Projektiranje i usporedna simulacijska analiza rezonantnih regulatora za inverter spojen na jednofaznu izmjeničnu mrežu

Pirović, Cvita

Undergraduate thesis / Završni rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:629746

Rights / Prava: Attribution 4.0 International/Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-02-04

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Cvita Pirović

Zagreb, 2020.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentori:

Dr. sc. Danijel Pavković, dipl. ing.

Cvita Pirović

Student:

Zagreb, 2020.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru dr.sc. Danijelu Pavkoviću na predloženoj temi za završni rad i pruženoj pomoći pri izradi istog.

Također velike zahvale prije svega mojoj majci na neizmjernoj ljubavi i potpori tijekom cijelog školovanja, a i svim mojim prijateljima koji su bili tu za mene tijekom cijelog ovog razdoblja i učinili ga lakšim i ljepšim.

Cvita Pirović

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne ispite studija strojarstva za smjerove: proizvodno inženjerstvo, računalno inženjerstvo, industrijsko inženjerstvo i menadžment, inženjerstvo

materijala i mehatronika i robotika

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje		
Datum:	Prilog:	
Klasa: 602 - 04 / 20 - 6 / 3		
Ur. broj: 15 - 1703 - 20 -		

ZAVRŠNI ZADATAK

Student:

Cvita Pirović

Mat. br.: 0035204366

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku: Opis zadatka:

Projektiranje i usporedna simulacijska analiza rezonantnih regulatora za inverter spojen na jednofaznu izmjeničnu mrežu Design and comparative analysis of resonant controllers for an inverter connected to a single-phase alternating current grid

U novije vrijeme sve je atraktivnija primjena jednofaznih frekvencijskih pretvarača spojenih na mrežu u sklopu kućanstava i drugih malih potrošača koji raspolažu alternativnim izvorima energije kao što su fotonaponski paneli. Međutim, u slučaju viška proizvodnje s fotonaponskih panela dio energije je potrebno preusmjeriti u jednofaznu mrežu, za što se u praksi koriste jednofazni frekvencijski pretvarači (inverteri) opremljeni odgovarajućim sustavima za sinkronizaciju prema mreži i regulatorima struje i isporučene snage. U radu je potrebno:

1. Ukratko opisati sustav energetske elektronike jednofaznog frekvencijskog pretvarača (invertera) napajanog istosmjernim naponom sa fotonaponskih panela i princip sklopnog djelovanja primjenom pulsno-širinske modulacije (PWM)

2. Dati matematički model invertera pogodan za primjene u dizajnu regulacijskog sustava, te modele drugih ključnih sustava kao što je mrežni LCL filtar za prigušivanje efekata sklopnog (PWM) djelovanja invertera.

Opisati sustav za sinkronizaciju invertera prema mreži primjenom principa fazno-zaključane petlje (PLL)
 Dati matematičke modele rezonantnih regulatora, kao što su proporcionalno-rezonancijski (PR), proporcionalno-integralno-rezonancijski (PI-R) i proporcionalno-integralno-derivacijsko-rezonancijski (PID-R), te provesti postupak njihove sinteze primjenom kriterija optimuma dvostrukog odnosa, uzevši pritom u obzir pojednostavljenu dinamiku LCL mrežnog filtra u formi R-L člana prvog reda

5. Provesti usporednu simulacijsku analizu predloženih regulatora i navesti njihove prednosti i nedostatke.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan: 15. svibnja 2020. Zadatak zadao: Datum predaje rada: 2. rok (izvanredni): 1. srpnja 2020. 3. rok: 17. rujna 2020. Predviđeni datumi obrane: 2. rok (izvanredni): 3.7.2020. 3. rok: 21.9. - 25.9.2020.

Predsjednik Povjerenstva:

Izv. prof. dr. sc. Danijel Pavković

Prof. dr. sc. Branko Bauer

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA	Ι
POPIS TABLICAII	Ι
POPIS OZNAKA	V
SAŽETAKV	Ι
SUMMARYVI	Ι
1. UVOD	1
2. PROCESNI MODEL	2
2.1. Općenito o pretvaračima	2
2.2. Analiza rada jednofaznog frekvencijskog pretvarača	2
2.3. Primjena pulsno-širinske modulacije (PMW)	3
2.4. Model jednofaznog frekvencijskog pretvarača	5
2.5. Proračun parametara LCL filtra	5
3. SINKRONIZACIJA S MREŽOM	8
3.1. Osnove o principu rada PLL-a	8
3.2. PLL s modificiranim faznim detektorom	9
3.3. SOGI estimator	1
3.4. SOGI MMPD za sinkronizaciju invertera	2
4. REGULACIJA STRUJE	6
4.1. PR regulator	б
4.2. PI-R regulator	7
4.3. PID-R regulator	9
5. REZULTATI SIMULACIJA	1
6. ZAKLJUČAK	4
LITERATURA	5
PRILOZI	6

POPIS SLIKA

Slika 1.	Shema jednofaznog frekvencijskog invertera [1]2
Slika 2.	Princip rada H-mosta [2]
Slika 3.	Blok dijagram generatora trokutastog signala [3]4
Slika 4.	Blok dijagram upravljanja frekvencijskim pretvaračem [2]4
Slika 5.	Generiranje izlaznog napona pretvarača [2]5
Slika 6.	Blok dijagram LCL filtra [4]5
Slika 7.	Osnovni blok dijagram PLL [2]8
Slika 8.	Struktura MMPD PLL estimatora frekvencije [2]9
Slika 9.	Blok dijagram lineariziranog MMPD PLL estimatora frekvencije [3]11
Slika 10.	Blok dijagram SOGI estimatora [2]12
Slika 11.	Blok dijagram SOGI MMPD PLL estimatora frekvencije i amplitude [2]13
Slika 12.	Estimacija signala14
Slika 13.	Estimacija frekvencije14
Slika 14.	Estimacija amplitude15
Slika 15.	Regulacijski krug struje sa PR regulatorom16
Slika 16.	Regulacijski krug struje sa PI-R regulatorom18
Slika 17.	Regulacijski krug struje sa PID-R regulatorom19
Slika 18.	Regulacija struje sa PR regulatorom
Slika 19.	Regulacije struje sa PI-R regulatorom
Slika 20.	Regulacija struje sa PID-R regulatorom

POPIS TABLICA

Tablica 1.	Parametri za regulaciju struje invertera	. 21

POPIS OZNAKA

Jedinica	Opis
Hz	sklopna frekvencija PWM-a
	prijenosna funkcija LCL filtra
Н	ulazni induktivitet LCL filtra
Н	izlazni induktivitet LCL filtra
Ω	ulazni otpor LCL filtra
Ω	izlazna otpor LCL filtra
	pojačanje LCL filtra
S	vremenska konstanta LCL filtra
V	napon DC sabirnice pretvarača
А	maksimlana varijacija struje
	relativni odnos induktiviteta
F	kapacitet kondenzatora u LCL filtru
	relativni udio snage P_{grid}
W	snaga koja se prenosi filtrom
Hz	frekvencija napona mreže
V	amplituda faznog napona mreže
Hz	rezonancijska frekvencija LCL filtra
Ω	serijski spojen otpor u LCL filtru
	faktor prigušenja rezonacijskog člana
	odstupanje na ulazu u fazni komparator
rad	razlika u fazi signala
rad/s	estimirana frekvencija
	faza ulaznog signala
	faza izlaznog signala
	pogreška slijeđenja
	pojačanje lineariziranog modela detektora faze
	karakteristični polinom optimuma dvostrukog odnosa
S	ekvivalenta vremenska konstanta
	karakteristični odnos
	Jedinica Hz H H Ω Ω S V A F W Hz V Hz Ω rad rad/s

Cvita Pirović		Završni rad
$A_{PLL}(s)$		karakteristični polinom zatvorenog regulacijskog kruga
T_{Σ}	S	parazitna vremenska konstanta
K _{CPLL}		proporcionalno pojačanje MMPD PLL
T _{CPLL}	S	integracijska vremenska konstanta MMPD PLL
K_I		korekcijsko pojačanje estimatora
ζest		faktor prigušenja
<i>u</i> _{2,norm}	V	normirana amplituda napona estimatora
<i>u</i> _{2,d}	V	direktna komponenta signala
$u_{2,q}$	V	ortogonalna komponenta signala
$G_{PR}\left(s ight)$		prijenosna funkcija PR regulatora
K_P		proporcionalno pojačanje PR regulatora
K_R		rezonatno pojačanje PR regulatora
$A_{PR}\left(s\right)$		karakteristični polinom reg. kruga sa PR regulatorom
$G_{par}(s)$		prijenosna funkcija parazitnog člana
$T_{\Sigma heta}$	S	vremenska konstanta
$G_{PIR}(s)$		prijenosna funkcija PI-R regulatora
K_{Pi}		proporcionalno pojačanje PI-R regulatora
T_I	S	integracijska vremenska konstanta
K_{Rid}		rezonantno pojačanje PI-R regulatora
$A_{PIR}(s)$		karakteristični polinom reg. kruga sa PI-R regulatorom
$G_{PIDR}\left(s ight)$		prijenosna funkcija PID-R regulatora
K_{Pid}		proporcionalno pojačanje PID-R regulatora
K_{Rid}		rezonantno pojačanje PID-R regulatora
T_i	S	integracijska vremenska konstanta PID-R regulatora
T_D	S	derivacijska vremenska konstanta PID-R regulatora
$A_{PIDR}\left(s\right)$		karakteristični polinom reg. kruga sa PID-R regulatorom

SAŽETAK

U ovom radu prikazana je regulacije struje jednofaznog frekvencijskog pretvarača u svrhu potiskivanja istosmjerne komponente struje. Za regulaciju struje projektirane su različite izvedbe rezonatnih regulatora, kao što su PR, PI-R i PID-R čija sinteza je provedena po kriteriju optimuma dvostrukog odnosa. Jednofazni frekvencijski pretvarač opremljen je LCL filtrom preko kojeg je povezan s mrežom, a čija zadaća je između ostalog i smanjenje perturbacija u izlaznoj struji. Prije spajanja sa samom mrežom potrebno je pretvarač sinkronizirati s mrežom, a u ovom radu bit će opisan sustav za sinkronizaciju temeljen na principu fazno-zaključane petlje sa modificiranim faznim detektorom i SOGI estimatorom temeljne komponente napona.

Ključne riječi: jednofazni frekvencijski pretvarač, PR regulator, PI-R regulator, PID-R regulator, LCL filtar, sinkronizacija

SUMMARY

This work present current control system for a single-phase AC inverter which for the purpose of suppression DC current component. For current control, different designes of resonant cotroller are designed here, such as proportional-resonant controller, proportional-integral-resonant controller, proporcional-integral-derivative-resonant controller, which are designed according to the damping optimum criterion. A single-phase grid-tied inverter is equipped with a LCL grid-side filter, which is used for reducing perturbation of output current. Before connecting with grid, single-phase gried-tied inverter need to be synchronizade with the grid, and in this work is presented grid synchronization algorithm based on Modified Mixer Phase Detector Phase-Locked Loop and Second-Order Generalized Integrator.

Key words: single-phase gried-tied inverter, proportional-resonant controller, proportionalintegral-resonant controller, proporcional-integral-derivative-resonant controller, LCL filter, synchronization

1. UVOD

U današnje vrijeme mnoga kućanstva ili neki drugi potrošači koriste Sunčevu energiju kao glavni izvor električne energije. Sama pretvorba Sunčeve energije u električnu odvija se u fotonaponskim panelima. U slučaju da dođe do viška proizvodnje potrebno je dio energije prebaciti s fotonaponskim panela u jednofaznu mrežu što zahtijeva korištenje jednofaznih frekvencijskih pretvarača koji moraju imati sklopove za sinkronizaciju s tom mrežom. Glavna zadaća frekvencijskog pretvarača je da pretvara istosmjernu struju u izmjeničnu struju koja se koristi za sve naše instalacije. Jedan od glavnih problema pretvarača je pojava istosmjerne komponente struje koji se pokušava riješiti upotrebom rezonatnih regulatora i u ovom radu opisane su različite izvedbe rezonatnih regulatora i dana njihova simulacijska analiza.

Rad je organiziran na sljedeći način:

U 2. poglavlju opisan je sustav energetske elektronike jednofaznog frekvencijskog pretvarača i princip djelovanja sklopnog djelovanja primjenom pulsno-širinske modulacije, te dan matematički model LCL filtra i definirani njegovi parametri.

U 3. poglavlju opisan je sustav za sinkronizaciju invertera prema mreži primjenom PLL-a.

U 4. poglavlju dani su matematički modeli PR, PI-R i PID-R regulatora te proveden postupak njihove sinteze primjenom dobro poznatog kriterija dvostrukog odnosa.

U 5.poglavlju prikazana je simulacijska analiza korištenih regulatora.

U 6.poglavlju dan je konačni zaključak cjelokupnog rada.

2. PROCESNI MODEL

2.1. Općenito o pretvaračima

Pretvarač (inverter) je uređaj učinske elektronike koji povezuje istosmjerni i izmjenični upravljački sustav, pri čemu je energija usmjerena iz istosmjernog sustava prema izmjeničnom. Postoje izmjenjivači koji stvaraju vlastitu autonomnu izmjeničnu mrežu 230 V, 50 Hz i oni se nazivaju autonomni inverteri. Inverteri mogu biti spojeni i na postojeću javnu mrežu, no tada moraju biti opremljeni sklopovima za sinkronizacija s javnom mrežom. Takvi inverteri se nazivaju mrežni inverteri i dalje u ovom radu ćemo se baviti takvim inverterom.

2.2. Analiza rada jednofaznog frekvencijskog pretvarača

Električni krug jednofaznog frekvencijskog pretvarača prikazan je na Slika 1. Sastoji se od četverokvadratnog H-mosta na čiji izlaz je spojen LCL filtar koji se koristi za smanjenje udjela viših harmonika koje nastaju uslijed pulsno–širinske modulacije i za smanjenje perturbacija u izlaznoj struji pretvarača.

Slika 1. Shema jednofaznog frekvencijskog invertera [1]

Princip rada H-mosta ilustriran je na Slika 2.:

- Uključivanjem tranzistora T_1 i T_1 , ili ako vode diode D_1 i D_1 , između točaka x i y dovodi se pozitivni napon istosmjernog međukruga ($U_{xy} = +U_b$).
- Uključivanjem tranzistora T₂ i T₂', ili ako vode diode D₂ i D₂', dovodi se negativni napon istomjernog međukruga (U_{xy} = -U_b) prema mreži.

Pretpostavlja se da su sve diode i tranzistori idealni, što znači da kada vode na njima nema pada napona.

Slika 2. Princip rada H-mosta [2]

Isključivanjem jednog para tranzistora, došlo bi do prekidanja strujnog kruga, što može biti vrlo nepovoljno jer se u strujnom krugu nalazi zavojnica (induktivitet izlazne prigušnice). Da protunapon zavojnice ne bi oštetio tranzistore, tranzistorima se dodaju protuparalelno spojene diode. Pri isključivanju para tranzistora T_1 i T_1 , provest će diode D_2 i D_2 , protuparalelno spojene drugom paru tranzistora T_2 i T_2 . Te diode (tzv. "Flywheeling" diode) bit će propusno polarizirane za dani smjer struje armature te će omogućiti nastavak tijeka struje, privodeći tako negativni polaritet napona DC međukruga prema mrežnom naponu.

2.3. Primjena pulsno-širinske modulacije (PMW)

Kako bi se smanjile harmonijske distorzije u izlaznom naponu koristimo se pulsno-širinskom modulacijom (engl. *Pulse-Width-Modulated*, PWM) valnog oblika napona jednofaznog frekvencijskog pretvarača. Osnovna ideja pulsno-širinske modulacije je generiranje pravokutnih signala koji u jednom periodu imaju istu površinu kao i ekvivalentni sinusni napon. Za generiranje pravokutnih signala koristi se trokutasti napon visoke frekvencije. Slika 3. predstavlja načelni blokovski prikaz generatora trokutastog signala koji se sastoji od digitalnog integratora i logike prekapčanja.

Slika 3. Blok dijagram generatora trokutastog signala [3]

Ulazi -1 i 1 se preko releja uključuju i isključuju ovisno o tome je li izlaz integratora postigao vrijednost +1 ili -1, te se na taj način invertira predznak ulaznog signala u integrator, čime se konačno generira željeni trokutasti signal. U svrhu upravljanja izlaznim naponom pretvarača trokutasti napon se uspoređuje s generiranom referentnom vrijednosti sinusoidalnog signala. Točke presjeka sinusnog signala i signala nosioca (PWM-a) određuju trenutke okidanja pojedinih parova poluvodičkih sklopki u H-mostu. Na Slika 4. prikazan je način rada navedenog sklopa. Pretpostavka je da se napon mreže ne mijenja značajno tijekom jednog perioda PWM moduliranog napona pretvarača, što je ispunjeno ako je sklopna frekvencija puno veća od frekvencije mreže. Sklopna frekvencija f_{PWM} je tipično u rasponu od 1 kHz do 16 kHz, što je sigurno puno veće od frekvencije napona mreže koja je 50 Hz

Slika 4. Blok dijagram upravljanja frekvencijskim pretvaračem [2]

Logika generiranja PWM upravljačkog signala temelji se na razlici napona $u_R(t)$ i u_{PWM} . Ukoliko je razlika pozitivna tada vode tranzistori T₁ i T₁, a kada je razlika negativna vode tranzistori T_2 i T_2 . Na Slika 5. prikazani su valni oblici referentnog napona, trokutastog napona i okidni signali pojedinih grana H-mosta.

Slika 5. Generiranje izlaznog napona pretvarača [2]

2.4. Model jednofaznog frekvencijskog pretvarača

Model jednofaznog frekvencijskog pretvarača s obzirom da je sastavljen od H-mosta i LCL filtra temelji se na modelu LCL filtra. Jedna od zadaća LCL filtra je gušenje viših harmonika napona invertera nastalih uslijed PWM sklopnog djelovanja, osim toga sam inverter je upravo preko LCL filtra spojen na mrežu na koju je potrebno prebaciti višak energije. LCL filtra se koristi za mrežnu vezu kao jeftinija varijanta od jednostavnijeg L filtra jer za postizanje istog efekta gušenja harmonika mogu koristiti zavojnice manjeg induktiviteta. Inače dinamički model LCL filtra je sustav trećeg reda, jer se fitlar sastoji od 3 spremnika energije (odnosno dvije serijske prigušnice i jednog paralelnog kondenzatora). Na Slika 6. prikazan je blok dijagram LCL filtra.

Slika 6. Blok dijagram LCL filtra [4]

U praktičnim primjenama kapacitivna grana predstavlja zanemarivo optećerenje, pa dobivamo pojednostavljeni model čija prijenosna funkcija odgovora prijenosnom članu s kašnjenjem prvog reda i glasi :

$$G_f(s) = \frac{i_1(s)}{u_1(s)} = \frac{1}{L_f s + R_f} = \frac{K_f}{T_f s + 1},$$
(1)

gdje je $L_f = L_{1f} + L_{2f}$, $R_f = R_{1f} + R_{2f}$, a pojačanje filtera i vremenska konstanta jednaki su $K_f = 1/R_f$ i $T_f = L_f/R_f$.

Ovaj pojednostavljeni linearni model LCL filtra vrijedi samo u relativno uskom rasponu trenutačne izlazne struje pretvarača zbog promjenjivosti permeabilnosti (propusnosti) feritnih jezgara prigušnice koje se uglavnom koriste u ovakvim primjenama.

2.5. Proračun parametara LCL filtra

LCL filtar dobro prigušuje mreškanja izlazne struje čak i s malim vrijednostima induktiviteta, međutim to može izazvati rezonanciju i nestabilnost sustava. Stoga se filter mora oblikovati točno prema parametrima specifičnog pretvarača. Za dizajn LCL filtra potrebni su sljedeći parametri: U_{max} – amplituda faznog napona mreže, U_{dc} – napon DC sabirnice pretvarača, P_{grid} – snage koja se prenosi filtrom, Ω_0 – frekvencija napona mreže, f_{sw} – sklopna frekvencija PWM modulacije (f_{PWM}), λ – relativni udio snage P_{grid} , $\Delta I_{f,max}$ – maksimalna varijacija struje filtra zbog preklopnog djelovanja.

Prvi korak u proračunu je definiranje ulaznog induktiviteta prigušnice, koji se računa prema izrazu:

$$L_{1f} = \frac{U_{dc}}{6f_{sw}\Delta I_{f,max}} \tag{2}$$

Nakon toga možemo odrediti i izlazni induktivitet prigušnice koji je jednak:

$$L_{2f} = rL_{1f},\tag{3}$$

gdje je r relativni odnos induktiviteta i u pravilu iznosi od 1/6 do 1/4.

Kapacitet kondenzatoru u LCL filtru definiran je izrazom:

$$C_f = \frac{\lambda P_{grid}}{\Omega_0 U_{max}^2} \tag{4}$$

Posljednji korak u dizajnu je kontrola rezonancijske frekvencije LCL filtra, a ona se računa prema izrazu:

$$\Omega_{res} = 2\pi f_{res} = \sqrt{\frac{L_{1f} + L_{2f}}{L_{1f}L_{2f}C_f}},$$
(5)

i mora zadovoljiti sljedeći uvjet:

$$10f_0 < f_{res} < 0.5f_{sw}, \tag{6}$$

kako bi se istovremeno postiglo povoljno gušenje viših harmonika uslijed PWM sklopnog djelovanja i minimalna fazna distorzija osnovne komponente napona na frekvenciji f_0 .

Da bi se izbjegla rezonancija i nestabilnost filtra kondenzatoru dodajemo serijski spojen otpornik. To rješenje nazivamo "pasivno prigušivanje". Ovo je jednostavan i pouzdan način, ali povećava gubitke topline u sustavu što u velikoj mjeri smanjuje učinkovitost filtra. Ovaj nedostatak može se otkloniti aktivnim prigušivanjem. Vrijednost serijski spojenog otpora računa se prema izrazu:

$$R_{3f} = \frac{2\zeta_{res}}{C_f \Omega_{res}},\tag{7}$$

gdje je ζ_{res} faktor prigušenja rezonancijskog člana drugog reda. Izborom faktora prigušenja $\zeta_{res} \ge 0,5$ osigurano je pogodno prigušenje LCL filtra na rezonancijskog frekvenciji.

3. SINKRONIZACIJA S MREŽOM

Jedan od najvažnijih problema u integraciji obnovljivih izvora energije i pametnih mreža je sinkronizacija pretvarača s mrežom. Ako pretvarač nije sinkroniziran s mrežom, u trenutku spajanja nastaje prijelazna struja koja može oštetiti opremu. Da bi sustav mogao ispravno raditi, ključna stvar pri isporuci energije iz jednofaznog pretvarača u mrežu je sinkronizacija pretvarača s mrežom i usklađivanje razlike u faznom kutu glavne harmoničke komponente. U ovom radu koristit ćemo se jednom od čestih metoda za sinkronizacija s mrežom, a to je fazno zaključana petlja ili takozvani PLL (eng. *Phase-Locked-Loop*).

3.1. Osnove o principu rada PLL-a

Osnovni PLL sklop sastoji se od tri elementa:

- detekora faze PD, koji uspoređuje dva signala i generira signal pogreške prema razlici faza između dva signala
- filter LF, koji propušta niskofrekvencijske komponente
- kontroliranog oscilatora CO, koji generira izlazni signal ovisno o iznosu statičkog odstupanja od željene vrijednosti.

Slika 7. Osnovni blok dijagram PLL [2]

Osnovni koncept djelovanja PLL-a je relativno jednostavan, a osnovni dijagram fazno zaključane petlje prikazan je na Slika 7. Referenti (ulazni) signal i signal kontroliranog oscilatora spojeni su u detektoru faze. Izlaz iz detektora faze prolazi kroz filter i aplicira se na kontrolirani oscilator. Kontrolirani oscilator, unutar PLL proizvodi signal koji ulazi u detektor u kojem se uspoređuju faza izlaznog signala i dolazni referentni signal i stvara rezultirajuća

razlika ili napon pogreške. Signal greške iz detektora faze prolazi kroz niskopropusni filter koji upravlja mnogim svojstvima petlje i uklanja sve visokofrekvencijske elemente na signalu. Jednom se kroz filter signal pogreške prijavi na upravljački terminal oscilatora kao njegov podešavajući napon. Osjećaj svake promjene ovog napona je takav da pokuša smanjiti faznu razliku, a samim time i frekvenciju između dva signala. U početku će petlja biti zaključana, a napon pogreške povući će frekvenciju oscilatora prema referentnoj vrijednosti, sve dok više ne može smanjiti pogrešku i petlja se zaključa.

3.2. PLL s modificiranim faznim detektorom

Postoje različite metode sinkronizacije temeljene na PLL sklopu, a u ovom radu koristit ćemo se izvedbom fazno-zaključane petlje sa modificiranim faznim detektorom (MMPD PLL). Glavna prednost ove izvedbe je da dobro potiskuje harmonike na dvostrukoj frekvenciji. U idealnom slučaju kod klasičnog PLL algoritma uvijek se u stacionarnom stanju javlja rezultirajuća vrijednost odstupanja na ulazu u fazni komparator sklopa V_{err} :

$$V_{err} = \frac{A}{2} [\sin(2\omega_e t + \psi) + \sin(\psi)], \qquad (8)$$

gdje su: ψ [rad] ($\psi \rightarrow 0$) razlika u fazi ulazno signala i izlaza iz estimatora, a ω_e [rad/s] estimirana frekvencija. U svrhu potiskivanja harmoničkog člana na dvostrukoj frekvenciji koristi se modificirana PLL struktura. Ova struktura se postiže bez korištenja dodatnog filtra u sklopu dok $V_{err} \rightarrow 0$ pri postizanju mrežne frekvencije, tj. pri zaključavanju faze. Izraz za odstupanje estimirane veličine za slučaj modificiranog faznog detektora glasi:

$$V_{err} = A[\sin(\theta_i)\cos(\theta_e) - \sin(\theta_e)\cos(\theta_i)]$$
(9)

Struktura estimatora prikazana je na Slika 8., i kao što je vidljivo iz slike za filter LF koristi se PI regulator.

Fakultet strojarstva i brodogradnje

Da bi se mogao koristiti kriterij optimuma dvostrukog odnosa za dizajn PI regulatora potrebno je linearizirati sustav. Potrebno je analizirati signale x_1 i x_2 koji ulaze u sumator na ulazu PI regulatora. Signali x_1 i x_2 iznose:

$$x_1 = \sin(\theta_1)\cos(\theta_2) = \frac{1}{2}(\sin(\theta_1 - \theta_2) + \sin(\theta_1 + \theta_2))$$
(10)

$$x_2 = \sin(\theta_2)\cos(\theta_2) = \frac{1}{2}(\sin(2\theta_2))$$
 (11)

$$e = x_1 - x_2 = \cos(\theta_2) \left(\sin(\theta_1) - \sin(\theta_2) \right) =$$

= $\frac{1}{2} [\sin(\theta_1 - \theta_2) + \sin(\theta_1 + \theta_2) - \sin(2\theta_2)]$ (12)

U slučaju *phase-locka* ($\theta_1 \approx \theta_2$) eliminira se visokofrekventna komponenta te *e* iznosi:

$$e \approx \frac{1}{2}\sin(\theta_1 - \theta_2) \tag{13}$$

Linearizacija sustava glasi ($e_{\theta} = \theta_1 - \theta_2$):

$$\Delta e = \frac{\partial e}{\partial e_{\theta}} \Delta \theta = \frac{1}{2} \cos(e_{\theta}) \Delta e_{\theta}$$
(14)

Odavde slijedi da je u okolini stacionarno točnog slijeđenja faze ulaznog signala pogreška slijeđenja $e_{\theta} \approx 0$, iz čega proizlazi da je $\cos(e_{\theta}) \approx 1$, pa pojačanje lineariziranog modela detektora faze poprima sljedeću vrijednost:

$$K_{Fb} = \frac{\Delta e}{\Delta e_{\theta}} = \frac{1}{2} \tag{15}$$

Nakon linearizacije zatvoreni krug estimatora frekvencije može se prikazati blokovskim dijagramom na Slika 9.

Slika 9. Blok dijagram lineariziranog MMPD PLL estimatora frekvencije [3]

Sinteza regulatora provedena je primjenom kriterija optimuma dvostrukog odnosa, a postupak se zasniva na izjednačavanju karakterističnog polinoma prijenosne funkcije regulacijskog kruga s karakterističnim polinomom optimuma dvostrukog odnosa:

$$A_{odo}(s) = D_n D_{n-1}^2 \dots D_2^{n-1} T_e^n s^n + D_{n-1} D_{n-2}^2 \dots D_2^{n-2} T_e^{n-1} s^{n-1} + \dots + D_2 T_e^2 s^2 + T_e s + 1,$$
(16)

gdje je T_e ekvivalentna vremenska konstanta (određuje brzinu odziva), a D_i karakteristični odnosi (i = 2,3,..n) koji određuju prigušenje odziva.

Karakteristični polinom zatvorene MMPD PLL petlje glasi:

$$A_{PLL}(s) = \frac{T_{\Sigma}T_{CPLL}}{K_{Fb}K_{CPLL}}s^3 + \frac{T_{CPLL}}{K_{Fb}K_{CPLL}}s^2 + T_{CPLL}s + 1$$
(17)

Kako bi odredili parametre PI regulatora izjednačujemo ga sa karakterističnim polinomom optimuma dvostrukog odnosa:

$$A_{odo}(s) = D_3 D_2^{\ 2} T_e^{\ 3} s^3 + D_2 T_e^{\ 2} s^2 + T_e s + 1, \tag{18}$$

pa konačni izrazi za parametre glase:

$$T_{\Sigma} = \frac{T}{2}$$
 $T_e = \frac{T_{\Sigma}}{D_2 D_3}$ $K_{CPLL} = \frac{1}{D_2 K_{Fb} T_e}$ $T_{CPLL} = T_e$ (19)

3.3. SOGI estimator

SOGI (Second Order Generalized Integrator) estimator najčešće se koristi za izdvajanje temeljne komponente napona mreže na frekvenciji Ω_0 , radi obrade signala u uvjetima pojačanog mjernog šuma. Pritom je nužno da mjerni signal ne kasni u fazi u odnosu na stvarni napon mreže kako bi se moglo kvalitetno sinkronizirati inverter na napon mreže. SOGI

Fakultet strojarstva i brodogradnje

estimator uz izdvajanje temeljne komponente napona simultano generira i ortogonalnu komponentu napona mreže pomaknutu u fazi za 90°. Kao što je vidljivo na Slika 10. estimator se sastoji od povratnih petlji uključujući dva integratora.

Slika 10. Blok dijagram SOGI estimatora [2]

Prijenosna funkcija SOGI estimatora glasi:

$$\frac{u_d}{u_c} = \frac{\frac{\Omega_0}{s}}{1 + \frac{\Omega_0^2}{s^2}} = \frac{\Omega_0 s}{s^2 + \Omega_0}$$
(20)

$$\frac{u_d}{u_r} = \frac{\frac{K_I \Omega_0 s}{s^2 + \Omega_0}}{1 + \frac{K_I \Omega_0 s}{s^2 + \Omega_0}} = \frac{K_I \Omega_0 s}{s^2 + K_I \Omega_0 s + \Omega_0^{-2}},$$
(21)

gdje je K_I korekcijsko pojačanje estimatora koje odgovara faktoru prigušenja prema izrazu:

$$\zeta_{est} = \frac{K_l}{2} \tag{22}$$

3.4. SOGI MMPD za sinkronizaciju invertera

Za sinkronizaciju invertera s mrežom objedinjujemo SOGI estimator i MMPD PLL, gdje SOGI estimator služi za izdvajanje temeljne komponente napona iz zašumljenog signala, a MMPD sklop koristi se za estimaciju frekvencije. Ulaz u algoritam MMPD PLL-a je normirana vrijednost ulaznog signala (u rasponu od -1 do +1), čime se izbjegava estimacija amplitude napona unutar PLL-a. U prethodnim poglavljima su opisani pojedini sklopovi i definirani njihovi parametri, a ono što je potrebno izdvojiti je normalizacija ulaznog signala

na temelju poznavanja ortogonalne komponente napona koja je generirana pomoću SOGI estimatora. Na Slika 11. prikazan je blok dijagram opisanog sklopa za sinkronizaciju.

Slika 11. Blok dijagram SOGI MMPD PLL estimatora frekvencije i amplitude [2]

Normirana amplituda napona estimira se kao omjer direktne komponente signala u_{2d} i Euklidske (*L*2) norme direktne i ortogonalne komponente napona, dobivenih iz SOGI estimatora:

$$u_{2,norm} = \frac{u_{2d}}{\sqrt{u_{2d}^2 + u_{2q}^2}}$$
(23)

No međutim norma vrijedi samo ako je DC komponenta u signalu 0, što znači da je potrebno upotrijebiti visokopropusne brze filtre kako bi se DC komponenta uklonila. Frekvenciju je također potrebno filtrirati kako bi se izbjele neželjene oscilacije, a da se pritom ne narušava dinamička karakteristika sustava.

Rezultati simulacija sa sinusnim signalom uz visokofrekvencijsku smetnju prikazani su na Slika 12.,Slika 13.,Slika 14. iz kojih je vidljivo da SOGI MMPD estimator rezultira vrlo preciznom estimacijom frekvencije i faze napona mreže. Možemo zaključiti da je SOGI estimator sposoban detektirani i točno estimirati temeljnu komponentu napona na frekvenciji Ω_0 i njenu ortogonalnu sliku. Također učinkovito potiskuje harmonička izobličenja odnosne više harmonike u naponu. Zbog vrlo brze i nelinearne dinamike MMPD PLL estimatora faze dolazi do pojave neželjenih oscilacija estimirane frekvencije koje se ublažuju dodavanjem niskopropusnog filtra.

Slika 12. Estimacija signala

Slika 13. Estimacija frekvencije

Slika 14. Estimacija amplitude

4. REGULACIJA STRUJE

Jedan od glavnih problema jednofaznog frekvencijskog pretvarača je pojava izmjenične (DC) komponente struje uslijed neidealnog sklopnog djelovanja pulsno širinske modulacije (PWM) koja prilikom ubrizgavanja u mrežu može izazvati probleme. DC komponenta struje uzrokuje zasićenje jezgre transformatora, što za posljedicu ima povećanje zahtjeva za jalovom snagom, gubitke topline namota i povećanje harmoničkog izobličenja napona mreže. U ovom poglavlju opisane su izvedbe rezonatnih regulatora koji reguliraju harmoničku komponentu struje.

4.1. PR regulator

Najjednostavnije izvedba sustava za regulaciju hamoničke komponente struje temelji se na modelu PR (proporcionalno-rezonantnog) regulatora. Na Slika 15. prikazan je regulacijski krug sa PR regulatorom. U praktičnim primjenama regulator struje je obično sinkroniziran s sklopnim PWM-om koji radi na relativno visokoj sklopnoj frekvenciji f_{PWM} , pa je parazitna vremenska konstanta $T_{\Sigma} = 1/f_{PWM}$.

Slika 15. Regulacijski krug struje sa PR regulatorom

Prijenosna funkcija PR regulatora glasi:

$$G_{PR}(s) = \frac{K_P(s^2 + \Omega_0^2) + K_R s}{s^2 + \Omega_0^2},$$
(24)

gdje je K_P proporcionalno pojačanje, a K_R rezonantno pojačanje PR regulatora.

U svrhu pojednostavljenja s obzirom da je parazitna vremenska konstanta T_{Σ} prilično mala može se spojiti sa vremenskom konstantom LCL filtra $T_f = L_f / R_f$, pa će njihova kombinacija dati izraz za član s kašnjenjem prvog reda:

$$G_{par}(s) = \frac{K_f}{T_{\Sigma 0} + 1},$$
 (25)

gdje je $T_{\Sigma 0} = T_{\Sigma} + T_f$.

Karakteristični polinom regulacijskog kruga sa Slike 15. glasi:

$$A_{PR}(s) = \frac{T_{\Sigma 0}}{{\Omega_0}^2 (1 + K_P K_f)} s^3 + \frac{1}{{\Omega_0}^2} s^2 + \frac{T_{\Sigma 0} {\Omega_0}^2 + K_f K_R}{{\Omega_0}^2 (1 + K_P K_f)} s + 1$$
(26)

Koeficijenti karakterističnog polinoma regulacijskog kruga izjednačuju se sa koeficijentima karakteristične jednadžbe optimuma dvostrukog odnosa (16), pa nakon sređivanja dobijemo sljedeće izraze za parametre regulatora:

$$T_e = \frac{1}{\sqrt{D_2}{\Omega_0}^2},\tag{27}$$

$$K_P = \frac{1}{K_f} \left(\frac{T_{\Sigma 0}}{D_2^2 D_3 T_e^3 {\Omega_0}^2} - 1 \right),$$
(28)

$$K_{R} = \frac{T_{\Sigma 0}}{K_{f}} \left(\frac{1}{D_{2}^{2} D_{3} T_{e}^{3} \Omega_{0}^{2}} - \Omega_{0}^{2} \right)$$
(29)

U optimalnom slučaju svi karakteristični odnosi polinoma D_i jednaki su 0,5, čime se postiže odziv regulacijskog kruga karakteriziran nadvišenjem od 6% na skokovitu promjenu referentne veličine i vrijeme odziva od 1,8 T_e .Za veće vrijednosti ekvivalente vremenske T_e konstante regulacijski krug je karakteriziran sporijim odzivom, ali povećava mu se robusnost na pogreške modeliranja i smanjuje se njegova osjetljivost na šumove.

4.2. PI-R regulator

Nešto malo složenija izvedba regulacijskog kruga je sa PI-R regulatorom koji osim proporcionalnog i rezonantog djelovanja ima i integralno djelovanje, a njegova izvedba prikazana je na Slika 16.

Slika 16. Regulacijski krug struje sa PI-R regulatorom

Prijenosna funkcija PI-R regulatora glasi:

$$G_{PIR}(s) = \frac{K_{Pi}(1+T_I s)(s^2 + \Omega_0^2) + K_{Ri}T_I s^2}{T_I s(s^2 + \Omega_0^2)},$$
(30)

gdje je K_{Pi} proporcionalno pojačanje regulatora, K_{Ri} rezonantno pojačanje regulatora i T_I vremenska konstanta integralnog djelovanja.

I u ovom slučaju možemo se koristiti pojednostavljenim izrazom (25), pa dolazimo do karakterističnog polinoma regulacijskog kruga sa Slike 16. koji glasi:

$$A_{PIR}(s) = \frac{T_I T_{\Sigma 0}}{K_f K_{Pi} \Omega_0^2} s^4 + \frac{T_I (1 + K_f K_{Pi})}{K_f K_{Pi} \Omega_0^2} s^3 + \frac{T_I T_{\Sigma 0} \Omega_0^2 + K_f K_{Pi} + K_f K_{Pi} T_I}{K_f K_{Pi} \Omega_0^2} s^2 + \frac{T_I (1 + K_f K_{Pi})}{K_f K_{Pi}} s + 1$$
(31)

Do parametara regulatora dolazimo kao i do sad primjenom kriterija optimuma dvostrukog odnosa, izjednačavanjem koeficijenata karakterističnog polinoma sa koeficijentima karakteristične jednadžbe optimuma dvostrukog odnosa (16), čime dobijemo sljedeće izraze:

$$T_e = \frac{1}{D_2 \sqrt{D_3} \Omega_0},\tag{31}$$

$$K_{Pi} = \frac{1}{K_f} \left(\frac{T_{\Sigma 0}}{D_2 D_3 D_4 T_e} - 1 \right), \tag{32}$$

$$T_{I} = \Omega_{0}^{2} D_{2}^{2} D_{3} T_{e}^{3} \left(1 - \frac{D_{2} D_{3} D_{4} T_{e}}{T_{\Sigma 0}} \right),$$
(33)

$$K_{Ri} = \frac{T_{\Sigma 0}}{T_f} \left(\frac{1}{D_2^2 D_3^2 D_4 T_e^2} - \frac{1}{D_2^3 D_3^2 D_4 T_e^4 \Omega_0^2} - \Omega_0^2 \right)$$
(34)

4.3. PID-R regulator

Najsloženija izvedba za regulaciju struje je sa proporcionalno-integralno-derivacijskorezonantnim (PID-R) regulatorom, a blok dijagram izvedbe regulacijskog kruga s ovim tipom regulatora prikazan je na Slika 17.

Slika 17. Regulacijski krug struje sa PID-R regulatorom

Prijenosna funkcija PID-R regulatora glasi:

$$G_{PIDR}(s) = \frac{K_{Pid} \left(1 + T_i s + T_i T_D s^2\right) \left(s^2 + \Omega_0^2\right) + K_{Rid} T_i s^2}{T_i s \left(s^2 + \Omega_0^2\right)},$$
(35)

gdje je K_{Pid} proporcionalno pojačanje regulatora, K_{Rid} rezonanto pojačanje, T_i vremenska konstanta integralnog djelovanja i T_D vremenska konstanta derivacijskog djelovanja.

U ovom slučaju nećemo se koristiti pojednostavljenim izrazom (25) s obzirom da imamo nepoznanicu više, a red polinoma bi bio ostao isti kao i u prethodnom slučaju, što znači da ne bi mogli odrediti potrebne parametre regulatora.

Karakteristična jednadžba regulacijskog kruga sa Slike 17. glasi:

$$A_{PIDR}(s) = a_5 s^5 + a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + 1,$$
 (36)

gdje su koeficijenti $a_1, ... a_5$ dani sljedećim izrazima:

$$a_5 = \frac{T_i T_{\Sigma} T_f}{K_{Pid} K_f {\Omega_0}^2},\tag{37}$$

$$a_{4} = \frac{T_{i}T_{\Sigma} + T_{i}T_{f} + T_{i}T_{D}K_{f}K_{Pid}}{K_{Pid}K_{f}\Omega_{0}^{2}},$$
(38)

Fakultet strojarstva i brodogradnje

Cvita Pirović

$$a_{3} = \frac{T_{i} + T_{i}T_{\Sigma}T_{f}\Omega_{0}^{2} + T_{i}K_{f}K_{Pid}}{K_{Pid}K_{f}\Omega_{0}^{2}},$$
(39)

$$a_{2} = \frac{T_{i}T_{\Sigma}\Omega_{0}^{2} + T_{i}T_{f}\Omega_{0}^{2} + K_{Pid}K_{f} + T_{i}T_{D}K_{f}K_{Pid}\Omega_{0}^{2} + K_{f}K_{Rid}T_{i}}{K_{Pid}K_{f}\Omega_{0}^{2}},$$
 (40)

$$a_{1} = \frac{T_{i}\Omega_{0}^{2} + T_{i}K_{Pid}K_{f}\Omega_{0}^{2}}{K_{Pid}K_{f}\Omega_{0}^{2}}$$
(41)

Opet kao i u prethodnim slučajevima po dobro poznatom kriteriju optimuma dvostrukog odnosa, izjednačavanjem izraza od (37) do (41) sa koeficijentima iz (16) dobivamo izraze za parametre regulatora, a oni glase:

$$K_{Pid} = \frac{1}{K_f} \left(\frac{T_{\Sigma} T_f}{D_2^4 D_3^3 D_4^2 D_5 T_e^4 \Omega_0^2} - 1 \right), \tag{42}$$

$$T_{i} = \frac{T_{e}}{T_{\Sigma}T_{f}} \left(T_{\Sigma}T_{f} - D_{2}^{4}D_{3}^{3}D_{4}^{2}D_{5}T_{e}^{4}\Omega_{0}^{2} \right),$$
(43)

$$T_D = \frac{D_2^4 D_3^3 D_4^2 D_5 T_e^4 \Omega_0^2}{T_{\Sigma} T_f - D_2^4 D_3^3 D_4^2 D_5 T_e^4 \Omega_0^2} \left(\frac{T_{\Sigma} T_f}{D_2 D_3 D_4 D_5 T_e} - T_{\Sigma} - T_f\right),$$
(44)

$$K_{Rid} = \frac{T_{\Sigma}T_f}{K_f} \left(\frac{1}{D_2{}^3 D_3{}^3 D_4{}^2 D_5 T_e{}^3} - \frac{\Omega_0{}^2}{D_2 D_3 D_4 D_5 T_e} - \frac{1}{D_2{}^4 D_3{}^3 D_4{}^2 D_5 T_e{}^5 \Omega_0{}^2} \right)$$
(45)

Ekvivalentnu vremensku konstantu T_e dobivamo iz bikvadratne jednadžbe:

$$D_2^{4} D_3^{3} D_4^{2} D_5 \Omega_0^{4} T_e^{4} - D_2^{2} D_3 \Omega_0^{2} T_e^{2} + 1 = 0$$
(46)

5. REZULTATI SIMULACIJA

Za sljedeće simulacije korištene su vrijednosti parametara navedene u Tablica 1.

SIMBOL	OPIS	VRIJEDNOST
fpwm	sklopna frekvencija PWM-a	5 kHz
fo	frekvencija mreže	50 Hz
U_2	RMS vrijednost napona mreže	230 V
U_{dc}	napon DC sabibrnice pretvarača	690 V
$U_{o\!f\!f}$	DC komponenta u naponu	10 V
P _{grid}	nazivna snaga	1,5 kW

 Tablica 1. Parametri za regulaciju struje invertera

Sve simulacije provedene su za idealni model pretvarača bez PWM modulacije izlaznog napona pretvarača.

Na Slika 18., Slika 19. i Slika 20. prikazani su odzivi za različite izvedbe rezonantnih regulatora kao što su PR, PI-R i PID-R.

Slika 18. Regulacija struje sa PR regulatorom

Kao što je vidljivo sa Slika 18. vrijeme smirivanja iznosi 0.02 s, te je vidljiva dinamička greška slijeđenja reference unutar prve periode, koja je poslije zanemariva. PR regulator unatoč svom rezonantnom djelovanju uslijed kojeg se ističe harmonička komponenta struje i potiskuje istosmjerna komponenta struje, nije u mogućnosti potpuno potisnuti istosmjernu komponentu što rezultira malim odstupanjem od 0,17 A. To odstupanje je riješeno izvedbom s PI-R regulatorom.

Slika 19. Regulacije struje sa PI-R regulatorom

Iz Slika 19. vidljivo je da PI-R regulator u potpunosti eliminira DC komponentu struje, upravo zbog svog integralnog djelovanja, a vrijeme smirivanja jednako je kao i kod PR regulatora. Međutim uslijed integralnog djelovanja dolazi do povećanja oscilacija unutar prve periode.

Slika 20. prikazuje odziv korištenjem PID-R regulatora, no primjećujemo da je odziv isti kao i kod izvedbe s PR regulator, jer u optimalnom slučaju dobivamo zanemarivo male vrijednosti pojačanja za integralno i derivacijsko djelovanje, što znači da nemaju neki utjecaj na odziv.

Slika 20. Regulacija struje sa PID-R regulatorom

6. ZAKLJUČAK

U ovom radu provedena je regulacija struje za jednofazni frekvencijski pretvarač spojen na jednofaznu izmjeničnu mrežu preko LCL filtra koji dobro prigušuje izlazna mreškanja struje. Kao jedan od glavnih problema navedena je pojava istomjerne komponente struje koja se nastoji ukloniti upravo upotrebom rezonantnih regulatora koji ističu harmonički signal. Prikazana je simulacijska analiza PR, PI-R i PID-R regulatora iz koje možemo zaključiti da sve izvedbe imaju jednako vrijeme smirivanja i jako malo greške pri slijeđenju referentnog signala, oscilacije se pojavljuje samo u prvoj periodi. Što se tiče potiskivanja istosmjerne komponente struje PI-R regulator ju je jedini u potpunosti uspio potisnuti, no s pojavom većih oscilacija.

LITERATURA

- [1] <u>https://www.schrack.hr/know-how/alternativni-izvori/elektromobilnost/autonomni-izmjenjivac/</u>
- [2] Pavković D.: Predavanja iz kolegija Sustavi energetske elektronike, Zagreb
- [3] Užarević V.:Regulacija jednofaznog pretvarača snage podržanog zamašnjačkim sustavom za pohranu energije u izmjeničnoj mikromreži, Diplomski rad, Fakultet strojastva i brodogradnje, Sveučlište u Zagrebu, 2015.
- [4] Pavković, D., Užarević, V., Kristović, P., Hrgetić, M., Komljenović, A.: Single Phase AC Inverter Current PR Control with Auxiliary PI Controller for DC Current Suppression, Proceedings of IEEE EUROCON 2017, pp. 318-323, Ohrid, R. Macedonia, 6-8 July 2017
- [5] Pavković D., Zorc D., Kozhusko J., Cipek M., Hrgetić M.: Damping Optitmum Design of Signle-Phase Inverter Synchroniozation and Current Control System, Proceedings of 2019 IEEE 39th International Conference on ELECTRONICS AND NANOTECHNOLOGY (ELNANO), pp. 572-577, Kyiv, Ukraine, April 2019.
- [6] Reznik A., Godoy Simões M., Al-Durra A., Muyeen S.M.: LCL filter design and performance analysis from small wind turbine systems, 2012. IEEE Power Electronics and Machines in Wind Applications, Vol. 50, No.2.pp. 1125-1232, Denver, CO, USA, 16-18 July 2012.
- [7] Kahlane A.E.W.H., Hassaine L., Kherci M.: LCL filter design for photovoltaic grid connected system, Revue des Energies Renouvelables SIENR'14 Ghardaïa, 2014., pp.227-232
- [8] Terzić B., Majić G., Slutej A.: Stability Analysis of Three-Phase PWM Converter with LCL Filter by Means of Nonlinear Model, Automatika, Vol.51, No 3, pp. 221-232, 2010.
- [9] Zhong Q.-C., Hornik T.: Control of Power Inverters in Renewable Energy and Smart Grid Integration, John Wiley & Sons Ltd/ IEEE Press, NY, USA, 2003.
- [10] https://bs.fmuser.net/content/?967.html

PRILOZI

- I. CD-R disc
- II. Inicijalizacija SOGI MMPD PLL estimatora

```
% Parametri jednostavnog SOGI estimatora (vremenski-
kontinuirana realizacija)
f0 = 50.0;
W0 = 2.0*pi*f0;
U0 = 230.0 * sqrt(2.0);
zeta f = 0.2;
KI = 2.0 \times zeta f;
% Frekvencija smetnje
f1 = 250.0;
W1 = 2.0*pi*f1;
U1 = 0.1 * U0;
Ts = 1.0e-4;
kappa factor = 5.0; % Faktor koji definira brzinu odziva PI
filtra u PLL-u
Tpar = kappa factor*Ts;
KFb = 0.5; % pojačanje linealiziranog modela detektora faze
D2pll = 0.5; D3pll = 0.5;
Tepl1 = Tpar/D2pl1/D3pl1; % nadomjesna vremenska konstanta
%Parametri PI filtera
Tcpll = Tepll;
Kcpll = 1.0/D2pll/Tepll/KFb;
Tfilt = 100.0e-3;
D2filt = 0.35;
alf = 1.0/D2filt/Tfilt;
a2f = 1.0/D2filt/Tfilt/Tfilt;
Tfilt2 = 10.0;
D2filt2 = 0.35;
alf2 = 1.0/D2filt2/Tfilt2;
a2f2 = 1.0/D2filt2/Tfilt2/Tfilt2;
sim sogi mmpd pll;
sim('sim mdl sogi plld');
```

```
figure(1),
subplot(211),
plot(t,u 0, 'k', 'LineWidth', 1.5), grid on, hold on
plot(t,u ref,'g-.','LineWidth',1.5)
plot(t,u filt,'r:','LineWidth',1.5)
title('Vremenski-kontinuirani SOGI estimator')
legend('Glavna komponenta', 'Ukupni signal', 'Estimat')
ylabel('u [V]')
subplot(212),
plot(t,u filt, 'r', 'LineWidth', 1.5), grid on, hold on
plot(t,u filtq, 'b', 'LineWidth', 1.5)
legend('Estimat', 'Estimat pomaknut za 90°')
ylabel('u [V]'),xlabel('t [s]')
figure(2),
subplot(211),
plot(t,W0 est, 'k', 'LineWidth', 1.0), grid on, hold on
plot(t,W0 filt,'r','LineWidth',2.0)
legend('Estimirana frekvencija', 'Filtrirana frekvencija')
ylabel('W0 [rad/s]')
subplot(212),
plot(t,u n,'k','LineWidth',1.5),grid on,hold on
plot(t,u ne, 'r', 'LineWidth', 1.5),
legend('Ulazni signal','Estimirani signal')
ylabel('sin(theta0)'), xlabel('t [s]')
figure(3),
plot(t,U0*ones(size(t)), 'k', 'LineWidth', 1.5), grid on, hold on
plot(t,u max, 'r', 'LineWidth', 1.5), grid on, hold on
legend('Ulazna amplituda', 'Estimirana amplituda')
ylabel('Voltage magnitude U m a x [V]')
xlabel('t [s]')
```

III. Inicijalizacija regulacijskog kruga sa PR regulatorom

```
%Regulacija struje sa PR regulatorom
T=0.02e-3; % [s]
%Ulazna frekvencija harmonijskog napona
f0=50.0; % [Hz]
W0=2*pi*f0; % [rad/s]
Iref=1; %referentna struja [A]
Uoff=10.0; %DC komponenta u naponu [V]
%Chopper
fpwm=5.0e3;
Tch=1/fpwm;
```

Fakultet strojarstva i brodogradnje

```
%Nazivna snaga
SN=1.5e3;
U1N=240.0;
I1N=SN/U1N;
Udc=690.0;
U2max=230.0*sqrt(2);
%Parametri LCL filtra
En = 240 * sqrt(2);
Zb = En*En/SN;
Cb = 1/W0/Zb;
Cf = 0.2*Cb;
DImax = 0.05 \times I1N \times sqrt(2);
L1f = Udc/6/fpwm/DImax;
r = 0.25;
L2f = r*L1f;
Wres = sqrt((L1f + L2f)/Cf/L1f/L2f);
R3f = 1/Wres/Cf;
R1f = 0.1;
R2f = R1f*L2f/L1f;
Rf=R1f+R2f; %zbroj ulaznog i izlaznog otpora
Lf=L1f+L2f; %zbroj ulaznog i izlaznog induktiviteta
Kf=1/Rf; %pojačanje filtera [A/V]
Tf=Lf/Rf; %vremenska konstanta filtera [s]
%PR regulator
Tlag=Tch+Tf;
D2=0.5; D3=0.5;
Te=1/sqrt(D2)/W0;
Kp = (1/Kf) * (Tlag/D2/D2/D3/Te/Te/Te/W0/W0 - 1);
Kr = (Tlag/Kf) * (1/D2/D2/D3/Te/Te - W0*W0);
PR regulator;
sim('PR regulator');
figure(1)
subplot(211),plot(t,ulR,'r','LineWidth',1.2),grid on,hold on
subplot(211),plot(t,uch,'g','LineWidth',1.2),grid on,hold on
subplot(211),plot(t,u2,'b','LineWidth',1.2),grid on,hold on
ylabel('u 1 R, u c h, u 2 [V]'), legend('u 1 R', 'u c h',
'u 2')
subplot(212),plot(t,i1R,'r','LineWidth',1.2),grid on,hold on
subplot(212),plot(t,i1,'g','LineWidth',1.2),grid on,hold on
ylabel('i 1 R, i 1 [A]'),legend('i 1 R', 'i 1')
xlabel('t [s]');
```

```
Cvita Pirović
```

IV. Inicijalizacija regulacijskog kruga sa PI-R regulatorom

```
%Regulacija struje sa PI-R regulatorom
T=0.02e-3; % [s]
%Ulazna frekvencija harmonijskog napona
f0=50.0; % [Hz]
W0=2*pi*f0; % [rad/s]
Iref=1; %referentna struja [A]
Uoff=10.0; %DC komponenta u naponu [V]
%Chopper
fpwm=5.0e3;
Tch=1/fpwm;
%Nazivna snaga
SN=1.5e3;
U1N=240.0;
I1N=SN/U1N;
Udc=690.0;
U2max=230.0*sqrt(2);
%Parametri LCL filtra
En = 240 * sqrt(2);
Zb = En*En/SN;
Cb = 1/W0/Zb;
Cf = 0.2*Cb;
DImax = 0.05 \times I1N \times sqrt(2);
L1f = Udc/6/fpwm/DImax;
r = 0.25;
L2f = r*L1f;
Wres = sqrt((L1f + L2f)/Cf/L1f/L2f);
R3f = 1/Wres/Cf;
R1f = 0.1;
R2f = R1f*L2f/L1f;
Rf=R1f+R2f; %zbroj ulaznog i izlaznog otpora
Lf=L1f+L2f; %zbroj ulaznog i izlaznog induktiviteta
Kf=1/Rf; %pojačanje filtera [A/V]
Tf=Lf/Rf; %vremenska konstanta filtera [s]
%PI-R regulator
Tlag=Tch+Tf;
D2=0.5; D3=0.5; D4=0.5;
Te=1/D2/sqrt(D3)/W0;
TI= W0*W0*D2*D2*D3*Te*Te*Te -
(W0*W0*D2*D2*D2*D3*D3*D4*Te*Te*Te*Te)/Tlag;
Kpi = (1/Kf) * (Tlag/D2/D3/D4/Te-1);
```

```
Kri = (Tlag/Kf) * (1/D2/D2/D3/D3/D4/Te/Te-
1/D2/D2/D2/D3/D3/D4/Te/Te/Te/Te/W0/W0-W0*W0);
PIR regulator;
sim('PIR regulator');
figure(1)
subplot(211),plot(t,ulR,'r','LineWidth',1.2),grid on,hold
on
subplot(211),plot(t,uch,'g','LineWidth',1.2),grid on,hold
on
subplot(211),plot(t,u2,'b','LineWidth',1.2),grid on,hold on
ylabel('u 1 R, u c h, u 2 [V]'),legend('u 1 R', 'u c h',
'u 2')
subplot(212),plot(t,i1R,'r','LineWidth',1.2),grid on,hold
on
subplot(212),plot(t,i1,'g','LineWidth',1.2),grid on,hold on
ylabel('i 1 R, i 1 [A]'),legend('i 1 R', 'i 1')
xlabel('t [s]');
```

V. Inicijalizacija regulacijskog kruga sa PID-R regulatorom

```
%Regulacija struje sa PID-R regulatorom
T=0.02e-3; % [s]
%Ulazna frekvencija harmonijskog napona
f0=50.0;
         응 [Hz]
W0=2*pi*f0; % [rad/s]
Iref=1; %referentna struja [A]
Uoff=10.0; %DC komponenta u naponu [V]
%Chopper
fpwm=5.0e3;
Tch=1/fpwm;
%Nazivna snaga
SN=1.5e3;
U1N=240.0;
I1N=SN/U1N;
Udc=690.0;
U2max=230.0*sqrt(2);
%Parametri LCL filtra
En = 240 * sqrt(2);
Zb = En * En / SN;
Cb = 1/W0/Zb;
```

```
Cf = 0.2*Cb;
DImax = 0.05 \times I1N \times sqrt(2);
L1f = Udc/6/fpwm/DImax;
r = 0.25;
L2f = r*L1f;
Wres = sqrt((L1f + L2f)/Cf/L1f/L2f);
R3f = 1/Wres/Cf;
R1f = 0.1;
R2f = R1f*L2f/L1f;
Rf=R1f+R2f; %zbroj ulaznog i izlaznog otpora
Lf=L1f+L2f; %zbroj ulaznog i izlaznog induktiviteta
Kf=1/Rf; %pojačanje filtera [A/V]
Tf=Lf/Rf; %vremenska konstanta filtera [s]
%PID-R regulator
D2=0.5; D3=0.5; D4=0.5; D5=0.5;
Te=0.034786;
Kpid=1/Kf*((Tch*Tf)/D2/D2/D2/D2/D3/D3/D3/D4/D4/D5/Te/Te/Te/
Te/W0/W0-1);
Ti=(Te/Tch/Tf)*(Tch*Tf-D2^4*D3^3*D4^2*D5*Te^4*W0^2);
Krid=(Tch*Tf)/Kf*(1/D2/D2/D2/D3/D3/D3/D4/D4/D5/Te/Te/Te-
(W0*W0)/D2/D3/D4/D5/Te-
1/D2/D2/D2/D2/D3/D3/D3/D4/D4/D5/Te/Te/Te/Te/Te/W0/W0);
TD=(D2^4*D3^3*D4^2*D5*Te^4*W0^2)/(Tch*Tf-
D2^4*D3^3*D4^2*D5*Te^4*W0^2)*((Tch*Tf)/D2/D3/D4/D5/Te-Tch-
Tf);
Ki=Kpid/Ti; %integralno pojačanje regulatora
KD=Kpid/TD; %derivacijsko pojačanje regulatora
PID R req;
sim('PID R reg');
figure(1)
subplot(211),plot(t,ulR,'r','LineWidth',1.2),grid on,hold
on
subplot(211),plot(t,uch,'g','LineWidth',1.2),grid on,hold
on
subplot(211),plot(t,u2,'b','LineWidth',1.2),grid on,hold on
ylabel('u 1 R, u c h, u 2 [V]'),legend('u 1 R', 'u c h',
'u 2')
subplot(212),plot(t,i1R,'r','LineWidth',1.2),grid on,hold
on
subplot(212),plot(t,i1,'g','LineWidth',1.2),grid on,hold on
ylabel('i 1 R, i 1 [A]'),legend('i 1 R', 'i 1')
xlabel('t [s]');
```

VI. Simulink model SOGI MMPD PLL estimatora

VII. Simulink model regulacijskog kruga sa PR regulatorom

VIII. Simulink model regulacijskog kruga sa PI-R regulatorom

IX. Model PI-R regulatora

X. Model PID-R regulatora

Cvita Pirović XI. Regulacijski krug sa PID-R regulatorom

