Analiza ponašanja bolida Formule student u programskom paketu Adams Car

Pavlaković, Marin

Undergraduate thesis / Završni rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:019144

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-08

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Marin Pavlaković

Zagreb, 2020.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Analiza ponašanja bolida Formule student u programskom paketu Adams Car

Mentor:

Student:

Doc. dr. sc. Goran Šagi, dipl. ing.

Marin Pavlaković

Zagreb, 2020.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru doc.dr.sc. Goranu Šagiju na ukazanom povjerenju da ću završiti ovaj zadatak, te na ustupljenoj literaturi i pomoći pri rješavanju usputnih problema.

Zahvaljujem se članovima FSB Racing Team-a na produktivnim raspravama i udijeljenom znanju.

Također najviše se zahvaljujem svojoj obitelji i svim prijateljima koji su mi pružili podršku tijekom izrade rada i preddiplomskog studija.

Marin Pavlaković

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za završne ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveuč	ilište u Zagrebu
Fakultet stro	ojarstva i brodogradnje
Datum	Prilog
Klasa:	
Ur.broj:	

ZAVRŠNI ZADATAK

Student:

Marin Pavlaković

Mat. br.: 0035204137

Naslov rada na
hrvatskom jeziku:Analiza ponašanja bolida Formule Student u programskom paketu
Adams Car

Naslov rada na engleskom jeziku:

Analysis of a Formula Student race car behaviour in software package Adams Car

Opis zadatka:

U posljednjih desetak godina studenti FSB-a sudjeluju u međunarodnom natjecanju Formula Student. U sklopu natjecanja cilj je da studenti osmisle, konstruiraju i izrade novi trkaći bolid. Prilikom razvoja vozila nezaobilazna je primjena računalnih simulacija, a u sklopu ovog rada, cilj je u programskom paketu Adams Car izraditi virtualne staze i analizirati ponašanje bolida.

U okviru završnog rada potrebno je:

• Na jednostavnom obliku staze, detaljno objasniti postupak modeliranja staze u programskom paketu Adams Car.

• Objasniti funkcioniranje virtualnog modela vozača i definiranje njegovih postavki u programskom paketu Adams Car.

• Izraditi model staze (ili više njih) s natjecanja Formula Student u Europi.

• Prikazati promjene u konstrukciji budućeg bolida FSB Racing Team-a u odnosu na aktualni bolida (FSB-RT06E Vulpes).

• Usporediti rezultate aktualnog i budućeg bolida simulacijama vožnje po virtualnim stazama, uz prikaz rezultata simulacija izradom odgovarajućih dijagrama, prvenstveno rezultata vezanih za dinamiku vozila.

• Prikazati rezultate simulacija koje omogućuje programski paket Adams Car, a koje za svoje analize mogu koristiti i drugi podtimovi (izuzev podtima dinamike vozila).

Pri izradi se treba pridržavati uobičajenih pravila za izradu završnog rada. U radu navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

28. studenog 2019.

Zadatak zadao:

Datum predaje rada: 1. rok: 21. veljače 2020. 2. rok (izvanredni): 1. srpnja 2020. 3. rok: 17. rujna 2020. Predviđeni datumi obrane: 1. rok: 24.2. – 28.2.2020. 2. rok (izvanredni): 3.7.2020. 3. rok: 21.9. - 25.9.2020.

Predsjednik Povjerenstva:

Prof. dr. sc. Igor Balen

SADRŽAJ

SADRŽAJ	II		
POPIS SLIKA			
POPIS TABLICA			
POPIS OZNAKA	IX		
SAŽETAK	XII		
SUMMARY	XIII		
1. UVOD	1		
 1.1. Opis tima i natjecanja 1.2. Računalne simulacije u razvoju dinamike vozila 	1 3		
2. DEFINIRANJE VAŽNIJIH POJMOVA KORIŠTENI U RADU	4		
3. IZRADA STAZA U PROGRAMSKOM PAKETU ADAMS CAR	9		
3.1. Opis programskog paketa Adams Car	9		
3.2. Izrada jednostavne staze preko segmenata uporabom sučelja <i>Road Builder</i>	10		
3.3. Izrada jednostavne staze preko poznatih tocaka staze	16		
4 PROCEDURE ROTAVI JANIA VOZAČA I SIMULACIJA VOŽNIE U ADAMS C	ΛD		
4. FROCEDURE FOTAVLJANJA VOZACA I SIMULACIJA VOZNJE U ADAMIS C. U	AK- 29		
4.1. Uporaba <i>Event Builder</i> -a za izradu procedure vožnje	29		
4.2. Izrada jednostavne procedure <i>Event Builder</i> -om s dinamičkog eventa	30		
4.3. Provedba simulacija postavljene jednostavne procedure ubrzanja i kočenja i prika	az		
rezultata	36		
4.4. Postavljanje procedure vožnje i vozača preko SmartDriver sučelja	40		
4.5. Opis SinariDriver suceija i Solver-a konsteni za provedbu sinulacija	41		
 4.0. Provedba sindiacije na jednostavnoj staži s dva zavoja uporaboli sinattDriver-a 4.7. Optimizacija putanje na primjeru jednostavne staze s dva zavoja unutar Path 	44		
Optimization sučelja	47		
4.8. Optimizacija putanje duzin staza i provedba simulacije	52		
4.9. Rezultati Konache sinulacije staze za testitalije	59		
5 KONCEPT I KONSTRUKCIJA NOVOG BOJ IDA RT07	62		
5. KONCELLI I I KONSTRUKCIJA NOVOG DOLIDA KTO/	05		
5.2. Opis proračuna odvojenog ovjesa prema tinu gibanja	05		
5.3. Proračun krutosti prednjeg odvojenog ovjesa pri poniranju/podizanju	73		
5.4. Proračun krutosti stražnjeg odvojenog ovjesa pri poniranju/podizanju	76		
5.5. Proračun krutosti prednjeg odvojenog ovjesa pri valjanju	77		
5.6. Proračun krutosti stražnjeg odvojenog ovjesa pri valjanju	78		
5.7. Postavke prigušenja odvojenog ovjesa pri poniranju/podizanju	79		
5.8. Postavke prigušenja odvojenog ovjesa pri valjanju	80		
6. SIMULACIJE KONCEPTA BOLIDA RT07	81		
6.1. Opis modela koncepta RT07-ice unutar Adams Car-a	81		

Marin Pa	<i>wlaković</i> Za	vršni rad
6.2.	Usporedbe trenutnog bolida vulpesR s konceptom RT07 na većoj stazi	
6.3.	Usporedba pushrod i pullrod koncepta prednjeg ovjesa pri simulaciji na stazi	
6.4.	Uporaba rezultata simulacija od strane ostalih podtimove projekta	91
7. ZAI	KLJUČAK	95
POVEZ	INICE I LITERATURA	96
PRILOZ	ZI	98

POPIS SLIKA

Slika 1. Bolid ArctosR (2014, Silverstone), [2]	2
Slika 2. Strix (2016. Njemačka), [2]	2
Slika 3. StrixR, (FS UK, 2018.) [2]	3
Slika 4. Vulpes (Austrija 2019., FS Alpe Adria) [2]	3
Slika 5. Lijevo: Prikaz koordinatnog sustava u Adams Car sučelju, Desno: prikaz	
koordinatnog sustava prema ISO 8855	4
Slika 6 Bočni nagib kotača, usmjerenost kotača, bočni nagib osi zakretanja kotača [7]	4
Slika 7. Polumjer zakretanja kotača, uzdužni nagib osi zakretanja kotača, mehaničko	
predvođenje [7]	5
Slika 8. Kinematički centar valjanja, trenutno središte rotacije, os valjanja [7]	5
Slika 9. Središte poniranja (eng. pitch center) u bočnom pogledu na vozilo [8]	6
Slika 10. Bočni kut klizanja – α [9]	6
Slika 11. Kut zakretanja vozila gledano s gornje strane vozila- θ [9]	7
Slika 12 Kut valjanja vozila (šasije, tj. ovješene mase) [9]	7
Slika 13. Ovješena i neovješena masa prikazana u četvrtinskom modelu vozila, desno: [7]	8
Slika 14. Road Builder naredba u Adams car-u	. 10
Slika 15. Otvoreno sučelje Road Buildr-a	. 11
Slika 16. Postavke staze Global	. 11
Slika 17. Prikaz jednostavne staze s dva zavoja u Solidworks-u	. 12
Slika 18. Segmenti staze unutar Road Generator kartice	.12
Slika 19. Tablica generiranih točaka staze	. 14
Slika 20. Prikaz staze uvezenih točaka	.15
Slika 21. Prikaz izmijenjenih krajeva segmenata	. 16
Slika 22. Popis staza s F1 kalendara za 2017. sezonu	. 17
Slika 23. Željene točke za izradu staze	. 18
Slika 24. Prikaz kartice Road Points	. 19
Slika 25. Koordinate točaka jednostavne staze s dva zavoja iz CAD-a	. 20
Slika 26. Broj unosa novih točaka	. 20
Slika 27. Spremanje koordinata točaka u Road Points kartici	.21
Slika 28. Prikaz uvezenih točaka	. 21
Slika 29. Grafički prikaz staze u Postprocessing prozoru	. 22
Slika 30. Staza za testiranie 1 s Orvx-a	.23
Slika 31. Prikaz međuosovinskog razmaka mjereno na kontaktnoj površini pneumatika [9].	. 24
Slika 32. Globalne postavke Staze za testiranje	.25
Slika 33. Unošene koordinate točaka staze za testiranje	.26
Slika 34. Generirana staze za testiranje preko uvezenih točaka	.26
Slika 35. Staza za testiranie prikazana u Postprocessing Window-u	.27
Slika 36. Prikaz staze s natiecanja u Njemačkoj 2016., u PPT-u	.28
Slika 37. Prikaz staze s natiecanja u Mađarskoj 2018., u PPT-u	. 28
Slika 38. Pokretanie Event builder-a unutar Adams Car-a	. 30
Slika 39. Sučelje Event Builder-a	.31
Slika 40. Kartice za definiranie postavki mini manevra	.32
Slika 41. Postavke Acc mini manevra: Upravlianie. Akcelerator. Kočenie. Stupani prijenosa	a.
Krajnji uvjeti	.34

Marin Pavlaković

Slika 42.	Postavljeno negativno uzdužno ubrzanje na akcelerator i kočenje u Brake mini	
	manevru	35
Slika 43.	Postavljen krajnji uvjet zaustavljanja preko brzine vozila u Brake mini manevru	35
Slika 44.	Pokretanje simulacije iz datoteke kreirane Event Builder-om	36
Slika 45.	Prozor File Driven Event analize	37
Slika 46.	Message window provedene simualcije iz Event Builder-a	37
Slika 47.	Prikaz Animation Controls prozora	38
Slika 48.	Prikaz rezultati simulacije jednostavne procedure iz Event Builder-a: brzina i	
	prijeđeni put	39
Slika 49.	Prikaz rezultati simulacije jednostavne procedure iz Event Builder-a: uzdužno i	
	bočno ubrzanje	39
Slika 50.	Shema strukture Adams SmartDriver simulacije vozača	40
Slika 51.	Prikaz Adams SmartDriver sučelja	42
Slika 52.	Struktura postavki i rubnih uvjeta Solver-a pri rješavanju simulacije, izvadak iz [19)]
		43
Slika 53.	Prikaz prozora za postavljanje Solver-a	43
Slika 54.	Umetnuta jednostavna staza s dva zavoja	44
Slika 55.	Postavke Simulacija 1. unutar SmartDriver-a	44
Slika 56.	Prikaz Message Window-a provedena Simulacije 1	45
Slika 57.	Profil brzine: Utjecaj broja koraka na simulaciju i konvergencija rezultata	46
Slika 58.	Prikaz jednostavne staze s dva zavoja s povećanom broj točaka staze	46
Slika 59.	Profil brzine: Usporedba simulacije staze sa simulacije 2 i preciznije staze	47
Slika 60.	"Rezanje" zavoja u optimalnoj putnji vožnje [20]	47
Slika 61.	Primjeri optimalna putanja kroz dijelove staze [20]	48
Slika 62.	Postavljeni parametri optimizacije staze za primjer s dva zavoja	49
Slika 63.	Početak iteracije optimalne putanje	50
Slika 64.	Kraj iteracije optimalne putanje	50
Slika 65.	Postavke SmartDriver-a za izrađenu putanju staze s dva zavoja	51
Slika 66.	Profil brzine: usporedba Simulacije 3 i vožnje po optimiziranoj putanji	51
Slika 67.	Uzdužno ubrzanje: usporedba Simulacije 3 i vožnje po optimiranoj putanji	52
Slika 68.	Bočno ubrzanje: usporedba Simulacije 3 i vožnje po optimiranoj putanji	52
Slika 69.	Primjer greške na jednom od zavoja na stazi tijekom iteracija, gdje dolazi do	
	prijeloma putanje	53
Slika 70.	Postavke optimizacije putanje staze za testiranje nakon završetka iteracija	
	(MalaStaza_v7_DRDv12_v2)	53
Slika 71.	Postavke Solver-a korišten pro posljednjoj iteraciji (MalaStaza_v7_DRDv12_v2) .	54
Slika 72.	Konačna iteracija putanje staze za testiranje (MalaStaza_v7_DRDv12_v2)	54
Slika 73.	Stablo s izmjenama unutar iteracija simulacije staze za testiranje	55
Slika 74.	Postavke SmartDriver-a u posljednjoj simulaciji staze za testiranje	
	(MalaStaza_v7_DRDv12_v2)	56
Slika 75.	Grafički prikaz putanje bolida nakon postavljanja SmartDriver-a	56
Slika 76.	Shematski prikaz funkcije magične formule modela PAC2002	57
Slika 77.	Prikaz funkcije pneumatika preko tire fitting tool-a	58
Slika 78.	Primjer izletavanja vozila u jednoj od iteracija na posljednjem zavoju	58
Slika 79.	Kut bočnog klizanja pri iteracija izletavanja vozila na posljednjem zavoju	59
Slika 80.	Profil brzine konačne iteracije po putanji staze za testiranje	59
Slika 81.	Usporedba profila brzine Vulpes / VulpesR nakon izmjena na bolidu	50
Slika 82.	Kut valjanja bolida kroz stazu za testiranje, Vulpes/VulpesR-a	50
Slika 83.	Kut poniranja bolida kroz stazu za testiranje, Vulpes/VulpesR-a	51

Marin	Pavlako	vić

Slika 84. Kut zakretanja bolida oko vertikalne osi kroz stazu za testiranje, Vulpes/VulpeR-a
Slika 85. Bočni kut klizanja prednjeg i stražnjeg lijevog pneumatika, bolida kroz stazu za
testiranje, VulpesR-a61
Slika 86. Postavke optimizacije putanje staze s natjecanja Mađarska, 2018.
(Hungary_2018_v3_DRD1)62
Slika 87. Postavke SmartDriver-a za putanju staze s natjecanja Mađarska, 2018.
(Hungary_2018_v3_DRD1)62
Slika 88. Grafički prikaz konačne iteracije putanje staze s natjecanja Mađarska, 2018.
(Hungary_2018_v3_path1)
Slika 89. Profil brzine putanje staze s natjecanja Mađarska, 2018
Slika 90. Uzdužno ubrzanje putanje staze s natjecanja Mađarska, 2018
Slika 91. Bočno ubrzanje putanje staze s natjecanja Mađarska, 2018
Slika 92. Kut valjanja (crveno) i kut poniranja (plavo) bolida kroz stazu s natjecanja,
Mađarska, 2018 64
Slika 93. Stražnji sklop kotača s elektromotorom planetarnim prijenosnikom
Slika 94. Koncept s jednim baterijskim paketom iza vozača, približne mase iz CAD-a 38,6 kg
Slika 95. Koncept s dva baterijskim paketa ispred i iza vozača, približne mase iz CAD-a 20 kg
prednji i 23 kg stražnji66
Slika 96. Ispitivanje pneumatika na Calspan ispitnom postavu, [2]
Slika 97. RT06R analiza distribucije tlaka ispod podnice, [2]
Slika 98. Koncept stražnjeg decoupled ovjesa sa štapom za guranje spojenog na gornje rame
Slika 99. Koncept prednjeg pushrod odvojenog ovjesa
Slika 100. Koncept prednjeg pullrod odvojenog ovjesa
Slika 101. Prostorni model vozila s prikazanim opružno-prigušnim elementima tijekom
gibanja u poniranju/podizanju
Slika 102. Opis MR omjera prema [9]
Slika 103. Prostorni model vozila s prikazanim opružno-prigušnim elementima tijekom
gibanja u valjanju
Slika 104. Izvadak iz kataloga KW prigušivača za formulu student kategoriju, [2]
Slika 105. Primjer dostupnih postavki koeficijenta prigušenja, [2]
Slika 106. Definiranje ovješene mase bolida u modelu vozila u Adams CAR-u
Slika 107. Definiranje mase motora unutar glavčine stražnjeg sklopa kotača
Slika 108. <i>Pushrod</i> aktivacija, koncept straznjeg odvojenog ovjesa
Slika 109. <i>Pullrod</i> aktivacija, koncept prednjeg odvojenog ovjesa
Slika 110. <i>Pushrod</i> aktivacija, predložak koncept prednjeg odvojenog ovjesa
Slika 111. Primjer postavljanja krutosti opruge na prednjem ovjesu pri poniranju
Slika 112. Definiranje pneumatika unutar Adams Car-a
Slika 113. Prikaz potpunog modela koncepta R107 sa prednjim <i>pullrod</i> ovjesom
Slika 114. Prikaz potpunog modela koncepta R107 sa prednjim pusnrod ovjesom
Slika 115. Postavke simulacije pushrod R107 modela vozila na putanji staze za testiranje 86
Slike 117. Usporedba profile brzina VulnaD, a a dva koncerta DT07 a nuchrad i pullu d
Sinka 117. Usporedoa proma orzine v uipek-a s dva koncepta K107 s pushrod i pullfod
Piero 118 Use and he he is a subrania Wules Deserve to DT07 a such a discussion of the second subrandom of the second subrando
Silka 116. Usporedba bocnog ubrzanja v ujpek-a s dva koncepta K10/ s pusnrod i pullrod
Slike 110. Hanomadha layta valiania VulnaD, a a dua hanomata DT07 a muchandi anglari d
sinka 119. Osporeuoa kuta valjanja vulpek-a a uva koncepta K107 s pushrou i pullrod
prouijini 0vjsom

Marin Pavlaković Završni r	ad
Slika 120. Usporedba kuta poniranja/podizanja VulpeR-a a dva koncepta RT07 s pushrod i	
pullrod prednjim ovjesom	89
Slika 121. Usporedba bočnog ubrzanja između dva koncepta RT07 s pushrod i pullrod	
prednjim ovjsom	90
Slika 122.Profil brzine oba koncepta RT07 s pushrod i pullrod prednjim ovjsom	90
Slika 123. Usporedbu profil vertikalne komponente sile na kotaču (gledano prednji lijevi)	
između dvije iteracija aerodinamičkog paketa	91
Slika 124. Komponente opterećenja prihvata klackalice u vremenu, prolaskom kroz stazu za	
testiranje, modela RT07 s pullrod prednjim ovjesom	92
Slika 125. Komponente opterećenja vanjskog sfernog ležaja na gornjem prednjem ramenu u vremenu, prolaskom kroz stazu za testiranje, modela RT07 s pullrod prednjim	
ovjesom	93
Slika 126. Profil brzine vrtnje elektromotora na primjeru prolaska kroz putanju staze za	
testiranje	94

POPIS TABLICA

Tablica 1. Pretpostavljene ulazne veličine masa koncepta rt07	72
Tablica 2. Pretpostavljene dimenzijske veličine koncepta rt07	72
Tablica 3. Ulazne veličine trenutne iteracije kinematike koncepta rt07	72
Tablica 4. Statička opterećenja po kotaču vozila prema zadanim masama	73
Tablica 5. Trenutni omjer MR prema kinematici prednjeg ovjesa	73
Tablica 6. Trenutni omjer MR prema kinematici stražnjeg ovjesa	73
Tablica 7. Postavke koeficijenta prigušenja ovjesa pri poniranju	80
Tablica 8. Postavke koeficijenta prigušenja ovjesa pri valjanju	80

POPIS OZNAKA

Oznaka	Jedinica	Opis
a	mm	Udaljenost težišta mase od prednje osovine
a_x	mm/s^2 ,g	Uzdužna komponenta ubrzanja
a_{y}	mm/s^2 ,g	Bočna komponenta ubrzanja
a/b	-	Omjer prednje/stražnje mase
С	mm	Bočna asimetrija vozila
CoG_{SM}	mm	Vertikalni položaj težišta ovješene mase
CoG_{USM}	mm	Vertikalni položaj težišta neovješene mase
$C_{ride-LS-C-F}$	Ns/m	Koeficijent prigušenja prednjeg prigušivača za poniranje/podizanje pri sporohodnom pomaku kompresije
$C_{ride-LS-E-F}$	Ns/m	Koeficijent prigušenja prednjeg prigušivača za poniranje/podizanje pri sporohodnom pomaku ekspanzije
$C_{ride-LS-C-R}$	Ns/m	Koeficijent prigušenja stražnjeg prigušivača za poniranje/podizanje pri sporohodnom pomaku kompresije
$C_{ride-LS-E-R}$	Ns/m	Koeficijent prigusenja straznjeg prigusivaca za poniranje/podizanje pri sporohodnom pomaku ekspanzije
$C_{roll-LS-C-F}$	Ns/m	sporohodnom pomaku kompresije
$C_{roll-LS-E-F}$	Ns/m	sporohodnom pomaku ekspanzije
$C_{roll-LS-C-R}$	Ns/m	Koeficijent prigušenja stražnjeg prigušivača za valjanje pri sporohodnom pomaku kompresije
$C_{roll-LS-E-R}$	Ns/m	Koeficijent prigušenja stražnjeg prigušivača za valjanje pri sporohodnom pomaku ekspanzije
f_{nSMf}	Hz	Prirodna frekvencija prednjeg kraja bolida
f_{nSMr}	Hz	Prirodna frekvencija stražnjeg kraja bolida
FT	mm	Prednji trag
F-sCoG	mm	Interpolirana visina prednje ovješene mase
$F_{RIDE-spr-F}$	Ν	Statička sila predopterećenja prednje opruge za poniranje/podizanje
$F_{RIDE-spr-R}$	Ν	Statička sila predopterećenja stražnje opruge za poniranje/podizanje
Fx	Ν	Uzdužna komponenta sile
Fy	Ν	Bočna komponenta sile
Fz	Ν	Vertikalna (normalna) komponenta sile
FzoF	Ν	Ukupna vertikalna sila - prednji lijevi kotač
FzoR	Ν	Ukupna vertikalna sila - stražnji lijevi kotač
KRC _{hf}	mm	Visina prednjeg kinematičkog centra valjanja

Fakultet strojarstva i brodogradnje

KRC _{hr}	mm	Visina stražnjeg kinematičkog centra valjanja
KRh_{cp}	mm	Visina ukupnog srednjeg kinematičkog centra valjanja
K_T	N/mm	Vertikalna krutost pneumatika
K_{RR-F}	N/mm	Krutost vožnje prednjeg kraja bolida
K_{RR-R}	N/mm	Krutost vožnje stražnjeg kraja bolida
K_{WR-F}	N/mm	Ekvivalentna krutost prednjeg kotača (vertikalnog pomaka)
K_{WR-R}	N/mm	Ekvivalentna krutost stražnjeg kotača (vertikalnog pomaka)
K _{RIDE-series-F}	N/mm	Ekvivalenta krutost prednje opruge za poniranje/podizanje promatrajući četvrtinski model
$K_{RIDE-series-R}$	N/mm	Ekvivalenta krutost stražnje opruge za poniranje/podizanje promatrajući četvrtinski model
$K_{RIDE-spr-F}$	N/mm	Krutost prednje opruge za poniranje/podizanje
$K_{RIDE-spr-R}$	N/mm	Krutost stražnje opruge za poniranje/podizanje
$K_{ROLL-spr-F}$	N/mm	Krutost prednje opruge za valjanje
$K_{ROLL-spr-R}$	N/mm	Krutost stražnje opruge za valjanje
$K_{WR-ROLL-F}$	N/mm	Ekvivalentna krutost prednjeg kotača protiv valjanja
K _{WR-ROLL-R}	N/mm	Ekvivalentna krutost stražnjeg kotača protiv valjanja
$K_{\phi spr-F}$	Nmm/deg	Moment protiv valjanja prednjeg kraja bolida uslijed opruge
$K_{\phi spr-R}$	Nmm/deg	Moment protiv valjanja stražnjeg kraja bolida uslijed opruge
$K_{\phi F}$	Nmm/deg	Moment protiv valjanja prednjeg kraja bolida uzimajući u obzir i krutost pneumatika
$K_{\phi R}$	Nmm/deg	Moment protiv valjanja stražnjeg kraja bolida uzimajući u obzir i krutost pneumatika:
M_{v}	kg	Ukupna masa bolida
M_{d}	kg	Masa vozača
M_{tot}	kg	Ukupna masa bolida s vozačem
M_{fv}	kg	Ukupna masa prednjeg kraja bolida
M_{rv}	kg	Ukupna masa stražnjeg kraja bolida
MCoG	mm	Vertikalni položaj težišta ukupne mase
$MR_{-RIDE-F}$	-	Omjer pomaka kotača i opruge za poniranje prednjeg ovjesa
$MR_{-RIDE-R}$	-	Omjer pomaka kotača i opruge za poniranje stražnjeg ovjesa
$MR_{-ROLL-F}$	-	Omjer pomaka kotača i opruge za valjanje prednjeg ovjesa
$MR_{-ROLL-R}$	-	Omjer pomaka kotača i opruge za valjanje stražnjeg ovjesa

Fakultet strojarstva i brodogradnje

Marin Pavlaković

n	\min^{-1}	Brzina vrtnje elektromotora
PCd	mm	Udaljenost središta poniranja od prednje osovine
PCh	mm	Visina središta poniranja
R_{dyn}	mm	Dinamički radijus kotača
RMA_{f}	mm	Prednji krak momenta valjanja
RMA_r	mm	Stražnji krak momenta valjanja
RMA	mm	Srednji krak momenta valjanja
R _{static}	mm	Radijus neopterećenog kotača
R-sCoG	mm	Interpolirana visina stražnje ovješene mase
RT	Mm	Stražnji trag kotača
SM_{ν}	kg	Ovješena masa bolida
SM _{tot}	kg	Ovješena masa bolida s vozačem
SM_{f}	kg	Ovješena masa prednjeg kraja bolida s vozačem
SM_r	kg	Ovješena masa stražnjeg kraja bolida s vozačem
S/a/b	-	Omjer prednje/stražnje ovješene mase
Sa	mm	Udaljenost težišta ovješene mase od prednje osovine
USM_{tot}	kg	Neovješena masa bolida
USM_{f}	kg	Neovješena masa stražnjeg kraja bolida
USM_r	kg	Neovješena masa stražnjeg kraja bolida
US/a/b	-	Omjer prednje/stražnje neovješene mase
Usa	mm	Udaljenost težišta neovješene mase od prednje osovine
v_x	m/s, km/h	Uzdužna komponenta brzine
V _y	m/s, km/h	Bočna komponenta brzine
WB	Mm	Međuosovinski razmak
ΔS_{WC-F}	mm	Statički vertikalni pomak prednje kotača
ΔS_{WC-R}	mm	Statički vertikalni pomak stražnjeg kotača
ΔS_{SRP-F}	mm	Statički pomak prednje opruge za poniranje/podizanje
ΔS_{SRP-R}	mm	Statički pomak stražnje opruge za poniranje/podizanje
α	deg	Bočni kut klizanja
$arphi$, ϕ	deg	Kut valjanja vozila
θ	deg	Kut zakretanja vozila, gledano iz tlocrta
9	deg	Kut poniranja/podizanja vozila

SAŽETAK

U sklopu ovog rada, zadatak je bio u programskom paketu za analizu dinamike vozila Adams Car-u izraditi virtualne staze i analizirati ponašanje bolida.

U radu je:

Na jednostavnom obliku staze, detaljno objašnjen postupak modeliranja staze i definiranje postavki virtualnog modela vozača u programskom paketu Adams Car. Izrađeni su modeli staza s natjecanja Formula Student u Europi. Prikazane su promjene u konstrukciji budućeg bolida FSB Racing Team-a u odnosu na aktualni bolid, te su voženi na izrađenim stazama. Uspoređeni su rezultati aktualnog i budućeg. Prikazani su rezultati simulacije koje omogućuje programski paket Adams Car, a koje za svoje analize mogu koristiti i drugi podtimovi.

Ključne riječi:

dinamika vozila, Adams Car, staza, vozač, odvojeni ovjes prema vrsti gibanja, dinamika modela vozila s više tijela

SUMMARY

Ss part of this work, the goal was in the Adams Car software package for vehicle dynamics to create virtual tracks and analyze the behaviour of the car.

Within the work:

On a simple track design, explained in detail the track modeling process and the operation of the virtual driver model and definition of its settings in the Adams Car software package. Design of track models from a Formula Student competition in Europe. Show the changes in the construction of the future FSB Racing Team car in relation to the current car, and drive simulation over designed tracks. Compared the results of current and future car. Shown simulation results provided by the Adams Car software package, which can be used by other sub-teams for their analysis.

Keywords:

vehicle dynamics, Adams Car, track, driver, decoupled suspension, multi-body dynamics in full-vehicle

1. UVOD

1.1. Opis tima i natjecanja

Formula Student je natjecanje studenata tehničkih i njima srodnih fakulteta u osmišljavanju, konstruiranju i izradi bolida jednosjeda prema pravilima natjecanja. Prvo natjecanje je održano početkom 1980-ih godina u SAD-u te se kasnije proširilo na cijeli svijet. Danas se ovo natjecanje održava u preko 20 zemalja. U Europi neka, od većih natjecanja se održavaju u Engleskoj, Njemačkoj, Italiji, Austriji, Mađarskoj i Španjolskoj. Cijelo natjecanje je koncipirano tako da potiče inovativnost i razvijanje sposobnosti studenata da teoriju konstruiranja, kao i marketinške i menadžerske sposobnosti vođenja tima, primjenjuju u praksi. Jedan od najvažnijih segmenata o kojima tim mora voditi brigu su financije jer cijeli projekt financiraju sponzori i donatori. Ocjenjivanje se sastoji od statičkog i dinamičkog djela natjecanja. Statički testovi obuhvaćaju prezentaciju vozila, objašnjenje same konstrukcije vozila i obrazloženje cijene vozila po pojedinim dijelovima i tehnologijama izrade. Gotovi bolidi moraju proći tehnički pregled kako bi se osigurali minimumi sigurnosti na dinamičkim testiranjima. Tehnički pregled obavljaju stručnjaci koji se aktivno bave automoto sportom dugi niz godina, bilo kroz Formulu 1, WRC (eng. World Rally Championship) ili DTM (njem. Deutsche Tourenwagen Masters). U dinamičkim testiranjima se boduje slalom, bočno ubrzanje, ubrzanje, utrka izdržljivosti te potrošnja goriva. Glavni cilj natjecanja nije sama vožnja već pokazivanje inovativnosti pri izradi i primjena teorijskih znanja stečenih tijekom studija u praktičnom okruženju. FSB Racing Team je prva hrvatska momčad Formule Student. FSB Racing Team osnovan je 2004. godine, a čine ga studenti iz različitih sastavnica Sveučilišta u Zagrebu (FSB, FER, EFZG). Projekt prati i podržava Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu. Projekt ima mnogostruke aspekte, od promicanja, razvijanja i unapređivanja tehničke kulture u Hrvatskoj, poticanja stvaralačkog rada kojim studenti izražavaju svoje kreativne sposobnosti, do promidžbe Republike Hrvatske te kvalitete hrvatskog akademskog obrazovanja.

Do sada je FSB Racing Team uspio s 6 bolida prisustvovati na natjecanjima Formule student, redom su to bili bolidi: Kuna 2006. godine, Ris 2007., Likos 2012. te Arctos 2013. i 2014. godine. Strix 2016. godine, StrixR 2018., Vulpes 2019. godine, i aktualni bolid Vulpes R (koji se bazira na šasiji Vulpesa) s kojim se planira sudjelovanje u virtualnim natjecanjima u Švicarskoj i Engleskoj, kao i natjecanje koje će se održati FS Aple Adria.

Također, navedeni bolidi postigli su odlične rezultate na natjecanjima pa je tako bolid Kuna osvojio 35. mjesto u konkurenciji od 72 tima u Velikoj Britaniji, Ris 48. od 84 tima u Velikoj Britaniji, Likos 24. od 103 tima također u Velikoj Britaniji dok je Arctos osvojio 56. od 75 timova u Njemačkoj te izvanredno 10. od 97 timova u Velikoj Britaniji. [1]

Slika 1. Bolid ArctosR (2014, Silverstone), [2]

Slika 2. Strix (2016. Njemačka), [2]

Slika 3. StrixR, (FS UK, 2018.) [2]

Slika 4. Vulpes (Austrija 2019., FS Alpe Adria) [2]

1.2. Računalne simulacije u razvoju dinamike vozila

Kao i kod prethodnih bolida u razvoju vozila se uzastopno koristio jedan ili više programskih paketa za analiza dinamike vozila. Tako da se ovaj rad ujedno bazira, te kao temelj koristi druge radove koji dodiruju ili u širem smislu objašnjavaju predmet razrade, te će se radi ne ponavljanja istog referirati na [1], [3], [4], [5]. Rad će se bazirati na programskom paketu *Adams Car*, te sve simulacije i analize biti će provedene u istom, uz mogućnost korištenja i drugih programskih paketa poput *CarSim, AVL VSM, OptimumG* i *ChsssisSim* ovisno o mogućnostima kontrole i usporedbe rezultata dobivenih u *Adams Car*-u. Također će se za kontrolu postave vozila i rezultata simulacija koristiti usporedba s analitičkim proračunom uzdužne i bočne dinamike vozila, za trenutni bolid Vulpes (VulpesR) prema [2], [3], te će se u sklopu ovog završnog rada uz pomoć [2] i ostale literature izraditi isti za novu konstrukciju bolida.

2. DEFINIRANJE VAŽNIJIH POJMOVA KORIŠTENI U RADU

Prije postavljanja modela vozila i simulacije rezultata važno je postaviti usklađeni koordinatni sustav između analitičke razrade i programa. U *Adams*-u ostavljen je njegov koordinatni sustav budući da se poklapa prema standardu ISO 8855, načinom postavljanja prema [6], što će utjecati na predznake i zračenje rezultata simulacija.

Slika 5. Lijevo: Prikaz koordinatnog sustava u Adams Car sučelju, Desno: prikaz koordinatnog sustava prema ISO 8855

U nastavku su navedeni kinematički parametri ovjesa i dinamički pomaci i zakreti važni za razumijevanje ponašanja vozila u statičkim i dinamičkim uvjetima, parametri su opisani prema [6], [7], [8] i [9].

Y IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Bočni nagib kotača engl. <i>Camber</i> njem. <i>Sturz</i>	Kut između ravnine simetrije kotača i vertikalne uzdužne ravnine, a gledano u YZ-ravnini vozila.		
	Usmjerenost kotača engl. <i>Toe angle</i> njem. <i>Spurwinkel</i>	Kut koji tvore uzdužna ravnina simetrije kotača i uzdužna ravnina vozila, a gledano u XY-ravnini vozila.		
	Bočni nagib osi zakretanja kotača engl. <i>Kingpin inclination</i> angle njem. Spreizungwinkel	Kut između osi zakretanja kotača i vertikalne uzdužne ravnine, a gledano u YZ-ravnini vozila.		

Slika 6 Bočni nagib kotača, usmjerenost kotača, bočni nagib osi zakretanja kotača [7]

Polumjer zakretanja kotača engl. Scrub radius, Kingpin offset njem. Lenkrollradius, Lenkrollhalbmeser	Horizontalna poprečna udaljenost koju tvore kutovi bočnoga nagiba kotača i bočnog nagiba osi zakretanja kotača, a gledano u YZ- ravnini vozila u ravnini kontakta gume i podloge.
Uzdužni nagib osi zakretanja kotača engl. <i>Caster</i> njem. <i>Nachlaufwinkel</i>	Kut između osi zakretanja kotača i vertikalne poprečne ravnine, a gledano u XZ-ravnini vozila.
Mehaničko (geometrijsko) predvođenje engl. <i>Caster trail</i> njem. <i>Nachlaufstrecke</i>	Horizontalna uzdužna udaljenost probodišta osi zakretanja kotača i središta kontaktnih površine gume gledano u XZ-ravnini vozila u ravnini kontakta gume i podloge.

Slika 7. Polumjer zakretanja kotača, uzdužni nagib osi zakretanja kotača, mehaničko predvođenje [7]

Rol center	Središte valjanja engl. <i>Roll center</i> njem. <i>Wankpol</i>	Presjecište spojnice trenutnoga središta rotacije (pola) ovjesa i središta dodirne površine kotača s uzdužnom vertikalnom ravninom simetrije vozila.
diagonal springing angle center	Trenutno središte rotacije (pol) engl. <i>Longitudinal</i> <i>instantaneous center</i> njem. <i>Längspol</i>	Presjecište izvodnica ovjesa u uzdužnoj ravnini. Pravac kroz trenutno središta rotacije i središta dodirne površine kotača s horizontalnom podlogom definira kut za određivanje anti-značajki.
Roll axis Front axie For taxie	Os valjanja engl. <i>Roll axis</i> njem. <i>Wankachse</i>	Pravac koji prolazi kroz središta valjanja prednje i stražnje osovine.

Slika 8. Kinematički centar valjanja, trenutno središte rotacije, os valjanja [7]

Slika 9. Središte poniranja (eng. pitch center) u bočnom pogledu na vozilo [8]

Slika 9. prikazuje definiranje središta poniranja u bočnom pogledu na vozilo, predstavlja presjecište pravaca iz dodirne površine pneumatika na podlozi (prednjeg i stražnjeg ovjesa) i trenutnog središta poniranja (ekvivalentno trenutnom središtu valjanja, ali u bočnoj ravnini vozila) dobivenog pravcima svakog ramena ovjesa u bočnoj ravnini. Središte poniranja predstavlja dinamičku točku koja se pomiče u x-z ravnini ovisno o gibanju ovjesa, te definira ujedno i kut poniranja vozila primjerice kod ubrzavanja i kočenja u odnosu na z os.

Slika 10. Bočni kut klizanja – α [9]

Jedna on najvažniji veličina/parametara koji definira ponašanje bolida, kao upravljanje (pod- i preupravljanje) tako i sposobnost ostvarivanja bočnog prianjanja (engl. *lateral grip*) je bočni kut klizanja prema slici 10.

Ukratko taj kut predstavlja razliku između rezultantne (stvarne) osi kotača i željenog (očekivanog) smjera kretanja vozila, gledano u horizontalnoj ravnini.

Slika 11. Kut zakretanja vozila gledano s gornje strane vozila- θ [9]

Na slici 10. također je prikazan i moment samoupravljanja pojedinog pneumatika koji je rezultat umnoška bočne sile koje djeluje na kontaktnu površinu pneumatika i rezultantno predvođenje tj. zbroj mehaničkog i pneumatskog predvođenja (pri čemu je pneumatsko predvođenje isto krak gledano s boka kotača, ali predstavlja posljedicu deformacije gume uslijed mase vozila ili dinamičkih uvjeta u odnosu na mehaničko koje je posljedica kinematike ovjesa). Taj moment javlja se na svim kotačima u različitim iznosima i zajedno s momentom tromosti u smjeru z osi definira kut zakretanja vozila θ kao i kutnu brzinu i ubrzanje zakretanja vozila, što je prva i druga derivacija tog kuta.

Slika 12 Kut valjanja vozila (šasije, tj. ovješene mase) [9]

Također među glavna tri kuta, uz kut poniranja i kut zakretanja vozila, spada i kut valjanja vozila (ili šasije). Kut valjanja (kao i kut poniranja u bočnom pogledu vozila oko središta poniranja) u pogledu smjera vožnje predstavlja kut zakretanja šasije (ovješene mase) u odnosu na x os (tj. y-z ravninu).

Slika 13. Ovješena i neovješena masa prikazana u četvrtinskom modelu vozila, desno: [7] Također za razumijevanje važno je navesti i razliku između ovješene i neovješene mase vozila prikazane četvrtinskim modelom prema slici 13. Vozilo promatramo kao vibracijski sustav, te kao takav čine ga ovješena masa (šasija, sve komponente fiksne za šasiju, vozač i radne tekućine vozila), te neovješena masa (pneumatik, sklop kotača koji uključuje kočnice i diskove te elementi ovjesa). Po elementi ovjesa se misli na ramena ovjesa (engl. *wishbone/control arms*) i podizač (engl. *pushrod/pullrod*) čiji udio zbog nesuglasnosti u literaturi i općoj prakse uzimat će se 50 % tih elemenata ovjesa kao neovješena masa u modelu i proračunu.

Ovo je samo kratki podjetnik i opis ovih parametara i pojmova, radi boljeg razumijevanja čitatelju se preporuča literatura [6] i [8], na čijoj će se teoriji bazirati većina ovo rada. Kako ovdje pojmovi nisu detaljnije objašnjeni što može biti potreba pri razumijevanju analize simulacija i rezultata analitičkog proračuna, nešto detaljnija razrada pojmova bit će popratno navedena uz provednu simulacija i analize istih.

3. IZRADA STAZA U PROGRAMSKOM PAKETU ADAMS CAR

3.1. Opis programskog paketa Adams Car

Programski paket Adams omogućuje detaljnu analizu dinamike vozila i utjecaj raznih parametara na njegovo ponašanje u vožnji bez potrebe za izradom stvarnog prototipa. Koristeći takve modele vozila moguće je s dovoljnom preciznošću odrediti kakve je promjene potrebno izvesti u svrhu poboljšavanja dinamičkih karakteristika vozila. Kod trkaćih vozila je bitno procijeniti je li vozilo konkurentno u pogledu performansi koje može ostvariti. Zbog toga se pri određivanju smještaja komponenti unutar vozila teži smanjenju visine težišta i inercija zakreta ovješene mase oko težišta. Pri analitičkom proračunu potrebnih opružnih i prigušnih karakteristika je naglasak za postojeći razmještaj komponenti i položaj težišta osigurati upravljivost vozila te spriječiti kolizije dijelova s tlom pri vožnji. Pomoću modela dinamike više tijela (engl. *multibody dynamics*) se promatraju ostvarene performanse te optimiraju podesivi parametri vozila kako bi se dodatno uravnotežilo njegovo ponašanje i poboljšale performanse.

Programski paket *Adams* svojim modulima omogućuje korisniku izradu modela vozila kao mehanizama koji opisuju određeno gibanje te analizu važnih značajki konstrukcije. Preko numeričkog rješavanja procedura gibanja omogućuje dimenzioniranje i oblikovanje dijelova. Svi su elementi vozila, staze i upravljačke datoteke opisani kroz tekstualne datoteke svojstava (engl. *property files*) koje skupno čine bazu podataka (engl. *database*).[3]

Osim mogućnosti izrade modela vozila u paketu *Adams Car* moguća je izrada staza, modeliranje procedura, standardnih i specifičnih, kao i postavljanje ponašanja vozača. Izrada staza moguća je na nekoliko različitih načina predviđena prema namijeni. Moguća je izrada staze preko segmenata staze posebice ako se radi o poznatim segmentima neke jednostavnije procedure, dok izrada dugih i složenih staza s nepravilnim oblicima zavoja i uzvišenjima može se preko *Adams Chassis Build-a*, tako da se definira središnja linija staze preko poznatih točaka. Staze u *Adams-*u mogu se izraditi i kao procedura gdje sam oblik staze nije bitan već je definiran samo vozač da vozi određenu putanju, a staza može biti ravna beskonačna površina, no velika prednost izrada stvarne staze je naknadna optimizacija putanje vožnje koje je još jedan mogućnost programskog paketa *Adams Car* i *Adams Chassis*.

3.2. Izrada jednostavne staze preko segmenata uporabom sučelja Road Builder

Najjednostavniji način izrade staze u *Adams Car*-u je preko sučelja *Road Builder*. Velika prednost Road Builder-a je mogućnost izrade 3D krivulje ravnine staze (engl. *3D Spline Road*), koja se sprema kao XML format, te kao takav se može otvoriti u tekstualnom obliku i provjeriti sve definirane parametre. U XML-u moguće je vidjeti postavljeni koordinatni sustav, mjerne jedinice korištene pri izradi staze, opći parametri staze kao trenje i vrsta površine, dodatni komentari pri izradi staze i napomene, spremljenu stazu kao niz točaka, opis definiranih prepreka korištenih na stazi kao i jednadžbe ako su korištene prilikom definiranja kompleksnijih oblika krivulja staze ili prepreke. Osnovna postavka je definiranje 3D glatke površine staze, kao primjerice parkiralište, trkača staza ili poligon. Glatka površina u *Adams*-u smatra se površina staze sa zakrivljenjem koje je manje od radijusa pneumatika. Također moguće je modeliranje specifičnih zapreka koje se mogu postaviti neovisno na površinu staze. Važno je napomenuti da se spremaju i .dcd i .drd (engl. *Driver control data i driver road data)* datoteke koje će biti važne kasnije pri definiranju vozača ili željene putanje. Opis svih pojedinih vrsta datoteka i općenito opis sučelja bazira se na [10] i [11].

U nastavku slijedi opis izrade jednostavne staze preko segmenata uporabom sučelja *Road Builder*-a, čije opcije se mogu pronaći unutar *Adams Car* prozora pod karticom *Simulate-Full Vehicle Analysis- Road Builder*... prema slici 14.

Slika 14. Road Builder naredba u Adams car-u

Na slici 15. slici može se vidjeti otvoreni prozor *Road Builder*-a, na početnoj kartici *Header* unutar koje ćemo definirati mjerne jedinice koje želimo koristiti pri izradi staze te naziv staze. Prvo preko naredbe *File-New* otvoren je novi list za izradu staze,

🔞 Road Builder		- 0	×
File Settings			
Road File mdids://acar_shared/roads.tbl/3d_road_obstacle_sine.xml			- 🖻
Header Global Soil Properties Road Points Obstacle Road Generator			
ф	Units		
File Version 2.0.0.0	Length	meter	
Date 2005-11-02 10:43:37-05:00	Force	newton	
Product Name MSC/AFC	Angle	radian	
Pasician Commant	Mass	kg	
	Time	sec	
Current Field Unit			
Current Active File II:/MSC.Software/Adams/2017_1/acar/shared_car_database.cdb/roads.tbl/3d_road_obstacle_sine.xml	ave Sa	ve As C	ancel

Slika 15. Otvoreno sučelje Road Buildr-a

potom se otvara karticu *Global* unutar koje se definiraju svojstva adhezije staze, brzinu koraka učitavanja staze, te koordinatni sustav u odnosu na centralnu liniju staze, prikazano prema slici 16. Također ovdje je važno preko izbora *Closed Road* definirati zatvorenu stazu.

eader Global S	oil Properties	Road Points Obst	acle Road Generator	•	
Settings					
- Forward Direction		Search Algorithm	Closed Road		
Normal	Invert		⊙ Yes C No		
Loc >		Loc y	Loc z		
Road Vertical 0.0		0.0	1.0		
Location offset		- Orientation offset			
X direction 0.0		Rotation XY plan	0.0		
Y direction 0.0		-			
Z direction 0.0		-			
-Global Parameters -					
I Road Width	5.0				
Global Bank	0.0				
Road Friction Le	ft 0.9				
Road Friction Rig	ght 0.9				

Slika 16. Postavke staze Global

Sučelje u kartici *Soil Properties* omogućava detaljnije opisivanje i modeliranje staze te svojstva površine iste. Pri ovoj analizi ostavit će se sve u početnom stanju i nastaviti na sljedeću karticu koja će biti *Road Generator* koja upravo služi za automatsko postavljanje staze preko jednostavnijih segmenata. S tim na umu preko *Solidworks-a sketch-a* prikazan je model jednostavne staze s dva zavoja različitih promjera od 20 i 12 m koji će se izraditi u nastavku preko *Road Generator-a*. Za širinu staze uzeta je veličina od 5 m.

Slika 17. Prikaz jednostavne staze s dva zavoja u Solidworks-u

Važno je napomenuti razlog izbora oblika staze koji nužno ne treba biti kao prikazani model sa slike 17., no ovakav oblik je odabran zbog ograničenja i otežanog modeliranja preko segmenata budući da početak staze je uvjetovan položajem vozila koje se nalazi prema x, y, z koordinatama na 0,0,0 poziciji.

	🐔 Road Builder												- 0	×
F	ile Settings													
F	load File mdids:/	/VulpesR_20	20/roads.tbl/Road2_s	straigth_start_corners12m_20m	.xml									\$
	Header Global	Soil Pro	perties Road Poin	its Obstacle Road Gener	ator									
	Name Filter *													
	Name	Туре	Number of Points	Start Point	Center Point	Tangent Point	End Point	Radius	Arc Length	Width	Bank	Friction Left	Friction Rig	ht
	Line1_75m	Linear	50	0.0, 0.0, 0.0	N/A	N/A	-75.0, 0.0, 0.0	N/A	N/A	5.0	0.0	1.0	1.0	
	Corner1_20m	Curvature	50	-75.05, 0.0, 0.0	-75.0, -20.0, 0.0	-75.0, 0.0, 0.0	N/A	20.0	68.0	5.0	0.0	1.0	1.0	
	Line2_corse	Linear	50	-70.78, -39.55, 0.0	N/A	N/A	0.0, -24.0, 0.0	N/A	N/A	5.0	0.0	1.0	1.0	
	Corner2_12m	Curvature	50	0.00293476, -23.999999, 0.0	0.0, -12.0, 0.0	0.0, -24.0, 0.0	N/A	12.0	37.8	5.0	0.0	1.0	1.0	
	•													•
	Add	lame								Туре	RoadSegm	ent 💌 Pare	nt Road3D	•
	Export Points to	Data Table												
	Current Field Unit	length (me	ter)											_
1	Current Active File	I:/MSC.So	ftware/MSC_Adams_	Projects/VulpesR_2020/Vulpes	R_2020.cdb/roads	tbl/Road2_straig	th_start_corners*	12m_20m.xm	ıl		Sa	ve Save	As Can	:el

Fakultet strojarstva i brodogradnje

Na slici 18. prikazan je *Road Generator* s već dodanim segmentima staze. Segmenti su dodani preko *Add* tipke nakon zadavanja imena segmenta. Primjerice prvi segment nazvan "Line1_75m" nakon što je dodan tipkom *Add* izmijenjeni su veličine. Slijedi opis upisanih veličina. *Type* predstavlja vrstu segment što je za prvi odabrano linija (engl. *Linear*) što znači da se sve točke nalaze na jednom pravcu. *Number of points* definira broj točaka koji će generirati za površinu staze za ukupnu zadanu duljinu, te je ostavljen početni od 50. *Start point* definira početnu poziciju segmenta, kako je odlučeno da će ovo biti prvi segment time on počinje u 0,0,0 kao je prethodno napomenuto. *End point* definira kraj linije te prema slici 17. iznosi duljina prvog ravnog dijela 75 m, pa je -75,0,0 prema koordinatama x, y, z i koordinatnom sustavu opisanom u poglavlju 2. Sljedeće treba odabrati širinu staze *Width* koje je 5 m, te faktore trenja prianjanja staze, koji omogućuju skaliranje i detaljniji opis promjene trenja po segmentima staze u odnosu na početno postavljeno trenje u kartici *Global*. Postavljanjem 0,9 u kartici *Global* postavljeno je trenja za obje strane vozila (lijevi i desni kotači) prema slici 16. te ovdje je trenja postavljeno na 1,0 na svim segmentima kako bi bilo definirano preko globalnog.

Sljedeći segment pod nazivom "Corner1_20m" je veći radijus od 20 m, koji je postavljen preko *type curvature*, kružnog oblika segmenta, zatim je ponovno definirana početna točka luka kružnice koja je definira kao nastavak prvog segmenta, važno je napomenuti da se te točne ne poklapaju već je prva točka drugog segmenta nešto pomaknuta od zadnje točke prvog segmenta. Ta razlika je uslijed izrade staze *Adams Car* ne može generirati dvije točke na istim koordinatama. Veličinu razlike potrebno je prilagoditi broju koraka simulacije (engl. *Number of Steps)* tako da *Adams Car* uspješno konvergira pri prolasku vozila kroz sve točke staze. Simulacija i izbor koraka biti će prikazan u kasnijim poglavljima prilikom simulacije vožnje. Kod kružnog oblika definira se radijus 20 m i duljina luka kruga, engl. *Arc Length* koja se izračuna prema željenoj duljini luka, kod staze prema slici 17. da bi osigurali tangentno spajanje 2. i 3. segmenta luk iznosi 68m. Širina staze ostaje konstantna od 5 m kao i faktori trenja.

Sljedeća dva segmenta su definirana na isti način ponovno linija pa krug, točka početka nastavlja se na kraj luka kruga 2. segmenta tako da se ponovno točke ne preklapaju. Da bi se odredile ove koordinate, korišten je *Solidworks*-a gdje su određene točke tangiranja 3. segmenta na 2. i 4. segment. Tako je ponovno određena duljina luka 4. segmenta.

Nakon što su svi segmenti definirani može se generirati stazu. Staza se definira preko niza točaka po njezinom središtu. Broj točaka koji definiraju pojedini segment je već definiran kod izrade svakog segmenta, te je definiran početnim broj od 50 točaka po segmentu. Na kartici *Road Generator* nalazi se tipka *Export Points to Data Table*, te služi za generiranja točki u tablici podataka tj. XML datoteci staze. Nakon što se generiraju točke mogu se pregledati stvorene točke preko kartice *Road Points* prema slici 19.

🔞 Road Build	der						- 0	×	
File Setting	s								
Road File <u> </u>	dids://VulpesR_2	020/roads.tbl/Roa	d2_straigth_start_	corners12m_20n	n.xml			2	
Header 0	Global Soil Pro	perties Road	Points Obstac	le Road Gene	rator				
Name Filter	Name Filter								
Number	X	Y	Z	Width	Bank	Friction Left	Friction Right	•	
1/1	11.516421505	-15.3355927421	0.0	5.0	0.0	1.0	1.0		
172	11.7092550542	-14.5881817353	0.0	5.0	0.0	1.0	1.0		
173	11.8537149773	-13.8300783545	0.0	5.0	0.0	1.0	1.0		
174	11.9492044773	-13.064414499	0.0	5.0	0.0	1.0	1.0		
175	11.995329065	-12.2943533024	0.0	5.0	0.0	1.0	1.0		
176	11.9918981891	-11.5230760646	0.0	5.0	0.0	1.0	1.0		
177	11.9389260234	-10.7537691093	0.0	5.0	0.0	1.0	1.0		
178	11.8366314081	-9.98961062043	0.0	5.0	0.0	1.0	1.0		
179	11.6854369458	-9.23375751254	0.0	5.0	0.0	1.0	1.0		
180	11.4859672555	-8.48933238865	0.0	5.0	0.0	1.0	1.0		
181	11.2390463924	-7.7594106402	0.0	5.0	0.0	1.0	1.0		
182	10.9456944435	-7.04700774182	0.0	5.0	0.0	1.0	1.0		
183	10.6071233131	-6.35506679377	0.0	5.0	0.0	1.0	1.0		
184	10.2247317164	-5.68644636324	0.0	5.0	0.0	1.0	1.0		
185	9.8000994011	-5.04390867505	0.0	5.0	0.0	1.0	1.0		
186	9.33498062091	-4.43010820017	0.0	5.0	0.0	1.0	1.0		
187	8.83129688852	-3.84758068956	0.0	5.0	0.0	1.0	1.0		
188	8.29112903729	-3.29873269836	0.0	5.0	0.0	1.0	1.0		
189	7.71670862486	-2.78583164387	0.0	5.0	0.0	1.0	1.0		
190	7.11040871409	-2.31099643832	0.0	5.0	0.0	1.0	1.0		
191	6.47473406937	-1.87618873517	0.0	5.0	0.0	1.0	1.0		
192	5.81231080888	-1.48320482506	0.0	5.0	0.0	1.0	1.0		
193	5.12587555547	-1.13366821491	0.0	5.0	0.0	1.0	1.0		
194	4.41826413109	0.829022920855	0.0	5.0	0.0	1.0	1.0		
195	3.69239984127	0.570527502691	0.0	5.0	0.0	1.0	1.0		
196	2.95128139838	0.359249864446	0.0	5.0	0.0	1.0	1.0		
197	2.19797053317	0.196062842641	0.0	5.0	0.0	1.0	1.0		
198	1.43557934611	.0816406003995	0.0	5.0	0.0	1.0	1.0		
199	0.667257450556	0.016455842325	0.0	5.0	0.0	1.0	1.0		
200	0 102021020012	10777064646646		E 0	0.0	10	1 0	-	
Show X-Y P	lot Show X-Z Plo	ot Add Road Po	ints Show Road	in PPT					
Current Field	d Unit								
Current Activ	ve File 20/Vulpes	R_2020.cdb/roads	s.tbl/Road2_straig	th_start_corners1	12m_20m.xml	Save Sa	ve As Cancel	1	

Slika 19. Tablica generiranih točaka staze

Važno je u tablici prekontrolirati prvu i zadnju točku, kako je prethodno preko kartice *Global* definirana zatvorena staza (engl. *Closed Road*) potrebno je da koordinate prve i zadnje točka budu iste, tj. da se zatvori stazu u cjelinu. U *Road Points* korisnik može izmijeniti na bilo koji način izgled staze nevezano za prethodno definirane segmente jer oni služe samo za generiranje točaka, sami ne sadrže podatke za čitanje staze kasnije u simulacijama.

U istoj kartici preko tipke *Show X-Y Plot*, budući da je cijela staze definirana u x-y ravnini te je pretpostavljena bez neravnina, može se prekontrolirati generirana staza uvezenih točaka prema slikama 20. i 21.

Slika 20. Prikaz staze uvezenih točaka

Slika 20. prikazuje prvobitno generiranu stazu gdje nije pri izradi segmenata uzet u obzir tangentnost 3. segmenta na dva kruga (segmente 2. i 4.) te staza izgleda kao da ima lomove. Tek nakon izmjena krajnjih točaka, opisanog pri izradi segmenata, dobiva se kontinuirani oblik staze prema slici 21. Također je i smanjen broj točaka po linijama budući da za provedbu simulacije nije potreba veći broj točaka za konvergenciju prolaska vozila kroz ravnicu.

Slika 21. Prikaz izmijenjenih krajeva segmenata

3.3. Izrada jednostavne staze preko poznatih točaka staze

Velika prednost izrade staze preko segmenata je definiranje odaziva vozača preko *Event Builder*-a prilagođenog za svaki segment, a kako su poznati svi parametri svakog od segmenata lako se može i vozač prilagoditi optimalnim postavkama vožnje za svaki segment. Ovakva izrada modela staze i vozača može se koristiti kao kontrola i usporedba sa stvarnim ponašanjem vozača preko *feedback*-a vozača ili usporedba s drugim načinima izrade staze i postavljanja vozača. No nedostatak segmentnog pristupa izrade staze je potreba za poznavanjem svakog od segmenta i njegovih veličina. Prvi problem je ograničenja opisivanja staze ovakvom metodom, primjerice ako se promotri oblik nekih od F1 staza 2017. sezone, može se primijetiti zbog velikog broja nepravilnih zavoja neizvediva je točna izrada modela takve staze. Staze poput *Suzuka* ili *Autodromo* bilo bi nemoguće izraditi dovoljno precizno za provođenja adekvatnih simulacija.

Slika 22. Popis staza s F1 kalendara za 2017. sezonu

Drugi problem je duljina same staze. Model staze izrađen u prethodnom poglavlju iznosio je oko 200 m ako se zbroje sva četiri segmenta staze. Što znači proces izrade neke od F1 staza koje prosječno imaju oko 6 km bi bio značajno duži i zahtjevni, posebice svi podaci koji trebaju biti uvršteni za svaki segment.

U tu svrhu radi skraćenja opisa i dovoljno preciznog definiranja staze, drugi način opisa staze je direktno uporabom poznatih točaka središnje linije staze. Slijedi opis izrade iste staze prikazane slikom 17. preko točaka.

Isto kao i kod prethodne metode ponovno je potrebno uključiti *Road Builder* funkciju unutar *Adams Car*-a za izradu staze. *Road Builder* koristi točke definirane s 3 dimenzije, koje korisnik unosi i na taj način definira središnju liniju staze. Korisnik treba unijeti X,Y i Z koordinate za točke za definiranje putanje. Kod svake točke potrebno je unijeti širinu staze,

Fakultet strojarstva i brodogradnje

trenje staze za lijevu i desnu stranu staze u odnosu na središnju liniju staze. Budući da se u ovom slučaju staza izrađuje s pretpostavkom velike duljine i ne može se koristiti segmente potreban je veliki broj točaka koji definira središnju liniju. S tim na umu logično je započeti izradu staze koristeći neki CAD programski paket kao pomoć. To će omogućiti vizualnu izradu staze, i poziciju točaka potrebne za *Road Builder*. Staza je izrađena preko *Solidworks* programskog paketa koristeći naredbe *Circular* i *Linear Sketch patern*, na taj način su točke posložene po prethodno nacrtanim crtama te prikazane na slici 23.

Slika 23. Željene točke za izradu staze

Preko *Save As* naredbe u *Soliworks*-u može se spremiti izrađeni *sketch* samo s točkama poput tekstualne datoteke s koordinatama točaka preko formata .IGS. Kako funkcije *Solidworks* nisu tema razrade ovog zadatka, ovaj rad pretpostavlja da korisnik ima dovoljno iskustva u nekom od CAD programskih paketa za samostalnu izradu, u protivnom čitatelju se preporučuju sljedeći linkovi kao izvor detaljnijeg opisa [12] i [13]. Ponovno važna napomena je da se staza uvijek počinje na ishodištu 0,0,0 i ako je staza koja se izrađuje zatvorena petlje treba i završiti na toj točci. *Adams Car* uvijek počinje svaku simulaciju tako da model vozila postavi na 0,0,0. To zahtijeva da staza treba obavezno prolaziti kroz tu točku, te se preporuča korištenje kao početka staze. Naravno bilo koji dio staze može doći na tu poziciju, tako je s
ciljem da se vozilo postavi na ravni dio staze početna točka odabrana 2 m od početka prve ravnice, te tablica u biti počinje s koordinatama 2,0,0 i završava s istim.

Ako preko *Adams Car*-a klikne na *Simulate-Full Vehicle Analysis- Road Builder* ponovno se otvara *Road Builder* sučelje sa slike 14. Sad kada je sučelje otvoreno može se početi izrađivati stazu. Napomena, *by default* svaki put kada se ponovno otvori *Road Builder* posljednja otvarana staza će biti učitana u prozor. Kako se izrađuje nova staza odabere se *File-New*. To čisti sve prethodne unošene podatke i može se početi ispočetka. Ponovno prvo se definiraju mjerne jedinice zatim otvorimo karticu *Global* te se ponovno definira opće parametre staze. Može se sve unijeti kao i na prethodnom poglavlju tako da isti postupak neće biti ovdje ponovljen. Zatim se odmah otvara karticu *Road points*, unutar kartice već postoji jedan redak za prvu točku staze prema slici 24. To je početak tablice gdje će se unositi X,Y i Z koordinate središnje linije.

剩 Road Builder					-		×
File Settings							
Road File file://C:/Users/Pavlakovic/new	/_3droad_file_3.xml						2
Header Global Soil Properties	Road Points C)bstacle Road Gen	erator				
Name Filter *							
Number X Y	Z	Width	Bank	Friction Left F	riction Right		
1 Poort Pour	0.0	0.0	0.0	0.0	0.0		
Delete Row(s)							
Add Row							
	1	1					_
Show X-Y Plot Show X-Z Plot Add F	Road Points Show	Road in PPT					
Current Field Unit length (meter)							
Current Active File C:/Users/Pavlakovid	:/new_3droad_file_3	.xml		Save	Save As	Canc	el

Slika 24. Prikaz kartice Road Points

/ 2_com	er_circuit.txt - Notepac	-	×
File Edit	Format View Hel	p	
2.0	0.0		^
-1.0	0.0		- 11
-3.0	0.0		- 18
-5.0	0.0		- 18
-7.0	0.0		- 11
-9.0	0.0		- 11
-11.0	0.0		- 11
-13.0	0.0		
-15.0	0.0		
-17.0	0.0		
-19.0	0.0		
-21.0	0.0		
-23.0	0.0		
-25.0	0.0		
1-27.0	0.0		
-29.0	0.0		
-31.0	0.0		
-33.0	0.0		
-35.0	0.0		
-37.0	0.0		
-39.0	0.0		
-41.0	0.0		
-43.0	0.0		
-45.0	0.0		
-47.0	0.0		
-49.0	0.0		
	~ ~		

Prvo je potrebno imati izvučene točke iz CAD-a, prikazane na slici 25.

Radi lakšeg unošenja točaka korišten je Microsoft Excel gdje su iz .IGS datoteke ubačene koordinate točke te su za Z koordinatu dodane nule u trećem stupcu. Prije kopiranja točaka potrebno je u *Road Points* kartici izbrisati sve prethodne točke prema slici 24. Sada se mogu u Excel datotaci kopirati tri stupaca s x, y i z koordinatama tako da prvi i zadnji redak sadrže iste koordinate, prilikom kopiranja treba izbjeći kopiranje bilo kakvih tekstualnih podataka. Pritiskom na tipku *Add Road Points* unutar kartice *Road Points* na donjoj strani prozora prema slici 24. otvara se upitnik koliko dodatnih točka se želi dodati. Prilikom izrade ove staze u Exelu su definirana 127 retka s koordinatama, tako da će se dodati 127 točaka u *Adams Car* prema slici 26.

🔞 Enter number of	Road Points	?	×
Please enter numb	er of addition	al Road I	Points
	ОК	Can	cel

Slika 26. Broj unosa novih točaka

📹 Road Builde 🚮 Road Builde File Settings File Settings Road File | file://C:/Users/Pavlakovic/new_3droad_file_4.xml Road File mdids://VulpesR_2020/roads.tbl/Road4_corners.xml Header | Global | Soil Properties Road Points Obstacle Road Generator Header | Global | Soil Properties Road Points Obstacle Road Generator Name Filter Name Filter Number X Y Z Width Bank Number X Y Z Width Bank 0.0 0.0 0.0 0.0 3 0.0 0.0 4 0.0 4 0.0 0.0 5 n n 0.0 5 7.0 n n 0.0 6 0.0 0.0 6 0.0 7 0.0 0.0 7 0.0 8 0.0 0.0 8 13.0 0.0 9 0.0 0.0 0.0 9 0.0 10 10 0.0 0.0 0.0 0.0 0.0 11 11 0.0 0.0 12 0.0 12 21.0 0.0 0.0 13 13 0.0 0.0 0.0 14 0.0 14 0.0 0.0 15 15 0.0 0.0 0.0 16 16 0.0 0.0 0.0 17 17 0.0 0.0 0.0 0.0 18 18 0.0 0.0 19 0.0 19 0.0 0.0 20 0.0 20 21 0 0 0.0 21 Show X-Y Plot Show X-Y Plot Show X-Z Plot Add Road Points Show Road in PPT Show X-Z Plot Add Road Points Show Road in PPT Current Field Unit length (meter) Current Field Unit length (meter) Current Active File C:/Users/Pavlakovic/new_3droad_file_4.xml Current Active File mdids://VulpesR_2020/roads.tbl/Road4_corners.xml

Nakon što je dodano 127 redaka za točke, kopirane su koordinate točki iz Excel-a.

Slika 27. Spremanje koordinata točaka u Road Points kartici

Ponovno, mogu se pregledati generirane točke preko *Show X-Y Plot* naredbe, prikazana prema slici 28. Te s desne strane grafičkog prikaza nalazi se popis točaka u X-Y ravnini.

Slika 28. Prikaz uvezenih točaka

Također, može se prikazati stazu u grafičkom prozoru *Adams Car-a* preko *Postprocessing windows-a*, naredba se nalazi na dnu prozora *Road Points* pritiskom na klik *Show Road in PPT*, prikazano na slici 29.

Slika 29. Grafički prikaz staze u Postprocessing prozoru

Ovim je završen postupak izrade staze, ali ne i gotove staze za uspješnu simulaciju, što će biti dodatno objašnjeno u kasnijim poglavljima prilikom provođenja simulacija. Naime često tijekom izrade neke točke mogu biti preblizu ili staza previše zakrivljena da se provede tražena simulacije s odabranom širinom staze i širinom vozila. U tom slučaju potrebno je preko *Message Window*-a ustanoviti mjesto i razlog greške u simulaciji ako se radi o nepravilnosti staze, a ne vozila, detaljniji opis *Postprocessing* prozora i *Message Window*-a prema [10].

3.4. Izrada natjecateljske staze i staze za testiranje bolida formule student

Glavni razlog opisa izrade jednostavnije staze preko uvoza točaka u Road Builder u prethodnom poglavlju je izrada kompleksnijih i dugačkih staza koje će biti izrađene u nastavku. Glavni cilj izrade stvarnih staza su što vjerodostojnije simulacije vožnje za analizu dinamike bolida formule student, te uporaba rezultate istih za daljnji razvoj posebice ovjesa i pogonskog sustava, ali i ostalih podsustava bolida. Naime, do sada su provođene jednostavne procedure pri simulaciji dostupne u Adams Car-u među kojima su vožnja konstantnim radijusom (engl. Constant radius cornering) ili CRC skraćeno, procedura ubrzavanja (engl. Acceleration) ili ACC skraćeno, te procedura kočenja (engl. Braking) ili BRK skraćeno, među ostalima. Takve procedure imaju veliku ulogu u proračunu cijelog vozila posebice ovjesa i šasije, na taj način da prilikom simulacije pri maksimalnim pretpostavljenim ubrzanjima (bočnom i uzdužnom) uzeti su iznosi maksimalne statičke sile koja se pojavila tijekom procedure. Na ovaj način obuhvaćeno je najveće opterećenja, ali cijeli proračun je sveden na statičku analizu. Ako bi se mogla provesti simulacija vozila po stvarnoj stazi mogla bi se dobiti opterećenja tijekom cijelog kruga, te kao takve koristi za dinamičku analizu naprezanja ili metodama pogonske čvrstoće primjerice u nekom FEM paketu, uvrštavajući opterećenje ovisno o vremenu. Postoje još brojni primjeri uporabe ovakve simulacije koji će biti opisani i navedeni u kasnijem poglavlju.

U nastavku će biti izrađena staze s testiranja na Oryx centru za sigurniju vožnju prema točkama iz [2], prikazane u Excel-u prema slici 30.

Slika 30. Staza za testiranje 1 s Oryx-a

Staza je već korištena za testiranje nakon izrade bolida Vulpes 2019. godine, te se ponovno planira koristiti za testiranje nakon sklopljenog bolida VulpesR prije 2020. natjecanja. Staza je izrađena uzimajući u obzir obilježja *endurance-a* staze iz natjecanja formule student Njemačka 2018. godine. Ponovno je potrebno paziti na početnu poziciju staze, tj. 0,0,0 koordinate budući da je to pozicija na koju će *Adams Car* postaviti model vozila. S time na umu početak prve ravnice počinje nešto prije 0,0,0 položaja, tako da se vozilo (svojim međuosovinskim razmakom engl. *Wheelbase* prema slici 31.) cijelom svojom duljinom nalazi paralelno uz stazu.

Slika 31. Prikaz međuosovinskog razmaka mjereno na kontaktnoj površini pneumatika [9]

Ponovno staza treba počinjati i završavati na istoj koordinati tj. 0,0,0 kako se radi o *closed road*-u. Još će jednom biti ponovljeno postavljanje staze, prema [10] i [14]. Počinje se s karticom *Global* unutar *Road Builder*-a, slijedi niz postavki prema slici 32.:

- Forward Direction je postavljen Normal te definira smjer vožnje modela vozila prema redoslijedu postavljenih točaka, možete se i invertirati smjer, ovdje je zadržan normalan.
- *Closed Road* je uključen budući da se radi o zatvorenoj stazi.
- *Road Vertical* definira orijentaciju vektora staze, pri ćemu je Z definiran prema gore.
- Location offset nudi mogućnost dodatnog pomaka staze u odnosu na ishodište, to je sve ostavljeno 0.
- Global parameters- Road Width definira širinu staze te je postavljeno na 3,3 m.

 Global parameters- Road Friction Left/Right te predstavlja faktor skaliranja trenja, te je za početnu analizu postavljen 0,9 za obje strane staze.

< Road Builder – 🗆	×
File Settings	
Road File mdids://VulpesR_2020/roads.tbl/mala_staza_orxy_2019.xml	È
Header Global Soil Properties Road Points Obstacle Road Generator Settings	
Current Field Unit	
Current Active File Adams/2017_1/acar/shared_car_database.cdb/roads.tbl/3d_road_obstacle_sine.xml Save Save As Can	el :

Slika 32. Globalne postavke Staze za testiranje

Ponovno je otvorena kartice *Road Points* te se iz prethodnog Excela uvezu točke na isti način opisan u prethodnom poglavlju prikazano slikom 33.

🔞 Road Build	ler						-	□ ×
File Settings	3							
Road File m	dids://VulpesR 2020/roa	ads.tbl/mala_staz	za orxy 2019	.xml				
		_						
Header G	Slobal Soil Properties	Road Points	Obstacle	Road Gene	rator			
Name Filter	*							
Number	X Y	7	V	Vidth	Bank	Friction Left	Friction Right	
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	-0.391537721	0.0	0.0	0.0	0.0	0.0	0.0	
3	-0.947821016	0.0	0.0	0.0	0.0	0.0	0.0	
4	-1.50384719	0.0	0.0	0.0	0.0	0.0	0.0	
5	-1.963403194	0.0	0.0	0.0	0.0	0.0	0.0	
6	-2.519300808	0.0	0.0	0.0	0.0	0.0	0.0	
7	-3.232193079	0.0	0.0	0.0	0.0	0.0	0.0	
8	-3.922999164	0.0	0.0	0.0	0.0	0.0	0.0	
9	-4.649944845	0.0	0.0	0.0	0.0	0.0	0.0	
10	-5.3247792	0.0	0.0	0.0	0.0	0.0	0.0	
11	-5.946513127	0.0	0.0	0.0	0.0	0.0	0.0	
12	-6.832776382	0.0	0.0	0.0	0.0	0.0	0.0	
13	-7.638731654	0.0	0.0	0.0	0.0	0.0	0.0	
14	-8.524286249	0.0	0.0	0.0	0.0	0.0	0.0	
15	-10.14460785	0.0	0.0	0.0	0.0	0.0	0.0	
16	-11.33275332	0.0	0.0	0.0	0.0	0.0	0.0	
17	-12.19401545	0.0	0.0	0.0	0.0	0.0	0.0	
18	-13.0313125	0.0	0.0	0.0	0.0	0.0	0.0	
19	-13.61306971	0.0	0.0	0.0	0.0	0.0	0.0	
20	-14.44675705	0.0	0.0	0.0	0.0	0.0	0.0	_
21	-14 79243898	0.0	0.0	0.0	0.0	0.0	0.0	•
Show X-Y PI	lot Show X-Z Plot Ac	dd Road Points	Show Road in	n PPT				
Current Field Current Activ	I Unit Iength (meter) e File Adams/2017_1/a	car/shared_car_d	latabase.cdb/	roads.tbl/3d_roa	d_obstacle_sine:	xml Save	Save As	Cancel

Slika 33. Unošene koordinate točaka staze za testiranje

Preko naredbe *Show X-Y Plot* mogu se prekontrolirati generirane točke.

Slika 34. Generirana staze za testiranje preko uvezenih točaka

Također preko *Postproccesing Wind*ow-a spomenut kod prethodno napravljene jednostavne staze, ponovno se može vidjeti stvarni oblik staze, širinu staze i širinu ruba staze (engl. *Track bank*) prikazano zelenim na slici 29. te ponovno za stazu za testiranje na slici 35.

Slika 35. Staza za testiranje prikazana u Postprocessing Window-u

Na isti način izrađene su i staze s natjecanja Njemačke 2016. godine i Mađarske 2018. godine prema podacima iz [2]. Izrada staze prati opis prema slikama 30., 32., 33. i 34. Stoga je u nastavku prikazan samo gotovi oblik staza iz *Postprocessing window*-a (skraćeno PPT).

Slika 36. Prikaz staze s natjecanja u Njemačkoj 2016., u PPT-u

Slika 37. Prikaz staze s natjecanja u Mađarskoj 2018., u PPT-u

4. PROCEDURE POTAVLJANJA VOZAČA I SIMULACIJA VOŽNJE U ADAMS CAR-u

4.1. Uporaba Event Builder-a za izradu procedure vožnje

Jedna od glavnih primjena Adams Car-a je upravo simulacija vozila po nekoj proceduri ili stazi. U glavnom izborniku pod Simulate - Full Vehicle Analysis nalazi se veliki broj prethodno definiranih procedura za osnovno testiranje ponašanja vozila. One se najčešće koriste tijekom početnog razvija vozila i podešavanja parametara vozila, te kako oni utječu na performanse tj. ciljeve koje se žele postići s vozilom. Od utjecaja raspodjele mase, prednje i stražnje krutosti ovjesa, vrste pneumatika, stabilitazora i ostalih dijelova koji utječu na ponašanje vozila. Kada se radi o nekim jednostavnim procedurama specifičnim za nečiju uporabu tada je potrebna izrada takve procedure i ponašanje vozača. U tu svrhu koristi se Event Builder. Event builder je sučelje unutar Adams Car-a koje služi za izradu jednostavnih procedura s točno definiranim vozačem. U tu svrhu u nastavku slijedi opis izrade kombinacije dvije procedura s dinamičkih event-a s natjecanja formule student. Jedan od procedura na natjecanju je engl. Acceleration Event, odnosno procedura ubrzanja, a druga je engl. Brake Test, odnosno test kočenja. U proceduri ubrzanja svaki tim ima četiri prolaza koristeći dva vozača gdje svaki vozi dva puta. Prednji vrh vozila se postavlja 0,3 metara iza startne linije te počinje ubrzavanja iz stojećeg mjesta. Kada vozilo krene, vrijeme ubrzanja se počinje mjeri nakon što prođe startnu liniju i prekida nakon što prođe krajnju liniju. Staza za ubrzanja sastoji se od ravnice dugačke 75 metara od startne linije do krajnje linije prema [15]. Test kočenja počinje odmah nakon procedure ubrzanja, kada se prođe krajnja linija, vozač treba primijeniti kočenje na sva četiri kotača do potpunog zaustavljanja vozila.

Mala degresija, iako je odabrana izrada specifične procedure s natjecanja, u *Event Builder*-u se može izraditi niz procedura koje tim smatra važnim za analizu vozila prilikom njegovog razvoja, jedna od nezaobilaznih kontrola za dobro poznavanje ponašanja vozila prilikom njegovog razvoja je kontrola rezonancije ovješenih masa i potrebna razlika prirodnih frekvencija prednjeg i stražnje kraja vozila radi izbjegavanja "efekta titranja vozila", u tu svrhu preko *Event Builder-a* vrlo se jednostavno može postaviti mini procedura s jednim (ili više) sinusoidnih prepreka (engl. *Bump*) željene visine i postaviti vozača da prođe tu prepreku.

4.2. Izrada jednostavne procedure Event Builder-om s dinamičkog eventa

Navedena procedura ubrzanja i test kočenja bit će podijeljeni u mini-manevre. *Event builder* otvara se preko *Simulate - Full Vehicle Analysis – Event builder*, prema slici 38.

Slika 38. Pokretanje Event builder-a unutar Adams Car-a

Prilikom otvaranja *Event builder* sučelja ono je zatamnjeno, potrebno je preko alatne trake *File-New* otvoriti izradu novih mini manevra. Zatim se otvara prozor za upis imena gdje je zadano ime *Dinamic Event 1*.

🚮 Event Bi	uilder						
File Settin	ngs						
Event File	ts/VulpesR	_2020/VulpesR_	2020.cdb/drive	r_controls.tbl/Dinan	nic_Event_1.xml Speed 2.778	Gear 1	÷
	·		,				
Static	Set-up G	ear Shifting	Controller T	rajectory Planning	PID Speed & Path PID Steering Output Filters		-
Task		straight 🝷	Long Acc.	0			
Halt () De Feilure - L		Ū.				
Hait C	n Fallure j	/es •					
Linea	r ļi	10 💌					
Damp	ping [/es 🔻					
							_
Name Filt	er *						
Namo	Activo	Abort Time	Stop Size	Sample Period			
Acc	Ves	10.0	0.01	0.01			
Brake	Ves	10.0	0.01	0.01			
Diano	,	10.0	0.01	0.01			
1							
Add	Name	Brake			Type DefMini V Parent	maneuver	•
		Draite			Type Delivinit Farence	Imaneuver	_
	d Unit tim	e (second)			Save and Run Save Save As	Canc	el

Slika 39. Sučelje Event Builder-a

Nakon što se otvori sučelje s novim imenom, može se početi definirati parametre i mini manevre. Osnovi parametri već su podešeni na slici 39. gdje je:

- Speed služi za postavljanje početne brzine vozila, te ona je postavljena na 10 km/h (odnosno 2,78 m/s). Kako se prethodno opisano vozilo postavlja 0,3 m prije startne linije što znači da pri prolasku kroz start ima neku početnu brzinu. Ako se uzme jednostavna formula za ubrzano gibanje za put od 0,3 m može se izračunati uz poznatu maksimalno ubrzanje vrijeme potrebno da prijeđe tih 0,3 m. Sada se preko tog vremena može odrediti teorijsku brzinu koje vozilo dosegne pri prolasku kroz start, i to je upravo tih 10 km/h. Ovdje su zanemareni otpori vožnje budući da su pri takvim brzinama izrazito mali.
- Static Set-up služi za postavljanje željene vrste procedure i ponašanja Solver-a. Pod Task postavljeno je streight što definira vožnju po ravnici, te je uključena opcija Halt on failure za prestanak procedure pri greški. Najčešće greške ovih procedura su proklizavanje vozila, krivi krajnji uvjeti pojedinih mini-manevra. Long Acc. opcija za potavljanje željenog uzdužnog ubrzanja je ostavljena nula, jer će naknadno biti definirana u pojedinim mini-manevrima.

Sada je potrebno izraditi mini manevre preko tipke *Add* i zadati ime pojedinim manevrima, prema slici 39. dodana su dva mini manevra, *Acc* za proceduru ubrzanja i *Brake* za test kočenja. Pored svakog mini manevra nalazi se opcije:

- Active definira da je pojedini mini manevar uključen u ukupnu proceduru
- Abort Time definira vrijeme prestanka djelovanja postavki unutar pojedinog mini manevra, ovo je postavljeno na veće vrijednosti nego što će ispasti tijekom procedure jer kraj pojedinog mini manevra bit će definiran krajnjim uvjetom.
- Step Size veličina korak pri simulaciji , postavljena default 0,01
- Sample Period veličina uzorkovanja simulacije, postavljena default 0,01

Prilikom klika na mini manevar *Acc* otvaraju se kartice prikazane slikom 40. Sastoji se od rednom navedenih kartica na hrvatskom: Upravljanja, Akcelerator, Kočenje, Stupanj prijenosa, Spojka, Krajnji uvjeti, Uvjeti linearnosti.

U nastavku će biti navedene postavke korištene pri definiranju kartica:

🗘 Name Acc		Comment
Steering Throttle Bra	aking Gear Clutch Conditions Linear	
Actuator Type torqu Control Method macl Control Type cons Control Type cons C Absolute C Re	elative	

Slika 40. Kartice za definiranje postavki mini manevra

Upravljanje:

- Actuator Type definira način na koji program upravlja prednjim upravljivim kotačima, gdje je postavljeno Torque što znači da je definirano preko momenta upravljanja tj. krajnjim veličina postavljenih prilikom modeliranja vozila.
- *Control Method* definira preko čega se vrši upravljanje u mini-manevru, može se naknadno definirati pri simulaciji, ili umetnuti mapa upravljanja iz nekog stvarnog mjerenja ili postaviti upravljanje programom, tj. program sam nastoji zadržati zadanu

radnju. Ovdje je zadano programom tj. *Machine*, te unutar *Steer Control* zahtjeva traži se da nastoji zadržati ravnu putanju (engl. *Straight*)

Akcelerator:

Control Method je ponovno postavljeno preko programa Machine, a zadatak koji treba izvršiti unutar Speed Control-a je uzdužno ubrzanje (lon_accel u sučelju), gdje je ubrzanje postavljeno od 0, tj. starta koji smatramo nakon 0,3 m, te uzdužno ubrzanje je postavljeno na 30 m/s² što je veće od stvarnog postizivog ubrzanja koje iznosi oko 1,55 g odnosno oko 15 m/s², kao rezultat program će pokušati doseći to ubrzanje držeći 100 % pedale gasa.

Kočenje: u ovom slučaju kako je definirano ubrzanje kočenje je isto popunjeno podacima ubrzanja budući da se oba ne mogu događati u isto vrijeme.

Stupanj prijenosa:

Control Method je postavljen na *Open*, time pod *Control Type* i *Control Value* je definiran jedan konstantan stupanj prijenosa – prvi, koji ima prijenosni omjer 8, budući da se u vozilu nalazi jednostupanjski reduktor on je postavljen kao konstantan te se ne mijenja tijekom vožnje.

Spojka: je postavljeno na nulu, budući da vozilo nema spojku te nema vremensku ulogu u simulaciji.

Steering Throttle	Braking Gear	Clutch C	onditions Line	ar					
Actuator Type Control Method Control Type	torque machine constant	Steer (Control straight						•
C Absolute Steering Throttle	C Relative	Clutch Co	nditions Linea	d					
Actuator Type Control Method Control Type C Absolute	rotation machine constant Relative	Speed C Start Tin Long. Ac	iontrol lon_accel ne 0.0 cc. 30.0						-
Steering Throttle	Braking Gear	Clutch Cor	ditions Linear	•					
Actuator Type [Control Method [Control Type [Con	rotation machine constant Relative	Speed Co Start Tim Long. Act	e 0.0 c. 30.0						•
Steering Throttle	Braking Gear	Clutch Co	nditions Linea	ar					
Actuator Type Control Method Control Type	rotation ⊻ open ⊻ constant ⊻ ⊂ Relative	Control Valu	ie 1.0						
teering Throttle	Braking Gear	Clutch Cor	ditions Linea	r					
Name Type V	Condition Sensor	Test	Trigger Value	Error	Filter Time	Delay Time	Group Name	Condition Type	
END_1 distance	time	>>	75.0	0.0	0.0	0.0	_NOGROUP	end	
Add Name	END_1					Ту	pe DcfEndConditi	ion 💌 Parent 🖟	Acc 💌

Slika 41. Postavke Acc mini manevra: Upravljanje, Akcelerator, Kočenje, Stupanj prijenosa, Krajnji uvjeti

Krajnji uvjeti: pod krajnje uvjete dodan je uvjet prijeđene udaljenosti. Kako je prethodno definirano vozilo od startne linije treba proći 75 m, tada prestaje ubrzavati. Time je pod *Type* postavljeno *distance*, te za *Trigger Value*, vrijednost aktivacije uvjeta: 75, a akcija koju uvjet poduzima definira se pod *Condition Type*, te je postavljeno na *End*, što znači da kada vozilo prijeđe 75m prekida se ubrzanje, te počinje sljedeći mini manevar.

Uvjet linearnosti: nije korišten.

Sve pojedine kartice prikazane su slikom 41.

Drugi mini manevar *Brake* definira kočenje nakon prijeđenih 75 m iz prvog mini manevra. Mini manevar *Brake* od *Acc* razlikuje se iznosom uzdužnog ubrzanja, sada postavljeno na -20 m/s² s ciljem postizanja maksimalnog kočenja, što se promijeni u kartici Akcelerator i Kočenje, te novim krajnjim uvjetom gdje je definirano prekidanje procedure preko brzine vozila. Vrijednost od prethodno 30 m/s² i sada 20 m/s² uzete su kao iznosi veći od postizivih ubrzanja vozila, koje su do 2g. Kada vozilo dosegne 0 km/h tada se prekida procedura. Izmijenjene postave prikazane su slikama 42. i 43.

Steering Throttle Braking Gear C	Clutch Conditions Linear
Actuator Type rotation Control Method machine Control Type constant Control Type Constant C	Speed Control lon_accel Start Time 0.0 Long, Acc.

Slika 42. Postavljeno negativno uzdužno ubrzanje na akcelerator i kočenje u Brake mini manevru

Name Filter * Name Type Condition Sensor Test Trigger Value Error Filter Time Delay Time Group Name Condition Type END 1 velocity Time Test 0.0 0.2 0.0 0.0 NOGROUP
Name Type Condition Sensor Test Trigger Value Error Filter Time Delay Time Group Name Condition Type END 1 valacity time 0.0 0.2 0.0 0.0 NOGROUP and
END 1 valacity time - 0.0 0.2 0.0 0.0 NOGROUP and

Slika 43. Postavljen krajnji uvjet zaustavljanja preko brzine vozila u Brake mini manevru

4.3. Provedba simulacija postavljene jednostavne procedure ubrzanja i kočenja i prikaz rezultata

Nakon što je procedura potpuno definirana i spremljena sljedeći korak je učitavanje u simulaciju. Novo kreirana datoteka *Dinamic_Event_1.XML* predstavlja spremljenu biblioteku svih prethodno definiranih uvjeta vožnje. U odnosu na prethodno korišteno sučelje *Road Builder* gdje su unutar XML datoteke spremljene postavke i geometrija staze, *Event Builer* sprema postavke vozača tj. *Machine*. Važno je napomenuti da unutar *Event builder*-a nije definirana staza, tj. ne može se koristiti sučelje *SmartDriver* iz *Adams Car*-a za provedbu ove procedure (u nastavku više o sučelju). No ova procedura ne zahtijeva stazu jer je cijela procedura definira direktno preko ponašanja vozaču, u ovom slučaju preko programa budući da je pri definirana datoteka površine za definiranje kontaktne mehanike pneumatika i podloge. U tu svrhu bit će korištena ravna podloga iz *Adams Car* postojećih predložaka. Otvaranje simulacije vrši se preko *Simulate-Full-Vehicle Analysis-File Driven Events*... prikazano slikom 44.

Slika 44. Pokretanje simulacije iz datoteke kreirane Event Builder-om

File Driven Event analiza omogućuje provedbu procedure opisane XML datotekom. Prilikom otvaranja, otvara se prozor prema slici 45. unutar kojeg treba ubaciti datoteke.

🔞 Full-Vehicle Analysis: Fil	e Driven Events X
Full-Vehicle Assembly	VulpesR_2020
Output Prefix	Dinamic_Event_1
Simulation Mode	interactive -
Road Data File 🛛 🐻	mdids://acar_shared/roads.tbl/2d_flat.rdf
Driver Control Files	mdids://VulpesR_2020/driver_controls.tbl/Dinamic_Event_1.xml
✓ Create Analysis Log Fi	le
🗹 🔂 🔼	OK Apply Cancel

Slika 45. Prozor File Driven Event analize

U prozoru je već učitan otvoreni *assembly* vozila, postoji mogućnost zadavanja naziva analize iako nije obavezno. U prozoru učitana je generička staza s *Adams*-ovog predloška "2d_flat.rdf" koja predstavlja beskonačnu ravnu površinu s definiranim faktorom skaliranja trenja 1. koju ćemo iskoristiti za ovu analizu. Potrebno je samo u *Driver Control Files* dodati kreairanu XML datoteku iz *Event Builder*-a. Prilikom tipke *Apply* pokreče se simulacija. Nakon pokretanja simulacije otvara se informacijski prozor *Solver*-a (engl. *Message Window*).

A Message Window	×
command: VARIABLE/86, FUNCTION=USER(985,3), ROUTINE=abgVIM::VAR985	•
fdm::ActVar Setting function on: driver_demand::clutch command: VARIABLE/08, FUNCTION=USER(985,4), ROUTINE=abgVIM::VAR985 command: SIMULATE/DYNAMIC, DUR=10, DIOUT=0.01	
Begin Simulation	
***** Performing Dynamic Simulation using Gstiff I3 Integrator ****** The system is modelled with INDEX-3 DAEs. The integrator is GSTIFF, CORRECTOR = modified Integration error = 1.000000E-02	
Drv_Vhl::ifCalcSetup Adjusting initial value of I term of longitudinal PID to match desired initial throttle value: 4.82309 throttle value with the I term zero: 100	
decreasing I term to begin search in non-saturating region Longitudinal Setup failed to find a solution, resetting I term to zero LONGITUDINAL SETUP ITERATIONS = 51	
Simulation Step Function Cumulative Integration CPU Time Size Evaluations Steps Taken Order time	
0.00000E+00 5.00000E-04 0 0 1 2.14	
1.000008+00 1.000008-02 906 246 2 4.89 2.000008+00 1.000008-02 1178 346 2 6.16	
3.00000E+00 1.00000E-02 1469 446 2 7.61	
An end condition has been sensed. - DISTANCE: 75.354068 >> 75.000000 (+/- 0.000000) filter time: 0.000000, delay: 0.000000 Ending current mini-maneuver model.testrig.event monitor_sensor has become active at time = 3.460000. Current sensed value = 1.000000e+00. Triggered action RETURN.	
START: WARNING model.testrig.event_monitor_sensor halting simulation at time 3.4600000+00	
SHU. HARMANY	-1
Satings	Clear Close
coungs	Close

Slika 46. Message window provedene simualcije iz Event Builder-a

Unutar prozora nalaze se obavijesti za trenutno provođenu simulacije. Prema slici 46. mogu se uočiti neki dijelovi simulacije, primjerice vrijeme simulacije za pojedine korake, te npr. u drugom označenom crvenom okviru na slici aktivaciju krajnjeg uvjeta iz mini manevra *Acc* gdje program nakon 75 prijeđenih metara prekida prvi mini manevar i zapisuje vrijeme prekida, u ovom slučaju 3,46 sekundi, što daje informaciju trajanja prvog mini manevra. Nakon što je simulacija uspješno provedena, slijedi vizualni pregled simulacije preko *Adams Car* sučelja, kartice *Review- Animation Controls*...

🔞 Adams Car Adams 2017.1		
File Edit View Adjust Simulat	te Review Settings Tools Help	
.VulpesR_2020	VulpesR_2020	
Browse Filters	Animation Controls × Animation Controls × Analysis: VulpesR_2020.Dinamic_Event_1_Dinamic_Event_1 View: _gui.main.front Base Part: ✓	
	.VulpesR_2020.testrig.ges_gyro Std. Camera VolpesR_2020.testrig.ges_gyro	
	Time Range: 0.0, 5.865 Cycles: 1 Frame Increment: 7 Superimpose Icons Tire Forces in Red Display Driver Target Path 	
	Display Driver Actual Path	

Slika 47. Prikaz Animation Controls prozora

Unutar Animation Controls prozora preko Forward gumba, lako se može prikazati provedena simulacija, što korisniku daju prvi uvid što se događa s vozilo, te ako vizualna simulacija nije otprilike očekivano ponašanje vozila za zadane postavke procedure velika je vjerojatnost da je simulacija krivo postavljena te nije potrebno otvarati specifične rezultate preko *Postprocessing Window*-a, nego se vratiti u postavljanje *Event Builder*-a za eventualno otklanjanje greške. Ako je vizualna simulacija u redu, slijedi pregled specifičnih rezultata simulacije preko Adams Car sučelja, kartice Review- Postprocessing Window... Snalaženje unutar Postprocessing Window detaljno je opisano u [16] te se neće ovdje dodatno opisivati. Za primjer na slici 48. prikazani su učitani grafovi za brzinu, put, bočno i uzdužno ubrzanje vozilo. Iz grafa je vidljivo da pri prolasku puta od 75 m vozilo dosegne 138 km/h u vremenu

od 3,46 sekunde. Također se možeprimijetiti oscilacije na uzdužnom ubrzanju uslijed naglog ubrzanja s pedalom gasa na 100 %

opterećenja. S maksimalnim uzdužnim ubrzanjem na 1,55 g i prosječnim od 1,3 g. Također prikazano je bočno ubrzanje koje stoji na nuli, što je i očekivano za zadanu proceduru. Nakon prestanka ubrzanja, slijedi naglo kočenje do potpunog zaustavljanja unutar 2,34 sekunde. Jasno je vidljivo da niti pri ubrzanju niti pri kočenju vozilo nije moglo dosegnuti zadana ubrzanja u mini manevrima od 30 m/s² odnosno -20 m/s² (tj. ~3 g i ~-2 g).

Slika 48. Prikaz rezultati simulacije jednostavne procedure iz Event Builder-a: brzina i prijeđeni put

Slika 49. Prikaz rezultati simulacije jednostavne procedure iz Event Builder-a: uzdužno i bočno ubrzanje

4.4. Postavljanje procedure vožnje i vozača preko SmartDriver sučelja

U prethodnom poglavlju objašnjena je izrada jednostavnih procedura direktno upravljana preko vozača, odnosno preko programa, gdje je u primjeru procedure ubrzanja i kočenja korišten Machine. Takvo postavljanje procedure nije zahtijevalo izradu staze već je simulacija provedena koristeći postojeći predložak za podlogu (svojstva površine) iz Adams Car-a. Što ujedno znači da dok god se u Event Builder-u definira ponašanje Machine cijela procedura se vrlo lako može izvršiti. Takav način je vrlo praktičan kod simulacija jednostavnih procedura, posebice primjer naveden u poglavlju 4.1., ali nepraktičan za dugačke staze, gdje je program teško podesiti za postizanje optimalnih performansi vozila odnosno optimalnog profila brzine duž cijele staze. Još veći problem predstavljaju svi zavoji koje bi vozilo trebalo svladati sa staza izrađenim u poglavlju 3.4. U tu svrhu drugi način provođenja procedura u Adams Car-u omogućuje pametni vozač (napredni model vozača), odnosno SmartDriver sučelje, unutar kojeg se procedura vožnje definira preko staze, tj. središnje linije staze i/ili putanje vožnje. U ovom i sljedećim poglavljima proučit će se uporaba SmartDriver sučelje u kombinaciji s optimizacijom putanje odnosno Path optimisation... sučeljem. Adams SmartDriver predstavlja napredni simulator vozača koji može dovesti vozilo do krajnje iskoristivosti njegovih performansi tj. provesti proceduru limita vozila (engl. Vehicle limits) ili uvjeta definiranih od strane korisnika (eng. User defined limits). Korisnik u sučelje treba unijeti putanju (ili središte staze) po kojoj će vozilo biti voženo i željene ciljeve simulacije.

Slika 50. Shema strukture Adams SmartDriver simulacije vozača

Adams SmartDriver omogućuje time poboljšanje upravljivosti, dugotrajnosti ili profila brzine modela vozila na temelju povratne petlje algoritma prilikom ponavljanja simulacije, do postizanja optimalnog rezultata za postavljene postavke Solver-a. Time omogućuje jednostavnu dinamičku analizu modela vozila s više tijela (engl. Multi-body dynamics in fullvehicle model) te proučavanje njegovog ponašanja na složenijim putanjama s minimalnim potrebnim podešavanjem. Slika 50. prikazuje skraćeni prikaz Adams SmartDriver unutarnje strukture. SmartDriver proračunava profil brzine preko ugrađenog Adams quasi-static Solvera. Solver uzima u obzir limite pneumatika definirane preko .tir datoteke, koji je također izrađen korištenjem Adams Car-a u sučelju Tire Fitting Tool... prema [2], limite pogonske jedinice koji su u ovom slučaju dva elektromotora na stražnjim kotačima, limite kočnica definirane u modelu vozila, te raspodjelu opterećenje tijekom vožnje i aerodinamička opterećenja. Solver zatim uzima sve podatke modela vozila (početni uvjeti, postavke kinematičkih parametara, geometriju ovjesa, vrijednosti masa i inercija, pneumatike itd.) stvarajući statičke modele u vremenu tijekom simulacije. Za detaljniji opis rada SmartDriver simulatora čitatelja se upućuje na [17] i [18]. U nastavku bit će opisano podešavanje i provjera konvergencije rezultata korištenjem SmartDriver sučelja na jednostavnoj stazi s dva zavoja izrađena u poglavlju 3.3.

4.5. Opis SmartDriver sučelja i Solver-a korišteni za provedbu simulacija

Prvo je potrebno u *Adams Car* učitati model vozila koji će se koristiti za simulacije, u tu svrhu bit će korišten model zadnjeg bolida VulpesR (RT06R) već prikazan slikama 5. i 38. iz prijašnjih simulacija. Nakon otvaranja modela potrebno je otvoriti *SmartDriver* sučelje, koje se nalazi na *Simulate - Full-Vehicle Analysis - Adams SmartDriver*...., sučelje je prikazano slikom 51. Redom unutar sučelja se nalaze:

- Full-Vehicle Assembly prikazuje trenutno učitani model vozila koji će biti korišten u simulaciji
- Output Prefix prikazuje zadani naziv trenutne simulacije
- End Time prikazuje dužinu trajanja simulacije, zadaje se u sekundama
- Number of Steps prikazuje broj koraka simulacije, direktno se podešava Solver da rješava simulaciju s postavljenim brojem
- Course Type predstavlja vrstu staze/putanje koja će biti korištena u simulaciji,

postoje dvije opcije: *Driver Course* pri kojem je potrebno uvesti definiranu površinu staze (engl. *Road Dana File*), može biti samo ravna površina i definiranu ciljanu putanju (engl. *Course Dana File*) bilo izrađenu preko *Road Builder*-a ili optimiranu putanju postojeće staze, i druga opcija preko *3D Spline, CRG or RGR Road* unutar koje se uvezuje samo kreirana staza s definiranim svojstvima površine, te je moguće kasnije definirati način vožnje po istoj.

- Postavke vožnje: Početna brzina (engl. *Initial Velocity*) ručno unesena ili automatski računata (engl. *Auto-Calculate*) gdje *Solver* traži najbolje početne uvjete za postizanje optimalnog profila brzine. Stupanj prijenosa (engl. *Gear Position*).
- Smart Driver Task- definiranje načina provedbe simulacija, ovisno traže li se limiti vozila ili definirani kriteriji vožnje od strane korisnika (gdje korisnik može podešavati iskoristivost ubrzanja u uzdužnom i bočnom smjeru)

🖌 Full-Vehicle Analysis: SmartDriver 🛛 🗙				
Full-Vehicle Assembly	VulpesR_2020	1		•
Output Prefix				
End Time				
Number Of Steps				
Mode of Simulation	interactive	•		
Course Type	Oriver Cours	e C 3D Sp	line, CRG	or RGR Road
Road Data File 🛛 🐻	mdids://acar_s	hared/roads.	tbl/2d_flat.i	rdf
Course Data File	ļ			
Initial Velocity	Auto-Calcula	ate 🗌		km/hr 💌
Gear Position	4	Shift C	ycle Time	0.5
Smart Driver Task User Defined 🔽 🗖 Power-based Shift Control				
Maximum Acceleration	[%]			
Driving 0 📕		50		▶ 100
Braking 0 📕				• 100
Left	50		50 F	Right
Cornering				▶
☑ Quasi-Static Straight-Line Setup				
☑ Create Analysis Log File				
14		ок	Apply	Cancel

Slika 51. Prikaz Adams SmartDriver sučelja

Drugo sučelje koje je također neophodno za uspješnu provedbu simulacija je upravljanje *Solver*-om. Unutar kojeg se definiraju granični uvjeti simulacije, primjerice *MAXIT* definira maksimalan dozvoljeni broj iteracija za pronaći statično uravnoteženje modela *SES*, (engl. *Static Equilibrium state*), *HMAX / HMIN* definira izlazni broj koraka simulacije, tj. kontrolira

Fakultet strojarstva i brodogradnje

integrator pri računanju simulacije sa zadanom veličinom koraka (engl. *Step size*). S ciljem rješavanja zadataka postavljenim u ovom radu, rad *Solver*-a neće biti dodatno objašnjen, za detaljni opis značenja pojmova i načina podešavanja čitatelja se upućuje na [19]. Unutar ovog rada bit će prikazane konačne postavke *Solver*-a korištene pri simulaciji ili *default*-ne. Na slici 52. moguće je vidjeti strukturu *Solver*-a za *Dynamic* algoritam, koji će biti korišten prilikom provođenja simulacija u *SmartDriver*-u. Način rada ukratko je objašnjen u prethodnom poglavlju. Sučelje *Solver*-a otvara se preko *Adams Car- Setting – Solver*, prikazan slikom 53.

Slika 52. Struktura postavki i rubnih uvjeta Solver-a pri rješavanju simulacije, izvadak iz [19]

剩 Solver Settings	×		
Category	Dynamics 🔹		
Model	.VulpesR_2020		
Integrator	GSTIFF		
Formulation	13 💌		
Corrector	C Original @ Modified		
Error	1.0E-03		
Hmax	(none)		
Hmin	(none)		
Hinit	(none)		
Adaptivity	(none)		
Interpolate	C Yes 🖲 No		
Kmax	6		
Maxit	10		
Scale 1.0, 1.0, 1.0			
Alpha -0.3			
Beta	0.36		
Gamma	0.7		
Fixed Iterations	off		
Hratio	(none)		
Max Error	(none)		
More	Defaults Close		

Slika 53. Prikaz prozora za postavljanje Solver-a

4.6. Provedba simulacije na jednostavnoj stazi s dva zavoja uporabom SmartDriver-a

Za ovu simulaciju bit će korištena staza izrađena unutar poglavlja 3.3., prvo će biti provedena simulacija korištenjem samo staze tj. *Course Type: 3D Spline*. Gdje se u *SmrtDriver* učitava XML-datoteka staze. Klikom na *3D Road Data File* učitava se staza i postavlja prethodno učitani model vozila na nju, prikazano slikom 54.

Slika 54. Umetnuta jednostavna staza s dva zavoja

🛪 Full-Vehicle Analysis: SmartDriver 🛛 🗙			
Full-Vehicle Assembly	VulpesR_2020		
Output Prefix	Two_corners_test1		
End Time	20		
Number Of Steps	200		
Mode of Simulation	interactive 💌		
Course Type	C Driver Course (© 3D Spline, CRG or RGR Road		
3D Road Data File 👼	mdids://VulpesR 2020/roads.tbl/Road5_corners_det		
	,		
Initial Velocity	TAuto-Calculate 10 km/hr		
Gear Position 🛛 🤅	1 Shift Cycle Time 0.5		
Smart Driver Task User Defined T Power-based Shift Control			
Maximum Acceleration [%]			
Driving 0 📕	50 100		
Braking 0 🔳	50 100		
Left	FO FO Right		
Cornering			
✓ Quasi-Static Straight-Line Setup			
✓ Create Analysis Log File			
OK Apply Cance			

Slika 55. Postavke Simulacija 1. unutar SmartDriver-a

S ciljem kontrole ispravnosti staze vozilo će biti provoženo u srednjem opterećenju po sredini staze. Unutar *SmartDriver* preko *Smart Driver Task: User Definied* postavlja se ručni iznosi opterećenja, za pretpostavljeno vrijeme uzeto je 20 sekundi i *default*-ni broj koraka. Postavke simulacije vidljive su na slici 55. Postavke *Solver*-a nisu mijenjane. U slučaju uspješne simulacije unutar *Message Window*-a ponovno može se vidjeti broj koraka i vrijeme simulacije prikazano slikom 56.

District Step Punction Cummistive Integration CPU Fime Size Evaluations Steps Taken Order time 0000E+00 5:0000E+03 0 1 3:31 0000E+00 5:0000E+03 0 1 3:31 0000E+00 5:0000E+00 specified engine idle speed 0000E+00 1:00000E-02 1532 642 2 6:41 0000E+00 1:00000E-02 2532 642 2 7:50 0000E+00 1:00000E-02 2532 1242 1 1:36 0000E+01 1:00000E-02 2532 1242 1 1:36 0000E+01 1:00000E-02 4121 142.63 1 1:4.61 0000E+01 1:00000E-02 5156 1:422 1 1:4.61 0000E+01 1:00000E-02 5156 2:042 1 1:5.80 r1 1:1:00000E-02 5556 2:042 1 1:5.80 r1 :1
Size Evaluations Steps Taken Order time 0000E+00 5.00000E-03 0 1 3.31 a Control: Engine Speed below specified engine idle speed a a.31 a Control: Engine Speed below specified engine idle speed a a.31 a Control: Engine Speed below specified engine idle speed a a.31 0000E+00 1.00000E-02 1532 642 2 c.61 0000E+00 1.00000E-02 2332 842 1 8.73 0000E+00 1.00000E-02 2531 1042 2 10.06 0000E+01 1.00000E-02 3521 1242 1 13.77 0000E+01 1.00000E-02 5196 1842 1 14.81 000E+01 1.00000E-02 5196 1842 1 15.80 1 1 1.00000E-02 5556 2042 1 15.80 1 1 1.00000E-02 5556 2042 1 15.80
Init Order Initial Component Order Order 0000E+00 5.0000E+03 0 1 3.31 0000E+00 5.0000E+03 0 1 3.31 0000E+00 5.0000E+00 10000E+01 3.31 0000E+00 1.00000E-02 1532 442 2 6.41 0000E+00 1.00000E-02 1532 642 2 7.50 0000E+00 1.00000E-02 2532 842 1 8.73 0000E+01 1.00000E-02 3521 1242 1 11.36 0000E+01 1.00000E-02 4121 142.63 1 14.91 0000E+01 1.00000E-02 5156 1042 1 13.77 0000E+01 1.00000E-02 5156 2042 1 15.80 r1 1 1.00000E-02 5556 2042 1 15.80 r1 1 1.00000D 5556 2042 1 15.80 r1 1
0000E+00 5.00000E+03 0 0 1 3.31 a Control: Engine Speed below specified engine idle speed 2 6.41 a Control: Engine Speed below specified engine idle speed 2 6.41 b000E+00 1.00000E-02 1532 642 2 7.50 b000E+00 1.00000E-02 2332 842 1 8.73 b000E+00 1.00000E-02 2531 1042 2 10.06 b000E+01 1.00000E-02 3521 1242 1 13.86 b000E+01 1.00000E-02 4121 1442 1 12.63 b000E+01 1.00000E-02 5156 1842 1 4.81 b000E+01 1.00000E-02 556 2042 1 15.80 sr 1 abort time (20.000000s) reached. - 20.000000 - setstig.event_monitor_sensor has become active at time = 20.000000. - - sensed value = 1.0000000. sensed value = 1.000000E-00. - 1.0000000. - -
Scontrol: Engine Speed below specified engine idle speed 5.00 S Control: Engine Speed below specified engine idle speed 5.00 Sonorho: Engine Speed below specified engine idle speed 5.00 Sonorho: Engine Speed below specified engine idle speed 5.00 Sonorho: Engine Speed below specified engine idle speed 5.00 Sonorho: Engine Speed below specified engine idle speed 5.00 Sonorho: Engine Speed below specified engine idle speed 5.00 Sonorho: Engine Speed below specified engine idle speed 5.00 Sonorho: Engine Speed below specified engine idle speed 5.00 Sonorho: Engine Speed below specified engine idle speed 5.00 Sonorho: Engine Speed below specified engine idle speed 5.00 Sonorho: Engine Speed below specified engine idle speed 1.00 Sonorho: Engine Speed below specified engine idle speed 1.00 Sonorho: Engine Speed below specified engine idle speed 1.1.36 Sonorho: Engine Speed below specified engine idle speed 1.1.36 Sonorho: Engine Speed below specified engine idle speed 1.1.36 Sonorho: Engine Speed below specified engine idle speed 1.1.36 Sonorho: Engine Speed speed speed speed speed 1.1.36
a Control: Specified engine inle speed b0002+00 1.00000E-02 1532 442 2 6.41 b0002+00 1.00000E-02 1532 642 2 7.50 b0002+00 1.00000E-02 1532 642 2 7.50 b0002+00 1.00000E-02 2332 842 1 8.73 b0002+01 1.00000E-02 3521 1242 1 11.36 b0002+01 1.00000E-02 4121 1442 1 12.63 b0002+01 1.00000E-02 5156 1842 1 14.81 b0002+01 1.00000E-02 5556 2042 1 15.80 if abort time (20.000000s) reached.
control. Single speed below spectrum engine into speed 0000E400 1.00000E-02 1532 642 2 6.41 0000E400 1.00000E-02 1532 642 2 7.50 0000E400 1.00000E-02 2332 842 1 8.73 0000E400 1.00000E-02 2531 1042 2 10.06 0000E401 1.00000E-02 3521 1242 1 11.36 0000E401 1.00000E-02 4121 1442 1 12.63 0000E401 1.00000E-02 5196 1842 1 14.81 0000E401 1.00000E-02 5196 1842 1 15.80 rel abort time (20.000000) reached. 1 15.80 1 rel abort time (20.000000) reached. 1 15.80 1 rel abort time (20.000000) reached. 1 15.80 1 ret abort time (20.000000) reached. 20.000000. 2 2 ret abort time (20.000000) reached.<
0000E+00 1.00000E+02 1532 442 2 6.41 0000E+00 1.00000E-02 1532 642 2 7.50 0000E+00 1.00000E-02 2332 842 1 8.73 0000E+01 1.00000E-02 2521 1042 2 10.06 0000E+01 1.00000E-02 3521 1242 1 1.36 0000E+01 1.00000E-02 4121 1442 1 12.63 0000E+01 1.00000E-02 5196 1842 1 14.81 0000E+01 1.00000E-02 5565 2042 1 15.80 et time : 0.000000 tat time : 0.000000 tat time : 20.000000 tat time : 0.000000 tat time : 20.000000 tat time : 20.000000 :sensed value = 1.000000E+00. :sensed value = 1.000000E+00. :sensed value = 1.000000E+00.
0000E+00 1.00000E-02 1932 642 2 7.50 0000E+00 1.00000E-02 2332 842 1 8.73 0000E+00 1.00000E-02 2521 1042 2 10.06 0000E+01 1.00000E-02 3521 1242 1 11.36 0000E+01 1.00000E-02 4121 1442 1 12.63 0000E+01 1.00000E-02 5156 1842 1 14.81 0000E+01 1.00000E-02 5556 2042 1 15.80 rf abont at time : 0.000000 at time : 20.000000 ist time : 0.000000 iststig.event_monitor_sensor has become active at time = 20.000000. istensed value = 1.00000E+00.
0000E+00 1.00000E-02 2332 842 1 8.73 0000E+00 1.00000E-02 2521 1042 2 10.06 000E+01 1.00000E-02 3521 1242 1 11.36 000E+01 1.00000E-02 4121 1442 1 12.63 000E+01 1.00000E-02 4721 1642 1 13.77 000E+01 1.00000E-02 5156 1842 1 14.81 000E+01 1.00000E-02 5556 2042 1 15.80 erl abort time (20.000000s) reached.
0000E+00 1.00000E-02 2521 1042 2 10.06 0000E+01 1.00000E-02 3521 1242 1 11.36 0000E+01 1.00000E-02 4121 1442 1 12.63 000E+01 1.00000E-02 4721 1642 1 13.77 000E+01 1.00000E-02 5196 1842 1 14.81 000E+01 1.00000E-02 5596 2042 1 15.80 r1 abortime (20.000000s) reached.
0000E+01 1.00000E-02 3521 1242 1 11.36 0000E+01 1.00000E-02 4121 1442 1 12.63 0000E+01 1.00000E-02 4721 1642 1 13.77 0000E+01 1.00000E-02 5196 1842 1 14.81 0000E+01 1.00000E-02 5596 2042 1 15.80 erl abort time (20.00000s) reached. : : . . . :ed at time : 0.000000 :sensed value = 1.000000 : . . . :estrig.event_monitor_sensor has become active at time = 20.000000. : :sensed value = 1.000000e. . :gered action RETURN.
0000E+01 1.00000E-02 4121 1442 1 12.63 0000E+01 1.00000E-02 4721 1642 1 13.77 0000E+01 1.00000E-02 5196 1842 1 14.81 0000E+01 1.00000E-02 5596 2042 1 15.80 set 1 abort time (20.000000s) reached. set at time : 20.000000 tat time : 20.000000 settig.event_monitor_sensor has become active at time = 20.000000. setsig.event_monitor_sensor has become active at time = 20.000000. setsig.event_monitor_sensor has become active at time = 20.000000.
<pre>0000E+01 1.00000E-02 4721 1642 1 13.77 0000E+01 1.00000E-02 5196 1842 1 14.81 0000E+01 1.00000E-02 5596 2042 1 15.80 er 1 abort time (20.000009) reached. ted at time : 0.0000000 ist time : 20.000000 ist time : 20.000000 ist time : 20.000000e+00. restrig.event_monitor_sensor has become active at time = 20.000000. restrig.event_monitor_sensor has become active at time = 20.0000000. restrig.event_monitor_sensor has become active at time = 20.000000. restrig.event_monitor_sensor has become active at time = 20.0000000. restrig.event_monitor_sensor has become active at time = 20.0000000. restrig.event_monitor_sensor has become active at time = 20.0000000. restrig.event_monitor_s</pre>
00002+01 1.000002-02 5196 1842 1 14.81 00002+01 1.000002-02 5596 2042 1 15.80 set 1 abort time (20.000000s) reached. ted at time : 0.000000 testrig.event_monitor_sensor has become active at time = 20.0000000. sensed value = 1.000000ser00. gered action RETURM.
0000E+01 1.00000E-02 5596 2042 1 15.80 er 1 abort time (20.000000s) reached.
<pre>sr 1 abort time (20.000000s) reached. ced at time : 20.000000 lat time : 20.000000 restrig.event_monitor_sensor has become active at time = 20.000000. : sensed value = 1.0000000+000. grered action REIURN.</pre>
<pre>ced at time : 0.000000 results. l at time : 2.0.000000 restrig.event_monitor_sensor has become active at time = 20.0000000. ; sensed value = 1.000000e+00. ggered action RETURN.</pre>
<pre>ist time - 20 000000 testrig.event_monitor_sensor has become active at time = 20.0000000. : sensed value = 1.000000e+00. gered action RETURN.</pre>
<pre>setrig.event_monitor_sensor has become active at time = 20.000000. > sensed value = 1.000000e+00. ggered action RETURN.</pre>
<pre>setsing.events_monitor_sensor mas become active at time = 20.0000000. t sensed value = 1.000000e+00. jgered action RETURN.</pre>
gered action RETURN.
gered action Reform.
TART: WARNING
sestrig.event_monitor_sensor halting simulation at time 2.000000e+01
ND: WARNING
0000E+01 1.00000E-02 5976 2232 2 16.86
mic Solution stopped.
Simulation
late status=0
leuver is finished.
14: !
id: stop
ination status=0
ating Adams Car usersubs
ad
d time = 16.24s, CPU time = 16.88s, 103.50%
d time = 16.24s, CPU time = 16.88s, 103.90%
d time = 16.24s, CPU time = 16.88s, 103.90% Non is complete.
d time = 16.24s, CPU time = 16.88s, 103.90%
d time = 16.24s, CPU time = 16.88s, 103.90% tion is complete.
d time = 16.24s, CPU time = 16.88s, 103.90%

Slika 56. Prikaz Message Window-a provedena Simulacije 1.

Nakon uspješno provedene Simulacije 1., u drugu simulaciju postavljeni su krajnji uvjeti za istu vožnju po sredini staze: gdje je vrijeme simulacije skraćeno na 15 sekundi, početna brzina je postavljena na *Auto-Calculate*, te je *Smart Driver Task* postavljen na *Vehicle Limits*. Staza je ostavljena ista te je broj koraka ostavljen isti. Nakon što je simulacija provedena pojavile su se greške praćenja staze zbog visokog broja koraka i pre malog broja točaka koji definiraju stazu. Jedno rješenje bilo bi smanjiti broj koraka, a drugo bilo bi povećati finoću staze, tako da ponovimo postupak izrade staze iz poglavlja 3.3. U nastavku biti će prikazan utjecaj koraka simulacije na konvergenciju i točnost rezultata.

Ista simulacija ponovljena je s broj koraka 20, 40, 60 i 100 radi analize utjecaja gustoće staze i broja koraka na točnost rezultata simulaciju, to će kasnije biti koristan podatak prilikom provedbi simulacije na duljim stazama, radi vjerodostojnosti rezultata. Simulacija s 20 koraka je prekinula te nije prošla ukazujući na premali broj koraka za definiranu stazu, dok simulacije 40, 60 i 100 su uspješno provedene s prikazanim razlikama u točnosti povećavanjem koraka simulacije na slici 57. gdje je oko 100 postignuta konvergencija rezultata.

Slika 57. Profil brzine: Utjecaj broja koraka na simulaciju i konvergencija rezultata

Također radi analize utjecaja preciznosti staze ponovljen je postupak izrade staze prema poglavlju 3.3. gdje je sa originalno 100 točaka preciznost definiranja staze povišena na 500 točaka, preciznija staza prikaza ja na slici 58.

Slika 58. Prikaz jednostavne staze s dva zavoja s povećanom broj točaka staze

Slika 59. Profil brzine: Usporedba simulacije staze sa simulacije 2 i preciznije staze

Prema slici 59. provedena je Simulacija 3 s preciznije izrađenom stazom (s više točaka) te uspoređena s prethodnom simulacijom 2, te zaključuje se da za opću analizu ponašanja bolida, prilikom konstruiranja i podešavanja parametara može se koristiti prvobitno izrađena staza (s manje točaka), dok za analizu optimalnih postizivih rezultata potrebno je izraditi stazu s većom preciznošću, tada *Solver* može provesti puno veći broj prolaza i pronaći optimalnije rješenje, iako razlike u rezultatima nisu velike, oko 1,2 % u prosjeku profila brzine vozila, za postizanje optimalnog vremena prolaza čini dovoljnu razliku.

4.7. Optimizacija putanje na primjeru jednostavne staze s dva zavoja unutar Path Optimization sučelja

Slika 60. "Rezanje" zavoja u optimalnoj putnji vožnje [20]

Sljedeći korak je postavljanje optimalne putanje vožnje. U prethodnom poglavlju provedena je samo simulacija po središnjoj liniji staze, no ona ne daje optimalni profil brzine i maksimalnu iskoristivost ubrzanja vozila. Naime, optimalna putanja predstavlja najbrži put po stazi koje vozilo treba proći u minimalnom vremenu. Jedan od glavnih elemenata putanje je "rezanje zavoja" koji se sastoji od tri koraka: ulazak u zavoj (engl. *Turn in)*, geometrijsko središte zavoja (engl. *Turn apex*) i izlazak iz zavoja prema slici 60. Cilj je proći stazu po optimalnoj putanji iskorištavajući sav dostupan prostor (širinu) staze, gdje vozilo postiže veću brzinu i nalazi se na pragu bočnog ili uzdužnog prijanjanja (engl. *Grip limits*) prikazano na primjerima zavoja i dijelovima staza sa slike 61. Promatrajući primjer sa slike 60. prema [7] najveća brzina po kojoj neće doći do bočnog proklizavanja (maksimalna brzina u zavoju) funkcija je radijusa skretanja, time što je veći radijus skretanja, vozilo će za isto teorijsko ubrzanje imati veću brzinu u zavoju.

Slika 61. Primjeri optimalna putanja kroz dijelove staze [20]

Optimizacija putanje provodi se preko *Path Optimization* sučelja unutar *Adams Car*-a. Otvara se preko *Simulate- Full-Vehicle Analysis- Path Optimization*... Optimizacija puta provodi se preko nekoliko parametara prikazani unutar sučelja na slici 62. Ostali parametri su postavljeni *default*-ni poput širine vozila (engl. *Vehicle Wigth)*, i širine staze (engl. *Track/Path Width)*. Glavni parametri za podešavanje optimizacije putanje su:

- *Corner Cutting Coefficient* predstavlja postotak "rezanja" zavoja, te ima vrijednosti od 0 do 1, za postizanje maksimalnog kraćenja potrebno je postaviti 1, tj. 100 %
- Path Distance Weight predstavlja faktor duljine staze, on nastoji skratiti putanju na najkraću moguću do nekog zasićenja skraćivanja
- Path Curvature Weight predstavlja finoću staze kroz zavoje, kako je putanja definirana preko točaka često može ispasti gruba, pa s smanjenjem faktora dolazi do većeg stupnja krivulje zavoja
- Path Point Spacing [m] predstavlja faktor broja točaka koji definiraju putanju, ili razmak

A Path Optimization				
Input Road Data File	mdids://VulpesR_2020/roads.tbl/Road5_c	corners_detai	led.xml	Show
Output Path File Name	2corners_path4			
Vehicle Width [m]	0.0			
Corner Cutting Coefficient	1			
Path Distance Weight	0.0000000000000000000000000000000000000			
Path Curvature Weight	0.1			
Maximum Iterations	500			
Path Calculation Precision [0.0000001				
I Track/Path Width [m]	5			
Path Point Spacing [m]	0.6			
		ОК	Apply	Cancel

Slika 62. Postavljeni parametri optimizacije staze za primjer s dva zavoja

Proces optimizacije provođen je s ciljem postizanja optimalne putanje, zato je faktor "rezanja postavljen" odmah na 100 % te je preko ostalih faktora kroz nekoliko iteracija postignuta željena putanja s glatkim prijelazima kroz zavoje. Na slici 63. i 64. vidljiv je početak i kraj iteracije. Naime tijekom iteracija nastoji se u biti doći do konvergencije putanje, tj. daljnjom promjenom faktora više se ne može postići bolja kombinacija finoće staze i duljine putanje. Tijekom proučavanja primijećeno je također da povećavanje preciznosti izrade putanje (engl. *Path Calculation Precision*) nije imalo utjecaja, zadnji parametri prema slici 62.

Slika 63. Početak iteracije optimalne putanje

Slika 64. Kraj iteracije optimalne putanje

Nakon što je putanja izrađena, sprema se u obliku .DRD datoteke u mapi sklopa vozila sa zadanim nazivom, predstavlja datoteku koja samo definira putanju i kinematički zadatak koje vozilo treba ispuniti, ne sadrži podatke o kontaktnoj mehanici između pneumatika i podloge.

Sljedeće potrebno je otvoriti *Adams SmrtDriver*-u unutar kojega se sada odabire drugačija vrsta staze pod *Course Type*. Sada je potrebno postaviti na *Driver Course*, budući da će biti potrebno učitati putanju i površinu staze odvojeno. Kao površina staze (engl. *Road data file*) uzet je generički predložak iz *Adams Car-a*, "2d_flat.rdf" datoteka, a za putanju prethodno izrađena putanja u *Path optimization*-u, te postavljena pod *Course Data File* unutar

SmartDriver-a. Postavke *SmartDriver-*a su prikazane na slici 65. Ostale postavke su ostavljene iste s ciljem iskorištavanja maksimalnih performansi vozila (engl. *Vehicle limits*).

┫ Full-Vehicle Analysis: Si	nartDriver			×
Full-Vehicle Assembly	VulpesR_2020			•
Output Prefix	TwoCornets_path_test			
End Time	4			
Number Of Steps	0			
Mode of Simulation	nteractive -			
Course Type	C Driver Course C 3D Spline, CRG or RGR Road			
Road Data File 😽	mdids://acar_shared/roads.tbl/2d_flat.rdf			
Course Data File	file://I:/MSC.Software/MSC_Adams_Projects/VulpesR_2020/2c	orners_path_o	opt/2corners_	path3.drd
Initial Velocity	Auto-Calculate 10			km/hr 💌
Gear Position	1 Shift Cycle Time 0.5			
Smart Driver Task	Vehicle Limits 🔽 🗖 Power-based Shift Control			
Maximum Acceleration	[%]			
	50			
Driving 0 🥑	50			▶ 100
Braking 0 💽	50			▶ 100
	Left		Right	
Cornering	50	50		►
Quasi-Static Straight-L	ine Setup			
Create Analysis Log F	le			
		OK	Apply	Cancel

Slika 65. Postavke SmartDriver-a za izrađenu putanju staze s dva zavoja

S ciljem direkte usporedbe putanje u odnosu na vožnju po sredini staze Simulacije 3 na slikama 66., 67. i 68. prikazana je razlika rezultata brzine i ubrzanja. Vidljiva je vremenska razlika u prolasku po putanji u odnosu na središte staze. Prema obliku krivulje brzine vidljivo je da vozilo postiže iste ubrzanja ranije pri prolascima kroz zavoje pri putanji (plavo), te time ranije ubrzava do maksimalne brzine pri izlasku iz istih.

Slika 67. Uzdužno ubrzanje: usporedba Simulacije 3 i vožnje po optimiranoj putanji

Slika 68. Bočno ubrzanje: usporedba Simulacije 3 i vožnje po optimiranoj putanji

4.8. Optimizacija putanje dužih staza i provedba simulacije

Nakon što je optimizacija jednostavne staze uspješno provedena unutar ovog poglavlja ista procedura bit će ponovljena za složene staze. U nastavku će biti prikazana optimizacija staze za testiranje (s Orxy-a) te provedba simulacije u *SmartDriver*-u po istoj. Tijek optimizacije putanje počet je prema izrađenoj putanji za jednostavnu stazu s dva zavoja, s njom na umu ponovno je postavljen cilj 100 % "rezanja zavoja", dok su se druge postavke mijenjale tijekom optimizacije. Najveći utjecaj na konvergenciju putanje imali su *Path Distance Weight* i *Path Point Spacing*, gdje se nastoji postići kombinacija dviju krajnosti, postići rubno dovoljno finu putanju da je vozilo može proći a pri tome je zadržavati "najkraćom" odnosno optimalnom sa zadanim faktorom "rezanja zavoja". Tijekom optimizacije pojavio se niz problema, primjerice putanja ne može priječi određeni zavoj, u tom slučaju važnu ulogu imao

je faktor *Path Curvature Weight*, također stalno u kombinaciji s *Path Distance Weight* faktorom da se riješi taj problem, drugi problem je netočnost izrađenih dijelova staza. Već je prethodno tijekom izrade staze u poglavlju 3.4. navedeno kako će *Solver*, ali tako i *Path Optimization* imati problema s prvobitno izrađenim stazama, što znači za se javlja nesuglasnost dvaju parametara, broj točaka koji definira zavoj i oblik zavoja koji se opisuje. Tijekom ove optimizacije kroz veliki niz iteracija ispravljene su te greške. Također provedene su izmjene na stazi izrađene u poglavlju 3.4. zbog grešaka koje su uočene tijekom provođenja simulacija. Primjer grešaka tijekom iteracija moguće je vidjeti na slici 69. dok slika 72. prikazuje konačni oblik putanje i staze bez grešaka s najboljim postignutim rezultatom na stazi za testiranje. Slika 70. i 71. prikazuju konačne postavke iteracija.

Slika 69. Primjer greške na jednom od zavoja na stazi tijekom iteracija, gdje dolazi do prijeloma putanje

A Path Optimization		×
Input Road Data File	mdids://VulpesR_2020/roads.tbl/mala_staza_orxy_2019_v7.xn	Show
Output Path File Name	Mala_Staza_v7_DRDv12	
Vehicle Width [m]	1.4	
Corner Cutting Coefficient	1	
Path Distance Weight	0.00000000000001	
Path Curvature Weight	0.2	
Maximum Iterations	500	
Path Calculation Precision [0.000001	
✓ Track/Path Width [m]	3.3	
Path Point Spacing [m]	0.3	
	OK Apply Can	cel

Slika 70. Postavke optimizacije putanje staze za testiranje nakon završetka iteracija (MalaStaza_v7_DRDv12_v2)

┥ Solver Settings	×	
Category	Dynamics 💌	
Model	.VulpesR_2020	
Integrator	GSTIFF	
Formulation	13 💌	
Corrector	C Original Modified 	
Error 0.1		
Hmax (none)		
Hmin (none)		
Hinit	(none)	
Adaptivity	(none)	
Interpolate	C Yes 💿 No	
Kmax	6	
Maxit	120	
Scale	1.0, 1.0, 1.0	
Alpha	-0.3	
Beta	0.36	
Gamma	0.7	
Fixed Iterations off		
Hratio	(none)	
Max Error	(none)	
r 🔽 More	Defaults Close	

Slika 71. Postavke Solver-a korišten pro posljednjoj iteraciji (MalaStaza_v7_DRDv12_v2)

Slika 72. Konačna iteracija putanje staze za testiranje (MalaStaza_v7_DRDv12_v2)
Cijeli proces iteracije zahtijeva konstantno usklađivanje između izrađene staza u *Event Builder-u*, optimizaciju putanje preko *Path Optimization* sučelja i provođenje simulacija preko *SmartDriver-*a. Na taj načine preko *Message Window-*a, XML datoteke staze i DRD. datoteke putanje (koja definira ponašanje vozača) može se postići željeni rezultati simulacije. Na slici 73. prikazano je cijelo stablo s iteracijama do željenog rezultat simulacije staze za testiranje, potpuni prikaz u prilogu.

Slika 73. Stablo s izmjenama unutar iteracija simulacije staze za testiranje

Slika 74. prikazuje postavke *SmartDriver*-a u posljednjoj iteraciji simulacije. Zaključeno je da postavke *Solver*-a iz slike 71. ostvaruju dovoljnu točnost, te daljnje smanjenje faktora greške ili povećanje konvergencije nije bilo potrebno, što je važno jer je vrijeme provođenja jedne simulacije po putanji staze za testiranje smanjeno s 40 minuta na 8 minuta bez gubitaka točnosti rezultata. Unutar *SmartDriver-a* prilikom provedbe simulacije postavljene su ponovno *Road Data File* gdje je uzeta podloga iz *Adams Car* predloška, i za *Course Data File* postavljena posljednja iteracija putanje (MalaStaza_v7_DRDv12_v2) prema slici 74.

Fakultet strojarstva i brodogradnje

📢 Full-Vehicle Analysis: Sm	nartDriver			\times
Full-Vehicle Assembly	VulpesR_2020			•
Output Prefix	MalaStaza_v7_DRDv12_v2			
End Time	30			
Number Of Steps	300			
Mode of Simulation	interactive -			
Course Type	Oriver Course C 3D Spline, CRG or	RGR Road		
Road Data File	mdids://acar_shared/roads.tbl/2d_flat_rd	f		
······································				
Course Data File	SC_Adams_Projects/VulpesR_2020/Mal	aStaza_6/Ma	ala_Staza_v7_	DRDv12.drd
Initial Velocity	Auto-Calculate			km/hr 👻
Gear Position	1 Shift Cycle Time).5		
Smart Driver Task	Vehicle Limits 🔽 🗖 Power-based Shi	ft Control		
Maximum Acceleration [%]			
Dáine	50			N 1400
Driving 0	50			100
Braking 0 🔳	50			▶ 100
	Left		Right	
Cornering <	50		50	►
Quasi-Static Straight-Li	ine Setup			
Create Analysis Log Fil	e			
1		ОК	Apply	Cancel

Slika 74. Postavke SmartDriver-a u posljednjoj simulaciji staze za testiranje (MalaStaza_v7_DRDv12_v2)

Slika 75. Grafički prikaz putanje bolida nakon postavljanja SmartDriver-a

Kao što je vidljivo sa slike 75. nakon što se postavi *SmartDriver* sučelje za simulaciju moguće je vidjeti putanju položenu na podlogu. Naime vozilo se nalazi na startnoj poziciji definirano stazom, te kada se pokrene simulacija *Machine* nastoji koristeći maksimalne izvedive performanse doseći najbliže optimalnoj putanji. Tijekom iteracija ustanovljena je greška uzdužnog i bočnog proklizavanja uslijed prelaska normalne sile na gaznoj površini izvan graničnih vrijednosti pneumatike. Pneumatik je definiran preko magične formule PAC2002 iz *Adams Car Tire Tool* izbornika, te kao takav ima postavljenu funkcijsku vezu ilustriranu prema slici 76.

Slika 76. Shematski prikaz funkcije magične formule modela PAC2002

Određeni iznos bočne komponente sile Fy na pneumatiku ovisi o iznosu normalne komponente F_z , te o trenutnom kutu bočnog klizanja sa slike 10. Naime ovisno o vrsti pneumatika kada se dosegne određeni granični kut bočnog klizanja dolazi do proklizavanja kotača, tj. više nema bočno prijanjanje. Prikaz funkcije bočne sile za dvije normalne sile moguće je vidjeti na slici 77. preko *Adams Car Tire fitting tool-*a. Primjer prethodno opisanog problema prikazan je na slici 78. tijekom iteracija, gdje *Machine* dolazi u posljednji zavoj s prevelikom brzinom te nastoji to kompenzirati velikim bočnim kutom klizanja (slika 79.), ova

Fakultet strojarstva i brodogradnje

iteracija riješena je malim izmjenama posljednjeg zavoja i povećavanjem slobode *Solver-a* prilikom upravljanje vozila.

Slika 77. Prikaz funkcije pneumatika preko tire fitting tool-a

Slika 78. Primjer izletavanja vozila u jednoj od iteracija na posljednjem zavoju

Slika 79. Kut bočnog klizanja pri iteracija izletavanja vozila na posljednjem zavoju

4.9. Rezultati konačne simulacije staze za testiranje

Nakon uspješno provedene simulacije staze za testiranje u nastavku su prikazani dijagrami te simulacije. Na slici 80. prikazan je profil brzine kroz cijeli krug staze. Profil brzine pokazan je za optimalne uvjete vožnje gdje je program *Machine* kroz iteracije došao do početne brzine. Krug staze za testiranja završava se u trenutku 29,1 sekunda.

Slika 80. Profil brzine konačne iteracije po putanji staze za testiranje

Na slici 81. prikazana je evoluciju *VulpesR* bolida tijekom razvoja, tj. prvi prototip vozila na početku razvoja i konačna verzija s definiranim masama i ovjesom. Uz smanjenje mase na konačnoj verziji također su provođene simulacije u AVL VSM programskom paketu za

postizanje najviše bodova kada se zbroje sve dinamičke discipline natjecanja Formule Student, gdje je odlučena promjena stupnja jednostupanjskog reduktora bolida s 11,4 na 8,0. Također tijekom iteracije proračuna krutosti i valjanja ovjesa uklonjen je prednji stabilizator te su na stražnju stranu stavljeni širi kotači koji prema modelu gume pokazuju veću bočnu krutost. Crvenom bojom predstavlja VulpesR nakon izmjena, a plavom prethodna verzija Vulpes-a 2019 godine. Izmjerena je razlika u profilu brzina u prosjeku za 0,6 do 1 sekunde kroz dijelove stazu. Te ukupnu vremensku razliku od 6,68 sekundi.

Slika 81. Usporedba profila brzine Vulpes / VulpesR nakon izmjena na bolidu

Slika 84. Kut zakretanja bolida oko vertikalne osi kroz stazu za testiranje , Vulpes/VulpeR-a

4.10. Postavke i rezultati staze s natjecanja, Mađarska 2018.

Isti postupak definiranja staze i putanje preko *Event Builder*-a i *Path Optimization*-a ponovljen je za stazu s natjecanja iz Mađarske, 2018. godine izrađenu prethodno u poglavlju 3.4. U nastavku navedene su slikama 86. i 88. postavke putanje i grafički prikaz. Simulacija je provedena istom metodom korištenjem *SmartDriver*-a s postavkama prema slici 87.

🛃 Path Optimization		×
Input Road Data File	mdids://VulpesR_2020/roads.tbl/Madarska_2018.xml	Show
Output Path File Name	Hungary_2018_path1	
Vehicle Width [m]	1.4	
Corner Cutting Coefficient	1	
Path Distance Weight	0.00000000000001	
Path Curvature Weight	0.2	
Maximum Iterations	500	
Path Calculation Precision [0.0000001	
✓ Track/Path Width [m]	3.3	
Path Point Spacing [m]	0.3	
	ОК Арріу	Cancel

Slika 86. Postavke optimizacije putanje staze s natjecanja Mađarska, 2018. (Hungary_2018_v3_DRD1)

🔞 Full-Vehicle Analysis: S	martDriver X
Full-Vehicle Assembly	VulpesR_2020
Output Prefix	Hungary_2018_v3_DRD1
End Time	51
Number Of Steps	510
Mode of Simulation	interactive 💌
Course Type	Driver Course C 3D Spline, CRG or RGR Road
Road Data File	mdids://acar_shared/roads.tbl/2d_flat.rdf
Course Data File	s\VulpesR_2020\MalaStaza_6\Vulpes_2019_test_arb\Hungary_2018_path1.drd
Initial Velocity	Auto-Calculate
Gear Position	1 Shift Cycle Specify the initial velocity.
Smart Driver Task	Vehicle Limits 🔽 🗖 Power-based Shift Control
Maximum Acceleration	[%]
D. C	50
Driving U	50
Braking 0 📕	JU 100
	Left Right
Cornering <	
Quasi-Static Straight-	ine Setup
Create Analysis Log F	ile
M 14	OK Apply Cancel

Slika 87. Postavke SmartDriver-a za putanju staze s natjecanja Mađarska, 2018. (Hungary_2018_v3_DRD1)

Slika 88. Grafički prikaz konačne iteracije putanje staze s natjecanja Mađarska, 2018. (Hungary_2018_v3_path1)

U nastavku je prokazan slikom 89. profil brzine kroz putanje staze (Mađarska, 2018.) gdje je odmah uočljivo da zbog puno dužih ravnica i zavoja većih radijusa vozilo je prosječno dosezalo veće brzine nego na stazi za testiranje (slika 80.). Ukupno vrijeme prolaska kruga je 51,5 sekundi. Slika 90. i 91. prikazuju profile uzdužnih i bočnih ubrzanja postignutih po stazi, također su zabilježene najveće postignute: bočnog ubrzanja 1,6 g i uzdužnog 1,4 g.

Slika 89. Profil brzine putanje staze s natjecanja Mađarska, 2018.

Slika 90. Uzdužno ubrzanje putanje staze s natjecanja Mađarska, 2018.

Slika 91. Bočno ubrzanje putanje staze s natjecanja Mađarska, 2018.

Slika 92. Kut valjanja (crveno) i kut poniranja (plavo) bolida kroz stazu s natjecanja, Mađarska, 2018.

5. KONCEPT I KONSTRUKCIJA NOVOG BOLIDA RT07

5.1. Opis koncepta bolida RT07, početak projekta 2020. godine

S ciljem postizanja napretka u razvoju novih bolida u narednim godinama te krajnjim ciljem izrade bolida s pogonom na sva četiri kotača i razvoja vlastitog *Torque Vectoring* sustava, za bolid RT07 je odlučeno zadržati konfiguraciju pogona na dva elektromotora koji će neovisno pogoniti stražnje kotače, ali smještene u sklopu kotača prema trenutnom konceptu iz CAD-a slike 93. Dio opisa koncepta baziran prema [2].

Slika 93. Stražnji sklop kotača s elektromotorom planetarnim prijenosnikom

Kao i na prošlom bolidu, ponovno se razvija *monocoque* šasija s primarnim ciljem smanjenja mase (debljine sendvič paketa) u odnosu na prošli bolid gdje se pokazala prediomenzirana šasija prema torzijskoj i savojnoj krutosti. U sklopu ovog projekta razvijaju se vlastiti elektromotori, kako to predstavlja veliki poduhvat, konstrukcijski će biti izvedena tako da se može mijenjati s kupovnom verzijom u sklopu kotača. Razmatraju se dva osnovno koncepta baterijskih paketa, jedno pakiranje iza vozača što daje za prednost jednostavnije ožičenje, jednostavnija montaža kroz *cockpit* te veće duljine od širine s ciljem smanjivanja stražnje širine šasije, drugi koncept je podjela baterija na dva paketa: manji ispred vozača kod

upravljanja i veći iza vozača, glavna prednost ovakve izvedbe ide u korist dinamike vozila i ravnomjernije raspodjele ovješene mase bolida, što daje veću slobodu s položajem vozača.

Slika 94. Koncept s jednim baterijskim paketom iza vozača, približne mase iz CAD-a 38,6 kg

Slika 95. Koncept s dva baterijskim paketa ispred i iza vozača, približne mase iz CAD-a 20 kg prednji i 23 kg stražnji

Na temelju iskustva prethodnog bolida zadržan je međuosovinski razmak 1530 mm i tragovi kotača: prednji 1274 mm i stražnji 1241 mm za konceptualnu fazu razvoja novog bolida. Prednji trag pokazao je dobru geometriju upravljanja u radijusima definiranim stazama na natjecanjima, te stražnji uži kako bi spriječio rušenje čunjeva stražnjim unutarnjim kotačem iz razloga što stražnji kotač zatvaraju manji radijus pri vožnji kroz zavoj od prednjih. Kod trkaćih bolida velik značaj u performansama razmještaj najtežih komponenti unutar bolida (engl. *packaging*) jer utječe direktno na pod/preupravljivost vozila i na ostvarivo prijanjanje na stražnjim pogonski kotačima, budući da karakteristika gume ovisi o normalnoj komponenti sile Fz. Također određuje masa, smještaj težišta (koji određuju maksimalna uzdužna i bočna ubrzanja bolida za određeni faktor prianjanja pneumatika) te inercija bolida oko vertikalne osi (koja utječe na njegovu ostvarivu brzinu promjene smjera vožnje). Kod bolida RT06R su komponente ugrađene unutar šasije s najvećom masom baterija te sklop motora s reduktorom. U novoj izvedbi bolida znatno se smanjuje ovješena masa bolida s novim packaging-om baterija manjeg kapaciteta, sklopom elektromotora i planetarnog reduktora u sklopu kotača (neovješene masa). Početak razvoja bolida počeo je od izbora pneumatika oko kojeg će biti cijeli bolid konstruiran, pneumatik je izabran uz pomoć Tire Test Consortuim-a podataka dobivenih iz Calspan Tire Testing and Research Facility preko članstva.

Slika 96. Ispitivanje pneumatika na Calspan ispitnom postavu, [2]

Pneumatik je odabran metodom težinskih faktora prema kriterijima opisanim u izvještaju "Odabir trkaćih pneumatika za bolid formule student" iz [2]. Slijedi odabran pneumatik Hoosier R25B 16x7.5-10 koji će svojim malim iznosom mase i radijusa vanjskog oboda omogućiti razvoj pogonskog sustava manje mase. Također, većom krutošću bočnog zida (engl. sidewall) dolaziti će do manjih deformacija gaznog sloja u kontaktu s podlogom, što znači manji kut bočnog klizanja i moment stabilizacije za jednaki iznos bočne akceleracije. Svakako guma ima i veću vertikalnu krutost zbog manje elastičnosti bočnog zida, što općenito znači potrebu za mekšim oprugama kako bi se zadržala jednaka krutost vožnje te rezultira daljnjim smanjenjem mase. Kako pneumatik pri ispitivanju postiže nešto više iznose faktora trenja u poprečnom smjeru uz obruče širine 8" (u usporedbi s 7"), takvi su obruči i odabrani. Kako bi visina bolida bila jednaka i pri vožnji mokrom stazom, kao kišnu gumu je potrebno koristiti Hoosier WETS 16x7-10. Kako se taj pneumatik može ugraditi na obruče širine od 6" do 7", odabrani su obruči širine 7". Unutar projekta rt07 cilj je razviti prve CFRP naplatke jednakih dimenzija kao i Keizer Wheels aluminijski obruči, što omogućuje dodatno smanjenje mase pri oblikovanju konstrukcije sklopova kotača, uz zadržavanje kupovne solucije. Također prema simulacijama provedenim u aerodinamici iz prošlog bolida pokazala se velika važnost podnice za postizanje željenih značajki tako da je aerodinamičko pakiranje također važan espekt pri konstrukciji bolida, te će se ovdje još dodatno posvetiti pozornost.

Slika 97. RT06R analiza distribucije tlaka ispod podnice, [2]

Također jedan od najvažnijih dijelova vozila i za analizu ponašanje dinamike vozila je koncept ovjesa. Unutar ovog projekta odlučeno je konstrukcija prvog odvojenog ovjesa prema tipu gibanja šasije odnosno *Decoupled suspension* na engleskom zbog nedostatka boljeg prijevoda. Princip rada ovjesa bazira se na odvajanju dva glavna gibanja: valjanja i poniranja/podizanja. Naime prilikom nailaska na uzvisinu ili pri kočenju/ubrzavanju oba kotača npr. stražnje osovine se podižu ili spuštaju, u toj situaciji prema slici 98. donji sklop amortizera se stišće ili razvlači dok zahvaljujući kinematici krakova klackalica dijagonalno položeni sklop amortizera putuje u ravnini te ne uteče na krutost pri ovakvom gibanju, u slučaju valjanja situacija je obrnuta. Princip rada pojedinih koncepta i iteracija opisan je u [2]. Unutar razrade ovjesa odlučena je stražnja aktivacija ovjesa preko štapa za potiskivanje (u nastavku korišten engleski naziv *Pushrod activation*) zbog pakiranja stražnjeg sklopa kotača s elekromotorom. (Slika 98.)

Slika 98. Koncept stražnjeg decoupled ovjesa sa štapom za guranje spojenog na gornje rame

Izrađena su dva koncepta prednjeg ovjesa s nekoliko iteracija. *Pushrod* koncept koji bi bio postavljen ispred vozača na šasiju, što ima veliku prednost jednostavnijeg pakiranja i prostora za štap za guranje, i drugi koncept sa štapom za povlačenje (engl. *Pullrod activation*) gdje bi ovjes bio smješten ispod šasije u nekoliko različitih iteracija, s podignutim podom šasije ili sa

izrađenim prolazom ispod šasije za ovjes. Velika prednost *pullrod* koncepta je vrlo niski položaj težišta cijelog sklopa u odnosu na *pushrod* izvedbu i ne zahtijeva izmjene gornje površine šasije za preglednost vozača. No kao i svaki koncept povlači za sobom par vrlo neželjenih nedostataka, potrebu za udubljenjem ili prorezom na dnu šasije i znatno teže pakiranje sklopa od *pushrod*-a. Dva osnovna koncepta prednjeg ovjesa prikazana na slikama 99. i 100.

Slika 99. Koncept prednjeg pushrod odvojenog ovjesa

Slika 100. Koncept prednjeg pullrod odvojenog ovjesa

5.2. Opis proračuna odvojenog ovjesa prema tipu gibanja

Kako je već prethodno navedeno proračun je rađen prema [2] i [3] uz potrebne izmjene zbog promjene na ovjes odvojen prema tipu gibanja. Proračun je izrađen za međunarodno natjecanje formule student na engleskom jeziku te sve oznake prate način označavanja prema [9] na engleskom jeziku, hrvatski opis dan je na početku rada pod simbolima korištenim u radu. Kako je bolid u konceptualnoj fazi te iznosi krutosti i prigušenja neće ostati iste, u nastavku se nalazi jedna od iteracija proračun tijekom razvoja bolida. Izračunate vrijednosti bit će trenutno korištene za izrađene modele RT07 u *Adams Car*-u za inicijalnu analizu ponašanja bolida.

U svrhu proračuna vertikalne dinamike i analitičkog određivanja krutosti vozila korišten je četvrtinski model. Naime važno je napomenuti da nova izvedba ovjesa nema direktnu korelaciju s četvrtinskim modelom jer nema svaki kut vozila svoju zasebnu opruga, već su zajedničke opruge po osovini po tipu gibanja. Na taj način ovo je osovinski zavisan ovjes iako ova izvedba nema dodatne stabilizatore. Važno je napomenuti iako je ovjes odvojen po pitanju gibanja, zbog složenih situaciju u kojima se vozilo može naći, može doći do kombinacije ti gibanja, posebice ulazak i izlazak iz zavoja, gdje vozilo još koči/ubrzava odnosno dolazi do poniranja/podizanja, također skretanjem stvara određenu bočnu komponentu ubrzanja i dolazi ujedno do valjanja, time obje opruge mehanizma ovjesa djeluju. Zbog toga proračun krutosti proveden je tako da se gibanja gledaju odvojeno, a utjecaj preklapanja se lako može kontrolirati preko proračuna stvorenih vertikalnih opterećenja uslijed bočne i uzdužne raspodijele opterećenja u takvim situacijama po svakom kotaču, kako je rađeno prema [5] i preko Postproccesing Window-a ispisom vertikalnih sila u Adams-u. S time na umu umjesto klasičnog poprečnog i uzdužnog modela, bit će promatran prostorni model punog vozila u dvije situacije gibanja: poniranju (podizanju) i valjanju. U nastavku slijedi prvo proračun pri poniranju/podizanju, a zatim pri valjanju.

Prilikom postavljanje modela u *Adams*-u kao i za proračun potrebna je velika količina ulaznih podataka od masa vozila, do dimenzijskih veličina i kinematike. U nastavku se nalaze izvadci masa iz [2] za CAD-a prethodnog vozila uz pretpostavljeno smanjenje mase, također zaključane dimenzije vozila koje su neophodne za daljnju konstrukciju i proračun, te inicijalna kinematike rt07 postavljena u *Lotus Suspension Analysis* programskom paketu prema [2].

	Ŭ	•		
Ukupna masa	bolida	Μv	212,00	kg
Ukupna masa	vozača	Md	80,00	kg
Ukupna masa	Bolid+vozač	Mtot	29,00	kg
Ukupna masa	prednja	Mfv	131,69	kg
Ukupna masa	stražnja	Mrv	160,31	kg
Ovješena masa	bolida	SMv	166,34	kg
Ovješena masa	Bolid+vozač	SMtot	246,343	kg
Ovješena masa	prednja	SMf	115,30	kg
Ovješena masa	stražnja	SMr	131,05	kg
Neovješena masa	bolida	USMtot	45,66	kg
Neovješena masa	prednja	USMf	16,39	kg
Neovješena masa	stražnja	USMr	29,27	kg

Tablica 1. Pretpostavljene ulazne veličine masa koncepta rt07

Tablica 2. Pretpostavljene dimenzijske veličine koncepta rt07

Međuosovinski razmak	WB	1530,00	mm
Prednji trag	FT	1274,00	mm
Stražnji trag	RT	1241,00	mm
Vertikalni položaj težišta ukupne mase	MCoG	328	mm
Omjer prednje/stražnje mase	a/b	0,4510	-
Udaljenost težišta mase od prednje osovine	а	840,00	mm
Bočna asimetrija vozila	с	0,00	mm
Vertikalni položaj težišta ovješene mase	СоGSM	347,65	mm
Omjer prednje/stražnje ovješene mase	S/a/b	0,4680	-
Udaljenost težišta ovješene mase od prednje osovine	Sa	813,92	mm
Vertikalni položaj težišta neovješene mase	CoGusm	222,00	mm
Omjer prednje/stražnje neovješene mase	US/a/b	0,56	-
Udaljenost težišta neovješene mase od prednje osovine	Usa	820	mm
Dinamički radijus kotača	Rdyn	203,00	mm

Tablica 3. Ulazne veličine trenutne iteracije kinematike koncepta rt07

Visina prednjeg kinematičkog centra valjanja	KRChf	40,00	mm
Visina stražnjeg kinematičkog centra valjanja	KRChr	65,00	mm
Visina ukupnog srednjeg kinematičkog centra valjanja	KRChp	53,30	mm
Interpolirana visina prednje ovješene mase	F-sCoG	340,00	mm
Interpolirana visina stražnje ovješene mase	R-sCoG	348,00	mm
Prednji krak momenta valjanja	RMAf	300,00	mm
Stražnji krak momenta valjanja	RMAr	283,00	mm
Srednji krak momenta valjanja	RMA	291,50	mm
Visina središta poniranja	PCh	30,86	mm
Udaljenost središta poniranja od prednje osovine	PCd	650,00	mm
Radijus neopterećenog kotača	Rstatis	0,207	m
Vertikalna krutost pneumatika	Kt	91,412	N/mm

Fakultet strojarstva i brodogradnje

Ukupna vertikalna sila - prednji lijevi kotač	FzoF	645,9211765	Ν
Ukupna vertikalna sila - stražnji lijevi kotač	FzoR	786,3388235	N

Tablica 5. Trenutni omjer MR prema kinematici prednjeg ovjesa

Omjer pomaka kotača i opruge za poniranje		
prednjeg ovjesa	MR-RIDE-F	0,4436
>>osovinski		0,8872
Omjer pomaka kotača i opruge za valjanje prednjeg		
ovjesa	MR-ROLL-F	1,7136

Tablica 6. Trenutni omjer MR prema kinematici stražnjeg ovjesa

Omjer pomaka kotača i opruge za poniranje		
stražnjeg ovjesa	MR-RIDE-R	0,4414
>>osovinski		0,8829
Omjer pomaka kotača i opruge za valjanje stražnjeg		
ovjesa	MR-ROLL-R	1,7136

5.3. Proračun krutosti prednjeg odvojenog ovjesa pri poniranju/podizanju

Prilikom proračuna uzdužne dinamike, korišten je pojednostavljeni prostorni model vozila prema slici 101. gdje je su jedna opruga na prednjem i jedna opruga na stražnjem ovjesu za poniranje rastavljena na dvije serijske opruge po četvrtinskom modelu.

Slika 101. Prostorni model vozila s prikazanim opružno-prigušnim elementima tijekom gibanja u poniranju/podizanju

Nakon što je provedeno nekoliko iteracija i uz suglasnost prema literaturi [9], postavljena je željena vlastita frekvencija ovješene mase prednjeg/stražnjeg kraja bolida, naime stražnja frekvencija je nešto veća u prosjeku 0,3-0,4 Hz od prednje prema preporuci za uklanjanje titranja vozila zbog razlike u položaju prednji i stražnjih kotača za međuosovinski razmak. Slijedi željena frekvencija prednjeg kraja bolida:

$$f_{nSMf} = 3.8 \text{ Hz.} \tag{1}$$

Računska krutost vožnje prednjeg ovjesa iznosi:

$$K_{RR-F} = 4 \cdot \pi^2 \cdot f_{nSMf} \cdot \frac{SM_f}{2 \cdot 1000} = 32,86 \text{ N/mm.}$$
 (2)

Računska ekvivalentna krutost na kotaču (vertikalnog pomaka):

$$K_{WR-F} = \frac{K_{RR-F} \cdot K_T}{K_{RR-F} - K_T} = 51,31 \text{ N/mm.}$$
(3)

U izrazu (3) izračunata je krutost jednog kotača, čime slijedi računska krutost opruge pri vertikalnom pomaku prednjeg kotača za četvrtinski model. Razlika u krutostima jednaka je razlici progiba opruge kroz vertikalni pomak kotača, odnosno kinematički prijenosni omjer MR, prikazan slikom 103. Omjer MR posljedica je kinematike ovjesa.

Slika 102. Opis MR omjera prema [9]

$$K_{RIDE-series-F} = \frac{K_{WR-F}}{MR_{RIDE-F}^{2}} = 260,72 \text{ N/mm.}$$
 (4)

No kako bi došli do krutosti opruge za osovinski model, budući da su oba kotača prednje osovine povezana jednom oprugom za poniranje/podizanje, opruga osovinskog modela može se promatrati kao serija dviju opruga četvrtinskog modela, pa slijedi:

$$K_{RIDE-spr-F} = \frac{K_{RIDE-series-F} \cdot K_{RIDE-series-F}}{K_{RIDE-series-F} + K_{RIDE-series-F}} = \frac{K_{RIDE-series-F}}{2} = 130,36 \text{ N/mm.}$$
(5)

Prema proizvođaču Cane Creek odabrana je krutost opruge prema [22]:

$$K_{RIDE-spr-F} = 150 \text{ N/mm.}$$
(6)

Sada obrnutim smjerom računa računamo iz odabrane krutosti opruge, krutost kotača i krutost vožnje, u nastavku će biti prikazana krutost gledajući četvrtinski model spojen u seriju:

$$K_{WR-F} = K_{RIDE-spr-F} \cdot MR_{RIDE-F}^{2} = 59,04 \text{ N/mm.}$$
(7)

$$K_{RR-F} = \frac{K_{WR-F} \cdot K_T}{K_{WR-F} + K_T} = 35,87 \text{ N/mm}$$
(8)

Uz odabranu oprugu, rezultantna frekvencija vožnje prednjeg kraja bolida:

$$f_{nSMf} = \frac{1}{2 \cdot \pi} \sqrt{\frac{2 \cdot K_{RR-F} \cdot 1000}{SM_f}} = 3,97 \text{ N/mm.}$$
(9)

Uz poznate mase vozila vrlo lako se odredi statička sila po kutu vozila, množenjem mase s ubrzanjem gravitacije, ta sila je ujedno i sila na gaznoj površini pojedinog kotača, dijeljenjem te sile s ekvivalentnom krutosti na kotaču slijedi statički vertikalni pomak prednje kotača:

$$\Delta S_{WC-F} = \frac{F_{z0F}}{K_{WR-F}} = \frac{\frac{SM_f}{2} \cdot g}{K_{WR-F}} = 9,58 \text{ mm.}$$
(10)

Prema slici 103. omjera MR, slijedi statički pomak opruga četvrtinskog modela, odnosno jedne opruge u seriji, pomnožen s dva slijedi ukupni pomak jedne opruge:

$$\Delta S_{SRP-F} = \Delta S_{WC-F} \cdot (2 \cdot MR_{RIDE-F}) = 8,5 \text{ mm.}$$
(11)

Statička sila predopterećenja koja je potrebna u položaju mirovanja vozila s vozačem da se kotači nalaze na nultom položaju vertikalnog hoda je:

$$F_{RIDE-SRP-F} = \Delta S_{SRP-F} \cdot K_{RIDE-spr-F} = 1274,81 \text{ N.}$$
(12)

Fakultet strojarstva i brodogradnje

5.4. Proračun krutosti stražnjeg odvojenog ovjesa pri poniranju/podizanju

Slijedi frekvencija stražnjeg kraja bolida:

$$f_{\mu SMr} = 4,1 \text{ Hz.}$$
 (13)

Računska krutost vožnje stražnjeg ovjesa iznosi:

$$K_{RR-R} = 4 \cdot \pi^2 \cdot f_{nSMr} \cdot \frac{SM_r}{2 \cdot 1000} = 43,48 \text{ N/mm.}$$
 (14)

Računska ekvivalentna krutost na kotaču (vertikalnog pomaka):

$$K_{WR-R} = \frac{K_{RR-R} \cdot K_T}{K_{RR-R} - K_T} = 82,94 \text{ N/mm.}$$
(15)

Slijedi računska krutost opruge pri vertikalnom pomaku stražnjeg kotača za četvrtinski model:

$$K_{RIDE-series-R} = \frac{K_{WR-R}}{MR_{RIDE-R}^2} = 425,56 \text{ N/mm.}$$
(16)

No kako bi došli do krutosti opruge za osovinski model, budući da su oba kotača stražnje osovine povezana jednom oprugom za poniranje/podizanje, opruga osovinskog modela može se promatrati kao serija dviju opruga četvrtinskog modela, pa slijedi:

$$K_{RIDE-spr-R} = \frac{K_{RIDE-series-R} \cdot K_{RIDE-series-R}}{K_{RIDE-series-R} + K_{RIDE-series-R}} = \frac{K_{RIDE-series-R}}{2} = 212,78 \text{ N/mm.}$$
(17)

Prema proizvođaču Cane Creek odabrana je krutost opruge prema [22]:

$$K_{RIDE-spr-R} = 200 \text{ N/mm.}$$
(18)

Sada obrnutim smjerom računa, računa se iz odabrane krutosti opruge, krutost kotača i krutost vožnje, u nastavku će biti prikazana krutost gledajući četvrtinski model spojen u seriju:

$$K_{WR-R} = K_{RIDE-spr-R} \cdot MR_{RIDE-R}^{2} = 77,95 \text{ N/mm},$$
(19)

$$K_{RR-R} = \frac{K_{WR-R} \cdot K_T}{K_{WR-R} + K_T} = 42,07 \text{ N/mm.}$$
(20)

Uz uzetu opruga, rezultantna frekvencija vožnje prednjeg kraja bolida:

$$f_{nSMf} = \frac{1}{2 \cdot \pi} \sqrt{\frac{2 \cdot K_{RR-R} \cdot 1000}{SM_r}} = 4,03 \text{ N/mm.}$$
(21)

Uz poznate mase vozila vrlo lako se odredi statička sila po kutu vozila, množenjem mase s ubrzanjem gravitacije, ta sila je ujedno i sila na gaznoj površini pojedinog kotača, dijeljenjem te sile s ekvivalentnom krutosti na kotaču slijedi statički vertikalni pomak stražnjeg kotača:

$$\Delta S_{WC-R} = \frac{F_{z0R}}{K_{WR-F}} = \frac{\frac{SM_r}{2} \cdot g}{K_{WR-R}} = 8,25 \text{ mm.}$$
(22)

Prema slici 103. omjera MR, slijedi statički pomak opruga četvrtinskog modela, odnosno jedne opruge u seriji, pomnožen s dva slijedi ukupni pomak jedne opruge:

$$\Delta S_{SRP-R} = \Delta S_{WC-R} \cdot (2 \cdot MR_{RIDE-R}) = 7,28 \text{ mm.}$$
(23)

Statička sila predopterećenja koja je potrebna u položaju mirovanja vozila s vozačem da se stražnji kotači nalaze na nultom položaju vertikalnog hoda je:

$$F_{RIDE-SRP-R} = \Delta S_{SRP-R} \cdot K_{RIDE-spr-R} = 1456,07 \text{ N.}$$
(24)

5.5. Proračun krutosti prednjeg odvojenog ovjesa pri valjanju

Prilikom proračuna bočne dinamike, korišten je pojednostavljeni prostorni model vozila prema slici 103. gdje je jedna opruga na prednjem i jedna opruga na stražnjem ovjesu za valjanje rastavljena na dvije serijske opruge po četvrtinskom modelu.

Slika 103. Prostorni model vozila s prikazanim opružno-prigušnim elementima tijekom gibanja u valjanju

Krutost opruga pri valjanu određeno je metodom iteracija između proračuna i simulacije u Adams-u koristeći jednostavne procedure CRC (engl. *Constant radius cornering*) i CSR (engl. *Cornering/steer release*). Time ulazna vrijednost opruge određuje proračunom za zadani omjer MR kinematike moment protiv valjanja bolida. Slijedi odabrana krutost opruge za valjanje prednjeg ovjesa:

$$K_{ROLL-spr-F} = 45 \text{ N/mm.}$$
(25)

Ekvivalentna krutost prednjeg kotača protiv valjanja, uzimajući omjer između pomaka opruge za valjanje i vertikalnog hoda kotača:

$$K_{WR-ROLL-F} = K_{ROLL-spr-F} \cdot MR_{ROLL-F}^{2} = 123,15 \text{ N/mm.}$$
(26)

Moment protiv valjanja prednjeg kraja bolida uslijed opruge:

$$K_{\phi spr-F} = K_{ROLL-spr-F} \cdot \frac{FT^2}{2} \cdot \frac{\pi}{180} = 1871795,83 \text{ Nmm/deg.}$$
 (27)

Moment protiv valjanja prednjeg kraja bolida uzimajući u obzir i krutost pneumatika:

$$K_{\phi F} = \frac{K_{WR-ROLL-F} \cdot K_t}{K_{WR-ROLL-F} + K_t} \cdot \frac{FT^2}{2} \cdot \frac{\pi}{180} = 765351,08 \text{ Nmm/deg.}$$
(28)

5.6. Proračun krutosti stražnjeg odvojenog ovjesa pri valjanju

Time ulazna vrijednost opruge određuje proračunom za zadani omjer MR kinematike moment protiv valjanja bolida. Slijedi odabrana krutost opruge za valjanje stražnjeg ovjesa:

$$K_{ROLL-spr-R} = 50 \text{ N/mm.}$$
⁽²⁹⁾

Ekvivalentna krutost stražnjeg kotača protiv valjanja:

$$K_{WR-ROLL-R} = K_{ROLL-spr-R} \cdot MR_{ROLL-R}^{2} = 146,83 \text{ N/mm.}$$
(30)

Moment protiv valjanja stražnjeg kraja bolida uslijed opruge:

$$K_{\phi spr-R} = K_{ROLL-spr-R} \cdot \frac{RT^2}{2} \cdot \frac{\pi}{180} = 1973425, 12 \text{ Nmm/deg.}$$
 (31)

Moment protiv valjanja stražnjeg kraja bolida uzimajući u obzir i krutost pneumatika:

$$K_{\phi R} = \frac{K_{WR-ROLL-R} \cdot K_t}{K_{WR-ROLL-R} + K_t} \cdot \frac{RT^2}{2} \cdot \frac{\pi}{180} = 757175,15 \text{ Nmm/deg.}$$
(32)

Fakultet strojarstva i brodogradnje

5.7. Postavke prigušenja odvojenog ovjesa pri poniranju/podizanju

Za sklop prigušivača odabrani su KW-ovi prigušivači za natjecanje formule student prema [23], uz koje su dobivene sve potrebne krivulje, prema slikama 104. i 105. Proces odabira prigušivača je iterativan, te se provodi paralelno uz simulaciju, uzimajući u obzir konstrukcijska ograničenja ovjesa i samog prigušivača, širi opis izbora prigušivača prema [3].

	Inline Dämpfer	Piggyback Dämpfer
KW 3A Competition	3-fach einstellbarer Formula Dämpfer	3-fach einstellbarer Formula Dämpfer
Bauart	Einrohrdämpfer mit integriertem Ausgleichbehälter, induktiv gehärtete Kolbenstange, verschleißfreier Leichtmetallkolben mit Teflonbandeinlage, Boden im Winkel frei positionierbar	Einrohrdämpfer mit außenliegendem Ausgleichbehälter, induktiv gehärtete Kolbenstange, verschleißfreier Leichtmetallkolben mit Teflonbandeinlage, Boden nur in einer Richtung erhältlich
Zugstufendämpfung	18-fach einstellbar über Klickeinsteller am Uniball-Kopf	18-fach einstellbar über Klickeinsteller am Uniball-Kopf
Druckstufendämpfung	Lowspeed: 15-fach einstellbar über Klickeinsteller Highspeed: 15-fach einstellbar über Klickeinsteller	Lowspeed: 15-fach einstellbar über Klickeinsteller Highspeed: 15-fach einstellbar über Klickeinsteller
Kolbenstangendurchmesser	12 mm	12 mm
Dämpferkolbendurchmesser	30 mm	30 mm
Dämpferlänge Auge/Auge	250 mm	190 mm
Dämpferhub	55 mm	55 mm
Federteller	Für Federinnendurchmesser 36 mm	Für Federinnendurchmesser 36 mm
Dämpfergewicht	ca. 398 Gramm inkl. Zubehör wie auf nachfolgender Zeichnung	ca. 342 Gramm inkl. Zubehör wie auf nachfolgender Zeichnung

Force Vs. Absolute Velocity

	3	18 3	3 1 1	9	
Sporohodni pomak	kompresija	prednji	Cride-LS-C-F	6000,00	Ns/m
Sporohodni pomak	ekspanzija	prednji	Cride-LS-E-F	5000,00	Ns/m
Sporohodni pomak	kompresija	stražnji	Cride-LS-C-R	4000,00	Ns/m
Sporohodni pomak	ekspanzija	stražnji	Cride-LS-E-R	5000,00	Ns/m

Prikaz odabranih postavki prigušenja u trenutnoj iteraciji:

Tablica 7. Postavke koeficijenta prigušenja ovjesa pri poniranju

5.8. Postavke prigušenja odvojenog ovjesa pri valjanju

Prikaz odabranih postavki prigušenja u trenutnoj iteraciji:

Sporohodni pomak	kompresija	prednji	Croll-LS-C-F	1450,00	Ns/m
Sporohodni pomak	ekspanzija	prednji	Croll-LS-E-F	1450,00	Ns/m
Sporohodni pomak	kompresija	stražnji	Croll-LS-C-R	1600,00	Ns/m
Sporohodni pomak	ekspanzija	stražnji	Croll-LS-E-R	1600,00	Ns/m

Napomena: ostatak proračuna se nalazi u [2], unutar ovog rada proveden je potreban proračun za ulazne veličine modela vozila u *Adams Car*-u, također prethodni proračun krutosti prikazan je za model vozila s *pushrod* aktivacijom prednjeg ovjesa, s ciljem kasnije usporedbe *pushrod* i *pullrod* koncepta, omjeri MR i izračunate krutosti vrijede isti i za *pullrod* koncept.

6. SIMULACIJE KONCEPTA BOLIDA RT07

6.1. Opis modela koncepta RT07-ice unutar Adams Car-a

Prilikom izrade modela u *Adams*-u korišteni su predlošci (engl. *Adams templates*) podsustava (engl. *Adams subsystems*) modela *VulpesR*-a prethodno izrađenog u *Adams*-u iz [2]. Predlošci podsustava šasije, upravljanja pogonskog sustava nisu mijenjani, već su samo promijenjene veličine nekih masa unutar tih podsustava. Šasija ujedno predstavlja ovješenu masu vozila sukladno proračunu, prikazana kuglom (koncentriranom masom) u modelu vozila prema slici 106., te je stavljena u skladu s masama u tablici 1. Važno je napomenuti zbog definiranja ovješenih i neovješenih masa unutar modela, da vrijednost od 241 kg koja je pridodana u model, je posljedica definiranja masa nekih dijelova vozila u postocima prilikom definiranja dijelova (engl. *Parts*). Primjerice ukupna masa prednje donje vilice iznosi 0,425 kg, ali kako se pretpostavlja prema [8] da je 50 % ovješeno, ta se razlika (uz sve ostale takve dijelove) uzima od ukupne ovješene mase prikazane tablicom 1. od 246,343 kg.

Slika 106. Definiranje ovješene mase bolida u modelu vozila u Adams CAR-u

Predložak pogonski sustav radi jednostavnosti i zbog malog utjecaja zadržan je isti, samo je masa motori s ovješene mase kod VulpesR (budući da se motori nalaze unutar *monocoque*-a) premještena na neovješenu masu stražnjeg sklopa kotača. Sada stražnja glavčina čini masa glavčine i masa elektromotora s prijenosnikom izmjereno prema CAD-u. Prema slici 107.

Slika 107. Definiranje mase motora unutar glavčine stražnjeg sklopa kotača

Također unutar modela ostavljene su iste postavke aerodinamičkog modela: odnosno koeficijent otpora zraka, koeficijent aerodinamičkom pritiska, te gustoća zraka i udarna površina. Također ostavljen je isti prijenosi omjer reduktora (u ovom slučaju planetarnog prijenosnika) kao i na VulpesR za mogućnost pravilne usporedbe.

Prednji i stražnji ovjes ponovno je izrađen prema prethodno izrađenoj kinematici prema *Lotus Suspension Analysis* i CAD-u iz [2]. Unutar Adams Car-a, izbrisani su prethodni modeli ovjesa i postavljen je novi mehanizam odvojenog ovjesa prema tipu gibanja (engl. *Decoupled*

suspension), izrađen je jedan *pushrod* koncept stražnjeg ovjesa, te *pushrod* i *pullrod* koncept prednjeg ovjesa prema slikama 108.,109.,110.

Slika 108. Pushrod aktivacija, koncept stražnjeg odvojenog ovjesa

Slika 109. Pullrod aktivacija, koncept prednjeg odvojenog ovjesa

Slika 110. Pushrod aktivacija, predložak koncept prednjeg odvojenog ovjesa

Postavke opruga i prigušivača postavljene su prema proračunu, primjer postavljanja krutosti opruge prednjeg ovjesa za poniranje/podizanje prema jednadžbi (12), gdje željena sila predopterećenja opruge (ili montažna sila) iznosi 1274,81 N prikaza je slikom 111. Ulazna veličina upravo je sila predopterećenja, unutar modela slobodna duljina opruge nema utjecaja na ponašanje jer *Adams* uvijek uzima predopterećenja od bilo koje definirane slobodne duljine opruge.

Slika 111. Primjer postavljanja krutosti opruge na prednjem ovjesu pri poniranju

Unutar Adams Tire Fitting tool-a iz [2] izrađen je model pneumatika prema odabranom pneumatiku iz *TTC* podataka, prethodno opisano u poglavlju 5.1. Izrađena guma sprema se u obliku .dir datoteke te se uvezuje u podsustav kotača (engl. *tire subsystem*) kao datoteka svojstva (engl. *Property File*), te definira ponašanje gume prema *Pacejkinoj magičnoj formuli*.

Slika 112. Definiranje pneumatika unutar Adams Car-a

Slika 113. Prikaz potpunog modela koncepta RT07 sa prednjim pullrod ovjesom

Slika 114. Prikaz potpunog modela koncepta RT07 sa prednjim pushrod ovjesom

6.2. Usporedbe trenutnog bolida vulpesR s konceptom RT07 na većoj stazi

Koristeći postavke postavljene u poglavljima 4.8 i 4.9 gdje je model VulpesR provožen po stazi za testiranje, iste postavke *SmartDriver*-a i *Solver*-a ponovno su korištene na modelu RT07. Postavke i grafički prikaz prikazane su slikama 115. i 116. Također za simulaciju korištena je optimirana putanja prema poglavlju 4.8.

🛛 Full-Vehicle Analysis: SmartDriver 🛛 🗙						
Full-Vehicle Assembly	Concept_car					
Output Prefix	Pushrod_decoupled_c1					
End Time	30					
Number Of Steps	300					
Mode of Simulation	interactive 💌					
Course Type	Driver Course C 3D Spline, CRG or RGR Road					
Road Data File 🛛 🤯	mdids://acar_shared/roads.tbl/2d_flat.rdf					
Course Data File	Projects/VulpesR_2020/MalaStaza_6/Mala_Staza_v7_DRDv12.drd					
Initial Velocity	✓ Auto-Calculate km/hr 🚽					
Gear Position	1 Shift Cycle Time 0.5					
Smart Driver Task	Vehicle Limits Power-based Shift Control					
Maximum Acceleration [%]						
Driving 0.4	50					
Driving 0	50					
Braking 0 🖪	▶ 100					
I	Left Right					
Cornering						
✓ Quasi-Static Straight-Line Setup						
Create Analysis Log Fi	le					
14	OK Apply Cancel					

Slika 115. Postavke simulacije pushrod RT07 modela vozila na putanji staze za testiranje

Na temelju rezultata simulacije, slika 117. prikazuje brži profil brzine oba koncepta RT07 u odnosu na VulpesR (u legendi simulacije pod imenom MalaStaza_v7_DRD_v12), uz prosječno brži profil brzine također su vidljive i veće vršne vrijednosti kroz većinu zavoja i na ravnicama, to može imati za posljedicu veće kutove valjanja što će biti očekivanu u ovoj početnoj fazi proračuna i simulacije, ali također u prosjeku i veća bočna ubrzanja (slika 118.). I upravo je vidljivo prema slici 117. da kutovi valjanja su razmjerno veći na novim konceptima RT07-ice u usporedbi s VulesR-om.

Slika 117. Usporedba profila brzine VulpeR-a s dva koncepta RT07 s pushrod i pullrod prednjim ovjsom

Slika 118. Usporedba bočnog ubrzanja VulpeR-a s dva koncepta RT07 s pushrod i pullrod prednjim ovjsom

Slika 119. Usporedba kuta valjanja VulpeR-a a dva koncepta RT07 s pushrod i pullrod prednjim ovjsom

Prema slici 119. može se zaključiti da su valjanja prevelika za željeni razred prema literaturi [8] i proračunu [2]. Time su potrebne danje iteracije krutosti pri valjanju.

Slika 120. Usporedba kuta poniranja/podizanja VulpeR-a a dva koncepta RT07 s pushrod i pullrod prednjim ovjesom

U slučaju uzdužne dinamike ponašanja tj. poniranju/podizanju proračunate vrijednosti krutosti u iteraciji pokazuju manje vrijednosti kuta poniranja novih koncepata u odnosi na VulpesR prema slici 120.

Slijedi da za isti pogonski sustav s istim prijenosnim omjerom, novi modeli vozila uslijed manje mase i odvojenog ovjesa pokazuju veću mogućnost podešavanju pojedinačno uzdužne i poprečne dinamike vozila s boljim rezultatima simulacije.

6.3. Usporedba pushrod i pullrod koncepta prednjeg ovjesa pri simulaciji na stazi

Velika prednost simulacije na duljim stazama je analiza ponašanja različitih koncepata ovjesa, te međusobna usporedba značajki duž različitih dijelova staze, zavoja i ravnica. Kako je prethodno spomenuta izrađena su dva koncepta rt07, s *pushrod* i *pullrod* prednjim ovjesa te istim stražnjim, prema slikama 113 i 114. Kako je vozilo još u početnoj fazi razvoja, unutar poglavlja 6.1. već su ukratko objašnjene prednosti pojedinog koncepta. Jedna od prednosti koju je moguće kvantificirati unutar *Adams* simulacije i koristiti kao faktor pri odlučivanju konačnog koncepta je utjecaj visinskog položaja prednjeg koncepta ovjesa.

S time na umu provedena je simulacije dva koncepta rt07-ice po istoj stazi za testiranje, s istim postavkama omjera MR i krutostima. Prema slici 121. vidljiv je utjecaj položaja ovjesa na poprečnu stabilnost vozila, naime cijelo vozila u koncept s *pullrodom* ima niže težište u odonsu na koncept sa *pushrod* prednjim ovjesom, te je kao posljedica toga sposobno postizati nešto veća vršne vrijednosti bočnog ubrzanja. Zelena krivulja prikazuje razliku bočnog ubrzanja, te su prosječno vršne vrijednosti ubrzanja s *pullrod* prednjim ovjesom **0,01-0,02** *g* veće.

Slika 121. Usporedba bočnog ubrzanja između dva koncepta RT07 s pushrod i pullrod prednjim ovjsom

Također pri prolasku kroz jedan krug staze, model s *pullrod* konceptom ima prednsot od **0,3** sekunde u odnosu na *pushrod* koncept.

6.4. Uporaba rezultata simulacija od strane ostalih podtimove projekta

Glavna svrha programskog paketa *Adams Car* je upravo analiza ponašanja bolida formule student i to posebice u početnoj fazi razvoja tijekom iteracije ovjesa i ostalih podsustava. Gdje je moguće paralelno s analitičkim proračunom postići optimalne postavke krutosti i prigušenja bolida. Još jedan primjer proučavanja dinamike vozila je utjecaj razmještaja komponenata, na primjeru prethodno definiranog bolida može se analizirati utjecaj koncepata baterijskih paketa predloženih u poglavlju 6.1. gdje bi uz ponovni proračun krutosti za ta dva slučaja unutar *Adams*-a vrlo jednostavno mogli analizirati pod/preupravljive karakteristike vozila preko kuta klizanja i novo stanje preraspodjele opterećenja. Drugi primjer je analiza utjecaja prijenosnog omjera na postignuti profil brzine na staza za natjecanje, gdje bi se ustanovio za novo pakiranje bolida neki povoljniji omjer od trenutnog.

Tijekom razvoja bolida rezultati simulacija mogu biti i od velike koristi drugim podtimovima unutar projekta formule student. Osim podtima dinamike vozila, ovjes i aerodinamika vrlo su usko vezani za rezultate simulacije. Naime aerodinamika u suradnji s dinamikom vozila, preko programskog paketa *Adams Car* ili drugih paketa za analizu vožnje primjerice *AVL-VSM*, osigurava konstantnu kontrolu i usporedbu na utjecaj ponašanja bolida novog aerodinamičkog paketa, tj. aerodinamičkih značajki. Slika 123. pokazuje usporedbu profil vertikalne komponente sile na kotaču između dvije iteracija aerodinamičkog paketa na stazi za testiranje.

Slika 123. Usporedbu profil vertikalne komponente sile na kotaču (gledano prednji lijevi) između dvije iteracija aerodinamičkog paketa

Osim iteracije aerodinamičkim značajki, unutar Adams Car-a moguće je izraditi površine prednjeg i stražnjeg krila, te postaviti senzore sila čime se može analizirati opterećenje krila s konstrukcijske strane, te odrediti potrebna krutost kompozitnog sendviča krila.

Također u dosadašnjoj konstrukcijskoj razradi ovjesa bolida korištene su statičke sile pri konstrukciji i FEM analizi pojedinih dijelova. No koristeći rezultate simulacije iz prethodnog poglavlja moguće je vidjeti dinamičko opterećenje pojedinih dijelova ovjesa i prihvata. Primjerice na slici 124. prikazane su komponente sile na prihvatima klackalica na konceptu rt07-ice s *pullrod* prednjeg ovjesa. Takve rezultate moguće je koristiti pri topološkoj optimizaciji prihvata klackalice u vremenu, time umjesto statičkog faktora sigurnosti na neku vršnu statičku silu u skretanju/kočenju, može se postaviti uvjet dinamičkog vijeka trajanja konstrukcije. Isti primjer opterećenja na vanjskom sfernom ležaju prednjeg gornjeg ramena prikazan je slikom 125.

Slika 124. Komponente opterećenja prihvata klackalice u vremenu, prolaskom kroz stazu za testiranje, modela RT07 s pullrod prednjim ovjesom

Slika 125. Komponente opterećenja vanjskog sfernog ležaja na gornjem prednjem ramenu u vremenu, prolaskom kroz stazu za testiranje, modela RT07 s pullrod prednjim ovjesom

Također moguća je usporedba opterećenja iz simulacije pojedinih dijelova konstrukcije sa stvarnim opterećenjima mjerenim tenziometarskim trakama. Prilikom testiranja VulesR, planirano je postaviti tenziometarske trake na ramena prednjeg i stražnjeg ovjesa, nakon testiranja bit će moguće usporediti ta mjerenja s rezultatima simulacija, te analizirati razliku.

Osim za analizu ovjesa i aerodinamike, rezultati simulacije kao osnovni prikaz profila brzine, odnosno profil brzine vrtnje motora za vožnju po stazi može predstavljati dobar ulazni parametar prilikom konstrukcije i optimizacije vlastitih motora bolida, od strane podtima električni pogon.

Slika 126. Profil brzine vrtnje elektromotora na primjeru prolaska kroz putanju staze za testiranje

Unutar *Adams Car*-a moguća je detaljnija analiza svih dijelova vozila, programski paket *Adams* ima mogućnost zasebne izrade modela elektromotora, reduktora, aerodinamičkog paketa i brojnih drugih podsustava koji se naknadno mogu ubaciti u model vozila, te zasebno analizirati, primjerice u paketu *Adams Drivetrain* moguće je izraditi detaljni model planetarnog prijenosnika i ubaciti u model vozila u Adams Car, te podvrgnuti vožnji po stazi, kao rezultat moguće je analizirati opterećenja zupčanika i hlađenje u vremenu.

7. ZAKLJUČAK

U sklopu rada izrađeni su modeli staze i optimirane putanje s natjecanja formule student (staza za testiranje- skraćena verzija natjecanja Češka, Mađarska, 2018., Njemačka, 2016.) Postavke vozača uspješno su definirane preko Adams Car SmartDriver simulatora. Pokazano je modeliranje bolida i to za aktualni bolid i dvije verzije budućeg bolida. Za koncepte budućeg bolida proračunate su određene karakteristike potrebne za njegovo definiranje unutar Adams Car-a. Simulacijama vožnje aktualnog bolida (VulpesR) utvrđen je napredan u odnosu na prvotnu verziju bolida (Vulpes), nove postavke ovjesa pokazale su se povoljnije unutar Adams Car-a. Također usporedbom aktualnog bolida s konceptima budućeg bolida (pull/pushrod RT07) uočen je željeni napredak ponašanje bolida prema vrstama gibanja: poniranju/podizanju i valjanju odvojeno. Također već trenutni koncepti budućeg bolida pokazuju bolji profil brzine od aktualnog bolida. Također prikupljeni su zanimljivi podaci usporedbe dva nova koncepta. Osim za analizu dinamike vozila ovakav tip simulacija omogućuje i drugim podtimovima korisne analize, primjerice usporedba utjecaja aerodinamičkog paketa na vozilo, izvadak opterećenja svih konstrukcijskih dijelova ovjesa ali i drugih, definiranih unutar Adams Car-a korisni za FEM analize i analitičke proračune.

Do kraja razvoja bolida očekuju se veći napredak u odnosu na trenutke koncepte definirane unutar ovog rada.

POVEZNICE I LITERATURA

- Vlašić B., Završni rad: Utjecaj promjena parametara ovjesa na ponašanje bolida Formula, FSB, Zagreb, 2016.
- [2] Više autora, Arhiva podataka FSB Racing Team-a, FSB Racing Team, Zagreb, 2020.
- [3] Berljavac P., Završni rad: Analiza ovjesa bolida Formule Student u programskom paketu Adams Car, FSB, Zagreb, 2019.
- [4] Findrik, N., Diplomski rad: Izrada računala motora bolida Formule Student, FSB, Zagreb, 2018.
- [5] Vlašić B., Diplomski rad: Opružno-prigušne karakteristike ovjesa sportskog cestovnog vozila, FSB, Zagreb, 2018.
- [6] Milliken F. W., Milliken D.L., Race Car Vehicle Dynamics, SAE International, 1995.
- [7] Lulić, Z.; Ormuž, K.; Šagi, G., Motorna vozila, podloge uz predavanja, FSB, Zagreb, 2018.
- [8] Gillespie T.D., Fundamentals of Vehicle Dynamics, Society of Automotive Engineers Inc, 1992.
- [9] Rouelle C. et. al., OptimumG handbook: Advanced vehicle dynamics applied to race car design and development, OptimumG Group,
- [10] <u>https://simcompanion.mscsoftware.com/resources/sites/MSC/content/meta/DOCUME</u> <u>NTATION/10000/DOC10834/~secure/car_2015.pdf?token=S-</u> JrRWWxNHaxSibBrarozQ8kphbgdawOb5b5-bYEHz!F9o1KfJfw!cIWKOwPDBU8FzLDBaHEKdkFjLckCBOat5!WEMKmngMmRrA6LFl9V9rj9xPh ikKJpY3EX08UrErZh04fvg9dC89ORUVD96rcwsgtt-J8jkQLdrOMsJ8iphtQYvQ69y6wnIjuXLegv6B481d-c3saIIxg4-9GF!ECX3aowzNGvEhNVshFuS1cvqBkanE9vES!aaYL0x31n10VrE1Xk!9BXaeEJ3fD Ilb1A==, (Godina izdavanja 2015.)
- [11] <u>https://esfahanian.iut.ac.ir/sites/esfahanian.iut.ac.ir/files//files_course/car_studentguide_110_071701.pdf</u>, (Godina izdavanja 2008.)
- [12] <u>https://grabcad.com/tutorials/tutorial-how-to-export-points-from-solidworks-to-a-excel-file</u>
- [13] <u>https://www.youtube.com/watch?v=1tyXfCxaf8U</u>
- [14] Više autora, Adams Tire Tools help, MSC Software, 2017.

- [15] Više autora, Formula Student Rules 2019.v2, FSG, 2019.
- [16] Više autora, Adams Car Help, MSC Software, 2015.
- [17] Više autora, Adams SmartDriver tutorial, MSC Software, 2017.
- [18] Više autora, Adams Driving Machine tutorial, MSC Software, 2017.
- [19] Više autora, Using Adams Solver Guide, MSC Software, 2015.
- [20] http://www.formula1-dictionary.net/cornering_tech.html
- [21] https://drivingfast.net/racing-line/
- [22] https://canecreek.com/product/coil-shock-springs-linear-progressive/
- [23] https://www.kwsuspensions.net/products

PRILOZI

I. CD-R disc