Aerodinamička optimizacija trokrilca u idealnom fluidu

Uroda, Anamaria

Master's thesis / Diplomski rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:866722

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-21

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje

DIPLOMSKI RAD

Anamaria Uroda

Zagreb, 2020.

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje

DIPLOMSKI RAD

Aerodinamička optimizacija trokrilca u idealnom fluidu

Mentor:

Doc. Dubravko Matijašević

Student: Anamaria Uroda

Zagreb, 2020.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne i diplomske ispite studijazrakoplovstva

Sveučilište u Zagrebu				
Fakultet strojarstva i brodogradnje				
Datum: Prilog:				
Klasa: 602 - 04 / 20 - 6 / 3				
Ur. broj:15 - 1703 - 20 -				

DIPLOMSKI ZADATAK

Student:

Anamaria Uroda

Mat. br.: 0035198097

Naslov rada na hrvatskom jeziku:

Naslov rada na engleskom jeziku: Aerodinamička optimizacija trokrilca u idealnom fluidu

Aerodynamic optimization of a tri-wing in an ideal fluid

Opis zadatka:

Obzirom na generalni trend povećanja broja ljudi i količine robe koji se godišnje prevezu zračnim prometom jasno je da treba razmatrati optimalne konfiguracije letjelica koje će takav promet učiniti ekonomski i ekološki prihvatljivim. Nadalje, za očekivati je i trend povećanja malih civilnih poluautonomnih letjelica, potpuno novih namjena, koje mogu biti isplativije ako su aerodinamički optimalne. Često one neće biti standardne konfiguracije, zbog čega treba sagledati metodologiju za optimizaciju manje standardnih i nestandardnih aerodinamičkih konfiguracija.

U ovom radu promatraju se aerodinamički optimalne konfiguracije trokrilca u idealnom fluidu. U tu svrhu potrebno je usvojiti metodologiju za predmetnu zadaću, te pomoću nje predložiti aerodinamičke konfiguracije letjelica promatrane klase. Razmatranje ograničiti na letjelice kojima su sva tri krila jednakog raspona. Za pojedina krila, osim klasičnih "otvorenih", sagledati i korištenje "zatvorenih" krila (engl. *boxed-wing*). Slobodne vrtložne plahte, iza krila opstrujavanih bez skretanja, pretpostaviti planarnim i poravnatim s neperturbiranom brzinom. Za rješavanje predmetne zadaće koristiti računalno efikasnu metodu primjerenu preliminarnoj fazi projektiranja letjelice.

U okviru rada potrebno je prezentirati problem i korištene metode, komentirati dobivene rezultate te navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan: 30. travnja 2020.

Zadatak zadao:

Datum predaje rada:

Predviđeni datumi obrane:

2. srpnja 2020.

6. - 10.7.2020.

Predsjednik Povjerenstva:

Mami i braci

Izjava

Izjavljujem da sam ovaj rad radio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zagreb, svibanj 2020.

Anamaria Uroda

Sadržaj

	Sadržaj	vi
	Popis slika	ix
	Popis tablica	x
	Popis oznaka	x
	Sažetak	xiii
	Summary	xiv
1.	Uvod	1
2.	Matematički model	3
	2.1. Uzgon i inducirani otpor višekrilca	3
	2.2. Varijacijski račun	6

	2.3.	Euler-Lagrangeove jednadžbe	10
		2.3.1. Izoperimetrički problem	11
		2.3.2. Geometrijska intepretacija Lagrangeovog množitelja	13
		2.3.3. Primjena na zadani problem	14
	2.4.	Integralni oblik Euler-Lagrangeovih jednadžbi	17
	2.5.	Prošireni Munkov teorem o minimalnom iduciranom otporu	19
	2.6.	Fizikalna interpretacija omjera optimalne aerodinamičke efikasnosti $\ .$.	19
	2.7.	Optimalna cirkulacija i aerodinamička efikasnost	20
	2.8.	Numerička metoda	21
		2.8.1. Primjena na zadatak	23
	2.9.	Superformula	25
3.	Rez	ultati	30
	3.1.	Aerodinamička svojstva optimiranog trokrilca	33
		3.1.1. $V \to \infty$	33
		3.1.2. $V = \frac{1}{10}$	35
		3.1.3. $V = \frac{2}{10}$	35
4.	Zak	ljučak	37
А.	Prv	i prilog	39
	A.1.	Fundamentalna lema varijacijskog računa	39

Literatura

41

viii

Popis slika

2.1	Definicija koordinata modela	4
2.2	Geometrijska intepretacija Lagrangeovog množitelja	14
2.3	Superformula za $p_1 = p_2 = p_3 = p, m = 4, \mu = 1, \chi = 0.5$	27
2.4	Promjena parametara "superformule"	28
2.5	Superformula za $p_1 = 2, p_2 = p_3 = 7, m = 5, \mu = 1, \chi = 1$	29
3.1	Razmatrane konfiguracije	31
3.2	Primjer cirkulacije za konfiguraciju 1	33
3.3	Primjer cirkulacije za konfiguraciju 5	34
3.4	Primjer cirkulacije za konfiguraciju 8	34

Popis tablica

3.1	Parametri nosećih linija	32
3.2	Iznos aerodinamičke efikasnosti za $V = \frac{1}{10}$	35
3.3	Iznos aerodinamičke efikasnosti za $V = \frac{2}{10}$	36

Opis oznaka

v	inducirana brzina na nosećoj liniji
η, ξ	abcise po luku krila j i krila k
Г	intenzitet cirkulacije $[m^2/s]$
$\gamma(\xi) \mathrm{d}$	ξ slobodna vrtložna nit $\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$ 4
∞	značajke neperturbirane struje $\ldots \ldots 16$
λ	Lagrangeov množitelj
μ, χ, r	n,p_i parametri superformule
ε	optimalna aerodinamička efikasnost
i, j, k	jedinički vektori u desnom Kartezijevom koordinatnom sustavu $\ . \ . \ . \ . \ . \ . \ 3$
b_w	poluraspon $[m]$
D_{ind}	inducirani otpor $[N]$
E	aerodinamička efikasnost
L	sila uzgona $[N]$
L_s	Generalizirani Lagrangeov polinom u Čebiševljevim točkama
N	broj krila
R	funkcija superformule
r	vektor položaja točke na nosećoj liniji
u, u_v	parametri koji opisuju noseću liniju
U_i	Čebiševljevi polinomi druge vrste stupnja i
v_n	normalwash \ldots \ldots \ldots \ldots \ldots \ldots 4
V_{∞}	brzina neperturbirane struje $[m/s]$

OPIS OZNAKA xii

Y	kernel integralne jednad	žbe			4	ł
---	--------------------------	-----	--	--	---	---

Sažetak

Geometrijski neovisna analitička metoda za minimiziranje induciranog otpora korištena je za analizu optimalnih konfiguracija trokrilaca. Metoda opisuje nepoznatu distribuciju cirkulacije Euler-Lagrangeovim integralnim jednadžbama dobivenih varijacijskim računom. Kernel koji se generira ima singularitet samo prvog reda te je metoda računalno učinkovita, idealna za rane idejne faze projektiranja letjelice. Analizirane su neplanarne konfiguracije trokrilaca sa dvije vrste krila, ravno krilo i "box" krilo te ovisnost zadanih krila o rasporedu u konfiguraciji te ovisnost konfiguracija o vertikalnom aspektnom odnosu.

Ključne riječi: Optimizacija trokrilca u idealnom fluidu, Euler-Lagrangeove jednadžbe, Varijacijski račun, Superformula, "Box" krilo.

Summary

Configuration-invariant analytical formulation for the induced drag minimization of triplane non-planar systems is presented. Following a variational approach, the resulting Euler-Lagrange integral equation in the unknown circulation distribution is obtained. The kernel presents a singularity of the first order and the method is computationally efficient, ideal for the early conceptual phases of the design. Different triplane configurations are obtained using strait lifting line (classical lifting line) and closed, "box", lifting line. Configurations are varied with respect to vertical aspect ratio and distribution of different lifting lines inside configuration.

Keywords: Optimization of triplane in ideal fluid, Euler-Lagrange equations, Calculus of variations, Superformula, "Box" wing

1 Uvod

U današnjem vremenu, potražnja za zračnim prijevozom ljudi i dobara neprestalno raste, što znaći da zrakoplovnu industiju u bliskoj budućnosti očekuju novi izazovi. Naime, kako tehnologija i materijali postaju jeftiniji, tako su i bespilotne letjelice postale pristupačnije širokom pučanstvu. S tolikom dostupnošću nameće se i potreba za različitim primjenama, od nadzorne, poljoprivredne ili samo dostavne, mogućnosti su neprebrojive. S tolikim mogućnostima primjene bespilotnih letjelica, nameću se klasična pitanja konfiguracije, efikasnosti, režima leta, cijene i ekološke osviještenosti.

Tipičan problem jest otkidanje vrtloga na vrhovima ravnog krila, gdje posljedično cirkulacija odlazi u nulu. U praksi se na vrhove postavljaju wingleti koji značajno smanjuju inducirani otpor. No, drugi problem je što postoji svega nekoliko metoda proračuna wingleta u preliminarnoj fazi projektiranja krila. Također, poznate metode su ovisne o geometriji krila, te se rijetko kojom može dovoljno dobro opisati nestandarna konfiguracija letjelica. Kako je tehnološki napredak poprilično brz, cilj je imati praktičnu metodu optimizacije standardnih i nestandarnih aerodinamičnih konfiguracija letjelica. Upravo jedna takva je korištena u ovom radu.

Glavni cilj metode opisane u ovom radu jest minimizacija induciranog otpora. Također, metoda nije ovisna o geometriji krila, letjelice ili sustava letjelica. Euler-Lagrangeove jednadžbe su izvedene varijacijskom metodom te su predstavljene integralne jednadžbe sa singularnim kernelom prvog reda. Opisana metoda u integralnoj jednadžbi ima kao nepoznanicu samo cirkulaciju, ali ne i njenu prvu derivaciju.

Gotovo bilo koje neplanarno krilo može se analizirati, bilo ono klasično otvoreno, ili za-

tvoreno ("box") krilo. Određivanje optimalnih uvjeta vrši se samo jednom te formalno ne ovise o geometriji krila. Također, prezentirana metoda prirodno dolazi do Munkovog teorema o minimalnom induciranom otporu kada se zapišu Euler-Lagrangeove jednadžbe. Konstanta proporcionalnosti se dovodi u direktnu vezu sa brzinom u beskonačnosti i aerodinamičkom efikasnosti u optimalnim uvjetima.

U trenutku kada počinje novo doba zrakoplovstva, ono staro dolazi na reviziju. Tako se u ovom radu dao naglasak trokrilcima, odnosno, klasi konfiguracija trokrilaca koji se sastoje od ravnih krila i zatvorenih "Box" krila. Točnije, njihovim kombinacijama. Klasa konfiguracija promatra se u kontekstu različitih vektikalnih aspektnih odnosa i različitih vertikalnih udaljenosti između krila.

2 Matematički model

Pronalazak minimalnog induciranog otpora, za krila zadanog raspona i ukupnog uzgona, zahtjeva minimizaciju funkcionala. To se postiže varijacijskom računom. Za zadavanje uzgona, kao ograničenje, koristi se Lagrangeov množitelj[1].

2.1. Uzgon i inducirani otpor višekrilca

Formulacija [3] metode je izvedena za generički slučaj broja i oblika krila. Primjer je prikazan na slici 2.1. Broj krila, odnosno nosećih linija je jednak N. U modelu, j-to krilo je opisano s krivolinijskom apscisom $\eta_j \in [a_j, b_j]$. Na svakom krilu postoji raspodjela cirkulacije $\Gamma_j(\eta_j)$ te rezultantan uzgon označen sa L_j . Vrtlog se nalazi u točki ξ_k (točka koja inducira) na k-tom krilu. Razmatrani vrtlog inducira brzinu d v_j^k u točki η_j (točka u kojoj se inducira) na j-tom krilu, kao na slici 2.1:

Slika 2.1: Definicija koordinata modela

$$\mathrm{d}v_j^k(\eta_j) = \frac{1}{4\pi} \frac{\mathrm{d}\Gamma_k}{\mathrm{d}\xi_k} \mathrm{d}\xi_k \boldsymbol{i} \times \frac{r_k(\xi_k) - r_j(\eta_j)}{|r_k(\xi_k) - r_j(\eta_j)|^2}$$
(2.1)

što je poopćenje opisa metode za jedno krilo [3] i za dva krila kao u [2]. Slijedi, da je ukupna brzina \mathbf{v}_{j}^{k} inducirana od strane k-tog krila na mjestu η_{j} na j-tom krilu jednaka:

$$v_{j}^{k}(\eta_{j}) = \frac{1}{4\pi} \int_{a_{k}}^{b_{k}} \frac{\mathrm{d}\Gamma_{k}}{\mathrm{d}\xi_{k}} \mathrm{d}\xi_{k} i \times \frac{r_{k}(\xi_{k}) - r_{j}(\eta_{j})}{|r_{k}(\xi_{k}) - r_{j}(\eta_{j})|^{2}} \mathrm{d}\xi_{k}$$
(2.2)

Integral u jednadžbi 2.2 je singularan kada se podudaraju točka koja inducira i točka u kojoj se inducira, te je taj integral definiran kao Cauchyev integral prvotne vrijednosti. Ovo se događa kada su k = j. U suprotnom, integral je običan Riemmanov integral. Inducirana brzina u točki u kojoj se inducira η_j na j-tom krilu je jednaka sumi utjecaja

svih krila (uključujući i *j*-to, odnosno samoindukciju):

$$v_j(\eta_j) = \sum_{k=1}^N v_j^k(\eta_j) = \sum_{k=1}^N \frac{1}{4\pi} \int_{a_k}^{b_k} \frac{\mathrm{d}\Gamma_k}{\mathrm{d}\xi_k} \mathrm{d}\xi_k i \times \frac{r_k(\xi_k) - r_j(\eta_j)}{|r_k(\xi_k) - r_j(\eta_j)|^2} \mathrm{d}\xi_k$$
(2.3)

Ukoliko se poopći postupak u referencama [3] i [2], moguće je izračunati infinitezimalan doprinos induciranog otpora j-tog krila:

$$dD_{ind j}(\eta_j) = \rho_{\infty} \Gamma(\eta_j) d\eta_j \left[\boldsymbol{v}_{\boldsymbol{j}}(\eta_j) \times \boldsymbol{\tau}_{\boldsymbol{j}}(\eta_j) \right] \cdot \boldsymbol{i}$$

$$= -\rho_{\infty} \Gamma(\eta_j) d\eta_j \left[\boldsymbol{i} \times \boldsymbol{\tau}_{\boldsymbol{j}}(\eta_j) \right] \cdot \boldsymbol{v}_j(\eta_j)$$

$$= -\rho_{\infty} \Gamma(\eta_j) d\eta_j \boldsymbol{n}_j(\eta_j) \cdot \boldsymbol{v}_j(\eta_j)$$

$$= -\rho_{\infty} \Gamma(\eta_j) d\eta_j v_{nj}(\eta_j)$$

gdje je v_{nj} normalwash:

$$v_{nj}(\eta_j) = \sum_{k=1}^N \frac{1}{4\pi} \int_{a_k}^{b_k} \frac{\mathrm{d}\Gamma_k}{\mathrm{d}\xi_k} \mathrm{d}\xi_k Y_{jk}(\eta_j, \xi_k) \mathrm{d}\xi_k$$
(2.4)

potom se definira kernel¹:

$$Y_{jk}(\eta_j, \xi_k) = \tau_j(\eta_j) \cdot \frac{r_k(\xi_k) - r_j(\eta_j)}{|r_k(\xi_k) - r_j(\eta_j)|^2}$$
(2.5)

Inducirani otpor, relativan obzirom na j-to krilo, uzima u obzir utjecaj svih krila koja tvore višekrilca te se računa integralom koji slijedi:

$$D_{ind j} = \int_{wing j} \mathrm{d}D_{ind j}(\eta_j) = \int_{a_j}^{b_j} \rho_{\infty} v_{nj}(\eta_j) \Gamma_j(\eta_j) \mathrm{d}\eta_j \tag{2.6}$$

Infinitezimalni doprinos uzgonu na j-tom krilu jest:

$$dL_j(\eta_j) = -\rho_{\infty} V_{\infty} \Gamma(\eta_j) d\eta_j \left[\boldsymbol{i} \times \boldsymbol{\tau}_{\boldsymbol{j}}(\eta_j) \right] \boldsymbol{\cdot} \boldsymbol{k}$$
(2.7)

$$= -\rho_{\infty}V_{\infty}\Gamma(\eta_j)\mathrm{d}\eta_j \left[\boldsymbol{k}\times\boldsymbol{i}\right]\cdot\tau_j(\eta_j)$$
(2.8)

$$= -\rho_{\infty}V_{\infty}\Gamma(\eta_j)\mathrm{d}\eta_j \boldsymbol{j} \cdot \tau_j(\eta_j)$$
(2.9)

$$= -\rho_{\infty}V_{\infty}\Gamma(\eta_j)\mathrm{d}\eta_j\tau_{y\ j}(\eta_j) \tag{2.10}$$

¹Kernel je funkcija koja prima dvije varijble. U ovom modelu se odnosi na geometrijski dio Biot-Savartovog zakona kojim se opisuje inducirana brzina.

Sila uzgona j-tog krila dobije se integriranjem jednadžbe 2.10:

$$L_j = \int_{wing_j} dL_j(\eta_j) = -\int_{a_j}^{b_j} \rho_\infty V_\infty \Gamma_j(\eta_j) \tau_{y\ j}(\eta_j) \mathrm{d}\eta_j$$
(2.11)

Ukupni inducirani otpor i uzgon višekrilca mogu se izračunati sumirajući sve relativne doprinose obzirom na jednom krilo:

$$D_{ind} = -\sum_{j=1}^{N} \int_{a_j}^{b_j} \rho_{\infty} \left[\sum_{k=1}^{N} \frac{1}{4\pi} \int_{a_k}^{b_k} \frac{\mathrm{d}\Gamma_k}{\mathrm{d}\xi_k} \mathrm{d}\xi_k Y_{jk}(\eta_j, \xi_k) \mathrm{d}\xi_k \right] \Gamma_j(\eta_j) \mathrm{d}\eta_j \tag{2.12}$$

$$L = -\sum_{j=1}^{N} \int_{a_j}^{b_j} \rho_{\infty} V_{\infty} \Gamma_j(\eta_j) \tau_{y\ j}(\eta_j) \mathrm{d}\eta_j$$
(2.13)

2.2. Varijacijski račun

Varijacijski račun je dio matematičke analize koji koristi *varijacije*, odnosno male promjene funkcija i funkcionala kako bi se pronašli ekstremi funkcionala. U varijacijskom računu, pojam funkcional označava preslikavanje skupa funkcija i njihovih derivacija u realni broj. Ponekad se za pojam funkcional (u kontekstu varijacijskog računa) kaže da je "funkcija funkcija" . Metodama varijacijskog računa pronalazi se put, krivulja, površina, itd. za koju zadani funkcional ima stacionarnu vrijednost (minimum ili maksimum)[6]. Primjer funkcionala: **Konačan integral** Integrali kao što su:

$$f \to J[f] = \int_{\Omega} H(f(x), f'(x), \dots) \mu(\mathrm{d}x)$$

formiraju posebnu klasu funkcionala. Oni preslikavaju funkciju f u realni broj, ukoliko se pretpostavi da H ima realnu vrijednost. Primjer uključuje:

• površina ispod grafa pozitivne funkcije f:

$$f \to \int_{x_0}^{x_1} f(x) \mathrm{d}x$$

• L^p norma funkcije na nizu E:

$$f \to \left(\int_E |f|^p \mathrm{d}x\right)^{1/p}$$

• duljina luka krivulje u dvodimenzionalnom Euklidskom prostoru:

$$f \to \int_{x_0}^{x_1} \sqrt{1 + |f'(x)|^2} \mathrm{d}x$$

Rezimirano, Riemannov integral je linearni funkcional na vektorskom prostoru Riemannintegrabilnih funkcija od točke a do točke b, gdje su $a, b \in R$. Što implicira da su u varijacijskom računu funkcionali najčešće opisani konačnim integralima koji sadrže funkcije i njihove derivacije. Derivacije funkcionala daju informaciju kako se razmatrani funkcional mijenja kada se ulazna funkcija promijeni za mali iznos.

Funkcionali imaju ekstreme obzirom na elemente y zadanog funkcionalnog prostora definiranog na zadanoj domeni. Funkcional J[y] ima ekstremum za funkciju f ako:

$$\Delta J = J\left[y\right] - J\left[f\right]$$

ima isti predznak za svaki y u proizvoljno maloj okolini od f. Onda se funkcija f naziva ekstrem funkcionala. Ekstremum J[f] se naziva lokalni maksimum ako je $\Delta J \leq 0$ svugdje na proizvoljno maloj okolini od f, te lokalni minimum ako je $\delta J \geq 0$ na toj istoj okolini. Za funkcijski prostor sa neprekidnim funkcijama, ekstremali odgovarajućih funkcionala se nazivaju slabi ekstremi ili jaki ekstremi, ovisno je li prva derivacija neprekidne funkcije potpuno neprekidna ili ne. Pronalazak jakog ekstrema je puno teže nego pronalazak slabog. Primjer nužnog uvjeta koji se koristi za pronalazak slabog ekstrema je Euler-Lagrangeova jednadžba.

Matematički, pronalazak ekstrema funcionala je slično pronalasku ekstrema funkcije, odnosno, ekstem (stacionarnu vrijednost) funkcionala može se pronaći ukoliko derivaciju funkcionala izjednačimo sa nulom [6]. Ako se uzme funkcional:

$$J[y] = \int_{a}^{b} L(x, y(x), y'(x)) \mathrm{d}x$$

gdje su:

• a, b konstante

- y(x) dvostruko neprekidno diferencijabilna funkcija
- $y'(x) = \mathrm{d}y/\mathrm{d}x$
- L(x, y(x), y'(x)) dvostruko neprekidno diferencijabilna funkcija obzirom na svoje argumente x, y, y'

Ukoliko J[y] zaprima lokalni minimum u f, a $\eta(x)$ je proizvoljna funkcija koja ima barem jednu derivaciju i iščezava u krajnjim točkama a i b, onda za svaki broj ϵ blizu 0:

$$J[y] \le J[f + \epsilon n]$$

Upravo se izraz ϵn naziva varijacija funkcije f te se označava sa δf . Supstituirajući $f + \epsilon n$ za y u funkcionalu J[y], rezultat je funkcija od ϵ :

$$\Phi(\epsilon) = J\left[f + \epsilon\eta\right]$$

Kako funkcional J[y] ima minimum za y = f, funkcija $\Phi(\epsilon)$ ima minimum za $\epsilon = 0$, time slijedi:

$$\Phi(0) = \frac{d\Phi}{\mathrm{d}\epsilon}|_{\epsilon=0} = \int_a^b \frac{\mathrm{d}L}{\mathrm{d}\epsilon}|_{\epsilon=0} \mathrm{d}x = 0$$

Ukoliko se uzme totalna derivacija od L(x, y(x), y'(x)) gdje su $y = f + \epsilon \eta$ i $y' = f' + \epsilon \eta'$ funkcije od ϵ , a ne od x, slijedi:

$$\frac{\mathrm{d}L}{\mathrm{d}\epsilon} = \frac{\partial L}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}\epsilon} + \frac{\partial L}{\partial y'} \frac{\mathrm{d}y'}{\mathrm{d}\epsilon}$$

kako je $dy/d\epsilon = \eta$ te $dy'/d\epsilon = \eta'$. Slijedi:

$$\begin{split} \int_{a}^{b} \frac{df}{d\epsilon}|_{\epsilon=0} \mathrm{d}x &= \int_{a}^{b} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) \mathrm{d}x \\ &= \int_{a}^{b} \frac{\partial L}{\partial f} \eta \mathrm{d}x + \frac{\partial L}{\partial f'} \eta|_{a}^{b} - \int_{a}^{b} \eta \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'} \mathrm{d}x \\ &= \int_{a}^{b} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'} \right) \mathrm{d}x \end{split}$$

gdje $L[x, y, y'] \rightarrow L[x, f, f']$ kada je $\epsilon = 0$ te je korištena integracija po djelovima u drugom izrazu. Drugi izraz u drugoj liniji iščezava zato što je $\eta = 0$ u točkama *a* i *b* po

definiciji. Također, kako je već spomenuto, lijeva strana jednadžbe je jednaka nuli na način:

$$\int_{a}^{b} \eta(x) \left(\frac{\partial L}{\partial f} - \frac{d}{\mathrm{d}x} \frac{\partial L}{\partial f'} \right) \mathrm{d}x = 0$$
(2.14)

te je po fundamentalnoj lemi varijacijskog računa (prilog1) integrand u zagradi jednak nuli:

$$\frac{\partial L}{\partial f} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'} = 0$$

odnosno, dobije se Euler-Lagrangeova jednadžba. Također, jednadžba sa lijeve strane se naziva derivacija funkcionala J[f] te se označava sa $\delta J/\delta f(x)$. U konačnici se dobije sustav drugog reda običnih diferencijalnih jednadžbi koji se treba riješiti kako bi se dobio ekstrem funkcije f(x). No, Euler-Lagrangeova jednadžba je nužan, ali nije dovoljan uvjet za pronalazak ekstremuma J[f].

Naime, prva varijacija funkcionala je definirana kao linearni dio promjene funkcionala, a druga varijacija kao kvadratni dio. Na primjer, ako se uzme funkcional J[f] sa funkcijom y = y(x) kao argument, te postoji mala promjena na argumentu od y do y + h gdje je h = h(x) funkcija u istom funkcijskom prostoru kao i y, onda je odgovarajuća promjena funkcionala:

$$\delta J[h] = J[y+h] - [y]$$

Kaže se da je funkcional J[y] diferencijabilan, ako:

$$\Delta J\left[h\right] = \varphi\left[h\right] + \epsilon \|h\|$$

gdje je $\varphi[h]$ linearni funkcional, ||h|| je norma od h, a $\epsilon \to 0$ kada $||h|| \to 0$. Linearni funkcional je prva varijacija od J[h] te se zapisuje kao:

$$\delta J\left[h\right] = \varphi\left[h\right]$$

Kaže se da je funkcional J[y] dvostruko diferencijabilan ako:

$$\Delta J[h] = \varphi_1[h] + \varphi_2[h] + \epsilon ||h||^2$$

gdje je $\varphi_1[h]$ linearni funkcional (prva varijacija), $\varphi_2[h]$ je kvadratni funkcional, a $\epsilon \to 0$ kada $||h|| \to 0$. Kvadratni funkcional $\varphi_2[h]$ je druga varijacija od J[y] te se zapisuje kao:

$$\delta^2 J\left[h\right] = \varphi_2\left[h\right]$$

Za drugu varijaciju $\delta^2 J[h]$ se kaže da je jako pozitivna ako:

$$\delta^2 J[h] \ge k \|h\|^2.$$

za svaki h i za neke konstante k > 0. Koristeći gore navedene definicije za prvu i drugu varijaciju te jaku pozitivnost, može se izvesti dovoljan uvjet za minimum funkcionala na način:

Definicija 2.2..1 Funkcional J[y] ima minimum $u \ y = \widetilde{y}$ ako je njegova prva varijacija $\delta J[h] = 0$ za $y = \widetilde{y}$ te njegova druga varijacija $\delta^2 J[h]$ jako pozitivna za $y = \widetilde{y}$.

Takvi funkcionali imaju takozvano "lokalizacijsko svojstvo", koje kaže da ukoliko podijelimo krivulju y(x) na dijelove i izračunamo vrijednosti funkcionala za svaki dio, suma vrijednosti funkcionala svakog dijela krivulje je jednaka ukupnoj vrijednosti funkcionala cijele krivulje.

2.3. Euler-Lagrangeove jednadžbe

Teorem 2.3..1 (Euler-Lagrangeove jednadžbe) Neka je $L : ([a,b] \times R \times R)$ funkcija klase C^2 , $L = L(x, y, \xi)$, te $X = \{y \in C^1([a,b]) : y(a) = \alpha, y(b) = \beta, \alpha, \beta \in R.$

• Ako postoji minimizator $\overline{y} \in X \cap C^2([a, b])$ funkcionala J, tada \overline{y} zadovoljava slijedeću diferencijalnu jednadžbu:

$$\frac{d}{dx}L_{\xi}(x,\overline{y}(x),\overline{y'}(x)) = L_{y}(x,\overline{y}(x),\overline{y'}(x)), \quad x \in (a,b)$$
(2.15)

- Obratno, ako je $\overline{y} \in X$ zadovoljava jednadžbu 2.15 i ako je funkcija $(y,\xi) \rightarrow f(x,y,\xi)$ konveksna za svaki $x \in [a,b]$, tada je \overline{y} minimizator funkcionala J.
- Nadalje, ako je funkcija (y,ξ) → f(x, y,ξ) strogo konveksna za svaki x ∈ [a, b], tada je minimizator jedinstven.

Ukoliko se lijeva strana jednadžbe 2.15 raspiše, dobije se:

$$f_{\xi x}(x,\overline{y}(x),\overline{y'}(x)) + f_{\xi y}((x,\overline{y}(x),\overline{y'}(x),\overline{y'}(x))) + f_{\xi \xi}(x,\overline{y}(x),\overline{y''}(x)) = f_y(x,\overline{y}(x),\overline{y'}(x))$$

gdje se koriste slijedeće oznake:

$$f_{\xi} = \frac{\partial}{\partial \xi} f$$
$$f_{y} = \frac{\partial}{\partial y} f$$
$$f_{\xi\xi} = \frac{\partial^{2}}{\partial \xi^{2}} f$$
$$f_{\xi y} = \frac{\partial^{2}}{\partial \xi \partial y} f$$
$$f_{\xi x} = \frac{\partial^{2}}{\partial \xi \partial x} f$$

2.3.1. Izoperimetrički problem

Euler-Lagrangeove jednadžbe se koriste za najjednostavniji problem varijacijskog računa, odnosno da, osim glatkoće, klasa promatranih krivulja ima nametnute uvjete na krajnjim točkama krivulje. To se inače zove izoperimetrički problem[4]. No, kako je problem ove zadaće optimizacijski, odnosno pronalazak minimalnog induciranog otpora za zadani totalni uzgon (ograničenje), treba se dodati još jedna vrsta uvjeta na klasu promatranih krivulja, a to je pridružni uvjet (ili ograničenje). U matematičkom smislu, traži se uvjetni ekstrem, pa u nastavku slijedi njegova definicija:

Definicija 2.3..2 Neka je $\Omega \subseteq \mathbb{R}^n$ otvoreni skup i neka je f neprekidna na ω te neka je $S \subseteq \Omega$. Ekstrem funkcije $f_S : S \to \mathbb{R}$ nazivamo uvjetni ekstrem funkcije f s obzirom na skup S.

Skup S često je zadan sa:

$$S = \{P \in \Omega : g_1(P) = 0, g_2(P) = 0, \dots, g_m(P) = 0\}$$

gdje su $g_1 \in C(\Omega), i = 1, ..., m, m < n$, dane funkcije. Tada govorimo o uvjetnom ekstremu funkcije f uz uvjete $q_1(P) = 0, g_2(P) = 0, g_m(P) = 0$. Nadalje, ograničenje uvodimo u problem Lagrangeovom metodom, odnosno zadaje se u obliku Lagrangeovog množitelja λ , no prije toga potrebno je formulirati nužne i dovoljne uvjete za traženje uvjetnih ekstrema funkcije više varijabli[4].

Teorem 2.3..3 (Nužni uvjeti u slučaju jednog uvjeta) Neka je $\Omega \subseteq R^n$ otvoren skup, neka su $f, g: \Omega \to R$ funkcije klase C^1 i neka je zadan skupk $S = \{P \in \Omega : g(P) = 0\}$ te neka vrijedi $\nabla g(P) \neq 0$ za svaki $P \in S$. Ako je $P_0 \in S$ točka lokalnog ekstrena za f_S onda postoji $\lambda \in R$ sa svojstvom:

$$\nabla f(P_0) = \lambda \nabla g(P_0)$$

Koordinatno zapisan, uvjet iz teorema glasi:

$$\partial_i f(P_0) = \lambda \partial_i g(P_0), \quad i = 1, 2, \dots, n$$

Lagrangeova metoda pronalaženja ekstrema funkcije uz dane uvjete započinje od Lagrangeove funkcije:

$$F(x_1, x_2, \dots, x_n, \lambda) = f(x_1, x_2, \dots, x_n) - \lambda g(x_1, x_2, \dots, x_n)$$
(2.16)

gdje je λ varijabla koju nazivamo Lagrangeov množitelj.

Teorem 2.3..4 (Lagrangeov množitelj) Neka su $f, g : [a, b] \times R \times R \to R$ dvije funkcije klase C^1 . Neka je $y \in X$ točka lokalnog minimuuma funkcionala J, gdje definiramo dopustivu klasu funkcija kao:

$$X := \left\{ \in C^{1}([a, b]) : y(a) = \alpha, y(b) = \beta, G(y) = c \right\}$$

Ako se pretpostavi da postoji $\psi \in C_c^{\infty}[a, b]$ takav da:

$$\delta G(y,\psi) \neq 0$$

Onda postoji $\lambda \in R$ takav da:

$$\delta J(y,\varpi) + \lambda \delta G(y,\varpi) = 0$$

za svaki $\varpi \in c^\infty_c((a,b))$. Točnije, postoji konstantna $c \in R$ takva da:

$$f_{\xi}(x, y(x), y'(x)) + \lambda g_{\xi}(x, y(x), y'(x)) =$$

= $c + \int_{a}^{x} \left[f_{p}(x, y(x), y'(x)) + \lambda g_{p}(x, y(x), y'(x)) \right] dx$

za svaki $x \in [a, b]$.

Potom, parcijalno deriviramo funkciju F po svim varijablama i parcijalne derivacije izjednačimo sa nulom. Time se dobiju nužni uvjeti iz predhodnog teorema, pri čemu posljednja jednadžba dobivena izjednačavanjem sa nulom, parcijalne derivacije funkcije F po varijabli λ , daje uvjet $g(x_1, x_2, \ldots, x_n) = 0$. Slijedi sustav jednadžbi koji se naziva Lagrangeov sustav. Rješavanjem tog sustava dobit će se točka koja može i nemora biti ekstrem funkcije f uz dano ograničenje g.

2.3.2. Geometrijska intepretacija Lagrangeovog množitelja

Neka su zadane funkcije f(x, y) i g(x, y), potrebno je pronaći ekstreme funkcije fuz ograničenje oblika g(x, y) = k gdje je $k \in R$ konstanta. Odnosno, traži se vrijednost ekstrema funkcije f(x, y) kada je točka (x, y) ograničena uvjetom da leži na razini krivulje g(x, y) = k. Slika prikazuje razmatranu krivulju zajedno sa nekoliko nivokrivulja $f(x, y) = c_i, i = 1, ..., 5$ Kako bi se pronašla minimalna vrijednost funkcije fuz uvjet g(x, y) = k, potrebno je pronaću najmanju vrijednost c takvu da nivo-krivulja f(x, y) = c siječe krivulju g(x, y) = k. Iz slike se vidi da se to događa kada se te dvije krivulje dodiruju, odnosno kada imaju zajedničku tangentu [5]. Dakle, normale krivulja f(x, y) = c i g(x, y) = k u točki (x_0, y_0) su identične, što znači da su njihovi gradijenti paralelni, odnosno vrijedi:

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

za neki skalar λ . Time je Lagrangeov množitelj faktor proporcionalnosti, odnosno stopa promjene optimalne vrijednosti s obzirom na promjene u ograničenju.

Slika 2.2: Geometrijska intepretacija Lagrangeovog množitelja

2.3.3. Primjena na zadani problem

Sada se problem minimizacije induciranog otpora može zapisati u obliku Lagrangeovog sustava sa funkcionalima te slijedi da se cirkulacija (u gore navedenoj interpretaciji y(x) je analogna cirkulaciji) koja postiže minimizaciju induciranog otpora može pronaći, ukoliko se riješi sustav Euler-Lagrangeovih jednadžbi (nužnih uvjeta za minimizaciju funkcionala) [1]. Kako se radi o trokrilcu, jednadžbe su međusobno povezane (zbog međusobnog utjecaja krila jedno na drugo). Ukupan uzgon L_{pres} je unaprijed zadan i predstavlja ograničenje minimizacijskog problema. Kako bi se pronašli optimalni uvjeti (Euler-Lagrangeove jednadžbe, minimalni inducirani otpor, raspodjela uzgona i cirkulacije) funkcional, koji uzima u obzir rubne uvjete i navedeno ograničenje u obliku Lagrangeovog množitelja λ , te zapisan u obliku izraza za inducirani otpor, je:

$$J(\Gamma_1, \Gamma_2, \cdots, \Gamma_N, \lambda) = D_{ind}(\Gamma_1, \Gamma_2, \cdots, \Gamma_N) - \lambda(L - L_{pres})$$

$$= \int_a^b \rho_\infty \left[-\frac{1}{4\pi} \int_a^b \Gamma'(\xi) Y(\eta, \xi) + \lambda V_\infty \tau_y(\eta) \right] \Gamma(\eta) \mathrm{d}\eta + \lambda L_{pres}$$

$$(2.18)$$

Optimalna raspodjela cirkulacije za *j*-to krilo je zapisana kao $\Gamma_j^{opt}(\eta_j)$. Cirkulacija je neprekidna funkcija koja iščezava na vrhovima krila. Odgovarajući uzgon za uvjet optimalne cirkulacije je:

$$L_j^{opt} = -\int_{a_j}^{b_j} \rho_\infty V_\infty \Gamma_j^{opt}(\eta_j) \tau_{yj}(\eta_j) \mathrm{d}\eta_j \qquad j = 1, 2, \cdots, N$$
(2.19)

Općenita cirkulacija (bez obzira je li izračunata za optimalne uvjete ili ne) mora biti nula na vrhovima svakog krila.

Ako se uzme u obzir proizvoljna glatka varijacija $\delta_j(\eta)$, koja iščezava na rubnim točkama *a* i *b*, odnosno:

$$\delta_j(a_j) = \delta_j(b_j) = 0 \tag{2.20}$$

rješenje problema pronalaska optimalne cirulacije može se zapisati kao²:

$$\Gamma_j(\bullet) = \Gamma_j^{opt}(\bullet) + \sigma \delta_j(\bullet) \qquad \sigma \in (-1, 1)$$
(2.21)

Kako je $\Gamma_j(a_j, b_j) = 0$, svojstvo iščezavanja test funkcije $\delta_j(\bullet)$ implicira da optimalna cirkulacija također zadovoljava homogene rubne uvjete na vrhovima krila:

$$\Gamma_j^{opt}(a) = \Gamma_j^{opt}(b) = 0$$

Ako se jednadžba 2.21 supstituira u jednadžbu 2.18 te ako se uzme u obzir jednadžba 11, slijedi:

$$J\left[\Gamma_{j}^{opt}(\bullet) + \sigma\delta_{j}(\bullet)\right] = J\left[\Gamma_{j}^{opt}(\bullet)\right] + \sigma\sum_{j=1}^{N}\int_{a_{j}}^{b_{j}}\rho_{\infty}\left[-\sum_{k=1}^{N}\frac{1}{4\pi}\int_{a_{k}}^{b_{k}}\frac{\mathrm{d}\Gamma_{k}}{\mathrm{d}\xi_{k}}\mathrm{d}\xi_{k}Y_{jk}(\eta_{j},\xi_{k})\mathrm{d}\xi_{k}\right]\delta_{j}(\eta_{j})\mathrm{d}\eta_{j}$$
$$+\sigma\sum_{j=1}^{N}\int_{a_{j}}^{b_{j}}\rho_{\infty}\left[-\sum_{k=1}^{N}\frac{1}{4\pi}\int_{a_{k}}^{b_{k}}\frac{\mathrm{d}\delta_{k}}{\mathrm{d}\xi_{k}}\mathrm{d}\xi_{k}Y_{jk}(\eta_{j},\xi_{k})\mathrm{d}\xi_{k}\right]\Gamma_{j}^{opt}(\eta_{j})\mathrm{d}\eta_{j}$$
$$+\sigma^{2}\sum_{j=1}^{N}\int_{a_{j}}^{b_{j}}\rho_{\infty}\left[-\sum_{k=1}^{N}\frac{1}{4\pi}\int_{a_{k}}^{b_{k}}\frac{\mathrm{d}\delta_{k}}{\mathrm{d}\xi_{k}}\mathrm{d}\xi_{k}Y_{jk}(\eta_{j},\xi_{k})\mathrm{d}\xi_{k}\right]\delta_{j}(\eta_{j})\mathrm{d}\eta_{j}$$
$$+\sigma\lambda\sum_{j=1}^{N}\int_{a_{j}}^{b_{j}}\rho_{\infty}V_{\infty}\delta_{j}(\eta_{j})\tau_{y\ j}(\eta_{j})\mathrm{d}\eta_{j}$$

 $^{^{2}(\}bullet)$ znači da varija
bla može biti funkcija i η i $\xi.$

Ako se iskoristi postupak iz priloga reference [2], može se pokazati jednakost:

$$\sum_{j=1}^{N} \int_{a_j}^{b_j} \rho_{\infty} \left[-\sum_{k=1}^{N} \frac{1}{4\pi} \int_{a_k}^{b_k} \frac{\mathrm{d}\delta_k}{\mathrm{d}\xi_k} \mathrm{d}\xi_k Y_{jk}(\eta_j, \xi_k) \mathrm{d}\xi_k \right] \Gamma_j^{opt}(\eta_j) \mathrm{d}\eta_j =$$
(2.22)

$$=\sum_{j=1}^{N}\int_{a_{j}}^{b_{j}}\rho_{\infty}\left[-\sum_{k=1}^{N}\frac{1}{4\pi}\int_{a_{k}}^{b_{k}}\frac{\mathrm{d}\delta_{k}}{\mathrm{d}\xi_{k}}\mathrm{d}\xi_{k}Y_{jk}(\eta_{j},\xi_{k})\mathrm{d}\xi_{k}\right]\delta_{j}(\eta_{j})\mathrm{d}\eta_{j}$$
(2.23)

Nadalje, ako se supstituira jednadžba 2.23 u funkcional 2.22:

$$J\left[\Gamma_{j}^{opt}(\bullet) + \sigma\delta_{j}(\bullet)\right] = J\left[\Gamma_{j}^{opt}(\bullet)\right] + \sigma\sum_{j=1}^{N}\int_{a_{j}}^{b_{j}}\rho_{\infty}\left[-2\sum_{k=1}^{N}\frac{1}{4\pi}\int_{a_{k}}^{b_{k}}\frac{\mathrm{d}\Gamma_{k}^{opt}(\xi_{k})}{\mathrm{d}\xi_{k}}Y_{jk}(\eta_{j},\xi_{k})\mathrm{d}\xi_{k}\right]\delta_{j}(\eta_{j})\mathrm{d}\eta_{j}$$

$$(2.24)$$

$$+\sigma^{2}\sum_{k=1}^{N}\int_{a_{j}}^{b_{j}}\rho_{\infty}\left[-\sum_{k=1}^{N}\frac{1}{2}\int_{a_{j}}^{b_{k}}\frac{\mathrm{d}\delta_{k}(\xi_{k})}{\mathrm{d}\xi_{k}}Y_{jk}(\eta_{j},\xi_{k})\mathrm{d}\xi_{k}\right]\delta_{j}(\eta_{j})\mathrm{d}\eta_{j}$$

$$+\sigma^{2}\sum_{j=1}^{N}\int_{a_{j}}^{b_{j}}\rho_{\infty}\left[-\sum_{k=1}^{N}\frac{1}{4\pi}\int_{a_{k}}^{b_{k}}\frac{\mathrm{d}\delta_{k}(\xi_{k})}{\mathrm{d}\xi_{k}}Y_{jk}(\eta_{j},\xi_{k})\mathrm{d}\xi_{k}\right]\delta_{j}(\eta_{j})\mathrm{d}\eta_{j}$$

$$(2.25)$$

$$+\sigma\lambda\sum_{j=1}^{N}\int_{a_{j}}^{b_{j}}\rho_{\infty}V_{\infty}\delta_{j}(\eta_{j})\tau_{yj}(\eta_{j})\mathrm{d}(\eta_{j})$$
(2.26)

Za pronalazak optimalnih uvjeta treba se izračunati prva derivacija funkcionala J s obzirom na parametar σ te derivacija treba biti izjednačena sa nulom:

$$\frac{\mathrm{d}J\left[\Gamma_{j}^{opt}(\bullet) + \sigma\delta_{j}(\bullet)\right]}{\mathrm{d}\sigma}|_{\sigma=0} = \sum_{j=1}^{N} \int_{a_{j}}^{b_{j}} \rho_{\infty} \left[-2v_{nj}^{opt}(n_{j}) + \lambda V_{\infty}\tau_{yj}(\eta_{j})\right] \delta_{j}(\eta_{j}) \mathrm{d}\eta_{j} = 0$$

te je jednadžba 2.4 korištena za izračun normalwash-a pod optimalnim uvjetima. Funkcije $\delta_j(\eta_j)$ su proizvoljne. Time je identitet u jednadžbi ?? zadovoljen ukoliko je zadovoljen slijedeći skup od N jednadžbi (Fundamentalna lema varijacijskog računa):

$$-2v_{nj}^{opt}(n_j) + \lambda V_{\infty}\tau_{yj}(\eta_j) = 0 \Rightarrow v_{nj}^{opt} = \frac{\lambda}{2}V_{\infty}\tau_{yj}(\eta_j) \quad j = 1, 2, \cdots, N$$
(2.27)

Navedene jednadžbe su Euler-Lagrangeove jednadžbe.

2.4. Integralni oblik Euler-Lagrangeovih jednadžbi

Euler-Lagrangerove jednadžbe su napisane u jednažbi 2.27. Izrazi se mogu napisati obzirom na formulu za normalwash v_{nj}^{opt} [1]:

$$\sum_{k=1}^{N} \frac{1}{4\pi} \int_{a_k}^{b_k} \frac{\mathrm{d}\Gamma_k^{opt}(\xi_k)}{\mathrm{d}\xi_k} Y_{jk}(\eta_j, \xi_k) \mathrm{d}\xi_k = \frac{V_{\infty}}{E^{opt}} \frac{\mathrm{d}y_j(\eta_j)}{\mathrm{d}\eta_j} \quad j = 1, \dots, N$$
(2.28)

gdje su kerneli izraženi formulom 2.5. Slijede Euler-Lagrengeove jednadžbe izražene u željenoj integralnoj formi:

$$-\sum_{k=1}^{N} \frac{1}{4\pi} \int_{a_{k}}^{b_{k}} \Gamma_{k}^{opt}(\xi_{k}) Y_{jk}(\eta_{j}, \xi_{k}) \mathrm{d}\xi_{k} = \frac{V_{\infty}}{E^{opt}} y_{j}(\eta_{j}) \quad j = 1, \dots, N$$
(2.29)

Prikladno je zapisati jednadžbe u bezdimenzijskom obliku. Z
a $j,k=1,2,\ldots,N$ slijede izrazi:

$$\overline{a_k} = \frac{a_k}{l_{wk}} \quad \overline{b_k} = \frac{b_k}{l_{wk}} \quad \overline{y_j} = \frac{y_j}{l_{wj}}$$

$$\overline{a_j} = \frac{a_j}{l_{wj}} \quad \overline{b}_j = \frac{b_j}{l_{wj}} \quad \overline{r_j} = \frac{r_j}{l_{wj}} \quad \overline{r_k} = \frac{r_k}{l_{wk}}$$

$$\overline{\Gamma}_k^{opt} = \frac{1}{4\pi} \frac{E^{opt} \Gamma_k^{opt}}{l_{wk} V_{\infty}} \quad \overline{\Gamma}_j^{opt} = \frac{1}{4\pi} \frac{E^{opt} \Gamma_j^{opt}}{l_{wj} V_{\infty}}$$

$$\overline{\xi}_k = \frac{\xi_k}{l_{wk}} \quad \overline{\eta} = \frac{\eta}{l_{wj}} \quad l_{kj} = \frac{l_{wk}}{l_{wj}}$$

Referentna duljina l_{wj} je različita ukoliko promatramo krila različitih raspona. Ukoliko su krila istog raspona (što je slučaj u ovom radu) odnosno $b_{wj} = b_{wk}$ onda je varijabla $l_{kj} = 1$. Nadalje, ukoliko se koristi jedna referentna duljina za cijeli sustav višekrilca onda su bezdimenzijski parametri $l_{kj} = \frac{l_{wk}}{l_{wj}}$ jednaki 1 za svaku kombinaciju krila. Ako se substituiraju navedeni bezdimenzijski parametri u jednadžbu 2.28, slijedi:

$$-\sum_{k=1}^{N} \frac{1}{4\pi} \int_{\overline{a}_{k}}^{\overline{b}_{k}} l_{kj}^{2} \overline{\Gamma}_{k}^{opt}(\overline{\xi}_{k}) \overline{Y}_{jk}(\overline{\eta}_{j}, \overline{\xi}_{k}) \mathrm{d}\overline{\xi}_{k} = \overline{y}_{j}(\overline{\eta}_{j}) \quad j = 1, \dots, N$$
(2.30)

gdje je bezdimenzijski kernel izveden iz 2.5:

$$\overline{Y_{kj}}(\overline{\xi_k}, \overline{\eta_j}) = \frac{\mathrm{d}\overline{r_k}(\overline{\xi_k})}{\mathrm{d}(\xi_k)} \bullet \frac{\overline{r_j}(\overline{\eta_j}) - l_{kj}\overline{r_k}(\overline{\xi_k})}{|\overline{r_j}(\overline{\eta_j}) - l_{kj}\overline{r_k}(\overline{\xi_k})|^2}$$
(2.31)

Koristeći jednadžbu 2.29 može se zapisati uzgon općenitog krila L_i^{opt} , kako slijedi:

$$\frac{2}{\pi} \int_{\overline{a_j}}^{\overline{b_j}} \overline{\Gamma_j^{opt}}(\overline{\eta_j}) \frac{\mathrm{d}\overline{y_j}(\overline{\eta_j})}{\mathrm{d}\overline{\eta_j}} \mathrm{d}\overline{\eta_j} = \varepsilon_j \frac{b_{wj}^2}{l_{wj}^2} \quad j = 1, 2, \cdots, N$$
(2.32)

gdje je vrijednost ε_j omjer optimalne aerodinamičke efikasnosti definiran kao:

$$\varepsilon_j = \frac{(L_j^{opt})^2}{2\pi\rho_\infty D_{ind\ j}^{opt} V_\infty^2 b_{wj}^2} = \frac{L_j^{opt} E^{opt}}{2\pi\rho_\infty V_\infty^2 b_{wj}^2} \quad j = 1, 2, \cdots, N$$
(2.33)

a b_w je poluraspon općenitog j-tog krila.

Ograničenje opisano totalnim uzgonom L, može se zapisati u bezdimenzijskom obliku:

$$\frac{L^2}{2\pi\rho_{\infty}D_{ind\ j}^{opt}V_{\infty}^2b_{wj}^2} = \sum_{j=1}^N \frac{l_{wj}^2}{b_w^2} \left\{ -\frac{2}{\pi} \int_{\overline{a_j}}^{\overline{b_j}} \overline{\Gamma_j^{opt}}(\overline{\eta_j}) \frac{\mathrm{d}\overline{y_j}(\overline{\eta_j})}{\mathrm{d}\overline{\eta_j}} \mathrm{d}\overline{\eta_j} \right\}$$
(2.34)

te optimalni omjer aerodinamičke efikasnosti višekrilca:

$$\varepsilon_j = \frac{L^2}{2\pi\rho_\infty D_{indj}^{opt} V_\infty^2 b_{wj}^2} \tag{2.35}$$

ukoliko se uzme u obzir jednadžba 2.32 dobije se veza između omjera aerodinamičkih efikasnosti:

$$\varepsilon = \sum_{j=1}^{N} \frac{b_{wj}^2}{b_w^2} \varepsilon_j \tag{2.36}$$

Za praktičnije rješenje Euler-Lagrangeovih jednadžbi, poželjno je koristiti parametre umjesto krivolinijskih koordinata. Ako se razmatra k-to krilo. Točka koja inducira je smještena na k-tom krilu, koje se označi sa parametrom u_{vk} . Točka u kojoj se inducira je locirana na j-tom krilu (j može koincidirati sa k u slučaju samoindukcije), te je označeno sa parametrom u_j . Ako se koriste navedene definicije minimizacijski problem je opisan kao:

$$-\sum_{k=1}^{N} \frac{1}{\pi} \int_{-1}^{1} l_{kj}^{2} \widetilde{\Gamma_{k}^{opt}}(u_{vk}) \widetilde{Y_{kj}}(u_{vk}, u_{j}) \mathrm{d}u_{vk} = \widetilde{y_{j}}(u_{j})$$
$$\varepsilon = \sum_{j=1}^{N} \frac{b_{wj}^{2}}{b_{w}^{2}} \varepsilon_{j}$$

gdje je:

$$\widetilde{Y_{kj}}(u_{vk}, u_j) = \frac{\mathrm{d}\widetilde{r_k}(u_{vk})}{\mathrm{d}u_{vk}} \frac{\widetilde{r_j}(u_j) - l_{kj}\widetilde{r_k}(u_{vk})}{|\widetilde{r_j}(u_j) - l_{kj}\widetilde{r_k}(u_{vk})|^2}$$
$$\varepsilon_j = \frac{-2}{\pi} \frac{l_{wj}^2}{b_{wj}^2} \int_{-1}^1 \widetilde{\Gamma_j^{opt}}(u_j) \frac{\mathrm{d}\widetilde{y_j}(u_j)}{\mathrm{d}u_j} \mathrm{d}u_j$$

2.5. Prošireni Munkov teorem o minimalnom iduciranom otporu

Jedenadžba 2.27 se može dodatno razmotriti kao u^[3]:

$$v_{nj}^{opt} = \frac{V_{\infty}}{E^{opt}} \tau_{yj}(\eta_j)$$

$$= \frac{V_{\infty}}{E^{opt}} \mathbf{j} \bullet \boldsymbol{\tau}(\eta_j)$$

$$= \frac{V_{\infty}}{E^{opt}} [\mathbf{k} \times \mathbf{i}] \bullet \boldsymbol{\tau}(\eta_j)$$

$$= \frac{V_{\infty}}{E^{opt}} [\mathbf{i} \times \boldsymbol{\tau}(\eta_j)] \bullet \mathbf{k}$$

$$= \frac{V_{\infty}}{E^{opt}} \mathbf{n}(\eta_j) \bullet \mathbf{k}$$

(2.37)

ili

$$v_{n\ j}^{opt} = \frac{V_{\infty}}{E^{opt}} \cos\left[\vartheta(\eta_j)\right]$$
(2.38)

Sa ovakvom formulacijom moguće je izračunati konstantu proporcionalnosti, što nije moguće u originalnom Munkovom teoremu.

Teorem 2.5..1 Kada se sustav noseće linije translatira u jednu ravninu, inducirani otpor će biti minimalan kada je komponenta inducirane brzine normalna na element noseće linije u svakoj točki proporcionalna kosinusu kuta nagiba nosećeg elementa u toj točki. Konstanta proporcionalnosti jest omjer slobodne brzine u beskonačnosti te optimalne aerodinamičke efikasnosti.

2.6. Fizikalna interpretacija omjera optimalne aerodinamičke efikasnosti

Pod optimalnim uvjetima raspodjela cirkulacije sustava je eliptična, te je korespondirajući minimalni inducirani otpor jednak:

$$D_{ind}^{ref} = \frac{L^2}{2\pi\rho_{\infty}V_{\infty}^2 b_w^2}$$
(2.39)

gdje je b_w duljina poluraspona planarnog krila sa ravnom nosećom linijom.

Optimalni omjer aerodinamičke efikasnosti ε za klasično ravno krilo je označeno sa ε^{ref} te se može izračunati kao:

$$\varepsilon^{ref} = \frac{L^2}{2\pi\rho_\infty V_\infty^2 b_w^2 D_{ind}^{ref}} = 1 \tag{2.40}$$

Također se može zapisati:

$$\varepsilon^{ref} = 1 = \frac{LE^{ref}}{2\pi\rho_{\infty}V_{\infty}^2 b_w^2} \Rightarrow = \frac{1}{E^{ref}}$$
(2.41)

gdje je E^{ref} aerodinamička efikasnost ravne ploče pod optimalnim uvjetima. Time slijedi:

Teorem 2.6..1 Omjer optimalne aerodinamičke efikasnosti ε za zadano krilo, predstavlja omjer između aerodinamičke efikasnosti i odgovarajuće klasnične ravne ploče sa istim rasponom krila i ukupnim uzgonom. Obje efikasnosti su evaluirane pod optimalnim uvjetima.

2.7. Optimalna cirkulacija i aerodinamička efikasnost

Omjer optimalne aerodinamičke efikasnosti također može doći u vezu sa omjerom optimalne cirkulacije, evaluiranom u proizvoljnoj točki na krilu, i maksimalne vrijednosti optimalne cirkulacije klasičnog krila (totalni uzgon i raspon su ostali isti kao u predhodnom razmatranju)[3].

Ako se razmotri maksimalna vrijednost Γ_{max}^{ref} za cirkulaciju kada je klasično krilo pod optimalnim uvjetima:

$$\Gamma_{max}^{ref} = \frac{2L}{\pi \rho_{\infty} V_{\infty} b_w} = \frac{4V_{\infty} b_w}{E^{ref}} \Rightarrow E^{ref} = \frac{4V_{\infty} b_w}{\Gamma_{max}^{ref}}$$
(2.42)

iz definicija za $\Gamma^{opt},\,\varepsilon$ i Γ^{ref}_max slijedi:

$$\Gamma^{opt}(u) = \frac{\varepsilon}{\Gamma^{ref}_{max}} b_w \overline{\Gamma^{opt}}(u)$$
(2.43)

odnosno:

$$\overline{\Gamma^{opt}}(u) = \frac{\Gamma^{ref}_{max}}{\varepsilon} (\frac{1}{b_w}) \Gamma^{opt}(u)$$
(2.44)

gdje je u proizvoljna točka na krilu, a $\overline{\Gamma^{opt}}$ bezdimenzijska optimalna cirkulacija.

2.8. Numerička metoda

Euler-Lagrangeove jednadžbe za višekrilca su slijedeće:

$$-\sum_{k=1}^{N} \frac{1}{\pi} \int_{q_{ak}}^{q_{ab}} l_{kj}^2 \Gamma_k^{opt}(u_{vk}) Y_{kj}(u_{vk}, u_j) \mathrm{d}u_{vk} = y_j(u_j)$$
(2.45)

Nepoznata optimalna cirkulacija je opisana formulom:

$$\Gamma_k^{opt}(u_{vk}) = \sqrt{1 - u_{vk}^2} \Upsilon_k(u_{vk})$$
(2.46)

Sustav integralnih jednadžbi dobiva oblik:

$$-\sum_{s=1}^{2n} w_s^{2n} \sum_{k=1}^{N} l_{kj}^2 Y_{kj}(u_{vk_s}^{2n}, u_{j_q}^{2n+1}) a_{ks} = y_j(u_{j_q}^{2n+1})$$
(2.47)

Za nastavak opisa numeričke metode za rješevanje zadanog problema, treba naglasiti da se svako krilo tretira na isti način, odnosno broj kolokacijskih točaka na svakom krilu je jednak. To nije restrikcija, ukoliko je potrebno, broj kolokacijskih točaka za svako krilo može biti različit i proizvoljan. Izrazi za kolokacijske točke su slijedeći:

$$w_s^{2n} = \frac{1}{2n+1}\sin^2\frac{s\pi}{2n+1}, \quad s = 1:n$$
 (2.48)

$$u_{vk_s}^{2n} = \cos\frac{s\pi}{2n+1}, \quad s = 1:n$$
 (2.49)

$$u_{j_q}^{2n+1} = \cos\frac{(2q-1)\pi}{4n+2}, \quad q = 1:2n+1$$
 (2.50)

Ovo je predefinirani sustav jednadžbi, koji ima jedinstveno simetrično rješenje. Kada se ovo svojstvo uzme u obzir, slijedi:

$$a_{k \ 2n+1-s} = a_{ks}, \quad s = 1:n$$

i sljedeće simetrije:

$$y_{j}(u_{j}) = -y_{j}(u_{j})$$

$$Y_{kj}(-u_{vk}, u_{j}) = -Y_{kj}(u_{vk}, u_{j})$$

$$w_{s}^{2n} = w_{2n+1-s}^{2n}, \quad s = 1:n$$

$$u_{vk_{s}}^{2n} = -u_{vk_{2n+1-s}}^{2n}, \quad s = 1:n$$

$$u_{jq}^{2n+1} = -u_{j_{2n+2-q}}^{2n+1}, \quad q = 1:n$$

sustav se reducira na navedeni u nastavku, koji je reda 2n:

$$\sum_{s=1}^{n} w_s^{2n} \sum_{k=1}^{N} \left\{ l_{kj}^2 Y_{kj}(u_{vk_s}^{2n}, u_{j_q}^{2n+1}) + l_{kj}^2 Y_{kj}(-u_{vk_s}^{2n}, u_{j_q}^{2n+1}) \right\} a_{ks} = y_j(-u_{j_q}^{2n+1})$$
(2.51)

Napomena: jednadžbe koje odgovaraju kolokacijskim točkama $u_{j\ n+1}^{2n+1} = 0$ (za q = n + 1) su trivijalno zadovoljene kako su njihovi članovi uvijek nula bez obzira na iznos koeficijenta a_{ks} . Zbog toga se moraju isključiti iz sustava.

Kada se riješi navedeni sustav, dobije se aproksimacija rješenja u obliku:

$$\Upsilon_1(u_{vk}) \approx \Upsilon_{1n}(u_{vk}) = \sum_{s=1}^{2n} a_{ks} L_s(u_{vk})$$
(2.52)

gdje je $L_s(u_{vk}), s = 1 : 2n$ fundamentalni Lagrangeov polinom stupnja 2n - 1 u 2n nultočaka $\{u_{vkw}^{2n}\}$ od Čebiševljevih polinoma druge vrste $U_{2n}(u_{vk})$ stupnja 2n te definiran sa interpolacijskim uvjetima $L_s(u_{vkw}^{2n}) = \delta_{sd}$, gdje δ_{sd} predstavlja Kronekerov delta. Napomena, to kasnije implicira:

$$a_{ks} = \Upsilon_{1n}(u_{vk_s}^{2n})$$

Nadalje, navedena interpretacija daje:

$$L_s(u_v) = \frac{U_{2n}(u_v)}{(u_v - u_{vs})U'_{2n}(u_{vs})}$$

Potrebno je postaviti:

$$u_v = \cos(\theta_v)$$

gdje je $0 \le \theta_v \le \pi$, time je $\Upsilon(u_v) = \Upsilon(\cos(\theta_v))$, te:

$$U_{2n}(\cos(\theta_v)) = \frac{\sin\left[(2n+1)\theta_v\right]}{\sin(\theta_v)}$$

Specifična aerodinamička efikasnost ε_j se računa istom Gaussovom metodom gore navedene integralne interpretacije:

$$\begin{split} \varepsilon_{j} &= -\frac{2}{\pi} \frac{l_{wj}^{2}}{b_{wj}^{2}} \int_{-1}^{1} \sqrt{1 - u_{j}^{2}} \Upsilon_{j}(u_{j}) y_{j}^{'}(u_{j}) \mathrm{d}u_{j} \approx \\ &- \frac{2}{\pi} \frac{l_{wj}^{2}}{b_{wj}^{2}} \sum_{s=1}^{2n} w_{s}^{2n} a_{js} y^{'}(u_{js}^{2n}) = -4 \frac{l_{wj}^{2}}{b_{wj}^{2}} \sum_{s=1}^{2n} w_{s}^{2n} a_{js} y^{'}(u_{js}^{2n}) \end{split}$$

2.8.1. Primjena na zadatak

Kako je zadatak u radu razmatranje klase trokrilaca sa ravnom ili zatvorenom nosećom linijom, problem se opisuje kao jednoliko zakrivljeni višekrilac. Jednolika zakrivljenost znači da su sve noseće linije generirane iz iste funadamentalne krivulje. To ne znaći da su krila nužno identična, ali imaju jednaku zakrivljenost (krila su u vertikalnom smjeru samo kruto translatirana). To što su noseće linije jednoliko zakrivljene te što su rasponi svih krila jednaki, dovodi do nekoliko olakotnih okolnosti.

Za početak, jasno je da je N = 3, odnosno k = j = 3. Potom, zbog jednake zakrivljenosti slijedi da su za klasu ravnih nosećih linija i zatvorenih "*Box*" ³ nosećih linija parametri jednaki. Točnije, u ovom radu postoje dva skupa parametara:

$$u_1 = u_2 = u_3 = u$$

 $u_{Box1} = u_{Box2} = u_{Box3} = u_{Box}$
 $u_{v1} = u_{v2} = u_{v3} = u_v$
 $u_{vBox1} = u_{vBox2} = u_{vBox3} = u_{vBox3}$

Nadalje, sva krila imaju jednaki raspon b_w :

$$b_{w1} = b_{w2} = b_{w3} = b_w$$

što dovodi do pojednostavljenja prilikom preračunavanja u bezdimenzijski oblik, to jest:

$$l_{wj} \equiv l_w \to l_{kj} = \frac{l_{wk}}{l_{wj}} = 1$$

Iz opisa modela 2.1 može se zaključiti slijedeće:

$$\widetilde{y}_1(u) = \widetilde{y}_2(u) = \widetilde{y}_3(u) = \widetilde{y}(u)$$

 $^{^{3}\}mathrm{U}$ nastavku se za skup zatvorenih krila koristi indeks "Box".

te:

$$\widetilde{y_{Box1}}(u) = \widetilde{y_{Box2}}(u) = \widetilde{y_{Box3}}(u) = \widetilde{y_{Box}}(u)$$

te slijedi:

$$\begin{split} \widetilde{r_1}(u) &= \widetilde{h}(k) + \widetilde{r}(u) \\ \widetilde{r_1}(u_v) &= \widetilde{h}(k) + \widetilde{r}(u_v) \\ \widetilde{r_2}(u) &= -\widetilde{h}(k) + \widetilde{r}(u) \\ \widetilde{r_2}(u_v) &= -\widetilde{h}(k) + \widetilde{r}(u_v) \\ \widetilde{r_3}(u) &= -\widetilde{h}(k) + \widetilde{r}(u) \\ \widetilde{r_3}(u_v) &= -\widetilde{h}(k) + \widetilde{r}(u_v) \end{split}$$

$$\frac{\mathrm{d}\widetilde{r_1}(u_v)}{\mathrm{d}u_v} = \frac{\mathrm{d}\widetilde{r_2}(u_v)}{\mathrm{d}u_v} = \frac{\mathrm{d}\widetilde{r_3}(u_v)}{\mathrm{d}u_v} \quad \frac{\mathrm{d}\widetilde{r}_{Box1}(u_v)}{\mathrm{d}u_v} = \frac{\mathrm{d}\widetilde{r}_{Box2}(u_v)}{\mathrm{d}u_v} = \frac{\mathrm{d}\widetilde{r}_{Box3}(u_v)}{\mathrm{d}u_v}$$

gdje je $\widetilde{h}=h/l_w.$ Euler-Lagrangeove jednadžbe se mogu automatski generirati ukoliko se uvrstiN=3:

$$-\frac{1}{\pi} \int_{-1}^{1} \widetilde{\Gamma_{1}^{opt}}(u_{v}) \widetilde{Y_{11}}(u_{v}, u) du_{v} - \frac{1}{\pi} \int_{-1}^{1} \widetilde{\Gamma_{2}^{opt}}(u_{v}) \widetilde{Y_{21}}(u_{v}, u) du_{v} - \frac{1}{\pi} \int_{-1}^{1} \widetilde{\Gamma_{3}^{opt}}(u_{v}) \widetilde{Y_{31}}(u_{v}, u) du_{v} = \widetilde{y}(u)$$

$$(2.53)$$

$$-\frac{1}{\pi} \int_{-1}^{1} \widetilde{\Gamma_{1}^{opt}}(u_{v}) \widetilde{Y_{12}}(u_{v}, u) du_{v} - \frac{1}{\pi} \int_{-1}^{1} \widetilde{\Gamma_{2}^{opt}}(u_{v}) \widetilde{Y_{22}}(u_{v}, u) du_{v} - \frac{1}{\pi} \int_{-1}^{1} \widetilde{\Gamma_{3}^{opt}}(u_{v}) \widetilde{Y_{32}}(u_{v}, u) du_{v} = \widetilde{y}(u)$$

$$(2.54)$$

$$(2.54)$$

$$-\frac{1}{\pi} \int_{-1}^{1} \widetilde{\Gamma_{1}^{opt}}(u_{v}) \widetilde{Y_{13}}(u_{v}, u) du_{v} - \frac{1}{\pi} \int_{-1}^{1} \widetilde{\Gamma_{2}^{opt}}(u_{v}) \widetilde{Y_{23}}(u_{v}, u) du_{v} - \frac{1}{\pi} \int_{-1}^{1} \widetilde{\Gamma_{3}^{opt}}(u_{v}) \widetilde{Y_{33}}(u_{v}, u) du_{v} = \widetilde{y}(u)$$

$$(2.55)$$

gdje su kerneli:

$$\widetilde{Y_{11}}(u_v, u) = \frac{\mathrm{d}\widetilde{r}(u_v)}{\mathrm{d}u_v} \bullet \frac{\widetilde{r}(u) - \widetilde{r}(u_v)}{|\widetilde{r}(u) - \widetilde{r}(u_v)|^2}$$
$$\widetilde{Y_{21}}(u_v, u) = \frac{\mathrm{d}\widetilde{r}(u_v)}{\mathrm{d}u_v} \bullet \frac{\widetilde{r}(u) - \widetilde{r}(u_v) + \widetilde{h}\mathbf{k}}{|\widetilde{r}(u) - \widetilde{r}(u_v) + \widetilde{h}\mathbf{k}|^2}$$
$$\widetilde{Y_{31}}(u_v, u) = \frac{\mathrm{d}\widetilde{r}(u_v)}{\mathrm{d}u_v} \bullet \frac{\widetilde{r}(u) - \widetilde{r}(u_v) + \widetilde{H}\mathbf{k}}{|\widetilde{r}(u) - \widetilde{r}(u_v) + \widetilde{H}\mathbf{k}|^2}$$

$$\begin{split} \widetilde{Y_{12}}(u_v, u) &= \frac{\mathrm{d}\widetilde{r}(u_v)}{\mathrm{d}u_v} \bullet \frac{\widetilde{r}(u) - \widetilde{r}(u_v) - \widetilde{h}\mathbf{k}}{|\widetilde{r}(u) - \widetilde{r}(u_v) - \widetilde{h}\mathbf{k}|^2} \\ \widetilde{Y_{22}}(u_v, u) &= \frac{\mathrm{d}\widetilde{r}(u_v)}{\mathrm{d}u_v} \bullet \frac{\widetilde{r}(u) - \widetilde{r}(u_v)}{|\widetilde{r}(u) - \widetilde{r}(u_v)|^2} \\ \widetilde{Y_{32}}(u_v, u) &= \frac{\mathrm{d}\widetilde{r}(u_v)}{\mathrm{d}u_v} \bullet \frac{\widetilde{r}(u) - \widetilde{r}(u_v) - \widetilde{h}\mathbf{k}}{|\widetilde{r}(u) - \widetilde{r}(u_v) - \widetilde{h}\mathbf{k}|^2} \\ \widetilde{Y_{13}}(u_v, u) &= \frac{\mathrm{d}\widetilde{r}(u_v)}{\mathrm{d}u_v} \bullet \frac{\widetilde{r}(u) - \widetilde{r}(u_v) - \widetilde{h}\mathbf{k}}{|\widetilde{r}(u) - \widetilde{r}(u_v) - \widetilde{h}\mathbf{k}|^2} \\ \widetilde{Y_{23}}(u_v, u) &= \frac{\mathrm{d}\widetilde{r}(u_v)}{\mathrm{d}u_v} \bullet \frac{\widetilde{r}(u) - \widetilde{r}(u_v) - \widetilde{h}\mathbf{k}}{|\widetilde{r}(u) - \widetilde{r}(u_v) - \widetilde{h}\mathbf{k}|^2} \\ \widetilde{Y_{33}}(u_v, u) &= \frac{\mathrm{d}\widetilde{r}(u_v)}{\mathrm{d}u_v} \bullet \frac{\widetilde{r}(u) - \widetilde{r}(u_v) - \widetilde{h}\mathbf{k}|^2}{|\widetilde{r}(u) - \widetilde{r}(u_v) - \widetilde{h}\mathbf{k}|^2} \end{split}$$

2.9. Superformula

Jasno je da navedena metoda za izračun optimalne cirkulacije nije ovisna o geometriji krila, odnosno noseće linije, što znaći da se može koristiti i za općeniti neplanarni oblik noseće linije l. Geometrija krila se u formulaciji koristi za izračun geometrijske kernel matrice \tilde{Y} , odnosno, za svaku kolokacijsku točku u i u_v potrebno je izračunati odgovarajuće vrijednosti \tilde{y} i \tilde{z} .

Ako se razmatra noseća linija, koja je opisana parabolom $\tilde{z} = \mu \tilde{y}^2$, gdje je \tilde{y} definiran na intervalu $\tilde{y} \in [-1, 1]$, parametar μ dozvoljava modifikaciju vertikalnog aspektnog odnosa (definiranog kao omjer između vertikalne dimenzije i raspona sustava krila). Točnije, ukoliko je μ jednak nuli, noseća linija je ravna (pravac paralelan sa osi x). Povećavajući parametar μ povećava se aspektni odnos. Može se zaključiti da velike vrijednosti μ definiraju izrazito neplanarna krila. Parametrizacija parabolom može se zapisati na način:

$$\widetilde{y} = u\widetilde{z} = \mu u^2$$

gdje je $u \in [-1, 1]$.

No, može se koristiti i općenitija parametrizacija. Posebno zanimljiva je parametrizacija pomoću *superformule* [3], koja između ostalog omogućava generiranje poligona sa oblim

rubovima.

Naime, krug, kvadrat, elipsa i pravokutnik su članovi niza superelipsa definiranih sa:

$$|\frac{x}{a}|_{2}^{p} + |\frac{x}{a}|_{3}^{p} = 1$$

Glavni nedostatak superelipsa jest limitirajuća simetrija. Ukoliko se iskoriste polarne koordinate $r = R(\pi \chi u)$ te $\tilde{y} = -R(\pi \chi u) \sin(\pi \chi u)$ i $\tilde{z} = \mu R(\pi \chi u) \cos(\pi \chi u)$. Također, uvodi se parametar $\frac{m}{4}$ koji definira rotacijske simetrije kuta ($\pi \chi u$). Odnosno:

$$\widetilde{y} = -R(\pi \chi u) \sin(\pi \chi u) \tag{2.56}$$

$$\widetilde{z} = \mu - R(\pi \chi u) \cos(\pi \chi u) \tag{2.57}$$

$$R(\pi\chi u) = \left\{ |\cos(\pi\frac{m}{4}\chi u)|^{p_2} + |\sin(\pi\frac{m}{4}\chi u)|^{p_3} \right\}^{-\frac{1}{p_1}}$$
(2.58)

Parametar $\chi \in [0, 1]$, govori koliko je geometrija noseće linije zatvorena, odnosno, vrijednost ξ blizu nule predstavlja gotovo ravnu krivulju, dok vrijenost χ blizu jedinice čini gotovo zatvorenu krivulju.

Parametri m, p_1, p_2, p_3 se zadaju kao pozitivni realni brojevi, gdje m označava broj rotacijskih simetrija. Ukoliko se vrijednosti parametara p_i povećavaju, pojavljuju se "kvazi-kutevi", no oni ne predstavljaju diskontinuitete (kao što bi pravi kutevi bili). Pozitivan parametar μ zatvara krivulju sa gornje strane, a negativan sa donje. Slijede slike na kojima će se prikazati mogućnosti "superformule".

Povećanjem parametara p slijedi:

Slika 2.3: Superformula za $p_1=p_2=p_3=p, m=4, \mu=1, \chi=0.5$

Možemo primjetiti formiranje "kvazi-kuteva" odnosno formiranje lika pravokutnika, koji se u ovom radu koristi za opis geometrije "box-krila". Također, slijedi prikaz promjene ostalih prametara supeformule:

Kako je već navedeno, oblici koji se mogu generirati pomoću superformule nadilaze okvire potrebne za ovaj rad. Time, slijedi prikaz nekih zanimljivih mogućnosti superformule:

Slika 2.5: Superformula za $p_1=2, p_2=p_3=7, m=5, \mu=1, \chi=1$

3 Rezultati

U ovom radu napravljen je proračun za različite sustave trokrilaca¹. Nadalje, korištena su dva tipa krila, odnosno oblika noseće linije, i to ravne noseće linije (otvoreno, klasično ravno krilo), te "box-krilo" odnosno, noseća linija zatvorena i oblika pravokutnika. Ukupan broj konfiguracija sustava trokrilca sa takva dva tipa noseće linije je 8. Shematski prikaz navedenih konfiguracija je na slici3.1.

¹U ovom kontekstu trokrilac ne mora nužno značiti letjelica sa tri krila, već se naziv odnosi na sustav tri noseće linije, koje mogu biti npr. kanar, krilo i rep. Točnije eng. "Triplane"

Poglavlje 3. Rezultati 31

Konfiguracija 1	
Konfiguracija 2	
Konfiguracija 3	
Konfiguracija 4	
Konfiguracija 5	
Konfiguracija 6	
Konfiguracija 7	
Konfiguracija 8	

Slika 3.1: Razmatrane konfiguracije

Parametri potrebni za opis geometrije navedenih nosećih linija su:

	m	p_1	\mathbf{p}_2	p_3	μ	χ
Ravno krilo	4	40	40	40	1	0
"Box krilo"	4	40	40	40	0.03	1

Tablica 3.1: Parametri nosećih linija

U proračunu se koriste bezdimenzijske geometrijske značajke. Poluraspon krila, odnosno sustava trokrilca je uvijek jednak (kako je zadano u zadatku rada) te je uzeta njegova vrijednost od $b_w = 10[m]$, što bi značilo da je ukupan raspon svake od konfiguracija jednak $b_W = 20[m]$. Time, prilikom formiranja bezdimenzijskog sustava sve su geometrijske značajke podjeljene sa iznosom b_w , te su parametri odnosa duljina krila $l_{jk} = 1$.

Kako je navedeno na slici 2.1 vertikalni aspektni odnos:

$$V = \frac{2H}{2b_w}$$

jest značajna veličina kod proračuna optimale efikasnosti konfiguracije trokrilaca. U ovom radu su se promatrale vrijednosti vertikalnog aspektnog odnosa:

$$V = \begin{bmatrix} \frac{1}{10} & \frac{2}{10} & \infty \end{bmatrix}$$

za svaku od navedenih konfiguracija. Iznosi vertikalnog aspektnog odnosa i iznos poluraspona krila, određuju vertikalne udaljenosti između krila(nosećih linija), svake od konfiguracija trokrilaca, ovdje je bitno naglasiti da se koristila jednaka udaljenost među krilima. Ukoliko se koristi terminologija navedena u 2.1, udaljenost između krila 1 i 2, te 2 i 3 je²:

$$H_{12} = H_{23} = \begin{bmatrix} 1 & 2 & 50 \end{bmatrix} \begin{bmatrix} m \end{bmatrix}$$

te je udaljenost između krila 1
i 2^3

$$\underline{H_{13}} = \begin{bmatrix} 2 & 4 & 100 \end{bmatrix} \begin{bmatrix} m \end{bmatrix}$$

²Obzirom da je bitno za proračun, treba napomenuti da ova udaljenost vrijedi i za obrnute indekse krila, odnosno H_{21} i H_{32}

³Vrijedi i za indekse krila H_{31}

3.1. Aerodinamička svojstva optimiranog trokrilca

3.1.1. $V \to \infty$

Slijedi prikaz iznosa aerodinamičke efikasnosti zadanih konfiguracija trokrilca za iznos vertikalnog aspektnog odnosa $V \to \infty$.

Slika 3.2: Primjer cirkulacije za konfiguraciju 1

Slika 3.3: Primjer cirkulacije za konfiguraciju 5

Slika 3.4: Primjer cirkulacije za konfiguraciju 8

Nakon proračuna za konfiguracije 1, 5 i 8, jasno je da se međusobni utjecaj krila jedno na drugo smanjuje, te ukoliko su dovoljno udaljena ponašaju se kao 3 samostalna krila [3] [1].⁴

 $^{^4\}mathrm{Smjer}$ cirkulacije na donjoj stijenci "Box" krila je isto pozitivna, ali se ovako prikazuje zbog bolje

3.1.2. $V = \frac{1}{10}$

Slijedi prikaz iznosa aerodinamičke efikasnosti zadanih konfiguracija trokrilca za iznos vertikalnog aspektnog odnosa $V = \frac{1}{10}$.

	ε_1	ε_2	ε_3	ε
Konfiguracija 1	0.4263	0.3955	0.4263	1.2463
Konfiguracija 2	0.4803	0.4783	0.6433	1.6019
Konfiguracija 3	0.7695	0.3231	0.3220	1.4146
Konfiguracija 4	0.4140	0.7644	0.4140	1.5924
Konfiguracija 5	0.3220	0.3231	0.7681	1.4146
Konfiguracija 6	0.6433	0.4783	0.4803	1.6019
Konfiguracija 7	0.4927	0.6589	0.54927	1.6664
Konfiguracija 8	0.4764	0.4544	0.4772	1.4079

Tablica 3.2: Iznos aerodinamičke efikasnosti za V = $\frac{1}{10}$

3.1.3. $V = \frac{2}{10}$

Slijedi prikaz iznosa aerodinamičke efikasnosti zadanih konfiguracija trokrilca za iznos vertikalnog aspektnog odnosa $V = \frac{2}{10}$.

preglednosti.

	ε_1	ε_2	ε_3	ε
Konfiguracija 1	0.5198	0.4628	0.5198	1.5024
Konfiguracija 2	0.4986	0.4948	0.6020	1.5945
Konfiguracija 3	0.7838	0.4141	0.4154	1.6134
Konfiguracija 4	0.4703	0.7746	0.4703	1.7152
Konfiguracija 5	0.4154	0.4141	0.7838	1.6134
Konfiguracija 6	0.6020	0.4948	0.4986	1.5945
Konfiguracija 7	0.5237	0.6292	0.5237	1.6766
Konfiguracija 8	0.5071	0.34639	0.581	1.4791

Tablica 3.3: Iznos aerodinamičke efikasnosti za $V = \frac{2}{10}$

Za početak, iz navedenih vrijednosti aerodinamičkih efikasnosti može se primjetiti da aerodinamička efikasnost sustava (konfiguracije) ovisi o rasporedu krila. Na primjer, uzmimo u razmatranje kofiguraciju 2, kojoj je raspored krila ravno-ravno-box, te konfiguraciju 6, rasporeda box - ravno - ravno. Neovisno o vertikalnom aspektnom odnosu, srednje ravno krilo, zajedničko ovim konfiguracijama, ima istu aerodinamičku efikasnost za obje konfiguracije, te su i efikasnosti vanjskih krila jednake, bez obzira na njihov razmiještaj ("box" krilo u konfiguracija 2 je dolje, a u konfiguraciji 6 gore). Isto vrijedi za takav razmještaj "box" krila (konfiguracija 3 i 5). Također, ako promotrimo konfiguracije 7 i 4, bez obzira na vertikalni aspektni odnos, efikasnost. Konfiguracije 1 i 8 ima sva tri jednaka krila. Njihova aerodinamička efikasnot je također simetrično raspoređena obzirom na srednje krilo, ali je u ovom slučaju aerodinamička efikasnost srednjeg krila najmanja u sustavu.

Povećavanjem aspektnog odnosa, povećava se i ukupna aerodinamička efikasnost svakog sustava, bez obzira na raspored krila u sustavu. Teoretski gledano, ukoliko $V \to \infty$, kao što je već prikazano, krila se ponašaju kao samostalna krila, povećavanjem vertikalnog aspektnog odnosa slabi utjecaj krila jedno na drugo, pa je aerodinamička efikasnost takvog sustava jednaka zbroju aerodinamičkih efikasnosti svih krila, koju imaju kada su jedina u sustavu.

4 Zaključak

Prikazana je efikasna metoda optimizacije cirkulacije, odnosno računanja minimalnog induciranog otpora. Metoda je posebno zanimljiva jer nije ovisna o geometriji i broju krila, pa je izrazito korisna pri računanju nestandardnih konfiguracija letjelica. U radu su promatrani višekrilci, točnije trokrilci. Za promatrane konfiguracije korišetene su dvije vrste nosećih linija (krila), ravna noseća linija i zatvorena "box" noseća linija. Navedene konfiguracije su se promatrale za nekoliko vertikalnih aspektnih odnosa, gdje je $V = \frac{2H}{2b_w}$.

Iz rezultata se može izvesti nekoliko zaključaka, što je vertikalni aspektni odnos veći, to se međusobni utjecaj krila smanjuje, te se svako krilo poćinje ponašati kao samostalno. Nadalje, raspored krila i vrste noseće linije u sustavu utjeće na aerodinamičku efikasnost istog. Za sustave sa sva tri jednaka krila, srednje krilo ima najmaju aerodinamičku efikasnost. Sustavi koji imaju jednako srednje krilo, bez obzira na raspored i vrstu ostalih krila, aerodinamička efikasnost tog krila je jednaka, i to vrijedi za sve vertikalne aspektne odnose. Sustavi koji se sastoje od različitih krila (nosećih linija) te koji ujedno imaju i simetričnan raspored krila, simetričan oko srednjeg krila, mogu imati najveću efikanost upravo na srednjem krilu. Među optimalnim konfiguracijama koja od njih stvara najveću aerodinamičku efikasnost određeno je vertikalnim aspektnim odnosom i tipovima pojedinih krila određene konfiguracije.

Metoda se teoretski može primjeniti za proračun svih vrsta standardnih i nestandardnih konfiguracija i sustava višekrilaca. Metoda se može dodatno koristiti za proračun wingleta u preliminarnoj fazi projektiranja, zbog superformule koja ih može geometrijski

Poglavlje 4. Zaključak 38

opisati.

A Prvi prilog

A.1. Fundamentalna lema varijacijskog računa

Lema A.1..1 Ako se pretpostavi funkcija $g \in C^0([a, b])$, takva da:

$$\int_{a}^{b} g(x)\varphi(x)dx = 0$$

za svaki $\varphi \in C_0^1([a, b])$ odnosno sa neprekidnom drugom parcijalnom derivacijom, onda je:

 $g(x) \equiv 0$

na intervalu ([a, b]).

Dokaz

Ako se pretpostavi, isključivo za korist kontradikcije, da postoji točka $\overline{x} \in ([a, b])$ takva da je $g(\overline{x}) \neq 0$. Bez gubitka na općenitosti, može se pretpostaviti da je $g(\overline{x}) > 0$. Kako je g neprekidna na ([a, b]), postoji $\delta > 0$ takav da:

$$g(x) > \frac{g(\overline{x})}{2} > 0$$

za svaki $x \in (\overline{x} - \delta, \overline{x} + \delta) \cap [a, b]$. Zbog neprekidnosti funkcije g, također može se pretpostaviti $\overline{x} \in [a, b]$. Ideja je formirati funkciju $\varphi \in C_0^1([a, b])$ takvu da je $\varphi > 0$ na $(\overline{x} - \delta, \overline{x} + \delta)$ i nula u suprotnom. Ako se pretpostavi da takva funkcija postoji, onda

slijedi:

$$0 = \int_{a}^{b} g(x)\varphi(x)dx = \int_{\overline{x}-\delta}^{\overline{x}+\delta} g(x)\varphi(x)dx > \frac{\overline{x}}{2}\int_{\overline{x}-\delta}^{\overline{x}+\delta} \varphi(x)dx > 0$$

No, kako je to nemoguće, zaključuje se da je $g\equiv 0$ na intervalu [a,b]. Kako bi se formirala funkcija φ , definira se $\varphi:[a,b]\to R$ kako slijedi:

$$\varphi(x) := (x - (\overline{x} - \delta))^2 (\overline{x} + \delta - x)^2 \quad x \in (\overline{x} - \delta, \overline{x} + \delta)$$

te $\varphi(x)=0$ u suprotnom. Sada se vidi da funkcija φ zadovoljava sva tražena svojstva.

Literatura

- L. Demasi, G. Monegato, R- Cavallaro: Minimum Induced Drag Theorems for Multi-Wing Systems, 4-8 January 2016, San Diego, California, USA.
- [2] L. Demasi, G. Monegato, R- Cavallaro: Minimum Induced Drag Theorems for Joined Wings, Closed systems, and Generic Biwings: Theory,5-9 January 2015, Kissimmee, Florida
- [3] L. Demasi, G. Monegato, R- Cavallaro, D. Antonio: An Invariant Formulation for the Minimum Induced Drag Conditions of Non-planar Wing Systems, 13-17 January 2014, National Harbor, Maryland.
- [4] R. Cristoferi: Calculus of VariationsLecture Notes, May 2004.
- [5] K. Flanjak: *Ekstremi funkcija više varijabli- primjena Diplomski rad*, Sveučilište J.
 J. Strossmayera u Osijeku, Osijek, 2012.
- [6] B. Muha: Varijacijski račun i primjene, Prirodoslovno-matematički fakultet u Zagrebu, 2017.
- [7] G. Szego: Ortogonal Polynomals, Amer. Math. Soc. Colloq. Publ., Vol.23, Ams Providence, R.I., 1957
- [8] J.C. Mason, D.C. Handscomb: *Chebyshev Polynomials*, Chapman Hall-CRC, Boca Raton Florida, 2003.

- [9] S. Singer, Z. Drmač, M. Marušić, S. Singer, V. Hari, M. Rogina: Numerička matematika, Predavanja i vježbe, Sveučilište u Zagrebu, PMF Matematički odsjek, Zagreb, 2008.
- [10] M.M. Munk: The minimum induced drag of airfoils, NACA Report 121, 1921