Modeli i algoritmi računalnog projektiranja indukcijskog kaljenja

Landek, Darko

Doctoral thesis / Disertacija

2005

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:305808

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-31

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

MODELI I ALGORITMI RAČUNALNOG PROJEKTIRANJA INDUKCIJSKOG KALJENJA

DOKTORSKI RAD

Mentor:

Prof. dr. sc. FRANJO CAJNER

mr. sc. DARKO LANDEK, dipl. ing.

Zagreb, 2005.

PODACI ZA BIBLIOGRAFSKU KARTICU:

UDK: 621.78.012.5

Ključne riječi: površinsko otvrdnjavanje indukcijskim kaljenjem, gašenje prskanjem, indukcijska radna ćelija, računalna simulacija, metoda rubnih elemenata, metoda konačnih elementa

Znanstveno područje:	TEHNIČKE ZNANOSTI
Znanstveno polje:	STROJARSTVO
Institucija u kojoj je rad izrađen:	SVEUČILIŠTE U ZAGREBU, FAKULTET STROJARSTVA I BRODOGRADNJE
Mentor rada:	Prof. dr. sc. Franjo Cajner
Broj stranica:	246
Broj slika:	82
Broj tablica:	14
Broj korištenih bibliografskih jedinica:	110
Datum obrane:	
Povjerenstvo:	dr. sc. Tomislav Filetin, red. prof.
	dr. sc. Franjo Cajner, red. prof.
	dr. sc. Antun Galović, red. prof.
	dr. sc. Mario Essert, izv. prof.
	dr. sc. Božo Smoljan, red. prof
Institucija u kojoj je rad pohranjen: F.	AKULTET STROJARSTVA I BRODOGRADNJE

SVEUČILIŠTA U ZAGREBU

ZAHVALE

Zahvaljujem se mentoru Prof. dr. sc. Franji Cajneru na podršci, pomoći i korisnim diskusijama tijekom izrade doktorskog rada.

Zahvaljujem se članovima Povjerenstva Prof. dr. sc. Tomislavu Filetinu, Prof. dr. sc. Boži Smoljanu, Prof. dr. sc. Mariu Essert i Prof. dr. sc. Antunu Galoviću na pomoći i podršci tijekom izrade doktorskog rada.

Zahvaljujem se Akademiku Božidaru Liščiću, Dr. Thomasu Lübbenu, Dr. Friedhelmu Frerichsu i mr. sc. Josipu Grilecu na korisnim savjetima kojima su pridonijeli mojem boljem sagledavanju problematike indukcijskog kaljenja, računalnih simulacija i matematičkih modeliranja.

Zahvaljujem se na financiranju projektu Ministarstva znanosti, obrazovanja i športa R. Hrvatske 120032" Razvoj materijala i procesa računalnim modeliranjem".

Posebno se zahvaljujem Ivani i Filipu na podršci i velikoj strpljivosti pri izradi ovog rada.

SADRŽAJ

	PREDGOVOR	VIII
	SAŽETAK RADA	IX
	SUMMARY	Х
	KLJUČNE RIJEČI	XI
	POPIS OZNAKA	XII
	POPIS SLIKA	XXVI
	POPIS TABLICA	XXXII
1.0	UVOD	1
	1.1 Uvod	1
	1.2 Hipoteza rada	2
	1.3 Metodologija rada	3
2.0	PRIPREMA I PROVEDBA POSTUPKA INDUKCIJSKOG KALJENJA	5
	2.1 Opis postupka indukcijskog kaljenja	5
	2.1.1Indukcijsko ugrijavanje2.1.2Gašenje	6 9
	2.2 Priprema postupka indukcijskog kaljenja	14
	2.2.1 Faze pripreme	14
	2.2.2 Konstrukcija induktora	17
	2.2.3 Mjerne i regulacijske veličine u postupku indukcijskog kaljenja	20
3.0	DOSADAŠNJE SPOZNAJE O RAČUNALNOM PROJEKTIRANJU INDUKCIJSKOG KALJENJA	21
	3.1 Računalne simulacije elektromagnetskih i toplinskih procesa	21
	3.2 Metode rješavanja problema elektromagnetskih i toplinskih polja u simulaciji indukcijskog kaljenja	23
	3.2.1 Metoda konačnih elemenata	25
	3.2.2 Metoda rubnih elemenata	30
	3.3 Računalne simulacije mikrostrukturnih faznih pretvorbi	36
	3.4 Kriteriji i metode optimizacije induktora	41
	3.5 Računalni sustavi za simulaciju indukcijskog kaljenja	47

4.0	RAZRAI	DA SIMULACIJSKOG ALGORITMA INDUKCIJSKOG KALJENJA	51
	4.1 C	Određivanje simuliranih fizikalnih fenomena i numeričkih metoda	51
	4.1.1 4.1.2	Fizikalni fenomeni obuhvaćeni simulacijom indukcijskog kaljenja Numeričke metoda primijenjene u simulaciji indukcijskog kaljenja	51 54
	4.2 D	efinicija geometrijskih domena simulacijskog modela	56
	4.2.1 4.2.2	Područja geometrijskih domena induktora i obratka Delaunay triangularizacija geometrijskih domena	56 59
	4.3 L	zvod jednadžbe energetske bilance sustava induktor – obradak	62
	4.3.1 4.3.2	Fazorski dijagram sustava induktor – obradak Jednadžba energetske bilance sustava induktor – obradak	62 68
	4.4 D	efinicija simulacijskog algoritma indukcijskog kaljenja	70
	4.4.1 4.4.2	Opće pretpostavke računalne simulacije indukcijskog kaljenja Glavni simulacijski algoritam postupka indukcijskog kaljenja	70 71

5.0	MATE SUST	EMATIČKO MODELIRANJE ELEKTROMAGNETSKOG POLJA U AVU INDUKTOR – OBRADAK	75
	5.1	Definicija jednadžbi elektromagnetskog polja	75
	5.2	Zadavanje električnih i magnetskih svojstva materijala	83
	5.3	Rješenje jednadžbi elektromagnetskog polja kombinacijom metoda konačnih i rubnih elemenata	86
	5.3.	.1 Definicija funkcije oblika magnetskog vektorskog potencijala na trokutnim konačnom elementu	86
	5.5.	elementu	88
	5.3.	.3 Formulacija jednadžbi elektromagnetskog polja na rubnom elementu	96
	5.3.	.4 Rješenje globalnog sustava jednadžbi konačnog i rubnog elementa	106

6.0	MATEMATIČKO MODELIRANJE PRIJENOSA TOPLINE U SUSTAVU INDUKTOR – OBRADAK – PRSKALICA		
	6.1	Definicija jednadžbe provođenja topline u obratku	109
	6.2	Određivanje koeficijenta toplinskog zračenja s površine obratka	117
	6.3	Određivanje koeficijenta prijelaza topline gašenjem	119
	6.4	Zadavanje toplinskih svojstava materijala	126
	6.5	Rješenje jednadžbe temperaturnog polja metodom konačnih elemenata	133

7.0	MAT	EMATIČKO MODELIRANJE FAZNIH PRETVORBI U OBRATKU	143
	7.1	Definicija kinetičkog dijagrama i jednadžbe za brzinu fazne pretvorbe	143
	7.2.	Razrada kinetičkog modela faznih pretvorbi	148
	7.2. 7.2.	 Model faznih pretvorbi pri austenitizaciji Model faznih pretvorbi pri gašenju 	148 153
8.0	OPTI	MIZACIJA INDUKTORA	161
	8.1	Optimizacija induktora analitičkom metodom za postizanje najvećeg stupnja djelovanja	161
	8.2	Optimizacija induktora računalnom simulacijom za postizanje zadane raspodijele inducirane struje	165
	8.3	Primjer optimizacije viševojnog induktora	170
	8.3. 8.3.	 Opis problema optimizacije Numeričko rješenje problema optimizacije 	170 174
	8.4	Projektiranje računalnog programa za simulaciju indukcijskog kaljenja i optimizaciju induktora	178
	8.4.	1 Projektiranje vlastite baze podataka za simulaciju indukcijskog kaljenja	178
9.0	8.4. EKSF INDU	2 Projektiranje vlastitog racunalno-simulacijskog programa PERIMENTALNA PROVJERA RAČUNALNE SIMULACIJE /KCIJSKOG KALJENJA	180 184
	9.1	Izbor ispitnog uzorka	184
	9.2	Priprema računalne simulacije i pokusa indukcijskog kaljenja	186
	9.3	Rezultati i analiza rezultata računalne simulacije indukcijskog kaljenja	193
	9.4	Rezultati i analiza rezultata eksperimentalnih ispitivanja indukcijskog kaljenja	197
10.0	ZAKL	LJUČAK	203
11.0	LITE	RATURA	205
	ZIVO	TOPIS	212
	CURI	RICULUM VITAE	213

PREDGOVOR

Površinsko otvrdnjavanje indukcijskim kaljenjem je perspektivan postupak prikladan za povećanje otpornosti na trošenje, otpornosti na kontaktne pritiske i dinamičke izdržljivosti dijelova od čelika i željeznih lijevova. Zbog višestruko utjecajnih čimbenika na kvalitetu kaljenog sloja suvremena priprema indukcijskog kaljenja je računalom podržana i obuhvaća simulaciju procesa kaljenja, a po potrebi i optimizaciju induktora.

Korištenjem računalnih simulacija može se značajno skratiti faza uvođenja u proizvodnju novih indukcijski kaljenih dijelova u trajanju od nekoliko tjedana na svega nekoliko dana ili sati, što je jedan od uobičajenih poticaja stalnog razvoja metoda i algoritama simulacije ovog postupka. Međutim problem postavljanja i provedbe računalne simulacije indukcijskog kaljenja još nije u potpunosti riješen zbog složenih i međusobno povezanih elektromagnetskih, toplinskih i mikrostrukturnih procesa utjecajnih na svojstva zakaljenog sloja. Stoga je primarni poticaj za izradu ovog rada bio u mogućem doprinosu rješenju aktualnog problema primjene računalnih simulacija u pripremi indukcijskog kaljenja. Drugi poticaj za izradu rada bilo je potreba za sustavnim proučavanjem i opisom perspektivne tehnike indukcijskog kaljenja još uvijek premalo zastupljene u domaćoj proizvodnji.

Doktorski rad pod naslovom " Modeli i algoritmi računalnog projektiranja indukcijskog kaljenja" podijeljen je na jedanaest poglavlja. Njegovom izradom opisani su i numerički riješeni matematički modeli elektromagnetskih, toplinskih i mikrostrukturnih procesa pri indukcijskom kaljenju te je razvijen i eksperimentalno ispitan vlastiti algoritam i računalni program za simulaciju indukcijskog kaljenja i optimizaciju induktora.

U uvodnom dijelu rada opisani su cilj, svrha i metodologija računalne simulacije indukcijskog kaljenja i optimizacije induktora. U drugom poglavlju rada opisani su osnovni fizikalni procesi u indukcijskoj radnoj ćeliji, njihove povezanosti i glavne faze u pripremi postupka indukcijskoga kaljenja. U trećem poglavlju rada naveden je prikaz stanja i razvoja računalnih simulacija indukcijskog kaljenja i metoda optimizacije induktora na temelju čega je su u četvrtom poglavlju definirani glavni procesi, jednadžba energijske bilance, prikladne numeričke metode i vlastiti algoritam simulacije indukcijskog kaljenja.

U petom i šestom poglavlju rada razrađuju se matematički modeli elektromagnetskih i toplinskih procesa u obratku tijekom indukcijskog kaljenja. Modeliranje elektromagnetskih procesa izvedeno je polazeći od temeljne jednadžbe elektromagnetskog potencijala u sustavu induktor - obradak do njenog rješenja hibridnom metodom konačnih i rubnih elemenata. Nestacionarni toplinski procesi ugrijavanja i hlađenja obratka matematički su modelirani metodom konačnih elemenata. Također su matematički modelirane nelinearne promjene električnih, magnetskih i toplinskih svojstava čelika ovisno o temperaturi.

U sedmom poglavlju razrađen je vlastiti matematički model za predviđanje mikrostrukturnih faznih pretvorbi pri indukcijskom kaljenju temeljen na Leblond-Devauxovom kinetičkom modelu faznih pretvorbi.

U osmom poglavlju doktorskog rada razrađena je analitička i numerička metoda optimizacije induktora te su uspješno primijenjene za optimizaciju višezavojnog induktora.

U devetom poglavlju rada opisana je eksperimentalna provjera razvijenog simulacijskog programa na primjeru indukcijskog kaljenja čeličnog valjka 42CrMo4 i analizirani su dobiveni rezultati simulacije i pokusa.

Desetim poglavljem rada zaključuje se o razvijenim matematičkim modelima indukcijskog kaljenja, provedenoj računalnoj simulaciji i predloženom simulacijskom programu, te se daju prijedlozi budućih istraživanja. Korištena literatura navedena je u jedanaestom poglavlju.

U Zagrebu, 2005.

Autor

SAŽETAK

U radu je opisan postupak površinskog otvrdnjavanja indukcijskim kaljenjem. Za precizno definiranje radnih parametara preporučena je primjena njegove računalne simulacije postupka indukcijskog kaljenja i po potrebi računalna optimizacija induktora. U radu su analizirani glavni fizikalni procesi koji određuju površinsku tvrdoću, dubinu kaljenja, oblik zakaljene zone i njenu otpornost na trošenje. Opisane su analitičke i numeričke metode za rješavanje matematičkih modela simulacije indukcijskog kaljenja. Postavljena je energijska bilanca procesa i razrađeni su matematički modeli elektromagnetskih, termodinamičkih i mikrostrukturnih procesa u obratku tijekom indukcijskog kaljenja. Navedeni matematički modeli povezani su simulacijskim algoritmom i riješeni vlastito razvijenim računalnim programom pomoću hibridne metode konačnih i rubnih elemenata (za matematički model elektromagnetskih procesa) i metode konačnih elemenata (za matematički model nestacionarnih termodinamičkih procesa). Uz simulacijski program razvijena je i baza podataka sa svojstvima indukcijski kaljenih materijala: toplinskim, električnim i magnetskim, ovisnim o temperaturi. Predloženi program provjeren je na primjerima indukcijskog kaljenja valjaka dimenzija Ø20x95 mm od čelika 42CrMo4. Izmjerene vrijednosti površinske tvrdoće i dubine kaljenja valjaka uspoređene su sa zadanim iznosima prema kojima je provedena računalna simulacija, te je ustanovljena dobra podudarnost simulacijskih i postignutih rezultata. Zaključuje se da su nužne dalinje provjere i usavršavanje simulacijskog programa i ispitivanje mogućnosti optimizacije induktora za kaljenje obradaka oblika složenijih od dugačkih ravnih i rotaciono simetričnih obradaka.

MODELS AND ALGORITHMS FOR COMPUTER – AIDED PLANNING OF INDUCTION HARDENING PROCESS

SUMMARY

The induction surface hardening process has been described at this work. For the exact definition of working parameters for this process, computer simulation is recommended. The main physical processes that determined surface hardness, depth of hardening and shape of hardened zone have been analysed. The analytical and numerical methods for solving mathematical models for the induction hardening simulation have been described. The energy balance of the induction hardening process has been set, and the mathematical models for the electromagnetic, thermodynamic and microstructural process within workpiece was proposed. These mathematical models were related by simulation algorithm and solved with own developed computer program by boundary element method (for electromagnetic process) and finite element method (for thermodynamic process). Besides the simulation program the database was developed with following properties of induction hardening materials: thermal, electric and magnetic properties depend of temperature. Proposed computer program has been tested on the cases of induction surface hardening of the cylinders dimensions Ø20x95 mm made of 42 CrMo4 steel grade. Measured values of the surface hardness and hardening depth was compared with the specified values, indicating good correspondence between the simulated and obtained values. It is concluded that further investigation and testing is necessary and they will be directed to enhancement possibilities of optimization program and to the simulation program for the more complex parts than axially symmetric or simply long parts.

KLJUČNE RIJEČI

Površinsko otvrdnjavanje indukcijskim kaljenjem Gašenje prskanjem Indukcijska radna ćelija Računalna simulacija Računalna optimizacija induktora Metoda rubnih elemenata Metoda konačnih elementa

KEY WORDS

Induction surface hardening Spray quenching Induction work cell Process simulation Inductor optimization Boundary element method Finite element method

POPIS OZNAKA I KRATICA

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
\vec{A}_2	Wb/m	- fazor magnetskog vektorskog potencijala na strani induktora
\overrightarrow{A}_{4}	Wb/m	- fazor magnetskog vektorskog potencijala na strani zraka
\vec{A}_1	Wb/m	- fazor magnetskog vektorskog potencijala na strani obratka
A_{R}	Wb/m	- realni dio fazora magnetskog vektorskog potencijala
A_{I}	Wb/m	- imaginarni dio fazora magnetskog vektorskog potencijala
$A_{\rm R,j}$	Wb/m	 aproksimacijska funkcija realnog dijela fazora magnetskog vektorskog potencijala u j-tom čvoru mreže
$A_{\mathrm{I,j}}$	Wb/m	 aproksimacijska funkcija imaginarnog dijela fazora magnetskog vektorskog potencijala u j-tom čvoru mreže
$\{A^e_{\ j}\}$	Wb/m	 vektor aproksimacijskih funkcija magnetskog vektorskog potencijala u j-čvorova mreže
$\overline{A}_{R}^{\Gamma e}$	-	 aproksimacijska funkcija realnog dijela fazora magnetskog vektorskog potencijala na rubnom elementu
$\overline{A}_{I}^{\Gamma e}$	-	 aproksimacijska funkcija imaginarnog dijela fazora magnetskog vektorskog potencijala na rubnom elementu
A_1^{o}	°C	- temperatura početka ravnotežnog stvaranja austenita
A_1	°C	 temperatura početka stvaranja austenita prema TTS dijagramu
A_3^{o}	°C	- temperatura završetka ravnotežnog stvaranja austenita
A_3	°C	 temperatura završetka stvaranja austenita prema TTS dijagramu
$A_{ m ch}$	°C	- temperatura završetka homogenizacije austenita
a_0	m ² /s	- koeficijent toplinske difuznosti sredstva za gašenje
$a_{ m i},~b_{ m i}$	m ⁻¹	 optimizacijski koeficijenti regresijske jednadžbe za optimizaciju induktora
$\overrightarrow{\underline{B}}$	Т	- fazor magnetske indukcije
B_0	Т	- modul fazora magnetske indukcije
<u>B</u> _{0x} , <u>B</u> _{0y}	Т	- komponente fazora magnetske indukcije u smjeru osi x i y
<u>B</u> _{0r} , <u>B</u> _{0z}	Т	- komponente fazora magnetske indukcije u smjeru osi r i z

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
$B_{s(T)}$	Т	- magnetska indukcija zasićenja na temperaturi T (K)
$B_{s(293K)}$	Т	 magnetska indukcija zasićenja materijala na temperaturi 293K
$B_{\rm s}$	Т	- temperatura početka bainitne pretvorbe
b		- zadana gustoća djelovanja izvora ili ponora u polju ψ
bo	s ⁻¹	 empirička konstanta u Avramijevoj jednadžbi za brzinu fazne pretvorbe
$b_{ m A}$	s ⁻¹	- Avramijev koeficijent
C _C	5,67 1/(100 ⁴ K ⁴)	- konstanta toplinskog zračenja crnog tijela
<i>C</i> ₁₂	$(W/m^2 K^4)$	- koeficijent toplinskog zračenja
$C_{\rm B}$	1	- konstanta Weiss-Currieve jednadžbe
$C_{ m eta ij}$	1	 koeficijent prostornog kuta između točaka polja P i izvora polja Q
$\begin{bmatrix} C^e \end{bmatrix}$		 globalna matrica toplinske kapacitivnosti u FEM formulaciji jednadžbe temperaturnog polja
$\left[D^{e} ight]$		 globalna matrica vodljivosti topline u FEM formulaciji jednadžbe temperaturnog polja
С	J/(kgK)	- specifični toplinski kapacitet
$\begin{bmatrix} \mathcal{C}_i \end{bmatrix}_{\mathcal{B}_1}^{\mathcal{B}_2}$	J/(kgK)	 srednji specifični toplinski kapacitet i-te mikrostrukturne faze nad zadanim temperaturnim intervalom
$\cos \varphi$	1	- faktor snage u krugovima izmjenične struje
E(p)	1	- eliptički integral druge vrste
E_0	V/m	- jakost električnog polja induktora
F_{ψ}		- izvor ili ponor polja
F	J	- Helmholtzova slobodna energija
ΔF	J	- promjena slobodne energije nastankom nove faze
ΔF_{γ}	J	- slobodna energija stvaranja nove površine faza
ΔF_{σ}	J	- slobodna energija polja naprezanja oko nove faze
$\Delta F_{\alpha\beta}$	J	- razlika slobodnih energija faza α i β na temperaturi T

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
f	Hz	- frekvencija
f(<i>y</i>)	1	- funkcija udjela nove faze
$\{F\}$		 globalni vektor djelovanja toplinskog toka u FEM formulaciji jednadžbe temperaturnog polja
G	1	- Greenova funkcija slobodnog prostora
$\left[G^{\Gamma} ight]$		 globalna matrica u BEM formulaciji jednadžbe elektromagnetskog polja
$\left[G^{e}_{ij} ight]$		 pomoćna matrica u BEM formulaciji jednadžbe elektromagnetskog polja
g		- karakteristična rubna vrijednost veličine polja
g_1		- funkcija utjecaja brzine ugrijavanja na faznu pretvorbu
$g(\frac{\partial \mathcal{G}}{\partial t})$		- funkcija brzine zagrijavanja ili ohlađivanja
Н	A/m	- jakost magnetskog polja
H_0	A/m	- jakost magnetskog polja induktora
H_{12}	m	- razmak između induktora i obratka
$\left[H^{\Gamma}\right]$		 globalna matrica u BEM formulaciji jednadžbe elektromagnetskog polja
$\left[H^{e}_{ij} ight]$		 pomoćna matrica u BEM formulaciji jednadžbe elektromagnetskog polja
$\left\{ {{H}_{0ij}^\Gamma } ight\}$		 globalni vektor rubnih uvjeta u BEM formulaciji jednadžbe elektromagnetskog polja
h	J/kg	- specifična entalpija
h_2	m	- visina cijelog induktora
$h_{2\mathrm{i}}$	m	- visina i-tog vodiča induktora
<u>I</u> 0	А	- fazor struje induktora
I_0	А	- jakost struje induktora
I _A	А	- jakost struje kroz anodu vakuumske triode generatora
$\overrightarrow{\underline{J}}_{0}$	A/m^2 ,	- fazor gustoće struje induktora
$J_{0\mathrm{R}}$	A/m^2	- realni dio fazora gustoće struje induktora

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
$J_{0\mathrm{I}}$	A/m ²	- imaginarni dio fazora gustoće struje induktora
J_{01}	A/mm ²	- gustoća induciranih vrtložnih struja na površni obratka
<i>j=√-1</i>		- imaginarna jedinica
<i>K(p)</i>	1	- eliptički integral prve vrste
K _R	1	- faktor otpora obratka
K _r	1	- faktor otpora induktora
$[K_k]$		 pomoćna globalna matrica u FEM formulaciji jednadžbe temperaturnog polja
$[K]^{\Omega}$		 pomoćna globalna matrica u FEM formulaciji jednadžbe elektromagnetskog polja
$k_{ m g1}$, $k_{ m g0}$	°C ⁻¹ , 1	- koeficijenti aproksimacijske jednadžbe za proračun funkcije g_1
k_t	1	- vremenski inkrement (korak) simulacije toplinskih procesa
k	1	- vremenski korak simulacije mikrostrukturnih procesa
k_s	1	- broj čvorova na granici diskretizirane domene
<i>kr</i> g	1	- argument funkcije F(krg)
L		- linearni operator (preslikavanje) u matematičkom prostoru
L _b		- linearni operator rubnih uvjeta u matematičkom prostoru
L ^e	m	- duljina rubne stranice trokutnog konačnog elementa
Lo	Н	- induktivitet okoline i zračnog raspora
L_2	Н	- induktivitet vodiča induktora
$L_{ij}^{lpha\gamma}$	J/m ³	- volumna latentna toplina fazne pretvorbe i-te faze u j-tu fazu
L _{mag}	J/m ³	 volumna latentna toplina promjene magnetskih svojstava materijala
L_{ij}	J/kg	- specifična latentna toplina fazne pretvorbe
l_{2N}	m	- duljina vodiča induktora
$l_{ m g}$	m	- duljina grijanja obratka ($l_{\rm g}\approx l_2-0,002)$
М, N		- broj geometrijskih čvorova

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
$M_{ m s}$	°C	- temperatura početka izlučivanja martenzita iz austenita
$M_{ m f}$	°C	- temperatura završetka izlučivanja martenzita iz austenita
m_0	kg/(m ² min)	- specifična gustoća prskanja
$N_1 N_2 N_3$		- Lagrangeovi interpolacijski polinomi prvog stupnja
Nj		- funkcije oblika nad konačnim elementom
N_1^{Γ} , N_2^{Γ}		- funkcije oblika nad rubnom stranicom trokutnog elementa
Nt		- vremenska interpolacijska funkcija
Nu	1	- Nusseltova bezdimenzijska značajka
Nz	-	- broj zavoja induktora
n	1	- normala na površinu $S=S_1+S_2$
n _x n _y		 komponente normale na površinu usmjerene iz obratka u smjeru osi x i osi y
$n_{\rm r}, n_{\rm z}$		 komponente normale na površinu usmjerene iz obratka u smjeru osi r i osi z
n _i		- vektor normale usmjeren iz površine domene
n_A		- Avramijev koeficijent vrste pretvorbe
<i>o</i> ₂	m	- opseg poprečnog presjeka induktora
P_{δ} , $P_{\delta 1}$, $P_{\delta 2}$	W	 radna snaga vrtložnih struja u rubnom sloju, (1 obratka), (2 induktora)
$P_{\mathrm{J}}, P_{\mathrm{J1}}, P_{\mathrm{J2}}$	VAr	 induktivna snaga vrtložnih struja u rubnom sloju, (1 obratka), (2 induktora)
P _A	W	 radna snaga izmjerena na anodi vakuumske triode generatora
$P_{\delta 0}$	W	- snaga vrtložnih struja na površini materijala
$P_{\rm JQ}$	W/m ³	- volumna snaga Jouelovih gubitaka
$P_{ m HB}$	W/m ³	- volumna snaga gubitaka magnetiziranja
р	1	- parametar eliptičkih integrala
δQ_1	J	- sveukupni pretičak topline unesen u elementarni volumen d V
$\delta Q_{\rm V}$	J	- sveukupna topline unutrašnjih izvora i ponora u elementarnom volumenu d V

Darko Landek: Modeli i algoritmi računalnog projektiranja indukcijskog kaljenja

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
$q_{ m S}$	W/m ²	- ukupna gustoća toplinskog toka kroz površinu obratka
$q_{ m G}$	W/m ²	- gustoća toplinskog toka gašenja
$q_{\rm k}$	W/m ²	 gustoća toplinskog toka konvekcije s obratka na okolišnji zrak
$q_{ m zr}$	W/m^2	- gustoća toplinskog toka zračenja s obratka na okoliš
R_a	μm	- hrapavost površine
R		- rezidual
R_1	Ω	- omski (radni) otpor obratka
R_2	Ω	- omski otpor vodiča induktora
<i>г</i> р, <i>2</i> р	m	- koordinate točke polja (P)
<i>r</i> _Q , <i>z</i> _Q	m	- koordinate točke izvora potencijala polja (Q)
r _{PQ}	m	- udaljenost točke opažanja polja P od točke izvora polja Q
<i>r</i> ₂	m	- unutrašnji polumjer zavoja induktora
<i>r</i> ₁	m	- vanjski polumjer rotaciono simetričnog obratka
r _c	m	- središte osnosimetričnog konačnog elementa
$\vec{r}=\vec{r}\big(x,y,z\big)$	m	- vektor položaja promatrane točke
S	J/K	- entropija
S_1	m ²	- ploština oplošja obratka
S ₂₃	m ²	- ploština površine obratka između induktora i prskalice
S_2	m ²	- ploština unutrašnje površine induktora
S_{01}	m ²	- ploština površine obratka u zoni ugrijavanja ispod induktora
S_0	m ²	 umjetno postavljena površina umjesto osi rotacijske simetrije
S_{∞}	m ²	 površina vanjske granice modeliranog područja prema daljoj (ne modeliranoj) okolini
<i>S</i> ₂₃	m ²	- ploština površine obratka između induktora i prskalice
$\mathcal{G}_{\mathrm{Currie}}$	°C	 temperatura Curie: materijal mijenja feromagnetska svojstva u paramagnetska

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
Т	K	- termodinamička temperatura
$\left[T^{\Gamma}\right]$		 pomoćna globalna matrica u FEM formulaciji jednadžbe elektromagnetskog polja
t	S	- vrijeme
t _a	S	- vrijeme austenitizacije
tg	S	- vrijeme gašenja
Θ	1	 parametar stabilnosti numeričkog rješenja FEM jednadžbi temperaturnog polja
t 8/5	S	- vrijeme ohlađivanja od 800 do 500 °C
t_2	m	- debljina stjenke vodiča induktora
U	J	- unutrašnja energija
$U_{\rm m}$	V	- amplituda napona na priključcima induktora
\underline{U}_l	V	- fazor napona induciranog u obratku
$U_{\rm R}$	V	- realni dio fazora napona
U_{I}	V	- imaginarni dio fazora napona
$U_{\rm A}$	V	- napon na anodi vakuumske triode generatora
<u>V</u>	V	- električni potencijal induktora
V _{0m}	V	- amplituda električnog potencijala
Va	°C/s	- srednja brzina ugrijavanja
$v_{ m hl}$	°C/s, K/s	- srednja brzina ohlađivanja
$\overline{v}_{8/5}$	°C/s	- srednja brzina ohlađivanja od 800 do 500 °C
$v_{\rm kd}$	°C/s	- donja kritična brzina gašenja
$v_{\rm kg}$	°C/s	- gornja kritična brzina gašenja
v_0	m/s	- brzina mlaza sredstva za gašenje uz površinu obratka
Wi	1	- maseni udio i-te mikrostrukturne faze
X_1	Ω	- induktivni otpor obratka
X_2	Ω	- induktivni otpor induktora

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
Xo	Ω	- induktivni otpor zračnog raspora
[X]		 pomoćna globalna matrica u traženju FEM – BEM rješenja jednadžbi elektromagnetskog polja
Y _{eq}	mm ³ /mm ³ , 1	 najveći postizivi udjel faze na zadanoj temperaturi izotermičkog držanja
Y _{m,i}	mm ³ /mm ³ , 1	 najveći mogući udjel <i>i</i>-te faze pri ohlađivanju određenom krivuljom hlađenja prema TTT dijagramu kontinuiranog ohlađivanja
Y _i	mm ³ /mm ³ , 1	 postizivi udjel i-faze pri ohlađivanju određenom krivuljom u TTT dijagramu kontinuiranog ohlađivanja
Y_1	mm ³ /mm ³ , 1	- ravnotežni volumni udjel austenita
<i>Y</i> ₂	mm ³ /mm ³ , 1	- ravnotežni volumni udjel martenzita
<i>Y</i> ₃	mm ³ /mm ³ , 1	- ravnotežni volumni udjel bainita
Y_4	mm ³ /mm ³ , 1	- ravnotežni volumni udjel perlita
Y_5	mm ³ /mm ³ , 1	- ravnotežni volumni udjel ferita
у	mm ³ /mm ³ , 1	- volumni udjel nove faze
<i>Y</i> 0	mm ³ /mm ³ , 1	- volumni udjel polazne mikrostrukture
<i>Y</i> 1	mm ³ /mm ³ , 1	- volumni udjel austenita
<i>Y</i> 2	mm ³ /mm ³ , 1	- volumni udjel martenzita
<i>y</i> ₃	mm ³ /mm ³ , 1	- volumni udjel bainita
<i>Y</i> 4	mm ³ /mm ³ , 1	- volumni udjel perlita
<i>Y</i> 5	mm ³ /mm ³ , 1	- volumni udjel ferita
\mathcal{Y}_{i}	mm ³ /mm ³ , 1	- volumni udjel i-te mikrostrukturne faze
\mathcal{Y}_{j}	mm ³ /mm ³ , 1	 volumni udjel <i>j</i>-te faze koji u promatranom intervalu <i>dt</i> prolazi faznu pretvorbu i/j
dy/dt	s ⁻¹	- brzina fazne pretvorbe
[<i>W_i</i>]	1	 vektor težinskih funkcija za Galerkinovu formulaciju jednadžbe konačnih elemenata
<i>w</i> , <i>w</i> _j	1	 težinska funkcija za minimizaciju reziduala nad j-tim čvorom mreže (tzv. test funkcija konačnog elementa)
Zo	Ω	- impendancija strujnog kruga induktor-obradak

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
Z _h	m	- duljina obratka iza prskalice
Ψ		- potencijalno skalarno ili vektorsko polje
$\overline{\psi_i}$		- aproksimacija polja ψ na i-tom čvoru mreže
ψ^*		- fundamentalno rješenje jednadžbe rubnih elemenata
$\overline{\Psi}^{e}$		 aproksimacijska funkcija trokutnog elementa za proračun magnetskog vektorskog potencijala
$\underline{\Psi}(\vec{r})$		- fazorska (kompleksna) funkcija
$\Psi_m(\vec{r})$		- amplituda vremenski harmonične veličine
$\psi\left(\vec{r},\omegat\right)$		 trenutna vrijednost (skalarne ili vektorske) veličine elektromagnetskog polja
$\Psi_{\rm m}$		 amplituda harmonično promjenljive veličine elektromagnetskog polja
$\left\{ \! \mathcal{Q}_i^\Gamma \right\}$		 pomoćni vektor toplinskog toka kroz površinu tijela u FEM formulaciji jednadžbe temperaturnog polja obratka
$arPsi_{ m L}$	W/m ³	- volumna latentna toplina fazne pretvorbe u obratku
$\widetilde{\Phi}_{_{1,2}}$	Wb	- glavni magnetski tok
$\widetilde{\Phi}_{_0}$	Wb	- rasipni magnetski tok
$\left\{ \Phi^e_i \right\}$		 pomoćni vektor toplinskih izvora ili ponora u FEM formulaciji jednadžbe temperaturnog polja
Π		 pomoćna kompleksna funkcija za izvod jednadžbi konačnog osnosimetričnog elementa elektromagnetskog polja
Г		 krivulja u ravnini x-y ili r-z koja omeđuje poprečni presjek obratka
$lpha_{_0}$	$W/(m^2K)$	- koeficijent prijelaza topline konvekcijom
$lpha_{ m zr}$	$W/(m^2K)$	- ekvivalentni koeficijent prijelaza topline zračenjem
$lpha_{ m G}$	$W/(m^2K)$	- koeficijent prijelaza topline gašenjem
$lpha_{\scriptscriptstyle G,f}$	W/(m ² K)	 koeficijent prijelaza topline gašenjem u području filmskog isparivanja
$\alpha_{G,\max}$	W/(m ² K)	 koeficijent prijelaza topline gašenjem u području najintenzivnijeg mjehurastog isparivanja

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
β	1	- kut između dva susjedna dvodimenzijska rubna elementa
δ	m	- efektivna dubina prodiranja struje
δ_1	m	- efektivna dubina prodiranja struje u obradak
δ_2	m	- efektivna dubina prodiranja struje u induktor
δr_{PQ}		- Diracova delta funkcija
<i>E</i> 1	1	 emisioni faktor sveukupnog toplinskog zračenja s površine obratka
\mathcal{E}_2	1	 emisioni faktor sveukupnog toplinskog zračenja s površine induktora
\mathcal{E}_{ψ}	1	 prosječno relativno odstupanje fizikalnog svojstva ili veličine
${\cal E}_A$	1	- relativno odstupanje računskih vrijednosti vektora $\{_{\mathcal{A}^e}\}$ iz
		dva uzastopna iteracijska koraka
$\mathcal{E}_{dA/dn}$	1	- relativno odstupanje računskih vrijednosti vektora $\{\partial A^{\Gamma e}/\partial n\}$ iz dva uzastopna iteracijska koraka
γ		- relaksacijski faktor
К	S/m	- električna vodljivost materijala
<i>K</i> ₁	S/m	- električna vodljivost materijala obratka
<i>K</i> ₂	S/m	- električna vodljivost vodiča induktora
<u>K</u>	S/m	- kompleksna električna vodljivost materijala
λ	W/(mK)	- koeficijent vodljivosti topline
λi	W/(mK)	- koeficijent vodljivosti topline i-te mikrostrukturne faze
λ_S	W/(mK)	- koeficijent vodljivosti topline površine obratka
η	1	- stupanj djelovanja induktora
ξ	m	- dubina rubnog sloja
$arphi_i$		- interpolacijska funkcija raspodijele polja ψ oko i-tog čvora mreže (tzv. oblikovna funkcija konačnog elementa)
$\vec{\varphi(r)}$		 fazni pomak vremenski harmonične veličine prema određenoj referentnoj veličini (rad)

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
₩iRAČ		- vrijednost fizikalnog svojstva u i-tom geometrijskom čvoru određena interpolacijom funkcijske ovisnosti ψ =f(ϑ)
$\psi_{ m iI}$		 vrijednost fizikalnog svojstva u i-tom geometrijskom čvoru iz prethodnog iteracijskog koraka
Ψu		 nova (relaksacijska) vrijednost fizikalnog svojstva i-tom geometrijskom čvoru
μ_0	$4 \cdot \pi \cdot 10^{-7} \text{ H/m}$	- magnetska permeabilnost vakuuma
<u>μ</u>	H/m	-kompleksna magnetska permeabilnost
$\mu_{ m r}$	1	- relativna magnetska permeabilnost materijala
$\mu_{rs(T)}$	1	- relativna magnetska permeabilnost ovisna o temperaturi
μ_1	H/m	- magnetska permeabilnost obratka
μ_2	H/m	- magnetska permeabilnost koncentratora toka
$ ho_i$	kg/m ³	- gustoća <i>i</i> -te mikrostrukturne faze
ρ	kg/m ³	- srednja gustoća materijala
9	°C	- Celzijeva temperatura
${\cal G}_0$	°C	- Celzijeva temperatura okoliša
{ 9 ^e _j }	°C	 vektor aproksimacijskih funkcija temperature u j-čvorova mreže
\mathcal{G}_{Currie}	°C	- Celzijeva temperatura Curie
$\theta_{ m S}$	°C	- Celzijeva temperatura površine obratka
9"	°C	- Celzijeva temperatura zasićenja kapljevine
$\Delta \mathcal{G}_{ m G}$	°C	 nadtemperatura površine obratka prema temperaturi zasićenja sredstva za gašenje
$\mathcal{G}_{\mathbf{k}}$	°C	 Celzijeva temperatura početka isparivanja slobodnom konvekcijom
$\mathcal{G}_{\mathrm{DNB}}$	°C	 Celzijeva temperatura najintenzivnijeg mjehurastog isparivanja
$\mathcal{G}_{\mathrm{Le}}$	°C	- Leidenfrostova temperatura
\mathcal{G}_{a}	°C	- temperatura austenitizacije

Darko Landek: Modeli i algoritmi računalnog projektiranja indukcijskog kaljenja

<u>Oznaka</u>	<u>Mjerna jedinica</u>	Naziv
$\mathcal{G}_{\mathrm{IT}}$	°C	- temperatura izotermičkog držanja
$\mathcal{G}_{s,i}$	°C	- temperatura početka fazne pretvorbe
$\overline{\mathcal{G}}^{e}$	°C	 aproksimacijska funkcija temperature raspodijeljene po konačnom elementu u FEM formulaciji jednadžbe temperaturnog polja
$\mathcal{G}_{f,i}$	°C	- temperatura završetka fazne pretvorbe
$\mathcal{G}_{s,3}$	°C	- temperatura početka izlučivanja bainita iz austenita
$\mathcal{G}_{f,3}$	°C	- temperatura završetka izlučivanja bainita iz austenita
$\mathcal{G}_{s,4}$	°C	- temperatura početka izlučivanja perlita iz austenita
$\mathcal{G}_{f,4}$	°C	- temperatura završetka izlučivanja perlita iz austenita
$\mathcal{G}_{s,5}$	°C	- temperatura početka izlučivanja ferita iz austenita
$\mathcal{G}_{f,5}$	°C	- temperatura završetka izlučivanja ferita iz austenita
$ au_1$	s/°C	- funkcija vremenskog kašnjenja austenitne pretvorbe
$ au_{13}$	s/°C	 funkcija vremenskog kašnjenja austenitno bainitne pretvorbe
$ au_{14}$	s/°C	- funkcija vremenskog kašnjenja austenitno perlitne pretvorbe
$ au_{15}$	s/°C	- funkcija vremenskog kašnjenja austenito feritne pretvorbe
t(9)		- funkcija vremenskog kašnjenja pretvorbe
ω	rad ⁻¹	- kružna frekvencija
ω _S		- geometrijski (vidni) faktor
∇		- diferencijalni operator gradijenta skalarnog polja
$\nabla^2()$		- diferencijalni operator (Laplacean)

Kratica	Značenje
TTS	 dijagram otapanja faza pri brzom ugrijavanju: "Time Temperature Solubility" diagram prema engl. navodima
ZTA	 dijagram otapanja faza pri brzom ugrijavanju: "Zeit Temperature Austenitisierung" prema njemačkim navodima
TTT	 dijagrami za kontinuirano ohlađivanje: "Time-Temperature-Transformation" diagram
PAG	- poli-alkilen glikol (polimerno sredstvo za gašenje)
FEM	- metoda konačnih elemenata "Finite Element Method"
BEM	- metoda rubnih elemenata, "Boundary Element Method"
1D	- jednodimenzijski model
2D	- dvodimenzijski model
3D	- trodimenzijski model
Р	- točka opažanja polja
Q	- točka izvora polja
JMAK model	-Johnson – Mehl - Avrami – Kolmogorov model za predviđanje brzine fazne pretvorbe

POPIS SLIKA

Poglavlje 2. PRIPREMA I PROVEDBA POSTUPKA INDUKCIJSKOG KALJENJA

<u>Broj</u>	<u>slike:</u>	ica
2.1.	Shematski prikaz metoda indukcijskog kaljenja valjka: a) rotaciona metoda, b) rotaciono-posmična metoda	6
2.2.	 a) Induciranje vrtložnih struja u obratku umetnutom u induktor b) Relativno smanjenje gustoće induciranih struja (J_dJ_d) i elektromagnetske snage (P_dP_d) od površine k jezgri obratka, mjereno relativnom udaljenošću od površine (ξ/δ) 	. 7
2.3.	Dijagram TTS za kontinuirano ugrijavanje niskolegiranog čelika 42CrMo4 [10]	8
2.4	Rotaciono-posmično indukcijsko kaljenje osovine uz gašenje prskanjem	9
2.5	Ovisnost koeficijenta prijelaza topline α_G pri različitim fazama gašenja o razlici temperatura $\Delta \vartheta_G$ površine obratka i temperaturi zasićenja sredstva za gašenje podložnog Leidenfrostovom fenomenu [15].	10
2.6.	 Shematski prikaz nastanka površine para/kapljevina tijekom hlađenja obratka vodenom otopinom polimera [22]: a) Faza filmskog isparivanja s netopivim slojem polimernih molekula na filmu pare. b) Faza mjehurastog isparivanja s kvašenjem površine obratka molekulama vode i polimera 	11
2.7	Određivanje gornje kritične brzine gašenja (v_{kg}) iz TTTdijagrama za kontinuirano ohlađivanje podeutektiodnog ugljičnog čelika [24]	13
2.8.	Primjeri izvedbi induktora <u>bez</u> koncentratora magnetskog toka [8]: a) Induktor za kaljenje zuba zupčanika, b) Induktor u obliku spirale, c) Induktor integriran s prskalicom	19
2.9.	Primjeri izvedbi induktora <u>sa</u> koncentratorom magnetskog toka a) Induktor za kaljenje zuba zupčanika, b) Induktor za kaljenje rukavca osovine s i bez koncentratora magnetskog toka	19
Pogla	vlje 3. DOSADAŠNJE SPOZNAJE O RAČUNALNOM PROJEKTIRANJU INDUKCIJSKOG KALJENJA	
<u>Broj</u>	<u>slike: Stran</u>	<u>ica</u>
3.1	Osnovne vrste konačnih elemenata uobičajeno korištene pri simulacijama indukcijskog kaljenja [91]	25
3.2	Shematski prikaz položaja induktora i prskalice prema obratku i adaptivne mreže konačnih elemenata na obratku i induktoru. [60]	26
3.3	Prikaz osnovnih vrsta (1D, 2D) i tipova rubnih elemenata (konstantni, linearni, kvadratni) na primjeru diskretizacije vanjske površine osnosimetričnog tijela	30

<u>Broj s</u>	like:	<u>Stranica</u>
3.4	Označavanje geometrijskog područja problema, rubnih površina, rubnih uvjeta, točk opažanja polja (P) i točke izvora polja (Q) [97]	ie 34
3.5.	 a) Shematski prikaz kontinuiranog ugrijavanja u izotermičkom TTS dijagramu kao s niza elementarnih izotermičkih procesa [63] b) Shematski prikaz krivulje ohlađivanja aproksimirane stepeničastom promjenom temperature (elementarnim izotermičkim pretvorbama) u izotermičkom TTT dijagramu čelika Ck45 [61] 	sume 38
3.6	Utjecaj dimenzija na stupanj djelovanja viševojnog induktora pri indukcijskom ugrijavanju dugačkih valjaka (stupanj djelovanja induktora određen za temperaturu austenitizacije 1000 °C) [5]	43
3.7.	 Optimizacija osnosimetričnog induktora prema kriteriju postizanja jednolične gus površinske struje po duljini obratka [41]: a) Položaj rubnih elemenata obratka i promjene konture poprečnog presjeka indukto b) Konačni oblik induktora nakon niza iteracija i postizanja zadovoljavajuće jednoličnosti induciranih vrtložnih struja 	stoće ra. 45
3.8	Glavni moduli vlastito razvijenog računalnog programa ("Ind2D") za simulaciju indukcijskog kaljenja	49

Poglavlje 4. RAZRADA SIMULACIJSKOG ALGORITMA INDUKCIJSKOG KALJENJA

<u>Broj slike</u>:

<u>Stranica</u>

4.1	Osnovni fizikalni procesi tijekom indukcijskog kaljenja i promjene nastale na obratku	53
4.2	Područje matematičkog modeliranja indukcijskog kaljenja u odnosu na osnovne komponente visokofrekventnog indukcijskog generatora [4]:	56
4.3	Karakteristična područja geometrijske domene Ω matematički modeliranog sustava obradak-induktor-prskalica pri rotaciono-posmičnom indukcijskom kaljenju	58
4.4.	Osnovni trokutni element s čvorovima numeriranim za izvođenje funkcije oblika: a) dvodimenzijski trokutni element, b) osnosimetrični trokutni element	60
4.5	 a) Zadani skup čvorova u ravnini i njihov Voronoi dijagram [140] b) Delaunay dijagram konstruiran na temelju Vonoroi dijagrama [140] 	61
4.6	Zamjena električnog sustava induktor-obradak –okolina ekvivalentnim strujnim krugom sa svitkom i željeznom jezgrom	62
4.7.	Fazorski dijagram nadomjesnog strujnog kruga induktor-obradak	63
4.8	Prijenos i pretvorbe električne energije u toplinsku pri rotaciono posmičnom indukcijskom kaljenju	69
4.9	Simulacijski algoritam indukcijskog kaljenja	74

Poglavlje 5. MATEMATIČKO MODELIRANJE ELEKTROMAGNETSKOG POLJA U SUSTAVU INDUKTOR - OBRADAK

Broj s	<u>slike</u> : <u>Stran</u>	ica
5.1	Promjena električne vodljivosti tehnički čistog željeza i ugljičnog čelika s 1 % C (podaci izračunati prema [82])	83
5.2	Petlja magnetiziranja i njoj pripadne krivulje magnetske permeabilnosti [80]	84
5.3.	Primjeri aproksimacije krivulja magnetiziranja i promjene magnetske permeabilnosti iz vlastito razvijenog računalnog programa "Ind2D": a) Aproksimacija krivulje magnetiziranja $B = B(H, \mathcal{P})$ ugljičnog čelika s 0,45 %C b) Aproksimacija magnetske permeabilnosti $\mu_r = \mu_t(H, \mathcal{P})$ ugljičnog čelika s 0,45 %C	85
5.4.	 a) Primjer diskretizacije geometrijskih domena osnosimetričnog obratka i induktora mrežom trokutnih konačnih elemenata (iz vlastitog računalnog programa "Ind2D") b) Detaljniji izgled strukturirane mreže uz kaljenu površinu obratka 	86
5.5	Aproksimacijske funkcije magnetskog vektorskog potencijala u čvorovima linearnog trokutnog elementa	86
5.6	Zamjena vrijednosti raspodijeljenog magnetskog vektorskog potencijala na graničnoj površini FEM geometrijske domene vrijednostima koncentriranim u čvorovima trokutnog elementa	93
5.7	Geometrijska domena okolišnog zraka nad kojom se postavlja formulacija rubnih elemenata magnetskog vektorskog potencijala	96
5.8	Diskretizacija konture polovice uzdužnog presjeka valjka ravnim i konstantnim rubnim elementima	98
5.9	Shematski prikaz tijeka aproksimacijskih funkcija magnetskog vektorskog potencijala na stranici trokutnog elementa koja je ujedno i rubni element	98
5.10	Shematski prikaz položaja točke polja P prema izvoru potencijala u točki Q na konstantnim ravnim rubnim elementima	100
5.11	Kontura integracije oko singularne točke na krivulji Γ ruba geometrijske domene	103

Poglavlje 6. MATEMATIČKO MODELIRANJE PRIJENOSA TOPLINE U SUSTAVU INDUKTOR – OBRADAK - PRSKALICA

Broj slike:

- 6.1. a) Promjena specifične entalpije tehnički čistog željeza ovisna o temperaturi b) Promjena specifičnog toplinskog kapaciteta tehnički čistog željeza s promjenom temperature izračunata iz krivulje na slici 6.1.a jedn. $c(\mathcal{G}) = dh(\mathcal{G})/d\mathcal{G}$ [91]. 111
- **6.2** Karakteristične zone na površini indukcijski kaljenog valjka za postavljanje rubnih uvjeta.

115

Stranica

<u>Broj s</u>	<u>slike</u> : <u>Stra</u>	nica
6.3.	 Karakteristične konfiguracije obratka i induktora s oznakama mjera za određivanje vidnog faktora konfiguracije: a) model zračenja između dvije bliske stjenke, b) model zračenja obuhvaćenog tijela, c) model zračenja između paralelnih kružnih diskova 	117
6.4	 Koeficijent prijelaza topline (α_G) kod ohlađivanja ravne površine prskanjem vodom (upadni kut mlaza 90°) [97]: a) utjecaj gustoće mlaza i površinske temperature uzorka od nikla na α_G, b) utjecaj vrste ohlađivanog metala i površinske temperature na α_G 	120
6.5	Model linearno-kvadratne aproksimacije promjene koeficijenta prijelaza topline ovisno o površinskoj temperaturi obratka.	120
6.6	Mehanizmi prijenosa topline kod filmskog isparivanja pri gašenju prskanjem	122
6.7.	 a) Leidenfrostova temperatura (𝔅_{Le}), temperatura najintenzivnijeg mjehurastog isparivanja (𝔅_{DNB}) i maksimalni koeficijent prijelaza topline čiste vode ovisni o gustoći prskanja pri hlađenju različitih metala [14, 97] b) Utjecaj vrste ohlađivanog metala ili nemetala (izraženog preko koeficijenta prodiranja topline) na vrijednost Leidenfrostove temperature 𝔅_{Le} čiste vode [16] 	123
6.8.	Promjena koeficijenta vodljivosti topline s temperaturom tipičnih skupina čelika [17]	127
6.9.	Promjena srednje vrijednosti koeficijenta vodljivosti tijekom ugrijavanja i ohlađivanja čelika pri indukcijskom kaljenju interpolirana karakterističnim krivuljama [42]	128
6.10	Promjena specifičnog toplinskog kapaciteta ovisnog o temperaturi $c(\vartheta) = \partial h / \partial \vartheta$ pri ugrijavanju ugljičnih i niskolegiranih čelika [82]	129
6.11	Vlastiti model promjene specifičnog toplinskog kapaciteta tijekom ugrijavanja i ohlađivanja čelika pri indukcijskom kaljenju	131
6.12	Funkcije oblika N_1 , N_2 , N_3 nad osnosimetričnim trokutnim elementom i aproksimacija raspodjele temperature $\overline{\mathcal{P}}^e$ po elementu	133
6.13	 Toplinski tok na graničnoj površini: a) dvodimenzijskog elementa [89] b) osnosimetričnog trokutnog elementa [40] Linearne interpologijska funkcija na uromenckom glamentu [80] 	139 140
0.14	Linearna interpolacijska lunkcija na vremenskom elementu [80]	140

Poglavlje 7. MATEMATIČKO MODELIRANJE FAZNIH PRETVORBI U MATERIJALU OBRATKA

<u>Broj</u>	<u>i slike</u> : <u>S</u>	tranica
7.1	Vremenski ciklus indukcijskog kaljenja i udjeli mikrostrukturnih faza	143
7.2	Shematski prikaz kinetike stvaranja austenita kontinuiranim ugrijavanjem $(\partial \vartheta/\partial t) > 0$ izotermičkim držanjem $(\partial \vartheta/\partial t) \approx 0$ podeutektoidnog čelika.) i 145

Broj slike:		<u>Stranica</u>
7.3	Tijek i izgled funkcije $Y_1(\mathcal{G})$ pri austenitnoj pretvorbi kontinuiranim ugrijavanjem podeutektoidnog čelika	149
7.4	Shematski prikaz funkcije vremenskog kašnjenja austenitne pretvorbe ($\tau_1(\mathcal{G})$) u kontinuiranim zagrijavanju podeutektoidnog čelika	151
7.5	TTT dijagram za kontinuirano ohlađivanje čelika 42CrMo4 [13]	155
7.6	Shematski prikaz karakterističnih temperatura za određivanje vremenske funkcije kašnjenja austenitno-perlitne pretvorbe	158

Poglavlje 8. OPTIMIZACIJA INDUKTORA

Broj slike: Stranica Karakteristične dimenzije viševojnog induktora zavojnice za ugrijavanje dugačkog 8.1 ravnog valjka [1] 162 8.2. **a)** Grafički prikaz funkcije $F(kr_s)$; **b)** Grafički prikaz funkcije $F(K_R)$ [1] 164 8.3 Optimizacija induktora promjenama dimenzija i oblika u smjeru osi r 165 8.4 Shematski prikaz vakuumske komore (razvijene u Institutu IWT Universität Bremen) za ispitivanje prokaljivosti čelika u struji plinova (ispitna epruveta Ø 20 x 100 mm) [108] 171 8.5. Ugrijavanje ispitne epruvete (\emptyset 20 x 100) mm od čelika 42CrMo4: a) Prikaz krivulje ugrijavanja izmjerene na dubini 1,5 mm ispod površine [108] b) Raspored temperature po visini epruvete izmjeren na dubini 1,5 mm ispod površine nakon indukcijskog ugrijavanja (f=100 kHz, U=600V) od15 min 172 8.6. a) Oblik i dimenzije epruvete za ispitivanje prokaljivosti gašenjem u plinu nastrujavanjem s čela b) Računalnom simulacijom određena raspodjela gustoće induciranih vrtložnih struja po polovici poprečnog presjeka epruvete od čelika 42CrMo4 nakon indukcijskog ugrijavanja ($f=110 \text{ kHz}, I_o = 600 \text{ A}$) 173 8.7 Razmještaj deset zavoja induktora izrađenog od bakrene cijevi promjera Ø 6mm nakon računalne optimizacije 176 8.8 Razmještaj deset zavoja induktora izrađenog od bakrenog profila 5x5mm nakon računalne optimizacije 176 8.9 Polazna dijaloška forma baze podataka o svojstvima indukcijski kaljenih čelika 178 8.10 Polazna forma vlastito razvijenog računalnog programa za simulaciju indukcijskog 179 kaljenja i optimizaciju induktora.

<u>Broj s</u>	like: Stra	<u>anica</u>
8.11	Korisnička forma vlastito razvijenog računalnog programa za zadavanje geometrijskih elemenata konture obratka i induktora.	180
8.12	Korisnička forma vlastitog računalnog programa za izbor tipa induktora	181
8.13	Korisnička forma za zadavanje parametra postupka indukcijskog kaljenja u vlastito razvijenom računalnom programu Ind2D	182

Poglavlje 9. EKSPERIMENTALNA PROVJERA RAČUNALNE SIMULACIJE INDUKCIJSKOG KALJENJA

<u>Broj s</u>	<u>slike</u> :	<u>Stranica</u>
9.1	Ispitni uzorak od čelika 42CrMo4 (sa zadanim zahtjevom) na kojem je provedena računalna simulacija i pokusi indukcijskog kaljenja	184
9.2	Ovisnost snage induktora o snazi generatora određena eksperimentalno ugrijavanje valjaka $\phi 20x95$ mm od čelika 42CrMo4 dimenzija u induktoru s jednima zavojkom unutrašnjeg promjera $\phi 22$ mm s poprečnim presjekom 5x5 mm	m 186
9.3	Pozicioniranje induktora i prskalice prema ispitnom valjku na početku ciklusa rotaciono-posmičnog kaljenja	188
9.4	Aproksimacija promjene magnetske permeabilnosti čelika 42CrMo4 ovisno o temperaturi (između 50°C i 750°C) jakosti magnetskog polja	188
9.5	Zadavanje iznosa specifičnog toplinskog kapaciteta ovisno o temperaturi i mikrostrukturnom stanju čelika 42CrMo4 u računalnom programu "Ind2D" (F/P – feritno-perlitna mikrostruktura, A- austenitna mikrostruktura)	189
9.6	Zadavanje iznosa vodljivosti topline ovisno o temperaturi i mikrostrukturnom stanj čelika 42CrMo4 u računalnom programu "Ind2D" (F/P – feritno-perlitna mikrostruktura, A- austenitna mikrostruktura)	u 189
9.7	S Simulacijom dobiveno temperaturno polje i udjel austenita po presjeku valjka \emptyset 20x95 mm na početku posmičnog gibanja uz brzinu 4 mm/s i ugrijavanje snagor generatora 30 kW uz računski određenu snagu induktora 9,818 kVA (f = 415 kHz	n z) 193
9.8	Simulacijom dobiveno temperaturno polje i udjel austenita po presjeku valjka \emptyset 20. mm na početku posmičnog gibanja uz brzinu 4 mm/s i ugrijavanje snagom generato 45 kW uz računski određenu snagu induktora 12,647 kVA (f = 415 kHz)	x95 ora 193
9.9	Vremenska promjena napona (krivulja A) i struje induktora (krivulja C), pri indukcijskom kaljenju snagom generatora 30 kW (izmjereni napon anode 8,0 kV i struja anode 3,6 A). Prijenosni omjer mjernog naponskog, odnosno strujnog transformatora i sonde osciloskopa iznose 100:1, odnosno 1000:1	197
9.10	Vremenska promjena napona i struje induktora, pri indukcijskom kaljenju snagom generatora 30 kW (izmjereni napon anode 8,0 kV i struja anode 3,6 A) aproksimira krivuljama najmanjih kvadrata odstupanja	ni 198

Stranica

201

200

Broj slike:

- 9.11 Raspored tvrdoće po poprečnom presjeku indukcijski kaljenih valjaka Ø20x95 mm od čelika 42CrMo4 uz zadanu snagu generatora 30kW (f = 415 kHz) i posmičnu brzinu 4mm/s i 10 mm/s
- **9.12** Raspored tvrdoće po poprečnom presjeku indukcijski kaljenih valjaka Ø20x95 mm od čelika 42CrMo4 uz zadanu snagu generatora 45kW (*f*=415 kHz) i posmičnu brzinu 4mm/s i 10 mm/s
- 9.13. Mikrostruktura indukcijski zakaljenog ispitnog valjaka od čelika 42CrMo4 uz snagu generatora 30 kW (f = 415 kHz) i posmičnu brzinu 4mm/s.
 - a) Mikrostruktura po poprečnom presjeku (povećanje 50x nagriženo 3 %-tnim NITALom)
 - b) Mikrostruktura rubnog sloja (povećanje 500x. nagriženo 3 %-tnim NITAL-om) 201

POPIS TABLICA

Poglavlje 2. PRIPREMA I PROVEDBA POSTUPKA INDUKCIJSKOG KALJENJA

<u>Broj t</u>	<u>ablice:</u> <u>Strani</u>	ca
II.1	Sistematizacije izvora i vrste utjecajnih čimbenika na svojstva zakaljene zone	14
II.2	Faze pripreme i parametri postupka indukcijskog kaljenja [1-6,9,18,19].	15
II.3	Izgled i glavne karakteristike induktora prema načinu prijenosa energije na obradak [8]	18
II.4	Regulacijske i mjerne veličine procesa indukcijskog kaljenja	20

Poglavlje 4. RAZRADA SIMULACIJSKOG ALGORITMA INDUKCIJSKOG KALJENJA

<u>Broj tab</u>	lice:	<u>Stranica</u>
IV.1	Primjeri pojednostavljenja 3D geometrijskih domena sa 1D ili 2D domenama pri računalnim simulacijama indukcijskog kaljenja	57

Poglavlje 6. MATEMATIČKO MODELIRANJE PRIJENOSA TOPLINE U SUSTAVU INDUKTOR – OBRADAK - PRSKALICA

<u>Broj tal</u>	<u>olice</u> :	<u>Stranica</u>
VI.1	Regresijski koeficijenti aproksimacijske funkcije koeficijenta vodljivosti topline za različite temperature od 20 do 700 °C [100]	129

Poglavlje 8. OPTIMIZACIJA INDUKTORA

<u>Broj tab</u>	<u>llice</u> :	<u>Stranica</u>
VIII.1	Pretpostavke i radni parametri modela za optimizaciju viševojnog induktora	174
VIII.2	Rezultati optimizacije induktora s deset zavoja unutrašnjeg promjera \varnothing 32 mm i visine 90 mm za ugrijavanje epruvete dimenzija \varnothing 20 x 100 mm	175

Poglavlje 9. EKSPERIMENTALNA PROVJERA RAČUNALNE SIMULACIJE INDUKCIJSKOG KALJENJA

<u>Broj ta</u>	<u>blice</u> : <u>Strar</u>	<u>iica</u>
IX.1	Kemijski sastav ispitivanog čelika 42CrMo4.	184
IX.2	Pretpostavke i radni parametri računalne simulacije rotaciono posmičnog indukcijskog kaljenja valjaka	190
IX.3	Plan pokusa indukcijskog kaljenja valjaka \varnothing 20x95 mm od čelika 42CrMo4	191
IX.4	Računski određene vrijednosti napona U_0 i snage P_0 induktora prema simulaciji indukcijskog kaljenja valjaka \emptyset 20x95 mm od čelika 42CrMo4	192
IX.5	Izmjerene vrijednosti jakosti struje (I_A) i napona (U_A) i snage (P_A) generatora	196
IX.6	Vrijednosti struje i napona te faznog kuta induktora tijekom indukcijskog kaljenja uz zadanu snagu generatora 30 i 45 kW i posmičnu brzinu obratka 4 i 10 mm/s	199

1.1 UVOD

Indukcijskim se kaljenjem na strojnim dijelovima od željeznih materijala povećava otpornost na trošenje, otpornost na kontaktne pritiske i dinamička izdržljivost. Postupak se sastoji od lokalnog kratkotrajnog ugrijavanja površinskog sloja i naglog ohlađivanja pri čemu se sloj modificira stvaranjem martenzita, a jezgra dijela ostaje nepromijenjene mikrostrukture. Indukcijsko kaljenje primjenjuje se kod dijelova izrađenih prvenstveno od čelika za poboljšavanje, ali i kod onih izrađenih od niskolegiranih čelika za kotrljajuće ležajeve, prethodno pougljičenih čelika za cementiranje, ugljičnih alatnih čelika (rjeđe), te sivog, nodularnog i čeličnog ljeva. Zbog kratkotrajnosti postupka nema opasnosti od oksidacije i razugljičenja površine, pa nije potrebna zaštitna atmosfera. Kratkotrajnost postupka, mogućnost automatizacije unatoč značajnim investicijskim troškovima indukcijskog uređaja čine indukcijsko kaljenje prikladnim za suvremenu serijsku i velikoserijsku industrijsku proizvodnju.

Za suvremenu izvedbu indukcijskog kaljenja nužna je njegova kvalitetna priprema, računalno vođenje procesa i dijagnostika stanja indukcijske radne ćelije, prije i tijekom obradbe. Tijekom pripreme postupka indukcijskog kaljenja kritične su faze: projektiranje induktora i definiranje radnih parametara, jer o njima ovisi ostvarenje propisanog oblika zakaljenog sloja, dubina kaljenja, površinska tvrdoća i deformacije zakaljenog dijela. Za definiranje radnih parametara indukcijskog kaljenja te ispitivanje utjecaja oblika i dimenzija induktora i prskalice na svojstva površinski zakaljenog obratka preporučljivo je provesti računalnu simulaciju.

Računalna simulacija treba obuhvatiti fazu ugrijavanja i fazu ohlađivanja obratka nizom matematičkih modela poput modela prijenosa elektromagnetske energije s induktora na obradak, modela termodinamičkih procesa ugrijavanja i ohlađivanja obratka te modela mikrostrukturnih pretvorbi u materijalu. Zbog složenosti fizikalnih procesa u obratku tijekom indukcijskog kaljenja i raznovrsnosti oblika obradaka za sada nije dostupan jedinstveni računalni program, već se primjenjuju simulacijski programi prikladni za pojedine oblike obradaka i pojedine faze indukcijskog kaljenja. Stoga se ukazuje potreba za razvojem algoritma i računalnog programa koji će simulacijom obuhvatiti najvažnije fizikalne procese u postupku indukcijskog kaljenja željeznih materijala i omogućiti optimizaciju induktora.

1.2 Hipoteza rada

Analiza znanstveno stručne literature [1-15] pokazala je mogućnost postavljanja zadovoljavajućih matematičkih modela za opis pojedinih procesa i fizikalnih fenomena u postupku indukcijskog kaljenja. Također je i razvoj numeričkih metoda i računala dostigao zadovoljavajuću razinu primjenljivosti u rješavaju složenih jednadžbi (nelinearni i nestacionarnih) elektromagnetskog i temperaturnog polja u dvodimenzijskim i trodimenzijskim zadaćama. Pri analizi različitih pristupa i algoritama kojima se povezuju u prvom redu elektromagnetski, toplinski i mikrostrukturni procesi uočena je njihova orijentacija specifičnim oblicima obradaka ili specifičnim slučajevima simulacija.

Orijentacija specifičnim obratcima (npr. valjci, tračnice, limovi) karakteristična je za uglavnom industrijska istraživanja radnih parametara postupka indukcijskog kaljenja kod kojih se primjenom općih računalno simulacijskih programa i povezivanjem njihovih različitih modula rješava specifičan problem. Orijentacija specifičnim slučajevima simulacija usmjerena je uglavnom metodičkom riešavanju jednostavnijih slučajeva pri čemu nije u prvom planu primjenljivost rezultata za konkretne dijelove i varijante postupka indukcijskog kaljenja, već se istražuju karakteristike numeričkih metoda i različiti pristupi formulacijama međusobno utjecajnih procesa (npr. elektromagnetskih i toplinskih). Između ova dva pristupa uočljiva je praznina u postavljanju i rješavanju simulacijskog algoritma postupka indukcijskog kaljenja koji će s jedne strane imati svoje temelje u egzaktnim jednadžbama za opis elektromagnetskih, toplinskih i mikrostrukturnih procesa. S druge strane numeričkom implementacijom ovako razvijenog simulacijskog algoritma u računalni sustav omogućit će korisniku postupka indukcijskog kaljenja određivanje radnih parametara i optimiranje različitih induktora za širok raspon dijelova i željeznih materijala. Smatra se da je moguće odgovarajućim matematičkim modelima prijenosa elektromagnetske energije s induktora na obradak, modelima toplinskih procesa ugrijavanja i hlađenja obratka i modelima mikrostrukturnih promjena u materijalu dovoljno točno i precizno računalno simulirati postupak indukcijskog kaljenja, te se na temelju ovih razmatranja postavlja slijedeća hipoteza rada:

Glavne probleme u suvremenoj pripremi postupka indukcijskog kaljenja: pronalaženje optimalnog oblika i dimenzija induktora i odabir radnih parametara (kojima će se ostvariti propisana svojstva zakaljenog sloja), moguće je uspješno riješiti primjenom simulacijskog algoritma koji povezuje matematičke modele elektromagnetskih, toplinskih i mikrostrukturnih procesa u računalni sustav za projektiranje induktora i simulaciju indukcijskog kaljenja.
1.3 Metodologija rada

Za rješavanje problema simulacije indukcijskog kaljenja nužno je postaviti matematičke modele elektromagnetskih, termodinamičkih i mikrostrukturnih procesa u obratku uz odgovarajuće rubne i početne uvjete. Ove modele treba razraditi polazeći od temeljnih jednadžbi pojedinog fizikalnog procesa: Maxwellovih jednadžbi za elektromagnetske procese, prvog glavnog stavka i jednadžbe provođenja topline za toplinske procese i kinetičkih jednadžbi za mikrostrukturne procese. Nakon izvoda pojedine jednadžbe procesa iste treba riješiti prikladnim numeričkim metodama i postupcima.

Pregled faza pripreme postupka indukcijskog kaljenja i konstruiranja induktora kao i usporedba i ograničenja najvažnijih analitičkih i numeričkih rješenja opisati će se u uvodnom dijelu rada (drugo i treće poglavlje). U svrhu postavljanja simulacijskog algoritma analizirat će se dostupna literatura i dosadašnje spoznaje o matematičkom modeliranju pojedinih faza indukcijskog kaljenja (indukcijsko ugrijavanje, gašenje prskanjem), te uobičajeno korištenim analitičkim i numeričkim metodama i metodama optimizacije induktora. Za postavljanje matematičkih modela indukcijskog kaljenja pretpostavlja se da je moguće računalno simulirati elektromagnetske, termodinamičke i mikrostrukture procese s točnošću i preciznošću, koji će dati dubinu kaljenja, površinsku tvrdoću i oblik zakaljene zone unutar dozvoljenih granica odstupanja propisanih zahtjevom naručitelja i normama.

Na temelju provedene analize u četvrtom poglavlju predložit će se i razraditi vlastiti simulacijski algoritam koji će biti temelj za projektiranje i razvoj vlastitog računalnog simulacijskog programa. Također će se definirati geometrijske domene za rješavanje problema i postavit će se energijska bilanca indukcijskog kaljenja. U petom, šestom i sedmom poglavlju razradit će se i numerički riješiti matematički modeli elektromagnetskih, toplinskih i mikrostrukturnih procesa u postupku indukcijskog kaljenja.

Za numeričko rješavanje jednadžbi elektromagnetskog polja primijenit će se hibridna metoda konačnih elemenata za određivanje veličina polja u obratku i metoda rubnih elemenata za određivanje veličina polja na površinama obratka i induktora. Za njihovo povezivanje predložit će se i primijeniti iteracijski postupak kojim se ne narušava simetričnost glavnih matrica pri rješavanju algebarskog sustava jednadžbi. Primjenom ove hibridne metode značajno se smanjuje broj geometrijskih čvorova sustava induktor-obradak i omogućuje se brže dobivanje rješenja jednadžbi elektromagnetskog polja, što je posebno bitno zbog potrebe za iteracijskim usklađivanjem rješenja jednadžbi s nelinearno promjenljivim električnim i magnetskim svojstvima materijala. Za obuhvaćanje promjena nelinearno

ovisne magnetske permeabilnosti čelika o jakosti magnetskog polja i temperaturi predložit će se vlastiti aproksimacijski model u petom poglavlju.

Za modeliranje toplinskih procesa u obratku koristiti će se metoda konačnih elemenata s Galerkinovom formulacijom zbog dobre aproksimacije geometrije obratka i fizikalnog smisla formulacije (koja predstavlja prošireni zapis zakona očuvanja energije u integralnom obliku). Rubni uvjeti u termodinamičkom modelu koji obuhvaćaju prijelaz topline s obratka na sredstvo za ohlađivanje modelirat će se empiričkim jednadžbama prema [14, 15] i vlastito razvijenim modelom. Također će se u šestom poglavlju predložiti i razraditi vlastiti model za opis nelinearno promjenljivog specifičnog toplinskog kapaciteta materijala ovisnog o temperaturi.

Mikrostrukturni procesi modelirat će se na temelju temperaturnog ciklusa ugrijavanja i ohlađivanja pojedinog konačnog elementa primjenom kinetičkih jednadžbi za predviđanje brzine faznih pretvorbi. Polazeći od opće kinetičke jednadžbe fazne pretvorbe, kinetičkog modela Leblond-Devaux i podataka iz dijagrama otapanja mikrostrukturnih faza brzim ugrijavanjem obrađivanog čelika (TTS dijagrami) [10] i TTT dijagrama za kontinuirano ohlađivanje [12, 13] predložit će se regresijski model za predviđanje udjela mikrostrukturnih faza nastalih difuzijskim pretvorbama (austenita, bainita, perlita i ferita). Nastanak martenzita modelirat će se poznatim Koistinen-Marburgovim modelom. Raspored tvrdoće zakaljenog sloja modelirati će se korištenjem dijagrama ovisnosti tvrdoće o temperaturi austenitizacije i TTT dijagrama za kontinuirano ohlađivanje konkretnog čelika.

U osmom poglavlju predložit će se i numerički primijeniti model optimizacije induktora temeljen na primjeni prethodno izvedenih i diskretiziranih jednadžbi elektromagnetskog polja. U prvom dijelu osmog poglavlja razrađena je metoda optimizacije viševojnog induktora i demonstrirana je na specifičnom primjeru. U drugom dijelu osmog poglavlja opisat će se izvedba vlastitog programskog sustava za računalnu simulaciju indukcijskog kaljenja i optimizaciju induktora.

Predloženi vlastiti simulacijski program eksperimentalno će se provjeriti na primjeru rotaciono posmičnog indukcijskog kaljenja valjaka dimenzija Ø20x95 mm od čelika 42CrMo4 sa kombinacijom dvije vrijednosti snage generatora i posmaka obratka (dobivene simulacijom). Nakon provedene simulacije i pokusa indukcijskog kaljenja usporediti će se dobiveni rezultati (površinska tvrdoća, dubina kaljenja). Potom će se izvesti zaključci o primjenljivosti vlastitog simulacijskog programa i dati prijedlozi budućih istraživanja simulacije indukcijskog kaljenja.

2.0 PRIPREMA I PROVEDBA POSTUPKA INDUKCIJSKOG KALJENJA

Površinskim otvrdnjavanjem postupkom indukcijskog kaljenja povisuje se primarno otpornost na trošenje a sekundarno otpornost kontaktnim pritiscima i dinamička izdržljivost čelika. Dubine površinski zakaljene zone uobičajeno iznose između 0,25 do 12 mm. Za čelike namijenjene indukcijskom kaljenju preporučuje se sadržaj ugljika između 0,35 do 0,7 %, sadržaj sumpora i fosfora manji od 0,035 %, visok stupanj čistoće, manja sklonost stvaranju zaostalog austenita i polazna mikrostruktura u kaljenom i popuštenom ili normalizacijski žarenom stanju [1, 5, 6, 18].

Norma DIN EN 17212 navodi popis od dvadesetak čelika za površinsko kaljenje. To su nelegirani čelici: Cf35, Ck45, Cf45, Cf53 i Cf70 i nisokolegirani čelici: 45Cr2, 38Cr4, 42Cr4, 41CrMo4, 49CrMo4. Uz njih se indukcijsko kaljenje može uspješno primijeniti i na niskolegirane čelike za poboljšavanje (46Cr2, 34CrV4, 42CrMo4, 50CrV4) i na neke čelike za automate (35S20, 60S20).

Željezni ljevovi prikladni za indukcijsko kaljenje trebaju sadržavati minimalno 0,5 % vezanog ugljika, a u mikrostrukturi treba prevladavati perlit. Prema normi SEW-835 za indukcijsko kaljenje se preporučuju slijedeći željezni ljevovi: G35Mn5, G46MN4, G42CrMo4, G50CrMo, G50CrV4; GJL-400, GJS-600-3, GJS-7000-2; GJMB-450-6, GJMB-550-4, GJMB-650-2.

2.1. Opis postupka indukcijskog kaljenja

Fizikalni procesi u obratku i oko njega tijekom postupka indukcijskog kaljenja kvalitativno su opisani u nizu knjiga i radova [1-9]. Indukcijsko kaljenje površinskog sloja sastoji se iz dviju faza:

- a) ugrijavanja sloja elektromagnetskom indukcijom na temperaturu austenitizacije,
- b) hlađenja ugrijanog sloja (gašenja) koje će dati martenzitnu pretvorbu.

Kod rotacionog i stacionarnog indukcijskog kaljenja faze ugrijavanja i gašenja su vremenski odvojene (**slika 2.1.a**). Obradak se prvo površinski ugrije elektromagnetskom indukcijom, a potom hladi određenim sredstvom za gašenje. Metode rotacionog i stacionarnog indukcijskog kaljenja pogodne su za površinsko kaljenje manjih obradaka. Kod posmičnog i rotaciono-posmičnog indukcijskog kaljenja (**slika 2.1.b**) ugrijavanje i ohlađivanje se odvijaju istodobno na susjednim dijelovima površine (tzv. zonama). Obradak prolazi kroz induktor i prskalicu zadanom posmičnom brzinom v_s i u slučaju rotaciono-posmične metode dodatno se okreće oko osi simetrije brzinom n_0 radi jednoličnog kaljenja

po cijelom opsegu. Metode posmičnog i rotaciono-posmičnog indukcijskog kaljenja pogodne su za površinsko kaljenje obradaka većih površina (npr. dugačkih osovina).

Slika 2.1 Shematski prikaz metoda indukcijskog kaljenja valjka [8]a) rotaciona metoda,b) rotaciono posmična metoda

2.1.1 Indukcijsko ugrijavanje

Ugrijavanje površinskog sloja pri indukcijskom kaljenju određeno ie uglavnom elektromagnetskom indukcijom, provođenjem topline i toplinskim gubicima s površine obratka. Elektromagnetska indukcija nastaje zbog prolaska izmjenične struje kroz induktor, a manifestira se pojavom vrtložnih struja u svim električki vodljivim predmetima postavljenim u blizini induktora. Inducirane vrtložne struje u obratku (slika 2.2.a) raspodjeljuju se u tankom površinskom sloju djelovanjem nekoliko elektromagnetskih efekata, od kojih je najutjecajniji "površinski efekt" ("skin efekt") zbog kojeg dolazi do potiskivanja visokofrekventne struje prema površini električki vodljivog materijala (slika 2.2.b). Dubina površinskog sloja vodljivog materijala kroz koji prolazi 63,212 % induciranih vrtložnih struja naziva se "efektivna dubina prodiranja struje" δ (mm), a računa se jednadžbom (2.1) [1-9]:

$$\delta = \sqrt{\frac{2}{\omega\mu_0\mu_r\kappa}} \approx 503 \cdot \frac{1}{\sqrt{f \cdot \kappa \cdot \mu_r}}$$
(2.1)

Jednadžba (2.1) pokazuje i najutjecajnije čimbenike na iznos efektivne dubine prodiranja struje δ od kojih je jedino moguće odabrati radnu frekvenciju indukcijskog generatora f dok su relativna magnetska permeabilnost μ_r i električna vodljivost κ svojstveni kaljenom materijalu. Efektivna dubina prodiranja struje δ mjerodavna je i za proračun snage ugrijavanja obratka. U sloju debljine δ u toplinu ugrijavanja pretvara se 86,467 % električne energije induciranih vrtložnih struja prema Jouleovom efektu. Ako je ugrijavani materijal homogen, linearan i izotropan, električna energija vrtložnih struja P_{δ} raspodjeljuje se po eksponencijalnom zakonu po dubini ugrijavanog sloja. (**slika 2.3.b**). Dodatni izvori topline u obratku su gubici magnetiziranja u iznosima od 1 do 10% ukupne topline ugrijavanja na temperaturama nižim od temperature Curie (na kojoj materijal postaje paramagnetičan) [9].

b) Relativno smanjenje gustoće induciranih struja $(J_{\delta}/J_{\delta 0})$ i elektromagnetske snage $(P_{\delta}/P_{\delta 0})$ od površine k jezgri obratka, mjereno relativnom udaljenošću od površine (ξ/δ) .

Mikrostrukturne fazne pretvorbe pri indukcijskom ugrijavanju mogu se relativno jednostavno pratiti pomoću dijagrama otapanja faza pri brzom zagrijavanju (dijagrami TTS: "Time Temperature Solubility", odnosno dijagrami ZTA: "Zeit Temperature Austenitisierung" dijagrami) (slika 2.3). Ovi dijagrami vrijede za čelik određenog kemijskog sastava i polazne mikrostrukture [10]. Iz njih se vidi temperaturno-vremenski karakter austenitizacije i moguće je odrediti približan iznos temperature austenitizacije indukcijski kaljenog čelika. Nastajanje austenita pri ugrijavanju je heterogena difuzijska mikrostrukturna reakcija koja kod većine čelika započinje na temperaturama nešto višim od onih iz ravnotežnog dijagrama stanja kad se u mikrostrukturi akumulira dovoljna energija za početak i tijek pretvorbe.

Slika 2.3 Dijagram TTS za kontinuirano ugrijavanje niskolegiranog čelika 42CrMo4 [10]

Optimalni parametri austenitizacije pri indukcijskom grijanju (trajanje grijanja, brzina grijanja i temperatura austenitizacije) trebaju omogućiti:

- potpunu pretvorbu perlita i ferita u sitnozrnati austenit
- dovoljno otapanje karbida (neotopljeni karbidi sprječavaju rast austenitnog zrna)
- potreban udio ugljika u austenitu za maksimalnu zakaljivost
- izjednačavanje udjela ugljika i legirajućih elemenata po dubini zagrijane zone.

Ovo nije jednostavno postići jer je indukcijsko kaljenje brz postupak s kratkim trajanjem i temperaturom austenitizacije ovisnom o brzini ugrijavanja. Stoga je ispunjenje ranije navedenih zahtjeva na kemijski sastav i polaznu mikrostrukturu nužan preduvjet za uspješnu provedbu indukcijskog kaljenja.

2.1.2 Gašenje

Elektromagnetskom indukcijom ugrijani sloj obratka treba ohladiti određenim sredstvom za gašenje na jedan od slijedećih načina:

- a) gašenjem u prskalici koja svojim oblikom prati oblik obratka (slika 2.4)
- b) gašenjem uranjanjem u bazen (prikladno jedino za legirane čelike i manje obratke).

Gašenje prskanjem vodenim otopinama polimera ili čistom vodom uobičajeno se primjenjuje kod svih metoda indukcijskog kaljenja. Stoga je vlastito razvijenim simulacijskim programom predviđen proračun koeficijenta prijelaza topline pri gašenju prskanjem. Za određivanje sredstva za gašenje i potrebne gornje kritične brzine gašenja (koja će dati potpunu martenzitnu pretvorbu) koriste se TTT dijagrami za kontinuirano ohlađivanje [12, 13].

Slika 2.4 Rotaciono-posmično indukcijsko kaljenje osovine uz gašenje prskanjem

Gašenje čistom vodom ili vodenim otopinama polimera (isparljive kapljevine) provodi se isparivanjem ovih kapljevina na austenitiziranoj površini obratka. Pri tome se pojavljuju tri faze isparivanja karakteristične za sredstva podložna Leidenfrostovom fenomenu (**slika 2.5**): filmsko, mjehurasto i isparivanje konvekcijom. Vodene otopine polimera pokazuju dodatno i fenomen inverzne topivosti (**slika 2.6**).

Leidenfrostov fenomen. Na početku gašenja razlika $\Delta \mathcal{G}_{G}$ između temperature ugrijane površine obratka i temperature zasićenja sredstva za gašenje iznosi nekoliko stotina °C uslijed čega se stvara paroviti film (područje V i VI na **slici 2.5**). Koeficijent prijelaza topline filma pare za red veličine manji je od najvećeg mogućeg koeficijenta mjehurastog isparivanja. Sniženjem temperaturne razlike $\Delta \mathcal{G}_{G}$ do iznosa temperature početka kvašenja površine obratka (tzv. "Leidenfrost-ove temperature") počinje kidanje parovitog filma (pojava tzv. nestabilnog filmskog isparivanja – dio krivulje oko točke "D"). Daljnjim sniženjem temperaturne razlike $\Delta \mathcal{G}_{G}$ kapljice sredstva sve više dolaze u neposredan dodir sa površinom obratka gdje isparuju. To je stadij mjehurastog isparivanja (područja krivulje oko III i IV na **slici 2.5**) za koji su karakteristične najveće moguće vrijednosti koeficijenta prijelaza topline α_{G} i najveća gustoća odvedenog toplinskog toka q_{max} koji se mogu ostvariti sa korištenim radnim parametrima i sredstvom za gašenje. Kad vrijednosti temperaturne razlike $\Delta \mathcal{G}_{G}$ postanu nekoliko °C prestaje izdvajanje mjehurića pare i nastupa prijelaz topline slobodnom konvekcijom (područje I na **slici 2.5**) [14, 15].

Slika 2.5 Ovisnost koeficijenta prijelaza topline α_G pri različitim fazama gašenja o razlici temperatura $\Delta \mathcal{G}_G$ površine obratka i temperaturi zasićenja sredstva za gašenje podložnog Leidenfrostovom fenomenu [15].

Fenomen inverzne topivosti polimera u vodi tipična je pojava kod gašenja vodenim otopinama polialkilen glikola (PAG) u koncentracijama od 0% do 30 %. PAG je u vodi potpuno otopljen na temperaturama od 63 do 85 °C, a na višim temperaturama dolazi do njegovog izlučivanja u netopljivi film. Zbog toga se prijelaz topline s površine obratka u fazi filmskog isparivanja odvija kroz paroviti film i netopljivi viskozni sloj PAG-a (**slika 2.6.a**). Polimerni sloj stabilizira paroviti film do temperature inverzne topivosti i tako regulira veličinu odvedenog toplinskog toka q_G u rasponu od temperature austenitizacije do temperature inverzne topivosti. Na temperaturi inverzne topivosti nastupa raspad polimernog sloja i mjehurasto isparivanje uz vrlo burnu reakciju u kojoj dio polimernog filma ispari, a dio se "zapeče" na obradak (**slika 2.6.b**). Interval vrijednosti temperature inverzne topivosti o vrsti i koncentraciji polimera otopljenog u vodi te temperaturi i brzini strujanja otopine [15].

Slika 2.6 Shematski prikaz nastanka površine para/kapljevina tijekom hlađenja obratka vodenom otopinom polimera [16]:

- a) Faza filmskog isparivanja s netopivim slojem polimernih molekula na filmu pare
- b) Faza mjehurastog isparivanja s kvašenjem površine obratka molekulama vode i polimera.

Kod gašenja u prskalici konstrukcijom prskalice i izborom pritiska i protoka kapljevine sprječava se stvaranje parnog omotača oko obratka karakterističnog za filmsko isparivanje pa se odvođenje topline iz rubnog sloja uglavnom provodi mjehurastim isparivanjem i konvekcijom. Pri tome na koeficijent prijelaza topline gašenja utječe niz čimbenika od kojih su najutjecajniji vrsta i sastav sredstva za

gašenje, kinematička viskoznost, temperatura zasićenja sredstva, gustoća prskanja m_0 , kg/(m²s), oblik i dimenzije segmenta kaljene površine, toplinska svojstva i oksidacija površine metala, temperatura, pritisak, brzina strujanja i protok sredstva, konstrukcija i položaj prskalice prema obratku (promjer, oblik, razmještaj i skošenje rupica prema obratku), relativno gibanje obratka prema mlazu kapljica [5, 6, 14, 15, 16].

Sustav za gašenje čine, osim prskalice, spremnik sredstva za gašenje, dobavna i odsisna pumpa, cjevovod i mjerno-upravljački podsustav. Mjerne veličine u sustavu za gašenje su temperatura sredstava za gašenje, radni tlak, protok, koncentracija otopine polimera, kinematička viskoznost i količina sredstva za gašenje u spremniku. Upravljačke veličine u sustavu za gašenje su temperatura sredstva za gašenje, radni tlak sredstva te početak i završetak ciklusa gašenja (kod rotacionog indukcijskog kaljenja), odnosno posmak obratka (kod posmičnog indukcijskog kaljenja) [9, 14, 15].

Mikrostrukturne fazne pretvorbe pri ohlađivanju austenita započinju uz temperaturnu histerezu u odnosu na austenitnu pretvorbu pri zagrijavanju. Budući da se snižavanjem temperature snižava i pokretljivost atoma ugljika, željeza i legirajućih elemenata, to će se i mikrostrukturne faze nastale pretvorbom austenita razlikovati po obliku, veličini i rasporedu [11]. Pri brzinama ohlađivanja većim od gornje kritične brzine gašenja ili uz neko kritično pothlađenje potpuno će izostati difuzija svih atoma, pa će uslijediti tzv. preklopna (bezdifuzijska) pretvorba austenita u martenzit. Praćenje i predviđanje redoslijeda mikrostrukturnih faznih pretvorbi konkretnog čelika pri kontinuiranom ohlađivanju austenita provodi se pomoću TTT dijagrama za kontinuirano ohlađivanje (**slika 2.7**).

Treba napomenuti da su TTT dijagrami za kontinuirano ohlađivanje (kao i TTS dijagrami) snimljeni (uglavnom dilatometrijskim metodama) za konkretni čelik iz određene šarže, poznatog kemijskog sastava, austenitiziran u propisanom vremenu na optimalnoj temperaturi i hlađen različitim brzinama ohlađivanja. Za istu vrstu čelika tolerantno različitog kemijskog sastava, različitih parametara austenitizacije ili načina hlađenja ovi dijagrami smiju se primijeniti samo orijentacijski [10, 11, 12].

Najznačajnija mikrostrukturna pretvorba pri indukcijskom kaljenju (tzv. "potpuno kaljenje") jest nastanak martenzita od pothlađenog austenita bezdifuzijskim mikrostrukturnim procesima. Koncentracija ugljika u martenzitu jednaka je koncentraciji ugljika u primarnom (i pothlađenom) austenitu. Glavni utjecajni čimbenici koji određuju mehanička svojstva martenzita (tvrdoću, čvrstoću itd.), zaostala naprezanja, promjenu oblika i dimenzija obratka jesu udio ugljika i legirajućih elementa otopljenih u austenitu, veličina austenitnog zrna, temperature početka M_s i završetka M_f martenzitne pretvorbe, gornja kritična brzina gašenja v_{kg} , morfologija i kristalografske značajke martenzitnog zrna i količina zaostalog austenita u martenzitnoj matrici.

Martenzit nastaje zbog ohlađivanja austenitiziranog čelika brzinama većim od tzv. "gornje kritične brzine gašenja" v_{kg} . Ako su brzine ohlađivanja međukritične ($v_{kd} < v_{hl} < v_{kg}$) prije fazne pretvorbe pothlađenog austenita u martenzit dogodit će se difuzijske pretvorbe austenita u perlit i/ili bainit (tzv. "nepotpuno kaljenje"). Iznosi donje v_{kd} i gornje kritične brzine gašenja v_{kg} određuju se iz TTT za kontinuirano ohlađivanje konkretnog kaljenog čelika (**slika 2.7**).

Oznake mikrostrukurnih faza:

A ... austenit
F ... ferit
P ... perlit
B ... bainit
M ... martenzit

Slika 2.7 Određivanje gornje kritične brzine gašenja v_{kg} iz TTT dijagrama za kontinuirano ohlađivanje podeutektiodnog ugljičnog čelika [17].

2.2 Priprema postupka indukcijskog kaljenja

2.2.1 Faze pripreme

Iz prethodnog opisa postupka indukcijskog kaljenja i najznačajnijih fizikalnih procesa u njemu mogu se nabrojiti utjecajni čimbenici vezani za obradak, induktor, prskalicu i parametre postupka koji utječu na dubinu kaljenja, površinsku tvrdoću i oblik zakaljene zone (**tablica II.1**).

Izvor utjecajnog čimbenika	utjecajnog Ibenika Utjecajni čimbenici na svojstva zakaljene zone		
OBRADAK	 Oblik, dimenzije obratka i njihovo odstupanje unutar serije Omjer ploštine kaljene površine prema volumenu obratka Kemijski sastav materijala (posebno %C, %S, %P) Fizikalna svojstva (električna, magnetska, toplinska), metalurška svojstva (temperatura austenitizacije, gornja kritična brzina gašenja, temperature M_s i M_f, sklonost stvaranju zaostalog austenita) i tehnološka svojstva (zakaljivost, prokaljivost) Prethodna toplinska obrada i polazna mikrostruktura 		
INDUKTOR	 Oblik i dimenzije induktora Veličina zračnosti između induktora i obratka Primjena koncentratora magnetskog toka Oblik i dimenzije koncentratora magnetskog toka 		
PRSKALICA	 Način strujanja sredstva za gašenje preko obratka. Oblik i dimenzije prskalice Konstrukcija rupica za stvaranje mlaza (promjer, raspored i broj, skošenje). Orijentacija i preklapanje mlazova 		
POSTUPAK INDUKCIJSKOG KALJENJA (metoda indukcijskog kaljenja, radni parametri, sredstvo za gašenje)	 Metoda indukcijskog kaljenja Frekvencija generatora (jednofrekvencijski ili dvofrekvencijski generator s konstantnom ili promjenljivom frekvencijom) Električna snaga, napon, struja i faktor snage induktora Trajanje ugrijavanja ili posmak obratka Ostvarena brzina ugrijavanja na temperaturama iznad A₁ temperature Način gašenja (prskanje, uranjanje) Vrsta i sastav sredstva za gašenje Hidrodinamička i toplinska svojstva sredstva za gašenje (kinematička viskoznost, temperatura zasićenja, toplinska svojstva) Položaj i točnost pozicioniranja obratka prema induktoru i prskalici Relativno gibanje obratka prema mlazu iz prskalice Brzina i smjer strujanja sredstva za gašenje. Trajanje progrijavanja između završetka ugrijavanja i početka gašenja Trajanje gašenja. 		

Tablica II.1 Sistematizacije izvora i vrste utjecajnih čimbenika na svojstva zakaljene zone

Većinu čimbenika navedenih u **tablici II.1** može se izmjeriti (svojstva materijala), propisati crtežom (konstrukcija obratka, induktora i prskalice) pa i automatski regulirati unutar glavnih podsustava

indukcijske radne ćelije (radni parametri postupka). Međutim složeno je i često puta nepotrebno utvrđivati utjecaj svih navedenih čimbenika na površinsku tvrdoću, oblik i dubinu zakaljene zone.

Tijekom pripreme postupka simulacijskim programima i eksperimentalnim ispitivanjima uobičajeno se provjeravaju i optimiraju oblik i dimenzije induktora, potrebna električna snaga, brzina posmaka (trajanje ugrijavanja), temperatura austenitizacije i sredstvo za gašenje. Jedino se u slučaju usvajanja indukcijskog kaljenja za potpuno novi obradak u velikoserijskoj proizvodnji priprema postupka sastoji (u svojem najširem obliku) od deset faza navedenih u **tablici II.2**.

Tablica II.2 Faze pripreme i parametri postupka indukcijskog kaljenja [1-6,9,18, 19].

Rb.	Naziv faze pripreme	Zadaće i svrha pojedinih faza pripreme			
I.	Analiza prikladnosti obratka i materijala za indukcijsko kaljenje	 Analiza prikladnosti materijala za indukcijsko kaljenje Analiza prethodne strojne i toplinske obrade Analiza zahtijevane površinske tvrdoće, efektivne dubine kaljenja, položaja i oblika zakaljene zone Analiza dopuštenih odstupanja iznosa zahtijevane površinske tvrdoće i efektivne dubine kaljenja Određivanje dijela obratka pogodnog za prihvat te načina postavljanja i skidanja obratka iz prihvata 			
II.	Izbor osnovnih parametra postupka:	 Frekvencija i tip indukcijskog generatora, Temperatura austenitizacije, Brzina gašenja (v_{hl}≥v_{kg}), Temperatura završetka gašenja, Metoda ugrijavanja i način gašenja. 			
III.	Izbor polaznog oblika induktora (koncipiranje induktora)	 Koncipiranje polaznog oblika induktora (sa ili bez primjene koncentratora magnetskog toka). Definiranje prihvata obratka i položaja induktora prema obratku. 1D računalna simulacija pojednostavljenog modela indukcijskog ugrijavanja ili analitički proračun orijentacijskih vrijednosti vremena (ili posmaka) ugrijavanja i potrebne snage generatora Analiza ekonomičnosti induktora (konstrukcija, izrada, održavanje) 			
IV.	Optimizacija induktora i parametara ugrijavanja (razrada tehničkih karakteristika induktora)	 Određivanje optimalnog broja, koraka zavoja i visine induktora Optimizacija oblika i dimenzija induktora 2D ili 3D računalnom simulacijom radi određivanja teoretski najpovoljnijeg poprečnog presjeka induktora, optimalne zračnosti induktor - obradak i izbjegavanja lokalnog pregrijavanja obratka Optimizacija parametara indukcijskog ugrijavanja s optimalnim induktorom 2D ili 3D računalnom simulacijom radi određivanja optimalne kombinacije vremena (posmaka) i snage ugrijavanja. 			
V.	Izbor sredstva za gašenje, prskalice i parametar gašenja (razrada tehničkih karakteristika gašenja)	 Izbor sredstva i metode gašenja Određivanje položaja prskalice prema obratku i induktoru Prilagođavanje oblika i dimenzija prskalice mjerama i obliku obratka Određivanje minimalne zračnosti između prskalice i obratka radi postizanja ujednačenog hlađenja i odvođenja sredstva za gašenje Određivanje mjera, rasporeda i broja rupica na prskalici Proračun protoka, brzine istjecanja i gastenja računalnom simulacijom. 			

Rb.	Naziv faze pripreme	Zadaće i svrha pojedinih faza pripreme		
VI.	Projektiranje induktora i priprema za njegovu izradu	 Definiranje konačnog oblika i dimenzija induktora sa svim konstrukcijskim detaljima (priključne spojnice na generator, montaža koncentratora magnetskog toka, itd.) Detaljno propisivanje vrste i kvalitete materijala induktora i eventualno njegove toplinske obrade. Proračun protoka vode za hlađenje induktora. Računalna simulacija ugrijavanja i ohlađivanja induktora s ciljem uklanjanja potencijalnih mjesta za pregrijavanje induktora (što je posebno važno ako je induktor s koncentratorom magnetskog toka). Izbor i dimenzioniranje električne i toplinske izolacije induktora i obratka (kod dugačkih viševojnih induktora). Projektiranje tehnološkog procesa izrade induktora sa svim potrebnim obradama i postupcima spajanja (lemljenje, lijepljenje). Analiza troškova izrade i održavanja induktora. 		
VII.	Projektiranje prskalice i priprema za njenu izradu	 Definiranje konačnog oblika prskalice sa svim potrebnim konstrukcijskim detaljima (priključci za dovod sredstva za gašenje, oblik i mjere ulazne i izlazne komore prskalice, promjer i skošenje rupica na izlaznoj komori itd.). Izbor materijala prskalice (električki nevodljivi materijal). Projektiranje tehnološkog procesa izrade prskalice sa svim potrebnim strojnim obradama. Analiza troškova izrade i održavanja prskalice. Izrada crteža prskalice i ostale radioničke dokumentacije vezane uz njenu izradu. 		
VIII.	Izrada induktora i prskalice	 Primjena postupaka deformiranja, strojnih obrada rezanjem, postupaka spajanja lemljenjem ili lijepljenjem (čija kvaliteta provedbe presudno utječe na eksploatacijski vijek induktora). Primjena koncentratora magnetskog toka zahtijeva posebne obradne postupke kojima se dobiva zahtijevani oblik koncentratora. 		
IX	Ispitivanje tehničkih karakteristika induktora i prskalice uz metalografsku analizu zakaljenog sloja	 Provedba tzv. nulte serije indukcijskog kaljenja pokusnih uzoraka. Metalografska analiza pokusnih uzoraka. Završno podešavanje i prilagođavanje zavoja, odnosno koncentratora magnetskog toka (deformiranje vodiča induktora, završne strojne obrade koncentratora magnetskog toka). Snimanje tehničkih karakteristika induktora (napon, struja, faktor snage) i površinske temperature obratka. Trajno pričvršćivanje koncentratora magnetskog toka (po dobivanju zahtijevanih rezultata indukcijskog kaljenja) lemljenjem, lijepljenjem ili uprešavanjem. 		
Х	Definiranje mjerno- regulacijskih veličina i utvrđivanje dozvoljenog raspona odstupanja	 Podešavanje ili programiranje regulatora (snage, brzine posmaka, vremena ugrijavanja i gašenja, dobave sredstva za gašenje) i graničnika pomaka. Postavljanje i kalibracija pirometara zračenja za mjerenje površinske temperature obratka. Postavljanje i kalibracija sustava za ispitivanje dubine zakaljenog sloja vrtložnim strujama (u cilju osiguranja 100%-tne kontrole kvalitete). Programiranje dijagnostičkog sustava indukcijske radne ćelije 		

2.2.2 Konstrukcija induktora

Zahtjevi na konstrukciji induktora. Konstrukcija i izrada induktora spadaju među najvažnije faze u pripremi postupka indukcijskog kaljenja. Induktor prenosi energiju s generatora na obradak i na njega se postavljaju sljedeći zahtjevi [1-6, 8, 17]:

- a) Oblikom i dimenzijama induktor treba osigurati traženi oblik i dubinu zagrijavane zone (odgovarajućom temperaturom i mikrostrukturom) u raspoloživom vremenu sa zadanim tipom indukcijskog generatora
- b) Visok stupanj djelovanja induktora u prijenosu energije na obradak
- c) Posjedovanje odgovarajućih elektrotehničkih karakteristika važnih za dobar prijenos energije na obradak (visok faktor snage, odgovarajuća impendancija)
- d) Mala osjetljivost na točnost pozicioniranja i dozvoljena odstupanja mjera obratka
- e) Induktor treba biti čvrst da se ne bi deformirao tijekom upotrebe
- f) Dugotrajnost u eksploataciji
- g) Prikladnost za brzu i jednostavnu montažu i demontažu
- h) Ispunjavanje specifičnih zahtijeva poput integriranosti s prskalicom, konstrukcije prilagođene ulazu i izlazu obratka na automatskoj proizvodnoj liniji i dr.

Induktor se konstruira, odnosno prilagođava obratku ili skupini sličnih obradaka, pa se u tom smislu može smatrati specifičnim alatom za provedbu indukcijskog kaljenja. Na vrstu, oblik, dimenzije i materijal induktora utječu uglavnom sljedeći čimbenici:

- dimenzije i oblik obratka, odnosno površine koju treba zakaliti
- veličina serije
- temperatura austenitizacije
- oblik i dubina zagrijavane zone
- metoda indukcijskog kaljenja
- energija koja će se prenositi s generatora na obradak
- frekvencija generatora
- integriranost s prskalicom.

Osnovne podjele induktora prema načinu prijenosa električne snage s generatora na obradak, prema frekvenciji generatora i izvedbi induktora jesu:

- a) Induktori prema načinu prijenosa energije na obradak (tablica II.3):
 - induktori s uzdužnim magnetskim poljem (tzv. "longitudinalni induktori"),
 - induktori s poprečnim magnetskim poljem (tzv. "transverzalni induktori").

- b) Induktori prema frekvenciji generatora dijele se na sljedeće tri grupe:
 - niskofrekventni induktori (f < 1 kHz) za predgrijavanje ili prokaljivanje
 - srednjefrekventni induktori ($f = 1 \dots 50 \text{ kHz}$) za površinsko kaljenje
 - visokofrekventni induktori ($f = 50 \dots 500 \text{ kHz}$) za površinsko kaljenje.

Tablica II.3. Izgled i	i glavne karakteristike	induktora prema načinu	prijenosa energ	gije na obradak [8]
	0	F	F J	JJ [.]

Iı	nduktor s uzdužnim magnetskim poljem	Induktor s poprečnim magnetskim poljem		
	NDUKTOR OBRADAK	INDUKTOR Silnice magnetskog poly OBRADAR		
Glavne karakteristike:		Glavne karakteristike:		
-	Silnice magnetskog polja u smjeru posmaka, paralelne s osi simetrije obratka	 Silnice magnetskog polja su okomite na smjer posmaka, odnosno os simetrije obratka 		
-	Induktor obuhvaća dio obratka	- Induktor se primiče obratku		
-	Promjer ili širina obratka trebaju biti veći od četverostruke efektivne dubine prodiranja struje da ne bi došlo do međusobnog poništavanja induciranih vrtložnih struja s jedne strane presjeka na drugi	 Zbog velikog rasipanja magnetskog polja i ugrijavanja praktički samo jednom stranom induktora bez primjene koncentratora magnetskog toka postižu se relativno niski stupnjevi djelovanja induktora 		
-	Moguće je postići visoke stupnjeve djelovanja induktora uz optimalnu konstrukciju i postavljanje prema obratku			

Prema izvedbi od važnosti za daljnje proučavanje su induktori za površinsko kaljenje:

- jednovojni ili viševojni induktori (slika 2.1, slika 2.2a),
- induktori za kaljenje zuba ili uzubine (zupčanika, lančanika) (slika 2.8.a)
- induktori u obliku spirale (slika 2.8.b)
- induktori integrirani s prskalicom (slika 2.8.c),
- induktori s posebno profiliranim koncentratorom magnetskog toka (slika 2.9),
- induktori za dvofrekvencijsko indukcijsko kaljenje,
- induktori specijalnih izvedbi za velikoserijsko kaljenje npr. rukavaca koljenastih osovina, površina ekscentara, zubi pila za metal, valjaka valjnih ležaja i sl.

Slika 2.8. Primjeri izvedbi induktora bez koncentratora magnetskog toka [8]:

- a) Induktor za kaljenje zuba zupčanika,
- **b)** Induktor u obliku spirale,
- c) Induktor integriran s prskalicom.

a)

Slika 2.9. Primjeri izvedbi induktora s koncentratorom magnetskog toka

b)

- a) Induktor za kaljenje zuba zupčanika,
- b) Induktor za kaljenje rukavca osovine sa i bez koncentratora magnetskog toka.

Primjena koncentratora magnetskog toka (slika 2.9) može unaprijediti postupak indukcijskog kaljenja na više načina posebno kod induktora složenog oblika i onih s niskim stupnjem djelovanja (induktori za kaljenje ravnih površina ili provrta) [8, 9, 20, 21]:

- povišenjem stupnja djelovanja induktora η i faktora snage $\cos \varphi$
- zaštitom susjednih dijelova obratka od ugrijavanja usmjeravanjem magnetskog polja
- boljom koncentracijom i raspodjelom vrtložnih struja samo na dijelu površine obratka.

Danas su u primjeni sljedeće vrste koncentratora magnetskog toka [8, 20, 21]:

- 1) *Koncentratori toka od izoliranih tankih limova* čelika legiranog silicijem, koji su primjenljivi za frekvencije ispod 10 kHz i manje gustoće prenesene električne snage,
- Feritni koncentratori toka: keramički materijali osjetljivi na povišene temperature (jer postaju nemagnetični), koji su teško obradivi nakon sinteriranja,

3) Magnetodielektrički koncentratori toka dobiveni skrućivanjem u kalupu i toplinskom obradbom feromagnetskog praha povezanog dielektričnim vezivom. Ovaj predoblik dobro se obrađuje skidanjem strugotine te mekim lemljenjem, lijepljenjem ili uprešavanjem na bakrene vodiče. Proizvode za određene frekvencije struje. U radu podnose temperature do300°C.

2.2.3 Mjerne i regulacijske veličine u postupku indukcijskog kaljenja

Suvremenu indukcijsku radnu ćeliju čine sljedeći glavni podsustavi:

- izvor energije (indukcijski generator) sa sklopom za regulaciju izlazne snage i induktorom
- pristroj za manipulaciju obratkom
- hidraulička instalacija s bazenom za gašenje i prskalicom
- mjerno-regulacijski sustav za vođenje procesa.

Rad mikroprocesorski upravljane suvremene indukcijske radne ćelije temelji se na mjerenju regulacijskih veličina i usporedbi s referentnim veličinama optimalno izvedenog procesa. Čim jedna od praćenih veličina (brzina posmaka ili trajanje ugrijavanja obratka, struja i napon induktora, faktor snage, površinska temperatura obratka, dubina kaljenja) izađe iz tolerancijskog polja, regulator signalizira stanje procesa i zahtijeva njegovo prilagođavanje referentnim veličinama. Unutar tolerancijskog polja regulator sam prilagođava parametre procesa. U većini suvremenih indukcijskih radnih ćelija upravlja se s dvije do tri veličine i to brzinom posmaka, trajanjem ugrijavanja i izlaznom snagom generatora, ovisno o površinskoj temperaturi obratka, naponu, struji i faktoru snage induktora ili dubini indukcijskog kaljenja. Ostale moguće upravljačke veličine izvedene su nepromjenjivima. Osnovne regulacijske i mjerne veličine za vođenje postupka indukcijskog kaljenja prikazane su **tablicom II.4**.

	REGULACIJSKE VELIČINE INDUKCIJSKE RADNE ĆELIJE	Generator i induktor	Prihvatno/ posmični uređaj	Sustav za gašenje	OBRADAK
Mjerne i regulirane veličine u	Pozicija obratka unutar induktora		Х		
	Radna snaga generatora	X			
	Vrijeme ugrijavanja obratka	X			
	Brzina posmaka obratka		Х		
	Vrsta i sastav sredstva za gašenje			Х	
	Protok i tlak sredstva za gašenje			Х	
	Temperatura sredstva za gašenje			X	
Mjer ene veliči	Površinska temperatura obratka				Х
	Dubina kaljenja obratka				Х
	Struja, napon i faktor snage induktora	X			

Tablica II.4. Regulacijske i mjerne veličine procesa indukcijskog kaljenja

3.0 DOSADAŠNJE SPOZNAJE O RAČUNALNOM PROJEKTIRANJU INDUKCIJSKOG KALJENJA

3.1 Računalne simulacije elektromagnetskih i toplinskih procesa

Razvoj numeričkih metoda i računalne tehnike u posljednja tri desetljeća omogućili su širu primjenu računalnih simulacija za klasične postupke toplinske obradbe (kaljenje, popuštanje, žarenje, pougljičavanje) [22]. Računalne simulacije indukcijskog kaljenja (indukcijsko ugrijavanje i gašenje prskanjem) pojavljuju se nešto kasnije (unazad posljednja dva desetljeća) zbog vrlo složenih fizikalnih procesa u rubnom sloju obratka (elektromagnetski, termodinamički, mikrostrukturni i mehanički) (poglavlja 2.1.1 , 2.1.2) koje treba na odgovarajući način djelomično ili u cijelosti obuhvatiti računalnom simulacijom. Ovi su procesi tijekom indukcijskog kaljenja nelinearni, nestacionarni i međusobno uvjetovani, a na njihovo odvijanje utječu čimbenici porijeklom od samog obratka (oblik i dimenzije, kemijski sastav, fizikalna svojstva i polazna mikrostruktura), metode indukcijskog kaljenja, induktora, prskalice i radnih parametara postupka.

Složenu prirodu međusobno ovisnih elektromagnetskih, toplinskih, mikrostrukturnih i mehaničkih procesa pri indukcijskom kaljenju i njihov utjecaj na dobivena svojstva indukcijski zakaljenog sloja (dubinu kaljenja, površinsku tvrdoću, oblik zakaljene zone) nije moguće dovoljno točno i precizno opisati bez postavljanja i rješavanja matematičkih modela. Složenost matematičkih modela fizikalnih procesa pri indukcijskom kaljenju dugo vremena je onemogućavala simulaciju procesa čak i za jednodimenzijske probleme. Postavljanjem i rješavanjem matematičkih modela spomenutih procesa i analizom rješenja moguće je brzo i uz relativno niske troškove pronaći optimalne parametre postupka i optimalni oblik induktora za konkretan materijal i za zadani obradak.

Računalne simulacije indukcijskog ugrijavanja i/ili kaljenja čelika pojavljuju se u literaturi od početka 80-tih god. prošlog stoljeća kao numerička rješenja problema indukcijskog ugrijavanja (elektromagnetski i termodinamički 1D ili 2D problem) primjenom metoda konačnih diferencija [23], konačnih elemenata [24, 25] ili rubnih elementa [26]. Jedan od prvih primjera razrade algoritma i računalne simulacije međusobno povezanih elektromagnetskih, toplinskih i mehaničkih procesa pri indukcijskom kaljenju dugačkog čeličnog valjka opisan je u radu [27] iz 1985. god. Do početka 90-tih god. prošlog stoljeća pojavljuje se jedan od prvih komercijalnih programa koji u sebi sadrži i dio za simulaciju indukcijskog ugrijavanja ("Flux 2D") s posebno prilagođenim generatorom mreže

konačnih elemenata (lokalno usitnjeni konačni elementi u indukcijski zagrijavanom sloju) koji iterativno rješava prvo elektromagnetski, a potom termodinamički problem ugrijavanja (uzimajući u obzir nestacionarnosti procesa i nelinearnosti svojstava materijala) [28].

Do sredine 1990-tih god. pojavljuje se nekoliko pristupa numeričkom rješavanju uglavnom elektromagnetsko-termodinamičkog problema indukcijskog ugrijavanja od kojih se ističu sljedeći:

- Primjena metode konačnih elemenata s posebnom formulacijom osnovne matrice konačnog elementa koja se sastoji od varijabli iz jednadžbi elektromagnetskog i toplinskog polja [29].
- Primjena metode konačnih elemenata s posebnim formulacijama elektromagnetskih rubnih uvjeta (beskonačni elementi, asimptotski rubni elementi, "ballooning" elementi, ...) [30].
- Primjena modificiranih oblika metode rubnih elemenata za računalnu simulaciju visokofrekventnog indukcijskog ugrijavanja poput aproksimacijske metode rubnih elemenata [31, 32], metode s površinskim impedancijama [33].
- Primjena hibridnih metoda sastavljenih od metode konačnih elemenata s različitim formulacijama metode rubnih elemenata (tzv. metode FEM/BEM) [34, 35].

3.2 Metode rješavanja problema elektromagnetskih i toplinskih polja u simulaciji indukcijskog kaljenja

Razine matematičkog modeliranja. Za precizno definiranje radnih parametara postupka i predviđanje raspodjele mikrotvrdoće u zakaljenom sloju potrebno je određenim algoritmom povezati matematičke modele svih relevantnih procesa u obratku (elektromagnetske, toplinske, mikrostrukturne). Ovisno o složenosti problema, veličini serije, raspoloživom vremenu i troškovima pripreme prilazi se rješavanju na nekoj od tri razine matematičkog modeliranja [36]:

- I. Na <u>prvoj razini</u> rješavaju se jednodimenzijski matematički modeli elektromagnetskih procesa i provođenja topline u obradak (analitičkim ili numeričkim metodama).
- II. Na <u>drugoj razini</u> rješavaju se dvodimenzijski matematički modeli elektromagnetskih, termodinamičkih i mikrostrukturnih procesa u dugačkim ili aksijalno simetričnim obratcima uglavnom numeričkim metodama.
- III. Na <u>trećoj razini</u> provodi se računalna simulacija svih spomenutih fizikalnih procesa trodimenzijskim matematičkim modelima jer se priprema indukcijsko kaljenje obratka složenog oblika. Uobičajeno se koriste metoda konačnih i/ili rubnih elemenata.

Analitičke metode korisne su pri simulacijama jednodimenzijske raspodjele kvazistacionarnog magnetskog polja i vrtložnih struja, za proračune "ekvivalentnog strujnog kruga" induktor-obradak [4, 5, 7] i rješavanje jednodimenzijske jednadžbe nestacionarnog provođenja topline [7]. Time se obuhvaćaju samo problemi indukcijskog ugrijavanja (npr. ravnih dugačkih osovina ili ravnih ploča s viševojnim induktorom na temperaturama iznad Curieove temperature). Svojstva materijala pri tome se pretpostavljaju nepromjenjivim, homogenim i izotropnim. Za proračun električne snage ugrijavanja obratka i određivanje optimalnog broja zavoja dugačkog viševojnog induktora često puta se koristi model "ekvivalentnog strujnog kruga" induktor-obradak poznat iz elektrotehnike [5, 7]. U tom ("koncentriranom") modelu induktor i obradak zamjenjuju se omskim (radnim) i induktivnim (jalovim) otporima. Omski otpori predstavljaju "gubitke" električne snage pretvorbom u toplinu ugrijavanja obratka (Jouelovi gubici), a induktivni otpori predstavljaju samoindukciju i elektromagnetsku vezu induktora i obratka. Specifična snaga Jouelovih gubitaka uz površinu obratka ulazi u matematički model provođenja topline u obliku volumnih toplinskih izvora raspoređenih po sloju debljine jednake efektivnoj dubini prodiranja struje δ . Ovaj model primijenjen je i u ovom radu za postavljanje energijske bilance indukcijskog kaljenja.

Jednodimenzijsko matematičko modeliranje unatoč pojednostavljenom prikazu daje kvalitativni uvid u raspored električne snage i temperature u površinskom sloju ovisno o radnoj frekvenciji, jakosti struje, naponu induktora i posmaku (trajanju ugrijavanja) obratka, što može poslužiti za procjenu stvarnih uvjeta kod složenijih dvodimenzijskih modela, a ranije je služilo za izradu tehnoloških dijagrama korištenih u pripremi indukcijskog kaljenja. Primjena ovakvih podloga ograničena je na slučajeve za koje su konstruirani i ispitani.

Numeričke metode karakteristične su za suvremenu pripremu indukcijskog kaljenja i primjenjuju se čak i u slučajevima kad je diferencijalna jednadžba difuzije elektromagnetskog polja ili provođenja topline analitički rješiva, ali nije moguće eksplicitno zadati rubne uvjete ili su svojstva materijala funkcija rješenja diferencijalne jednadžbe (nelinearni matematički model). Od numeričkih metoda za modeliranje indukcijskog kaljenja najviše su zastupljene metode konačnih i rubnih elemenata s nizom svojim podvrsta i kombinacija (poglavlja 3.2.1, 3.2.2).

Metoda konačnih diferencija koja je zbog svoje jednostavnosti bila prva primijenjena za numeričko rješavanje diferencijalne jednadžbe provođenja topline i diferencijalnih jednadžbi elektromagnetskog polja na jednostavnim geometrijskim domenama (valjci, predmeti kvadratnog i pravokutnog poprečnog presjeka) [21, 88, 89, 90] danas se rjeđe koristi u znanstveno istraživačkom modeliranju indukcijskog kaljenja. Poteškoća pri njenoj primjeni za obratke složenijeg oblika je u pojavi nepodudaranja mreže ortogonalnih čvorova sa zakrivljenim oblikom površine obradaka ili induktora, kao i u potrebi vrlo guste diskretizacije kaljenog rubnog sloja s malim prostornim koracima ($\Delta r_i i \Delta z_i$). Za rješavanje matematičkih modela fizikalnih procesa kod indukcijskog kaljenja prostorni koraci u površinskom sloju trebaju biti manji od efektivne dubine prodiranja struje δ , što zahtijeva vrlo gustu mrežu čvorova i dugotrajno izvođenje simulacije. Dodatno prevelikim smanjivanjem prostornih koraka lako se može doći u područje u kojem greška zaokruživanja računala postaje većom od promjene fizikalne veličine. Značajnija primjena metode konačnih diferencija u današnjem modeliranju indukcijskog kaljenja zadržana je uglavnom pri rješavanju nestacionarnih diferencijalnih jednadžbi (npr. provođenja topline) za diskretizaciju jednadžbi u vremenskoj domeni. Pri tome treba napomenuti da je vremenski korak rješenja termodinamičkog problema Δt povezan s diskretizacijom prostorne domene Δx , Δy kriterijem stabilnosti numeričkog rješenja [9].

3.2.1 Metoda konačnih elemenata

Metoda konačnih elemenata je numerička metoda temeljena na diskretizaciji kontinuuma s određenim brojem elemenata i geometrijskih čvorova na elementu. Diskretizacijom se kontinuum s beskonačno stupnjeva slobode gibanja zamjenjuje diskretnim modelom međusobno povezanih elemenata s ograničenim brojem stupnjeva slobode. Oblik elementa i broj čvorova na njemu ovisi o dimenziji problema, obliku predmeta, modeliranom procesu, zahtijevanoj točnosti rješenja i brzini računanja na računalu.

Osnovni konačni elementi za analizu fizikalnih procesa pri indukcijskom kaljenju shematski su prikazani na **slici 3.1.** Zbog složenog matematičkog opisa fizikalnih procesa pri indukcijskom kaljenju u literaturi se u najvećem broju radova nalaze računalne simulacije indukcijskog kaljenja s dvodimenzijskim i osnosimetričnim konačnim elementima trokutnog ili četverokutnog poprečnog presjeka. Ako su vanjske površine geometrijskih domena nepravilnog oblika i zakrivljene onda se uobičajeno koriste trokutni konačni elementi umjesto četverokutnih.

Broj i razmještaj elemenata određuje se prema iskustvu. Općenito je pravilo da je za postizanje točnijeg rješenja nužna finija mreža (veći broj manjih konačnih elemenata) na mjestima gdje se očekuje značajnija promjena promatrane fizikalne veličine, poput površinskog sloja indukcijski grijanog obratka (**slika 3.2**). Pri zadavanju guste mreže treba izbjeći greške zaokruživanja računala.

Na **slici 3.2** također je uočljivo da zrak oko obratka i induktora nije diskretiziran mrežom konačnih elemenata jer se prijenos elektromagnetskog polja s induktora na obradak računa metodom rubnih elemenata koja zahtijeva samo diskretizaciju površine obratka i induktora. U vlastito razvijenom simulacijskom programu u ovom radu koriste se linearni trokutni elementi za diskretizaciju dvodimenzijskih i osnosimetričnih geometrijskih domena.

Slika 3.2 Shematski prikaz položaja induktora i prskalice prema obratku i adaptivne mreže konačnih elemenata na obratku i induktoru [38]

Formulacije konačnog elementa. Stanje u svakom elementu (elektromagnetsko polje, temperatura, itd.) opisuje se pomoću interpolacijskih funkcija koje moraju zadovoljavati rubne i dodatne uvjete modela. Uz ispravnu formulaciju jednadžbe konačnog elementa, približavanje točnom rješenju raste s povećanjem broja elemenata. Za izvođenje (lokalne) jednadžbe konačnog elemenata pri simulacijama indukcijskog kaljenja primjenjuju se uobičajeno sljedeće dvije formulacije:

 Varijacijska formulacija konačnog elementa, primjenljiva kad se za razmatrani problem može naći funkcional (integralni oblik poznat iz funkcionalne analize koji opisuje stanje u konačnom elementu zajedno s rubnim uvjetima) i nepoznata funkcija koja zadovoljava uvjet postizanja ekstrema funkcionala. Formulacija problema diferencijalnom jednadžbom i varijacijska formulacija su ekvivalentne jer iste funkcije zadovoljavaju obje formulacije i pridružene uvjete jednoznačnosti. U odnosu na diferencijalnu formulaciju varijacijska formulacija ima niži red derivacije u podintegralnoj funkciji funkcionala, pa tražena funkcija mora imati derivacije nižeg reda od onog koji je potreban u diferencijalnoj formulaciji. Za približno rješavanje ove formulacije uobičajeno se koristi Rayleigh-Ritzova metoda [34, 35, 37, 39].

II) **Metoda težinskog reziduala** primjenljiva kad ne postoji funkcional ili je varijacijska formulacija promatranog problema presložena. Metoda težinskog reziduala temelji se na rješavanju diferencijalne jednadžbe simulacijskog modela općeg oblika (3.1.a) uz rubne uvjete (3.1.b) s unaprijed pretpostavljenim interpolacijskim funkcijama φ_i (s nepoznatim parametrima u čvorovima konačnog elementa).

$$\boldsymbol{L} \ \boldsymbol{\psi} = \boldsymbol{F}; \qquad L = L \left(\boldsymbol{\psi}, \frac{\partial \boldsymbol{\psi}}{\partial \mathbf{X}_{i}}, \frac{\partial^{2} \boldsymbol{\psi}}{\partial \mathbf{X}_{i}^{2}}, t \right)$$
(3.1.a)

$$\boldsymbol{L}_{\boldsymbol{b}} \ \boldsymbol{\psi} = \boldsymbol{g}; \tag{3.1.b}$$

$$\overline{\psi} = \sum_{i=1}^{n} \overline{\psi}_{i} \varphi_{i}$$
(3.2)

- *L*... linearni operator (preslikavanje) u matematičkom prostoru
- L_b ... linearni operator rubnih uvjeta u matematičkom prostoru
- ψ ... potencijalno skalarno ili vektorsko polje ψ =f(X_i, t) i = 1,2,3
- F ... izvor ili ponor polja $F=f(X_i, t)$ i = 1,2,3
- g ... karakteristična rubna vrijednost veličine polja
- $\overline{\psi_i}$... aproksimacija polja ψ na i-tom čvoru mreže
- φ_i ...interpolacijska funkcija raspodjele polja ψ oko i-tog čvora mreže (tzv. oblikovna funkcija konačnog elementa)

Pretpostavljeno približno rješenje $\overline{\psi}$ (3.2) uvrštava se u diferencijalnu jednadžbu promatranog problema (3.1.a-b) pri čemu se u općem slučaju javlja rezidual **R** u odnosu na točno rješenje [37, 39, 40, 41].

$$\boldsymbol{R} = \boldsymbol{\Psi} - \boldsymbol{\overline{\psi}} = \boldsymbol{\Psi} - \sum_{i=1}^{n} \boldsymbol{\overline{\psi}}_{i} \boldsymbol{\varphi}_{i}$$
(3.3)

Postavljanjem i minimizacijom težinskog integrala mogu se izračunati vrijednosti aproksimacijskih funkcija $\overline{\psi_i}$ kojima se postiže minimalno odstupanje od stvarnih vrijednosti fizikalne veličine Ψ u svih *n* geometrijskih čvorova mreže.

$$\iiint_{V} RwdV = \iiint_{V} (\overline{\psi} - \sum_{i=1}^{n} \overline{\psi}_{i} \varphi_{i}) w_{j} dV = 0$$
(3.4)

 w_j ...težinska funkcija za minimizaciju reziduala nad j-tim čvorom mreže (tzv. test funkcija konačnog elementa)

Minimizacijom reziduala (Galerkinovom metodom, koalokacijom ili metodom najmanjih kvadrata odstupanja) dobiva se sustav algebarskih jednadžbi konačnog elementa čije su nepoznanice parametri interpolacijskih funkcija φ_i u čvorovima elementa. Parametri algebarskih jednadžbi svih konačnih elemenata u modelu uvrštavaju se u globalnu matricu konačnih elemenata (globalni sustav jednadžbi), koja se rješava direktnim ili iteracijskim metodama matričnog računa [37, 39, 41].

Naziv konačnog elementa uobičajeno se određuje prema redu funkcije oblika φ_i (linearni, kvadratni, kubni, spline). Funkcije oblika φ_i moraju zadovoljavati rubne uvjete duž rubova elementa, kao i dodatne uvjete nužne za konvergenciju rješenja. Unutar pojedinog elementa svojstva materijala i izvori polja (F^e) uzimaju se konstantnim, ali se mogu mijenjati od elementa do elementa [39]. Ovo se nužno primjenjuje kod simulacijskog modela indukcijskog kaljenja jer geometrijska domena modela sadrži tri, po svojstvima, bitno različita područja: obradak, induktor i prostor između njih (najčešće zrak), a svojstva materijala se mijenjaju od elementa do elementa ovisno o temperaturi i/ili jakosti magnetskog polja.

Točnost, stabilnost i konvergencija MKE rješenja. Vrijednosti fizikalnih veličina dobivene metodom konačnih elemenata (MKE) predstavljaju približenje stvarnih vrijednosti s određenom točnošću, odnosno rezidualom $R = \psi - \overline{\psi_i}$. Točnost, stabilnost i konvergencija rješenja ovisne su o broju konačnih elemenata, a kod iteracijskih rješenja (nelinearnih ili nestacionarnih problema) i o broju iteracija. Konvergentna rješenja u pravilu su stabilna te se s povećanjem broja konačnih elemenata ili broja iteracija smanjuje rezidual **R**. Kod divergentnih rješenja rezidual **R** se povećava ili počinje oscilirati s povećanjem broja konačnih elemenata ili s povećanjem broja iteracija.

Veličina greške proračuna osim spomenutih čimbenika ovisi i o položaju granice modeliranog područja prema daljnjem okolišu. Kontrola greške pri diskretizaciji geometrijske domene simulacijskog modela može se provesti na tri načina [37, 41]:

- a) *h-postupak*, pri kojem se automatski mijenja veličina konačnih elementa na mjestima s nedozvoljeno velikim pogreškama,
- b) *p-metoda*, pri kojoj se povećava stupanj polinoma interpolacijske funkcije, a veličine elemenata ostaju nepromijenjene,
- c) *h/p-metoda*, koja je kombinacija prethodno spomenutih postupaka.

Primjena metode konačnih elemenata (MKE) za simulaciju indukcijskog kaljenja opisana je u brojnim radovima [23-25, 29, 42, 43, 44] uglavnom vezano za analizu prijenosa elektromagnetskog polja i topline u obratku. Zbog već spomenute potrebe za vrlo gustom mrežom geometrijskih čvorova uz površinu obratka, primjena metode konačnih elemenata preporučljiva je kod simulacije nisko frekventnog (f < 1 kHz) i srednje frekventnog (f < 50 kHz) indukcijskog ugrijavanja. Za visoko frekventno indukcijsko ugrijavanje (f > 50 kHz) često se koristi spoj metode rubnih elemenata (za izračunavanje približne raspodjele elektromagnetskog polja po površini obratka) sa metodom konačnih elemenata (kojom se računa elektromagnetsko polje u induktoru, inducirano elektromagnetsko polje u obratku i provođenje topline u obratku). Time se izbjegava diskretizacija okoliša konačnim elementima, dobivaju se manji globalni sustavi algebarskih jednadžbi i izbjegava se definiranje granice matematički modeliranog područja prema daljnjem okolišu (iza koje se ne osjeća značajno djelovanje elektromagnetskog polja). Na ovoj granici trebali bi se definirati odgovarajući rubni uvjeti ili postaviti posebno formulirani konačni elementi (prostorno transformirani elementi, beskonačni elementi, hibridni FEM/BEM elementi, asimptotski elementi) [30, 41].

U vlastito razvijenom simulacijskom programu korištena je metoda konačnih elemenata za istovremeno rješavanje diferencijalnih jednadžbi elektromagnetskog polja i provođenja topline u obratku. Primijenjeni su trokutni konačni elementi s formulacijom težinskog reziduala i Galerkinovim postupkom minimizacije reziduala (tzv. "nejaka formulacija konačnog elementa"). Time se osim matematičkog približenja nepoznatih veličina elektromagnetskog potencijala i temperature na svakom elementu ostvaruje i podudarnost jednadžbe konačnog elementa sa zakonom očuvanja energije.

3.2.2 Metoda rubnih elemenata

Metoda rubnih elemenata temelji se na zadavanju rubnih uvjeta, diskretizaciji površine modeliranog područja rubnim elementima, postavljanju i numeričkom rješavanju integralne jednadžbe problema. Integralna jednadžba problema postavlja se s tzv. "temeljnim funkcijama" koje egzaktno zadovoljavaju diferencijalnu jednadžbu (njeno su osnovno rješenje) i rubne uvjete problema. U fizikalnom smislu temeljne funkcije predstavljaju djelovanje točkastih izvora ili ponora polja promatrane fizikalne veličine na površini modeliranog područja. Integralna jednadžba problema numerički se rješava direktnim ili indirektnim postupkom [45, 46].

Osnovni rubni elementi za analizu elektromagnetskog polja pri indukcijskom kaljenju. Diskretizacijom površine matematički modeliranog područja snižava se red promatranog problema za jednu dimenziju (3D problemi se rješavaju kao 2D problemi, a 2D kao 1D problemi) što pojednostavljuje izvode integralnih jednadžbi i programiranje numeričkog rješenja Kod trodimenzijskih geometrijskih domena rubni elementi su u općem slučaju prostorno orijentirani dijelovi površine (2D rubni elementi) (**slika 3.3**).

Slika 3.3 Prikaz osnovnih vrsta (1D, 2D) i tipova rubnih elemenata (konstantni, linearni, kvadratni) na primjeru diskretizacije vanjske površine osnosimetričnog tijela

Kod osnosimetričnih i dvodimenzijskih geometrijskih domena rubni elementi leže na krivulji koja omeđuje domenu. Pri tome se vanjska površina domene S diskretizira s ravnim ili zakrivljenim 1D rubnim elementima s dva ili više čvorova (**slika 3.3**). Promjena fizikalne veličine ψ po rubnom elementu aproksimira se lokalnim funkcijama oblika (konstante, linearne ili kvadratne funkcije). Kod osnosimetričnih rubnih elemenata postoji promjena promatrane fizikalne veličine ψ samo po duljini elementa smještenog u ravnini r-z cilindričnog koordinatnog sustava.

U ovome radu su korišteni ravni rubni elementi (konstantni, linearni). Konstantni ravni elementi najjednostavniji su za programiranje i omogućuju jednostavno izbjegavanje singulariteta u integralnim jednadžbama korištenjem samo prvih članova razvoja podintegralnih funkcija u red. Ako se površina obratka podijeli na dovoljno gustu mrežu konstantnih rubnih elemenata, može se postići slična točnost kao sa linearnim ili kvadratnim rubnim elementima (uz manji broj kvadratnih rubnih elemenata nego što je konstantnih rubnih elemenata).

Formulacija rubnog elementa. Matematički modeli problema raspodjele potencijalnog skalarnog ili vektorskog polja poput difuzije elektromagnetskog polja i provođenja topline opisuju se jednadžbama oblika (3.5) u kojima je ψ nepoznata funkcija potencijalnog polja, a *b* poznata gustoća djelovanja u polju.

$$\nabla^2 \psi = b$$
 (3.5)
 $\nabla^2() \dots$ Diferencijalni operator (Laplacean)
 $\psi \dots$ Potencijalna funkcija
b ... Zadana gustoća djelovanja izvora ili ponora u polju ψ

Funkcija polja ψ općenito ne mora biti točno poznata na dijelovima rubne površine S₁ i S₂, (**slika 3.4**) već se može izraziti aproksimacijskim funkcijama (rubnim uvjetima) [45]:

$$\psi - \overline{\psi} \neq 0$$
 na granici S₁ (3.6.a)

$$\frac{\partial \psi}{\partial n} - \frac{\partial \overline{\psi}}{\partial n} \neq 0 \qquad \text{na granici } S_2 \qquad (3.6.b)$$

Postavljanjem težinskog integrala povezuje se jednadžba (3.5) s rubnim uvjetima ravnoteže i kontinuiteta polja ψ (3.6.a-b) u prvi oblik jednadžbe rubnih elemenata navedene prema [45]:

$$\iiint_{V} (\nabla^{2} \psi) w dV - \iiint_{V} b w dV = \int_{S_{2}} (\frac{\partial \psi}{\partial n} - \frac{\partial \overline{\psi}}{\partial n}) w dS - \int_{S_{1}} (\psi - \overline{\psi}) \frac{\partial w}{\partial n} dS$$
(3.7)

Slika 3.4. Označavanje geometrijskog područja problema, rubnih površina, rubnih uvjeta, točke opažanja polja "P" i točke izvora polja "Q" [45].

Primjenom Greenovog teorema na prvi član jednadžbe (3.7) i uređivanjem nastalog izraza slijedi drugi oblik polazne jednadžbe rubnih elemenata [45]:

$$\iiint_{V} (\nabla^{2} w) \psi dV - \iiint_{V} bw dV = -\int_{S_{2}} \frac{\partial \overline{\psi}}{\partial n} w dS - \int_{S_{1}} \frac{\partial \psi}{\partial n} w dS + \int_{S_{2}} \psi \frac{\partial w}{\partial n} dS + \int_{S_{1}} \overline{\psi} \frac{\partial w}{\partial n} dS$$
(3.8)

Rješavanje integrala (3.7), odnosno (3.8) može se provesti izborom odgovarajuće težinske funkcije wtakve da je $\nabla^2 w = 0$ ili primjenom fundamentalnog rješenja ψ^* takvog da je $\nabla^2 \psi^* = \delta r_{PQ}$ (gdje je δr_{PQ} Diracova delta funkcija) u direktnoj ili indirektnoj formulaciji rubnog elementa.

I. U direktnoj formulaciji integrala rubnog elementa određuju se vrijednosti potencijala ψ i njegovog gradijenta $\partial \psi / \partial n$ na dijelovima površine modeliranog područja gdje nisu zadani rubnim uvjetima. Pri tome se pretpostavlja da je težinska funkcija w u jednadžbi (3.8) sastavljena od serije fundamentalnih rješenja (Greenovih funkcija) ψ^* ili da je aproksimacijska funkcija $\overline{\psi}$ u jednadžbi (3.7) kombinacija fundamentalnih rješenja. Formulacija integrala rubnog elementa s Greenovom funkcijom kao fundamentalnim rješenjem jednadžbe elektromagnetskog polja u zraku koristit će se u vlastitom simulacijskom modelu indukcijskog kaljenja zbog jednostavne primjene zajedno s formulacijom konačnog elementa.

II. U indirektnoj formulaciji integrala rubnog elementa područje problema uobičajeno se proširuje u beskonačnost, a onda se uvode fiktivna djelovanja (izvori ili ponori polja) raspodijeljena po liniji ili površini (umjesto koncentracije u nekoj točki) koja će na zatvorenoj površini modeliranog područja proizvesti učinak jednak rubnim uvjetima.

Fundamentalno rješenje ψ^* u fizikalnom smislu predstavlja polje opaženo u točki P zbog djelovanja jediničnog impulsa izvora polja u točki Q (**slika 3.4**). Impuls jediničnog potencijala matematički je predstavljen Diracovom delta funkcijom δ_{PQ} . Fundamentalno rješenje ψ^* ovisi o udaljenosti r_{PQ} između točke izvora Q i točke polja P. Fundamentalno rješenje jednadžbe (3.5) za elektromagnetsko polje u slobodnom (nevodljivom) prostoru uz (b = 0) zadovoljava uvjet (3.9):

$$\nabla^2 \psi^* + \delta_{\rm PQ} = 0 \tag{3.9}$$

Za elektromagnetsko polje u slobodnom (nevodljivom) prostoru fundamentalno rješenje jednadžbe (3.9) je Greenova funkcija slobodnog prostora ($\psi^* = G$) koja poprima oblik (3.10.a) za dvodimenzijske probleme, odnosno (3.10.b) za osnosimetrične i trodimenzijske probleme [46]:

$$G = \frac{1}{2\pi} \ln\left(\frac{1}{r_{PQ}}\right) = \frac{1}{2\pi} \ln\left(\frac{1}{\sqrt{(x_P - x_Q)^2 + (y_P - y_Q)^2}}\right)$$
(3.10.a)

$$G = \frac{1}{4\pi r_{PQ}} = \frac{1}{4\pi \sqrt{r_P^2 + r_Q^2 + (z_P - z_Q)^2 - 2r_P r_Q (\cos\theta_P \cos\theta_Q + \sin\theta_P \sin\theta_Q)}}$$
(3.10.b)

Pojedine varijable u jednadžbama (3.10.a-b) prikazane su i definirane na **slici 3.4**. Ako se za težinsku funkciju w u integralnoj jednadžbi (3.8) izabere fundamentalno rješenje $\psi^* = G$ te ako su poznate gustoća izvora (ponora) polja **b** u volumenu V, gustoće toka $\partial \overline{\psi} / \partial n$ i raspodjela potencijala $\overline{\psi}$ na dijelovima površine S, tada se direktnom formulacijom iz jednadžbe (3.8) dobiva jednadžba potencijalne funkcije ψ_i u svakoj *i*-toj točki područja Ω (tj. točci P):

$$\iiint_{V} (\nabla^{2} G) \psi dV - \iiint_{V} bG dV + \int_{S_{2}} \frac{\partial \overline{\psi}}{\partial n} G dS + \int_{S_{1}} \frac{\partial \psi}{\partial n} G dS = \int_{S_{2}} \psi \frac{\partial G}{\partial n} dS + \int_{S_{1}} \overline{\psi} \frac{\partial G}{\partial n} dS$$
(3.11)

Vrijednost prvog člana na lijevoj strani jednadžbe (3.11) uz izbor $\psi = G$ daje jednadžba (3.12)

$$\iiint_{V} (\nabla^{2} G) \psi dV = -\iiint_{V} \delta_{i} \psi dV = -\psi_{i}$$
(3.12)

Kod primjene direktne formulacije integrala rubnih elemenata točku "i" treba s unutrašnje strane volumena V pomicati do točke "j" na rubnoj površini *S*. Kad se izjednače točke "i" i "j" svi integrali u jednadžbi (3.11) imaju singularnosti koje treba aproksimirati. Za "matematički" glatku površinu *S* i fundamentalno rješenje (3.9) singularna vrijednost člana na desnoj strani jednadžbe (3.11) prema [45, 46] jednaka je:

$$\lim_{P \to Q} \left(\int_{S_2} \psi \frac{\partial G}{\partial n} \, dS \right) = -\frac{1}{2} \psi_i \tag{3.13}$$

Uz pomoć jednadžbi (3.12) i (3.13) uklanja se singularnost članova s izrazom $\partial G/\partial n$ iz integralne jednadžbe i-tog rubnog elementa (3.11). Za rješavanje ostaje još singularnost članova s funkcijom *G* koji se rješavaju ovisno o obliku ove funkcije. Uvođenjem koeficijenta prostornog kuta $C_{\beta ij} = \frac{1}{2}$ pod kojim se iz točke P vidi točka Q na matematički glatkoj površini S i rubnih uvjeta problema (3.6.a-b) integralna jednadžba (3.11) može se zapisati u svom uobičajenom obliku (3.14) prema [46].

$$C_{\beta_{ij}}\overline{\psi}_{i} + \iiint_{V} bGdV + \oiint_{S=S_{1}+S_{2}}\overline{\psi}\frac{\partial G}{\partial n}dS = \oiint_{S=S_{1}+S_{2}}G\frac{\partial\overline{\psi}}{\partial n}dS$$
(3.14)

Za matematički glatke površine S diskretizirane ravnim rubnim elementima postavljenim pod nekim kutom β (slika 3.3) koeficijent prostornog kuta iznosi $C_{\beta ij} = \beta/2\pi$ [45].

Primjena metode rubnih elemenata (BEM) za simulaciju indukcijskog kaljenja. Metoda rubnih elemenata posebno je prikladna za rješavanje problema s geometrijskim domenama otvorenim prema okolišu (npr. zračenje elektromagnetskih valova s induktora proizvoljnog oblika u okoliš) i analizu polja na graničnim površinama domena različitih fizikalnih svojstva (npr. induciranje vrtložnih struja u električki vodljivom materijalu). Druga povoljna karakteristika metode rubnih elemenata proizlazi iz

sličnog rješavanja jednadžbi ove metode i metode konačnih elemenata, što je čini pogodnom za postavljanje tzv. hibridnih FEM/BEM modela posebno prikladnih za simulacije srednje i visokofrekventnog indukcijskog ugrijavanja [31, 33-35, 47].

Za simulaciju indukcijskog ugrijavanja od primarne je važnosti raspodjela jakosti magnetskog polja i gustoće inducirane struje u površinskom sloju obratka, ali ne i u njihovom okolišu. Također je poznata činjenica da je potencijal visoko frekventnog elektromagnetskog polja jednak nuli u unutrašnjosti električki i magnetski vodljivog tijela i vrlo daleko od tijela (obratka). Stoga je u vlastitom simulacijskom modelu za rješavanje problema raspodjele elektromagnetskog polja na površini (S) obratka primijenjena metoda rubnih elemenata, a za određivanje elektromagnetskog polja induktora i raspodjele induciranih vrtložnih struja u rubnom sloju obratka metoda konačnih elemenata (zbog nelinearnih promjena svojstva materijala). Za formulaciju rubnog elementa na površini obratka u radu je primijenjena direktna metoda s usklađivanjem u točkama elemenata (nešto brža za računanje od Galerkinove metode). Njom se postiže točno rješenje u unaprijed određenim geometrijskim čvorovima površine obratka (S) koji se poklapaju s čvorovima konačnih elemenata.

Točnost, stabilnost i konvergencija BEM rješenja integralnih jednadžbi difuzije osnosimetričnog elektromagnetskog polja ovisi o nizu čimbenika od koji su najznačajniji [26, 31, 32, 45, 46].

- a) veličina rubnih elemenata treba biti manja od efektivne dubine prodiranja struje δ
- b) vrsta rubnih elemenata (konstantni, linearni, kvadratni)
- c) točnost numeričke integracije članova jednadžbe (3.31) sa singularitetima oblika:
 - $\lim_{r_{0} \to 0} \left(\ln \frac{1}{r_{r_{0}}} \right)$, kod dvodimenzijskih problema u pravokutnim koordinatama - $\lim_{r_{PQ} \to 0} \left(\frac{1}{r_{PQ}}\right)$, $\lim_{r_{PQ} \to 0} \left(\frac{1}{r_{PQ}^2}\right)$, kod osnosimetričnih i trodimenzijskih problema
- d) aproksimacija potencijalne funkcije w u blizini oštrih rubova (gdje površina nije "glatka" u matematičkom smislu)

3.3 Računalne simulacije mikrostrukturnih faznih pretvorbi

Računalne simulacije mikrostrukturnih procesa u postupcima toplinskih obradbi predstavljaju znanstveno područje vrlo intenzivnog razvoja s nizom predloženih matematičkih modela od kojih se nekoliko njih uspješno primijenilo pri simulaciji indukcijskog kaljenja. Analizom literature [48-61] uočavaju se tri uobičajena pristupa matematičkom modeliranju mikrostrukturnih promjena:

- I. Neposredna primjena TTS ili TTT dijagrama
- II. Opis kinetike faznih pretvorbi empiričkim jednadžbama
- III. Opis kinetike faznih pretvorbi termokinetičkim jednadžbama

Neposredna primjena TTS ili TTT dijagrama, regresijskih jednadžbi analize ovih dijagrama ili matematičkih modela s neuronskim mrežama za predviđanje karakterističnih temperatura pretvorbe (A_1, A_3, M_s, B_s) , brzine ohlađivanja, vremena inkubacije, udjela faza i tvrdoće čelika nakon faznih pretvorbi. Obično se snimljene ili izračunate krivulje $\mathcal{P}=f(t)$ preslikavaju u dijagram ili se iz njih računaju srednje brzine i uvrštavaju u regresijske modele (npr. jednadžbe Creusot-Loire) [54, 55]

Opis kinetike faznih pretvorbi empiričkim jednadžbama. Kinetika heterogenih reakcija, poput fazne pretvorbe α/γ , odnosno γ/α kod željeznih materijala, previše je kompleksna da bi se obuhvatila egzaktnom analitičkom jednadžbom. Stoga se postavljaju empiričke jednadžbe oblika (3.15) kojima se predviđa brzina pretvorbe dy/dt i udio nove faze *y* [48, 52, 49-52, 56-58]:

$$\frac{dy}{dt} = f(y)\tau(\vartheta,t)g(\frac{\partial\vartheta}{\partial t})$$

$$f(y) \qquad \dots \qquad \text{Funkcija udjela nove faze}$$

$$\tau(\vartheta,t) \qquad \dots \qquad \text{Vremenska funkcija pretvorbe}$$

$$g(\frac{\partial\vartheta}{\partial t}) \qquad \dots \qquad \text{Funkcija brzine ugrijavanja ili ohlađivanja}$$

$$(3.15)$$

Brzinu pretvorbe dy/dt izraženu jednadžbom oblika (3.15) treba razlučiti od brzine nukleacije i brzine rasta zrna nove faze. Uobičajeni pristup modeliranju faznih pretvorbi je izvod ili pretpostavka funkcijske ovisnosti brzine pretvorbe o brzini nukleacije i brzini rasta zrna nove faze. Brzina rasta zrna promatrane faze može se mjeriti metalografski i povezati s brzinom pretvorbe, a iz razlika ovih

brzina slijedi brzina nukleacije nove faze. Točnost dobivenih rezultata ovisi o točnosti pretpostavljene jednadžbe pretvorbe (3.15) [48, 52].

Brzina fazne pretvorbe dy/dt može se odrediti izravno (dugotrajnim i zahtjevnim ispitivanjima) izotermičkih pretvorbi kvantitativnom metalografijom i rendgenografijom ili indirektnim ispitivanjima temeljenim na mjerenju nekog svojstva ovisnog o udjelu jedne od faza. Uobičajeno se mjeri promjena linearnih dimenzija ili volumena ispitnog uzorka, promjena električnog otpora ili magnetske permeabilnosti tijekom izotermičke pretvorbe ali i tijekom pretvorbi kontinuiranog tipa. Iz mnogobrojnih istraživanja faznih pretvorbi potvrđeno je da empiričke jednadžbe oblika (3.16) zadovoljavajuće opisuju kinetiku velikog broja izotermičkih pretvorbi u metalima [22, 48, 52, 57].

$$\frac{dy}{dt} = b_o^{n_A} \cdot t^{n-1} \cdot (1-y)$$
(3.16)

 n_A ... Avramijev koeficijent vrste pretvorbe b_0 ... empirička konstanta , s⁻¹ t ... vrijeme, s

y ... udio nastale nove faze, kg/kg

Iz jednadžbe (3.16) slijedi da je brzina pretvorbe dy/dt na početku mala, zatim se povećava do maksimuma i potom smanjuje na nulu učinkom sudaranja zrna što je izraženo faktorom (1-y). Ako se pretpostavi da su b_0 i n_A konstante nezavisne od udjela nove faze y i vremena pretvorbe t na konstantnoj temperaturi, tada se jednadžba (3.16) smije integrirati, pa slijedi:

$$\ln \frac{1}{1-y} = \frac{1}{n_A} \cdot (b_o \cdot t)^{n_A}$$
(3.17)

Ako se član l/n_A uključi u novu konstantu zajedno s konstantom $b_o^{n_d}$ jednadžba (3.17) dobiva oblik poznate Johnson-Mehl-Avramijeve jednadžbe [49-52]:

$$y = 1 - \exp\left(-b_A t^{n_A}\right) \tag{3.18}$$

bA ... Avramijev koeficijent, s-1

Avramijevi koeficijenti b_A i n_A u jednadžbe (3.18) uobičajeno se određuju iz izotermičkog TTT dijagrama. Poopćenje ove jednadžbe za pretvorbe u višefaznom materijalu daje "Jonhson – Mehl -

Avrami – Kolmogorov" model (skraćeno "JMAK" model). Za simulacije mikrostrukturnih pretvorbi pri indukcijskom kaljenju temeljenih na JMAK jednadžbama nužna je primjena iteracijskih modela (npr. model "LSG2M Nancy" [59]) u kojima se krivulja kontinuiranog ugrijavanja (ili ohlađivanja) aproksimira krivuljom s nizom izotermičkih držanja (slika 3.5). Za svako zadržavanje na konstantnoj temperaturi određuje se udio mikrostrukturne faze JMAK modelom kao rezultat djelomične izotermičke pretvorbe. Pri tome se pretpostavlja da je volumni udio mikrostrukturne faze, nastao nakon vremena t, od početka pretvorbe jednak sumi volumnih udjela ove faze nastalih tijekom prethodnih djelomičnih izotermičkih pretvorbi tzv. Scheilovo adicijsko pravilo prema [64].

Slika 3.5 a) Shematski prikaz kontinuiranog ugrijavanja u izotermičkom TTS dijagramu zamijenjenog nizom kratkotrajnih držanja na konstantnoj temperaturi [63]

 b) Shematski prikaz krivulje ohlađivanja aproksimirane stepeničastom promjenom temperature (elementarnim izotermičkim pretvorbama) u izotermičkom TTT dijagramu čelika Ck45 [61]

Za primjenu iteracijskih JMAK modela faznih pretvorbi karakteristične su dvije poteškoće: izbor odgovarajućeg vremenskog intervala elementarne izotermičke pretvorbe i određivanje odgovarajućeg oblika regresijskih funkcija Avramijevih koeficijenta ($b_{A,i}=f(\mathcal{G})$, $n_A=f(\mathcal{G})$) Uobičajeni iznosi vremenskog intervala djelomične izotermičke pretvorbe trebaju biti za 5 do 10 puta manji od vremenskog intervala Δt_j korištenog za proračun temperaturnog polja [47]. Mali iznos intervala Δt_k
može biti izvorom grešaka zaokruživanja računala ako je zbog nelinearnosti problema nužan i mali interval Δt_j . Stoga će se u radu za matematičko modeliranje faznih pretvorbi u indukcijski kaljenom sloju primijeniti dva modela iz skupine empirijskih modela:

- a) model Leblond-Devaux prema [60] za predviđanje difuzijskih faznih pretvorbi i
- b) model Koistinen Marburger prema[62] za predviđanje martenzitne (bezdifuzijske) pretvorbe.

Model Leblond-Devaux predstavlja novi i drugačiji pristup empiričkom opisu fazne kinetike u višefaznom materijalu od iteracijskih modela JMAK. U njemu se brzina mikrostrukturne fazne pretvorbe računa istovremeno ovisnom od temperature i prethodno nastalog udjela nove faze za razliku od iteracijskog JMAK modela koji ove utjecaje obuhvaća pojedinačno preko tri funkcije različitih argumenata f(y), $\tau(\mathcal{G})$, $g(d\mathcal{G}/dt)$. Detaljan opis i daljnja razrada Leblond-Devaux modela navedeni su u poglavlju 7.

Model Koistinen-Marburger za predviđanje martenzitne pretvorbe polazi od eksperimentalno određene jednadžbe za relativni volumni udio martenzita (y_2 , 1) nastao nadkritičnim ohlađivanjem pothlađenog austenita ispod temperature M_s .

$$y_2 = 1 - \exp[-0.011(M_s - 9))]$$
(3.19)

y₂...Relativni udio nastalog martenzita nakon gašenja, 1
9... Temperatura sredstva za gašenje, °C

Jednadžba (3.25) određena je nakon eksperimentalnih istraživanja gašenja nelegiranih čelika s 0,37 do 1,1 %C a relativni volumni udio martenzita y_2 određen je rendgenskom difrakcijom [62]. Iz jednadžbe (3.25) uočljiv je atermički karakter martenzitne pretvorbe zbog kojeg vrijeme gašenja između temperatura M_s i M_f ne utječe na rezultat pretvorbe, ako nije jako dugo (takvo da izazove stabilizaciju pothlađenog austenita).

Opis kinetike faznih pretvorbi termokinetičkim jednadžbama temelji se na modelima izvedenim iz jednadžbe promjene slobodne energije ΔF s temperaturom [48, 52, 63]:

$$F = U - T \cdot S \tag{3.20.a}$$

$\Delta F = -\Delta F_{\alpha\beta} + A$	$\Delta F_{\gamma} + \Delta$	F_{σ} (3.20.b)
F		Helmholtzova slobodna energija, J
U		Unutrašnja energija, J
S		Entropija, J/K
Т		Termodinamička temperatura, K
ΔF		Promjena slobodne energije nastankom nove faze ovisna o temperaturi pretvorbe, J
$\Delta F_{lphaeta}$		Razlika slobodnih energija faza α i β na temp. T, J
ΔF_{γ}		Slobodna energija stvaranja nove površine faza, J
ΔF_{σ}		Slobodna energija polja naprezanja oko nove faze, J

Termokinetički pristup faznim pretvorbama često se koristi za opis martenzitne pretvorbe [13, 14], ali nije još običajan kod postavljanja računalnih simulacija indukcijskog kaljenja. Termokinetičkim jednadžbama dobiva se dobar uvid u mehanizme nukleacije i rasta faze pri faznim pretvorbama, posebno kod čistih metala i binarnih legura. Međutim ove jednadžbe postaju vrlo složene i često neprimjenljive kod višestruko legiranih metala. Drugi problem u njihovoj primjeni su još uvijek nedovoljno istražena termodinamička i mehanička svojstva metala i legura pri faznim pretvorbama (npr. aktivacijske energije za pokretanje pojedinog tipa nukleacije, aktivacijske energije rasta zrna, površinska slobodna energija granice zrna nove faze, koeficijenti difuzije po granicama zrna, itd.).

3.4. Kriteriji i metode optimizacije induktora

Razlozi optimizacije induktora. Projektiranje induktora jedna je od najvažnijih faza u pripremi postupka indukcijskog kaljenja. Induktor se može smatrati specifičnim alatom za provedbu indukcijskog kaljenja za čije se oblikovanje postavlja niz zahtjeva (poglavlje 2.2.2), a sljedeća dva su uobičajeni predmet optimizacije:

 I. Ostvarenje prijenosa energije s generatora na obradak elektromagnetskom indukcijom uz što bolji *"stupanj djelovanja induktora "*, pri čemu je

 $\eta = rac{energija}{energija} rac{zagrijavanja}{dovedena} rac{obratka}{induktoru}$,

odnosno što veću induciranu struju ili radnu snagu u obratku.

II. Osiguravanje traženog oblika i dubine zagrijavane zone s odgovarajućom raspodjelom gustoće inducirane struje ili temperaturom austenitizacije ili mikrostrukturom u kaljenom sloju u raspoloživom vremenu sa zadanim indukcijskim generatorom.

Optimizaciji induktora pristupa se <u>nakon izbora</u> vrste i polaznog oblika induktora uobičajeno temeljenog na konkretnim zahtjevima, opće poznatim preporukama za oblikovanje (poglavlje 2.2.2), primjerima iz literature i iskustvu tehnologa. Pri tome je u većini slučajeva optimizacija induktora iterativno povezana s optimizacijom radnih parametara postupka (uobičajeno samo faze indukcijskog ugrijavanja). Radni parametri indukcijskog ugrijavanja služe kao ograničenja pri optimizaciji induktora i obrnuto. Oblik i dimenzije induktora ograničavaju optimizaciju postupka indukcijskog kaljenja.

Optimizacija je postupak traženja najpovoljnijih rješenja za zadana ograničenja i početne uvjete i iz skupa mogućih rješenja. Pri tome se u prvom koraku polazi od matematičkog modela utjecajnih fizikalnih procesa, kriterija za optimizaciju i funkcija ograničenja. U drugom koraku traži se kombinacija utjecajnih varijabli procesa iz područja mogućih rješenja, kako bi odgovarajuća funkcija cilja dobila ekstremnu vrijednost (minimum ili maksimum). U trećem koraku metodama optimizacije rješava se funkcija cilja uz zadane funkcije ograničenja [65]. Optimizacija induktora u smislu ovog opisa pojavljuje se tek nedavno u radovima od prije nekoliko godina do danas [66-68]. U starijim radovima (prije 1990. god.) navode se algoritmi za proračun električnog otpora induktora, gubitaka snage u induktoru, stupnja djelovanja induktora i sl. Pri tome se ne spominje matematička optimizacija induktora, već njegovo projektiranje na temelju iskustva, pokušaja i pogrešaka.

Matematički modeli koji se uobičajeno koriste za optimizaciju induktora jesu:

- I. Analitički modeli ekvivalentnog strujnog kruga "induktor-obradak" za optimizaciju induktora kružnog, kvadratnog ili pravokutnog poprečnog presjeka bez koncentratora magnetskog toka namijenjenog indukcijskom kaljenju obradaka jednostavnog oblika (šipke, valjci, diskovi, ploče, kvadri ili kuglasti dijelovi) [1, 2, 6, 7].
- II. 2D ili 3D numerički modeli elektromagnetskog polja induktora i obratka za optimizaciju induktora složenijeg (profiliranog) presjeka sa ili bez koncentratora magnetskog toka [31].
- III. 2D ili 3D numerički modeli elektromagnetskog i temperaturnog polja u obratku za optimizaciju induktora profiliranog presjeka s ili bez koncentratora magnetskog toka [67].
- IV. 2D ili 3D numerički modeli elektromagnetskog polja, temperaturnog polja i raspodjele volumnog udjela austenita uz površinu obratka po završetku indukcijskog ugrijavanja [66].

Kriteriji, ograničenja i funkcije cilja za optimizaciju induktora proizlaze iz gore navedenih zahtijeva za oblikovanjem induktora. U dostupnoj literaturi pronađena su ukupno tri tipa kriterija za optimizaciju induktora. U prva dva tipa optimizacije induktora nije eksplicitno razrađena metodologija već se iz pristupa problemu konstrukcije induktora i metoda rješavanja može zaključiti o mogućoj funkciji cilja i funkcijama ograničenja.

a) Kriterij maksimalnog stupnja djelovanja induktora η (bez koncentratora magnetskog toka) ili maksimalne ukupne energije unijete u površinski sloj obratka. Ograničenja optimizacije nametnuta su dimenzijama kaljenog segmenta površine (promjer, duljina), fizikalnim svojstvima obratka (magnetska permeabilnost, električna vodljivost), zahtijevanom minimalnom zračnošću između induktora i obratka, frekvencijom i snagom indukcijskog generatora [2, 5].

<u>Funkcija cilja</u> u ovom slučaju može se analitički izvesti iz jednadžbi ekvivalentnog strujnog kruga "induktor-obradak" ili iz analitičkog rješenja jednodimenzijskih jednadžbi elektromagnetskog polja. U tako izvedenoj jednadžbi funkcije cilja izražava se ovisnost stupanja djelovanja induktora η ili snage inducirane u rubnom sloju obratka P_{δ} o veličinama poput dimenzija i broja zavoja induktora, frekvencije, električne vodljivosti, magnetske permeabilnosti, zračnosti između obratka i induktora, omjeru efektivne dubine prodiranja struje prema karakterističnoj dimenziji obratka i dr. Između ovih utjecajnih čimbenika na stupanj djelovanja induktora (bez koncentratora magnetskog toka) posebno se ističu veličina zračnog raspora između induktora i obratka i omjer promjera prema duljini induktora. Što su zračni raspor i duljina induktora veći veće je rasipanje silnica magnetskog polja, pa je stupanj djelovanja induktora niži (**slika 3.6**).

<u>Funkcije ograničenja</u> u ovom slučaju uobičajeno su jednostavne (konstante ili jednadžbe polinoma I. stupnja).One obuhvaćaju najveće i najmanje vrijednosti mjera induktora između kojih se traže optimalne vrijednosti uz zadane mjere i fizikalna svojstva obratka.

Slika 3.6 Utjecaj dimenzija na stupanj djelovanja viševojnog induktora pri indukcijskom ugrijavanju dugačkih valjaka (stupanj djelovanja induktora određen je za temperaturu austenitizacije 1000 °C) [5]

Frekvencija indukcijskog generatora može se zadati fiksnom ili promjenljivom ovisno o generatoru. Međutim izbor frekvencije ne može kompenzirati utjecaj fizikalnih svojstava obratka ili loše konstrukcije induktora. Uobičajeno ograničenje pri izboru frekvencije indukcijskog generatora proizlazi iz uvjeta izbjegavanja poništenja induciranih vrtložnih struja na jednoj strani poprečnog presjeka strujama sa suprotne strane presjeka. Kod indukcijskog ugrijavanja valjaka polumjera r_1 ovaj uvjet je ostvaren uz omjer $r_1/\delta_1 \ge 4$.

 b) Kriterij minimalnog vremena indukcijskog ugrijavanja s istim ograničenjima optimizacije, kao u prethodnom slučaju (a) uz dodatno ograničenje postignute minimalne temperature austenitizacije [7]. U ovom slučaju optimizacije <u>funkcija cilja</u> izražava ovisnost vremena ugrijavanja o dimenzijama induktora i ostalim utjecajnim čimbenicima, a može se postaviti na četiri načina ovisno o složenosti oblika obratka i induktora:

- Izvodom iz jednadžbi nadomjesnog strujnog kruga "induktor-obradak" (ako se radi o induktoru jednostavnog oblika prstena, diska ili zavojnice bez koncentratora magnetskog toka i obratku poput valjka, konusa, diska ili kugle)
- Izvodom iz analitičkih rješenja jednadžbi elektromagnetskog i temperaturnog polja za jednodimenzijske i jednostavne dvodimenzijske probleme indukcijskog kaljenja s induktorom bez koncentratora magnetskog toka, uz konstantne srednje vrijednosti električnih, magnetskih i toplinskih svojstava induktora i obratka.
- Definiranjem u obliku jednadžbe dobivene obradom rezultata faktorskog plana numeričkih simulacija elektromagnetskog i temperaturnog polja u obratku provedenih uz nekoliko kombinacija karakterističnih dimenzija induktora
- Jednadžbom dobivenom regresijskom analizom tehnoloških dijagrama i iskustvenih podloga za pripremu postupka indukcijskog kaljenja. Ovi dijagrami i podloge izrađeni su za pojedine specifične slučajeve indukcijskog kaljenja, a između ostalih veličina putem karakterističnih koeficijenata obuhvaćaju i dimenzije induktora (jednostavnog poprečnog presjeka poput kružnog ili pravokutnog), broj navoja induktora, omjer promjera prema duljini induktora i sl.

<u>Funkcije ograničenja</u> u ovom slučaju su složenije nego u prethodnom slučaju i mogu osim konstanti i polinoma prvog stupnja imati i diferencijalne članove koji se odnose na rubne uvjete elektromagnetskog i termodinamičkog problema.

c) Kriterij postizanja zadane raspodijele gustoće induciranih vrtložnih struja ili snage Jouelovih gubitaka po površinskom sloju obratka. Ograničenja optimizacije u ovom slučaju su dimenzije kaljene površine, električna i magnetska svojstva induktora i obratka, metalurška svojstva obratka, polazna kontura induktora, minimalna zračnost između induktora i obratka, frekvencija generatora, napon na induktoru i broj rubnih ili konačnih elemenata obuhvaćen optimizacijom [31, 66-68].

<u>Funkcija cilja</u> sadrži razliku u gustoći inducirane struje ili snage na rubnom elementu obratka nastalu kao posljedica promjene položaja rubnog elementa induktora (**slika 3.7**). Gustoća inducirane struje ili električne snage na rubnom elementu obratka računa se numeričkim rješavanjem jednadžbi elektromagnetskog polja. Numerički određene

vrijednosti razlike u gustoći inducirane struje ili snage obratka u funkciji cilja minimiziraju se do postizanja traženog odstupanja od zadane raspodjele (ili zadane vrijednosti) na određenim mjestima kaljene površine.

<u>Funkcije ograničenja u</u> ovom slučaju uobičajeno sadrže broj diskretiziranih elemenata induktora koji sudjeluju u optimizaciji, promjenu električnog potencijala po poprečnom presjeku induktora, granične dimenzije induktora do kojih se može provoditi profiliranje poprečnog presjeka.

Slika 3.7 Optimizacija osnosimetričnog induktora prema kriteriju postizanja jednolične gustoće površinske struje po duljini obratka [31].

- a) Položaj rubnih elemenata obratka i promjene konture poprečnog presjeka induktora.
- b) Konačni oblik induktora nakon niza iteracija i postizanja zadovoljavajuće jednoličnosti induciranih vrtložnih struja

Metode optimizacije induktora. Matematički model indukcijskog ugrijavanja i primijenjena metoda optimizacije u velikoj mjeri određuju rezultate optimizacije induktora. Razvoj računala i njihovo korištenje u konstrukciji proizvoda i pripremi proizvodnje programa pogodovala je razvoju modernih metoda optimizacije koje sve više zamjenjuju klasične analitičke metode. Postoji veliki broj razvijenih

metoda optimizacije koje se mogu svrstati u pet osnovnih grupa: metode matematičkog programiranja (npr. linearno, nelinearno, dinamičko), analitičke metode (npr. metode klasične matematičke analize, varijacijska metoda, metode matematičke simulacije), statističke metode (npr. regresijska metoda, faktorska analiza), adaptivne metode, metode genetičkog programiranja [65]. Od ovih metoda za optimizaciju induktora uobičajeno se primjenjuju sljedeće tri skupine metoda, od kojih će se prve dvije primijeniti i u vlastitom simulacijskom modelu:

- a) **metode klasične matematičke analize** (pri optimizaciji prema kriterijima najvećeg stupnja djelovanja, najveće snage unesene u obradak ili minimalnog vremena ugrijavanja),
- b) metode matematičke simulacije poput metoda rubnih i/ili konačnih elemenata uz minimizaciju sume kvadrata odstupanja promatrane fizikalne veličine iz dvije uzastopne iteracije [32],
- c) varijacijske metode (pri optimizaciji prema kriteriju minimalnog odstupanja od zadane raspodjele temperature na određenim mjestima u zagrijavanom sloju obratka) [67].

3.5. Računalni sustavi za simulaciju indukcijskog kaljenja

Do kraja 2004. god. razvijeno je nekoliko komercijalnih računalnih programa koji u sebi sadrže i dio za računalnu simulaciju indukcijskog ugrijavanja i/ili kaljenja ("SYSWELD" [69, 70], "INC-PHARTRAN" [43], "Quick Field", "Oersted", "DEFORM-HT" [71], "HEARTS" [72]). Također su razvijena dva veća komercijalna računalna programa specijalizirana za simulaciju indukcijskog kaljenja ("Flux 2D"[36] i "CalcoMAG" [44]). Većini ovih programa zajedničko je postojanje devet modula uobičajeno korištenih pri računalnim simulacijama indukcijskog kaljenja:

- 1) CAD modul za crtanje karakterističnog dvodimenzijskog presjeka obratka i induktora
- Modul za unos podataka o materijalu obratka, rubnim uvjetima, djelovanju izvora električnog polja, izvora/ponora temperaturnog polja, brzini posmaka i parametrima matematičke simulacije
- 3) Modul za stvaranje strukturirane anizotropne ili adaptivne mreže konačnih elemenata
- Modul metode konačnih elemenata za iteracijsko rješavanje nelinearnog elektromagnetsko termodinamičkog problema indukcijskog ugrijavanja
- Modul metode konačnih elemenata za rješavanje nelinearnog termodinamičkog problema gašenja ugrijanog sloja
- 6) Modul metode konačnih elemenata za proračun mehaničkih naprezanja i deformacija
- 7) Modul za proračun udjela faza i brzine faznih pretvorbi pri grijanju i gašenju
- Baza podataka o svojstvima materijala s mogućnošću zadavanja nelinearnih anizotropnih i temperaturno ovisnih svojstava.
- 9) Modul metode konačnih elemenata za inverzno jednodimenzijsko ili dvodimenzijsko matematičko modeliranje rubnih uvjeta (npr. za proračun koeficijenta prijelaza topline)
- 10) Modul za prikaz i analizu rezultata računalne simulacije

Povezivanje ovih modula u uobičajenoj verziji programa provodi se izradom tzv. "skripata", programskih procedura u specifičnom interno korištenom programskom jeziku koje sadrže sve potrebne naredbe za pokretanje, zaustavljanje i odvijanje tijeka računalne simulacije.

Ovako malu ponudu specijaliziranih računalnih programa može se objasniti znatnom složenošću prisutnih fizikalnih procesa pri indukcijskom kaljenju, raznovrsnošću obradaka i izvedbi induktora (koja može zahtijevati dodatnu izradu programskih funkcija na već razvijenom programu) kao i još uvijek manjim udjelom ovog postupka toplinske obrade na tržištu u odnosu na ostale postupke i proizvodne tehnologije (što dovodi u pitanje isplativost ulaganja u razvoj i ispitivanja koja opet zahtijevaju relativno visoku cijenu licence kad se program jednom pojavi na tržištu) [83].

Osim spomenutih računalnih programa postoji oko stotinjak (uglavnom komercijalnih) općih programa za rješavanje 2D i 3D problema u termodinamici, elektromagnetizmu, analizi naprezanja i deformacija. Većina od općih programa koristi metodu konačnih elemenata, a samo nekolicina metodu konačnih diferencija ili rubnih elemenata. Za pripremu indukcijskog kaljenja moguće je simulirati samo proces ugrijavanja korištenjem modula za izračunavanje induciranih vrtložnih struja (tzv. "Eddy Current Block") i modula za rješavanje diferencijalne jednadžbe provođenja topline ("Thermal Block"). U većini slučajeva univerzalne simulacijske programe treba prilagoditi matematičkim modelima konkretnog postupka indukcijskog kaljenja vlastitim programskim funkcijama, dodavanjem baze podataka o svojstvima materijala, razvojem vlastitog simulacijskog algoritma i povezivanjem s drugim programskim sustavima. Za ovakav pristup potrebno je praktično iskustvo s indukcijskim kaljenjem i dobro znanje numeričkih metoda i programiranja, što uglavnom zahtijeva stvaranje specijalističkog tima stručnjaka.

Primjena specijaliziranih simulacijskih programa nipošto ne isključuje iskustvo tehnologa toplinske obradbe koji mora intervenirati u kritičnim programskim koracima (postavljanje problema, definiranje svojstava materijala, postavljanje rubnih ili početnih uvjeta, te pojedini izbori nakon računalom potpomognute analize) kako bi postigao optimalno temperaturno polje u točno zadanom rubnom sloju obratka u najkraćem vremenu, uz najmanju potrebnu snagu induktora. Osim toga, koliko god komercijalni programi bili ispitivani i verificirani nikada nije moguće otkriti sve pogreške u zadavanju ili izvođenju programa, te su stoga iskustvo i intuicija tehnologa nužno potrebni radi prepoznavanja mogućih grešaka simulacije.

U radovima [19, 47, 73] po prvi put su u našoj zemlji razrađeni matematički modeli i simulacijski algoritam visokofrekventnog indukcijskog kaljenja. Stanje razvoja i ponuda programskih paketa za simulaciju indukcijskog kaljenja bili su poticaj za izradu vlastitog simulacijskog programa čijom su provjerom na primjerima indukcijskog kaljenja čeličnih valjaka stvorene pretpostavke za bržu i ekonomičniju pripremu ovog postupka.

Polazna verzija vlastitog računalnog programa razvijena je u programskom sustavu "Matlab" s mogućim budućim razvojem u samostojeći izvršni program nazvan "Ind2D". Simulacijski algoritam ovog programa prikazan je na **slici 3.8**. U njemu su objedinjene metoda rubnih elemenata za modeliranje raspodjele elektromagnetskog polja i inducirane električne snage u površinskom sloju, metoda konačnih elemenata za rješavanje diferencijalne jednadžbe provođenja topline i empiričke jednadžbe za proračun koeficijenta prijelaza topline kod gašenja prskanjem.

Slika 3.8. Glavni moduli vlastito razvijenog računalnog programa ("Ind2D") za simulaciju indukcijskog kaljenja

Pomoću relaksacijske metode u nizu iteracija računaju se vrijednosti fizikalnih svojstava čelika nelinearno ovisne o temperaturi (električna, magnetska, toplinska). Magnetska svojstva aproksimiraju se ovisno o temperaturi i jakosti magnetskog polja. Također se, odvojeno od analize elektromagnetskih i termodinamičkih procesa, provodi analiza nastanka austenita brzim ugrijavanjem na temelju dijagrama otapanja faza pri brzom ugrijavanju (TTS dijagram) a regresijskim jednadžbama se procjenjuje tvrdoća martenzita po poprečnom presjeku obratka nakon gašenja [73].

U daljnjim istraživanjima i razradama vezanim za izradu ovog rada spomenuti program usavršen je i proširen dodatnim mogućnostima koje ga čine još prikladnijim za svakodnevnu primjenu u pripremi postupka indukcijskog kaljenja.

4.0 RAZRADA SIMULACIJSKOG ALGORITMA INDUKCIJSKOG KALJENJA

4.1 Određivanje simuliranih fizikalnih fenomena i numeričkih metoda

4.1.1 Fizikalni fenomeni obuhvaćeni simulacijom indukcijskoga kaljenja

Računalna simulacija indukcijskog kaljenja je značajna faza u konstrukciji i primjeni izradaka koji se ovim postupkom površinski otvrdnjavaju. Tijekom konstrukcije ovih izradaka računalnim simulacijama nastoji se predvidjeti raspored tvrdoće u rubnom sloju, mjesta koncentracije naprezanja, deformacije i očekivana zaostala naprezanja nakon indukcijskog kaljenja. Tijekom pripreme postupka indukcijskog kaljenja računalnim simulacijama nastoji se projektirati optimalni induktor i pronaći odgovarajući radni parametri kojima će se ostvariti potrebna mikrostruktura, oblik, dubina i mehanička svojstva zakaljenog sloja uz minimalne deformacije. Osim navedenog dodatni poticaji sve uobičajenijoj primjeni računalnih simulacija u pripremi indukcijskog kaljenja jesu povećanje proizvodnosti i ekonomičnosti postupka i sniženje cijene proizvoda [36]. Ovakva raznovrsnost ciljeva primjene računalnih simulacija indukcijskog kaljenja određuje i najmanji skup matematički modeliranih fizikalnih procesa koje nužno treba obuhvatiti algoritmom simulacije.

Za računalnu simulaciju u cilju što uspješnije pripreme indukcijskog kaljenja (na koju je usmjeren i ovaj rad) uz predviđanje mikrostrukturnih faza i rasporeda tvrdoće u zakaljenom sloju nužno je matematičkim modelima obuhvatiti elektromagnetske, toplinske i mikrostrukturne procese u obratku uz odgovarajuće početne i rubne uvjete. Ovi procesi su neposredno povezani i direktno djeluju jedan na drugi. Stoga jednadžbe njihovih matematičkih modela nužno treba rješavati zajedno, prikladnim iteracijskim algoritmom [29, 36, 44, 74].

Stvaranje unutrašnjih naprezanja i deformacijski procesi u obratku posljedice su promjene temperaturnog polja i mikrostrukturnih procesa, a njihov "povratni" utjecaj na toplinske i dijelom mikrostrukturne procese može se u većini slučajeva zanemariti uz prihvatljivu pogrešku simulacije (manju od 5%). U tom slučaju vrijedi "jednosmjerana povezanost" deformacija i zaostalih naprezanja s toplinskim i mikrostrukturnim procesima, pa se jednadžbe matematičkog modela naprezanja i deformacija smiju rješavati odvojeno od iteracijskog algoritma simulacije ostalih fizikalnih procesa (elektromagnetskih, toplinskih i mikrostrukturnih). Računalna simulacija naprezanja i deformacije obratka zbog svoje složenosti još uvijek nije uobičajena faza u praksi svakodnevne pripreme

indukcijskog kaljenja, već se preporučuje kod pripreme indukcijskog kaljenja konstrukcijski kritičnih dijelova poput dvofrekvencijski kaljenih zupčanika, koljenastih osovina i sl. [36].

Postavljanje i rješavanje simulacijskog algoritma svih spomenutih fizikalnih procesa (elektromagnetskih, toplinskih, mikrostrukturnih, naprezanja, deformacija) vrlo je složen i numerički zahtjevan zadatak (**slika 4.1**). Složenost rješavanja posebno je prisutna zbog nelinearnih promjena fizikalnih svojstava materijala i nestacionarnosti fizikalnih procesa. Stoga će se računalna simulacija razrađena i opisana u ovom radu ograničiti samo na postavljanje energijske bilance procesa, rješavanje matematičkih modela elektromagnetskih i temperaturnih polja i predviđanje mikrostrukturnih faznih pretvorbi u indukcijskom kaljenju rubnog sloja <u>rotaciono simetričnih ili dugačkih ravnih obradaka</u>.

Energijska bilanca postavlja se za termodinamički sustav sastavljen od induktora, obratka, prskalice i zraka neposredno uz obradak (poglavlje 4.3). Polazne diferencijalne jednadžbe elektromagnetskog i temperaturnog polja postavljaju se nad elementarnim materijalnim volumenom u svom trodimenzijskom obliku, pojednostavljuju se i potom numerički rješavaju u dvodimenzijskom obliku za rotaciono simetrične ili dugačke ravne obratke (poglavlja 5 i 6). Jednadžbe elektromagnetskog polja postavljaju se za cijelu geometrijsku domenu Ω , a jednadžba provođenja topline samo za obradak.

U slučaju posmičnog indukcijskog kaljenja matematički se modelira sustav u kojem je očuvana relativnost gibanja obratka prema induktoru, tj. obradak se smatra nepomičnim a induktor i prskalica uz njega prolaze zadanom posmičnom brzinom. Obzirom na male posmične brzine mogu se praktički zanemariti struje inducirane relativnim gibanjem induktora prema obratku u odnosu na vrtložne struje inducirane izmjeničnom strujom induktora. Stoga se iz jednadžbi matematičkog modela elektromagnetskog polja može izostaviti tzv. "konvekcijski član" (tj. član diferencijalnih jednadžbi ovisan o posmičnoj brzini) i dalje računati samo s difuzijskim članovima. Proračun temperaturnog polja obratka ovim je također pojednostavljen jer se izvodi na fiksnoj ili lokalno adaptiranoj mreži konačnih elemenata, bez potrebe ponovnog generiranja mreže u svakom novom vremenskom intervalu simulacije. Međutim za svaki novi "vremenski korak" simulacije treba iznova proračunati vrijednosti rubnih uvjeta na površini obratka (nestacionarnih i prostorno raspoređenih) [74, 75].

Dijagram postupka

Slika 4.1 Osnovni fizikalni procesi tijekom indukcijskog kaljenja i promjene nastale na obratku

4.1.2 Numeričke metoda primijenjene u simulaciji indukcijskog kaljenja

Diferencijalne jednadžbe elektromagnetskog polja (poglavlje 5) i provođenja topline (poglavlje 6) međusobno su zavisne i višestruko povezane pa se uobičajeno nazivaju jednadžbama "elektromagnetsko-termodinamičkog problema" indukcijskog kaljenja. One zajedno sa uvjetima jednoznačnosti čine sustav nelinearnih i nestacionarnih diferencijalnih jednadžbi vrlo zahtjevan za numeričko rješavanje, ali još uvijek atraktivan za primjenu različitih varijanti numeričkih metoda.

Izbor metoda za rješavanje "elektromagnetsko-termodinamičkog problema" indukcijskog kaljenja. Od prikladnih numeričkih metoda (poglavlje 3.3) u vlastitom simulacijskom modelu indukcijskog kaljenja za rješavanje "elektromagnetsko-termodinamičkog problema" izabrana je hibridna metoda s konačnim i rubnim elementima (FEM/BEM metoda). Jednadžbe metode FEM riješene su minimizacijom težinskog reziduala s Galerkinovim rješavanjem karakterističnih jednadžbi konačnog elementa. Jednadžbe metode BEM riješene su direktnim postupkom traženjem fundamentalnog rješenja i usklađivanjem težinskog integrala po čvorovima rubnog elementa. Razlozi ovom izboru su višestruki:

- Vrlo točna diskretizacija geometrijskih domena problema (obradak, induktor) po volumenu i
 površini sa znatno manje konačnih elemenata nego u slučaju kad bi se primijenila samo
 metoda konačnih elemenata koja zahtijeva i diskretizaciju okoliša [35, 41, 45, 46].
- Manje članova u globalnoj matrici sustava, jer se promatrano područje Ω diskretizira s manje konačnih i rubnih elemenata. Manja globalna matrica može se brže riješiti, pa je simulacija provediva i na slabijim računalima [41, 46].
- Prilagođenost metode rješavanja karakteristikama modeliranog područja. Diferencijalne jednadžbe "elektromagnetsko-termodinamičkog problema" u nelinearnom području obratka rješavaju se metodom konačnih elemenata s "po elementima" linearnim svojstvima, dok je za područje zraka primijenjena metoda rubnih elemenata s relativno jednostavnom Greenovom funkcijom slobodnog prostora. Na površini obratka i induktora uspostavljaju se odgovarajući rubni uvjeti kontinuiteta elektromagnetskog polja specifični za hibridno FEM/BEM rješenje [9, 30, 34, 35].
- U radu su pri rješavanju BEM jednadžbi primijenjeni ravni i konstantni rubni elementi. U odnosu na ostale tipove rubnih elemenata oni su najjednostavniji za rješavanje i omogućuju jednostavno izbjegavanje singulariteta u integralnim jednadžbama korištenjem samo prvih članova u razvoju podintegralnih funkcija u redove. Ako se primijeni dovoljno gusta podjela površine obratka na konstantne rubne elemente, može se postići točnost slična linearnim ili kvadratnim rubnim elementima [31, 32, 45, 46].

- Nestacionarnost provođenja topline u obratku i prijelaza topline na sredstvo za gašenje i okoliš, problem simulacije indukcijskog kaljenja svrstavaju u tzv. "marševske zadaće". Kod njih se polazeći od početnog rješenja (razdiobe temperature) u konačnom broju iteracija (vremenskih inkremenata Δt) dolazi do konačnog rješenja (razdiobe temperature tijekom indukcijskog kaljenja). Promjena temperaturnog polja izrazito je nestacionarna, s velikim gradijentima po dubini zagrijavane zone i nelinearna. Međutim, usprkos tome gore navedenom formulacijom konačnog elementa postiže se dobra stabilnost iteracijskog rješenja provođenja topline u vremenskoj domeni [24, 25, 76].
- Formulacija težinskog reziduala nad konačnim elementom (tzv. "nejaka formulacija konačnog elementa") podudara se sa formulacijom zakona očuvanja energije [76, 77].
- Metoda FEM/BEM prikladna je za numeričko rješavanje "elektromagnetsko-termodinamičkog problema" od nisko frekventnog indukcijskog kaljenja cijelog presjeka do visoko frekventnog kaljenja tankog površinskog sloja bez veće opasnosti od "presitnih" konačnih elemenata koji bi uzrokovali velike greške zaokruživanja računala [31, 32, 34].
- Ostale numeričke metode (metoda konačnih diferencija, metoda kontrolnih volumena, metode površinske impendancije i dr.), premda su matematički jednostavnije od hibridne metode FEM/BEM imaju veće greške diskretizacije složenijih oblika obradaka ili su ograničeno primjenljive za rješavanje izrazito nelinearnih diferencijalnih jednadžbi. Također je ograničena samostalna primjena metoda FEM ili BEM, a njihovom kombinacijom iskorištavaju se dobre karakteristike obje metode [9, 41, 46].

Izbor vrste indukcijski kaljenih obradaka. Za razradu rješenja simulacijskog modela i dokaz polazne hipoteze rada izabrani su dvodimenzijski i osnosimetrični "elektromagnetsko-termodinamički problemi" indukcijskog kaljenja. Prvi razlog ovom izboru je veliki asortiman dugačkih ravnih ili rotaciono simetričnih obradaka koji se uobičajeno površinski otvrdnjavanju indukcijskim kaljenjem. Drugi razlog su proširene mogućnosti računalnog programa u osnovi razvijenog za simulaciju posmičnog i rotaciono-posmičnog indukcijskog kaljenja dugačkih ravnih ili rotaciono simetričnih obradaka. Razvijeni vlastiti matematički model i simulacijski računalni program može se dodatno primijeniti i za simulaciju stacionarnog ili rotacijskog indukcijskog kaljenja (zadaje se posmična brzina jednaka nuli), uz pretpostavku zadane struje ili napona na induktoru. Osim toga može se simulirati indukcijsko kaljenje vanjskih površina valjaka i unutrašnjih površina cilindara.

4.2 Definicija geometrijskih domena simulacijskog modela

4.2.1 Područja geometrijskih domena induktora i obratka

Indukcijsko kaljenje je postupak lokalnog površinskog otvrdnjavanja, pa je za njegovu računalnu simulaciju dovoljno matematički modelirati fizikalne procese u dijelu obratka koji se nalazi u induktoru i prskalici i u manjem prostoru oko njih (**slika 4.2**). Položaj granice S_{∞} matematički modeliranog prostora prema okolišu (neobuhvaćenom simulacijom) određuje se iskustveno ovisno o postavljenim rubnim uvjetima. Matematički modeli elektromagnetskih, toplinskih i mikrostrukturnih procesa pri indukcijskom kaljenju definirani su u pravokutnom ili cilindričnom koordinatnom sustavu ovisno o rotacijskoj ili translacijskoj simetričnosti obratka.

komponente visokofrekventnog indukcijskog generatora [4]:

- I. Priključak na niskonaponsku mrežu (50 Hz)
- II. Viskonaponski transformator
- III. Sklop visokonaponskih ispravljača
- IV. Visokofrekventni oscilator (s elektronskom cijevi)
- V. Sklop za ugađanje izlaznog otpora i sniženje napona anode na vrijednost radnog napona induktora (uz odgovarajuće povećanje struje induktora u odnosu na struju anode elektronske cijevi)
- VI. Induktor s obratkom (područje matematičkog modeliranja)

Simulacijski modeli razrađeni u radu obuhvaćaju jednodimenzijske (1D) i dvodimenzijske (2D) domene koje fizikalno točno predstavljaju konkretne simetrične obratke kakvi se u najvećem broju slučajeva indukcijski kale. Računalna simulacija trodimenzijskih (3D) matematičkih modela zahtijeva složenije i duže programiranje, duže računalno rješavanje i visokokapacitetna računala, a u slučajevima simetričnih obradaka često puta daje slične rezultate kao simulacija 2D modela. Stoga je zamjena 3D matematičkog modela s 2D ili ako je moguće 1D modelom poželjna kad god je to

moguće jer donosi značajne uštede na vremenu simulacije [1]. Nekoliko tipičnih primjera moguće zamijene 3D slučajeva indukcijskog kaljenja s 1D ili 2D matematičkim modelima prikazano je u **tablici IV.1**. U svim slučajevima matematičkih modela geometrijska domena Ω (**slika 4.3**) sastavljena je od četiri područja različitih svojstava:

- a) Obradak (područje oznake Ω_1),
- b) Induktor (područje oznake Ω_2) sa ili bez koncentratora magnetskog toka,
- c) Prskalica ili bazen za gašenje (područje oznake Ω_3),
- d) Zrak (područje oznake Ω_4).

 Tablica IV.1. Primjeri pojednostavljenja 3D geometrijskih domena sa 1D ili 2D domenama pri računalnim simulacijama indukcijskog kaljenja

Kod označavanja karakterističnih površina u 2D ili 1D prikazu geometrijskih domena u vlastitim matematičkim modelima površina obratka uvijek je označena sa S_1 , a površina induktora sa S_2 . Uz os

simetrije postavljena je umjetno definirana površina S_0 nužna za zadavanje rubnih uvjeta simetrije. Granica modeliranog područja prema okolišu S_{∞} (iza koje se ne osjeća značajno djelovanje elektromagnetskog polja) prikazana je na **slici 4.3** samo zbog potpunosti prikaza. Njen položaj nije od bitnog značaja za simulaciju u ovom radu jer se koristi metoda rubnih elemenata za rješavanje jednadžbi elektromagnetskog polja u zraku koja zahtijeva samo diskretizaciju površine obratka i induktora. Unutrašnjost obratka Ω_1 i induktora Ω_2 diskretiziraju se mrežom konačnih elemenata, a njihove stranice na površinama S_1 i S_2 su ujedno i rubni elementi. Kombinacijom metoda rubnih i konačnih elemenata izbjegnuta je potreba za diskretizacijom zraka mrežom konačnih elemenata, čime su značajno smanjene matrice u numeričkom rješenju problema elektromagnetskog polja.

Slika 4.3 Karakteristična područja geometrijske domene Ω matematički modeliranog sustava obradak-induktor-prskalica pri rotaciono-posmičnom indukcijskom kaljenju

Kod računalne simulacije stacionarnog ili rotacijskog indukcijskog kaljenja obradak miruje u odnosu na induktor i prskalicu. Stoga se prvo rješava problem ugrijavanja, a potom gašenja na istim konačnim i rubnim elementima domene Ω_1 . Kod računalne simulacije posmičnog i rotacijsko-posmičnog indukcijskog kaljenja obradak istodobno prolazi zonu kaljenja sastavljenu od zone ugrijavanja (u području induktora) i zone gašenja (u području prskalice) (**slika 4.3**). Promjena relativnog položaja induktora i prskalice prema obratku uobičajeno zahtijeva ponovno stvaranje mreže konačnih i rubnih elemenata induktora za svaki novi vremenski inkrement simulacije uz prenošenje vrijednosti fizikalnih veličina sa "starih" na "nove" čvorove mreže. Ove računske operacije usporavaju simulaciju i nepotrebno zauzimaju memoriju računala pa se različitim metodama nastoje izbjeći. U vlastito razvijenom simulacijskom programu kod računalne simulacije posmičnog ili rotacijsko posmičnog indukcijskog kaljenja primijenjena je metoda zamjene gibanja obratka (relativnim) gibanjem induktora i prskalice po poznatoj stazi gibanja (**slika 4.3**) [103].

Tijekom simulacije posmičnog ili rotacijsko posmičnog indukcijskog kaljenja induktor i prskalica translacijski se pomiču po poznatoj stazi gibanja svakim novim vremenskim korakom za udaljenost manju ili jednaku efektivnoj dubini prodiranja struje u vodiču induktora. Relativno pomicanje induktora računalno je riješeno proračunom novih prostornih koordinata čvorova konačnih i rubnih elemenata induktora bez promjene njihovog broja ili međusobnog razmještaja. Svakim novim relativnim pomakom induktora i prskalice u odnosu na obradak iznova se računaju rubni uvjeti (elektromagnetski i toplinski) na površini obratka. Opisanim postupkom izbjegava se stvaranje mreže za novi vremenski korak simulacije, a prvobitno zadana mreža može se po potrebi lokalno adaptirati diobom elemenata i interpolacijom svojstava polaznog elementa na nove elemente u njegovoj unutrašnjosti.

4.2.2 Delaunay triangularizacija geometrijskih domena

Za rješavanje diferencijalnih jednadžbi elektromagnetsko-termodinamičkog problema indukcijskog kaljenja geometrijska područja obratka Ω_1 i induktora Ω_2 diskretiziraju se mrežom konačnih elemenata, pri čemu su stranice elemenata na površinama S₁, S₂ ovih područja ujedno rubni elementi. Oblik rubnih i konačnih elemenata i broj njihovih čvorova općenito ovise o dimenzionalnosti problema, obliku geometrijske domene, matematički modeliranim fizikalnim procesima, zahtijevanoj točnosti rješenja i raspoloživoj brzini računanja na računalu.

Izbor tipa konačnih elemenata. Podjelu geometrijskih domena Ω_1 , Ω_2 na konačne elemente Ω_1^e , Ω_2^e treba provesti tako da po dva različita elementa imaju zajedničke točke samo na zajedničkoj granici, bez preklapanja ili praznina između njih. Za zakrivljene i nepravilne oblike površine diskretiziranog geometrijskog područja prikladniji su trokutni od četverokutnih konačnih elemenata. Zbog osiguranja bolje točnosti rješenja mreža konačnih elemenata zgusnuta je uz indukcijski kaljeni dio površine obratka kao i uz vanjsku površinu induktora [9].

U vlastito razvijenom simulacijskom programu koriste se osnovni (linearni) dvodimenzijski (slika 4.4.a) i prstenasti trokutni elementi (slika 4.4.b). Navedeni tipovi trokutnih elemenata izabrani su zbog jednostavnog programiranja i dobre prilagodljivosti različitim oblicima geometrijskih domena induktora i obratka. Pri diskretizaciji je posebna pažnja posvećena kutovima između stranica trokutnog elementa koji trebaju biti između 45° i 90°, zbog osiguravanja dobre konvergencije numeričkog rješenja [40].

Delaunay triangularizacija. U vlastito razvijenom simulacijskom programu za dobivanje lokalno adaptirane mreže trokutnih elemenata primijenjena je diskretizacija metodom Delaunay triangularizacije. Delaunay triangularizacija provodi se na temelju konstrukcije Voronoi dijagrama i omogućava postizanje mreže s ujednačenim (sličnim) trokutnim elementima najvećih mogućih kutova između stranica elementa [40, 78]. Voronoi dijagram konstruira se za zadani skup točaka ravnine (npr. čvorova mreže) pri čemu se ravnina dijeli na onoliko ćelija koliko ima zadanih točaka (slika 4.5.a).

Slika 4.4 Osnovni trokutni element s čvorovima numeriranim za izvođenje funkcije oblika: a) dvodimenzijski trokutni element, b) osnosimetrični trokutni element

Pravilo za konstrukciju Voronoi dijagrama sastoji se u sljedećem: udaljenost između svih točaka u ćeliji od čvora ćelije mora biti manja od udaljenosti tih točaka prema čvorovima susjednih ćelija (tj. sve točke u ćeliji "gravitiraju" čvoru ćelije). Delaunay triangularizacijom spajaju se točke diskretiziranog (čvorovi) geometrijskog područja tako da su stranice trokutnih elemenata uglavnom okomite na Voronoi dijagram područja (**slika 4.5.b**) [78].

Slika 4.5. a) Zadani skup čvorova u ravnini i njihov Voronoi dijagram [78]b) Delaunay dijagram konstruiran na temelju Vonoroi dijagrama [78]

Uz pomoć teorema računalne geometrije može se odrediti broj trokutnih elemenata BTE i njihovih stranica BSE nakon Delaunay triangularizacije nad N točaka u ravnini, od kojih njih M leži na rubu diskretiziranog područja. Za ovu triangularizaciju treba $N \log N$ računskih jedinica vremena i n jedinica memorije računala [78].

$$BTE = 2N - 2 - M \tag{4.1.a}$$

$$BSE = 3N - 3 - M \tag{4.1.b}$$

N	 zadani broj čvorova u diskretiziranoj domeni
M	 broj čvorova na granici diskretizirane domene
BTE	 broj trokutnih elemenata nakon triangularizacije
BSE	 broj stranica trokutnih elemenata

4.3. Izvod jednadžbe energijske bilance sustava induktor – obradak

4.3.1 Fazorski dijagram sustava induktor - obradak

Za postavljanje energijske bilance strujni krug induktor-okolina-obradak zamjenjuje se nadomjesnim strujnim krugom u kojem je svitak sa željeznom jezgrom spojen na izvor sinusiodalnog napona (**slika 4.6**) [1, 2, 5-7, 86]. Nadomjesni strujni krug sa svitkom i željeznom jezgrom sastavljen je od radnih i induktivnih otpora. Radni otpori predstavljaju mjesto nepovratne pretvorbe električne energije u toplinu prema Jouelov zakonu (Jouelovi gubici u induktoru i obratku). Induktivni otpori predstavljaju mjesta stvaranja elektromagnetskog polja samoindukcijom i međuindukcijom induktora i obratka prema. Za opis nadomjesnog strujnog kruga induktor-okolina-obradak koristi se fazorski dijagram (**slika 4.7**). Fazorski dijagram strujnog kruga uobičajen je prikaz odnosa amplituda ili efektivnih vrijednosti harmonično promjenljivih električnih i magnetskih veličina u kojem su ove veličine izražene kao vektori u kompleksnoj ravnini.

Slika 4.6 Zamjena električkog sustava induktor – obradak - okolina nadomjesnim strujnim krugom sa svitkom i željeznom jezgrom

Veza između zapisa vremenski harmonično promjenljive veličine elektromagnetskog polja $\psi(\vec{r}, \omega t)$ u vremenskoj domeni i njenog zapisa u kompleksnoj domeni kao fazora $\Psi(\vec{r})$ ostvaruje se jednadžbama (4.2.a-c) prema [79, 80]:

Slika 4.7 Fazorski dijagram nadomjesnog strujnog kruga induktor -obradak

Fazorski dijagram na **slici 4.7** konstruiran je s efektivnim vrijednostima struje, napona i magnetskog toka. Efektivna vrijednost npr. izmjenične struje i(t) jednaka je vrijednosti konstantne istosmjerne struje I koja na otporu R tijekom vremena t razvija istu količinu topline kao i promatrana izmjenična struja i(t) na istom otporu u jednakom trajanju t. Efektivna vrijednost sinusno promjenljive veličine za 70,7% je manja od njene amplitude.

Nadomjesni strujni krug induktor-obradak-okolina pri magnetiziranju izmjeničnom strujom ima nelinearno promjenljiv induktivitet zbog nelinearne promjene magnetske permeabilnosti zavisne od jakosti magnetskog polja i temperature. Prema II Kircohffovom zakonu ulazni napon induktora (\underline{U}_0)

treba savladati pad napona na radnom otporu induktora ($\underline{I}_0 \cdot R_2$) (razvijena toplina u zavojcima induktora koju treba odvesti vodom za hlađenje), pad napona zbog stvaranja rasipnog magnetskog toka u zračnom rasporu ($\underline{I}_0 \cdot X_0$) i inducirani napon samoindukcije ($\underline{E} = -\underline{U}_1$). Zbog nelinearne promjene magnetske permeabilnosti ovisno o jakosti magnetskog polja struja induktora neće se mijenjati sinusno iako se napon induktora mijenja sinusno. Stoga se nesinusoidalna struja aproksimira ekvivalentnim sinusnim strujama prema jednadžbama za Fourierov red harmoničnih funkcija. Za pojednostavljeni proračun strujno-naponskih odnosa u nadomjesnom strujnom krugu (**slika 4.6**) i konstrukciju fazorskog dijagrama (slika 4.7) dovoljan je samo osnovni sinusoidni član ekvivalentne struje induktora $i_{1,0} = I_{1,0m} \sin(\omega t + \varphi_1)$ (tzv. prvi harmonik Fourierovog reda funkcija).

U slučaju induktora s zanemarivo malim radnim otporom R_2 bez obratka struja induktora bila bi čisto induktivna, tj. u odnosu na napon induktora fazno pomaknuta za kut 90°. U realnom strujnom krugu induktor-obradak-okolina pojavljuje nepovratna pretvorba električne energije u toplinu na radnom otporu induktora i u željeznoj jezgri (obratku) uslijed ugrijavanja magnetiziranjem i vrtložnim strujama, pa je fazni pomak φ između napona i (ekvivalentne) struje induktora manji od 90°. Stoga se u fazorskom dijagramu (**slika 4.7**) struja induktora (\underline{I}_0 .) prikazuje kao vektorski zbroj dviju komponenata: induktivne struje ($\underline{I}_M = \underline{I}_0 \cdot \sin \varphi$.) koja stvara i održava glavni magnetski tok $\widetilde{\Phi}_{12}$ (s njim je u fazi) i radne struje ($I_R = \underline{I}_{IQ} + \underline{I}_{HB} = \underline{I}_0 \cos \varphi$.) prouzročene pretvorbom električne energije u toplinu radom vrtložnih struja i magnetiziranjem željezne jezgre. Osim glavnog magnetskog toka $\widetilde{\Phi}_{12}$ postoji i rasipni magnetski tok $\widetilde{\Phi}_0$ zatvoren u zraku oko induktora koji je u fazi s ukupnom strujom induktora \underline{I}_0 . Iz fazorskog dijagrama (**slika 4.7**) nadomjesnog strujnog kruga induktor-obradak-okolina slijede jednadžbe [86]:

$$\underline{\underline{U}}_{0} = \underline{\underline{U}}_{1} + (\underline{R}_{2} + j\omega \underline{L}_{o})\underline{\underline{I}}_{0}$$
(4.3.a)

$$I_{0} = \sqrt{I_{M}^{2} + (I_{JQ} + I_{HB})^{2}}$$
(4.3.b)

Radni otpor induktora R₂ određuje se jednadžbom (4.4) prema [80]:

$$R_2 \approx \frac{l_{2N}}{\kappa(\delta_2 o_2)} \tag{4.4}$$

 l_{2N} ... Duljina vodiča induktora, m

 δ_2 :.. Efektivna dubina prodiranja struje u vodič induktora, m

o2 ... Opseg poprečnog presjeka vodiča induktora, m

Rasipni induktivitet induktora L_0 u općem slučaju ovisi o induktivitetima induktora L_2 i obratka L_1 , magnetskoj povezanosti induktora s obratkom i broju zavoja induktora N_z.prema [86]:

$$L_0 = L_2 - N_z k_{12} \sqrt{L_1 L_2}$$
(4.5)

 k_{12} ... faktor magnetske veze induktor-obradak ($k_{12} \le 1$), 1

Induktivitet induktora (bez obratka) L_2 određuje se analitičkim izrazima prema [1, 2, 5, 7] koji vrijede za specifične induktore (jednovojni, dvovojni, zavojnica):

a) Jednovojni induktor unutrašnjeg promjera $2r_2$ i kružnog poprečnog presjeka promjera $2r_{02}$:

$$L_2 = \mu_0 r_2 \left(\ln \frac{8r_2}{r_{02}} - \frac{7}{4} \right)$$
(4.6.a)

b) Jednovojni induktor unutrašnjeg promjera $2r_2$ i kvadratnog poprečnog presjeka bxb:

$$L_2 = \mu_0 r_2 \left(\ln \frac{8r_2}{b} - \frac{1}{2} \right)$$
(4.6.b)

c) Zavojnica s N_z zavoja unutrašnjeg promjera $2r_2$ i visine h_2 :

$$L_2 = \mu_0 \frac{N_z^2}{h_2} k_r \frac{2\pi r_2 \delta_2}{2}$$
(4.6.b)

kr ... korekcijski faktor, 1

 $\delta_2 \ \dots$ efektivna dubina prodiranja struje u induktoru, m

Nadomjesni induktivitet sustava induktor-obradak L_{12} i nadomjesni induktivitet obratka L_1 određuju se prema [81] iz jednadžbe za proračun srednje energije W_M pohranjene u magnetskom polju navedenog sustava:

$$W_{M} = \frac{1}{2} \iiint_{V_{1}+V_{2}} \frac{|\underline{B}|^{2}}{\mu} dV = \frac{1}{2} L_{12} I_{M}^{2}$$
(4.7.a)

 $L_{12} = \frac{1}{I_M^2} \iiint_{V_1+V_2} \frac{B^2}{\mu} dV$ (4.7.b) μ ... magnetska permeabilnost, H/m

B ... magnetska indukcija, T

Ako volumen integracije u jednadžbi (4.6.b) obuhvaća obradak i induktor koeficijent L_{12} predstavlja ekvivalentni induktivitet ovog sustava. Ako volumen integracije u jednadžbi (4.6.b) obuhvaća samo obradak izračunati koeficijent predstavlja ekvivalentni induktivitet obratka L_1 .

Nadomjesni radni otpor obratka R_1 obuhvaća pretvorbu električne energije u obratku u toplinu gubicima magnetiziranja i radom induciranih vrtložnih struja. Njegova vrijednost određuje se prema [81] uz pomoć jednadžbe za proračun radne snage u mrežama izmjenične struje:

$$R_{1} = \frac{P_{JQ} + P_{HB}}{I_{R}^{2}}$$
(4.8)

Efektivna vrijednost struje magnetiziranja I_M određuje se iteracijski iz jednadžbe (4.3.a) i Ohmovog zakona za pad napona na induktivnom otporu $X_{12} = \omega L_{12}$ nadomjesnog strujnog kruga sa slike 4.6:

$$I_{M} = \frac{U_{0} - \sqrt{(R_{2}I_{0})^{2} + (\omega L_{o}I_{0})^{2}}}{\omega L_{12}}$$
(4.9)

Određivanje struje magnetiziranja $I_{\rm M}$ nužno je provesti iteracijski zbog usklađivanja vrijednosti nelinearno promjenljive magnetske permeabilnosti obratka ovisne o jakosti polja koja utječe na iznos ekvivalentnog induktiviteta L_{12} .

Efektivna vrijednost radne struje $I_{\mathbf{R}}$ određuje se iz jednadžbe (4.10) prema [86]:

$$I_{R} = \frac{P_{HB} + P_{JQ}}{U_{0} - \sqrt{(R_{2}I_{0})^{2} + (\omega L_{o}I_{0})^{2}}}$$
(4.10)

 P_{HB} ... Snaga magnetiziranja, W P_{JQ} ... Snaga vrtložnih struja, W

Snaga vrtložnih struja P_{JQ} **i magnetiziranja obratka** P_{HB} određuju se numeričkim rješavanjem diferencijalnih jednadžbi elektromagnetskog polja u sustavu induktor-obradak-okolina. U općem slučaju srednja vrijednost električne energije pretvorene u toplinu ugrijavanja za sinusno promjenjivo polje prema [80] jednaka je:

$$P_{JQ} = \frac{1}{2\kappa} \iiint_{V_1} |\underline{J}|^2 dV \tag{4.11}$$

Toplina nastala zbog magnetiziranja obratka s petljom histereze jednaka je ploštini koju zatvara petlja histereze B = f(H) u svakom ciklusu magnetiziranja [86]:

$$P_{HB} = f \iiint_{V_1} (\oint H dB) dV$$
(4.12)

U vlastito razvijenom računalnom programu moguće je izabrati simulaciju indukcijskog kaljenja generatorom zadane izlazne struje (tzv. "strujni generator") ili izlaznog napona (tzv. "naponski generator"). Za proračun toplinske energije unijete u obradak $P_{1,R}$ treba zadati polazni oblik i dimenzije induktora, frekvenciju generatora i vrijednost harmonični promjenjive efektivne struje (I₀) ili napona (U_0) induktora. Trenutne vrijednosti ovih veličina obično ne prate sinusnu krivulju već neku izobličenu periodičku krivulju čiji oblik ovisi o radnim karakteristikama i vrsti generatora i magnetskoj petlji histereze grijanog materijala. Stoga je zbog pojednostavljenja matematičkog modela i kraćeg postupka rješavanja, preporučljivo aproksimirati krivulje (valnog oblika) struje i napona Fourierovim redom sinusnih funkcija. Fourierovom aproksimacijom se nesinusna krivulja zamjenjuje ekvivalentnom sinusoidom koja predstavlja prvi član Fourierova reda (zbog zadržavanja jedne vrijednosti radne frekvencije). Ekvivalentna struja i napon moraju imati istu efektivnu vrijednost kao izvorne nesinusne veličine zbog očuvanja energije u strujnom krugu. Uvođenjem ekvivalentnih sinusnih veličina zadržava se točnost fazorskih dijagrama definiranih za sinusne veličine. Navedene električne veličine (frekvencija, napon, struja) mogu biti vremenski neovisne ili se mogu zadati promjenljive s vremenom tijekom ciklusa kaljenja. U slučaju vremenski promjenljivog efektivnog iznosa napona ili struje, odnosno frekvencije u razvijenom simulacijskom programu treba zadati vrijednosti ovih veličina u karakterističnim trenucima kaljenja s kojima će se konstruirati funkcije U(t), I(t), f(t) važne za provedbu simulacije.

Uz navedene električne veličine (R_1 , R_2 , L_0 i ostale) značajan pokazatelj primjene ispravnog oblika i dimenzija induktora kao i zadavanja optimalnih radnih parametara indukcijskog kaljenja je stupanj djelovanja induktora η . Stupanj djelovanja induktora označava koliki se udio ulazne snage induktora pojavljuje kao iskoristiva toplina u obratku:

$$\eta = \frac{P_{JQ} + P_{HB}}{P_{JQ} + P_{HB} + I_0^2 R_2}$$
(4.13)

Indukcijsko kaljenje s višim stupnjem djelovanja induktora za istu dubinu kaljenja zahtijeva manju snagu indukcijskog generatora i kraće vrijeme ugrijavanja u odnosu na kaljenje s niskim vrijednostima stupnja djelovanja η . Utjecajni čimbenici na stupanj djelovanja u slučaju induktora zavojnice obuhvaćaju frekvenciju, broj zavoja induktora, duljinu i promjer induktora, širinu zračnog raspora, promjer obratka, električna i magnetska svojstva obratka i dubinu prodiranja struje u obradak [1, 2, 7].

4.3.2 Jednadžba energijske bilance sustava induktor - obradak

U radu se matematički modelira sustav sastavljen od induktora, obratka, prskalice i zraka. Energija dovedena u ovaj sustav manja je od ukupne energije preuzete iz električne mreže zbog gubitaka u indukcijskom generatoru. Gubici u indukcijskom generatoru nisu obuhvaćeni računalnom simulacijom, već se snaga induktora zadaje prije simulacije. Nju je moguće izmjeriti električkim mjerilom snage ili kalorimetrijskom metodom [6, 9].

Električna energija dovedena na induktor P_0 , jednim dijelom se pohranjuje u magnetskoj energiji W_M (koja oscilira između generatora i induktora), manjim djelom se zrači elektromagnetskim valovima u okoliš $P_{2,L}$, a najvećim udjelom se pretvara u toplinu na omskom otporu induktoru ($P_{2,R} = I_0^2 R_2$) i toplinu ugrijavanja obratka ($P_{1,R} = P_{JQ} + P_{HB}$). Toplina se iz induktora odvodi vodom za hlađenje, a toplina razvijena u obratku iskorištava se za kaljenje.

a) bilanca radne snage u sustavu induktor-obradak-okoliš:

$$P_{0,R} = \underbrace{P_{2,R}}_{induktor} + \underbrace{\left(P_{HB} + P_{QJ}\right)}_{obradak}$$
(4.14.a)

a) bilanca induktivne snage u sustavu induktor-obradak-okoliš:

$$P_{0,L} = P_{2,L} + W_M \tag{4.14.a}$$

Gubici magnetiziranja P_{HB} pojavljuju se samo dok je grijani površinski sloj feromagnetičan i sporedni su toplinski izvor, a toplina razvijena Jouelovim efektom P_{JQ} je glavni toplinski izvor za indukcijsko kaljenje. Toplina $P_{JQ} + P_{HB}$ raspoloživa za austenitizaciju rubnog sloja jednim dijelom gubi se kroz površinu obratka u zoni ugrijavanja zračenjem Φ_{zr} i konvekcijom Φ_k . Manji dio toplinskog toka troši se (poželjno i svrhovito) na nastanak austenita Φ_L . Preostali (najveći) dio toplinskog toka nastoji se što brže odvesti ("izvući") iz površinskog sloja u zonu gašenja (Φ_G) i tako osigurati hlađenje potrebnim brzinama v_{hl} .

Slika 4.8 Prijenos i pretvorbe električne energije u toplinsku pri rotaciono posmičnom indukcijskom kaljenju

Rješavanjem diferencijalnih jednadžbi elektromagnetskog polja određuje se snaga P_{QJ} i P_{HB} . Rješavanjem diferencijalne jednadžbe provođenja topline primarno se određuje oblik i dubina austenitizirane zone te brzine ugrijavanja i ohlađivanja u ovoj zoni. Za optimizaciju induktora kod pripreme postupka i definiranje regulacije procesa kod provedbe indukcijskog kaljenja treba poznavati očekivane iznose električnih veličina na induktoru (struja, napon, faktor snage). Mjerenjem ovih veličina na konkretnom induktoru može se provjeriti točnost energijske bilance predviđene računalnom simulacijom u pripremi postupka indukcijskog kaljenja.

4.4. Definicija simulacijskog algoritma indukcijskog kaljenja

4.4.1 Opće pretpostavke računalne simulacije indukcijskog kaljenja

Matematički modeli elektromagnetskog i temperaturnog polja i mikrostrukturnih faznih pretvorbi u indukcijski kaljenom obratku rješavaju se iteracijskim algoritmom. Izvodi i ispravnost jednadžbi matematičkih modela ograničeni su dolje navedenim pretpostavkama.

- 1. U promatranom diferencijalnom volumenu dV pojedinog geometrijskog područja (obradak, induktor, okolina) materijal je linearan, homogen i izotropan.
- Vrijednosti svojstava materijala konstantne su po elementarnom (i konačnom) volumenu, ali se mogu se mijenjati od jednog do drugog konačnog volumena.
- Unutrašnji toplinski izvori (i ponori) jednolično su raspoređeni po diferencijalnom volumenu dV.
- 4. Kod posmičnog indukcijskog kaljenja brzina posmaka usmjerena je u pravcu jedne od koordinatnih osi (uobičajeno osi y ili z)
- 5. Elektromagnetsko polje smatra se kvazistacionarnim pa se njegove promjene u svim točkama geometrijskih područja događaju istovremeno (vremenski harmonično polje oscilira istom frekvencijom), a djelovanje polja se prenosi difuzijom [9, 79, 80].
- 6. Zanemaruju se struje dielektričnog pomaka (zračenje elektromagnetskog polja) [9].
- 7. Zrak oko obratka i induktora je električno nevodljiv (κ =0 S/m).
- 8. Poznate su ovisnosti električne vodljivosti o temperaturi ($\kappa = \kappa(\vartheta)$) i relativne magnetske permeabilnosti o jakosti magnetskog polja i temperaturi ($\mu_r = \mu_r(H, \vartheta)$).
- Napon i struja induktora su vremenski harmonične veličine poznate frekvencije. Zadana je njihova efektivna vrijednost koja po unesenoj energiji u sustav induktor-obradak odgovara stvarnoj energiji unesenoj proizvoljno promjenljivim oblicima struje i napona.
- 10. Za matematičko modeliranje posmičnog i rotacijsko-posmičnog indukcijskog kaljenja uz uobičajene posmične brzine od nekoliko mm/s zanemaruju se struje inducirane u obratku uslijed gibanja kroz induktor, jer su nekoliko redova veličine manje od struja induciranih harmonično promjenljivim poljem induktora [7, 9].
- 11. Temperatura zraka i okoliša je konstantna i jednaka temperaturi \mathcal{P}_0 .

- 12. Na početku simulacije obradak ima temperaturu jednaku temperaturi okoliša i zraka ϑ_0 ili je jednolično ugrijan na poznatu temperaturu \mathcal{P}_{0P} .
- 13. Induktor je šuplji bakreni vodič iznutra hlađen vodom poznatog protoka, čija je temperatura na ulazu u induktor jednaka temperaturi okoliša \mathcal{G}_0 .
- 14. Temperaturno polje je nestacionarnost, a interval Δt za njegov proračun je adaptivan.
- 15. Diferencijalni volumen u obratku izlaže se kontinuiranom zagrijavanju i ohlađivanju što može prouzročiti njegovo kaljenje ako su zadovoljeni svi uvjeti kaljenja.
- 16. Mikrostrukturne fazne pretvorbe tijekom austenitizacije su difuzijske, a tijekom ohlađivanja mogu nastupiti bezdifuzijske (austenit →martenzit) i difuzijske pretvorbe (austenit →bainit / perlit /ferit).
- 17. U početku simulacije $t = \tau_0 = 0$ s mikrostruktura obratka može biti sastavljena od bilo kojih faza ili njihove kombinacije a udio joj je jednak jedinici (y_0 (τ_0) = 1).

4.4.2 Glavni simulacijski algoritam postupka indukcijskog kaljenja

Simulacija pojedinih faza indukcijskog kaljenja. Kod simulacije posmičnog i rotacijsko-posmičnog indukcijskog kaljenja za svaki vremenski inkrement metodom konačnih elemenata rješavaju se jednadžbe elektromagnetskog polja i provođenja topline na cijelom volumenu obratka, čime se istovremeno obuhvaćaju zona ugrijavanja i zona gašenja. Kod simulacije rotacijskog i stacionarnog indukcijskog kaljenja jednadžbe elektromagnetskog i temperaturnog polja također se rješavaju za cijeli obradak, ali se prvo simulira faza ugrijavanja, a potom faza gašenja. Proračun mikrostrukturnih faznih pretvorbi izvodi se nakon svakog koraka rješavanja elektromagnetsko-termodinamičkog problema, kako bi se obuhvatio utjecaj mikrostrukturnih faza na raspodjelu elektromagnetskog i temperaturnog polja. Matematički modeli elektromagnetskih, termodinamičkih i mikrostrukturnih procesa postavljeni su za materijalni volumen obratka s vremenski i prostorno promjenjivim rubnim uvjetima. Detaljniji prikaz cjelokupnog vlastito razvijenog algoritma simulacijskog modela indukcijskog kaljenja nalazi se na **slici 4.9**. Prikazani algoritam obuhvaća sve metode indukcijskog kaljenja (stacionarnu, posmičnu, rotacijsku rotacijsko posmičnu) sa strujnim ili naponskim indukcijskim generatorom.

Osiguranje konzistentnosti, točnosti i stabilnosti približnog rješenja. Iz navedenog slijedi da se numeričkom rješavanju matematičkog modela mora pristupiti s posebnom pozornošću i osigurati konzistentnost, točnost i stabilnost približnog rješenja u svakom vremenskom inkrementu. Konzistentnost diskretnog modela osigurana je ako se finijom prostornom i vremenskom diskretizacijom povećava točnost. Iz iskustva je poznato da su numerički modeli uvijek konzistentni ako dobro opisuju fizikalnu pojavu (adekvatne jednadžbe, početni i rubni uvjeti i numeričke metode). Točnost rješenja ovisi o postupku diskretizacije kontinuuma (poglavlje 4.2.2). Najozbiljniji problem je osiguranje stabilnosti približnog rješenja, tj. izbjeći da se mala pogreška iz nekog stanja ne povećava u proračunu sljedećeg stanja [40, 76. 77]. U vlastitom simulacijskom programu stabilnost rješenja nastoji se osigurati bezuvjetno stabilnom Galerkinovom vremenskom diskretizacijom.

Ulazne veličine simulacijskog programa obuhvaćaju najutjecajnije čimbenike na kvalitetu indukcijski zakaljenog sloja (**tablica II.2**, poglavlje 2.2.1) i parametre potrebne za numeričko rješavanje (relaksacijski faktor prilagođavanja vrijednosti svojstava materijala temperaturi, temperatura okoliša, početna temperatura obratka).

Postupak Delaunay triangularizacije (poglavlje 4.2.2) u vlastito razvijenom računalnom programu pokreće se na početku simulacije i njime se dobiva strukturirana mreža trokutnih konačnih elemenata koja je gušća uz površinu obratka i induktora, a grublja u njihovoj unutrašnjosti. Tijekom simulacije posmičnog ili rotacijsko posmičnog indukcijskog kaljenja ostvaruje se pomicanje induktora i prskalice u svakom vremenskom inkrementu simulacije.

Rješavanje ''elektromagnetsko-termodinamičkog problema'' u svakom vremenskom inkrementu sastoji se od iteracijskog rješavanje problema raspodjele elektromagnetskog polja u induktoru i obratku metodama konačnih (FEM) i rubnih (BEM) elemenata (poglavlje 5). Po postizanju konvergentnog FEM/BEM rješenja provodi se relaksacijsko usklađivanje električnih i magnetskih svojstava materijala s novim vrijednostima jakosti magnetskog polja i potom iteracijsko rješavanje nelinearnog termodinamičkog problema grijanja i/ili gašenja (poglavlje 6). Po postizanju konvergentnog rješenja termodinamičkog modela provodi se ponovno relaksacijsko usklađivanje toplinskih , električnih i magnetskih svojstava materijala s novim vrijednostima i provodi se ponovno relaksacijsko usklađivanje toplinskih i magnetskih svojstava materijala s novim vrijednostima temperature u središtima konačnih i rubnih elemenata. Rezultati proračuna provođenja topline (temperatura i brzina grijanja ili hlađenja) potom se primjenjuju kao ulazne veličine u modulu za predviđanje faznih pretvorbi (poglavlje 7). Nakon određivanja vrste i udjela novih faza u kaljenom sloju slijedi još jedno

relaksacijsko usklađivanje svojstava materijala a nakon toga slijedi novi vremenski inkrement i ponovno rješavanje "elektromagnetsko-termodinamičkog problema".

Relaksacijsko približenje svojstva materijala u geometrijskim čvorovima obradaka računa se jednadžbom (4.13):

$$\psi_{\rm iII} = \psi_{\rm I} + \gamma(\psi_{\rm iRA\check{C}} - \psi_{\rm iI}) \tag{4.15}$$

₩ _{iRAČ}	vrijednost fizikalnog svojstva u i-tom geometrijskom čvoru
	određena interpolacijom funkcijske ovisnosti $\psi=f(\vartheta)$
$\psi_{ m iI}$	vrijednost fizikalnog svojstva u i-tom geometrijskom čvoru iz
	prethodnog iteracijskog koraka
γ	relaksacijski faktor
ψ_{II}	nova (relaksacijska) vrijednost fizikalnog svojstva u i-tom
	geometrijskom čvoru

Relaksacijsko približenje nelinearno promjenljivih fizikalnih svojstava ili veličina (ψ_i) izvodi se sve dok se ne ispuni zadani kriterij konvergencije u obliku prosječnog relativnog odstupanja:

$$\varepsilon = \sqrt{\frac{\sum_{i=1}^{M} \left(\frac{\psi_{II} - \psi_{I}}{\psi_{I}}\right)^{2}}{M}}; \qquad \varepsilon_{\psi} \le \varepsilon$$
(4.16)

M ... broj geometrijskih čvorova

 ε_{ψ} ... prosječno relativno odstupanje fizikalnog svojstva ili veličine

U simulacijskom modelu metodom relaksacije aproksimiraju se nelinearne promjene električne vodljivosti (κ =f(\mathcal{G})), vodljivosti topline (λ =f(\mathcal{G})), specifičnog toplinskog kapaciteta (c=f(\mathcal{G})), gustoće (ρ =f(ϑ)), relativne magnetske permeabilnosti (μ_r =f(B, ϑ)) i koeficijenta prijelaza topline (α =f(ϑ)).

Slika 4.9. Simulacijski algoritam indukcijskog kaljenja
5.0 MATEMATIČKO MODELIRANJE ELEKTROMAGNETSKOG POLJA U SUSTAVU INDUKTOR - OBRADAK

5.1 Definicija jednadžbi elektromagnetskog polja

Elektromagnetsko polje u električki vodljivom materijalu (obradak, induktor) i izolatoru (okolišnji zrak) opisuje se Maxwellovim jednadžbama poznatim iz teorije elektromagnetizma uz njihovo prilagođavanje specifičnim svojstvima materijala [89, 92]. Uz pretpostavke o harmoničnosti elektromagnetskog polja (poglavlje 4.4.1) polazne Maxwellove jednadžbe i iz njih izvedene pomoćne jednadžbe mogu se zapisati u fazorskom obliku (s kompleksnim funkcijama ili kompleksnim vektorima). Kompleksni vektor elektromagnetskog polja Ψ (fazor) u općem slučaju ima šest komponenti u svakoj točki prostora (tri realne i tri imaginarne) koje su funkcija prostornih koordinata, a njegov modul $|\Psi|$ jednak je amplitudi harmonično promjenljive veličine elektromagnetskog polja Ψ_{m} . Zapisom jednadžbi harmonično promjenljivog elektromagnetskog polja u fazorskom obliku postiže se njihova redukcija samo na prostornu domenu, a parcijalne derivacije po vremenu svode se na množenje derivirane jednadžbe kompleksnim brojem [79, 80].

U vlastito razvijenom simulacijskom modelu prijenosa elektromagnetskog polja s induktora na obradak primijenjene su jednadžbe elektromagnetskog potencijala izvedene iz sustava Maxwellovih jednadžbi za kvazistacionarno harmonično promjenljivo elektromagnetsko polje u fazorskoj domeni (bez slobodnih električnih naboja).

$$\nabla \times \left(\frac{1}{\mu} \nabla \times \underline{\vec{A}}\right) = \underline{\vec{J}}_{0} - j\omega\kappa\underline{\vec{A}}$$
(5.1)

Uvedena pomoćna veličina $\vec{\underline{A}}$ uobičajeno se naziva "magnetski vektorski potencijal" a definirana je sljedećom jednadžbom prema [7, 9, 79, 80]:

$$\vec{\underline{B}} = \nabla \times \vec{\underline{A}} \tag{5.2}$$

Opravdanost ove jednadžbe slijedi iz činjenice da je fazor (kompleksni vektor) magnetske indukcije $\underline{\vec{B}}$ solenoidan (tj. bez izvora) i kao takav može se predstaviti rotorom drugog fazora uz odgovarajuće baždarenje.

Coulombovo baždarenje. Prema Helmholtzovom teoremu vektorska funkcija bit će jednoznačno određena samo ako su joj poznati rotor ($\nabla \times$) i divergencija ($\nabla \circ$). Stoga se uz jednadžbu (5.2) treba definirati i divergencija fazorske funkcije \vec{A} zadavanjem dodatnog uvjeta tzv. "baždarenja". U slučaju kvazistacionarnog elektromagnetskog polja zbog jednostavnosti jednadžbi polja i sukladnosti s eksperimentalno potvrđenim činjenicama uz jednadžbu (5.2) definira se dodatni Coulombov uvjet, tzv. "Coulombovo baždarenje" prema [80]:

$$\nabla \circ \vec{\underline{A}} = 0 \tag{5.3}$$

Svojstva materijala: električna vodljivost $\underline{\kappa}$ i magnetska permeabilnost $\underline{\mu}$ u jednadžbi (5.1) prikazane su kao kompleksne funkcije ovisne o kružnoj frekvenciji ω harmonični promjenljivog elektromagnetskog polja. Frekvencijska ovisnost električne vodljivosti i magnetske permeabilnosti posljedica je mikroskopskih inercijskih i relaksacijskih efekata. U općem se ne podudaraju električna vodljivost κ i magnetska permeabilnosti μ materijala određene za nepromjenjiva (istosmjerna) polja i kompleksne značajke $\underline{\kappa}$ i $\underline{\mu}$ određene za sinusna (izmjenična) polja. Međutim vrijedi granični odnos (5.4) prema [80]:

$$\lim_{\omega \to 0} \underline{\kappa}, \underline{\mu} \to \kappa, \mu \tag{5.4}$$

Stoga se realne značajke za istosmjerna polja, ipak smiju upotrijebiti za sinusna polja , ali samo za pojedino područje frekvencija i određeni materijal, a nikad ne za sve frekvencije. Za primjenu jednadžbi (5.1) do (5.3) u području frekvencija do 1000 kHz koje se uobičajeno koristi u postupcima indukcijskog kaljenja kompleksna električna vodljivosti $\underline{\kappa}$ i magnetska permeabilnost $\underline{\mu}$ izjednačit će se sa svojim realnim vrijednostima:

$$\underline{\kappa} \approx \kappa, \qquad \mu \approx \mu \tag{5.5}$$

Struja ili napon induktora. Za područje induktora treba definirati još jedan dodatni uvjet koji povezuje fazor gustoće struje induktora \vec{J}_0 s razlikom električnog potencijala \underline{V} na priključcima induktora [79, 80, 81]:

$$\vec{J}_0 = -\kappa \nabla \underline{V} \tag{5.6.a}$$

$$\underline{V} = V_{0m} e^{j\phi_0}; \qquad \phi_0 = 0 \tag{5.6.b}$$

$\stackrel{\rightarrow}{\underline{J}}_{0}$	 fazor gustoće struje induktora, A/m ²
∇	 diferencijalni operator gradijenta skalarnog polja
\underline{V}	 električni potencijal induktora, V
V_{0m}	 amplituda električnog potencijala induktora, V

Za kružni induktor s N_z zavoja fazorska jednadžba (5.6.a) dobiva sljedeći skalarni oblik:

$$J_{0} = -\kappa_{2} \frac{U_{m}}{2\pi N_{z} r_{2}}$$

$$U_{m} \qquad ... \qquad \text{Amplituda napona na priključcima induktora (V)}$$

$$\kappa_{2} \qquad ... \qquad \text{Električna vodljivost materijala induktora (S/m)}$$

$$r_{2} \qquad ... \qquad \text{Polumjer zavoja induktora (m)}$$

$$N_{z} \qquad ... \qquad \text{Broj zavoja induktora}$$

$$(5.7)$$

Uz pretpostavku primjene jednadžbe (5.1) na linearni, homogeni i izotropni materijal, član $1/\mu$ može se pisati ispred operatora rotor. Tada se na član $\nabla \times (\nabla \times \vec{A})$ može primijeniti jednadžba poznata iz vektorske analize:

$$\nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \circ \vec{A}) - \nabla^2 \vec{\underline{A}}$$
(5.8)

Uz Coulombovo baždarenje član na lijevoj strani jednadžbe (5.8) dobiva svoj konačni oblik tzv. "difuzijske" jednadžbe magnetskog vektorskog potencijala u trodimenzijskom prostoru:

$$\nabla^{2} \underline{\vec{A}} = -\mu \underline{\vec{J}}_{0} + j\mu\omega\kappa\underline{\vec{A}}$$
(5.9)

Jednadžba (5.9) jedna je od polaznih jednadžbi matematičkog modela indukcijskog kaljenja. Ona se obično zapisuje u obliku (5.10.a) ako se indukcijsko kaljenje izvodi sa strujnim generatorom ($J_0 =$ const.), ili u obliku (5.10.b) ako se koristi naponski generator ($U_m =$ const.). Prema pretpostavkama u geometrijskoj domeni obratka $\nabla \underline{V} = 0$, a u domeni zraka $\kappa = 0$ S/m i $\mu = \mu_0 = 4\pi 10^{-7}$ H/m.

$$\nabla^2 \vec{\underline{A}} - j\mu\omega\kappa\vec{\underline{A}} = -\mu\vec{\underline{J}}_0$$
(5.10.a)

a) induktor:

$$\nabla^2 \vec{A} - j\mu\omega\kappa\vec{A} = \mu\kappa\nabla V \qquad (5.10.b)$$

b) obradak:
$$\nabla^2 \vec{\underline{A}} - j\mu\omega\kappa\vec{\underline{A}} = 0$$
 (5.11)

c) zrak:
$$\nabla^2 \vec{A} = 0$$
 (5.12)

U vlastito razvijenom simulacijskom programu primijenjena su oba oblika jednadžbe (5.10.a-b) ovisno o zadanom tipu indukcijskog generatora.

Fazor vektorskog magnetskog potencijala $\vec{\underline{A}}$ ima svoj realni i imaginarni dio,

$$\vec{\underline{A}} = \vec{A}_R + j\vec{A}_I$$
(5.13)

pa se opće jednadžbe (5.10) do (5.12) mogu raspisati na sustav od po dvije jednadžbe s realnim brojevima pogodniji za numeričko rješavanje od sustava s kompleksnim brojevima što je i provedeno u njihovim daljnjim izvodima za sustav induktor-obradak.

Sustav jednadžbi (5.10 do (5.12) opisuje difuziju elektromagnetskog polja u trodimenzijskom prostoru. Međutim u većini slučajeva u kojima su obradak i induktor simetrični pa se rješenje jednadžbi (5.10) do (5.12) može tražiti u geometrijski dvodimenzijskom području u pravokutnom ili cilindričnom koordinatnom sustavu. Pri tome se u geometrijskoj domeni induktora pojavljuje dvodimenzijski raspodijeljen napon U_0 , odnosno gustoća struje J_0 , a vektorski magnetski potencijal $\vec{\underline{A}}$ ima samo jednu komponentu okomitu na ravninu (x,y) ili (r,z).

1) Diferencijalne jednadžbe elektromagnetskog potencijala u dugačkom ravnom induktoru (duljine l_{2N}) i obratku izražene u **pravokutnom koordinatnom sustavu**

$$\vec{\underline{A}} = (0, 0, \underline{A}_z) = [A_z(x, y)]_R + j[A_z(x, y)]_I = A_R + jA_I$$
(5.14.a)

$$\underline{U} = [U(x,y)]_R + j[U(x,y)]_I = U_R + jU_I$$
(5.14.b)

$$J_{0} = [J_{0}(x, y)]_{R} + j[J_{0}(x, y)]_{I} = J_{0R} + jJ_{0I}$$
(5.14.c)

a) Geometrijska domena induktora

$$\frac{\partial}{\partial x} \left(\frac{1}{\mu_2} \frac{\partial A_R}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\mu_2} \frac{\partial A_R}{\partial y} \right) + \omega \kappa_2 A_I = -J_{0R}$$
(5.15.a)

$$\frac{\partial}{\partial x} \left(\frac{1}{\mu_2} \frac{\partial A_I}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\mu_2} \frac{\partial A_I}{\partial y} \right) - \omega \kappa_2 A_R = -J_{0I}$$
(5.15.b)

$$\frac{\partial}{\partial x} \left(\frac{1}{\mu_2} \frac{\partial A_R}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\mu_2} \frac{\partial A_R}{\partial y} \right) + \omega \kappa_2 A_I = \kappa_2 \frac{U_R}{l_{2N}}$$
(5.15.c)

$$\frac{\partial}{\partial x} \left(\frac{1}{\mu_2} \frac{\partial A_I}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\mu_2} \frac{\partial A_I}{\partial y} \right) - \omega \kappa_2 A_R = \kappa_2 \frac{U_I}{l_{2N}}$$
(5.15.d)

b) Geometrijska domena obratka

$$\frac{\partial}{\partial x} \left(\frac{1}{\mu_1} \frac{\partial A_R}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\mu_1} \frac{\partial A_R}{\partial y} \right) + \omega \kappa_1 A_I = 0$$

$$\frac{\partial}{\partial x} \left(\frac{1}{\mu_1} \frac{\partial A_I}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\mu_1} \frac{\partial A_I}{\partial y} \right) - \omega \kappa_1 A_R = 0$$
(5.16.b)

c) Geometrijska domena zraka

$$\frac{\partial}{\partial x} \left(\frac{1}{\mu_0} \frac{\partial A_R}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\mu_0} \frac{\partial A_R}{\partial y} \right) = 0$$

$$\frac{\partial}{\partial x} \left(\frac{1}{\mu_0} \frac{\partial A_I}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\mu_0} \frac{\partial A_I}{\partial y} \right) = 0$$
(5.17.a)
(5.17.b)

2) Diferencijalne jednadžbe elektromagnetskog potencijala osnosimetričnom induktoru (polumjera r) i obratku izražene u cilindričnom koordinatnom sustavu

$$\vec{\underline{A}} = (0, \underline{A}_{\theta}, 0) = [A_{\theta}(r, z)]_{R} + j[A_{\theta}(r, z)]_{I} = A_{R} + jA_{I}$$
(5.18.a)

$$\underline{U} = [U(r,z)]_{R} + j[U(r,z)]_{I} = U_{R} + jU_{I}$$
(5.18.b)

$$\underline{J_0} = [J_0(r,z)]_R + j[J_0(r,z)]_I = J_{0R} + jJ_{0I}$$
(5.18.c)

a) Geometrijska domena induktora

$$\frac{\partial}{\partial r} \left(\frac{1}{\mu_2 r} \frac{\partial (rA_R)}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{1}{\mu_2 r} \frac{\partial (rA_R)}{\partial z} \right) + \omega \kappa_2 A_I = -J_{0R}$$
(5.19.a)

$$\frac{\partial}{\partial r} \left(\frac{1}{\mu_2 r} \frac{\partial (rA_I)}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{1}{\mu_2 r} \frac{\partial (rA_I)}{\partial z} \right) - \omega \kappa_2 A_R = -J_{0I}$$
(5.19.b)

$$\frac{\partial}{\partial r} \left(\frac{1}{\mu_2 r} \frac{\partial (rA_R)}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{1}{\mu_2 r} \frac{\partial (rA_R)}{\partial z} \right) + \omega \kappa_2 A_I = \kappa_2 \frac{U_R}{2\pi r}$$
(5.19.c)

$$\frac{\partial}{\partial r} \left(\frac{1}{\mu_2 r} \frac{\partial (rA_I)}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{1}{\mu_2 r} \frac{\partial (rA_I)}{\partial z} \right) - \omega \kappa_2 A_R = \kappa_2 \frac{U_I}{2\pi r}$$
(5.19.d)

b) Geometrijska domena obratka

$$\frac{\partial}{\partial r} \left(\frac{1}{\mu_1 r} \frac{\partial (rA_R)}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{1}{\mu_1 r} \frac{\partial (rA_R)}{\partial z} \right) + \omega \kappa_1 A_I = 0$$
(5.20.a)

$$\frac{\partial}{\partial r} \left(\frac{1}{\mu_1 r} \frac{\partial (rA_I)}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{1}{\mu_1 r} \frac{\partial (rA_I)}{\partial z} \right) - \omega \kappa_1 A_R = 0$$
(5.20.b)

c) Geometrijska domena zraka

$$\frac{\partial}{\partial r} \left(\frac{1}{\mu_0 r} \frac{\partial (rA_R)}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{1}{\mu_0 r} \frac{\partial (rA_R)}{\partial z} \right) = 0$$

$$\frac{\partial}{\partial r} \left(\frac{1}{\mu_0 r} \frac{\partial (rA_I)}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{1}{\mu_0 r} \frac{\partial (rA_I)}{\partial z} \right) = 0$$
(5.21.a)
(5.21.b)

Rubni uvjeti između geometrijskih domena zadaju se na graničnim površinama geometrijskih domena obratka-okolišni zrak, vodiči induktora-koncentrator magnetskog toka, induktor - okolišnji zrak. Na ovim graničnim površinama vrijede uvjeti kontinuiteta veličina magnetskog vektorskog potencijala i tangencijalnih komponenti jakosti magnetskog polja prema [26, 31, 34, 35, 79, 80].

a) obradak – okolišnji zrak $\vec{A}_1 = \vec{A}_4$ (5.22.a)

$$\frac{1}{\mu_1}\frac{\partial \vec{\underline{A}}_1}{\partial n_1} = \frac{1}{\mu_0}\frac{\partial \vec{\underline{A}}_4}{\partial n_4}$$
(5.22.b)

$$\vec{n}_1 = -\vec{n}_4 \tag{5.22.c}$$

b) induktor – okolišnji zrak
$$\vec{A}_2 = \vec{A}_4$$
 (5.23.a)

$$\frac{1}{\mu_2}\frac{\partial \vec{A}_2}{\partial n_2} = \frac{1}{\mu_2}\frac{\partial \vec{A}_4}{\partial n_4}$$
(5.23.b)

$$\vec{n}_2 = -\vec{n}_4 \tag{5.23.c}$$

Jednadžbe (5.23.a-c) odnose se na graničnu površinu koncentrator magnetskog toka – zrak (ili vodič induktora – zrak). Ako oko vodiča induktora nije postavljen koncentrator magnetskog toka u jednadžbe (5.23.a-c) treba uvrstiti $\mu_2 = \mu_0$. Na osi simetrije matematički modeliranog područja definiraju se **rubni uvjeti simetrije** [109]:

$$\vec{\underline{A}}_1 = 0 \tag{5.24.a}$$

$$\frac{1}{\mu_1}\frac{\partial \underline{A}_1}{\partial n} = 0 \tag{5.24.b}$$

Rješenje gornjeg sustava jednadžbi i rubnih uvjeta je kompleksna (fazorska) funkcija $\vec{A}_R + j \vec{A}_I$ čije se vrijednosti mogu uvijek transformirati u vremensku domenu jednadžbama (4.2.a-c). Nakon rješenja sustava jednadžbi (5.15) do (5.17) ili (5.19) do (5.21) iz vrijednosti realne i imaginarne komponente magnetskog vektorskog potencija računa se **volumenska snaga Jouleovih toplinskih izvora** p_{JQ} (W/m³) [39]:

$$p_{JQ} = \frac{1}{2} \kappa \omega^2 \left(A_R^2 + A_I^2 \right) + \frac{1}{2} \kappa \left(\nabla V_R \right)^2$$
(5.25)

Varijable $A_{\rm R}$ i $A_{\rm I}$ su moduli realne i kompleksne vrijednosti vektora magnetskog vektorskog potencijala $\vec{\underline{A}}$. Jednadžba (5.24) daje direktnu vezu elektromagnetskog i temperaturnog polja. Osim

nje postoji i indirektna povezanost ovih polja preko temperaturno ovisnih električnih i magnetskih svojstava materijala. Posljednji član na desnoj strani jednadžbe (5.25) u obratku je jednak nuli jer po polaznim pretpostavkama u njemu ne teku slobodne struje, dok je u induktoru veći od nule i predstavlja gubitke snage na radnom otporu vodiča induktora.

Usporedbom jednadžbi (5.15)-(5.17) u pravokutnom koordinatnom sustavu s jednadžbama (5.19)-(5.21) u cilindričnom koordinatnom sustavu uočava se njihova sličnost uz transformacije (5.26.a-c), koje vrijede i za rubne uvjete.

	Pravokutni koordinatni	Cilindrični koordinatni	
	sustav	sustav	
_	A'_{R} , A'_{I}	$= r A_R, r A_I$	- (5.26.a)
	μ'	$= r \mu$	(5.26.b)
	ĸ'	$= \kappa/r$	(5.26.c)

Iz gradijenata $\partial A_R / \partial n$ i $\partial A_I / \partial n$ mogu se izračunati komponente i ukupni iznos modula fazora magnetske indukcije (B_0) potrebni za određivanje magnetske permeabilnosti materijala:

a) Pravokutni koordinatni sustav (<u>Box</u>, <u>Boy</u>),

$$B_0 = \sqrt{\left(-\frac{\partial A_R}{\partial x}\right)^2 + \left(-\frac{\partial A_I}{\partial x}\right)^2 + \left(\frac{\partial A_R}{\partial y}\right)^2 + \left(\frac{\partial A_I}{\partial y}\right)^2}$$
(5.27)

b) Cilindrični koordinatni sustav ($\underline{B}_{0r}, \underline{B}_{0z}$),

$$B_0 = \sqrt{\left(-\frac{\partial A_R}{\partial r} - \frac{A_{R,c}}{r_c}\right)^2 + \left(-\frac{\partial A_I}{\partial r} - \frac{A_{I,c}}{r_c}\right)^2 + \left(-\frac{\partial A_R}{\partial z}\right)^2 + \left(-\frac{\partial A_I}{\partial z}\right)^2}$$
(5.28)

r_c... središte osnosimetričnog konačnog elementa, m

5.2 Zadavanje električnih i magnetskih svojstva materijala

Električna vodljivost κ ovisi o temperaturi, kemijskom sastavu i mikrostrukturnom stanju čelika. Na **slici 5.1** vidi se tijek promjene električne vodljivosti s porastom temperature kod tehnički čistog željeza i ugljičnog čelika s 1 %C. U bazi podataka vlastito razvijenog simulacijskog programa nalaze se vrijednosti električne vodljivosti za raspon temperatura od 20 do 1200 °C uobičajenih čelika za površinsko kaljenje koji imaju maseni udio ugljika i legirajućih elemenata manji od 10%.

Slika 5.1 Promjena električne vodljivosti tehnički čistog željeza i ugljičnog čelika s 1 % C (podaci izračunati prema [82])

Magnetska permeabilnost čelika za poboljšavanje i željeznih ljevova izrazito se nelinearno mijenja s promjenama jakosti magnetskog polja H i temperaturi \mathcal{P} . Već i kod sporih cikličkih promjena magnetskog polja ovisnost B=f(H), koja određuje magnetsku permeabilnost je višeznačna i poprima oblik histerezne krivulje (**slika 5.2**). Ako je materijal doveden do zasićenja na oba kraja krivulje magnetiziranja, petlja se naziva glavna petlja histereze. Sva stanja magnetiziranja feromagnetskog materijala nalaze se unutar ove glavne petlje. U linearnim izotropnim i homogenim materijalima magnetska permeabilnost μ je skalarna konstanta, a u nelinearnim izotropnim materijalima ona je skalarna funkcija apsolutne vrijednosti jakosti magnetskog polja $\mu=f(H)$. Iz **slike 5.2** je vidljivo da upotreba krivulje $\mu=f(H)$ mora biti povezana sa stanjem u kojem ima smisla, tj. s krivuljom prvog magnetiziranja ili s normalnom krivuljom magnetiziranja. One se obično određuju eksperimentalno na sobnoj temperaturi.

Slika 5.2 Petlja magnetiziranja i njoj pripadne krivulje magnetske permeabilnosti [80]

Površina unutar petlje histereze predstavlja gubitke magnetiziranja $P_{\rm HB}$ jedne periode titranja magnetskog polja, pretvorene u toplinu. Veličina petlje histereze za nepromijenjenu jakost magnetskog polja smanjuje se s porastom temperature do Curieve temperature kada feromagnetski materijal postaje paramagnetičan (bez petlje histereze). Petlje histereze deset uobičajeno primjenjivanih čelika za poboljšavanje pohranjene su u bazi podataka simulacijskog programa, pa se tijekom simulacije indukcijskog kaljenja osim Jouelove topline određuje i toplina dobivena od gubitaka magnetiziranja materijala.

Kad se vrijednosti temperature bliže Curievoj temperaturi čelika ili željeznog lijeva petlje histereze naglo postaju sve položenije, pa su vrijednosti magnetske permeabilnosti sve manje (**slika 5.2**). Za većinu čelika za poboljšavanje Curieva temperatura iznosi između 745 i 770 °C. Najveća gustoća magnetskog toka koja se postiže s određenim feromagnetskim materijalom naziva se magnetska indukcija zasićenja B_S . Njena vrijednost obično se očitava s glavne petlje histereze ili je navedena tablično, uglavnom za sobnu temperaturu 293 K. Za povišene temperature promjena $B_S=f(T)$ može se orijentacijski odrediti Weiss-Curievom jednadžbom [84] iz fizike čvrstog stanja:

$$\frac{B_{s(T)}}{B_{s(293K)}} = \tanh\left(\frac{B_{s(T)}}{B_{s(293K)}}\frac{T_{Currie}}{T}\right) \qquad T < T_{Curie} (K)$$
(5.29)

Relativna magnetska permeabilnost zasićenja $\mu_{rs(T)}$ ovisna o temperaturi aproksimirana je jednadžbom (5.30.a-b) [85]:

$$\mu_{rs(T)} = \frac{B_{s(T)} / B_{s(273K)}}{C_B (1 - T / T_{Currie})^{\frac{3}{2}}} \qquad T < T_{Currie} \qquad (5.30.a)$$

$$\mu_{rs(T)} = 1 \qquad \qquad T \ge T_{\text{Curie}} \tag{5.30.b}$$

Iznosi relativne magnetske permeabilnosti izvan područja magnetskog zasićenja aproksimirani su vlastitim modelom prema jednadžbi (5.31.a-b):

$$\mu_{r(T)} = \left(1 - \frac{B_{s(273K)} - B_{s(T)}}{B_{s(273K)}}\right) \mu_{rs(273K)} T < T_{\text{Curie}}$$
(5.31.a)

$$\mu_{r(T)} = 1 \qquad \qquad T \ge T_{\text{Curie}} \tag{5.31.b}$$

Vrijednosti relativne magnetske permeabilnosti na sobnoj temperaturi $\mu_{rs(273K)}$ određene su interpolacijom polinomima drugog do četvrtog stupnja iz podataka prema [4, 87, 88]. Jednadžbe (5.30) i (5.31) primijenjene su za ekstrapolaciju krivulja magnetiziranja $B = f(H, \mathcal{G})$ i krivulja promjene relativne magnetske permeabilnosti ovisno o temperaturi $\mu=f(H,\mathcal{G})$ za raspon temperatura od 20 °C do Curieove temperature (**slika 5.3**).

Slika 5.3. Primjeri aproksimacije krivulja magnetiziranja i promjene magnetske permeabilnosti iz vlastito razvijenog računalnog programa "Ind2D":

- a) Aproksimacija krivulje magnetiziranja $B = f(H, \mathcal{G})$ ugljičnog čelika s 0,45 %C
- **b)** Aproksimacija magnetske permeabilnosti $\mu_r = f(H, \mathcal{G})$ ugljičnog čelika s 0,45 %C

5.3 Rješenje jednadžbi elektromagnetskog polja kombinacijom metoda konačnih i rubnih elemenata

5.3.1. Definicija funkcije oblika magnetskog vektorskog potencijala na trokutnom konačnom elementu

Geometrijske domene koje izgledom odgovaraju polovici uzdužnog presjeka obratka i induktora diskretiziraju se anizotropnim i strukturiranim trokutnim konačnim elementima na n subdomena (slika **5.4**). Magnetski vektorski potencijal u svakom čvoru mreže aproksimira se linearnim funkcijama oblika \overline{A}_R i \overline{A}_I (realna i imaginarna komponenta) sa šest stupnjeva slobode (**slika 5.5**).

- Slika 5.4 a) Primjer diskretizacije geometrijskih domena osnosimetričnog obratka i induktora mrežom trokutnih konačnih elemenata (iz vlastitog računalnog programa "Ind2D")
 - b) Detaljniji izgled strukturirane mreže uz kaljenu površinu obratka

Slika 5.5. Aproksimacijske funkcije magnetskog vektorskog potencijala u čvorovima linearnog trokutnog elementa

U matematičkom smislu aproksimacijske funkcije \overline{A}_R , \overline{A}_I traže se kao komponente *n*-dimenzijskih vektora iz n-dimenzijskog metričkog prostora. U tom smislu u "*j*"-tom čvoru mreže nepoznati parametri aproksimacijske funkcije magnetskog vektorskog potencijala $\overline{A}_{R,j}$, $\overline{A}_{I,j}$ su "*j*"-ti koeficijenti linearne kombinacije globalnih baznih vektora φ_i ,

$$\overline{\Psi} = \sum_{i=1}^{n} \Psi_{j} \varphi_{j} \qquad (\Psi = \overline{A}_{R}, \overline{A}_{I}; \Psi_{j} = \overline{A}_{R,j}, \overline{A}_{I,j}) \qquad (5.32)$$

Globalni bazni vektori φ_i definiraju se za N geometrijskih čvorova. Nad trokutnim elementom globalni bazni vektor φ_i se sastoji od tri lokalna bazna vektora N^e (funkcije oblika konačnog elementa) [91, 93, 95, 137]. Funkcije oblika dvodimenzijskog i osnosimetričnog trokutnog elementa imaju isti oblik uz supstituciju r = x, z = y. U vlastitom simulacijskom programu za lokalne bazne vektore korišteni su Lagrangeovi interpolacijski polinomi prvog stupnja [$N_1 N_2 N_3$]. Oni imaju vrijednost 1 samo u jednom čvoru "e"-tog trokutnog elementa dok su jednaki nuli u svim ostalim čvorovima mreže.

$$\begin{bmatrix} N_1 & N_2 & N_3 \end{bmatrix} = \begin{bmatrix} 1 & x & y \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
(5.33)

$$a_{1} = x_{2}y_{3} - y_{2}x_{3} \qquad b_{1} = y_{2} - y_{3} \qquad c_{1} = x_{3} - x_{2}$$

$$a_{2} = x_{3}y_{1} - y_{3}x_{1} \qquad b_{2} = y_{3} - y_{1} \qquad c_{2} = x_{1} - x_{3}$$

$$a_{3} = x_{1}y_{2} - y_{1}x_{2} \qquad b_{3} = y_{1} - y_{2} \qquad c_{3} = x_{1} - x_{2}$$
(5.34)

 $x_{j}, y_{j}; r_{j}, z_{j} \dots$ Koordinate čvorova trokutnog elementa, (j=1,2,3), m

Aproksimacijske funkcije $\overline{\Psi}^{e}$ trokutnog elementa za proračun vrijednosti magnetskog vektorskog potencijala $\overline{A}_{R}^{e}, \overline{A}_{I}^{e}$ mogu se zapisati na više načina (u obliku polinoma, u proširenom ili skraćenom matričnom obliku) [37, 39, 77].

$$\overline{\Psi}^{e} = \begin{bmatrix} N_{1} & N_{2} & N_{3} \end{bmatrix} \begin{cases} \Psi_{1}^{e} \\ \Psi_{2}^{e} \\ \Psi_{3}^{e} \end{cases} = \sum_{i=1}^{3} N_{j}^{e} \Psi_{j}^{e} = \begin{bmatrix} N \end{bmatrix} \{ \Psi^{e} \} \qquad j = 1, 2, 3$$
(5.35)

$$\Psi^{e} \equiv A_{R}^{e}, A_{I}^{e}; \qquad \Psi_{j}^{e} \equiv A_{R,j}^{e}, A_{I,j}^{e}$$

Funkcije oblika N_{j} , j=1,2,3 moraju biti kontinuirane i derivabilne samo na konačnom elementu, ali ne i na prijelazu iz jednog na drugi konačni element, što je poznato kao "nejaka formulacija" jednadžbe konačnog elementa. Jednadžbe oblika (5.35) primjenjive su tek kad su poznate vrijednosti magnetskog vektorskog potencijala $\{A^e_j\}$ u čvorovima trokutnog elementa, npr. kod grafičkog prikaza rješenja. Međutim za rješavanje diferencijalnih jednadžbi elektromagnetskog problema indukcijskog kaljenja treba odrediti upravo vrijednosti $\{A^e_j\}$ i $\{9^e_j\}$ u svih N geometrijskih čvorova mreže. To će se izvesti minimizacijom težinskog reziduala uz Galerkinovu metodu rješavanja težinskog integrala, tj. uz izbor $[W_i] = [N_j]^T$, pri čemu su u jednadžbi (5.36) obuhvaćeni i reziduali rubnih uvjeta [88, 89].

$$\iiint\limits_{V} [W_i] \cdot \{R\} \cdot dV = 0 \tag{5.36}$$

5.3.2. Formulacija jednadžbi elektromagnetskog polja na konačnom elementu

Formulacijom težinskog reziduala s Galerkinovom metodom rješavanja težinskog integrala (5.36) riješit će se diferencijalne jednadžbe (5.17) do (5.19) magnetskog vektorskog potencijala na dvodimenzijskom i jednadžbe (5.20) do (5.22) na osnosimetričnom elementu uz pretpostavke iz poglavlja 4.4.1 i rubne uvjete (5.22) do (5.24) i dodatne rubne uvjete proizašle iz povezivanja rješenja metodom konačnih (FEM) i rubnih elemenata (BEM).

a) Rubni uvjeti na dijelu površine S_q (kontura Γ_q) obratka ili induktora s tzv. Neumannovim rubnim uvjetima <u>u pravokutnom koordinatnom sustavu</u> [34, 35]:

$$\left(\frac{1}{\mu}\frac{\partial A_R}{\partial n}\right)^{FEM} = -\left(\frac{1}{\mu_0}\frac{\partial A_R}{\partial n}\right)^{BEM}$$
(5.37.a)

$$\left(\frac{1}{\mu}\frac{\partial A_{I}}{\partial n}\right)^{FEM} = -\left(\frac{1}{\mu_{0}}\frac{\partial A_{I}}{\partial n}\right)^{BEM}$$
(5.37.b)

b) Rubni uvjeti na dijelu površine S_0 (= S - S_q) obratka ili induktora s tzv. Dirichletovim rubnim uvjetima <u>u pravokutnom koordinatnom sustavu</u> (kontura Γ_0):

$$\left(A_R\right)^{FEM} = \left(A_R\right)^{BEM} \tag{5.38.a}$$

$$\left(A_{I}\right)^{FEM} = \left(A_{I}\right)^{BEM} \tag{5.38.b}$$

 c) Na osi simetrije modeliranog područja <u>u pravokutnom koordinatnom sustavu</u> kao i vrlo daleko od njega na površini S_∞ vrijedi rubni uvjet:

$$\frac{\partial A_R}{\partial n} = \frac{\partial A_I}{\partial n} = 0 \tag{5.39}$$

Za pregledniji izvod formulacije osnosimetričnog elementa uvodi se pomoćna funkcija Π definirana jednadžbom (5.40) primjenom koje se sličnost zapisa i izvoda formulacije osnosimetričnih i dvodimenzijskih konačnih elemenata prema [41]:

$$\Pi = \Pi_{\rm R} + j\Pi_{\rm I} = (rA_{\rm R}) + j(rA_{\rm I})$$
(5.40)

Uz ovu pomoćnu funkciju rubni uvjeti analogni (5.37) do (5.39) u <u>cilindričnom koordinatnom sustavu</u> zadani su sljedećim jednadžbama:

$$\left(\frac{1}{\mu r}\frac{\partial\Pi_{R}}{\partial n}\right)^{FEM} = -\left(\frac{1}{\mu_{0}r}\frac{\partial\Pi_{R}}{\partial n}\right)^{BEM}$$
(5.41.a)

$$\left(\frac{1}{\mu r}\frac{\partial \Pi_{I}}{\partial n}\right)^{FEM} = -\left(\frac{1}{\mu_{0}r}\frac{\partial \Pi_{I}}{\partial n}\right)^{BEM}$$
(5.41.b)

$$\left(\Pi_{R}\right)^{FEM} = \left(\Pi_{R}\right)^{BEM} \tag{5.42.a}$$

$$\left(\Pi_{I}\right)^{FEM} = \left(\Pi_{I}\right)^{BEM} \tag{5.42.b}$$

$$\frac{\partial \Pi_R}{\partial n} = \frac{\partial \Pi_I}{\partial n} = 0 \tag{5.43}$$

Izvod formulacije konačnog elementa za čvorove u unutrašnjosti geometrijskih domena obratka i induktora počinje uvođenjem aproksimacijskih funkcija (5.33) do (5.35) u diferencijalne jednadžbe (5.15) do (5.17), odnosno (5.19) do (5.21) i pripadne rubne uvjete (5.22) do (5.23). Za čvorove na površini ovih domena postavljaju se jednadžbe rubnih elemenata. Uvrštavanjem aproksimacijskih funkcija u diferencijalne jednadžbe elektromagnetskog polja pojavljuju se ostatci R_R , R_I raspodijeljeni po konačnom elementu i R_{RS} , R_{IS} po njegovom rubu. Zbog preglednijeg zapisa desna strana jednadžbi (5.15) i (5.19) zamijenit će se članom f_R za jednadžbe s realnom komponentom magnetskog vektorskog potencijala, odnosno članom f_I za jednadžbe s imaginarnom komponentom ovog potencijala. a) Dvodimenzijski konačni element

$$\frac{\partial}{\partial x} \left(\frac{1}{\mu} \frac{\partial [N]}{\partial x} \right) \left\{ A_R^e \right\} + \frac{\partial}{\partial y} \left(\frac{1}{\mu} \frac{\partial [N]}{\partial y} \right) \left\{ A_R^e \right\} + \omega \kappa [N] \left\{ A_I^e \right\} - \left\{ f_R \right\} = \left[R_R(x, y : \{A_R\}) \right]$$
(5.44.a)

$$\frac{\partial}{\partial x} \left(\frac{1}{\mu} \frac{\partial [N]}{\partial x} \right) \left\{ A_I^e \right\} + \frac{\partial}{\partial y} \left(\frac{1}{\mu} \frac{\partial [N]}{\partial y} \right) \left\{ A_I^e \right\} - \omega \kappa [N] \left\{ A_R^e \right\} - \left\{ f_I \right\} = [R_I(x, y : \{A_I\})]$$
(5.44.b)

$$\left(\frac{1}{\mu}\frac{\partial\overline{A}_R}{\partial n}\right)^{FEM} + \left(\frac{1}{\mu_0}\frac{\partial\overline{A}_R}{\partial n}\right)^{BEM} = R_{RS}$$
(5.45.a)

$$\left(\frac{1}{\mu}\frac{\partial \overline{A}_{I}}{\partial n}\right)^{FEM} + \left(\frac{1}{\mu_{0}}\frac{\partial \overline{A}_{I}}{\partial n}\right)^{BEM} = R_{IS}$$
(5.45.b)

b) Osnosimetrični konačni element

$$\frac{\partial}{\partial r} \left(\frac{1}{\mu r} \frac{\partial [N]}{\partial r} \right) \left\{ \Pi_R^e \right\} + \frac{\partial}{\partial z} \left(\frac{1}{\mu r} \frac{\partial [N]}{\partial z} \right) \left\{ \Pi_R^e \right\} + \omega \frac{\kappa}{r} [N] \left\{ \Pi_I^e \right\} - \left\{ f_R \right\} = \left[R_R(r, z : \{ \Pi_R \}) \right]$$
(5.46.a)

$$\frac{\partial}{\partial r} \left(\frac{1}{\mu r} \frac{\partial [N]}{\partial r} \right) \left\{ \Pi_{I}^{e} \right\} + \frac{\partial}{\partial z} \left(\frac{1}{\mu r} \frac{\partial [N]}{\partial z} \right) \left\{ \Pi_{I}^{e} \right\} - \omega \frac{\kappa}{r} [N] \left\{ \Pi_{R}^{e} \right\} - \left\{ f_{I} \right\} = \left[R_{I}(r, z : \{ \Pi_{I} \}) \right]$$
(5.46.b)

$$\left(\frac{1}{\mu r}\frac{\partial\overline{\Pi}_{R}}{\partial n}\right)^{FEM} + \left(\frac{1}{\mu_{0}r}\frac{\partial\overline{\Pi}_{R}}{\partial n}\right)^{BEM} = R_{RS}$$
(5.47.a)

$$\left(\frac{1}{\mu r}\frac{\partial\overline{\Pi}_{I}}{\partial n}\right)^{FEM} + \left(\frac{1}{\mu_{0}r}\frac{\partial\overline{\Pi}_{I}}{\partial n}\right)^{BEM} = R_{IS}$$
(5.47.b)

Primjenom Galerkinove metode pri postavljanju težinskog integrala

$$\iiint_{V} [N]^{T} [R(r, z : \{A\}] dV^{e} + \iint_{S} [\overline{N}]^{T} [R_{S}(r, z : \{A\}] dS^{e} = 0$$
(5.48)

na jednadžbe (5.44) do (5.47) slijede sustavi jednadžbi s matricama dimenzija 3x3 koje množe tročlani vektori $\{A_R^e\}, \{A_I^e\}, \text{ odnosno } \{\Pi_R^e\}, \{\Pi_I^e\}.$

a) Dvodimenzijski konačni element

$$\iiint_{V} [N]^{T} \left(\frac{\partial}{\partial x} \left(\frac{1}{\mu} \frac{\partial [N]}{\partial x} \right) \left\{ A_{R}^{e} \right\} + \frac{\partial}{\partial y} \left(\frac{1}{\mu} \frac{\partial [N]}{\partial y} \right) \left\{ A_{R}^{e} \right\} + \omega \kappa [N] \left\{ A_{I}^{e} \right\} - \left\{ f_{R} \right\} \right) dV^{e} + \iint_{S_{q}} [\overline{N}]^{T} \frac{1}{\mu} \left\{ \frac{\partial A_{R}^{\Gamma e}}{\partial n} \right\} dS^{\Gamma} = 0 \quad (5.49.a)$$

$$\iiint_{V} [N]^{T} \left(\frac{\partial}{\partial x} \left(\frac{1}{\mu} \frac{\partial [N]}{\partial x} \right) \left\{ A_{I}^{e} \right\} + \frac{\partial}{\partial y} \left(\frac{1}{\mu} \frac{\partial [N]}{\partial y} \right) \left\{ A_{I}^{e} \right\} - \omega \kappa [N] \left\{ A_{R}^{e} \right\} - \left\{ f_{I} \right\} \right) dV^{e} + \iint_{S_{q}} [\overline{N}]^{T} \frac{1}{\mu} \left\{ \frac{\partial A_{I}^{\Gamma e}}{\partial n} \right\} dS^{\Gamma} = 0 \quad (5.49.b)$$

b) Osnosimetrični konačni element

$$\iiint_{V} [N]^{T} \left(\frac{\partial}{\partial r} \left(\frac{1}{\mu r} \frac{\partial [N]}{\partial r} \right) \left\{ \Pi_{R}^{e} \right\} + \frac{\partial}{\partial z} \left(\frac{1}{\mu r} \frac{\partial [N]}{\partial z} \right) \left\{ \Pi_{R}^{e} \right\} + \omega \frac{\kappa}{r} [N] \left\{ \Pi_{I}^{e} \right\} - \left\{ f_{R} \right\} \right) dV^{e} + \iint_{S_{q}} [\overline{N}]^{T} \frac{1}{\mu r} \left\{ \frac{\partial \Pi_{R}^{re}}{\partial n} \right\} dS^{\Gamma} = 0 \tag{5.50.a}$$

$$\iiint_{V} [N]^{T} \left(\frac{\partial}{\partial r} \left(\frac{1}{\mu r} \frac{\partial [N]}{\partial r} \right) \left\{ \Pi_{I}^{e} \right\} + \frac{\partial}{\partial z} \left(\frac{1}{\mu r} \frac{\partial [N]}{\partial z} \right) \left\{ \Pi_{I}^{e} \right\} - \omega \frac{\kappa}{r} [N] \left\{ \Pi_{R}^{e} \right\} - \left\{ f_{I} \right\} \right) dV^{e} + \iint_{S_{q}} [\overline{N}]^{T} \frac{1}{\mu r} \left\{ \frac{\partial \Pi_{I}^{re}}{\partial n} \right\} dS^{\Gamma} = 0 \tag{5.50.b}$$

Primjenom Green-Gaussovog teorema o divergenciji (5.51) prvi članovi u gornjim jednadžbama mogu se transformirati u jednostavniji oblik [80]:

$$\iiint_{V} u \Delta v dV = -\iiint_{V} (\nabla u) \cdot (\nabla v) dV + \oiint_{S} u \frac{\partial v}{\partial n} dS$$
(5.51)

koji se dalje pojednostavljuje primjenom dolje navedenih jednadžbi (5.52)-(5.53) za infinitezimalni volumen i infinitezimalnu površinu definiranih prema koordinatnom sustavu.

a) Dvodimenzijski konačni element

$$dV^e = z \, dS^e = z \, dx \, dy \tag{5.52.a}$$

$$\mathrm{d}S^{\mathrm{f}} = z \,\mathrm{d}\Gamma \tag{5.52.b}$$

b) Osnosimetrični konačni element

$$dV^e = 2\pi r dS^e = 2\pi r dr dz \tag{5.53.a}$$

$$dS^{\Gamma} = 2r\pi d\Gamma \tag{5.53.b}$$

Nakon povratne supstitucije prema jednadžbi (5.40) umjesto funkcija $\{\Pi_{R,I}^{e}\}$, [N] i članova $(1/\mu)$ i κ u jednadžbe osnosimetričnog konačnog elementa uvrštavaju se ponovo funkcije $\{A_{R,I}^{e}\}$, [rN] i članovi $(1/r\mu)$, (κ/r) da bi se dobila formulacija konačnog elemenata s realnom $A_{\rm R}$ i imaginarnom $A_{\rm I}$ komponentom magnetskog vektorskog potencijala. Uobičajenim izborom težinske funkcije rubnih elemenata $[\overline{N}]$ takvom da je $[N] = -[\overline{N}]$ i uvođenjem pomoćnih matrica i vektora definiranih kako slijedi dobiva se značajno pregledniji matrični zapis jednadžbi (5.49.a-b) i (5.50.a-b).

a) Pomoćne matrice i vektori za formulaciju dvodimenzijskog konačnog elementa

$$\left[S_{ij}^{e}\right] = \frac{1}{\mu} \iint_{S^{e}} \left(\frac{\partial [N]^{T}}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^{T}}{\partial y} \frac{\partial [N]}{\partial y}\right) dx dy$$
(5.54.a)

$$\left[M_{ij}^{e}\right] = \iint_{S} \omega \kappa [N]^{T} [N] dx dy$$
(5.54.b)

$$\left\{F_i^e\right\} = \iint\limits_{S} f_i[N]^T \, dx \, dy \tag{5.54.c}$$

$$\left[T_{i}^{e}\right] = \frac{1}{\mu} \int_{\Gamma_{0}} \left[N\right]^{T} d\Gamma$$
(5.54.d)

b) Pomoćne matrice i vektori za formulaciju osnosimetričnog konačnog elementa

$$\begin{bmatrix} S_{ij}^{e} \end{bmatrix} = \frac{2\pi}{\mu} \iint_{S} \left(\frac{\partial [N]^{T}}{\partial r} \frac{\partial [N]}{\partial r} + \frac{1}{r} \left(\frac{\partial [N]^{T}}{\partial r} [N] + [N]^{T} \frac{\partial [N]}{\partial r} \right) + \frac{[N]^{T} [N]}{r^{2}} + \frac{\partial [N]^{T}}{\partial z} \frac{\partial [N]}{\partial z} \right) r dr dz \quad (5.55.a)$$

$$\begin{bmatrix} M_{ij}^{e} \end{bmatrix} = 2\pi \iint_{S} \omega \kappa [N]^{T} [N] r dr dz \quad (5.55.b)$$

$$\left\{F_{i}^{e}\right\} = 2\pi \iint_{S} f_{i}[N]^{T} r dr dz$$
(5.55.c)

$$\left[T_i^e\right] = \frac{2\pi}{\mu} \int_{\Gamma_0} \left[N\right]^T d\Gamma$$
(5.55.d)

Vrijednosti raspodijeljenog magnetskog vektorskog potencijala po rubnoj površini obratka i induktora računaju se uz pretpostavku linearne promjene veličina $\{A_R^e\}, \{A_I^e\}, \{\partial A_R^{\Gamma e} / \partial n\}$ i $\{\partial A_I^{\Gamma e} / \partial n\}$ po rubnoj stranici trokutnog elementa duljine L^e (slika 5.6):

$$L^{e} = \sqrt{\left(x_{k} - x_{k-1}\right)^{2} + \left(y_{k} - y_{k-1}\right)^{2}}$$
(5.56)

Za osnosimetrične trokutne elemente u jednadžbi (5.56) treba izvesti supstituciju $r \equiv x, z \equiv y$. Funkcije oblika nad rubnom stranicom trokutnog elementa duljine L^e definiraju se u prirodnim koordinatama uz $l \in \{0, L^e\}$:

$$N_1^{\Gamma} = N_{k-1}^{\Gamma e} = 1 - \frac{l}{L^e}$$
(5.57.a)

$$N_{2}^{\Gamma} = N_{k}^{e} = \frac{l}{L^{e}}$$
(5.57.b)

Slika 5.6. Zamjena vrijednosti raspodijeljenog magnetskog vektorskog potencijala na graničnoj površini FEM geometrijske domene vrijednostima koncentriranim u čvorovima trokutnog elementa

Nakon uvrštenja funkcija N_1^{Γ} i N_2^{Γ} u submatricu $[T^e]$ i njene numeričke integracije trapeznom formulom (stupanjem točnosti dva, $O(L^{e2})$) slijede njeni specifični oblici za dvodimenzijski i osnosimetrični konačni element:

a) Dvodimenzijski trokutni konačni element

$$\begin{bmatrix} T^{e} \end{bmatrix} = \frac{1}{\mu} \int_{0}^{L^{e}} \begin{bmatrix} N_{1}^{\Gamma} & N_{2}^{\Gamma} \end{bmatrix}^{T} dl = \frac{1}{\mu} \int_{0}^{L^{e}} \begin{bmatrix} 1 - \frac{l}{L^{e}} \end{bmatrix} \left(\frac{l}{L^{e}} \right)^{T} dl = \frac{L^{e}}{2\mu} \begin{cases} 1\\ 1 \end{cases}$$
(5.58)

b) Osnosimetrični trokutni konačni element

$$\begin{bmatrix} T^{e} \end{bmatrix} = \frac{1}{\mu} \int_{0}^{L^{e}} \begin{bmatrix} N_{1}^{\Gamma} & N_{2}^{\Gamma} \end{bmatrix}^{T} r dl = \frac{1}{\mu} \int_{0}^{L^{e}} \begin{bmatrix} \left(1 - \frac{l}{L^{e}}\right) & \left(\frac{l}{L^{e}}\right) \end{bmatrix}^{T} r dl = \frac{(r_{k} + r_{k-1})L^{e}}{4\mu} \begin{bmatrix} 1\\ 1 \end{bmatrix}$$
(5.59)

Uz pomoć jednadžbi (5.55.a-d) i (5.56.a-d) dobiva se **formulacija** *e*-tog konačnog elementa (dvodimenzijskog ili osnosimetričnog) prikladna za sastavljanje globalne matrice:

$$\begin{bmatrix} \begin{bmatrix} S_{ij}^{e} \end{bmatrix} & -\begin{bmatrix} M_{ij}^{e} \end{bmatrix} \\ \begin{bmatrix} M_{ij}^{e} \end{bmatrix} & \begin{bmatrix} S_{ij}^{e} \end{bmatrix} \end{bmatrix} \begin{bmatrix} A_{R}^{e} \\ A_{I}^{e} \end{bmatrix} + \begin{bmatrix} -\begin{bmatrix} T_{i}^{e} \end{bmatrix} & 0 \\ 0 & -\begin{bmatrix} T_{i}^{e} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\partial A_{R}^{\Gamma e}}{\partial n} \\ \frac{\partial A_{I}^{\Gamma e}}{\partial n} \end{bmatrix}^{FEM} = -\begin{bmatrix} F_{Ri}^{e} \\ F_{Ri}^{e} \\ F_{Ri}^{e\Gamma} \\ F_{Ri}^{e\Gamma} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \frac{\partial A_{R}^{\Gamma e}}{\partial n} \end{bmatrix} = -\begin{bmatrix} F_{Ri}^{e} \\ F_{Ri}^{e\Gamma} \\ F_{Ri}^{e\Gamma} \\ F_{Ri}^{e\Gamma} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix}$$

Članovi jednadžbe (5.60) $\{A_R^e\}$ i $\{A_I^e\}$ su nepoznate vrijednosti interpolacijskih funkcija magnetskog vektorskog potencijala u čvorovima u unutrašnjosti geometrijske domene obratka ili induktora. Članovi $\{\partial A_R^{\Gamma e} / \partial n\}$ i $\{\partial A_I^{\Gamma e} / \partial n\}$ su nepoznate vrijednosti interpolacijskih funkcija magnetskog vektorskog potencijala u čvorovima na površini obratka ili induktora, koje će se u nastavku izvoda odrediti metodom rubnih elemenata.

Globalna matrica mreže konačnih elemenata sadrži sumu elementarnih doprinosa svih čvorova konačnih elemenata. Da bi se moglo provesti sumiranje, matrice i vektore pojedinačnog konačnog elementa treba proširiti na onoliko članova koliko ima čvorova u cijeloj mreži konačnih elemenata. U ovom zapisu su različiti od nule samo oni članovi globalne matrice ili vektora koji se odnose na promatrani *e*-ti element. Pri sastavljanju globalne matrice prikladne za primjenu u hibridnoj metodi konačnih i rubnih elemenata treba razdvojiti doprinose čvorova konačnih elemenata iz unutrašnjosti geometrijske domene od doprinosa čvorova na površini domene (obradak, induktor). Globalna matrica za formulaciju konačnog elementa (5.60) može se zapisati u obliku jednadžbe (5.63) uvođenjem pomoćnih submatrica [K^e] i [T^e] i vektora $\{A^e\}, \{A^{\Gamma e}\}, \{\partial A^{\Gamma e}/\partial n\}$ definiranih jednadžbama (5.61.a-d) i (5.62.a-b):

$$\begin{bmatrix} K \end{bmatrix}^{\Omega-\Gamma} = \begin{bmatrix} \begin{bmatrix} S_{ij}^{e} \end{bmatrix} & -\begin{bmatrix} M_{ij}^{e} \end{bmatrix} \\ \begin{bmatrix} M_{ij}^{e} \end{bmatrix} & \begin{bmatrix} S_{ij}^{e} \end{bmatrix} \end{bmatrix}$$
(5.61.a)

$$\begin{bmatrix} K \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \begin{bmatrix} S_{ij}^{e} \end{bmatrix}^{\mathrm{T}} & -\begin{bmatrix} M_{ij}^{e} \end{bmatrix}^{\mathrm{T}} \\ \begin{bmatrix} M_{ij}^{e} \end{bmatrix}^{\mathrm{T}} & \begin{bmatrix} S_{ij}^{e} \end{bmatrix}^{\mathrm{T}} \end{bmatrix}$$
(5.61.b)

$$\begin{bmatrix} T^{\Gamma} \end{bmatrix} = -\begin{bmatrix} \begin{bmatrix} T_{j}^{e} \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} T_{j}^{e} \end{bmatrix} \end{bmatrix}$$
(5.61.c.)

$$\{F\} = \begin{cases} F_{R,j}^{e} \\ F_{R,j}^{e} \end{cases}$$
(5.61.d)

$$\{F\}^{\Gamma} = \begin{cases} F_{R,j}^{e} \\ F_{R,j}^{e} \end{cases}$$

$$(5.61.d)$$

$$\left\{A^{e}\right\} = \left\{\begin{array}{c}A_{R}^{e}\\A_{I}^{e}\end{array}\right\}$$
(5.62.a)

$$\left\{\frac{\partial A^{\Gamma e}}{\partial n}\right\} = \left\{\frac{\partial A^{\Gamma}_{R}}{\partial n}\right\}$$
(5.62.b)

$$\begin{bmatrix} [K]^{\Omega} & 0\\ [K]^{\Gamma} & [T^{\Gamma}] \end{bmatrix} \left\{ \frac{A^{e}}{\partial A^{\Gamma e}} \right\}^{FEM} = - \left\{ F^{e} \\ F^{\Gamma} \right\}$$
(5.63)

Formirana globalna matrica samo je djelomično popunjena članovima različitim od nule i izrazito je nesimetrična zbog nepoznatih vrijednosti vektora rubnih uvjeta $\{\partial A/\partial n\}$. Ove karakteristike čine algebarski sustav jednadžbi (5.63) praktički neprikladnim za numeričko rješavanje direktnim metodama poput Gaussove eliminacije. Zbog njegove nesimetričnosti neefikasna je i primjena iteracijskih metoda kod uobičajenih mreža konačnih elemenata koje sadrže nekoliko stotina do nekoliko tisuća čvorova. Stoga se u vlastitom simulacijskom programu algebarski sustav jednadžbi (5.63) rješava iteracijski zajedno s algebarskim sustavom dobivenim iz formulacije rubnih elemenata razrađene u idućem poglavlju.

Rješenjem algebarskog sustava jednadžbe rubnih elemenata određuje se vrijednost vektora $\{\partial A/\partial n\}$ na površini obratka i induktora čime se zadaju i rubni uvjeti za algebarski sustav jednadžbe konačnih elemenata (5.63). Uvrštenjem vektora $\{\partial A/\partial n\}$ u sustav algebarskih jednadžbi (5.63) članovi submatrica [K]^{Γ} $\{\partial A/\partial n\}$ i [T]^{Γ} $\{\partial A/\partial n\}$ izlučuju se na desnu stranu sustava, a na lijevoj strani ostaje dijagonalno popunjena simetrična submatrica [K]^{Ω} prikladna za brzo, efikasno i točno rješavanje direktnom metodom Gaussove eliminacije.

5.3.3 Formulacija jednadžbi elektromagnetskog polja na rubnom elementu

Proračun raspodjele magnetskog vektorskog potencijala po površini obratka i induktora metodom rubnih elemenata provodi se polazeći od jednadžbi elektromagnetskog polja (5.17.a-b) i (5.21.a-b) postavljenih za geometrijsku domenu okolišnog zraka (**slika 5.7**). Na površini feromagnetskog i električki vodljivog obratka i induktora vrijede rubni uvjeti kontinuiranosti i ravnoteže magnetskog vektorskog potencijala izraženi jednadžbama (5.22) do (5.24) i dodatni uvjeti i povezanosti rješenja jednadžbi elektromagnetskog polja između metoda rubnih i konačnih elemenata izraženi jednadžbama (5.37) do (5.39).

Slika 5.7 Geometrijska domena okolišnog zraka nad kojom se postavlja formulacija rubnih elemenata magnetskog vektorskog potencijala

U cilju dodatnog pojednostavljenja opravdanog pri uobičajenoj primjeni srednje i visoko frekventnih struja umjesto proračuna raspodijeljenih neovisnih struja po poprečnom presjeku vodiča induktora

uvodi se pretpostavka o djelovanju koncentrirane struje (ili električnog polja \underline{E}_0) na površini induktora (tzv. strujom sloju) koji proizvodi magnetsko polje jakosti H_0 izraženo jednadžbom prema [80]:

$$H_0 = \left|\frac{\underline{E}_0}{R_s}\right| = \frac{|\underline{E}_0|}{(1+j)\sqrt{\frac{\omega\mu}{2\kappa}}}$$
(5.64)

Uz ovu pretpostavku članovi izvora elektromagnetskog polja $\{F\}$ i $\{F\}^{\Gamma}$ u globalnoj matrici konačnih elemenata (5.63) postaju jednaki nuli:

$$\{F\} = \begin{cases} F_{R,j}^e \\ F_{R,j}^e \\ \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$$
(5.65.a)

$$\{F\}^{\Gamma} = \begin{cases} F_{R,j}^{e^{-\Gamma}} \\ F_{R,j}^{e^{-\Gamma}} \end{cases} == \begin{cases} 0 \\ 0 \end{cases}$$
(5.65.b)

Formulacija jednadžbe rubnog elementa postavlja se na temelju rješenja jednadžbi (5.17.a-b) i (5.21.ab) metodom rubnih elemenata s Greenovom funkcijom slobodnog prostora (3.10.a-b) uz primjenu težinskog integrala (3.14) (poglavlje 3.2). Izvod rješenja jednadžbi elektromagnetskog polja metodom rubnih elemenata sastoji se od tri koraka: diskretizacije površine obratka i induktora linearnim rubnim elementima, formulacije jednadžbe rubnog elementa i aproksimacije singulariteta temeljne Greenove funkcije *G* i njene derivacije $\partial G/\partial n$.

U izvodu formulacije konačnog elemenata pretpostavljeni su linearni trokutni elementi, a pri izvodu formulacije rubnog elementa pretpostavljaju se konstantni ravni elementi (**slika 5.8**). Diskretizacija ravnim rubnim elementima provodi se praktički pri diskretizaciji obratka mrežom trokutnih konačnih elemenata, pri čemu stranice konačnih elemenata koje leže na površini obratka predstavljaju rubne elemente.

Konstantni rubni element (**slika 5.8**) ima pridružen samo jedan čvor (u težištu elementa) i jednu interpolacijsku funkciju $[N^{\Gamma}]$ koja je jednaka jedinici u geometrijskim točkama elementa i nuli na svim ostalim rubnim elementima. Svakom (*j*-tom) rubnom elementu pridružene su konstantne

aproksimacijske vrijednosti magnetskog vektorskog potencijala $(\overline{A}_{R}^{\Gamma e}, \overline{A}_{I}^{\Gamma e})_{j}$ i njegove derivacije

$$\left(\frac{\partial \overline{A}_{R}^{\Gamma e}}{\partial n},\frac{\partial \overline{A}_{I}^{\Gamma e}}{\partial n}\right)_{j}$$

Slika 5.8. Diskretizacija konture polovice uzdužnog presjeka valjka ravnim i konstantnim rubnim elementima

Konstantni ravni rubni elementi zadovoljavaju formulaciju linearnog konačnog elementa i smiju se s njim povezivati jer pretpostavljaju konstantnu derivaciju magnetskog vektorskog potencijala u smjeru normale na rubni element također karakterističnu i za linearne trokutne elemente (**slika 5.9**).

Slika 5.9. Shematski prikaz tijeka aproksimacijskih funkcija magnetskog vektorskog potencijala na stranici trokutnog elementa koja je ujedno i rubni element

Između aproksimacijskih funkcija magnetskog vektorskog potencijala na čvorovima rubne stranice trokutnog elementa određenog metodom konačnih elemenata $(A_R^{\Gamma e})^{FEM}$, $(A_I^{\Gamma e})^{FEM}$ i onog određenog metodom rubnih elemenata $(\overline{A}_R^{\Gamma e})^{BEM}$, $(\overline{A}_I^{\Gamma e})^{BEM}$ postoji odnos:

$$\left(\overline{A}_{R,i}^{\Gamma e}\right)^{BEM} = \frac{1}{2} \left[\left(A_{R,j-1}^{\Gamma, e} \right)^{FEM} + \left(A_{R,j}^{\Gamma, e} \right)^{FEM} \right]$$
(5.66.a)

$$\left(\overline{A}_{I,i}^{\Gamma e}\right)^{BEM} = \frac{1}{2} \left[\left(A_{I,j-1}^{\Gamma, e}\right)^{FEM} + \left(A_{I,j}^{\Gamma, e}\right)^{FEM} \right]$$
(5.66.b)

 $\overline{A}_{R,i}^{\Gamma e}$ je aproksimacija iznosa realne komponente magnetskog vektorskog potencijala u točki P_j(x_j,y_j) na rubu S₁, a $\overline{A}_{I,i}^{\Gamma e}$ je aproksimacija iznosa imaginarne komponente ove veličine (**slika 5.10**). Prostorni kut $C_{\beta ij}$ pod kojim se iz točke P vidi točka Q za zakrivljene dvodimenzijske (i osnosimetrične) površine diskretizirane ravnim rubnim elementima postavljenim pod kutom β računa se jednadžbom (5.67) [46]:

$$C_{\beta ij} = \frac{2\pi - \beta}{2\pi} \tag{5.67}$$

Vektor normale na površinu \vec{n} i vektor \vec{r}_{PQ} koji spaja točku polja P(x_j, y_j) s točkom izvora potencijala Q(x_i, y_i) nalaze se pod kutom θ (slika 5.10).

Izvodom težinskog integrala za sustave jednadžbi ((5.17.a-b) i (5.21.a-b) za "j"-tu točku na površini *S* dobiva se sustav dvije integralne jednadžba analogne izrazu (3.14) uz zamjenu opće fizikalne veličine ψ konkretnom potencijalnom funkcijom: realnom i imaginarnom komponentom magnetskog vektorskog potencijala ($\overline{\psi} = A_{\rm R}, \ \overline{\psi} = A_{\rm I}$) [31, 32].

$$C_{\beta ij}A_R^{\Gamma e} + \bigoplus_{S_q+S_0} A_R^{\Gamma e} \frac{\partial G}{\partial n} \cos\theta dS - \bigoplus_{S_q+S_0} G \frac{\partial A_R^{\Gamma e}}{\partial n} \cos\theta dS = \mu_0 \bigoplus_{S_q+S_0} GH_{R0}^{\Gamma} \cos\theta dS$$
(5.68.a)

$$C_{\beta j}A_{I}^{\Gamma e} + \bigoplus_{S_{q}+S_{0}} A_{I}^{\Gamma e} \frac{\partial G}{\partial n} \cos\theta dS - \bigoplus_{S_{q}+S_{0}} G \frac{\partial A_{I}^{\Gamma e}}{\partial n} \cos\theta dS = \mu_{0} \bigoplus_{S_{q}+S_{0}} GH_{I0}^{\Gamma} \cos\theta dS$$
(5.68.b)

Član $\cos\theta$ pojavljuje se u gornjim jednadžbama zbog skalarnog množenja fazora magnetskog potencijala i fundamentalnog rješenja *G* koje je u ovom slučaju vektorska veličina smjerom i pravcem jednaka vektoru r_{PQ} koji spaja točku polja P s točkom izvora potencijala Q. Kod rješavanja jednadžbi (5.68.a-b) u pravokutnom koordinatnom sustavu fazor magnetskog potencijala okomit je na ravninu *x*-*y* pa je član $\cos\theta$ jednak jedinici. Član na desnoj strani jednadžbi (5.68.a-b) predstavlja djelovanje strujnog sloja s površine vodiča induktora.

Slika 5.10 Shematski prikaz položaja točke polja P prema izvoru potencijala u točki Q na konstantnim ravnim rubnim elementima

Greenova funkcija slobodnog prostora pri rješavanju jednadžbi elektromagnetskog polja (5.68.a-b) pretpostavlja djelovanje točkastih izvora magnetskog vektorskog potencijala smještenih u točke P_i koje se osjeti u točkama polja Q_i . U direktnoj formulaciji rubnih elemenata točke izvora i točke opažanja polja su jedinstven skup točaka na površini S. Za dvodimenzijske probleme točkasti izvori polja pretpostavljaju se raspodijeljeni po pravcu od $z = -\infty$ do $z = +\infty$ okomitom na ravninu x-y (tzv. linijski izvor polja). Za osnosimetrične probleme točkasti izvori polja pretpostavljaju se raspodijeljeni po kružnici koja leži u ravnini okomitoj na ravninu *r-z*. Greenova funkcija slobodnog prostora i njene derivacije u smjeru normale na rubni element već je navedena jednadžbama (3.10.a-b) prema [35, 46], a sad se navodi u uobičajenom obliku za numeričko rješavanje uz geometrijske veličine prikazane na **slici 5.10**.

a) Dvodimenzijski rubni elementi [46]:

$$G = \frac{1}{2\pi} \ln \left(\frac{1}{\sqrt{(x_p - x_Q)^2 + (y_p - y_Q)^2}} \right)$$
(5.69.a)

$$\frac{\partial G}{\partial n} = -\left(n_x \frac{\partial G}{\partial x} + n_y \frac{\partial G}{\partial y}\right) = \frac{\cos\theta}{2\pi\sqrt{\left(x_p - x_Q\right)^2 + \left(y_p - y_Q\right)^2}}$$
(5.69.b)

b) Osnosimetrični rubni elementi [35]:

$$G = \frac{1}{4\pi\sqrt{(r_p - r_Q)^2 + (z_p - z_Q)^2}}$$
(5.70.a)

$$\frac{\partial G}{\partial n} = -\left(n_r \left(\frac{\partial G}{\partial r} + \frac{G}{r}\right) + n_z \frac{\partial G}{\partial z}\right)$$
(5.70.b)

$$\frac{\partial G}{\partial z} = \frac{-(z_P - z_Q)}{2\pi r_P \sqrt{\left[\left(r_P + r_Q\right)^2 + \left(z_P - z_Q\right)^2\right]}} \cdot \left[-K(p) + \frac{r_Q^2 + r_P^2 + \left(z_P - z_Q\right)^2}{\left(r_Q - r_P\right)^2 + \left(z_P - z_Q\right)^2}E(p)\right]$$
(5.70.c)

$$\frac{\partial G}{\partial r} + \frac{G}{r} = \frac{1}{2\pi r_p \sqrt{\left[\left(r_p + r_Q\right)^2 + \left(z_p - z_Q\right)^2\right]}} \cdot \left[K(p) + \frac{r_Q^2 - r_P^2 - \left(z_p - z_Q\right)^2}{\left(r_Q - r_p\right)^2 + \left(z_p - z_Q\right)^2}E(p)\right]$$
(5.70.d)

K(p)	 eliptički integral prve vrste, 1
E(p)	 eliptički integral druge vrste, 1
р	parametar eliptičkih integrala, 1
r_P, z_P	koordinate točke polja, m
r _Q , z _Q	koordinate točke izvora potencijala polja, m

Površinski integrali (5.68.a-b) za dvodimenzijske i osnosimetrične rubne elemente mogu se pojednostaviti na krivuljne integrale po konturi obratka Γ_1 i induktora Γ_2 u ravnini *x-y* pravokutnog, odnosno *r-z* cilindričnog koordinatnog sustava. Diskretizacijom kontura Γ_1 i Γ_2 s M ravnih rubnih elemenata intregralni članovi u jednadžbama (5.68.a-b) zamjenjuju se sumom integrala pojedinačnih rubnih elemenata, pri čemu se konstantne aproksimacijske vrijednosti \overline{A}_R^{Γ} , \overline{A}_I^{Γ} , $\partial \overline{A}_R^{\Gamma}/\partial n$, $\partial \overline{A}_I^{\Gamma}/\partial n$ mogu izlučiti iz integrala: a) Dvodimenzijski rubni elementi

$$C_{\beta j}\overline{A}_{R,i}^{\Gamma e} + \sum_{M} \left(\int_{\Gamma^{e}} \frac{\partial G}{\partial n} d\Gamma \right) \left(\overline{A}_{R,j}^{\Gamma e} \right) - \sum_{M} \left(\int_{\Gamma^{e}} G d\Gamma \right) \left\{ \frac{\partial \overline{A}_{R,j}^{\Gamma e}}{\partial n} \right\} = \mu_{0} \sum_{M} \left(\int_{\Gamma^{e}} G d\Gamma \right) \left\{ H_{R0}^{\Gamma} \right\}$$
(5.71.a)

$$C_{\beta j}\overline{A}_{I,i}^{\Gamma e} + \sum_{M} \left(\int_{\Gamma^{e}} \frac{\partial G}{\partial n} d\Gamma \right) \left(\overline{A}_{I,j}^{\Gamma e} \right) - \sum_{M} \left(\int_{\Gamma^{e}} G d\Gamma \right) \left\{ \frac{\partial \overline{A}_{I,j}}{\partial n} \right\} = \mu_{0} \sum_{M} \left(\int_{\Gamma^{e}} G d\Gamma \right) \left\{ H_{I0}^{\Gamma} \right\}$$
(5.71.b)

c) Osnosimetrični rubni elementi

$$C_{\beta j}\overline{A}_{R,i}^{\Gamma e} + \sum_{M} \left(\iint_{\Gamma^{e}\phi} \frac{\partial G}{\partial n} r_{p} \cos\phi d\phi d\Gamma \right) \left(\overline{A}_{R,j}^{\Gamma e} \right) - \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\frac{\partial \overline{A}_{R,j}^{\Gamma e}}{\partial n} \right) = \mu_{0} \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(H_{R0}^{\Gamma} \right) \left(\frac{\partial \overline{A}_{R,j}^{\Gamma e}}{\partial n} \right) = \mu_{0} \sum_{M} \left(\int_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\frac{\partial \overline{A}_{R,j}^{\Gamma e}}{\partial n} \right) = \mu_{0} \sum_{M} \left(\int_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\frac{\partial \overline{A}_{R,j}^{\Gamma e}}{\partial n} \right) = \mu_{0} \sum_{M} \left(\int_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\frac{\partial \overline{A}_{R,j}^{\Gamma e}}{\partial n} \right) = \mu_{0} \sum_{M} \left(\int_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\frac{\partial \overline{A}_{R,j}^{\Gamma e}}{\partial n} \right) = \mu_{0} \sum_{M} \left(\int_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\int_{\Gamma^{e}\phi} Gr_{p}$$

$$C_{\beta j}\overline{A}_{I,i}^{\Gamma e} + \sum_{M} \left(\iint_{\Gamma^{e}\phi} \frac{\partial G}{\partial n} r_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) - \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\partial}{\partial \overline{A}_{I,j}}{\partial n} \right) = \mu_{0} \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) - \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\partial}{\partial \overline{A}_{I,j}}{\partial n} \right) = \mu_{0} \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) - \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\iint_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\inf_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\inf_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\inf_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\inf_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\inf_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\inf_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\inf_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\inf_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\inf_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\inf_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) \left(\stackrel{\Gamma e}{A}_{I,j} \right) = \mu_{0} \sum_{M} \left(\inf_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right) = \mu_{0} \sum_{\Gamma^{e}\phi} Gr_{p} \cos\phi d\phi d\Gamma \right)$$

U jednadžbama (5.71.a-b) i (5.72.a-b) pojavljuju se dva karakteristična tipa integrala označeni kao pomoćne funkcije A_{ij}^* i Q_{ij}^* koji se uobičajeno rješavaju numeričkom integracijom. U vlastito razvijenom simulacijskom programu korištena je Gaussova kvadratura s pet pomoćnih čvorova .

a) Dvodimenzijski rubni elementi

$$A_{ij}^* = \int_{\Gamma^e} G d\Gamma$$
 (5.73.a)

$$Q_{ij}^* = \int_{\Gamma^c} \frac{\partial G}{\partial n} d\Gamma$$
 (5.73.b)

b) Osnosimetrični rubni elementi

$$A_{ij}^* = \int_{\Gamma^e} \left(\int_{0}^{2\pi} G \cos \phi d\phi \right) r_p d\Gamma$$
(5.74.a)

$$Q_{ij}^* = \int_{\Gamma^c} \left(\int_{0}^{2\pi} \frac{\partial G}{\partial n} \cos \phi d\phi \right) r_p d\Gamma$$
(5.74.b)

Pri rješavanju jednadžbi (5.71.a-b) ili (5.72.a-b) pojavljuju se singularne vrijednosti svaki put kad dolazi do podudaranja točke polja P s točkom izvora Q. Ove singularnosti bliskih točaka Q i P izbjegavaju se integracijom rubnog elementa po polukružnoj konturi Γ_{ξ} u lokalnom polarnom koordinatnom sustavu postavljenom u točku P (**slika 5.11**).

Slika 5.11 Kontura integracije oko singularne točke na krivulji Γ ruba geometrijske domene

Na polukružnoj konturi Γ_{ξ} oko točke P granične vrijednosti integrala A_{ij}^* i Q_{ij}^* integriranih u smjeru gibanja kazaljke sata jednake su sljedećim vrijednostima [34, 46]:

a) Dvodimenzijski rubni elementi

$$A_{ii}^* = l \lim_{\substack{P \to Q \\ r_{\xi} \to 0}} \int_0^{\pi} \frac{1}{2\pi} \ln\left(\frac{1}{r_{\xi}}\right) r_{\xi} d\phi \to r_{\xi} \left[\frac{1}{\pi} \ln\left(\frac{1}{r_{\xi}}\right) + 1\right]$$
(5.75.a)

$$Q_{ii}^* = l \lim_{\substack{P \to Q\\r_{\xi} \to 0}} \int_0^{\pi} \frac{\cos \phi}{2\pi r_{\xi}} r_{\xi} d\phi \to 0$$
(5.75.b)

b) Osnosimetrični rubni elementi

$$A_{ii}^{*} = l \lim_{\substack{p \to Q \\ r_{\xi} \to 0}} \int_{\Gamma_{\xi}} Gr_{p} d\Gamma_{\xi} = \int_{0}^{\pi} r_{p} \left(l \lim_{\substack{p \to Q \\ r_{\xi} \to 0}} G \right) r_{\xi} d\phi \to r_{p} r_{\xi} \left(\frac{1}{2} \ln \left(\frac{8r_{p}}{r_{\xi}} \right) - 1 \right)$$
(5.76.a)

$$Q_{ii}^* = l \lim_{\substack{p \to Q\\ r_{\xi} \to 0}} \int_{\Gamma_{\xi}} \frac{\partial G}{\partial n} r_p d\Gamma_{\xi} = \int_{0}^{\pi} r_p \left(l \lim_{\substack{p \to Q\\ r_{\xi} \to 0}} \frac{\partial G}{\partial n} \right) r_{\xi} d\phi \to -\frac{1}{2} r_p$$
(5.76.b)

Uvrštenjem izraza (5.73.a-b) u (5.71.a-b) i (5.74.a-b) u (5.72.a.b) dobivaju se izrazi zajednički dvodimenzijskom i osnosimetričnom rubnom elementu prikladni za matrični zapis i postavljanje globalne matrice rubnih elemenata:

$$C_{\beta ij}A_{R,i}^{\Gamma e} + \sum_{M} Q_{ij}^{*} \left\{ \overline{A}_{R,j}^{\Gamma e} \right\}^{BEM} - \sum_{M} A_{ij}^{*} \left\{ \frac{\partial \overline{A}_{R,j}^{\Gamma e}}{\partial n} \right\}^{BEM} = \sum_{M} \mu_{0} A_{ij}^{*} \left\{ H_{R0}^{\Gamma} \right\}$$
(5.77.a)

$$C_{\beta i j} A_{I,i}^{\Gamma e} + \sum_{M} Q_{i j}^{*} \left\{ \overline{A}_{I,j}^{\Gamma e} \right\}^{BEM} - \sum_{M} A_{i j}^{*} \left\{ \frac{\overline{\partial} \overline{A}_{I,j}}{\partial n} \right\}^{BEM} = \sum_{M} \mu_{0} A_{i j}^{*} \left\{ H_{I_{0}}^{\Gamma} \right\}$$
(5.77.b)

Uz pomoć jednadžbi kontinuiteta FEM - BEM rješenja (5.37), (5.38) i (5.66) i uvođenjem pomoćne matrice [C_{ij}] sastavljene od vrijednosti nula i ½, jednadžbe rubnog elementa (5.77.a-b) mogu se predstaviti kao matrične jednadžbe konačnog elementa s tročlanim vektorima { $A_R^{\Gamma e}$ }, { $A_I^{\Gamma e}$ }, { $\partial A_R^{\Gamma e}/\partial n$ }, { $\partial A_I^{\Gamma e}/\partial n$ } takvim da je uvijek jednak nuli onaj član vektora koji odgovara čvoru trokutnog elementa iz unutrašnjosti geometrijske domene.

$$C_{\beta j} A_{R,i}^{\Gamma e} + \sum_{j=1}^{M} \left(\mathcal{Q}_{ij}^{*} \left[\frac{1}{2} \quad \frac{1}{2} \quad 0 \right] \left\{ \begin{array}{c} A_{R,j-1}^{\Gamma e} \\ A_{R,j}^{\Gamma e} \\ A_{R,j}^{\Gamma e} \\ 0 \end{array} \right\}^{EM \to FEM} \right) + \sum_{j=1}^{M} \left(A_{ij}^{*} \mu_{r} \left[\frac{1}{2} \quad \frac{1}{2} \quad 0 \right] \left\{ \begin{array}{c} \frac{\partial A_{R,j-1}^{\Gamma e}}{\partial n} \\ \frac{\partial A_{R,j}^{\Gamma e}}{\partial n} \\ 0 \end{array} \right\}^{EM \to FEM} \right) = \sum_{M} \mu_{0} A_{ij}^{*} \left\{ \begin{array}{c} H_{R,0,1}^{\Gamma} \\ H_{R02}^{\Gamma} \\ H_{R02}^{\Gamma e} \\ 0 \end{array} \right\}^{EM \to FEM} \right) = \sum_{M} \mu_{0} A_{ij}^{*} \left\{ \begin{array}{c} H_{R0,1}^{\Gamma} \\ H_{R02}^{\Gamma e} \\ H_{R02}^{\Gamma e} \\ 0 \end{array} \right\}^{EM \to FEM} \right) + \sum_{j=1}^{M} \left[A_{ij}^{*} \mu_{r} \left[0 \quad \frac{1}{2} \quad \frac{1}{2} \right] \left\{ \begin{array}{c} 0 \\ \frac{\partial A_{R,j}^{\Gamma e}} \\ H_{R02}^{\Gamma e} \\ \frac{\partial A_{R,j+1}^{\Gamma e}} \\ \frac$$

Za dobivanje jednadžbi magnetskog vektorskog potencijala rubnog elemenata (5.78.a-c) prikladnih za rješavanje zajedno s jednadžbama konačnog elementa uvode se pomoćni članovi matrica $[\mathbf{G}_{ij}]$ i $[\mathbf{H}_{ij}]$.

Njihova primjena omogućuje jedinstveni matrični oblik formulacije magnetskog vektorskog potencijala na osnosimetričnom i dvodimenzijskom rubnom elementu:

$$\left[G_{ij}^{e}\right] = \mu_{r} A_{ij}^{*} \left[C_{ij}\right] \qquad \qquad i = 1, 2, \dots M, j = 1, 2, \dots M \qquad (5.79.a)$$

$$\left[H_{0ij}^{\Gamma}\right] = \mu_0 A_{ij}^* \left[C_{ij}\right] \qquad \qquad i = 1, 2, \dots M, j = 1, 2, \dots M \qquad (5.79.b)$$

$$\begin{bmatrix} H_{ij}^{e} \end{bmatrix} = \begin{cases} Q_{ij}^{*} \begin{bmatrix} C_{ij} \end{bmatrix} & i \neq j \\ C_{\beta ij} + Q_{ij}^{*} \begin{bmatrix} C_{ij} \end{bmatrix} & i = j \end{cases} \qquad i = 1, 2, \dots M, j = 1, 2, \dots M$$
(5.79.c)

$$\begin{bmatrix} \begin{bmatrix} H_{ij}^{e} \end{bmatrix} & 0 & \begin{bmatrix} G_{ij}^{e} \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} H_{ij}^{e} \end{bmatrix} & 0 & \begin{bmatrix} G_{ij}^{e} \end{bmatrix} \end{bmatrix} \begin{cases} \left\{ \begin{array}{c} \left\{ A_{R}^{\Gamma e} \right\} \\ \left\{ A_{I}^{\Gamma e} \right\} \\ \left\{ \begin{array}{c} \frac{\partial A_{R}^{\Gamma e}}{\partial n} \\ \left\{ \begin{array}{c} \frac{\partial A_{R}^{\Gamma e}}{\partial n} \\ \end{array} \right\} \right\} \end{cases} = \begin{bmatrix} H_{0ij}^{\Gamma} \\ H_{0ij}^{\Gamma} \end{bmatrix} \begin{cases} H_{R,0}^{\Gamma} \\ H_{I,0}^{\Gamma} \\ \end{array} \end{cases} \quad i,j = 1,2,\dots M \quad (5.80)$$

Globalna matrica rubnih elemenata potpuno je popunjena članovima koji sadrže sume doprinosa svih rubnih elemenata s onoliko redaka i stupaca koliko ima rubnih elemenata na površini obratka i induktora. Zapis globalne matrice rubnih elemenata slijedi nakon uvođenja globalnih matrica $[G^{\Gamma}]$, $[H^{\Gamma}]$ i vektora $\{A^{\Gamma e}\}, \{\partial A^{\Gamma e}/\partial n\}$ u jednadžbu (5.80).

$$\begin{bmatrix} G^{\Gamma} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} G_{ij} \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} G_{ij} \end{bmatrix} \end{bmatrix}$$
(5.81.a)

$$\begin{bmatrix} H^{\Gamma} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} H_{ij} \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} H_{ij} \end{bmatrix} \end{bmatrix}$$
(5.81.b)

$$\left\{ A^{\Gamma e} \right\} = \begin{cases} A_R^{\Gamma e} \\ A_I^{\Gamma e} \end{cases} \qquad \qquad \left\{ \frac{\partial A^{\Gamma e}}{\partial n} \right\} = \begin{cases} \frac{\partial A_R^{\Gamma e}}{\partial n} \\ \frac{\partial A_I^{\Gamma e}}{\partial n} \end{cases} \qquad \qquad \left\{ H_{0ij}^{\Gamma} \right\} = \begin{cases} H_{0R}^{\Gamma} \\ H_{0I}^{\Gamma} \end{cases}$$
(5.81.c-e)

$$\left[\left[H^{\Gamma} \right] \left\{ A^{\Gamma e} \right\}^{BEM \to FEM} + \left[G^{\Gamma} \right] \left\{ \frac{\partial A^{\Gamma e}}{\partial n} \right\}^{BEM \to FEM} = \left\{ H^{\Gamma}_{0ij} \right\} \qquad i,j = 1,2,\dots M \quad (5.82)$$

Nakon stvaranja globalne matrice (5.82) u nju se uvode dodatni rubni uvjeti poput uvjeta jednakosti nuli realnih i imaginarnih komponenti magnetskog vektorskog potencijala na osi simetrije $A_{R,i}^{\Gamma_e} = 0$, $A_{I,i}^{\Gamma_e} = 0$. Zatim slijedi zajedničko rješavanje globalnog sustava jednadžbi rubnih i konačnih elemenata.

5.3.4 Rješenje globalnog sustava jednadžbi konačnog i rubnog elementa

U prethodnim poglavljima 5.3.2 i 5.3.3. izvedene su lokalne i globalne matrične jednadžbe magnetskog vektorskog potencijala na mreži konačnih i rubnih elemenata, a sljedeći korak je izvod njihovog zajedničkog rješenja. Uz uvedenu pretpostavku o zamijeni prostorno raspodijeljene struje induktora strujnim slojem na njegovoj površini članovi $\{F^e\}$ na desnoj strani globalnog sustava jednadžbi konačnih elemenata (5.63) postaju jednaki nuli. Nakon uvrštavanja globalne jednadžbe rubnih elemenata (5.82) u globalnu jednadžbu konačnih elemenata (5.63) dobiva se algebarski sustav jednadžbi (5.83). Rješenja sustava (5.83) su realna i imaginarna komponenta aproksimacije magnetskog vektorskog potencijala u svim čvorovima mreže konačnih i rubnih elemenata $\{A^e\} = \{A^e_R\} + j\{A^e_I\}, \{A^{\Gamma e}\} = \{A^{\Gamma e}_R\} + j\{A^{\Gamma e}_I\}.$

$$\begin{bmatrix} \begin{bmatrix} K^{\Omega} \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} K^{\Gamma} \end{bmatrix} + \begin{bmatrix} T^{\Gamma} \end{bmatrix} \begin{bmatrix} G^{\Gamma} \end{bmatrix}^{-1} \left\{ H^{\Gamma}_{0ij} \right\} - \begin{bmatrix} G^{\Gamma} \end{bmatrix}^{-1} \begin{bmatrix} H^{\Gamma} \end{bmatrix} \end{bmatrix} \left\{ \begin{bmatrix} A^{e} \\ A^{re} \end{bmatrix} \right\} = \begin{cases} 0 \\ 0 \end{cases}$$
(5.83)

Dio globalne matrice FEM/BEM algebarskog sustava (5.83) u kojem se nalaze članovi rubnih elemenata potpuno je popunjen, a preostali dio s članovima konačnih elemenata popunjen je samo dijagonalno. Globalna FEM/BEM matrica (5.83) ima narušenu dijagonalnu simetriju i teško je rješiva direktnim metodama rješavanja. Stoga je u vlastitom simulacijskom programu primijenjeno iteracijsko rješavanje algebarskog sustava (5.83) prema [41, 107].

Sustav globalnih jednadžbi konačnih i rubnih elemenata zapisuje se u obliku jednadžbe (5.84) i (5.85) pa se nakon uvođenja rubnih uvjeta rješava se u četiri koraka.

$$\left[K\right]^{\Omega}\left\{A^{e}\right\} + \left[T^{\Gamma}\right]\left\{\frac{\partial A^{\Gamma e}}{\partial n}\right\} = \left\{0\right\}$$
(5.84)

$$\left[H^{\Gamma}\right]\left\{A^{\Gamma e}\right\} + \left[G^{\Gamma}\right]\left\{\frac{\partial A^{\Gamma e}}{\partial n}\right\} = \left\{H^{\Gamma}_{0ij}\right\}$$
(5.85)

I. korak. Iz jednadžbe (5.84) izračuna se pomoćna matrica [X] čiji je broj redaka jednak broju čvorova u mreži N, a broj stupaca jednak je broju rubnih elementa M. Uobičajeno je broj rubnih elemenata značajno manji od broja svih čvorova u modelu (tj. $M \le N$).

$$\left[K\right]^{\Omega}\left[X\right] = \left[T^{\Gamma}\right] \tag{5.86}$$

II. korak. Uz pomoć matrice [X] i matrica iz jednadžbe (5.84) računa se pomoćna matrica $[G^{\Gamma}]^*$:

$$\left[G^{\Gamma}\right]^{*} = \left[G^{\Gamma}\right] - \left[H^{\Gamma}\right]X$$
(5.87)

III. korak. Uz pomoć matrice $[G^{\Gamma}]^*$ rješava se dolje navedena jednadžba (5.88) i iz nje se određuje vektor $\{\partial A^{\Gamma e}/\partial n\}$:

$$\left[G^{\Gamma}\right]^{*} \left\{ \frac{\partial A^{\Gamma e}}{\partial n} \right\} = \left\{ H_{0ij}^{\Gamma} \right\}$$
(5.88)

IV. korak. Povratnom supstitucijom vektora $\{\partial A^{\Gamma e}/\partial n\}$ u jednadžbu rubnih elemenata (5.85) određuje se vektor $\{A^{\Gamma e}\}$, a zatim se oba vektora uvrštavaju u jednadžbu konačnih elemenata (5.85) i iz nje se određuje vektor magnetskog vektorskog potencijala $\{A^e\}$ u svim čvorovima mreže konačnih elemenata.

Ovakvim načinom rješavanja ostaje očuvana simetričnost globalnih matrica, pa se mogu uspješno koristiti direktne metode rješavanja algebarskih sustava jednadžbi u koracima I. do III. Čitav postupak rješavanja sustava jednadžbi (5.84) – (5.85) treba uobičajeno ponoviti dva do pet puta uz usklađivanje nelinearno promjenljivih električnih i magnetskih svojstava materijala iz prethodnog ("I") i aktualnog

("II") iteracijskog koraka do postizanja zahtijevane konvergencije rješenja za vektore $\{A^e\}$ i $\{\partial A^{\Gamma e}/\partial n\}$:

$$\varepsilon_{A} = \sqrt{\frac{\sum_{l=1}^{N} \left(\frac{\left\{A^{e}\right\}_{ll} - \left\{A^{e}\right\}_{l}}{\left\{A^{e}\right\}_{l}}\right)^{2}}{N}}; \quad \varepsilon_{A} \le \varepsilon$$
(5.89)

$\mathcal{E}_{4}, \mathcal{E}_{dA/dn}$	relativno odstupanje računskih vrijednosti vektor
A · uA/un	${A^e}$ i { $\partial A^{\Gamma e}/\partial n$ } iz dva iteracijska koraka
Ν	. broj čvorova konačnih elemenata
М	broj čvorova rubnih elemenata

Iz izračunatih vrijednosti vektora $\{A\}$ i $\{A^{\Gamma}\}_{k+1}^{FEM}$ računa se ukupni iznos magnetske indukcije B_0 u središtu pojedinačnog konačnog ili rubnog elementa za koje se potom određuje iznos magnetske permeabilnosti $\mu_{k+1} = f(B_0, \mathcal{G})$ i iznos volumne snage Jouelovih toplinskih izvora P^e_{JQ} . Volumna snaga gubitaka magnetiziranja P^e_{HB} određuje se iz "histerezne petlje" pri računanju magnetskih svojstava. Suma $P^e_{JQ} + P^e_{HB}$ na *e*-tom konačnom elementu predstavlja volumnu snagu toplinskih izvora i izravno povezuje jednadžbe elektromagnetskog i temperaturnog polja u međusobno ovisan sustav jednadžbi koji se treba rješavati iteracijski u svakom vremenskom koraku simulacije.

6.0 MATEMATIČKO MODELIRANJE PRIJENOSA TOPLINE U SUSTAVU INDUKTOR – OBRADAK - PRSKALICA

6.1 Definicija jednadžbe provođenja topline u obratku

Postavljanje parcijalne diferencijalne jednadžbe provođenja topline na materijalnom volumenu indukcijski kaljenog obratka zasniva se na zakonu o održanju energije u izobarnom procesu. "Sveukupni pretičak topline δQ_1 koja se unosi u elementarni volumen dV provođenjem kroz vanjske površine i sveukupne topline δQ_V , razvijene (ili potrošene) radom unutrašnjih toplinskih izvora (ponora) u vremenskom trajanju dt, jednak je promjeni entalpije materijala dH sadržanog u elementarnom volumenu dV" [90].

$$\delta Q_1 + \delta Q_V = dH \tag{6.1}$$

Sveukupni pretičak topline δQ_1 unesen u elementarni volumen dV određuje se uz pomoć Fourierovog zakona provođenja topline jednadžbom (6.2):

$$\left| \delta Q_1 = \nabla \circ (\lambda \nabla \mathcal{G}) dV dt \right| \tag{6.2}$$

Sveukupna toplina δQ_V pojavljuje se u elementarnom volumenu d*V* zbog postojanja unutrašnjih volumenskih Jouleovih toplinskih izvora P_{JQ} i gubitaka magnetiziranja P_{HB} :

$$\delta Q_V = P_{JQ} dV dt + P_{HB} dV dt \tag{6.3}$$

Promjena entalpije dH u elementarnom volumenu materijala dV dobiva se množenjem specifične entalpije materijala h s diferencijalom mase dm:

$$dH = hdm = h\rho dV \tag{6.4}$$

Diferencijalna promjena specifične entalpije željeznog materijala dh jednaka je promjeni njegove specifične unutrašnje energije (du=dh), a diferencijal du računa se prema jednadžbi $dh = du = cd\vartheta$,

pa je vremenska promjena diferencijala entalpije dH promatranog elementa dV (homogenog čvrstog materijala bez faznih pretvorbi) jednaka:

$$\frac{dH}{dt} = \frac{dh}{dt}\rho dV = \rho c \frac{\partial \mathcal{G}}{\partial t} dt dV$$
(6.5)

Diferencijalna promjena specifične entalpije dh u elementarnom volumenu dV ne ovisi o načinu ugrijavanja ili ohlađivanja već samo o početnom i konačnom toplinskom stanju materijala. Za zatvoreni sustav sastavljen od homogene čvrste tvari promjena specifične entalpije od referentnog toplinskog stanja "0" do toplinskog stanja "1" određuje se dolje navedenim jednadžbama (6.6.a-b) uz poznatu funkciju promjene specifičnog toplinskog kapaciteta $c = f(\mathcal{P})$ ili poznate vrijednosti srednjeg specifičnog toplinskog kapaciteta na intervalu temperatura ($\mathcal{P}_0, \mathcal{P}_1$) [90].

$$dh = du = c(\mathcal{G})d\mathcal{G} \tag{6.6.a}$$

$$h_{1} - h_{0} = \int_{g_{0}}^{g_{1}} c(g) dg = [c]_{g_{0}}^{g_{1}} (g_{1} - g_{0})$$
(6.6.b)

Kod heterogenog i višefaznog materijala specifična entalpija ovisi o temperaturi, kemijskom sastavu i prisutnim mikrostrukturnim fazama. Kao referentno stanje pretpostavlja se stanje sa $\mathcal{G}_0 = 0^{\circ}$ C i specifičnom entalpijom svih faza koja je jednaka nuli, tj. $h_{i0}=0$. Promjene specifične entalpije višefaznog materijala promatraju se kao promjene entalpija mješavine faza (koje se pretpostavljaju homogenim tvarima) poznatih masenih w_i ili volumnih y_i udjela i specifičnih entalpija h_i [22, 42, 92]. Pri tome se zbog male razlike gustoća faza ρ_i prema srednjoj gustoći ρ materijala mogu izjednačiti maseni i volumni udjeli faza ($w_i \approx y_i$)

$$[h]_{\theta_0}^{\theta_1} = h_1 - h_0 = \sum_i h_{1,i} w_{1,i} - \sum_i h_{0,i} w_{0,i}$$
(6.7.a)

Na **slici 6.1.a-b** prikazana je specifična entalpija i specifični toplinski kapacitet tehnički čistog željeza ovisni o temperaturi. Iz prikaza su uočljive skokovite promjene specifične entalpije na temperaturama alotropskih modifikacija željeza uzrokovane vezivanjem (pri ugrijavanju) ili oslobađanjem (pri ohlađivanju) latentne specifične topline L_{ij} faznih pretvorbi *i*-te faze u *j*-tu fazu. Krivulja promjene
specifičnog toplinskog kapaciteta tehnički čistog željeza (kao nekompresibilne tvari) izračunata je derivacijom krivulje specifične entalpije $h = f(\mathcal{G})$. Na dobivenoj krivulji promjene (pravog) specifičnog toplinskog kapaciteta tehnički čistog željeza s temperaturom (**slika 6.1.b**) uočljiv je nagli porast njegove vrijednosti na Curievoj temperaturi prijelaza rešetke α -željeza iz feromagnetskog u paramagnetsko stanje, a potom skokovita promjena na temperaturi α/γ mikrostrukturne pretvorbe (A₁ = 911 °C).

Slika 6.1. a) Promjena specifične entalpije tehnički čistog željeza ovisna o temperaturi [82].
b) Promjena specifičnog toplinskog kapaciteta tehnički čistog željeza s promjenom temperature izračunata iz krivulje na slici 6.1.a jednadžbom c(9) = dh(9)/d9 [91].

Kod heterogenog višefaznog željeznog materijala pojavljuje se sličan tijek promjene specifične entlapije i (ukupnog) specifičnog toplinskog kapaciteta kao na **slici 6.1** uz pojavu temperaturnih intervala faznih pretvorbi α/γ i γ/α u kojima istovremeno u materijalu postoji dvije ili više faza. Stoga se prema [92] promjena specifične entalpije višefaznog materijala u temperaturnom intervalu ($\mathcal{P}_1, \mathcal{P}_2$) izloženog mikrostrukturnim pretvorbama izražava proširenim jednadžbama (6.6.b) i (6.7.a):

$$h_2 - h_1 = [h]_{\mathcal{G}_1}^{\mathcal{G}_2} + \sum_{j=1}^5 w_j L_{ij} = \left[\sum_{i=0}^5 w_i [c_i]_{\mathcal{G}_1}^{\mathcal{G}_2}\right] (\mathcal{G}_1 - \mathcal{G}_2) + \sum_{j=1}^5 w_j L_{ij} \qquad (i \neq j , j > i) \quad (6.8.a)$$

Kod indukcijskog kaljenja u mikrostrukturi čelika moguća je pojava slijedećih pet mikrostrukturnih faza označenih u jednadžbama (6.7) i (6.8) kako slijedi: polazna mikrostruktura (*i*=0), austenit (*i*=1), martenzit (*i*=2), bainit (*i*=3), perlit (*i*=4) i ferit (*i*=5). U istim jednadžbama $[c_i]_{g_i}^{g_2}$ predstavlja srednji specifični toplinski kapacitet *i*-te mikrostrukturne faze nad zadanim intervalom temperatura (\mathcal{P}_1 , \mathcal{P}_2). Posljednji član na desnoj strani jednadžbe (6.8.a) predstavlja latentnu specifičnu toplinu L_{ij} vezanu ili oslobođenu tijekom mikrostrukturnih pretvorbi i feromagnetskim promjenama čelika [93]. Volumna latentna toplina Φ_L koja se veže ili oslobodi u diferencijalu vremena d*t* određena je slijedećim izrazom:

$$\Phi_{L} = \sum_{j=1}^{5} \rho_{j} \frac{dy_{j}}{dt} L_{ij} \qquad (i \neq j, j > i), i, j = 0, 1, 2, 3, 4, 5$$
(6.9)

Član Φ_L uobičajeno ulazi u jednadžbu provođenja topline kao samostalni član različit od nule u temperaturnom intervalu mikrostrukturnih pretvorbi i na temperaturama bliskim Curieovoj temperaturi. Ako se latentna toplina veže u materijalu član Φ_L je pozitivan ($\Phi_L>0$), a ako se oslobađa tada je član Φ_L negativan ($\Phi_L<0$).

Vodljivost topline višefaznog materijala također je ovisna o kemijskom sastavu, temperaturi te vrsti i udjelima mikrostrukturnih faza:

$$\lambda = \sum_{i} w_i \lambda_i \qquad \qquad i = 0, 1, 2, 3, 4, 5 \qquad (6.10)$$

Diferencijalna jednadžba provođenja topline. Uvrštenjem jednadžbi (6.2), (6.3) i (6.5) u polazni stavak o očuvanju energije (6.1) u elementarnom volumenu i dijeljenjem dobivene jednadžbe s članovima dV i dt dobiva se diferencijalna jednadžba provođenja topline:

$$\nabla \circ (\lambda \nabla \mathcal{G}) + (P_{JQ} + P_{HB} - \Phi_L) = \rho c \frac{\partial \mathcal{G}}{\partial t}$$
(6.11)

Jednadžbe (6.11) je polazna jednadžba za matematičko modeliranje promjena temperaturnog polja u indukcijski kaljenom obratku. Iz nje je preko članova P_{JQ} i P_{HB} vidljiva izravna povezanost s

jednadžbama elektromagnetskog polja, a preko entalpijskih članova $c \frac{\partial \mathcal{P}}{\partial t}$ i \mathcal{P}_L vidljiva je posredna povezanost s kinetikom mikrostrukturnih faznih pretvorbi u materijalu. Posredna povezanost toplinskih i mikrostrukturnih procesa u željeznom materijalu vidi se u iteracijskom rješavanju jednadžbe provođenja topline i kinetičkih jednadžbi faznih pretvorbi. Pri tome se uspostavljaju tri vrste uzajamnog djelovanja ovih procesa [92]:

- b) Mikrostrukturne fazne pretvorbe ovise o prethodnom temperaturnom ciklusu kojem je materijal bio izložen.
- c) Toplinska svojstva materijala ovise o kemijskom sastavu, temperaturi, vrsti i udjelima mikrostrukturnih faza.
- d) Mikrostrukturne fazne pretvorbe "vežu" ili "oslobađaju" određenu latentnu toplinu L čime se dodatno mijenja temperaturno polje u materijalu.

Pojednostavljeni oblici jednadžbe provođenja topline (6.11) na elementarnom volumenu dV. Slično pojednostavljenju trodimenzijskog problema širenja elektromagnetskog polja na dvodimenzijske slučajeve i ovdje se navode dva oblika pojednostavljene jednadžbe (6.11):

 Jednadžba za modeliranje raspodjele temperaturnog polja u dugačkom ravnom obratku u pravokutnom koordinatnom sustavu:

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial \mathcal{P}}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial \mathcal{P}}{\partial y} \right) + \left(P_{JQ} + P_{HB} - \Phi_L \right) = \rho c \frac{\partial \mathcal{P}}{\partial t}$$
(6.12)

 Jednadžbe za modeliranje raspodjele temperaturnog polja osnosimetričnog obratka u cilindričnom koordinatnom sustavu:

$$\frac{\partial}{\partial r} \left(\lambda r \frac{\partial \mathcal{G}}{\partial r} \right) + \frac{\partial}{\partial z} \left(\lambda r \frac{\partial \mathcal{G}}{\partial z} \right) + r(P_{JQ} + P_{HB} - \Phi_L) = r\rho c \frac{\partial \mathcal{G}}{\partial t}$$
(6.13)

Usporedbom jednadžbi (6.12) u pravokutnom i (6.13) u cilindričnom koordinatnom sustavu uočava se njihova sličnost uz transformacije (6.14.a-c) koje također vrijede i za rubne uvjete:

Pravokutni koordinatni sustav Cilindrični koordinatni sustav

$$\lambda' = r \lambda \tag{6.14.a}$$

$$\rho' = r \rho \tag{6.14.b}$$

$$P_{\rm JQ}$$
'; $P_{\rm HB}$ ' $\Phi_{\rm L}$ ' = $r P_{\rm JQ}$; $r P_{\rm HB}$; $r \Phi_{\rm L}$ (6.14.c)

Početni uvjet. Za potpuni opis temperaturnog polja i rješavanje parcijalne diferencijalne jednadžbe provođenja topline (6.12) ili (6.13) nužno je postaviti odgovarajuće početne i rubne uvjete. Početni uvjet izražen je jednadžbom (6.15) jer računalna simulacija indukcijskog kaljenja započinje uz pretpostavku konstantne temperature obratka, jednake temperaturi okoliša \mathcal{G}_0 ili temperaturi jednoličnog predgrijavanja \mathcal{G}_P po čitavom volumenu obradaka.

$$t = 0 \quad \mathcal{G} = \text{const.} = \begin{cases} & \mathcal{G}_0 \text{, nema predgrijavanja} \\ & \mathcal{G}_P > \mathcal{G}_0, \text{ uz predgrijavanje} \end{cases}$$
(6.15)

Rubni uvjeti na obratku su nestacionarni i prostorno raspodijeljeni po četiri zone (slika 6.2):

- I. Ne ugrijavani dio obratka udaljen od induktora i prskalice toliko da je u svim njegovim konačnim elementima temperatura konstantna i jednaka temperaturi okoliša ϑ_0 ili temperaturi predgrijavanja \mathcal{G}_{P} .
- II. Dio obratka u zoni ugrijavanja uz induktor ili obuhvaćen induktorom.
- III. Dio obratka u zoni progrijavanja između induktora i prskalice ili bazena za gašenje.
- IV. Dio obratka u zoni gašenja u prskalici i iza nje ili uronjen u bazen za gašenje.

Za svaku od ovih zona vrijede drugačiji rubni uvjeti određeni dominantnim mehanizmima prijenosa topline. Na osi simetrije geometrijske domene obratka postavlja se **dodatni adijabatski rubni uvjet** koji proizlazi iz uvjeta simetrije obratka:

$$\left. \frac{\partial \mathcal{P}}{\partial n} \right|_{S_0} = 0 \tag{6.16}$$

Slika 6.2. Karakteristične zone na površini indukcijski kaljenog valjka za postavljanje rubnih uvjeta

Rubni uvjeti na ne ugrijavanom dijelu obratka (slika 6.2 površina S_{11}) odnose se na zadavanje temperature $\mathcal{B}_s|_{S_{11}} = \mathcal{B}_0$. U slučaju predgrijanog obratka na ovom dijelu površine postavljaju isti rubni uvjeti kao u zoni ugrijavanja.

Rubni uvjeti u zoni ugrijavanja (slika 6.2 površina S_{12}) i progrijavanja (slika 6.2 površina S_{13}). Ovi dijelovi obratka imaju višu temperaturu od temperature okoliša, pa se u njima pojavljuju značajni gubici topline konvekcijom q_k i zračenjem q_{zr} u ukupnog iznosa gustoće toplinskog toka q_s .

$$q_{s}|_{S_{12}+S_{13}(+S_{11})} = q_{k} + q_{zr}$$
(6.17)

Gustoća toplinskog toka q_k zbog prijelaza topline konvekcijom s obradaka na okolišnji zrak računa se Newtonovom jednadžbom uz pomoć poznatog srednjeg koeficijenta prijelaza topline α_0 [94]:

$$q_{konv} = \alpha_0 (\vartheta_s - \vartheta_0) \tag{6.18}$$

Gustoća toplinskog toka q_{zr} izmijenjenog zračenjem između obratka, induktora i okoliša opisana je jednadžbom (6.19) uz poznati koeficijent toplinskog zračenja C_{12} [6, 7, 74, 94]:

$$q_{zr} = C_{12} \Big[(\mathcal{G}_s + 273)^4 - (\mathcal{G}_0 + 273)^4 \Big]$$
(6.19)

Jednadžba (6.19) izrazito je nelinearna i neprikladna za numeričke algoritme, pa je uobičajeno izraz u zagradama na njenoj desnoj strani faktorizirati na oblik sličan jednadžbi (6.18) [76]:

$$q_{zr} = C_{12} \cdot \left[(\vartheta_s + 273)^2 + (\vartheta_0 + 273)^2 \right] \cdot \left[(\vartheta_s + 273) + (\vartheta_0 + 273) \right] \cdot \left(\vartheta_s - \vartheta_0 \right)$$
(6.20.a)

$$\alpha_{zr} = C_{12} \cdot \left[(\vartheta_s + 273)^2 + (\vartheta_0 + 273)^2 \right] \cdot \left[(\vartheta_s + 273) + (\vartheta_0 + 273) \right]$$
(6.20.b)

$$q_{zr} = \alpha_{zr} \cdot \left(\vartheta_s - \vartheta_0 \right) \tag{6.20.c}$$

Nova veličina u jednadžbama (6.20.c) α_{zr} je koeficijent prijenosa topline zračenjem (poglavlje 6.2). Supstitucijom jednadžbi (6.18) i (6.20.c) u jednadžbu (6.17) slijedi jednadžba za proračun ukupne gustoće toplinskog toka kroz površinu obratka u zonama ugrijavanja i progrijavanja:

$$q_{s}|_{S_{12}+S_{13}(+S_{11})} = (\alpha_{0} + \alpha_{zr})(\vartheta_{s} - \vartheta_{0})$$
(6.21)

Rubni uvjeti u zoni gašenja (slika 6.2 površina S_{14}) definiraju se uvođenjem tzv. "lokalnog koeficijenta prijelaza topline gašenjem" α_G (W/m2K) (poglavlje 6.3.) u jednadžbu sličnu jednadžbi (6.21) prema [14, 15]:

$$q_s\big|_{S_{14}} = \alpha_G(\vartheta_s - \vartheta_0) \tag{6.22}$$

Koeficijent prijenosa topline zračenjem α_{zr} i lokalni koeficijent prijelaza topline gašenjem α_G su nelinearne veličine ovisne o površinskoj temperaturi obratka \mathcal{P}_s , pa je nužno njihovo iteracijsko računanje za svaki novi vremenski inkrement simulacije.

Temperaturni gradijent $(\partial \mathcal{G}/\partial n)_{s}$. Gustoća toplinskog toka q_{s} odvedenog kroz površinu obratka povezana je s gradijentom temperature $(\partial \mathcal{G}/\partial n)_{s}$ na samoj površini jednadžbom (6.23) [94, 95].

$$-\lambda_{s} \left(\frac{\partial \mathcal{P}}{\partial n}\right)_{s} = q_{s}$$

$$q_{s} \dots \qquad \text{Gustoća toplinskog toka, W/m}^{2}$$

$$\lambda_{s} \dots = \lambda(\vartheta_{s}), \text{ vodljivost topline površinskog sloja, W/(mK)}$$
(6.23)

6.2 Određivanje koeficijenta toplinskog zračenja s površine obratka

Koeficijent toplinskog zračenja C_{12} pri izmjeni topline između obratka i induktora, te obratka i okoliša složeno je izračunati za njihov općeniti položaj u prostoru zbog poteškoća u određivanju faktora konfiguracije (i vidnog faktora ω_8) ovisnog o geometriji i međusobnom položaju ploha. Stoga se za simulaciju indukcijskog kaljenja uobičajeno koristi približni proračun koeficijenta zračenja C_{12} prema modelima navedenim na **slici 6.3.a-c** [7, 94, 96]. za primjenu dolje navedenih modela treba zadati potrebne dimenzije obratka i induktora navedene na **slici 6.3.a-c**, emisione faktore sveukupnog toplinskog zračenja s površine obratka ε_1 i induktora ε_2 te konstantu toplinskog zračenja crnog tijela $(C_c = 5,67 \text{ W/(m}^2(100\text{K})^4)).$

- a) model zračenja između dvije bliske stjenke,
- b) model zračenja obuhvaćenog tijela,
- c) model zračenja između paralelnih kružnih diskova.
- a) Dio ravne površine obratka postavljen na malom razmaku od induktora ("model zračenja između dvije bliske stjenke") (slika 6.3.a)

$$C_{12} = \frac{S_{01}}{100^4} \frac{C_C}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$
(6.24)

b) Dio površine valjka u induktoru ("model zračenja obuhvaćenog tijela") (slika 6.3.b)

$$C_{12} = \frac{S_{01}}{100^4} \frac{C_C}{\frac{1}{\varepsilon_1} + \omega_s \left(\frac{1}{\varepsilon_2} - 1\right)}$$
(6.25)

c) Dio površine obratka oblika kružnog diska ispod induktora oblika diska (model zračenja između paralelnih kružnih diskova) (slika 6.3.c).

$$C_{12} = \frac{S_{01}}{100^4} \frac{C_C}{\frac{1}{\varepsilon_1} + \omega_s \left(\frac{1}{\varepsilon_2} - 1\right)}$$
(6.26)
$$\omega_s = \frac{1}{2} \left\{ X - \left[X^2 - 4 \left(\frac{x_2}{x_1}\right)^2 \right]^{\frac{1}{2}} \right\}$$
(6.27.a)

$$x_1 = \frac{r_1}{H_{12}}$$
; $x_2 = \frac{r_2}{H_{12}}$; $X = 1 + \frac{1 + x_2^2}{x_1^2}$ (6.27.b-d)

d) Dio površine izvan induktora ili između induktora i prskalice (S₂₃)("model zračenja tijela u veliki prostor")

$$C_{12} = S_{23}\varepsilon_2 \frac{C_C}{100^4} \tag{6.28}$$

$$S_{01} = 2r_1\pi(h_2 + 0.1h_2)$$
(6.29.a)

$$\omega_s = \frac{S_{01}}{S_2}$$
(6.29.b)

Emisijski faktori sveukupnog toplinskog zračenja ε_1 i ε_2 ovise o materijalu, stanju površine obratka (polirana, metalno sjajna, zagasita, oksidirana, hrapava, itd.) i površinskoj temperaturi \mathcal{P}_S . U bazi podataka vlastito razvijenog simulacijskog programa unijeti su podaci o faktoru ε_1 promjenjivom ovisno o temperaturi za deset uobičajenih čelika prikladnih za indukcijsko kaljenje. Emisijski faktor površine induktora izabran je za slabo zagasitu bakrenu površinu ($\varepsilon_2 = 0,037$) prema [94].

6.3. Određivanje koeficijenta prijelaza topline gašenjem

Uobičajeni način hlađenja indukcijski kaljene površine obratka je gašenje u prskalici (poglavlje 2.1.2) sa sredstvima podložnim Leidenfrostovom efektu (sredstva koja pokazuju tri faze isparivanja: filmsko, mjehurasto i konvekcijsko). Pri ispravno provedenom gašenju prskanjem na površini obratka ne pojavljuje se filmsko, već samo mjehurasto isparivanje (s maksimalnim iznosima koeficijenta prijelaza topline) te ohlađivanje konvekcijom. Stoga se uobičajeno u računalnoj simulaciji indukcijskog kaljenja primjenjuje jedinstvena maksimalna vrijednost koeficijenta prijelaza topline prskanjem za cijelu zonu gašenja [70,71]. U vlastito razvijenom simulacijskom programu indukcijskog kaljenja osim ovog uobičajenog odabira ugrađena je mogućnost proračuna koeficijenta prijelaza topline raspodijeljenog po zoni gašenja ovisno o temperaturi površine obratka i gustoći prskanja.

Glavni utjecajni čimbenici na srednji koeficijent prijelaza topline prskanjem $\alpha_{\rm G}$. Iznos koeficijenta prijelaza topline $\alpha_{\rm G}$ određenog sredstva za gašenje najviše ovisi o visini temperature površine, materijalu obratka i gustoći prskanja m_0 , $kg/(m^2s)$. Gustoća prskanja predstavlja masu sredstva za gašenje koje u jedinici vremena padne na jedinicu zagrijane površine obratka. Utjecaj vrste ohlađivanog metala može se promatrati uvodeći tzv. "koeficijent prodiranja topline" ($\sqrt{\lambda \cdot \rho \cdot c}$) izračunat za metalno čistu površinu. Ako na površini obratka postoji oksidni sloj, tada je za prijenos topline mjerodavan koeficijent prodiranja topline oksida, a ne onaj osnovnog metala [14]. Npr. za metalno čistu površinu čelika 42CrMo4 temperature $\vartheta_{\rm s} = 800$ °C koeficijent prodiranja topline iznosi ($\sqrt{\lambda \cdot \rho \cdot c}$)_{800°C}=10,65 kWs^{0,5}/(mK), a za temperaturu $\vartheta_{\rm s} = 500$ °C ($\sqrt{\lambda \cdot \rho \cdot c}$)_{500 °C} = 14,36 kWs^{0,5}/(mK).

Na **slici 6.4** prikazana je promjena koeficijenta prijelaza topline o površinskoj temperaturi kod ohlađivanja neželjeznih materijala prskanjem vodom temperature 20 °C. Iz **slike 6.4.a** uočljivo je kako povećanje gustoće prskanja povećava koeficijent prijelaza topline i pomiče Leidenfrostovu temperaturu na više vrijednosti. Utjecaj gustoće prskanja m_0 i vrste metala izražen je samo kod temperatura nižih od Leidenfrostove temperature (u području mjehurastog isparivanja). **Slika 6.4.b** prikazuje utjecaj vrste ohlađivanog metala na koeficijent α_G pri gustoći prskanja od 120 kg/(m²min).

Slika 6.4. Koeficijent prijelaza topline α_G kod ohlađivanja ravne površine prskanjem vodom (upadni kut mlaza 90°) [97]:

- a) utjecaj gustoće mlaza i površinske temperature uzorka od nikla na $\alpha_{\rm G}$,
- b) utjecaj vrste ohlađivanog metala i površinske temperature na α_{G} ,

Matematički model funkcije $\alpha_{\rm G} = \mathbf{f}(\sqrt{\lambda \cdot \rho \cdot c}, \boldsymbol{g}_{\rm s}, \boldsymbol{m}_{0})$ pri gašenju prskanjem vodom. Za matematičko modeliranje funkcije $\alpha_{\rm G} = \mathbf{f}(\sqrt{\lambda \cdot \rho \cdot c}, \boldsymbol{g}_{\rm s}, \boldsymbol{m}_{0})$ primijenit će se model linearne aproksimacije (slika 6.5) za gašenje <u>prskanjem čistom vodom</u> jer su za njegovo postavljanje dostupni svi potrebni podaci u literaturi [14, 15, 16, 97].

Matematičko modeliranje funkcije $\alpha_{\rm G} = f(\vartheta_{\rm s})$ za gašenje prskanjem čistom vodom obuhvaća većinom eksperimentalno određene jednadžbe za proračun vrijednosti koeficijenta prijelaza topline pri karakterističnim temperaturama $\vartheta_{\rm k}$, $\vartheta_{\rm DNB}$ i $\vartheta_{\rm Le}$ za pojedinu fazu isparivanja. Vrijednosti temperatura $\vartheta_{\rm Le}$ i $\vartheta_{\rm DNB}$ određuju se empiričkim jednadžbama, a temperatura $\vartheta_{\rm k}$ prema [14] iznosi 120 °C. Između ovih karakterističnih temperatura primjenjuje se linearna aproksimacija $\alpha_G = f(\vartheta_{\rm s})$ prema slici 6.5.

Slika 6.5. Model linearno-kvadratne aproksimacije promjene koeficijenta prijelaza topline ovisno o površinskoj temperaturi obratka [14, 15].

Funkcija $\alpha_{G} = \mathbf{f}(\sqrt{\lambda \cdot \rho \cdot c}, \mathbf{9}_{s}, \mathbf{m}_{0})$ **u fazi filmskog isparivanja.** Kad mlaz vode dođe u dodir sa ugrijanim obratkom zbog velikih razlika temperatura pojavljuje se tanki film vodene pare (filmsko isparivanje) između površine obratka i kapljevine (**slika 6.6**). Paroviti film ponaša se kao toplinski izolator, pa se tijekom njegovog postojanja zadržava visoka temperatura površine obratka. Kroz njega se toplina prenosi mehanizmima provođenja (q_{λ}) i zračenja (q_{zr}). Na granici parovitog filma toplina se jednim dijelom odvodi konvekcijom (q_{α}) u granični sloj (koji teče po filmu), a drugim dijelom se troši za isparivanje kapljevine (q_{vt}). Na **slici 6.6** kvalitativno je prikazana promjena temperature u parnom filmu i graničnom sloju. U parovitom filmu temperatura se smanjuje od površinske temperature obratka \mathcal{P}_{s} na temperaturu isparivanja kapljevine \mathcal{P}_{b} . Temperatura \mathcal{P}_{b} je veća od temperature zasićenja \mathcal{P}'' koja bi pripadala kapljevini po krivulji napetosti za postignuti tlak. U graničnom sloju vrijednosti temperature smanjuju se do iznosa radne temperature sredstva za gašenje (\mathcal{P}_{0}). Debljina parnog filma i gustoća toplinskog toka q_{s} , velikim dijelom ovise o gustoći toplinskog toka q_{α} ostvarenog prisilnim strujanjem u graničnom sloju. U području stabilnog filmskog isparivanja koeficijent prijelaza topline $\alpha_{G,f}$ ne ovisi o površinskoj temperaturi niti vrsti metala, ali ovisi o gustoći prskanja prema [14]:

$$\alpha_{G,f} = 200 + 1,82 \cdot m_0 \tag{6.30}$$

 m_0 ... specifična gustoća prskanja, kg/(m²min)

Jednadžba (6.30) vrijedi u rasponu vrijednosti gustoće prskanja (m₀) od 100 do 2000 kg/m²min <u>za</u> <u>čistu vodu temperature 20°C</u>. Za više temperature koeficijent prijelaza topline ima sporiji porast s porastom gustoće prskanja, nego kod gašenja vodom temperature 20 °C.

Slika 6.6 Mehanizmi prijenosa topline kod filmskog isparivanja pri gašenju prskanjem [14].

Funkcija $\alpha_{\rm G} = \mathbf{f}(\sqrt{\lambda \cdot \rho \cdot c}, \mathcal{G}_{\rm s}, \mathbf{m}_0)$ u fazi mjehurastog isparivanja. Leidenfrostova temperatura $\mathcal{G}_{\rm Le}$ predstavlja graničnu temperaturu iznad koje je moguće uspostavljanje stabilnog parovitog filma. Čim se temperatura površine snizi ispod iznosa Leidenfrostove temperature nastupa kidanje parovitog filma i prijelaz od filmskog k mjehurastom isparivanju. Najviše vrijednosti koeficijenta prijelaza topline pri gašenju prskanjem postižu se u fazi mjehurastog isparivanja pri temperaturi površine $\mathcal{G}_{\rm s} =$ $\mathcal{G}_{\rm DNB}$. Na **slici 6.7** prikazan je utjecaj vrste ohlađivanog metala i gustoće prskanja na visinu Leidenfrostove temperature $\mathcal{G}_{\rm Le}$, temperature najintenzivnijeg mjehurastog isparivanja $\mathcal{G}_{\rm DNB}$ i maksimalne vrijednosti koeficijenta prijelaza topline $\alpha_{\rm G,max}$. Iste se mogu izračunati jednadžbom (6.31) uz zadanu specifičnu gustoću prskanja m_0 [14, 97]:

$$\alpha_{G,\max}, \vartheta_{DNB}, \vartheta_{Le} = a_1 [m_0]^{a_2}$$
(6.31)

Slika 6.7. a) Leidenfrost-ova temperatura \mathcal{G}_{Le} , temperatura najintenzivnijeg mjehurastog isparivanja \mathcal{G}_{DNB} i maksimalni koeficijent prijelaza topline čiste vode kao ovisni o gustoći prskanja pri hlađenju različitih metala [14, 97]

b) Utjecaj vrste ohlađivanog metala ili nemetala (izraženog preko koeficijenta prodiranja topline) na vrijednost Leidenfrostove temperature \mathcal{P}_{Le} čiste vode [16]

Iz dostupne literature [14, 97] preuzeti su koeficijenti a_1 i a_2 kako su navedeni uz jednadžbe (6.32.a-c) za glatku i čistu površinu nikla koji je od ispitivanih materijala po svojstvu $\sqrt{\lambda \cdot \rho \cdot c} = 14,3$ kWs^{0,5}/(mK) najbliži uobičajenim vrijednostima austenitiziranog čelika.

$$\alpha_{G,\max} \approx 156 [m_0]^{0.19}$$
 (6.32.a)

$$\boldsymbol{\vartheta}_{DNB} \approx 72 [\boldsymbol{m}_0]^{0.16} \tag{6.32.b}$$

$$\vartheta_{Le} \approx 2360 [m_0]^{0.32}$$
(6.32.c)

 m_0 ... specifična gustoća prskanja, kg/(m²min)

Vrijednosti koeficijenata a_1 , a_2 iz jednadžbe (6.31) vrijede za površine, hrapavosti do $R_a = 2 \mu m$. S povećanjem hrapavosti na $R_a = 30 \mu m$ iznosi Leidenfrostove temperature porasli bi za oko 100°C, a iznosi temperature \mathcal{P}_{DNB} za oko 20 °C, dok bi se $\alpha_{\text{G max}}$ povećao za oko 20 % [14].

Funkcija $\alpha_{\rm G} = \mathbf{f}(\sqrt{\lambda \cdot \rho \cdot c}, \boldsymbol{g}_{\rm s}, \boldsymbol{m}_{0})$ u fazi prijelaza topline konvekcijom. Iznos koeficijenta prijelaza topline $\alpha_{\rm G,k}$ u fazi konvekcije nekoliko je puta manji od iznosa u fazi mjehurastog isparivanja.Za točniji proračun koeficijenta prijelaza topline konvekcijom treba numerički riješiti trodimenzijski matematički model strujanja sredstva za gašenje s prijelazom topline kroz granični sloj ili temperaturno ovisan koeficijent prijelaza topline odrediti eksperimentalno.

U razvijenom simulacijskom programu koeficijent prijelaza topline konvekcijom računa se iz jednadžbi teorije sličnosti prema [14, 15, 94, 96]. U tipičnom slučaju gašenja prskanjem mlaz sredstva za gašenje udara u ugrijanu površinu obradaka srednjom brzinom v_0 i potom slobodno pada uz obradak visinom pada z_h . Brzina strujanja sredstva za gašenje uz površinu obratka v_0 određuje se primjenom jednadžbe kontinuiteta i Bernoullijeve jednadžbe na slobodni mlaz sredstva za gašenje [15]. Na površini obratka nastaje hidrodinamički granični sloj čija je debljina značajno manja od mjera obratka pa se za proračun koeficijenta prijelaza topline može zanemariti eventualna zakrivljenost površine obratka. Dodatno pojednostavljenje slijedi iz podatka o visini pada sredstva za gašenje slobodnim padom u odnosu na početnu brzinu mlaza v_0 , odnosno $2 \cdot g \cdot z_h \ll v_0^2$, pa se prema [14] za proračun srednjeg koeficijenta prijelaza topline konvekcijom dobiva izraz (6.33):

$$Nu = \frac{z_h \alpha_{G,k}}{\lambda_S} = \frac{2}{\sqrt{\pi}} \sqrt{\frac{v_0 z_h}{a_0}}$$
(6.33)

Temperaturna provodnost sredstva za ohlađivanje a_0 , m²/s računa se za srednju temperaturu između temperature dijela površine obratka ispod prskalice \mathcal{P}_s i temperature sredstva za ohlađivanje \mathcal{P}_0 .

Za matematičko modeliranje prijelaza topline <u>vodenim otopinama polimera</u> u dostupnoj literaturi [14, 15, 16, 98] nisu pronađene odgovarajuće jednadžbe koje bi se opisivale prijelaz topline pri gašenju prskanjem stoga je u [73] predložen vlastiti aproksimacijski model s korekcijskim faktorom k_{PAG} za proračun najveće vrijednosti koeficijenta prijelaza topline pri gašenju:

$$\alpha_{G,\max,PAG} = (1 - k_{PAG})\alpha_{G,\max,H_2O}$$
(6.34)

Predloženi korekcijski faktor k_{PAG} ovisi koncentraciji PAG-a u vodi c_{PAG} i najvećoj brzini hlađenja CR_{max} , °C/s izmjerenoj u središtu valjka \emptyset 12,5 mm od Inconel-a 600 prema normi ISO 9950. Korekcijski faktor k_{PAG} određuje se iz omjera najveće brzine hlađenja ovog valjka u čistoj vodi i ispitivanoj vodenoj otopini polimera uz iste uvjete hlađenja (ista temperatura sredstva \mathcal{P}_0 i brzina strujanja v_0):

$$k_{PAG} = \frac{\left(CR_{\max}\right)_{PAG} - \left(CR_{\max}\right)_{H_20}}{\left(CR_{\max}\right)_{H_20}}$$
(6.35)

Za vodene otopine polimera PAG najveća brzina ohlađivanja CR_{max} određuje se prema [14, 15]:

$$CR_{\max} = 244,7 - 4,3 c_{PAG} - 1,7 \theta_0 + 47,2 v_0$$
(6.36)

Za čistu vodu je c_{PAG} jednak nuli pa se iz jednadžbi (6.35) i (6.36) dobiva slijedeća jednadžba za određivanje faktora k_{PAG} :

$$k_{PAG} = \frac{4.3c_{PAG}}{244.7 - 1.79_0 + 47.2v_0} \tag{6.37}$$

Iz jednadžbi (6.34) i (6.37) slijedi karakterističan način promjene faktora k_{PAG} . S povećanjem koncentracije polimera PAG u vodi smanjuje se najveća brzina ohlađivanja CR_{max} , prema jednadžbi (6.36), a korekcijski faktor k_{PAG} se povećava prema jednadžbi (6.37), ali je uvijek manji od jedan. Što je veća koncentracija polimera u vodi manji je koeficijent prijelaza topline ($\alpha_{G,max}$), pa se korekcijski faktor k_{PAG} uvodi u jednadžbu (6.34) u obliku (1 - k_{PAG}). Za fazu filmskog isparivanja i slobodne konvekcije primjenjuju se približne vrijednosti koeficijenta prijelaza topline određenog za gašenje čistom vodom. Točnost, pouzdanost i primjenljivost predloženog modela potrebno je istražiti u budućim istraživanjima.

Nakon proračuna aproksimacijske funkcije koeficijenta prijelaza topline ovisnog o temperaturi (**slika 6.6**) određuju se lokalne vrijednosti koeficijenta prijelaza topline α_G na onim stranicama konačnih elemenata koje diskretiziraju hlađenu površinu obratka. Osim ovog orijentacijskog proračuna u vlastito razvijenom simulacijskom programu ugrađena je baza podataka za pohranu eksperimentalno snimljenih vrijednosti promjene koeficijenta prijelaza topline prskanjem s promjenom temperature. Ugrađena baza podataka osim pregleda i pripreme podataka za simulacijski program pruža mogućnost interpolacije kojom se za zadanu vrijednost površinske temperature na stranici konačnog elementa interpolira vrijednost koeficijenta prijelaza topline.

6.4 Zadavanje toplinskih svojstava materijala

Toplinska svojstva materijala (gustoća, koeficijent vodljivosti topline, specifični toplinski kapacitet) u diferencijalnim jednadžbama provođenja topline nelinearno se mijenjaju s promjenom temperature i mikrostrukturnim pretvorbama u materijalu. U vlastito razvijenom simulacijskom programu primijenjeni su podaci iz literature [82, 99] uglavnom s makroskopskim vrijednostima vodljivosti topline, specifične gustoće i specifičnog toplinskog kapaciteta površinski kaljenih čelika ovisnim o promjeni temperature (0 do 1200 °C). Također je ostavljena mogućnost unosa ovih vrijednosti od strane korisnika. Vrijednosti svojstava interpoliraju se za konkretnu temperaturu u čvorovima konačnih elemenata u svakom vremenskom inkrementu simulacije.

Gustoća ρ , kg/m³ općenito ovisi o kemijskom sastavu, mikrostrukturnim fazama i temperaturi čelika. Legirni elementi veće gustoće (W, Ni, Mo, Co) povećavaju, a "lakši" legirajući elementi (C, Si, Cr, Mn, Al) snižavaju gustoću čelika. Pri mikrostrukturnim faznim pretvorbama dolazi do promjena gustoće ovisno o vrsti pretvorbe. Kod pretvorbe kristalne rešetke α -željeza u γ -željezo (tzv. " α/γ pretvorba") gustoća se povećava za nekoliko postotaka (< 5 %), a pri pretvorbi γ/α ona se za isti iznos smanjuje. S povećanjem temperature gustoća čelika se smanjuje.

Koeficijent vodljivosti topline λ , W/(mK) čelika ovisi o čimbenicima utjecajnim na gibanje slobodnih elektrona i titranje kristalne rešetke (kemijski sastav, mikrostrukturne faze, veličina kristalnih zrna, nesavršenosti, uključci i temperatura). Kako su slobodni elektroni nositelji i električne energije postoji direktna povezanost vodljivosti topline s električnom vodljivosti. Od navedenih utjecajnih čimbenika posebno se ističe utjecaj legirajućih elemenata i temperature na vodljivost topline. Koeficijent vodljivosti topline metala značajno opada dodavanjem bilo kojih legirajućih elemenata jer se time povećava disipacija slobodnih elektrona u metalu [94]. Utjecaj porasta temperature na vodljivost topline čelika različitih sastava najjači je kod nižih temperatura (do 650 °C) kad su velike razlike između nelegiranih, niskolegiranih i visokolegiranih čelika (**slika 6.8**). Na temperaturama iznad 700 °C koeficijenti vodljivosti topline svih čelika postepeno se izjednačuju, a iznad 850 °C su praktički jednaki.

U literaturi se može pronaći niz izraza i različitih pristupa (empiričke jednadžbe, regresijska analiza, primjena neuronskih mreža, genetičkih algoritama i dr.) za određivanje koeficijenta vodljivosti topline u ovisnosti od kemijskog sastava i temperature [94, 99]. U vlastito razrađenom simulacijskom

programu primijenjen je matematički model za aproksimaciju promjene vodljivosti topline ovisne o temperaturi krivuljama $\lambda = f(\mathcal{G})$ prema **slici 6.9**. Aproksimacijski model promjene koeficijenta vodljivosti topline tijekom ugrijavanja i ohlađivanja konkretnog čelika opisuje tijek funkcije $\lambda = f(\mathcal{G})$ pomoću tri krivulje i jednog pravca. primjena aproksimacijskog modela sa **slike 6.9**. ograničena je na temperature između 0 i 1200°C uobičajene za indukcijsko kaljenje.

Krivulja $\mathbf{a_1}$ opisuje promjenu koeficijenta vodljivosti topline tijekom ugrijavanja polazne feritnoperlitne mikrostrukture do temperature A_3 (uz faznu pretvorbu ferita i perlita u nehomogeni austenit). Za daljnje ugrijavanje austenita iznad temperature A_3 do konačne temperature austenitizacije \mathcal{G}_a karakteristična je praktički linearna promjena koeficijenta vodljivosti topline s promjenom temperature aproksimirana pravcem $\mathbf{b_1}$. Promjena koeficijenta vodljivosti topline tijekom ohlađivanja pothlađenog austenita do M_s temperature također se odvija po pravcu $\mathbf{b_1}$ (slično ohlađivanju austenitnih čelika na **slici 6. 8**). Ispod M_s temperature nastupa promjena koeficijenta vodljivosti topline prema krivulji $\mathbf{b_2}$ karakterističnoj za martenzitnu mikrostrukturu. Ako nije nastupila martenzitna pretvorba već bainitna, tada se prema vlastitoj nadopuni matematičkog modela [42] koeficijent vodljivosti topline mijenja prema krivulji $\mathbf{b_3}$ karakterističnoj za bainitnu mikrostrukturu.

Slika 6.8. Promjena koeficijenta vodljivosti topline s temperaturom tipičnih skupina čelika [17]

Slika 6.9. Promjena srednje vrijednosti koeficijenta vodljivosti topline tijekom ugrijavanja i ohlađivanja čelika pri indukcijskom kaljenju interpolirana karakterističnim krivuljama [42].

Krivulja \mathbf{a}_1 aproksimirana je nizom jednadžbi oblika (6.38) određenih statističkom analizom genetičkim algoritmima i genetičkim programiranjem (tablica VI.1) [100]. Pravac b_1 opisan je linearnim jednadžbom (6.39.a), a krivulje b_2 i b_3 aproksimirane su vlastito određenim jednadžbama (6.40.a-b) (koje vrijede za slučajeve kad je LE < 5).

$$\lambda(\mathcal{G})\Big|_{a_1} = a_1 + a_2\mathcal{G} + a_3\ln(LE) \tag{6.38}$$

$$\lambda(9)\Big|_{b_1} = \lambda\Big|_{A_3} + \frac{\lambda\Big|_{1200^\circ C} - \lambda\Big|_{A_3}}{1200 - A_{c3}} (9 - A_{c3})$$
(6.39)

$$\lambda(\mathcal{G})\big|_{b2} = \lambda\big|_{0^{\circ}C} - \left(\frac{\mathcal{G}}{M_s}\right)^{LE} \left(\lambda\big|_{0^{\circ}C} - \lambda\big|_{M_s}\right)$$
(6.40.a)

$$\lambda(\mathcal{G})\big|_{b_3} = \lambda\big|_{0^\circ C} - \left(\frac{\mathcal{G}}{B_s}\right)^{L^E} \left(\lambda\big|_{0^\circ C} - \lambda\big|_{B_s}\right)$$
(6.40.b)

a_1, a_2, a_3 regresijski koeficijenti
9 Celzijeva temperatura, °C
LE suma masenih udjela legirajućih elemenata
(C,Si,Mn,Co;Cr,Ni,Mo,V,W,Ti,Ta,Nb), %
A_{c3} temperatura završetka α/γ fazne pretvorbe, °C
$M_{\rm s}$ temperatura početka martenzitne pretvorbe, °C
$B_{\rm s}$ temperatura početka bainitne pretvorbe, °C

Temperatura	Regresijski koeficijenti jednadžbe (6.38)	
(ϑ, °C)	$a_1 + a_2 \mathcal{P}$	<i>a</i> ₃
20	49,255	-9,5489
100	47,824	-8,6825
200	46,037	-7,6512
300	43,055	-6,4341
400	39,764	-5,2045
500	37,239	-4,2121
600	35,320	-3,390
700	33,836	-2,7064

Tablica VI.1. Regresijski koeficijenti aproksimacijske funkcije koeficijenta vodljivosti topline za različite temperature od 20 do 700 °C [100]

Specifični toplinski kapacitet čelika $c=f(\mathcal{G})$ ovisan o temperaturi određen je iz podataka kalorimetrijskih mjerenja entalpije i proračuna $c(\mathcal{G})=\partial h/\partial \mathcal{G}$ za tridesetak čelika objavljenih u [82, 99] (slika 6.10).

Slika 6. 10 Promjena specifičnog toplinskog kapaciteta ovisnog od temperature $c(\theta) = \partial h / \partial \theta$ pri ugrijavanju ugljičnih i niskolegiranih čelika [82]

Kao što je vidljivo iz **slike 6.10** približavanjem vrijednosti temperature ugrijavanja čelika temperaturama Curie i A_I vrijednosti specifičnog toplinskog kapaciteta brzo rastu, a po dostizanju ovih temperatura naglo se smanjuju. Ove velike promjene vrijednosti $c=f(\mathcal{P})$ u uskom intervalu između temperatura T_{Curie} , A_1 i A_3 teško je ugraditi u računalni program bez opasnosti od nestabilnosti i grešaka simulacijskog algoritma. Stoga je u vlastito razvijenom simulacijskom modelu indukcijskog kaljenja odijeljen specifični toplinski kapacitet mikrostrukturnih faza od latentne topline njihovih faznih i magnetskih pretvorbi. Time je postignuta umjerenija promjena funkcije $c=f(\mathcal{P})$ i bolja numerička stabilnost proračuna

Vlastiti model na temelju kojeg je provedeno određivanje specifičnog toplinskog kapaciteta pojedinih faza i latentne topline pretvorbi (mikrostrukturnih i magnetskih) postavljen je prema smjernicama iz [44, 87]. Pri postavljanju računalne simulacije korisnik zadaje vrijednosti specifičnog toplinskog kapaciteta konkretnog čelika u funkciji temperature $c(\vartheta)$ koje kod ugljičnih i niskolegiranih čelika uobičajeno daju krivulju $c_{eq}=f(\vartheta)$ shematski prikazanu na **slici 6.11**. Iz zadanih vrijednosti $c_{eq}=f(\vartheta)$ programski se određuju aproksimacijske funkcije specifičnog toplinskog kapaciteta mikrostrukturnih faza s kristalnom rešetkom α -željeza (c^{α}) i γ -željeza (c^{γ}) bez mikrostrukturnih pretvorbi te vrijednost specifičnog topline faznih pretvorbi Φ_L prema **slici 6.11**.

$$c^{\alpha}(\mathcal{G}) = c_{eq}(\mathcal{G}_0) + \frac{c_{eq}(\mathcal{A}_3)_{\max} - c_{eq}(\mathcal{G}_0)}{A_3 - \mathcal{G}_0} (\mathcal{G} - \mathcal{G}_0) \qquad \Im < A_3 \qquad (6.41)$$

Specifični toplinski kapacitet austenita na temperaturama višim od A_3 jednak je $c_{eq}(9)$ i uobičajeno linearno raste s porastom temperature. Specifični toplinski kapacitet pothlađenog austenita (na temperaturama između A_1 i M_s , linija --- na **slici 6.11**) u razrađenom modelu se određuje ekstrapolacijskom jednadžbom (6.42):

$$c^{\gamma}(\vartheta) = c_{eq}(\vartheta_a) - \frac{c_{eq}(\vartheta_a) - c_{eq}(A_3)_{\min}}{\vartheta_a - A_3}(\vartheta_a - \vartheta)$$
(6.42)

Volumna latentna toplina Φ_L fazne i feromagnetske pretvorbe na zadanom intervalu temperatura $(\mathcal{P}_1 > \mathcal{P}_0, \mathcal{P}_2 \le A_3)$ određuje se prema slijedećim jednadžbama modela:

$$\Phi_{L} = \begin{vmatrix} \rho \left[\frac{\partial}{\partial t} \left(y_{1} L_{ij}^{\alpha \gamma} \right) + \frac{\partial}{\partial t} \left(y_{0} L_{mag} \right) \right]; & \dots austenitizacija \\ \rho \left[\frac{\partial}{\partial t} \left(y_{j} L_{ij}^{\alpha \gamma} \right) + \frac{\partial}{\partial t} \left(y_{j} L_{mag} \right) \right]; & \dots gašenje \quad (j = 2, 3, 4, 5) \end{aligned}$$
(6.43.a)

$$L_{mag} = \int_{\mathcal{G}_{1}}^{\mathcal{G}_{2}} \left[c_{eq}(\mathcal{G}) - c^{\alpha}(\mathcal{G}) \right] d\mathcal{G}$$
(6.43.b)

$$L_{ij}^{\alpha\gamma} = \int_{\vartheta_{i}}^{\vartheta_{2}} \left[c^{\alpha} \left(\vartheta \right) - c^{\gamma} \left(\vartheta \right) \right] d\vartheta$$
(6.43.c)

Slika 6.11 Vlastiti model promjene specifičnog toplinskog kapaciteta tijekom ugrijavanja i ohlađivanja čelika pri indukcijskom kaljenju

Član L_{mag} predstavlja volumnu latentnu toplinu promjene magnetskih svojstava materijala, a član $L_{ij}^{\alpha\gamma}$ predstavlja volumnu latentnu toplinu fazne pretvorbe. Oba člana mogu se izračunati numeričkom integracijom jednadžbi (6.43.b) i (6.43.c). U grafičkom prikazu promjene specifičnog toplinskog kapaciteta na intervalu temperatura (ϑ_1 , ϑ_2) (**slika 6.11**) član L_{mag} predstavlja površinu između krivulja $c_{\text{eq}}(\vartheta)$ i $c^{\alpha}(\vartheta)$, a član $L_{ij}^{\alpha\gamma}$ površinu između pravaca $c^{\alpha}(\vartheta)$) i $c^{\gamma}(\vartheta)$.

Uvjeti postavljeni na indekse uz jednadžbu (6.43.a) odražavaju moguću kinetiku faznih pretvorbi. Pri ugrijavanju na temperaturu jednaku ili veću od A_1 iz polazne mikrostrukture (*i=0*) polaznog udjela y_0 = 1 nastaje austenit (*j* = 1) y_1 = 1 – y_0 . Ugrijavanje polazne mikrostrukture do temperature A_3 uzrokuje promjenu magnetičnosti materijala zbog čega treba dovesti dodatnu energiju koja odgovara latentnoj toplini L_{mag} . Stvaranje austenita također zahtijeva dodatnu energiju koja odgovara latentnoj toplini fazne pretvorbe L_{ij} . Ukupni iznosi ovih latentnih toplina u diferencijalu vremena dt jednaki su njihovom produktu s udjelom odgovarajuće faze $y_0 L_{mag}$, odnosno $y_1 L_{ij}^{a\gamma}$. Na završetku stvaranja austenita kad je $\vartheta_2 = A_3$ udio polazne mikrostrukture u promatranom elementu materijala jednak je nuli ($y_0 = 0$), udio austenita jedak je jedan (y_1 =1), a iznos specifične entalpije fazne pretvorbe $L_{ij}^{a\gamma}$ jednaka je nuli pa je i član Φ_L jedak nuli. Pri ohlađivanju udio pothlađenog austenita y_1 se smanjuje zbog izlučivanja mikrostrukturnih faza (martenzita, bainita, ferita, perlita) kojima su pridruženi indeksi veći od 1 uslijed čega se oslobađa latentna toplina faznih pretvorbi $L_{ij}^{a\gamma}$ i latentna toplina promjene magnetičnosti L_{mag} .

6.5 Rješenje jednadžbe temperaturnog polja metodom konačnih elemenata

Aproksimacijske funkcije temperature u čvorovima trokutnog elementa. Rješavanje jednadžbi temperaturnog polja obratka u razvijenom simulacijskom modelu indukcijskog kaljenja provodi se metodom konačnih elementa na istoj mreži trokutnih konačnih elemenata uz iste linearne funkcije oblika kao kod rješavanja jednadžbi elektromagnetskog polja (poglavlje 5.3). Iznosi temperature po površini trokutnog konačnog elemenata aproksimiraju se linearnim funkcijama (slika 6.12) čije su jednadžbe (5.34)- (5.35) već navedene kod formulacije elektromagnetskog konačnog elementa (poglavlje 5.3.1). Aproksimacijske funkcije temperature \overline{g} imaju samo jednu komponentu po čvoru konačnog elementa [40, 77].

$$\overline{\mathcal{G}}^{e} = \begin{bmatrix} N_{1} & N_{2} & N_{3} \end{bmatrix} \begin{cases} \mathcal{G}_{1}^{e} \\ \mathcal{G}_{2}^{e} \\ \mathcal{G}_{3}^{e} \end{cases} = \sum_{i=1}^{3} N_{j}^{e} \mathcal{G}_{j}^{e} = \begin{bmatrix} N \end{bmatrix} \{ \mathcal{G}^{e} \} \qquad j = 1, 2, 3 \qquad (6.44)$$

Slika 6.12 Funkcije oblika N_1 , N_2 , N_3 nad osnosimetričnim trokutnim elementom i aproksimacija raspodjele temperature $\overline{\mathcal{G}}^e$ po elementu

Veza između proračuna elektromagnetskog i temperaturnog polja izravno je ostvarena preko članova toplinskih izvora P_{HB} i P_{JQ} . Diferencijalne jednadžbe temperaturnog polja obratka (6.12), odnosno (6.13) riješit će se formulacijom težinskog reziduala s Galerkinovom metodom rješavanja težinskog integrala na dvodimenzijskom, odnosno osnosimetričnom trokutnom elementu s rubnim uvjetima zadanim su jednadžbama (6.17) do (6.19), (6.19) do (6.25).

Raspodjela vrijednosti temperature po konačnom dvodimenzijskom ili osnosimetričnom linearnom trokutnom elementu matematički je aproksimirana jednadžbom (6.44). Uvrštenjem aproksimacije (6.44) u jednadžbe (6.12) ili (6.13) pojavljuje se ostatak R raspodijeljen po trokutnom elementu.

a) Dvodimenzijski trokutni konačni element

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial [N]}{\partial x} \right) \left\{ \mathcal{G}^{e} \right\} + \frac{\partial}{\partial y} \left(\lambda \frac{\partial [N]}{\partial y} \right) \left\{ \mathcal{G}^{e} \right\} + \left\{ P_{JQ} + P_{HB} - \Phi_{L} \right\} - \rho c \left[N \right] \left\{ \frac{\partial \mathcal{G}^{e}}{\partial t} \right\} = \left[R(x, y : \{\mathcal{G}\}) \right]$$
(6.45)

b) Osnosimetrični trokutni konačni element

$$\frac{\partial}{\partial r} \left(\lambda r \frac{\partial [N]}{\partial r} \right) \left\{ \mathcal{G}^{e} \right\} + \frac{\partial}{\partial z} \left(\lambda r \frac{\partial [N]}{\partial z} \right) \left\{ \mathcal{G}^{e} \right\} + r \left\{ P_{JQ} + P_{HB} - \Phi_{L} \right\} - r \rho c \left[N \right] \left\{ \frac{\partial \mathcal{G}^{e}}{\partial t} \right\} = \left[R(r, z : \{\mathcal{G}\}) \right]$$
(6.46)

Primjenom Galerkinove metode za postavljanje težinskog integrala,

$$\iiint_{V} [N]^{T} [R(r, z : \{\mathcal{S}\}] dV^{e} = 0$$
(6.47)

na gornje jednadžbe (6.45) i (6.46) s rubnim uvjetima (6.21) do (6.25) dobivaju se jednadžbe težinskog integrala s matricama dimenzija 3x3 koje množi tročlani vektor $\{\mathcal{G}^e\}$.

a) Dvodimenzijski trokutni konačni element

$$\iiint_{V} [N]^{T} \left(\frac{\partial}{\partial x} \left(\lambda \frac{\partial [N]}{\partial x} \right) \left\{ 9^{e} \right\} + \frac{\partial}{\partial y} \left(\lambda \frac{\partial [N]}{\partial y} \right) \left\{ 9^{e} \right\} + \left\{ P_{JQ} + P_{HB} - \Phi_{L} \right\} - \rho c[N] \left\{ \frac{\partial 9^{e}}{\partial t} \right\} dV^{e} + \\
+ \iint_{S_{q}} [\overline{N}]^{T} \lambda_{s} \left\{ \frac{\partial 9^{\Gamma e}}{\partial n} \right\} dS^{\Gamma} = 0$$
(6.48)

b) Osnosimetrični trokutni konačni element

$$\iiint_{V} [N]^{T} \left(\frac{\partial}{\partial r} \left(\lambda r \frac{\partial [N]}{\partial r} \right) \{ \mathcal{G}^{e} \} + \frac{\partial}{\partial z} \left(\lambda r \frac{\partial [N]}{\partial z} \right) \{ \mathcal{G}^{e} \} + r \{ P_{JQ} + P_{HB} - \Phi_{L} \} - r\rho c [N] \left\{ \frac{\partial \mathcal{G}^{e}}{\partial t} \right\} \right) dV^{e} + \\
+ \iint_{S_{q}} [\overline{N}]^{T} \lambda_{s} r \left\{ \frac{\partial \mathcal{G}^{\Gamma e}}{\partial n} \right\} dS^{\Gamma} = 0$$
(6.49)

Jednadžbe (6.48) odnosno (6.49) uređuju se primjenom Green-Gaussovog teorema o divergenciji i izborom težinske funkcije na rubnim stranicama trokutnih elemenata $[\overline{N}]$ takvom da je $[N] = -[\overline{N}]$ nakon čega se dobivaju se slijedeće jednadžbe za infinitezimalni volumen i površinu definirane ovisno od koordinatnog sustava:

a) Dvodimenzijski trokutni konačni element

$$\left(\iint_{S} [N]^{T} \rho c[N] dx dy \right) \left\{ \frac{\partial \mathcal{P}^{e}}{\partial t} \right\} + \left(\iint_{S^{e}} \left\{ \frac{\partial [N]^{T}}{\partial x} \lambda \frac{\partial [N]}{\partial x} + \frac{\partial [N]^{T}}{\partial y} \lambda \frac{\partial [N]}{\partial y} \right\} dx dy \right) \left\{ \mathcal{P}_{e} \right\} \\
= \iint_{S} [N]^{T} \left\{ P_{JQ} + P_{HB} - \Phi_{L} \right\} dx dy + \int_{\Gamma_{0}} [N]^{T} \lambda_{s} \left\{ \frac{\partial \mathcal{P}^{\Gamma_{e}}}{\partial n} \right\} d\Gamma$$
(6.50)

b) Osnosimetrični trokutni konačni element

$$2\pi \iint_{S} [N]^{T} \rho c[N]^{r} dr dz \left\{ \frac{\partial \mathcal{P}^{e}}{\partial t} \right\} + \left(2\pi \iint_{S} \left(\frac{\partial [N]^{T}}{\partial r} \lambda r \frac{\partial [N]}{\partial r} + \frac{\partial [N]^{T}}{\partial z} \lambda r \frac{\partial [N]}{\partial z} \right) dr dz \right) \left\{ \mathcal{P}^{e} \right\} +$$

$$= 2\pi \iint_{S} [N]^{T} \left\{ P_{JQ} + P_{HB} - \Phi_{L} \right\}^{r} dr dz + 2\pi \iint_{\Gamma_{q}} [N]^{T} \lambda_{s} r \left\{ \frac{\partial \mathcal{P}^{\Gamma_{e}}}{\partial n} \right\} d\Gamma$$

$$(6.51)$$

Drugi član na desnoj strani jednadžbi (6.50) i (6.51) predstavlja toplinski tok koji konačni element izmjenjuje s okolinom kroz oplošje Γ^{e} . Ovaj član prikladnije je izraziti preko lokalne gustoće toplinskog toka $q_{\rm S}$ izmijenjene s okolišem koja se iznova određuje za svaki novi vremenski inkrement simulacije, a povezana je s gradijentom temperature jednadžbom rubnog uvjeta (6.23). Stoga se član rubnih uvjeta na desnoj strani jednadžbi (6.50) i (6.51) zamjenjuje slijedećim izrazima: a) Dvodimenzijski trokutni konačni element

$$\int_{\Gamma_0} [N]^T \lambda_s \left\{ \frac{\partial \mathcal{G}^{\Gamma e}}{\partial n} \right\} d\Gamma = -\int_{\Gamma_0} [N]^T \left\{ q_s \right\} d\Gamma$$
(6.52)

b) Osnosimetrični trokutni konačni element

$$2\pi \int_{\Gamma_0} [N]^T \lambda_s r \left\{ \frac{\partial \mathcal{P}^{r_e}}{\partial n} \right\} d\Gamma = -2\pi \int_{\Gamma_0} [N]^T \{q_s\} r d\Gamma$$
(6.53)

Radi jednostavnijeg zapisa i numeričke integracije (Gauss-Legendreova kvadratura uz stupanj točnosti dva) uvode se pomoćne oznake matrica i vektora u jednadžbama (6.50) i (6.51) definirane kako slijedi [40, 77]:

a) Dvodimenzijski trokutni konačni element

$$\left[C_{ij}^{e}\right] = \iint_{S} [N]^{T} \rho c[N] dx dy = \rho^{e} c^{e} \frac{A^{e}}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
(6.54)

$$\begin{bmatrix} D_{ij}^{e} \end{bmatrix} = \iint_{S^{e}} \left(\frac{\partial [N]^{T}}{\partial x} \lambda \frac{\partial [N]}{\partial x} + \frac{\partial [N]^{T}}{\partial y} \lambda \frac{\partial [N]}{\partial y} \right) dx dy = \frac{\lambda^{e}}{4A^{e}} \left[(b_{i}b_{j} + c_{i}c_{j}) \right]$$

i = 1,2,3; j = 1,2,3 (6.55)

$$\left\{ \Phi_{i}^{e} \right\} = \iint_{S} [N]^{T} \left\{ \Phi_{JQ} + \Phi_{HB} - \Phi_{L} \right\} dx dy = \frac{A^{e} (P_{JQ} + P_{HB} - \Phi_{L})^{e}}{3} \begin{cases} 1\\ 1\\ 1 \end{cases}$$
(6.56)

$$\left\{ \mathcal{Q}_{i}^{\Gamma} \right\} = \int_{\Gamma_{0}} \left[N \right]^{T} \left\{ q_{s} \right\} d\Gamma^{e} = \int_{\Gamma_{0}} \left\{ \begin{matrix} N_{1} \\ N_{2} \\ N_{3} \end{matrix} \right\} \left\{ \begin{matrix} q_{s1} \\ q_{s2} \\ q_{s3} \end{matrix} \right\} d\Gamma$$

$$(6.57)$$

b) Osnosimetrični trokutni konačni element

$$\left[C_{ij}^{e}\right] = 2\pi \iint_{S} [N]^{T} \rho c[N] r dr dz = 2\pi \rho^{e} c^{e} \frac{A^{e} r_{c}}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
(6.58)

$$\begin{bmatrix} D_{ij}^{e} \end{bmatrix} = 2\pi \iint_{S} \left(\frac{\partial [N]^{T}}{\partial r} \lambda r \frac{\partial [N]}{\partial r} + \frac{\partial [N]^{T}}{\partial z} \lambda r \frac{\partial [N]}{\partial z} \right) dr dz = \frac{\pi \lambda^{e} r_{c}}{2A^{e}} \left[\left(b_{i} b_{j} + c_{i} c_{j} \right) \right]$$

i = 1,2,3; j = 1,2,3 (6.59)

$$\left\{\Phi_{i}^{e}\right\} = 2\pi \iint_{S} [N]^{T} \left\{\Phi_{JQ} + \Phi_{HB} - \Phi_{L}\right\} dr dz = \frac{2\pi A^{e} r_{c} \left(P_{JQ} + P_{HB} - \Phi_{L}\right)^{e}}{3} \begin{bmatrix}1\\1\\1\end{bmatrix}$$
(6.60)

$$\left\{ Q_{i}^{\Gamma} \right\} = 2\pi \int_{\Gamma_{0}} \left[N \right]^{T} \left\{ q_{s} \right\} r d\Gamma^{e} = 2\pi \int_{\Gamma^{e}} \left\{ \begin{matrix} N_{1} \\ N_{2} \\ N_{3} \end{matrix} \right\} \left\{ \begin{matrix} q_{s1} \\ q_{s2} \\ q_{s3} \end{matrix} \right\} r d\Gamma$$

$$(6.61)$$

Matrice i vektori (6.54) do (6.61) imaju svoj fizikalni smisao: $[C_{ij}^e]$ je matrica toplinske kapacitivnosti, $[D_{ij}^e]$ matrica provođenja topline, $\{Q_i^{\Gamma}\}$ je vektor koncentriranih rubnih uvjeta, a $\{\Phi_i^e\}$ je vektor koncentriranih toplinskih izvora (ponora) u geometrijskom čvoru.

Vrijednosti gustoće toplinskog toka raspodijeljenog po površini obratka $q_s = f(\Gamma)$ računa se uz pretpostavku njegove linearne promjene veličina po rubnoj stranici trokutnog elementa duljine L^e (slika 6.13):

$$L^{e} = \sqrt{(r_{p+1} - r_{p})^{2} + (z_{p+1} - z_{p})^{2}} \qquad (x \equiv r, y \equiv z) \qquad (6.62)$$

Ekvivalentni koncentrirani toplinski tokovi u čvorove p i p+1 na rubu S^e iznose:

a) Dvodimenzijski trokutni konačni element [89]:

$$Q_p^e = q_{s,1}^e \frac{L_1^e}{2} + q_{s,2}^e \frac{L_2^e}{2}$$
(6.63)

b) Osnosimetrični trokutni konačni element [40]:

$$Q_{p}^{e} = \pi L^{e} \frac{r_{p+1} q_{s,p+1}^{e} + 2r_{p} q_{s,p}^{e}}{3}$$
(6.64.a)

$$Q_{p+1}^{e} = \pi L^{e} \frac{2r_{p+1}q_{p+1}^{e} + r_{p}q_{p}^{e}}{3}$$
(6.64.b)

Slika 6.13. Toplinski tok na graničnoj površini:

- c) dvodimenzijskog elementa [89]
- d) osnosimetričnog trokutnog elementa [40]

Pomoću jednadžbi (6.54) do (6.61) sustav jednadžbi *e*-tog konačnog elementa (dvodimenzijskog ili osnosimetričnog) dobiva oblik pogodan za matrični zapis:

$$\left[C_{ij}^{e}\right]\left\{\frac{\partial \mathcal{P}}{\partial t}\right\} + \left[D_{ij}^{e}\right]\left\{\mathcal{P}^{e}\right\} = \left\{\Phi_{i}^{e}\right\} - \left\{Q_{ij}^{e}\right\}\right]$$
(6.65)

Jednadžba provođenja topline na konačnom trokutnom elementu (6.65) daje kao rješenje vrijednosti temperature (9) u k-tom vremenskom trenutku. Za izračunavanje temperaturnog polja u slijedećem trenutku k+1 ($t+\Delta t$) jednadžba (6.65) se dodatno diskretizira u vremenskoj domeni.

Zbog stabilnosti i točnosti rješenja nužno je izborom dovoljno bliskih vremenskih stanja (t, $t+\Delta t$) osigurati monotonu promjenu temperature po cijelom matematički modeliranom području obratka tijekom intervala Δt . Diskretizacija u vremenskoj domeni τ provedena je primjenom minimizacije težinskih ostataka na jednadžbu (6.65) [137].

$$\int_{\tau} W_{\iota}^{T} \left(\left[C_{ij}^{e} \right] \left\{ \frac{\partial \mathcal{P}}{\partial t} \right\} + \left[D_{ij}^{e} \right] \left\{ \mathcal{P}^{e} \right\} - \left\{ \Phi_{\iota}^{e} \right\} + \left\{ Q_{ij}^{e} \right\} \right] dt = 0$$
(6.66)

Wt ... težinska funkcija u vremenskoj domeni

Primjenom postupka aproksimacije funkcije u vremenskoj domeni slijedi:

$$\mathcal{G} \approx \sum N_t \mathcal{G}_k$$
 (6.67)

gdje je \mathcal{P}_k Celzijeva temperatura u geometrijskom čvoru u k-tom trenutku, a $N_t = f(t)$ vremenska interpolacijska funkcija. Za interpolacijsku funkciju N_t je dovoljan polinom prvog reda, jer u jednadžbi (6.67) postoji samo prva derivacija temperature po vremenu. Tipični vremenski element dužine Δt koji povezuje trenutke k i k+1 prikazan je **slikom 6.14.** Linearne interpolacijske funkcije N_t u vremenskoj domeni τ (koja odgovara jednom vremenskom elementu Δt) zadane su sljedećim jednadžbama [41, 80]:

$$\tau = \frac{t}{\Delta t} \qquad \qquad 0 < \tau < 1 \qquad \qquad 0 < t < \Delta t \qquad (6.68)$$

$$N_{t,k} = 1 - \tau \qquad \qquad \frac{\partial N_{t,k}}{\partial t} = -\frac{1}{\Delta t} \qquad (6.69.a)$$

$$N_{t,k+1} = \tau \qquad \qquad \frac{\partial N_{t,k+1}}{\partial t} = \frac{1}{\Delta t} \tag{6.69.b}$$

Izbor linearnih interpolacijskih funkcija N_t određuje pogrešku rješenja \mathcal{P}_{k+1} koja je reda $O(\Delta t^2)$. To znači da će se nakon *k* vremenskih koraka ukupna pogreška rješenja povećati *k* puta [92, 95].

- - -

Slika 6.14. Linearna interpolacijska funkcija na vremenskom elementu [80]

Uvrštenjem jednadžbi (6.67) i (6.69.a-b) u (6.66) uz pretpostavku da je vremenska domena jednaka jednom elementu slijede izrazi koji povezuju vektore $\{\mathcal{G}_k^e\}$ i $\{\mathcal{G}_{k+1}^e\}$:

$$\left(\left[C_{ij}^{e} \right] \int_{0}^{1} W_{t}^{T} \frac{dt}{\Delta t} \right) \left\{ \mathcal{G}_{k+1}^{e} \right\} + \left(\left[D_{ij}^{e} \right] \int_{0}^{1} W_{t}^{T} \tau dt \right) \left\{ \mathcal{G}_{k+1}^{e} \right\} - \left(\left[C_{ij}^{e} \right] \int_{0}^{1} W_{t}^{T} \frac{dt}{\Delta t} \right) \left\{ \mathcal{G}_{k}^{e} \right\} + \left(\left[D_{ij}^{e} \right] \int_{0}^{1} W_{t}^{T} (1 - \tau) dt \right) \left\{ \mathcal{G}_{k}^{e} \right\} - \left(\int_{0}^{1} W_{t}^{T} \left(N_{t,k} \left\{ \Phi_{i,k}^{e} \right\} + N_{t,k+1} \left\{ \Phi_{i,k+1}^{e} \right\} \right) dt + \int_{0}^{1} W_{t}^{T} \left(N_{t,k} \left\{ Q_{i,k}^{e} \right\} + N_{t,k+1} \left\{ Q_{i,k+1}^{e} \right\} \right) dt = 0$$

$$(6.70.a)$$

$$\left(\left[C_{ij}^{e} \right]_{0}^{1} W_{t}^{T} \frac{dt}{\Delta t} + \left[D_{ij}^{e} \right]_{0}^{1} W_{t}^{T} \tau dt \right) \left\{ \mathcal{G}_{k+1}^{e} \right\} - \left(\left[C_{ij}^{e} \right]_{0}^{1} W_{t}^{T} \frac{dt}{\Delta t} - \left[D_{ij}^{e} \right]_{0}^{1} W_{t}^{T} (1-\tau) dt \right) \left\{ \mathcal{G}_{k}^{e} \right\} - \int_{0}^{1} W_{t}^{T} \left((1-\tau) \left\{ \Phi_{i,k}^{e} \right\} + \tau \left\{ \Phi_{i,k+1}^{e} \right\} \right) dt + \int_{0}^{1} W_{t}^{T} \left((1-\tau) \left\{ \mathcal{Q}_{i,k}^{e} \right\} + \tau \left\{ \mathcal{Q}_{i,k+1}^{e} \right\} \right) dt = 0$$

$$(6.70.b)$$

U jednadžbe (6.70.a-b) mogu se uvrstiti različite težinske funkcije W_t . Uobičajeno se umjesto težinske funkcije W_t . koristi parametar Θ :

$$\Theta = \frac{\int_{0}^{1} W_t \tau d\tau}{\int_{0}^{1} W_t d\tau}$$
(6.71)

Izbor težinske funkcije $W_{t.} = \tau$ znači primjenu Galerkinove metode i u vremenskoj domeni, što je prirodan izbor jer je isti pristup primijenjen u prostornoj domeni. Kod Galerkinove metode Θ =2/3 što osigurava bezuvjetnu numeričku stabilnost rješenja jednadžbi (6.70.a-b) [80].

Jednadžbe (6.70.a-b) opisuju problem početnih vrijednosti koji se rješava iteracijski. Uz pretpostavku da je poznat vektor temperature $\{\mathcal{G}_{k}^{e}\}$ u čvorovima konačnog elementa u k-tom trenutku treba izračunati vektor temperature $\{\mathcal{G}_{k+1}^{e}\}$ u čvorovima elementa u trenutku k+1. Uvrštenjem jednadžbe (6.71) u sustav jednadžbi (6.70.a-b) i uređivanjem sustava dobiva se jednadžba (6.72) u kojoj se uočavaju mogućnosti daljnjeg pojednostavljenja matričnog zapisa uvođenjem pomoćnih matrica $[K_{k}^{e}]$, $[K_{k+1}^{e}]$ i vektora $[F^{e}]$:

$$\underbrace{\left(\!\left[C_{ij}^{e}\right]\!+\Theta\Delta t\left[D_{ij}^{e}\right]\!\right)}_{\left[K_{k+1}^{e}\right]}\!\left\{\!\left[\theta_{k+1}^{e}\right]\!\right]}\!\left\{\!\left[\theta_{k+1}^{e}\right]\!+\left(\!\left[\theta_{i,k+1}^{e}\right]\!+\left(1\!-\!\Theta\right)\!\left\{\!\Phi_{i,k}^{e}\right]\!-\Theta\!\left\{\!\mathcal{Q}_{i,k+1}^{e}\right\}\!-\left(1\!-\!\Theta\right)\!\left\{\!\mathcal{Q}_{i,k}^{e}\right\}\!\right)\!\Delta t\right]_{\left[K_{k}^{e}\right]}\right\}}_{\left[K_{k}^{e}\right]} \left\{\!\left[\theta_{i,k+1}^{e}\right]\!+\left(1\!-\!\Theta\right)\!\left\{\!\Phi_{i,k+1}^{e}\right\}\!+\left(1\!-\!\Theta\right)\!\left\{\!\Phi_{i,k+1}^{e}\right\}\!-\left(1\!-\!\Theta\right)\!\left\{\!\mathcal{Q}_{i,k}^{e}\right\}\!\right)\!\Delta t\right]_{\left[K_{k}^{e}\right]}\right\}\right\} \left\{\!\left[\theta_{i,k+1}^{e}\right]\!+\left(1\!-\!\Theta\right)\!\left\{\!\Phi_{i,k+1}^{e}\right\}\!-\left(1\!-\!\Theta\right)\!\left\{\!\mathcal{Q}_{i,k}^{e}\right\}\!\right]\!\Delta t\right]_{\left[K_{k}^{e}\right]}\right\}\right\} \left\{\!\left[\theta_{i,k+1}^{e}\right]\!+\left(1\!-\!\Theta\right)\!\left\{\!\Phi_{i,k+1}^{e}\right\}\!-\left(1\!-\!\Theta\right)\!\left\{\!\varphi_{i,k+1}^{e}\right\}\!\right]\!\Delta t\right]_{\left[K_{k}^{e}\right]}\right\}\right\} \left\{\!\left[\theta_{i,k+1}^{e}\right]\!+\left(\theta_{i,k+1}^{e}\right]\!+\left(1\!-\!\Theta\right)\!\left\{\!\Phi_{i,k+1}^{e}\right\}\!-\left(1\!-\!\Theta\right)\!\left\{\!\varphi_{i,k+1}^{e}\right\}\!\right]\!+\left(1\!-\!\Theta\right)\!\left\{\!\varphi_{i,k+1}^{e}\right\}\!-\left(1\!-\!\Theta\right)\!\left\{\!\varphi_{i,k+1}^{e}\right\}\!\right\}\right\}\right\}$$

$$\left[K_{k+1}^{e}\right] = \left[C_{ij}^{e}\right] + \Theta\Delta t \left[D_{ij}^{e}\right]$$
(6.73.a)

$$\begin{bmatrix} K_k^e \end{bmatrix} = \begin{bmatrix} C_{ij}^e \end{bmatrix} - (1 - \Theta)\Delta t \begin{bmatrix} D_{ij}^e \end{bmatrix}$$
(6.73.b)

$$\{F^{e}\} = \left(\Theta\{\Phi^{e}_{i,k+1}\} + (1-\Theta)\{\Phi^{e}_{i,k}\} - \Theta\{Q^{e}_{i,k+1}\} - (1-\Theta)\{Q^{e}_{i,k}\}\right) \Delta t$$
(6.73.c)

Uz pomoćne matrice (6.73.a-c) formulacija jednadžbe konačnog nestacionarnog temperaturnog elementa (6.72) (dvodimenzijskog ili osnosimetričnog) dobiva svoj konačni oblik:

$$\left[K_{k+1}^{e}\right]\left\{\mathcal{G}_{k+1}\right\} = \left[K_{k}^{e}\right]\left\{\mathcal{G}_{k}\right\} + \left\{F^{e}\right\}$$
(6.74)

Vrijednosti pojedinih članova u jednadžbi (6.74) ovisne su o Celzijevoj temperaturi \mathcal{G}_k , pa njeno rješavanje zahtijeva i dodatno prilagođavanje vrijednosti fizikalnih svojstva i površinskog toplinskog toka vrijednostima temperature u pojedinim čvorovima u svakom vremenskom inkrementu Δt . Vrijednosti toplinskih svojstava materijala (ρ , c, λ , L_{ij}) na konačnom elementu konstantne su prema pretpostavkama uvedenim u poglavlju 4.4.1, a mijenjaju se od jednog do drugog konačnog elementa ovisno o srednjoj temperaturi elementa u vremenskom intervalu Δt .

$$\overline{\mathcal{G}}^{e} = \frac{1}{6} \sum_{k=1}^{3} (\mathcal{G}^{e}_{k} + \mathcal{G}^{e}_{k+1})$$
(6.75)

Globalni sustav FEM jednadžbi temperaturnog polja. Jednadžbom (6.74) određen je integralni doprinos trokutnog konačnog elementa aproksimacijskoj raspodjeli temperaturnog polja u obratku. Slijedeći korak u primjeni metode konačnih elementa je sastavljanje globalnog sustava jednadžbi za nepoznate temperature \mathcal{P}_{k+1} , na svim poddomenama, odnosno geometrijskim čvorovima obratka.

Globalni sustav jednadžbi postavlja se u obliku globalnih matrica i vektora dobivenih superpozicijom lokalnih matrica i vektora trokutnih elemenata. Prije superpozicije lokalne matrice i vektori prošire se s nultim članovima kako bi postali istih dimenzija kao i globalne matrice i vektor. Veličina globalne matrice i vektora određena je brojem trokutnih elementa. Prema jednadžbi (6.74) definiraju se sljedeće globalne matrice i vektori:

$$\begin{bmatrix} K_{k+1} \end{bmatrix} = \sum_{e} \left(\begin{bmatrix} C^e \end{bmatrix} + \Theta \Delta t \begin{bmatrix} D^e \end{bmatrix} \right)$$
(6.76.a)

$$\begin{bmatrix} K_k \end{bmatrix} = \sum_e \left(\begin{bmatrix} C^e \end{bmatrix} - (1 - \Theta) \Delta t \begin{bmatrix} D^e \end{bmatrix} \right)$$
(6.76.b)

$$\{F\} = \sum_{e} \left(\Theta \Delta t \{F_{k+1}^{e}\} + (1-\Theta) \Delta t \{F_{k}^{e}\} + \Theta \Delta t \{Q_{k+1}^{e}\} + (1-\Theta) \Delta t \{Q_{k}^{e}\} \right)$$
(6.76.c)

$$[K_{k+1}]\{\mathcal{G}_{k+1}\} = [K_k]\{\mathcal{G}_k\} + \{F\}$$
(6.76)

U formirani globalni sustav već su uključeni prirodni rubni uvjeti preko vektora Q^e. Preostaje još uključenje uvjeta $\mathcal{P}=\mathcal{P}_0$, za geometrijske čvorove na površini obratka ispod prskalice koji su uronjeni u sredstvo za gašenje. Najjednostavniji način njihovog uključenja je korištenjem velikog broja na dijagonalnim članovima matrica $[K_{k+1}]$ i $[K_k]$.Ove matrice formiraju se bez obzira na rubni uvjet, a zatim se dijagonalnom članu doda veliki broj $\upsilon >> K_{k+1,ee}$ i $\upsilon >> K_{k,ee}$ takav da vrijedi $\upsilon + K_{k+1,ee} \approx \upsilon$, odnosno $\upsilon + K_{k,ee} \approx \upsilon$. Također se postavlja član $F_e = \mathcal{P}_0$. Za računalo s točnošću računanja na 6 znamenki je 1,23456·10¹⁵ = 1,00000·10¹⁵. Ovim je globalni sustav (6.76) "prisiljen"na rješenje $\mathcal{P}_e =$ \mathcal{P}_0 dotičnim dijelovima površine, jer je doprinos ostalih elementa u globalnim matricama zanemariv u odnosu na υ . Metoda je jednostavna za programiranje i ne narušava simetriju globalnih matrica [77, 89].

7.0 MATEMATIČKO MODELIRANJE FAZNIH PRETVORBI U OBRATKU

7.1 Definicija kinetičkog dijagrama i jednadžbe za brzinu fazne pretvorbe

Za postavljanje matematičkog modela kinetičkih jednadžbi faznih pretvorbi u elementarnom (ili diskretiziranim konačnom) volumenu materijala važna su sljedeća tri trenutka (**slika 7.1**):

- a) vrijeme početka austenitizacije (t_0),
- b) vrijeme završetka austenitizacije (t_a) ,
- c) vrijeme završetka gašenja (*t*_g).

Slika 7.1. Vremenski ciklus indukcijskog kaljenja i udjeli mikrostrukturnih faza

Već je u pretpostavkama matematičkog modela (poglavlje 4.4.1) napomenuto da vrste i udjeli mikrostrukturnih faza u elementarnom volumenu u polaznom stanju ne moraju biti poznati, pa se volumni udio polazne mikrostrukture na početku austenitizacije pretpostavlja jednak jedinici:

$$y_0(t_0) = 1 \tag{7.1}$$

Nakon završetka austenitizacije (kod primjene metode stacionarnog ili rotacionog indukcijskog kaljenja), odnosno u zoni ugrijavanja (kod primjene metode posmičnog ili rotaciono posmičnog indukcijskog kaljenja) iz faza polazne mikrostrukture nastaje austenit (A) volumnog udjela y_1 :

$$y_1(t_a) \le 1 \tag{7.2}$$

i prema zakonu održanja mase:

$$y_0(t_a) + y_1(t_a) = 1 \tag{7.3}$$

Po završetku gašenja pothlađeni austenit se transformirao u jednu ili više mikrostrukturnih faza poznatih (računski određenih) volumnih udjela. U općem slučaju iz pothlađenog austenita mogu nastati martenzit (*M*) volumnog udjela y_2 , bainit (*B*) udjela y_3 , perlit (*P*) udjela y_4 i ferit (*F*) udjela y_5 . Neaustenitizirani dio polazne mikrostrukture $y_0(t_g) = y_0(t_a)$ ostao je nepromijenjen nakon gašenja, pa i dalje vrijedi prošireni oblik zakona održanja mase (i volumnih udjela):

$$y_0(t_g) + y_1(t_g) + y_2(t_g) + y_3(t_g) + y_4(t_g) + y_5(t_g) = 1$$
(7.4)

Iz gornjeg razmatranja proizlaze slijedeća osnovna pravila o brzini pretvorbe polazne mikrostrukture $(\partial y_0/\partial t)$ i potom austenita $(\partial y_1/\partial t)$ tijekom temperaturno-vremenskog ciklusa indukcijskog kaljenja [101]:

$$\begin{pmatrix} \frac{\partial y_0}{\partial t} \end{pmatrix} = \begin{cases} - & \leq 0, \text{ kad je } t \in [t_0, t_a] \\ &= 0, \text{ kad je } t \in [t_a, t_g] \end{cases}$$

$$\begin{pmatrix} \frac{\partial y_1}{\partial t} \end{pmatrix} = \begin{cases} - & \geq 0, \text{ kad je } t \in [t_0, t_a] \\ &\leq 0, \text{ kad je } t \in [t_a, t_g] \end{cases}$$

$$(7.5.b)$$

Kinetika nastanka nove faze može se shematski prikazati u tzv. "kinetičkom dijagramu" temperatura – volumni udio nove faze (**slika 7.2**) [60]. Primjer kinetičkog dijagrama na **slici 7.2**. shematski prikazuje nastanak austenita ugrijavanjem podeutektoidnog čelika. Iz dijagrama se vidi kako pri vrlo sporom ugrijavanju $(\partial \mathscr{G}/\partial t)_a \approx 0$ nastali udio austenita y_1 teži ravnotežnom udjelu Y_1 na temperaturama između A_1^0 i A_3^o (određene iz ravnotežnog dijagrama stanja). S povećanjem brzine ugrijavanja na $(\partial \mathscr{G}/\partial t)_b$, odnosno $(\partial \mathscr{G}/\partial t)_c$ uočava se sve manji mogući udio austenita y_1^* na temperaturi \mathscr{G}^* u usporedbi s ravnotežnim udjelom Y_1 , kao i pomicanje temperature završetka austenitne pretvorbe A_3 na vrijednosti veće od ravnotežne temperature A_3^o . Ako bi se na temperaturi \mathscr{G}^* zaustavilo kontinuirano ugrijavanje i nastavilo izotermičko držanje, nakon vrlo dugog vremena držanja postigao bi se udio austenita $Y_1(\mathscr{G}^*)$ manji od maksimalno mogućeg udjela Y_1 , tj. pretvorba bi ostala nezavršena.

Slika 7.2. Shematski prikaz kinetike stvaranja austenita kontinuiranim ugrijavanjem $(\partial \mathscr{G}/\partial t) > 0$ i izotermičkim držanjem $(\partial \mathscr{G}/\partial t) \approx 0$ podeutektoidnog čelika.

Brzina pretvorbe (jedne ili više faza) $\partial y_i / \partial t$ u višefaznom materijalu uz kontinuirano ugrijavanje ili ohlađivanje općenito ovisi o njegovom kemijskom sastavu, polaznoj mikrostrukturi, brzini ugrijavanja ili ohlađivanja, temperaturi, ravnotežnom udjelu nove faza i već nastalom udjelu faze y_i . Utjecaj navedenih čimbenika na kinetiku fazne pretvorbe može se obuhvatiti kinetičkom jednadžbom općeg oblika (7.6):

$$\frac{\partial y_i}{\partial t} = f\left[\mathcal{G}(t), y_i\right] \cdot g\left[\mathcal{G}(t), \frac{\partial \mathcal{G}}{\partial t}\right]$$
(7.6)

Stacionarno rješenje jednadžbe (7.6) za konstantnu temperaturu $\mathcal{G} = \mathcal{G}_{\text{IT}}$ treba biti takvo da je $f[\mathcal{G}_{\text{IT}}, Y_i(\mathfrak{G})]=0$. To znači da će brzina fazne pretvorbe $\partial y_i/\partial t$ postati jednaka nuli kad se nakon dovoljno dugog izotermičkog držanja ($t \rightarrow \infty$, $\mathcal{G}_{\text{IT}} =$ konst.) postigne ravnotežni udio nove faze $y_i=Y_i(\mathcal{G}_{\text{IT}})$ najvećeg mogućeg iznosa za temperaturu \mathcal{G}_{IT} .

$$Y_i = \lim_{\substack{t \to \infty \\ g_T = konst.}} y(t)$$
(7.7.a)

$$\lim_{\substack{t \to \infty \\ \mathcal{B}_{IT} = konst.}} f(\mathcal{G}_{IT}, Y(\mathcal{G}_{IT})) = 0$$
(7.7.b)

Ravnotežni volumni udio nove faze $(0 \le Y_i \le 1)$ može se odrediti iz ravnotežnih dijagrama stanja, termodinamičko- metalurških modela ili iz dilatometrijskih ispitivanja (uz vrlo sporo ugrijavanje i ohlađivanje). Određivanje ravnotežnog volumnog udjela pojedinih mikrostrukturnih faza koje se

mogu pojaviti pri indukcijskom kaljenju bit će opisano u poglavlju 7.2. Ravnotežni volumni udio treba odrediti za svaku temperaturu iz intervala između temperature početka i završetka fazne pretvorbe.

Za male promjene udjela nove faze y_i oko ravnotežnog udjela $Y_i(\mathcal{G})$ funkcija $f(\mathcal{G}, y_i)$ može se aproksimirati prvim članom Taylorovog reda:

$$f[\theta(t), y_i] \approx f(\theta, y_i) + \frac{\partial f(\theta, Y_i)}{\partial y} (y_i - Y_i(\theta))$$
(7.8)

Iz uvjeta (7.7.a-b) postavljenog na stacionarnost rješenja jednadžbe (7.6) slijedi da je prvi član jednadžbe (7.8) jednak nuli, što daje jednadžbu (7.9):

$$f[\theta(t), y_i] = \left(Y_i(\theta) - y_i\right) \left[-\frac{\partial f(\theta, Y_i)}{\partial y}\right]$$
(7.9)

Derivacija funkcije $\partial f/\partial y$ uvijek je pozitivnih vrijednosti, inače se nikada ne bi postiglo približavanje udjela nove faze y_i ravnotežnom udjelu Y_i. Derivacija $\partial f/\partial y$ fizikalno predstavlja tzv. "funkciju vremenskog kašnjenja pretvorbe" $\tau(\mathcal{P})$ [60]:

$$\frac{1}{\tau(9)} = -\frac{\partial f(9, Y_i)}{\partial y}$$
(7.10)

Funkcija kašnjenja pretvorbe $\tau(\mathcal{G})$. Kod izotermičke pretvorbe udio nove faze y_i eksponencijalno se približava ravnotežnom udjelu $Y_i(\mathcal{G})$ s vremenskom konstantom $[1/\tau(\mathcal{G}_{IP})]$ ovisnom o temperaturi pretvorbe. Kod anizotermičke pretvorbe udio nove faze y_i slijedi promjene ravnotežnog udjela $Y_i(\mathcal{G})$ s vremenskim kašnjenjem $1/\tau(\mathcal{G})$ (**slika 7.2**). Npr. kontinuiranim ugrijavanjem polazne mikrostrukture brzinom $(\partial \mathcal{G}/\partial t)_a$ na temperaturu $A_1^o < \mathcal{G}^* < A_3^o$ dobit će se udio nove faze $y(\mathcal{G}^*) < Y(\mathcal{G}^*)$. Za dobivanje udjela nove faze jednakog ravnotežnom udjelu $Y(\mathcal{G}^*)$ čelik treba ugrijati na temperaturu $\mathcal{G}^{**} > A_3^o$. Trajanje ugrijavanja od temperature \mathcal{G}^* do temperature \mathcal{G}^{**} predstavlja vrijeme kašnjenja pretvorbe postaje sve veće (a vrijednosti funkcije kašnjenja pretvorbe sve manje) pa su sve veće razlike između stvarne i ravnotežne temperature završetka pretvorbe.
Funkcija brzine (ugrijavanja ili ohlađivanja) treba ispunjavati sljedeće zahtjeve [58, 60]:

$$g\left(\mathcal{G}(t), \frac{\partial \mathcal{G}}{\partial t}\right) = \begin{vmatrix} = 1, \text{ ako je } \left(\frac{\partial \mathcal{G}}{\partial t} \approx 0\right) \\ > 0, \text{ ako je } \left(\left|\frac{\partial \mathcal{G}}{\partial t}\right| > 0\right) \end{vmatrix}$$
(7.11)

Ovi zahtjevi osiguravaju vrijednost funkcije $g(\partial \mathcal{G}/\partial t)$ jednaku jedinici za stacionarno rješenje jednadžbe (7.6) i pozitivne vrijednosti u rješenju problema anizotermičkih faznih pretvorbi.

Model rješenja opće kinetičke jednadžbe za brzinu fazne pretvorbe. Opća kinetička jednadžba (7.6) uvedena je u teoriju kinetike faznih pretvorbi fenomenološkim razmatranjima i uočavanjem ponašanja čelika u mikrostrukturnim pretvorbama. Za sada još ne postoji njeno jedinstveno rješenje koje bi odgovaralo fazama ugrijavanja i ohlađivanja većine čelika, već se uobičajeno postavljaju matematički modeli prikladni za pojedini tip mikrostrukturnih faznih pretvorbi s određenim brojem koeficijenta i korekcijskih faktora [58, 60, 102, 103]. Iz analize nekoliko značajnijih rješenja problema predviđanja mikrostrukturnih faznih pretvorbi pri indukcijskom kaljenju (poglavlje 3.3) i literaturi izvori [9, 38, 42, 58, 60, 69] izabran je i razrađen kinetički model "Leblond-Devaux" za opis cijele kinetike faznih pretvorbi u postupku indukcijskog kaljenja. Ovaj model je u usporedbi s ostalim analiziranim modelima najprikladniji za predviđanje brzine fazne pretvorbe pri brzom kontinuiranom ugrijavanju i ohlađivanju.

Prošireni Leblond-Devaux-ov kinetički model za opis anizotermičkih pretvorbi pri indukcijskom kaljenju postavljen je uvrštenjem jednadžbi (7.9) do (7.11) u opću kinetičku jednadžbu (7.6).

$$\frac{\partial y[\mathcal{G}(t)]}{\partial t} = \frac{Y[\mathcal{G}(t)] - y[\mathcal{G}(t)]}{\tau[\mathcal{G}(t)]} \cdot g\left[\mathcal{G}(t), \frac{\partial \mathcal{G}}{\partial t}\right]$$
(7.12)

$\partial y/\partial t$	 brzina pretvorbe (s ⁻¹)
У	 udio nove faze dobiven na temperaturi 9
Y	maksimalno mogući udio nove faze na temperaturi $\vartheta (0 < Y < 1)$
$\tau(\mathcal{G})$	 funkcija vremenskog kašnjenja pretvorbe na temperaturi $\vartheta [\tau(\vartheta) > 0]$

Oblik i koeficijenti pojedinih članova opće kinetičke jednadžbe faznih pretvorbi (7.12) pri kontinuiranom ugrijavanju i ohlađivanju određuju se za austenitizaciju, a potom za gašenje u sljedeća dva poglavlja.

7.2 Razrada kinetičkog modela faznih pretvorbi

7.2.1 Model faznih pretvorbi pri austenitizaciji

Prošireni Leblond-Devaux-ov kinetički model (7.12) na lijevoj strani jednadžbe ima član koji u sebi sadrži derivaciju složene funkcije $y_1[\mathcal{G}(t)]$ pa se za opis anizotermičke austenitizacije jednadžba (7.12) može zapisati u sljedećem obliku nakon deriviranja složene funkcije $\frac{\partial y[\mathcal{G}(t)]}{\partial t}$ i uređenja polazne jednadžbe:

$$\frac{\partial y_1}{\partial \mathcal{P}} = \frac{Y_1 - y_1}{\tau_1 \frac{d \mathcal{P}}{dt}} g_1$$
(7.13)

Y_1		ravnotežni volumni udio austenita (mm ³ /mm ³)
\mathcal{Y}_{1}	i	volumni udio austenita, mm3/mm3
$ au_1$		funkcija vremenskog kašnjenja austenitne pretvorbe, s/°C
g_1		funkcija utjecaja brzine ugrijavanja na pretvorbu
,9)	Celzijusova temperatura, °C

Za rješavanje diferencijalne jednadžbe (7.13) treba zadati funkcije $Y_1 = f(\mathcal{G})$, $\tau_1 = f(\mathcal{G})$ i $g_1 = f(\mathcal{G})$ ovisne o temperaturi za konkretni čelik. Za određivanje funkcije ravnotežnog udjela austenita pri zagrijavanju koristit će se ravnotežni dijagrami stanja. Za određivanje funkcije vremenskog kašnjenja austenitizacije i pomoćne funkcije $q(\mathcal{G})$ koristit će se ravnotežni dijagrami stanja i dijagram otapanja faza pri brzom zagrijavanju (TTS dijagram) konkretnog čelika. Član jednadžbe (7.13) koji se odnosi na funkciju brzine ugrijavanja $g[\mathcal{G}, \mathcal{O}, \mathcal{G}/\partial t]$ u vlastito razvijanom kinetičkom modelu austenitizacije aproksimiran je jednadžbom (7.14) prema [59] koja u potpunosti zadovoljava uvjete (7.11) karakteristične za ovakav tip funkcija:

$$g_1 = \exp\left[-q_1 \frac{\partial \mathcal{G}}{\partial t}\right] \tag{7.14}$$

 $q_1 = f(\mathcal{G})...$ parametar brzine ugrijavanja, (K/s)⁻¹

Određivanje funkcije ravnotežnog udjela austenita $Y_I = f(\mathscr{G})$. Prema predviđanjima iz dijagrama stanja, pri ravnotežnom zagrijavanju čelika na temperaturi A_I^o nastupa vrlo brz nastanak austenita otapanjem eutektoidne faze. Međutim pokusi ugrijavanja čelika brzinama većim od 0,05 °C/s (prema podacima iz TTS dijagrama) pokazuju postojanost eutektoidne faze i na temperaturama iznad A_1 , sve do temperature A_3 . Ovo se može objasniti mehanizmom otapanja eutektoidnog cementita koji se uglavnom prije otapa na krajevima lamelica, nego po dužini lamelica pa je nužna viša temperatura ili duže vrijeme austenitizacije za potpuno otapanje eutektoidne faze. Stoga je austenit nastao između temperatura A_1 i A_3 izrazito nehomogenog sastava s područjima siromašnim na ugljiku (mjesta feritnih zrna) i bogatim na ugljiku (mjesta oko eutektoidnih karbida). Iznad temperature A_3 do temperature A_{ch} sadržaj ugljika u austenitu ujednačuje se difuzijom.

Iz ovakvog tijeka austenitizacije proizlazi da je stvaranje austenita pri kontinuiranom zagrijavanju postepen proces u kojem se otapanje eutektoidnih karbida i feritno-austenitna pretvorba odvijaju u cijelom intervalu između temperatura A_1 i A_3 . Stoga je u razrađenom kinetičkom modelu austenitne pretvorbe pretpostavljena po dijelovima linearna ovisnost ravnotežnog udjela austenita o temperaturi austenitizacije (**slika 7.3**) zadana izrazom (7.15):

$$Y_{1}(\mathcal{G}) = \begin{vmatrix} 0, \text{ ako je } \mathcal{G} < A_{1}^{0} \\ \frac{1}{A_{3}^{0} - A_{1}^{0}} \mathcal{G} - \frac{A_{1}^{0}}{A_{3}^{0} - A_{1}^{0}}, \text{ ako je } A_{1}^{0} < \mathcal{G} < A_{3}^{0} \\ 1, \text{ ako je } \mathcal{G} \ge A_{3}^{0} \end{vmatrix}$$
(7.15)

Slika 7.3. Tijek i izgled funkcije $Y_1(\mathcal{P})$ pri austenitnoj pretvorbi kontinuiranim ugrijavanjem podeutektoidnog čelika

Vrijednosti temperatura početka A_1 i završetka A_3 austenitizacije pri neravnotežnom (brzom) ugrijavanju više su od ravnotežnih i ovise uglavnom o kemijskom sastavu, polaznoj mikrostrukturi čelika i srednjoj brzini ugrijavanja v_a , tj. $A_1 = f(v_a)$, $A_3 = f(v_a)$.

Upotreba ravnotežnih temperatura A_1° i A_3° u jednadžbi (7.15) opravdana je slijedećim razmatranjem. Ako je brzina ugrijavanja čelika veća od 0,05 °C/s i ugrijavanje se zaustavi na nekoj temperaturi \mathcal{G}^* manjoj od A_3° te nastupi izotermičko držanje, najveći (ravnotežni) udio austenita koji se može postići manji je od 1 i ovisi o temperaturi \mathcal{G}^* (prema jednadžbi (7.15)). Ako je nakon brzog ugrijavanja čelika temperatura austenitizacije viša od A_3° , ali još uvijek manja od $A_3 = f(v_a)$ kad bi se prekinulo kontinuirano ugrijavanje i nastavilo izotermičko držanje na temperaturi \mathcal{G}^{**} austenitna pretvorba potpuno bi se završila.

Temperature A_1° i A_3° mogu se odrediti iz ravnotežnih dijagrama stanja, od Fe-C dijagrama za nelegirane čelike do pseudobinarnih, ternarnih i ostalih kompleksnih dijagrama za legirane čelike. Orijentacijske vrijednosti ovih temperatura (uz točnost ± 5 °C) za nelegirane i niskolegirane podeutektoidne čelike dolje navedenog sastava mogu se odrediti iz regresijskih jednadžbi (7.16)-(7.17) prema [55] za slijedeći kemijski sastav čelika:

%С	%Mn	%Si	%Ni	%Cr	%Mo
0,2 - 0,7	0 - 1,5	0 - 0,3	0-2,8	0 – 1,5	0 – 0,6

$$A_1^{o} = 739 - 22 C + 2 Si - 7 Mn + 14 Cr + 13 Mo + 13 Ni + 20 V$$
(7.16)

$$A_{3}^{o} = 883,49 - 275,89 C + 90,91 C^{2} - 12,26 Cr^{2} + 16,45 C Cr - 29,96 Mn + 23,5 C Mn + 8,49 Mo - 10,80 C Mo - 25,56 Ni + 14,71 C Ni + 1,45 Mn Ni + 0,76 Ni^{2} + 13,53 Si - 3,47 Mn Si$$
(7.17)

Određivanje funkcije vremenskog kašnjenja austenitne pretvorbe $\tau_l(\mathcal{P})$. Prema [73] porast vrijednosti temperatura A_1 i A_3 u odnosu na njihove ravnotežne vrijednosti A_1° i A_3° proporcionalan je produktu funkcije vremenskog kašnjenja pretvorbe $\tau_1(\mathcal{P})$ i srednje brzine ugrijavanja v_a:

$$A_1 - A_1^{o} = \tau_1 v_a \tag{7.18.a}$$

$$A_3 - A_3^{o} = \tau_1 v_a \tag{7.18.b}$$

Iz jednadžbi (7.18.a-b) slijede iznosi funkcije vremenskog kašnjenja pretvorbe za raspon srednjih brzina ugrijavanja od 0,05 do 2400 °C/s ovisni od temperature austenitizacije prema TTS dijagramu konkretnog čelika:

$$\tau_1(\mathcal{G}) = \frac{\mathcal{G} - A_1^0}{v_1} \qquad \qquad \mathcal{G} = A_1 , \qquad (7.19.a)$$

$$\tau_1(\mathcal{G}) = \frac{\mathcal{G} - A_3^0}{v_a} \qquad \qquad \mathcal{G} = A_3 \qquad (7.19.b)$$

Oblik i koeficijente funkcije vremenskog kašnjenja pretvorbe (**slika 7.4**) treba odrediti za konkretni čelik, odnosno njegov TTS dijagram. U vlastito razvijenom matematičkom modelu austenitizacije i računalnom programu za simulaciju indukcijskog kaljenja korištene su dvije vrste funkcija za aproksimaciju $\tau = f(\mathcal{G})$: polinomi prvog, drugog ili trećeg stupnja (7.20.a) i eksponencijalna funkcija (7.20.b). Koeficijenti aproksimacijskih funkcija (7.20.a-b) određuju su nelinearnom regresijskom analizom, a potom se za daljnji proračun koristi onaj oblik aproksimacijske funkcije koji aproksimira rezultate proračuna (7.19.a-b) s najmanjom sumom kvadrata odstupanja.

$$\tau_1(\mathcal{G}) = k_3 \left(\mathcal{G} - A_1^0 \right)^3 + k_2 \left(\mathcal{G} - A_1^0 \right)^2 + k_1 \left(\mathcal{G} - A_1^0 \right) + k_0$$
(7.20.a)

$$\tau_1(\mathcal{G}) = \exp\left[-k_1\left(\mathcal{G} - A_1^0\right) + k_0\right]$$
(7.20.b)

Slika 7.4. Shematski prikaz funkcije vremenskog kašnjenja austenitne pretvorbe $(\tau_1(\vartheta))$ u kontinuiranim zagrijavanju podeutektoidnog čelika

Određivanje funkcije utjecaja brzine ugrijavanja na kinetiku fazne pretvorbe g_1 može se provesti iz TTS dijagrama ili iz eksperimentalno snimljene krivulje nastanka austenita pri ugrijavanju

poznatom brzinom v_a . U vlastito razvijanom kinetičkom modelu austenitizacije funkcija g₁ određena je uz pomoć *TTS* dijagrama konkretnog čelika. Za njeno određivanje uvedene su slijedeće tri pretpostavke:

- Oblik i koeficijenti funkcije g1 ne mijenjaju se u intervalu temperatura i brzina ugrijavanja s kojima je snimljen TTS dijagram promatranog čelika.
- Brzina nastanka austenita $\partial y_1/\partial t$ na početku (na temperaturi A_1) i završetku pretvorbe (na temperaturi A_3) vrlo je mala i iznosi oko 10⁻⁶ mm³/mm³s.
- Ugrijavanjem polazne mikrostrukture čelika (bez karbida postojanih na visokim temperaturama) na temperaturu A₁ nastaje 1 % austenita, a ugrijavanjem na temperaturu A₃ pretvorba je praktički završena uz nastanak 99 % austenita , što je u skladu s podacima o snimanju TTS dijagrama [10].

Uz uvedene pretpostavke i poznatu aproksimacijsku funkciju vremenskog kašnjenja pretvorbe $\tau(\vartheta)$ polazeći od jednadžbe (7.12) može se postaviti sustav kinetičkih jednadžbi za početak i završetak stvaranja austenita iz kojih se računa iznos funkcije g_1 :

$$g_1\left(\mathcal{G}, \frac{\partial \mathcal{G}}{\partial t}\right)_{A_1} = 10^{-6} \left[\frac{\tau_1(\mathcal{G})}{Y_1 - 0.01}\right]_{v_a = konst_1} \qquad \mathcal{G}=A_1, \quad Y_1 = 1$$
(7.21.a)

$$g_1\left(\mathcal{G}, \frac{\partial \mathcal{G}}{\partial t}\right)_{A_3} = 10^{-6} \left[\frac{\tau_1(\mathcal{G})}{Y_1 - 0.99}\right]_{v_a = konst.} \qquad \mathcal{G}=A_3, \quad Y_1 = 1$$
(7.21.b)

Oblik aproksimacijske jednadžbe funkcije g_1 bio je naveden jednadžbom (7.14) u kojoj je nepoznanica pomoćna funkcija q_1 ovisna o temperaturi ugrijavanja. Pri razradi vlastitog kinetičkog modela austenitizacije pretpostavljena je linearna ovisnost pomoćne funkcije q_1 o temperaturi ugrijavanja pa se regresijskom analizom niza izračunatih vrijednosti funkcije g_1 (jednadžbama (7.21.a-b)) za različite temperature i brzine ugrijavanja određuju koeficijenti k_{g1} i k_{g0} u aproksimacijskoj jednadžbi (7.22):

$$g_1\left(\vartheta, \frac{\partial \vartheta}{\partial t}\right) = \exp\left[-k_{g_1}\vartheta\frac{\partial \vartheta}{\partial t} + k_{g_0}\right]$$
(7.22)

Numeričko rješenje proširenog modela Leblond-Devaux traži se za jednadžbu dobivenu uvrštenjem slijedećih funkcija u jednadžbu (7.14): $Y_1(\mathcal{P})$ (jednadžba (7.15) s pomoćnim koeficijentima a_1 i b_1), $\tau_1(\mathcal{P})$ (jednadžba (7.20.a) ili(7.20.b)) i g_1 (jednadžba (7.22)).

$$\frac{\partial y_1}{\partial \theta} = \frac{a_1 \theta + b_1 - y_1(\theta(t))}{\tau_1(\theta) \frac{\partial \theta}{\partial t}} g_1\left(\theta, \frac{\partial \theta}{\partial t}\right)$$
(7.23.a)

$$a_1 = \frac{1}{A_3^0 - A_1^0}$$
; $b_1 = -\frac{A_1^0}{A_3^0 - A_1^0}$ (7.23.b-c)

Diferencijalna jednadžba (7.23.a) riješena je numeričkom metodom Runge-Kutta IV reda uz aproksimaciju porasta temperature u intervalu ugrijavanja ($t^k < t < t^{k+1}$) linearnom funkcijom (7.24):

$$\mathcal{G}^{k+1} = v_a t + \mathcal{G}^k \tag{7.24}$$

k... vremenski inkrement (korak) simulacije

7.2.2 Model faznih pretvorbi pri gašenju

Prošireni kinetički model Leblond-Devaux. Prema [60, 69] polaznu jednadžbu Leblond-Devaux modela (7.13) moguće je primijeniti i za predviđanje brzine faznih pretvorbi pri raspadu pothlađenog austenita. Kod jednostavnih faznih pretvorbi u kojima sudjeluju samo dvije faze (npr. pothlađeni austenit se pretvara u ferit, bez prisutnosti ostalih faza) volumni udio nove faze se povećava, na račun smanjenja udjela ishodne faze, a njihov zbroj tijekom cijele pretvorbe jednak je jedinici. U slučaju složenijih pretvorbi prisutnih pri kontinuiranom ohlađivanju pothlađenog austenita u kojima istovremeno nastaje nekoliko faza (npr. ferit + perlit + bainit + martenzit) pri računanju brzine fazne pretvorbe treba uzeti u obzir utjecaj krivulje ohlađivanja na tijek pretvorbe i nastanak novih faza kao i eventualni utjecaj faza nastalih na višim temperaturama (iznad 500°C) na fazne pretvorbe (nukleaciju i rast novih faza) pri nižim temperaturama (između 500 °C i temperature M_s). Za rješenje ovog problema još ne postoje jedinstvene preporuke o izboru funkcija kojima bi se ovi fenomeni obuhvatili. Svojstva ovih funkcije prema svim analiziranim izvorima [60, 69, 70, 103] trebaju biti u skladu s uvjetom (7.10) i karakteristikama TTT dijagrama kontinuiranog ohlađivanja. Stoga je za opis kinetike faznih pretvorbi pri gašenju razrađen vlastiti kinetički model na temelju Leblond-Devaux modela (7.12) i analize TTT dijagrama kontinuiranog ohlađivanja slijedećih karakteristika:

 a) Najveći udio novih faza (ferita, perlita ili bainita) kod faznih pretvorbi s kontinuiranim ohlađivanjem ne predstavlja termodinamički ravnotežni udio već udio nastao kao posljedica ohlađivanja određenom krivuljom *9-t* do temperature završetka izlučivanja *i*-faze iz pothlađenog austenita. Stoga se za primjenljivost jednadžbi oblika (7.12) kod višefaznih pretvorbi čini prikladnim umjesto (termodinamički) ravnotežnih udjela uvesti najveće moguće udjele faza ($Y_{m,i} = f(\mathcal{B})$) koji se postižu s određenom krivuljom ohlađivanja (npr. u TTT dijagramu kontinuiranog ohlađivanja) pri čemu trebaju biti zadovoljeni zakon održanja mase (7.4) i slijed faznih pretvorbi konkretne krivulje ohlađivanja \mathcal{P} -t.

- b) Funkcije vremenskog kašnjenja pretvorbi pothlađenog austenita $\tau_{i, i} = 3,4,5$ određuju se za pretvorbe austenit –bainit (τ_{13}), austenit perlit (τ_{14}) i austenit-ferit (τ_{15}) na zadanoj krivulji ohlađivanja u TTT dijagramu kontinuiranog ohlađivanja, a funkcijski se izražava kao veličina ovisna od temperature, tj. $\tau_i = f(\mathcal{G})$.
- c) Višestruke fazne pretvorbe pothlađenog austenita kontinuiranim ohlađivanjem uvijek nastupaju istim redoslijedom pri čemu završetak izlučivanja jedne faze (npr. ferita) znači početak izlučivanja druge (npr. perlita). Izlučivanje i-te faze završava kad se postigne $\partial y_i/\partial t =$ 0, odnosno kad je ($Y_{m,i}$ - y_i) = 0.
- d) Udio martenzita određuje se direktno iz Koistinen-Marburgerove jednadžbe(3.28) (poglavlje 3.3) [62], a temperatura početka martenzitne pretvorbe (*M_s*) iz Andrewsove jednadžbe prema [104].

Određivanje najvećih mogućih udjela faza pri ohlađivanju ($Y_{m,i}$). Zadovoljenje zakona održanja mase (7.4) za određivanje najvećeg mogućeg udjela i-te faze pri kontinuiranom ohlađivanju uvjetuje pretpostavku o udjelu austenita (y_1) nakon ugrijavanja koji može biti manji ili jednak jedan. Ako je udio austenita nakon ugrijavanja manji od jedan tada su tijekom ugrijavanja ostale neotopljene određene faze polazne mikrostrukture ukupnog udjela y_0 (npr. ne transformirani ferit u dubljim slojevima austenitiziranog ruba koji su bili ugrijani između temperatura A_1 i A_3). Ako je austenitizacija bila potpuna nema netransformiranih dijelova polazne mikrostrukture pa je $y_0 = 0$, a $y_1 = 1$. Stoga je najveći udio i-te faze ($Y_{m,i}$) koji može dobiti iz pothlađenog austenita nakon kontinuiranog ohlađivanja jednak produktu udjela austenita na početku ohlađivanja ($y_1=1-y_0$) i udjela te faze nakon ohlađivanja određenom krivuljom g-t do temperature završetka pretvorbe g_{ti} :

$$Y_{m,i}(g_{f,i}) = (1 - y_0) \cdot \left[Y_i(g_{f,i}) \right] \qquad i = 3,4,5$$
(7.25)

[Y_i]... Najveći mogući udio *i*-faze pri ohlađivanju određenom krivuljom u TTT dijagramu kontinuiranog ohlađivanja., 1 Najveći mogući udio i-te faze (Y_i) određen je udjelima faza koje su nastale prije izlučivanja i-te faze na konkretnoj krivulji ohlađivanja, što se može pratiti u TTT dijagramu kontinuiranog ohlađivanja. U njemu su mogući udjeli faza nakon ohlađivanja određenom krivuljom navedeni uz presijecište krivulja ohlađivanja i završetka fazne pretvorbe (**slika 7.5**). Za određivanje najvećeg mogućeg udjela pojedine faze treba razlikovati kojem od tri područja faznih pretvorbi pripada promatrana krivulja ohlađivanja i prema tome zadati vrijednosti pojedinih članova jednadžbe (7.26):

- a) Podkritično ohlađivanje koje traje duže od ohlađivanja donjom kritičnom krivuljom gašenja (v

 {hl} ≤ v{kd}) pri čemu iz pothlađenog austenita (y₁) uobičajeno nastaju ferit (Y₅>0) i /ili perlit (Y₄ >0) dok je Y₃ = 0 i Y₂ = 0.
- b) Ohlađivanje krivuljom koja se nalazi između gornje i donje kritične krivulje gašenja (v_{kg} > v̄_{hl}
 > v_{kd}) pri čemu iz pothlađenog austenita mogu nastati redom ferit (Y₅>0), perlit (Y₄>0), baint (Y₃>0) i martenzit (Y₂>0).
- c) Nadkritično ohlađivanje (gašenje) pri čemu krivulja ohlađivanja daje bezdifuzijsku pretvorbu pothlađenog austenita u martenzit (Y₂>0) dok su Y₅=0, Y₄=0 i Y₃=0, Srednja brzina ohlađivanja je veća ili jednaka gornjoj kritičnoj brzini gašenja (v

 {hl}≥v{kg}).

$$\left[Y_{i}\left(\mathcal{G}_{f,i}\right)\right] = 1 - \sum \left[Y_{i+1}\left(\mathcal{G}_{f,i+1}\right)\right] \qquad i = 4,3,2 \qquad (7.26)$$

 $\mathcal{G}_{f \ i+1}$... temperatura završetka fazne pretvorbe, °C

Slika 7.5. TTT dijagram kontinuiranog ohlađivanja čelika 42CrMo4 [13]

U vlastito razvijenom kinetičkom modelu faznih pretvorbi gašenja udio faza (Y_i) određuje se pomoću dva TTT dijagrama za kontinuirano ohlađivanje konkretnog čelika (snimljena s temperaturom austenitizacije manjom od 900 °C i višom od 1000 °C). Ugrađenom linearnom interpolacijom određuje se vrijednost udjela *i*-te faze $Y_i[\mathcal{G}_{f,i}(\bar{v}_{8/5})]$ ovisno od temperature austenitizacije (\mathcal{G}_a), temperature ohlađivanja i srednje brzine hlađenja ($\mathcal{G} = f(\bar{v}_{8/5})$) jednadžbama (7.27.a-c) i (7.28).

$$\begin{bmatrix} Y_{3}(\mathcal{G}) \end{bmatrix}_{\overline{v}_{8/5}} = \begin{bmatrix} 0, \ ako \ je \ \mathcal{G} > \mathcal{G}_{s,3} \\ \frac{Y_{3}(M_{s})}{\mathcal{G}_{s,3} - M_{s}} \mathcal{G}_{s} - \frac{Y_{3}(M_{s})M_{s}}{\mathcal{G}_{s,3} - M_{s}}, \ ako \ je \ M_{s}(\overline{v}_{8/5}) < \mathcal{G} < \mathcal{G}_{s,3}(\overline{v}_{8/5}) \\ Y_{3}, \ ako \ je \ \mathcal{G} \le M_{s} \end{bmatrix}$$
(7.27.a)

$$\begin{bmatrix} Y_{4}(\mathcal{G}) \end{bmatrix}_{\overline{v}_{8/5}} = \begin{bmatrix} 0, \ ako \ je \ \mathcal{G} > \mathcal{G}_{s,4} \\ \frac{Y_{4}(\mathcal{G}_{f,4})}{\mathcal{G}_{s,4} - \mathcal{G}_{f,4}} \mathcal{G}_{-\frac{Y_{4}(\mathcal{G}_{f,4})\mathcal{G}_{f,4}}{\mathcal{G}_{s,4} - \mathcal{G}_{f,4}}, \ ako \ je \ \mathcal{G}_{f,4}(\overline{v}_{8/5}) < \mathcal{G} < \mathcal{G}_{s,4}(\overline{v}_{8/5}) \\ Y_{4}, \ ako \ je \ \mathcal{G} \le \mathcal{G}_{f,4} \end{bmatrix}$$
(7.27.b)

$$\begin{bmatrix} Y_{5}(\boldsymbol{\vartheta}) \end{bmatrix}_{\overline{v}_{8/5}} = \begin{bmatrix} \boldsymbol{\vartheta}, ako \, je \, \boldsymbol{\vartheta} > \boldsymbol{\vartheta}_{s,5} \\ \frac{Y_{5}(\overline{v}_{8/5})}{\boldsymbol{\vartheta}_{s,5} - \boldsymbol{\vartheta}_{f,5}} \, \boldsymbol{\vartheta}_{-} \frac{Y_{5}(\overline{v}_{8/5})\boldsymbol{\vartheta}_{f,5}}{\boldsymbol{\vartheta}_{s,5} - \boldsymbol{\vartheta}_{f,5}}, \, ako \, je \, \boldsymbol{\vartheta}_{f,5}(\overline{v}_{8/5}) < \boldsymbol{\vartheta} < \boldsymbol{\vartheta}_{s,5}(\overline{v}_{8/5}) \\ Y_{5}, \, ako \, je \, \boldsymbol{\vartheta} \leq \boldsymbol{\vartheta}_{f,5} \end{bmatrix}$$
(7.27.c)

$$\overline{v}_{8/5} = \frac{800-500}{t_{8/5}}$$
(7.28)

$$M_{s} \qquad \dots \qquad \text{temperatura početka izlučivanja martenzita iz austenita, °C
$$g_{s,3} \qquad \dots \qquad \text{temperatura početka izlučivanja bainita iz austenita, °C
$$g_{f,3} \qquad \dots \qquad \text{temperatura završetka izlučivanja bainita iz austenita, °C
$$g_{s,4} \qquad \dots \qquad \text{temperatura početka izlučivanja perlita iz austenita, °C
$$g_{f,4} \qquad \dots \qquad \text{temperatura završetka izlučivanja perlita iz austenita, °C
$$g_{s,5} \qquad \dots \qquad \text{temperatura početka izlučivanja perlita iz austenita, °C
$$g_{s,5} \qquad \dots \qquad \text{temperatura završetka izlučivanja ferita iz austenita, °C
$$g_{f,5} \qquad \dots \qquad \text{temperatura završetka izlučivanja ferita iz austenita, °C
$$g_{f,5} \qquad \dots \qquad \text{temperatura završetka izlučivanja ferita iz austenita, °C
$$\overline{v}_{8/5} \qquad \dots \qquad \text{srednja brzina ohladivanja od 800 do 500 °C, °C/s} \\t_{8/5} \qquad \dots \qquad \text{vrijeme ohladivanja od 800 do 500 °C, s}$$$$$$$$$$$$$$$$$$$$

Određivanje funkcije vremenskog kašnjenja pretvorbe $\tau_{1,i}[\mathcal{G}(\overline{v}_{8/5})]$. Iz analize tipičnog TTT dijagrama za kontinuirano ohlađivanje podeutektiodnog čelika uobičajenog za indukcijsko kaljenje (slika 7.5) uočava se da su granične temperature početka austenitno-feritne ($\mathcal{G}_{s,5}$) i austenitno-perlitne pretvorbe ($\mathcal{G}_{s,4}$) znatno niže od istih temperatura (A_{c3}^0 , A_{c1}^0) prema ravnotežnom dijagramu stanja. Bainitna i martenzitna pretvorba također znatno odstupaju od ravnotežnih raspada austenita, ali su i za njih karakteristične najviše temperature početka i završetka pretvorbe B_s , i B_f (jednadžbe 7.29.a-b) prema [110], odnosno M_s , i M_f (jednadžbe 7.30.a-b) prema [104]:

$$B_{s}(^{\circ}C) = 830 - 270 C - 90 Mn - 37 Ni - 70 Cr - 83 Mo \qquad (\pm 25^{\circ}C) (7.29.a)$$

$$B_{f}(^{\circ}C) = 710 - 270 C - 90 Mn - 37 Ni - 70 Cr - 83 Mo \qquad (\pm 25^{\circ}C) (7.29.a)$$

$$M_{s}(^{\circ}C) = 512 - 453 C - 16.9 Ni + 15 Cr - 9.5 Mo + 217 C^{2} - 71.5 C Mn - 67.6 C Cr \qquad (\pm 25^{\circ}C) (7.30.a)$$

$$M_{s}(^{\circ}C) = 512 - 453 C - 16,9 Ni + 15 Cr - 9,5 Mo + 217 C^{2} - 71,5 C Mn - 67,6 C Cr \qquad (\pm 25^{\circ}C) (7.30.a)$$

$$M_{f}(^{\circ}C) = 297 - 453 C - 16,9 Ni + 15 Cr - 9,5 Mo + 217 C^{2} - 71,5 C Mn - 67,6 C Cr \qquad (\pm 15^{\circ}C) (7.30.b)$$

Za pretvorbe pothlađenog austenita u ferit, perlit i bainit mogu se postaviti sustavi od po dvije jednadžbe slične jednadžbama (7.19.a-b) iz kojih računa funkcija vremenskog kašnjenja pretvorbe $\tau_{1,i}(\mathcal{G})$ ovisna od temperature početka $(\mathcal{G}_{s,i})$ i završetka $(\mathcal{G}_{f,i})$ pretvorbe uz srednju brzinu ohlađivanja od 800 do 500 °C karakterističnu za promatranu krivulju ohlađivanja. Sustav od dvije jednadžbe za proračun vrijednosti iste funkcije $\tau_{1,i}(\mathcal{G})$ nužan je jer ova funkcija utječe na cijelu pretvorbu tijekom ohlađivanja elementarnog volumena od početne temperature $(\mathcal{G}_{s,i})$ do temperature završetka pretvorbe $(\mathcal{G}_{f,i})$. Na **slici 7.6** shematski je prikazano određivanje temperature početka i završetka austenitnoperlitne pretvorbe za jednu krivulju ohlađivanja ("I").

$$\tau_{1,3}(\mathcal{G}) = \frac{B_s - \mathcal{G}_{s,3}(\overline{v}_{8/5})}{\overline{v}_{8/5}}$$
(7.31.a)

$$\tau_{1,3}(\mathcal{G}) = \frac{B_f - M_s(\bar{v}_{8/5})}{\bar{v}_{8/5}}$$
(7.31.b)

$$\tau_{1,4}(9) = \frac{A_1^0 - 9_{s,4}(\bar{v}_{8/5})}{\bar{v}_{8/5}}$$
(7.32.a)

$$\tau_{1,4}(\mathcal{G}) = \frac{\mathcal{G}_{f,4}^{0}(\overline{v}_{8/5}) - \mathcal{G}_{f,4}(\overline{v}_{8/5})}{\overline{v}_{8/5}}$$
(7.32.b)

$$\tau_{1,5}(g) = \frac{A_3^0 - g_{s,5}(\bar{v}_{8/5})}{\bar{v}_{8/5}}$$
(7.33.a)

$$\tau_{1,5}(\theta) = \frac{A_1^0 - \theta_{f,5}(\bar{v}_{8/5})}{\bar{v}_{8/5}}$$
(7.33.b)

Slika 7.6. Shematski prikaz karakterističnih temperatura za određivanje vremenske funkcije kašnjenja austenitno-perlitne pretvorbe

Nakon proračuna vrijednosti funkcija vremenskog kašnjenja ($\tau_{1,i}$ *i* = 3,4,5) za nekoliko krivulja ohlađivanja iz sva tri ranije navedena područja TTT dijagrama za kontinuirano ohlađivanje konkretnog čelika (potkritično, međukritično i nadkritično gašenje) treba odrediti oblik i koeficijente aproksimacijskih jednadžbi $\tau_{1,i} = f(\mathcal{G})$. U vlastito razvijenom kinetičkom modelu faznih pretvorbi gašenja i računalnom programu za simulaciju indukcijskog kaljenja slično kao u modelu austenitizacije korištene su dvije vrste aproksimacijskih funkcija $\tau_{1,i} = f(\mathcal{G})$: polinomi prvog ili drugog stupnja (7.34.a) i eksponencijalna funkcija (7.34.b). Koeficijenti aproksimacijskih funkcija (7.34.a-b) određuju su nelinearnom regresijskom analizom. Nakon toga se izabere i koristi u daljnjim proračunima onaj oblik aproksimacijske funkcije koji aproksimira izračunate vrijednosti funkcija $\tau_{I,i}$ s najmanjom sumom kvadrata odstupanja.

$$\tau_{1,i}(\mathcal{G}) = k_2 (\mathcal{G}_{s,i}^0 - \mathcal{G})^2 + k_1 (\mathcal{G}_{s,i}^0 - \mathcal{G}) + k_0$$
(7.34.a)

$$\tau_{1,i}(\mathcal{G}) = \exp\left[-k_1\left(\mathcal{G}_{s,i}^0 - \mathcal{G}\right) + k_0\right]$$
(7.34.b)

$$\mathcal{G}_{s,i}^{0} = \left\langle \begin{matrix} i=3 & i=4 & i=5 \\ B_s & A_1^0 & A_3^0 \end{matrix} \right\rangle$$
(7.34.c)

Određivanje funkcije utjecaja brzine ohlađivanja na kinetiku fazne pretvorbe g_i provodi se uz pomoć dva TTT dijagrama kontinuiranog ohlađivanja konkretnog kaljenog čelika ($g_a < 900$ °C i $g_a > 1000$ °C) sa sličnim pretpostavkama i jednadžbama koje su već korištene pri određivanju funkcije g_1 u kinetičkom modelu austenitizacije:

- oblik i koeficijenti funkcije g_i (i = 3,4,5) ne mijenjaju se u intervalu između temperature početka ($\mathcal{G}_{s,i}$) i završetka ($\mathcal{G}_{f,i}$) pretvorbe pri ohlađivanju srednjom brzinom $\overline{v}_{8/5}$,
- brzina nastanka i-te faze $\partial y_i / \partial t$ i = 3,4,5) na početku (na temperaturi $\mathcal{G}_{s,i}$) i završetku pretvorbe (na temperaturi $\mathcal{G}_{f,i}$) vrlo je mala i iznosi oko 10⁻⁶ mm³/mm³s,
- ohlađivanjem austenita do temperature 9_{s,i} nastaje 1 % i-te nove faze, a ohlađivanjem do temperature 9_{f,i} pretvorba i-te faze praktički je završena uz nastanak određenog udjela Y_i(9) u skladu s podacima iz TTT dijagrama kontinuiranog ohlađivanja kaljenog čelika.

Uz navedene pretpostavke i određenu aproksimacijsku funkciju vremenskog kašnjenja pretvorbe $\tau_{1,i}(\mathcal{G})$ slijedi sustav kinetičkih jednadžbi za početak i završetak austenita u i-tu fazu (ferit, perlit, bainit) iz kojih se računaju iznosi funkcija g_i (i = 3,4,5):

$$g_{i}\left(\vartheta,\frac{\partial\vartheta}{\partial t}\right) = 10^{-6} \left[\frac{\tau_{1,i}(\vartheta)}{0,99 \cdot Y_{i}}\right]_{\overline{v}_{8/5}} \qquad \vartheta = \vartheta_{s,i} \qquad (7.35.a)$$

$$g_{i}\left(\vartheta,\frac{\partial\vartheta}{\partial t}\right) = 10^{-6} \left[\frac{\tau_{1,i}(\vartheta)}{0,01 \cdot Y_{i}}\right]_{\overline{y}_{k/5}} \qquad \vartheta = \vartheta_{f,i} \qquad (7.35.b)$$

Oblik aproksimacijskih jednadžbi funkcija g_i istovjetan je funkciji g_1 iz jednadžbe (7.22) pri čemu se koeficijenti $k_{g1,i}$ i $k_{g0,i}$ određuju nelinearnom regresijskom analizom za dvije temperature austenitizacije ($\mathcal{G}_a \leq 900$ °C i $\mathcal{G}_a > 1000$ °C) uz različite temperature i brzine ohlađivanja $\overline{v}_{8/5}$:

$$g_i\left(\vartheta, \frac{\partial \vartheta}{\partial t}\right) = \exp\left[-k_{g_{1,i}}\vartheta \cdot \overline{v}_{g_{1,j}} + k_{g_{0,i}}\right]$$
(7.36)

Numerički proračun udjela faza nastalih raspadom pothlađenog austenita. Rješavanjem termodinamičkog problema gašenja ugrijanog površinskog sloja dobiva se krivulja ohlađivanja za svaki konačni element obratka za koju se za svaki novi vremenski inkrement simulacije računa srednja brzina ohlađivanja (\bar{v}_{hl}) jednadžbom (7.37):

$$\overline{v}_{hl} = \left(\frac{\int \mathcal{G}(t)dt}{\int dt}\right)_{0}^{l}$$
(7.37)

Uvrštavanjem jednadžbi (7.25) do (7.27), (7.34) i (7.36) u polaznu kinetičku jednadžbu proširenog Leblond-Devaux modela (7.12) dobiva se sustav od jedne do tri kinetičke jednadžbe (7.38) (ovisno o broju faza koje nastaju difuzijskom pretvorbom iz pothlađenog austenita) i dvije jednadžbe za udjele faza (7.39) i (7.40) koji se numerički rješava za krivulju ohlađivanja austenitiziranog konačnog elementa dobivenu računalnom simulacijom.

$$\frac{\partial y_i}{\partial t} = \frac{Y_{m,i}(\vartheta) - y_i}{\tau_{1,i}(\vartheta)} \cdot g_i(\vartheta, \overline{v}_{8/5}) \qquad i = 3, 4, 5$$
(7.38)

$$y_{2} = (1 - y_{0}) \cdot (1 - y_{5} - y_{4} - y_{3}) \cdot [1 - \exp[-0.011(M_{s} - 9)]]$$
(7.39)

$$y_1(\mathcal{G}_0) = 1 - (y_0 + y_2 + y_3 + y_4 + y_5)$$
(7.40)

\mathcal{Y}_0	 volumni udio ne transformiranih faza, mm ³ /mm ³
\mathcal{Y}_1	 volumni udio zaostalog austenita, mm3/mm3
y_2	 volumni udio martenzita, mm ³ /mm ³
<i>y</i> ₃	 volumni udio bainita, mm ³ /mm ³
y_4	 volumni udio perlita, mm ³ /mm ³
<i>Y</i> 5	 volumni udio ferita, mm ³ /mm ³
\mathcal{G}_0	 temperatura okoliša, °C

Diferencijalna jednadžba (7.38) numerički je riješena metodom Runge-Kutta IV reda uz aproksimaciju porasta temperature u intervalu ohlađivanja ($t^k < t < t^{k+1}$) funkcijom (7.41):

$$\mathcal{G}^{k+1} = \mathcal{G}^k - \bar{\nu}_{hl} t \tag{7.41}$$

k ... vremenski inkrement (korak) simulacije

Predviđanje tvrdoće nakon indukcijskog kaljenja. Iznos tvrdoće pojedinih faza određuje se prema konkretnom čeliku. Iz izračunatih udjela mikrostrukturnih faza u konačnom volumenu po završetku gašenja $y_i(t_g)$ i njihovih karakterističnih tvrdoća (uobičajeno u jedinicama Vickers, HV) ukupni iznos tvrdoće računa se adicijskim pravilom:

$$HV = \sum_{i=0}^{5} y_i(t_g) HV_i$$
(7.42)

Tvrdoća martenzita nakon gašenja gornjom kritičnom brzinom gašenja v_{kg} ili nadkritičnom brzinom gašenja određuje se uz pomoć TTS dijagrama. Tvrdoća martenzita nastalog međukritičnom brzinom gašenja određuje se iz TTT dijagrama za kontinuirano ohlađivanje.

Tvrdoće bainita, perlita i ferita određuju se prema TTT dijagramu za kontinuirano ohlađivanje indukcijski kaljenog čelika.

8.0 OPTIMIZACIJA INDUKTORA

U slučaju indukcijskog kaljenja od presudne je važnosti postizanje zadane dubine austenitiziranog sloja ugrijanog iznad temperature početka stvaranja austenita A_1 . Dubina austenitiziranog sloja je uobičajeno veća ili jednaka efektivnoj dubini prodiranja struje δ_1 u obratku. Temperatura A_1 veća je od Curieove temperature \mathcal{P}_{Curie} pa je austenitizirani sloj u obratku paramagnetičan. Stoga je induktore za indukcijsko kaljenje logično optimirati za ugrijavanje paramagnetskog materijala na temperaturi iznad temperature A_1 . Induktori za predgrijavanje ili popuštanje optimirali bi se za ugrijavanje feromagnetskog materijala na temperaturi nižoj od \mathcal{P}_{Curie} .

Najvažniji kriteriji i metode optimizacije induktora već su spomenut i opisani u poglavlju 3.4. Ovdje će se izvesti njihov formalni matematički oblik i opisat će se primjena dviju metoda u traženju optimalnog oblika i dimenzija induktora:

- analitička metoda traženja najvećeg stupnja djelovanja induktora,
- metoda matematičke simulacije s minimizacijom odstupanja zadane veličine na obratku.

8.1 Optimizacija induktora analitičkom metodom za postizanje najvećeg stupnja djelovanja

Analitička metoda traženja najvećeg stupnja djelovanja induktora uobičajeno se primjenjuje za viševojne induktore (zavojnice) bez koncentratora magnetskog toka (**slika 8.1**) i rotaciono indukcijsko kaljenje. Funkcija cilja u ovoj metodi postavlja se pomoću teorije ekvivalentnog strujnog kruga induktor – okoliš - obradak (poglavlje 4.3.1).

Za provedbu optimizacije frekvencija indukcijskog generatora može se zadati fiksnom ili promjenljivom ovisno o generatoru. Međutim izbor frekvencije ne može kompenzirati utjecaj električnih i magnetskih svojstava obratka ili loše konstrukcije induktora. Uobičajeno ograničenje pri izboru frekvencije indukcijskog generatora proizlazi iz uvjeta izbjegavanja poništenja induciranih vrtložnih struja na jednoj strani poprečnog presjeka strujama sa suprotne strane presjeka. Kod indukcijskog ugrijavanja valjaka polumjera r_1 ovaj uvjet je ostvaren uz $r_1/\delta_1 \ge 4$:

$$f \ge \frac{6,450}{\left(\kappa\mu\delta\right)_g} \tag{8.1}$$

Slika 8.1 Karakteristične dimenzije viševojnog induktora zavojnice za ugrijavanje dugačkog ravnog valjka [1]

U vlastito razvijenom algoritmu optimizacije induktora zavojnice za indukcijsko kaljenje induktor se optimira za najveću vrijednost temperature A_1 prema TTS dijagramu (koja uobičajeno odgovara brzini grijanja oko 1000 °C/s). Na ovoj temperaturi relativna magnetska permeabilnost jednaka je jedinici (μ_r =1), a za vrijednost temperaturno ovisne električne vodljivosti uzima se njena srednja vrijednost između temperature (A_1)_{max} i temperature austenitizacije (\mathcal{G}_a). Uz ova pojednostavljenja iz teorije ekvivalentnog strujnog kruga i jednadžbi prijenosa elektromagnetskog polja između viševojnog induktora – zavojnice i osnosimetričnog obratka (**slika 8.1**) slijede jednadžbe (8.2.a-c) izvedene prema [1, 2, 7] za postavljanje funkcije cilja najvećeg stupnja djelovanja induktora.

$$\eta = \frac{R_1}{R_1 + R_2}$$
(8.2.a)

$$R_{1} = \frac{8,88N_{z}^{2}r_{1}K_{R}}{l_{g}\kappa_{1}\delta_{1}}F(kr_{1})$$
(8.2.b)

$$R_{2} = \frac{4\pi^{2} N_{z}^{2} \left(r_{2} + \frac{\delta_{2}}{2}\right) \sqrt{f}}{l_{2} \sqrt{\kappa_{2}} \sqrt{\frac{N_{z} \pi h_{2}}{4l_{2}}}} F(K_{r})$$
(8.2.c)

$$\eta = \frac{R_1}{R_1 + R_2} = \frac{1}{1 + \left[\left(\frac{1261,653 \cdot \kappa_1 l_g}{r_1 \kappa_2 \sqrt{(l_g + 0,002)\kappa_2}} \right) \frac{(2r_2 \sqrt{f} \sqrt{\kappa_2} + 503)}{\sqrt{f} \sqrt{N_z} \sqrt{h_2}} \left(\frac{1}{K_R} \frac{F(K_r)}{F(kr_1)} \right) \right]}$$
(8.3)

f	 frekvencija, Hz
$N_{\rm z}$	 broj zavoja induktora
l_2	 duljina induktora, m
r_2	 polumjer induktora, m
δ_2	 efektivna dubina prodiranja struje u induktoru, m
t_2	 debljina stjenke vodiča induktora, m
h_2	 visina vodiča induktora, m
K _r	 faktor otpora induktora, 1
K ₂	 električna vodljivost materijala induktora, S/m
μ_0	 magnetski permeabilitet vakuuma, $4 \cdot \pi \cdot 10^{-7}$ H/m
ĸı	 električna vodljivost materijala obratka, S/m
δ_1	 efektivna dubina prodiranja struje u obradak, m
$l_{ m g}$	 duljina grijanja ($lg \approx l_2 - 0,002$), m
$K_{\rm R}$	 faktor otpora obratka, 1
kr_1	 argument funkcije $F(kr_1)$, 1

Karakteristični članovi jednadžbi (8.3) izraženi su jednadžbama (8.4.a-b) prema [1].

$$K_r = \frac{2t_2}{\delta_2} \tag{8.4.a}$$

$$kr_1 = \frac{r_1}{\delta_1} \tag{8.4.b}$$

$$F(K_r) = \frac{\sinh(K_r) - \sin(K_r)}{\cosh(K_r) - \cos(K_r)}$$
(8.4.c)

Grafički prikaz funkcija $F(K_r)$ i $F(kr_l)$ dan je na **slici 8.2**. Primjena jednadžbi (8.1) i (8.3) za optimizaciju induktora zavojnice omogućuje određivanje promjera $2r_2$, duljine l_2 , visine zavoja h_2 i broja zavoja N_z , što je dovoljno u određenim slučajevima indukcijskog predgrijavanja ili popuštanja čeličnih šipki, valjaka ili profila. Međutim, primjenom jednadžbe (8.3) ne može se odrediti položaj N_z zavoja po dužini induktora l_2 , niti se može optimirati induktor zavojnica s različitim promjerima zavoja što se ponekad zahtijeva kod indukcijskog kaljenja svornjaka, osovina, konusnih vodilica i

sličnih dijelova. Stoga se induktori za indukcijsko kaljenje (jednovojni ili viševojni, s ili bez koncentratora magnetskog toka) uobičajeno optimiraju metodama računalnih simulacija i dr. metodama optimizacije ranije navedenim u poglavlju 3.4.

Slika 8.2. a) Grafički prikaz funkcije $F(kr_g)$; b) Grafički prikaz funkcije $F(K_R)$ [1]

8.2. Optimizacija induktora računalnom simulacijom za postizanje zadane raspodijele inducirane struje

Za optimizaciju induktora s ili bez koncentratora magnetskog toka uobičajeno se primjenjuje računalna simulacija uz minimizaciju sume kvadrata odstupanja određene veličine (gustoća inducirane struje, snaga Jouelovih gubitaka) od korisnički zadanih vrijednosti u nekoliko točaka ugrijavanog sloja. U vlastito razvijenom algoritmu optimizacije induktora referentna veličina je modul gustoće inducirane struje na površini obratka $J_{0I} = |J_{01}|$ izražen jednadžbom (8.5).

$$\underline{J}_{01} = -j\omega\kappa\underline{A}_{0} = \omega\kappa\underline{A}_{0I} - j\omega\kappa\underline{A}_{0R}$$
(8.5)

Od funkcije $J_{01} = f(\Gamma_1)$ zahtijeva se jednolična raspodjela po ugrijavanoj površini obratka koja se nalazi u induktoru. Vrijednost fazora gustoće inducirane struje obratka i njegov modul određuju se rješavanje sustava jednadžbi konačnih i rubnih elemenata opisanih u poglavlju 5.

Optimizacija induktora za indukcijsko kaljenje u vlastito razvijenom optimizacijskom algoritmu provodi se za paramagnetični rubni sloj obratka, pomicanjem čvorova rubnih elemenata na jednovojnom induktoru (**slika 8.3**) ili pomicanjem cijelog zavoja viševojnog induktora.

Slika 8.3. Optimizacija induktora promjenama dimenzija i oblika u smjeru osi r

Za svaku promjenu dimenzija induktora za iznos ($\pm \Delta r_i \pm \Delta z_{i,}$), odnosno ($\pm \Delta x_i \pm \Delta y_i$) računa se promjena gustoće induciranih vrtložnih struja J_{01} na površini obratka rješavanjem sustava jednadžbi rubnih i konačnih elemenata (5.83)-(5.84). Pomicanje čvorova rubnih elemenata induktora u stvarnosti znači dodavanje ili oduzimanje diskretnih volumena induktora, odnosno mijenjanje njegovog vanjskog oblika i dimenzija.

Optimizacija induktora stoga se sastoji od slijedeća tri koraka:

- I. Zadavanje optimiranog skupa *N* rubnih elemenata induktora i *M* točaka obratka u kojima se promatra promjena gustoće inducirane struje.
- II. Određivanje optimizacijskih koeficijenata.
- III. Iteracijsko određivanje optimalnih dimenzija i oblika induktora minimizacijom odstupanja gustoće induciranih struje na površini obratka.

Ovakav postupak optimizacije moguće je primijeniti kod svih oblika rotaciono simetričnih i dugačkih ravnih obradaka bez obzira na broj zavoja i oblik poprečnog presjeka induktora, a uobičajene su slijedeće dvije optimizacije koje su primijenjene u vlastito razvijenom simulacijskom programu:

- a) optimizacija viševojnih induktora promjenom razmaka između zavoja ili promjenom promjera zavoja,
- b) optimizacija jednovojnog induktora traženjem optimalnog oblika i dimenzija poprečnog presjeka.

Zadavanje optimiranog skupa rubnih elemenata induktora. Optimizacija induktora može biti numerički vrlo zahtijevan zadatak s dugotrajnim rješavanjem ako se površna induktora diskretizira velikim brojem rubnih elemenata ili ako se zada velik broj promatranih točaka na površini obratka. Stoga se u cilju pojednostavljenja i ubrzanja optimizacije odvojeno optimiraju promjene u smjeru osi r, (ili x) od onih u smjeru osi z (ili y). Ako induktor ipak treba optimirati promjenama u obje osi tada se nakon postizanja optimalnog rješenja promjenama oblika i dimenzija induktora u smjeru osi r (ili x) provodi dodatno optimiranje i promjenama oblika i dimenzija po osi z (ili y).

Uobičajeno se pretpostavlja optimirana površina induktora nasuprotna zagrijavanoj površini obratka. Obje površine diskretiziraju se relativno grubljom mrežom konačnih i rubnih elemenata s duljinom stranica približno jednakom efektivnoj dubini prodiranja struje u induktoru δ_2 . **Određivanje optimizacijskih koeficijenata** za proračun dimenzija induktora provodi se u vlastito razvijenom optimizacijskom algoritmu linearnom regresijskom analizom i računalnom simulacijom elektromagnetskog polja u sustavu induktor – obradak. Pri tome se određuje utjecaj promjene mjera induktora ($\pm \Delta r_i \pm \Delta z_i$), odnosno ($\pm \Delta x_i \pm \Delta y_i$), na gustoću površinski inducirane struje u obratku J_{01} . Ovisnost promjene gustoće struje u obratku u nastale promjenom mjera induktora u odnosu na njegove polazne mjera aproksimira se funkcijom $\Delta J_{01} = f(\Delta r, \Delta z)$:

$$\Delta J_{01,w}(\Delta r, \Delta z) = (a_i \Delta r_i) + (b_i \Delta z_i) \qquad w = 1, 2, ..., M \quad i = 1, 2, ..., N \quad (8.6)$$

Oblik jednadžbe (8.6) mora zadovoljiti uvjet da je $\Delta J_{01}=0$ kad je $\Delta r=0$ i $\Delta z=0$. Koeficijenti a_i , i b_i odražavaju utjecaj promjene dimenzija induktora na promjenu iznosa gustoće struje J_{01} inducirane u promatranih M točaka obratka. Određivanje njihovih vrijednosti provodi se regresijskom analizom prije optimizacije. Za dobivanje potrebnog skupa nezavisnih varijabli { $\Delta r, \Delta z$ } i skupa od njih ovisnih vrijednosti { $\Delta J_{01,w}$ } računalnom simulacijom određuje se promjena gustoće inducirane vrtložne struje u M točaka obratka nastala kao posljedica pomicanja <u>samo jednog rubnog elementa</u> induktora za iznos Δr ili Δz . Kod optimizacije induktora u obliku viševojne zavojnice promjene mjera Δr odnose se na promjenu promjera zavoja, a promjene mjera Δz na promjenu razmaka između zavoja.

Postupak određivanja promjene vrijednosti inducirane vrtložne struje u obratku $\Delta J_{01,w}$ u odnosu na iznos određen za polazni oblik i mjere induktora ponavlja se deset puta za svaki rubni element induktora, odnosno sve zavoje viševojnog induktora. Ponavljanjem se stvaraju skupovi nezavisnih varijabli { Δr }, { Δz } i skup zavisne varijable { $\Delta J_{01,w}$ } nad kojima se provodi regresijska analiza. Deset vrijednosti promjena mjera induktora zadaju se iz intervala vrijednosti $\pm \Delta r_{max}$ ili $\pm \Delta z_{max}$ Regresijskom analizom određeni optimizacijski koeficijenti a_1 , b_1 čine matrice s *M* redaka (broj promatranih točaka na obratku) i *N* stupaca (broj rubnih elemenata induktora namijenjenih optimizaciji).

Iteracijsko određivanje optimalnih dimenzija i oblika induktora u vlastito razvijenom optimizacijskom algoritmu provodi se u p koraka dok se ne postigne traženo odstupanje gustoće inducirane struje $J_{01,w}$ od srednje vrijednosti \overline{J}_{01} izraženo izrazima (8.7) i (8.8)

$$\varepsilon_{J}^{p} = \sqrt{\frac{\sum_{w=1}^{M} \left(\frac{\overline{J}_{01} - J_{01,w}}{\overline{J}_{01}}\right)^{2}}{M}} \leq (\varepsilon_{J})_{\max}$$
(8.7)

$$\overline{J}_{01} = \frac{\sum_{w=1}^{M} J_{01,w}}{M}$$
(8.8)

Određivanje pomaka N rubnih elemenata (ili čitavih zavoja) induktora provodi se minimizacijom sume odstupanja gustoće inducirane struje $\{\overline{J}_{01} - (J_{01})_w^p\}$ u M točaka površine obratka:

$$W^{p} = \sum_{w=1}^{M} \left(\overline{J}_{01} - \left(J_{01} \right)_{w}^{p} \right)^{2}$$
(8.9.a)

$$W_{\Delta r}^{p} = \sum_{w=1}^{M} \left[\left(\overline{J}_{01} - \left(J_{01} \right)_{w}^{p-1} \right) - \sum_{i=1}^{N} \left(a_{w,i} \Delta r_{i} \right)^{p} \right]^{2}$$
(8.9.b)

$$W_{\Delta z}^{p} = \sum_{w=1}^{M} \left[\left(\overline{J}_{01} - \left(J_{01} \right)_{w}^{p-1} \right) - \sum_{i=1}^{N} \left(b_{w,i} \Delta z_{i} \right)^{p} \right]^{2}$$
(8.9.c)

Potrebna promjena dimenzija konačnog elementa uz površinu induktora (Δr , Δz_i) ili ($\Delta x_i \Delta y_i$) u *p*-tom koraku optimizacije određuje se minimizacijom sume kvadrata odstupanja prema [31]:

$$\frac{\partial W_{\Delta r}^{p}}{\partial (\Delta r_{j})} = \sum_{w=1}^{M} 2 \left[\left(\overline{J}_{01} - \left(J_{01} \right)_{w}^{p-1} \right) - \sum_{i=1}^{N} \left(a_{w,i} \Delta r_{i} \right)^{p} \right] \cdot a_{w,j} = 0$$
(8.10.a)

$$\frac{\partial W_{\Delta z}^{p}}{\partial (\Delta z_{j})} = \sum_{w=1}^{M} 2 \left[\left(\overline{J}_{01} - (J_{01})_{w}^{p-1} \right) - \sum_{i=1}^{N} (b_{w,i} \Delta z_{i})^{p} \right] \cdot b_{w,j} = 0$$
(8.10.b)

Iz sustava jednadžbi (8.10.a-b) proizlazi sustav jednadžbi (8.11.a-b) izražen u matričnom zapisu koji treba riješiti po nepoznatim pomacima rubnih elemenata induktora Δr_i , Δz_i .

$$[a_{i,w}] \cdot [a_{w,j}] \{\Delta t_i^*\} = [a_{j,w}] \{\overline{J}_{01} - (J_{01})_w^{p-1}\}$$
(8.11.a)

$$[b_{i,w}] \cdot [b_{w,j}] \{\Delta z_i\} = [b_{j,w}] \{\overline{J}_{01} - (J_{01})_w^{p-1}\}$$
(8.11.b)

Rješavanjem sustava algebarskih jednadžbi (8.11.a-b) dobivaju se pomaci N rubnih elementa induktora kojima se približava ujednačenoj gustoći induciranih vrtložnih struja u M točaka obratka. Nakon proračuna novih mjera induktora (nastalih pomicanjem rubnih elemenata za iznose Δr_i i Δz_i) opet se određuje gustoća struja induciranih na površini obratka $J_{01,w}$ i njena srednja vrijednost J_{01} .

Iz gornjeg opisa uočava se šest faza iteracijskog traženja optimalnih dimenzija i oblika induktora (III korak optimizacije):

- III. a) Proračun gustoće induciranih vrtložnih struja na površini obratka J_{01} rješavanjem algebarskog sustava jednadžbi konačnih i rubnih elemenata (5.83)-(5.84).
- III. b) Proračun srednje vrijednosti gustoće induciranih vrtložnih struja na površini obratka \overline{J}_{01} .
- III. c) Proračun odstupanja gustoće induciranih vrtložnih struja na površini obratka od njihove srednje vrijednosti $\overline{J}_{01} (J_{01})_w^{p-1}$.
- III. d) Rješavanje algebarskog sustava jednadžbi (8.11.a-b) po nepoznanicama $\{\Delta r_i\}$ i $\{\Delta z_i\}$ i određivanje novih mjera induktora.
- III. e) Proračun srednjeg relativnog odstupanja induciranih vrtložnih struja ε_J^p jednadžbama (8.6)-(8.7) i usporedba sa zadanim odstupanjem (ε_J)_{max}
- III. f) Ponavljanje faza optimizacije III.a) do III.e) do postizanja zadanog kriterija odstupanja induciranih vrtložnih struja (8.6)

Opisani postupak optimizacije prikazat će se na primjeru optimizacije (poglavlje 8.3): viševojnog induktora korištenog za ugrijavanje epruvete za ispitivanje prokaljivosti čelika gašenjem u struji plinova u vakuumskoj peći.

8.3 Primjer optimizacije viševojnog induktora

8.3.1. Opis problema optimizacije

Optimizacija viševojnog induktora prikazana u ovom poglavlju namijenjena je rješavanju problema jednoličnog ugrijavanja cilindričnog ispitnog uzorka za ispitivanje prokaljivosti i parametara gašenja u struji plina u vakuumskoj komori [108]. Metoda ispitivanja prokaljivosti čelika gašenjem u struji plinova pod visokim tlakom još nije u potpunosti istražena i propisana, premda je potreba za ovakvim istraživanjima izražena već niz godina u industriji vezanoj uz toplinsku obradu u vakuumskim pećima.

Razvojem i usavršavanjem vakuumskih peći i metoda gašenja u njima dostignuti su intenziteti gašenja slični gašenju u ulju, što omogućuje primjenu kaljenja u vakuumskim pećima i kod srednjelegiranih čelika za cementiranje ili poboljšavanje osim uobičajeno kaljivih alatnih i visokolegiranih čelika [109]. Za sve spomenute čelike prikladne za kaljenje u vakuumskim pećima nužno je poznavanje njihove prokaljivosti pri gašenju u struji plinova pod visokim pritiskim zbog predviđanja raspodijele tvrdoće po poprečnom presjeku dijelova i alata kaljenih u vakumskim pećima u industrijskim uvjetima. Ekvivalentno ispitivanje prokaljivosti pri gašenju u vodi ili ulju je opće prihvaćena metoda Jominy (prema normi DIN 50191) kod koje se ispitna epruveta ugrijava u peći odvojeno od naprave za gašenje.

Ispitivanje prokaljivosti provodi se gašenjem čela ispitne epruvete nastrujavanjem plina. Ugrijavanje i gašenje se izvode u istoj posebno konstruiranoj vakuumskoj komori (**slika 8.4**) uz automatsku regulaciju parametara ugrijavanja i gašenja. Ugrijavanje ispitnog uzorka (\emptyset 20 x 100 mm) izvodi se induktorom duljine 115 mm izrađenim od bakrene cijevi promjera 6 mm s deset jednako razmaknutih zavoja. Zbog potrebe za toplinskom izolacijom svih površina epruvete osim čeone površine zračnost između induktora i epruvete je povećana za debljinu toplinske izolacije (8 mm) pa unutrašnji promjer induktora iznosi 36 mm.

Slika 8.4 Shematski prikaz vakuumske komore (razvijene u Institutu IWT Universität Bremen) za ispitivanje prokaljivosti čelika u struji plinova (ispitna epruveta Ø 20 x 100 mm) [108]

Za provedbu pokusa gašenja u plinu čitav volumen ispitne epruvete (\emptyset 20 x 100 mm) treba jednolično ugrijati na temperaturu austenitizacije (npr. 850 °C za čelik 42CrMo4). Ispitna epruveta je toplinski izolirana keramičkim cilindrom (\emptyset 30/24 x 180 mm) zbog osiguranja ohlađivanja samo s čela. U jednom od niza ispitivanja provedenih u institutu IWT Universität Bremen praćena je promjena temperature po visini ispitne epruvete mjerenjem pomoću šest termoelemenata ugrađenih na različitim visinama epruvete na dubini 1,5 mm ispod površine. Dobivena je raspodjela temperature po visini epruvete neposredno prije početka gašenja s čela prikazana na **slici 8.5**.

Analizom ugrijavanja ispitne epruvete na slici 8.5 uočavaju se dva problema:

- a) dugotrajno ugrijavanje i
- b) nejednolična raspodjela temperature po visini epruvete.

Slika 8.5 Ugrijavanje ispitne epruvete (Ø 20 x 100) mm od čelika 42CrMo4:

- a) Prikaz krivulje ugrijavanja izmjerene na dubini 1,5 mm ispod površine [108]
- b) Raspored temperature po visini epruvete izmjeren na dubini 1,5 mm ispod površine nakon indukcijskog ugrijavanja u trajanju od 15 min (f=100 kHz, U=600V)

Problem dugotrajnog ugrijavanja nastao je zbog velike zračnosti (8 mm) između induktora i epruvete koja uzrokuje veliko rasipanje elektromagnetskog polja i nizak stupanj djelovanja induktora. Zbog dimenzija cilindra za toplinsku izolaciju epruvete (\emptyset 30/24 x 180 mm) unutrašnji promjer induktora može se smanjiti sa \emptyset 35 samo na \emptyset 32 mm. Prema vlastito provedenim proračunima ovo će povećati stupanj djelovanja induktora s oko 1,5 % na 2 do 4% kad je rubni sloj epruvete ugrijan na temperature više od temperature Curie. Vrijeme ugrijavanja epruvete moglo bi biti i manje od 10 min za što indukcijski generator instaliran u Institutu IWT Universität Bremen ima dovoljno snage, ali u tom slučaju bi srednje brzine ugrijavanja iznosile više od 5 °C/s, što nije slučaj s ugrijavanjem u vakuumskim pećima gdje su brzine ugrijavanja uobičajeno manje od 1 °C/s.

Problem nejednolične raspodijele temperature po visini ispitne epruvete nastaje zbog oblika induktora s jednakim razmakom između zavoja. Određivanje optimalnog razmaka između zavoja riješit će se u idućem poglavlju ranije opisanom metodom optimizacije (poglavlje 8.2).

8.3.2 Numeričko rješenje problema optimizacije

Uz pomoć vlastito razvijenog računalno simulacijskog programa analizirano je ugrijavanje epruvete za ispitivanje prokaljivosti gašenjem u plinu mjera \emptyset 20 x 100 mm od čelika 42CrMo4. Za provedbu računalne optimizacije induktora pretpostavljena je temperatura epruvete oko 850 °C po cijelom presjeku. Induktor za ugrijavanje pretpostavlja se izrađenim od bakrene cijevi promjera \emptyset 6 mm s unutrašnjim promjerom zavoja \emptyset 35 mm i razmakom između zavoja 3 mm. Na **slici 8.6** prikazana je raspodjela gustoće induciranih vrtložnih struja u rubnom sloju epruvete uz pretpostavku da je struja induktora bila 600 A. Raspodjela gustoće struje po presjeku induktora nije predmetom optimizacije, pa nije prikazana na **slici 8.6**. Stvarni iznos struje induktora nije nužno zadati za optimizaciju induktora prema kriteriju jednoličnosti induciranih struja jer se pretpostavlja da je rubni sloj obratka paramagnetičan i prethodno ugrijan na temperaturu blizu temperature austenitizacije.

b)

b) Simulacijom određena raspodjela gustoće induciranih vrtložnih struja po polovici poprečnog presjeka epruvete od čelika 42CrMo4 nakon indukcijskog ugrijavanja (*f=110 kHz*, *I*₀ = 600 A, mjere induktora: Ø 47 / 35 x 90 mm)

Iz **slike 8.6** uočljiva je neravnomjerna raspodjela gustoće induciranih vrtložnih struja po visini epruvete s najvećim iznosima na polovici visine induktora gdje su izmjereni i najveći iznosi temperature (**slika 8.5**). Prikazana raspodjela gustoće induciranih struja nastaje zbog koncentracije elektromagnetskog polja u središtu induktora. Prema vlastitim proračunima odstupanje induciranih vrtložnih struja od srednje vrijednosti (određeno jednadžbom 8.6) za polazni položaj induktora prema epruveti iznosi između 45 do 50 %, a stupanj djelovanja induktora iznosi 3 %. Neravnomjerna raspodjela induciranih vrtložnih struja može se ublažiti pomicanjem razmicanjem i odmicanjem zavoja induktora za određene iznose $+\Delta z_i$ ili $-\Delta z_i$, i = 1, 2, ..., 10 u odnosu na njihov polazni položaj prikazan na **slici 8.6.** Točan iznos i smjer pomaka zavoja određen je računalnom optimizacijom prema modelu iz poglavlja 8.2.

Za postavljanje optimizacijskog modela korištene su pretpostavke i parametri postupka navedeni u **tablici VIII.1**. Provedena je optimizacija razmicanjem zavoja po visini induktora a unutrašnji promjer pretpostavljen je \emptyset 32 mm koliko je minimalno dopušteno zbog postavljanja toplinske izolacije oko epruvete. Provedena je optimizacija s dva oblika vodiča induktora: u obliku cijevi \emptyset 6 mm i u obliku kvadratnog profila 5x5 mm.

Naziv	Iznos			
Materijal ispitne epruvete	42CrMo4			
Mjere ispitne epruvete	Ø 20 x 100 mm			
Temperatura ispitne epruvete	850 °C			
Frekvencija generatora Struja induktora (A)	110 kHz 600 A			
Broj zavoja induktora	10			
Vodič induktora				
a) bakrena cijev promjera	Ø 6 mm			
b) bakreni profil poprečnog presjeka	5x5 mm			
Mjere induktora:				
unutrašnji promjer x visina zavojnice	Ø 32 x 95 mm			

Tablica VIII.1 Pretpostavke i radni parametri modela za optimizaciju viševojnog induktora

Rezultati optimizacije s ciljem povećanja stupnja djelovanja induktora i postizanja ravnomjernije raspodjele induciranih vrtložnih struja u ugrijavanoj epruveti prikazani su u **tablici VIII.2** i **slikama 8.7**. i **8.8** Iz **tablice VIII.2** je vidljivo da je računski dobiven mali stupanj djelovanja induktora unatoč optimizaciji. Za temperature rubnog sloja više od temperature Curie kod induktora s vodičem kvadratnog presjeka 5x5 mm stupanj djelovanja je između 3 i 4 %, a kod induktora s vodičem okruglog presjeka \emptyset 6 mm one iznosi 7 do 9 %. Niski stupnjevi djelovanja induktora posljedica su velikog razmaka između unutrašnje površine induktora i ugrijavane površine epruvete. Viši stupnjevi djelovanja induktora između 20 do 30 % pojavljuju se dok je još ugrijavana epruveta feromagnetična, pa stoga treba težiti brzom porastu temperature austenitizacije (slika 8.5.a).

Tablica VIII.2 Rezultati optimizacije induktora s deset zavoja unutrašnjeg promjera Ø32 mm i visine 90 mm za ugrijavanje epruvete dimenzija Ø 20 x 100 mm

	Stupanj djelovanja induktora	Odstupanje gustoće inducirane struje u obratku od srednje vrijednosti (\mathcal{E}_J^p),
Vodič induktora:		
a) bakrena cijev promjera \varnothing 6 mm	7-9%	38,57 %
b) bakreni profil poprečnog presjeka 5x5 mm	3-4%	28,46 %

Drugi dio zadatka optimizacije bio je postizanje što jednoličnije raspodjele induciranih vrtložnih struja po rubnom sloju ispitne epruvete. Iz **tablice VIII.2** vidljivo je da se prema ovom kriteriju pokazao boljim induktor s vodičem kvadratnog poprečnog presjeka 5x5 mm koji ima srednje odstupanje induciranih vrtložnih struja po visini ispitne epruvete 28,46 %. Induktor s vodičem okruglog poprečnog presjeka \emptyset 6 mm ima odstupanje induciranih vrtložnih struja po visini epruvete 38,57 % što je uzrokovano samim kružnim oblikom vodiča.

Na temelju provedenih simulacija ugrijavanja ispitne epruvete u polaznom obliku induktora i u dva nova oblika čini se da se ravnomjerno ugrijavanje postiže u viševojnom induktoru s kvadratnim vodičem dimenzija 5x5 mm uz napomenu da se njegovom primjenom može očekivati dugotrajnije ugrijavanje. Računalnim simulacijama i optimizacijom dobiveni razmaci između zavoja oba induktora (s vodičem \emptyset 6 mm, odnosno 5x5 mm) dani su na **slikama 8.7** i **8.8** a njihove vrijednosti treba u budućim istraživanjima ispitati i potvrditi u praksi.

Slika 8.7. Razmještaj deset zavoja induktora izrađenog od bakrene cijevi promjera Ø 6 mm nakon računalne optimizacije

Slika 8.8. Razmještaj deset zavoja induktora izrađenog od bakrenog profila 5x5mm nakon računalne optimizacije

8.4 Projektiranje računalnog programa za simulaciju indukcijskog kaljenja i optimizaciju induktora

Prema simulacijskom algoritmu (poglavlje 4) i matematičkim modelima razrađenim u poglavljima 5 do uključivo 8.2 projektiran je i razvijena je baza podataka i računalni program za simulaciju postupka indukcijskog kaljenja i optimizaciju induktora. Računalnim programom obuhvaćeno je zadavanje svih potrebnih veličina modela i numeričko rješavanje matematičkih modela elektromagnetskih, termodinamičkih i mikrostrukturnih procesa u obratku tijekom simulacije indukcijskog kaljenja dugačkih ravnih i rotaciono simetričnih obradaka. U simulacijski program ugrađena je jednostavna baza podataka kojom su obuhvaćena električna, magnetska, toplinska, metalurška i mehanička svojstva deset uobičajeno indukcijski kaljivih čelika (Ck35, Ck45, Cf53, 34Cr4, 41Cr4, 46Cr2, 34CrMo4, 42CrMo4, 50CrWo4).

8.4.1 Projektiranje vlastite baze podataka za simulaciju indukcijskog kaljenja

Zahtjevi za projektiranje baze podataka. Bazom podataka rješavaju se sljedeći upiti tehnologa i potrebe računalnog simulacijskog programa:

- 1) Izbor vrste čelika za indukcijsko kaljenje prema DIN normi
- Pregled raspona kemijskog sastava čelika ili željeznog lijeva prema DIN normi i/ili zadavanje konkretnog sastava
- Pregled preporučenih parametara prethodne toplinske obradbe: kaljenja, popuštanja i žarenja za odabrani čelik ili željezni lijev
- 4) Prikaz mehaničkih svojstava u normalizacijski žarenom stanju (R_e, R_m, A_5, HB)
- 5) Prikaz mehaničkih svojstava (R_e , R_m , A_5 , R_s) u poboljšanom stanju
- 6) Prikaz i zadavanje fizikalnih svojstava odabranog čelika ovisnih o temperaturi:
 - a) električne vodljivosti
 - b) magnetske permeabilnosti (ovisna o temperaturi i jakosti magnetskog polja)
 - c) koeficijenta vodljivosti topline
 - d) specifičnog toplinskog kapaciteta
 - e) gustoće

- 7) Prikaz i zadavanje vrijednosti temperatura A_{c1} , A_{c3} odabranog čelika ovisno o brzini ugrijavanja prema podacima iz TTS dijagrama
- 8) Prikaz tvrdoće čelika ovisno o brzini ugrijavanja i temperaturi austenitizacije
- 9) Izbor i zadavanje polaznog oblika i dimenzija induktora i prskalice
- 10) Izbor sredstva za gašenje (voda, vodene otopine polimera).

Programiranje baze podataka povedeno je u računalnom jeziku "Visual Basic 6" kao i programska izvedba čitavog korisničkog sučelja simulacijskog programa. U bazu podataka unijete su vrijednosti električnih, magnetskih, toplinskih, metalurških i mehaničkih svojstava čelika ovisna o temperaturi (u rasponu od 20 do 1300°) prema dostupnim podacima iz literature [12, 13, 14, 15, 82, 84, 99, 100]. Pregled i zadavanje navedenih svojstava korisnik počinje izborom vrste čelika na polaznoj formi baze podataka (**slika 8.9**)

🕽 Ind2D									
PROJEKT	Obradak ->	Materijal ->	Induktor ->	Postupak	2-D MREZA -	> OPTIMIZACIJA	SIMULACIJA	Izvjesce	Pomoc
🆥 Kemi	jski sastav i	oznaka				×	I		
Materija	al obradka:	1	Pregled svoj	stva i karakl	eristika materij	ala			
Ck45			Mehanic	ka svojstva	Tehn	oloska svojstva			
Ck35									
Ck45 Cf53		_		Kem	ijski sastav	, %			
34Cr4 41Cr4				Min.	Мах.	Stvarni sastav			
46Cr2 34CrM	04	•	С	0,42	0,5	0,49			
, Pregle	ed i izmjene :	svojstva 1	Si	0,15	0,35	0,26			
	-		Mn	0,5	0,8	0,74			
	Elektricha svoj	stva	Cr	0	0	0			
N	dagnetska svo	ojstva	Ni	0	0	0			
	Toplinska svoj	stva	v	0	0	0			
			Мо	0	0	0			
Meta	lurska svojstva		S	0,045	0,035	0.005			
	Ugrijavanje		Р	0	0,045	0,018			
	Uhladivanje	<u> </u>	Pa	lazni sastav		jene sastava			
	dehanicka svo	istva				Odustani			
		dect of				Uredu			

Slika 8.9 Polazna dijaloška forma baze podataka o svojstvima indukcijski kaljivih čelika

Polazeći od dijaloške forme na **slici 8.9** korisnik pregledava i po potrebi mijenja sva gore navedena svojstva. Izmijenjena fizikalna, mehanička i metalurška svojstva čelika moguće je pohraniti u zasebnu tekstualnu datoteku te ih sačuvati za nove simulacije, odvojeno od aktualne simulacije. Svojstva materijala programski ugrađena u bazu podataka korisnik ne može mijenjati već ona služe kao predložak od kojeg se polazi pri postavljanju parametara računalne simulacije.

8.4.2. Projektiranje vlastitog računalno-simulacijskog programa

Prema simulacijskom algoritmu razrađenom u poglavlju 4 projektirano je korisničko sučelje vlastitog računalnog programa za simulaciju postupaka indukcijskog kaljenja nazvanog "Ind2D" (**slika 8.10**). Razvijeni računalni simulacijski program namijenjen je simulacijama indukcijskog kaljenja obradaka rotacijske simetrije i dugačkih ravnih obradaka koji se mogu pojednostavljeno predstaviti kao dvodimenzijski geometrijski modeli u ravnini x-y odnosno *r-z*. Primjenom dvaju numeričkih metoda: metode konačnih i rubnih elemenata moguće je s točnošću reda (θ^2) računalno simulirati indukcijsko ugrijavanje i indukcijsko kaljenje u vrlo širokom rasponu frekvencija, od niskofrekventnog (f = 1 kHz) do visokofrekventog (f = 500 kHz), različitim metodama (stacionarnom, posmičnom, rotacijskom i rotaciono posmičnom). U simulacijski program je kao zasebni modul ugrađena i optimizacija induktora prema kriteriju postizanja jednolične raspodjele induciranih vrtložnih struja na zadanom dijelu kaljene površine obratka. Optimizacija induktora moguća je pomicanjem pojedinih zavoja i promjenom njihovog promjera ili promjenom oblika i mjera poprečnog presjeka jednovojnog induktora.

Slika 8.10. Polazna forma vlastito razvijenog računalnog programa za simulaciju indukcijskog kaljenja i optimizaciju induktora.

Razvijeni računalni simulacijski program projektiran je kao programska ljuska u koju je ugrađeno korisničko sučelje povezano sa sljedećih osam modula:

- a) Modul za zadavanje geometrijskih elemenata konture obratka (slika 8.11)
- b) Baza podataka o fizikalnim, mehaničkim, metalurškim i tehnološkim svojstvima materijala
- c) Modul za izbor tipa induktora i zadavanje polaznog oblika i mjera induktora

- d) Modul za zadavanje podataka o parametrima postupka indukcijskog kaljenja i svojstvima sredstva za gašenje
- e) Modul za podjelu volumena obratka i induktora na konačne trokutne elemente i njihovih površina na rubne elemente (tzv. modul "generatora mreže")
- f) Modul za numeričko rješavanje matematičkih modela, elektromagnetskih, termodinamičkih i mikrostrukturnih procesa u obratku (modul "solver")
- g) Modul za optimizaciju induktora
- h) Modul za prikaz rezultata simulacije (modul "postprocesor")

Ind2D	
ROJEKT Obradak-> Materijal-> Indukto	r-> Postupak 2-D MREZA -> OPTIMIZACIJA SIMULACIJA Izvjesce Pomoc Image: Second state Simulacija Simulacija Izvjesce Pomoc
0,0) R min = 0, Rmax = 50 mm min = -50, Zmax = 50 mm	Extrement kondure contacts C Ruzzi kk (u snjeu +) \rightarrow A + B C Kuzzi kk (u snjeu +) \rightarrow A + B C Kuzzi kk (u snjeu +) \rightarrow A + B C Kuzzi kk (u snjeu +) \rightarrow A + B C Kuzzi kk (u snjeu +) \rightarrow A + B C Kuzzi kk (u snjeu +) \rightarrow A + B C Kuzzi kk (u snjeu +) \rightarrow A + B Podaci e kuznon kku Stedarij kut (A C-B) Stedarij konture Stedarij konture Stedit kut (A L-B)

Slika 8.11. Korisnička forma vlastito razvijenog računalnog programa za zadavanje geometrijskih elemenata konture obratka

Prva tri modula i posljednje navedeni modul najuže su povezani s korisničkim sučeljem i stalno su vidljivi korisniku. Ostali moduli nevidljivi su korisniku i samo mu povremeno daju privremena izvješća o statusu i napretku npr. stvaranju mreže, konvergenciji simulacije, završetku ili početku određene faze simulacije ili optimizacije i sl. Korisničko sučelje programa (**slika 8.11**) i svojom organizacijom sugerira korisniku uobičajeni slijed faza u pripremi i provedbi simulacije.

Faze pripreme računalne simulacije postupka indukcijskog kaljenja ili optimizacije induktora ugrađene u vlastito razvijeni program jesu slijedeće:

- Faza 1. Zadavanje oblika i mjera obratka u prikladnom koordinatnom sustavu (pravokutni ili cilindrični) i označavanje dijela površine obratka namijenjenog indukcijskom kaljenju (meni "Obradak" na slici 8.11).
- Faza 2. Izbor materijala obratka i zadavanje njegovih svojstava (meni "Materijal" na slici 8.11).
- Faza 3. Odabir induktora i zadavanje njegovih polaznih mjera (meni "Induktor" na slici 8.11).
- Faza 4. Zadavanje parametara postupka (meni "Postupak" na slici 8.11).
- Faza 5. Zadavanje parametara za stvaranje mreže konačnih i rubnih elemenata (meni "2-D mreza" na slici 8.11).
- Faza 6. Zadavanje parametara simulacije ili optimizacije (meni "Optimizacija" ili "Simulacija" na slici 8.11).

Od spomenutih modula složenošću i brojem parametara ističu se dva: modul za izbor induktora i modul za zadavanje parametara postupka. Oblik korisničke forme za odabir induktora prikazan je na **slici 8.12**. Pri odabiru induktora treba zadati njegova fizikalna svojstva i položaj prema obratku.

Slika 8.12 Korisnička forma vlastitog računalnog programa za izbor tipa induktora.

Oblik korisničke forme za zadavanje parametara postupka indukcijskog kaljenja prikazan je na **slici 8.13.** U primjeni vlastito razvijenog računalnog programa predviđena je simulacija indukcijskog kaljena uz konstantne ili vremenski promjenljive parametre postupka (struja ili napon induktora, posmak ili temperatura površine obratka) koje je moguće ostvariti mikroprocesorskim vođenjem na suvremenim indukcijskim radnim ćelijama.

Slika 8.13 Korisnička forma za zadavanje parametra postupka indukcijskog kaljenja u vlastito razvijenom računalnom programu "Ind2D"

Nakon pripreme simulacije postupka kaljenja ili optimizacije induktora poziva se modul za stvaranje mreže linearnih trokutnih i ravnih rubnih elemenata. On je projektiran uz pomoć specijaliziranih funkcija računalnog programa za rješavanje parcijalnih diferencijalnih jednadžbi: 'Matlab'' - "Partial Differential Equation Toolbox" i vlastito razvijenih programskih modula. Generirane mreže konačnih i rubnih mogu biti lokalno adaptirane ili izgrađene u slojevima s malim trokutnim elementima uz površinu i grubljim elementima prema jezgri obratka.

Matematički modeli elektromagnetskih, toplinskih i mikrostrukturnih procesa numerički se rješavaju prema simulacijskom algoritmu i matričnim jednadžbama izvedenim poglavljima pet do sedam. Za numeričko rješavanje primjenjuju se vlastito razvijene programske funkcije i one iz računalnog sustava "Matlab" prevedene u programske jezike C i C++.
9.0 EKSPERIMENTALNA PROVJERA RAČUNALNE SIMULACIJE INDUKCIJSKOG KALJENJA

Problemi odabira radnih parametara indukcijskog kaljenja i pronalaženja optimalnog induktora riješeni su razradom vlastitog simulacijskog algoritma i razvojem računalnog programa. Pri tome su matematičkim modelima obuhvaćeni elektromagnetski, toplinski i mikrostrukturni procesi u obratku u svrhu preciznog uvida u postupak indukcijskog kaljenja i utjecajne čimbenike na postignuta svojstva zakaljenog sloja. Razvijeni računalni program "Ind2D" provjerit će se na primjeru indukcijskog kaljenja čeličnih valjaka

Računalna simulacija indukcijskog kaljenja čeličnih valjaka provedena je u svrhu određivanja kombinacije radnih parametara (snage generatora i posmične brzine obratka) kojima će se ostvariti propisani zahtjevi na **slici 9.1**. Također je na konkretnim ispitnim uzorcima provjerena točnost rezultata simulacije i predviđenih svojstava zakaljenog sloja u odnosu na na stvarno postignuta svojstva (dubinu kaljenja, površinsku tvrdoću i raspored tvrdoće po dubini zakaljenog sloja).

9.1 Izbor ispitnog uzorka

Rezultati vlastito razvijenog simulacijskog programa "Ind2D" provjereni su na primjeru rotaciono posmičnog indukcijskog kaljenja čeličnih valjaka dimenzija ϕ 20x95mm za koje su definirane kombinacije snage generatora i posmaka kojima se prema rezultatima simulacije postiže tražena dubina kaljenja i površinska tvrdoća. Ostali radni parametri indukcijskog kaljenja zadržani su uvijek jednakim tijekom simulacije i pokusa.

Za provjeru računalnog programa "Ind2D" izabran je primjer simulacije rotaciono-posmičnog indukcijskog kaljenja čeličnih valjaka dimenzija ¢20x95mm koje treba zakaliti prema zahtjevima propisanim na **slici 9.1.**

Slika 9.1 Ispitni uzorak od čelika 42CrMo4 (sa zadanim zahtjevima) na kojem je provedena računalna simulacija i pokusi indukcijskog kaljenja

Svi su ispitni uzorci bili izrađeni od iste šipke niskolegiranog čelika za poboljšavanje 42CrMo4 tvrdoće u polaznom stanju jednake 284 HV1. Ispitni uzorci su obrađeni rezanjem tokarenjem i finim brušenjem na mjere zadane crtežom (**slika 9.1**) uz površinsku hrapavost *N6 (R*a_{max} =12,5 μ m). Izabrani čelik 42CrMo4 je dobre prokaljivosti i uobičajeno se koristi za indukcijski kaljenje. Kemijski sastav izrađenih ispitnih uzoraka korištenih u računalnoj simulaciji i pokusima indukcijskog kaljenja naveden je u **tablici IX.1**.

Tablica IX.1. Kemijski sastav ispitivanog čelika 42CrMo4.

% C	% Cr	% Mo	% Mn	% Si	Ni	S	Р
0,373	1,14	0,66	0,89	0,26	0,20	0,019	0,022

Ispitne uzorke od čelika 42CrMo4 trebalo je indukcijski zakaliti na dubinu *Rht* 500 = 1,0 + 0,8 mm uz postizanje površinske tvrdoće od 620 + 160 HV50 samo na dijelu površine označenom na **slici 9.1**. Čelični valjak prikazan **slikom 9.1**. izabran je zbog jednostavnog oblika i duljine kaljene površine koje ga čine neupitno prikladnim za rotaciono-posmično indukcijsko kaljenje. Duljina kaljene površine (65mm) pri indukcijskom kaljenju u induktoru s jednim zavojkom (uobičajenim za rotaciono-posmično indukcijsko kaljenog unosa energije i svojstava zakaljenog sloja na sredini valjka gdje će se uzeti uzorak za mikrografsku analizu i ispitivanje rasporeda tvrdoće.

9.2. Priprema računalne simulacije i pokusa indukcijskog kaljenja

Priprema indukcijskog kaljenja pokusnih čeličnih valjaka provedena je prema nešto pojednostavljenom postupku u odnosu na prikaz naveden tablicom II.3 (poglavlje 2.2) sa sljedećim fazama:

- 1) Konstrukcija i izrada induktora i prskalice.
- 2) Pozicioniranje induktora i prskalice prema obratku.
- 3) Definiranje radnih parametara postupka:
 - a) određivanje temperature austenitizacije (prema TTS dijagramima čelika 42CrMo4)
 - b) određivanje kombinacija radne snage generatora i posmaka obratka vlastitim računalnim simulacijskim programom
 - c) izbor sredstva za gašenje i parametara gašenja
- Definiranje mjernih veličina (površinska temperatura obratka, napon i struja induktora) i izrada mjernih strujnih i naponskih transformatora.

Induktor je konstruiran s jednim zavojem unutrašnjeg promjera ¢22mm koji omogućuje slobodnu rotaciju obratka i minimalni zračni raspor (tj. minimalne gubitke elektromagnetske energije). Induktor je izrađen od šupljeg bakrenog profila (zbog hlađenja vodom tijekom rada) kvadratnog poprečnog presjeka 5x5mm i debljine stjenke 1mm.

Prskalica je konstruirana i izrađena s aktivnom površinom prskanja promjera \$66mm i visine 26mm sa 120 rupica promjera \$1mm.

Za mjerenje radne snage induktora trebalo je izraditi visokofrekventne strujne i naponske mjerne transformatore za istodobno mjerenje struje i napona induktora (mjerenja na frekvenciji generatora f = 410 kHz). Istodobno mjerenje napona i struje induktora nužno je zbog određivanja radne snage induktora koja ovisi o efektivnom iznosu napona, struje i faznom kutu ($\cos\varphi$) između vektora struje I_0 i napona U_0 :

$$P = U_0 I_0 \cos\varphi \tag{9.1}$$

Ovisnost iskazana jednadžbom (9.1) praktički znači da se tijekom pokusa indukcijskog kaljenja treba mjeriti tri veličine (U_0 , I_0 , $\cos\varphi$), što je izvedeno korištenjem naponskog i strujnog visokofrekventnog

feritnog transformatora i dvokanalnog digitalnog osciloskopa (koji istovremeno snima sve tri veličine napon, struju i fazni kut). Mjerni transformatori izvedeni su s feritnim jezgrama sa slijedećim prijenosnim omjerima:

- a) 1000:1 za strujni mjerni transformator,
- b) 10:1 za naponski mjerni transformator.

Iz snimljenih krivulja promjene struje i napona tijekom nekoliko perioda u istoj vremenskoj skali računaju se efektivni iznosi struje i napona odnosno radna snaga u induktoru.

Tijekom pokusa predviđeno je **mjerenje površinske temperature obratka** iznad induktora optičkim ili infracrvenim pirometrima toplinskog zračenja. Mjerenje površinske temperature obratka ispod induktora je otežano i nesigurno zbog zapljuskivanja površine uzorka sredstvom za gašenje.

Pokusi indukcijskog kaljenja provedeni su na visokofrekventnom generatoru s vakuumskom cijevi najveće izlazne radne snage 50 kW i radne frekvencije između 400 i 450 kHz. Izlaznom snagom generatora upravlja se ručno preko potenciometara. Prije provedbe pokusa indukcijskog kaljenja izvedeni su predpokusi ugrijavanja valjka istih dimenzija od iste šarže čelika 42CrMo4 kao što su bili i ispitni uzorci. Tijekom ugrijavanja osciloskopom priključenim na dovodne vodiče induktora (preko mjernih transformatora) snimljena je vremenska promjena napona i struje induktora, a zadavanjem različitih snaga generatora utvrđena je ovisnost snage induktora o snazi generatora (slika 9.2).

Slika 9.2. Ovisnost snage induktora o snazi generatora određena eksperimentalno ugrijavanjem valjaka \u03c620x95mm od \u03c6elika 42CrMo4 u induktoru s jednima zavojkom unutrašnjeg promjera \u03c622 mm s popre\u03c6nim presjekom 5x5 mm.

Traženi radni parametri indukcijskog kaljenja pokusnih valjaka određeni su zadavanjem temperature austenitizacije, odabirom sredstva za gašenje i parametara gašenja i zadavanjem snage induktora i posmaka valjaka određenih računalnom simulacijom.

Temperatura austenitizacije odabrana je prema TTS dijagramu čelika 42CrMo4 tako da se nalazi između temperature završetka austenitizacije (A_3) i postizanja homogenog austenita (A_{ch}) (**slika 2.3**, poglavlje 2.1). Ovisno od brzine ugrijavanja područje optimalnih temperatura austenitizacije nalazi se između 850° i 920°C. Pri računalnoj simulaciji temperatura austenitizacije zadana je na donjoj granici (850°C) jer je njen iznos nužan za određivanje trajanja rotacionog ugrijavanja pokusnog valjka u induktoru prije početka posmaka. Posmak obratka uključuje se tek kada se površina valjka ugrije na oko 850°C.

Za sredstvo za gašenje izabrana je 18 %-tna vodena otopina polimera PAG iz industrijskog spremnika. Predpokusima je utvrđena gustoća prskanja 8,77 kg/m²min i radni pretlak sredstva za gašenje u dovodnom vodu prskalice 1,2 bar. Temperatura sredstva za gašenje bila je 18°C tijekom svih pokusa. Za ove uvjete gašenja prema aproksimacijskom modelu iz poglavlja 6.3. određena je srednja vrijednost koeficijenta prijelaza topline u zoni gašenja \approx 12000 W/m²K.

Simulacija indukcijskog kaljenja pokusnih valjka \emptyset 20x95 od čelika 42CrMo4 izvedena je vlastito razvijenim računalnim programom "Ind2D". Oblik i dimenzije kaljene površine zadane su slikom 9.1, a slika 9.3 prikazuje položaj induktora i prskalice prema ispitnom valjku na početku indukcijskog kaljenja. Ovim položajem induktor neće ugrijati rub valjka na temperaturu iznad A_{c1}, što je provjereno predpokusom ugrijavanja i računalnom simulacijom.

Fizikalna svojstva materijala (čelika 42CrMo4) zadana su nelinearno promjenljivim, ovisnim o temperaturi i eventualno dodatnim veličinama polja. Na **slici 9.4.a** prikazana je ovisnost relativne magnetske permeabilnost čelika 42CrMo4 o jakosti magnetskog polja. Primjenom vlastito razvijenog matematičkog modela (poglavlje 5.2) aproksimirana je dodatno i promjena relativne magnetske permeabilnosti ovisno o temperaturi (**slika 9.4.b**).

Zadavanje vrijednosti specifičnog toplinskog kapaciteta čelika 42CrMo4 ovisno o temperaturi u vlastito projektiranom programu "Ind2D" prikazano je na **slici 9.5**., a zadavanje vrijednosti vodljivosti topline ovisnih o temperaturi i mikrostrukturnom stanju čelika prikazano je na **slici 9.6**.

Slika 9.3. Pozicioniranje induktora i prskalice prema ispitnom valjku na početku ciklusa rotaciono-posmičnog kaljenja

Slika 9.4. Aproksimacija promjene relativne magnetske permeabilnosti čelika 42CrMo4 ovisno o jakosti magnetskog polja za temperature (između 20°C i 750°C)

						Specificni t	oplinski kapacit	et materijala			
						Oznaka mater	rijala: 420	CrMo4			
ni t	oplinski k	apacitet ma	terijala (k)/	kgK)		Siednij spec	alioni toplinski kap	scitet, J/kgK			
2						PRODUCE	na rena-penna.	647,0723	PERIODUKINA	autoenta 9	34,8364
						Temperatura,	Spec. toplinski k	apacitet, J/kg	Temperatura.	Spec. toplinski kar	pacitet, J/kg
						°c	F/P	A	°c	F/P	A
15						50-100	432,03233			···naslar	ak tablice · · ·
						100-150	509,20984		650-700	835.74522	613,76798
						150-200	522.30285		700-750	877,36381	616,63332
						200-250	534,84242		750-800	327,00466	610,57754
						250-300	551,5918	551,5910	800-850	620,52254	620,52254
						300-350	573,04679	573,04679	850-900	621,92636	621,92636
						350-400	534,5256	594,5256	900-950	616,48345	616,48345
			/			400-450	621,76272	611,84815	950-1000	1.1	624,8822
15						450-500	657,3276	612,70234	1000-1050		621,71872
,						500-550	695,0000	613,55653	1050-1100		624,59511
						550-600	740,69305	614,41072	1100-1150		619,98358
						600-650	774,09449	615,26491	1150-1200	1 .	625,19977
-	120	240 2			-		[Polazne vrijednosti	Graficki prikaz	3	<
	120	240 34	00 400	000	20 040	Odustani	-			-	Uredu
						Ured					

Slika 9.5. Zadavanje iznosa specifičnog toplinskog kapaciteta ovisno o temperaturi i mikrostrukturnom stanju čelika 42CrMo4 u računalnom programu "Ind2D" (F/P – feritno-perlitna mikrostruktura, A- austenitna mikrostruktura)

ê∗ Ind20	
PROJEKT Obradak-> Materijal-> Induktor-> Postupak 2-D MREZA-> OPTIMIZACIJA SI	IMULACIJA Izvjesce Pomoc
	💐 Toplinska vodljivost obradka 📃 🗶
	Oznaka materijala: 42CrMo4
	Stednje vrijednosti vodljivosti topline, W/mK
	F/P B M A
	 Srednje vrijednosti vodljivosti topline
🗟 Vodljivost topline materijala (W/mK)	Vodijvost topline promjenijiva s temperatuzom
60	Toplinska vodljivost ovisna od temperature
	Temperatura, ^o C Topinska vodijvost, W/mK
	F/P A
	0 38.9948 18
45	100 38,4947 19,1667
	200 37,8159 20.3333
	300 36,1416 21.5
	400 34,1718 22,6867
30	500 32,7131 23,8333
	600 31,6775 25
	700 29,5659 26,1667
15	600 26,8952 27,3333
	900 28.5 28.5
	1000 29.6667 29.6667
	1100
120 240 360 400 600 920 840 960 106	00 120 1200 · 32
Temperatura (oC)	Godicki pricaz Polazne vrijednosti
	Odustani c U redu
6:22 4.10.2005	

Slika 9.6. Zadavanje iznosa vodljivosti topline ovisno o temperaturi i mikrostrukturnom stanju čelika 42CrMo4 u računalnom programu "Ind2D" (F/P – feritno-perlitna mikrostruktura, Aaustenitna mikrostruktura) Na sličan način unošenjem vrijednosti ili korištenjem polaznih vrijednosti iz baze podataka zadana su i ostala svojstva čelika 42CrMo4 potrebna za računalnu simulaciju: <u>toplinska</u> (gustoća, emisijski faktor površine, koeficijent prijelaza topline), <u>metalurška</u> (temperature A_1 i A_3 ovisne o brzini ugrijavanja, gornja i donja kritična brzina gašenja, Ms temperatura i sl.) i <u>mehanička</u> svojstva (tvrdoća nakon gašenja s povišenih temperatura austenitizacije prema TTS dijagramu).

Snaga generatora i **posmak uzorka** mijenjali su se, za pojedinu simulaciju, prema **tablici IX.2**, s ciljem dobivanja one kombinacije radnih parametara snage generatora i posmaka obratka koji će dati propisanu dubinu kaljenja i površinsku tvrdoću. Za simulacijski program zadani su <u>iznosi struje</u> <u>induktora.</u> Raspon radne snage generatora (15 do 45 kW) koja odgovara snazi induktora od 6 do 15 kVA određen je iz dijagrama na **slici 9.2** Brzina posmaka ispitnog valjaka od 4 do 10 mm/s odabrana je predpokusima.

Naziv	Iznos
Materijal ispitnih valjaka	42CrMo4
Mjere ispitnih valjaka	Ø 20 x 95 mm
Brzina posmaka ispitnih valjaka	4 - 10 mm/s
Broj okretaj valjaka	300 min ⁻¹
Početna temperatura ispitnih valjaka	20 °C
Temperatura austenitizacije	850 – 920 °C
Srednji emisijski faktor površine valjaka	0,52
Srednji koeficijent prijelaza topline gašenjem	$\approx 12\ 000\ \mathrm{W/(m^2K)}$
Frekvencija generatora	415 kHz
Radna snaga generatora	15–45 kW
Struja induktora	600 – 1500 A
Napon induktora	10 – 30 V
Induktor	
(bakreni profil poprečnog presjeka 5x5 mm):	Ø 27 / 22 x 5 mm
Sredstvo za gašenje	18%-tna vodena otopina PAG
Gustoća prskanja	8,77 kg/(m ² min)
Pretlak u dovodnom vodu prskalice	1,2 bar
Temperatura sredstva za gašenje	20 °C
Aktivna površina prskalice	Ø 57x26 mm

 Tablica IX.2 Pretpostavke i radni parametri računalne simulacije rotaciono posmičnog indukcijskog kaljenja valjaka

Računalnom je simulacijom dobiveno nekoliko kombinacija snage generatora i posmaka ispitnog valjka, a pokusima indukcijskog kaljenja provjerene su kombinacije prema **tablici IX.3**. Za svako stanje ispitana su po tri pokusna uzorka označena kako je navedeno u **tablici IX.3**.

	Snaga generatora-zadana prema slici 9.2 (kW)			
Posmična brzina (mm/s)	30	45		
	Oznake ispitnih uzoraka:	Oznake ispitnih uzoraka:		
	$U_{4_30_1},$	$U_{4_45_l},$		
4	$U_{4_30_2},$	$U_{4_45_2},$		
	$U_{4_30_3}$	$U_{4_45_3}$		
	Oznake ispitnih uzoraka:	Oznake ispitnih uzoraka:		
	$U_{10_30_1},$	$U_{10_45_1},$		
10	$U_{10_30_2},$	$U_{10_45_2},$		
	$U_{10_30_3}$	$U_{10_45_3}$		

Tablica IX.3 Plan pokusa indukcijskog kaljenja valjaka Ø 20x95 mm od čelika 42CrMo4

U provedbi pokusa kaljenja čelični valjci su najprije ugrijavani u induktoru bez posmaka: uz radnu snagu generatora 30 kW četiri sekunde, odnosno uz radnu snagu 45 kW dvije sekunde. Tijekom ovog perioda postiže se površinska temperatura oko 900°C i akumulira se toplinska energija u rubnom sloju valjka ispod induktora potrebna za približno ujednačeno ugrijavanje uzorka u posmično gibanju. Navedeni iznosi vremena polaznog ugrijavanja kod rada s ručno reguliranim indukcijskim generatorom (korištenim u pokusima) mogu se samo približno odrediti računalnom simulacijom zbog teško predvidljive promjene napona i struje induktora u prvim trenutcima ugrijavanja i prijelaznih električnih pojava uzrokovanim naglim promjenama električne impendancije induktora (prelazak iz praznog hoda u radni režim ugrijavanja). Ova poteškoća razriješena je pretpostavkom o linearnom porastu vrijednosti struje ili napona induktora od iznosa izmjerenog u praznom hodu generatora do nazivne vrijednosti ovih veličina u potpunosti postignute neposredno prije početka rotaciono-posmičnog gibanja obratka.

9.3 Rezultati i analiza rezultata računalne simulacije indukcijskog kaljenja

Računalna simulacija provedena je uz pretpostavku da indukcijski generator radi kao strujni izvor koji napaja induktor strujom konstantne jakosti. Prolaskom struje kroz induktor i induciranjem vrtložnih struja u obratku nastaje pad napona na induktoru koji je u ovom slučaju jedan od izlaznih podataka računalne simulacije. U **tablici IX.4** navedene su vrijednosti efektivne struje induktora zadane u računalnoj simulaciji i izračunate vrijednosti napona na induktoru, odnosno prividne snage induktora. Osim toga tijekom simulacije indukcijskog kaljenja čeličnih valjka \emptyset 20x95 praćene su i slijedeće veličine:

- a) Raspored inducirane električne snage u površinskom sloju valjka
- b) Temperaturno polje po presjeku valjka
- c) Udio austenita nakon ugrijavanja na temperaturu iznad temperature A₁
- d) Raspored tvrdoće po poprečnom presjeku uzorka.

Tablica IX.4 Računski određene vrijednosti napona U_0 i snage P_0 induktora prema simulacijiindukcijskog kaljenja valjaka \emptyset 20x95 mm od čelika 42CrMo4

Zadana efektivna jakost struje induktora u simulaciji	Računski određena snaga i napon induktora			
700 A	$U_0 = 14,0 V$ $P_0 = 9,818 \text{ kVA}$	-		
800 A	-	$U_0 = 15,47 \text{ V}$ $P_0 = 12,647 \text{ kVA}$		

Na **slici 9.7 i 9.8** prikazano je simulacijom dobiveno temperaturno polje po uzdužnom presjeku polovice valjka Ø20x95 mm, ugrijavanog snagom indukcijskog generatora 45 kW uz posmičnu brzinu 4 mm/s i različite prividne snage induktora (9,818 kVA i 12,647 kVA). Temperaturna polja na **slici 9.7** prikazana su nakon jednakog trajanja indukcijskog kaljenja, odnosno za slične položaje obratka u induktoru i prskalici. Iz **slika 9.7** i **9.8** uočljivo je da se pri većoj ulaznoj snazi induktora zagrijava dublji površinski sloj obratka i najveća računski određena površinska temperatura je viša.

Slika 9.7. Simulacijom dobiveno temperaturno polje i udjel austenita po presjeku valjka Ø20x95 mm na početku posmičnog gibanja uz brzinu 4 mm/s i ugrijavanje snagom generatora 30 kW uz računski određenu snagu induktora 9,818 kVA (f = 415 kHz)

Slika 9.8. Simulacijom dobiveno temperaturno polje i udjel austenita po presjeku valjka Ø20x95 mm na početku posmičnog gibanja uz brzinu 4 mm/s i ugrijavanje snagom generatora 45 kW uz računski određenu snagu induktora 12,647 kVA (f = 415 kHz)

Uz pomoć prikaza sličnih ovom na **slikama 9.7** i **9.8** poznate promjene temperature ovisne od trajanja ugrijavanja u pojedinim točkama trokutnih konačnih elemenata izračunate su srednje brzine ugrijavanja od Curieove temperature do temperature austenitizacije čelika 42CrMo4 (850°C). Na osnovi ovih brzina ugrijavanja i predloženih kinetičkih modela faznih pretvorbi (poglavlje 7) izračunata je dubina kaljenja. Zbog velike brzine ohlađivanja praktički ona debljina površinskog sloja na kojoj je materijal bio ugrijan na temperature iznad A_{c1} bila je i zakaljena.

Simulacijom su izračunate slijedeće vrijednosti dubine kaljenja ovisne o zadanoj snazi generatora i posmaku obratka za mjesto kaljenja koje se nalazi na 30 mm od čela valjka:

- a) $Rht 500 = 1,25 \pm 0,05$ mm za simulaciju indukcijskog kaljenja uz: snagu generatora 30 kW, posmičnu brzinu obratka 4 mm/s (srednja snaga induktora 8-10 kVA).
- b) $Rth 500 = 1,15 \pm 0,05 \text{ mm}$ za simulaciju indukcijskog kaljenja uz: snagu generatora 30 kW, posmičnu brzinu obratka 10 mm/s (srednja snaga induktora 8-10 kVA).
- c) $Rth 500 = 1,45 \pm 0,05$ mm za simulaciju indukcijskog kaljenja uz: snagu generatora 45 kW, posmičnu brzinu obratka 4 mm/s (srednja snaga induktora 12-14 kVA).
- d) $Rth 500 = 1,40 \pm 0,05$ mm za simulaciju indukcijskog kaljenja uz: snagu generatora 45 kW, posmičnu brzinu obratka 10 mm/s (srednja snaga induktora 12-14 kVA).

Iz ovih rezultata simulacije usvojena je srednja dubina kaljenja *Rht* 500 = 1,20 do 1,4 mm koju se želi postići pokusima indukcijskog kaljenja na ispitnim valjcima dimenzija \emptyset 20x95 od čelika 42CrMo4. Kao što se vidi iz rezultata izračunata snaga induktora pokazuje rasipanja se u rasponu vrijednosti od ±1,0 kVA čini se zbog dvaju čimbenika. Prvi je utjecaj numeričkih pogrešaka vezanih uz usklađivanje vrijednosti svojstava materijala ovisnih o temperaturi i jakosti magnetskog polja s izračunatim vrijednostima ovih veličina pri nestacionarnom zagrijavanju. Drugi utjecajni čimbenik je vezan uz promjenu aproksimacijskih modela u kinetičkim jednadžbama faznih pretvorbi (poglavlje 7) koji približno opisuju tijek nastanka austenita i raspada austenita. Ovi utjecajni čimbenici u manjoj mjeri djeluju na stabilnost rješenja matematičkog modela toplinskih procesa i čini se utječu na najveći dozvoljeni vremenski inkrement s kojim treba provoditi proračune nestacionarnog temperaturnog polja. Početna vrijednost vremenskog inkrementa u simulaciji nalazila se između 0,125 i 0,25 s a onda bi se ovisno o porastu temperature smanjivala za 50 % (ako bi se pojavio porast temperature veći od 50 °C) ili povećavala za isti iznos (ako bi promjene temperature u jednom vremenskom inkrementu bile manje od 25 °C). S druge strane udio austenita (paramagnetik) koji postoji ispod induktora direktno utječe na raspodjelu magnetskog polja i na induciranu električnu snagu u rubnom sloju. Na taj način pogreška u rješenju nestacionarnog temperaturnog polja utječe određivanje brzine ugrijavanja, odnosno izračunati udio austenita, a to se povratno reflektira na magnetska svojstva rubnog sloja.

Iz izračunatih vrijednosti dubine kaljenja *Rht* 500 uočava se pojava veće snage induktora kod veće posmične brzine, premda je zadana snaga generatora ista za manju i za veću posmičnu brzinu. Ovo je čini se posljedica dinamike ugrijavanja. Kod veće posmične brzine obratka veći su gradijenti temperature u zoni ugrijavanja ispod induktora, pa je i veći dio materijala ispod induktora feromagnetičan (ugrijan na temperature ispod temperature Curie) nego kod manjeg posmaka. Raspored temperaturnog polja u zoni ugrijavanja utječe na raspored inducirane gustoće struje, odnosno na prenesenu električnu snagu s induktora na obradak. Ovisnost snage induktora o posmičnoj brzini obratka nije jednoznačna i ostaje kao otvoreno pitanje na koje će biti potrebno pronaći odgovor u budućim istraživanja.

Kod sva četiri gore navedena slučaja indukcijskog kaljenja simulacijom je predviđena površinska tvrdoća 660 HV1.

9.4. Rezultati i analiza rezultata pokusa indukcijskog kaljenja

Pokusi indukcijskog kaljenja provedeni su, na po tri ispitna uzorka za svaku kombinaciju snage generatora i posmične brzine uzorka. Površinska temperatura ispitana je optičkim pirometrom "Milliskop" tijekom ugrijavanja na početku indukcijskog kaljenja na dijelu površine ispitnog valjka između induktora i prskalice. Tijekom same provedbe postupka rotaciono-posmičnog indukcijskog kaljenja nije bilo moguće izmjeriti površinsku temperaturu zbog prskanja sredstva za ohlađivanje po ugrijavanoj površini uzorka.

Nakon 10 mm rotaciono posmičnog indukcijskog kaljenja, snimljena je vremenska promjena struje i napona induktora, dvokanalnim digitalnim osciloskopom i vlastito konstruiranim i izrađenim mjernim transformatorima. Također su izmjereni struja I_A i napon U_A anode vakuumske triode generatora. Izmjerene vrijednosti struje i napona anode generatora tijekom rotaciono-posmičnog kaljenja prikazane su u **tablici IX.4.** Izlazna snaga generatora izračunata je jednadžbom:

$$P_{\rm A} = U_{\rm A} * I_{\rm A} \tag{9.2}$$

Iz **tablice IX.5** uočljivo je da su postignute tražene snage generatora uz prihvatljivo odstupanje između propisane i stvarne snage.

	Zadana snaga generatora (kW)		
	30	45	
I _A (A)	3,60	4,50	
U _A (kV)	7,80	9,40	
Izračunata (stvarna) snaga generatora P _{A (kW)}	28,40	42,30	

Tablica IX.5 Izmjerene vrijednosti struje I_A i napona U_A i snage P_A generatora

Na **slici 9.9** prikazane su snimljene krivulje vremenske promjene napona (krivulja A) i struje induktora (krivulja C) pri indukcijskom kaljenju zadanom snagom generatora 30 kW. Ove krivulje bilo je nužno statistički obraditi prije određivanja iznosa amplitude napona i struje, odnosno određivanja faznog kuta. Pri statističkoj obradi snimljenih podataka s krivulja vremenske promjene

struje i napona induktora izračunate su ("lokalne") srednje vrijednosti struje i napona za po pet točaka krivulje u rastućem vremenskom nizu. Ovim je uklonjen šum u snimljenim podacima nastao djelovanjem stranih elektromagnetskih polja pri pokusu indukcijskog kaljenja. Kroz izračunate "lokalne" srednje vrijednosti napona, odnosno struje provučene su krivulje (**slika 9.10**) iz kojih su određeni efektivni iznosi napona U_0 , struje I₀ te faznog kuta *cos φ* induktora navedeni u **tablici IX**.6

Slika 9.9. Vremenska promjena napona (krivulja A) i struje induktora (krivulja C), pri indukcijskom kaljenju snagom generatora 30 kW (izmjereni napon anode 8,0 kV i struja anode 3,6 A). Prijenosni omjer mjernog naponskog, odnosno strujnog transformatora i sonde osciloskopa iznose 100:1, odnosno 1000:1.

Slika 9.10. Vremenska promjena napona i struje induktora, pri indukcijskom kaljenju snagom generatora 30 kW (izmjereni napon anode 8,0 kV i struja anode 3,6 A) aproksimirani krivuljama najmanjih kvadrata odstupanja.

Određivanje faznog kuta treba izvesti vrlo precizno, jer već i mala pogreške od 1° uzrokuju velike pogreške izračunate radne snage induktora (zbog računanja kosinusa kuta vrijednosti su veće od 70°). U provedenim mjerenjima na svim snimljenim krivuljama (i za prazni hod induktora, tj. bez obratka) uočeno je izobličenje vremenske promjene struje kad sinusioda struje prolazi kroz nulu. Ovo je čini se posljedica djelovanja feritnih jezgri mjernih transformatora koje pomiču sinusoidu struje prema sinusiodi napona za kut oko15°. Zbog toga je pri svim mjerenjima faznog kuta vrijednost očitanog faznog kuta umanjena za 15°.

Iz **tablice IX.6** uočljivo je da se samo dio raspoložive snage indukcijskog generatora iskorištava na ugrijavanje obratka u induktoru. Pri tome se samo dio radne snage induktora izračunate u posljednjem stupcu **tablice IX.6** pretvara u toplinu ugrijavanja obratka. Preostali dio radne snage troši se na ugrijavanje induktora i odvodi rashladnom vodom (toplinski gubitak). Gubici električne energije ugrijavanjem induktora uočljivi su iz podataka za snagu praznog hoda (0,511 W).

Tablica IX.6 Vrijednosti struje i napona te faznog kuta induktora tijekom indukcijskog kaljenja uz zadanusnagu generatora 30 i 45 kW i posmičnu brzinu obratka 4 i 10 mm/s

Snaga generatora	Posmak obratka	Oznaka	Struja induktora	Napon induktora	Prividna snaga (kVA)	Fazni kut (°)	Radna snaga induktora
(kW)	(mm/s)	uzorka	(A)	(V)			(kW)
Prazni hod	0	-	70,71	8,485	0,600	53,00	0,511
		U _{4_30_1}	656	10,60	6,954	68,50	2,435
	4	U4_30_2	-	-	-	-	-
30		U4_30_3	707	10,50	7,423	69,00	2,660
		$U_{10_{30_{1}}}$	676	11,31	7,646	69,00	2,740
	10	U _{10_30_2}	778	12,96	10,080	69,75	3,489
		$U_{10_{30_{3}}}$	707	12,00	8,484	69,75	2,936
		U4_45_1	-	-	-	-	-
	4	$U_{4_{45_{2}}}$	-	-	-	-	-
45		U4_45_3	823	14,15	11,637	70,00	3,980
		U _{10_45_1}	844	14,15	11,942	66	4,279
	10	U _{10_45_2}	883	16,26	14,357	70	4,910
		<i>U</i> _{10_45_3}	813	14,14	11,496	69	4,119

Nakon indukcijskog kaljenja ispitana je tvrdoća površine metodom Rockwella na 10 mjesta površine po svakom uzorku. Svi uzorci su pokazali slične vrijednosti tvrdoće površine u rasponu od 57+2 HRC. Nakon ispitivanja površinske tvrdoće uzorci su prerezani na polovici duljine. Potom je provedena uobičajena metalografska priprema brušenja i poliranja poprečnog presjeka uzorka te nagrizanja 3%-tnim NITAL-om.

Raspored tvrdoće po poprečnom presjeku zakaljenog uzorka ispitivan je metodom Vickers opterećenjem 9,81 N (HV1). Na **slici 9.11** prikazan je raspored tvrdoće po poprečnom presjeku uzorka pri kaljenju snagom generatora 30 kW, a na **slici 9.12** pri rotaciono-posmičnom indukcijskom kaljenju zadanom snagom generatora 45 kW, uz posmičnu brzinu 4 i 10 mm/s. Gašenje je izvedeno prskanjem 18%-tnom vodenom otopinom PAG-a uz gustoću prskanja 8,77kg/m²min. Na dijagramima tvrdoće ucrtana je i dubina indukcijskog kaljenja izračunata simulacijom. Dubina indukcijskog kaljenja određena je iz rasporeda tvrdoće po poprečnom presjeku i označena na **slikama 9.11 i 9.12.**

Slika 9.11. Raspored tvrdoće po poprečnom presjeku indukcijski kaljenih valjaka Ø20x95 mm od čelika 42CrMo4 uz zadanu snagu generatora 30kW (f = 415 kHz) i posmičnu brzinu 4mm/s i 10 mm/s

Slika 9.12. Raspored tvrdoće po poprečnom presjeku indukcijski kaljenih valjaka Ø20x95 mm od čelika 42CrMo4 uz zadanu snagu generatora 45kW (f=415 kHz) i posmičnu brzinu 4mm/s i 10 mm/s

Iz dijagrama rasporeda tvrdoće i izmjerenih dubina kaljenja (Rht 500, mm) zaključuje se slijedeće:

- a) Postignuta površinska tvrdoća (oko 700 HV1) slična je onoj dobivenoj simulacijom (660 HV1), a obje vrijednosti tvrdoće (simulacijska i eksperimentalna) zadovoljavaju zahtjev za površinskom tvrdoćom 620 + 160 HV50.
- b) Postignute dubine kaljenja ispunjavaju propisani zahtjev za dubinom kaljenja (Rht 500 = 1,0 + 0,8 mm. Pri tome se dobro podudara simulacijom i eksperimentalno dobivena vrijednost dubine kaljenja.
- c) Pri indukcijskom kaljenju s većim posmakom uz istu snagu generatora dobiva se veća dubina kaljenja, što je na prvi pogled suprotno očekivanjima. Međutim za ugrijavanje obratka treba promatrati izmjerenu radnu snagu induktora nego li snagu generatora. Indukcijski generator zbog svoje električke radne karakteristike može davati različite snage induktora za istu izmjerenu snagu na anodi generatora
- d) S povećanjem radne snage induktora povećava se dubina kaljenja za sve posmične brzine ispitnih valjaka, što je i očekivano.
- e) Povećanje posmične brzine ispitnih valjaka s 4 na 10 mm/s smanjuje dubinu kaljenja.

Na metalografski pripremljenim uzorcima izrezanim iz pojedinog ispitnog valjaka provedena je analiza mikrostrukture. Na **slici 9.13.a** dana je mikrostrukture po poprečnom presjeku ispitnog uzorka indukcijski zakaljenog uz snagu generatora 30 kW i posmičnu brzinu 4 mm/s.

U jezgri svih ispitnih uzoraka pronađena je ista mikrostruktura s perlitom i feritom izgleda karakterističnog za stanje isporuke (svjetlo vučena šipka). U površinskom zakaljenom sloju svih ispitnih valjaka uočljiva je mikrostruktura martenzita (slika 9.13) što je u skladu dobivenim rezultatima ispitivanja tvrdoće.

Slika 9.13 Mikrostruktura indukcijski zakaljenog ispitnog valjaka od čelika 42CrMo4 uz snagu generatora 30 kW (f = 415 kHz) i posmičnu brzinu 4mm/s.

- a) Mikrostruktura po poprečnom presjeku (povećanje 50X. nagriženo 3 %-tnim NITAL-om)
- b) Mikrostruktura rubnog sloja (povećanje 500X. nagriženo 3 %-tnim NITAL-om)

10.0 ZAKLJUČAK

U radu je opisana i razrađena računalna simulacija indukcijskog kaljenja i metodologija optimizacije induktora koja predstavlja jednu od važnih faza u suvremenoj pripremi postupka indukcijskog kaljenja. Simulacija se sastoji od rješavanja matematičkih modela elektromagnetskih, termodinamičkih i mikrostrukturnih procesa u obratku tijekom indukcijskog kaljenja. U radu su analizirane metode (analitičke i numeričke) iz dostupne literature opisani su računalni programi za simulaciju indukcijskog kaljenja. Izabrane su metoda rubnih i konačnih elemenata (za rješavanje jednadžbi elektromagnetskog polja) i metoda konačnih elemenata (za rješavanje jednadžbe provođenja topline u obradak). Mikrostrukturni procesi u obratku modelirani su vlastito razvijenim kinetičkim modelom temeljenim na Leblond-Devauxovom modelu predviđanja brzine faznih pretvorbi i regresijskoj analizi TTS dijagrama za kontinuirano ugrijavanje i TTT dijagrama za kontinuirano ohlađivanje.

Pri razradi matematičkog modela elektromagnetskih procesa primijenjena je aproksimacija nelinearne promjene magnetske permeabilnosti ovisne o temperaturi i jakosti magnetskog polja, čime je značajno povećana točnost modela. Za modeliranje termodinamičkih procesa u obratku korištena je metoda konačnih elemenata s Galerkinovim postupkom rješavanja zbog dobre aproksimacije geometrije obratka i fizikalnog smisla ovog postupka (koji predstavlja i prošireni zapis zakona održanja energije u integralnom obliku. Prijelaz topline s površine obratka na sredstvo za gašenje (jedan od bitnih rubnih uvjeta u termodinamičkom modelu) modeliran je empirijskim jednadžbama razvijenim za opis ohlađivanja prskanjem čistom vodom i vodenom otopinom polimera PAG i vlastitim aproksimacijskim izrazom predloženim na temelju sličnih empiričkih izraza za proračun koeficijenta prijelaza topline pri gašenju prskanjem čistom vodom. Predloženi model treba potvrditi budućim pokusima ohlađivanja prskanjem i mjerenjima na konkretnim materijalima.

Na osnovi simulacijskog algoritma razvijen je vlastiti računalni program"Ind2D" s ugrađenom bazom podataka o svojstvima materijala u programskom jeziku Visual Basic, C++ i manjim dijelom primjenom specifičnih funkcija programskog paketa "Matlab". Razvijenim računalnim programom simuliraju se elektromagnetski, termodinamički i mikrostrukturni procesi u obratku tijekom stacionarnog, posmičnog, rotacionog i rotaciono posmičnog indukcijskog kaljenja. Orijentacijom na dugačke ravne i osnosimetrične obratke obuhvaćena je najveća skupina indukcijski kaljenih obradaka.

Razvijeni simulacijski program eksperimentalno je provjeren na primjeru indukcijskog kaljenja valjka dimenzija \emptyset 20x95 mm od čelika 42CrMo4. Kombinacija potrebne snage generatora i posmične brzine ispitnog uzorka određeni su računalnim simulacijama vlastitim simulacijskim programom. Za određivanje snage induktora izmjerene su tri električne veličine induktora: jakost struje, napon i fazni kut.

Zbog velikih iznosa i visoke frekvencije struja induktora se teško može izravno izmjeriti, pa je nužna primjena mjernih transformatora. U ovom su radu izrađeni feritni strujni i naponski mjerni transformatori. U budućim istraživanjima trebalo bi dodatno ispitati utjecaj radnih karakteristika izrađenih feritnih mjernih transformatora na vrijednosti izmjerene jakosti struje, napona i faznog kuta induktora, te što točnije utvrditi područje mjerne nesigurnosti transformatora.

Nakon ispitivanja tvrdoće i metalografske analize utvrđeno je da je postignuta propisana dubina kaljenja i površinska tvrdoća na svim ispitnim valjcima. Iznosi površinske tvrdoće i dubine kaljenja dobiveni simulacijom i pokusom dobro se podudaraju, ako se za vrijednost ulazne snage u simulacijskom programu zada snagu induktora, a ne snagu indukcijskog generatora (koja se obično mjeri na mjernim instrumentima indukcijske radne ćelije). Uočeno je da se za istu zadanu snagu generatora postižu različite snage induktora u rasponu rasipanja od oko 2 kVA. Stoga je za računalnu simulaciju indukcijskog kaljenja u sustavu induktor-okoliš-obradak potrebno što preciznijeg zadati jakost struju ili napon induktora za postizanje što realnijih rezultata proračuna. Time bi se smanjio broj pretpokusnih indukcijskih kaljenja za utvrđivanje ovisnosti snage induktora o snazi generatora.

U daljnjim istraživanjima treba provjeriti i usavršiti rad simulacijskog programa i optimizacijskog algoritma na primjerima složenijih oblika obradaka sa nizom čelika za poboljšavanje i željeznih lijevova prikladnih za indukcijsko kaljenje. Također treba usavršiti pojedine programske module simulacijskog programa u cilju daljnjeg skraćenja potrebnog vremena simulacije postupka indukcijskog kaljenja i optimizacije induktora uz unaprjeđenje točnosti proračuna. Posebnu pažnju treba posvetiti mjerenju površinske temperature obratka. Stoga treba u budućim istraživanjima pronaći način mjerenja ove temperature tijekom cijelog radnog ciklusa indukcijskog kaljenja i to unutar i ispod induktora.

11.0 LITERATURA

- 1. **W.Brunst**: "Die induktive Wärmebehandlung unter besonderer Berücksichtigung des Härtenes der Stähle", Springer-Verlag, Berlin/Göttingen/Heidelberg, **1957**.
- 2. C. A. Tudbury: "Basic of induction heating", Vol.1, John F. Rider Publisher, Inc., New York, Chapman & Hall LTD, London, 1960.
- 3. T. Lyman: "Induction hardening and tempering", ASM Comittee on Induction Hardening, ASM International, Metal park, Ohio, 1964.
- 4. **M. Lozinski**: "Industrial Applications of Induction Heating", Pergamon Press, Oxford, UK, **1969**.
- 5. G. Benkowsky: "Induktionserwärmung", VEB Verlag Technik Berlin, Germany, 1980.
- 6. S.L. Semiatin, D.E. Stutz: "Induction Heat Treatment of Steel", American Society for Metals, Metals Park, Ohio, USA, 1986.
- 7. E.J. Davies: "Conduction and Induction Heating", P. Peregrimus Ltd, London, UK, 1990.
- 8. P. A. Hassell, N. V. Ross: "Induction Heat Treating of Steel", ASM Handbook, Part 4. 9th edition, Metals Park, Ohio, USA 1994., 164-202.
- 9. V.I. Rudnev, et.al.: "Induction Heat Treatment" in Steel Heat Treatment Handbook ed. by G.E. Totten, M.A.H. Howes, Marcel Dekker, Inc., New York, USA, **1998**., 765-910.
- 10. J. Oerlich, A. Rose, P. West: "Atlas zur Wärmebehandlung der Stähle", Vol. 4. Zeit-Temperature Austenitisierung Schaubilder", Verlag Stahleisen M.B.H., Düsseldorf, 1976.
- 11. **M. Novosel**: "Osnove toplinske obradbe" Inženjerski priručnik IP 1, uredništvo A. Mulc, D. Taboršak, I. Budin, Školska knjiga, Zagreb, **1998**.
- 12. A. Rose, H. Hougardy: "Atlas zür Wärmebehandlung von Stahle", Verlag Stahleisen M.B.H., Düsseldorf, 1972.
- 13. A. Rose, F. Wever, W. Peter: "Atlas zür Wärmebehandlung der Stähle", Teil I & II, Verlag Stahleisen M.B.H., Düsseldorf, 1954./55.
- 14. B. Liščić, H.M. Tensi, W. Luty (ed.): "A Handbook Theory and Technology of Quenching", Springer Verlag, Berlin, 1992.
- 15. G.E. Totten, C.E. Bates, N.A. Clinton: "Handbook of Quenchant and Quenching Technology", ASM International, Materials Park, Ohio, USA, **1993**.
- 16. H.M. Tensi, G.E. Totten: "Water spray and Water film Cooling", Proceedings of the 3rd International Conference On Quenching and Control of Distortion, 24-26 March, 1999., Praque, Czech Republic, ASM International Metals Park, Ohio, USA, 50-61
- 17. **B. Liščić, M. Stupnišek, F. Cajner, T. Filetin**: "Toplinska obradba-Praktikum", Sveučilište u Zagrebu, FSB, Zagreb 1992.
- 18. E. Pearson: "Designs Powertrain Components to Optimize Induction Heat Treatment Performance", Proceedings of the 17th Heat Treating Society Conference and Expositions., and 1st Int. Induction Heat Treating Symposium, 15-18 September, 1997, Indianapolis, Indiana, , ASM International Metals Park, Ohio, USA, 801-810

- F. Cajner, B. Petrič, D. Landek: "Computer process planning of induction hardening", Proceedings of the 8th Seminar IFHTSE, Dubrovnik-Cavtat, Croatia, 12-14 September, 2001., HDTOM IP, 415-422.
- 20. R. S. Ruffini, R. T. Ruffini, V. S. Nemkov: "Advanced design of induction heat treating coils", Proceedings of the 17th Heat Treating Society Conference and Expositions., and 1st Int. Induction Heat Treating Symposium, 15-18 September, 1997, Indianapolis, Indiana, ASM International Metals Park, Ohio, USA, 687-685
- 21. J. Stambaugh, T. Learman:, "Latest technology in flux field concentrators", Proceedings of the 17th Heat Treating Society Conference and Expositions., and 1st Int. Induction Heat Treating Symposium, 15-18 September, 1997, Indianapolis, Indiana, ASM International Metals Park, Ohio, USA,, 711-717
- 22. **M. Gergely et. al**.: "Computerized properties prediction and technology planning in heat treatment of steel", ASM Handbook, Part 4. 9th edition, Metals Park, Ohio, USA 1994., 638-656.
- 23. F.J. Young: "Induction heating for case hardening applications", IEEE Transactions on magnetics, Vol. MAG 13, No. 6, 1977., 1776-1785
- 24. C. Marchad, A. Foggia: "2D finite element program for magnetic induction heating", IEEE Transactions on magnetics, Vol. 19., No. 6, 1983., 2647-2649
- Ph. Masse, B. Morel, Th. Breville: "A finite element prediction correction scheme for magneto-thermal coupled problem during Curie transition", IEEE Transactions on magnetics, Vol. MAG-21., No. 5, 1985., 1871-1873
- M. R. Ahmed, J. D. Lavers, P.E.Burke: "Boundary element application of induction heating devices with rotational symmetry", IEEE Transactions on magnetics, Vol. 25, No. 4, 1989., 3022-3024
- 27. **M. Melander**: "Theoretical and experimental study of stationary and progressive induction hardening", Journal of Heat Treating, Vol. 4, No.2., December 1985., 145-166
- O. Longeot, L. Nicolas, Ph. Wendling: "3D design of an inductor for induction heating using 2D FEM and 3D BIEM modelling", IEEE Transactions on magnetics, Vol. 27., No. 5, September 1991., 4004-4007
- M. Feliachi, G. Develey: "Magneto-thermal behaviour finite element analysis for ferromagnetic materials in induction heating devices", IEEE Transactions on magnetics, Vol. 27., No. 6, November 1991., 5235-5237
- Q. Chen, A. Konrad: "A rewiew of finite element open boundary techniques for static and quasi-static electromagnetic field problems", Transactions on magnetics, Vol. 33., No. 1, 1991., 663-676
- 31. M. Enokizono, T. Todaka: "Modeling Induction Heating Processes for Numerical Simulation", ", Proceedings of the 17th Heat Treating Society Conference and Expositions, and 1st International Induction Heat Treating Symposium, 15.-18. 9. 1997., Indianapolis, ASM International Metals Park, Ohio, USA, 601-610
- 32. **M. Enokizono, T. Todaka**: "Aproksimate Boundary Element Formulation for high- frequency Eddy current problem", IEEE Transaction on Magnetics, Vol. 29, No. 2, 1993. 1504-1507
- L. Krähenbühl et. al: "Surface impedances, BIEM and FEM coupled with 1D non linear solutions to solve 3D high frequency eddy current problems", IEEE Transaction on Magnetics, Vol. 11, No.2, 1997. 1167-1172

- 34. T. Miyoshi, M. Sumiya, H. Omori: "Analysis of an induction heating system by the finite element method combined with a boundary integral equation", IEEE Transactions on magnetics, Vol. MAG-23., No. 2, 1991., 1827-1832
- 35. K. S. Ismail, R. A. Marzouk: "Iterative hybrid finite element boundary element method for the analysis of induction heating system with nonlinear charge" IEEE Transactions on magnetics, Vol. 32., No. 4, 1996., 3212-3217
- 36. V. Nemkov et. al.: "Computer simulation of induction heating and quenching processes", Proceedings of the 3rd International Conference on Quenching and Control of Distortion, 24-26 March 1999, Prague, Czech Republic, ASM International Metals Park, Ohio, USA, 370-377
- 37. J. Sorić: "Metoda konačnih elemenata", Sveučilište u Zagrebu, Golden marketing Tehnička knjiga, Zagreb, 2004.
- A. Jacot et. al. "Modelling of electromagnetic heating, cooling and phase transformations during surface hardening of steels", Journal de Physique IV, Vol. 6., janvier 1996., C1, 203-213
- 39. **P. P. Silvester, R. L. Ferrari**: "Finite elements for electrical engineers", 2nd edt., Cambridge University Press, Cambridge, 1991.
- 40. **Y.W. Kwon, H. Bang**: "The Finite Element Method Using Matlab", 2nd ed. CRC Press, Boca Raton, USA, 2000.
- 41. J.Jin: "The Finite element method in electromagnetics", John Willy & Son, Inc. New York, 2^{ed}, 2002.
- 42. D. Durand, C. Durban, F. Girot: "Coupled Phenomena and Modeling of Material Properties in Quench Hardening Following Inductive Heating of the Surface", Proceedings of the 17th Heat Treating Society Conference and Expositions., and 1st Int. Induction Heat Treating Symposium, 15-18 September, 1997, Indianapolis, ASM International Metals Park, Ohio, USA, 855-863.
- 43. G.S. Sanchez-Sarmiento, J. Vega, A. Gaston: "Inducer-B A finite element heat transfer phase transformation model of induction heat treating of steels sensitive to chemical composition", Proceedings of the 17th Heat Treating Society Conference and Expositions, and 1st International Induction Heat Treating Symposium, 15.-18. 9. 1997., Indianapolis, ASM International Metals Park, Ohio, USA, 841-847
- 44. M. Swierkosz, et al.: "Numerical Simulation of Induction Heating and Quenching", Proceedings of the 17th Heat Treating Society Conference and Expositions., and 1st Int. Induction Heat Treating Symposium, 15-18 September, 1997, Indianapolis, Indiana, USA, 587-594
- 45. **C.A. Brebia**, **S. Walker**: "Boundary Element Techniques in Engineering", Newnes-Butterworths, London, UK, 1980.
- 46. **G. Beer**: "Programming The Boundary Element Method An Introduction For Engineers", J. Wiley & Sons LTD, Chichester, UK, 2001.
- 47. D. Landek, F. Cajner, T. Filetin: "Computer Simulation of Induction Surface Hardening Axially Symetric Workpieces", Proceedings 2nd International Conference Thermal Process Modelling and Computer Simulation, Nancy, France, March 31st- April 2nd 2003., Journal de Physique, EDP Sciences, Les Ulis, France, Vol. 120, 2004., 499-507
- 48. **J.W. Christian**: "The theory of transformations in metals and alloys", Pergamon Press, Oxford, 1975

- 49. **M**. **Avram**i: "Kinetics of phase change I: genaral theory", Journal of Chemical Physics, Vol. 7., 1939. 103-112
- 50. M. Avrami: "Kinetics of phase change II: transformation-time relations for random distribution of nuclei", Journal of Chemical Physics, Vol. 8., 1940. 212-221
- 51. M. Avrami: "Kinetics of phase change III: granulation, phase change and microstructure", Journal of Chemical Physics, Vol. 9., 1941. 177-181
- 52. J. Burke: "The Kinetics of Phase Transformation in Metals", prijevod M. Rogulić, TMF, Univ. u Beogradu, 1980
- 53. **D.A. Porter, K.E. Easterling**: "Phase Transformations in Metals and Alloys", Chapman & Holl, London, UK, 1992.
- Ph. Maynier, J. Dollet, P. Bastien: "Prediction of microstructure via empirical formulae based on CCT diagrams", Hardenability concepts with applications to steel, Metals Society of AIME, 1978., 163-178
- 55. **M.T. Lusk, Y.K. Lee**: "A Global Material Model for Simulatig Kinetics of Low Alloy Steels", Proceedings of the 7th International Seminar IFHTSE, Budimpest, Hungary, 15-17 September 1999., p.273-282.
- 56. W. A. Johnson, R. F. Mehl: "Reaction kinetics in process of nucleation and growth", Trans. AIME, 135, 1939., 116-158
- 57. **T. Réti**: "Generalization of the Avrami model for the description of multi-phase transformations", Proceedings of the 8th International congress on heat treatment, Heat&Surface, 17.-20. 11. 1992. Kyoto, Japan, 73-76109-117
- 58. T. Réti, Z. Fried, I. Felde: "Multi-phase modeling of austenite transformation process during quenching" Proceedings of the 3rd International Conference On Quenching and Control of Distortion, 24-26 March, 1999, Praque, Czech Republic, ASM International Metals Park, Ohio, USA, 157-172
- 59. ... "SYSWELD 2003 Metallurgical Transformation Model LSG2M Nancy", ESI Group, 2003.
- 60. J. B. Leblond, J. Devaux: "A new kinetics model for anisothermal metalurgical transformations in steels including effect of austenite grain size", Acta metall., Vil. 32, No.1, 1984., 137-146
- 61. **B. Raniecki et. al:** "Problem of determination of transient and residual stresses in a cylinder under progressive induction hardening", Proceedings of the 3rd International Conference On Quenching and Control of Distortion, 24-26 March, 1999, Praque, Czech Republic, ASM International Metals Park, Ohio, 473-484
- 62. P. Koistinen, R. F. Marburger: "A general equation prescribing the extent of the austenitemartensite transformation in pure iron – carbon alloys and plain carbon steel"; Acta Metallurgica, 7, 1959. 59
- 63. **B. Smoljan**: "Toplinska obrada čelika, sivog i nodularnog lijeva", Hrvatsko društvo za toplinsku obradbu i inženjerstvo površina, Zagreb, 1999.
- 64. E. Scheil: "Arch. Eisenhuttenwesen, 1935, Vol. 12, 565-567
- 65. **M. Jurković**: "Matematičko modeliranje inženjerskih procesa i sistema", Tehnički fakultet u Rijeci, 1999.

- 66. O. Bodart, A. V. Boureau, R. Touzani: "Numerical investigation of optimal control of induction heating process", Applied Mathematical Modeling 25, 2001., 697-712
- 67. **D. Hömberg, J. Sokolowski**: "Optimal shape design of induction coils for surface hardening", SIAM J. Control Optim., Vol. 42, No.3, 1087-1117
- 68. M. Horii, N. Takahashi: "Investigation of evolution strategy and optimization of induction heating model", IEEE Transactions on magnetics, Vol. 36., No. 4, 2000., 1085-1088
- 69. **H. Porzner et. al**.: "Heat treatment simulations for heat treaters and design engineers", Heat treatment of metals, Vol. 2., 2003., 29-39
- 70. ... "Reference manual Sysweld 2003", ESI Group, 2003.
- E. Reiss: "Recent development in heat treatment simulation DEFORM-HT", Proceedings of the 8th Seminar IFHTSE, Dubrovnik-Cavtat, 12.-14. 09. 2001., 351-357
- 72. **T Inoue et. al**.: "Simulation and experimental verification of induction hardening process for some kinds of steel", Proceedings of 2nd International Conference on Quenching and the Control of Distortion, 4.-7. 11. 1996., Cleveland, USA, 55-62
- 73. **D. Landek**: "Računalna simulacija postupka indukcijskog kaljenja", magistarski rad, Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, **2001**.
- 74. H.H.J.M. Janssen, E.J.W. ter Maten, D. van Houwelingen: "Simulation of Coupled Electromagnetic and Heat Dissipation Problems", IEEE Transactions on Magnetics, Vol. 30, No.5, September 1994, 3331-3334.
- 75. **D**. **Melaab et.** al.: "Control of induction heat treatment by the measure of power", IEEE Transactions on Magnetics, Vol. 29, No.2, March 1993, 1558-1561.
- 76. **R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt**: "Concepts and applications of finite element analysis", John Willey & Sons Inc, 4th edition, 2002.
- 77. Taylor, Zynkiewitz: "The finite element method", vol.1,2, McGraw-Hill Book Company, London, 1994.
- 78. **M. de Berg et. all.:** "Computational geometry Algorithms and applications", 2nd ed., Springer-Verlag, Berlin, 2000.
- 79. **Z. Haznadar**: "Teorijska elektrotehnika Elektromagnetska teorija i polja", Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2001.
- 80. Z. Haznadar, Ž. Štih: "Elektromagnetizam 1 i 2", Školska knjiga, Zagreb, 1997.
- 81. L.R. Edgar, E.P. Furlani: "A Computer Simulation of on Induction Heating System", IEEE Transactions on Magnetics, Vol.27, No.5, September 1991, 4343-4354.
- 82. F. Richter: "Die wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen", Verlag Stahleisen M.B.H., Düsseldorf, 1973.
- 83. C. Chaboudez et.al.: "Numeric modelling in induction heating for axisymmetric geometries", IEEE Transactions on Magnetics, Vol. 33, No.1, January 1997., 739-745
- 84. C.W. Chen: "Magnetisam and Metallurgy of Solf Magnetic Materials", Dover Publications, New York, USA, 1986.
- 85. W. Opechowski: "Temperature dependence of magnetization of ferromagnetics at low temperatures", Physica, Vol. 4, 715-722
- 86. V. Pinter: "Osnove elektrotehnike", II. dio, Tehnička knjiga, Zagreb, 1975.

- S. Habermehl, D.C. Jiles, C.M. Teller: "Influence of heat treatment and chemical composition on the magnetic properties of ferromagnetic steels", IEEE Transactions on Magnetics, Vol.MAG-21, No.5, September 1985., 1909-1911
- 88. B. Buschur: "Automatic verification of induction hardening using eddy current and preventive multi-frequency testing", Proceedings of the 17th Heat Treating Conference and Expositions and 1st International Induction Heat Treating Symposium, 15-18. September 1997., Indianapolis, Indiana, ASM International Metals Park, Ohio, USA, 817-825
- 89. V. Jović: "Uvod u inženjersko numeričko modeliranje", Aquarius Engineering, Split, 1993.
- 90. A. Galović: "Termodinamika I", 2. promjenjeno izdanje, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zagreb 2002.
- 91. J.B. Austin: Industrial Eng. Chem., 24, 1932., 1225
- J.M.Bergheau, F. Boitout: "Contribution of finite element simulation to the analysis of bulk and surface heat treatments", Proceedings of the 7th IFHTSE Seminar, 15.-16. September 1996., Budapest, 303-313
- 93. M. Suehiro: "A mathematical model for predicting temperature of steel during cooling based on microstructural evolution", Proceedings of 11th Congress IFHTSE & 4th ASM Heat treating and surface engineering conference in Europe, Vol. 1, Florence, Italy, 19.-21. 10. 1998., 11-19.
- 94. A. Galović: "Termodinamika II", 3. promjenjeno izdanje, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zagreb 2003.
- 95. J. Carslaw, W. Jager: "Conduction Heat in Solids", Oxford at the Clarendon Press, UK 1971.
- 96. A.F. Mills: "Basic Heat and Mass Transfer", Irwin heat transfer series, Chicago, USA, 1995.
- 97. U. Reiners, R. Jescher, R. Scolz: "Wärmeübergang bei der Spritzwasserkühlung von Nichteisenmetallen", Metallkunde 74, 1983., 257-264
- 98. D. A. Guisbert, L. M. Jarvis: "Influence of test conditions on the cooling curve response of polymer quenchants (Tensi agitation device)", Proceedings of the 22th Heat Treating Society Conference and the 2nd International Surface Engineering Congress, 15.-17. September 2003. Indianapolis, USA, 218-227
- 99. E. Griffiths (ed.): "Physical constants of some commercial steels at elevated temperatures", The British Iron and Steel Research Association, Butterworths Scientific Publications, London, 1953.
- T. Filetin, I. Žmak, D. Markučić, D. Novak: "Determination of the physical properties of heat treatable steels", Proceedings of the 8th Seminar IFHTSE, Dubrovnik-Cavtat, Croatia, 12-14 September, 2001.,399-406
- D. Hömberg: "A mathematical model for induction hardening including mechanical effect", Nonlinear Analysis Real World Applications 5, 2004., 55-90
- 102. **T. Réti, et. al.:** "Prediction of as-quenched hardness after rapid austenitization and cooling of surface hardened steels", Computational Materials Science, 15, 1999. 101-112
- 103. M. Böhm, S. Dachokovski, M. Hunkel, T. Lübben, M. Wolf: "Übersicht über einige makroskopische Modelle für Phasenumwandlungen im Stahl", Report 0-09, Zentrum für Technomathematik, Universität Bremen, 08. 2003.
- 104. K. W. Andrews: JISI, 203 (7), July 1965, 721-727

- 105. **T.H. Fawzi, K. F. Ali, P.E. Burke**: "Boundary Integral Equations Analysis of Induction Devices with Rotational Symmetry", IEEE Transaction on Magnetic, Vol. MAG-19 No. 1, 1983., 36-44.
- 106. **M. W. Garrett**: "Calculations of fields, forces, and mutual inductances of current systems by elliptic integrals", Journal of applied physics, 09. 1963., 2567-257
- 107. J.M. Jin, V.V. Liepa: "A note on hybrid finite element method to electromagnetics scattering problems", IEEE Trans. Antennas Propagation, vol. AP-36, 1486.-1490.,Oct. 1988.
- 108. M. Lohrmann: "Experimentelle und theoretische Untersuchungen zur Vorausbestimmung des Wärmebehandlungsergebnisses beim Hochdruckgasabschrecken", Dissertation, Universität Bremen, **1996**.
- 109. B. Edenhofer, J.W. Bouwman: "Vacuum heat treatment", in Steel Heat Treatment Handbook ed. by G.E. Totten, M.A.H. Howes, Marcel Dekker, Inc., New York, USA, 1998., 483524-910
- 110. W. Steven, A. G. Haynes: JISI, 203 (7), August 1956, 349-359

ŽIVOTOPIS

mr. sc. Darko Landek, dipl. inž. strojarstva

Darko Landek rođen je 27. 08. 1970. u Bjelovaru. Osnovnu školu završio je u Garešnici 1985. god., a srednju školu elektrotehničke struke u Kutini 1989. Diplomirao je 1995. god. s odličnim uspjehom na Fakultetu strojarstva i brodogradnje Sveučilišta u Zagrebu Proizvodni smjer. Tijekom dodiplomskog studija pohađao je seminar: "EuroLaser Academy", od 02. do 28. 10. 1995. godine, na IST, Technical University of Vienna i dobitnik je Rektorove nagrade za najbolji studentski rad u školskoj godini 1994./95.

Od 1996. godine zaposlen je kao znanstveni novak - mlađi asistent na Katedri za toplinsku obradbu i inženjerstvo površina u Zavodu za materijale FSB-a. Nakon poslijediplomskog studija na smjeru "Materijali u strojarstvu" magistrirao je na Fakultetu strojarstva i brodogradnje 2001. godine s radom pod naslovom "Računalna simulacija postupka indukcijskog kaljenja" te je izabran u zvanje asistenta.

Tijekom 1996. do 2005. radio je na više znanstveno-istraživačkih projekata od kojih se ističu projekti br. 12000 "Računalne simulacije i razvoj materijala" (1997. do 1999. god) i aktualni projekt 120032 "Razvoj materijala i procesa računalnim modeliranjem" (2000. do 2005. god) voditelja prof. dr. sc. Tomislava Filetina, te hrvatsko slovenski podprojekt unutar projekta 120032: "Računalna podrška optimiranju indukcijskog kaljenja" (1998. do 1999. godine) voditelja akademika Božidara Liščića i prof. dr. sc. Borisa Štoka. Od 01.05. do 30.06. 2005. godine bio je na znanstveno-stručnom usavršavanju u Collaborative Research Centre SFB 570 "Distortion Engineering"na University of Bremen, Njemačka.

Član je Hrvatskog društva za materijale i tribologiju, Hrvatskog društva za toplinsku obradbu i inženjerstvo površina i međunarodnog udruženja ASM Heat Treating Society.

Služi se, u govoru i pismu engleskim jezikom. Oženjen je i otac je jednog djeteta.

CURRICULUM VITAE

Mr. Sc. Darko Landek, B. Sc.

Personal details:		,
	Date of birth:	27th August 1970.
	Place of birth:	Bjelovar / Croatia
	Nationality	Croatian
	Married	one child
Education:		
03/2003 -	Work on Ph Thesis <i>Induction Hardening</i> "	entitled: "Models and Algorithms for Computer Desing of
10/1996 - 10/2001	Postgraduate studies at University of Zagreb in thesis entitled: "Computer States of Computer States of Comp	the Faculty of Mechanical Engineering and Naval Architecture, n the field of Materials Engineering (completed with master's <i>ter simulation of the induction hardening process</i> ").
10/1989 - 11/1995	Studies at the Faculty of Zagreb completed hardening of grey irons	of Mechanical Engineering and Naval Architecture, University with diplom work entitled " <i>Application of Laser surface</i> "
9/1985 - 6/1989	Secondary school specia	alizing in Electrical-Engineering /Kutina/ Croatia
9/1977 - 6/1985	Elementary school Gar	ešnica / Croatia

Research experience:

10/1995	One month EuroLaser Academy seminar at the IST-Technical University of Vienna, Austria
6/1996 -	Employed as young researcher and university assistant at Chair of Heat Treatment and Surface
	Engineering on the Department for Materials at the Faculty of Mechanical Engineering and
	Naval Architecture, University of Zagreb
6/1996 - 06/199	97 Scientific research project financed by the Croatian Ministry of Science and Technology
	No. 2-08-182 "Optimizing of the Integrated Production of Artefacts", head researcher Prof.
	dr.sc. Igor Catić
06/1997 - 03/20	003 Scientific research project financed by the Croatian Ministry of Science and Technology
	No. 12004 "Computer Simulations and Material Development", head researcher Prof. dr.sc.
2000 2001	Tomisiav Fileun Slovenion - Creation Draiget "Computer support to Optimising Induction Hordening" head
2000-2001	slovenian - Cloanian Project Computer support to Optimising induction Haldening, near researchers: Prof. Dr. so. Požider Liččić (Creatia) and Prof. dr. so. Poris Štok (Slovenia)
01/2002	Technology project: "SUMAT Development and Application of Advanced
01/2002 -	Motoriology project. SUMAT-Development and Application of Advanced
	Materials, neau researcher Pior. ur. sc. Tomislav Frietin
03/2003 -	Scientific research project financed by the Croatian Ministry of Science and
	Technology No. 0120-032 "Development of Materials and Processes by Computer
	Modelling", head researcher Prof. dr.sc. Tomislav Filetin
05/2004-06/200	4 Research project SFB 570 - A6 Universität Bremen Niemačka Collaborative Research
03/2001 00/200	Centre "Distortion Engineering", head researcher DrIng. Thomas Lübben
Award:	
1007	
1996 I	he Chancellor Award of the University of Zagreb for the best student project in the
а	cademic year 1995/96 for a paper entitled "Laser hardening of grey iron".
I anguagas as	material English Eluant both in and written Cormon in regive large-
Languages co	mpetence: English- Fluent both in oral and written, German in pasive knowledge

Memberships: Croatian society heat treatment and surface engineering, Croatian society for materials and tribology, ASM Heat Treating Society.