Konstrukcija i upravljanje sfernog mobilnog robota

Matišić, Marko

Undergraduate thesis / Završni rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:398852

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-13

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Marko Matišić

Zagreb, 2020.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentor:

Student:

Izv. prof. dr. sc. Andrej Jokić, dipl. ing.

Marko Matišić

Zagreb, 2020

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se svom mentoru, izv. prof. dr. sc. Andreju Jokiću koji mi je svojim vođenjem, znanjem, korisnim savjetima i diskusijama pomogao pri izradi završnog rada.

Posebno se zahvaljujem roditeljima te djevojci Andrei na strpljenju te cjelokupnoj podršci tijekom preddiplomskog studija.

Marko Matišić

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne ispite studija strojarstva za smjerove: proizvodno inženjerstvo, računalno inženjerstvo, industrijsko inženjerstvo i menadžment, inženjerstvo materijala i mehatronika i robotika

Sveučilište	u Zagrebu
Fakultet strojarstv	a i brodogradnje
Datum Prilog	
Klasa:	
Ur.broj:	

ZAVRŠNI ZADATAK

Student:

Marko Matišić

Mat. br.: 0035209219

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku: Opis zadatka:

Konstrukcija i upravljanje sfernog mobilnog robota

Design and control of a spherical mobile robot

U današnje vrijeme mobilni roboti su sve češće primijenjeni u praksi, primjerice u industrijskim postrojenjima, u lancima opskrbe (npr. posluživanje u skladištima), vojnoj industriji, spasilačkim misijama i svemirskim istraživanima. Ovime se stavlja i sve veći naglasak na istraživanja i edukaciju u ovom području. Cilj ovog rada je razvoj edukacijskog sfernog mobilnog robota, od idejnog rješenja i konstrukcije do upravljanja. Osnovna karakteristika sfernog mobilnog robota je da je njegov vanjski oblik sfera. Cjelokupni

upravljanja. Osnovna karakteristika sfernog mobilnog robota je da je njegov vanjski oblik sfera. Cjelokupni mehanizam za pokretanje, sustav za napajanje i upravljanje nalaze se unutar ove sfere, a samo kretanje robota ostvaruje se kotrljanjem.

U ovom radu potrebno je ostvariti sljedeće:

- 1. Predstaviti idejno rješenje sfernog robota.
- 2. Razraditi mehanizam pokretanja robota i predstaviti nacrt odabranog rješenja (sklopni nacrt).
- 3. Izvesti matematički model dinamike robota.
- 4. Sintetizirati regulator za upravljanje motorima robota s ciljem stabilnog gibanja i praćenja referentnih trajektorija.
- 5. Prikazati rezultate prikladno osmišljenih simulacija upravljanog robota.

Zadatak zadan:

28. studenog 2019.

Zadatak zadao:

Izv. prof. dr. sc. Andrej Jokić

Datum predaje rada: 1. rok: 21. veljače 2020. 2. rok (izvanredni): 1. srpnja 2020. 3. rok: 17. rujna 2020. Predviđeni datumi obrane: 1. rok: 24.2. – 28.2.2020. 2. rok (izvanredni): 3.7.2020. 3. rok: 21.9. - 25.9.2020.

Predsjednik Povjerenstva:

Tew AG

Prof. dr. sc. Branko Bauer

SADRŽAJ

POPIS SLIKA III POPIS TABLICA. IV POPIS TEHNIČKE DOKUMENTACIJE V POPIS OZNAKA. VI SAŽETAK. VII SUMMARY IX 1 UVOD. 2 IDEJNO RJEŠENJE SFERNOG ROBOTA 6 2.1 2.1 Prvi koncept – koncept s linearno pomičnom masom 6 2.2 Drugi koncept – koncept s pogonskim kotačem 7 2.3 Odabir koncepta za razradbu 7 3 MATEMATIČKI MODEL DINAMIKE SFERNOG ROBOTA 9 3.1 Euler – Lagrangeova metoda 10 3.2 Kinematika 11 3.3.1 Kinetička i potencijalne energija sfere i tijela robota 12 3.4 Rayleighova disipacijska funkcija 12 3.5 Dinamički model sustava 3.6 Linearizacija modela 3.10 Odziv nelinearnog i linearnog modela u otvorenom krugu 20 4 SINTEZA REGULATORA 22 4.1 PD regulator 22	SAD	ŽAJ	I
POPIS TABLICA. IV POPIS TEHNIČKE DOKUMENTACIJE V POPIS OZNAKA. VI SAŽETAK. VIII SUMMARY IX 1 UVOD. 1 2 IDEJNO RJEŠENJE SFERNOG ROBOTA 6 2.1 Prvi koncept – koncept s linearno pomičnom masom 6 2.2 Drugi koncept – koncept s pogonskim kotačem 7 2.3 Odabir koncepta za razradbu. 7 3 MATEMATIČKI MODEL DINAMIKE SFERNOG ROBOTA. 9 3.1 Euler – Lagrangeova metoda 10 3.2 Kinematika 11 3.3.1 Kinetička i potencijalne energija. 12 3.4 Rayleighova disipacijska funkcija. 12 3.5 Dinamički model sustava 13 3.6 Linearizacija modela 15 3.7 Matrice C i D. 17 3.8 Numeričke vrijednosti matrica 18 3.10 Odziv nelinearnog i linearnog modela u otvorenom krugu 20 4 SINTEZA REGULATORA. 22 4.1 PD regulator 22 4.2 Lincarni kvadratični regulator 23 4.3 Kalmanov filtar 26	POP	SLIKA	III
POPIS TEHNIČKE DOKUMENTACIJE V POPIS OZNAKA VI SAŽETAK VIII SUMMARY IX 1 UVOD 2 IDEJNO RJEŠENJE SFERNOG ROBOTA 6 2.1 2.1 Prvi koncept – koncept s linearno pomičnom masom 6 2.2 2.3 Odabir koncept a za razradbu 7 3 MATEMATIČKI MODEL DINAMIKE SFERNOG ROBOTA 9 3.1 Euler – Lagrangeova metoda 10 3.2 Kinematika 3.3.1 Kinetička i potencijalne energije 11 3.3.1 Kinetička i potencijalna energija sfere i tijela robota 12 3.4 Rayleighova disipacijska funkcija 12 3.5 Dinamički model sustava 13 3.6 Linearizacija modela 15 3.7 Matrice C i D 17 3.8 Numeričke vrijednosti matrica 18 3.10 Odziv nelinearnog i linearnog modela u otvorenom krugu 20 4 SINTEZA REGULATORA 22 4.1 PD regulator 22	POP	TABLICA	IV
POPIS OZNAKA VI SAŽETAK VIII SUMMARY IX 1 UVOD 2 IDEJNO RJEŠENJE SFERNOG ROBOTA 2 IDEJNO RJEŠENJE SFERNOG ROBOTA 2 IDEJNO RJEŠENJE SFERNOG ROBOTA 6 2.1 2.1 Prvi koncept – koncept s linearno pomičnom masom 6 2.2 2.3 Odabir koncept a za razradbu 7 2.3 3 MATEMATIČKI MODEL DINAMIKE SFERNOG ROBOTA 9 3.1 Euler – Lagrangeova metoda 10 3.2 Kinematika 11 3.3 Kinetička i potencijalne energije 11 3.3.1 S.1 Euler – Lagrangeova metoda 10 3.2 Xinematika 11 3.3.1 Kinetički i potencijalne energije 11 3.3.1 S.5 Dinamički model sustava 13 3.6 1.1 1.3 3.6 Linearizacija modela 3.10 Odziv nelinearnog i linearnog modela u otvorenom krugu<	POP	TEHNIČKE DOKUMENTACI.	E V
SAŽETAK. VIII SUMMARY IX 1 UVOD 1 2 IDEJNO RJEŠENJE SFERNOG ROBOTA 6 2.1 Prvi koncept – koncept s linearno pomičnom masom 6 2.2 Drugi koncept – koncept s pogonskim kotačem 7 2.3 Odabir koncepta za razradbu 7 3 MATEMATIČKI MODEL DINAMIKE SFERNOG ROBOTA 9 3.1 Euler – Lagrangeova metoda 10 3.2 Kinematika 11 3.3 Kinetička i potencijalne energije 11 3.3.1 Kinetička i potencijalna energija sfere i tijela robota 12 3.4 Rayleighova disipacijska funkcija 12 3.5 Dinamički model sustava 13 3.6 Linearizacija modela 15 3.7 Matrice C i D 17 3.8 Numeričke vrijednosti matrica 18 3.10 Odziv nelinearnog i linearnog modela u otvorenom krugu 20 4 SINTEZA REGULATORA 22 4.1 PD regulator 22 4.2 Linearni kvadratični regulator 23 <	POP	OZNAKA	
SUMMARYIX1UVOD	SAŽ	ГАК	
1 UVOD 1 2 IDEJNO RJEŠENJE SFERNOG ROBOTA 6 2.1 Prvi koncept – koncept s linearno pomičnom masom 6 2.2 Drugi koncept – koncept s pogonskim kotačem 7 2.3 Odabir koncepta za razradbu. 7 3 MATEMATIČKI MODEL DINAMIKE SFERNOG ROBOTA. 9 3.1 Euler – Lagrangeova metoda 10 3.2 Kinematika 11 3.3 Kinetičke i potencijalne energije. 11 3.4 Rayleighova disipacijska funkcija. 12 3.4 Rayleighova disipacijska funkcija. 13 3.6 Linearizacija modela 15 3.7 Matrice C i D. 17 3.8 Numeričke vrijednosti matrica 18 3.10 Odziv nelinearnog i linearnog modela u otvorenom krugu 20 4 SINTEZA REGULATORA. 22 4.1 PD regulator 22 4.2 Linearni kvadratični regulator 23 4.3 Kalmanov filtar 26	SUM	1ARY	IX
2 IDEJNO RJEŠENJE SFERNOG ROBOTA 6 2.1 Prvi koncept – koncept s linearno pomičnom masom 6 2.2 Drugi koncept – koncept s pogonskim kotačem 7 2.3 Odabir koncepta za razradbu 7 3 MATEMATIČKI MODEL DINAMIKE SFERNOG ROBOTA 9 3.1 Euler – Lagrangeova metoda 10 3.2 Kinematika 11 3.3 Kinetičke i potencijalne energije 11 3.3.1 Kinetička i potencijalna energija sfere i tijela robota 12 3.4 Rayleighova disipacijska funkcija 12 3.5 Dinamički model sustava 13 3.6 Linearizacija modela 15 3.7 Matrice C i D 17 3.8 Numeričke vrijednosti matrica 18 3.10 Odziv nelinearnog i linearnog modela u otvorenom krugu 20 4 SINTEZA REGULATORA 22 4.1 PD regulator 22 4.2 Linearni kvadratični regulator 23 4.3 Kalmanov filtar 26	1 U	VOD	
2.1 Prvi koncept – koncept s linearno pomičnom masom 6 2.2 Drugi koncept – koncept s pogonskim kotačem 7 2.3 Odabir koncepta za razradbu 7 3 MATEMATIČKI MODEL DINAMIKE SFERNOG ROBOTA 9 3.1 Euler – Lagrangeova metoda 10 3.2 Kinematika 11 3.3 Kinetičke i potencijalne energije. 11 3.3.1 Kinetička i potencijalna energija sfere i tijela robota 12 3.4 Rayleighova disipacijska funkcija. 12 3.5 Dinamički model sustava 13 3.6 Linearizacija modela 17 3.8 Numeričke vrijednosti matrica 18 3.10 Odziv nelinearnog i linearnog modela u otvorenom krugu 20 4 SINTEZA REGULATORA 22 4.1 PD regulator 23 4.3 Kalmanov filtar 26	2 I	EJNO RJEŠENJE SFERNOG R	ОВОТА 6
2.2 Drugi koncept – koncept s pogonskim kotačem .7 2.3 Odabir koncepta za razradbu .7 3 MATEMATIČKI MODEL DINAMIKE SFERNOG ROBOTA .9 3.1 Euler – Lagrangeova metoda .10 3.2 Kinematika .11 3.3 Kinetičke i potencijalne energije. .11 3.4 Rayleighova disipacijska funkcija .12 3.4 Rayleighova disipacijska funkcija .12 3.5 Dinamički model sustava .13 3.6 Linearizacija modela .15 3.7 Matrice C i D .17 3.8 Numeričke vrijednosti matrica .18 3.10 Odziv nelinearnog i linearnog modela u otvorenom krugu .20 4 SINTEZA REGULATORA .22 4.1 PD regulator .22 4.2 Linearni kvadratični regulator .23 4.3 Kalmanov filtar .26	2.1	Prvi koncept – koncept s linear	no pomičnom masom6
2.3Odabir koncepta za razradbu	2.2	Drugi koncept – koncept s pog	onskim kotačem7
3 MATEMATIČKI MODEL DINAMIKE SFERNOG ROBOTA	2.3	Odabir koncepta za razradbu	
3.1Euler – Lagrangeova metoda103.2Kinematika113.3Kinetičke i potencijalne energije113.3.1Kinetička i potencijalna energija sfere i tijela robota123.4Rayleighova disipacijska funkcija123.5Dinamički model sustava133.6Linearizacija modela153.7Matrice C i D173.8Numeričke vrijednosti matrica183.10Odziv nelinearnog i linearnog modela u otvorenom krugu204SINTEZA REGULATORA224.1PD regulator224.2Linearni kvadratični regulator234.3Kalmanov filtar26	3 N	ATEMATIČKI MODEL DINAM	IIKE SFERNOG ROBOTA9
3.2Kinematika113.3Kinetičke i potencijalne energije113.3.1Kinetička i potencijalna energija sfere i tijela robota123.4Rayleighova disipacijska funkcija123.5Dinamički model sustava133.6Linearizacija modela153.7Matrice C i D173.8Numeričke vrijednosti matrica183.10Odziv nelinearnog i linearnog modela u otvorenom krugu204SINTEZA REGULATORA224.1PD regulator224.2Linearni kvadratični regulator234.3Kalmanov filtar26	3.1	Euler – Lagrangeova metoda	
3.3Kinetičke i potencijalne energije.113.3.1Kinetička i potencijalna energija sfere i tijela robota123.4Rayleighova disipacijska funkcija.123.5Dinamički model sustava133.6Linearizacija modela153.7Matrice C i D.173.8Numeričke vrijednosti matrica183.10Odziv nelinearnog i linearnog modela u otvorenom krugu204SINTEZA REGULATORA.224.1PD regulator224.2Linearni kvadratični regulator234.3Kalmanov filtar26	3.2	Kinematika	
3.3.1Kinetička i potencijalna energija sfere i tijela robota123.4Rayleighova disipacijska funkcija123.5Dinamički model sustava133.6Linearizacija modela153.7Matrice C i D173.8Numeričke vrijednosti matrica183.10Odziv nelinearnog i linearnog modela u otvorenom krugu204SINTEZA REGULATORA224.1PD regulator224.2Linearni kvadratični regulator234.3Kalmanov filtar26	3.3	Kinetičke i potencijalne energi	e11
3.4Rayleighova disipacijska funkcija.123.5Dinamički model sustava133.6Linearizacija modela153.7Matrice C i D.173.8Numeričke vrijednosti matrica183.10Odziv nelinearnog i linearnog modela u otvorenom krugu204SINTEZA REGULATORA224.1PD regulator224.2Linearni kvadratični regulator234.3Kalmanov filtar26		3.1 Kinetička i potencijalna er	ergija sfere i tijela robota12
3.5Dinamički model sustava133.6Linearizacija modela153.7Matrice C i D.173.8Numeričke vrijednosti matrica183.10Odziv nelinearnog i linearnog modela u otvorenom krugu204SINTEZA REGULATORA224.1PD regulator224.2Linearni kvadratični regulator234.3Kalmanov filtar26	3.4	Rayleighova disipacijska funko	ija12
3.6Linearizacija modela153.7Matrice C i D173.8Numeričke vrijednosti matrica183.10Odziv nelinearnog i linearnog modela u otvorenom krugu204SINTEZA REGULATORA224.1PD regulator224.2Linearni kvadratični regulator234.3Kalmanov filtar26	3.5	Dinamički model sustava	
3.7Matrice C i D	3.6	Linearizacija modela	
3.8Numeričke vrijednosti matrica	3.7	Matrice C i D	
3.10Odziv nelinearnog i linearnog modela u otvorenom krugu204SINTEZA REGULATORA	3.8	Numeričke vrijednosti matrica	
4SINTEZA REGULATORA	3.1	Odziv nelinearnog i linearnog	nodela u otvorenom krugu20
 4.1 PD regulator	4 S	NTEZA REGULATORA	
4.2 Linearni kvadratični regulator	4.]	PD regulator	
4.3 Kalmanov filtar	4.2	Linearni kvadratični regulator.	
	4.3	Kalmanov filtar	
4.3.1 Struktura diskretnog Kalmanovog filtera27		3.1 Struktura diskretnog Kalm	anovog filtera27

-			
	4.3	3.2 Pregled jednadžbi	
	4.3	3.3 Jednadžbe Kalmanovog filtra u kontinuiranom vremenu	
5	REZ	ZULTATI SIMULACIJA	31
	5.1	Odziv sustava PD regulatora	
	5.2	Odziv sustava LQ regulatora	35
6	ZAŀ	KLJUČAK	39
PI	RILOC	G II	43
PI	RILOC	G III	51

POPIS SLIKA

Slika 1.1.	Sferni robot – A. Halme et al. [2]
Slika 1.2.	Sferni robot – Bicci [2]2
Slika 1.3.	Sferni robot s klizajućim masama [2]3
Slika 1.4.	Sferni roboti temeljeni na njihalima [2]
Slika 1.5.	LaRC Wedge (lijevo) i LaRC Dandelion (desno)[4]4
Slika 1.6.	Deformabilni sferni robot [2]4
Slika 1.7.	GroundBot (lijevo) i BB8 igračka (desno)[5,6]5
Slika 2.1.	Prvi koncept sfernog robota
Slika 2.2.	Drugi koncept sfernog robota7
Slika 3.1.	Shematski prikaz robota9
Slika 3.2.	Robot s upravljačkom silom14
Slika 3.3.	Odziv otvorenog kruga linearnog i nelinearnog modela za $\pmb{\theta s}$
Slika 3.4.	Odziv otvorenog kruga linearnog i nelinearnog modela za θt
Slika 4.1.	Shema zatvorenog kruga s PD regulatorom
Slika 4.2.	Sučelje PID Tunera
Slika 4.3.	Polovi i nule sustava s LQ regulatorom
Slika 5.1.	Odziv nelinearnog sustava s PD regulatorom s ciljem stabilizacije
Slika 5.2.	Odziv nelinearnog sustava s PD regulatorom pri pozicioniranju
Slika 5.3.	Usporedba linearnog i nelinarnog modela kod pozicioniranja PD regulatorom 33
Slika 5.4.	Odziv nelinearnog modela s PD regulatorom kod praćenja sinusne referentne
	veličine
Slika 5.5.	Usporedba linearnog i nelinearnog modela s PD regulatorom za sinusnu referencu
Slika 5.6.	Odziv nelinearnog sustava s LQ regulatorom s ciljem stabilizacije
Slika 5.7.	Zašumljeni mjereni signal izlaza sustava y , pri simulaciji pozicioniranja
Slika 5.8.	Odziv nelinearnog sustava s LQ regulatorom pri pozicioniraju i usporedba pravih
	i estimiranih stanja
Slika 5.9.	Usporedba linearnog i nelinearnog modela s LQ regulatorom
Slika 5.10.	Odziv nelinearnog modela s LQR kod praćenja sinusne referentne veličine 38

POPIS TABLICA

Tablica 1	Parametri sustava	1	8
-----------	-------------------	---	---

POPIS TEHNIČKE DOKUMENTACIJE

2020-001 SFERNI ROBOT

2020-001-01 TIJELO ROBOTA

POPIS OZNAKA

Oznaka	Jedinica	Opis
x_s, y_s	m	Položaj centra sfere
x_t, y_t	m	Položaj centra mase tijela robota
θ_s	rad	Zakret sfere
θ_t	rad	Zakret tijela u odnosu na referentu os sfere
R _{su}	m	Polumjer unutarnje stijenke sfere
R_{sv}	m	Polumjer vanjske stijenke sfere
R _{cm}	m	Udaljenost centra mase tijela robota do centra sfere
R	m	Polumjer kotača
m_s	kg	Masa sfere
m _t	kg	Masa tijela
J _s	kgm ²	Moment inercije sfere
J _t	kgm ²	Moment inercije tijela
g	m/s^2	Ubrzanje sile teže
τ	Nm	Upravljački moment motora
Κ	J	Kinetička energija sustava
Р	J	Potencijalna energija sustava
R	J/s	Rayleighova disipacijska funkcija
q_i	rad, m	i-ta upravljana koordinata
\dot{q}_{ι}	rad/s, m/s	Brzina i-te upravljane koordinate
T_i	Nm	Moment i-te koordinate
ω	rad/s	Kutna brzina tijela
$oldsymbol{g}^{T}$	m/s^2	Vektor gravitacijskog ubrzanja
p	m	Vektor položaja
d_1, d_2	Nms/rad	Faktor prigušenja
q		Vektor upravljanih koordinata
Τ		Vektor upravljačkih momenata
T_s	Nm	Upravljački moment sfere
T_t	Nm	Upravljački moment tijela
Η		Matrica inercija

С		Matrica Coriolisovih i centrifugalnih sila
G		Vektor gravitacijskog djelovanja
x		Vektor varijabli stanja
u		Vektor ulaza sustava
У		Vektor izlaza sustava
A		Matrica stanja sustava u prostoru stanja
В		Matrica ulaza sustava u prostoru stanja
С		Matrica izlaza sustava u prostoru stanja
D		Matrica preslikavanja sustava u prostoru stanja
K		Vektor pojačanja linearnog kvadratičnog regulatora
Q		Matrica težina stanja linearnog kvadratičnog regulatora
R		Matrica težina ulaza linearnog kvadratičnog regulatora
$ heta_k$	rad	Zakret kotača
θ	rad	Zakret tijela u odnosu na y os
p_i		Polovi sustava
p_{ilqr}		Polovi sustava s LQ regulatorom
K_p		Proporcionalno pojačanje PD regulatora
K _d		Derivacijsko pojačanje PD regulatora
\boldsymbol{x}_k		Vektor varijabli stanja u trenutku k
\boldsymbol{F}_k		Matrica sustava
\boldsymbol{z}_k		Vektor izlaznih varijabli
\boldsymbol{u}_k		Vektor ulaznih varijabli
w_k		Procesni šum
\boldsymbol{v}_k		Šum mjerenja
\boldsymbol{G}_k		Ulazna matrica
\boldsymbol{Q}_k		Matrica kovarijanci perturbacija u varijablama stanja
\boldsymbol{R}_k		Matrica kovarijanci perturbacija šuma mjerenja
$P_{k+1 k}$		A-priori matrica kovarijanci pogreške procjene stanja
$\widehat{x}_{k+1 k}$		A-priori procjena varijabli stanja
$\widehat{x}_{k+1 k+1}$		A-posteriori procjena varijabli stanja
$P_{k+1 k+1}$		A-posteriori matrica kovarijanci pogreške procjene stanja
K_{k+1}		Matrica pojačanja Kalmanovog filtra

SAŽETAK

Nakon uvodnih razmatranja, predstavljena su dva razmatrana koncepta sfernog robota te odabir jednog za danju razradbu. Zatim se Euler – Lagrangeovom metodom izveo matematički model dinamike robota. Kako bi se sustav mogao regulirati linearnim regulatorima potrebno je bilo linearizirati model. Linearizirani model zajedno s definiranim ulazima i izlazima iz sustava zapisan je u obliku prostora stanja. Simuliranjem linearnog i nelinarnog modela analizirano je ponašanje sustava bez regulatora, te promatrajući polove sustava, pokazuje se da je sustav na granici stabilnosti. Kako bi sustav mogao pratiti željene referentne vrijednosti (postavne veličine) sintetizirani su PD i linearni kvadratični regulator (LQR). Također, zbog potrebe estimacije varijabli stanja i uklanjanja šuma mjerenog signala sintetiziran je Kalmanov filtar. Simulacije, provedene u MATLAB-u i Simulinku, pokazuju uspješno reguliranje PD i LQ regulatorima u slučaju stabilizacije u nultom položaju te pozicioniranja, dakako uz različita vremena odziva i karakteristike krivulje. Ipak, PD regulator ne uspijeva pratiti sinusnu referentnu veličinu, za razliku od LQ regulatora, ali i s njim u tom slučaju postoji regulacijska greška.

Ključne riječi: sferni mobilni robot, Euler – Lagrangeova metoda, modeliranje dinamičkog sustava, PD regulator, LQR, Kalmanov filtar, estimacija stanja.

SUMMARY

After introductory considerations, two concepts of a spherical mobile robot are considered, and one is chosen for further elaboration. A mathematical model of robot dynamics was derived by the Lagrangian method. In order for the system to be regulated by linear regulators, it was necessary to linearize the model. The linearized model together with the defined inputs and outputs of the system is written in the state space form. By simulating the linear and nonlinear models and observing the poles, the response of a marginally stable system is shown. In order for the system to be able to follow the desired reference values (setpoints), PD and a linear quadratic controllers (LQR) were synthesized. To estimate the state variables and remove the noise of the measured signal, a Kalman filter was synthesized. Simulations, performed in MATLAB and Simulink, show successful control with PD and LQ regulators in the case of stabilization in zero position and positioning, of course with different response times and curve characteristics. However, the PD controller fails to follow the sinusoidal reference value, unlike the LQ controller, which shows a control error.

Key words: spherical mobile robot, Euler - Lagrange method, dynamic system modeling, PD controller, LQR, Kalman filter, state estimation.

1 UVOD

Mobilni roboti predstavljaju granu robotike kod koje se roboti mogu samostalno kretati u prostoru za razliku od tradicionalne robotike, gdje je radni protor robota ograničen. Ta osnovna značajka mobilnih robota omogućava im mnoštvo različitih područja primjene, primjerice u lancima opskrbe, industriji zabave, vojnoj industriji, spasilačkim misijama, istraživanju našeg planeta, ali i svemirskim istraživanjima.

Gibanje mobilnih robota može se ostvariti na više načina. Neki od najuobičajenijih su hodanje, poskakivanje, klizanje te kotrljanje. Između različitih tipova mobilnih robota, sferni roboti postaju sve atraktivniji kao alternativa kotačima pokretanim mobilnim robotima. Sferne robote karakterizira vanjska sferna ljuska koja sadrži unutarnji pogonski sustav koja omogućava kretanje robota prenoseći mehaničku snagu na ljusku. Odlikuje ih vrlo dobra manevarska pokretljivost zbog mogućnosti da se zakrenu gotovo u mjestu. Gibanje kotrljanjem ostvaruje se i klasičnim kotačima, ali za razliku od njih, sferni roboti, zbog svoje strukture imaju dodatni niz prednosti. Ukoliko se prevrnu, klasični roboti s kotačima ili humanoidni roboti su neupotrebljivi, za razliku od sfernih koji nemaju takvih problema. Sfera, gibajući se, prirodno prati put najmanjeg otpora[1]. Ne pojavljuju se problemi poput padanja, zapinjanja za predmete i sl. zbog toga jer je pogonski mehanizam sa senzorima zatvoren vanjskom ljuskom. Mehanički, energetski i upravljački dijelovi robota zaštićeni su od vanjskih utjecaja što robot čini prikladnim za rad u najtežim uvjetima poput onih u vodi, izloženih radijaciji, jako prašnjavih itd.. Kontaktom u jednoj točki eliminirana je potreba prilagođavanja neravnom terenu te se potencijalno pojednostavljuje upravljanje robotom.

U literaturi se mogu pronaći razne klasifikacije sfernih robota. U [2], podjela je napravljena prema mehaničkoj konfiguraciji robota:

1. Temeljeni na kotačima

Kod ovakvih izvedbi, mase su spojene na kotače koji su pokretani na unutarnjoj površini ljuske robota.

Prvi sferni robot razvijen je od A. Halme et. al. 1996. godine [3], a njegov pogon bazirao se na jednom kotaču u kontaktu s donjim dijelom sfere kao što je pokazano na slici 1.1.

Slika 1.1. Sferni robot – A. Halme et al. [2]

Iznad kotača nalazi se unutarnja pogonska jedinica s napajanjem i komunikacijom. S gornje strane sfere nalazi se drugi kotač pritisnut oprugom o sferu koji sprječava da se pogonski mehanizam prevrne i kotač izgubi kontakt sa sferom. Upravljajući pogonskim kotačem sfera ima mogućnost skretanja.

A.Bicci, 1997. godine, je predložio izvedbu sfernog robota s malenim autom unutar sfere gdje se robot kretao upravljajući zakretom kotača auta.

Slika 1.2. Sferni robot – Bicci [2]

2. Klizajuće mase

Ideja iza ovakve izvedbe sfernog robota je konstantno izmještanje masa robota na točno određeni način kako bi se postiglo kretanje u bilo kojem smjeru.

Slika 1.3. Sferni robot s klizajućim masama [2]

3. Temeljene na njihalima

Kod ovakve izvedbe sfernog robota, njihalo, smješteno unutar sfere, rotira pomoću motora. Promjenom položaja njihala mijenja se centar mase robota te stvara moment u ovisnosti o udaljenosti od centra rotacije robota. Postoje izvedbe s više njihala kako bi se utjecalo na rotaciju oko više osi ili olakšalo manevriranje.

Slika 1.4. Sferni roboti temeljeni na njihalima [2]

Osim navedene podjele postoje i drugi načini kretanja sfernih robota. Mnoge druge konfiguracije sfernih robota temelje se na zakonu očuvanja kutne količine gibanja. Tipično, ovi roboti su pokretani zamašnjacima unutar sfere. Pogonski moment na zamašnjaku uzrokuje reakcijski moment na vanjsku ljusku preko zakona o očuvanju kutne količine gibanja.

Zanimljivi primjeri su pasivni, vjetrom pokretanih sferni roboti. Većina ovakvih robota razvijena je od strane NASA-e u svrhu istraživanja Marsa. NASA Langley Reasearch Center (LaRC) Wedge i Dandelion neki su od primjera.

Slika 1.5. LaRC Wedge (lijevo) i LaRC Dandelion (desno)[4]

Također postoje i izvedbe sfernih robota s deformabilnim oblikom, gdje se robot kreće deformirajući segmente svoje sfere u određenom nizu.

Slika 1.6. Deformabilni sferni robot [2]

Široj populaciji najpoznatiji mobilni sferni robot zasigurno je BB8 iz znanstveno – fantastičnog serijala Ratovi zvijezda (engl. *Star Wars)* koji se danas proizvodi u industriji zabave i edukacije u obliku igrački. Groundbot je primjer nadzornog sfernog robota koji se može kretati po raznim terenima.

Slika 1.7. GroundBot (lijevo) i BB8 igračka (desno)[5,6]

2 IDEJNO RJEŠENJE SFERNOG ROBOTA

U sklopu rada razmatrana su dva različita koncepta sfernog robota. Oba koncepta pokreću se na temelju promjene centra mase robota, ali se ta promjena ostvaruje na različite načine.

2.1 Prvi koncept – koncept s linearno pomičnom masom

Prvi koncept, gibanje u jednom smjeru ostvaruje zakretom vratila koji je čvrsto vezan za sferu te pogonjen istosmjernim motorom preko para stožničkih zupčanika. Skretanje se ostvaruje pomicanjem mase na linearnoj vodilici koje pogoni servomotor preko sustava remena i remenica, čime se mijenja položaj centar mase i stvara moment oko centra sfere robota.

Slika 2.1. Prvi koncept sfernog robota

2.2 Drugi koncept – koncept s pogonskim kotačem

Drugi koncept gibanje ostvaruje pomoću unutarnjeg mehanizma s kotačima. Kotači pogonjeni istosmjernim motorima 'penju' se po unutarnjem promjeru sfere te se mijenja položaj centra mase robota. Uslijed ekscentra centra mase u odnosu na centar sfere stvara se moment na sferi robota koja uzrokuje gibanje. Ovaj robot skretanje ostvaruje rotacijom kotača različitim brzinama, čime se stvara zakretni moment.

Slika 2.2. Drugi koncept sfernog robota

2.3 Odabir koncepta za razradbu

Oba koncepta, osim motora, zupčanika, remenica, nosača i ostalih mehaničkih i energetskih komponenti, sadrže potrebne senzore poput žiroskopa, akcelerometra i enkodera uz upravljačke komponente, kako bi se mogla omogućiti regulacija robota.

Nakon razmatranja kompleksnosti izvođenja matematičkog modela, drugi model se pokazao kao jednostavniji te, zbog relativno jednostavne konfiguracije s dva paralelno postavljena

motora, fizička realizacija robota bi bila jednostavnija. Također, drugi model sastavljen je s manje komponenti te bi izrada i montaža dijelova bila jednostavnija.

Zbog tih razloga za daljnu razradbu i izradu matematičkog modela dinamike robota izabran je drugi model, tj. model s kotačima.

3 MATEMATIČKI MODEL DINAMIKE SFERNOG ROBOTA

Na slici 3.1. shematski je prikazan model sfernog robota s njegovim geometrijskim karakteristikama. Oznaka x_s , y_s predstavlja položaj centra sfere C_s u odnosu na nepomični koordinatni sustav Oxy vezan za tlo. x_t , y_t je položaj centra mase tijela tobota C_m u odnosu na nepomični koordinatni sustav. θ_s zakret je referentne osi na sferi (dalje u tekstu - zakret sfere) u odnosu na y os, a θ_t je zakret tijela (mehanizma) u odnosu na zakret sfere. R_{su} i R_{sv} su unutarnji i vanjski polumjeri sfere, R_{cm} je udaljenost centra mase tijela robota od centra sfere, a r je polumjer kotača. Mase sfere i tijela i njihovi momenti tromosti označeni su s m_s , J_s , m_t , J_t . Konstanta ubrzanja sile teže djeluje vertikalno prema dolje i označena je s g. Upravljački moment djeluje na kotaču i označen je s τ .

Slika 3.1. Shematski prikaz robota

Kako bi se sustav mogao upravljati potrebno je izvesti matematički model dinamike sustava koji podrazumijeva opisivanje kinematike i dinamike robota. Nakon definiranja kinematike, definiraju se kinetičke i potencijalne energije koje se koriste u Euler-Lagrangeovoj metodi za definiranje diferencijalnih jednadžbi koje opisuju dinamiku sustava.

U izvodu centar mase tijela robota pisat će se skraćenije kao tijelo robota.

Također, za izvod se uvode sljedeće pretpostavke:

- 1. Kotač robota kotrlja bez proklizavanja na unutarnjem promjeru sfere
- 2. Sfera se giba pravocrtno bez proklizavanja
- 3. Zanemaruje se masa kotača

3.1 Euler – Lagrangeova metoda

Matematički model sustava, tj. diferencijalne jednadžbe koje opisuju sustav moguće je dobiti na više načina, a najčešće se koriste Newton-Eulerova ili Euler-Lagrangeova metoda. Euler-Lagrangeova metoda, korištena u ovom radu, energetska je metoda te se temelji na zakonu očuvanja energije. Implementacija metode kod mehaničkih sustava temelji se na poznavanju: kinetičkih i potencijalnih energija svih tijela u sustavu koje nastaju zbog gibanja i relativne razlike u visine tijela, disipacijske energije uslijed disipacije topline uzrokovane trenjem u sustavu te nekonzervativnih sila koje djeluju na sustav.

Definira se Euler-Lagrangeova jednadžba s disipacijskom funkcijom:

$$\frac{d}{dt}\left(\frac{\partial K}{\partial \dot{q}_{i}}\right) - \left(\frac{\partial K}{\partial q_{i}}\right) + \left(\frac{\partial P}{\partial q_{i}}\right) + \left(\frac{\partial R}{\partial \dot{q}_{i}}\right) = T_{i},$$
(3.1)

gdje je:

- K ukupna kinetička energija sustava
- P ukupna potencijalna energija sustava
- R Rayleighova disipacijska funkcija
- q_i i-ta upravljana koordinata
- \dot{q}_{ι} brzina i-te upravljane koordinate
- T_i sila ili moment i-te koordinate

U sljedećim potpoglavljima raspisat će se potrebni izrazi za rješavanje Euler – Lagrangeove jednadžbe.

3.2 Kinematika

Kinematika robota raspisuje se uz referencirajući se na Sliku 3.1.

Koordinate položaja centra sfere i tijela robota mogu se zapisati kao (indeks *s* označava veličine vezane za sferu, a *t* za tijelo) :

$$x_s = -\theta_s R_{sv} \tag{3.2}$$

$$y_s = R_{sv} \tag{3.3}$$

$$x_t = x_s + R_{cm} \sin(\theta_s + \theta_t) \tag{3.4}$$

$$y_t = y_s - R_{cm}\cos(\theta_s + \theta_t) \tag{3.5}$$

Minus u jednadžbi za x_s dolazi zbog toga što se za pozitivno definirani zakret θ_s sfera giba u negativnom smjeru osi x.

Deriviranjem koordinata položaja po vremenu dobivaju se brzine sfere i tijela robota.

$$\dot{x}_s = -\dot{\theta}_s R_{sv} \tag{3.6}$$

$$\dot{y}_s = 0 \tag{3.7}$$

$$\dot{x_t} = \dot{x_s} + R_{cm} \left(\dot{\theta_s} + \dot{\theta_t} \right) \cos(\theta_s + \theta_t)$$
(3.8)

$$\dot{y}_t = R_{cm} \left(\dot{\theta}_s + \dot{\theta}_t \right) \sin(\theta_s + \theta_t)$$
(3.9)

Deriviranjem jednadžbi (3.6)-(3.9) dobivaju se ubrzanja sfere i tijela robota.

$$\ddot{x}_s = -\ddot{\theta}_s R_{sv} \tag{3.10}$$

$$\ddot{y}_s = 0 \tag{3.11}$$

$$\ddot{x}_t = \ddot{x}_s - R_{cm} (\dot{\theta}_s + \dot{\theta}_t)^2 \sin(\theta_s + \theta_t) + R_{cm} (\ddot{\theta}_s + \ddot{\theta}_t) \cos(\theta_s + \theta_t)$$
(3.11)

$$\ddot{y}_t = R_{cm} \left(\dot{\theta}_s + \dot{\theta}_t \right)^2 \cos(\theta_s + \theta_t) + R_{cm} \left(\ddot{\theta}_s + \ddot{\theta}_t \right) \sin(\theta_s + \theta_t)$$
(3.12)

Treba primijetiti da se u jednadžbama često pojavljuje izraz $\theta_s + \theta_t$, što predstavlja zakret tijela robota u odnosu na vertikalnu *y* os.

3.3 Kinetičke i potencijalne energije

Najprije će se predstaviti općeniti izrazi za kinetičku i potencijalnu energiju: Kinetička energija krutog tijela definirana je jednadžbom[7]:

$$K = \frac{1}{2} \int_{m} v^2 \,\mathrm{d}m$$
 (3.13)

Uz pretpostavku da je gustoća tijela $\rho = konst.$ izraz (3.13) postaje:

$$K = \frac{1}{2}mv^2,$$
 (3.14)

Odnosno za rotacijsko gibanje:

$$K = \frac{1}{2}J\omega^2, \tag{3.15}$$

gdje je m masa, v brzina, J moment tromosti, ω kutna brzina krutog tijela.

Potencijalna energija krutog tijela definira se kao:

$$P = -m\boldsymbol{g}^T \boldsymbol{p},\tag{3.16}$$

gdje je \boldsymbol{g}^T vektor gravitacijskog ubrzanja, a \boldsymbol{p} vektor položaja centra mase tijela u odnosu na nepokretni koordinatni sustav.

3.3.1 Kinetička i potencijalna energija sfere i tijela robota

Za sferu, kinetička energija je:

$$K_s = \frac{1}{2} m_s \dot{x_s}^2 + \frac{1}{2} J_s \dot{\theta_s}^2$$
(3.17)

Prvi pribrojnik odgovara energiji uslijed translacije, a drugi uslijed rotacije sfere. Potencijalna energija sfere:

$$P_s = -m_s g R_{sv} \tag{3.18}$$

Za tijelo robota kinetička energija je:

$$K_t = \frac{1}{2}m_t \dot{x_t}^2 + \frac{1}{2}J_t \left(\dot{\theta_s} + \dot{\theta_t}\right)^2$$
(3.19)

Potencijalna energija tijela:

$$P_{t} = -m_{t}gy_{t} = -m_{t}g(R_{sv} - R_{cm}\cos(\theta_{s} + \theta_{t})), \qquad (3.20)$$

Zbrajanjem izraza (3.17) i (3.19) te (3.18) i (3.20) dobivamo ukupnu kinetičku i potencijalnu energiju sustava.

$$K = \frac{1}{2} \left(m_s \dot{x_s}^2 + m_t \dot{x_t}^2 \right) + \frac{1}{2} \left(J_s \dot{\theta_s}^2 + J_t \left(\dot{\theta_s} + \dot{\theta_t} \right)^2 \right)$$
(3.21)

$$P = -(m_s g R_{sv} + m_t g y_t) \tag{3.22}$$

3.4 Rayleighova disipacijska funkcija

Za točniju reprezentaciju modela i trenja koje se javlja u sustavu uvodi se Rayleighova disipacijska funkcija. Rayleighova disipacijska funkcija elegantan je način za uvođenje linearno ovisnih disipacijskih sila u sustav te dovoljno dobra aproksimacija trenja u modelu za ovaj sustav ukoliko se zanemari nelinearnost modela trenja.

Rayleighova disipacijska funkcija definira se kao[8]:

$$R = \frac{1}{2} \sum_{i=1}^{n} d_i \dot{q_i}^2, \qquad (3.23)$$

gdje je d_i faktor prigušenja, a n broj koordinata po kojima uvodimo trenje.

Za modelirani sferni robot uvodi se trenje po n = 2 koordinate, $\theta_s i \theta_t$ pa je:

$$R = \frac{1}{2} \left(d_1 \dot{\theta_s}^2 + d_2 \dot{\theta_t}^2 \right)$$
(3.24)

3.5 Dinamički model sustava

Za rješavanje Euler-Lagrangeove jednadžbe potrebno je definirati vektor upravljanih koordinata:

$$\boldsymbol{q} = [q_1 \, q_2]^T, \tag{3.25}$$

gdje je $q_1 = \theta_s, q_2 = \theta_t$.

Također, definira se i vektor upravljačkih momenata.

$$\mathbf{T} = [T_1 \ T_2]^T, \tag{3.26}$$

gdje je $T_1 = T_S$, $T_2 = T_t$.

Pošto aktivni moment τ djeluje na kotač robota potrebno je taj moment reducirati na moment koji djeluje na tijelo robota.

Na mjestu kontakta kotača i unutarnjeg promjera sfere uslijed aktivnog momenta τ javlja se kontaktna sila tangencijalno na unutarnji promjer sfere (Slika 3.2). Množenjem kontaktne sile s krakom do centra rotacije tijela – centra sfere, dobiva se aktivni moment reduciran na tijelo robota, tj. na odgovarajuću koordinatu θ_t :

$$T_2 = T_t = -\frac{\tau}{r} R_{su} \tag{3.27}$$

Na zakret sfere θ_s ne može se direktno djelovati momentom zakreta te je stoga:

$$T_1 = T_s = 0$$
 (3.28)

Stoga slijedi:

$$\boldsymbol{T} = \begin{bmatrix} 0 & -\frac{\tau}{r} R_{su} \end{bmatrix}^T \tag{3.29}$$

Slika 3.2. Robot s upravljačkom silom

Nakon dobivenih svih potrebnih izraza definiraju se Euler-Lagrangeove jednadžbe sustava:

$$\frac{d}{dt}\left(\frac{\partial K}{\partial \dot{q}_1}\right) - \left(\frac{\partial K}{\partial q_1}\right) + \left(\frac{\partial P}{\partial q_1}\right) + \left(\frac{\partial R}{\partial \dot{q}_1}\right) = T_1$$
(3.30)

$$\frac{d}{dt}\left(\frac{\partial K}{\partial \dot{q}_2}\right) - \left(\frac{\partial K}{\partial q_2}\right) + \left(\frac{\partial P}{\partial q_2}\right) + \left(\frac{\partial R}{\partial \dot{q}_2}\right) = T_2$$
(3.31)

Uvrštavanjem izraza za kinetičku, potencijalnu i disipacijsku energiju sustava te upravljački moment dobiva se sustav dvije diferencijalne jednadžbe drugog reda koje predstavljaju nelinearni matematički model dinamike robota.

Jednadžba za $q_1=\theta_s$

$$0 = \left(m_t R_{cm}^2 - 2m_t R_{cm} R_{sv} cos(q_1 + q_2) + (m_t + m_s) R_{sv}^2 + J_t + J_s)\ddot{q}_1 + (m_t R_{cm}^2 - m_t R_{sv} R_{cm} cos(q_1 + q_2) + J_t) \ddot{q}_2 + R_{cm} m_t gsin(q_1 + q_2) + R_{cm} R_{sv} m_t sin(q_1 + q_2) (\dot{q}_1^2 + \dot{q}_2^2) + 2R_{cm} R_{sv} m_t sin(q_1 + q_2) \dot{q}_1 \dot{q}_2 + d_1 \dot{q}_1\right)$$

Jednadžba za $q_2 = \theta_t$

$$-\frac{l}{r}R_{su} = (m_t R_{cm}^2 - m_t R_{sv} R_{cm} cos(q_1 + q_2) + J_t)\ddot{q}_1 + (m_t R_{cm}^2 + J_t)\ddot{q}_2 + R_{cm} m_t gsin(q_1 + q_2) + d_2\dot{q}_2$$

Sustav se može matrično zapisati kao:

$$\boldsymbol{H}(\vec{q})\ddot{\vec{q}} + \boldsymbol{C}\left(\vec{q},\dot{\vec{q}}\right) + \boldsymbol{G}(\vec{q}) = \boldsymbol{T}, \qquad (3.32)$$

gdje je H matrica inercija, C matrica Coriolisovih i centrifugalnih sila i trenja, G vektor gravitacijskog djelovanja.

Elementi matrica su:

$$H = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix}, C = \begin{bmatrix} C_{11} \\ C_{21} \end{bmatrix}, G = \begin{bmatrix} G_{11} \\ G_{21} \end{bmatrix}, T = \begin{bmatrix} T_1 \\ T_2 \end{bmatrix}$$
$$H_{11} = m_t R_{cm}^2 - 2m_t \cos(q_1 + q_2) R_{cm} R_{sv} + (m_t + m_s) R_{sv}^2 + J_t + J_s$$
$$H_{12} = H_{21} = m_t R_{cm}^2 - m_t R_{sv} R_{cm} \cos(q_1 + q_2) + J_t$$
$$H_{22} = m_t R_{cm}^2 + J_t$$

$$C_{11} = R_{cm}R_{sv}m_t sin(q_1 + q_2)\dot{q_1}^2 + R_{cm}R_{sv}m_t sin(q_1 + q_2)\dot{q_2}^2 + 2R_{cm}R_{sv}m_t sin(q_1 + q_2)\dot{q_1}\dot{q_2} + d_1\dot{q_1} C_{21} = d_2\dot{q_2}$$

$$G_{11} = G_{21} = R_{cm} m_t gsin(q_1 + q_2)$$

$$T_1 = 0$$
$$T_2 = -\frac{\tau}{r} R_{su}$$

Iz jednadžbe (3.32), $\ddot{\vec{q}}$ se može zapisati kao:

$$\ddot{\vec{q}} = H^{-1}(T - G - C) \tag{3.33}$$

3.6 Linearizacija modela

Sustav dobiven Euler – Lagrangeovom metodom je nelinearan. U svrhu stabilnog praćenja referentnih trajektorija potrebno je sintetizirati regulator koji će upravljati gibanjem robota. Nelinearni regulatori znatno su složeniji od linearnih, dok u praksi linearni regulatori često dovoljno dobro upravljaju procesom oko neke radne točke. Zbog toga, kako bi se odredili parametri linearnih PD odnosno LQR regulatora potrebno je model linearizirati.

Linearizaciju je moguće provesti na više načina, ali krajnji rezultati bi trebali biti jednaki.

Ovdje će se koristiti Jacobijeva linearizacija.

Najprije je potrebno uvesti vektor varijabli stanja:

$$\boldsymbol{x} = [x_1 \, x_2 \, x_3 \, x_4]^T = [q_1 \, q_2 \, \dot{q_1} \, \dot{q_2}]^T$$

Nelinearan sustav moguće je zapisati u obliku prostora stanja:

$$\dot{\boldsymbol{x}} = f(\boldsymbol{x}, \boldsymbol{u}),$$

gdje je

$$\dot{\mathbf{x}} = \begin{bmatrix} f_1(x, u) \\ f_2(x, u) \\ f_3(x, u) \\ f_4(x, u) \end{bmatrix},$$
$$\mathbf{u} = \tau$$

Elementi vektora \dot{x} su:

$$f_1(x,u) = x_3$$
$$f_2(x,u) = x_4$$

$$\begin{split} f_{3}\left(x,u\right) &= -\left(2sin(x_{1} + x_{2})(R_{sv}rR_{cm}^{3}x_{3}^{2}m_{t}^{2} + 2R_{sv}rR_{cm}^{3}x_{3}x_{4}m_{t}^{2} \\ &+ R_{sv}rR_{cm}^{3}x_{4}^{2}m_{t}^{2} + J_{t}R_{sv}rR_{cm}x_{3}^{2}m_{t} + 2J_{t}R_{sv}rR_{cm}x_{3}x_{4}m_{t} \\ &+ J_{t}R_{sv}rR_{cm}x_{4}^{2}m_{t}\right) \\ &+ 2cos(x_{1} + x_{2})(R_{cm}R_{su}R_{sv}m_{t}\tau - R_{cm}^{2}R_{sv}m_{t}\tau + R_{cm}R_{sv}d_{2}x_{4}m_{t}r) \\ &+ 2J_{t}R_{cm}\tau - 2J_{t}R_{su}\tau + 2R_{cm}^{3}m_{t}\tau - 2R_{cm}^{2}R_{su}m_{t}\tau + 2J_{t}d_{1}x_{3}r \\ &- 2J_{t}d_{2}x_{4}r + 2R_{cm}^{2}d_{1}x_{3}m_{t}r - 2R_{cm}^{2}d_{2}x_{4}m_{t}r \\ &+ R_{cm}^{2}R_{sv}gm_{t}^{2}rsin(2x_{1} + 2x_{2})\right)/r(2J_{s}J_{t} + 2R_{cm}^{2}R_{sv}^{2}m_{t}^{2} + 2J_{s}R_{cm}^{2}m_{t} \\ &+ 2J_{t}R_{sv}^{2}m_{s} + 2J_{t}R_{sv}^{3}m_{t} + R_{cm}^{2}R_{sv}^{2}m_{t}^{2}(cos(2x_{1} + 2x_{2}) + 1) \\ &+ 2R_{cm}^{2}R_{sv}gm_{s}m_{t} - 4R_{cm}^{3}R_{sv}m_{t}^{2}cos(x_{1} + x_{2}) \\ &- 4J_{t}R_{cm}R_{sv}m_{t}cos(x_{1} + x_{2})\right) \\ f_{4}(x,u) &= (2sin(x_{1} + x_{2})(rR_{cm}^{3}R_{sv}x_{3}^{2}m_{t}^{2} + 2rR_{cm}^{3}R_{sv}x_{3}x_{4}m_{t}^{2} + rR_{cm}^{3}R_{sv}x_{4}^{2}m_{t}^{2} \\ &- grR_{cm}R_{sv}x_{3}x_{4}m_{t} + J_{t}rR_{cm}R_{sv}x_{4}^{2}m_{t} - J_{s}grR_{cm}m_{t}) + 2J_{s}R_{cm}\tau \\ &+ 2J_{t}R_{cm}r - 2J_{s}R_{su}\tau - 2J_{t}R_{su}\tau + 2R_{cm}^{3}R_{sv}m_{s}\tau - 2R_{su}R_{sv}^{2}m_{s}\tau \\ &- 2R_{cm}^{2}R_{sv}m_{t}\tau + 2R_{cm}R_{sv}^{2}m_{t}\tau - 2R_{su}R_{sv}m_{t}\tau + 2R_{cm}R_{sv}^{2}m_{s}\tau \\ &- 2R_{cm}^{2}R_{sv}m_{t}\tau - 2J_{s}R_{su}\tau - 2J_{t}R_{su}\tau + 2R_{cm}^{2}m_{s}\pi_{s}\tau \\ &- 2R_{cm}^{2}R_{sv}m_{t}\tau + 2R_{cm}R_{sv}^{2}m_{t}\tau - 2R_{su}R_{sv}m_{t}\tau \\ &- 2R_{cm}^{2}R_{sv}m_{t}\tau + 2R_{cm}R_{sv}^{2}m_{t}\tau - 2R_{cm}^{2}R_{sv}m_{t}\tau \\ &- 2R_{cm}^{2}R_{sv}m_{t}\tau + 2R_{cm}R_{sv}m_{t}\tau \\ &- 2R_{cm}^{2}R_{sv}x_{3}^{2}m_{t}^{2}rsin(2x_{1} + 2x_{2}) + R_{cm}^{2}R_{sv}m_{t}rcos(x_{1} + x_{2}) \\ &+ R_{cm}^{2}R_{sv}x_{3}^{2}m_{t}^{2}rsin(2x_{1} + 2x_{2}) + R_{cm}^{2}R_{sv}m_{t}rcos(x_{1} + x_{2}) \\ &+ 2R_{cm}^{2}R_{sv}m_{t}^{2}cos(x_{1} + x_{2}) + 2R_{cm}^{2}R_{sv}m_{t}rcos(x_{1} + x_{2}) \\ &+ 2R_{cm}^{2}R_{sv}m_{t}^{2}cos(x_{1} + x_{2}) + 2R_$$

Ravnotežni položaj robot ostvaruje kada su $x_1 + x_2 = 0$ (tijelo robota je u vertikalnom položaju) te za $x_3 = x_4 = 0$ (kutne brzine su nula).

Linearni model sustava može se zapisati kao $\dot{x} = Ax + Bu$ gdje su A i B konstantne, Jacobijeve matrice evaluirane oko te radne točke: $x_1 + x_2 = x_3 = x_4 = 0$, a dobivaju se kao:

$$\boldsymbol{A} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_4} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_4}{\partial x_1} & \cdots & \frac{\partial f_4}{\partial x_4} \end{bmatrix}_{|x_1 + x_2 = x_3 = x_4 = 0}$$
(3.34)
$$\boldsymbol{B} = \begin{bmatrix} \frac{\partial f_1}{\partial \tau} \\ \vdots \\ \frac{\partial f_4}{\partial \tau} \end{bmatrix}_{|x_1 + x_2 = x_3 = x_4 = 0}$$
(3.35)

3.7 Matrice C i D

Osim matrice koeficijenata - A i matrice ulaza sustava - B, kako bi se sustav zapisao u obliku prostora stanja potrebno je definirati matricu izlaza sustava - C i matricu direktnog preslikavanja izlaza na ulaz - D

Oblik prostora stanja:

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Zakret kotača θ_k moguće je mjeriti enkoderom postavljenog na motor. Također moguće je mjeriti apsolutni zakret $\theta = \theta_s + \theta_t$ tijela robota od vertikale s inercijskim mjernim senzorom poput MPU6050 (*engl. Inertial Measurement Unit (IMU)*). Pošto niti jedna od ove dvije veličine nije varijabla stanja sustava, potrebno je odrediti njihovu vezu.

Razlikujemo dva utjecaja na ukupan put kotača:

Sfera se iz jednog ravnotežnog položaja pomaknula u drugi ravnotežni položaj. Ovaj slučaj je ostvaren jedino za slučaj da je θ_s = -θ_t zbog toga jer je tada θ = θ_s + θ_t = 0 i tijelo se nalazi u vertikalnom položaju.

Za taj slučaj vrijedi:

$$r\theta_k = R_{sv}\theta_s$$

2. Dok se sfera giba, tijelo se u općenitom slučaju ne nalazi u ravnotežnom položaju, a put kotača dan je kao:

$$r\theta_k = R_{su}\theta$$

Ova dva utjecaja daju ukupan put kotača s obzirom na zakret sfere i zakret tijela robota.

Ta veza dana je izrazom:

$$r\theta_k = R_{sv}\theta_s + R_{su}\theta$$

Iz toga je zakret kotača θ_k :

$$\theta_k = \frac{R_{sv} + R_{su}}{r} \theta_s + \frac{R_{su}}{r} \theta_t$$

Ako definiramo vektor izlaza kao:

$$\boldsymbol{y} = \begin{bmatrix} \theta_k \\ \theta \end{bmatrix},$$

Imamo:

$$\mathbf{y} = \begin{bmatrix} \frac{R_{sv} + R_{su}}{r} & \frac{R_{su}}{r} & 0 & 0\\ 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix},$$

Tako je matrica **C**:

$$\boldsymbol{C} = \begin{bmatrix} \frac{R_{sv} + R_{su}}{r} & \frac{R_{su}}{r} & 0 & 0\\ 1 & 1 & 0 & 0 \end{bmatrix}$$
(3.36)

Nema direktnog preslikavanja izlaza na ulaz pa je:

$$\boldsymbol{D} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

3.8 Numeričke vrijednosti matrica

Kako bi se dobile numeričke vrijednosti matrica *A*, *B i C*, u izraze (3.34)-(3.36) treba uvrstiti vrijednosti parametara koji su dobiveni iz CAD modela.

Vrijednosti parametara:

Tablica 1 Parametri sustava

Parametar	Vrijednost	Jedinica
m_s	1,13	kg
m_t	2,5	kg
Js	0,012	kg m ²
J_t	0,015	kg m²
R_{sv}	0,125	т
R _{su}	0,120	т
R _{cm}	0,05	m

r	0,05	т
g	9,81	$\frac{m}{s^2}$
d_1	0,01	/
d_2	0,01	/

$$\boldsymbol{A} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -18,5036 & -18,5036 & -0,2052 & 0,0543 \\ -25,5967 & -25,5967 & 0,3561 & -0,5649 \end{bmatrix}$$

$$\boldsymbol{B} = \begin{bmatrix} 0 \\ 0 \\ 7,6052 \\ -79,0795 \end{bmatrix}$$

 $\boldsymbol{C} = \begin{bmatrix} 4,9 & 2,4 & 0 & 0\\ 1 & 1 & 0 & 0 \end{bmatrix}$

 $\boldsymbol{D} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$

3.10 Odziv nelinearnog i linearnog modela u otvorenom krugu

Nakon definiranja nelinearnog i linearnog modela poželjno je prikazati ponašanje sustava u otvorenom krugu (*engl. open-loop*), tj. bez upravljačkog djelovanja, kako bi se stekao dojam o ponašanju sustava.

Nelinearni i linearni model sustava su simulirani za početne uvjete:

$$\theta_t = 10^\circ \approx 0,174 \ rad, \qquad \theta_s = \dot{\theta}_s = \dot{\theta}_t = 0,$$

te uz $\tau = 0$ tijekom cijele simulacije.

Slika 3.3. Odziv otvorenog kruga linearnog i nelinearnog modela za θ_s

Slika 3.4. Odziv otvorenog kruga linearnog i nelinearnog modela za θ_t

Očekivano, za zadane početne uvjete, tijelo i sfera osciliraju sve dok se uslijed trenja u sustavu ne smire u ravnotežnom položaju. U ovom slučaju, za zadane početne uvjete, ravnotežni položaj je $\theta_s = -5^\circ$ i $\theta_t = 5^\circ$. Razmatrajući polove sustava, zaključuje se da je sustav na granici stabilnosti zbog pola $p_3 = 0$, dok su ostali ostali polovi stabilni. Fizikalno, pol $p_3 = 0$ značio bi da možemo imati ravnotežni položaj bilo gdje na prostornoj koordinati x, tj. bilo koji zakret θ_s . Tako bi za neki drugi početni uvjet, npr. $\theta_t = 20^\circ$, ravnotežni položaj bio za $\theta_s = -10^\circ$ i $\theta_t = 10^\circ$.

$$p_1 = -0.1163 + 6.6376i$$

 $p_2 = -0.1163 - 6.6376i$
 $p_3 = 0$
 $p_4 = -0.537$

Vidljivo je kako se krivulje linearnog i nelinearnog modela relativno dobro poklapaju te time možemo zaključiti kako je linearizacija zadovoljavajuća.

4 SINTEZA REGULATORA

Kako bi sustav mogao pratiti referentne vrijednosti na željeni način potrebno je sintetizirati regulator koji će to omogućiti. U ovom poglavlju napravljen je pregled sintetiziranih regulatora.

4.1 PD regulator

Proporcionalno – derivacijski (PD) regulator, kao specijalan slučaj PID regulatora kod kojeg je izostavljeno integracijsko djelovanje, jedan je od najčešće korištenih tipova regulatora u praksi. Značajnu ulogu imao je u eri prije digitalnih mikroprocesora, zbog svoje jednostavne strukture i implementacije [9]. PD regulatori se vrlo često primjenjuju i danas.

PD regulator kontinuirano izračunava pogrešku regulacije e(t), odnosno razliku između željenog (referentnog) iznosa regulirane veličine i stvarnog iznosa regulirane veličine. Stvarni iznos regulirane veličine dobiva se mjerenjem ili indirektnim izračunavanjem te se u povratnoj petlji vraća nazad u regulator za usporedbu s referentnom veličinom što tvori zatvorenu petlju. Na temelju regulacijske pogreške, regulator nastoji djelovati na upravljačke veličine u objektu regulacije, minimizirajući pogrešku regulacije preko sljedeće jednadžbe:

$$u(t) = K_p e(t) + K_d \frac{de(t)}{dt}$$
(4.1)

gdje je u(t) ulazni signal sustava, e(t) = r(t) - y(t) je pogreška regulacije za referentni iznos reguliranje veličine - r(t) i izlazni signal sustava y(t). K_p je pojačanje proporcionalne komponente regulatora, a K_d pojačanje derivacijske komponente regulatora. Proporcionalno djelovanje utječe na trenutne vrijednosti pogreške, a derivacijsko na brzinu promjene pogreške, tj. buduću regulacijsku pogrešku.

Slika 4.1. Shema zatvorenog kruga s PD regulatorom

Pojačanja regulatora moguće je odrediti na različite načine. Ziegler – Nicholsova, Chien-Hrones-Reswickova, Cohen-Coon i ICM metoda samo su neke. Međutim, u slučaju kada imamo matematički model sustava zapisan u MATLAB-u najjednostavije se poslužiti alatima implementiranima u MATLAB-u. Stoga se u ovom radu za određivanje pojačanja regulatora koristio MATLAB-ov PID algoritam za podešavanje parametara, *PID Tuner*, koji podešava parametre regulatora na temelju zadane brzine i robusnosti sustava. Moguće je odabrati različite strukture PID regulatora, tako i ovdje korišteni PD regulator bez I djelovanja.

Slika 4.2. Sučelje PID Tunera

Tako definirani parametri PD regulatora su $K_p = 0,005$ i $K_d = 0,003$.

Nakon što se definiraju parametri regulatora podešavanjem odziva linearnog sustava, regulator se potvrđuje na punom nelinearnom modelu.

4.2 Linearni kvadratični regulator

Linearno kvadratično optimalno upravljanje jedna je od najčešće primjenjivanih tehnika optimalnog upravljanja. Jedan dio teorije optimalnog upravljanja bavi se traženjem optimalnog vektora upravljanja koji je funkcija vektora stanja, drugim riječima, načinom kako dobiti optimalno upravljanje s povratnom vezom, tj. optimalni regulator [10]. Linearni kvadratični regulator (LQR) je regulator po varijablama stanja s optimalnim pojačanjima.

Za sintezu linearnog kvadratičnog regulatora potrebno je zadovoljiti nekoliko pretpostavki, a dvije najvažnije su:

- 1. Matematički model objekta upravljanja je u potpunosti poznat
- 2. Vektor varijabli stanja je mjerljiv ili se može rekonstruirati estimatorom

Za sintezu LQ regulatora linearni, vremensko invarijatni sustav mora biti zadan u obliku prostora stanja:

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Optimalna pojačanja dobivaju se minimiziranjem linearne kvadratične funkcije cilja J[11]:

$$J = \int_0^\infty (\mathbf{x}(t)^T \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^T \mathbf{R} \mathbf{u}(t)) dt$$
(4.2)

gdje je x(t) vektor stanja, Q je pozitivna semidefinitna simetrična težinska matrica koja penalizira varijable stanja, u(t) je vektor upravljanja i R je pozitivno-definitna simetrična težinska matrica koja penalizira upravljačke varijable. Vektor upravljanja koji minimizira funkciju cilja (4.2) ima jednostavan oblik:

$$\boldsymbol{u}(t) = -\boldsymbol{K}\boldsymbol{x} \tag{4.3}$$

Matrica pojačanja *K* određuje se iz jednadžbe:

$$\boldsymbol{K} = \boldsymbol{R}^{-1} \boldsymbol{B}^T \boldsymbol{P} \tag{4.4}$$

gdje je P realna, simetrična, pozitivno definitna matrica koja zadovoljava algebarsku Riccatijevu jednadžbu:

$$\boldsymbol{P}\boldsymbol{A} + \boldsymbol{A}^{T}\boldsymbol{P} - \boldsymbol{P}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{T}\boldsymbol{P} + \boldsymbol{Q} = \boldsymbol{0}$$

$$(4.5)$$

Optimalno upravljanje (4.3) primjenjeno na sustav opisan u prostoru stanja dovodi do modela optimalnog sustava opisanog u prostoru stanja s matricama:

$$[(A-BK), B, C, D]$$

Dinamika zatvorenog regulacijskog kruga se kod linearnog kvadratičnog regulatora posljedica je odabira težinskih koeficijenata u matricama Q i R. Matricom Q oblikujemo prijelazni proces vektora stanja x, gdje većim elementima matrice odgovara manja pogreška regulacije odgovarajuće varijable stanja jer se dobivaju veći iznosi pojačanja K koji pomiču polove sustava ulijevo[12]. Matricom R se utječe na iznos energije upravljanja gdje većim elementima matrice odgovara manje forsiranje upravljačke varijable te manja energija upravljanja jer su iznosi pojačanja manji.

Odabir koeficijenata u matricama Q *i* R određuje se iterativno. Ukoliko se matrica Q odabere kao jedinična matrica onda je svakoj varijabli stanja dana ista težina odnosno isti utjecaj na dinamičko ponašanje sustava u uvjetima zatvorenog regulacijskog kruga. Veći iznos pojačanja u vektoru K imat će one varijable stanja na čiju je promjenu sustav manje osjetljiv, tj. iznosi pojačanja i osjetljivost sustava odnose se obrnuto proporcionalno.

Još jedan od kriterija određivanja koeficijenata matrica Q *i* R je Brysonovo pravilo gdje se dijagonalni elementi matrica Q *i* R određuju kao kvadrati recipročnih vrijednosti maksimalno dozvoljenih odstupanja varijabli stanja i ulaza[13], tj.:

$$\boldsymbol{Q}(i,i) = \frac{1}{\max(x_i)^2} \ (i = 1, \dots, 4)$$
$$\boldsymbol{R} = \frac{1}{\max(u)^2}$$

Odabrane matrice **Q** i **R** su:

$$\boldsymbol{Q} = \begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\boldsymbol{R} = 1$$

Vektor pojačanja K u MATLAB-u se dobiva naredbom: K = lqr(A,B,Q,R). Tako dobiveni vektor pojačanja LQ regulatora je:

$$\mathbf{K} = \begin{bmatrix} -2.4092 & -6.8814 & 0.9710 & -0.9840 \end{bmatrix}$$

Za tako definirani vektor pojačanja, LQ regulator pomiče polove sustava više u lijevu polovicu kompleksne ravnine, te su oni:

$$p_{1lqr} = -79,1150$$

$$p_{2lqr} = -1,1842 + 5,1181i$$

$$p_{3lqr} = -1,1842 - 5,1181i$$

$$p_{4lqr} = -3.1673$$

Slika 4.3. Polovi i nule sustava s LQ regulatorom

4.3 Kalmanov filtar

Kako bi se implementirao linearni kvadratični regulator potrebno je znati sve varijable stanja sustava, tj. puni vektor varijabli stanja (*engl. full-state*). Međutim, u poglavlju 3.7 definiran je vektor izlaza kao $\mathbf{y} = [\theta_k \ \theta]^T$. Niti zakret kotača θ_k , niti zakret tijela od vertikale θ nisu definirane varijable stanja. Također, mjerenje senzora uvijek sadrži određenu razinu šuma u sebi te sami model sustava nije idealan te se ta nesigurnost modela može modelirati bijelim šumom. Kako bi se estimirao puni vektor varijabli stanja sustava na temelju zašumljenog mjerenja i ulaza u sustav moguće je koristiti Kalmanov filtar koji se koristi u sprezi s LQ regulatorom.

Kalmanov filtar estimator je tzv. linearnog kvadratičnog problema, što je problem estimacije trenutačnog stanja linearnog dinamičkog sustava perturbiranog bijelim šumom koristeći mjerenja koja su linearno vezana sa stanjem sustava te također zašumljena bijelim šumom[14]. Ukoliko je zadovoljen uvjet osmotrivosti (observabilnosti) sustava, moguće je sintetizirati Kalmanov filtar.

4.3.1 Struktura diskretnog Kalmanovog filtera

Motivacija iza ovog i sljedećeg poglavlja je pokazati osnovne izraze potrebne za razumijevanje algoritma Kalmanovog filtera. Dani su najbitniji izrazi te je objašnjena osnovna ideja algoritma, no nije se išlo u dublju matematičku pozadinu potrebnu za potpuni izvod algoritma. Za dublje razumijevanje algoritma čitatelj se upućuje na [15].

Diskretni Kalmanov filtar jednostavniji je za analizu te će se ovdje pokazati njegov model, a za model u kontinuiranom vremenu iznesene su samo konačne formule.

Pretpostavimo da je vremensko-diskretni sustav zapisan u obliku:

$$\boldsymbol{x}_{k+1} = \boldsymbol{F}_k \boldsymbol{x}_k + \boldsymbol{G}_k \boldsymbol{u}_k + \boldsymbol{w}_k \tag{4.6}$$

$$\boldsymbol{z}_k = \boldsymbol{H}_k \boldsymbol{x}_k + \boldsymbol{v}_k \tag{4.7}$$

gdje je x_k vektor varijabli stanja u vremenskom trenutku k, u_k vektor ulaznih varijabli, w_k procesni šum, G_k ulazna matrica, F_k matrica sustava, z_k vektor izlaznih varijabli u trenutku k, H_k izlazna matrica, a v_k vektor šuma mjerenja.

Pritom se uzimaju sljedeće pretpostavke:

• Procesni šum i šum mjerenja, w_k i v_k imaju svojstva bijelog šuma s očekivanjima (srednjim vrijednostima) jednakim nuli, međusobno su neovisni te su im poznate matrice kovarijanci.

$$E[\boldsymbol{w}_{k}\boldsymbol{w}_{l}^{T}] = \begin{cases} \boldsymbol{Q}_{k} & k = l \\ \boldsymbol{0} & k \neq l \end{cases}$$
(4.8)

$$E[\boldsymbol{\nu}_k \boldsymbol{\nu}_l^T] = \begin{cases} \boldsymbol{R}_k & k = l \\ \boldsymbol{0} & k \neq l \end{cases}$$
(4.9)

$$E[\boldsymbol{w}_k \boldsymbol{v}_l^T] = \boldsymbol{0} \ \forall \ k. \ l \tag{4.10}$$

gdje su Q_k i R_k simetrične pozitivno definitne matrice kovarijanci stohastičkih perturbacija u varijablama stanja i šuma mjerenja (ne predstavljaju više težinske matrice LQ regulatora).

 Početni vektor varijabli stanja x₀ je vektor sa slučajnim vrijednostima, međusobno nezavisan sa sustavom i mjerenjem te mu je poznata srednja vrijednost te matrica kovarijanci pogreške procjene stanja:

$$\widehat{\boldsymbol{x}}_{0|0} = E[\boldsymbol{x}_0]$$
$$\boldsymbol{P}_{0|0} = E[(\widehat{\boldsymbol{x}}_{0|0} - \boldsymbol{x}_0)(\widehat{\boldsymbol{x}}_{0|0} - \boldsymbol{x}_0)^T]$$

S danim setom mjerenja z_1, \ldots, z_{k+1} , zadatak estimatora u k + 1 vremenskom trenutku je odrediti optimalnu estimaciju vektora varijabli stanja x_{k+1} , koju zapisujemo kao \hat{x}_{k+1} , koja minimizira očekivanje srednje kvadratne pogreške.

$$E\left[\left|\left|\boldsymbol{x}_{k+1} - \hat{\boldsymbol{x}}_{k+1}\right|\right|^{2}\right] = E\left[\left(\boldsymbol{x}_{k+1} - \hat{\boldsymbol{x}}_{k+1}\right)^{T}\left(\boldsymbol{x}_{k+1} - \hat{\boldsymbol{x}}_{k+1}\right)\right]$$
(4.11)

Definiramo a-priori procjenu varijabli stanja $\hat{x}_{k+1|k}$ kao estimaciju vektora varijabli stanja temeljenoj na mjerenjima do vremenskog trenutka $k - z_1, ..., z_k$. Ovu estimaciju zovemo još i predikcija. Rješenje minimizacije jednadžbe (4.6) je očekivanje stanja u vremenskom trenutku k + 1 na osnovi mjerenja do vremena k:

$$\widehat{x}_{k+1|k} = E[x_{k+1}|z_1, \dots, z_k] = E[x_{k+1}|\mathbf{Z}^k]$$
(4.12)

Uvrštavanjem (4.6) u (4.12) i uz navedene pretpostavke (4.8)-(4.10) dobivamo izraz za a-priori procjenu varijabli stanja:

$$\widehat{\boldsymbol{x}}_{k+1|k} = \boldsymbol{F}_k \widehat{\boldsymbol{x}}_{k|k} + \boldsymbol{G}_k \boldsymbol{u}_k \tag{4.13}$$

A-priori matrica kovarijanci pogreške procjene stanja $P_{k+1|k}$ je očekivanje srednje kvadratne pogreške za procjenu stanja $\hat{x}_{k+1|k}$.

Uz navedene pretpostavke i uvrštavanjem (4.13) u (4.11) dobiva se:

$$\boldsymbol{P}_{k+1|k} = \boldsymbol{F}_k \boldsymbol{P}_{k|k} \boldsymbol{F}_k^T + \boldsymbol{Q}_k$$

Ako pretpostavimo da je estimacija $\hat{x}_{k+1|k+1}$ (a-posteriori procjena stanja) linearna otežana suma predikcije i novog mjerenja z_{k+1} možemo zapisati:

$$\widehat{\boldsymbol{x}}_{k+1|k+1} = \boldsymbol{K}_{k+1}' \widehat{\boldsymbol{x}}_{k+1|k} + \boldsymbol{K}_{k+1} \boldsymbol{z}_{k+1}$$

gdje su K'_{k+1} i K_{k+1} težinske matrice (različitih veličina).

Dalje se može pokazati da vrijedi (detaljnije pogledati u literaturi):

$$\mathbf{K}_{k+1}' = \mathbf{I} - \mathbf{K}_{k+1}\mathbf{H}_{k+1}$$

Iz toga slijedi:

$$\widehat{x}_{k+1|k+1} = \widehat{x}_{k+1|k} + K_{k+1} (z_{k+1} - H_{k+1} \widehat{x}_{k+1|k})$$
(4.14)

gdje je K matrica pojačanja Kalmanovog filtra.

Jednadžba (4.14) može se protumačiti da je a-posteriori procjena stanja jednaka sumi predikcije (a-priori procjene stanja) i razlike između stvarnog i procijenjenog mjerenja pomnožene s težinskom matricom.

A-posteriori matrica kovarijanci pogreške procjene stanja sada se može dobiti na isti način kao i a-priori matrica kovarijanci pogreške procjene stanja:

$$\boldsymbol{P}_{k+1|k+1} = (\boldsymbol{I} - \boldsymbol{K}_{k+1}\boldsymbol{H}_{k+1})\boldsymbol{P}_{k+1|k}(\boldsymbol{I} - \boldsymbol{K}_{k+1}\boldsymbol{H}_{k+1})^T + \boldsymbol{K}_{k+1}\boldsymbol{R}_{k+1}\boldsymbol{K}_{k+1}^T$$

Još je preostalo definirati matricu pojačanja Kalmanovog filtra.

$$\boldsymbol{K}_{k+1} = \boldsymbol{P}_{k+1|k} \boldsymbol{H}_{k+1}^{T} \left(\boldsymbol{H}_{k+1} \boldsymbol{P}_{k+1|k} \boldsymbol{H}_{k+1}^{T} + \boldsymbol{R}_{k+1} \right)^{-1}$$
(4.15)

4.3.2 Pregled jednadžbi

Estimacija Kalmanovim filtrom sastoji se od dva dijela i pripadnih jednadžbi:

• Predikcija

Predviđa se a-priori vektor varijabli stanja i a-priori matrica kovarijanci za vremenski trenutak k + 1na temelju mjerenja u trenutku k.

$$\widehat{\boldsymbol{x}}_{k+1|k} = \boldsymbol{F}_k \widehat{\boldsymbol{x}}_{k|k} + \boldsymbol{G}_k \boldsymbol{u}_k$$
$$\boldsymbol{P}_{k+1|k} = \boldsymbol{F}_k \boldsymbol{P}_{k|k} \boldsymbol{F}_k^T + \boldsymbol{Q}_k$$

Korekcija

Dolazi do korekcije a-priori vektora varijabli stanja i a-priori matrice kovarijanci pogreške procjene stanja na temelju z_{k+1} mjerenja. Definira se a-posteriori vektor varijabli stanja i matrice kovarijanci pogreške procjene mjerenja uz poznavanje matrice pojačanja Kalmanovog filtera.

$$\widehat{\boldsymbol{x}}_{k+1|k+1} = \widehat{\boldsymbol{x}}_{k+1|k} + \boldsymbol{K}_{k+1}(\boldsymbol{z}_{k+1} - \boldsymbol{H}_{k+1}\widehat{\boldsymbol{x}}_{k+1|k})$$

$$\boldsymbol{P}_{k+1|k+1} = (\boldsymbol{I} - \boldsymbol{K}_{k+1}\boldsymbol{H}_{k+1})\boldsymbol{P}_{k+1|k}(\boldsymbol{I} - \boldsymbol{K}_{k+1}\boldsymbol{H}_{k+1})^T + \boldsymbol{K}_{k+1}\boldsymbol{R}_{k+1}\boldsymbol{K}_{k+1}^T$$

$$\boldsymbol{K}_{k+1} = \boldsymbol{P}_{k+1|k}\boldsymbol{H}_{k+1}^T (\boldsymbol{H}_{k+1}\boldsymbol{P}_{k+1|k}\boldsymbol{H}_{k+1}^T + \boldsymbol{R}_{k+1})^{-1}$$
(4.15)

Zajedno s početnim uvjetima ovime je definiran diskretni, sekvencijalni, rekurzivni algoritam za određivanje optimalnog (u smislu minimuma kovarijance pogreške procjene vektora varijabli stanja) estimatora stanja, tj. Kalmanov filtar[16,17].

Kod definiranja Kalmanovog filtra, osim matrica prostora stanja, bitno je pravilno odabrati matrice kovarijanci Q_k i R_k , koje se mogu zapisati kao Q i R ukoliko su vremenski neovisne. Osnovni način njihova odabira može se objasniti ako ih se promatra kao matrice težina između estimacije stanja i mjerenog signala. Iz izraza za pojačanje Kalmanovog filtra (4.15) možemo zaključiti o njihovom omjeru. Odabir veće vrijednosti za Q ekvivalentan je očekivanju velike nesigurnosti modela sustava Kalmanovog filtra, što znači da filtar treba stanja korigirati više na temelju mjerenja. Odabir veće vrijednosti za R, ekvivalentan je očekivanju velike nesigurnosti (šuma) mjerenog signala, što znači da filtar treba stanja korigirati manje na temelju mjerenja.

4.3.3 Jednadžbe Kalmanovog filtra u kontinuiranom vremenu

Kalmanov filtar moguće je formulirati i u kontinuiranom vremenu, no izvod postaje puno kompliciraniji. Ovdje su ovdje dane gotove jednadžbe, a izvod je moguće naći u [18].

Za sustav:

$$\dot{x} = F(t)x(t) + w(t)$$
$$z(t) = H(t)x(t) + v(t)$$

gdje procesni šum ima matricu kovarijanci $\boldsymbol{Q}(t)$, a šum mjerenja $\boldsymbol{R}(t)$.

Uz početne uvjete:

$$E[\mathbf{x}(0)] = \widehat{\mathbf{x}}(0), \quad E[(\mathbf{x}(0) - \widehat{\mathbf{x}}(0))(\mathbf{x}(0) - \widehat{\mathbf{x}}(0))^T] = \mathbf{P}(0)$$

Estimacija varijabli stanja dana je s:

$$\hat{\mathbf{x}}(t) = \mathbf{F}(t)\hat{\mathbf{x}}(t) + \mathbf{K}(t)[\mathbf{z}(t) - \mathbf{H}(t)\hat{\mathbf{x}}(t))$$

Derivacija pogreške procjene varijabli stanja:

$$\dot{\boldsymbol{P}}(t) = \boldsymbol{F}(t)\boldsymbol{P}(t) + \boldsymbol{P}(t)\boldsymbol{F}^{T}(t) + \boldsymbol{Q}(t) - \boldsymbol{K}(t)\boldsymbol{R}(t)\boldsymbol{K}^{T}(t)$$

Gornja jednadžba je matrična Riccatijeva jednadžba, te postoji njeno analitičko rješenje[18]. Matrica pojačanja Kalmanovog filtra dana je s:

$$\boldsymbol{K}(t) = \boldsymbol{P}(t)\boldsymbol{H}^{T}(t)\boldsymbol{R}^{-1}(t)$$

5 REZULTATI SIMULACIJA

Nakon što su sintetizirani regulatori pokazat će se rezultati napravljenih simulacija. Najprije će se pokazati odzivi sustava s PD regulatorom, a zatim s LQ regulatorom na temelju stanja estimiranih Kalmanovim filtrom. Simulink modeli korišteni kod simuliranja te MATLAB kod dani su u prilogu.

5.1 Odziv sustava PD regulatora

Najprije je napravljena simulacija odziva nelinearnog sustava s PD regulatorom sa sljedećim početnim uvjetima:

$$\boldsymbol{q} = \begin{bmatrix} \theta_s \\ \theta_t \\ \dot{\theta}_s \\ \dot{\theta}_t \end{bmatrix} = \begin{bmatrix} -20^\circ \\ 10^\circ \\ 0 \\ 0 \end{bmatrix}$$
(5.1)

te s ciljem stabilizacije kuteva u položaju 0.

Referentna veličina u simulacijama s PD regulatorom je zakret θ_{sref} , a kako bi se iz mjerenog izlaza sustava $\mathbf{y} = [\theta_k \ \theta]^T$ dobio traženi zakret θ_s korištena je linearna transformacija preko izraza:

$$\theta_s = \frac{r\theta_k - R_{su}\theta}{R_{sv}}$$

Model u Simulinku prikazan je u Prilogu III.

Iz grafa dolje vidljivo je kako PD regulator dovodi sustav u stabilan položaj, ali je sustav izrazito oscilatoran te je vrijeme smirivanja oko 20 s.

Slika 5.1. Odziv nelinearnog sustava s PD regulatorom s ciljem stabilizacije

Zatim se promatra pozicioniranje sustava u određenoj točki u nepomičnom koordinatnom sustavu. Kao što je i prije rečeno, ravnoteža u toj točki ostvarena je jedino ukoliko vrijedi $\theta_s = -\theta_t$.

Slika 5.2. Odziv nelinearnog sustava s PD regulatorom pri pozicioniranju

PD regulator, očekivano, dovodi upravljanu veličinu ka željenoj referenci, no radi to relativno sporo s vremenom porasta oko 5.5 s, prebačajem od 15% te vremenom smirivanja od oko 14 s. Na donjem grafu pokazana je usporedba linearnog i nelinearnog modela s PD regulatorom pri pozicioniranju. U ovom slučaju linije se poklapaju, pokazujući kako je, za ovaj slučaj, čak i za relativno velik zakret od 1 rad, tj. \approx 57,3°, sustav dobro opisan linearnim modelom.

Slika 5.3. Usporedba linearnog i nelinarnog modela kod pozicioniranja PD regulatorom

Zatim je napravljena simulacija praćenja sinusne referentne veličine:

$$\theta_{s_{ref}} = \sin(t)$$

Slika 5.4. Odziv nelinearnog modela s PD regulatorom kod praćenja sinusne referentne veličine Vidljivo je kako PD regulator ne uspijeva pratiti zadanu referencu.

Linearni i nelinearni model i u ovom slučaju se dobro poklapaju.

Slika 5.5. Usporedba linearnog i nelinearnog modela s PD regulatorom za sinusnu referencu

5.2 Odziv sustava LQ regulatora

Za iste početne uvjete (5.1) napravljena je simulacija nelinearnog sustava s LQ regulatorom.

Odziv nelinearnog sustava reguliranog LQ regulatorom

LQR stabilizira sustav puno brže od PD regulatora, tj. vrijeme smirivanja je oko 2 s te također nemamo izražene oscilacije sustava.

Do sada se šum mjerenja i šum u procesu nije razmatrao. Sada će se i njihov utjecaj dodati u model te će se na temelju mjerenog izlaza *y* varijable stanja estimirati Kalmanovim filterom pokazanim u poglavlju 4.3 te dalje dovoditi LQ regulatoru s pojačanjima pokazanim u poglavlju 4.2 s ciljem stabilnog praćenja referentnih vrijednosti. Najprije se pokazuju rezultati simulacije pozicioniranja.

Također, kako bi se pokazalo koliko se estimirano stanje Kalmanovog filtra poklapa s pravim stanjem sustava, tj. punim vektorom varijabli stanja bez mjernog šuma, iscrtane su estimirane kao i prave varijable stanja.

Kao što je definirano u poglavlju 3.7, mjeren je izlaz sustava $\mathbf{y} = [\theta_k \ \theta]^T$, takav zašumljeni izlaz sustava, uz ulaz u sustav u, ulazi su u Kalmanov filtar na temelju kojeg se prema algoritmu Kalmanovog filtra estimiraju varijable stanja sustava.

Slika 5.7. Zašumljeni mjereni signal izlaza sustava y, pri simulaciji pozicioniranja

Slika 5.8. Odziv nelinearnog sustava s LQ regulatorom pri pozicioniraju i usporedba pravih i estimiranih stanja

Iz odziva se vidi kako je LQ regulator doveo sustav u željenu poziciju u vrlo kratkom vremenu u usporedbi s PD regulatorom, s vremenom porasta oko 0.7 s te smirivanja oko 2 s. Također vidljivo je kako se pravo i estimirano stanje odlično poklapaju te da je Kalmanov filtar uspio ukloniti šum iz mjerenog signala.

Također na slici dolje vidljivo je kako se linearni i nelinearni model dobro poklapaju.

Slika 5.9. Usporedba linearnog i nelinearnog modela s LQ regulatorom

Sustav reguliran LQ regulatorom relativno dobro prati sinusnu referentnu veličinu u usporedbi s PD regulatorom unatoč regulacijskoj greški koja je prisutna.

6 ZAKLJUČAK

Nakon izvedenog matematičkog modela dinamike sfernog robota i sinteze PD i LQ regulatora te implementacije istih u MATLAB-u provedene su simulacije sustava na temelju kojih se mogu donesti određeni zaključci.

PD regulator uspijeva stabilizirati sustav u nultom položaju za proizvoljno dane početne uvjete, te također pokazuje zadovoljavajuće rezultate pri pozicioniraju sustava gdje sustav dovodi u referentnu vrijednost te stabilizira sustav. Nedostatak PD regulatora pokazao se u nešto sporijem odzivu, tj.vremenu smirivanja u obje prethodno navedene simulacije kao i oscilatornijem ponašanju sustava. Također, sustav reguliran PD regulatorom ne uspijeva pratiti sinusnu referencu.

Pri razmatranju LQ regulacije u sustav su dodani šum mjerenja te šum u procesu unutar modela, koje se u realnom sustavu ne bi moglo zanemariti. Na temelju estimiranih stanja dobivenih sintetiziranim Kalmanovim filtrom, LQ regulator uspješno stabilizira sustav u nultom položaju za zadane početne uvjete te dovodi varijable stanja u njihove referentne vrijednosti pri simulaciji pozicioniranja. Vrijeme smirivanja, u ovom slučaju, kao i vrijeme porasta bitno su manji u usporedbi s PD regulacijom. Pokazano je kako sintetizirani Kalmanov filtar vrlo dobro estimira varijable stanja te uklanja šum mjernog signala. Također, sustav reguliran LQ regulatorom na temelju estimiranih stanja prati sinusnu referencu, iako je prisutna regulacijska pogreška.

Usporedbom odziva linearnog i nelinearnog sustava pokazano je kako linearni model vrlo dobro opisuje nelinearnu dinamiku sustava te zbog toga su sintetizirani linearni regulatori uspješni kod regulacije pravog, nelinearnog modela.

LITERATURA

- [1] Crossley, Vincent A.: "A Literature Review on the Design of Spherical Rolling Robots", 2006.
- [2] W.-H. Chen, C.-P. Chen, J.-S. Tsai, J. Yang, and P.-C. Lin, "*Design and implementation of a ball-driven omnidirectional spherical robot*," Mechanism and Machine Theory, vol. 68, pp. 35-48, siječanj 2013.
- [3] A. Halme, J. Suomela, T. Schonberg, and Y. Wang, "A spherical mobile micro-robot for scientific applications," ESTEC, 1996.
- [4] Antol J., Kolacinski R., Minton D., Owens R., Parker J., "Low Cost Mars Surface Exploration: The Mars Tumbleweed," NASA, 2003.
- [5] Rotundus GroundBot spherical surveillance robot, <u>https://newatlas.com/rotundus-</u> groundbot/20259/, 30.7.2020
- [6] Sphero BB8, <u>https://sphero.com/pages/legacy-products</u>, 30.7.2020
- [7] Irwin D. J., "Mechanical Engineer's Handbook", Academic Press, 2001.
- [8] Cline, D., "Variational Principles in Classical Mechanics", University of Rochester, New York, 2017
- [9] Xue D., Chen Y., Atherton D., "Linear Feedback Control Analysis and Design with MATLAB", SIAM, 2007.
- [10] Cvok I., "Sinteza i usporedna analiza sustava regulacije vertikalne dinamike vozila uz primjenu aktivnog i poluaktivnog ovjesa", diplomski rad, Fakultet strojarstva i brodogradnje, Zagreb 2018.
- [11] Moore, J.B., Anderson, B., "Optimal Control Linear Quadratic Methods", PrenticeHall Inc., 1989.
- [12] Ž.Šitum, Materijali iz kolegija: Računalne simulacije, Fakultet strojarstva i brodogradnje, Zagreb, 2016.
- [13] Bryson AE, Ho YC. "Applied optimal control," Waltham (MA): Blaisdell Publishing Co, 1969.
- [14] Grewal, M., Andrews, A., "Kalman filtering: theory and practice using MATLAB", John Wiley and Sons, New York, 2001.
- [15] Simon, D., "Optimal state estimation", John Wiley and Sons, New Yersey, 2006.

- [16] Reid, I., "Estimation 2", <u>http://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf</u>, Oxford University, 2001., 30.7.2020.
- [17] Pavković D., "Procjena varijabli stanja automobilskog pogona s primjenama u regulaciji", doktorski rad, Fakultet strojarstva i brodogradnje, Zagreb, 2007.
- [18] A. Gelb, "Applied Optimal Estimation", MIT Press, 1974.

PRILOZI

- I. CD-R disc
- II. MATLAB kod
- III. Simulink modeli
- IV. Tehnička dokumentacija

PRILOG II.

MATLAB kod

```
%% DOBIVANJE MATEMATICKOG MODELA DINAMIKE ROBOTA
clc;
close all;
clear all;
%% Dobivanje jednadzbi Euler-Lagrange
syms R_sv R_su r R_cm I_s I_t m_t m_s g tau d1 d2
syms theta s(t) theta t(t) dtheta s(t) dtheta t(t) ddtheta s(t)
ddtheta_t(t) q1(t) q2(t)
syms q1j q2j dq1j dq2j d2q1 d2q2
% Kinematika
                        %položaj centra sfere po x osi
x_s = -theta_s*R_sv;
                         %brzina centra sfere u smjeru x osi
dx_s= -dtheta_s*R_sv;
x_t=x_s+R_cm*sin(theta_t+theta_s); %položaj centra mase tijela po x osi
y_t=R_sv - R_cm*cos(theta_t+theta_s); %položaj centra mase tijela po y
osi
dx_t=dx_s+R_cm*cos(theta_t+theta_s)*(dtheta_s+dtheta_t);
                                                             %brzina centra
mase tijela po x osi
dy_t=R_cm*sin(theta_s+theta_t)*(dtheta_s+dtheta_t); %brzina centra mase
tijela po y osi
% Kinetièka i potencijalna energija sfere
K = 1/2 m s dx s^2 + I s/2 dtheta s^2;
P s = m s^{*}q^{*}R sv;
% Kineticka i potencijalna energija tijela
K_t = m_t/2*(dx_t^2+dy_t^2)+I_t/2*(dtheta_t+dtheta_s)^2;
P_t = m_t g^* y_t;
% Suma energija i racunanje Lagrangiana
K=K_s+K_t;
P=P_s+P_t;
L=K-P;
% Rayleighova disipacijska funkcija (uvodi trenje u sustav)
D=1/2*(d1*dtheta_s^2 + d2*dtheta_t^2);
% Deriviranje po theta_s (q1)
dLddq1 = functionalDerivative(L, dtheta_s);
dDddq1 = functionalDerivative(D, dtheta_s);
ddLdtdq1 = diff(dLddq1,t);
dLdq1 = functionalDerivative(L, theta_s);
sol1 = simplify(ddLdtdq1-dLdq1+dDddq1);
```

Marko Matišić

```
Završni rad
```

```
sol1 = simplify(subs(sol1, [dtheta_s(t), dtheta_t(t)],[diff(theta_s(t), t),
diff(theta_t(t), t)]));
sol1 = subs(sol1, [theta_s, theta_t],[q1,q2]);
soll = collect(soll, [diff(ql(t), t, t), diff(q2(t), t, t), diff(ql(t),
t)^2,diff(q2(t), t)^2]);
                           %grupirani izraz
% Deriviranje po theta t (q2)
dLddq2 = functionalDerivative(L, dtheta_t);
dDddg2 = functionalDerivative(D, dtheta t);
ddLdtdq2 = diff(dLddq2,t);
dLdg2 =functionalDerivative(L, theta t);
sol2 = simplify(ddLdtdq2-dLdq2+dDddq2);
sol2 = simplify(subs(sol2, [dtheta_s(t), dtheta_t(t)],[diff(theta_s(t), t),
diff(theta_t(t), t)]));
sol2 = subs(sol2, [theta_s, theta_t],[q1,q2]);
sol2 = collect(sol2, [diff(q1(t), t, t), diff(q2(t), t, t), diff(q1(t),
t)^2,diff(q2(t), t)^2]);
                            %qrupirani izraz
% Jednadzbe zapisane u obliku M*ddq+h(q,dq)=qq*u
M=[(I_s + I_t + R_cm^2*m_t + R_sv^2*m_s + R_sv^2*m_t -
2*R_cm*R_sv*m_t*cos(q1(t) + q2(t))), (m_t*R_cm^2 - R_sv*m_t*cos(q1(t) +
q2(t))*R_cm + I_t);
    (m_t*R_cm^2 + R_sv*m_t*cos(q1(t) + q2(t))*R_cm + I_t),(m_t*R_cm^2 +
I_t)];
h=[R_cm*R_sv*m_t*sin(q1(t) + q2(t))*diff(q1(t), t)^2 +
R_cm^R_sv^m_t^sin(q1(t) + q2(t))^diff(q2(t), t)^2 +
2*R_cm*R_sv*m_t*sin(q1(t) + q2(t))*diff(q2(t), t)*diff(q1(t), t) +
R_cm*g*m_t*sin(q1(t) + q2(t))+d1*diff(q1(t), t);
    R_cm*g*m_t*sin(q1(t) + q2(t))+d2*diff(q2(t), t)];
gq=[0; -(R_su-R_cm)/r];
%% Linearizacija matricno. Dobivanje xdot=Ax+Bu jednadzbi
acc=M\(qq*tau-h); %jednadzbe ubrzanja
ddtheta_s=simplify(acc(1),'Steps',500);
ddtheta_t=simplify(acc(2),'Steps',500);
ddtheta_s=subs(ddtheta_s, [diff(q1(t), t), diff(q2(t), t), q1(t),
q2(t)],[dq1j, dq2j,q1j, q2j]);
ddtheta_t=subs(ddtheta_t, [diff(q1(t), t), diff(q2(t), t), q1(t),
q2(t)],[dq1j, dq2j,q1j, q2j]);
f=[dq1j;dq2j;ddtheta s;ddtheta t];
x=[q1j;q2j;dq1j;dq2j];
A=jacobian(f,x);
B=jacobian(f,tau);
A_linear=subs(A,[(q1j+q2j),dq1j,dq2j],[0,0,0]);
A_linear=simplify(A_linear,'Steps',500);
B_linear=subs(B,[(q1j+q2j), dq1j, dq2j],[0,0,0]);
%% IZRAZI POTREBNI ZA SIMULACIJE
clc
clear all
close all
```

```
Marko Matišić
```

```
%% Parametri
m_s=1.13;
m_t=2.5;
I t=0.015;
R sv=0.125;
R cm=0.05;
R su=0.120;
r = 0.05;
q = 9.81;
I_s= 2/3*m_s*R_sv^2;
d1=0.01;
d2=0.01;
%% A,B,C,D matrice prostora stanja
%s trenjem na diff(q1(t), t) i diff(q2(t), t)
A=[0,0,1,0;
    0,0,0,1;
    -(R_cm^2*R_sv*g*m_t^2)/(R_sv^2*(2*R_cm^2*m_t^2 + m_s*R_cm^2*m_t +
I_t*m_t + I_t*m_s) - R_sv*(2*R_cm^3*m_t^2 + 2*I_t*R_cm*m_t) + I_s*I_t +
I s*R cm^2*m t),
-(R_cm^2*R_sv*g*m_t^2)/(R_sv^2*(2*R_cm^2*m_t^2 + m_s*R_cm^2*m_t + I_t*m_t +
I_t*m_s) - R_sv*(2*R_cm^3*m_t^2 + 2*I_t*R_cm*m_t) + I_s*I_t +
I_s*R_cm^2*m_t),
                                                         -(d1*(m_t*R_cm^2 +
I_t))/(R_sv^2*(2*R_cm^2*m_t^2 + m_s*R_cm^2*m_t + I_t*m_t + I_t*m_s) -
R_sv*(2*R_cm^3*m_t^2 + 2*I_t*R_cm*m_t) + I_s*I_t + I_s*R_cm^2*m_t),
(I_t*d2 - d2*m_t*(- R_cm^2 + R_sv*R_cm))/(- 2*R_cm^3*R_sv*m_t^2 +
2*R_cm^2*R_sv^2*m_t^2 + m_s*R_cm^2*R_sv^2*m_t + I_s*R_cm^2*m_t -
2*I_t*R_cm*R_sv*m_t + I_t*R_sv^2*m_t + I_t*m_s*R_sv^2 + I_s*I_t);
    -(R_cm*g*m_t*(I_s + R_sv^2*m_s + R_sv^2*m_t - 3*R_cm*R_sv*m_t))/(-
2*R_cm^3*R_sv*m_t^2 + 2*R_cm^2*R_sv^2*m_t^2 + m_s*R_cm^2*R_sv^2*m_t +
I_s*R_cm^2*m_t - 2*I_t*R_cm*R_sv*m_t + I_t*R_sv^2*m_t + I_t*m_s*R_sv^2 +
I_s*I_t), -(R_cm*g*m_t*(I_s + R_sv^2*m_s + R_sv^2*m_t -
3*R_cm*R_sv*m_t))/(- 2*R_cm^3*R_sv*m_t^2 + 2*R_cm^2*R_sv^2*m_t^2 +
m_s*R_cm^2*R_sv^2*m_t + I_s*R_cm^2*m_t - 2*I_t*R_cm*R_sv*m_t +
I_t*R_sv^2*m_t + I_t*m_s*R_sv^2 + I_s*I_t), (I_t*d1 + d1*m_t*(R_cm^2 +
R_sv*R_cm))/(- 2*R_cm^3*R_sv*m_t^2 + 2*R_cm^2*R_sv^2*m_t^2 +
m_s*R_cm^2*R_sv^2*m_t + I_s*R_cm^2*m_t - 2*I_t*R_cm*R_sv*m_t +
I_t*R_sv^2*m_t + I_t*m_s*R_sv^2 + I_s*I_t), -(d2*(m_s*R_sv^2 + I_s + I_t) +
d2*m_t*(R_cm<sup>2</sup> - 2*R_cm<sup>*</sup>R_sv + R_sv<sup>2</sup>))/(- 2*R_cm<sup>3</sup>*R_sv<sup>*</sup>m_t<sup>2</sup> +
2*R_cm^2*R_sv^2*m_t^2 + m_s*R_cm^2*R_sv^2*m_t + I_s*R_cm^2*m_t -
2*I_t*R_cm*R_sv*m_t + I_t*R_sv^2*m_t + I_t*m_s*R_sv^2 + I_s*I_t)]
B=[0;
    0;
    -(2*R_cm^3*m_t + 2*I_t*R_cm - 2*I_t*R_su - 2*R_cm^2*R_su*m_t -
2*R_cm^2*R_sv*m_t + 2*R_cm*R_su*R_sv*m_t)/(r*(- 4*R_cm^3*R_sv*m_t^2 +
4*R cm^2*R sv^2*m t^2 + 2*m s*R cm^2*R sv^2*m t + 2*I s*R cm^2*m t -
4*I t*R cm*R sv*m t + 2*I t*R sv^2*m t + 2*I t*m s*R sv^2 + 2*I s*I t));
     (2*R cm^3*m t + 2*I s*R cm + 2*I t*R cm - 2*I s*R su - 2*I t*R su +
2*R_cm*R_sv^2*m_s - 2*R_cm^2*R_su*m_t + 2*R_cm*R_sv^2*m_t -
4*R_cm^2*R_sv*m_t - 2*R_su*R_sv^2*m_s - 2*R_su*R_sv^2*m_t +
4*R_cm*R_su*R_sv*m_t)/(r*(- 4*R_cm^3*R_sv*m_t^2 + 4*R_cm^2*R_sv^2*m_t^2 +
2*m_s*R_cm^2*R_sv^2*m_t + 2*I_s*R_cm^2*m_t - 4*I_t*R_cm*R_sv*m_t +
2*I_t*R_sv^2*m_t + 2*I_t*m_s*R_sv^2 + 2*I_s*I_t))]
C=[(R_sv+R_su)/r R_su/r 0 0;1 1 0 0];
D=[0;0];
%% LQR
Q=diag([10 10 1 1]);
R=1;
K = lqr(A, B, Q, R)
```

```
%% Pocetni uvjeti i referenca
y0=[0;0;0;0]*pi/180;
                      % pocetni uvjeti
y_T_ref=[1;0;0;0]; % referenca u [x;theta;dx;dtheta] k.s.
T=[-R_sv 0 0 0;1 1 0 0;0 0 -R_sv 0;0 0 1 1]; % matrica transformacije iz
[x;theta;dx;dtheta] u [theta_s;theta_t;dtheta_s;dtheta_t]
                      % referenca u [theta_s;theta_t;dtheta_s;dtheta_t]
yref=inv(T)*y_T_ref;
k.s.
yref=[1 -1 0 0]
%% Kalmanov filtar i varijable za poremecaj u sustavu i šum mjerenja
%Za matricu kovarijanci procesa
0=0.02;
%Za matricu kovarijanci mjerenja
R=0.01;
%Vrijeme uzrokovanja
Ts=0.01;
%% PLOTANJE REZULTATA IZ SIMULINKA
clc; close all
%%%%%% Open loop simulacije %%%%%%
%theta s
figure(1)
plot(olsim(:,9), olsim(:,1), 'b', olsim(:,9), olsim(:,5), '--r', 'Linewidth',2)
title({'Odziv otvorenog kruga linearnog i nelinearnog modela', 'za
legend('\theta_s - lin.','\theta_s - nelin.')
xlabel('t [s]')
ylabel('Zakret \theta_s [°] ')
grid on
hold on
%theta_t
figure(2)
plot(olsim(:,9), olsim(:,2),'b',olsim(:,9),olsim(:,6),'--r','Linewidth',2)
title({'Odziv otvorenog kruga linearnog i nelinearnog modela', 'za
\pm t^{+}
legend('\theta_t - lin.','\theta_t - nelin.')
xlabel('t [s]')
ylabel('Zakret \theta_t [°] ')
grid on
hold on
%% %%%%%% PID %%%%%%
close all; clc
%%%%% pozicioniranje %%%%%%
%%%%%% linearni %%%%%%
figure(1)
plot(pdlinpoz(:,6), pdlinpoz(:,1), 'b', pdlinpoz(:,6), pdlinpoz(:,2),'r')
hold on
plot(pdlinpoz(:,6), pdlinpoz(:,5),'--k')
title({'Odziv linearnog sustava reguliran ', 'PD regulatorom'})
legend('\theta_s','\theta_t','\theta_s referenca')
xlabel('t [s]')
ylabel('Zakreti \theta_s i \theta_t [rad] ')
```

Marko Matišić

```
grid on
```

```
%%%%%% nelinearni %%%%%%
figure(2)
plot(pdnelinpoz(:,6), pdnelinpoz(:,1), 'b', pdnelinpoz(:,6),
pdnelinpoz(:,2),'r')
hold on
plot(pdnelinpoz(:,6), pdnelinpoz(:,5),'--k')
title({'Odziv nelinearnog sustava reguliran ', 'PD regulatorom'})
legend('\theta_s','\theta_t','\theta_s referenca','Location','best')
xlabel('t [s]')
ylabel('Zakreti \theta_s i \theta_t [rad] ')
grid on
hold on
%%%%% usporedba %%%%%%
figure(3)
plot(pdlinpoz(:,6), pdlinpoz(:,1), 'b', pdnelinpoz(:,6), pdnelinpoz(:,1),'-
-r')
hold on
plot(pdnelinpoz(:,6), pdnelinpoz(:,5),'--k')
title({'Usporedba linearnog i nelinearnog modela ', 's PD regulatorom'})
legend('\theta_s - linearni','\theta_s -
nelinearni', 'referenca', 'Location', 'best')
xlabel('t [s]')
ylabel('Zakreti [rad] ')
grid on
hold on
%%%%%% pracenje sinusne trajektorije %%%%%%
%%%%%% linearni %%%%%%
figure(4)
plot(pdlinsin(:,6), pdlinsin(:,1), 'b')
hold on
plot(pdlinsin(:,6), pdlinsin(:,5),'--k')
title({'Odziv linearnog sustava reguliranog ', 'PD regulatorom'})
legend('\theta_s','referenca')
xlabel('t [s]')
ylabel('Zakret \theta_s [rad] ')
grid on
%%%%%% nelinearni %%%%%%
figure(5)
plot(pdnelinsin(:,6), pdnelinsin(:,1), 'b')
hold on
plot(pdnelinsin(:,6), pdnelinsin(:,5),'--k')
title({'Odziv nelinearnog sustava reguliranog ', 'PD regulatorom'})
%legend('\theta_s','\theta_t','\theta_s referenca')
legend('\theta_s','referenca')
xlabel('t [s]')
ylabel('Zakret \theta_s [rad] ')
grid on
%%%%%% usporedba lin i nelin %%%%%%
figure(1)
plot(pdlinsin(:,6), pdlinsin(:,1), 'b', pdnelinsin(:,6), pdnelinsin(:,1), '--
r')
hold on
plot(pdnelinsin(:,6), pdnelinsin(:,5),'--k')
```

```
Marko Matišić
```

```
Završni rad
```

```
title({'Usporedba linearnog i nelinearnog modela s ', 'PD regulatorom'})
legend('\theta_s - linearni','\theta_s - nelinearni','referenca')
xlabel('t [s]')
% ylabel('Zakreti \theta_s i \theta_t [rad] ')
ylabel('Zakret [rad] ')
grid on
%%
%%%%%% uklanjanje poremecaja %%%%%%
figure(6)
plot(pdnelindist(:,6),pdnelindist(:,1),pdnelindist(:,6),pdnelindist(:,2))
hold on
plot(pdnelindist(:,6),pdnelindist(:,5),'--k')
title({'Odziv nelinearnog sustava reguliranog PD regulatorom'})
legend('\theta_s','\theta_t',' referenca')
xlabel('t [s]')
ylabel('Zakret [rad] ')
grid on
%% Polovi otvorenog sustava i s LQR regulatorom
%otvoreni sustav
figure(1)
sysol=ss(A,B,C,D);
poles1=eig(A)
pzmap(sysol)
%zatvoreni sustav
figure(2)
syscl=ss([A-B*K],B,C,D);
poles2=eig([A-B*K])
pzmap(syscl)
grid on
%% LOG
close all; clc
%pozicioniranje
%%%%%% linearni %%%%%%
figure(1) %usporedba full-state i estimiranog stanja KF-a
plot(lqglinpozfs(:,9), lqglinpozfs(:,1), 'b', lqglinpozlqg(:,9),
lqglinpozlqg(:,1),'r')
hold on
plot(lqglinpozfs(:,9), lqglinpozfs(:,5),'--k')
title({'Odziv linearnog sustava sa šumom reguliranog', 'LQ regulatorom i
usporedba pravog i estimiranog stanja'})
legend('\theta_s - pravo stanje','\theta_s - estimirano stanje','
referenca')
xlabel('t [s]')
ylabel('Zakret \theta_s [rad] ')
grid on
figure(2)
          %sva stanja estimirana
plot(lqglinpozlqg(:,9), lqglinpozlqg(:,1),'r',lqglinpozlqg(:,9),
lqglinpozlqg(:,2),'b',lqglinpozlqg(:,9),
lqglinpozlqg(:,3),'g',lqglinpozlqg(:,9), lqglinpozlqg(:,4),'y')
hold on
plot(lqglinpozfs(:,9), lqglinpozfs(:,5),'--k',lqglinpozfs(:,9),
lqglinpozfs(:,6),'--k')
title({'Odziv linearnog sustava sa šumom reguliranog', 'LQ regulatorom'})
```

Marko Matišić

```
Završni rad
```

```
hl=legend('${\theta}_{s}', '${\theta}_{t}', '$\dot{\theta}_{s}', '$\do
eta}_{t}$',' referenca')
xlabel('t [s]')
ylabel('Odziv [rad] i [rad/s] ')
grid on
set(hl, 'Interpreter', 'latex');
%%%%%% nelinearni %%%%%%
figure(3) %usporedba full-state i estimiranog stanja KF-a
plot(lqgnelinpozlqg(1:500,9),
lqgnelinpozlqg(1:500,1),'r',lqgnelinpozlqg(1:500,9),
lqgnelinpozlqg(1:500,2),'b')
hold on
plot(lqgnelinpozfs(1:500,9), lqgnelinpozfs(1:500,1),'--
g',lqgnelinpozfs(1:500,9), lqgnelinpozfs(1:500,2),'--y')
hold on
plot(lqgnelinpozfs(1:500,9), lqgnelinpozfs(1:500,5),'--
k',lqgnelinpozfs(1:500,9), lqgnelinpozfs(1:500,6),'--k')
title({'Odziv nelinearnog sustava sa šumom reguliranog', 'LQ regulatorom i
usporedba pravog i estimiranog stanja'})
legend('\theta_s - estimacija','\theta_t - estimacija','\theta_s - pravo
stanje','\theta_t - pravo stanje' ,'referenca','Location','best')
xlabel('t [s]')
ylabel('Zakret[rad] '),
grid on
figure(4)
                                  %sva stanja estimirana
plot(lqgnelinpozlqg(:,9), lqgnelinpozlqg(:,1),'r',lqgnelinpozlqg(:,9),
lqgnelinpozlqg(:,2), 'b', lqgnelinpozlqg(:,9),
lqgnelinpozlqg(:,3),'g',lqgnelinpozlqg(:,9), lqgnelinpozlqg(:,4),'y')
hold on
plot(lqgnelinpozfs(:,9), lqgnelinpozfs(:,5),'--k',lqgnelinpozfs(:,9),
lqgnelinpozfs(:,6),'--k')
title({'Odziv nelinearnog sustava sa šumom reguliranog', 'LQ regulatorom'})
hl=legend('${\theta}_{s}', '${\theta}_{t}', '$\dot{\theta}_{s}', '$\do
eta}_{t}$',' referenca')
xlabel('t [s]')
ylabel('Odziv [rad] i [rad/s] ')
grid on
set(hl, 'Interpreter', 'latex');
%%%%%% usporedba lin i nelin %%%%%%
figure(1)
plot(lqglinpozlqg(1:500,9),
lqglinpozlqg(1:500,1),'b',lqgnelinpozlqg(1:500,9),
lqgnelinpozlqg(1:500,1),'--r')
hold on
plot(lqgnelinpozfs(1:500,9), lqgnelinpozfs(1:500,5),'--k')
title({'Usporedba linearnog i nelinearnog modela s', 'LQ regulatorom'})
legend('\theta_s - linearni','\theta_s -
nelinearni', 'referenca', 'Location', 'best')
xlabel('t [s]')
ylabel('Zakret[rad] '),
grid on
%%%%% pracenje sinusne trajektorije %%%%%
```

%%%%%% nelinearni %%%%%%

```
Završni rad
```

```
Marko Matišić
```

```
figure(5)
plot(lqgnelinsinlqg(:,9), lqgnelinsinlqg(:,1),'r',lqgnelinsinfs(:,9),
lqgnelinsinfs(:,1),'--g')
hold on
plot(lqgnelinsinfs(:,9), lqgnelinsinfs(:,5),'--k')
title({'Odziv nelinearnog sustava sa šumom reguliranog', 'LQ regulatorom i
usporedba pravog i estimiranog stanja'})
legend('\theta_s - pravo stanje','\theta_s - estimirano stanje','
referenca')
xlabel('t [s]')
ylabel('Zakret \theta_s [rad] ')
grid on
%%%%%%% uklanjanje poremecaja %%%%%%
figure(6)
plot(lqgnelindist(1:500,9),lqgnelindist(1:500,1),lqgnelindist(1:500,9),lqgn
elindist(1:500,2))
hold on
plot(lqgnelindist(1:500,9),lqgnelindist(1:500,8),'--k')
title({'Odziv nelinearnog sustava reguliranog LQ regulatorom'})
legend('\theta_s','\theta_t',' referenca')
xlabel('t [s]')
ylabel('Zakret [rad] ')
grid on
%%%%%%% zasumljeni ulaz %%%%%%
figure(1)
plot(lqglin(:,9), meas(:,1),lqglin(:,9), meas(:,2))
title('Zašumljeni mjereni signal y - ulaz u Kalmanov filtar')
ylabel('\theta_k , \theta - mjereno [rad]')
xlabel('t [s]')
legend('\theta_k','\theta')
grid on
```

PRILOG III.

1. Simulacija otvorenog kruga

2. Linearni model s PD regulatorom

3. Nelinearni model s PD regulatorom

4. Linearni model s LQR i Kalmanovim filterom

5. Nelinearni model s LQR i Kalmanovim filterom

8		9	10	11		12	
,©,							
\sim							
$\nearrow \setminus /$							
70, X							
·							
Ť							
	215						
		18 Uskoči	nik DIN 471 6 A2	6 DIN 471	1/1400-55		
		16 Le	žaj W 618/6	2 150 53:1998	16MnCr5	SKF	
		15 Pok	Kopac ležaja Kotač	2	S235 Al 6061		
0		13 Na 12 Čeoni	vlaka kotača zupčanik 1M 34T	2	NBR		
		12 Ceon	/ijak <u>M3 x 8</u>	8 DIN 912	16/011013		
N		10 <u>M</u> 9 Maxo	axon RE 30 n DEC Module	2		Maxon Maxon	
			Arduino Uno	1			
A Contraction of the second seco		6 N	MPU 6050	1	0005		
To the second se		5 Oc 4	<u>sstojnik kucista</u> Kućište	1	S235 Al 6061		
		3 V	ijak M3 x 5 Svorniak	6 DIN 912	\$235		
			mni-wheel	l [[]		Sirova dimonstia	
		Poz. Broi paziva - codo	Naziv dijela 🕴 🗌 Datum	Kom. Norma	Materijal Potnis		Masa
			Projektirao 24.07.2020 Razradio 24.07.2020	Marko Matišić Marko Matišić		FSB 7a	areh
			Crtao 24.07.2020 Pregledao	Marko Matišić			J. 20
		ISO – tolerancije	Objekt:		Obiekt hroi [.]		
		Ø 6H7/r6 -0,02	03 23		R. N. broj:		
ĝ <i>((©))</i>			Napomena:	1		K	opija
			Materijal:	Masa: 2,5 kg			
			Missila Maziv:			A Pozicija: Form	nat: A2
			1 · 1			Listo	ova: 1
				ž broj: 2020-00	1-01	List:	1
	\vee		(0 10 20 30	40 50	60 70 80	90