenosti modela [11]	9
Slika 6 Usporedba vremenskog tijeka 2D CAD i BIM procesa, preuzeto i prilago	ođeno
prema [13]	10
Slika 7 Usporedba vremenskog tijeka 2D CAD i BIM procesa, preuzeto i prilago	ođeno
prema [15]	11
Slika 8 Korisničko sučelje Autodesk Revita	13
Slika 9 Korisničko sučelje Dynama	14
Slika 10 Dynamo Player u sučelju Revita	14
Slika 11 Korištenje programskih jezika u razdoblju od 2012. do 2020., preuz	eto i
prilagođeno prema [17]	15
Slika 12 Algoritam za stvaranje Worksetova u strojarskom modelu	17
Slika 13 Prikaz algoritma u Dynamo Playeru te stvorenih Worksetova	18
Slika 14 Prikaz zona na prvom katu	18
Slika 15 Prikaz algoritma za proračun ventilacijskih zahtjeva u dijagramu toka	20
Slika 16 Prikaz rasporeda tlaka na prvom katu	21
Slika 17 Algoritam proračuna ukupne bilance sustava za cijelu zgradu	22
Slika 18 Prikaz stvarnog tipa distributera i modela u Revitu	23
Slika 19 Algoritam postavljanja distribucijskih jedinica u prostor	25
Slika 20 Prikaz izlaznih podataka algoritma u Dynamo Playeru	26
Slika 21 Prilagodba algoritma za postavljanje distribucijskih jedinica u prostor	27
Slika 22 Proračun protoka distributera u prostoriji - 1. dio	28
Slika 23 Proračun protoka distributera u prostoriji - 2. dio	28
Slika 24 Proračun protoka distributera u prostoriji - 3. dio	29
Slika 25 3 različite varijante kanalnog razvoda	30
Slika 26 Kritična dionica tlačnog sustava	31
Slika 27 Odabir metode proračuna pada tlaka	32
Slika 28 Podaci za dimenzioniranje kanala	33

Slika 29 Algoritam za preuzimanje podataka o padu tlaka kanala iz Revita	35
Slika 30 Izvoz pada tlaka u Excel	36
Slika 31 Raspodjela dinamičkog tlaka u kanalu	39
Slika 32 Sučelje alata SystemAirCAD	40
Slika 33 Odabrani rekuperator i njegov shematski prikaz [23]	42
Slika 34 Ventilator [23]	42
Slika 35 Grijač [22]	43
Slika 36 Ovlaživač [22]	44
Slika 37 Hladnjak [23]	46
Slika 38 Proces pripreme zraka u zimskom i ljetnom razdoblju – južna zona	47
Slika 39 Geniox 22	48
Slika 40 Prikaz komponenti klimatizacijske jedinice južne zone – Geniox 22	48
Slika 41 Proces pripreme zraka u zimskom i ljetnom razdoblju – zapadna zona	49
Slika 42 Automatsko kreiranje prodora - 1. dio	50
Slika 43 Automatsko kreiranje prodora - 2. dio	50
Slika 44 Automatsko kreiranje prodora - 3. dio	51
Slika 45 Prikaz stvorenih pravokutnih prodora	52
Slika 46 Implementacija algoritma za stvaranje sastavnica u Dynamo	54
Slika 47 Implementacija algoritma za postavljanje parametara u Dynamo	55
Slika 48 Implementacija algoritma za stvaranje pogleda u Dynamo	55
Slika 49 Implementacija algoritma za postavljanje granica pogleda u Dynamo	56
Slika 50 Algoritam za postavljanje pogleda na sastavnice - 1. dio	57
Slika 51 Algoritam za postavljanje pogleda na sastavnice - 2. dio	57
Slika 52 Algoritam za postavljanje pogleda na sastavnice - 3. dio	57

POPIS TABLICA

Tablica 1 Raspon protoka za odabir distributera	. 24
Tablica 2 Proračun pada tlaka kanala u Excelu	. 34
Tablica 3 Proračun pada tlaka kanala u Revitu	. 35
Tablica 4 Proračun pada tlaka u Excelu za prijelazne elemente sustava	. 37
Tablica 5 Proračun pada tlaka u Revitu za prijelazne elemente sustava	. 38
Tablica 6 Popis svih korištenih paketa	61

POPIS KRATICA

BIM	Building Information Modelling
CAD	Computer Aided Design
UN	Ujedinjeni narodi
BDS	Building Description System
GLIDE	Graphical Language for Interactive Design
NBIMS	National Building Information Modelling Standards Committee
AGC	Associated General Contractors
CDE	Common Data Environment
IFC	Industry Foundation Class
COBie	Construction Operations Building Information Exchange
AIA	American Institute of Architects
LOD	Level of Development
ASHRAE	American Society of Heating, Refrigerating and Air Conditioning Engineers

POPIS OZNAKA

$q_{v,a}$	m ³ /h	volumenski protok zraka prema američkim normama		
$q_{v,o}$	m ³ /h	volumenski protok zraka po osobi prema američkim normama		
$q_{v,p}$	m ³ /h	volumenski protok zraka po jedinici površine prema američkim		
		normama		
n	-	broj ljudi koji borave u prostoriji		
Α	m^2	površina prostora, parametar iz BIM modela		
n_{100} - vrijednost iz ASHRAE tablice, predviđeni broj ljudi na		vrijednost iz ASHRAE tablice, predviđeni broj ljudi na 100 m^2		
		prostorije.		
R_o	L/s	vrijednost iz ASHRAE tablice, potreban protok zraka po osobi		
R_p	L/s	vrijednost iz ASHRAE tablice, potreban protok zraka po		
		jedinici površine prostorije		
q_v	m³/h	odabrani proračunski protok zraka prostorije		
$q_{v,i}$	m³/h	protok zraka pojedinog distributera		
n _d	-	željeni broj distributera koji unosi projektant		
Δp	Pa	ukupni pad tlaka u kanalu		
f	-	Darcyjev faktor trenja, često naveden i oznakom λ		
L	m	ukupna duljina kanala		
D	m	hidraulički promjer ventilacijskih kanala		
ρ	kg/m ³	gustoća fluida		
V	m/s	prosječna brzina strujanja zraka u kanalu		
Re	-	Reynoldsov broj		
μ	Pas	dinamički faktor viskoznosti fluida		
ε	mm	visina hrapavosti stijenke cijevi		
D_e	m	ekvivalentni promjer pravokutnog kanala		
а	m	širina pravokutnog kanala		
b	m	visina pravokutnog kanala		
Δp_L	Pa	lokalni pad tlaka		

SAŽETAK

Za inženjere strojarstva građevinska industrija predstavlja sektor sa velikim potencijalom zapošljavanja, pa tako svaki peti inženjer strojarstva radi upravo u građevinskoj industriji. Područje strojarskog projektiranja u građevinskoj industriji obuhvaća i sustave klimatizacije, grijanja i hlađenja koji su odgovorni za značajan dio ukupne potrošnje energije zgrada. Građevinska industrija je i jedan od najvećih svjetskih ekonomskih sektora, ali i sektor sa tradicionalno niskim rastom produktivnosti. Potreba za rastom produktivnosti u građevinskoj industriji bit će sve veća kao posljedica rasta ukupne svjetske populacije i klimatskih promjena, zbog čega je nužno proces projektiranja učiniti bržim i efikasnijim. Istovremeno, nužno je i poboljšanje kvalitete procesa projektiranja kako bi se osiguralo smanjenje emisija stakleničkih plinova u sektoru zgradarstva, što je jedan od temeljnih ciljeva svjetske energetske tranzicije. Moguće rješenje za ove naizgled suprotstavljene izazove moglo bi biti usvajanje relativno novog pristupa projektiranju zgrada. BIM (Building Information Modelling) je pristup u kojem se zgrade projektiraju integrirano između više struka, kao sustavi građeni od elemenata 3D modela koji sadrže sve bitne informacije potrebne za projektiranje, izvođenje i održavanje zgrade. BIM stavlja naglasak na suradnju između raznih sudionika projektantskog procesa, a velika količina informacija omogućuje i automatizaciju dijelova procesa projektiranja, čime se on čini bržim i manje podložnim greškama.

U okviru rada istražene su mogućnosti automatizacije projektiranja ventilacijskog sustava uredske zgrade u računalnom alatu Autodesk Revit korištenjem integriranog alata za vizualno programiranje Dynamo. Osim istraživanja mogućnosti automatizacije, rad je zamišljen i kao doprinos implementaciji BIM tehnologije u Hrvatsku, zbog čega su detaljno objašnjeni osnovni pojmovi korišteni u BIM okruženju, a kasnije i napredniji koncepti implementacije algoritama za automatizaciju procesa. Time bi se trebalo omogućiti ubrzavanje implementacije BIM-a u svakodnevni radni proces za inženjere strojarstva, a automatizacija dovodi i do bolje kontrole nad procesom projektiranja, odnosno u konačnici odabira optimalnog rješenja koje bi trebalo dovesti do smanjenja potrošnje energije, odnosno emisija stakleničkih plinova. Konačan rezultat diplomskog rada je set za automatizaciju projektiranja ventilacijskog sustava. Taj set sastoji se od 11 algoritama, predloška projekta i priručnika za implementaciju, namijenjen je inženjerima strojarstva koji koriste Autodesk Revit i dostupan na <u>repozitoriju</u> rada za analizu i upotrebu.

Ključne riječi: BIM, ventilacija, Revit, Dynamo, automatizacija, vizualno programiranje

SUMMARY

Construction industry is traditionally one of the largest employers of mechanical engineers, with one in five mechanical engineers being employed in construction. Design of mechanical building systems includes the design of heating, ventilation and air conditioning systems, systems that consume a large share of total building energy consumption. Construction is also one of the largest sectors of the global economy, but it is also a sector with a traditionally low productivity growth. The need of productivity growth in construction industry is only going to increase as a consequence of human population growth and climate change. Besides the productivity growth, it is also necessary to improve design quality, to ensure emission reduction in the building sector, as one of the most important goals in the global energy transition. A possible solution to these seemingly opposite goals could be in the increased adoption of relatively new approach called BIM (Building Information Modelling). BIM is an integrated design methodology, that designs buildings as systems that contain objects represented by a 3D geometry and containing all of the necessary information relevant for all the stages of a construction project. This approach focuses on collaboration between various stakeholders, while the large amount of data enables automation of certain workflows, making the process more efficient and less error-prone.

This thesis researches the possibilities of automation in a ventilation system design for an office building by using Autodesk Revit and the integrated visual programming add-in called Dynamo. Besides investigating automation possibilities, the thesis was also designed as a contribution to BIM implementation in Croatia. Therefore, basic concepts of BIM environment are presented, as well as more advanced automation workflows in the latter stage of the thesis. That should enable a faster implementation of BIM in day-to-day workflows for mechanical engineers, as well as a better control of the design process, which could lead to better design solutions and consequently less energy consumption.

The final result of the thesis is a set for automation of ventilation system design. The set consist of 11 algorithms, a project template, and an implementation guide. It is intended

for mechanical engineers that use Revit in their workflows, and it is available on thesis <u>repository</u> for analysis and use.

Keywords: BIM, ventilation, Revit, Dynamo, automation, visual programming

1. UVOD

Građevinski sektor predstavlja jedan od najvećih dijelova svjetske ekonomije, s godišnjom potrošnjom na materijal i usluge u iznosu od oko 10 bilijuna američkih dolara. Ipak, ta industrija desetljećima zaostaje za većinom ostalih po rastu produktivnosti s prosječnim godišnjim rastom produktivnosti od 1 %. Za usporedbu, na svjetskoj razini je prosjek rasta produktivnosti 2,6 %, dok je sektor proizvodnje vodeći sa 3,6 % [1]. Prema UN-u, predviđeni rast svjetskog stanovništva bit će niži od 1,08 % koliko je iznosio u 2019. godini, ali će ostati pozitivan te će dovesti do 9,7 milijardi ljudi na Zemlji 2050., odnosno 10,9 milijardi 2100. godine [2]. Takav rast stanovništva te već spomenuta tradicionalno niska produktivnost građevinskog sektora mogla bi uzrokovati teškoće u ispunjavanju potreba za infrastrukturnim i smještajnih kapaciteta na svjetskoj razini. Uzimajući u obzir i neizbježne klimatske promjene koje će rastom prosječnih temperatura i pratećim prirodnim fenomenima uzrokovati da mnoga trenutno nastanjena područja budu nepogodna za ljudski život, postaje jasno da bi produktivnost građevinskog sektora morala značajno porasti kako bi se osiguralo ispunjenje potrebnih zahtjeva. Istovremeno, sektor zgradarstva zauzima oko 40 % energetske potrošnje u Europskoj uniji [3], od čega znatan dio otpada na strojarske termotehničke sustave. Jasno je stoga da sam porast produktivnosti nije dovoljan, s obzirom da potreba za smanjenjem emisija stakleničkih plinova kao nužnost nameće potrebu da taj rast produktivnosti bude temeljen na održivim i dugoročnim principima, koje će biti vrlo teško postići oslanjanjem na tradicionalne metode projektiranja i izvođenja. Jedno od potencijalnih rješenja je korištenje napretka razvitka računala koji se dogodio u proteklim desetljećima kroz integrirano projektiranje u BIM (engl. Building Information Modelling, Informacijsko modeliranje zgrada) okruženju, što u konačnici može rezultirati olakšanim, te samim time i ubrzanim procesom izvođenja radova. Osim ubrzavanja procesa izvođenja radova, dostupnost velike količine podataka u modelu može se iskoristiti za automatizaciju određenih dijelova procesa projektiranja, pa bi tako automatizacija nekih sastavnih dijelova procesa ostavila više vremena projektantu za razmatranje većeg broja mogućih rješenja. To u konačnici može dovesti do bolje suradnje s ostalim strukama, te potencijalno jeftinijeg i dugoročno održivijeg projekta s manjim utjecajem na okoliš. Još jedna od mogućih prednosti BIM-a je mogućnost integracije modela sa senzorskim sustavom na izgrađenoj zgradi. Time se stvara model tzv. digitalnog blizanca (digital twin), u kojem se mogu pratiti svi bitni parametri za sve sustave zgrade u operativnoj fazi.

U prvom dijelu diplomskog rada dan je pregled povijesti, trenutnog stanja te osnovnih koncepata projektiranja u BIM okruženju, uz usporedbu sa standardnim 2D CAD pristupom projektiranju. Nakon toga, analizirani su koncepti vizualnog programiranja općenito, te su predstavljena softverska rješenja korištena u ovom radu. U trećem dijelu rada proveden je proces projektiranja ventilacijskog sustava uredske zgrade uz temeljito pojašnjenje implementacije vizualnog programiranja u BIM okruženju, te su svi algoritmi napravljeni kao dio diplomskog rada prilagođeni za korištenje direktno u BIM okruženju. Time su ispunjena dva osnovna cilja diplomskog rada. Prvi je predstaviti mogućnosti programiranja pri projektiranju strojarskih instalacija u BIM okruženju na konkretnom primjeru projektiranja ventilacijskog sustava uredske zgrade. Rad tako može služiti kao vodič za sve sudionike procesa projektiranja koji bi se željeli upoznati sa mogućnostima automatizacije projektantskog procesa, pri čemu je poseban naglasak na inženjere strojarstva. Drugi cilj je ubrzati sam proces projektiranja i za one inženjere strojarstva koji nemaju mogućnosti koristiti programiranje u svakodnevnom radu, te su u tu svrhu algoritmi prilagođeni za rad direktno u Revitu putem Dynamo Playera.

2. BUILDING INFORMATION MODELLING (BIM)

Informacijsko modeliranje zgrada, odnosno *Building Information Modelling* (BIM), relativno je nov koncept projektiranja u čijoj je osnovi 3D model zgrade i svih njenih sustava koji ujedno sadrži i bazu podataka za sve bitne karakteristike građevnih elemenata sustava. BIM je koncept projektiranja u kojem se korištenjem računalnih alata geometrija predstavlja modeliranjem, a svaki od modeliranih objekata sadrži sve potrebne atribute svih sastavnih dijelova zgrade [4]. Sam koncept je od začetaka, sredinom 70-ih godina 20-og stoljeća doživio značajne promjene, kako zbog sazrijevanja same industrije, tako i zbog povećanja moći modernih računala.

2.1. Povijest BIM-a

Idejni koncepti BIM-a stari su koliko i sama upotreba računala u građevinskoj industriji, pa su tako neki od najranijih programa za arhitektonsku predodžbu koristili BIM tehnologiju, ali tadašnja slaba procesna moć računala i vrlo strma krivulja učenja prouzrokovali su velik porast korištenja dvodimenzionalnih računalnih programa, poput AutoCAD-a te Bentley Microstationa. Prvi projekt koji je 1975. uspio u stvaranju baze podataka zgrade bio je *Building Description System* (BDS), te je prvi uspio u opisivanju individualnih elemenata zgrade, spremljenih u virtualnoj bazi podataka. BDS nije postigao široku primjenu, pa tako do danas nije poznato postoji li projekt uspješno realiziran korištenjem tog rješenja. Ipak, glavni voditelj projekta Charles Eastman procijenio je da će takav način pristupa u budućnosti kroz povećanje učinkovitosti stvaranja dokumentacije i analize sustava uzrokovati smanjenje troškova projektiranja do 50 %, a već 1977. godine je njegov novi projekt, GLIDE, pokazivao većinu karakteristika modernog BIM alata [4] Najveću najveću zaslugu za razvoj BIM alata ipak imaju dva Europljanina, Leonid Raiz i Gabor Bojar, idejni začetnici Revita i ArhiCAD-a koji spadaju

među najkorištenije BIM alate današnjice, a Arhicad je prvi BIM alat dostupan na osobnom računalu.

Slika 1 Sučelje ArchiCAD-a 1984. godine [5]

Prva verzija Revita objavljena je 2000. godine, a tvrtka koja je alat razvila (Charles River Software) prodana je Autodesku 2002. godine. Nakon toga se događaju mnoga poboljšanja u mogućnostima suradnje raznih struka, od kojih su najznačajnija izdavanje posebnih verzija Revita za građevinske, te strojarske i elektrotehničke radove, te kasnija integracija tih verzija skupa sa Revit Architecture u jedan jedinstveni alat. Osim toga, dodavanjem tzv. koncepta *Worksetova*, odnosno zasebnih područja rada koje mogu mijenjati samo određeni korisnici, otvara se i mogućnost za suradnju među strukama u realnom vremenu.

Povijest pojma BIM				
BDS - eng. Building Description Systems Aplikacije za projektiranje GLIDE - eng. Graphical Language for Interactive Design Aplikacije za projektiranje i procjenu troškova	BPM - eng. <i>Building</i> <i>Product Model</i> Aplikacije za projektiranje Procjena troškova Građenje Uključivanje projektnih suradnika	GBM - eng. Generic Building Model Koncepti, tehnologije, standardi Građenje i organizacija građenja Korporativne i građevinske aktivnosti Informacije o fizičkim elementima i arhitekturi	BIM - eng. Building Information Modeling Životni vijek građevine Korištenje računalnih rješenja Alati za kontrolu projekta Metodologija interaktivnih projekata Korištenje tehnologije Povećanje učinkovitosti i efikasnosti Simulacije projekata pomoću 3D modela Tehnologija modeliranja	
1970-te	1980-te	1990-te	2000-te 2010-te	

Slika 2 Povijest pojma BIM [6]

2.2. Koncepti projektiranja u BIM okruženju

Prema američkom vijeću za nacionalne standarde BIM-a (National Building Information Modelling Standards Committee, NBIMS), BIM je digitalna predodžba fizičkih i funkcionalnih karakteristika zgrade. BIM predstavlja bazu podataka potrebnu za odlučivanje tokom cijelog životnog ciklusa, od ideje do rušenja. Osnova BIM-a je suradnja raznih sudionika u raznim fazama životnog ciklusa zgrade. Prema američkom udruženju izvođača (Associated General Contractors of America, AGC), BIM predstavlja korištenje računalnih alata kako bi se simulirala gradnja i upravljanje zgradama. Rezultirajući model je objektno orijentiran i bogat podacima, te se iz njega mogu izvlačiti podaci potrebni za donošenje odluka, ovisno o fazi u kojoj se zgrada nalazi te struci uključenoj u projekt.

Ove dvije definicije jasno pokazuju da BIM, osim što je tehnologija, ujedno predstavlja i metodologiju pristupa projektiranju, metodologiju koja ohrabruje suradnju između struka i stavlja fokus na višedimenzionalnost informacija dostupnih u samom modelu, sve u svrhu bolje organizacije koja vodi do bržeg procesa projektiranja, ali i detaljnijeg projekta s manje kolizija koji u konačnici može značajno ubrzati i pojeftiniti izvedbu projekta. Dakle, BIM metodologija razmjene informacija koristi BIM tehnologiju koja omogućuje pravovremenu koordinaciju sudionika projektiranja putem BIM elemenata, odnosno virtualne predodžbe svih građevnih elemenata i njihovih svojstava. Postoje mnoge prednosti uključenja drugih struka u idejnoj fazi projektiranja zgrade, poput upotrebe energetskog modeliranja u svrhu analize energetske učinkovitosti, što u konačnici rezultira nižom potrošnjom energije. [7] U praksi se to trenutno rijetko događa, odnosno arhitekti uglavnom kreću s modeliranjem strukturnih elemenata zgrade, a druge struke uključuju se nakon definirane geometrije arhitektonskog modela, te u

realnom vremenu projektiraju svoje područje, uz paralelnu kontrolu kolizija i ostalih potencijalnih poteškoća u izvođenju projekta. Postoji nekoliko podjela BIM-a koje će se pobliže objasniti u nastavku teksta, a ovise o razini razmjene informacija na kojoj se suradnja odvija.

2.2.1. Razina zrelosti (Level of Maturity)

Razina zrelosti BIM procesa zapravo predstavlja razinu do koje je prisutna interdisciplinarna suradnja na konkretnom modelu. S obzirom na činjenicu da je konačni cilj, odnosno korištenje jednog modela za sve sudionike procesa moguće ostvariti jedino postupno, za bolje rangiranje trenutnog stanja razvijena je ljestvica od 4 stupnja, na kojoj se nalaze [8]:

1. Niska razina suradnje (Razina 0)

Na ovoj razini praktički ne postoji suradnja, a razmjena informacija odvija se putem alata bez mogućnosti suradnje, najčešće papirnatim oblicima tehničke dokumentacije bez jasno definiranih standarda i procesa.

2. Djelomična suradnja (Razina 1)

Ova razina zrelosti predviđa korištenje zajedničkog podatkovnog okruženja (*Common Data Enviroment*, CDE), odnosno mrežnog repozitorija na kojem se nalazi baza podataka za zadani projekt, a definirani su i neki standardi i procesi poput standarda nazivlja te uloga i odgovornosti sudionika procesa.

3. Potpuna suradnja (Razina 2)

Dostizanje ove razine uvjetovano je mogućnošću razmjene podataka u vidu 3D modela, pa tako svaki sudionik projekta može raditi u svom modelu, ali mora biti u mogućnosti izvesti svoje podatke u neki od uobičajenih formata za razmjenu podataka, poput *Industry Foundation Class* (IFC) ili *Construction Operations Building Information Exchange* (COBie). U samom procesu projektiranja bi trebali biti dostupni i vremenski, odnosno troškovni parametri, čime proces poprima četvrtu, odnosno petu dimenziju.

4. Potpuna integracija (Razina 3)

Tehnološki razvoj je tek nedavno omogućio implementaciju ove razine u dnevne radne procese ponekih, tehnološki naprednijih kompanija. Karakterizira ju potpuna integracija razmjene informacija. Koristi se zajednički model lociran na serveru u koji u svakom trenutku može biti dodana informacija bilo kojeg sudionika projekta, čime se može postići upravljanje informacijama o projektu tokom cijelog životnog ciklusa, od projektiranja, preko izvođenja pa sve do održavanja i u konačnici rušenja. Primjer

jednog od računalnih alata koji omogućuju suradnju na razini potpune integracije je Autodeskov BIM 360.

Slika 3 Razine zrelosti BIM suradnje, preuzeto i prilagođeno prema [8]

2.2.2. Broj dimenzija BIM modela

Kao što je već spomenuto, BIM model sadržava značajno više informacija od same trodimenzionalne geometrije zgrade. Tako 4D model sadržava i vremenske komponente, poput vremena izgradnje pojedine faze projekta što pomaže u organizaciji gradnje, a tehnike vizualizacije izgradnje u vremenu pomažu sudionicima projekta da detaljno analiziraju proces gradnje i prije početka, te na vrijeme uoče moguće greške i poteškoće. 5D model uz navedene komponente sadržava i informacije vezane za troškove, što pomaže u analizi troškova te ukupno boljoj kontroli budžeta i može dovesti do jeftinijeg projekta. [9] Šesta dimenzija BIM modela značajna je za održavanje zgrade u njenom operativnom razdoblju, pa tako sadržava podatke poput rasporeda održavanja i očekivanog životnog vijeka njenih sastavnih dijelova, a sedma dimenzija BIM-a se bavi održivošću projekta, odnosno u fokusu ima okolišnu, ekonomsku i socijalnu održivost projekta. Najnoviji i definitivno obećavajući koncept je upotreba modela u svrhu veće sigurnosti ljudi, kako u fazi izgradnje kroz otklanjanje potencijalno opasnih situacija

za radnike na gradilištu, tako i u operativnoj fazi kroz integriranje upravljanja u kriznim situacijama u model, odnosno kasnije u konkretnu zgradu. [10]

Slika 4 Dimenzije informacija BIM modela, preuzeto i prilagođeno prema [11]

2.2.3. Razina razvijenosti (Level of Development, LOD)

Razina razvijenosti često se prepoznaje po skraćenici LOD (*Level of Development*), a predstavlja industrijski standard koji definira različite etape razvoja u projektu ovisno o količini detalja koji se nalaze u konkretnom modelu. Prvi put je definiran od strane američkog instituta arhitekata (American Institute of Architects, AIA) 2008., kada je i definirano 5 razina razvijenosti. LOD 100 tako predstavlja idejni dizajn u kojem su prisutni parametri kao površina, visina, volumen, lokacija i orijentacija zgrade. LOD se sastoji od generaliziranih sustava koji su modelirani s približnim vrijednostima količina, veličina, oblika i lokacija. LOD 300 je razina na kojoj se za konkretne elemente definiraju precizne vrijednosti količina, veličina, oblika i lokacija pojedinih elemenata, čime postaje pogodan za podlogu izvedbenog projekta. LOD 400 dodaje još i detaljne upute za proces proizvodnje i ugradnje svih dijelova, te je u ovoj fazi projekt spreman za izvedbu. Zadnji nivo razvijenosti, LOD 500, modelira se za kasniju upotrebu u fazi održavanja zgrade, a predstavlja stvarni model zgrade nakon njene izgradnje, te su sve bitne karakteristike sustava provjerene na terenu i potom unesene u model. Bitno je naglasiti da je jedina razlika između LOD 400 i LOD 500 verifikacija na terenu, odnosno savršeno izvedeni model LOD 400 izgleda potpuno isto kao i LOD 500. [6]

Slika 5 Razine razvijenosti modela [11]

Za ilustraciju, na modelu ventilacijskog sustava bi razine razvijenosti modela bile sljedeće [12]:

- 1. LOD 100 Idejni projekt ventilacijski sustav može biti dan kao tehnički opis
- LOD 200 Sustav je predstavljen shematski s generičkim držačima (*placeholder*), te se može dobiti okvirna ideja o trasama kojima sustav prolazi, te dimenzijama i oblicima elemenata.
- 3. LOD 300 Model sadržava informacije o veličini, oblicima, lokaciji i orijentaciji elemenata te se sve informacije mogu verificirati u samom modelu. Za primjer, ventilacijski kanali se na ovoj razini modeliraju u stvarnim dimenzijama i sa stvarnim protocima i brzinama strujanja, jednako kao i distributeri zraka.
- LOD 400 Model sadržava dodatne informacije o sustavima, te specifične informacije potrebne za proizvodnju i ugradnju elemenata. Konkretno, za ventilacijske kanale bi se dale detaljne specifikacije o dimenzijama, lokacijama i orijentacijama držača kanala.
- LOD 500 Sve informacije dostupne u modelu LOD 400 verificirane su i unesene u model nakon izgradnje (*Scan-to-BIM*).

Bitno je napomenuti da je 2020. kao dio norme ISO 19650 uveden pojam *Level of Information Need*, koji definira kvalitetu i kvantitetu potrebnih informacija u većem opsegu od pojma LOD-a, odnosno u cijelom razdoblju životnog ciklusa projekta, te bi trebao postupno zamijeniti pojam LOD-a u široj upotrebi.

2.3. Trendovi korištenja BIM-a u svijetu i Hrvatskoj

U sve više svjetskih država BIM postaje obvezan, pogotovo za projekte financirane javnim novcem, pa je tako obvezu korištenja BIM-a prva uvela Danska (2007). Od većih europskih zemalja BIM je prvo postao obvezan u Ujedinjenom Kraljevstvu (2016), a potom i u Francuskoj (2017), Italiji (2019) i Njemačkoj (2020) [2]. Detaljniji pregled faza implementacije BIM-a u zakonsku regulativu pojedinih država može se vidjeti na slici 6, a značajan korak prema standardizaciji napravljen je 2018. uspostavljanjem već spomenute norme ISO 19650 kao međunarodnog standarda koji definira upravljanje informacijama u BIM okruženju.

Slika 6 Usporedba vremenskog tijeka 2D CAD i BIM procesa, preuzeto i prilagođeno prema [13]

Prema istraživanju provedenom 2016. i 2017. godine, u Hrvatskoj je zrelost primjene BIM-a na razini 0, s pozitivnim trendom prema razini 1. Pritom od sudionika gradnje najviše BIM koriste projektanti (25,29 %), dok ostali sudionici (nadzorni inženjeri, izvođači, investitori itd.) tu tehnologiju koriste izrazito malo, pri čemu ga najviše primjenjuju izvođači sa 4,17 %. [14]

2.4. Usporedba BIM i 2D načina projektiranja

Premda se bave istom tematikom, BIM i 2D projektiranje imaju radikalno drukčiji pristup procesu projektiranja. Osnova klasičnog 2D modela je kreiranje tehničke dokumentacije, te na taj dio procesa projektant potroši najviše vremena. BIM proces nešto je sličniji 3D modeliranju kakvo je postalo standard u proizvodnoj industriji, pa tako veliki dio vremena odlazi na postavljanje predložaka i stvaranje modela bogatog informacijama, dok je kreiranje tehničke

dokumentacije konačni korak prebacivanja informacija već dostupnih u modelu u reprezentativan oblik, te stoga traje znatno kraće nego u tradicionalnom 2D procesu.

Slika 7 Usporedba vremenskog tijeka 2D CAD i BIM procesa, preuzeto i prilagođeno prema [15]

BIM proces se na prvu čini kao logičniji odabir s obzirom da nakon kreiranja takvog modela sudionici raspolažu sa mnogo informacija dostupnih u jednoj bazi podataka, što može ubrzati proces analize mogućnosti, te u konačnici ponuditi veću razinu informiranosti potrebnu za odlučivanje. Ipak, činjenica da iza 2D tehnologije postoje desetljeća tradicije, mnogi dostupni alati te široka baza znanja i raširenost upotrebe još uvijek predstavlja prepreku širokoj rasprostranjenosti BIM alata. U odnosu na 2D CAD, količina stručnjaka u BIM području je znatno manja zbog činjenice da je BIM relativno nov proces. Zbog toga proces modeliranja često traje znatno duže nego što bi to bio slučaj kod 2D projektiranja, a nedovoljna usvojenost primjene svih mogućnosti BIM procesa dovodi do toga da se u konačnici projekt svede na kreiranje tehničke dokumentacije kao i kod 2D modela, odnosno ne nosi oni prednosti koje bi

kvalitetan projekt u BIM okruženju trebao ponuditi i poslije, u fazi korištenja zgrade. Ipak, upravo zbog velike količine informacija koje se mogu ugraditi u model otvara se mogućnost utjecaja na proces projektiranja putem automatizacije pojedinih njegovih dijelova, što za posljedicu može imati i brži ali i kvalitetniji projekt, te je to tema kojom će se detaljnije baviti ovaj diplomski rad.

2.5. Vizualno programiranje

U računarstvu se vizualni programskim jezikom smatra svaki jezik koji korisniku omogućuje stvaranje programa grafičkom manipulacijom elementima. Za razliku od većine programskih jezika, korisnik naredbe ne izvršava upisivanjem teksta, nego odabirom odgovarajućih elemenata, od kojih svaki ima jasno definirane ulazne i izlazne parametre. Brza krivulja učenja najveća je njihova prednost i razlog zbog kojeg vizualni programski jezici predstavljaju izvrstan izbor za početnike u programiranju koji za cilj imaju automatizaciju dijela svog svakodnevnog posla. Premda vrlo korisni, vizualni programski jezici ipak imaju ograničen doseg jer i jednostavni kodovi mogu izgledati komplicirano, a neke naredbe je vrlo teško ili nemoguće ostvariti u grafičkom sučelju, zbog čega će u okviru ovog diplomskog rada biti korišten i tekstualni programski jezik Python.

2.6. Pregled korištenih alata

2.6.1. Revit

Revit je alat razvijen od strane Autodeska, kompanije iz SAD-a osnovane 1982., koja proizvodi računalne alate za razne primjene, od građevinske i proizvodne industrije, pa sve do zabavne industrije ili čak genetskog inženjerstva. Autodesk pruža pristup svojim uslugama za studente širom svijeta putem besplatne studentske licence. Revit je BIM alat za sve inženjerske discipline projekta, te pruža stabilan okvir za njihovu suradnju. Možda i najveća prednost Revita je mogućnost kreiranja parametriziranih modela kojima se može lako manipulirati u svrhu prilagodbe specifičnim uvjetima projekta. U idealnom slučaju, prilagodljivi parametrizirani objekti (npr. distributeri zraka) mogu biti odabrani automatizmom, ovisno o proračunski dobivenim vrijednostima (npr. potrebnom protoku zraka) za promatrane prostorije. [16]

Slika 8 Korisničko sučelje Autodesk Revita

2.6.2. Dynamo

Dynamo je vizualni programski jezik razvijen unutar Autodeska, te može služiti kao samostalni alat za manipulaciju podacima (Dynamo Sandbox) ili može biti integriran u neke od specijaliziranih alata (Civil 3d, Revit itd.) kako bi ubrzao radne procese u njima. Dynamo funkcionira na drag-and-drop principu, putem kojeg korisnik kombinira razne nodeove kako bi ostvario funkcijsku vezu između elemenata promatranog BIM modela. Jedna od najvažnijih značajki Dynama je mogućnost direktnog izvlačenja geometrije i ostalih parametara elemenata iz Revit modela. Osim toga, bitno je napomenuti i da Dynamo ima poprilično veliku bazu korisnika i velik broj nezavisno razvijenih paketa nodeova za mnoge specijalizirane namjene. Konkretno, radi se o 1 525 paketa razvijenih od strane 923 autora, od kojih su mnogi korišteni i u ovom radu, te su navedeni u prilogu A. Kombinacija direktne komunikacije s BIM elementima, podrške i razvoja funkcionalnosti od strane korisnika i jednostavnosti vizualnog programiranja čine Dynamo jednostavnim i vrlo efikasnim alatom za poboljšanje BIM radnog procesa. Prikaz korisničkog sučelja i jednostavnog procesa dobivanja svih ventilacijskih kanala trenutno sadržanih u BIM modelu vidljiv je na slici 9. Proces se sastoji od tri koraka, odnosno 3 nodea koja vrše svoju funkciju. Prvi node služi kao tekstualni ulazni podatak, odnosno ime kategorije koju se želi učitati pomoću drugog nodea, Category.ByName. Tako učitana kategorija je ulazni podatak za node All Elements of Category kojim se iz Revita preuzimaju svi elementi ciljane kategorije, odnosno u ovom slučaju ventilacijski kanali.

Slika 9 Korisničko sučelje Dynama

U sklopu Dynama nalazi se i Dynamo Player, dodatak koji je zamišljen da služi kao produžetak Dynama direktno u Revitu. U procesu konstruiranja grafa u Dynamu se odaberu *nodeovi* koji će služiti za unošenje ulaznih podataka, te *nodeovi* čiji će se izlazni podaci prikazivati u sučelju Dynamo Playera. Time se ubrzava proces korištenja gotovih, pripremljenih algoritama.

Slika 10 Dynamo Player u sučelju Revita

2.6.3. Python

Python je programski jezik opće namjene i visoke razine objavljen 1991. godine. Python dopušta programerima fleksibilnost i korištenje nekoliko stilova programiranja, a njegova brza krivulja učenja, raznolikost i vrlo široka podrška u vidu mnogih dostupnih baza funkcija za različite namjene uzrokovala je da Python postane najkorišteniji programski jezik današnjice. [17]

Slika 11 Korištenje programskih jezika u razdoblju od 2012. do 2020., preuzeto i prilagođeno prema [17]

Python će biti korišten direktno u Dynamo sučelju putem *nodea Python script*, i to za one funkcije koje je jednostavnije napisati tekstualnim načinom programiranja, kako bi se grafovi u Dynamu učinili kraćima i lakšima za razumijevanje.

3. PROJEKTIRANJE I AUTOMATIZACIJA PROJEKTIRANJA VENTILACIJSKOG SUSTAVA UREDSKE ZGRADE

Kao analizirani radni proces uzima se proces projektiranja ventilacijskog sustava za uredsku zgradu površine 4100 m², detaljnije prikazanu u izometriji i tlocrtima u priloženoj tehničkoj dokumentaciji (Prilog C). Većinu površine zgrade zauzimaju uredski prostori, a osim njih postoje i prostori za boravak i odmor te sanitarni prostori. Radi se o standardnom Autodeskovom modelu zgrade, koji je za projekt *Honeybee Meets Revit* prilagođen za strojarske proračune [18]. Napravit će se potpun projekt ventilacijskog sustava, a programiranje će biti korišteno u određenim dijelovima kako bi se prikazali načini pristupa problemu parametarskog projektiranja zgrade, te mogućnosti automatizacije. Osim programiranja u okviru Dynama, bit će korišteni i alati za automatizaciju ugrađeni u programsko sučelje Revita kako bi se prikazale već integrirane mogućnosti automatizacije koje proces čine bržim i fleksibilnijim.

3.1. Priprema strojarskog modela

Proces projektiranja odvija se u strojarskom modelu zgrade. Strojarski model koristi arhitektonski model kao podlogu, te su postavke podešene tako da je interakcija s arhitektonskim elementima svedena na preuzimanje bitnih informacija, bez mogućnosti manipulacije elementima iz arhitektonskog modela. Nakon uvođenja modela potrebno je preuzeti podatke iz arhitektonskog modela, prilagoditi visine katova te na temelju arhitektonskog elementa soba (*Rooms*) stvoriti strojarske elemente prostora (*Spaces*) uz preuzimanje imena i broja soba kao parametra. Nakon toga, potrebno je u strojarskom modelu stvoriti *Worksetove*. Taj pojam najlakše je opisati kao područja rada za pojedinu disciplinu, pa tako strojarski model može zadržavati *Worksetove* za npr. grijanje, hlađenje, ventilaciju te mnoge druge, ovisno o potrebama pojedinog modela. Stvaranje *Worksetova* je jednostavan, ali dugotrajan proces, posebno kad se radi o većem broju (15-20). Jednostavan način za ubrzavanje tog programiranja prilagoditi strukturu podataka kako bi bili pogodni za korištenje, nakon čega se Python skriptom provede stvaranje svih *Worksetova* u Revit sučelju.

Slika 12 Algoritam za stvaranje Worksetova u strojarskom modelu

Nodeom File Path se odabire lokacija Excel filea iz kojeg se podaci unose u Dynamo, te se potom manipulira podacima iz liste te se kao podatak ostavlja jedna lista s imenima *Worksetova*, nakon čega se Python skriptom stvore *Worksetovi* koje je korisnik naveo u Excel tablicu. Korisnik bi za svaku disciplinu rada unutar Revita trebao koristiti određeni *Workset* kako bi se poslije filtriranjem na tehničkoj dokumentaciji vidjele samo one discipline koje je bitno prikazati u tom pogledu. S obzirom da će se radi o projektiranju ventilacijskih sustava, ovaj rad će se raditi u *Worksetovima* 20_SUP, 50_ETA i 100_EQ, kako je vidljivo na slici 13.

Završni korak je postaviti *node File Path* kao ulazni parametar, a *nodeove Number of Worksets Created* i *Worksets Created* kao izlazne parametre, kako bi se mogla odabrati datoteka u kojoj se nalaze podaci direktno u sučelju Revita putem Dynamo Playera, te kako bi se nakon izvršene radnje dobili broj i imena stvorenih *Worksetova*. Time je projekt spreman za prvi korak u projektiranju sustava, proračun potrebnog protoka zraka za prostorije.

3.2. Proračun potrebnog protoka zraka ventilacijskog sustava

Ventilacijski sustav podijeljen je na dvije zone, južnu i zapadnu. Svaka zona obuhvaća sva tri kata, te spaja distribucijski sustav s krovnim jedinicama kroz vertikalne otvore koji se protežu cijelom visinom zgrade. Prikaz zona na 1. katu vidljiv je na slici 14., a detaljan prikaz zona po svim katovima dostupan je kao dio priložene tehničke dokumentacije.

Slika 14 Prikaz zona na prvom katu

Algoritam za proračun potrebnog protoka pristupa problemu s dva pristupa, američkim (ASHRAE) i europskim (EN). Američki pristup prostorije svrstava u kategorije ovisno o njihovom tipu, te za zadanu kategoriju pruža podatke o potrebnom protoku. Tablica ASHRAE tipova prostorija i pripadajućih parametara nalazi se u prilogu B, a algoritam po pristupanju podacima sadržanima u Excel tablici prema imenu pojedinog tipa prostora dodijeljenom u Revit bazi podataka nalazi odgovarajući tip, vadi podatke iz tablice te zatim računa potreban protok $q_{v,a}$ prema sljedećim formulama:

$$n = \frac{A}{n_{100}}$$
$$q_{v,o} = n \cdot R_o$$
$$q_{v,p} = A \cdot R_p$$
$$q_{v,a} = \max(q_{v,o}, q_{v,p})$$

Pri čemu je:

n - broj ljudi koji u prostoriji borave

A - površina prostora, parametar iz BIM modela

 n_{100} - vrijednost iz ASHRAE tablice, predviđeni broj ljudi na 100 m² prostorije.

 R_o - vrijednost iz ASHRAE tablice, potreban protok zraka po osobi

 R_p - vrijednost iz ASHRAE tablice, potreban protok zraka po jedinici površine prostorije

Europski pristup, definiran u normi EN 16 798, za I. klasu kvalitete zraka predviđa protok po površini prostorije u iznosu od 2 L/sm² (7,2 m³/hm²), te se stoga potreban protok $q_{v,e}$ računa prema:

$$q_{v,e} = 7,2 * A$$

Za proračunski potreban protok zraka uzima se veći od 2 dobivena protoka:

$$q_{v} = \max(q_{v,a}, q_{v,e})$$

Sam algoritam za proračun ventilacijskih zahtjeva nalazi se prikazan u dijagramu toka napravljenom u alatu Microsoft Visio na slici 15, a implementacija u Dynamu neće biti detaljno

prikazana u radu iz jednostavnog razloga što bi to oduzelo previše prostora i vremena. Detaljan prikaz implementacije u Dynamu strukturiran prema algoritmu sa slike 15 vidljiv je pokretanjem algoritma prema uputama u prilogu A. Iz algoritma na slici 15 vidi se da je osnovni koncept programiranja u Dynamu izvlačenje podataka iz Revita, njihovo filtriranje i prilagodba za izvršenje ciljanog zadatka, te nakon provođenja algoritma povratak podataka (u obliku parametara ili elemenata) natrag u Revit.

Slika 15 Prikaz algoritma za proračun ventilacijskih zahtjeva u dijagramu toka

Nakon uspješne implementacije u Dynamo, algoritam se prilagodi za korištenje u Dynamo Playeru na način da korisnik prilikom pokretanja mora odabrati prostore za koje želi napraviti proračun dobavnog i odsisnog protoka zraka, te željeni odnos tih protoka, a algoritam slijedeći
korake sa slike 15 vrši proračun. Kao izlazni podataka dobiva se odabrani tip prostorije s pripadajućim parametrima, te ime i broj prostora uz konačno dobiveni dobavni i odsisni protok. Korištenje algoritma omogućuje i grafički prikaz prostora u ovisnosti o omjeru dobavnog i odsisnog toka stvaranjem novostvorenog parametra koji taj omjer definira. Prikaz rasporeda potlaka i pretlaka prema prostorijama za prvi kat vidljiv je na slici 16, a pregled ostalih katova dostupan je u tehničkoj dokumentaciji rada.

Slika 16 Prikaz rasporeda tlaka na prvom katu

Kako bi se osigurala kontrola bilanciranja sustava, napravljen je i kratki algoritam koji za odabranu zonu i kat sustava proračunava razliku između dobavnog i odsisnog toka zraka te ju prikazuje u Dynamo Playeru, a kombinacija ova dva algoritma omogućuje definiranje potrebnih protoka, te njihovu kontrolu u realnom vremenu.

Slika 17 Algoritam proračuna ukupne bilance sustava za cijelu zgradu

Kao ulazne podatke projektant mora odabrati kat i zonu za koju želi dobiti razliku protoka. Algoritam potom nalazi sve elemente prostora koji sadržavaju tu zonu, te sve elemente koji u modelu uopće postoje na odabranom katu, a potom se *nodeom List.SetIntersection* nalaze elementi koji postoje u obje liste, odnosno svi prostori odabrane zone na odabranom katu. Za filtrirane prostore se dohvaćaju parametri *Specified Supply Airflow i Specified Return Airflow*, odnosno proračunati dobavni i odsisni protok za svaki prostor. Dobiveni iznosi se sumiraju te se dobiva ukupni dobavni i odsisni tok za sve filtrirane prostore, što je i izlazni podatak u Dynamo Playeru. Isti je postupak i kod proračuna za kat i za zgradu, samo se kod pojedinog kata filtriraju svi prostori s toga kata, bez obzira na zonu, a za čitavu zgradu se u obzir uzimaju svi prostori u cijeloj zgradi.

3.3. Pozicioniranje i odabir distribucijskih jedinica

Nakon proračuna potrebnih ventilacijskih sustava, sljedeći korak u procesu je pozicioniranje i odabir distribucijskih jedinica prema zahtjevima pojedine prostorije, što se vrši sljedećim koracima.

- S obzirom da se većinom radi o pravokutnim prostorima, pozicioniranje se provodi tako da se traže dvije najdulje stranice pravokutnog prostora, te se dobavni distributeri pozicioniraju bliže prozoru, dok se odsisni distributeri smještaju bliže vratima prostorije. Korisnik bira udaljenosti od zidova te broj željenih jedinica u prostoru
- 2. Odabir distribucijskih jedinica vrši se tako da se na temelju ukupnog potrebnog protoka zraka pojedine prostore i željenog broja jedinica dobiva jedinični protok zraka za pojedini distributer $q_{v,i}$ temeljem formule:

$$q_{v,i} = \frac{q_v}{n_d}$$

Pri čemu je:

 n_d - željeni broj distributera koji unosi projektant.

Jedinični protok je ulazni parametar Python skripte koja na temelju njega bira između četiri veličine stropnih vrtložnih distributera tipa DVF – K, proizvođača Klimaoprema (slika 18). Raspon protoka definiran je u Revit elementima distributera, a ako je protok niži ili viši od mogućeg raspona zadanog s ova 4 tipa, algoritam pokazuje grešku u tekstualnom obliku, kako je prikazano u tablici 1.

Slika 18 Prikaz stvarnog tipa distributera i modela u Revitu

k!")
k!")

Tablica 1 Raspon protoka za odabir distributera

3. Nakon odabira pozicija i tipa, korisnik mora odabrati željeni zakret za svaki od sistema distributera kako bi bili ispravno pozicionirani u odnosu na kanalni razvod.

S obzirom da se radi o algoritmu s gotovo 30 podskupina i više od 200 *nodeova*, jasno je da gornja analiza predstavlja samo osnovni koncept procesa, a detaljniji uvid može se vidjeti u dijagramu toka na slici 19. Implementacija zbog veličine algoritma neće biti detaljno prikazana u radu, dok je algoritam, kao i ostali, dostupan na repozitoriju rada za detaljniju analizu.

Slika 19 Algoritam postavljanja distribucijskih jedinica u prostor

Iz dijagrama toka opet je jasno vidljiv osnovni koncept programiranja u BIM okruženju. Preuzimaju se elementi iz modela i njihovi potrebni parametri, te se njihovom kombinacijom dolazi do potrebnih geometrijskih i numeričkih odnosa potrebnih za automatizaciju procesa. Pritom je bitno naglasiti da numerički podaci rade u potpunosti u svim testiranim slučajevima, dok proces određivanja geometrijskih parametara, odnosno konkretnih pozicija distribucijskih jedinica radi sa 70 % uspješnosti. To se može ponajprije može pripisati nemogućnosti jednoznačnog definiranja željenih karakteristika u logičkom smislu. Npr., pozicija odsisnih distributera definirana je koristeći graničnu krivulju prostora koja je najbliža vratima. Takva definicija dovoljno je dobra za prostorije koje imaju jedna vrata, ali za prostorije s više vrata za sad nije razvijena jednoznačna definicija za odabir konkretnog elementa u odnosu na koji se vrši proračun, što znači da algoritam koristi prvi dostupni element vrata, koji može ili ne mora biti ciljani element. Ipak, činjenica je da se jedinice pozicioniraju na potrebnoj visini, da su definirane veličine, rotacije i točan protok, što čini čak i ovako nepotpun algoritam bržim rješenjem od klasičnog modeliranja.

Algoritam je implementiran u Dynamo Player na način da kao ulazne podatke projektant odabire željeni prostor, broj potrebnih difuzora i njihov odmak od okolnih zidova, te kut zakreta. To se čini zasebno i za dobavni i za odsisni sustav, a nakon izvršenog algoritma u sučelju Dynamo Playera prikazuje lista koja sadrži te odabrane podatke, odabrani tip distributera te izračun udaljenosti između dvaju distributera (kako je prikazano na slici 20.), kako bi projektant mogao lakše u procesu projektiranja kontrolirati parametre toplinske ugodnosti te spriječiti pojavu propuha u zoni boravka. Daljnja analiza ovog radnog procesa išla bi u smjeru povezivanja napravljene skripte i eksperimentalno dobivenih vrijednosti brzine u zoni boravka za određene razmještaje distributera, a što bi omogućilo optimizaciju njihovog razmještaja za proizvoljnu geometriju. Trenutno je to nemoguće zbog nedovoljne implementacije Pythona u BIM okruženje, pa nije omogućeno korištenje naprednih Python funkcija.

6	4
	Line Offset Percentage (Supply) :
	0.2
	Offset from Wall (Supply) :
	1000
	Line Offset of Return Terminals :
	0.2
	Number of Supply Terminals :
	3
	String :
	Exterior Curtain Wall
	Airflow ner Diffusser
	0 204.063822269999
	Supply Antow Parameters :
	List V 1 1000 2 0.2 3 0 4 Family Type: DVF-K-600-A-H-248-Z, Family: DVF-Supply Air_RVT2019_V1 5 204.063822269999 6 2958.45
	•
	Return Airflow Parameters :
	List ▼ 0 3 1 1000 2 0.2 3 Family Type: DVF-K-600-B-H-248-Z, Family: DVF-Return Air_RVT2019_V1 4 180 5 185.512565699999 6 2463.44999999999

Slika 20 Prikaz izlaznih podataka algoritma u Dynamo Playeru

Zbog činjenice da je teško odrediti striktne geometrijske odnose za sve prostorije neovisno o tipu zgrade ovaj algoritam nije primjenjiv na širi spektar projekata, zbog čega bi od projekta do projekta bilo potrebno vršiti preinake u sučelju Dynama. Zbog toga je izvršena prilagodba

algoritma na oblik prikazan na slici 21, koji je jednostavniji i primjenjiv na znatno širi spektar situacija.

Slika 21 Prilagodba algoritma za postavljanje distribucijskih jedinica u prostor

Jedina razlika između ova dva algoritma je da drugi algoritam ne bira pozicije distributera u odnosu na geometrijske karakteristike prostora, nego na temelju odabira prethodno nacrtane krivulje. Projektant nacrta dvije krivulje koje predstavljaju pozicije smještaja dobavnih, odnosno odsisnih distributera, te ih po pokretanju algoritma odabere, a osim njih odabere i prostor u koji se distributeri žele postaviti. Kao i u prethodnom algoritmu, potrebno je odabrati rotaciju elemenata i njihov broj, kako bi se dobile točne pozicije pojedinog elementa na prethodno odabranim krivuljama. Nakon pokretanja, algoritam postavlja distributere na pozicije, te kao izlazne podatke prikazuje broj, tip, rotaciju i protok zraka distributera, te udaljenost između susjednih, zasebno za dobavni i odsisni sustav.

S obzirom da se u toku projektiranja zbog utjecaja drugih struka uključenih u proces mogu dogoditi i promjene broja distributera u pojedinoj prostoriji, napravljen je i algoritam koji omogućuje automatizaciju naknadnog proračuna pojedinačnog protoka, na sljedeći način:

1. Korisnik odabire željeni element prostora, a dohvaćaju se svi elementi iz prostorije koji spadaju u kategoriju *Air Terminals*, a u koju spadaju i dobavni i odsisni distributeri.

Nakon toga se na temelju parametra *System Classification*, ugrađenog u distributere filtriraju dvije skupine potrebnih elemenata, dobavni i odsisni distributeri.

Slika 22 Proračun protoka distributera u prostoriji - 1. dio

2. Iz elementa promatranog prostora preuzima se parametar *Specified Supply Airflow* koji označava potreban dobavni protok prostora. Uz preuzimanje vrijednosti potrebnog dobavnog protoka vrši se i prebrojavanje elemenata u skupini dobavnih distributera, a kvocijent ta dva broja predstavlja protok pojedinog dobavnog distributera, te se upisuje u element distributera kao vrijednost parametra pod imenom *HVAC_Airflow*.

Slika 23 Proračun protoka distributera u prostoriji - 2. dio

3. Proces iz točke 2. se ponavlja s razlikom što se promatraju elementi potrebni za proračun protoka odsisnih distributera.

Proračun protoka za odsisne distributere

Slika 24 Proračun protoka distributera u prostoriji - 3. dio

3.4. Osnivanje kanalnog razvoda

Nakon pozicioniranja distributera potrebno je provesti modeliranje i dimenzioniranje kanalnog razvoda za sve sustave, što se čini alatima ugrađenima u sučelje Revita. Ti alati ujedno služe i kao primjer kako dovoljno robustan alat za automatizaciju može biti jednostavno ugrađen u korisničko sučelje, čime se automatizacija procesa znatno ubrzava i čini dostupnom širem spektru korisnika.

Osnivanje kanalnog razvoda vrši se pomoću funkcije Generate Layout. S obzirom da svi distributeri u sebi sadrže informacije o tipu sustava na koji se spajaju, potrebno je samo odabrati distributere, a algoritam na temelju njihovih parametara stvara shemu sustava u kojem se nalaze, te vrši spajanje kanala sa distributerima putem fleksibilnih kanala.

Korisnik pri tom može birati između nekoliko vrsta kanalnog razvoda i nekoliko raznih varijanti unutar vrsta. Ukupan broj varira od slučaja do slučaja, a za pozicije distributera prikazane na slici 25 algoritam je ponudio 12 mogućih varijanti kanalnog razvoda, od kojih su 3 prikazane na slici.

Slika 25 3 različite varijante kanalnog razvoda

Projektant pri tome bira vrstu kanala (pravokutni ili okrugli), te visinu glavne dionice razvodnog sustava, visinu ogranaka i maksimalnu dužinu fleksibilnih kanala. Nakon odabira automatski se modeliraju kanali koji u sebi sadrže podatke o protoku u pojedinoj dionici kanala s obzirom na protoke u distributerima, što omogućava upotrebu algoritma za automatsko dimenzioniranje kanala.

3.5. Dimenzioniranje kanala

Kao i stvaranje mreže kanalnog razvoda, dimenzioniranje kanala provodi se algoritmom dostupnim u sučelju Revita. Kao dokaz točnosti, u ovom radu provest će se analiza kritične dionice dobavnog sustava, prikazana na slici 26 uz označene dionice.

Slika 26 Kritična dionica tlačnog sustava

Proračun pada tlaka u kanalima provodi se prema Darcy – Weisbachovoj jednadbži koja glasi[19]:

$$\Delta p = f \cdot \frac{L}{D} \cdot \rho \cdot \frac{V^2}{2}$$

Pri čemu je:

 Δp – ukupni pad tlaka u kanalu

- f Darcyjev faktor trenja, često naveden i oznakom λ [20]
- L ukupna duljina kanala
- D hidraulički promjer kanala
- ρ gustoća fluida
- V prosječna brzina strujanja u kanalu

Darcyjev faktor trenja f se u području laminarnog strujanja (Re < 2000) računa prema Hagen–Poiuseuilleovoj jednadži, koja glasi:

$$f = \frac{64}{Re}$$

Pri čemu je Re Reynoldosv broj, prema jednadžbi:

$$Re = \frac{\rho VD}{\mu}$$

Pri čemu je:

μ - dinamički faktor viskoznosti fluida

Za prijelazno (2000 < Re < 4000) i turbulentno (Re > 4000) područje faktor trenja f opisuje se Colebrookovom jednadžbom, koja glasi:

$$\frac{1}{\sqrt{f}} = -2\log(\frac{\varepsilon}{3,7 D} + \frac{2,51}{Re\sqrt{f}})$$

Pri čemu je:

 ε –visina hrapavosti stijenke cijevi, odnosno ε/D relativna visina hrapavosti stijenke cijevi.

Iz Colebrookove jednadžbe faktor trenja se određuje iterativnim postupkom, što je nepraktično, pa postoji oko 25 jednadžbi aproksimacije koje se mogu koristiti za određena područja proračuna [19], a u sučelju Revita se može birati između 3 načina proračuna.

Slika 27 Odabir metode proračuna pada tlaka

Za upotrebu opisanog postupka, potrebno je osim Darcyjevog faktora trenja, za kanale pravokutnog oblika proračunati i ekvivalentni promjer cjevovoda, koji se i u Revitu provodi prema postupku opisanom u [20], odnosno formulom:

$$D_e = \frac{2 \cdot a \cdot b}{a+b}$$

Pri čemu je:

- D_e Ekvivalentni promjer pravokutnog kanala
- a Širina pravokutnog kanala
- *b* Visina pravokutnog kanala

Kao prvi korak u dimenzioniranju kanala unutar Revita potrebno je označiti sve elemente analiziranog sustava, te potom odabrati željene rubne uvjete. Algoritam nudi opciju dimenzioniranja prema maksimalnom dopuštenom padu tlaka, maksimalnoj dopuštenoj brzini, ili uzimajući u obzir oba rubna uvjeta. Osim toga, za pravokutni kanalni razvod potrebno je osigurati pravilno geometrijsko oblikovanje dodjeljivanjem maksimalne visine ili širine kanala, kako je prikazano na slici 28. Ukoliko se ne zadaju geometrijski rubni uvjeti, kanali se modeliraju na način da poprimaju kvadratni oblik.

Duct Sizing				
Sizing Method				
Velocity \checkmark	4.5 m/s			
Only Only	Or			
Friction:	1.00 Pa/m			
Constraints Branch Sizing:				
Calculated Size Only	~			
Restrict Height:	300 ~			
Restrict Width:	2250 ~			
ОК Са	ancel Help			

Slika 28 Podaci za dimenzioniranje kanala

S obzirom da u Revitu nije moguće izabrati Swamee – Jain jednadžbu kao onu aproksimaciju koja se najčešće koristi na Fakultetu strojarstva i brodogradnje [20], proračun pada tlaka u kanalima unutar Revita provest će se upotrebom osnovne, Colebrookeove jednadžbe, dok će za usporedbu služiti proračun proveden u Excelu korak po korak uz korištenje Swamee – Jain jednadžbe aproksimacije. Rezultati proračuna kanala provedenog u Excelu prikazani su u tablici 2.

Dionica	L [mm]	\mathbf{Q} [m ³ /h]	a [mm]	b [mm]	d _{ekv} [m]	V [m/s]	f [-]	R*L [Pa]
1	279	11606,3	2200	1000	1,38	1,61	0,0173	0,01
2	6087	11606,3	750	750	0,75	5,73	0,0156	2,50
2	4900	11606,3	750	750	0,75	5,73	0,0156	2,01
2	5005	11606,3	750	750	0,75	5,73	0,0156	2,05
3	2462	7731,1	600	600	0,60	5,97	0,0160	1,40
3	8598	7731,1	600	600	0,60	5,97	0,0160	4,90
4	1825	3878,4	425	425	0,43	5,96	0,0171	1,57
4	6155	3878,4	425	425	0,43	5,96	0,0171	5,28
4	2883	3878,4	425	425	0,43	5,96	0,0171	2,47
5	1754	3586,9	425	425	0,43	5,52	0,0172	1,30
6	2619	3360,8	400	400	0,40	5,83	0,0173	2,32
7	2492	3134,6	400	400	0,40	5,44	0,0174	1,94
8	342	2772,0	375	375	0,38	5,48	0,0177	0,29
9	3284	2545,8	350	350	0,35	5,77	0,0179	3,36
10	3342	2363,9	350	350	0,35	5,36	0,0180	2,96
11	3470	2181,9	325	325	0,33	5,74	0,0182	3,85
12	1886	1936,5	300	300	0,30	5,98	0,0184	2,49
13	1198	1573,9	275	275	0,28	5,78	0,0190	1,66
14	3368	1328,5	275	275	0,28	4,88	0,0192	3,37
15	3470	1083,0	250	250	0,25	4,81	0,0197	3,81
16	3312	901,1	225	225	0,23	4,94	0,0203	4,40
17	2285	719,2	225	225	0,23	3,95	0,0216	2,05
18	1616	540,9	200	200	0,20	3,76	0,0253	1,73
19	1279	178,3	125	125	0,13	3,17	0,0253	1,56
19	1210	178,3	125	125	0,13	3,17	0,0253	1,48
Ukupno								60,78

Tablica 2 Proračun pada tlaka kanala u Excelu

Proračun kanala u Revitu provodi se automatski na temelju prethodno objašnjenih formula, a rezultati su Dynamo skriptom prikazanom na slici 29 prebačeni iz Revita *u* Excel, te nakon strukturiranja podataka prikazani u tablici 3. Usporedbom ova dva načina proračuna dolazi se do razlike manje od 1 Pa razlike, odnosno 1,6 % proračunatog ukupnog pada tlaka u kanalima, pa se proračun pada tlaka unutar Revita smatra prihvatljivim.

Slika 29 Algoritam za preuzimanje podataka o padu tlaka kanala iz Revita

$\mathbf{Q} [\text{m}^3/\text{h}]$	V [m/s]	a [mm]	b [mm]	R*L [Pa]
11606,3	1,61	2000	1000	0,0
11606,3	5,73	750	750	2,4
11606,3	5,73	750	750	2,0
11606,3	5,73	750	750	2,0
7731,1	5,97	600	600	1,4
7731,1	5,97	600	600	4,8
3878,4	5,96	425	425	1,6
3878,4	5,96	425	425	5,2
3878,4	5,96	425	425	2,5
3586,9	5,52	425	425	1,3
3360,8	5,83	400	400	2,3
3134,6	5,44	400	400	1,9
2772,0	5,48	375	375	0,3
2545,8	5,77	350	350	3,3
2363,9	5,36	350	350	3,0
2181,9	5,74	325	325	3,8
1936,5	5,98	300	300	2,4
1573,9	5,78	275	275	1,6
1328,5	4,88	275	275	3,4
1083,0	4,81	250	250	3,8
901,1	4,94	225	225	4,4
719,2	3,95	225	225	2,0
540,9	3,76	200	200	1,5
178,3	3,17	125	125	1,6
178,3	3,17	125	125	1,5
				60,0

Tablica 3 Proračun pada tlaka kanala u Revitu

Nakon proračuna linijskih gubitaka, potrebno je proračunati i lokalne gubitke, prema formuli:

$$\Delta p_L = \xi \cdot \rho \cdot \frac{V^2}{2}$$

Pri čemu je:

 Δp_L – lokalni pad tlaka

 ξ – koeficijent lokalnog otpora za pojedini prijelazni element, prema Priručniku za ventilaciju i klimatizaciju [21]

U Revitu se proračun provodi automatiziranom upotrebom navedene jednadžbe, pri čemu je koeficijent lokalnog otpora moguće odabrati pronalaskom adekvatnog tipa u ASHRAE tablici, ili ručnim upisom koeficijenta u pojedini prijelazni element. Na slici 30 vidljiv je algoritam za preuzimanje vrijednosti pada tlaka iz Revita. Rezultati proračuna u Excelu vidljivi su u tablici 4, a vrijednosti proračuna u Revitu prikazane su u tablici 5.

Slika 30 Izvoz pada tlaka u Excel

Dionica	$\mathbf{Q} [\text{m}^3/\text{h}]$	V [m/s]	ξ[-]	Z [Pa]
1	11606,3	1,61	0,08	0,1
2	11606,3	5,73	0,30	5,9
2	11606,3	5,73	0,30	5,9
3	11606,3	5,97	1,55	33,2
3	7731,1	5,97	0,15	3,2
4	7731,1	5,96	1,54	32,9
4	3878,4	5,96	0,29	6,1
4	3878,4	5,96	0,18	3,9
5	3586,0	5,52	1,54	28,2
6	3360,8	5,83	1,51	30,9
7	3134,6	5,44	1,56	27,8
8	2772,0	5,48	1,54	27,8
9	2545,8	5,77	1,55	31,1
10	2363,9	5,36	1,54	26,6
11	2181,9	5,74	1,52	30,1
12	1936,5	5,98	1,54	33,1
13	1573,9	5,78	1,54	30,9
14	1328,5	4,88	1,54	22,0
15	1083,0	4,81	1,49	20,8
16	901,1	4,94	1,54	22,6
17	719,6	3,95	1,54	14,4
18	540,9	3,76	1,54	13,1
19	178,3	3,17	1,54	9,3
19	178,3	3,17	0,15	0,9
Ukupno				460,8

Tablica 4 Proračun pada tlaka u Excelu za prijelazne elemente sustava

Dionica	Pad tlaka [Pa]
1	0,1
2	5,9
2	5,9
2	33,2
3	3,2
4	6,2
4	3,9
4	32,9
5	26,3
6	31,5
7	27,6
8	27,9
9	31,1
10	26,8
11	30,5
12	33,1
13	30,9
14	22,0
15	21,5
16	22,6
17	14,4
18	13,1
19	0,9
Ukupno	451,5

Tablica 5 Proračun pada tlaka u Revitu za prijelazne elemente sustava

Usporedbom dvaju načina proračuna za prijelazne elemente vidljiva je ukupna razlika od manje 10 Pa, odnosno oko 2,2 % ukupno proračunatog pada tlaka.

Nakon provedenog dimenzioniranja dostupna je vizualizacija raznih parametara u kanalima, poput brzine strujanja, ukupnog protoka, ili pada tlaka. Konkretno, na slici 31 prikazan je dio kanalnog razvoda južne zone u ovisnosti o dinamičkom tlaku u kanalima, pri čemu su različitim bojama označeni dijelovi s tlakom većim, odnosno manjim od 25 Pa. S obzirom da pad tlaka u prijelaznim elementima sustava, koji čini većinu ukupnog pada tlaka, direktno ovisi o dinamičkom tlaku u kanalima, ovakav prikaz raspodjele dinamičkog tlaka mogao bi omogućiti projektantu dimenzioniranje sustava s manjim ukupnim padom tlaka, što za posljedicu ima i manje pogonske troškove ventilacijskog sustava.

Slika 31 Raspodjela dinamičkog tlaka u kanalu

Osim mogućnosti bolje analize projekta, automatizacija pospješuje i mogućnost suradnje s drugim sudionicima projekta. Zbog mogućnosti vrlo brze promjene dimenzija razvoda otvara se mogućnost analize puno većeg broja rješenja za prostorni smještaj svih instalacija u zgradi, što bi trebalo dovesti do većeg broja projektnih rješenja i potencijalno kvalitetnijeg izbora završnog rješenja na razini svih struka. Pregled svih ventilacijskih sustava u ovisnosti o dinamičkom tlaku dostupan je u tehničkoj dokumentaciji (Prilog C)

3.6. Dimenzioniranje klimatizacijskh jedinica

Dimenzioniranje klimatizacijskih jedinica provedeno je upotrebom dodatka za Revit pod imenom SystemAirCAD, čije se sučelje može aktivirati unutar Revita, odabirom funkcije *Insert SystemAir AHU* i prikazano je na slici 32. [22].

Slika 32 Sučelje alata SystemAirCAD

Ovaj alat također je primjer kako dobro integriran dodatak može značajno poboljšati pojedine dijelove radnog procesa, konkretno u ovom slučaju odabir klimatizacijske jedinice. Alat iz Revita preuzima sve podatke potrebne za dimenzioniranje klimatizacijske jedinice, nakon čega je u sučelju potrebno izvršiti odabir komponenti sustava prema potrebama projekta.

3.6.1. Zimski period

Za zimski period vrijede sljedeći projektni uvjeti:

• Zimski vanjski projektni uvjeti za grad Zagreb:

$$\vartheta_{v,z} = -12.8 \ ^\circ C$$

 $\varphi_{v,z} = 80 \ \%$
 $x_p = 0.85 \ g/kg$

• Unutarnji projektni uvjeti uredskih prostora

$$\vartheta_{v,z} = 20 \ ^{\circ}C$$

 $\varphi_{v,z} = 50 \ \%$
 $x_p = 7.1 \ g/kg$

A potrebni su još i sljedeći ulazni podaci:

• Gustoća zraka ρ_z :

$$\rho_z = 1,2026 \ kg/m^3$$

• Latentno opterećenje od osoba Q_L :

$$Q_L = 10,5 \ kW$$

• Volumen dobavnog zraka $q_{v,d}$:

$$q_{v,d} = 11606 \ m^3/h$$

• Volumen odsisnog zraka $q_{v,o}$:

$$q_{v.d} = 10962 \ m^3/h$$

• Specifični toplinski kapacitet zraka $c_{p,z}$:

$$c_{p,z} = 1,005 \ kJ/kgK$$

Pa je potreban sadržaj vlage zraka koji se ubacuje u prostore:

$$x_u = x_p - \frac{Q_L}{\rho \cdot q_{v,d} \cdot r} = 7,1 - \frac{10,5}{1,2026 \cdot \frac{11606}{3600} \cdot 2500} = 5,92\frac{g}{kg}$$

Dijelovi klimatizacijske jedinice korišteni u zimskom periodu su:

1. Rekuperator

Prolaskom kroz rekuperator koristi se toplina zraka odsisnog sustava kako bi se zagrijao svježi zrak. S obzirom na nisku zimsku projektnu temperaturu, u zimskim mjesecima struja svježeg zraka može pothladiti struju odsisnog zraka pa može doći do pojave leda, odnosno prekida strujanja u rekuperatoru. Kako bi se to spriječilo, rekuperator ima mogućnost rada u režimu odleđivanja. Taj režim rada aktivira se na temperaturi vanjskog zraka od: -7 °C. Za dobavni sustav prilikom prolaska kroz rekuperator proračunate su sljedeće vrijednosti:

- Pad tlaka dobavnog sustava: 136 Pa
- Temperatura zraka prije i nakon procesa: -12,8 °C / 14,8 °C
- Relativna vlažnost prije i nakon procesa: 85 % / 7,7 %

Dok su za odsisni sustav proračunate sljedeće vrijednosti:

- Pad tlaka odsisnog sustava: 121 Pa
- Temperatura zraka prije i nakon procesa: 22 $^{\circ}$ C / 0.5 C
- Relativna vlažnost prije i nakon procesa: 55 % / 98,1 %

Parametri rekuperatora iznose:

- Stupanj povrata topline: : 83,7 %
- Toplinski učin rekuperatora: 120,4 kW

Slika 33 Odabrani rekuperator i njegov shematski prikaz [23]

2. Ventilatori

Ventilatori dobavnog i odsisnog sustava ugrađeni su u klimatizacijsku jedinicu i izolirani kako bi se osiguralo postizanje akustičkih zahtjeva prema normi EN ISO 5136:2009. Radi se ventilatorima pokretanima elektronički komutiranim (*electronically commuted*, EC) motorima. Odabrani model je prikazan na slici 34, a njihova efikasnost u ovom procesu proračunata je na 81,2, odnosno 77,6 %.

Slika 34 Ventilator [23]

3. Grijač

Nakon prolaska kroz ventilator zrak je potrebno zagrijati. Temperaturu zagrijavanja potrebno je odrediti ovisno o konstrukciji klimatizacijske jedinice, odnosno o ovisno o tome koristi li se za grijanje samo jedan grijač, smješten prije ovlaživača, ili je iza ovlaživača ugrađen još jedan grijač za dogrijavanje. Odabrani grijač kao medij koristi toplu vodu, a prikazan je na slici 35. S obzirom da se u ovom slučaju koristi par grijača, ovim grijačem traži se postizanje temperature jednake temperaturi projektnih uvjeta. Parametri dobavne struje zraka nakon prolaska kroz grijač iznose:

- Pad tlaka dobavnog zraka: 5,5 Pa
- Brzina strujanja zraka na grijaču: 1,6 m/s
- Temperatura zraka prije i nakon procesa: 14,8 °C / 22 °C
- Relativna vlažnost zraka prije i nakon procesa: 7,7 % / 5 %

Slika 35 Grijač [22]

A parametri grijača iznose:

- Protok vode: 0,25 l/s
- Temperatura vode prije i nakon procesa: 70 °C / 50 °C
- Toplinski učin grijača: 27,9 kW
- Pad tlaka vode: 11,3 kPa
- 4. Ovlaživač

S obzirom da vlažnost dobavnog zraka po prolasku kroz grijač ne odgovara projektnim uvjetima, potrebno je struju zraka ovlažiti, za što se koristi ovlaživač vodom, prikazan na slici 36.

Slika 36 Ovlaživač [22]

U procesu ovlaživanja parametri dobavne struje zraka iznose:

- Pad tlaka dobavnog zraka: 48 Pa
- Brzina strujanja zraka na grijaču: 2,5 m/s
- Temperatura zraka prije i nakon procesa: : 22 °C / 9,2 °C
- Relativna vlažnost zraka prije i nakon procesa: 50 % / 82,3 %
- Apsolutna vlažnost zraka prije i nakon procesa: 0,8 g/kg / 5,9 g/kg

5. Dogrijač

Budući da struja zraka troši određenu količinu unutarnje energije na isparavanje vode, u procesu ovlaživanja njena se temperatura smanji na 9,2 °C, što ne zadovoljava unutarnje projektne uvjete. Kako bi se zrak pripremio, potrebno je provesti još jedno grijanje, odnosno dogrijavanje pomoću grijača postavljenog iza ovlaživača. Pri prolasku kroz grijač parametri dobavne struje zraka iznose:

- Pad tlaka dobavnog zraka: 12,4 Pa
- Brzina strujanja zraka na grijaču: 1,7 m/s
- Temperatura zraka prije i nakon procesa: 9,2 °C / 22 °C
- Relativna vlažnost zraka prije i nakon procesa: 82,3 % / 36 %
- Apsolutna vlažnost zraka prije i nakon procesa: 5,9 g/kg / 5,9 g/kg

A parametri grijača iznose:

- Protok vode: 0,25 l/s
- Temperatura vode prije i nakon procesa: 70 $^{\circ}C / 50 ^{\circ}C$

- Toplinski učin grijača: 49,8 kW
- Pad tlaka vode: 5,5 kPa

Prolaskom kroz dogrijač izvršena je priprema dobavnog zraka za ulazak u prostore za boravak.

3.6.2. Ljetni period

Za ljetni period vrijede sljedeći projektni uvjeti:

• Ljetni vanjski projektni uvjeti za grad Zagreb:

$$\vartheta_{v,z} = 29.6 \circ C$$

 $\varphi_{v,z} = 41 \%$
 $x_p = 10.5 g/kg$

• Unutarnji projektni uvjeti uredskih prostora

$$\vartheta_{v,z} = 26 \ ^{\circ}C$$

 $\varphi_{v,z} = 45 \ ^{\circ}M$
 $x_p = 9.4 \ g/kg$

Kako bi se osigurali ljetni unutarnji projektni uvjeti, potrebno je struju dobavnog zraka provesti kroz sljedeće dijelove klimatizacijske jedinice:

1. Rekuperator

Prolaskom kroz rekuperator dio topline zraka dobavnog sustava sustava prelazi na struju zraka odsisnog sustava, čime se struja dobavnog zraka hladi. Za dobavni sustav prilikom prolaska kroz rekuperator proračunate su sljedeće vrijednosti:

- Pad tlaka dobavnog sustava: 136 Pa
- Temperatura zraka prije i nakon procesa: 29,6 °C / 27,1 °C
- Relativna vlažnost prije i nakon procesa: 41 % / 47,6 %

Odsisna struja zraka prilikom prolaska kroz rekuperator ima sljedeće vrijednosti:

- Pad tlaka odsisnog sustava: 121 Pa
- Temperatura zraka prije i nakon procesa: 26 ° C / 30,2 C
- Relativna vlažnost prije i nakon procesa: 45 % / 38,4 %

Dok su za rekuperator poznati sljedeći parametri:

- Stupanj povrata topline:: 70,5 %
- Toplinski učin rekuperatora: 9,2 kW
- 2. Hladnjak

S obzirom da nakon prolaska kroz rekuperator struja dobavnog zraka još uvijek ima temperaturu veću od unutarnje projektne temperature, potrebno je zrak ohladiti prolaskom kroz hladnjak, prikazan na slici 37.

Slika 37 Hladnjak [23]

parametri dobavne struje zraka prilikom prolaska kroz hladnjak iznose:

- Pad tlaka dobavnog zraka: 21 Pa
- Brzina strujanja zraka na hladnjaku: 1,7 m/s
- Temperatura zraka prije i nakon procesa: 27,1 / 24,8 °C
- Relativna vlažnost zraka prije i nakon procesa: 47,6 / 54,5 %

A parametri hladnjaka iznose:

- Protok vode: 0,25 l/s
- Temperatura vode prije i nakon procesa: 22,5 °C / 24,7 °C
- Toplinski učin grijača: 8,9 kW
- Pad tlaka vode: 22,5 kPa

Svi prethodno opisani procesi prikazani su u h – x dijagramu na slici 38.

Slika 38 Proces pripreme zraka u zimskom i ljetnom razdoblju – južna zona

Prilikom odabira komponenti, one se u realnom vremenu unutar SystemAirCAD alata slažu u BIM model klimatizacijske jedinice, te je nakon provedenog proračuna moguće funkcijom *ImportCAD* taj model ubaciti u strojarski model projektirane zgrade unutar Revita. Za sustav južne zone odabrana je jedinica Geniox 22 proizvođača SystemAir, prikazana u stvarnom modelu na slici 39, i shematski na slici 40.

Slika 39 Geniox 22

Ekvivalentnim procesom dimenzionirana je i klimatizacijska jedinica zapadne zone te je odabran model Geniox 31, čiji je h –x dijagram procesa pripreme zraka prikazan na slici 41.

Slika 41 Proces pripreme zraka u zimskom i ljetnom razdoblju – zapadna zona

3.7. Automatizacija modeliranja prodora u arhitektonskom modelu

U procesu integriranog projektiranja značajan dio vremena uzima i koordinacija i komunikacija između struka uključenih u proces, a često se može dogoditi i neusklađenost zbog koje je potrebno raditi više iteracija samog procesa. Najčešće se proces odvija tako da nakon modeliranja projektanti ventilacijskog sustava lokacije i dimenzije potrebnih prodora dostave arhitektima, na temelju čega se prodori modeliraju, te potom šalju na analizu nosivosti. U izrađenom algoritmu se za zadanu geometriju ventilacijskog sustava automatski kreiraju prodori, čime je arhitektonski model spreman za analizu nosivosti. U daljnjem razvoju algoritma nužno bi bilo uključenje građevinskih inženjera i integracija analize nosivosti, kako bi se proces proračuna značajno skratio, a time bi se i dobila mogućnost ostvarivanja većeg broja iteracija, te odabir optimalnog rješenja.

Algoritam, prikazan na slici 42, se sastoji od nekoliko koraka koji će biti detaljnije pojašnjeni kako bi se omogućio uvid u logiku korištenja vizualnog programiranja.

1. Odabir potrebnih elemenata iz Revit modela

Kako bi skripta dobila potrebne ulazne podatke, nužno je odabrati ciljane elemente za koje će se analizirati kolizije. Pomoću *nodeova All Elements of Category* odabiru se svi elementi zidova, a istovremeno se iz uvezenog strojarskog modela preuzimaju svi elementi koji pripadaju kategoriji ventilacijskih kanala.

Slika 42 Automatsko kreiranje prodora - 1. dio

2. Dimenzioniranje prodora

Za svaki od ventilacijski kanal se *nodeovima ParameterByName* i *Parameter.Value* preuzimaju dimenzije širine i visine. Nakon dobivanja podataka o dimenzijama, projektant kao ulazni podatak odabire brojčanu vrijednost traženog odmaka prodora od ruba kanala. Ta brojčana vrijednost pribraja se dimenzijama svakog od kanala čime se dobivaju potrebne dimenzije prodora.

Slika 43 Automatsko kreiranje prodora - 2. dio

3. Lociranje kolizija

Lociranje kolizija radi se pomoću listi zidova i ventilacijskih kanala napravljenih u točki 1. Pomoću *nodea Element.IntersectsElement* se dobivaju liste koji su točno elementi u međusobnoj koliziji. Potom se *nodeovima Element.Geometry* i *Geometry.Intersect* dobiva prvo njihova geometrija, a potom i točna geometrija koja je u koliziji, što u ovom konkretnom slučaju predstavlja poprečni presjek ventilacijskog kanala. Kao finalni korak lociranja kolizija *nodeom Solid.Centroid* dobiva se središnja točka za geometriju svake pojedine kolizije.

Slika 44 Automatsko kreiranje prodora - 3. dio

4. Modeliranje prodora

Modeliranje prodora vrši se pomoću *nodea WallOpening.ByPointWidthHeight*. U *node* se kao podatak unose elementi zidova, lokacije središta kolizija, te pripremljene dimenzije za svaki pojedini prodor, a algoritam na temelju tih podataka radi pravokutne prodore u zidovima, kako je prikazano na slici 45.

Slika 45 Prikaz stvorenih pravokutnih prodora

3.8. Automatizacija izrade tehničke dokumentacije

Jedna od velikih prednosti BIM pristupa u odnosu na tradicionalni 2D CAD pristup je što se izrada tehničke dokumentacije temelji na izrađenom modelu. Baza kvalitetnih predložaka je temelj svakog BIM procesa, ali nakon uspostave dovoljno opsežne baze, korisnikov rad bi trebao biti usmjeren gotovo isključivo na modeliranje konkretnog sustava. To bi za posljedicu trebalo donijeti više vremena provedenog na projektiranju sustava, odnosno kvalitetnije završno rješenje. Automatizacijom izrade tehničke dokumentacije omogućuje se potpuna usmjerenost na proces projektiranja, a tehnička dokumentacija izrađena je automatizmom u samom početku projekta. Time se omogućuje i bolja kontrola parametara sustava tipiziranim načinima prikaza, odnosno posljedično i kvalitetnije projektiranje. Bitno je napomenuti da baš u ovom segmentu do izražaja dolazi nužnost standardizacije prikaza tehničke dokumentacija rada je stoga prikazana prema normi EN 13779, a u budućnosti je nužna i standardizacija prikaza analitičkih veličina promatranih elemenata, poput pada tlaka ili brzine strujanja za analizu ventilacijskih kanala.

Kako bi se stekao bolji uvid u proces automatizacije potrebno je ukratko prikazati standardni proces izrade tehničke dokumentacije u sučelju Revita:

 Potrebno je kreirati sastavnice za smještaj pogleda. Sastavnice se kreiraju na temelju unaprijed kreiranog tipiziranog predloška, te imaju unaprijed zadane dimenzije, izgled i parametre, pri čemu svaki tekstualni parametar ima svoje mjesto na sastavnici Promjena vrijednosti parametra je odmah vidljiva na nacrtu, te se uobičajeno radi izmjenom u sučelju Revita za svaki pojedini nacrt.

- 2. Potrebno je kreirati poglede za nacrte te postaviti njihove granice prikaza u odnosu na cijeli model
- Potrebno je postaviti predloške na temelju kojih će se prikazivati pogledi na nacrtima. Moguće je odabrati željene elemente modela za prikaz, te grafičke postavke za svaki od njih.
- 4. Za svaki od potrebnih nacrta potrebno je postaviti željeni predložak, širinu pogleda te ga povlačenjem postaviti na odgovarajuću sastavnicu, a u svakoj od sastavnica potrebno je promijeniti parametre kako bi odgovarala prikazima koji se na njoj nalaze.

Cilj je stvoriti set algoritama koji će automatizirati objašnjene korake, i to na sljedeći način:

1. Kreiranje sastavnica

U sučelju Revita stvara se jedan nacrt koji će biti ogledni primjerak za stvaranje ostalih. Tom nacrtu dodjeljuje se željena sastavnica sastavnica s pripadajućim parametrima, i na temelju njega te podataka o imenima i brojevima kreira se proizvoljan broj nacrta sa zadanim predloškom. Implementacija u Dynamo prikazana je na slici 26, a algoritam je prilagođen za Dynamo Player tako da je potrebno odabrati lokaciju i ime radnog lista Excel datoteke iz koje se preuzimaju podaci i željeni predložak sastavnice, dok algoritam kao izlazni podatak prikazuje imena stvorenih sastavnica. Komunikacija s Excelom omogućuje da projektant mijenja karakteristike željenih sastavnica u Excel tablici, bez potrebe za ulaskom u sučelje Dynama, što omogućuje korištenje algoritma i projektantima bez programerskog znanja.

Slika 46 Implementacija algoritma za stvaranje sastavnica u Dynamo

2. Postavljanje parametara sastavnicama

Ekvivalentno točki 1, iz Excel tablice se u Dynamo unose podaci o parametrima koji se potom pridodaju sastavnicama. Algoritam je strukturiran na način da je moguće u Excel tablicu dodavati i nove parametre i njihove vrijednosti, prilikom čega je bitno da se zadrži postojeći format podataka. Zanimljivo je spomenuti da je ovaj proces samo produžetak Revitovih postojećih funkcija, odnosno parametri kao *Project Name, Project Number* i neki drugi se mijenjaju direktno u sučelju Revita i potom automatski prikazuju na svakoj od sastavnica, te njihova imena i vrijednosti nije potrebno mijenjati putem Dynama. Implementacija u Dynamo *Player* je izvršena tako da je potrebno odabrati Excel datoteku i ime radnog lista, a algoritam po izvršetku prikazuje popis sastavnica, parametara i njihovih vrijednosti.

Postavljanje parametara sastavnicama

Slika 47 Implementacija algoritma za postavljanje parametara u Dynamo

3. Stvaranje pogleda

Stvaranje pogleda se vrši na temelju nodea FloorPlanWithViewTemplate koji na temelju liste katova i odabranog predloška stvara poglede. Iz Revit modela se preuzimaju svi katovi te potom korisnik upisuje imena onih katova za koje ne želi stvoriti pogled sa željenim predloškom. Završni korak je odabir konkretnog predloška, a algoritam prikazan na slici 48 vrši stvaranje pogleda po odabranim katovima. Implementacija u Dynamo Player izvršena je tako da se nakon odabira katova i predloška algoritam pokrene, te nakon završetka prikazuje popis stvorenih pogleda.

Slika 48 Implementacija algoritma za stvaranje pogleda u Dynamo

4. Postavljanje granica pogleda

Postavljanje granica pogleda vrši se *nodeom Views.SetCropBox* za koji je potrebno pružiti kvadratni oblik prethodno preuzet iz tipskog pogleda, te listu katova za koje je potrebno postaviti granice pogleda. S obzirom na potrebnu tehničku dokumentaciju, algoritam postavlja sve nacrte prema granicama postojećeg pogleda. Osim toga, dodan je i ulazni parametar koji određuje hoće li granice postojećeg pogleda biti vidljive ili ne, a kako je vidljivo na slici 49.

Slika 49 Implementacija algoritma za postavljanje granica pogleda u Dynamo

5. Postavljanje pogleda na sastavnice

Postavljanje pogleda na sastavnice vrši se *nodeom ViewsToSheets_ByPoints*, koji za ulazne podatke traži poglede koje je potrebno postaviti, sastavnicu na koju ih je potrebno postaviti, te točnu lokaciju na sastavnici na koju će se određeni pogled postaviti, a proces dolaska do tih ulaznih podataka nešto je duži nego u prije objašnjenim algoritmima. Prije svega, potrebno je iz Revita preuzeti sve nacrte, te ih potom filtrirati za kat za koji se nacrt želi postaviti na sastavnicu. Paralelno, potrebno je odabrati sastavnicu na temelju koje se radi predložak te iz te sastavnice preuzeti sve predloške pogleda, te filtrirati one koji nemaju dodijeljen predložak, ili je predložak nemoguće preuzeti zbog načina programiranja Revita. Pri tome se konkretno misli na 3D poglede, za koje je preuzimanje predložaka otežano.

Slika 50 Algoritam za postavljanje pogleda na sastavnice - 1. dio

Potom je potrebno usporediti predloške od svih dostupnih pogleda za traženi kat, te sve predloške onih pogleda koji se nalaze na tipskoj sastavnici. Usporedbom se nalaze i preuzimaju samo oni pogledi koji imaju isti tip predloška kao na tipskoj sastavnici.

Slika 51 Algoritam za postavljanje pogleda na sastavnice - 2. dio

Kao finalni korak algoritma, potrebno je preuzeti lokacije svih pogleda na tipskoj sastavnici te na temelju lokacija, filtriranih pogleda, i odabrane nove sastavnice, postaviti poglede na ciljane lokacije.

Slika 52 Algoritam za postavljanje pogleda na sastavnice - 3. dio

4. Zaključak

Digitalizacija građevinskog sektora još je uvijek na niskom stupnju primjene, a pravilno stvaranje i upotreba podataka omogućila bi porast produktivnosti, počevši od bržeg i efikasnijeg procesa projektiranja, preko poboljšanja kvalitete izvođenja zbog mogućnosti razmjene podataka u digitalnom obliku, pa sve do mogućnosti praćenja karakteristika sustava i nakon izvođenja, kombinacijom digitalnog BIM modela i senzorskog sustava na izvedenom stanju. Potpuni potencijal upotrebe naprednijih koncepata, poput upotrebe neuronskih mreža ili strojnog učenja još je nejasan, ali je sigurno da će u budućnosti doći do njihove povećane upotrebe u procesu projektiranja.

U ovom radu su na primjeru ventilacijskog sustava uredske zgrade prikazani osnovni koncepti projektiranja u BIM okruženju, a u kasnijem dijelu rada prikazane su i mogućnosti automatizacije procesa upotrebom alata integriranih u Revit. Cijeli proces popraćen je detaljnim objašnjenjima kako bi se omogućilo razumijevanje logike procesa. Razumijevanje logike nužno je kako bi rad ispunio svoju svrhu glavnu svrhu, a to je upoznavanje strojarskih inženjera sa programiranjem kao alatom koji omogućuje poboljšanje procesa projektiranja u BIM okruženju. Detaljnom analizom rada projektant bi trebao steći dovoljno znanja kako bi razvijene algoritme mogao prilagođavati prema zahtjevima pojedinog projekta.

Algoritmi trenutno obuhvaćaju samo manji dio procesa strojarskog projektiranja, te ih je potrebno i dalje razvijati istraživačkim radom kako bi obuhvatili širi spektar strojarskih područja projektiranja (poput grijanja ili hlađenja), ali i kako bi se za svako od područja razvila još preciznija rješenja automatizacije (poput optimizacije razmještaja ventilacijskih distributera za zadanu geometriju) te tako doprinijela konačnom cilju, povećanju dugoročne održivosti u građevinskom sektoru.

5. Literatura

- F. Barbosa *et al.*, "Reinventing Construction: A Route To Higher Productivity," *McKinsey Co.*, no. February, p. 168, 2017, [Online]. Available: www.revalue.dk.
- [2] "un.org." https://www.un.org/development/desa/en/news/population/world-populationprospects-2019.html. Datum zadnjeg pristupa: 13.1.2021.
- [3] I. Kecerdasan and P. Ikep, "Energy Efficiency Trends in the EU," p. 6st. Datum zadnjeg pristupa: 13.1.2021.
- [4] M. Bergin, "A Brief History of BIM," *Archdaily*, 2012. Datum zadnjeg pristupa: 13.1.2021.
- [5] "ArchiCAD 1984." https://www.archdaily.com/302490/a-brief-history-ofbim/50be3c5cb3fc4b4fe60000eb-a-brief-history-of-bim-image. Datum zadnjeg pristupa: 13.1.2021.
- [6] M. Jurčević, M. Pavlović, and H. Šolman, "Opće smjernice za BIM pristup u graditeljstvu," p. 156, 2017, [Online]. Available: http://www.hkig.hr/fdsak3jnFsk1Kfa/izdvojeno/HKIG-BIM.pdf.
- [7] V. Kušen, "Diplomski rad," FMENA Zagreb, 2017.
- [8] "BIM Maturity Levels." https://biblus.accasoftware.com/en/bim-maturity-levels-fromstage-0-to-stage-3/. Datum zadnjeg pristupa: 13.1.2021.
- [9] "Dimensions of BIM." https://3drepo.com/what-are-bim-dimensions/. Datum zadnjeg pristupa: 13.1.2021.
- [10] "8D BIM." https://8dbim.weebly.com/8d.html. Datum zadnjeg pristupa: 13.1.2021.
- [11] "Telge Projects." https://telgeprojects.com/bim-co-ordination/. Datum zadnjeg pristupa: 13.1.2021.
- [12] "HVAC LOD Model." https://constructible.trimble.com/construction-industry/hvac-lod-levels-how-they-impact-your-3d-model. Datum zadnjeg pristupa: 13.1.2021.
- [13] "Autodesk." www.autodesk.com. Datum zadnjeg pristupa: 13.1.2021.
- [14] S. Kolarić, M. Vukomanović, and A. Bogdan, "Analiza primjene BIM-a u hrvatskom

graditeljstvu," vol. 72, pp. 205–214, 2020.

- [15] "https://i2.wp.com/www.shoegnome.com/wp-content/uploads/2015/11/BIM-withtemplates.jpg." . Datum zadnjeg pristupa: 13.1.2021.
- [16] "Revit Wiki." https://www.autodesk.com/products/revit/overview. Datum zadnjeg pristupa: 13.1.2021.
- [17] "Stack Overflow." https://stackoverflow.com/. Datum zadnjeg pristupa: 13.1.2021.
- [18] K. Sobon, "Honeybee Meets Revit." https://archi-lab.net/honeybee-meets-revit/. Datum zadnjeg pristupa: 13.1.2021.
- [19] M. Asker, O. E. Turgut, and M. T. Coban, "A Review of Non Iterative Friction Factor Correlations for the Calculation of Pressure Drop in Pipes," *Bitlis Eren Univ. J. Sci. Technol.*, vol. 4, no. 1, pp. 1–8, 2014.
- [20] I. Šavar, Mario; Virag, Zdravko; Džijan, "Hidraulički proračun cjevovoda," in *Mehanika fluida I*, .
- [21] Energetika Marketing, Priručnik za ventilaciju i klimatizaciju. 2015.
- [22] "SystemAir." https://www.systemair.com/. Datum zadnjeg pristupa: 13.1.2021.
- [23] "SystemAir Catalogue." https://www.google.com/search?client=firefox-bd&q=systemair. Datum zadnjeg pristupa: 13.1.2021.

6. Prilozi

6.1. Prilog A: Priručnik za korištenje algoritama

6.1.1. Priprema sustava

Tablica 6 Popis svih korištenih paketa

Ime paketa	Autor	Opis	Datum objave korištene verzije
archi-lab	Konrad K. Sobon	Set od 50+ nodeova koji značajno poboljšavaju interakciju Revita i Dynama	24.12.2020.
Bumblebee	Konrad K. Sobon	Paket za poboljšanje interoperabilnosti između Dynama i Excela	26. 5. 2020.
Bimorph	Thomas Mahon	Paket koji omogućuje efikasnu detekciju kolizija među elementima modela	11.6.2020.
Clockwork	Bad Monkeys	Kolekcija nodeova za razne svrhe poput manipulacije listama, matematičkih operacija, pretvorbe mjernih jedinica	15.1.2020.
Crumple	Gavin Crump	Paket za razne upotrebe, u ovom radu najznačajniji za kreiranje tehničke dokumentacije	10.11.2020.
Data-Shapes	Mostafa Elayoubi	Paket koji omogućuje manipulaciju podacima te kreiranje vlastitog korisničkog sučelja unutar Dynamo Playera	22.12.2020.
DynamoMEP	Simon Moreau	Kolekcija nodeova koja pospješuje manipulaciju strojarskim i elektrotehničkim elemenata	12.8.2020.
FuzzyDyno	wynged	Paket koji omogućuje usporedbu tekstualnih podataka neizrazitom logikom	6.10.2016.
Lunchbox	Proving Ground	Paket za manipulaciju podacima i geometrijom	8.8.2018.
MEPover	Taco Pover	Kolekcija nodeova koja pospješuje manipulaciju strojarskim i elektrotehničkim elemenata	8.6.2020.
Modelical	Modelical	Paket raznih nodeova za povećanje produktivnosti	24.3.2020.
Rhythm	John Pierson	Paket za manipulaciju podacima i geometrijom	8.9.2020.
Slingshot	Proving Ground	Paket za povezivanje Dynama s vanjskim bazama podataka	30.11.2014.
Springs	Sang Truong	Paket za ubrzanje BIM radnog procesa	22.7.2020.
SteamNodes	Julien Benoit	Paket za implementaciju Dynama u svakodnevne radne procese	5.1.2018.
Universo_BIM	UniversoBIM	Paket korišten za kreiranje prodora	11.10.2019.

- 1. Sve algoritme potrebno je preuzeti sa repozitorija diplomskog rada
- Kako bi se omogućilo uspješno korištenje algoritama, potrebno je u sučelju Dynama funkcijom *Packages* -> *Search for a Package* preuzeti sve pakete navedene u tablici 6, pri čemu je bitno da se koristi ista ili novija verzija paketa.
- 3. Prilikom kreiranja novog projekta u Revitu, potrebno je kao predložak odabrati *Predložak projekta.rte* kako bi se omogućilo korištenje tipova ventilacijskih sustava, predložaka pogleda, te ostalih elemenata stvorenih u Revitu u sklopu diplomskog rada. Ukoliko se algoritmi žele primijeniti na već postojećem projektu, potrebno je otvoriti ciljani projekt te preuzeti predložak i upaliti datoteke u Revitu. Potom je potrebno u ciljani projekt funkcijom *Manage -> Transfer Project Standards* učitati željene standarde projekta.
- 4. Kako bi se omogućilo korištenje algoritama direktno u Dynamo Playeru, potrebno ga je upaliti te klikom na *Browse to Folder* odabrati lokaciju mape preuzete u točki 1.

6.1.2. 1_Kreiranje Worksetova

- 1. Za korištenje algoritma za kreiranje Worksetova potrebno je u Dynamo Playeru odabrati funkciju *Edit Inputs*, te klikom na opciju *Excel File* odabrati točnu lokaciju Excel datoteke preuzete sa repozitorija pod imenom *Worksets*.
- Klikom na funkciju *Run Script* kreiraju se svi *Worksetovi* navedeni u *Excel* datoteci. Imena
 i broj željenih *Worksetova* mijenjaju se direktno u Excel datoteci, pri čemu je bitno
 napomenuti da je moguće *Worksetove* kreirati i više puta u toku projektiranja.
- 3. Ukoliko se u *Excel* datoteci nalaze imena *Worksetova* jednaka već postojećim *Worksetovima*, navodi se da je algoritam završen sa greškama, pri čemu se misli da već postojeći *Worksetovi* nisu ponovno stvoreni, a sama ta greška ne utječe na funkcionalnost.
- 4. Kao izlazni podatak dostupna su sva imena stvorenih Worksetova, te njihov ukupan broj.

6.1.3. 2_Proračun ventilacijskih zahtjeva

- 1. Za korištenje ovog algoritma potrebno je napraviti tekstualni *Shared Parameter* pod imenom *ASHRAE Name*, te za sve elemente prostora (*Spaces*) dodati odgovarajući parametar iz *ASHRAE* tablice.
- Kako bi se ubrzalo dodavanje parametra, napravljen je algoritam 2_1 ASHRAE Name koji omogućuje dodavanje parametra za sve istoimene elemente prostora. Potrebno je upisati ime prostora i željeno ime parametra koji će biti dodan za sve elemente prostora sa upisanim imenom.

- Potrebno je pokrenuti algoritam 2_Proračun ventilacijskih zahtjeva, te funkcijom Excel File odabrati lokaciju datoteke ASHRAE u kojoj se nalaze podaci o potrebnim protocima prema ASHRAE standardima vidljivi u prilogu B. Nakon toga potrebno je odabrati željeni prostor za proračun ventilacijskih zahtjeva te željeni omjer dobavnog i odsisnog protoka.
- Ukoliko se raspored tlaka u prostorima želi prikazati na način prikazan u ovom radu, potrebno je kao predložak pogleda (*Identity Data -> View Template*) odabrati *Tlak po prostorima*.
- 5. Nakon izvršenja algoritma za pojedini prostor prikazuje se ime i vrijednosti *ASHRAE* tipa prostora odabranog iz tablice, te ime, broj, te proračunate vrijednosti tlačnog i odsisnog protoka za odabrani prostor.

6.1.4. 3_Bilanca ventilacije po katovima

- Kako bi se omogućilo računanje bilance ventilacije, potrebno je unutar Revita odabrati funkciju *Analyze -> Zone* te odabrati željenu podjelu sustava po zonama. Ukoliko se pritom želi ostvariti pogled kao u tehničkoj dokumentaciji rada, potrebno je za predložak pogleda odabrati *Zone*.
- 2. U Dynamo Playeru potrebno je odabrati željenu zonu proračuna i kat, a nakon izvršenja algoritma prikazuje se razlika dobavnog i odsisnog protoka za zonu, kat i čitavu zgradu.

6.1.5. 4_Postavljanje distributera

- Potrebno je funkcijom *Insert -> Load Family* u projekt učitati familije za dobavne i odsisne distributere koje se žele koristiti u projektu. Moguće je koristiti i druge familije u odnosu na one postavljene u izvornom algoritmu, pri čemu je potrebno unutar *Dynama* u segmentima *Odabir dobavnog distributera* i *Odabir odsisnog distributera* učitati druge elemente, te promijeniti raspone protoka unutar Python skripte.
- 2. Potrebno je ispuniti tražene parametre unutar Dynamo Playera kako bi se odredile željene udaljenosti od zidova, rotacija i broj distributera unutar prostorije. Ako se za vanjski zid koristio neki element koji ne nosi isti naziv kao zadani element (*Exterior Curtain Wall*) potrebno je označiti element vanjskog zida iz arhitektonskog modela te prepisati njegovo ime. Ukoliko elementu zida nije moguće pristupiti unutar strojarskog modela u Revitu, potrebno je omogućiti funkcije *Select Links* i *Select Pinned Elements* u desnom kutu donje alatne trake.

3. Nakon uspješnog postavljanja distributera kao izlaz u Dynamo Playeru prikazuju se parametri stvorenih distributera (rotacija, međusobni odmak i odmak od zida, broj, pojedinačni protok i odabrani model distributera) zasebno za dobavni i odsisni sustav.

6.1.6. 5_Postavljanje distributera na liniju

- Ovaj algoritam koristi se ako algoritam iz poglavlja 6.1.5. ne daje željene rezultate. Potrebno je naredbom *Annotate -> Detail Line* (ili kraticom DL) nacrtati krivulje za smještaj dobavnih i odsisnih distributera.
- 2. Potrebno je odabrati nacrtane krivulje te prostor u koji se distributere želi smjestiti, te unijeti željeni broj distributera i njihovu rotaciju.
- Nakon izvršenja algoritma u Dynamo Playeru prikazuju se parametri stvorenih distributera (rotacija, međusobni, broj, pojedinačni protok i odabrani model) zasebno za dobavni i odsisni sustav.

6.1.7. 6_Proracun protoka po distributeru

- Ovaj algoritam se koristi ukoliko se u procesu projektiranja promijeni broj distributera u pojedinom prostoru. Potrebno je odabrati prostor u kojem se želi napraviti naknadni proračun protoka po distributeru. Algoritam pronalazi sve tlačne i odsisne distributere u njihov parametar *Flow* upisuje izračunati protok.
- Kao izlazni parametri u Dynamo Playeru prikazuju se broj distributera i pojedinačni protok, zasebno za dobavni i odsisni sustav.

6.1.8. 7_Automatizacija stvaranja prodora

- S obzirom da se automatizacija stvaranja prodora odvija u arhitektonskom modelu, potrebno je otvoriti arhitektonski model s njime povezati strojarski model (*Insert -> Link Revit*). Pri tome sam strojarski model mora biti ugašen.
- Potrebno je unijeti željenu udaljenost prodora od ruba ventilacijskog kanala na temelju koje se dimenzioniraju kvadratni prodori.
- 3. Kao izlazni parametar Dynamo Playera prikazuje se broj stvorenih prodora.

6.1.9. 8_Kreiranje nacrta

- Potrebno je funkcijom *Insert -> Load Family* u projekt učitati sastavnicu koja će biti korištena kao predložak. FSB sastavnica A0 dimenzija napravljena je kao dio projekta, a moguće je učitati i bilo koju drugu sastavnicu.
- 2. Potrebno je pronaći lokaciju Excel datoteke Sastavnice.

3. U radni list pod imenom *Ime i broj* upisuju se imena i brojevi sastavnica koje je potrebno stvoriti za odabrani predložak. Nakon kreiranja nacrta potrebno je izbrisati upisane imena i brojeve te na njihova mjesta upisati nove podatke, za one nacrte koji se žele kreirati na temelju neke druge sastavnice te ponoviti cijeli proces

6.1.10. 9_Postavljanje parametara sastavnicama

- 1. Kao u prethodnom algoritmu, potrebno je pronaći lokaciju Excel datoteke Sastavnice.
- Promjene željenih parametara vrše se u *Excel* datoteci u radnom listu *Ostali parametri*. Moguće je dodavanje i drugih parametara sastavnica za promjenu stvaranjem novih stupaca unutar Excel datoteke.

6.1.11. 10_Stvaranje pogleda

- Potrebno je odabrati predložak pogleda (*View Template*) na temelju kojeg se žele stvoriti novi pogledi.
- 2. Ukoliko se želi spriječiti stvaranje pogleda sa odabranim predloškom za neki od katova, potrebno je ime tog kata upisati u Dynamo Player. Trenutno je moguće upisati maksimalno 4 kata, a ukoliko je potreban veći broj, potrebno je u sučelju Dynama u dijelu *Filtriranje postojećih pogleda* dodati polja za upis.
- 3. Nakon izvršenja algoritma, u Dynamo Playeru prikazuju se imena stvorenih pogleda.

6.1.12. 11_Postavljanje granica pogleda

- Potrebno je odabrati jedan pogled kao predložak na temelju kojeg se postavljaju granice ostalih pogleda
- Potrebno je odabrati za koji tip pogleda će biti namještene granice prema odabranom predlošku
- 3. Potrebno je odabrati prikaz granica pogleda, pri čemu *False* isključuje, a *True* uključuje vidljivost granica pogleda.

Occupancy Category	Rp (L/s- per)	Ra (L/s- m2)	#/1000 ft2 (#/100 m2)
Art classroom	5	0.9	20
Auditorium seating area	2.5	0.3	150
Bank vaults/safe deposit	2.5	0.3	5
Banks or bank lobbies	3.8	0.3	15
Barbershop	3.8	0.3	25
Barracks sleeping areas	2.5	0.3	20
Bars, cocktail lounges	3.8	0.9	100
Beauty and nail salons	10	0.6	25
Bedroom/living room	2.5	0.3	10
Booking/waiting	3.8	0.3	50
Bowling alley (seating)	5	0.6	40
Break rooms (General)	2.5	0.3	50
Break rooms (Office)	2.5	0.6	50
Cafeteria/fast-food dining	3.8	0.9	100
Cell	2.5	0.6	25
Classrooms (age 9 plus)	5	0.6	35
Classrooms (ages 5–8)	5	0.6	25
Coffee stations	2.5	0.3	20
Coin-operated laundries	3.8	0.6	20
Common corridors	0	0.3	
Computer (not printing)	2.5	0.3	4
Computer lab	5	0.6	25
Conference/meeting	2.5	0.3	50
Corridors	0	0.3	0
Courtrooms	2.5	0.3	70
Daycare (through age 4)	5	0.9	25
Daycare sickroom	5	0.9	25
Dayroom	2.5	0.3	30
Disco/dance floors	10	0.3	100
Dwelling unit	2.5	0.3	2
Freezer and refrigerated spaces (<50°F)	5	0	0
Gambling casinos	3.8	0.9	120
Game arcades	3.8	0.9	20
General manufacturing (excludes heavy industrial and processes using chemicals)	5	0.9	7
Guard stations	2.5	0.3	15
Gym, sports arena (play area)	10	0.9	7
Health club/aerobics room	10	0.3	40
Health club/weight rooms	10	0.3	10

6.2. Prilog B: ASHRAE tablica za proračun ventilacijskih zahtjeva

Kitchen (cooking)	3.8	0.6	20
Laundry rooms within dwelling units	2.5	0.6	10
Laundry rooms, central	2.5	0.6	10
Lecture classroom	3.8	0.3	65
Lecture hall (fixed seats)	3.8	0.3	150
Legislative chambers	2.5	0.3	50
Libraries	2.5	0.6	10
Lobbies	2.5	0.3	150
Lobbies/prefunction	3.8	0.3	30
Main entry lobbies	2.5	0.3	10
Mall common areas	3.8	0.3	40
Media center	5	0.6	25
Multipurpose assembly	2.5	0.3	120
Multi-use assembly	3.8	0.3	100
Museums (children's)	3.8	0.6	40
Museums/galleries	3.8	0.3	40
Music/theater/dance	5	0.3	35
Occupiable storage rooms for liquids or gels	2.5	0.6	2
Storage	2.5	0.3	2
Office space	2.5	0.3	5
Pet shops (animal areas)	3.8	0.9	10
Pharmacy (prep. area)	2.5	0.9	10
Photo studios	2.5	0.6	10
Places of religious worship	2.5	0.3	120
Reception areas	2.5	0.3	30
Restaurant dining rooms	3.8	0.9	70
Sales (except as below)	3.8	0.6	15
Science laboratories	5	0.9	25
Shipping/receiving	5	0.6	2
Sorting, packing, light assembly	3.8	0.6	7
Spectator areas	3.8	0.3	150
Stages, studios	5	0.3	70
Supermarket	3.8	0.3	8
Swimming (pool & deck)	0	2.4	0
Telephone closets	0	0	0
Telephone/data entry	2.5	0.3	60
Transportation waiting	3.8	0.3	100
University/college laboratories	5	0.9	25
Warehouses	5	0.3	0
Wood/metal shop	5	0.9	20

Broj	Ime	Opis	Mjerilo
VT001	Izometrija	Izometrijski prikaz projektiranih ventilacijskih sustava i prikaz arhitektonske podloge	-
VT010	1. kat - Analiza	Prikaz proračunskih zona, rasporeda tlaka i pretlaka te dinamičkog tlaka sustava za prvi kat	1:200
VT011	1. kat	Prikaz ventilacijskih sustava u arhitektonskom okruženju za prvi kat	1:200
VT020	2. kat - Analiza	Prikaz proračunskih zona, rasporeda tlaka i pretlaka te dinamičkog tlaka sustava za drugi kat	1:200
VT021	2. kat	Prikaz ventilacijskih sustava u arhitektonskom okruženju za drugi kat	1:200
VT030	3. kat - Analiza	Prikaz proračunskih zona, rasporeda tlaka i pretlaka te dinamičkog tlaka sustava za treći kat	1:200
VT031	3. kat	Prikaz ventilacijskih sustava u arhitektonskom okruženju za treći kat	1:200
VT040	Krov	Prikaz ventilacijskih sustava u arhitektonskom okruženju za krov	1:200
VT101	Presjek razvoda južne zone	Horizontalni presjek razvoda južne zone, te horizontalni i vertikalni presjeci kroz vertikalni otvor južne zone	1:50
VT102	Presjek razvoda zapadne zone - 1. dio	Horizontalni presjek razvoda zapadne zone, te horizontalni i vertikalni presjeci kroz vertikalni otvor prvog (zapadnog) dijela zapadne zone	1:50
VT102	Presjek razvoda zapadne zone - 2. dio	Horizontalni presjek razvoda zapadne zone, te horizontalni i vertikalni presjeci kroz vertikalni otvor drugog (sjevernog) dijela zapadne zone	1:50

6.3. Prilog C: Tehnička dokumentacija

Napomena: Zbog nepodudarnosti službene sastavnice Fakulteta strojarstva i brodogradnje sa parametarskim konceptom automatizacije tehničke dokumentacije opisanim u 3.8, ista nije mogla biti upotrijebljena u radu. Stoga je originalna Autodesk sastavnica prilagođena i korištena u radu, a također je dostupna na repozitoriju rada za slobodno korištenje.

3 Perspektiva

2	FSB				
Fakultet strojarstva i brodogradnje Zavod za termodinamiku, toplinsku i procesnu tehniku Katedra za toplinsku i procesnu tehniku www.fsb.unizg.hr					
Jug Zapad Prostor bez dobavne ventilacije Prostor u potlaku Prostor u potlaku Područje manjeg dnamičkog tlaka (<25 Pa/m) Područje vedeg dnamičkog tlaka (<> 25 Pa/m)					
Br. Opis	Datum				
Diplor	Diplomski rad				
1. kat	- Analiza				
Broj projekta Datum Projektirao Mentor	001 14.1.2021. Marin Ljuban Darko Smolian				
V	Г010				
Mjerilo	As indicated				

1 Dobavni sustav

	0	- S	B			
I Z Ka	Fakultet strojarstva i brodogradnje Zavod za termodinamiku, toplinsku i procesnu tehniku Katedra za toplinsku i procesnu tehniku					
		Dobavni zrak				
	TR1	Tlačna rešeti	ka-tip 1			
	TR2	Tlačna rešeti	ka - tip 2			
	TR3	Tlačna rešeti	ka - tip 3			
	TR4	Tlačna rešeti Tlačni distrib	ka-tip4			
	TD2 TD3	Tlačni distrib	uter - tip 1 uter - tip 2			
	OR1	Odsisna reše	etka - tip 1			
	OR2	Odsisna reše	etka - tip 2			
	OR3 OD2	Odsisna reše Odsisni distri	etka - tip 3 buter - tip 2			
	OD2 OD3	Odsisni distri	buter - tip 2			
Br	Onis		Datum			
			Datam			
			<u> </u>			
			—			
E						
			+			
	1 kat					
Broj p	rojekta		001			
Datur	n	14.1	1.2021.			
Proje	ktirao	Marin	Ljuban			
Mente	or	Darko S	molian			
			,,			
Miorit	VT011					
		12 III	aiuaieu			

VO FS	B		
Fakultet strojarstva i brod Zavod za termodinamiku, procesnu tehniku Katedra za toplinsku i proce www.fsb.unizg.h	logradnje toplinsku i snu tehniku r		
Jug Zapad Prostor bez dobuve ventiacje Prostor u potlaku Prostor u potlaku Prostor u potlaku Produčje nenjeg dinamičko taka (< 25 Patm) Područje večeg dinamičko taka (<> 25 Patm)			
Br. Opis	Datum		
Diplomski	rad		
∠. kat - AN	anza		
Broj projekta Datum 1 4	001 4.1.2021.		
Projektirao Mar	in Ljuban		
Mentor Darko	Smoljan		
v1020) 		
wijenio As	indicated		

2	FSB			
Fakultet strojarstva i brodogradnje Zavod za termodinamiku, toplinsku i procesnu tehniku Katedra za toplinsku i procesnu tehniku www.fsb.unizg.hr				
	Jug Zapad Prostor u potlaku Prostor u potlaku Prostor u potlaku Prostor u potlaku Područje manjeg dinamičkog tlaka (<> 25 Pa/m) Područje većeg dinamičkog tlaka (<> 25 Pa/m)			
Br. Opis	Datum			
Diplomski rad				
3.kat	- Analiza			
Broj projekta	001			
Datum	14.1.2021.			
Projektirao	Marin Ljuban			
Mentor	Darko Smoljan			
V	Т030			
Mjerilo	As indicated			

1	0	S	B		
Fakultet strojarstva i brodogradnje Zavod za termodinamiku, toplinsku i procesnu tehniku Katedra za toplinsku i procesnu tehniku www.fsb.unizg.hr					
	KJ 1 KJ 2	Svjež i zrak Dohavni zra Otpadni zral (Kimatizacije jedinica - Gr Kimatizacije jedinica - Gr	k k ka nox 31		
Br	Onis		Datum		
ыr.	Opis		Datum		
	Diplomski rad				
	K	rov			
Broj pr	ojekta		001		
Datum		14.1	.2021.		
Projekt	tirao	Marin	Ljuban		
Mentor		Darko S	moljan		
	VT	040			
Mjerilo		As ind	dicated		

Presjek razvoda južne zone 1:50

	0	ľ	S	B
Fa Za Kate	akultet str vod za te pri idra za to wv	rojarstva rmodina ocesnu t plinsku ww.fsb.u	i brodogra umiku, topli tehniku i procesnu unizg.hr	adnje nsku i tehniku
			Svježi zraž Dobavni z Odsisni zr Otpadni zr	k rak ak ak
Br.	Opis			Datum
	Diplo	om	ski ra	ad
Pr za	esje ipac	ek i dne	azv zor	oda ne 1
Broj pro	ojekta		14 1	001
Projekt	irao		Marin	Ljuban
Mentor		Da / T 4	arko S	moljan
Mjerilo	\	/ 1	02	1:50

1 Razvod zapadne zone - 2

	0	S	B
F Za Kat	Fakultet strojars avod za termod procesr edra za toplinsl www.fs	tva i brodogra inamiku, topli nu tehniku ku i procesnu b.unizg.hr	udnje nsku i tehniku
		Svježi zrak Dobavni zra Odiani zra	k k k
Br	Onis		Datum
			Datum
	Diplon	nski r	ad
P	resjek apadn	razv e zor	oda ie 2
Broj p Datun	rojekta 1	14.1	001 .2021.
Projek Mento	rtirao	Marin Darko S	Ljuban moljan
	VT	103	
 Mjerilo)		1:50