Parametarska analiza isparivača dizalice topline zrak voda

Andrijanić, Filip

Master's thesis / Diplomski rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:739104

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-11

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Filip Andrijanić

Zagreb, 2020.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Prof. dr. sc. Vladimir Soldo, dipl. ing.

Student:

Filip Andrijanić

Zagreb, 2020.

Izjavljujem da sam ovaj rad radio samostalno koristeći znanja stečena tijekom studija i koristeći navedenu literaturu.

Zahvaljujem se svom mentoru profesoru Vladimiru Soldi na savjetima i stručnom vodstvu tijekom izrade ovog rada kao i kolegama iz firme Frigo Plus d.o.o. koji su mi ustupili programske alate korištene u radu. Također se zahvaljujem svojoj obitelji i prijateljima na strpljenju i podršci tijekom studiranja.

Filip Andrijanić

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za diplomske ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveučilište u Zagrebu			
Fakultet strojarstva i brodogradnje			
Datum:	Prilog:		
Klasa: 602 - 04 / 20 - 6 / 3			
Ur. broj: 15 - 1703 - 20 -			

DIPLOMSKI ZADATAK

Student:

Filip ANDRIJANIĆ

Mat. br.: 0035195896

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku: Opis zadatka:

Parametric analysis of the air-to-water heat pump evaporator

Parametarska analiza isparivača dizalice topline zrak-voda

Europske norme i smjernice navode kako rashladni uređaji i dizalice topline svega nekoliko postotaka vremena rade pri maksimalnom projektnom toplinskom opterećenju. Većinu vremena rade pri parcijalnom opterećenju što je umnogome uvjetovano temperaturama toplinskih spremnika. Ako se promatra dizalica topline zrak-voda, onda promjenjiva temperatura okolišnjeg zraka utječe na učinak uređaja te na radne parametre isparivača. Ovisno o toplinskom opterećenju mijenja se i temperatura vode toplinskog ponora.

U radu je potrebno projektirati dizalicu topline zrak-voda učinka grijanja 10 kW (A-2/W45) s radnom tvari R290 (propan) te napraviti parametarsku analizu isparivača dizalice topline za promjenjivu temperaturu okolišnjeg zraka i toplinskog opterećenja za područje grada Zagreba.

Rad treba sadržavati:

- 1. Proračun dizalice topline zrak-voda prema navedenoj radnoj točci.
- 2. Termodinamički proračun isparivača i kondenzatora.
- 3. Proračun pada tlaka na isparivaču pri punom i parcijalnom opterećenju.
- 4. Proračun parametara isparivača pri promjenjivom toplinskom opterećenju (30%, 50%, 70%).
- 5. Dispozicijski crtež dizalice topline.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

24. rujna 2020.

Zadatak zadao:

Datum predaje rada:

26. studenoga 2020.

Predviđeni datum obrane:

30.11. - 4.12.2020.

Predsjednica Povjerenstva:

Prof. dr. sc. Vladimir Soldo

Prof. dr. sc. Tanja Jurčević Lulić

SADRŽAJ

SADRŽAJ
POPIS SLIKAII
POPIS TABLICAIV
SAŽETAKXI
SUMMARYXII
UVOD 1
1. PRORAČUN DIZALICE TOPLINE ZRAK – VODA PREMA RADNOJ TOČCI A-2/W45 3
2. TERMODINAMIČKI PRORAČUN ISPARIVAČA 8
2.1. Proračun isparivača prema VDI [3]
2.2. Proračun isparivača prema postupku profesora Ciconkova [4] 18
3. TERMODINAMIČKI PRORAČUN PLOČASTOG KONDENZATORA
4. PAD TLAKA NA ISPARIVAČU 46
5. PARAMETRI ISPARIVAČA PRI PROMJENJIVOM TOPLINSKOM OPTEREĆENJU 55
6. DISPOZICIJSKI CRTEŽI
ZAKLJUČAK 67
LITERATURA
PRILOZI

POPIS SLIKA

Slika 1. Shema sustava dizalice topline zrak - voda	3
Slika 2. T-s dijagram procesa	7
Slika 3. logp - h dijagram procesa	7
Slika 4. Prikaz konstrukcijskih parametara 1	1
Slika 5. Dijagram za određivanje koeficijenta prijelaza topline na orebrenoj cijevi 1	3
Slika 6. Dijagram za određivanje faktora površine 1	4
Slika 7. Dijagram za određivanje stupnja djelovanja rebra 1	5
Slika 8. Shema isparivača prema VDI proračunu 1	7
Slika 9. Prikaz konstrukcijskih parametara isparivača 1	9
Slika 10. h - x dijagram promjene zraka 2	2
Slika 11. Shema isparivača prema proračunu prof. Ciconkova 3	0
Slika 12. Lemljeni pločasti izmjenjivač topline 3	1
Slika 13. Geometrija izmjenjivačke ploče kondenzatora 3	2
Slika 14. T-A dijagram kondenzatora 3	6
Slika 15. Dimenzije kondenzatora	.5
Slika 16. Pad tlaka pri punom i parcijalnom opterećenju isparivača (temperatura kondenzacije 4 °C)	.8 1
Slika 17. Unos potrebnih specifikacija potrebnih za proračun isparivača5	5
Slika 18. Odabir geometrije isparivača u softveru myCoil 5	6
Slika 19. Rezultati parametarskog proračuna isparivača pri različitim temp. opterećenjima 5	7
Slika 20. Učinak isparivača pri promjenjivom toplinskom opterećenju (temperatura kondenzacije 4	-8
°C)	8

Slika 21. Snaga kompresora pri promjenjivom toplinskom opterećenju (temperatura kondenzacije 48
°C)
Slika 22. Faktor grijanja pri različitim toplinskim opterećenjima (temperatura kondenzacije 48 °C)60
Slika 23. Promjena srednje log. temperature u odnosu na promjenu toplinskog opterećenja (temperatura kondenzacije 48 °C)
Slika 24. Pad tlaka na isparivaču pri promjenjivom toplinskom opterećenju dobiven pomoću softvera myCoil (temperatura kondenzacije 48 °C)
Slika 25. Maseni protok radnog medija pri promjenjivom toplinskom opterećenju (temperatura kondenzacije 48 °C)
Slika 26. Frascold Selection Software - softver za odabir kompresora
Slika 27. Radno područje kompresora s označenom radnom točkom pri opterećenju od 100% 64
Slika 28. Dispozicijski crtež unutarnje jedinice
Slika 29. Dispozicijski crtež vanjske jedinice

POPIS TABLICA

Tablica 1. Ulazni podaci
Tablica 2. Karakteristične točke procesa
Tablica 3. Izračunate vrijednosti procesa 6
Tablica 4. Specifikacije bakrene cijevi 8
Tablica 5. Konstrukcijski parametri
Tablica 6. Ulazni podaci proračuna isparivača18
Tablica 7. Specifikacije isparivača
Tablica 8. Karakteristike isparivača 19
Tablica 9. Termodinamička svojstva suhog zraka pri temperaturi -3,05 °C 21
Tablica 10. Određivanje koeficijenta C _{1A}
Tablica 11. Vrijednosti dobivene nakon niza iteracija
Tablica 12. Dimenzije odabranog pločastog kondenzatora
Tablica 13. Termodinamička svojstva ogrjevne vode pri srednjoj temperaturi 42,5 °C 34
Tablica 14. Termodinamička svojstva radne tvari za vrelu kapljevinu pri srednjoj temperaturi 46,5 °C
Tablica 15. Termodinamička svojstva radne tvari za vrelu kapljevinu i suhozasićenu paru pri temperaturi kondenzacije
Tablica 16. Proračun koeficijenata prijelaza topline na strani radne tvari
Tablica 17. Ulazne vrijednosti za III. zonu 42
Tablica 18. Termodinamička svojstva radne tvari pri srednjoj temperaturi 62,7 °C 43
Tablica 19. Ulazne vrijednosti za proračun pada tlaka 46
Tablica 20. Pad tlaka pri parcijalnom opterećenju od 80%

Tablica 21. Pad tlaka pri parcijalnom opterećenju od 60%	49
Tablica 22. Pad tlaka pri parcijalnom opterećenju od 40%	50
Tablica 23. Preporučene iskustvene brzine medija u cijevima	51
Tablica 24. Rezultati parametarske analize isparivača pri različitim toplinskim opterećenjima	57

POPIS OZNAKA

Φ_k	kW	Učinak kondenzatora
η_{is}	-	Izentropski stupanj djelovanja
ϑ	°C	Temperatura
р	bar	tlak
h	kJ kg	entalpija
S	kJ kgK	entropija
v	$\frac{m^3}{kg}$	specifični volumen
q _{m,RT}	$\frac{kg}{s}$	Maseni protok radne tvari
P_k	kW	Snaga kompresora
Φ_{o}	kW	Učinak isparivača
E _{gr}	-	Faktor grijanja
ϑ_{i}	°C	Temperatura isparavanja
ϑ_k	°C	Temperatura kondenzacije
$\vartheta_{zr,1}$	°C	Temperatura zraka na ulazu u isparivač
$\vartheta_{zr,2}$	°C	Temperatura zraka na izlazu iz isparivača
$\Delta \vartheta_m$	°C	Srednja logaritamska razlika temperatura
$d_{\rm v}$	m	Vanjski promjer cijevi
du	m	Unutarnji promjer cijevi
δ	m	Debljina stjenke

λ	$\frac{W}{mK}$	Toplinska vodljivost
α	$\frac{W}{m^2K}$	Koeficijent prijelaza topline
W	$\frac{m}{s}$	Brzina strujanja medija
v _{sr}	$\frac{m^3}{kg}$	Srednji specifični volumen
n	-	Broj cijevi koji se napaja radnom tvari
<i>q</i> _{<i>R</i>290}	W/m ²	Specifični toplinski tok na strani R290
S1	m	Vertikalni razmak između cijevi
S ₂	m	Horizontalni razmak između cijevi
Sf	m	Razmak između lamela
\mathbf{f}_{t}	m	Debljina lamela
A _u	m ² /m	Unutarnja površina cijevi po dužnom metru
A_f	m ² /m	Površina rebara po dužnom metru
A_{mt}	m ² /m	Površina golog dijela cijevi po dužnom metru
A _{e1}	m²/m	Vanjska površina izmjene topline po 1 m cijevi
Nu	-	Nusseltov broj
η	$N \cdot \frac{s}{m^2}$	Dinamička viskoznost
ρ	$\frac{kg}{m^3}$	Gustoća
ν	$\frac{m^2}{s}$	Kinematička viskoznost
Re	-	Reynoldsov broj

Pr	-	Prandtlov broj
Sr	m	Svijetli razmak rebara
h	m	Djelotvorna visina rebra
φ	-	Faktor površine
Y	-	Pomoćna veličina za različite tipove orebrenja
X	-	Značajka pomoću koje se određuje stupanj djelovanja rebra
θ	-	Stupanj djelovanja rebra
q_z	W/m^2	Specifični toplinski tok na strani zraka sveden na unutarnju površinu
ϑ_{stj}	°C	Temperatura stijenke
k	$\frac{W}{m^2K}$	Koeficijent prolaza topline
A _{isp}	m ²	Površina izmjene topline
$L_{ m ov}$	m	Ukupna dužina orebrene cijevi
L ₁	m	Dužina jedne cijevi
n_1	-	Broj cijevi poprečnih na smjer strujanja zraka
Н	m	Visina isparivača
С	m	Širina isparivača
L	m	Dubina isparivača
i _r	-	Broj redova cijevi u isparivaču
i _t	-	Broj cijevi isparivača u jednom redu
i _{in}	-	Broj ulaznih cijevi isparivača
β	-	Omjer vanjske i unutarnje površine prijelaza topline

ϑ_{am}	°C	Srednja temperatura zraka
c _p	kJ/kgK	Specifični toplinski kapacitet
С	-	Korekcijski koeficijent prijelaza topline na strani radnog medija
X	g/kg	Apsolutna vlažnost
A _i	m^2	Površina prijelaza topline
m _a	kg/s	Maseni protok suhog zraka
Va	m ³ /s	Volumni protok zraka
A _z	m^2	Najmanja površina u poprečnom presjeku gdje struji zrak
d_{eqv}	m	Ekvivalentni promjer
hf	m	Visina aluminijskog rebra
H_{kond}	m	Visina kondenzatora
B_{kond}	m	Širina kondenzatora
β_{kond}	0	Kut orebrenja kondenzatora
Φ_{kond}	-	Faktor površine kondenzatora
b_{kond}	m	Dubina orebrenja (širina kanala)
\mathbf{N}_{kond}	-	Broj ploča kondenzatora
L_{v}	m	Razmak između ulaza i izlaza kondenzatora
L _h	m	Razmak između ulaza RT i izlaza rashladne vode
D_p	m	Promjer ulaza/izlaza kondenzatora
t	m	Debljina ploče kondenzatora
d _{e,kond}	m	Ekvivalentni promjer kanala
L_p	m	Visina izmjenjivačke površine

L _w	m	Širina izmjenjivačke površine
A _{c,kond}	m ²	Površina kanala
A_p	m ²	Projicirana površina
A _{kond}	m ²	Ukupna površina izmjene topline
$q_{m,OV}$	kg/s	Maseni protok ogrjevne vode
N _{OV}	-	Broj kanala za strujanje vode
$\Phi_{k,l}$	kW	Toplinski tok izmijenjen u I. zoni
$\Phi_{k,II}$	kW	Toplinski tok izmijenjen u II. Zoni
$\vartheta_{OV,gr,I}$	°C	Temperatura ogrjevnog medija na granici između I. i II. zone iznosi
$\vartheta_{OV,gr,II}$	°C	Temperatura ogrjevnog medija na granici između II. i III. zone
N _{RT}	-	Broj kanala kroz koje struji radna tvar
A _{kond,I,potr}	m ²	Potrebna površina za izmjenu topline u I. zoni
G_{RT}	$\frac{kg}{sm^2}$	Gustoća masenog toka
B _o	-	Boilingov bezdimenzijski broj
A _{kond,II,potr}	m ²	Potrebna površina za izmjenu topline u II. zoni
A _{kond,III,potr}	m ²	Potrebna površina za izmjenu topline u III. Zoni

SAŽETAK

U sklopu diplomskog rada proveden je proračun dizalice topline zrak-voda prema radnoj točci A-2/W45 s radnom tvari R290 (propan) te je napravljena parametarska analiza isparivača dizalice topline za promjenjivu temperaturu okolišnog zraka i toplinskog opterećenja za područje grada Zagreba. Termodinamičkim proračunom proračunate su dimenzije pločastog kondenzatora i isparivača u krugu dizalice topline te padovi tlaka na isparivaču pri punom i parcijalnom opterećenju. Proračun parametara isparivača je napravljen za promjenjiva toplinska opterećenja 40, 60 i 80%. Sam proračun napravljen je u softveru Microsoft Excel dok su podaci za radni medij računani pomoću CoolProp-a, dodatka za Excel koji služi za računanje termodinamičkih svojstava različitih fluida.

Ključne riječi: dizalica topline zrak – voda, parametarska analiza isparivača, parcijalni rad dizalice topline

SUMMARY

As part of master thesis, the calculation of the air-to-water heat pump has been made according to the operating point A-2/W45 with the working substance R290 (propane) and a parametric analysis of the heat pump evaporator for variable ambient temperature and heat load for Zagreb. The dimensions of the plate condenser and evaporator in the heat pump circuit and the pressure drops on the evaporator at full and partial load were calculated by thermodynamic calculation. The calculation of the evaporator parameters was made for variable heat loads of 40, 60 and 80%. The calculation itself was made in Microsoft Excel software while the data for working substance was calculated using CoolProp, an Excel add-in that is used to calculate the thermodynamic properties of different fluids.

Key words: air to water heat pump, evaporator parametric analysis, partial load of heat pump

UVOD

Prema Direktivi 28/2009/EC dizalice topline se smatraju jednim od najučinkovitijih sustava grijanja i hlađenja. Dizalice topline zrak - voda su uređaji koji imaju dobre predispozicije da zamjene ili da se integriraju s postojećim plinskim bojlerima. Međutim značajan problem javlja se prilikom procjene sezonske učinkovitosti ovakvih sustava. Učinkovitost dizalica topline zrak – voda značajno oscilira tijekom sezone kao posljedica vanjske temperature koja se konstantno mijenja. Tijekom cijele sezone grijanja i hlađenja, na sezonsku učinkovitost dizalice topline (SCOP) značajno utječe niz različitih vanjskih faktora kao što su promjenjivo toplinsko opterećenje zgrade, vanjska klima te regulacijski sustav dizalice topline. Pravilno dimenzioniranje sustava također značajno utječe na energetsku učinkovitost. U određenim klimatskim uvjetima, temperatura bivalentne točke određuje količinu energije koja će biti isporučena od strane alternativnog sustava. Kao alternativni sustav najčešće se koristi električni grijač u razdobljima kada je snaga dizalice topline premala. Ono što također ima nepovoljan utjecaj na energetsku učinkovitost je predimenzioniranje sustava, odnosno odabir dizalice topline prevelikog kapaciteta. Danas postoje različiti numerički modeli za izračun sezonske učinkovitosti različitih tipova dizalica topline zrak – voda [1] koji uzimaju u obzir rad pri punom opterećenju, rad pri parcijalnom opterećenju te vrijeme procesa odmrzavanja isparivača.

Prema analizama danas je poznato kako dizalice topline kao i rashladni uređaji samo manji dio vremena rade pri maksimalnom projektnom opterećenju. Većinu vremena rade pri parcijalnom opterećenju što je posljedica toplinskog opterećenja odnosno vanjske temperature. Parcijalno opterećenje značajno utječe na performanse uređaja. Najjednostavniji način regulacije dizalice topline s prilagodbom na traženo toplinsko opterećenje je "on – off" sustav. Takav sustav uzrokuje značajan pad učinkovitosti iz razloga što prilikom ponovnog pokretanja sustava, kompresor mora ponovno uspostaviti stacionarne radne parametre. Prema Hendersonu [2] i manji broj "on – off" ciklusa značajno smanjuje učinkovitost pri uvjetima niskog opterećenja. Drugi način regulacije pogotovo za dizalice topline manjih kapaciteta je korištenje inverterskog kompresora s promjenjivom brzinom kako bi se smanjio broj "on – off" ciklusa te povećala učinkovitost sustava. Inverter radi na način da smanji brzinu kompresora, reducira njegovo opterećenje, izlazni učin te potrebe za snagom. Na taj način je moguće izbjeći "on – off" cikluse dok se u konačnici ne postigne

minimalna brzina. Još jedan od problema koji se javljaju prilikom rada dizalice topline je stvaranje naslaga leda na isparivaču. Kada dizalica topline tip zrak – voda radi u režimu grijanja, dolazi do formiranja leda u vanjskoj jedinici na isparivačkoj površini. Do ove pojave dolazi kada je temperatura površine ispod temperature smrzavanja vode i ispod točke rosišta vlažnog zraka. Akumulirajuće naslage leda ponašaju se kao toplinski izolatori te smanjuju površinu nastrujavanja zraka te na taj način smanjuju učinkovitost sustava. Naslage leda također mogu dovesti do niže temperature isparavanja te na taj način oštetiti kompresor. Stoga je potrebno periodično odmrzavanje isparivača. Najrašireniji način odmrzavanja isparivača je obrnuti ciklus rada uređaja. Obrnuti ciklus radi na način da se okrene smjer radnog medija te pregrijane pare iz kompresora struje kroz isparivač u vanjskoj jedinici te na taj način tope naslage leda. To također utječe na pad učinkovitosti sustava budući da kompresor za svoj rad troši električnu energiju, a prethodno akumulirana toplinska energija koristi se kao izvor topline. U ovom radu obrađena je dizalica topline sa sustavom od dva paralelna isparivača upravo iz tog razloga. Dok bi jedan isparivač radio u obrnutom ciklusu odmrzavanja drugi bi mogao normalno sudjelovati u procesu grijanja.

1. PRORAČUN DIZALICE TOPLINE ZRAK – VODA PREMA RADNOJ TOČCI A-2/W45

Zadana je dizalica topline tip zrak – voda učinka grijanja 10 kW za radnu točku A-2/W45 s radnom tvari R290 – propanom. Na temelju ulaznih podataka proveden je proračun karakterističnih točaka procesa. Temperature isparavanja, pregrijanja i pothlađenja su odabrane prema zadanom režimu grijanja. Proračun je izvršen pomoću računalnog programa Microsoft Excel.

Opis	Oznaka	Vrijednost	Jedinica
Toplinski učin	Φ_k	10	kW
Radna točka	A-2/W45		
Radna tvar	R290		
Izentropski stupanj djelovanja	η_{js}	0,65	

Tablica 1. Ulazni podaci

Slika 1. Shema sustava dizalice topline zrak - voda

Temperatura isparavanja iznosi $\vartheta_i = -10$ °C te njezin odgovarajući tlak zasićenja iznosi $p_i = 3,5 \ bar$. Temperatura kondenzacije iznosi $\vartheta_k = 48$ °C te njezin odgovarajući tlak zasićenja iznosi $p_k = 16,4 \ bar$

Vrijednosti za sve točke procesa su izračunate pomoću CoolProp biblioteke odnosno Excel dodatka za izračun termodinamičkih svojstava različitih radnih tvari.

Točka 1 definirana je temperaturom isparavanja i sadržajem pare, koji je za suhozasićenu paru jednak 1.

$$\vartheta_1 = \vartheta_i = -10 \text{ °C } p_1 = p_i = 3,5 \text{ bar } h_1 = 563,7 \frac{kJ}{kg} s_1 = 2,385 \frac{kJ}{kgK} v_1 = 0,131 \frac{m^3}{kg}$$

Točka 1` definirana je tlakom isparavanja koji je funkcija temperature isparavanja te temperature nakon pregrijanja.

$$\vartheta_{1^{`}} = -5 \text{ °C } p_{1^{`}} = 3,5 \text{ bar } h_{1^{`}} = 571,9 \frac{kJ}{kg} s_{1^{`}} = 2,416 \frac{kJ}{kgK} v_{1^{`}} = 0,134 \frac{m^3}{kg}$$

Točka 2_s definirana je tlakom kondenzacije i entropijom koja je jednaka entropiji točke 1`.

$$\vartheta_{2s} = 59.4 \text{ °C} \ p_{2s} = 16.4 \ bar \ h_{2s} = 647.2 \frac{kJ}{kg} \ s_{2s} = s_{1} = 2.416 \frac{kJ}{kgK} \ v_{2s} = 0.029 \frac{m^3}{kg}$$

Točka 2 definirana je tlakom kondenzacije te entalpijom koja ovisi o entalpiji točke 2_s i izentropskom stupnju djelovanja.

$$\eta_{is} = \frac{h_{2s} - h_1}{h_2 - h_1}$$

$$h_2 = h_1 + \frac{h_{2s} - h_1}{\eta_{is}} = 571,9 + \frac{647,2 - 571,9}{0,65} = 687,7 \frac{kJ}{kg}$$

 $\vartheta_2 = 77,3 \text{ °C} \ p_2 = 16,4 \ bar \ h_2 = 687,7 \frac{kJ}{kg} \ s_2 = 2,535 \frac{kJ}{kgK} \ v_2 = 0,033 \frac{m^3}{kg}$

Točka 3 definirana je tlakom kondenzacije i sadržajem pare, koji za vrelu kapljevinu iznosi 0.

$$\vartheta_3 = 48 \text{ °C} \ p_3 = 16,4 \ bar \ h_3 = 330,7 \frac{kJ}{kg} \ s_3 = 1,432 \frac{kJ}{kgK} \ v_3 = 0,002 \frac{m^3}{kg}$$

4

Točka 3` definirana je tlakom kondenzacije te temperaturom nakon pothlađenja.

$$\vartheta_{3^{\circ}} = 45 \text{ °C} \ p_{3^{\circ}} = 16,4 \ bar \ h_{3^{\circ}} = 321,7 \frac{kJ}{kg} \ s_{3^{\circ}} = 1,404 \frac{kJ}{kgK} \ v_{3^{\circ}} = 0,002 \frac{m^3}{kg}$$

Točka 4:

Točka 4 definirana je tlakom kondenzacije te entalpijom točke 3`.

$$\vartheta_4 = -10 \text{ °C} \ p_4 = 3,5 \ bar \ h_4 = 321,7 \frac{kJ}{kg} \ s_4 = 1,465 \frac{kJ}{kgK} \ v_4 = 0,005 \frac{m^3}{kg}$$

Rezultati proračuna dani su u tablici 2.

TOČKA	9	р	h	S	v
-	°C	bar	kJ/kg	kJ/(kgK)	m3/kg
1	-10	3,5	563,7	2,385	0,131
1`	-5	3,5	571,9	2,416	0,134
2s	59,4	16,4	647,2	2,416	0,029
2	77,3	16,4	687,7	2,534	0,033
3	48	16,4	330,7	1,432	0,002
3`	45	16,4	321,7	1,404	0,002
4	-10	3,5	321,7	1,465	0,005

Tablica 2. Karakteristične točke procesa

Maseni protok radnog medija određen je na temelju toplinskog učina i specifičnog učina kondenzatora:

$$\Phi_k = q_{mRT} \cdot (h_2 - h_3) \rightarrow q_{mRT} = \frac{\Phi_k}{(h_2 - h_3)} = \frac{10}{687, 7 - 321, 7} = 0,0273 \frac{kg}{s}$$

Snaga kompresora određena je na temelju masenog protoka i specifičnog rada kompresora:

$$P_k = q_{mRT} \cdot (h_2 - h_1) = 0,0273 \cdot (687,7 - 571,9) = 3,16 \, kW$$

Učinak isparivača određen je na temelju masenog protoka i specifičnog učinka isparivača:

$$\Phi_o = q_{mRT} \cdot (h_1 - h_4) = 0,0273 \cdot (571,9 - 321,7) = 6,84 \, kW$$

Provjera:

$$\Phi_k = \Phi_o + P_k$$
$$10 = 6,84 + 3,16$$
$$10 = 10$$

Faktor grijanja definiran je kao omjer učina kondenzatora i snage kompresora:

$$\varepsilon_{gr} = \frac{\Phi_k}{P_k} = \frac{10}{3,16} = 3,16$$

Izračunate vrijednosti procesa prikazane su u tablici 3.

Opis	Oznaka	Vrijednost	Jedinica
Maseni protok radne tvari	q _{m,R290}	0,0273	kg/s
Snaga kompresora	P _k	3,16	kW
Toplinski učin isparivača	$\Phi_{\rm o}$	6,84	kW
Faktor grijanja	Egr	3,16	

Tablica 3. Izračunate	vrijednosti procesa
-----------------------	---------------------

Slika 2. T-s dijagram procesa

Slika 3. logp - h dijagram procesa

2. TERMODINAMIČKI PRORAČUN ISPARIVAČA

2.1. Proračun isparivača prema VDI [3]

Isparivač se sastoji od dvije paralelne sekcije te je time omogućen kontinuiran rad dizalice topline s jednom sekcijom dok se druga sekcija isparivača odleđuje. Stoga je proračun isparivača proveden za jednu sekciju, odnosno ukupni učinak isparivača kao i protok radnog medija podijeljeni su na pola. Učinak isparivača iznosi:

$$\Phi_{o} = 3,42 \ kW$$

Za potrebe proračuna pretpostavljeni su vanjski uvjeti:

$\vartheta_{zr,1} = -2 ^{\circ}\mathrm{C}$	- temperatura zraka na ulazu u isparivač
$\vartheta_{zr,4} = -4 ^{\circ}\mathrm{C}$	- temperatura zraka na izlazu iz isparivača

Srednja logaritamska razlika temperatura:

$$\Delta \vartheta_m = \frac{\vartheta_{zr,1} - \vartheta_{zr,2}}{\ln \frac{\vartheta_{zr,1} - \vartheta_i}{\vartheta_{zr,2} - \vartheta_i}} = \frac{-2 - (-4)}{\ln \left(\frac{-2 - (-10)}{-4 - (-10)}\right)} = 6,95 \text{ °C}$$

Izbor cijevi – bakrene cijevi Φ 8x1 mm

Opis	Oznaka	Vrijednost	Jedinica
Vanjski promjer cijevi	$d_{\rm v}$	0,008	m
Unutarnji promjer cijevi	d_u	0,006	m
Debljina stjenke	δ	0,001	m
Toplinska vodljivost bakra	λ_{cu}	389,6	W/mK

Tablica	4.	Specifi	kacije	bakrene	cijevi
---------	----	---------	--------	---------	--------

Prijelaz topline na strani R290:

$$\alpha_{R290} = 0.95 \cdot q^{0.6} \cdot \left(\frac{w_{sr}}{d_u \cdot v_{sr}}\right)^{0.2} \cdot f(p) \qquad [W/m^2 K]$$

$$w_{sr} \left[\frac{m}{s}\right]$$
 — srednja brzina R290 u cijevima
 $v_{sr} \left[\frac{m^3}{kg}\right]$ — srednji specifični volumen R290

$$v_{sr} = \frac{v_1 + v_4}{2} = \frac{0,1344 + 0,0046}{2} = 0,069 \ m^3/kg$$

Izbor brzine R290 na ulazu u cijevni snop:

$$w_{ul} = 0.5 \div 0.7 \ \frac{m}{s}$$

odabrano: $w_{ul} = 0,65 m/s$

Broj cijevi koje se paralelno napajaju radnom tvari:

$$q_{m,R290} = \frac{\Phi_0}{h_2 - h_3} = \frac{3,42}{687,7 - 321,7} = 0,014 \frac{kg}{s}$$
$$n = \frac{q_{m,R290} \cdot v_4 \cdot 4}{w_{ul} \cdot d_u^2 \cdot \pi} = \frac{0,014 \cdot 0,0046 \cdot 4}{0,65 \cdot 0,006^2 \cdot \pi} = 3,41$$
$$n = 4$$

Srednja brzina radne tvari:

$$w_{sr} = \frac{q_{m,R290} \cdot v_{sr} \cdot 4}{n \cdot d_u^2 \cdot \pi} = \frac{0,014 \cdot 0,0695 \cdot 4}{4 \cdot 0,006^2 \cdot \pi} = 9,8 \ m/s$$

Brzina radne tvari na izlazu iz isparivača:

$$w_{iz} = \frac{q_{m,R290} \cdot v_1 \cdot 4}{n \cdot d_u^2 \cdot \pi} = \frac{0.014 \cdot 0.134 \cdot 4}{4 \cdot 0.006^2 \cdot \pi} = 16.2 \frac{m}{s}$$

Specifični toplinski tok na strani R290:

$$q_{R290} = \alpha_{R290} \cdot \Delta\vartheta = \alpha_{R290} \cdot \left(\vartheta_{stj} - \vartheta_{R290}\right) = 0.95 \cdot q_{R290}^{0.6} \cdot \left(\frac{w_{sr}}{d_u \cdot v_{sr}}\right)^{0.2} \cdot f(p) \cdot \Delta\vartheta$$
$$q_{R290}^{0.4} = 0.95 \cdot \left(\frac{w_{sr}}{d_u \cdot v_{sr}}\right)^{0.2} \cdot f(p) \cdot \Delta\vartheta$$
$$f(p) = 1.38$$
$$q_{R290}^{0.4} = 0.95 \cdot \left(\frac{8.391}{0.006 \cdot 0.06947}\right)^{0.2} \cdot 1.38 \cdot \Delta\vartheta$$
$$q_{R290} = 279.222 \cdot (\Delta\vartheta)^{2.5}$$

Prijelaz topline na strani zraka:

Izbor tipske sekcije (registra cijevi), na bakrene cijevi navučena su aluminijska rebra odnosno lamele.

Opis	Oznaka	Vrijednost	Jedinica
Vanjski promjer cijevi	dv	0,008	m
Unutarnji promjer cijevi	du	0,006	m
Vertikalni razmak između cijevi	S1	0,025	m
Horizontalni razmak između cijevi	\$2	0,025	m
Razmak između lamela	Sf	0,002	m
Debljina lamela	ft	0,0002	m

Tablica 5. Konstrukcijski parametri

Slika 4. Prikaz konstrukcijskih parametara

Unutarnja površina cijevi po dužnom metru:

$$A_u = d_u \cdot \pi = 0,006 \cdot \pi = 0,0188 \ m^2/m$$

Površina rebara po dužnom metru:

$$A_f = \frac{2}{s_f} \cdot \left(s_1^2 - \frac{{d_v}^2 \cdot \pi}{4} \right) = \frac{2}{0,002} \cdot \left(0,025^2 - \frac{0,008^2 \cdot \pi}{4} \right) = 0,575 \ m^2/m$$

Površina golog dijela cijevi po dužnom metru:

$$A_{mt} = \frac{s_f - f_t}{s_f} \cdot d_v \cdot \pi = \frac{0,002 - 0,0005}{0,002} \cdot 0,008 \cdot \pi = 0,023 \ m^2/m$$

Ukupna površina izmjene topline:

$$A_{e1} = A_f + A_{mt} = 0,575 + 0,023 = 0,598 \ m^2/m^2$$

Površina unutarnjeg prijelaza topline po dužnom metru:

$$A_{il} = d_u \cdot \pi = 0,006 \cdot \pi = 0,019 \ m^2/m$$

Relativno povećanje površine izmjene topline:

$$\frac{A_{e1}}{A_{il}} = 31,691$$

Nusseltova značajka za poprečno nastrujani snop cijevi:

$$Nu = f_a \cdot 0.32 \cdot Re^{0.61} \cdot Pr^{0.3} = \frac{\alpha_o \cdot d_v}{\lambda}$$

Odabir brzine strujanja zraka u najužem presjeku orebrenog snopa (2-5 m/s):

$$w_m = 3.5 \frac{m}{s}$$
 (pretpostavka)

Reynoldsova značajka:

- Dinamička viskoznost $\eta = 1,7082 \cdot 10^{-5} N \cdot \frac{s}{m^2}$
- Gustoća $\rho = 1,29 \frac{kg}{m^3}$
- Toplinska vodljivost $\lambda = 0,024 \frac{W}{mK}$
- Kinematička viskoznost $\nu = \frac{\eta}{\rho} = \frac{1,7054 \cdot 10^{-5}}{1,3088} = 1,324 \cdot 10^{-5} \frac{m^2}{s}$

$$R_e = \frac{w_m \cdot d_v}{v} = \frac{3.5 \cdot 0.008}{1.324 \cdot 10^{-5}} = 2115$$

Prandtlova značajka za zrak:

Pr = 0,71 prosječna vrijednost uzeta za širi opseg temperature zraka

Koeficijent prijelaza topline na neorebrenom snopu cijevi:

Iz podloga Waermeatlas – VDI za redni raspored cijevi $f_a = 1,02$

$$f_a = f_a \left(R_e, \frac{l_r}{d_v}, \frac{b_r}{d_v} \right)$$

$$Nu = f_a \cdot 0.32 \cdot Re^{0.61} \cdot Pr^{0.3} = 1.02 \cdot 0.32 \cdot 2115^{0.61} \cdot 0.71^{0.3} = 32$$

$$\alpha_o = \frac{Nu \cdot \lambda}{d_v} = \frac{32 \cdot 0.024}{0.008} = 93.7 \, W/m^2 K$$

Prijelaz topline na orebrenom snopu cijevi:

Svijetli razmak rebara:

$$s_r = s_t - s_f = 0,002 - 0,0002 = 0,0018 m$$

Djelotvorna visina rebara:

$$h = \frac{1}{2} \cdot (s_1 - d_v) = 0.5 \cdot (0.025 - 0.008) = 0.0085 m$$

Iz literature Waermeatlas VDI sl.2, str Mb2, 1963.

$$\frac{\alpha_R}{\alpha_O} = \frac{\alpha_R}{\alpha_O} \left(\frac{h}{s_l}\right) = 0.55$$

 α_{R290} — koeficijent prijelaza topline na orebrenoj cijevi

$$\alpha_{R290} = 0.55 \cdot \alpha_o = 0.55 \cdot 93.7 = 51.5 W/m^2 K$$

Faktor površine ϕ (Waermeatlas VDI, sl. 3, str. Mb3, 1963.):

$$\frac{\alpha_R}{\alpha_O} = \frac{\alpha_R}{\alpha_O} \left(\frac{h}{s_l}\right)$$

$$\varphi = \varphi \left(\frac{b_r}{d_v}, \frac{l_r}{b_r} \right)$$

Slika 6. Dijagram za određivanje faktora površine

$$\frac{s_2}{d_v} = 3,125, \frac{s_1}{s_2} = 1 \rightarrow \phi = 3,7$$

Pomoćna veličina za različite tipove orebrenja – toplinska vodljivost za Al $\lambda_R = 203 \frac{W}{mK}$

$$Y = \sqrt{\frac{\alpha_R}{\lambda_R} \cdot \frac{2}{f_t}} = \sqrt{\frac{51.5}{203} \cdot \frac{2}{0.0002}} = 50.4 \frac{1}{m}$$

Značajka X pomoću koje se određuje stupanj djelovanja rebra:

$$X = Y \cdot \frac{d_v}{2} \cdot \varphi = 50.4 \cdot \frac{0.008}{2} \cdot 3.7 = 0.7$$

Slika 7. Dijagram za određivanje stupnja djelovanja rebra

 $\theta = 0,86$

Prividni koeficijent prijelaza topline na strani zraka:

$$\alpha_a = \alpha_{R290} \cdot \left[1 - (1 - \theta) \cdot \frac{A_f}{A_{e1}} \right] = 44 \cdot \left[1 - (1 - 0.86) \cdot \frac{0.575}{0.598} \right] = 44.6 \frac{W}{m^2 K}$$

Specifični toplinski tok na strani zraka sveden na unutarnju površinu cijevi:

$$q_{z} = \frac{\vartheta_{z} - \vartheta_{stj}}{\frac{F_{o}}{F} \cdot \frac{d_{u}}{d_{v}} \cdot \frac{1}{\alpha} + \frac{d_{u}}{2 \cdot \lambda_{cu}} \cdot \ln\left(\frac{d_{v}}{d_{u}}\right)} = \frac{\vartheta_{z} - \vartheta_{stj}}{\frac{0,025}{0,594} \cdot \frac{0,006}{0,008} \cdot \frac{1}{44,6} + \frac{0,006}{2 \cdot 389,6} \cdot \ln\left(\frac{0,008}{0,006}\right)}{1 = 1224 \cdot ((-2) - \vartheta_{stj})}$$

$$q_{R290} = \left[0,95 \cdot \left(\frac{w_{sr}}{d_u \cdot v_{sr}}\right)^{0,2} \cdot f(p) \cdot \left(\vartheta_{stj} - \vartheta_{R290}\right)\right]^{2,5}$$
$$= \left[0,95 \cdot \left(\frac{8,391}{0,006 \cdot 0,0695}\right)^{0,2} \cdot 1,38 \cdot \left(\vartheta_{stj} - (-10)\right)\right]^{2,5}$$
$$= 279,2 \cdot \left(\vartheta_{stj} - (-10)\right)^{2,5}$$

Metodom pokušavanja je određena temperatura stjenke (iterativni postupak):

$$\vartheta_{stj} = -5.4 \text{ °C}$$

 $q_z = q_{R290} = q = 12671.9 W/m^2 K$

Prijelaz topline na strani R290:

$$\alpha_{R290} = 0.95 \cdot q^{0.6} \cdot \left(\frac{W_{sr}}{d_u \cdot v_{sr}}\right)^{0.2} \cdot f(p) = 0.95 \cdot 12671.9^{0.6} \cdot \left(\frac{9.8}{0.006 \cdot 0.081}\right)^{0.2} \cdot 1.38$$
$$= 1008.1 \frac{W}{m^2 K}$$

Koeficijent prolaza topline sveden na vanjsku površinu:

$$k_e = \left[\frac{1}{\alpha} + \frac{F}{F_u} \cdot \left(\frac{1}{\alpha_{R290}} + \frac{\delta}{\lambda_{Cu}}\right)\right]^{-1} = \left[\frac{1}{44.6} + \frac{0.594}{0.019} \cdot \left(\frac{1}{1008.1} + \frac{0.001}{389.6}\right)\right]^{-1} = 18.5 \frac{W}{m^2 K}$$

Površina izmjene topline:

$$A_e = \frac{\Phi_o}{k \cdot \Delta \vartheta_m} = \frac{3,419 \cdot 1000}{18,5 \cdot 6,95} = 26,5 \ m^2$$

Ukupna dužina orebrene cijevi:

$$L_{ov} = \frac{A_e}{A_{e1}} = \frac{26,5}{0,594} = 44,4 m$$

Dužina jedne cijevi:

$$L_1 = \frac{L_{ov}}{n} = \frac{44.4}{4} = 11.1 \, m$$

Visina isparivača:

 $n_1 = 24 - broj cijevi poprečnih na smjer strujanja zraka$

 $H = (n_1 + 1) \cdot s_1 = (24 + 1) \cdot 25 = 625 \, mm$

Širina isparivača:

$$B = \frac{\frac{L_{ov}}{2}}{n_1} = \frac{\frac{44,4}{2}}{24} = 925 \ mm$$

Dubina isparivača:

$$L = i_r \cdot s_2 = 2 \cdot 25 = 50 mm$$

Slika 8. Shema isparivača prema VDI proračunu

2.2. Proračun isparivača prema postupku profesora Ciconkova [4]

U tablici 6. Navedeni su ulazni podaci potrebni za proračun isparivač dok su u tablici 7. navedene specifikacije isparivača.

Opis	Oznaka	Vrijednost	Jedinica
Rashladni učin	Φ_0	3,42	kW
Ulazna temp. zraka	$\vartheta_{\mathrm{zr},1}$	-2	°C
Izlazna temp. zraka	$\vartheta_{zr,2}$	-4	°C
Temperatura isparavanja	ϑ_i	-10	°C
Temperatura kondenzacije	ϑ_k	48	°C
Radni medij	R290		

Tablica 6. Ulazni podaci proračuna isparivača

Tablica 7. Specifikacije isparivača

Opis	Oznaka	Vrijednost	Jedinica
Vanjski promjer cijevi	d _v	0,008	m
Unutarnji promjer cijevi	du	0,006	m
Debljina stjenke	δ	0,001	m
Toplinska provodnost bakra	λ_{cu}	389,6	W/mK
Vertikalni razmak između cijevi	S1	0,025	m
Horizontalni razmak između			
cijevi	S 2	0,025	m
Razmak između lamela	Sf	0,002	m

Slika 9. Prikaz konstrukcijskih parametara isparivača

Tablica 8. Karakteristike isparivača

Opis	Oznaka	Količina
Broj redova	ir	2
Broj cijevi u jednom redu	i _t	24
Broj ulaznih cijevi	i _{in}	4

U nastavku su izračuni potrebnih površina po 1 m rebraste cijevi.

Vanjska površina cijevi između rebara:

$$A_{mt} = \pi \cdot d_{v} \cdot \left(1 - \frac{f_{t}}{s_{f}}\right) = \pi \cdot 0,008 \cdot \left(1 - \frac{0,0002}{0,002}\right) = 0,023 \ \frac{m^{2}}{m}$$
Površina rebara:

$$A_f = 2 \cdot \frac{\left(s_1 \cdot s_2 - \pi \cdot \frac{d_v^2}{4}\right)}{s_f} = 2 \cdot \frac{\left(0,025 \cdot 0,025 - \pi \cdot \frac{0,008^2}{4}\right)}{0,002} = 0,575 \frac{m^2}{m}$$

Površina vanjskog prijelaza topline po 1 m cijevi:

$$A_{e1} = A_{mt} + A_f = 0,023 + 0,575 = 0,598 \frac{m^2}{m}$$

Površina unutarnjeg prijelaza topline po 1 m cijevi:

$$A_{il} = \pi \cdot d_u = \pi \cdot 0,006 = 0,019 \ \frac{m^2}{m}$$

Omjer vanjske i unutarnje površine prijelaza topline:

$$\beta = \frac{A_{e1}}{A_{il}} = \frac{0,598}{0,019} = 31,691$$

Visina isparivača:

$$H = i_t \cdot s_1 = 36 \cdot 0,025 = 0,6 m$$

Dubina isparivača:

$$B = i_r \cdot s_2 = 2 \cdot 0,025 = 0,05 m$$

Srednja logaritamska temperaturna razlika:

$$\Delta \vartheta_m = \frac{\vartheta_{zr,1} - \vartheta_{zr,2}}{ln \frac{\vartheta_{zr,1} - \vartheta_i}{\vartheta_{zr,2} - \vartheta_i}} = \frac{-2 - (-4)}{ln \frac{-2 - (-10)}{-4 - (-10)}} = 6,95 \text{ °C}$$

Srednja temperatura zraka:

$$\vartheta_{am} = \vartheta_i + \Delta \vartheta_m = -10 + 6,95 = -3,05 \ ^{\circ}\text{C}$$

Termodinamička svojstva suhog zraka pri temperaturi $\vartheta_{am} = -3,05$ °C :

Oznaka	Vrijednost	Jedinica
t _{am}	-3,05	°C
ρ _a	1,2902	kg/m ³
c _{pa}	1,005	kJ/kgK
λ_a	0,0238	W/(mK)
va	1,324E-05	m ² /s

Tablica 9. Termodinamička svojstva suhog zraka pri temperaturi -3,05 °C

U proračunu prijelaza topline na strani zraka treba uzeti u obzir vlažnost zraka. Temperatura ulaznog zraka je -2 °C. Ako je relativna vlažnost ulaznog zraka 88% ($\varphi_1 = 0,88$) i okolišni tlak 1,0 bar, iz dijagrama možemo očitati entalpiju i udio vlage:

$$h_1 = 5,1 \frac{kJ}{kg}$$
, $x_1 = 2,9 \frac{g}{kg}$

Specifični volumen zraka iznosi:

$$v_1 = \frac{R \cdot T_1}{p_{amb}} (1 + 1,6078 \cdot x_1) = \frac{287 \cdot (-2 + 273,15)}{1 \cdot 10^5} \cdot (1 + 1,6078 \cdot 0,0029) = 0,782 \ m^3/kg$$

Slika 10. h - x dijagram promjene zraka

U nastavku slijedi prikaz izračuna prijelaza topline na strani radnog medija.

Maseni protok radnog medija iznosi:

$$q_{m,R290} = \frac{\Phi_o}{h_2 - h_3} = \frac{3.4}{687.7 - 321.7} = 0.014 \frac{kg}{s}$$

gdje su h_2 i h_3 entalpije radnog medija na ulazu i izlazu iz isparivača.

Gustoća masenog toka u cijevima iznosi:

$$G = \frac{q_{m,R290}}{i_{in} \cdot \pi \cdot \frac{d_u^2}{4}} = \frac{0,014}{4 \cdot \pi \cdot \frac{0,006^2}{4}} = 120,8\frac{kg}{m^2s}$$

Korekcijski koeficijent prijelaza topline na strani radnog medija je procijenjen i iznosi:

C = 0,17

Ukupni koeficijent prijelaza topline ili specifični toplinski tok se mora pretpostaviti. U ovom slučaju, specifični toplinski tok koji se odnosi na unutarnju površinu prijelaza topline je pretpostavljen:

$$q_i = 6000 W/m^2$$

$$\alpha_{R290} = C \cdot \frac{G^{0,1} \cdot q_i^{0,7}}{d_u^{0,5}} = 0,17 \cdot \frac{120,8^{0,1} \cdot 6000^{0,7}}{0,006^{0,5}} = 1564,2 \frac{W}{m^2 K}$$
$$R_o = 0,0005 \frac{m^2 K}{W}$$
$$R_i = 0,0 \frac{m^2 K}{W}$$

Toplinski otpor materijala cijevi:

$$R_t = \frac{\delta_t}{\lambda_t} = \frac{0,001}{389,6} = 2,567 \cdot 10^{-6} \ \frac{m^2 K}{W}$$

Specifični toplinski tok sveden na unutarnju površinu cijevi računa se prema sljedećem izrazu:

$$q_i = \alpha_{R290} \cdot \left(\vartheta_{stj} - \vartheta_i\right)$$

gdje je ϑ_{stj} temperatura unutrašnje stjenke cijevi.

U ovom trenutku je potrebno pronaći prosječnu temperaturu vanjske stjenke cijevi.

$$q_i = \frac{\vartheta_s - \vartheta_i}{\frac{1}{\alpha_{R290}} + R_i + R_t \cdot \frac{d_u}{d_m} + R_o \cdot \frac{1}{\beta}}$$

$$\begin{split} \vartheta_s &= \vartheta_i + \left(\frac{1}{\alpha_{R290}} + R_i + R_t \cdot \frac{d_u}{d_m} + R_o \cdot \frac{1}{\beta}\right) \cdot q_i \\ &= -12 + \left(\frac{1}{1564,2} + 0 + 2,567 \cdot 10^{-6} \cdot \frac{0,006}{0,007} + 0,0005 \cdot \frac{1}{31,7}\right) \cdot 6000 = -6,06 \text{ °C} \end{split}$$

Temperatura ϑ_s je temperatura zasićenog zraka. To znači da je relativna vlažnost $\varphi_s = 1$. Iz Molierovog dijagrama su očitane vrijednosti za zasićeni zrak:

$$h_s = -0.8 \ kJ/kg$$
 $x_s = 2.2 \ g/kg$

Zbog činjenice da je $x_s < x_1$, postoji prijenos mase od zraka do vanjske površine.

Parametri vanjskog zraka se računaju na slijedeći način:

$$\begin{aligned} x_2 &= x_1 - (x_1 - x_s) \cdot \frac{\vartheta_{zr,1} - \vartheta_{zr,2}}{\vartheta_{zr,1} - \vartheta_s} &= 2,9 - (2,9 - 2,3) \cdot \frac{-2 - (-4)}{-2 - (-6,06)} = 2,5 \frac{g}{kg} \\ h_2 &= 1,005 \cdot \vartheta_2 + x_2 \cdot (2501 + 1,863 \cdot \vartheta_2) = 1,005 \cdot (-4) + 2,5 \cdot (2501 + 1,863 \cdot (-4)) \\ &= 2,3 \frac{kJ}{kg} \end{aligned}$$

Površina prijelaza topline:

$$A_i = \frac{\Phi_o}{q_i} = \frac{3.4 \cdot 1000}{6000} = 0.57 \ m^2$$

Ukupna dužina cijevi:

$$L_{ov} = \frac{A_i}{A_{1l}} = \frac{0.57}{0.019} = 30.2 \ m$$

Dužina cijevi u jednom redu:

$$L_1 = \frac{L_{ov}}{i_r} = \frac{30,2}{2} = 15,1 \text{ m}$$

Širina isparivača:

$$B^{`} = \frac{L_1}{i_t} = \frac{15,1}{24} = 0,63 m$$

U nastavku slijedi prikaz izračuna prijelaza topline na strani zraka.

Maseni protok suhog zraka:

$$\dot{m}_a = \frac{Q_o}{h_1 - h_2} = \frac{3.4}{5.1 - 2.3} = 1.2 \frac{kg}{s}$$

Volumni protok zraka:

$$V_a = \dot{\mathbf{m}}_a \cdot v_1 = 1,2 \cdot 0,782 = 0,95 \frac{m^3}{s}$$

Najmanja površina u poprečnom presjeku (između cijevi i rebara) gdje struji zrak:

$$A_z = L_1 \cdot (s_1 - d_v) \cdot \left(1 - \frac{f_t}{s_f}\right) = 15,1 \cdot (0,025 - 0,008) \cdot \left(1 - \frac{0,0002}{0,002}\right) = 0,23 \ m^2$$

Brzina u najmanjem presjeku:

$$w = \frac{V_a}{A_z} = \frac{0.95}{0.23} = 4.1 \frac{m}{s}$$

Nusseltov broj iznosi:

$$Nu = C_1 \cdot Re^n \cdot \left(L/d_{eqv} \right)^n$$

Ova jednadžba je prikladna za:

 $Re = 500 \div 10000; \ d_v = (8 \div 16)mm; \frac{s_f}{d_v} = 0,18 \div 0,35; \frac{s_1}{d_v} = 2 \div 5; \frac{L}{d_{eqv}} = 4 \div 50; t = (-40 \div 40)^{\circ}\text{C}; \text{ za raspored cijevi u liniji}$

Za šahovski raspored cijevi koeficijent prijelaza topline je 10% veći.

Nu i Re su korespondentni sa ekvivalentnim promjerom koji se računa prema:

$$d_{eqv} = 2 \cdot (s_1 - d_e) \cdot \frac{(s_f - f_t)}{(s_1 - d_v + s_f - f_t)} 2 \cdot (0,025 - 0,008)$$
$$\cdot \frac{(0,002 - 0,0002)}{(0,025 - 0,008 + 0,002 - 0,0002)} = 0,003 m$$

Reynoldsov broj iznosi:

$$Re = \frac{w \cdot d_{eqv}}{v_a} = \frac{4.1 \cdot 0.003}{1.324 \cdot 10^{-5}} = 1041$$

Eksponenti "n" i "m" iznose:

$$n = 0.45 + 0.0066 \cdot \left(\frac{L}{d_{eqv}}\right) = 0.45 + 0.0066 \cdot \left(\frac{0.05}{0.003}\right) = 0.6$$
$$m = -0.28 + 0.08 \cdot \left(\frac{Re}{1000}\right) = -0.28 + 0.08 \cdot \left(\frac{1011}{1000}\right) = -0.2$$
$$C_1 = C_{1A} \cdot C_{1B}$$

Koeficijent C1A ovisi o omjeru L/deqv:

Tablica 10. Određivanje koeficijenta C1A

L/d _{eqv}	5	10	20	30	40	50
C _{1A}	0,412	0,326	0,201	0,125	0,08	0,0475
	L	0,05				

$$\frac{L}{d_{eqv}} = \frac{0.03}{0.003} = 15.4 \rightarrow C_{1A} = 0.191$$

$$C_{1B} = 1,36 - 0,24 \cdot \left(\frac{Re}{1000}\right) = 1,36 - 0,24 \cdot \left(\frac{1011}{1000}\right) = 1,117$$
$$C_1 = 0,191 \cdot 1,117 = 0,213$$
$$Nu = 0,213 \cdot 1011^{0,551} \cdot \left(\frac{0,05}{0,003}\right)^{-0,209} = 5$$

Koeficijent prijelaza topline na strani zraka iznosi:

$$\alpha_{a}^{*} = Nu \cdot \frac{\lambda_{a}}{d_{eqv}} = 5 \cdot \frac{0,0238}{0,003} = 41,1 \frac{W}{m^{2}K}$$

Za raspored cijevi u šahovskom obliku koeficijent prijelaza topline na strani zraka je 10% veći i iznosi:

$$\alpha_a = \alpha \hat{a} \cdot 1, 1 = 41, 1 \cdot 1, 1 = 45, 2 \frac{W}{m^2 K}$$

Budući da je $x_2 < x_1$ vanjska površina je mokra. U tom slučaju je prijelaz topline intenzivniji te se njegov iznos korigira sa koeficijentom ξ_w :

$$\xi_w = 1 + 2500 \cdot \frac{(x_1 - x_s)}{(t_{zr,1} - t_s)} = 1 + 2500 \cdot \frac{(2,9 - 2,3)}{(-2 - (-6,06))} = 1,4$$
$$\alpha_{aw} = \xi_w \cdot \alpha_a = 1,4 \cdot 45,2 = 63,2 \ \frac{W}{m^{2}K}$$

Koeficijent prijelaza topline povezan s unutarnjim promjerom cijevi:

$$\alpha_{ai} = \alpha_{aw} \cdot \frac{\left(A_f \cdot E \cdot C_k + A_{mt}\right)}{A_{1l}}$$

Koeficijent C_k obuhvaća otpor između cijevi i rebara. U idealnom je slučaju $C_k = 1$. U ovom slučaju je također $C_k = 1,0$.

Učinkovitost rebara iznosi:

$$E = th (m_f \cdot h_f) / (m_f \cdot h_f)$$
$$m_f = \sqrt{\frac{2 \cdot \alpha_{aw}}{f_t \cdot \lambda_f}}$$

$$\lambda_f = 209 \frac{W}{mK}$$
 – toplinska provodnost rebara (aluminija)

$$m_f = \sqrt{\frac{2 \cdot 62,9}{0,0002 \cdot 209}} = 55 \ \frac{1}{m}$$

h_f je izvedena visina aluminijskog rebra:

$$h_f = 0.5 \cdot d_v \cdot (\rho_f - 1) \cdot (1 + 0.35 \cdot \ln(\rho_f))$$

Za trokutasti raspored cijevi i za $(s_1/2) < s_2$:

$$\rho_f = 1,27 \cdot \left(\frac{B_f}{d_v}\right) \cdot \sqrt{\frac{A_f}{B_f} - 0,3}$$
$$A_f = s_1 = 0,025 \ m$$

$$B_f = \sqrt{(s_1/2)^2 + s_2^2}$$

$$B_f = \sqrt{\left(\frac{0,025}{2}\right)^2 + 0,025^2} = 0,028 \ m$$

$$\rho_f = 1,27 \cdot \left(\frac{0,028}{0,008}\right) \cdot \sqrt{\frac{0,025}{0,028} - 0,3} = 3,42$$

$$h_f = 0,5 \cdot 0,008 \cdot (3,42 - 1) \cdot (1 + 0,35 \cdot \ln(3,42)) = 0,014 \ m$$

$$E = th \left(m_f \cdot h_f\right) / \left(m_f \cdot h_f\right) = th \left(54,9 \cdot 0,014\right) / \left(54,9 \cdot 0,014\right) = 0,84$$

$$\alpha_{ai} = \alpha_{aw} \cdot \frac{\left(A_f \cdot E \cdot C_k + A_{mt}\right)}{A_{1l}} = 62.9 \cdot \frac{(0.025 \cdot 0.84 \cdot 1 + 0.023)}{0.019} = 1700.8 \frac{W}{m^2 K}$$

Ukupni koeficijent prolaza topline (sveden na unutarnju površinu izmjene topline) iznosi:

$$k_{i} = \frac{1}{\frac{1}{\alpha_{ai}} + R_{o} \cdot \frac{1}{\beta} + R_{t} \cdot \frac{d_{u}}{d_{m}} + R_{i} + \frac{1}{\alpha_{R290}}}$$
$$k_{i} = \frac{1}{\frac{1}{\frac{1}{1700,8} + 0,0005 \cdot \frac{1}{31,7} + 2,567 \cdot 10^{-6} \cdot \frac{0,006}{0,007} + 0 + \frac{1}{1564,2}} = 803,1 \frac{W}{m^{2}K}$$

Specifični toplinski tok sveden na unutarnju površinu iznosi:

$$q_i = k_i \cdot \Delta \vartheta_m = 803, 1 \cdot 6,95 = 5582,9 \ \frac{W}{m^2}$$

Budući da je pretpostavljeni toplinski tok iznosio $q_i = 6000 W/m^2$ konačni rezultati su dobiveni nakon odrađenog broja iteracija te prikazani u tablici 11.:

Opis	Oznaka	Vrijednost	Jedinica
Temp. vanjske stjenke	ts	-6,3	°C
Ukupna duljina cijevi	Lov	36,2	m
Duljina cijevi u jednom redu	L_1	18,1	m
Širina izmjenjivača topline	В	0,755	m
Koeficijent prijelaza topline na strani zraka	αa	41,2	W/(m ² K)
Koeficijent prijelaza topline sveden na			
unutarnji promjer cijevi	α_{ai}	1550,1	W/(m ² K)
Ukupni koeficijent prolaza topline	ki	720	W/(m ² K)
Specifični toplinski tok	qi	5005,7	W/m ²

Tablica 11. Vrijednosti dobivene nakon niza iteracija

Konačni iznos unutarnje površine izmjene topline je:

$$A_i = \frac{\Phi_o}{q_i} = \frac{3.4 \cdot 1000}{5005.7} = 0.683 \ m^2$$

U nastavku su prikazani konačni rezultati svedeni na vanjsku površinu izmjene topline.

Ukupni koeficijent izmjene topline iznosi:

$$k_e = \frac{k_i}{\beta} = \frac{720}{31,7} = 22,7\frac{W}{m^2 K}$$

Vanjska površina izmjene topline iznosi:

$$A_e = A_i \cdot \beta = 0,683 \cdot 31,7 = 21,64 \ m^2$$

Konačne dimenzije isparivača iznose:

$$H = 600 mm$$
 - visina izmjenjivača

- B = 755 mm -širina izmjenjivača
- L = 50 mm dubina izmjenjivača

Slika 11. Shema isparivača prema proračunu prof. Ciconkova

3. TERMODINAMIČKI PRORAČUN PLOČASTOG KONDENZATORA

Proračun pločastog kondenzatora provodi se iterativnim postupkom rješavanja pri čemu se mijenja broj ploča kondenzatora uz uvjet da pretpostavljeni i dobiveni specifični tokovi budu što sličniji, odnosno da predimenzioniranost bude što manja [5]. Odabran je lemljeni pločasti izmjenjivač proizvođača SWEP, tip B25T [6]. Pločasti izmjenjivač je prikazan na slici 12.

Slika 12. Lemljeni pločasti izmjenjivač topline

Na slici 13. je prikazana geometrije jedne izmjenjivačke ploče unutar pločastog izmjenjivača.

Slika 13. Geometrija izmjenjivačke ploče kondenzatora

U tablici 12. su prikazane dimenzije odabranog pločastog kondenzatora:

Opis	Oznaka	Vrijednost	Jedinica
Visina kondenzatora	H _{kond}	0,526	m
Širina kondenzatora	B _{kond}	0,119	m
Kut orebrenja kondenzatora	β_{kond}	60	0
Faktor površine kondenzatora	$\Phi_{ m kond}$	1,25	
Dubina orebrenja (širina kanala)	b _{kond}	0,002	m

Tablica 12. Dimenzije odabranog pločastog kondenzatora

Broj ploča kondenzatora	Nkond	18				
Razmak između ulaza i izlaza						
kondenzatora	L _v	0,479	m			
Razmak između ulaza RT i izlaza						
rashladne vode	L _h	0,072	m			
Promjer ulaza/izlaza kondenzatora	D _p	0,024	m			
Toplinska provodnost ploče kondenzatora	$\lambda_{\check{c}}$	15	W/(mK)			
Debljina ploče kondenzatora	t	0,0012	m			

U nastavku je prikazan proračun izmjenjivačke površine pločastog kondenzatora.

Ekvivalentni promjer kanala:

$$d_{e,kond} = 2 \cdot \frac{b_{kond}}{\Phi_{kond}} = 2 \cdot \frac{0,002}{1,25} = 0,003 \ m$$

Visina izmjenjivačke površine:

$$L_p = L_v - D_p = 0,479 - 0,024 = 0,455 m$$

Širina izmjenjivačke površine:

$$L_w = L_h + D_p = 0,072 + 0,024 = 0,096 \ m$$

Mora vrijediti uvjet:

$$L_p > 1.8 \cdot L_w$$

0,455 > 0,173 Uvjet zadovoljen!

Površina kanala:

$$A_{c,kond} = L_w \cdot b_{kond} = 0,096 \cdot 0,002 = 0,000192 \ m^2$$

Projicirana površina:

$$A_p = N \cdot L_p \cdot L_w = 18 \cdot 0,455 * 0,096 = 0,786 \ m^2$$

Ukupna površina izmjene topline:

$$A_{kond} = \Phi_{kond} \cdot A_p = 1,25 \cdot 0,786 = 0,983 \ m^2$$

U nastavku je prikazan proračun na strani ogrjevne vode.

U tablici 13. su prikazana termodinamička svojstva ogrjevne vode pri srednjoj temperaturi 42,5 °C:

Tablica 13. Termodinamička svojstva ogrjevne vode pri srednjoj temperaturi 42,5 °C

PRORAČUN NA STRANI OGRIJEVNE VODE								
Opis	Oznaka	Vrijednost	Jedinica					
Svojstva vode pri srednjoj temperaturi		42,5	°C					
Gustoća	ρ_{ov}	991,2	kg/m ³					
Specifični toplinski kapacitet	c _{pov}	4,179	kJ/kgK					
Dinamička viskoznost	μ_{ov}	0,000625	Pas					
Prandltov bezdimenzijski broj	Prov	4,1						
Koeficijent toplinske vodljivosti	$\lambda_{\rm ov}$	0,634	W/mK					

Maseni protok ogrjevne vode:

$$q_{m,OV} = \frac{\Phi_{kond}}{c_{OV} \cdot (\vartheta_{OV,iz} - \vartheta_{OV,ul})} = \frac{10}{4,179 \cdot (45 - 40)} = 0.48 \frac{kg}{s}$$

Broj kanala za strujanje vode:

$$N_{OV} = \frac{N_{kond}}{2} = \frac{18}{2} = 9$$

Brzina strujanja ogrjevne vode kroz pločasti kondenzator:

$$w_{OV} = \frac{q_{m,OV}}{\rho_{OV} \cdot A_{c,kond} \cdot N_{ov}} = \frac{0,48}{991,2 \cdot 0,000192 \cdot 9} = 0,28 \frac{m}{s}$$

Reynoldsov bezdimenzijski broj:

$$Re_{OV} = \frac{w_{OV} \cdot \rho_{OV} \cdot d_{e,kond}}{\mu_{OV}} = \frac{0.28 \cdot 991.2 \cdot 0.003}{0.000625} = 1419$$

Nusseltov bezdimenzijski broj računa se prema Wanniarachchi metodi i vrijedi za sljedeće pordučje veličina:

- $1 < \text{Re} < 10^4$
- $20^{\circ} < \Phi < 62^{\circ}$

$$Nu_{OV} = (Nu_l^{3} + Nu_t^{3})^{\frac{1}{3}} \cdot Pr^{\frac{1}{3}}$$

Pri čemu je:

$$\begin{split} Nu_l &= 3,65 \cdot \beta^{-0,455} \cdot \Phi^{0,661} \cdot Re_{oV}^{0,339} = 3,65 \cdot 60^{-0,455} \cdot 1,25^{0,661} \cdot 1419^{0,339} = 7,7 \\ m &= 0,646 + 0,0011 \cdot \beta = 0,646 + 0,0011 \cdot 60 = 0,7 \\ Nu_t &= 12,6 \cdot \beta^{-1,142} \cdot \Phi^{1-m} \cdot Re_{oV}^{m} = 12,6 \cdot 60^{-1,142} \cdot 1,25^{1-0,7} \cdot 1419^{0,7} = 21,9 \end{split}$$

Iz čega slijedi Nusseltov bezdimenzijski broj:

$$Nu_{OV} = \left(Nu_l^3 + Nu_t^3\right)^{\frac{1}{3}} \cdot Pr^{\frac{1}{3}} = (7,7^3 + 21,9^3)^{\frac{1}{3}} \cdot 4,1^{\frac{1}{3}} = 36$$

Koeficijent prijelaza topline na strani ogrjevnog medija:

$$\alpha_{OV} = \frac{Nu_{OV} \cdot \lambda_{OV}}{d_{e,kond}} = \frac{36 \cdot 0,634}{0,003} = 7077,1 \ \frac{W}{m^2 K}$$

Proračun kondenzatora podijeljen je u tri zone zbog različitih koeficijenata prijelaza topline. Proračun zone I. odnosi na dio topline izmijenjen pri pothlađenju radne tvari s temperature kondenzacije za $\Delta \vartheta_{\text{poth}} = 3^{\circ}$ C. Proračun zone II. odnosi se na dio topline izmijenjen pri kondenzaciji radne tvari, dok se proračun III. zone odnosi na hlađenje pregrijane pare na ulazu u kondenzator do temperature kondenzacije, odnosno postizanja suhozasićenog stanja. Podjela kondenzatora prikazana je na slici 13.

Slika 14. T-A dijagram kondenzatora

Entalpija vrele kapljevine i suhozasićene pare pri tlaku kondenzacije p_k iznosi:

$$h_{2}^{\circ}(16,4 \text{ bar}) = 331,9 \frac{kJ}{kg}$$

 $h_{2}^{\circ}(16,4 \text{ bar}) = 620,7 \frac{kJ}{kg}$

Toplinski tok izmijenjen na kondenzatoru:

$$\Phi_k = q_{m,OV} \cdot c_{OV} \cdot \left(\vartheta_{OV,iz} - \vartheta_{OV,ul}\right)$$

Toplinski tok izmijenjen u I. zoni:

$$\Phi_{k,I} = q_{m,RT} \cdot (h_2 - h_3) = 0,027 \cdot (331,9 - 321,7) = 0,28 \ kW$$
$$\Phi_{k,I} = q_{m,RT} \cdot (h_2 - h_3) = q_{m,OV} \cdot c_{OV} \cdot \left(\vartheta_{OV,gr,I} - \vartheta_{OV,ul}\right)$$

Toplinski tok izmijenjen u II. zoni:

$$\Phi_{k,II} = q_{m,RT} \cdot (h_2^{(h)} - h_2^{(h)}) = 0,027 \cdot (620,7 - 331,9) = 7,84 \ kW$$
$$\Phi_{k,II} = q_{m,RT} \cdot (h_3^{(h)} - h_3^{(h)}) = q_{m,OV} \cdot c_{OV} \cdot \left(\vartheta_{OV,gr,II} - \vartheta_{OV,gr,I}\right)$$

Temperatura ogrjevnog medija na granici između I. i II. zone iznosi:

$$\vartheta_{OV,gr,I} = \frac{\Phi_{k,I}}{q_{m,OV} \cdot c_{OV}} + \vartheta_{OV,uI} = \frac{0.28}{0.48 \cdot 4.179} + 40 = 40.1 \text{ °C}$$

Temperatura ogrjevnog medija na granici između II. i III. zone:

$$\vartheta_{OV,gr,II} = \vartheta_{OV,iz} - \frac{\Phi_{k,III}}{q_{m,OV} \cdot c_{OV}} = 45 - \frac{1,82}{0,48 \cdot 4,179} = 44,1$$
 °C

Broj kanala kroz koje struji radna tvar:

$$N_{RT} = \frac{N_{kond}}{2} - 1 = \frac{18}{2} - 1 = 8$$

Proračun I. dijela kondenzatora:

U tablici 14. su prikazana termodinamička svojstva radne tvari za vrelu kapljevinu pri srednjoj temperaturi 46,5 °C:

Tablica 14. Termodinamička svojstva radne tvari za vrelu kapljevinu pri srednjoj temperaturi 46,5 °C

PRORAČUN I. DIJELA KONDENZATORA					
Termodinamička svojstva radne tvari za vrelu kapljevinu pri srednjoj temperaturi		46,5	°C		
Gustoća	ρ _{rt,1}	455,6	kg/m ³		
Specifični topl. kapacitet	c _{pRT,1}	3,022	kJ/kgK		

Dinamička viskoznost	$\mu_{RT,l}$	7,708E-05	Pas
Prandltov bezdimenzijski broj	Pr _{RT,1}	2,8	
Koeficijent toplinske vodljivosti	$\lambda_{RT,l}$	0,084	W/mK

Brzina strujanja radne tvari kroz pločasti kondenzator u I. zoni:

$$w_{RT,I} = \frac{q_{m,RT}}{\rho_{RT,l} \cdot A_{c,kond} \cdot N_{RT}} = \frac{0,027}{455,6 \cdot 0,000192 \cdot 8} = 0,04 \frac{m}{s}$$

Reynoldsov bezdimenzijski broj:

$$Re_{RT,l} = \frac{w_{RT,l} \cdot \rho_{RT,l} \cdot d_{e,kond}}{\mu_{RT,l}} = \frac{0.04 \cdot 455.6 \cdot 0.003}{7.708 \cdot 10^{-5}} = 733$$

Nusseltov bezdimenzijski broj računa se prema Wanniarachchi metodi i vrijedi za sljedeće područje veličina:

- $1 < \text{Re} < 10^4$
- $20^{\circ} < \Phi < 62^{\circ}$

$$Nu_{OV} = (Nu_l^{3} + Nu_t^{3})^{\frac{1}{3}} \cdot Pr^{\frac{1}{3}}$$

Pri čemu je:

$$\begin{aligned} Nu_l &= 3,65 \cdot \beta^{-0,455} \cdot \Phi^{0,661} \cdot Re_{OV}^{0,339} = 3,65 \cdot 60^{-0,455} \cdot 1,25^{0,661} \cdot 733^{0,339} = 6,2 \\ m &= 0,646 + 0,0011 \cdot \beta = 0,646 + 0,0011 \cdot 60 = 0,7 \\ Nu_t &= 12,6 \cdot \beta^{-1,142} \cdot \Phi^{1-m} \cdot Re_{OV}^{m} = 12,6 \cdot 60^{-1,142} \cdot 1,25^{1-0,7} \cdot 733^{0,7} = 13,7 \end{aligned}$$

Iz čega slijedi Nusseltov bezdimenzijski broj:

$$Nu_{RT,I} = \left(Nu_l^3 + Nu_t^3\right)^{\frac{1}{3}} \cdot Pr^{\frac{1}{3}} = (6,2^3 + 13,7^3)^{\frac{1}{3}} \cdot 2,8^{\frac{1}{3}} = 20$$

Koeficijent prijelaza topline na strani ogrjevnog medija:

$$\alpha_{RT,I} = \frac{Nu_{RT,I} \cdot \lambda_{RT,I}}{d_{e,kond}} = \frac{20 \cdot 0,084}{0,003} = 521,8 \ \frac{W}{m^2 K}$$

Srednja logaritamska razlika temperatura:

$$\Delta \vartheta_m = \frac{\left(\vartheta_k - \vartheta_{OV,gr,I}\right) - \left(\vartheta_{RT,iz} - \vartheta_{OV,ul}\right)}{\ln\left(\frac{\vartheta_k - \vartheta_{OV,gr}}{\vartheta_{RT,iz} - \vartheta_{OV,ul}}\right)} = \frac{(48 - 40,2) - (45 - 40)}{\ln\left(\frac{48 - 40,2}{45 - 40}\right)} = 6,32 \text{ °C}$$

Koeficijent prolaza topline:

$$k = \frac{1}{\frac{1}{\alpha_{OV}} + \frac{t}{\lambda_{\check{c}}} + \frac{1}{\alpha_{RT,I}}} = \frac{1}{\frac{1}{7077,1} + \frac{0,0012}{15} + \frac{1}{521,8}} = 467,8 \frac{W}{m^2 K}$$

Specifični toplinski tok:

$$q_{a,kond} = k \cdot \Delta \vartheta_m = 467, 8 \cdot 6, 32 = 2958, 1 \frac{W}{m^2}$$

Potrebna površina za izmjenu topline u I. zoni iznosi:

$$A_{kond,I,potr} = \frac{\Phi_{k,I}}{q_{A,kond}} = \frac{0,28}{2958,1} = 0,093 \ m^2$$

U nastavku je prikazan proračun II. Dijela kondenzatora.

U tablici 15. su prikazana termodinamička svojstva radne tvari za vrelu kapljevinu i suhozasićenu paru pri temperaturi kondenzacije iznose:

Tablica 15.	Termodinamička	svojstva radne	tvari za vrelu	kapljevinu i	suhozasićenu	paru pri
temperatur	i kondenzacije					

PRORAČUN II. DIJELA KONDENZATORA							
Svojstva radne tvari uzeta pri temperaturi kondenzacije 48 °C							
VRELA KAPLJEVINA				SUHOZASIĆENA PARA			
Gustoća	ρrt,1	452,8	kg/m ³	Gustoća	ρ _{RT,v}	36,8	kg/m ³
Specifični topl.	c _{pRT,1}	3,049	kJ/kgK	Specifični topl.	c _{pRT,v}	2,445	kJ/kgK

kapacitet				kapacitet			
Dinamička				Dinamička			
viskoznost	$\mu_{RT,1}$	7,578E-05	Pas	viskoznost	$\mu_{RT,v}$	9,290E-06	Pas
Prandltov				Prandltov			
bezdimenzijski				bezdimenzijski			
broj	Pr _{RT,1}	2,77		broj	Pr _{RT,v}	0,99	
Koeficijent				Koeficijent			
toplinske				toplinske			
vodljivosti	$\lambda_{RT,l}$	0,084	W/mK	vodljivosti	$\lambda_{RT,v}$	0,023	W/mK
Entalpija	h _{RT,I}	331,9	kJ/kg	Entalpija	h _{RT,v}	620,7	kJ/kg

Gustoća masenog toka:

$$G_{RT} = \frac{q_{m,RT}}{A_{c,kond} \cdot N_{RT}} = \frac{0,027}{0,000192 \cdot 8} = 17,7 \ \frac{kg}{sm^2}$$

Pretpostavljeni specifični toplinski tok:

$$q_{A,kond,pretp} = 11494 \ \frac{W}{m^2}$$

Boilingov bezdimenzijski broj iznosi:

$$B_o = \frac{q_{A,kond}}{G_{RT} \cdot (h_{RT,v} - h_{RT,l})} = \frac{(11494/1000)}{17,7 \cdot (620,7 - 331,9)} = 0,0022$$

Termodinamička svojstva radne tvari ovise o sadržaju pare x, a računaju se prema slijedećim izrazima:

Dinamička viskoznost:

$$\mu_{RT,x} = \mu_{RT,l} + x \cdot \left(\mu_{RT,v} - \mu_{RT,l}\right)$$

Toplinska vodljivost:

$$\lambda_{RT,x} = \lambda_{RT,l} + x \cdot (\lambda_{RT,v} - \lambda_{RT,l})$$

Reynoldsov bezdimenzijski broj:

$$Nu_{RT,x} = 30 \cdot Re_{RT,x}^{0,875} \cdot B_0^{0,714}$$

Koeficijent prijelaza topline na strani radne tvari:

1

9,29E-06

0,0230

6082

867

6239,7

620,7

$$\alpha_{RT,x} = \frac{Nu_{RT,x} \cdot \lambda_{RT,x}}{d_{e,kond}}$$

U tablici 16. se nalaze rezultati iterativnog postupka proračuna prijelaza topline na strani radne tvari u ovisnosti o sadržaju pare. Proračun je prikazan s korakom pare od 0,1 radi bolje preglednosti, dok je u Microsoft Excelu izvršen proračun s korakom pare od 0,01 radi veće točnosti.

h х λ_{x} Re Nu α μ_x W/mK W/m^2K kJ/kg _ Pa s --331,9 0 7,58E-05 0,0836 745 138 3608,1 360,7 0,1 6,91E-05 0,0775 817 136 3307,9 389,6 0,2 6,25E-05 0,0715 904 149 3331,7 418,5 0,3 5,58E-05 0,0654 1012 180 3689,3 447,4 0,4 4,92E-05 0,0594 1148 201 3740,7 0,5 476,3 4,25E-05 0,0533 1328 229 3814,4 3,59E-05 0,0472 505,2 0,6 1574 265 3923,4 534,1 0,7 2,92E-05 0,0412 1932 4092,4 317 2501 398 562,9 0,8 2,26E-05 0,0351 4375,2 591,8 0,9 1,59E-05 0,0291 3545 540 4913,3

Tablica 16. Proračun koeficijenata prijelaza topline na strani radne tvari

Srednji koeficijent prijelaza topline na strani radne tvari računa se iz aritmetičke sredine koeficijenata prijelaza topline u ovisnosti o sadržaju pare:

$$\alpha_{RT,II} = \frac{\sum_{i=0}^{n} \alpha_{RT,x}}{n} = 3692.4 \ \frac{W}{m^2 K}$$

Koeficijent prolaza topline:

$$k = \frac{1}{\frac{1}{\alpha_{OV}} + \frac{t}{\lambda_{c}} + \frac{1}{\alpha_{RT,II}}} = \frac{1}{\frac{1}{7077,1} + \frac{0,0012}{15} + \frac{1}{3692,4}} = 2032 \ W/m^2 K$$

Srednja logaritamska razlika temperatura:

$$\Delta \vartheta_{m} = \frac{\left(\vartheta_{k} - \vartheta_{OV,gr,II}\right) - \left(\vartheta_{k} - \vartheta_{OV,gr,I}\right)}{\ln\left(\frac{\vartheta_{k} - \vartheta_{OV,gr,I}}{\vartheta_{k} - \vartheta_{OV,gr,I}}\right)} = \frac{(48 - 44,1) - (48 - 40,1)}{\ln\left(\frac{48 - 44,1}{48 - 40,1}\right)} = 5,66 \text{ °C}$$

Toplinski tok iznosi:

$$q_{A,kond} = k \cdot \Delta \vartheta_m = 2032 \cdot 5,66 = 11494,5 \frac{W}{m^2}$$

Potrebna površina za izmjenu topline u II. zoni iznosi:

$$A_{kond,II,potr} = \frac{\Phi_{k,II}}{q_{A,kond}} = \frac{7,84 \cdot 1000}{11494,5} = 0,682 \ m^2$$

U nastavku je prikazan proračun III. Dijela kondenzatora.

U tablici 17. su prikazane ulazne vrijednosti za III. zonu:

PRORAČUN III. DIJELA KONDENZATORA							
Toplinski tok izmijenjen u zoni III	Φ_{kIII}	1,82	kW				
Temperatura ogrjevnog medija na izlazu iz zone III	9 _{ov,iz}	45	°C				

Tablica 17. Ulazne vrijednosti za III. zonu

Temperatura ogrjevnog medija na granici zona II i III	$\vartheta_{\rm ov,gr,II}$	44,1	°C
Temperatura radne tvari na ulazu u zonu III	$\vartheta_{\mathrm{RT,ul}}$	77,3	°C
Temperatura radne tvari na izlazu iz zone III	ϑ_k	48	°C

U tablici 18. su prikazana termodinamička svojstva radne tvari pri srednjoj temperaturi 62,7 °C:

Tablica 18. Termodinamička svojstva radne tvari pri srednjoj temperaturi 62,7 °C

Termodinamička svojstva radne tvari pri srednjoj temperaturi 62,7 °C				
Pregrijana para				
Opis	Oznaka	Vrijednost	Jedinica	
Gustoća	ρ _{RT,v}	32,8	kg/m ³	
Specifični topl. kapacitet	C _{pRT,v}	2,2773	kJ/kgK	
Dinamička viskoznost	µ _{RT,v}	9,625E-06	Pas	
Prandltov bezdimenzijski broj	Pr _{RT,v}	0,89		
Koeficijent toplinske vodljivosti	$\lambda_{RT,v}$	0,0245	W/mK	

Brzina strujanja radne tvari kroz pločasti kondenzator:

$$w_{RT,III} = \frac{q_{m,RT}}{\rho_{RT,v} \cdot A_{c,kond} \cdot N_{RT}} = \frac{0,027}{32,8 \cdot 0,000192 \cdot 8} = 0,58 \frac{m}{s}$$

Reynoldsov bezdimenzijski broj:

$$Re_{RT,III} = \frac{w_{RT,III} \cdot \rho_{RT,v} \cdot d_{e,kond}}{\mu_{RT,v}} = \frac{0.58 \cdot 32.8 \cdot 0.0032}{9.625 \cdot 10^{-6}} = 5871$$

Nusseltov bezdimenzijski broj računa se uz pomoć izraza koji je razvio Talik:

$$Nu_{RT,III} = 0,248 \cdot Re_{RT,III}^{0,7} \cdot Pr_{RT,v}^{0,4}$$

Uz uvjet:

$$Nu_{RT,III} = 0,248 \cdot 5871^{0,7} \cdot 0,893^{0,4} = 103$$

Koeficijent prijelaza topline:

$$\alpha_{RT,III} = \frac{Nu_{RT,III} \cdot \lambda_{RT,v}}{d_{e,kond}} = \frac{103 \cdot 0.0245}{0.0032} = 789.9 \frac{W}{m^2 K}$$

Koeficijent prolaza topline:

$$k = \frac{1}{\frac{1}{\alpha_{OV}} + \frac{t}{\lambda_{c}} + \frac{1}{\alpha_{RT,III}}} = \frac{1}{\frac{1}{7077,1} + \frac{0,0012}{15} + \frac{1}{789,9}} = 672,4 \ W/m^2K$$

$$\Delta \vartheta_{m} = \frac{\left(\vartheta_{RT,ul} - \vartheta_{OV,iz}\right) - \left(\vartheta_{k} - \vartheta_{OV,gr,II}\right)}{ln\left(\frac{\vartheta_{RT,ul} - \vartheta_{OV,gr,II}}{\vartheta_{k} - \vartheta_{OV,gr,II}}\right)} = \frac{(77,3 - 45) - (48 - 44,1)}{ln\left(\frac{77,3 - 45}{48 - 44,1}\right)} = 13,5 \text{ °C}$$

Toplinski tok:

$$q_{A,kond} = k \cdot \Delta \vartheta_m = 672, 4 \cdot 13, 5 = 9042, 6 \frac{W}{m^2}$$

Potrebna površina za izmjenu topline u III. zoni iznosi:

$$A_{kond,III,potr} = \frac{\Phi_{k,III}}{q_{A,kond}} = \frac{1,82 \cdot 1000}{9042,6} = 0,201 \ m^2$$

Ukupna potrebna površina kondenzatora jednaka je zbroju potrebnih površina sve 3 zone kondenzatora i iznosi:

$$A_{kond,potr} = A_{kond,I,potr} + A_{kond,II,potr} + A_{kond,III,potr} = 0,093 + 0,682 + 0,201 = 0,976 m^2$$

Prema ranije provedenom proračunu na raspolaganju nam je površina kondenzatora u iznosu od:

$$A_{kond} = 0,983 \ m^2$$

44

Predimenzioniranost pločastog kondenzatora:

$$\Delta A_{kond} = \frac{A_{kond} - A_{kond,potr}}{A_{kond,potr}} = \frac{0,983 - 0,976}{0,976} = 0,0072$$

Kondenzator je predimenzioniran 0,72%.

Slika 15. Dimenzije kondenzatora

4. PAD TLAKA NA ISPARIVAČU

Pad tlaka na isparivaču računan je pomoću korelacije za izračun pada tlaka pri dvofaznom strujanju radne tvari. Prema literaturi, korelacija prema Friedelu [7] najbolje opisuje pad tlaka stoga je ona odabrana za proračun.

Korelacijska metoda prema Friedelu koristi dvofazni množitelj:

$$\Delta p_{frict} = \Delta p_L \cdot \Phi_{fr}^2$$

gdje se faktor Δp_L računa za protok tekuće faze prema slijedećem izrazu:

$$\Delta p_L = 4 \cdot f_L \cdot (L_{ov}/d_u) \cdot \dot{m}_{total}^2 \cdot (1/2\rho_L)$$

Faktor trenja kao i Reynoldsov broj tekuće faze se računaju prema slijedećim izrazima:

$$f = \frac{0,079}{Re^{0,25}}$$
$$Re = \frac{\dot{m}_{total} \cdot d_u}{\mu}$$

koristeći dinamičku viskoznost µL. Njegov dvofazni množitelj iznosi:

$$\Phi_{fr}^{2} = E + \frac{3,24 \cdot F \cdot H}{Fr_{H}^{0,045} \cdot We_{L}^{0,035}}$$

$$\dot{m}_{total} = \frac{\frac{q_{m,R290}}{4}}{\frac{d_u^2 \cdot \pi}{4}} = \frac{\frac{0,027}{4}}{\frac{0,006^2 \cdot \pi}{4}} = 241.6 \frac{kg}{m^2 s}$$

Tablica 19.	Ulazne	vrijednos	sti za 🛛	proračun	pada	tlaka

Opis	Oznaka	Vrijednost	Jedinica
Unutarnji promjer	du	0,006	m
Duljina cijevi	L	11,1	m
Maseni protok radne tvari	q _{m,R290}	0,0068	kg/s
Sadržaj pare	Х	0,05	kg/kg

Temperatura isparavanja	ϑ_i	-10	С
Tlak isparavanja	pi	3,45	bar
Gustoća vrele kapljevine	ρ_L	541,8	kg/m ³
Gustoća suhozasićene pare	ρ _G	7,6	kg/m ³
Dinamička viskoznost vrele			
kapljevine	$\mu_{ m L}$	0,000139	kg/(ms)
Dinamička viskoznost			
suhozasićene pare	μ_{G}	0,00000716	kg/(ms)
Površinska napetost	σ	0,0114	N/m

$$Re_{L} = \frac{\dot{m}_{total} \cdot d_{u}}{\mu_{L}} = \frac{241,6 \cdot 0,006}{0,000139} = 10407$$
$$f_{L} = \frac{0,079}{Re_{L}^{0,25}} = \frac{0,079}{10407^{0,25}} = 0,0078$$
$$Re_{G} = \frac{\dot{m}_{total} \cdot d_{u}}{\mu_{G}} = \frac{241,6 \cdot 0,006}{0,0000716} = 202444$$

$$f_G = \frac{0,079}{Re_G^{0,25}} = \frac{0,079}{404888^{0,25}} = 0,0037$$

Homogena gustoća ρ_H temeljena na kvaliteti pare iznosi:

$$\rho_H = \left(\frac{x}{\rho_G} + \frac{1-x}{\rho_L}\right)^{-1} = \left(\frac{0.05}{7.6} + \frac{1-0.05}{541.8}\right)^{-1} = 120.4 \frac{kg}{m^3}$$

Bezdimenzijski faktori Fr_H, E, F i H iznose:

$$Fr_{H} = \frac{\dot{m}_{total}}{g \cdot d_{u} \cdot \rho_{H}^{2}} = \frac{241.6}{9.81 \cdot 0.006 \cdot 120.4^{2}} = 68.4$$
$$E = (1 - x)^{2} + x^{2} \cdot \frac{\rho_{L} \cdot f_{G}}{\rho_{G} \cdot f_{L}} = (1 - 0.05)^{2} + 0.05^{2} \cdot \frac{541.8 \cdot 0.0037}{7.6 \cdot 0.0078} = 0.99$$
$$F = x^{0.78} \cdot (1 - x)^{0.224} = 0.05^{0.78} \cdot (1 - 0.05)^{0.224} = 0.09$$

$$H = \left(\frac{\rho_L}{\rho_G}\right)^{0.91} \cdot \left(\frac{\mu_G}{\mu_L}\right)^{0.19} \cdot \left(1 - \frac{\mu_G}{\mu_L}\right)^{0.7} = \left(\frac{541.8}{7.6}\right)^{0.91} \cdot \left(\frac{0.0000072}{0.000139}\right)^{0.19} \cdot \left(1 - \frac{0.0000072}{0.000139}\right)^{0.7}$$
$$= 26.5$$

Weberov WeL faktor za tekuću fazu iznosi:

$$We_{L} = \frac{\dot{m}_{total}^{2} \cdot d_{u}}{\sigma \cdot \rho_{H}} = \frac{241,6^{2} \cdot 0,006}{0,0114 \cdot 120,4} = 255,1$$

$$\Phi_{fr}^{2} = E + \frac{3,24 \cdot F \cdot H}{Fr_{H}^{0,045} \cdot We_{L}^{0,035}} = 0,99 + \frac{3,24 \cdot 0,09 \cdot 26,5}{68,4^{0,045} \cdot 255,1^{0,035}} = 6,58$$

$$\Delta p_{L} = 4 \cdot f_{L} \cdot \left(\frac{L}{d_{u}}\right) \cdot \dot{m}_{total}^{2} \cdot \left(\frac{1}{2\rho_{L}}\right) = 4 \cdot 0,0078 \cdot \left(\frac{11,1}{0,006}\right) \cdot 241,6^{2} \cdot \left(\frac{1}{2 \cdot 541,8}\right) = 3118,4 Pa$$

$$\Delta p_{frict} = \Delta p_{L} \cdot \Phi_{fr}^{2} = 3118,4 \cdot 6,58^{2} = 20,5 \ kPa$$

Na isti način su izračunati padovi tlaka pri parcijalnim opterećenjima od 80, 60 i 40% dok su rezultati prikazani u tablicama 20, 21 i 22.

Opis	Oznaka	Vrijednost	Jedinica
Unutarnji promjer	d_u	0,006	m
Ukupna duljina cijevi	L	11,1	m
Maseni protok radne tvari	q _{m,R290}	0,0055	kg/s
Sadržaj pare	X	0,05	kg/kg
Temperatura isparavanja	ϑ_{i}	-7	С
Tlak isparavanja	pi	3,8	bar
Gustoća vrele kapljevine	ρ_L	537,9	kg/m ³
Gustoća suhozasićene pare	ρ _G	8,38	kg/m ³
Dinamička viskoznost vrele			
kapljevine	$\mu_{\rm L}$	0,000135	kg/(ms)
Dinamička viskoznost suhozasićene			
pare	μ_{G}	0,000007245	kg/(ms)
Površinska napetost	σ	0,0109	N/m
Gustoća masenog toka	<i>m</i> _{total}	195,6	kg/m ² s
Reynoldsov broj tekuće faze	Re _L	8694	-
Reynoldsov broj parne faze	Re _G	161998	-

Tablica 20. Pad tlaka pri parcijalnom opterećenju od 80%

Faktor trenja tekuće faze	f_L	0,00818	-
Faktor trenja parne faze	f_{G}	0,00394	-
Bezdimenzijski faktor F _{rH}	F _{rH}	38,89	-
Bezdimenzijski faktor E	Е	0,98	-
Bezdimenzijski faktor F	F	0,0955	-
Bezdimenzijski faktor H	Н	24,4	-
Weberov faktor za tekuću fazu	W _{eL}	162,9	-
Homogena gustoća	ρн	129,3	kg/m ³
	Δp_L	2154,0	Pa
	$\Phi_{\rm fr}{}^2$	6,3	_
Pad tlaka zbog trenja	Δp_{frict}	13,6	kPa

Tablica 21. Pad tlaka pri parcijalnom opterećenju od 60%

Opis	Oznaka	Vrijednost	Jedinica
Unutarnji promjer	d_{u}	0,006	m
Ukupna duljina cijevi	L	11,1	m
Maseni protok radne tvari	q _{m,R290}	0,0042	kg/s
Sadržaj pare	Х	0,05	kg/kg
Temperatura isparavanja	ϑ_{i}	-2	С
Tlak isparavanja	pi	4,46	bar
Gustoća vrele kapljevine	$\rho_{\rm L}$	531,3	kg/m ³
Gustoća suhozasićene pare	ρ _G	9,754	kg/m ³
Dinamička viskoznost vrele			
kapljevine	$\mu_{\rm L}$	0,0001282	kg/(ms)
Dinamička viskoznost suhozasićene			
pare	μ_{G}	0,000007389	kg/(ms)
Površinska napetost	σ	0,0104	N/m
Gustoća masenog toka	\dot{m}_{total}	149,3	kg/m ² s
Reynoldsov broj tekuće faze	Re _L	6989	-
Reynoldsov broj parne faze	Re _G	121253	-
Faktor trenja tekuće faze	f_L	0,00864	-
Faktor trenja parne faze	f _G	0,00423	-
Bezdimenzijski faktor F _{rH}	F _{rH}	18,12	-
Bezdimenzijski faktor E	Е	0,97	-
Bezdimenzijski faktor F	F	0,0955	-
Bezdimenzijski faktor H	Н	21,2	-

Weberov faktor za tekuću fazu	W_{eL}	88,9	-
Homogena gustoća	ρн	144,6	kg/m ³
	Δp_L	1342,1	Ра
	${\Phi_{\mathrm{fr}}}^2$	5,9	-
Pad tlaka zbog trenja	$\Delta p_{\rm frict}$	7,9	kPa

Tablica 22. Pad tlaka pri parcijalnom opterećenju od 40%

Opis	Oznaka	Vrijednost	Jedinica
Unutarnji promjer	du	0,006	m
Ukupna duljina cijevi	L	11,1	m
Maseni protok radne tvari	q _{m,R290}	0,0029	kg/s
Sadržaj pare	х	0,05	kg/kg
Temperatura isparavanja	ϑ_{i}	3	С
Tlak isparavanja	pi	5,19	bar
Gustoća vrele kapljevine	ρι	531,3	kg/m ³
Gustoća suhozasićene pare	ρ _G	9,754	kg/m ³
Dinamička viskoznost vrele kapljevine	μ_L	0,0001282	kg/(ms)
Dinamička viskoznost suhozasićene pare	μ _G	0,000007389	kg/(ms)
Površinska napetost	σ	0,0104	N/m
Gustoća masenog toka	\dot{m}_{total}	101,1	kg/m ² s
Reynoldsov broj tekuće faze	Re _L	4733	-
Reynoldsov broj parne faze	Re _G	82119	-
Faktor trenja tekuće faze	f_L	0,00952	-
Faktor trenja parne faze	f_{G}	0,00467	-
Bezdimenzijski faktor F _{rH}	F _{rH}	8,31	-
Bezdimenzijski faktor E	Е	0,97	-
Bezdimenzijski faktor F	F	0,0955	-
Bezdimenzijski faktor H	Н	21,2	-
Weberov faktor za tekuću fazu	W _{eL}	40,8	-
Homogena gustoća	ρн	144,6	kg/m ³
	Δp_L	678,6	Pa
	$\Phi_{\mathrm{fr}}{}^2$	6,2	-
Pad tlaka zbog trenja	Δp_{frict}	4,2	kPa

Slika 16. Pad tlaka pri punom i parcijalnom opterećenju isparivača (temperatura kondenzacije 48 °C)

U nastavku je prikazan proračun cjevovoda. On je proveden na način da se pretpostavi brzina strujanja medija u cijevima prema preporučenim vrijednostima. Zatim se preko jednadžbe kontinuiteta odredi potrebna unutarnja površina presjeka cijevi. Preporučene iskustvene brzine medija u pojedinom cjevovodu su:

Preporučene iskustvene brzine				
Usisni vod	5 - 12	m/s		
Tlačni vod	8 - 12	m/s		
Kapljevinski vod	0,4-1,2	m/s		
Vod sekundarnog kruga (voda)	0,5-1	m/s		
Maseni protok radnog medija	0,027	kg/s		

Tablica	23.	Prenoru	čene	iskust	vene	brzine	mediia u	ı ciievima
Labitca	_ .	ricporu	conc	ISIXUSU	, v cmc	01 Line	mcuija i	i cije vilina

Iz jednadžbe kontinuiteta slijedi jednadžba za određivanje unutarnjeg promjera cjevovoda:

$$d_{u}^{*} = \sqrt{\frac{4 \cdot q_{mRT}}{\rho \cdot w \cdot \pi}}$$

Usisni cjevovod:

$$w_{us} = 8 \frac{m}{s}$$
 - pretpostavljena brzina strujanja radne tvari R290

 $\rho_1 = 7,443 \ kg/m^3$ - gustoća pregrijane pare radne tvari u usisnom cjevovodu

$$d_{u_us} = \sqrt{\frac{4 \cdot q_{mRT}}{\rho_1 \cdot w_{us} \cdot \pi}} = \sqrt{\frac{4 \cdot 0,027}{7,443 \cdot 8 \cdot \pi}} = 0,024 \ m$$

Odabire se prva veća standardizirana cijev:

Cu 28 x 1,5:
$$d_{v_{us}} = 28 \ mm$$

$$s = 1,5 mm$$

 $d_{u_us} = d_{v_us} - 2 \cdot s = 28 - 2 \cdot 1,5 = 25 mm$

$$w_{us} = \frac{4 \cdot q_{mRT}}{\rho_1 \cdot d_{u_{us}}^2 \cdot \pi} = \frac{4 \cdot 0,027}{7,443 \cdot 0,025^2 \cdot \pi} = 7,5\frac{m}{s}$$

Tlačni cjevovod:

$$\hat{w}_{tl} = 10 \ m/s$$
 - pretpostavljena brzina strujanja radne tvari R290

 $\rho_2 = 30,249 \ kg/m^3$ - gustoća pregrijane pare radne tvari u tlačnom cjevovodu

$$d_{u_{tl}}^{*} = \sqrt{\frac{4 \cdot q_{mRT}}{\rho_2 \cdot w_{tl}^{*} \cdot \pi}} = \sqrt{\frac{4 \cdot 0.027}{30.249 \cdot 10 \cdot \pi}} = 0.011 \ m$$

Odabire se prva veća standardizirana cijev:

Cu 12 x 1:
$$d_{v_{tl}} = 12 \ mm$$

s = 1 mm

$$d_{u_{tl}} = d_{v_{tl}} - 2 \cdot s = 12 - 2 \cdot 1 = 10 \ mm$$
$$w_{tl} = \frac{4 \cdot q_{mRT}}{\rho_2 \cdot d_{u_{-tl}}^2 \cdot \pi} = \frac{4 \cdot 0,027}{30,249 \cdot 0,01^2 \cdot \pi} = 11,5\frac{m}{s}$$

Kapljevinski cjevovod:

 $\dot{w}_{kap} = 0.8 m/s$ - pretpostavljena brzina strujanja radne tvari R290

 $\rho_3 = 452,7 \ kg/m^3$ - gustoća pregrijane pare radne tvari u tlačnom cjevovodu

$$d_{u_kap}^{*} = \sqrt{\frac{4 \cdot q_{mRT}}{\rho_3 \cdot w_{kap}^{*} \cdot \pi}} = \sqrt{\frac{4 \cdot 0,027}{452,7 \cdot 0,8 \cdot \pi}} = 0,01 \ m$$

Odabire se prva veća standardizirana cijev:

Cu 12 x 1:
$$d_{v_{kap}} = 12 \, mm$$

s = 1 mm

$$d_{u_{kap}} = d_{v_{kap}} - 2 \cdot s = 12 - 2 \cdot 1 = 10 \ mm$$

$$w_{kap} = \frac{4 \cdot q_{mRT}}{\rho_3 \cdot d_{u_kap}^2 \cdot \pi} = \frac{4 \cdot 0,027}{452,7 \cdot 0,01^2 \cdot \pi} = 0,77\frac{m}{s}$$

Cjevovod sekundarnog kruga:

 $w'_w = 0.8 m/s$ - pretpostavljena brzina strujanja vode

 $\rho_w = 991,2 \ kg/m^3$ - gustoća vode

$$d_{u_w}^{*} = \sqrt{\frac{4 \cdot q_{m,OV}}{\rho_w \cdot w_w^{*} \cdot \pi}} = \sqrt{\frac{4 \cdot 0.48}{991.2 \cdot 0.8 \cdot \pi}} = 0.027 \ m$$

Odabire se prva veća standardizirana cijev:

Cu 28 x 1,5:

$$d_{v_{w}} = 28 mm$$

$$s = 1,5 mm$$

$$d_{u_{w}} = d_{v_{w}} - 2 \cdot s = 28 - 2 \cdot 1,5 = 25 mm$$

$$w_{w} = \frac{4 \cdot q_{m,OV}}{\rho_{w} \cdot d_{u_{w}}^{2} \cdot \pi} = \frac{4 \cdot 0,48}{991,2 \cdot 0,025^{2} \cdot \pi} = 0,98 \frac{m}{s}$$

5. PARAMETRI ISPARIVAČA PRI PROMJENJIVOM TOPLINSKOM OPTEREĆENJU

Prilikom analize parametara isparivača uzeta je konstantna temperatura kondenzacije u iznosu od 48°C, konstantna temperatura pregrijanja u iznosu od 5°C, te konstantna temperatura pothlađenja u iznosu od 3°C. Temperatura isparavanja, vanjska temperatura, a samim time i toplinsko opterećenje su se mijenjali te su pri tim uvjetima analizirani učinci isparivača, snaga kompresora, protoci radnog medija te faktori grijanja. Proračun parametara je također napravljen i pomoću softvera *myCoil* [8] koji je ustupljen od firme Frigo Plus d.o.o. Rezultati dobiveni softverom su približno jednaki rezultatima dobivenima u proračunu isparivača prema VDI-u. Za ovaj sustav dizalice topline je korištena regulacija s frekvencijskim pretvaračem koja za razliku od klasičnog "on – off" sustava prilagođava proces toplinskom opterećenju te na taj način povećava učinkovitost procesa.

	ity ~	1	kW Oversurface %				e %	Counter Flow ~					
AIR													
Actual entering air tempera $$						Air Flow ` 4825 m³/h							
Entering air temperature - dry bulb			2 °C Er			Entering relative air humidity $$							
REFRIGERANT													
R 290 V Suction G		ction Gas Sa	Sas Saturation Tempe 👻		°C	Sup	uperheating		°C	Cond. Temperatu	~	48	°C
Requester			d Refrigerant Pressure Drop		kPa	Design Pressure PS			kPa	Subco	oling	3	°C
GEOMETRY													
Geometry	Corrugati		ion Tube materia		Tube type		Fin material		l I	Fin thickness		÷	
281												×](ő
FINNED BLOCK													
Insert Number of rows $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		s ~ [:	Number of			f tubes!!! ~ 2	es!!! ~ 24			Finned Length ~ 925 mm			
Fin Spacing 🗡		g ~ 2	2.54 mm = 10 FPI ×										
CIRCUIT AND CONNE	CTION												
Number of circuits 4 x 1/4 ~			Enter tot number of injec 👻			Specified tubes not used ^ 0				Equal circuits required			
Header Material			Nothing selected			same side connections ^			STACKED ^				
Liquid Connection Diameter			Diameter by distributor			Distributor with Nozzle \land			Optimize Capillary Diameter				
Suction Header Diameter			Optimize ^			Optimize Capillary Length 🔿							

Slika 17. Unos potrebnih specifikacija potrebnih za proračun isparivača
Na samom početku potrebno je unijeti vanjsku temperaturu te relativnu vlažnost zraka. Zatim je potrebno odabrati radni mediji te unijeti temperature procesa. U podsustavu Geometry potrebno je odabrati samu geometriju isparivača, odnosno raspored, materijal i tip cijevi, debljinu rebara i sl. Za ovaj slučaj je odabrana geometrija 2S1 budući da je dimenzijama slična geometriji isparivača koji je odabran u proračunu prema VDI-u, a njezini podaci mogu se vidjeti na slici 18.

Close

Slika 18. Odabir geometrije isparivača u softveru myCoil

Na slici 19. prikazani su softverski rezultati proračuna isparivača pri parcijalnom opterećenju.

	Coil							Capacity				Air				Refrigerant .															
 ✓ 	Fin	S Rows	Tubes	Length	Spacing	Inj	Circ	OD liq	OD gas	Area	Total	Sens.	Reser.	Cond	T in	% in	T out	% out	Vol	PD	Туре	Subcool	T cond.	T evap.	Super	Mass flow.	PD dist	PD header	PD coil		
				[mm]	[mm]			[mm]	[mm]	[m²]	[kW]	[kW]		[m³/h]	[°C]	[%]	[°C]	[%]	[m³/h]	[Pa]		[°C_delta]	[°C]	[°C]	[°C]	[kg/h]	(Pa)	[Pa]	[Pa]		
	2S1	G 2	24	925	2.54	4	4	7.94	7.94	16.11	3.4	3.4	0	0	-2	70	-3.9	82.4	4 825	27.7	R 290	3	48	-10	5	48.96	-	3 453.1	20 210	0 9	2
	2S1	G 2	24	925	2.54	4	4	7.94	7.94	16.11	2.23	2.23	0	0	5	70	2.8	82.8	2 900	12.1	R 290	3	48	-2	5	30.96	-	954.1	5 780	0 5	2
	2S1	G 2	24	925	2.54	4	4	7.94	7.94	16.11	1.5	1.5	0	0	9	70	7.1	79.8	2 300	8.3	R 290	3	48	3	5	20.52	-	342.7	2 010	0	2
	2S1	G 2	24	925	2.54	4	4	7.94	7.94	16.11	2.81	2.78	0	0	1	70	-1.5	84.9	3 000	12.9	R 290	3	48	-7	5	39.96	-	1 999.6	11 960	0 5	2

Slika 19. Rezultati parametarskog proračuna isparivača pri različitim temp. opterećenjima

Parametarska analiza isparivača napravljena je pri promjenjivim toplinskim opterećenjima od 100, 80, 60 i 40% odnosno pri učincima kondenzatora od 10, 8, 6 i 4 kW. Rezultati proračuna su prikazani u tablici 23.

			100%	80%	60%	40%
	Opterećenje	Jedinica	Opterećenje	Opterećenje	Opterećenje	Opterećenje
	Geometrija	-	2S1	2S1	2S1	2S1
	Broj redova	-	2	2	2	2
	Broj cijevi	-	24	24	24	24
	Duljina	mm	925	925	925	925
ISPARIVAČ	Razmak između rebara	mm	2,54	2,54	2,54	2,54
	Broj ubrizgavanja	-	4	4	4	4
	Promjer cijevi	mm	7,94	7,94	7,94	7,94
	Površina isparivača	m²	16,11	16,11	16,11	16,11
	Kapacitet	kW	3,4	2,81	2,23	1,5
KAPACITET	Osjetni kapacitet	kW	3,4	2,78	2,23	1,5
	Rezerva	-	0	0	0	0
	ϑ _{in}	°C	-2	1	5	9
	Ulazna vlažnost	%	70	70	70	70
	ϑ _{out}	°C	-3,9	-1,5	2,8	7,1
7RAK	Izlazna vlažnost	%	82,4	84,9	82,8	79,8
LIVIK	Volumni protok zraka	m³/h	4825	3000	2900	2300
	Δϑ _m	°C	7,0	6,7	5,8	5,0
	Pad tlaka	Ра	27,7	12,9	12,1	8,3
RADNI	Тір	-	R290	R290	R290	R290
MEDIJ	Pothlađenje	°C	3	3	3	3

Tablica 24. Rezultati parametarske analize isparivača pri različitim toplinskim opterećenjima

ϑ _k	°C	48	48	48	48
ϑi	°C	-10	-7	-2	3
Pregrijanje	°C	5	5	5	5
Maseni protok	kg/h	48,96	39,96	30,96	20,52
Pad tlaka	Ра	20210	11960	5780	2010

Prva stvar koja je vidljiva iz rezultata je kako se sa smanjenjem toplinskog opterećenja također smanjiva i sam kapacitet isparivača što je prikazano na slici 20.

Slika 20. Učinak isparivača pri promjenjivom toplinskom opterećenju (temperatura kondenzacije 48 °C)

Promjenom toplinskog opterećenja također se smanjuje snaga kompresora budući da je za manji kapacitet potreban manji protok radnog medija. Promjena snage s obzirom na toplinsko opterećenje je vidljiva u grafu na slici 21.

Slika 21. Snaga kompresora pri promjenjivom toplinskom opterećenju (temperatura kondenzacije 48 °C)

Na slici 22. prikazana je promjena faktora grijanja za toplinska opterećenja od 100, 80, 60 i 40%. Budući da se faktor grijanja računa kao omjer toplinskog učinka kondenzatora i snage kompresora, sa smanjenjem snage kompresora faktor grijanja raste.

Slika 22. Faktor grijanja pri različitim toplinskim opterećenjima (temperatura kondenzacije 48 °C)

Na slici 23. prikazane su srednje logaritamske temperature pri različitim toplinskim opterećenjima. Iz grafa je vidljiv pad srednje logaritamske temperature sa smanjenjem opterećenja. Razlika temperatura zraka na ulazu i izlazu isparivača kreće se od 2 do 2,5 °C međutim zbog smanjenja temperature isparavanja (-10, -7, -2 i 3 °C) dolazi do smanjenja srednje logaritamske temperature.

Slika 23. Promjena srednje log. temperature u odnosu na promjenu toplinskog opterećenja (temperatura kondenzacije 48 °C)

Na slici 24. je vidljiva promjena pada tlaka s obzirom na toplinsko opterećenje sustava. Vrijednost pada tlaka dobivenog softverom je približna vrijednosti koja je dobivena pomoću Friedelove korelacije. Prema Friedelovoj korelaciji izračunati pad tlaka iznosi 20516 Pa dok je vrijednost iz softvera 20210 Pa.

Ono što je također bitno spomenuti je pad tlaka na razdjelniku radne tvari koji se također mijenja s promjenom opterećenja te iznosi 3453, 1999, 954 i 333 Pa (za opterećenja od 100, 80, 60 i 40%). Pad tlaka radne tvari na razdjelniku uzrokuje nepravilnu distribuciju protoka radnog medija te utječe na učinkovitost isparivača [9]. Razlog tomu je što pad tlaka u razdjelniku rezultira neujednačenom razlikom tlaka i kao posljedica toga dolazi do nejednolikog masenog protoka radne tvari kroz cijevi isparivača.

Slika 24. Pad tlaka na isparivaču pri promjenjivom toplinskom opterećenju dobiven pomoću softvera myCoil (temperatura kondenzacije 48 °C)

Na slici 25. Prikazan je graf s masenim protocima radnog medija pri promjenjivom toplinskom opterećenju.

Slika 25. Maseni protok radnog medija pri promjenjivom toplinskom opterećenju (temperatura kondenzacije 48 °C)

Slijedeći korak je odabir odgovarajućeg kompresora koji može raditi u svim opterećenjima sustava. Sam odabir je proveden pomoću računalnog softvera Frascold Selection Software [10]. U softver je potrebno unijeti podatke kao što su vrsta radnog medija, temperatura isparavanja, pregrijanja, kondenzacije i pothlađenja te zatim odabrati kompresor koji zadovoljava pri različitim opterećenjima. Odabran je kompresor model D3-13.1AXH [11] proizvođača Frascold nominalne snage 2,2 kW.

🇱 Frascold Selection Software 3 v1.15		- 🗆 🗙
File Options Internet ?	• Chec	k Calculation 🔵 Selection Calculation
Selection mode: Heat numn V Power supply: 400/3/50 V Automatic connection	Single Stage Series, for HFC - HCFC - HFO	- HC V
Padriagrant: Pran	<< Details >>	D3-13.1AXH
nongerant. n230 V	Heating Capacity	kW 10,011
Reference temperature: dew point temperature		kW -
	Evaporator capacity	kW 6,831
Evaporating temp. (dew point): -10.00 🐳 "C Condensing temperature (dew point): 48.00 🐳 "C	Power input	W 3180
Suction gas superheating ∨ 5.0 Subcooling ∨ 3.0 K Subcooling ∨ 3.0 K	Condenser capacity, theor.	kW 10,011
Evaporator superheating V 5.0 K	Current	A 6,73
	Heating COP	W/W 3,15
Compressor n° of fixed speed Capacity step n° of variable Englished surface Comparison	Mass flow	kg/h 99
compressors (tent.data) speed riequency Liquid system commeduar	Operating frequency	Hz 62
(#1): D3-13.1AXH ✓ Info 0 ↔ 100 ✓ 1 ↔ 62 ↔ None ✓ DOL-STAR ✓	Power supply	- 400/3/50/DOL-STAR
(#2):	Selection mode	- Heat pump
	Operating mode	- Inverter
Show out of production models	Evaporating pressure	bar 3,45
	Suction gas superheating	K 5
Application envelope P&I Diagram	Suction gas temperature	°C -5
Additional cooling required	Discharge temperature	°C /6,5/
70	Condensing pressure	bar 16,39
65	Liquid temperature	°C 45
60	Ratio (%)	% 100,0%
	Note	
	018	14.1
	Unit Euclidean and (cil Cardiar)	L/min -
	Oil Tamp, at Oil Cooler Ordist	
25	Contified by	E Erzageld tertative data
	Certified by	- Hascold tentative data
20 Tet: Al conditions according to EN12500		
15		
10 Certified by:		
5	hld	
-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 -Follow flammable refrigerant regulations	Export Print	Calculate Exit

Slika 26. Frascold Selection Software - softver za odabir kompresora

Slika 27. Radno područje kompresora s označenom radnom točkom pri opterećenju od 100%

6. DISPOZICIJSKI CRTEŽI

Slika 28. Dispozicijski crtež unutarnje jedinice

Slika 29. Dispozicijski crtež vanjske jedinice

ZAKLJUČAK

Prema europskim normama i smjernicama dizalice topline kao i rashladni uređaji samo manji dio vremena rade pri maksimalnom projektnom toplinskom opterećenju dok većinu vremena rade pri parcijalnom opterećenju. Za dizalicu topline zrak – voda promjenjiva temperatura okolišnog zraka utječe na učinak uređaja te na radne parametre isparivača.

Usporedbom rezultata isparivača dobivenih proračunom prema VDI-u (Poglavlje 2.) te rezultata iz softvera myCoil, možemo vidjeti kako su rezultati proračuna uključujući dimenzije približno slični te također odgovaraju stvarnom isparivaču koji se nalazi unutar dizalice topline na Fakultetu strojarstva i brodogradnje u Zagrebu. Nakon analize rezultata proračuna kao i rezultata iz softvera myCoil, vidljivo je kako je faktor grijanja dizalice topline najveći kod parcijalnog opterećenja od 40% pri vanjskoj temperaturi od 9 °C te iznosi čak 4,1. Za 100% opterećenja, odnosno pri vanjskoj temperaturi od -2 °C taj faktor iznosi 3,2 što je i dalje jako dobar rezultat. Karakteristike kao i dimenzije kondenzatora dobivenog proračunom (Poglavlje 4.) također su približno slične kao u dizalici topline na fakultetu. U radu je obrađen isparivač podijeljen na dvije paralelne sekcije što predstavlja veliku prednost u odnosu na klasične isparivače u dizalicama topline. Prednost ovog sustava je mogućnost nastavka rada u fazi odleđivanja isparivača gdje se jedna sekcija isparivača koristi za odmrzavanje dok druga radi u procesu grijanja.

Kao što je vidljivo u proračunima, učinkovitost dizalica topline zrak – voda značajno oscilira tijekom sezone kao posljedica vanjske temperature koja se konstantno mijenja. Stoga je jako bitno pokušati što preciznije predvidjeti radne uvjete, odnosno vanjske temperature pri kojima će dizalica raditi te shodno tome pravilno dimenzionirati sustav na način da dizalica topline radi što kraće pri punom opterećenju. Ono što je također jako bitno prilikom definiranja sustava je regulacija procesa, odnosno odabir frekvencijski upravljane regulacije u odnosu na klasičnu "on – off" regulaciju. Na taj način se značajno povećava ukupna učinkovitost sustava.

LITERATURA

[1] Dongellini M., Naldi C., Morini G. L., Seasonal performance evaluation of electric air-to-water heat pump systems, 1.12.2020.

[2] Henderson H., Parker D., Huang Y. J., Improving DOE-2's RESYS routine: User Defined Functions to Provide More Accurate Part Load Energy Use and Humidity Predictions, 8.4.2020.

[3] Proračun isparivača, Vježbe - Tehnika hlađenja

[4] Ciconkov Risto, *Refrigeration solved examples*, Faculty of mechanical engineering, University Sv. Kiril i Metodij

[5] Barun Dominik, *Dizalica topline voda – voda za grijanje i hlađenje obiteljske kuće*, Diplomski rad Zagreb 2020.

[6] *Swep heat exchanger B25T*, <u>https://www.swep.net/products/b25t/</u>, 7.11.2020.

[7] Thome R. John, *Engineering Data Book III*, Wolverine Tube 2004.

[8] *myCoil*, <u>http://mycoil.eu/</u>, 22.11.2020.

[9] Hanfei T., Hrnjak P., Effect of the header pressure drop induced flow maldistribution on the microchannel evaporator performance, 1.12.2013.

[10] Frascold Selection Software, Frascold, Verzija 1.15, Italija 2014.

[11] Frascold kompresor D3-13.1AXH, <u>https://www.frascold.it/en/products/d3_13_1axh-2959</u>,
22.11.2020.

PRILOZI

I. Tehnička dokumentacija