
Bayesian Networks in Lane Change Maneuver
Prediction

Grabić, Ivan

Master's thesis / Diplomski rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu,
Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:829533

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-19

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering
and Naval Architecture University of Zagreb

https://urn.nsk.hr/urn:nbn:hr:235:829533
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fsb.unizg.hr
https://repozitorij.fsb.unizg.hr
https://zir.nsk.hr/islandora/object/fsb:6487
https://repozitorij.unizg.hr/islandora/object/fsb:6487
https://dabar.srce.hr/islandora/object/fsb:6487

UNIVERSITY OF ZAGREB
FACULTY OF MECHANICAL ENGINEERING AND NAVAL

ARCHITECTURE

MASTER’S THESIS

Ivan Grabić

Zagreb, 2020

UNIVERSITY OF ZAGREB
FACULTY OF MECHANICAL ENGINEERING AND NAVAL

ARCHITECTURE

MASTER’S THESIS
BAYESIAN NETWORKS IN LANE CHANGE MANEUVER

PREDICTION

Mentor:

Doc. Dr. sc. Petar Ćurković

Student:

Ivan Grabić

Zagreb, 2020

The support of the Erasmus+ program is gratefully acknowledged.

This thesis was created in collaboration with Audi AG.

I would like to give my sincere thanks to my supervisor at Audi, Mrs. Toshika Srivastava,

who gave me the opportunity to write my thesis in such a creative and professional

environment. Her pieces of advice, patience, and ideas have been valuable contributions

in performing research and writing this thesis.

I would also like to extend my gratitude to professor Petar Ćurković, my thesis supervisor,

for making this collaboration easy and for his valuable comments and suggestions.

My great appreciation goes to all of my other colleagues at Audi, especially to my colleague

and friend Igor Katulić. My thanks to all my university colleagues and professors who

made my stay in Germany possible.

Finally, I would like to express love and gratitude to my family - father Ante, mother

Irena, sister Anamarija, and brother Tomislav, as well as to my girlfriend Anamaria and

lifelong friends for their love and support.

Ivan Grabić

I hereby declare that I have made this thesis independently using the knowledge ac-

quired during my studies and the cited references.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija

i navedenu literaturu.

Ivan Grabić

Ivan Grabić Master’s thesis

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Related work . 5
1.4 Thesis overview . 6

2 Bayesian Machine Learning 7
2.1 Probability calculus and machine learning 7
2.2 Bayesian network basics . 8
2.3 Inference in probabilistic models . 11
2.4 Black Box Variational Inference . 12
2.5 Probabilistic Programing . 18

2.5.1 Pyro probabilistic programing language 20
2.5.2 SVI in pyro . 22

3 Data 24
3.1 Raw data exploration . 24
3.2 Data preparation . 30
3.3 Data class breakdowns . 33

3.3.1 Vehicle class . 33
3.3.2 Left and right lane . 35
3.3.3 Lane change . 36

4 Model 39
4.1 Learning generative model . 39

4.1.1 Network structure . 39
4.1.2 Learning . 43

4.2 Infering Lane Change Intention . 45

5 Results 47
5.1 Defining evaluation metrics . 47
5.2 Model Evaluation . 48

6 Conclusion 51

References 54

Appendix 55

Faculty of mechanical engineering and Naval Architecture I

Ivan Grabić Master’s thesis

List of Figures

1 Fatal accidents in Germany from 1950. to 2020. Source: German Federal
Statistical Office (Destatis), 2020 . 1

2 Visualisation of table 1 (Statistics of injury-severity levels) from [3]. 2
3 Information flow of ADAS [6] . 4
4 Simple Directed Acyclic Graph . 9
5 Markov blanket of a node. 10
6 Probabilistic model . 13
7 Convex and Concave functions . 14
8 Kullback-Leiber divergence. Taken from [22] 16
9 Comparison of standard and probabilistic programming pipeline [5] 19
10 Captcha breaking with probabilistic programing [5] 20
11 Pyro sample statement . 21
12 Defining model in pyro . 21
13 Conditioned model in pyro . 22
14 Defining guide (variational distribution) in pyro. 22
15 Shot of the highway for recording 23. 24
16 Distribution of acceleration and velocity of vehicles 26
17 Distribution of collected positition data . 26
18 Pair plots of accelerations and velocities of vehicles 27
19 Highway with coordinate systems and directions. 28
20 Example trajectory from the dataset . 29
21 Kinematics of example trajectory . 29
22 Distribution of velocities and accelerations after transformation. 30
23 Unbalanced ratio of lane change labels. 32
24 Comparison of car and truck data. 33
25 Ratio of truck drivers that changed lane. 34
26 Data distributions with respect to a lane. 35
27 Distribution of data for vehicles that changed lane at least one and vehicles

that stayed in the lane for the duration of the whole trajectory 36
28 Distribution of data colected four seconds before lane is changed 37
29 Comparison of lateral kinematis for keeping and changing the lane. 38
30 Bayesian network for learning the bias of a coin in: a) standard notation

b) plate notation . 40
31 Network structure . 41
32 Standard learning procedure with SVI class 43
33 Change of negative ELBO during learning steps 44
34 Comparison of data generated from prior and posterior distribution 45
35 Prediction visualization for trajectory from test set. 46
36 Precision recall curve . 50

Faculty of mechanical engineering and Naval Architecture II

Ivan Grabić Master’s thesis

List of Tables

1 Description of fields in tracks.csv files. 25
2 Summary statistics of numeric values of the dataset. 26
3 Confusion matrix for binary classification 47
4 Confusion matrix for model predictions . 48
5 Normalized confusion matrix . 49
6 Evaluation metrics of a model . 49

Faculty of mechanical engineering and Naval Architecture III

Ivan Grabić Master’s thesis

List of symbols

X, Y random variable
x, y events
P (x) probability of an event x
P (x|y) probability of an event x, given y
E expectation
H Shanon entropy
L evidence lower bound
KL Kullback-Leiber divergence
q(z) variational distribution
ρ learning rate
λ variational parameter
S number of samples
N normal distribution
B Bernoulli distribution
µ mean
σ standard deviation
θ parameter in a network

Faculty of mechanical engineering and Naval Architecture IV

Ivan Grabić Master’s thesis

SAŽETAK

Razvoj autonomnih vozila izazovan je zadatak. Jedan od razloga tome je što je ljud-

sko ponašanje nepredvidljivo. Drugi je razlog taj što je ovaj problem u visoko rizičnom

okruženju. Većina prometnih nesreća dogodila se zbog ljudske pogreške. Stoga se može

zaključiti da će autonomna vozila vožnju učiniti sigurnijom.

Jedna vrsta nesreće dogodi se kada jedan sudionik promijeni traku, a drugi sudionik

to ne primijeti. Ako bi sustav mogao predvidjeti promjenu trake i na vrijeme upozoriti

vozača, mogao bi spriječiti nesreću. Metode dubokog učenja su najsuvremeniji pristup

problemima predvianja. Neuronske su mreže, meutim, poznate kao crne kutije. To je

razlog što nisu u potpunosti prikladne za rizične domene poput prometnog okruženja.

Ovaj rad će zauzeti alternativni pristup predvianju manevara promjene trake. Taj se

pristup naziva Bayesovim ili probabilističkim strojnim učenjem. Dvije su glavne pred-

nosti ovog pristupa. Prva je interpretabilnost probabilističkih modela, a druga dobro

prikazivanje nesigurnosti.

Stvorit ćemo Bayesovu mrežu za predvianje manevara promjene trake sudionika u

prometu. Razmotrit ćemo ”Highway Drone Dataset” (HighD) i pokazati zaključke. Od

ovog skupa podataka stvorit ćemo set podataka za učenje i testiranje. Za stvaranje modela

poslužit ćemo se vjerojatnosnim programskim jezikom zvanim pyro. Model ćemo trenirati

na setu podataka za učenje koristeći algoritam nazvan ”Black Box Variational Inference”.

Nakon učenja, model se evaluira te su prikazane metričke vrijednosti. Vrijeme pred-

vianja prikladno je za provedbu u stvarnom vremenu. Moć predvianja usporediva je s

drugim probabilističkim pristupima, ali je gora od modela dubokog učenja.

Ključne riječi: Probabilističko strojno učenje, probabilističko programiranje, pred-

vianje manevra promjene trake, Bayesove mreže, autonomna vožnja.

Faculty of mechanical engineering and Naval Architecture V

Ivan Grabić Master’s thesis

SUMMARY

Developing autonomous vehicles is a challenging task. One of the reasons for this is that

human behavior is unpredictable. Another reason is that this problem is in a high-risk

environment. Most traffic accidents are due to human error. Thus a conclusion can be

made that autonomous vehicles will make driving safer.

One type of accident happens when one participant changes the lane and the other

participant doesn’t notice it. If a system could predict lane change and alert the driver in

time it could prevent an accident. Deep learning methods are state of the art approach

to prediction problems. Neural networks are, however, known as black-box models. This

is the reason they are not fully suitable for high-risk domains such as traffic environment.

This thesis will take an alternative approach to lane-change maneuver prediction.

This approach is called Bayesian or probabilistic machine learning. There are two main

benefits to this approach. First is interpretability of probabilistic models and second is

good uncertainty representation.

We will create a Bayesian network for predicting lane change maneuvers of traffic

participants. We will look at Highway Drone Dataset (HighD) and show conclusions.

From this dataset, we will create a training and test dataset. To create a model we will

use a probabilistic programming language called pyro. We will train the model on a

training set using an algorithm called Black Box Variational Inference.

After the training, the model is evaluated and evaluation metrics are reported. The in-

ference time is appropriate for real-time implementation. Prediction power is comparable

with other probabilistic approaches but worse than deep learning models.

Keywords: Probabilistic machine learning, probabilistic programming, lane-change

maneuver prediction, Bayesian networks, autonomous driving

Faculty of mechanical engineering and Naval Architecture VI

Ivan Grabić Master’s thesis

1 Introduction

1.1 Motivation

One of the strongest motivations in autonomous driving development is decreasing acci-

dents. The human factor is the number one reason for car accidents. In 95% of accidents

human factor is involved and 75% of accidents are due to human error alone. The coun-

tires with most accidents in Europe: Bulgaria, Romania, and Croatia have more than

70 fatalities per million inhabitants. In addition to lost lives and devastating effect on

affected families, the cost of road fatalities is estimated to be 100 billion euros a year for

European Union [1].

On the way to fully automated highway researchers are developing Advanced Driver

Assistance Systems (ADAS). ADAS is a collection of systems and subsystems which are

meant to enable comfortable and safe driving to a driver. From 2001. and 2017. the num-

ber of accidents decreased 57,5% [2]. A lot of that progress is thanks to the advancement

in ADAS functions [2]. Besides technology, a lot of regulations (for example regulating

drinking and driving) helped in reducing the number of accidents. Figure 1 shows number

of fatal accidents from 1950. in Germany and it’s correlation with state regulations

Figure 1. Fatal accidents in Germany from 1950. to 2020. Source: German Federal
Statistical Office (Destatis), 2020

Study [3] shows that 17% of all crashes were due to lane change. They show that the

injuries are more severe in lane change crashes in comparison with other types of crashes

Faculty of mechanical engineering and Naval Architecture 1

Ivan Grabić Master’s thesis

(Figure 2). The number one reason for accidents is a distraction. Generally, 57,2% of

accidents are due to distraction, and 21,2% due to mobile phone use only. The study [4]

shows that 85% of drivers use a turn signal when performing planned lane change. When

drivers perform unplanned lane change, due to possible forward crash, 24% use a turn

signal. One can assume that it is hard to predict the intentions of other participants while

driving. Even without possible distractions sudden lane change without turn signal can

surprise drivers and lead to a crash.

Figure 2. Visualisation of table 1 (Statistics of injury-severity levels) from [3].

The injuries from lane change related crashes is more severe than injuries from other type of
crashes.

1.2 Problem statement

A system that could predict these sudden lane changes would be helpful in drivers’ de-

cision making. As a consequence drivers would have a safer experience. In the most

common type of lane change related accident, the lane change is intentional. One vehicle

intentionally changes lane and sideswipes vehicle in another lane, or being sideswiped by

another vehicle. This type of accidents accounts for more than 38% of crashes [4]. If some

system can infer that intention based on observations it could help avoid accidents.

We can say that such a system should reason about traffic participant intentions. How

do we develop systems that can reason? There are various approaches to solving this

problem. One opinion divides these approaches into two main clusters. That opinion is

that random variables and probability calculus are the most important tools in building

reasoning machines [5]. This opinion forms field of Bayesian or Probabilistic machine

learning. The opposite opinion forms a field of Deep learning.

To build this system you need to have a model of a traffic situation as a part of a system.

Model building is a common practice in science and engineering. We can look at a model as

an artificial construction of a system we want to understand. This system should respond

in the same way as the original system. With advances in computation numerical models

and simulations replaced physical models used in the past. If a simulation models random

Faculty of mechanical engineering and Naval Architecture 2

Ivan Grabić Master’s thesis

phenomena with pseudorandom generators we say that model is stochastic. In the context

of this thesis, the term model means the stochastic simulator and the values it produces.

We can see that models range from interpretable simulators used in engineering to statistic

and machine learning models that are less interpretable but have good predicting power.

All models have parameters. We should select such parameters to fit the model so that

model produces the observable data. If the model has a small number of parameters it

could be fitted mannually. For bigger models with many parameters, algorithms exist that

can automate model fitting. The automated model fitting for a model is called learning.

Systems that are used in traffic scenarios are considered to be in the high-risk domain.

This means that there are high prices to pay for the wrong decisions In contrast, there

are models developed for low-risk domains as games or image recognition. In these kinds

of models, the wrong prediction can be bothersome but not dangerous.

We want the model to be useful. This means primarily that predictions of a model

are useful. But for high-risk domains, the interpretability of a model is also useful. The

model should be transparent so that we can trust it. There are legal arguments for

having interpretable models. With General Data Protection Regulation taking effect in

2018,European Union mandates a ”right to an explanation”. This means that users can

legally ask for an explanation of an automated system decision. There is a tradeoff between

interpretability and predictive power, but there are ways to increase interpretability with

an insignificant decrease in predictive power.

Uncertainty representation is also a useful property of a model. A favorable system

should integrate information about uncertainty into a decision-making process. ADAS

system can acknowledge uncertainty on different levels, from sensor uncertainty to pre-

diction uncertainty. Uncertainty can propagate from sensors to high-level decision making.

The system should rely on model uncertainty to adjust the decision-making process. This

way system can avoid unintended behavior.

Let us introduce a general information flow of the ADAS system to understand un-

certainty propagation (Figure 3). Information flows from low-level sensor systems to

high-level behavior generation. In the meantime, information is passed through different

process units. For different ADAS features different stages are not executed or not as rel-

evant. The feature extraction step gets higher requirements as ADAS features get more

complex.

Only recently probabilistic approaches have become a mainstream approach in arti-

ficial intelligence, robotics, and machine learning [7]. Probabilistic approaches are often

used in areas where uncertainty and interpretability are requirements.

Almost every machine learning task is learning about latent variables given some

observations. We define the model as good if it can predict some data after being trained

Faculty of mechanical engineering and Naval Architecture 3

Ivan Grabić Master’s thesis

Figure 3. Information flow of ADAS [6]

Information flows from sensors and to the behavior generation module. It is important to
acknowledge uncertainty for every step so that it can influence behavior generation.

on observed data. Different levels of uncertainty can be presented in a machine learning

task. On the lowest level, it can represent data uncertainty. On higher levels model can

represent uncertainty about its parameters. The highest level is uncertainty about the

model structure itself.

In the same way, calculus is useful for representing and manipulating with the rate of

change, probability theory is used for representing uncertainty. We represent unobserved

quantities in model with probability distributions. We use rules of probability calculus to

infer unobserved quantities from observed data. Learning is when probability distribution

is transformed form prior (before observing data) to posterior (after observing data).

Applying probability theory to learning is called Bayesian learning.

One of the main advantages of probability calculus is the possibility of joining simple

Faculty of mechanical engineering and Naval Architecture 4

Ivan Grabić Master’s thesis

probability distributions in complex models. Creating a graphical model is the way of

representing this joined distribution over some variables. Graphical models are graphs

where nodes represent random variables, edges represent dependencies, and with pa-

rameters that quantify the dependencies. We call directed graphical model a Bayesian

network and undirected Markov network. Compositionality of these models gives them

interpretability [7].

1.3 Related work

Some approaches use Bayesian networks and similar models for lane change maneuver

analysis. The motivation for this approach is the interpretability of the bayesian network,

and it’s a natural representation of uncertainty. The Bayesian network explicitly shows

dependencies between random variables. You can encode expert knowledge in the bayesian

network. The parameters of Bayesian networks are probabilities which are a natural

representation of uncertainty.

Three types of features used for maneuver predictions are [8]:

• physical state of the vehicle,

• road structures related features,

• traffic interaction related features.

Physics-based features refer to the kinematic state of the vehicle. Those are features

like position, velocity, and acceleration of vehicles. Road structure features are referring

to road topology, road signs, and traffic rules. Many approaches combine these types

of features. When using interaction aware features you consider dependencies between

vehicles.

Not many approaches considered interaction-based features before 2014 [8]. The

physics-based models were used like: constant velocity, constant acceleration, constant

turn rate or combination. The intelligent driver model is a model that explicitly repre-

sents the relationship between intentions on intersections and velocity and acceleration.

These models are efficient for short time intervals. The disadvantage of these models is

that they are hard to adapt to different scenarios.

Recently researchers started to model maneuver prediction using interaction based

features [8]. These features represent how is motion influenced by vehicle interactions.

With deep learning methods gaining traction some researchers used it for maneuver-

prediction tasks. In [9] researches use Convolutional Neural Network for lane change

maneuver prediction. Another approach is using Long Short Term Memory (LSTM) [10]

neural network. LSTM is a recurrent neural network appropriate for time series data.

Faculty of mechanical engineering and Naval Architecture 5

Ivan Grabić Master’s thesis

Deep learning models implicitly model interaction related features. Neural networks

don’t have an intuitive prediction process. They are notably known as black boxes because

of their lack of interpretability. Their non-interpretability is related to their architecture.

When inferring prediction form input data, data is propagated trough many layers of

nonlinear transformations. These nonlinear transformations make it hard to interpret

results.

For explicitly using interaction features researchers are using Bayesian networks and

their extensions. The approach in [11] is using object-oriented Bayesian Networks (OOBN)

for lane change maneuver prediction. This approach represents network segments with

so-called instance nodes. The output of the network is a single node with values: Follow-

ing Object, Following Lane, Cut in/out. Paper [12] has an interesting approach because

it models all traffic participants together instead of each of them separately. The model,

however, requires a lot of computational power because of its size.

Authors of [8] proposed maneuver prediction approach based on Dynamic Bayesian

networks. Authors report the 3,75 seconds prediction time an 80% F1 score. This network,

however uses only discrete nodes.

In [13] Bayesian network is used for lane change maneuver prediction in extra urban

traffic scenarios. Extra urban traffic scenarios are situations which are outside the urban

streets like highways and rural roads. Urban streets require more constraints and are

more complex. They model Bayesian network with discrete nodes and output is decision

node with values: Keep Lane, Change Lane Left/Right.

In [14] Bayesian network is created with three nodes for right turn assist. Nodes

in Bayesian networks are intention I, hypotesys H, and observation O. The task is to

calculate P (I|O). They use Intellignet driver model to drive hypoteses H.

1.4 Thesis overview

This thesis will show the development of a simple and interpretable probabilistic model.

This model will have good uncertainty representation and predictive power. We will create

such a model using probabilistic programming. I will present a theoretical background for

Bayesian networks. Also, show a history of developing inference algorithms. After that, I

will show that variational inference is a promising inference algorithm. I will present the

meaning of probabilistic programming in Bayesian machine learning. In section 3 I will

explore data and describe the process of data preparation. In 4 we will see model structure

and process of training generative model, and inferring intention from the trained model.

The model will be evaluated and results will be presented in 5. Finally, in section 6 the

thesis method, result, and limitations are going to be discussed. Also, the future work

and extensions will be proposed in that section.

Faculty of mechanical engineering and Naval Architecture 6

Ivan Grabić Master’s thesis

2 Bayesian Machine Learning

Alan Turing gave a basic notion of what an Artificial Intelligence (AI) is. In [15] he

proposed a test which he called ”imitation game” and which is today known as the Turing

test. An artificial intelligent agent would be, according to his proposition, agent that could

fool ordinary human about whether the human communicates with a human or a machine.

This level of intelligence is something researches are striving for in AI system development.

Intelligent machines should reason logically. This is a widespread fact in the AI com-

munity. A big portion of the AI community also thinks that such machines should deal

with uncertainty. However, only a smaller part believes that intelligent machines should

also reason probabilistically [16]. The field of machine learning that was born from a

belief that AI should reason probabilistically is called Bayesian (also called Probabilistic)

Machine Learning.

We can say that Bayesianism is a philosophy that asserts that: ” in order to understand

human opinion as it ought to be, constrained by ignorance and uncertainty, the probability

calculus is the single most important tool for representing appropriate strengths of belief.”

[16]

2.1 Probability calculus and machine learning

Let us introduce basic probability calculus. Two rules underlie probability theory:

the sum rule:

P (x) =
∑
y

P (x, y), (2.1)

and the product rule:

P (x, y) = P (x)P (y|x). (2.2)

Here x and y are some observed uncertain quantities. For example, x can represent

a driver’s intention on the intersection and y can represent a planned destination. Both

x and y are values taken from sets X or Y respectively. Here X is for example set of

values forwad, left. P (x) is then probability of event x. P (x, y) is the joint probability of

observed events. Finally, P (y|x) is conditional probability. This represents a probability

of y given that we know the value of x. We say that the probability of y is conditioned

on observing the value of x and call this process conditioning. These probabilities can be

interpreted as the frequency of observing that value, or as a subjective degree of belief,

that event will take place.

These two interpretations of probabilities create two branches of statistics: Bayesian

statistics and Frequentist statistics. Frequentist believes that probability is a fundamental

property of a random physical system. A frequentist will associate the probability of dice

Faculty of mechanical engineering and Naval Architecture 7

Ivan Grabić Master’s thesis

rolling to a specific number with a frequency of that event imagining that he will roll

the dice many times. Bayesinism is an extension of that interpretation. It states that

probability is subjective partial belief. One can have a belief in some event even with

that event untied to a physical process that is repeatable many times. We can talk about

what is the probability that every car in the world will be autonomous in the next ten

years. Probability isn’t fundamental physical property in this case. We can’t, even in

principle, repeat this experiment many times. Most frequentists will, therefore, consider

this probability meaningless. Bayesianist can talk about this probability and its relation

to evidence for and against it.

From (2.1) and (2.2) we can derive Bayes theorem:

P (y|x) =
P (x|y)P (y)

P (x)
. (2.3)

To apply probabilistic calculus to machine learning we can replace x and y in 2.3 with D

and θ respectively. Here D represents data on which you want your model to learn, and

θ are parameters of your model.

Additionally, you condition all terms on m, which represents model architecture. So

the expression 2.3 becomes:

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)
. (2.4)

.

In (2.4) P (D|θ,m) is called likelihood of parameters θ of a model m. P (θ|m) is called a

prior probability of parameters or prior. It represents the probability of parameters before

training. P (θ|D,m) is a posterior probability of parameters, after considering data.

2.2 Bayesian network basics

Probabilistic graphical models (PGMs) are a powerful framework for representing uncer-

tain systems. We can look at PGMs as probability distributions joined together. This

compositionality makes them more interpretable. They are used in many applications of

machine learning, computer vision, natural language processing, etc. We represent them

as graphs where nodes represent random variables and arcs represent conditional depen-

dencies. In this approach, I will use a Bayesian network, which is a type of PGMs to solve

maneuver prediction problem.

Bayesian network (BN) is a directed acyclic graph in which each edge corresponds

to conditional dependency and each node corresponds to a unique variable. [17] By

definition, BN brings together graph theory and probability calculus. Let us introduce a

Faculty of mechanical engineering and Naval Architecture 8

Ivan Grabić Master’s thesis

mathematical representation of a Bayesian network.

A graph G = G(V,E) consists of a set of objects V called vertices (or nodes) and

another set of objects E called edges. The directed graph additionally consists of mapping

that maps every edge to a set of ordered nodes [18]. In other words, the map gives direction

to edges, and we will call directed edges arcs. The term acyclic refers to a constraint that

there can’t be any directed cycles in the graph. That means that you can’t return to a

node by following directed arcs [16]. A simple directed acyclic graph would look like this.

X Y
Figure 4. Simple Directed Acyclic Graph

Directed acyclic graph consists of nodes and directed edges. The fact that is directed means
that you can not return to a node just by following directed edges.

A random variable is a variable which reports the outcome of some measurement

process [16]. A random variable X has multiple states that it can take.

X = {x1, x2, ..., xn} (2.5)

A variable can be discrete or continuous. The example of a discrete variable is a simple

boolean variable with True and False states. On the other hand, we have a continuous

variable, which ranges over real numbers, like for example speed or temperature. The

Bayesian network is primarily oriented to handling discrete variables [16]. In most cases,

continuous variables can be discretized. Sometimes with discretization of continuous

variables we loose some information. However, continuous variables can be also used,

and are used in this thesis. Hybrid Bayesian network contain discrete and continuous

variables.

When modeling an uncertain problem, one should consider which variables are of

interest. These variables condition what nodes will network have and what values will

those nodes take. One constraint on values is that they must be mutually exclusive and

exhaustive [16]. That means that the variable can take just one value at the time. After

the nodes are being defined, one should define qualitative relationships between the nodes.

We already mentioned that relationships can be represented by arcs. In particular, two

nodes should be connected by an arc if one affects or causes the other [16]. When all

relationships are presented, we have structure (or topology) of a network.

When talking about networks we are going to borrow terminology from [16], which

uses the family metaphor. If there is an arc from node A to node B, we say that A is

Faculty of mechanical engineering and Naval Architecture 9

Ivan Grabić Master’s thesis

X

Figure 5. Markov blanket of a node.

The markov blanket consists of a node, its parents and its child parents. In the picture the
markov blanket of node X are every note in shaded circle.

the parent of B. Consequently, B is a child of A. If there is a directed chain of nodes, the

node is an ancestor to another node if it is earlier in the chain. If it is later in the chain

it is called descendant. One useful concept is a Markov blanket of a node (Figure 5.).

Markov blanket consists of the node’s parents, its children, and its children’s parents. A

node without parents is called the root node, and node without children is called the leaf

node.

We have defined a directed acyclic graph and how it represents random variables and

their dependencies. To have a BN we quantify dependencies between variables. That

relationship is quantified with a conditional probability distribution (CPD) associated

with each variable. The conditional probability can be mathematically presented as

P (X|Y) =
P (X ∩ Y)

P (Y)
. (2.6)

That is, given event Y has occurred, the probability that event X will occur is P (X|Y) [16].

The conditional probability distribution, then, is telling us how the probabilities of some

variable X are distributed regarding variables it depends on. After we got a structure of

the network it is necessary to define the CPD, which in case of discrete variables takes the

Faculty of mechanical engineering and Naval Architecture 10

Ivan Grabić Master’s thesis

form of a conditional probability table (CPT). For doing that we must look at all possible

combinations of the values of the parent’s nodes. Each such combination is called the

instantiation of a parent set [16]. For every instantiation of parents, we should specify

the probability that the child will take each of its values.

Modeling of Bayesian networks requires the assumption of Markov property. This

assumption is that there are no direct dependencies in the system being modeled which

are not already explicitly represented with arcs [16]. In other words, CPD of a node

depends only on its parents [19]

We can consider BN to be a representation of joint probability distribution (JPD) of

the system modeled. If we can represent a system in a compact way so that not every

node is connected we have a computationally tractable representation. In a network with

n nodes we can represent the CPD as P (x1, x2, . . . , xn). With (2.2), extended to more

than two variables, we can factorize JPD as:

P (x1, x2, ..., xn) =
∏
i

P (xi|x1, . . . , xn−1). (2.7)

Considering Markov property, which tell us that value of particular node is dependent

only on values of its parents, we can reduce (2.7) to:

P (x1, x2, ..., xn) =
∏
i

P (xi|Parents(xi)). (2.8)

2.3 Inference in probabilistic models

One of the main tasks of BN is the computation of posterior probabilities for query nodes,

given some evidence. This task is often called probabilistic inference, or belief updating

[16]. There are 2 major types of inference algorithms: exact and approximate.

The first inference algorithm was proposed by Pearl in [17]. It was an exact algorithm

and it is called belief propagation algorithm today. It formed a basis for other exact and

approximate algorithms. This algorithm worked only on specific types of networks called

trees. Trees are network structures that permit only one undirected path between any

two nodes. If any node has more than one parent the network has polytree structure.

The belief propagation was followed immediately with a polytree algorithm which could

do inference on polytrees also. One of the main significance of this algorithm is that it

showed how important is independence in reducing the complexity of inference.

Researchers wanted to find an algorithm that will generalize inference to an arbitrary

structure. One of the main ideas that came from this direction is based on conditioning.

Conditioning here means setting some variables to some specific value. If you repeat the

condition for every possible value for some variables you can simplify network structure.

Faculty of mechanical engineering and Naval Architecture 11

Ivan Grabić Master’s thesis

Pearl proposed an algorithm known as loop-cutset. In this algorithm, you condition on

enough variables to make network structure a polytree.

The first algorithm that found widespread use and it is used still today is a joint tree

algorithm. Today it is used in many commercial implementations of BNs. The way it

works is that it is a polytree algorithm on a tree of clusters. For it to work you need

to convert the direct acyclic graph to the tree of clusters of nodes while meeting some

requirements. The main disadvantage is that it is not feasible for networks with large

treewidth.

While searching for alternatives to joint tree algorithm researches developed a variable

elimination algorithm. The main advantage of this algorithm is its simplicity. This

algorithm is used for inference for predicting intention in this approach after the network

was trained.

Approximate algorithms are showed to be more efficient from exact algorithms al-

though less accurate. Shortly after his first exact algorithm, Pearl proposed Gibbs sam-

pling as an approximate algorithm for bayesian inference. This paper became a basis for

other Markov Chain Monte Carlo based methods.

Another approach Pearl proposed was using a polytree algorithm for inference on

networks with arbitrary structures. This algorithm is called loopy belief propagation

(LBP). With some modifications, it is showed that it can be used on arbitrary networks

and that it converges with good approximations. The dilemma about what is it converging

to inspired lots of papers. According to first characterization, LBP is an approximate

distribution of a BN that has a polytree structure. Iterations of this algorithm were finding

node marginals that are minimizing KL-divergence between original and approximate

distributions. KL - divergence represents disimilarity of probability distributions.

Turns out that LBP is part of a broader type of approximation algorithms called varia-

tional algorithms. The variational algorithm turns approximate inference to an optimiza-

tion problem. It works by first assuming a tractable class of approximate distributions

and trying to find parameters that minimize KL-divergence between approximate and

original distribution.

2.4 Black Box Variational Inference

In this section we will show Black Box Valiational Inference (BBVI) algorithm from [20].

BBVI is a variational inference algorithm developed to solve the inference problem on

different models. Variational inference tries to find parameters of simple distributions so

that distribution is close to real posterior. These approximate distributions are called

variational distributions. We quantify the closeness of distributions with Kullback-Leiber

(KL) divergence. For an arbitrary model, practitioners have to develop specific algorithms

Faculty of mechanical engineering and Naval Architecture 12

Ivan Grabić Master’s thesis

for variational inference. This makes modeling hard because the practitioner is checking

assumptions iteratively when creating a model.

Variational methods generally work by converting posterior estimation to optimization

problem [20]. While optimizing parameters are updated to adjust variational distribution

to be similar to real posterior. In BBVI gradients of the objective function is the ex-

pectation of function f of the latent and observed variable. BBVI optimize objective

by:

1. sampling from variational distribution,

2. evaluating function f ,

3. computing Monte Carlo estimates of the gradient

4. using these gradients in stochastic optimization to optimize parameters.

Let us define a probabilistic model (Figure 6) and some terms we need to derive BBVI.

Let x be observations, z latent variables, λ variational parameter and q(z|λ) variational

distribution of a probabilistic model.

z x
Figure 6. Probabilistic model

Probabilistic model used for deriving black box variational inference algorithm. The variable x
represents observations and z latent variables. The standard notation when drawing

probabilistic graphical models is to color observed nodes as in figure.

Expectation Let us first define the term expectation of a discrete random variable.

We say that expectation of random variable X which can take values x1, x2, ..., and have

probability mass function p is:

E[X] =
∑
i

xiP (X = xi) =
∑
i

xip(xi). (2.9)

From this, we can say that expectation is a weighted average of values where weights are

probabilities of those values [21].

Faculty of mechanical engineering and Naval Architecture 13

Ivan Grabić Master’s thesis

Figure 7. Convex and Concave functions

Extending this definition to continuous variables with probability density function f

gives:

E[X] =

∫ ∞
−∞

xf(x)dx. (2.10)

Jensen Inequality Jensen inequality comes from definition of convex function We say

that function g is convex if, for any two points x and y with α = [0, 1] :

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y). (2.11)

Function is concave if:

g(αx+ (1− α)y) ≥ αg(x) + (1− α)g(y). (2.12)

We can generalize these expressions for more than two values (x1, x2, ..., xn). Concave

function then is:

g(α1x1 + α2x2 + ...+ αnxn) ≥ α1g(x1) + α2g(x2) + ...+ αng(xn) (2.13)

For variable X with possible values x1, x2, ..., xn we can set that

αi = P (X = xi) = p(xi). (2.14)

Combining (2.9), (2.13), (2.14), assuming that g is concave, we get Jensen inequality:

g(E[X]) ≥ E[g(X)]. (2.15)

Faculty of mechanical engineering and Naval Architecture 14

Ivan Grabić Master’s thesis

Evidence Lower Bound Starting from log probability of observations we have:

log p(X) = log

∫
Z

p(X,Z). (2.16)

Let’s expand that:

log p(X) = log

∫
Z

p(X,Z)
q(Z)

q(Z)
. (2.17)

With (2.9) we can transform (2.17) to:

log p(X) = log

(
Eq
[
p(X,Z)

q(Z)

])
. (2.18)

Since we know that log function is concave, we can use Jensen inequality (2.15):

log

(
Eq
[
p(X,Z)

q(Z)

])
≥ Eq

[
log

p(X,Z)

q(Z)

]
(2.19)

Using logarithm quotient rule we can write:

log p(X) ≥ Eq [log p(X,Z)] +H[Z], (2.20)

Where

H[Z] = −Eq[log q(Z)] (2.21)

is called Shanon entropy.

Right hand side of equation (2.20) is called Evidence Lower Bound or Variational lower

Bound. Let us denote it as:

L = Eq [log p(X,Z)] +H[Z] (2.22)

Kullback-Leiber divergence We use Kullback-Leiber divergence to measure differ-

ence between distributions. KL divergence represents amount of information required to

distort distribution p(Z) to q(Z). KL divergence:

KL [q(Z)|p(Z|X)] = KL =

∫
Z

q(Z) log
q(Z)

p(Z|X)
= −

∫
Z

q(Z) log
p(Z|X)

q(Z)
. (2.23)

Using (2.6) we can transform right side as:

KL = −
(∫

Z

q(Z) log
p(X,Z)

q(Z)
−
∫
Z

q(Z) log p(X)

)
. (2.24)

Faculty of mechanical engineering and Naval Architecture 15

Ivan Grabić Master’s thesis

Figure 8. Kullback-Leiber divergence. Taken from [22]

Kullback - Lieber divergence is used to measure difference between distributions. The closer
two distributions get to each other, the lower the loss becomes. In the graph above, the green
distribution is trying to model the blue distribution. As the green distribution comes closer

and closer to the blue one, the KL divergence loss will get closer to zero.

KL = −
∫
Z

q(Z) log
p(X,Z)

q(Z)
+ log p(X)

∫
Z

q(Z) (2.25)

Taking in consideration equation (2.22) and normalization constraint∫
Z

q(Z) = 1, (2.26)

we can rearange equation (2.25) as:

KL [q(Z)|p(Z|X)] = −L+ log p(X). (2.27)

From equation (2.27) it is obvious that minimizing KL - divergence is the same as maxi-

mizing ELBO.

The goal of BBVI is to maximize ELBO (minimize KL - divergence) to make vari-

ational distribution closest to real posterior. To maximize ELBO this approach uses

stochastic optimization. Stochastic optimization uses noisy estimates of gradients to up-

date parameters. Stochastic optimization updates x in interation t as:

xt+1 ← xt + ρtht(xt). (2.28)

Faculty of mechanical engineering and Naval Architecture 16

Ivan Grabić Master’s thesis

Where f(x) is objective function, ht is specific value of H(x). H(x) is random variable

with expectation f(x). ρ is learning rate. This procedure converges if the following rules

are met:
∞∑
t=1

ρt =∞, (2.29)

∞∑
t=1

ρ2t <∞. (2.30)

These rules are known as Robbins-Monro conditions.

To optimize ELBO with stochastic optimization we need to compute unbiased gradents

from samples of variational distribution. Differentiating (2.22) we get:

∇λL = ∇λ

∫
(log p(x, z)− log q(z|λ))q(z|λ)dz (2.31)

Using dominated convergence theorem [23] we can write:

∇λL =

∫
∇λ[(log p(x, z)− log q(z|λ))q(z|λ)]dz. (2.32)

Using product rule this becomes

∇λL =

∫
∇λ[(log p(x, z)− log q(z|λ))]q(z|λ)dz (2.33)

+

∫
∇λq(z|λ)(log p(x, z)− log q(z|λ))dz (2.34)

With ∇λ[q(x, z)] = 0 and (2.10)

∇λL = −Eq[∇λ log q(z|λ)] +

∫
∇λq(z|λ)(log p(x, z)− log q(z|λ))dz (2.35)

It can be showed that first term in (2.35) is equal to zero

Eq[∇λ log q(z|λ)] = Eq
[
∇λq(z|λ)

q(z|λ)

]
(2.36)

=

∫
∇λq(z|λ)dz (2.37)

= ∇λ

∫
q(z|λ)dz = ∇λ1 = 0 (2.38)

If we observe that:

∇λ[q(z|λ)] = ∇λ[log q(z|λ)]q(z|λ), (2.39)

Faculty of mechanical engineering and Naval Architecture 17

Ivan Grabić Master’s thesis

we get gradient of ELBO as expectation

∇λL = Eq [∇λ log q(z|λ)(log p(x, z)− log q(z|λ))] . (2.40)

With (2.40) we can calculate noisy unbiased gradints with Motne Carlo approximation

∇λL =
1

S

S∑
s=1

∇λ log q(zs|λ)(log p(x, zs)− log q(zs|λ)) (2.41)

where zs ∼ q(z|λ).

Only assumption for using this algorithm is that practicioner can compute log of

p(x, zs). This way it is easy to implement variational inference to broad range of models.

2.5 Probabilistic Programing

Bayesian machine learning uses probability calculus as the main tool. In contrast, Deep

learning practitioners don’t regard probability calculus as the main tool for building mod-

els. The author of [5] argues that one of the reasons for the rapid expansion of deep learn-

ing methods is automatic differentiation. He also argues that without a similar toolchain

for Bayesian machine learning, that rapid expansion is not probable. Probabilistic pro-

gramming aims to deliver such a toolchain.

You can look at probabilistic programming as a way to automate Bayesian inference.

Probabilistic programming combines fields of statistics, machine learning, and program-

ming languages. It uses inference algorithms from statistics and semantics, compilers and

other tools from programing languages [5]. The goal of a programming language is to

build inference evaluators for models and applications in machine learning.

Another way to describe probabilistic programming is by doing statistics with com-

puter science tools. The standard pipeline of a computer science program can be stated

as:

1. Program gets some input,

2. Program evaluates input,

3. Program returns output.

In statistics, this pipeline is inversed. Here you have output, which is some observations

or data y. You specify generative model P (x, y) which can generate statistically similar

data. You use the appropriate inference algorithm to figure out posterior distribution

P (x|y)

Faculty of mechanical engineering and Naval Architecture 18

Ivan Grabić Master’s thesis

Figure 9. Comparison of standard and probabilistic programming pipeline [5]

This diagram shows intuitive difference between probabilistic and regular program. Standard
program returns some output according to program parameters. Probabilistic program,

however, tries to find parameters according to output it could produce.

Probabilistic programming is used for performing Bayesian inference with computer

science tools. The benefits of programming languages make denoting a model easier.

You use inference algorithms to figure out the conditional distribution. The conditional

distribution which you are looking for is one that gives observed outputs given some input

to a probabilistic program.

There is a difference between programming languages and probabilistic programming

languages. The probabilistic programming language must have the ability to draw values

at random. However, not every language that can draw random values is a probabilistic

programming language. The main thing that differentiates probabilistic programming lan-

guage and programming language is conditioning. Conditioning means getting posterior

distribution by encoding observations in a probabilistic program.

To see the power of probabilistic programming we will look at the example of breaking

captchas. It is showed that this problem can be denoted in probabilistic programming

language and solved with inference. Let us compare probabilistic and nonprobabilistic

approaches applied to this problem. The nonprobabilistic approach requires a large num-

ber of captcha images with labels. This data would be fed into a Neural network which

would learn to map images to strings. The probabilistic approach would require building

a model that generates statistically similar images from strings. This is called the gener-

ative model. When the model is created you would condition on observed images and get

posterior distribution over strings [5].

Faculty of mechanical engineering and Naval Architecture 19

Ivan Grabić Master’s thesis

Figure 10. Captcha breaking with probabilistic programing [5]

Writing good models is generally a hard task. If we have a large amount of data,

however, we can use this data to learn a generative model. Recently a lot of data-driven

approach for modeling is outperforming expert-driven systems. A Bayesian network can

be a compromise between these two approaches. The topology of the network can be

designed by an expert, and then the network can learn parameter values from data. We

say that we use a top-down approach when a model is created from latent variables

towards observations. In contrast bottom down approach is used in deep learning, where

we start from observations to compute parameters of a network.

2.5.1 Pyro probabilistic programing language

Pyro is a probabilistic programming language built on python [24]. It is used for de-

veloping advanced probabilistic models. Pyro leverages SVI algorithms and probability

distributions built on top of PyTorch to scale to large datasets and high dimensional mod-

els. Pyro programs are written as python functions and it has only two extra language

primitives. Those are pyro.sample and pyro.param.

Probabilistic graphical models are created from joining probability distributions. Prob-

abilistic programming languages have probability distributions as stochastic functions.

From these functions, it is easy to draw samples. We used Normal and Bernoulli distri-

butions for creating nodes in our network.

A normal distribution is used for continuous variables. It is a simple distribution with

two parameters:

N ∼ (µ, σ) (2.42)

where µ is a mean and σ is standard deviation of distribution N .

Bernoulli distribution is used for discrete binary outcomes. The output of a Bernoulli

distribution is 0 or 1. It takes one parameter (µ) which defines the probability that the

Faculty of mechanical engineering and Naval Architecture 20

Ivan Grabić Master’s thesis

x = pyro.sample("sample_name",

pyro.distributions.Normal (0,1)).

Figure 11. Pyro sample statement

Pyro sample statement is a builiding block of probabilistic models. This method takes two
arguments. First one is the name of the sample site, and other is distribution from which

samples are made. Every sample site represents random variable. This means that sample sites
are nodes in our network.

def model():

x = pyro.sample("x", dist.Normal (0,1))

y = pyro.sample("y", dist.Normal(x,0.1))

return y

Figure 12. Defining model in pyro

Random variables are connected in a model. This model is represented in pyro as a function
with sample sites. Since pyro is built on top of python programming language we can use control
flow, recursion, and modularity of python for modeling.

outcome is 1.

B ∼ (µ). (2.43)

The main building block of models in pyro is pyro.sample primitive. In addition to

returning a sample from distribution pyro.sample gets a unique name (Figure 11.

Pyro backend uses names of sample sites for implementing manipulations on them.

Probabilistic models are combination of stochastic and deterministic computations.

In pyro we create model as a function. Simple example of a pyro model is shown on figure

12:

The real power of pyro lies in its possibility of conditioning on observed data. We

condition a generative model on observed data to infer latent variables that produced

observations. In pyro, there are few ways to do conditioning. We can add obs argument

to pyro.sample method and pass values of observed data to that argument. There is also

function condition which takes model and data as arguments and it condition model to

passed data.

Parametrized variational distribution q(z|x) is called guide() in pyro. The parameters

λ we represent with pyro.param() primitive. We use it to represent trainable parameters

which will be updated in optimization. Every pyro.param() is named so that pyro backend

can manipulate parameters at runtime. Figure 14 shows example of a guide() with

trainable parameter.

There are few constraints when creating a guide. The guide and the model have to had

same arguments. For every unobserved sample in model we need to create same named

Faculty of mechanical engineering and Naval Architecture 21

Ivan Grabić Master’s thesis

def model():

x = pyro.sample("x", dist.Normal (0,1))

y = pyro.sample("y", dist.Normal(x,0.1) ,

obs=torch.tensor (0.2))

Figure 13. Conditioned model in pyro

Conditioning is the main thing that differentiates probabilistic programming languages from
standard programming languages. In pyro conditioning is done with obs keyword passed to

sample sites we want to observe.

def guide():

mu = pyro.param("mu_param", torch.tensor (0.))

x = pyro.sample("x", dist.Normal(mu ,1))

y = pyro.sample("y", dist.Normal(x,0.1))

Figure 14. Defining guide (variational distribution) in pyro.

Guide represents variational distribution from SVI. Trainable parameters are presented as
pyro.param method.

sample in the guide. Also, guide must not have any observed values. This makes sampling

in guide straightforward. To sample guide you only need to forward run the program.

2.5.2 SVI in pyro

Black box variational inference is implemented in pyro. The paper [25] presents Au-

tomated Variational Inference which pyro used to implement BBVI. In section 2.4 we

derived BBVI and here we will show how is it implemented in pyro.

Probabilistic model defined as p(x, z) is a stochastic function model(). The goal is

to find marginals of latent values given some observations p(z|x). We can condition

model() with adding obs argument to sample() variables that are in the model(). The

variational distribution q(z|λ) is also a stochastic function called guide() in pyro. One

creates guide() from model().

One easy way to create variational distribution is a partial mean-field approximation.

Here this means that the model() is run forward and every time sample() is encountered,

variational parameter is used for sampling instead of original parameter [25]. This means

that ELBO is constructed with respect to variational distribution as in (2.22). In pyro

first the guide() trace is populated. When we have all samples from guide() we run

model(). Every time a unobserved sample is encountered in model(), we replace it with

corresponding sample from a guide().

This can be extended for automated calculation of stochastic gradients. The procedure

looks as following:

Faculty of mechanical engineering and Naval Architecture 22

Ivan Grabić Master’s thesis

1. Get guide trace.

2. Get model trace with samples replaced as described above.

3. Compute log prob of a guide().

4. Compute log prob of a model().

5. Compute ELBO.

6. Compute Gradients.

Faculty of mechanical engineering and Naval Architecture 23

Ivan Grabić Master’s thesis

3 Data

The dataset used for training a model in this thesis is the highD dataset [26]. HighD

is a dataset of vehicle trajectories recorded in Germany in 2018. Recordings are made

by a drone with a camera. This approach overcomes some limitations of typical ground-

based data collection methods. For example, since the images are captured from aerial

perspective there are no occlusions and every vehicle is visible.

The kinematical features are extracted automatically using computer vision. The U-

Net neural network is used for segmentation and from that bounding boxes are created.

Static objects are manually labeled. The authors report position error of 10 cm.

This dataset includes 16.5 hours of recordings from six different locations. The data

is formatted in the following way. Every recording is described with four files. The first

file is a picture of the location recording is made. Second file is a .csv file which includes

location, traffic signs, speed limit, driving lanes, and similar static data about recording.

The third file contains a summary of every vehicle. This means features like maximum

and minimum velocity, height, width, etc. The last file is about kinematic data about

vehicles in every frame and its relation to other participants.

3.1 Raw data exploration

Let us explore our dataset. As an example we will look at recording number 23 (Figure

15).

Figure 15. Shot of the highway for recording 23.

Highway as recorded with a drone and with vehicles removed in post processing. Every
direction has two lanes. Recorded part of a highway is around 400 m long.

The 23 tracks.csv file contains data collected 25 times per second. In table 1 we can

see what fields does dataset contains with descriptions and units.

In table 2 the summary statistics can be seen for kinematics of vehicles. To better

understand these values, let us visualize distributions of these values. In Figure 16 his-

tograms of velocities and accelerations of vehicles are presented. From the distribution of

longitudinal velocity (xVelocity) asymmetry of the values, caused by two directions of is

best seen. We can not conclude the same from other distributions without dividing plots

to separate lanes for example.

All distributions are similar to normal distribution around mean of zero except the

distribution of longitudinal velocity. If we compare visualization of longitudinal velocity

Faculty of mechanical engineering and Naval Architecture 24

Ivan Grabić Master’s thesis

Table 1. Description of fields in tracks.csv files.

frame current frame. [-]
id track’s id. [-]
x x position [m]
y y position [m]
width width of the vehicle. [m]
height height of the vehicle. [m]
xVelocity longitudinal velocity. [m/s]
yVelocity lateral velocity. [m/s]
xAcceleration longitudinal acceleration. [m/s]
yAcceleration lateral acceleration [m/s]
frontSightDistance distance to the end of the recorded highway. [m]
backSightDistance distance to the begining of the recorded highway. [m]
dhw Distance Headway. [m]
thw Time Headway. [s]
ttc Time-to-Collision. [s]
precedingXVelocity longitudinal velocity of the preceding. [-]
precedingId id of the preceding vehicle in the same lane. [-]
followingId id of the following vehicle in the same lane. [-]
leftPrecedingId id of the preceding vehicle on the adjacent lane on the left. [-]
leftAlongsideId id of the adjacent vehicle on the adjacent lane on the left. [-]
leftFollowingId id of the following vehicle on the adjacent lane on the left. [-]
rightPrecedingId id of the preceding vehicle on the adjacent lane on the right. [-]
rightAlsongsideId id of the adjacent vehicle on the adjacent lane on the right. [-]
rightFollowingId id of the following vehicle on the adjacent lane on the right. . [-]
laneId id of lanes.

with it summary statistics we can conclude that mean extracted from table 2 is deceiving.

We see that average velocity is about 30 m/s in both directions and not -2 m/s.

It can be useful to visualize correlation of variables as seen in figure 18.

Faculty of mechanical engineering and Naval Architecture 25

Ivan Grabić Master’s thesis

Table 2. Summary statistics of numeric values of the dataset.

x y xVelocity yVelocity xAcceleration yAcceleration
mean 199,41 16,38 -2,66 0,01 0,16 0,00
std 118,50 6,45 28,67 0,16 0,31 0,07
min -20,19 7,33 -46,66 -1,36 -1,94 -0,62
25% 96,66 12,13 -27,26 -0,04 0,02 -0,03
50% 198,09 13,09 -22,72 0,01 0,14 0,00
75% 301,37 21,93 28,96 0,07 0,30 0,04
max 416,01 27,11 48,90 1,54 3,57 0,60

Figure 16. Distribution of acceleration and velocity of vehicles

Figure 17. Distribution of collected positition data

Faculty of mechanical engineering and Naval Architecture 26

Ivan Grabić Master’s thesis

Figure 18. Pair plots of accelerations and velocities of vehicles

Faculty of mechanical engineering and Naval Architecture 27

Ivan Grabić Master’s thesis

We can extract one vehicle from the dataset and visualize its trajectory and kinematic

values (Figure 20). The origin of the coordinate system in which values are measured

is defined to be in the top left corner of the recording. The positive longitudinal axis

(x-axis) is in right direction and positive lateral direction (y-axis) is in bottom direction

of a camera (Figure 19). In the same way, trajectory is visualized on figure 20.

Figure 19. Highway with coordinate systems and directions.

The yellow lines shows in what direction vehicles are driving in every lane, global coordinate
system is red, local coordinate system is green and is connected to blue vehicle.

The lanes are labeled from top to bottom with numbers: 2,3,5,6. In lanes 2 and 3

vehicles forward driving is from right to left on the recording. Lane 2 is the right lane

(slow lane) here and lane 3 is the left lane (fast lane). For lanes 5 and 6 it is the other

way around. Vehicles here are driving from left to right. Here lane 6 is a right lane and

lane 5 is left lane. These two directions are causing asymmetry in the dataset which we

will deal later in this thesis when preparing data.

Faculty of mechanical engineering and Naval Architecture 28

Ivan Grabić Master’s thesis

Figure 20. Example trajectory from the dataset

Figure 21. Kinematics of example trajectory

Faculty of mechanical engineering and Naval Architecture 29

Ivan Grabić Master’s thesis

3.2 Data preparation

To train our model on this data we must preprocess it. Since y datapoint is coordinate of

the upper left corner of the vehicle bounding box, we changed it to be coordinate of the

center of a vehicle. This was achieved by adding half the height value of the vehicle to its

y coordinate. Another file contains vehicle class information. This means is the vehicle a

car or a truck. We added this information to our dataset for every vehicle.

Every recording contains data from two driving directions. This causes asymmetry

in the dataset. To deal with this we converted all kinematic values to local coordinate

systems attached to ego vehicle. After this transformation following statements are true:

• yVelocity is negative in vehicles left direction and positive in vehicles right direction.

• yAcceleration is negative in vehicles left direction and positive in vehicles right

direction.

• xVelocity is positive for forward driving and (hypoteticaly) negative for reverse

driving.

• yAcceleration is positive for accelerating and negative decelerating.

Figure 22. Distribution of velocities and accelerations after transformation.

Faculty of mechanical engineering and Naval Architecture 30

Ivan Grabić Master’s thesis

The ”laneId” column contains information about what lane is vehicle occupying in

every frame. From this information, we can conclude if the vehicle changed lanes during

recording. We created the column ”laneChange” with labels about whether a vehicle

changed the lane at least once. The label 1 represents at least one lane change and label

0 staying in the lane the whole time. This label is on the vehicle id level. This means

that it is true for the whole trajectory if the vehicle did perform a lane change.

For predicting lane change intention we need to label actual lane changes and not the

whole trajectory. Since the dataset is big this is labeled automatically. The assumption is

that driver has the intention to change lane S seconds before the vehicle actually touches

the other lane. We created columns with S = [1, 2, 3, ..., 8] seconds. The procedure is as

follows:

1. Find when the vehicle ”laneId” label changed.

2. Label this as lane change.

3. Propagate the label for T steps in past or until begining of trajectory.

4. Propagate the label for T steps in the future or until the end of trajectory.

T here represents the number of frames you want to propagate labels in the past. data

is collected in the resolution of 25 frames per second for every recording, the number T

is T = 25 · S.

We also created the column ”laneIdRL” which contains a label about lane relations.

In other words, is a vehicle in the right or left lane? Having already ”laneId” labels and

knowing which lane numbers are left and which are right lanes this was a straightforward

task.

There are a lot more vehicles that do not perform a lane change in a dataset (Figure

23). To avoid this we reduced the number of vehicles that did not perform lane change to

match the number of vehicles that performed at least one lane change. We picked random

vehicles to keep.

The final step in the preparation of training data was to join all data files in one. For

creating a training dataset we choose all recordings of a highway with two lanes in one

direction. The following are numbers of such recordins: 1, 2, 3, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24. We joined all except number 24 in a training dataset and left recording 24 as

a test data. The final training dataset had 931 753 data points.

Faculty of mechanical engineering and Naval Architecture 31

Ivan Grabić Master’s thesis

Figure 23. Unbalanced ratio of lane change labels.

Faculty of mechanical engineering and Naval Architecture 32

Ivan Grabić Master’s thesis

3.3 Data class breakdowns

It is viable to assume that drivers behave differently in different situations. Here we will

explore how driving data breaks if we divide according to some categories. The one thing

that can divide behaviors on the road is the fact that you are driving a personal car or

a truck. Another is about is the driver in a fast or slow lane. In addition to these two

assumptions, we will explore also behavior immediately before a performed lane change.

3.3.1 Vehicle class

Train dataset contains 84, 54% of cars and 15, 45% of trucks. Let us see how are kinematic

values distributed when divided into these two categories (Figure 24). We can see that

the bimodality of xVelocity from figure 22 can be explained by different mean velocities of

cars and trucks. Looking at lateral components of data we see that there is relatively less

variability in trucks. The reason for this could be a tendency of truck drivers to stay in

the same lane. Figure 25 shows how the smaller percent of trucks in the training dataset

performs lane change even though the dataset was balanced.

Figure 24. Comparison of car and truck data.

Let us also explore how type of vehicle affects frequency of lane changes. Figure 25

shows that ratio of trucks that performed lane change in a balanced dataset. This ratio is

Faculty of mechanical engineering and Naval Architecture 33

Ivan Grabić Master’s thesis

smaller in a original dataset. The ratio of cars that performed lane change is set to 50%

as described earlier.

Figure 25. Ratio of truck drivers that changed lane.

Faculty of mechanical engineering and Naval Architecture 34

Ivan Grabić Master’s thesis

3.3.2 Left and right lane

Drivers behave differently in the left and the right lane (Figure 26). We can conclude a

few things by looking at longitudinal velocity distribution. Slower drivers tend to go in

the right lane. Trucks spend most of their time in the right lane. We can also see from the

longitudinal acceleration plot that drivers accelerate slightly more in the left lane. This

is not surprising given that the left lane is used for overtaking slower vehicles.

Looking at y directed values we can see that the velocity in the y-direction is dis-

tributed almost the same in both lanes. This could be because vehicles leave and get

in the lane with similar velocities. The biggest difference is in acceleration distributions.

We can see that left lane distribution is shifted to positive values which represent right

turning. Similarly, right lane acceleration distribution is shifted to negative values which

represent left turning.

Figure 26. Data distributions with respect to a lane.

Faculty of mechanical engineering and Naval Architecture 35

Ivan Grabić Master’s thesis

3.3.3 Lane change

The dataset comes with lane labels for every frame. This label tells us in which lane the

vehicle is in a specific frame. We created a lane change label by looking if the vehicle

is in the same lane for the whole trajectory. We can look now at differences between

vehicles that stayed in the lane the whole time and vehicles that performed at least one

lane change (Figure 27).

The difference in longitudinal velocity distribution is mostly due to the fact that

trucks rarely perform lane change. We can not see major differences in the distribution

of longitudinal acceleration while breaking only on lane change class. Lateral kinematics

distributions are very different. The velocity and acceleration of vehicles that stayed in

the same lane are narrowly distributed around zero. For vehicles that changed lanes at

least one time, the values are more distributed. Almost all values of velocities are between

-1,5 to 1,5 m/s. Same goes for accelerations for interval from -0,75 and 0,75 m/s2.

Figure 27. Distribution of data for vehicles that changed lane at least one and
vehicles that stayed in the lane for the duration of the whole trajectory

While creating the training dataset, we labeled time intervals before vehicle changed

lanes for different time lengths. For training a model we used time length of four

seconds before the vehicle touches the other lane as an intention label. The column

laneChangeT100 contains these labels. The four seconds correspond to 100 frames in a

Faculty of mechanical engineering and Naval Architecture 36

Ivan Grabić Master’s thesis

dataset.

Let us see how distributions difference changes with labeling four seconds before ve-

hicle touches another lane as lane change intention (28). We see that values for lateral

kinematics got more diffuse. This means that in this time region there is more lateral

movement of vehicles.

Figure 28. Distribution of data colected four seconds before lane is changed

To better understand differences in lateral dynamics during keeping and changing

lanes we will take a closer look at the lateral data. Figure 29 shows us a scatter plot

of lateral velocity and acceleration. We can see different regions forming. We can infer

behaviors from this plot. When a driver is performing a lane change the vehicle’s velocity

is in the direction of the new lane and its acceleration is in the same direction. This is

labeled with an orange color on Figure 29. The values centered about zero for both axes

represent forward driving. The remaining regions of the plot are velocity in one direction

with acceleration in the opposite direction. This represents vehicles that are just coming

in the new lane and are trying to straighten the trajectory.

Faculty of mechanical engineering and Naval Architecture 37

Ivan Grabić Master’s thesis

Figure 29. Comparison of lateral kinematis for keeping and changing the lane.

Faculty of mechanical engineering and Naval Architecture 38

Ivan Grabić Master’s thesis

4 Model

In this thesis, the goal is to predict lane change intention from driver behavior using the

Bayesian network. To design the Bayesian network we will use conclusions from the data

exploration step. We will assume that some features affect lane change intention and that

intention affects a driver’s behavior. For example, we will assume that intention affects

the kinematics of the vehicle. Process of creating a predictive model will be divided in

two parts:

• Learning generative model.

• Infering latent intention from conditioned model.

Every probabilistic programming problem is solved by creating a generative model and

then computing some values while observing others. A generative model can be designed

by experts or learned from data. In this thesis, we will create the topology of the model

with the knowledge extracted from data exploration . The model will learn parameters

by looking at the training data set created in the data processing step. After training,

we will compare prior and posterior joint probability distribution to see what the model

learned.

4.1 Learning generative model

4.1.1 Network structure

Let us specify the network structure which is used for learning. Figure 31 presents the

structure of our network with plate notation. Plate notation is used when we have re-

peating variables in a graphical model.

To understand why are variables repeating and what is plate notation we will look at

an example of learning the bias of the coin. In this problem, we have data collected by

noting the results of flipping a coin m times. The goal is to learn parameter θ which is

a possible bias of the coin. The structure of the network used for learning will look like

Figure ??.

Faculty of mechanical engineering and Naval Architecture 39

Ivan Grabić Master’s thesis

Figure 30. Bayesian network for learning the bias of a coin in: a) standard notation
b) plate notation

Faculty of mechanical engineering and Naval Architecture 40

Ivan Grabić Master’s thesis

P

ayvy d

E

L I

m

θi θpθe

θl

θaθv θd

Figure 31. Network structure

Faculty of mechanical engineering and Naval Architecture 41

Ivan Grabić Master’s thesis

Vehicle class Nodes E and P are representing ego and preceding vehicle class. They

are discrete random variables modeled with Bernoulli distribution. Both can take values

of car or truck.

E ∼ Bernoulli(θe) (4.1)

P ∼ Bernoulli(θp) (4.2)

The value of parameter intuitively reads as the probability that the vehicle is a car.

Intention The node I represents intention random variable. In the learning phase

intention is observed value. We assumed lane change intention to be true in a period

of four seconds before and after the vehicle touches another lane. Node I is a discrete

random variable with values of True and False.

I ∼ Bernoulli(θi) (4.3)

The parameter θi is here probability that there exists an intention to change a lane. From

(Figure 31) we see that node I has parents E and P . This means that P (I) depends on

the values of E and P.

Lane The node L is discrete radnom variable with values of left lane and right lane.

L ∼ Bernoulli(θl) (4.4)

Lateral kinematics The nodes vy and ay are representing lateral velocity and ac-

celeration respectivly. Both are continuous random variables modeled with the normal

distribution.

vy ∼ Normal(µv, σv) (4.5)

ay ∼ Normal(µa, σa) (4.6)

Both have only discrete parents so the CPD will be a table of Gaussians. We make a

conditional table for every µ and σ. This way model learns new normal distribution for

every new instantiation of L and I.

The distance headaway The node d represents the distance headway (dhw) random

variable. Dhw is the distance between the ego vehicle and the preceding vehicle. This vari-

able is the interaction variable which means it takes into account, other participants. The

Faculty of mechanical engineering and Naval Architecture 42

Ivan Grabić Master’s thesis

node d is conitionous variable with HalfNormal distribution, which is normal distribution

with mean 0 and all with values positive.

d ∼ HalfNormal(θd) (4.7)

The parameter θd is taken from CPD similary to parameters for normal distributions in

vy and ay.

4.1.2 Learning

We used Stochastic variational inference implemented in the pyro framework and ex-

plained in 2.4. To achieve this we need to specify the target and variational distribution.

We create target distribution as a function model(). The variational distribution (func-

tion guide())is created with class AutoGuide(). This class takes model as an input and

creates mean-field variational distribution according to that model.

We use SVI class for training. To instantiate this class, we need to specify optimizer

and loss function. We used Adam optimizer for this implementation for which we needed

to specify the learning rate. In the class Trace_ELBO() the elbo loss function and method

for calculating gradients is implemented. The trace implementation of directed acyclic

graphs is explained in section 2.5.1. The following is a standard inference procedure with

SVI class:

svi = SVI(model ,guide ,optimizer ,loss=Trace_ELBO ())

for step in range(num_steps):

svi.step(data)

Figure 32. Standard learning procedure with SVI class

Method .step() here calculates gradients and perform one step of the optimization. The

variable data is a torch tensor which contains the training data. This variable is passed

to model to observe sample sites which we are conditioning on.

Figure 33 shows convergance of negative ELBO loss function.

Faculty of mechanical engineering and Naval Architecture 43

Ivan Grabić Master’s thesis

Figure 33. Change of negative ELBO during learning steps

Faculty of mechanical engineering and Naval Architecture 44

Ivan Grabić Master’s thesis

The process of learning transforms prior JPD to posterior. If we generate data from

prior and posterior distributions we can see what did model learn (Figure 34). This is

one of the advantages of probabilistic models and can be used for debugging models.

Figure 34. Comparison of data generated from prior and posterior distribution

4.2 Infering Lane Change Intention

We will use the trained network for predicting lane change intention in test data. Here

we will test our assumption that intention can be inferred from vehicle behavior and

interaction data. We will observe every variable in our network except variable I which

represents lane change intention. Since we have only one discrete latent variable we can

Faculty of mechanical engineering and Naval Architecture 45

Ivan Grabić Master’s thesis

use a simpler inference algorithm for inference. Here we will use TraceEnumELBO() class

which has compute_marginals() method.

We can visualize the probability of lane change intention on sample trajectory from the

test dataset (Figure 35). Let us choose one trajectory and plot it together with continuous

random variables observed in the network.

Figure 35. Prediction visualization for trajectory from test set.

Faculty of mechanical engineering and Naval Architecture 46

Ivan Grabić Master’s thesis

5 Results

One of the most important parts of creating a model is its evaluation. We should know

how the model performs on data it has never seen. Moreover, we need a systematic way

of evaluating models so we can compare different models. Finding the best model is an

iterative procedure that consists of training the model, predicting, and comparing models.

To compare models we need to use metrics that can tell us something about the model

performance.

Choosing metrics to evaluate the model depends on what problem is being solved.

For example, we use different evaluation metrics for regression and classification prob-

lems. There are standard metrics that work on most of the problems. These metrics are

accuracy, classification error, etc.

Some metrics can be misleading if the dataset is imbalanced. An imbalanced dataset

has one label that is dominating in the dataset. If we look at our test dataset we can see

that only 13.7% of lane change labels are true. This makes our dataset imbalanced and

we should choose metrics accordingly.

5.1 Defining evaluation metrics

For evaluating model we need to compare prediction values with actual values in the

dataset. Maybe the most used metric in evaluating prediction models is accuracy. Accu-

racy is defined as:

Accuracy =
Correct predictions

Total predictions
. (5.1)

Even though it is often used it is inappropriate for imbalanced sets. To understand this we

can imagine a model that would predict lane change to be false for any input. If we have

a small number of positive labels for lane change accuracy for this model misleadingly

present this model as good.

A lot of metrics are derived from the so-called confusion matrix. A confusion matrix is

a tabular presentation of values that we get when we compare predictions with actual data.

For binary classification, there are four possible combinations when evaluating predictions.

The prediction can be 0 or 1 and the real class can be 0 or 1. These combinations are

presented in table 3. Table 3 is called confusion matrix.

Table 3. Confusion matrix for binary classification

Positive predictions Negative Predictions
Positive class True Positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)

Faculty of mechanical engineering and Naval Architecture 47

Ivan Grabić Master’s thesis

We can derive some metrics from the confusion matrix. One such metric tells us what

ratio of positive predictions is also positive in the real dataset. This metric is called

Precision:

Precision =
TP

TP + FP
. (5.2)

Another metric tells us what ratio of total positive classes in the real dataset is predicted

as positive. This metric is called Recall:

Recall =
TP

TP + FN
. (5.3)

There is a motivation for having one metric when evaluating models. Having one metric

makes the comparison of models easier. Precision and recall can be joined in one metric.

This metric is called F-score (or F1-score):

F− score =
2 · Precision · Recall

Precision + Recall
(5.4)

Precision-Recall (PR) curve is a good measure for comparing models. We can construct

the Precision-Recall curve by plotting the curve with Recall on the x-axis and Precision

on the y-axis. The ideal model would have a point on (1,1) coordinate on the PR curve.

Good models have a curve that is bowing towards (1,1) coordinate. The worst model

creates a flat line with a precision that is a proportion of positive class in a dataset.

To present the PR curve as a single metric we use the PR Area Under Curve (AUC)

score. The score of 1 represents the ideal model. We can use this score for easier model

comparison.

5.2 Model Evaluation

With the evaluation metric defined we can evaluate our model. We will evaluate the model

for previously described metrics and comment on them. Let us first show confusion matrix

(Table 4).

Table 4. Confusion matrix for model predictions

Positive predictions Negative Predictions
Positive class 14441 3206

Negative class 3768 44337

Using values from confusion matrix we can calculate precision, recall and f1-score

as defined in (5.2), (5.3) and (5.4). The values of these metrics for the positive class

are presented in table 6. We can also construct a precision-recall curve (Figure 36) and

Faculty of mechanical engineering and Naval Architecture 48

Ivan Grabić Master’s thesis

Table 5. Normalized confusion matrix

Positive predictions Negative Predictions
Positive class 21,95% 4,88%

Negative class 5,72% 21,95%

Table 6. Evaluation metrics of a model

Metric Value
Precision 0,79
Recall 0,82
f1-score 0,81
Accuracy 0,89
PR AUC 0,8949

calculate the area under the curve. This metric is presented in table 6 as PR AUC

(Precision-Recall Area Under a Curve).

Another important metric is prediction time. Predictions are not useful if it can not

predict lane change early enough. By evaluating on test set this model has a prediction

time of 2,5 sec on average. This means that on average the model can recognize lane

change intention approximately 2,5 seconds before the vehicle touches another lane.

For the possible implementation of this model in production, the model must predict

the intention in real-time. The inference time of a trained network is appropriate for that.

Faculty of mechanical engineering and Naval Architecture 49

Ivan Grabić Master’s thesis

Figure 36. Precision recall curve

Faculty of mechanical engineering and Naval Architecture 50

Ivan Grabić Master’s thesis

6 Conclusion

Even though fatal traffic accidents are in decline there is still much room for progress.

One type of traffic accident occurs when a vehicle is doing a lane-change maneuver and

other participants do not notice it. The goal of this thesis was to develop a simple and

interpretable model which could predict lane change intentions of highway drivers using

Bayesian machine learning methods. This way drivers could be warned about sudden lane

change according to model predictions.

The traffic domain is a high-risk domain. The model performing in this domain should

be interpretable. They also should have good uncertainty representation on different levels

because uncertainty should be taken into account when decisions are made. This is why

a Bayesian modeling approach is taken in this thesis.

Writing probabilistic models is hard. Until recently only experts could write even

simple probabilistic models. Also, inference in these models is hard and experts had to

write a special inference algorithm for every variation of a model. This was a problem

because creating a good model is an iterative process.

This thesis leverages probabilistic programming and stochastic variational inference for

creating models and doing inference. Probabilistic programming is a way of automating

bayesian modeling and inference. To avoid creating new inference algorithms for every

new model we use BBVI as implemented in the pyro programming language. This makes

combining continuous and discrete nodes simple and also experimenting with different

models easy. Stochastic optimization in BBVI makes scaling to large datasets possible.

The model created in this thesis is a hybrid Bayesian network with three continuous

and four discrete nodes. All discrete nodes are Bernoulli distributions and all continuos

nodes are Normal distributions. One can try various distributions for modeling continuous

variables but Normal distributions gave the best results in this case. The model was

trained and tested on a modified highD dataset. The evaluation shows good predicting

power comparable with other Bayesian network approaches. The model can recognize

lane change maneuver intention with an F1-score of 81%.

Data collected in highD dataset is recorded with a drone from a bird’s perspective.

The data that vehicles collect in real-life situations is different. This is one limitation of

this model. Another limitation is that model is created for a highway with two lanes. The

model is static. It takes only information for one frame at the time and is indifferent to

the time dimension.

The power of probabilistic programming can be used for extending this model. One

obvious extension is to create a model that works on a highway with an arbitrary number of

lanes. The model can be extended by adding more nodes and dependencies in its structure.

Some of these can be longitudinal kinematics, distance from lane markings, information

Faculty of mechanical engineering and Naval Architecture 51

Ivan Grabić Master’s thesis

about other lanes, interaction with other participants besides preceding vehicle, etc. This

model can also be extended to capture temporal dependencies to the so-called dynamic

bayesian network. One can assume that model would benefit from information from the

past influencing the prediction.

To extend the model even more we can use the fact that pyro is a python framework

and to utilize python flexibility while creating a model. Concretely we can create a

network with a dynamic structure. This is not the same as Dynamic Bayesian Network,

rather it means that the number of nodes in the network can be changed during inference

this way. The structure of the network can depend on the number of vehicles in a scene

for example.

This thesis showed how a simple Bayesian model can be used for predicting lane

changes. Results from this thesis can be used as an introduction to modeling lane changes

with probabilistic programming. Future research could be about network extensions and

solving previously stated limitations to create a production-ready model.

Faculty of mechanical engineering and Naval Architecture 52

Ivan Grabić Master’s thesis

References

[1] European Commision. “Saving Lives: Boosting Car Safety in the EU”. In: (2016).

[2] Karel Brookhuis, Dick de Waard, and Wiel Janssen. “Behavioural impacts of Ad-

vanced Driver Assistance Systems - an overview”. In: European Journal of Transport

and Infrastructure Research 1.3 (2001). issn: 1567-7141. doi: 10.18757/ejtir.

2001.1.3.3667.

[3] Mohamed Shawky. “Factors affecting lane change crashes”. In: IATSS Research

(2020). issn: 0386-1112. doi: https://doi.org/10.1016/j.iatssr.2019.12.002.

url: http://www.sciencedirect.com/science/article/pii/S0386111219300020.

[4] Thomas Dingus et al. “The 100-Car Naturalistic Driving Study: Phase II - Results

of the 100-Car Field Experiment”. In: (Jan. 2006).

[5] Jan-Willem van de Meent et al. An Introduction to Probabilistic Programming. 2018.

arXiv: 1809.10756 [stat.ML].

[6] Jonas Firl. “Probabilistic Maneuver Recognition in Traffic Scenarios”. PhD thesis.

2014. 150 pp. isbn: 978-3-7315-0287-6. doi: 10.5445/KSP/1000043680.

[7] Z. Ghahramani. “Probabilistic machine learning and artificial intelligence”. In: Na-

ture, 521(7553) (2015), pp. 452–459.

[8] Li Junxiang et al. “A Dynamic Bayesian Network for Vehicle Maneuver Prediction

in Highway Driving Scenarios: Framework and Verification”. In: Electronics 8 (Jan.

2019), p. 40. doi: 10.3390/electronics8010040.

[9] D. Lee et al. “Convolution neural network-based lane change intention prediction

of surrounding vehicles for ACC”. In: 2017 IEEE 20th International Conference on

Intelligent Transportation Systems (ITSC). 2017, pp. 1–6.

[10] D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer. “Generalizable intention

prediction of human drivers at intersections”. In: 2017 IEEE Intelligent Vehicles

Symposium (IV). 2017, pp. 1665–1670.

[11] D. Kasper et al. “Object-oriented Bayesian networks for detection of lane change

maneuvers”. In: 2011 IEEE Intelligent Vehicles Symposium (IV). 2011, pp. 673–678.

[12] T. Gindele, S. Brechtel, and R. Dillmann. “Learning Driver Behavior Models from

Traffic Observations for Decision Making and Planning”. In: IEEE Intelligent Trans-

portation Systems Magazine 7.1 (2015), pp. 69–79.

[13] R. Schubert and G. Wanielik. “A Unified Bayesian Approach for Object and Situa-

tion Assessment”. In: IEEE Intelligent Transportation Systems Magazine 3.2 (2011),

pp. 6–19.

Faculty of mechanical engineering and Naval Architecture 53

https://doi.org/10.18757/ejtir.2001.1.3.3667
https://doi.org/10.18757/ejtir.2001.1.3.3667
https://doi.org/https://doi.org/10.1016/j.iatssr.2019.12.002
http://www.sciencedirect.com/science/article/pii/S0386111219300020
https://arxiv.org/abs/1809.10756
https://doi.org/10.5445/KSP/1000043680
https://doi.org/10.3390/electronics8010040

Ivan Grabić Master’s thesis

[14] M. Liebner et al. “Driver intent inference at urban intersections using the intelligent

driver model”. In: 2012 IEEE Intelligent Vehicles Symposium. 2012, pp. 1162–1167.

[15] Alan Turing. “Computing Machinery and Intelligence”. In: Mind, a Quarterly Re-

view of Psychology and Philosophy 59.236 (1950).

[16] Korb Nicholson. Bayesian Artifitial Inteligence. Chapman Hall, 2004.

[17] Judea Pearl. From Bayesian Networks to Causal Networks. 1995.

[18] A.J. Bondy and U.S.R. Murty. Graph Theory with Applications. Wiley, 1991. isbn:

9780471363248. url: https://books.google.de/books?id=7EWKkgEACAAJ.

[19] Ben-Gal I. “Bayesian Networks”. In: Encyclopedia of Statistics in Quality Reliability

(2007).

[20] Rajesh Ranganath, Sean Gerrish, and David M. Blei. “Black Box Variational Infer-

ence”. In: ArXiv abs/1401.0118 (2014).

[21] F.M Dekking. A Modern Introduction to Probability and Statistics. Springer, 2005.

[22] Oreilly - Hands on cnn’s. https://www.oreilly.com/library/view/hands-on-convolutional-

neural/9781789130331/1d8faa08-c404-4c12-929d-711b2cd995d6.xhtml.

[23] E. Cinlar. Probability and Stochastics. Springer, 2011.

[24] Eli Bingham et al. “Pyro: Deep Universal Probabilistic Programming”. In: ArXiv

abs/1810.09538 (2019).

[25] David Wingate and Teophane Webber. “Automated Variational Inference in Prob-

abilistic Programming”. In: ArXiv (2013).

[26] Robert Krajevski et al. “The highD Dataset: A Drone of Naturalistic Vehicle Tra-

jectories on German Highways for Validation of Highly Automated Vehicles”. In:

2018 21st International Conference on Intelligent Transportation Systems (ITSC.

2018.

Faculty of mechanical engineering and Naval Architecture 54

https://books.google.de/books?id=7EWKkgEACAAJ

Ivan Grabić Master’s thesis

Appendix

model utils.py

import pandas as pd

import torch

PATH_TRAIN = "../ data/interim/data_v1.csv"

def load_data(PATH , tensor = False , drop = None):

df = pd.read_csv(PATH)

if drop is not None:

df = df.drop(

columns= drop

)

return df

def load_data_as_tensor(PATH , drop = None):

df = pd.read_csv(PATH)

if drop is not None:

df = df.drop(

columns= drop

)

return torch.tensor(df.values)

model4v2.py

import torch

import pyro

import torch.distributions.constraints as constraints

from pyro import distributions as dist

from pyro.contrib.autoguide import AutoGuide

class Model4:

def model(self , data):

Faculty of mechanical engineering and Naval Architecture 55

Ivan Grabić Master’s thesis

ego_class_loc = pyro.param("ego_loc", torch.tensor (0.5) ,

constraint=constraints.unit_interval)

preceding_class_loc = pyro.param("prec_loc",

torch.tensor (0.5) ,

constraint=constraints.unit_interval)

intention = pyro.param(

"intention_cpd",

torch.tensor ([[0.04 , 0.06] , [0.2, 0.15]]) ,

constraint=constraints.unit_interval ,

)

a_loc = pyro.param("a_loc_p", torch.tensor ([[0.0 , 0.0],

[0.2, -0.2]]))

a_scale = pyro.param(

"a_scale_p",

torch.tensor ([[0.1 , 0.1], [0.25 , 0.25]]) ,

constraint=constraints.positive ,

)

v_loc = pyro.param("v_loc_p", torch.tensor ([[0.0 , 0.0],

[0.75 , -0.75]]))

v_scale = pyro.param(

"v_scale_p",

torch.tensor ([[0.1 , 0.1], [0.25 , 0.25]]) ,

constraint=constraints.positive ,

)

dhw_param_a = pyro.param(

"dhw_param_a",

torch.tensor ([[3, 3], [3, 3]], dtype=float),

constraint=constraints.positive ,

)

with pyro.plate("data", data.shape[0], dim=-2,

subsample_size =500) as idx:

ego_class = pyro.sample(

"ego_class", dist.Bernoulli(ego_class_loc),

obs=data[idx , 4]

)

preceding_class = pyro.sample(

"preceding_class",

Faculty of mechanical engineering and Naval Architecture 56

Ivan Grabić Master’s thesis

dist.Bernoulli(preceding_class_loc),

obs=data[idx , 5]

)

pa_intention = [ego_class.long(),

preceding_class.long()]

lane_change = pyro.sample(

"lane_change",

dist.Bernoulli(intention[pa_intention]),

obs=data[idx , 0]

)

lane = pyro.sample("lane", dist.Bernoulli (0.5),

obs=data[idx , 1])

parents = [lane_change.long(), lane.long()]

pyro.sample("dhw",

dist.HalfNormal(dhw_param_a[parents]),

obs=data[idx , 6])

pyro.sample(

"a", dist.Normal(a_loc[parents],

a_scale[parents]), obs=data[idx , 2]

)

pyro.sample(

"v", dist.Normal(v_loc[parents],

v_scale[parents]), obs=data[idx , 3]

)

def guide(self , data):

return AutoGuide(self.model)

train.py

import argparse

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import pyro

Faculty of mechanical engineering and Naval Architecture 57

Ivan Grabić Master’s thesis

import pyro.distributions as dist

import torch

from pyro import optim

from pyro.infer import SVI , Trace_ELBO

from model_utils import PATH_TRAIN , load_data_as_tensor

from model4_v2 import Model4 as Model

def train(model , guide , data , steps , save_every , lr):

pyro.enable_validation(True)

Elbo = Trace_ELBO

elbo = Elbo (5)

adam = optim.Adam({"lr": lr})

svi = SVI(model , guide , adam , elbo)

pyro.get_param_store ().clear()

loss_history = []

for step in range(1,steps +1):

loss = svi.step(data)

if step % 1 == 0:

print("step {} loss = {}".format(step , loss))

loss_history.append(loss)

if step % save_every == 0:

pyro.get_param_store ().save("models/saved_models/T100_{}_{}_{} _normal".format("4v2",step ,lr))

print("Training done!")

return loss_history

def main():

parser = argparse.ArgumentParser(description="Train the

model")

parser.add_argument(

"--num_steps", type=int , default =1000 , help="Number of

steps",

)

parser.add_argument(

Faculty of mechanical engineering and Naval Architecture 58

Ivan Grabić Master’s thesis

"--save_every", default =10000 , type=int , help="Save

weights every n steps ",

)

parser.add_argument(

"--learning_rate", type=float , default =1e-2,

help="Learning rate for ADAM optimizer",

)

data =

load_data_as_tensor("../ data/interim/data_2lane_sym_balanced_wprec_2way.csv",

drop="sceneId")

data = data [: ,2:]

data = data [:,[56,60,5,3,13,17,6]]

args = parser.parse_args ()

BN = Model ()

loss = train(BN.model , BN.guide , data , args.num_steps ,

args.save_every , args.learning_rate)

plt.plot(loss)

plt.savefig("../ reports/loss function.jpg")

plt.show()

df_loss = pd.DataFrame ({"loss": loss}, index=None)

df_loss.to_csv("loss_history_4v2_ {} _2way.csv".format(args.learning_rate))

if __name__ == "__main__":

main()

balance data.py

import pandas as pd

import random

def has_preceding(df) -> pd.DataFrame:

return df[df["precedingId"] != 0]

Faculty of mechanical engineering and Naval Architecture 59

Ivan Grabić Master’s thesis

def is_at_least_one_change(numLaneChanges: pd.Series) ->

pd.Series:

return numLaneChanges.map(lambda x: 1 if x > 0 else 0)

def get_change_ids(meta: pd.DataFrame , laneChange: pd.Series) ->

list:

return meta[laneChange == 1].id.values.tolist ()

def get_keep_ids(meta: pd.DataFrame , laneChange: pd.Series) ->

list:

return meta[laneChange == 0].id.values.tolist ()

def sample_keep_ids(keep_ids: list , num_ids: int) -> list:

return random.sample(keep_ids , num_ids)

def get_id_data(df: pd.DataFrame , keep_ids: list) -> list:

dfs = []

for idx in keep_ids:

dfs.append(df[df["id"] == idx])

return dfs

def create_final_id_vector(keep_ids: list , change_ids: list) ->

list:

final = keep_ids + change_ids

random.shuffle(final)

return final

def concat_data(dfs: list) -> pd.DataFrame:

return pd.concat(dfs , axis =0)

def balance_data(df: pd.DataFrame , meta: pd.DataFrame) -> tuple:

Faculty of mechanical engineering and Naval Architecture 60

Ivan Grabić Master’s thesis

""" Choose vehicles so that there is similar number of

vehicles that

changed lane , and ones that stayed in the lane

Arguments:

df {[type]} -- [description]

meta {[type]} -- [description]

Returns:

tuple -- [description]

"""

df = has_preceding(df)

laneChange = is_at_least_one_change(meta.numLaneChanges)

change_ids = get_change_ids(meta , laneChange)

keep_ids = get_keep_ids(meta , laneChange)

num_change_ids = len(change_ids)

sampled_keep_ids = sample_keep_ids(keep_ids , num_change_ids)

final_ids = create_final_id_vector(sampled_keep_ids ,

change_ids)

dfs = get_id_data(df , final_ids)

df = concat_data(dfs)

msg = [

" Balanced data so that there is {} vehicles that

changed \

lane and {} vehicles that stayed in the lane and

that every ego has preceding car".format(

num_change_ids , len(sampled_keep_ids)

)

]

return df , msg

balance data test.py

import unittest

import pandas as pd

import balance_data as bd

meta = pd.DataFrame ()

meta["numLaneChanges"] = [0, 0, 0, 1, 2]

meta["id"] = [1, 2, 3, 4, 5]

Faculty of mechanical engineering and Naval Architecture 61

Ivan Grabić Master’s thesis

df = pd.DataFrame ()

df["id"] = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5,

5, 5, 5]

df["precedingId"] = [1, 0, 2, 0, 3, 0, 4, 0, 1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0]

class TestBalancingData(unittest.TestCase):

def test_has_preceding(self):

out = bd.has_preceding(df)

print(out)

self.assertFalse (0 in out.precedingId.values.tolist ())

def test_is_one_change(self):

out = bd.is_at_least_one_change(meta.numLaneChanges)

self.assertTrue(isinstance(out , pd.Series))

self.assertListEqual(out.values.tolist (), [0, 0, 0, 1,

1])

def test_get_change_ids(self):

is_one = bd.is_at_least_one_change(meta.numLaneChanges)

out = bd.get_change_ids(meta , is_one)

self.assertTrue(isinstance(out , list))

self.assertListEqual(out , [4, 5])

def test_get_keep_ids(self):

is_one = bd.is_at_least_one_change(meta.numLaneChanges)

out = bd.get_keep_ids(meta , is_one)

self.assertTrue(isinstance(out , list))

self.assertListEqual(out , [1, 2, 3])

def test_sample_keep_ids(self):

self.assertTrue(isinstance(bd.sample_keep_ids ([1, 2, 3,

4, 5], 2), list))

self.assertEqual(len(bd.sample_keep_ids ([1, 2, 3, 4, 5],

2)), 2)

Faculty of mechanical engineering and Naval Architecture 62

Ivan Grabić Master’s thesis

def test_create_final(self):

self.assertEqual(len(bd.create_final_id_vector ([1 ,2] ,[4 ,5])) ,4)

self.assertTrue (1 in

bd.create_final_id_vector ([1 ,2] ,[4 ,5]))

self.assertTrue (2 in

bd.create_final_id_vector ([1 ,2] ,[4 ,5]))

self.assertTrue (4 in

bd.create_final_id_vector ([1 ,2] ,[4 ,5]))

self.assertTrue (5 in

bd.create_final_id_vector ([1 ,2] ,[4 ,5]))

def test_get_id_data(self):

out = bd.get_id_data(df , [1, 3])

self.assertTrue(isinstance(out , list))

self.assertEqual(len(out), 2)

def test_concat_data(self):

dfs = bd.get_id_data(df , [1, 3,4,5])

out = bd.concat_data(dfs)

self.assertEqual(

out.id.values.tolist (), [1, 1, 1, 1, 3, 3, 3, 3, 4,

4, 4, 4, 5, 5, 5, 5]

)

def test_balance_data(self):

out ,_ = bd.balance_data(df ,meta)

self.assertTrue(isinstance(out ,pd.DataFrame))

if __name__ == "__main__":

unittest.main()

join dataframes.py

import pandas as pd

scenes = ["01", "02", "03", "15", "16", "17", "18", "19",

Faculty of mechanical engineering and Naval Architecture 63

Ivan Grabić Master’s thesis

"20", "21", "22", "23"]

dfs = []

for scene in scenes:

path =

"../ data/interim/data_scene_ {} _sym_balanced_wprec_2way.csv".format(scene)

df = pd.read_csv(path)

dfs.append(df)

df_final = pd.concat(dfs , axis =0)

df_final.to_csv("../ data/interim/data_2lane_sym_balanced_wprec_2way.csv")

lane changes.py

import pandas as pd

import numpy as np

def lane_change_categorize(lane_changes: pd.Series) -> pd.Series:

""" Change number of lane changes collumn to 0 if there is no

lane change and 1 if there is 1 or more lane changes """

return lane_changes.map(lambda x: 0 if x == 0 else 1)

def id_laneChange(meta: pd.DataFrame) -> dict:

""" Create mapp of vehicles and action regarding lane change

Arguments:

meta {pd.DataFrame}

Returns:

dict

"""

return dict(zip(meta.id.values ,

lane_change_categorize(meta.numLaneChanges).values))

def end_trajectory(id_same: list) -> list:

i = 0

until_end = []

for l in reversed(id_same):

if l == 1:

Faculty of mechanical engineering and Naval Architecture 64

Ivan Grabić Master’s thesis

i += 1

elif l == 0:

i=0

until_end.append(i)

return list(reversed(until_end))

def begining_trajectoy(id_same: list) -> list:

i = 0

until_begin = []

for l in id_same:

if l == 1:

i += 1

elif l == 0:

i=0

until_begin.append(i)

return until_begin

def add_lane_change(tracks , meta) -> (pd.DataFrame , list):

msg = " Add laneChange collumn to dataframe "

tracks["laneChange"] = tracks.id.map(id_laneChange(meta))

return tracks , [msg]

def same_check(vector: list) -> list:

return [x==x1 for x,x1 in zip(vector [:-1], vector [1:])]

def different_check(vector: list) -> list:

return [x!=x1 for x,x1 in zip(vector [:-1], vector [1:])]

def expand_label_past(labels: list , num_frames: int) -> list:

expanded_labels = np.zeros_like(labels).tolist ()

true_sublist = np.ones(num_frames +1)

for idx ,label in enumerate(labels):

if label:

expanded_labels[idx -num_frames:idx+1] = true_sublist

return expanded_labels

Faculty of mechanical engineering and Naval Architecture 65

Ivan Grabić Master’s thesis

def expand_label_past_future(labels: list , num_frames: int ,

to_end:list , to_begining) -> list:

expanded_labels = np.zeros_like(labels).tolist ()

for idx ,label in enumerate(labels):

if label:

lim_begin = np.min([num_frames ,to_end[idx]])

lim_end = np.min([num_frames ,to_begining[idx]])

sublist = np.ones([lim_begin+lim_end +1])

expanded_labels[idx -lim_begin:idx+lim_end +1] =

sublist

return expanded_labels

def compare_lists(list1:list ,list2:list) -> list:

array1 = np.array(list1)

array2 = np.array(list2)

compared = array1 & array2

compared = list(map(int ,compared))

return compared

def add_lane_change_t(df , num_frames: int) -> tuple:

"""[summary]

Arguments:

tracks {[type]} -- original dataframe

num_frames {int} -- how long do we want to expand label

on the trajectory

Returns:

tuple -- (new dataframe , message)

"""

is_id_same = same_check(df.id.values.tolist ())

is_lane_same = different_check(df.laneId.values.tolist ())

is_lanechange = compare_lists(is_id_same ,is_lane_same)

to_end = end_trajectory(is_id_same)

to_begining = begining_trajectoy(is_id_same)

labeled_lanechanges =

expand_label_past_future(is_lanechange ,

num_frames ,to_end ,to_begining)

Faculty of mechanical engineering and Naval Architecture 66

Ivan Grabić Master’s thesis

column_name = "laneChangeT {}".format(num_frames)

msg = [" Add {} to dataset".format(column_name)]

reshaped_labeled_lanechanges = [0]

reshaped_labeled_lanechanges.extend(labeled_lanechanges)

df[column_name] = reshaped_labeled_lanechanges

return df , msg

lane changesq test.py

import unittest

import pandas as pd

import numpy as np

import lane_changes as lc

class TestLaneChangeLabeling(unittest.TestCase):

def test_same_check(self):

self.assertEqual(lc.same_check ([1, 1, 1, 1, 1, 1]), [1,

1, 1, 1, 1])

self.assertEqual(lc.same_check ([1, 1, 1, 2, 2, 2]), [1,

1, 0, 1, 1])

def test_different_check(self):

self.assertEqual(lc.different_check ([1, 1, 1, 1, 1, 1]),

[0, 0, 0, 0, 0])

self.assertEqual(lc.different_check ([1, 1, 1, 2, 2, 2]),

[0, 0, 1, 0, 0])

def test_end(self):

self.assertEqual(

lc.end_trajectory ([1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,

1, 0, 1, 1, 1]),

[6, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1],

)

def test_begin(self):

self.assertEqual(

lc.begining_trajectoy ([1, 1, 1, 1, 1, 1, 0, 1, 1, 1,

1, 1, 0, 1, 1, 1]),

[1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3],

Faculty of mechanical engineering and Naval Architecture 67

Ivan Grabić Master’s thesis

)

def test_expand_label_past(self):

self.assertEqual(

lc.expand_label_past ([0, 0, 0, 1, 0, 0, 0], 2), [0,

1, 1, 1, 0, 0, 0]

)

self.assertEqual(

lc.expand_label_past ([0, 0, 0, 1, 0, 0, 0], 2), [0,

1, 1, 1, 0, 0, 0]

)

def test_expand_label_past_future(self):

self.assertEqual(

lc.expand_label_past_future(

[0, 0, 0, 1, 0, 0, 0], 2, [6, 5, 4, 3, 2, 1, 0],

[0, 1, 2, 3, 4, 5, 6]

),

[0, 1, 1, 1, 1, 1, 0],

)

def test_compare_lists(self):

self.assertEqual(lc.compare_lists ([1, 1, 0, 0], [1, 0,

1, 0]), [1, 0, 0, 0])

self.assertTrue(

isinstance(lc.compare_lists ([1, 1, 0, 0], [1, 0, 1,

0])[0], int)

)

def test_add_lanechange_t(self):

df = pd.DataFrame(

{

"id": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

"laneId": [1, 1, 1, 1, 1, 2, 2, 2, 2, 2],

}

)

df_new , _ = lc.add_lane_change_t(df , 3)

self.assertTrue(isinstance(df_new , pd.DataFrame))

Faculty of mechanical engineering and Naval Architecture 68

Ivan Grabić Master’s thesis

self.assertEqual(df_new.shape , (10, 3))

self.assertListEqual(

df_new.columns.values.tolist (), ["id", "laneId",

"laneChangeT3"]

)

self.assertListEqual(

df_new.laneChangeT3.values.tolist (), [0, 0, 1, 1, 1,

1, 1, 1, 1, 0]

)

if __name__ == "__main__":

unittest.main()

lane relations.py

import pandas as pd

def get_markings(rec: pd.DataFrame) -> [dict , dict]:

upper_lane_markings = list(

map(lambda x: float(x),

rec.upperLaneMarkings.values [0]. split(";"))

)

lower_lane_markings = list(

map(lambda x: float(x),

rec.lowerLaneMarkings.values [0]. split(";"))

)

left_mark = {

2: upper_lane_markings [1],

3: upper_lane_markings [2],

5: lower_lane_markings [0],

6: lower_lane_markings [1],

}

right_mark = {

2: upper_lane_markings [0],

3: upper_lane_markings [1],

5: lower_lane_markings [1],

Faculty of mechanical engineering and Naval Architecture 69

Ivan Grabić Master’s thesis

6: lower_lane_markings [2],

}

return [left_mark , right_mark]

def get_diff(df , mark: dict) -> pd.Series:

map_mark = df.laneId.map(mark)

return df.y - map_mark

def add_diff(df , rec):

msg = []

marks = get_markings(rec)

names = ["diffLeft", "diffRight"]

for name , mark_map in zip(names , marks):

diff = get_diff(df , mark_map)

df[name] = diff

msg.append("Add {} column to dataframe".format(name))

return df , msg

def categorize_lanes(df: pd.DataFrame) -> pd.DataFrame:

msg = ["Turning laneId column to 0,1 values where 0 is left

and 1 is right lane"]

left_right = {3: 0, 5: 0, 2: 1, 6: 1}

df["laneIdRL"] = df.laneId.map(left_right)

return df ,msg

def create_height_map(meta:pd.DataFrame) -> dict:

return dict(zip(meta.id.values ,meta.height.values))

def y_to_cm(df:pd.DataFrame ,meta:pd.DataFrame) -> tuple:

""" Transform y coordinate from being top left corner of the

bounding box

to being coordinate of middle of the box

Faculty of mechanical engineering and Naval Architecture 70

Ivan Grabić Master’s thesis

Arguments:

df {pd.DataFrame} -- original dataframe

meta {pd.DataFrame} -- meta dataframe

Returns:

tuple -- (df:pd.Dataframe , msg:list(str))

"""

height_vector = df.id.map(create_height_map(meta))

half_height = height_vector.values / 2

df["y"] = df.y.values + half_height

msg = ["Converted y to y_cm"]

return df , msg

lane relations test.py

import unittest

import pandas as pd

import lane_relations as lr

meta = pd.DataFrame ()

meta["id"] = [1,2,3,4]

meta["height"] = [5,4,3,2]

df = pd.DataFrame ()

df["id"] = [1,1,4,4]

df["y"] = [0,0,0,0]

class TestLaneRelations(unittest.TestCase):

def test_height_map(self):

self.assertDictEqual(lr.create_height_map(meta) ,{1:5 ,2:4 ,3:3 ,4:2})

def test_y_to_cm(self):

self.assertListEqual(lr.y_to_cm(df ,meta)[0].y.values.tolist () ,[2.5,2.5 ,1,1])

if __name__ == "__main__":

unittest.main()

Faculty of mechanical engineering and Naval Architecture 71

Ivan Grabić Master’s thesis

main.py

import pandas as pd

from lane_changes import add_lane_change , add_lane_change_t

from lane_relations import add_diff , categorize_lanes , y_to_cm

from vehicle_class import add_class

from relative_veh_relations import add_veh_relations

from reporting_features import create_latex_report

from postprocces import drop_data , normalize_data , add_scene_id

from balance_data import balance_data

from symetry import add_symetry

scenes = ["01", "02", "03", "15", "16", "17", "18", "19",

"20", "21", "22", "23", "24"]

scenes = ["24"]

for scene in scenes:

PATH_META = "../ data/raw/{} _tracksMeta.csv".format(scene)

PATH_TRACKS = "../ data/raw /{} _tracks.csv".format(scene)

PATH_REC = "../ data/raw/{} _recordingMeta.csv".format(scene)

df_tracks = pd.read_csv(PATH_TRACKS)

df_meta = pd.read_csv(PATH_META)

df_rec = pd.read_csv(PATH_REC)

msgs = []

print("SCENE {}".format(scene))

df , msg = y_to_cm(df_tracks , df_meta)

msgs.extend(msg)

print("y -> y_cm")

df , msg = add_diff(df, df_rec)

msgs.extend(msg)

print("Diff added")

df , msg = add_class(df, df_meta)

msgs.extend(msg)

print("Class added")

df , msg = add_symetry(df)

msgs.extend(msg)

Faculty of mechanical engineering and Naval Architecture 72

Ivan Grabić Master’s thesis

print("Symetry added")

df , msg = add_veh_relations(df)

msgs.extend(msg)

print("Veh relations added")

df , msg = add_lane_change(df,df_meta)

msgs.extend(msg)

print("Lane changes added for whole trajectory")

df , msg = add_lane_change_t(df ,200)

msgs.extend(msg)

df , msg = add_lane_change_t(df ,150)

msgs.extend(msg)

df , msg = add_lane_change_t(df ,100)

msgs.extend(msg)

df , msg = add_lane_change_t(df ,75)

msgs.extend(msg)

df , msg = add_lane_change_t(df ,50)

msgs.extend(msg)

df , msg = add_lane_change_t(df ,25)

msgs.extend(msg)

print("Lane change added")

df , msg = categorize_lanes(df)

msgs.extend(msg)

print("Lanes categorized")

df , msg = balance_data(df,df_meta)

msgs.append(msg)

print("Data balanced ")

df , msg = add_scene_id(df,scene)

msgs.append(msg)

print("Scene and id column")

df , msg = drop_data(df)

msgs.append(msg)

print("Droped not needed data")

df , msg = normalize_data(df)

msgs.append(msg)

#

Faculty of mechanical engineering and Naval Architecture 73

Ivan Grabić Master’s thesis

df.to_csv ("../ data/interim/data_scene_ {} _sym_balanced_wprec_2way.csv". format(scene))

create_latex_report(msgs ,

"../ reports/data_scene_ {} _sym_balanced_wprec_2way ". format(scene))

df.to_csv("../ data/interim/test_data.csv")

create_latex_report(msgs , "../ reports/test_data")

print("Data created for scene {}".format(scene))

postprocces.py

import random

import pandas as pd

from sklearn import preprocessing

COLUMNS_TO_DROP = [

"id",

"frame",

"width",

"height",

"frontSightDistance",

"backSightDistance",

"ttc",

"precedingId",

"followingId",

"leftPrecedingId",

"leftAlongsideId",

"leftFollowingId",

"rightPrecedingId",

"rightAlongsideId",

"rightFollowingId",

]

def drop_data(df: pd.DataFrame) -> (pd.DataFrame , list):

msg = ["Droped following columns:

{}".format(COLUMNS_TO_DROP)]

Faculty of mechanical engineering and Naval Architecture 74

Ivan Grabić Master’s thesis

return df.drop(columns=COLUMNS_TO_DROP), msg

def add_scene_id(df:pd.DataFrame , scene) -> tuple:

df["sceneId"] = ["{}_{}".format(scene ,i) for i in df.id]

msg = ["Added sceneId column"]

return df , msg

def normalize_data(df):

cols = list(set(df.columns) - set(["laneId", "vehClasses",

"laneChange"]))

msg = "Normalized columns except {}".format(cols)

scaler = preprocessing.MinMaxScaler ()

scaler.fit(df[cols]. values)

df[cols] = scaler.transform(df[cols])

return df , msg

relative veh relations.py

import pandas as pd

list_of_vehicles = [

"precedingId",

"followingId",

"leftPrecedingId",

"leftAlongsideId",

"leftFollowingId",

"rightPrecedingId",

"rightFollowingId",

"rightAlongsideId",

]

list_of_features = ["x", "y", "xVelocity",

"yVelocity","vehClass"]

def create_frame_id_pairs(df: pd.DataFrame , ids: str) -> list:

return [(f, i) for f, i in zip(df.frame.values ,

df[ids]. values)]

Faculty of mechanical engineering and Naval Architecture 75

Ivan Grabić Master’s thesis

def create_feature_map(pairs: list , feature: list) -> dict:

""" Creates mapping (frame , Id) -> feature """

return dict(zip(pairs , feature))

def frameId_to_feature(frameId: tuple , feature_map: dict):

"""

Maps tuple (frame , id) which represents specific vehicle in

specific

time to other feature from that frame

If id is 0 this function returnes 0

Else returns:

df.iloc[index in which frame and id are , feature]

"""

if frameId [1] == 0:

return 0

elif feature_map[frameId] == 0:

return 0

else:

return feature_map[frameId]

def add_feature(df , id_name: str , feature_name: str) ->

pd.DataFrame:

frameEgoPair = create_frame_id_pairs(df , "id")

frameIdPair = create_frame_id_pairs(df, id_name)

frameEgoFeatureMap = create_feature_map(frameEgoPair ,

df[feature_name]. values)

feature = [

frameId_to_feature(frameId , frameEgoFeatureMap) for

frameId in frameIdPair

]

name = id_name [:-2] + feature_name [0]. upper() +

feature_name [1:]

df[name] = feature

msg = "Add {} column to dataframe".format(name)

Faculty of mechanical engineering and Naval Architecture 76

Ivan Grabić Master’s thesis

return df , msg

def add_veh_relations(df):

msg = []

for veh in list_of_vehicles:

for feature in list_of_features:

df , m = add_feature(df , veh , feature)

msg.append(m)

return df , msg

reportingfeatures.py

from pylatex import Document , Section , Itemize , Enumerate ,

Description , Command , NoEscape

def create_latex_report(msgs , save_path):

doc = Document ()

with doc.create(Section(’Data processing ’)):

with doc.create(Itemize ()) as itemize:

for msg in msgs:

itemize.add_item(msg)

doc.generate_pdf(save_path , clean_tex=False)

symetry.py

import pandas as pd

import numpy as np

features to convert

FEATURES =

["xVelocity","xAcceleration","yVelocity","yAcceleration"]

uncomment below when testing

FEATURES = ["test"]

def get_feature_lane_pairs(df: pd.DataFrame , feature: str) ->

list:

return [(f, i) for f, i in zip(df[feature].values ,

df.laneId.values)]

Faculty of mechanical engineering and Naval Architecture 77

Ivan Grabić Master’s thesis

def convert(feature_lane_pair:tuple) -> float:

feature , lane = feature_lane_pair

if lane == 2 or lane == 3:

feature *= -1

return feature

def add_symetry(df:pd.DataFrame) -> tuple:

""" Convert values in upper lanes to local coordinate system

Arguments:

df {pd.DataFrame} -- [description]

Returns:

tuple -- (df , msg)

"""

for feature in FEATURES:

feature_lane_pair = get_feature_lane_pairs(df,feature)

converted_features = list(map(convert ,feature_lane_pair))

df[feature] = converted_features

msg = ["Converted folowing values to local coordinate

system: {}".format(FEATURES)]

return df , msg

symetry test.py

import unittest

import pandas as pd

import symetry as sm

class TestBalancingData(unittest.TestCase):

def test_convert(self):

self.assertEqual(sm.convert ((-1, 2)), 1)

self.assertEqual(sm.convert ((1, 5)), 1)

def test_add_symetry(self):

df = pd.DataFrame ({"test": [-1, -1, -1, -1], "laneId":

[2, 2, 5, 5]})

df_sym = pd.DataFrame ({"test": [1, 1, -1, -1], "laneId":

Faculty of mechanical engineering and Naval Architecture 78

Ivan Grabić Master’s thesis

[2, 2, 5, 5]})

self.assertListEqual(

sm.add_symetry(df)[0]. test.values.tolist (),

df_sym.test.values.tolist ()

)

if __name__ == "__main__":

unittest.main()

test data.py

import pandas as pd

df = pd.read_csv("../ data/interim/test_data.csv")

df["dhw"] = df.dhw.map(lambda x: 100 if x==0 else x)

df.to_csv("../ data/interim/test_data_final.csv")

print("DHW solved")

test data.py

import pandas as pd

df = pd.read_csv("../ data/interim/test_data.csv")

df["dhw"] = df.dhw.map(lambda x: 100 if x==0 else x)

df.to_csv("../ data/interim/test_data_final.csv")

print("DHW solved")

vehicle class.py

import pandas as pd

import numpy as np

categories = {

"Truck":0,

"Car":1

}

Faculty of mechanical engineering and Naval Architecture 79

Ivan Grabić Master’s thesis

def get_id_class(meta) -> (list ,list):

return meta["id"], meta["class"]

def veh_class_categorize(veh_classes: pd.Series) -> list:

return veh_classes.map(categories).values

def create_id_class(ids:list ,veh_class:np.array) -> dict:

return dict(zip(ids , veh_class))

def map_classes_to_ids(ids:pd.Series ,mapping:dict) -> pd.Series:

""" Creates collumn of vehicle classes from ids in

dataframe """

return ids.map(mapping)

def input_class(tracks ,classes: pd.Series) -> pd.DataFrame:

""" Add vehClass column to dataframe """

tracks["vehClass"] = classes

return tracks

def add_class(tracks ,meta):

msg = "Add vehClass column to dataframe"

ids ,veh_classes = get_id_class(meta)

veh_classes = veh_class_categorize(veh_classes)

id_to_class = create_id_class(ids ,veh_classes)

tracks_ids = tracks.id

final_classes = map_classes_to_ids(tracks_ids ,id_to_class)

return input_class(tracks ,final_classes), [msg]

calculate metrics.py

import argparse

import sklearn as sk

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import (

confusion_matrix ,

Faculty of mechanical engineering and Naval Architecture 80

Ivan Grabić Master’s thesis

classification_report ,

brier_score_loss ,

roc_curve ,

precision_recall_curve ,

auc

)

parser = argparse.ArgumentParser(description="show metrics")

parser.add_argument("--probs", type=str , default =

"evaluation/predictions/probs_whole_test_set_model4v2_normal.csv")

args = parser.parse_args ()

df = pd.read_csv("../ data/interim/test_data_final.csv")

df=df.iloc [:30000 ,:]

labels = df.laneChangeT100.map(bool)

probs = pd.read_csv(args.probs).probs

preds = probs.map(lambda x: x > 0.6)

print("data_loaded")

cm = confusion_matrix(labels , preds)

print(cm)

cp = classification_report(labels , preds , output_dict=False)

cp_dict = classification_report(labels , preds , output_dict=True)

print(cp)

precision = cp_dict["True"]["precision"]

recall = cp_dict["True"]["recall"]

bs = brier_score_loss(labels , probs)

print(bs)

all_false = [False for _ in range(len(labels))]

bs_avg = brier_score_loss(all_false , probs)

print("Referent BrierScore: ", bs_avg)

bss = 1 - (bs / (bs + bs_avg))

print("BrierSkillScore:", bss)

Faculty of mechanical engineering and Naval Architecture 81

Ivan Grabić Master’s thesis

fpr , tpr , tresh = roc_curve(labels ,probs)

pr , re , tr = precision_recall_curve(labels ,probs)

print("PR AUC: ", auc(re,pr))

no_skill = len(labels[labels ==1]) / len(labels)

plt.subplot (2,1,1)

plt.scatter(re ,pr , c=np.append(tr ,1))

plt.plot ([0,1],[no_skill ,no_skill], ls="--")

plt.xlim ([0 ,1])

plt.scatter(recall , precision , marker="x")

plt.subplot (2,1,2)

plt.plot(tr)

plt.plot([0,len(tr)] ,[0.3 ,0.3])

plt.show()

marginals4.py

import argparse

import random

import pyro

import torch

import numpy as np

import pandas as pd

from pyro.infer import TraceEnum_ELBO

from pyro import poutine

import matplotlib.pyplot as plt

import trained_model

def get_veh(df , is_random=True , idx=None):

if is_random:

veh_id = random.choice(df.sceneId.values)

else:

veh_id = "24_{}".format(idx)

return df[df["sceneId"] == veh_id], veh_id

def keep_change_div(random_veh , frames =100):

Faculty of mechanical engineering and Naval Architecture 82

Ivan Grabić Master’s thesis

random_veh_keep =

random_veh[random_veh["laneChangeT {}".format(frames)] == 0]

random_veh_change =

random_veh[random_veh["laneChangeT {}".format(frames)] == 1]

return random_veh_keep , random_veh_change

def predict_loop(model , input_data: list , observable_features):

probs = []

count = 0

for row in input_data:

row = torch.tensor(row)

count += 1

if count % 1000 == 0:

print(count , "/", len(input_data))

data_dict = get_observation_data(

observable_features , list(map(torch.tensor , row))

)

if args.model == "model5":

data_dict["ax_pvx"] = row[[-3,-1]]

data_dict["vx_pvx"] = row[[-2,-1]]

conditioned_model = pyro.condition(model , data=data_dict)

marginal_intention = TraceEnum_ELBO ().compute_marginals(

conditioned_model , guide , 5

)["lane_change"]

probs.append(marginal_intention.probs.item())

return probs

def get_random_input(df , features: list , lc=False):

has_lane_change = 0.5

if lc == True:

while has_lane_change < 1:

vehicle_df , idx = get_veh(df , True)

Faculty of mechanical engineering and Naval Architecture 83

Ivan Grabić Master’s thesis

has_lane_change =

np.sum(vehicle_df.laneChange.values)

else:

while has_lane_change != 0:

vehicle_df , idx = get_veh(df, True)

has_lane_change =

np.sum(vehicle_df.laneChange.values)

data = vehicle_df.loc[:, features]. values.tolist ()

return data , idx

def get_input(df , features: list , idx):

vehicle_df , _ = get_veh(df, False , idx)

data = vehicle_df.loc[:, features]. values.tolist ()

return data , idx

def get_observation_data(features , row):

return dict(zip(features , row))

def save_probs(probs , idx):

df_probs = pd.DataFrame ({"probs": probs })

df_probs.to_csv("evaluation/predictions/probs_ {}. csv".format(idx))

def plot_results(probs , vehicle_df):

keep , change_1s = keep_change_div(df[df["sceneId"] == idx],

frames =25)

_, change_2s = keep_change_div(df[df["sceneId"] == idx],

frames =50)

_, change_3s = keep_change_div(df[df["sceneId"] == idx],

frames =75)

_, change_4s = keep_change_div(df[df["sceneId"] == idx],

frames =100)

u1 , u2 , u3 , l1 , l2, l3 = 7.82, 11.91 , 15.75 , 20.43 , 24.39 ,

28.36

plt.subplot(2, 1, 1)

Faculty of mechanical engineering and Naval Architecture 84

Ivan Grabić Master’s thesis

plt.scatter(keep.x, keep.y, color="blue")

plt.scatter(change_4s.x, change_4s.y, color="orange")

plt.scatter(change_3s.x, change_3s.y, color="red")

plt.scatter(change_2s.x, change_2s.y, color="orange")

plt.scatter(change_1s.x, change_1s.y, color="red")

plt.plot([0, 410], [u1 , u1], color="black")

plt.plot([0, 410], [u2 , u2], color="black", ls="--")

plt.plot([0, 410], [u3 , u3], color="black")

plt.plot([0, 410], [l1 , l1], color="black")

plt.plot([0, 410], [l2 , l2], color="black", ls="--")

plt.plot([0, 410], [l3 , l3], color="black")

plt.grid(True , axis="x")

plt.ylim ([30, 0])

plt.xlim([0, 410])

plt.xticks(list(range(0, 410, 25)))

plt.subplot(2, 1, 2)

if keep.y.values [0] > 15:

plt.scatter(vehicle_df.x, probs , color="green", s=2)

else:

plt.scatter(vehicle_df.x, probs , color="red", s=2)

plt.grid(True , axis="x")

plt.ylim([0, 1.1])

plt.xlim([0, 410])

plt.xticks(list(range(0, 410, 25)))

plt.show()

if __name__ == "__main__":

parser = argparse.ArgumentParser(description="Evaluate the

model")

parser.add_argument(

"--random", type=bool , default=True , help="Draw random

vehicle",

)

parser.add_argument(

"--id", type=int , default =1054 , help="Vehicle id,

overriden if random == True"

Faculty of mechanical engineering and Naval Architecture 85

Ivan Grabić Master’s thesis

)

parser.add_argument(

"--model", type=str , default="model5", help="Model you

want to evaluate"

)

parser.add_argument(

"--whole_set", type=bool , default=False , help="Predict

for whole dataset"

)

parser.add_argument(

"--save_probs", type=bool , default=False , help="Save

predictions as .csv"

)

parser.add_argument(

"--plot_results",

type=bool ,

default=True ,

help="Visualise trajectory and probabilities",

)

parser.add_argument("--lc", type=bool , default=False ,

help="True if you want vehicle with lane change")

args = parser.parse_args ()

models = {

"model3": trained_model.Model3 ,

"model4": trained_model.Model4 ,

"model4v2": trained_model.Model4v2 ,

"model5": trained_model.Model5 ,

}

observable_features = {

"model3": ["laneIdRL", "yAcceleration", "yVelocity"],

"model4": [

"laneIdRL",

"yAcceleration",

"yVelocity",

"vehClass",

"precedingVehClass",

],

"model4v2": [

"laneIdRL",

Faculty of mechanical engineering and Naval Architecture 86

Ivan Grabić Master’s thesis

"yAcceleration",

"yVelocity",

"vehClass",

"precedingVehClass",

"dhw"

],

"model5": [

"laneIdRL",

"yAcceleration",

"yVelocity",

"vehClass",

"precedingVehClass",

"xAcceleration",

"xVelocity",

"precedingXVelocity",

],

}

observable_variables = {

"model3": ["lane", "a", "v"],

"model4": ["lane", "a", "v", "ego_class",

"preceding_class" ,],

"model4v2": ["lane", "a", "v", "ego_class",

"preceding_class","dhw"],

"model5": ["lane", "a", "v", "ego_class",

"preceding_class","ax_pvx","vx_pvx"],

}

BN = models[args.model]()

model = BN.model

guide = BN.guide

df = pd.read_csv("../ data/interim/test_data_final.csv")

if args.whole_set:

data = df.loc[:,

observable_features[args.model]]. values.tolist ()

elif args.random:

data , idx = get_random_input(df ,

observable_features[args.model], lc=args.lc)

else:

Faculty of mechanical engineering and Naval Architecture 87

Ivan Grabić Master’s thesis

data , idx = get_input(df,

observable_features[args.model], args.id)

probs = predict_loop(model , data ,

observable_variables[args.model])

if args.whole_set:

save_probs(probs ,

"whole_test_set_ {} _normal".format(args.model))

elif args.save_probs:

save_probs(probs , idx)

if args.plot_results:

vehicle_df = df[df["sceneId"] == idx]

print(vehicle_df.sceneId.iloc [0])

plot_results(probs , vehicle_df)

trained model.py

import torch

import pyro

import random

import torch.distributions.constraints as constraints

from pyro import distributions as dist

from pyro.contrib.autoguide import AutoGuide , AutoContinuous

from pyro.infer import config_enumerate

def positive_definite(tensor):

constrained_tensor = torch.zeros_like(tensor)

if len(tensor.shape) > 2:

for dim in [0,1]:

tensor_part = tensor[dim]

constrained_tensor[dim] =

torch.add(torch.mm(tensor_part , tensor_part.t()),

1e-3 * torch.eye(2))

else:

constrained_tensor = torch.add(torch.mm(tensor ,

tensor.t()), 0.1 * torch.eye (2))

return constrained_tensor

Faculty of mechanical engineering and Naval Architecture 88

Ivan Grabić Master’s thesis

class Model3:

@config_enumerate

def model(self , data):

a = pyro.param("alpha", torch.tensor (10.0) ,

constraint=constraints.positive)

b = pyro.param("beta", torch.tensor (10.0) ,

constraint=constraints.positive)

with pyro.plate ("data", data.shape [0], dim=-1):

intention = pyro.sample("intention", dist.Beta(a, b))

a_loc = torch.tensor ([[0.0328 , -0.0419] , [0.1865 ,

-0.1461]])

a_scale = torch.tensor ([[0.0940 , 0.0986] , [0.1466 ,

0.1422]])

v_loc = torch.tensor ([[-0.0706 , 0.0845] , [0.4837 ,

-0.4639]])

v_scale = torch.tensor ([[0.2028 , 0.2139] , [0.3916 ,

0.3767]])

lane_change = pyro.sample("lane_change",

dist.Bernoulli(intention))

lane = pyro.sample("lane", dist.Bernoulli (0.5))

parents = [lane_change.long(), lane.long()]

pyro.sample("a", dist.Normal(a_loc[parents],

a_scale[parents]))

pyro.sample("v", dist.Normal(v_loc[parents],

v_scale[parents]))

def guide(self , data):

return AutoGuide(self.model)

class Model4:

@config_enumerate

def model(self , data):

ego_class_loc = pyro.param("ego_loc", torch.tensor (0.5))

Faculty of mechanical engineering and Naval Architecture 89

Ivan Grabić Master’s thesis

preceding_class_loc = pyro.param("prec_loc",

torch.tensor (0.5))

intention = pyro.param(

"intention_cpd",

torch.tensor ([[0.04 , 0.06] , [0.2, 0.15]]) ,

constraint=constraints.unit_interval ,

)

a_loc = pyro.param("a_loc_p", torch.tensor ([[0.0 , 0.0],

[0.2, -0.2]]))

a_scale = pyro.param(

"a_scale_p",

torch.tensor ([[0.1 , 0.1], [0.25 , 0.25]]) ,

constraint=constraints.positive ,

)

v_loc = pyro.param("v_loc_p", torch.tensor ([[0.0 , 0.0],

[0.75 , -0.75]]))

v_scale = pyro.param(

"v_scale_p",

torch.tensor ([[0.1 , 0.1], [0.25 , 0.25]]) ,

constraint=constraints.positive ,

)

pyro.get_param_store ().load("models/saved_models/T100_4_200_0 .01 _sym")

ego_class = pyro.sample("ego_class",

dist.Bernoulli(ego_class_loc))

preceding_class = pyro.sample(

"preceding_class",

dist.Bernoulli(preceding_class_loc)

)

pa_intention = [ego_class.long(), preceding_class.long()]

lane_change = pyro.sample(

"lane_change",

dist.Bernoulli(intention[pa_intention]),

infer ={"config_enumerate":"parallel"},

)

lane = pyro.sample("lane", dist.Bernoulli (0.5))

Faculty of mechanical engineering and Naval Architecture 90

Ivan Grabić Master’s thesis

parents = [lane_change.long(), lane.long()]

pyro.sample("a", dist.Normal(a_loc[parents],

a_scale[parents]))

pyro.sample("v", dist.Normal(v_loc[parents],

v_scale[parents]))

def guide(self , data):

return AutoGuide(self.model)

class Model4v2:

@config_enumerate

def model(self , data):

ego_class_loc = pyro.param("ego_loc", torch.tensor (0.5))

preceding_class_loc = pyro.param("prec_loc",

torch.tensor (0.5))

intention = pyro.param(

"intention_cpd",

torch.tensor ([[0.04 , 0.06] , [0.2, 0.15]]) ,

constraint=constraints.unit_interval ,

)

a_loc = pyro.param("a_loc_p", torch.tensor ([[0.0 , 0.0],

[0.2, -0.2]]))

a_scale = pyro.param(

"a_scale_p",

torch.tensor ([[0.1 , 0.1], [0.25 , 0.25]]) ,

constraint=constraints.positive ,

)

v_loc = pyro.param("v_loc_p", torch.tensor ([[0.0 , 0.0],

[0.75 , -0.75]]))

v_scale = pyro.param(

"v_scale_p",

torch.tensor ([[0.1 , 0.1], [0.25 , 0.25]]) ,

constraint=constraints.positive ,

)

dhw_param_a = pyro.param(

"dhw_param_a",

torch.tensor ([[3, 3], [3, 3]], dtype=float),

constraint=constraints.positive ,

Faculty of mechanical engineering and Naval Architecture 91

Ivan Grabić Master’s thesis

)

pyro.get_param_store ().load("models/saved_models/T100_4v2_100_0 .3 _normal")

ego_class = pyro.sample("ego_class",

dist.Bernoulli(ego_class_loc))

preceding_class = pyro.sample(

"preceding_class",

dist.Bernoulli(preceding_class_loc)

)

pa_intention = [ego_class.long(), preceding_class.long()]

lane_change = pyro.sample(

"lane_change",

dist.Bernoulli(intention[pa_intention]),

infer ={"config_enumerate":"parallel"},

)

lane = pyro.sample("lane", dist.Bernoulli (0.5))

parents = [lane_change.long(), lane.long()]

pyro.sample("dhw", dist.HalfNormal(dhw_param_a[parents]))

pyro.sample("a", dist.Normal(a_loc[parents],

a_scale[parents]))

pyro.sample("v", dist.Normal(v_loc[parents],

v_scale[parents]))

def guide(self , data):

return AutoGuide(self.model)

class Model5:

@config_enumerate

def model(self , data):

ego_class_loc = pyro.param(

"ego_loc", torch.tensor (0.6) ,

constraint=constraints.unit_interval

)

preceding_class_loc = pyro.param(

"prec_loc", torch.tensor (0.6) ,

constraint=constraints.unit_interval

Faculty of mechanical engineering and Naval Architecture 92

Ivan Grabić Master’s thesis

)

intention = pyro.param(

"intention_cpd",

torch.tensor ([[0.04 , 0.06] , [0.2, 0.15]]) ,

constraint=constraints.unit_interval ,

)

a_loc = pyro.param("a_loc_p", torch.tensor ([[0.0 , 0.0],

[0.2, -0.2]]))

a_scale = pyro.param(

"a_scale_p",

torch.tensor ([[0.1 , 0.1], [0.25 , 0.25]]) ,

constraint=constraints.positive ,

)

v_loc = pyro.param("v_loc_p", torch.tensor ([[0.0 , 0.0],

[0.75 , -0.75]]))

v_scale = pyro.param(

"v_scale_p",

torch.tensor ([[0.1 , 0.1], [0.25 , 0.25]]) ,

constraint=constraints.positive ,

)

vx_loc = pyro.param("vx_loc_p", torch.randn(2, 2, 2, 2))

ax_loc = pyro.param("ax_loc_p", torch.randn(2, 2, 2, 2))

vx_scale = pyro.param(

"vx_scale",

torch.randn(2, 2, 2, 2, 2).float (),

constraint=constraints.positive_definite ,

)

ax_scale = pyro.param(

"ax_scale",

torch.randn(2, 2, 2, 2, 2).float (),

constraint=constraints.positive_definite ,

)

pyro.get_param_store ().load("models/saved_models/T100_5_200_0 .02 _sym_sub200")

ego_class = pyro.sample("ego_class",

dist.Bernoulli(ego_class_loc),)

preceding_class = pyro.sample(

"preceding_class",

Faculty of mechanical engineering and Naval Architecture 93

Ivan Grabić Master’s thesis

dist.Bernoulli(preceding_class_loc),

)

pa_intention = [ego_class.long(), preceding_class.long()]

lane_change = pyro.sample(

"lane_change",

dist.Bernoulli(intention[pa_intention]),

)

lane = pyro.sample("lane", dist.Bernoulli (0.5) ,)

parents_avy = [lane_change.long(), lane.long()]

pyro.sample(

"ay", dist.Normal(a_loc[parents_avy],

a_scale[parents_avy]),

)

pyro.sample(

"vy", dist.Normal(v_loc[parents_avy],

v_scale[parents_avy]),

)

parents_avx =

[ego_class.long(),lane.long(),lane_change.long()]

ax_covariance =

positive_definite(ax_scale[parents_avx]).float ()

vx_covariance =

positive_definite(vx_scale[parents_avx]).float ()

pyro.sample(

"ax_pvx",

dist.MultivariateNormal(ax_loc[parents_avx],

ax_covariance),

)

pyro.sample(

"vx_pvx",

dist.MultivariateNormal(vx_loc[parents_avx],

vx_covariance),

)

Faculty of mechanical engineering and Naval Architecture 94

Ivan Grabić Master’s thesis

def guide(self , data):

return AutoGuide(self.model)

Faculty of mechanical engineering and Naval Architecture 95

	Introduction
	Motivation
	Problem statement
	Related work
	Thesis overview

	Bayesian Machine Learning
	Probability calculus and machine learning
	Bayesian network basics
	Inference in probabilistic models
	Black Box Variational Inference
	Probabilistic Programing
	Pyro probabilistic programing language
	SVI in pyro

	Data
	Raw data exploration
	Data preparation
	Data class breakdowns
	Vehicle class
	Left and right lane
	Lane change

	Model
	Learning generative model
	Network structure
	Learning

	Infering Lane Change Intention

	Results
	Defining evaluation metrics
	Model Evaluation

	Conclusion
	 References
	 Appendix

