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Biochemical terms and definitions 
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SPIO and USPIO – magnetic resonance imaging contrast agents used to improve the 

visibility of internal body structures, two types of iron oxide contrast agents: 
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Molecules and cells 

angiotensin II (Ang-II) – hormone that causes vasoconstriction and a subsequent increase in 

blood pressure 

Apolipoprotein E (Apo-E) – produced by macrophages, transports lipoproteins, fat-soluble 

vitamins, and cholesterol into the lymph system and then into the blood. In the field of 

immune regulation, a growing number of studies point to Apo-E's interaction with many 

immunological processes, including suppressing T-cell proliferation, macrophage functioning 

regulation etc.  

α1-antitrypsin (α1-AT) – is a protease inhibitor, it inhibits a wide variety of proteases, 

protects tissues from enzymes of inflammatory cells, especially neutrophil elastase 

α2-antiplasmin (α2-AP) – a serine protease inhibitor (serpin) responsible for inactivating 

plasmin 

Cathepsin G – plays an important role in eliminating intracellular pathogens and breaking 

down tissues at inflammatory sites, as well as in anti-inflammatory response 

EDP – Elastin degradation products 

FDP – Fibrin degradation product 

fXIIa, fXIIIa – activated fibrin stabilizing factors, enzymes of the blood coagulation system 

that crosslink fibrin. Deficiency of these factors affects clot stability 

IL – Interleukins are a group of cytokines (secreted proteins and signal molecules) expressed 

by white blood cells (leukocytes). The function of the immune system depends in a large part 

on interleukins. Seventeen types of interleukins exist 

interferon-γ (IFN-γ) – is a cytokine (cell signaling protein) that is critical for innate and 

adaptive immunity against viral, some bacterial and protozoal infections. IFNγ is an important 
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activator of macrophages. Aberrant IFNγ expression is associated with a number of 

autoinflammatory and autoimmune diseases. The importance of IFNγ in the immune system 

stems in part from its ability to inhibit viral replication directly, and most importantly from its 

immunostimulatory and immunomodulatory effects 

JNK, pJNK – c-Jun N-terminal kinase, activated by Inflammatory signals, changes in levels 

of reactive oxygen species, ultraviolet radiation, protein synthesis inhibitors, and a variety of 

stress stimuli, JNK1 is involved in apoptosis, neurodegeneration, cell differentiation and 

proliferation, inflammatory conditions and cytokine production 

LE – leukocyte elastase, enzyme that degrades elastin 

Macrophages – large white blood cells that engulf and digest cellular debris, foreign 

substances, microbes, cancer cells, and anything else that does not have the types of proteins 

specific to healthy body cells on its surface in a process called phagocytosis. Found in all 

tissues 

MMP – matrix metalloproteinases are proteases involved in the cleavage of cell surface 

receptors, the release of apoptotic ligands (such as the FAS ligand), and chemokine/cytokine 

inactivation. MMPs are also thought to play a major role in cell behaviors such as cell 

proliferation, migration (adhesion/dispersion), differentiation, angiogenesis, apoptosis, and 

host defense. Collectively, these enzymes are capable of degrading all kinds of extracellular 

matrix proteins, but also can process a number of bioactive molecules. Latent forms are called 

proMMPs 

NGAL – Neutrophil gelatinase associated lipocalin, NGAL is involved in innate immunity by 

sequestrating iron that in turn limits bacterial growth 

PAI-1 – plasminogen activator inhibitor-1 also known as endothelial plasminogen activator 

inhibitor or serpin E1 is a protein that in humans is encoded by the SERPINE1 gene. Elevated 

PAI-1 is a risk factor for thrombosis and atherosclerosis 

RBC – red blood cells, erythrocytes 

TFG-β – Transforming growth factor beta is a multifunctional cytokine, secreted by many 

cell types, including macrophages. Activation of TGF-β complexes leads to the activation of 

different downstream substrates and regulatory proteins, inducing transcription of different 

target genes that function in differentiation, chemotaxis, proliferation, and activation of many 

immune cells 

TIMP –tissue inhibitors of metalloproteinases; comprise a family of four protease inhibitors: 

TIMP1, TIMP2, TIMP3 and TIMP4 
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TNF-α – Tumor necrosis factor is a cell signaling protein (cytokine) involved in systemic 

inflammation. It is produced chiefly by activated macrophages, although it can be produced 

by many other cell types. The primary role of TNF is in the regulation of immune cells 

tPA – tissue plasminogen activator, similar to uPa, but found on endothelial cells, the cells 

that line the blood vessels. As an enzyme, it catalyzes the conversion of plasminogen to 

plasmin 

uPA – urokinase, also known as urokinase-type plasminogen activator (uPA), was originally 

isolated from human urine, and it is also present in the blood and in the extracellular matrix of 

many tissues. The primary physiological substrate of this enzyme is plasminogen, which is an 

inactive form of the serine protease plasmin. Activation of plasmin triggers a proteolytic 

cascade that, depending on the physiological environment, participates in thrombolysis or 

extracellular matrix degradation 

WBC – white blood cells, also called leukocytes, are the cells of the immune system that are 

involved in protecting the body against both infectious disease and foreign invaders. Types of 

white blood cells can be classified into the five main types: neutrophils, eosinophils, 

basophils, lymphocytes, and monocytes. These types are distinguished by their physical and 

functional characteristics. 

 

Biochemical processes 

Anoikis is a form of programmed cell death that occurs in anchorage-dependent cells when 

they detach from the surrounding extracellular matrix (ECM). (from Ancient Greek 

ἀπόπτωσις "falling off") is a process of programmed cell death that occurs in multicellular 

organisms. Biochemical events lead to characteristic cell changes (morphology) and death. 
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Abstract 

 

Abdominal aortic aneurysm (AAA) is a dilatation of aorta characterized by loss of functional 

elastin and smooth muscle cells, as well as enhanced production of collagen. The majority of 

AAAs includes an intraluminal thrombus (ILT) that decreases peak wall stress; however, it 

also degrades aortic wall, thus reducing its strength. Aneurysm rupture has a high mortality 

rate. To help clinicians predict rupture, growth and remodeling models have been developed. 

Nevertheless, in hitherto conducted studies effect of ILT has been neglected. 

The doctoral thesis includes detailed biochemomechanical overview of the thrombus-laden 

aneurysms. Based on this review a new comprehensive growth and remodeling ILT model 

interconnected with kinematics of the aneurysmal aortic wall has been developed. The 

majority of parameters were chosen to fit experimental results and showed a great potential to 

predict behavior of AAAs. The remaining parameters were studied parametrically, describing 

most common rupture or stabilization risk factors. Changes in dilatation rates were compared 

to clinical observations, and insight into their influences on aneurysmal changes was given. 

The results also emphasize the necessity to include biochemical and biomechanical influences 

of ILT on the wall when predicting AAA outcome (rupture, continuous growth or 

stabilization). 

Finally, the 3-D growth and remodeling theory of aortic wall was implemented into finite 

element analysis program (FEAP), which enables simulation of more realistic aneurysm 

geometries – axially symmetric (fusiform) and non-symmetric (intracranial aneurysm). 

Results for fusiform aneurysms obtained by 3-D finite elements were compared to membrane 

element results available in literature. A great potential to model saccular aneurysms, and 

advantage of 3-D to 2-D elements was shown. 

The aim of AAA growth modeling is to increase understanding of aneurysm 

pathophysiology (e.g., "staccato” expansion), and to determine reliable rupture risk and 

stabilization factors. 

 

 

Keywords: abdominal aortic aneurysm, intraluminal thrombus, growth and remodeling, 

proteolytic activity, rupture risk factors 

  



Lana Virag  PhD Thesis 

Faculty of Mechanical Engineering and Naval Architecture 13 

 

Prošireni sažetak 

Uvod 

Aneurizma abdominalne aorte (AAA) je kronični degenerativni poremećaj, trajno i 

nepovratno lokalizirano proširenje aorte i čest uzrok smrti kod starijih osoba. Iako sam proces 

nastanka AAA nije poznat, poznati su rizični faktori poput muškog spola, starosne dobi, 

pušenja, hipertenzije, plućnih bolesti i bolesti krvožilnog sustava. U posljednja dva desetljeća 

znatno se povećao broj otkrivenih slučajeva aneurizmi u svijetu, djelomično zbog većeg broja 

aneurizama (uslijed duže životne dobi i starenja stanovništva te povećanog broja pušača), ali i 

zbog napretka dijagnostičkih uređaja. Naime, AAA je asimptomatska bolest (zbog čega se 

otkriva slučajno), sve dok se ne zakomplicira rupturom ili embolijom, komplikacijama koje 

dovode do smrti i često se krivo dijagnosticiraju kao infarkt. Ruptura aneurizme abdominalne 

aorte je četrnaesti najčešći uzrok smrti u Sjedinjenim Američkim Državama, deseti kod 

muškaraca [1]. 

Promjer zdrave aorte ovisi o godinama, spolu, tjelesnoj masi pacijenta te položaju 

promatranog presjeka aorte. Smanjuje se od ulaska u trbušnu šupljinu prema ilijačnim 

arterijama. Kod muškaraca starijih od 65 godina vanjski promjer infrarenalne abdominalne 

aorte kreće se između 15 i 24 mm. S obzirom da ne postoji jedna vrijednost za promjer aorte 

te se on mijenja sa srčanim ciklusom, a širenje krvnih žila može biti uzrokovano i povećanim 

protokom krvi ili hipertenzijom, značenje „proširena aorta“ nije jednoznačno definirano. 

Upravo se iz tog razloga AAA definira ili kao infrarenalna aorta s promjerom većim od 30 

mm, ili kao 50%-tno proširenje u odnosu na neki bliski presjek. 

Liječenje AAA svodi se na operativni zahvat, a trenutno jedini kriteriji za slanje pacijenta 

na operaciju je maksimalni promjer aneurizme veći od 5-5,5 cm i iskustvo liječnika. Dodatni 

kriterij, ako je dostupan, je brzina rasta aneurizme. Rast od 1 cm godišnje povezuje se s 

visokom opasnosti od rupture, za razliku od uobičajene brzine rasta od 2 mm godišnje. 

Podatak o brzini rasta aneurizme dostupan je u slučajevima kada je otkrivena aneurizma 

manja od 5 cm te pacijentu nije preporučena operacija, nego redovito praćenje ultrazvukom ili 

CT-om. Istraživanja su pokazala da, iako je rizik od rupture zasigurno povezan s 

maksimalnim promjerom, korištenje samo tog pokazatelja za odlučivanje o odlasku na 

operaciju ne samo da može dovesti do nepotrebnih operativnih zahvata u slučaju stabilnih 

velikih aneurizmi, nego može isključiti neke potrebne (aneurizme promjera manjeg od 5 cm 

kod kojih je došlo do rupture). Studije su pokazale da u 10-24% slučajeva aneurizme manje 

od 5 cm dožive rupturu, ali i da 25-54% aneurizmi većih od 7,1 cm ne rupturira, [2]. Također, 
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kod žena češće dolazi do rupture malih aneurizmi nego kod muškaraca, ali kod većih 

aneurizmi nema razlika. 

Stijenka aorte sastoji se od tri sloja: intime, medije i adventicije. Svaki od slojeva ima 

različiti udio konstituenata koji daju krutost stijenci: kolagena, elastina i glatkih mišićnih 

stanica. Unutarnja površina stijenke nije u direktnom doticaju s krvi, nego je prekrivena 

slojem endotelnih stanica. Te stanice izlučuju vazokonstriktore i vazodilatatore, čime 

omogućuju održavanje homeostatskih uvjeta kod zdrave aorte, ali i sprečavaju aktivaciju 

molekula iz krvi u stijenci krvne žile. U 80% AAA dolazi od oštećenja endotelnih stanica, 

zbog čega krv dolazi u dodir s kolagenom i stvara se intraluminalni tromb (ILT) [3,4]. U 

slučajevima kada je oštećen endotel ILT nastaje uslijed poremećene hemodinamike, odnosno 

stvaranja vrtlogâ tijekom sistole, te njihovog propagiranja i disipacije tijekom dijastole. 

Vrtlozi stvaraju područja s visokim posmičnim naprezanjima u lumenu pogodnim za 

aktivaciju trombocita te područja s niskim posmičnim naprezanjima na stijenci aorte gdje je 

omogućeno skupljanje aktiviranih trombocita na oštećenim endotelnim stanicama ([5–7]). 

Početna faza nastanka ILT-a može se opisati aktiviranjem trombocita, pretvaranjem 

fibrinogena u fibrin pomoću trombina i stvaranjem fibrinske mreže u kojoj crvene i bijele 

krvne stanice ostaju zarobljene [8]. Ovakva je struktura tipična za dio intraluminalnog tromba 

uz tok krvi, taj sloj ILT naziva se luminalni sloj. S obzirom da je u kontaktu s krvi, luminalni 

sloj je prepoznatljive crvene boje i proteolitički je najaktivniji. Obično je širok oko 2 mm jer 

je ograničen dubinom do koje krv može prodrijeti kroz fibrinsku mrežu. Daljnjim povećanjem 

promjera aneurizme raste i ILT pa nastaju dijelovi tromba koji su dovoljno daleko od krvi, 

odnosno nastaje medijalni sloj koji može biti debeo i nekoliko centimetara. U ovom 

žućkastom sloju odumiru stanice koje su bile zarobljene u luminalnom sloju i fibrinska mreža 

se razgrađuje pa nastaju kanalići (cannaliculi) čija se površina povećava od lumena prema 

stijenci [9]. U velikim aneurizmama fibrin se može razgraditi do granice da mreža postaje 

neorganizirana ili čak djelomično u obliku tekućine [10,11]. Taj smeđi dio tromba zove se 

abluminalni sloj. Očito svaki od tri sloja tromba karakteriziraju drugačija biokemijska i 

mehanička svojstva ([12,13]). Primjerice, u luminalnom sloju nalaze se upalne stanice iz krvi 

(npr. T-limfociti), dok ostala dva sloja sadrže mnogo manje stanica i molekula. Upalne stanice 

u luminalnom sloju izlučuju proteolitičke enzime, matriks metaloproteaze, u latentnom obliku 

(proMMP). Ukoliko te stanice prodru u stijenku aorte te budu aktivirane plazminom 

razgrađuju kolagen i elastin, što stijenku čini slabijom i podložnom razvoju aneurizme. Osim 

u luminalnom sloju, upalne stanice nalaze se i u mediji te adventiciji. Naime, aorta je najveća 

krvna žila u ljudskom tijelu, te se dijelovi zdrave aorte koji su najviše udaljeni od lumena 
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opskrbljuju kisikom pomoću mreže kapilara koje se zovu vasa vasorum. U slučaju aneurizme 

površina vase vasorum se višestruko poveća, što uz povećani dotok kisika za posljedicu ima i 

povećani broj upalnih stanica koje proizvode proMMP ([14,15]). To znači da difuzija 

proteaza i kisika nije jednosmjerna, već ima dva izvora (dio iz tromba blizak lumenu te dio iz 

same stijenke).  

Istraživanja mehaničkih svojstava tromba počinju radom iz 1944. godine [16] te traju još i 

danas, npr. [8]. Inzoli et al. [17] prvi su predložili mogućnost da ILT može služiti kao 

mehanička zaštita stijenke AAA od prevelikih naprezanja. Taj je rad potaknuo mnoga 

istraživanja, većina od kojih su to potvrdila (npr. [18]), ali i neka koja sumnjaju u mogućnost 

poroznog tromba da smanji naprezanja u stijenci (primjerice [19]). Dok npr. Meyer et al. [20] 

tvrde da tromb koji je potpuno povezan sa stijenkom aorte može smanjiti naprezanja u 

stijenci, međutim u slučaju da je ILT samo djelomično spojen pojavljuju se koncentracije 

naprezanja.S druge strane, prema kliničkom iskustvu, do rupture najčešće dolazi upravo na 

mjestu najvećeg tromba. Lako je zaključiti da stvaranje intraluminalnog tromba može imati 

veliki utjecaj u procesu razgradnje dijelova izvanstaničnog matriksa, a time i na rast i razvoj 

AAA.  

Cilj istraživanja je razviti teoriju koja može opisati rast aneurizmi kao i promjenu građe 

ILT i stijenke aorte (G&R) koja će dovesti do boljeg razumijevanja utjecaja tromba na rast 

aneurizme, kao i same patofiziologije AAA. Primjerice, istraživanja u kojima se pratio rast 

aneurizmi pokazala su da neke AAA rastu kontinuirano (23%), neke „staccato“, odnosno 

imaju periode tijekom kojih ne rastu (65%), dok su neke stabilne (12%) [21–23]. Razlozi za 

različiti način razvoja aneurizmi trenutno su nepoznati.  

Konačni cilj istraživanja na području G&R aneurizmi jest smanjiti broj smrti uzrokovanih 

nepotrebnim operacijama velikih, stabilnih aneurizmi kao i broja ruptura malih aneurizmi 

koje ne bi bile liječene. Drugim riječima, cilj je simulirati budući razvoj aneurizme i 

procijeniti hoće li doći do rupture, stabilizacije ili stabilnog rasta. Time bi se pomoglo 

liječniku odlučiti koji je način liječenja AAA za pacijenta najprikladniji: operacija ili redovito 

praćenje napretka rasta.  

 

Trenutno stanje istraživanja 

Dosad su razvijeni G&R modeli zdrave arterije, G&R modeli aneurizme u kojima se 

biokemijski utjecaj uzima kroz preddefinirane funkcije, a mehanički utjecaj potpuno 

zanemaren. Dosad nitko nije proučavao sveobuhvatni biokemijski i biomehanički 

('biokemomehanički') utjecaj intraluminanog tromba na razvoj aneurizme. Također su 
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razvijeni i modeli koji opisuju samo razvoj tromba, koji se događa na manjim vremenskim 

skalama u odnosu na rast aneurizme (za nastanak tromba potrebne su sekunde, a AAA raste 

tijekom godina). 

 

Zdrava krvna žila 

Razvijeni su razni konstitutivni modeli koji služe za promatranje procesa deformiranja krvnih 

žila, a većina ih se temelji na različitim oblicima slobodne energije. Kao najbolja 

aproksimacija pokazali su se anizotropni hiperelastični modeli izneseni u [24,25]. U njima se 

uzima u obzir ponašanje izvanstaničnih dijelova (elastin, kolagen, glatke mišićne stanice) koji 

daju krutost stijenci, kao i slojeva krvne žile (intime, medije i adventicije). No s druge strane 

vrlo važno svojstvo krvnih žila, ovisnost o prethodnom opterećenju, nije uzeto u obzir kod 

prethodno spomenutih modela. Ti oblici ponašanja mogu se opisati mehanizmima rasta i 

restrukturiranja (growth and remodeling - G&R). 

Rodriguez et al. [26] potaknuli su istraživanja na području matematičkog modeliranja 

rasta, odnosno promjena u masi, i restrukturiranja, tj. promjene mikrostrukture, mekih tkiva. 

Modeli moraju uzeti u obzir vrlo kompleksnu mehaniku krvnih žila, kompozitnu strukturu, 

kao i aktivno djelovanje glatkih mišićnih stanica i pasivno anizotropno hiperelastično 

ponašanje. Razlikujemo dva pristupa G&R modeliranju. Prvi je kinematički pristup [27,28] 

gdje se G&R samo opisuje, ali ne ulazi se u uzroke takvog ponašanja. Drugi je pristup prema 

Humphrey & Rajagopal [29] u kojem je predložen model temeljen na opisu promjena i 

proizvodnje odnosno razgradnje izvanstaničnih dijelova stijenke žile kao posljedice promjene 

normalnih vrijednosti vanjskog opterećenja. Ovaj drugi pristup do sada je bio primijenjen 

samo za membranski model stijenke, [30] i [31]. Iako su ograničeni na membransku teoriju i 

njena ograničenja, ti modeli nam daju bitne informacije o mehanizmima G&R (npr. ovisnost o 

naprezanju, o koncentraciji vazodilatatora i vazokonstriktora). Isti pristup može se primijeniti 

i za trodimenzijske modele na osnosimetričnoj geometriji, kao u radovima [32–34]. Za razliku 

od membranskih modela, 3-D formulacija omogućuje praćenje radijalnih promjena pojedinih 

konstituenata kao i molekula (npr. dušični oksid, endotelin-I, MMP), no s tim se javlja i 

potreba za eksperimentalnim metodama koje će potvrditi te gradijente i dati povratnu 

informaciju G&R modelima. 

 

Bolesna krvna žila 

Hiperelastični modeli mogu vrlo dobro opisati ponašanje stijenke aneurizme, ali pri tome još 

nitko nije uzeo u obzir mikrostrukturnu građu. Veliki doprinos razvoju modela AAA daju 
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jednoosni ([35]) i dvoosni [4] pokusi na ljudskim AAA. Volokh & Vorp [36] predložili su 

matematički model za rast i predviđanje rupture AAA. Njihova pretpostavka je da tanka 

sferna ljuska opterećena tlakom može opisati ponašanje aneurizme. U Rodriguez et al. [37] su 

usporedili prethodno spomenute modele s izotropnim opisanim preko polinomne funkcije i 

dvije porodice kolagenih vlakana. Opći zaključak je da modeli temeljeni na strukturi trebaju 

biti napravljeni iz histoloških podataka, a ne preko krivulja rastezanja. Rissland et al. [38] 

napravili su analizu rezultata iz [4] pomoću modela s kolagenih vlaknima orijentiranim u dva 

smjera te su zaključili da anizotropni model daje pouzdanije rezultate. Za obradu istih 

rezultata Feruzzi et al. [39] koriste konstitutivne relacije s četiri familije kolagenih vlakana 

uzimajući u obzir mikrostrukturu, što čini rezultate toga rada vrlo primjenjivima kod modela 

rasta i restrukturiranja (G&R) u abdominalnoj aorti. 

Prvi G&R model za opisivanje evolucije AAA, ali koji ne uključe intraluminalni tromb, je 

prezentiran u Watton et al. [40]. U tom radu je stijenka modelirana kao dvoslojna cilindrična 

membrana. Razmatrali su nastanak osnosimetrične, kao i asimetrične aneurizme uz 

ograničavanje rasta aneurizme na posteriornoj strani na kojoj se nalazi kralježnica. Ovaj je rad 

potaknuo niz istraživanja ([41–43]) koji se razlikuju u konstitutivnim funkcijama i njihovoj 

implementaciji. U Wilson et al. [43] (membranski model) je sugerirano da su G&R parametri 

o kojima ovisi obnavljanje kolagena (npr. brzina produkcije i razgradnje, krutost, 

preddeformacije) ključni za rupturu, ravnotežu ili stabilan rast aneurizme.  

Popularno je i razmatranje utjecaja hemodinamike na rast aneurizme, tzv. fluid-structure-

growth (FSG), primjerice [44]. Međutim, niti jedan od ovih modela ne uključuje direktno 

sveobuhvatni utjecaj intaluminanog tromba na aneurizmu. 

 

Modeliranje intraluminalnog tromba 

S druge strane, modeli razvijeni za opisivanje nastanka i razvijanja tromba ne bave se 

njegovim utjecajem na krvnu žilu, nego isključivo zgrušnjavanjem krvi (tj. stvaranjem fibrina, 

fibrinogenezom), mehaničkim svojstvima fibrina te njegovom razgradnjom pomoću plazmina 

(fibrinolizom). Takvi modeli mogu se podijeliti na intrinzične i ekstrinzične pristupe [45–47], 

te sve popularnije hibridne formulacije ([48–53]). Intrinzični i ekstrinzični pristupi 

pokušavaju opisati promjene u koncentraciji i aktivaciji osnovnih hemostatskih faktora na 

makrorazini pomoću brojnih (obično oko 50) diferencijalnih jednadžbi. Hibridna formulacija 

spaja diskretni Pottsov model za trombocite, crvene i bijele krvne stanice na mikrorazini s 

kontinuum modelom strujanja krvi na makrorazini u pokušaju iskorištavanja prednosti oba 

modela: točnost prvog i brzinu drugog. 
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Unatoč svim naporima do danas nije uložen veći napor za otkrivanje vremenskog razvoja 

krvnog ugruška unutar AAA. Koristeći dostupne eksperimentalne rezultate Karšaj et al. [54] 

predlažu prvi takav model pomoću spregnute teorije smjesa (constrained mixture theory) gdje 

opisuju složene kinetičke promjene različitih skala (minute kod stvaranja fibrina do tjedana i 

mjeseci kod stvaranja kolagena). Glavni nedostatak ovog rada je ograničenje na 0-D problem. 

 

Ciljevi i hipoteze istraživanja 

Cilj istraživanja je razvoj numeričkog modela rasta i restrukturiranja aneurizme koja sadrži 

intraluminalni tromb. Opis vremenski promjenjive raspodjele proteaza u radijalnom smjeru 

kroz tromb i stijenku aorte omogućuje simulaciju rasta aneurizme te određivanja sklonosti 

rupturi. Očekujemo da će model dovesti do boljeg razumijevanja patofiziologije aneurizmi. 

Hipoteze istraživanja su: 

1. tromb direktno utječe na tijek rasta AAA i vjerojatnost pojave rupture, i to: 

a. mehanički - tromb preuzima dio naprezanja i time pruža mehaničku zaštitu stijenci 

aorte, 

b. biokemijski - nastankom tromba stvaraju se enzimi koji razgrađuju pojedine 

konstitutente stijenke aorte i na taj način joj degradiraju mehanička svojstva, 

2. osim u trombu, enzimi koji utječu na rast AAA stvaraju se i u stijenci, mijenjaju 

mehanička mehanička svojstva i smanjuju čvrstoću stijenke. 

 

Biokemomehanički pregled 

ILT je veoma kompleksna fibrinska struktura koja se za razliku od ostalih krvnih ugrušaka i 

tromba unutar aneurizmi u drugom dijelovima tijela ne razgrađuje, a fibrinska vlakna se ne 

zamjenjuju kolagenom, kao što je slučaj pri liječenju ozljeda [55]. Smatra se da ključnu ulogu 

pri stvaranju ILT-a ima hemodinamika koja uzrokuje oštećenje endotelnog sloja. Stvaraju se 

područja pogodna za aktivaciju trombocita iz krvi te područja pogodna za njihovo nakupljanje 

i stvaranje fibrina (fibrinogenezu), a time i stvaranje fibrinske mreže u koju se potom zapliću 

crvene i bijele krvne stanice. Fibrinska mreža nastaje stabilizacijom i povezivanjem fibrinskih 

vlakana pomoću aktiviranog faktora XIII. S druge strane, fibrinsku mrežu razgrađuje plazmin, 

Zanimljivo, istraživanja su pokazala da gušća, manje porozna fibrinska mreža pokazuje veći 

otpor fibrinolizi (razgradnji fibrina) [56]. Proces zgrušnjavanje krvi i fibrinolize su detaljno 

opisani u nekoliko preglednih članaka [57–59], kao i nekolicini novijih članaka [60–62]. 

Osim razumijevanja strukture tromba, bitna su istraživanja mehaničkih svojstava tromba 

koja počinju radom [16] te traju još i danas. Bitniji napredak u istraživanjima svojstva ILT-a 
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je krenuo s ultrazvučnim mjerenjima u [63], gdje je pokazano su da ILT doživljava nelinearne 

deformacije. Najkvalitetniji rezultati prikazani su u [8], u kojem su ispitana mehanička i 

histološka svojstva sva tri sloja tromba. U radu su definirali četiri faze starosti tromba koje se 

razlikuju po svojstvima fibrina i histologiji. Također, pokazali su da su intermedijalni i 

abluminalni sloj izotropni, što ne mora vrijediti za luminalni sloj te da vlačna krutost opada 

radijalno, ali raste starenjem. Ashton et al. [64] su pokazali suprotno ponašanje kompresijske 

krutosti, odnosno da je kompresijska krutost abluminalnog sloja znatno veća od iste 

luminalnog i intermedijalnog sloja. 

ILT unutar AAA karakteriziraju jedinstvena biokemijska i biomehanička svojstva koja su 

različita od vrijednosti dobivenih za tromb u ostalim dijelovima tijela. S obzirom na 

nemogućnost zacjeljivanja i konstantno obnavljanje stanične aktivnosti u luminalnom dijelu, 

on je mogući izvor kronične upale stijenke aorte. Stoga za razumijevanje i modeliranje 

utjecaja tromba na rast AAA nije dovoljno poznavati samo njegovu strukturu i mehanička 

svojstva, nego i heterogenu sintezu, skladištenje i otpuštanje relevantnih biomolekula (npr. 

neutrofila, makrofaga i limfocita). Neutrofili u luminalnom sloju tromba mogu lučiti 

interleukin-8, koji je kemotaktičan za neutrofile, te količine neutrofila u ILT-u mogu biti i 12 

puta veće nego u krvi [65]. Oni također mogu otpuštati matriks metaloproteinaze MMP-8 i 

MMP-9 (enzime koji razgrađuju proteine – kolagen i elastin u stijenci aorte) te aktivator 

plasminogena uPA (čijom aktivacijom nastaje plazmin koji razgrađuje fibrin, a dodatno i 

aktivira latentne oblike MMP-ova) [66]. Unutar AAA zabilježene su povećane razine 

proteinaza, kao i smanjene razine inhibitora proteinaza (TIMP-1 i TIMP-2) u usporedbi sa 

zdravim tkivom [66,67]. Osim plazmina, latentne oblike proteinaza (proMMP) aktiviraju 

ostale proteinaze te reaktivni oblici kisika i dušikov oksid [67].  

Zbog heterogene strukture tromba i lokalizacije stanične aktivnosti na luminalni sloj, 

pokazano je da stijenka aorte ispod koje je tanki tromb (≤ 1.0 cm) ima znatno veće razine 

aktivnosti proteinaza i omjera aktivnog MMP-9 i inhibitora TIMP-1 u odnosu na stijenku 

ispod debljeg tromba [66]. Pad stanične aktivnosti uočen je i od luminalnog sloja prema 

medijalnom i abluminalnom sloju tromba. Medijalni i abluminalni sloj karakterizira 

nedostatak stanica i sve manje organizirana fibrinska mreža u procesu razgradnje. Dijelovi 

abluminalnog sloja najbliži stijenci mogu biti čak potpuno razgrađeni i u obliku tekućine 

(liquid interphase) [64,68]. Zbog nedostatka stanica u ovim slojevima nije moguća sinteza 

proteina, međutim uslijed fibrinolize moguće je otpuštanje biomolekula koje su se vezale za 

fibrin tijekom koagulacije. Zbog toga mjerenja proteolitičke aktivnosti u ovim slojevima dosta 

variraju vremenski i prostorno pa istraživanja mogu pokazati različite rezultate (npr. [69] i . 
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[10]). Otpuštanje vezanih latentnih proteinaza u prisutnosti plazmina povećava razgradnju 

susjedne stijenke. Uzimajući u obzir da proteolitički enzimi i molekule koje utječu na rast 

AAA vjerojatno mogu prolaziti kroz propusni tromb konvekcijom i difuzijom [9], 

razumijevanje i modeliranje tromba postaje još kompleksnije. Dodatni problem predstavljaju 

teškoće pri dobivanju uzoraka ljudskog tkiva pa su životinjski modeli vrlo korisni.  

Osim biokemijskog sastava tromba za razumijevanje AAA bitne su i promjene u stijenci 

aorte. Aneurizmatična stijenka aorte ispod koje nema tromba ima manje upalnih stanica, 

manji površinu vase vasoruma i više elastičnih vlakana i glatkih mišićnih stanica koje sporije 

odumiru [70] u usporedbi sa stijenkom ispod koje se nalazi tromb. Osim toga, postoje znatne 

razlike u izvanstaničnom matriksu (npr. svojstva kolagena) i staničnom sastavu. Gubitak 

elastina uzrokuje smanjenje aksijalne potpore i dovodi do produživanja, odnosno izvijanja 

aorte, koje može uzrokovati dodatno oštećenje endotelnih stanica, poremetiti strujanje krvi i 

uzrokovati abnormalna naprezanja [11]. U slučaju kada naprezanja lokalno nadvise čvrstoću 

stijenke dolazi do rupture [71]. Međutim, i naprezanja i čvrstoća stijenke su izrazito 

heterogeni. Također, oštećenje tromba indirektno dovodi do rupture jer omogućuje 

obnovljenu staničnu aktivnost i razgradnju stijenke aorte [72]. 

 

Modeli rasta i restrukturiranja 

Za pravilno numeričko G&R modeliranje moramo znati kako se deformira stijenka krvne žile, 

kako nastaje i raste tromb unutar AAA te promjene u sastavu i mehaničkim svojstvima 

stijenke i tromba. Međutim, treba imati na umu da rast tromba utječe na deformiranje stijenke, 

ali i da je ograničen upravo rastom aneurizme. Stoga, razvijen je numerički model koji uzima 

u obzir: 

a. ponašanje tri sloja stijenke krvne žile povezano s razmatranjem rasta i restrukturiranja 

(G&R) na mikrorazini, 

b. nastanak, stvaranje slojeva i ponašanje intraluminalnog tromba, 

c. međudjelovanje tromba i stijenke, odnosno difuziju proteinaza (MMP) kroz ILT i stijenku 

aorte. 

Trodimenzijski materijalni model zdrave abdominalne arterije temeljen na teoriji prema 

Humphrey & Rajagopal [29], odnosno prema numeričkom modelu iz [34], je prilagođen za 

opisivanje aneurizmatične stijenke aorte. Osnovna teorija temelji se na spregnutoj teoriji 

smjesa i teoriji evoluirajućih konfiguracija. Pri modeliranju čvrstoće stijenke aorte uzeti su u 

obzir samo mehanički bitni dijelovi (elastin, više familija kolagenih vlakana i glatke mišićne 

stanice). Pretpostavka je da svaki od konstituenata u svakom trenutku ima svoju prirodnu 
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konfiguraciju u kojoj nije napregnut. Svaka nova generacija konstituenata ugrađuje se u 

trenutnu konfiguraciju smjese (tj. stijenku aorte) s preddeformacijom. Promjena mase 

pojedinih konstituenata značajno utječe na raspodjelu naprezanja. Za razliku od teorije za 

zdravu stijenku, aneurizme karakterizira smanjenje mase elastina i apoptoza mišićnih stanica, 

dok masa kolagena znatno raste. To za posljedicu ima i stanjenje medije, te zadebljanje intime 

i adventicije.  

Temeljem biokemomehaničkog pregleda razvijen je model za opisivanje nastanka 

intraluminalnog tromba (ILT) i prostorno-vremenske promjene njegove strukture i 

mehaničkih svojstava prilikom rasta aneurizme pod osnovnom pretpostavkom o konstantnom 

unutarnjem promjeru pri konstantnom opterećenju. Treba primijetiti da se zbog te 

pretpostavke u svakom vremenskom koraku u kojem aneurizma raste stvara novi dio 

luminalnog sloja tromba. Model također opisuje i proizvodnju enzima koji nastaju tijekom tih 

procesa (MMP). Opažanja da se tromb sastoji od različitih mehanički bitnih dijelova (fibrin, 

crvene krvne stanice, produkti degradacije fibrina, praznine) potaknuli su nas na upotrebu 

teorije smjesa. Modeliran je nastanak fibrina pomoću biokemijskih reakcija, pri čemu će 

fibrinska vlakna biti položena u konfiguraciju smjese (tromba) s određenom deformacijom. 

Razgrađeni fibrin u dubljim slojevima tromba djelomično se pretvara u produkte degradacije 

fibrina, a djelomično, uslijed djelovanja makrofaga, zajedno s odumrlim krvnim stanicama 

ostavlja praznine. Ovo razmatranje se poklapa s idejom spregnutih smjesa već izloženom u 

prvom koraku.  

Biokemijski utjecaj tromba na stijenku definiran je difuzijom proteinaza. Proteinaze imaju 

dva izvora: luminalni sloj tromba te mediju i adventiciju u stijenci, što komplicira njezino 

modeliranje. Važnost pojedinog izvora mijenja se tijekom vremena: primjerice, luminalni sloj 

koji se nalazi blizu stijenke ima znatno veći utjecaj na njezinu razgradnju od proteinaza 

izlučenih iz upalnih stanica u samoj stijenci, ali kod velike aneurizme koja sadrži tromb debeo 

nekoliko centimetara proteinaze proizvedene u luminalnom sloju su daleko od proteina koje 

razgrađuju i gotovo da nemaju utjecaj na njih, [29,30]. S druge strane, biomehanički utjecaj 

tromba opisan je preuzimanjem dijela naprezanja. 

 

Rezultati 

Trodimenzijalni model aneurizmatične aorte je primijenjen prvo na cilindričnu geometriju, 

bez modela tromba. S obzirom da bez modela tromba nije poznata vremensko-prostorna 

raspodjela proteinaza (elastaza i kolagenaza), degradacija je elastina predefinirana kao 

funkcija vremena. Za ovakav slučaj je aneurizme dobiveno da je stabilizacija moguća samo u 
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slučaju da kolagena vlakna očvršćuju, a produkcija mase konstituenata je dovoljno velika. 

Model rasta i restrukturiranja stijenke je također implementiran u programski paket za 

konačne elemente (FEAP), što je omogućilo simulacije aksijalno simetričnih (fuziformnih) i 

nesimetričnih (sakularnih) aneurizmi. Implementacija je validirana na cilindričnoj geometriji 

za zdravu aortu (adaptacija na promjenu tlaka i protoka) sa semi-analitičkim rješenjem. 

Rezultati za fuziformne aneurizme su uspoređeni s membranskim modelom iz literature [73]. 

Rezultati se dobro poklapaju, a dodatno je pokazano da pretpostavke membranskih konačnih 

elemenata ne vrijede nužno za problem rasta aneurizme. Prvi rezultati za sakularne aneurizme 

daju obećavajuće rezultate. Također je za cilindričnu geometriju opisan biokemijski utjecaj 

tromba na stijenku aneurizme, dok se mehanički utjecaj zanemario. Time je izbjegnuto da 

razgradnja elastina ovisi samo o vremensko-prostornim koordinatama, nego prostorna 

funkcija količine elastaza. Međutim, zbog visokih računalnih zahtjeva, ali i ograničenosti 

dostupnih eksperimentalnih podataka o cirkularnim i aksijalnim mehaničkim i histološkim 

promjenama, za prvu aproksimaciju je modelirana aneurizma koja sadrži tromb na 

cilindričnoj geometriju pomoću semi-analitičkom rješenja. 

Model tromba unosi niz parametara, od kojih se dio ne može odrediti direktno iz 

eksperimenata. Veći dio tih parametara je određen parametarskim istraživanjima, na način da 

rezultati simulacije opišu ponašanje primijećeno eksperimentima. Primjerice, vremensko-

prostorno struktura i mehanička svojstva tromba se poklapaju sa rezultatima iz Tong et al. [8], 

rast površine vase vasorum se može usporediti povećanjem površine s upalim stranicama iz 

Vorp et al. [74], a za težinske faktore korištena su istraživanja s eksperimentima na 

životinjama (npr. [75,76]). Model je pokazao velike mogućnosti, a ishod rasta aneurizme 

(ruptura, kontinuirani rast ili stabilizacija) više nije ovisio samo o svojstvima kolagena, nego i 

o svojstvima tromba. Aneurizma koja sadrži tromb može rasti bez rupture čak ako i kolagen 

ne očvršćuje. 

Za parametre za koje su eksperimenti pokazali da značajno variraju od pacijenta do 

pacijenta (npr. proteolitička aktivnost luminalnog sloja tromba) napravljena je parametarska 

analiza. Promjenom vrijednosti određenih parametara modela su simulirane razlike u razvoju 

aneurizme kod pušača i nepušača, žena i muškaraca, pacijenata s normalnim krvnim tlakom i 

pacijenata s arterijskom hipertenzijom. Primjerice, pušači imaju znatno povećanu krutost 

stijenke, razinu upalnih stanica i aktivnost trombocita u odnosu na nepušače [77]. Nakon 

prestanka pušenja potrebno je 5-10 godina da bi se te razine vratile na razinu nepušača [78]. 

Uzimajući u obzir te razlike, dobiveno je da aneurizme kod pušača rastu 0,05 cm/god brže 

nego kod nepušača, što se u potpunosti poklapa s kliničkim opažanjima [79]. Slični su 
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rezultati dobiveni i za razlike u spolu, starosti te krvnom tlaku. Također, s obzirom da 

dosadašnji G&R modeli bez tromba nisu uspjeli objasniti stepeničasti način rasta aneurizme, a 

prvi zastoj u rastu je dobiven pomoću ovog modela aneurizme koja sadrži tromb, postoji 

mogućnost da je upravo tromb, odnosno velika razlika u proteolitičkoj aktivnosti tromba u 

odnosu na stijenku, razlog povremenom prestanku rasta aneurizme ili ponovnom početku 

rasta nakon stabilizacije. 

 

Zaključak 

Računalna biomehanika sve se više koristi za istraživanje kompleksnih procesa vaskularnog 

zdravlja i bolesti. Prijašnji G&R modeli aneurizme abdominalne aorte (npr. [43,44]) dali su 

nam značajan uvid u bolest, ali nisu uzeli u obzir biokemomehanički utjecaj intraluminalnog 

tromba na aneurizmatičnu stijenku. Ti bi utjecaji mogli biti ključni za evoluciju, predviđanje 

rasta i klinički ishod aneurizme. 

Pored svih prednosti ovog modela prve generacije, sveobuhvatni model ograničen je na 

cilindričnu geometriju, koja ne dopušta lokalna proširenja. Također, pretpostavka da tromb 

popunjava prostor od stijenke do lumena ne dopušta rast tromba vođen hemodinamikom, kao 

što se vjerojatno događa in vivo. Ovi ograničavajući faktori potrebni su dok se ne razviju 

konačni elementi koji mogu opisati modele rasta i restrukturiranja. Krajnji je cilj razviti model 

koji opisuje rast i interakciju između krvi, tromba i stijenke (fluid-solid-growth).  

Prijašnja istraživanja rasta i restrukturiranja su pokazala da krutost kolagena ima 

dominantnu ulogu kod predviđanja kliničkog ishoda (tj. prestanak rasta, kontinuirani rast ili 

ruptura) kod aneurizama koje ne sadrže tromb. Istraživanja u ovom radu to su potvrdila, ali 

dodatno sugeriraju i druge faktore koji imaju bitnu ulogu kod aneurizama s trombom. 

Rezultati pokazuju sposobnost tromba da nosi dio naprezanja, ali i da utječu na obnovu 

izvanstaničnog matriksa u stijenci putem proteolize. Naravno, potrebni su eksperimenti za 

određivanje određenih G&R parametara modela, idealno bi bilo za svakog pacijenta zasebno.  

Također su pokazani i načini kako najvažniji rizični faktori za rupturu i terapeutske 

strategije utječu na evoluciju aneurizme i vjerojatnost rupture. Rezultati simulacije izvrsno se 

poklapaju s kliničkim promatranjima, intuicijom i prošlim G&R modelima koji imaju 

kompleksniju geometriju, ali ne uzimaju u obzir tromb. Primjerice, prosječna brzina rasta je 

cca 2 mm/god, dok je brzina rasta kod koje se predviđa ruptura oko 10 mm/god. Simulacije 

aneurizmi kod pušača uzrokuju povećanje brzine rasta za približno 0,43 mm/god, a kod 

pacijenata s arterijskom hipertenzijom oko 0,22 cm/god po 10 mmHg. Oba rezultata su 

opažena i klinički [79]. Nadalje, model je predvidio veću vjerojatnost rupture kod žena, a 
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uvodi hipotezu da mehaničko stanje aneurizme (npr. količina preostalog elastina, istegnutost 

kolagena) značajno utječe na mogućnost adaptacije AAA na promjene i oštećenja. Očvršćenje 

kolagena može pomoći stabilizaciji aneurizme (kao što je pokazano ranije u [73]), ali to ne 

mora biti dovoljno u slučaju visoke proteolitičke aktivnosti ili nagle promjene krvnog tlaka. 

Smanjivanje proteolitičke aktivnosti luminalnog sloja tromba u modelu također smanjuje rizik 

od rupture. Prema tome, tromb se ne bi smio zanemarivati tijekom predviđanja razvoja AAA 

u budućim eksperimentalnim i računalnim istraživanjima. 

Zbog nedostatka eksperimentalnih podataka o molekularnim raspodjelama i 

heterogenostima mehaničkih svojstava u aksijalnom i cirkularnom smjeru aneurizme, 

proširivanje modela na 3-D neće biti jednostavno. Stoga zaključujemo da će biti potrebna 

pažljiva, integrirana razmatranja razvoja mehaničkih, kemijskih i bioloških svojstava biološki 

aktivne, slojevite strukture intraluminalnog tromba o prirodnoj AAA kako bi se povećao 

potencijal računalnih modela koji će nam pomoći identificirati i poboljšati faktore rupture 

rizika (ili, jednako važno, promicati stabilizacijske faktore), osigurati dijagnostiku pacijenta te 

specifično i intervencijsko planiranje, te u konačnici poboljšati klinički ishod. 

 

Originalni znanstveni doprinos 

1. Razvoj numeričkog modela koji opisuje: 

a. nastajanje aneurizme abdominalne aorte uzimajući u obzir radijalne promjene u 

strukturi stijenke aorte,  

b. nastanak i radijalne promjene u strukturi intraluminalnog tromba, 

2. Implementacija modela u konačne elemente u programski paket FEAP koja će omogućiti 

provjeru hipoteza dobivenih na 1-D geometriji te analiza biokemijskog utjecaja tromba na 

stijenku aorte dobivena korištenjem povezivanjem Matlaba i FEAPa. 

3. Modeliranjem interakcije tromba i stijenke omogućeno je praćenje utjecaja tromba na rast 

AAA te sklonost rupturi,  

4. Uz početna ograničenja postavljena na model, moguće je potvrditi ili opovrgnuti utjecaj do 

sada predloženih rizičnih i stabilizacijskih faktora na tijek razvoja AAA. 

 

 

Ključne riječi: aneurizma abdominalne aorte, intraluminalni tromb, rast i restrukturiranje, 

proteolitička aktivnost, faktori rizika od rupture 
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1. Introduction 

1.1. Motivation 

Abdominal aortic aneurysm (AAA, Figure 1.1) is a focal dilatation of infrarenal abdominal 

aorta with diameter larger than 30 mm, and a common cause of death among the elderly. 

Although the pathogenesis is still not well understood, some of the known development risk 

factors are male gender, age, smoking, hypertension, and cardiovascular and pulmonary 

diseases. AAA is asymptomatic disease; however, complications such as dissection, rupture, 

and embolization can lead to death. Nevertheless, our ability to predict whether a specific 

lesion will arrest, continue to enlarge either slowly or rapidly, or ultimately rupture remains 

wanting. Clinical interventions thus continue to be based primarily on the maximum 

dimension or expansion rate of the lesion, despite the observation that many small lesions 

rupture whereas larger lesions may remain asymptomatic, [2]. 

 

 

Figure 1.1: Abdominal aortic aneurysm, from [80] 

 

The arterial wall is a composite structure organized in layers – intima, media, and 

adventitia (Figure 1.2). These layers entail different structural components such as smooth 

muscle cells, elastic fibers, and fibrillar collagens, and other cells (e.g., endothelial) and 

molecules. Endothelial cells at the inner surface of the vessel excrete vasoconstrictors and 

vasodilators, and thus maintain homeostasis in healthy aorta. They also provide a non-

thrombogenic surface. Damage of endothelium in 80% of AAAs allows formation of an 
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intraluminal thrombus (ILT, Figure 1.3), [3,81]. The first phase of thrombus formation is 

characterized by loose fibrin networks entrapping the erythrocytes and leukocytes, [82]. This 

structure is typical for luminal layer of the thrombus. As it is in direct contact with the blood, 

it is proteolitically the most active. It is usually ~2 mm thick, which may be limited by the 

depth to which blood components can penetrate into the fibrin mesh. Parts of thrombus further 

away from the lumen (medial and abluminal layers) are characterized by disrupted 

erythrocytes and degradation of fibrin, [9]. All layers of ILT are histologically and 

mechanically distant, [13,82]. For example, luminal layer contains abundance of 

inflammation cells (e.g., T-lymphocytes), whereas medial and abluminal layers are mostly 

devoid of cells and molecules. Inflammation cells in luminal layer excrete proteolytical 

enzymes (matrix metalloproteinases, MMPs) that degrade collagen and elastin, thus 

weakening the aortic wall. 

 

 

Figure 1.2: Layered structure of aortic wall, from [25] 
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Figure 1.3: Layered structure of intraluminal thrombus, from [83] 

 

Conversely, Inzoli et al [17]) were first to suggest that ILT can mechanically shield 

aneurysmal wall. Therefore, intraluminal thrombus could significantly influence AAA 

expansion and rupture. The objective of proposed research is development of growth and 

remodeling (G&R) model of thrombus-laden aneurysms that will lead to better understanding 

of aneurysm pathophysiology. For example, several follow-up studies showed that some 

AAAs grow continuously (23%), the majority (65%) grow stepwise ('staccato'), i.e., periods 

of growth alter with periods of non-growth, whereas some are stable (12%), [21]. Possible 

reasons for this variability in growth patterns are currently unknown. The ultimate objective 

of computational modelling of aneurysmal G&R is to help clinicians predict rupture risk, i.e. 

to decrease the number of unnecessary treatments of large, stable aneurysms, as well as 

number of ruptures of small AAAs that would not be treated. 

 

1.2. Literature review 

Various constitutive models for description of artery behavior have been proposed, the 

majority are free energy-based. Anisotropic hyperelastic models proved to capture the 

behavior the best, [24]. They consider deformation of structurally important constituents 

(elastin, collagen, smooth muscle), and arterial layers (intima, media, adventitia). However, 

they do not take into account dependence of current stress state on previous loading. This 

phenomenon can be described by growth and remodeling models (G&R). Rodriguez et al. 

([26]) were first to model growth (change in mass) and remodeling (change in structure) of 

soft tissues. Such modeling is made challenging by the intrinsic complexities of arterial 

mechanics, including its composite make-up and associated active smooth muscle 

contractility plus nonlinear, anisotropic, pseudo-elastic passive behaviors over finite 

deformations. Two approaches for G&R modeling have been suggested. The 'kinematic 
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growth' approach [27,28] focuses primarily on the consequences of growth and remodeling 

(G&R), not the underlying mechanisms. Humphrey and Rajagopal [29] proposed a 

fundamentally different approach, one based on changes in the rates and extents of cellular 

and extracellular matrix turnover in response to perturbations of mechanical stimuli from 

normal values. This approach was used in several studies ([30,31]) restricted to membrane 

formulations, however, they provide insight to the G&R mechanisms (i.e. dependence on the 

stress state and the concentration of vasoconstrictor/vasodilatator ratio in the wall). The same 

approach can be applied to 3-D formulation, as is [32–34]. The advantages of a 3-D 

framework include the ability to account for effects of gradients in wall composition and 

distribution of molecules (e.g., NO, endothelin-1, MMPs). Nevertheless, this arises the need 

for experimental methods that will confirm these gradients and provide feedback to G&R 

models. To summarize, G&R models of healthy arteries and aneurysms without thrombus 

have been developed. Biochemomechanical influence of ILT on AAA expansion has been 

completely neglected in these studies. 

As the word itself implies, biomechanics requires an understanding and description of both 

the biological and the mechanical aspects of a system. In this thesis both of these aspects in 

regards to intraluminal thrombus in abdominal aortic aneurysms have been highlighted. What 

remains, however, is a merging of the two into a computational framework capable of 

quantifying and predicting how the biology and mechanics interrelate. For example, 

hyperelasticity may be used to describe a thrombus at a given instant, but such a description 

could just as easily be assigned to a non-living polymer gel. What distinguishes the 

metabolically active thrombus from the inanimate gel is the ability of the incorporated 

platelets and cells to actively change the mass and interconnectedness of the fibrin matrix 

over time, that is, to grow and remodel. A G&R approach to modeling biological systems thus 

has the potential to describe evolving mechanical properties (e.g., mass, stiffness, failure 

criteria) over physiologically relevant timeframes as a function of local biological, chemical, 

and mechanical factors such as cellular content, proteinase levels, and hemodynamic loads. 

Ultimately, this is the challenge facing the clinician – not only determining immediate risk of 

rupture, but also risk over the subsequent months to years so that the timing of follow-up with 

re-imaging or surgical intervention may be selected appropriately for a given patient. 

The first G&R model to describe AAA evolution was presented by Watton et al. [40] in 

2004. They modeled the wall as a two layered cylindrical membrane described by a 

constrained mixture [118], with structural properties determined by the nonlinearly elastic 

collagen and elastin. They considered the development of both axisymmetric and asymmetric 
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aneurysms caused by prescribed focal degradations of elastin, with potential limitation of 

posterior expansion due to the spine. This G&R framework was later extended to include 

fluid-solid-growth (FSG) modeling by Watton et al. [44] in 2009.  

More recent models [99, 100, 120, 121] also employed the concept of evolving constrained 

mixtures to investigate AAA mechanics, but with different constitutive functions and 

implementations. For example, instead of using a “recruitment stretch” to characterize when 

collagen becomes engaged mechanically, they used the concept of a “deposition stretch” to 

model incorporation of pre-stressed fibers within the in vivo geometry. Since new fibers are 

always added at a prescribed homeostatic deposition stretch, the wall as a whole can re-

establish a homeostatic state provided that the forces favoring expansion (e.g., intravascular 

pressure and degradation of extracellular matrix) do not exceed the capacity of the wall to 

produce new material. Wilson et al. [100] suggested that the range of potential clinical 

endpoints (arrest, continued expansion, or rupture) depended primarily on G&R parameters 

governing collagen turnover (e.g., production rates, degradation rates, deposition stretch, and 

stiffness). A more detailed review of past finite element studies of AAA wall stress and 

growth and remodeling can be found in Humphrey and Holzapfel [2], and a review of the 

need for fluid-solid-growth (FSG) models of AAAs can be found in Humphrey and Taylor 

[1]. 

Yet, current models of aneurysmal G&R do not include directly the biochemical effects of 

intraluminal thrombus. For example, the aforementioned release of plasmin in a particular 

region of the ILT may activate available proMMPs and lead to a local change in the G&R 

parameter controlling the degradation rate of collagen. At the same time, the now active 

MMPs could activate latent TGF-β that had been sequestered in the extracellular matrix, and 

thereby increase the G&R parameter governing growth factor mediated collagen production. 

There is, therefore, a pressing need for development of biochemomechanical constitutive 

models to correlate the spatiotemporal activity of key proteinases and mediators (e.g., 

plasmin, MMPs, elastase, TGF- β, TIMPs) produced and activated by the ILT and wall with 

the governing G&R parameters that control the turnover of the primary load-bearing 

constituents within the wall, most notably, collagen, elastin, and smooth muscle. Given the 

inherent complexities in the biology and mechanical modeling, advances will likely need to 

proceed stepwise, building from lumped parameter models towards eventual multiscale, 

multiphysics models. Towards this end, an initial schema (Figure 1.4) outlining the 

interactions of key contributors likely affecting the growth and remodeling of thrombus-laden 

AAAs is presented. Indeed, the ability to identify and measure such lumped parameters non-
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invasively and patient-specifically (e.g., leukocyte content of the ILT by USPIO (iron oxide 

contrast agents; ultrasmall superparamagnetic iron oxide) uptake or collagenase activity in the 

wall by MMP-targeted MRI agents) is increasingly becoming available to provide the 

necessary data to inform the next generation of biochemomechanical G&R models of AAAs.  

 

 

Figure 1.4: Schematic representation of effectors of the biochemomechanics of an evolving 

AAA from [84]. A solid black arrow indicates 'increases the amount or activity', a dashed 

black line indicates 'degrades', and a solid line indicates 'modulates the effect', WBC: white 

blood cell, RBC: red blood cell, EDP: elastin degradation products, FDP: fibrin degradation 

products 

 

1.3. Objectives and Thesis hypothesis 

The objective of proposed research is development of numerical growth and remodeling 

model of thrombus-laden aneurysm. Description of the temporal changes in radial distribution 

of proteinases throughout thrombus and aortic wall will allow us to simulate the growth of 

aneurysm, and determine rupture risk. The model is expected to increase comprehension of 

aneurysm pathophysiology. 

The hypotheses motivating the proposed research are: 

1. thrombus directly influences expansion pattern and rupture risk: 

a. mechanically – thrombus reduces peak wall stress, and thus mechanically 

shields aortic wall, 
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b. biochemically – formation of ILT introduces enzymes that degrade certain 

constituents of the aortic wall, and therefore change their mechanical properties, 

2. enzymes that influence AAA expansion are produced in the aortic wall as well; they 

change mechanical properties and weaken the wall. 

 

1.4. Thesis outline 

Chapter 1 

The first chapter provides the introduction to the Thesis, in which the motivation and Thesis 

objectives have been defined. The literature review provided in this Chapter additionally 

clarifies the motivation and objectives of the Thesis. 

 

Chapter 2 

This chapter describes growth and remodeling model of healthy and aneurysmal aortic wall 

used in this Thesis. For aortic wall the already existing model based on constrained mixture 

theory was adapted. Simplified aneurysm without thrombus was parametrically studied. 

Additionally, implementation of the model into finite elements and its verifications are 

presented, Implementation of growth and remodeling model of the aortic wall enables us to 

model realistic geometries. 

 

Chapter 3 

The third chapter covers biochemomechanical overview of abdominal aortic aneurysms. It 

includes description of structure of both; aneurysmal aortic wall and intraluminal thrombus, 

review of mechanical testing on these two structures, as well as cascade of biochemical 

processes responsible for aneurysm evolution. A special attention was given to the 

biochemical reaction in the thrombus and interaction between the thrombus and aortic wall. 

 

Chapter 4 

Based on biochemomechanical overview presented in Chapter 3 models for formation and 

maturation of intraluminal thrombus and interaction between thrombus and wall were derived. 

The analysis of biochemical influence of thrombus (neglecting mechanical effects) on 

cylindrical geometry using Matfeap was performed, while full biochemomechanical effects 

were studied using semi-analytical method. The validation of new models and their 

possibilities to retrieve clinical observations such as evolution of structure and mechanical 
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properties during aneurysm expansion is shown in the fourth chapter. Also, the importance of 

modelling thrombus for predicting aneurysm outcome is presented.  

 

Chapter 5 

Effects of the important rupture risk factors, such as smoking, hypertension, thrombus 

thickness, age and sex, on the aneurysm evolution have been studied in Chapter 5. 

Additionally, influence of stabilization factors has been investigated. 

 

Chapter 6 

The final Chapter summarizes the obtained results and provides recommendations for further 

research. 
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2. Growth and remodeling of aortic wall 

2.1. Methodology 

Growth and remodeling (G&R) of the aortic wall was described using a continuum-based 

constrained mixture model [29]. Specifically, the wall was assumed to behave initially as a 

constrained mixture of isotropic elastin, four predominant families of oriented collagen fibers, 

and circumferential smooth muscle (active and passive contribution). Structurally significant 

elastin was assumed to be produced only during perinatal development, not maturity. Note 

that the aging of elastin is described not only by its mechanical properties, but also with its 

initial mass and pre-stretch. The initial state in these simulations corresponds to a 40-year-old 

patient, see Table 1. Hence, only the collagen and smooth muscle were allowed to turnover as 

the lesion enlarged. Original constituents k (elastin, four families of collagen fibers and 

smooth muscle cells) were incorporated within the wall at a pre-stretch (0)kG  at G&R time 

0  , while new materials were incorporated within extant matrix at each time step  0, s   

via a deposition stretch ( )k G ; see Figure 2.1 for the associated kinematics. The figure a 

shows schema of configurations (dark circles / ellipses) and deformations (F or G) relevant to 

aortic G&R for times τ ∈[0,s]. Note that time τ = 0 denotes the beginning of the simulation 

when the aged aorta suffers an instantaneous but minimal loss of elastin; time τ is a generic 

instant at which new constituents are produced and incorporated within the ILT or aneurysmal 

wall. Time τ = s is the current computational time at which quantities are interpreted. Note, 

too, that the natural configurations are stress-free and unique for each constituent. Herein it is 

assumed that ( )k G  was constant for all  , though it may vary in disease.  

 



Lana Virag  PhD Thesis 

Faculty of Mechanical Engineering and Naval Architecture 34 

 

 

Figure 2.1: Schema of configurations and deformations relevant to aortic G&R, adopted from 

[33] 

 

The turnover of collagen and smooth muscle was defined by rates of production km  and 

degradation. The latter was described using survival functions ( )kq s   that accounted for 

the percentage of constituent k produced at past time   that remained at current time s . The 

mass of each constituent k thus evolved according to its individual production and removal 

rates, namely [29] 

  
0

( ) (0) ( ) ( ) d

s

k k k k kM s M Q s m q s     ,     (1) 

where ( )kM s  and (0)kM  are total (point-wise) masses of constituent k  at current time s  

and initial time 0, respectively. The survival function kq  was modeled consistent with a first 

order decay, that is, 

    exp d

s

k k

qq s K


  
 

   
 
 ,       (2) 

where 
k

qK  is a rate-type parameter for mass removal. Note that ( )kQ s  represents a survival 

function's special case, at 0  , such that ( ) ( 0)k kQ s q s  .  
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It is assumed that G&R of the aortic wall is driven, in large part, by deviations in wall 

stress from a homeostatic target 
h

k
t , which represents the norm of the homeostatic Cauchy 

stress tensor. The mechanobiologically driven rate of mass production  km   of each 

constituent k was thus defined as a function of the basal production rate k

Bm  and changes in 

Cauchy stress k
t  relative to the homeostatic value: 

 
    ,

,

1
C

k k

h w w hk k k k

B k
w hh

m m K K


   




  
   
 
 

t t

t
.    (3) 

kK


 and 
C

kK  are rate parameters governing constituent level stress-driven mass production 

and gain-type rate parameters responsible for constrictor-mediated changes, respectively; w  

and ,w h  are wall shear stress in the instant   and homeostatic value of wall shear stress.  

The Cauchy stress t within the aortic wall (mixture) was calculated under the assumption 

of a constrained mixture by first determining the overall stored energy function k

k

W W , 

where  

 active2

det( )

T SMC SMCW
t


  


t F F e e

F C
,      (4) 

with F  the overall deformation gradient (which can be related to constituent-specific 

deformation gradients via the kinematics shown in Figure 2.1), TC F F  is the right Cauchy-

Green tensor, and activet  is the active stress contribution from smooth muscle contractility (in 

the direction of smooth muscle; for axially symmetrical geometry they remain 

circumferential, however in non-symmetric geometry they might re-orient). Moreover, the 

constituent-specific stored energy functions kW  was given by (see section 4 in Baek et al. 

[85]), 

 
 

 (0) ( )

0

(0) ˆ ˆ( ) ( ) ( ) ( ) ( ) d
( ) ( )

ksk
k k k k k k k

n nk k

k k

mM
W s W s Q s W s q s

M s M s



    

C C , (5) 

with ( ) ( )k

n sC  the right Cauchy-Green tensor for constituent k, calculated by 

 
T

( ) ( ) ( )( ) ( ) ( )k k k

n n ns s s  C F F , where ( ) ( )k

n sF  is the deformation gradient from the natural 

configuration to the current configuration at time s  for constituent k  produced at time   (see 

Figure 2.1). 
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Collagen and smooth muscle were modeled as fiber-like structures without significant 

compressive stiffness, as in most prior G&R models. The stored energy function per unit mass 

for the smooth muscle-dominated behavior was defined as in Humphrey and Rajagopal [29] 

 2

4

2
3

3

ˆ exp ( 1) 1
4

SMC
SMC SMC

SMC
W I

c
c

c
     ,      (6) 

with 
2

c  and 
3

c  material parameters and 
4

I  the fourth (pseudo)invariant of right Green-

Cauchy tensor (  4 ( )( ) ( )
T

k k k

nI  m C m , with ( )k m  being orientation of the constituent k). 

Collagen may reorient out of the cylindrical plane in aneurysms [86], but radially reoriented 

fibers were not included because experimental data are lacking. In this case, elastin would 

bear all of the compressive radial stress. Because elastin is significantly lost as an AAA 

evolves, unrealistic radial stresses would result as the elastin content approached zero. Noting 

that glycosaminoglycans / proteoglycans typically associate with collagen fibers and can 

contribute to the overall compressive stiffness of the extracellular matrix, a neo-Hookean 

component to the stored energy function that described the (proteoglycan-augmented) 

collagen-dominated behavior was added, such that 

     2

4

2
1 ( ) 3

3

ˆ exp ( 1) 1tr 3
4

c
c c c

n c
W c I

c
c

c
      C ,     (7) 

with corresponding material parameters 1

c
c , 2

cc  3

cc  (for details see chapter 4.1.). Values were 

chosen to fit the original exponential stored energy function while simultaneously ensuring an 

equivalent homeostatic stress at the deposition stretch 1.08c

hG  , [87]. 

Active stress contribution from smooth muscle cells was considered to be (as in [88]) 

 
2

2
( )

( ) (a )

0

( )
( ) ( ) 1 ( ) 1

m active
active SMC C s SMC ctive M

m

M

s
t s T s e s

 
 

 


  
    

   

.  (8) 

In the equation (8) mT  is the maximum actively generated stress, M  is the circumferential 

stretch at which active stress is maximum, 0  is the circumferential stretch at which active 

stress goes to zero, SMC  mass fraction of muscle cells, ( )C s  is the net ratio of 

vasoconstrictors/vasodilators, and 
( ) ( )

( )
( )

SMC
m active

A

 
 

 
 . This is slightly modified from the 

original model [89] , where ( )m active  was defined as 
( ) ( )

( )
( )

SMC
m active

A

r

r


 


  with r  being radius. 

In general, the geometry does not need to stay axially symmetric, and thus radius is not 
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necessarily defined. The model was, therefore, extended for more general geometries by 

replacing the ratio of radii with stretch. Note that for cylindrical geometry the value of active 

stress is not changed by this modification. Stretch A  evolves via a first order rate equation, 

similar to original model 

d ( )
( ) ( )

d

A
act SMC AK

s

 
       ,       (9) 

where A SMC(0) (0)   in a healthy artery.  

 

2.2. Semi-analytical solution and FEAP 

This model has been implemented in two software packages: Matlab and finite element 

analysis program FEAP.  

In the case of an axisymmetric cylinder maintained at a fixed in vivo length, deformation 

gradient s
F  that quantifies mappings within in vivo mixture configurations between arbitrary 

time  and current time s can be easily calculated analytically as 

   
   

       
   

0 0 0 0

0 0 0 0

0 0 1 0 0 1

s

r s r J s r J r s

r s r r s rF

    
   

    
   
   

 (see [33] for 

more details). Thus, as long as geometry remains cylindrical and the deformation depends on 

the radius alone, finite element method is not necessary for obtaining results; this simpler sub-

class of 3D problems allows a “semi-analytical” solution. Such 1D problems are clinically 

relevant for particular arteries, including common carotids, basilar artery, and aorta, e.g., 

during arterial adaptation to new blood pressure or flow. As it still requires radial 

discretization and iterative procedure to satisfy equilibrium, this semi-analytic solution was 

calculated using Matlab. 

In contrast, implementation of the proposed theory for a general 3-D geometry (e.g., 

modeling growth of local dilatation during AAA evolution) requires finite element analysis. 

FEAP was used for finite element analysis; it is a general purpose finite element analysis 

program with fully open source code. The FEAP program includes options for defining one, 

two, and three dimensional meshes, defining a wide range of linear and nonlinear solution 

algorithms, graphics options for displaying meshes and contouring solution values, an element 

library for linear and nonlinear solids, thermal elements, two and three dimensional frame 

(rod/beam) elements, plate and shell elements, and multiple rigid body options with joint 

interactions. Constitutive models include linear and finite elasticity, viscoelasticity with 
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damage, and elasto-plasticity. It also allows user to define a new material, as was done within 

this work. 

 

Figure 2.2: 8-node hexahedral element, from FEAP User Manual 

 

For our simulations 8-node hexahedral element was used, Figure 2.2, with 3 degrees of 

freedom at each node. Solid mechanics elements in FEAP are available based on 

displacement, mixed, and enhanced strain formulations. A finite element formulation which is 

free from locking at the incompressible or nearly incompressible limit may be developed from 

a mixed variational approach using the Hu-Washizu variational principle. In the principle, 

displacements appear up to first derivatives, while the stresses and strains appear without any 

derivatives. Accordingly, the continuity conditions that may be used in finite element 

approximations are 0C  for the displacements and 1C  for the stresses and strains (a 1C

function is one whose first integral will be continuous). Appropriate interpolations for each 

element are thus: 

      I

I
N tu ξ ξ u          (10) 

      tσ ξ ξ σ          (11) 

      tε ξ ξ ε          (12) 

where  ξ  and  ξ are interpolations which are continuous in each element but may be 

discontinuous across element boundaries. The parameters σ and ε  are not necessarily nodal 

values and, thus, may have no direct physical meaning. 

A mixed approximation may now be used to describe the pressure and the volume change in 

each element. Accordingly, it is assumed 

     p p tξ ξ          (13) 

     tξ ξ          (14) 
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where it is noted that the same approximating functions are used for both pressure and 

volume. If the material is isotropic linear elastic, the use of the same functions will permit an 

exact satisfaction of the constitutive equation at each point of the domain of an element. For 

other situations, the constitutive equation may be approximately satisfied. 

Traditionally, finite strain finite element formulations employs deviatoric split of 

deformation gradient. However, several studies (e.g., [90–92]) suggested that although 

volumetric-isochoric split of the deformation gradient, and thus stored energy function, can be 

justified and systematically derived for isotropic materials, in the case of anisotropic material 

description decomposition must be executed with care in order not to violate certain physical 

requirements. Thus, this fiber-reinforced hyperelastic material was compared to results 

obtained by volumetric-isohoric split and formulation without split. 

In the volumetric-isochoric split formulation the total stored energy function W  can be 

written in decoupled form as 

sphW W W  ,          (15) 

where sphW  is spherical (volumetric) part and W  is the elastic contribution due to isochoric 

distortions. The distortional elastic contribution was calculated as 

 T 22
3

3

exp ( 1)
4

k
k

k

k

c
W c

c
 mCm ,       (16) 

with 
T

C F F  and 
1/3J F F ; while 

2

kc  and 
3

kc  are stiffness material parameters. 

On the other hand, formulation without split does not include decomposition of stored 

energy function and total stored energy is defined simply as 

 T 22
3

3

exp ( 1)
4

k c
W c

c
 mCm .       (17) 

Similarly, stress and tangent modulus in case of volumetric-isochoric split were calculated as 

sph act  t t t t  and sph act    (for more details see [93]). 
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Figure 2.3: Comparison of results obtained by semi-analytic method, and deviotoric split and 

formulation without split in FEAP 

 

Not only formulation without split proved to eliminate certain numerical instabilities, but 

the results were considerably more accurate. For example, Figure 2.3 shows comparison of 

evolution of radial displacements of cylindrical artery with no turnover of collagen and 

smooth muscle, and uniform change of mass of elastin calculated by FEAP with deviatoric 

delineation (cross sign) and formulation without split (plus sign), as well as semi-analytical 

solution (solid line) for case of uniform changes in mass. 

In this example masses of collagen and smooth muscle were kept constant ( 0k

Bm  , 

0k

qK  ) to eliminate integrals from equations (1) and (5), while elastin was produced (for 

( ) (0) 1M s M  ) or degraded (where ( ) (0) 1M s M  ). Degradation of elastin is typical for 

aging, and thus it would be expected that artery dilates with loss of elastin [94]. Semi-

analytical solution showed steep increase in radius with degradation of elastin, whereas with 

its production radius first slightly decreased before slowly increasing. Results obtained by 

FEAP with deviatoric split implementation demonstrate unexpected shrinkage of artery when 

losing elastin. However, solution from formulation without split implemented in FEAP 

demonstrated full agreement with semi-analytical solution.  

This might be explained by the fact that the inclusion of the isochoric part of the 

deformation in the expressions related to the fibers causes the stresses in the fiber to be not of 

a one-dimensional nature. The analysis provided in [90] suggests that the fiber-related terms 

in the energy are to be formulated using the complete deformation tensor C , while the 
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volumetric-isochoric split should be applied to the matrix part (i.e. elastin) only. For more 

details also see [92]. 

 

2.3. Equilibrium equations and geometry 

While this new G&R framework can, and eventually should, be implemented in simulations 

based on patient-specific geometries and with fluid-solid-growth coupling [95], it is first 

important to verify and test a new constitutive model in a geometrically simple case. Hence, 

similar to many prior G&R studies of AAAs [44,73], the first focus was on a simple 

axisymmetric geometry for illustrative purposes and to gain initial insights. Given differences 

in time scales between the cardiac cycle and the evolution of a lesion, a quasi-static motion of 

the lesion was considered whereby 

   div t 0 ,          (18) 

which, for an axisymmetric cylindrical geometry, reduces to 

         
d d d di m a o

l i m a

r r r r

rr rr rr rr

r r r r

r r r r
P t t t t t t t t

r r r r
              ,   (19) 

where P  is the luminal pressure distending the vessel and lr , ir , mr , ar , or  are radii at the 

following interfaces: lumen/ILT, ILT/intima, intima/media, media/adventitia, adventitia/outer 

surface. Similarly, the overall axial force L  was computed as: 

        
d d d d

2 2 2 2
i m a o

l i m a

r r r r

zz rr zz rr zz rr zz rr

r r r r

r r r r
L t t t t t t t t t t t t

r r r r
   

 
            
 
 
    . (20) 

The overall procedure for solution is best appreciated via a flow chart below. 

 

1. Zeroth time step – homeostasis 

READ input file with data for homeostasis from semi-analytic solution 

LOOP until convergence of Augmented Lagrange scheme 

 UPDATE geometry 

 GET deformation gradient 0

s
F  

 LOOP over integration points until convergence of the Newton-Raphson scheme 

CALL user material (umat) subroutine 

INPUT deformation gradient 0

s
F  

READ history variables 

  CALCULATE constituents’ masses and orientations, stresses 

WRITE to history fields masses, orientations, deformation gradient, stress 

 OUTPUT: stress σ  , tangent modulus  

 END LOOP (equilibrium) 

END LOOP (Augmented Lagrange) 

WRITE data 
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2. Growth and remodeling 

LOOP for time 

 UPDATE geometry 

 GET deformation gradient 0

s
F  

 LOOP over integration points until convergence of Augmented Lagrange scheme 

  LOOP until convergence of the Newton Raphson scheme 

   CALL user material (umat) subroutine 

INPUT deformation gradient 0

s
F  

READ history variables 

   CALCULATE mass production, fiber orientations 

   LOOP for time (from 0 to current) 

    CALCULATE survival functions, stored energy function 

   END LOOP (time) 

   CALCULATE masses, stress 

WRITE to history fields masses, orientations, deformation gradient, 

stress 

   OUTPUT stress σ  , tangent modulus  

  END LOOP (equilibrium) 

 END LOOP (Augmented Lagrange) 

WRITE data 

END LOOP (time) 

 

2.4. Parameter values 

Similar to previous implementations of constrained mixture models for arterial G&R 

[31,34,96], the constitutive relations and parameters were classified by level of consensus and 

function (Table 1). All parameters that were measured easily (such as arterial geometry and 

volumetric flowrates [8]) were classified as “observed”. In contrast, “bounded” parameters 

were less well-known and either defined via a parametric study [31]. 

 

Table 1: Parameter values used for G&R of aortic wall. Note: ‘h’ denotes homeostatic. 

Class Role Parameter value Eq. # Refs. 

O
b
se

rv
ed

 

Physical 

constants 

31050 kg m  , 0.0037 Pa s   , 

9.925 mmir   

See [34] 

[87] 

Initial loading 104 mmHghP  , 
, 0.5 Paw h  , 

100 kPaht   

[87] 

Composition by 

layer 

int 0.16  , med 0.52  , adv 0.32   

int 1c  , med 0.55e  , med 0.25c  , 

med 0.20SMC  , adv 0.25e  , adv 0.75c   

[34,97] 
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Homeostatic 

kinetics 

1/2 1/2 70 daysc SMC    (2) [87,98,

99] 

Passive 

elasticity 

1 0.025 MPacc  , 
2 498.2 kPacc  , 

3 23.52cc  2 25.9 kPaSMCc  , 
3 3.5SMCc  , 

134.96 kPaec   

e.g., (16) [8,97] 

B
o
u
n
d
ed

 

Pre-stretches 1.2e e

zzG G   , 1.2SMC

hG  , 1.08c

hG  ,

f 1.08G   

See 

Figure 

2.1 

[96] 

SMC activation 
m (0) 300 kPaT  , 0.75m  , m 2  , 

0 0.4   

(8) [96] 

Production 3cK  , 3SMCK   (3) [31] 

 

2.5. Simplified aneurysm without ILT (semi-analytical method) 

AAAs are characterized by a much greater elastin degradation than aging alone. The resulting 

dilatation is considered aneurysmal when the diameter increases by 50% over baseline. 

Clinicians consider AAAs expanding ≤ 2 mm/year to be stable, whereas aneurysms that 

expand ≥1 cm/year are at high risk for rupture. Given that functional elastin and smooth 

muscle are almost completely lost during the development of an AAA, collagen turnover has 

a fundamental role in the endpoint of AAA progression: stable growth, cessation of growth, or 

rupture. Prior G&R investigations have explored parametrically the effects of key aspects of 

collagen turnover on AAA progression, including rates of production, half-life, deposition 

stretch, and stiffness [73]. Notably, these properties of collagen turnover may vary from 

healthy remodeling to AAAs.  

Stored energy function per unit mass for collagen and SMC are defined as in [29]: 

 2

4

2
3

3

ˆ exp ( 1) 1
4

k
k k

k
W I

c
c

c
            (21) 

where 
2

c  and 
3

c  are material parameters and 
4

I  is forth invariant of right Green-Cauchy 

tensor (  4 ( )( ) ( )
T

k k k

nI  m C m , with ( )k m  being orientation of the constituent k . 

As a result, three cases for collagen stiffness in AAAs were considered: softening, remaining 

constant, or stiffening. Softening and stiffening of collagen was considered to be functions of 
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the homeostatic stiffness and the ratio of current and initial stretch (e.g., 

3 3( ) (0) ( ) / (0)k k k kc s c s   for stiffening, inverse ratio for softening). Note that for 

maintenance in healthy aorta, 3 3( ) (0)k kc s c ; therefore, stiffness is constant in maintenance as 

expected. 

Since AAAs can expand from an initial 2 cm diameter to > 7 cm, strains measured from the 

homeostatic configurations can be much larger than in aging healthy aorta. For elastin, which 

does not undergo turnover, these strains may be fully experienced; however, for collagen and 

smooth muscle, ongoing turnover helps to prevent overloading, particularly considering the 

exponential nature of their strain energy function Eq. (16). Nevertheless, in rapidly 

progressing aneurysms, collagen and smooth muscle may still be at risk of mechanical failure. 

Thus, failure criteria of 6 MPa for collagen and 0.15 MPa for SMC [100] were implemented. 

Note that this increased risk of fibers mechanically failing in the G&R model is consistent 

with the clinical observation that rapidly growing lesions are more likely to rupture, while 

slower expansion allows adequate time for ECM turnover. 

In many prior G&R models, collagen and smooth muscle have been modeled as fiber-like 

structures without significant compressive stiffness. Proteoglycan and glycosaminoglycan 

content, which may contribute to compressive stiffness of the ECM, also have usually been 

ignored. Furthermore, while collagen content in aneurysms may re-orient out of the 

cylindrical plane [86], adequate experimental guidance is lacking; therefore, radial 

reorientation has not been incorporated into this G&R model. As a result, elastin must bear all 

compressive radial stress. However, since elastin is significantly lost in AAA development, 

unrealistic radial stresses are predicted as elastin content approaches zero. Therefore, two 

hypotheses for modeling the aneurysmal wall were considered:  

First, limiting the loss of elastin to 5-15% of its initial mass and keeping the stored energy 

function in Eq. (2), though allowing, smooth muscle to be degraded completely; with Eq. (49)

.  

Second, allowing the complete degradation of elastin and introducing a Neo-Hookean 

component to the collagen stored energy function, such that,  

      2

4

*
* *2
1 ( ) 3*

3

ˆ exp ( 1) 1tr 3
4

nW c I
c

c
c

      C .    (22) 

Values of material parameters *

1c , *

2c  *

3c  in Eq. (22) are slightly changed in comparison to ones 

from Eq. (21) by arbitrarily prescribing *

1c  and computing best-fit values of *

2c  and *

3c  to fit 
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the original exponential stored energy function (21) while ensuring the an equivalent 

homeostatic stress at the deposition stretch 1.08c

hG  . 

These newly proposed constitutive rules for variable collagen stiffness and stored energy were 

then applied to investigate AAA progression without thrombus (i.e., with elastolysis driven 

only by an initial degradation and time-dependent decay). 

 

Concept 1: exponential stored energy function 

To study the effects of collagen and elastin turnover in AAAs using the original stored energy 

function for collagen, four different parameters that potentially effect outcome were 

investigated: percentage of remaining initial elastin , changes in the material stiffness of the 

collagen fiber, rates of stress-mediated production of collagen (parameter K


 in Eq.(3)), and 

rates of degradation of elastin (half-life of elastin 
1/2

e  ). Eight cases were simulated using 

parameters shown in Table 2; outer diameter of the lesion over time is shown in Figure 2.4 

Note the increasing propensity for unstable expansion with decreasing collagen stiffness 

(cases 1-3). In fact, in all cases exhibiting stabilization, collagen stiffens (cases 1, 7, and 8). 

However, case 6 demonstrates that rupture may still occur despite collagen stiffening if 

collagen production ( K  value) is sufficiently low. Nevertheless, not even increased collagen 

production and reduced elastin degradation rate (and thus reduced expansion rate of the AAA) 

prevent rupture if collagen stiffness remains constant (cases 4 and 5).  

 

Table 2: Sets of parameter values used to simulate AAA without thrombus using concept 1 

Case # 
Elastin survived, 

% 
Collagen stiffness 

Rate of 

production K


 

Elastin half-

life 1/2

e  

1 15 Stiffening 3 1 year 

2 15 Constant 3 1 year 

3 15 Softening 3 1 year 

4 15 Constant 3 2 years 

5 15 Constant 4 2 years 

6 15 Stiffening 2 1 year 

7 10 Stiffening 3 1 year 

8 10 Stiffening 4 3 year 
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Figure 2.4: Temporal changes in outer diameter of AAA for eight cases defined by Table 2; 

aneurysm ruptures at the end of simulation are marked with “x” 

 

Interestingly, for the cases simulated, neither percentage of remaining nor its half-life affected 

the ultimate outcome (rupture vs. stabilization), but rather only altered the final diameter and 

rate at which the outcome was achieved. This is consistent with Cyron et al. ([101]), who 

predicted collagen production and half-life to be the primary determinants of stability margin 

in the G&R of idealized AAAs.  

In conclusion, elastin degradation rate and final mass of elastin have no influence on outcome 

of AAA growth. Similarly to [73], softening and unchanged stiffness tend to result in rupture, 

while stiffening of collagen can lead to stabilization of aneurysm. However, unlike 

conclusions in mentioned study, stabilization only occurs if there is sufficient production of 

collagen. “Sufficient collagen production” could be expected to be a certain combination of 

rate of its production and rate of elastin degradation (its half-life); however that is not the 

focus of this study. Moreover, the study in [73] was performed on membrane finite element 

model, meaning it was capable of computing axial changes of axisymmetric fusiform AAA. 

Note that after bulging axially oriented collagen can bear load in radial direction as well. On 

the other hand, being a membrane model, it is unable of capturing radial changes. Therefore, 

some differences are to be expected, while general behavior should be the same. 
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An example of the changes in mass of key load-bearing components of the wall is shown in 

Figure 2.5 (for case 8 in which elastin mass reduces to 15% while smooth muscle continues to 

decrease toward zero). Black line represents elastin, dark gray line SMC, and light gray line 

collagen. As elastin and SMCs are lost, increasing stress drives increased collagen production.  

 

 

Figure 2.5: Temporal changes in masses of constituents 

 

As a consequence of these mass variations, thicknesses of the layers of the aortic wall also 

change. Although whole-wall thickness only mildly reduced to 85% of the initial value 

(results not shown), normalized thickness (ratio of current thickness of the layer and current 

whole-wall thickness) predicts intimal thickening with medial loss (see Figure 2.6, black line 

represents intima, pale gray line media, and dark gray line adventitia).  

 

Figure 2.6: Temporal changes in normalized thicknesses of layers in case 8 
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Concept 2: complete degradation of elastin 

Alternatively, to allow for complete degradation of elastin, a new stored energy function for 

collagen that includes both Neo-Hookean and exponential components (Eq. (22)) was 

considered. As discussed in Methods, new sets of material parameters were selected for six 

cases outlined in Figure 2.6.  

 

Table 3: Examples of parameter values in modified stored energy function (Eq. (22)). RMSE 

denotes root mean square error. 

# 
*

1c , MPa (chosen) *

3c , - (fitted) *

2c , MPa (calculated) RMSE 

1 0.001 22.06 0.5576 9.64e-5 

2 0.005 22.29 0.5470 4.85e-4 

3 0.01 22.59 0.5341 9.77e-4 

4 0.025 23.52 0.4982 2.49e-3 

5 0.05 25.15 0.4467 5.17e-3 

6 0.1 28.8 0.3653 1.11e-2 

 

Similar to Concept 1, smaller values of *

1c  (up to 0.025 MPa) allow for arrest of AAA 

expansion provided sufficient collagen production and stiffening. The value of production rate 

necessary for arresting expansion increases with increased isotropy. For values of *

1c  higher 

than 0.025, however, arrest is not likely, even with high stress-mediated production of 

collagen. In this case, the aneurysms may continue to expand with or without rupture. 
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Figure 2.7: Temporal changes in dilatation (gray line) and rate of dilatation (black line) of 

AAA for modified stored energy function for collagen 

 

Note that for *

1 0.025 MPac  , 2K

  and half-life of elastin of 2 years, the aneurysm 

enlarges to 60 mm before rupturing (see Figure 2.7), while for Concept 1, the lesion ruptures 

at only 35 mm (see Figure 2.7). Furthermore, the dilatation rate in Figure 2.7 remains less 

than about 5 mm/year before sharply increasing before rupture to greater than 1 cm/year (a 

clinical value believed to represent high rupture risk)., Thus, Concept 2 appears to be more 

representative of actual AAAs than Concept 1 and will be used for the following thrombus-

laden AAA simulations. Yet, what might account physiologically for the isotropic Neo-

Hookean contribution to this modified storage energy function. Possibilities might include an 

increase in nonfibrillar collagen (e.g., collagen V), other isotropic materials such as 

proteoglycans and glycosaminoglycans, or remnant fragments of elastin (or even new non-

lamellar elastin) capable of bearing small loads. Future experiments would be useful for 

further insight.  

 

2.6. Implementation into finite element code 

Several attempts of implementation of G&R models into finite element codes have been 

conducted. The model was first implemented in the membrane finite elements that allow 

modeling enlargement of axisymmetric (fusiform) aneurysms [85]. Using the membrane 

model geometrical changes and expansion rates during the aneurysm growth for different 

kinetic parameters were studied [102], as was the importance of initial aortic properties and 

collagen turnover on the evolution of fusiform AAAs without thrombus [43,73]. Furthermore, 

a computational framework coupling vascular G&R with blood flow simulation in a 3D 

patient-specific geometry was presented in [95].  

Nevertheless, albeit undoubtedly useful, membrane models are incapable of capturing 

distributions in radial direction. Radial distributions of stresses and masses could be important 

for the evolution of aneurysms, as it is known that aneurysmal wall is not degraded uniformly, 

nor is the mass in the wall is produced evenly. The radial differences in masses are even 

greater in thrombus-laden aneurysms [103], and thus for modeling biochemical influence of 

thrombus on the aneurysmal wall more accurately the mean values might not suffice, and it 

would be necessary to calculate their radial distributions. Additionally, membrane model 

might not be the best approximation for the thick walled, multilayered arteries. Hence, there is 
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a pressing need for extension of the constrained mixture framework to reliable 3D finite 

elements capable of modeling the evolution of biochemical and mechanical properties. This 

process is quite challenging, as the formulation must allow large changes in mass while 

enforcing the incompressibility constraint during transient motions, as well as take into 

account evolving mechanical properties.  

The first G&R implementation into 3D finite-element code [93] confronted a variety of 

numerical problems including instabilities and divergence of solutions with increased G&R 

time, management of computational requirements for storing histories of kinetics and 

motions, very high CPU expense and difficulties with enforcing isochoric responses. 

 

2.6.1. Adaptation of healthy aorta to changes in blood flow and pressure 

Before application of the G&R model to fusiform and saccular aneurysms it is necessary to 

verify implementation. This was done for examples for which semi-analytical solutions exist, 

i.e. geometry stays cylindrical, such as change in blood flow or pressure. 

It has been shown that if both wall shear stress and circumferential stress are returned to 

homeostatic values after perturbations in blood flow and pressure, given by hQ Q  and 

hP P , then stress-mediated G&R must produce specific changes in geometry. For example, 

when blood flow is 10% below its homeostatic (normal) value, ε = 1.1 and it is expected that 

inner radius and thickness should both change as 1/31.1 1.0323  of homeostatic values. For an 

aorta with inner radius 1 cm, terminal displacement would amount to 0.323 mm. Both semi-

analytical and finite element simulations agreed with membrane theory, as can be seen in 

Figure 2.8.  
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Figure 2.8: Evolution of displacements of inner and outer radius obtained by semi-analytical 

solution (lines) and FEM (markers) after 10% increase in blood flow  

 

Similarly, after an abrupt and sustained alteration in pressure, relevant to study of hypotension 

or hypertension, the most empirically observed response by the arterial wall to is change of 

thickness of the wall, however no long-term dilatation/shrinkage of blood vessel was observed 

[104,105]. For instance, after 20% abrupt decrease in blood pressure, the vessel immediately 

shrinks due to change in loading; however, growth and remodeling processes quickly ensure 

the inner radius returns almost to the initial value (Figure 2.9). Conversely, in hypertension 

(30% increase in blood pressure in Figure 2.9), it dilates at first, but after adaptation to the 

new sustained pressure, inner radius returns to approximately homeostatic value. Solid and 

dashed lines represent displacements obtained semi-analytical solution at inner and outer 

radii, respectively, whereas circle and cross markers are results attained using FEAP. Note 

that the finite element results match semi-analytical ones perfectly.  
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Figure 2.9: Evolution of radial displacement at the inner radius for 20% decrease and 30% 

increase in blood pressure obtained by semi-analytical solution (lines) and FEM (markers) 

 

2.6.2. Fusiform aneurysms (axisymmetric) 

Since verification can be performed solely on cylindrical geometry, where deformation 

gradient remains diagonal, it does not verify either the implementation or the model itself 

when axial of circumferential changes are introduced. However, this 3D finite element model 

should recover the behavior of fusiform membrane model from [43,73] for change in different 

kinetic parameters. As mentioned earlier, membrane model calculates only mean values or 

important variables (wall stress, constituent masses, orientations), and there are some 

differences in implementation (e.g. mass production function, active stress), so it should not 

be expected that the results would be identical. 

 

Geometry and boundary conditions 

In order to avoid numerous assumptions about microstructure (mass fractions of constituents), 

mechanical parameters (stiffness), orientations and pre-stretches of fibers of the already 

aneurysmal wall, simulations always start from healthy artery with well-known parameters. 

Abdominal part of healthy aorta can be represented by a cylinder (see Figure 2.10). For 
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simulation of fusiform aneurysm, due to axial symmetry, only one small section (e.g., 1°) can 

be used with applied symmetry boundary conditions on the sides. This will significantly 

reduce computational demands of the model. Computation demands can further be reduced by 

noting symmetry in “loading”, i.e. elastin degradation (for clarification see section below), 

thus symmetry boundary conditions are enforced on the upper side as well. Bottom side is a 

starting point of iliac bifurcation, which cannot move axially. 

Aorta is loaded with blood pressure on the luminal side. Boundary conditions and loading are 

shown in Figure 2.10. 

       

Figure 2.10: Model of real abdominal aorta from CT scan, initial geometry, computational 

model with boundary conditions, and mesh used for modeling fusiform aneurysms 

 

Geometrical and structural changes 

Fusiform aneurysm was simulated by local degradation of elastin, i.e. Gaussian spatio-

temporal function, similar to [43] (see equations 2.2 and 2.3). Figure 2.11 shows local 

degradation of elastin in time. Loss of elastin is governing aneurysm growth, i.e., bulging is 

expected at places where microstructure is changing (approximately at axial location > 40 mm). 

Further away from local elastin loss (at axial location closer to 0) aorta should remain healthy (and 

unchanged). The mesh is created accordingly: upper part is discretized with finer mesh, and lower part 

with coarser finite element mesh (see Figure 2.10). 
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Figure 2.11: Degradation of elastin at different axial locations and in different time steps 

 

Example of geometrical changes at some point during AAA growth is shown in Figure 2.12. 

Simulation started from healthy aorta approximated by cylindrical geometry (gray rectangle in 

Figure 2.12). 

 

Figure 2.12: Radial displacements of fusiform aneurysm. Note: gray cylinder represents 

initial, healthy geometry 
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Besides changes of constituent masses, mechanically important are also orientations of 

collagen fibers. Since fusiform aneurysm is axially symmetric, axial and circumferentially 

oriented fibers practically do not re-orient. However, as can be seen in Figure 2.13, helically 

oriented fibers, initially at ±45° re-orient about 10° at the aneurysm apex towards 

circumferential direction. This was also experimentally observed by researches from TU Graz 

(personal communication). Additionally, note that orientation changes radially, which cannot 

be taken into account in membrane finite elements. 

 

 

Figure 2.13: Orientations of helical collagen fibers at the time of AAA rupture 

 

Collagen mass production 

Computational results using membrane model [73] suggested that stabilization of AAA 

expansion could be achieved by increased collagen production This was later confirmed using 

animal models; reestablishment of the endothelial lining that led to the suspension of 

proteolysis, and the reconstitution of new aortic wall has been associated with the stabilizing 

effect on rat AAAs [106]. This is to be expected, since higher production of collagen leads to 

thicker aortic wall and lower pre-stretch experienced by collagen fibers. This necessarily 

causes lower stress, and thus slower expansion of AAA. 
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The results obtained by 3-D finite elements show that increased collagen production, 

modeled by increasing cK


 in Eq. (3), indeed decreases AAA expansion rate (Figure 2.14).  

 

Figure 2.14: Temporal variations in diameter of developing AAAs with different gain 

parameters for stress-mediated mass production of collagen 

 

Figure 2.14 shows comparison of evolution of diameter of developing aneurysms with 

different cK


 obtained with membrane model (results taken from [73]) and using 3-D 

elements in FEAP. Note that values of parameter cK


 differ between models due to different 

formulation of mass (density) production. The predicted evolutions roughly coincide, 

however due to numerical instabilities three simulations run in FEAP terminated before 

reaching rupture criterion (i.e., stress higher that 460 kPa).  

 

Pre-stretch of collagen 

Because collagen is the principal remaining load-bearing constituent of the aneurysmal wall, 

its properties must play a fundamental role in the natural history of the lesion without 

thrombus. Besides rate of production, one of the possible important mechanical properties of 

collagen is pre-stretch at which collagen is deposited into extracellular matrix. Temporal 
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variations of maximum diameter of aneurysms with different pre-stretches are shown in 

Figure 2.15. Stiffness (
2

cc  in Eq. (7)) is assumed to reset in order to establish the same 

homeostatic stress, and thus to ensure homeostatic maintenance. This means that the 

aneurysm with the lowest pre-stretch at which collagen deposits in the ECM is the stiffest.  

 

 

Figure 2.15: Evolution of maximum diameter of AAAs with different deposition pre-stretches 

 

 

Figure 2.16: Geometries of AAAs with different deposition pre-stretches at the time of 

rupture 

 

From Figure 2.15 could be concluded that collagen pre-stretch is not an important factor 

for AAA growth, since all the diameter evolutions are very similar. However, if aneurysm 

geometries at the time of rupture are compared (Figure 2.16), one can notice that although 
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maximum diameter is the same, the volume of aneurysmal sac is not. This can be explained 

by the fact that stiffness of aneurysm with deposition pre-stretch of 1.08 is lower than the 

aneurysm with deposition pre-stretch of 1.055. Since it is more compliant, it provides less 

resistance to expansion of “healthy” parts of aorta, i.e. parts where elastin is not degraded. 

Note from Figure 2.11 that elastin is degraded at the very small section of aorta, about 2 cm in 

length, while aneurysms shown in Figure 2.16 are 5 and 10 cm long.  

 

2.3.4. Saccular aneurysms (axially non-symmetric) 

The finite element implementation is also tested on axially non-symmetric geometry. Elastin 

is degraded in both axial and circumferential degradation, 

 e( , , ) 1 1 ( ) ( )eK sQ z s e f z f 
    , as to simulate formation of a saccular aneurysm. 

Since saccular aneurysm is not axially symmetric, the computational model for fusiform 

aneurysm cannot be used for saccular aneurysm. Note, however, that Gaussian elastin 

degradation function is double-symmetric, allowing us to use one fourth of cylinder instead of 

full geometrical model. Again, the created mesh, shown in Figure 2.17, is non-uniform, 

similar to fusiform aneurysm – finer at the places where elastin will be degraded, coarser 

where the aorta will stay healthy. 

 

 

Figure 2.17: Mesh used for simulation of saccular aneurysm 

 

Simulated geometry at the time of rupture is shown in Figure 2.18, left. Again, initial 

geometry is represented by gray cylinder.  
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Figure 2.18: Radial displacements of saccular aneurysm (left), CT scan of real aneurysm 

(right). Note: gray cylinder represents initial, healthy geometry 

 

It is very interesting to note that the aorta bent: healthy aorta (parts above and below the 

sac) shifted in the direction opposite the aneurysm (i.e., to the left), while part behind the sac 

shifted in the direction of the sac (to the right). This phenomenon, tortuosity of aneurysmal 

aorta, has been observed clinically (see Figure 2.18, right), and is one of the morphological 

parameters are associated with risk of rupture [107]. It is important to emphasize that no 

additional boundary conditions (e.g., by constraining aneurysm expansion by the spine) were 

enforced, meaning it is a consequence solely of asymmetric elastin degradation. Still, elastin 

degradation was modeled as a pre-defined time function. In the future analysis its degradation 

due to increased amount of elastase due to thrombus deposition should be considered. 
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3. Biochemomechanical overview of thrombus-laden aneurysm 

Intraluminal thrombus (ILT) within AAAs is a complex, fibrin-rich structure that shows few 

signs of healing by endothelial cell coverage or replacement of the fibrin network with 

collagen (cf. Franck et al. [106]). Hemodynamics is likely a key factor in the development of 

ILT; complex vascular geometries lead to disturbed flows that can result in a shear-history 

induced platelet activation and endothelial dysfunction sufficient to develop thrombus [108]. 

 

3.1. Hemodynamics and ILT development 

The disturbed hemodynamics that characterizes blood flow in AAAs likely plays a major role 

in initiating and sustaining the cascade of processes that promote ILT. Several experimental 

and computational studies of blood flow in idealized and patient-specific models of AAAs 

suggest that particular characteristics might be recurrent [5,109]. For example, vortical 

structures may develop during systole and then propagate and dissipate during diastole [5–7]. 

The outer regions of these vortices, in turn, may allow regions of high fluid shear stress that 

can exist away from the arterial wall. Noting that wall shear stress has been consistently 

reported to be lower on the aneurysmal wall compared with values typically computed on the 

endothelium of the healthy aorta [5,109], the hemodynamic environment in nascent AAAs 

thus may contain simultaneously regions favorable to platelet activation (due to high shear 

stresses in the lumen where platelets activate) and adhesion (due to low wall shear stresses 

where platelets may aggregate on a vulnerable endothelium). 

Note, therefore, that early thrombus development is characterized by aggregation of 

activated platelets and entrapment of erythrocytes and a small number of leukocytes within an 

evolving fibrin mesh; this fibrin accumulates as activated thrombin cleaves fibrinogen into 

fibrin, which then polymerizes to form the underlying mesh. Fibrin is stabilized via 

crosslinking by activated factor XIII (i.e., fXIIIa). Primary thick fibrin fibers may form 

around the initially plentiful erythrocytes, but as the fibrin-dominated matrix grows under the 

activity of additional platelets recruited from the bloodstream, focal areas of higher fibrin 

density may arise as old erythrocytes lyse and the porous structure of the matrix becomes 

sufficiently small to exclude the influx of new cells from the lumen [60]. With continued loss 

of erythrocytes, increased secondary fibers form between the thick primary fibers, which 

could contribute to a stiffening of the fibrin matrix (cf. [8]). Interestingly, plasma samples 

from AAA patients form denser, lower porosity clots that resist fibrinolysis more than 

controls, with the degree of resistance correlating with aneurysm size [56]. These findings 
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appear to be independent of fibrinogen or changes in thrombin generation; yet, other agents 

such as lipoprotein (a) or activated factor XII (fXIIa) may affect clot structure independent of 

thrombin [56]. Notably, lipoprotein (a) is elevated in AAA plasma vs. control, and fXII 

activity correlates with aneurysm size. These correlates may also contribute to the increased 

stiffness observed during the aging of ILT [8]. 

The process of coagulation, the mechanical properties of fibrin, and fibrinolysis are 

described in detail in several reviews [57–59] and recent papers [60–62]. A number of 

computational models have also been proposed for thrombus development, many of which are 

reviewed in Xu et al. [110]. In general, two approaches have been used to model coagulation 

and the development of thrombus within flowing blood. Continuum models at the macro level 

include reaction-diffusion (differential) equations that attempt to describe changes in the 

concentration and activation of essential hemostatic factors. Illustrative examples of this 

approach include Lobanov and Starozhilova [45], who were among the first to model effects 

of flow on fibrin deposition to a thrombus attached to a vessel wall and the subsequent effect 

of the growing clot on the flow, as well as Anand et al. [46], who focused on both the 

biochemical and mechanical factors governing thrombus formation and lysis. Another, 

increasingly popular, approach includes hybrid formulations that combine discrete and 

continuum models. For example, since thrombin is generated on a nanoscale while blood 

flows at a macroscale, a hybrid formulation attempts to integrate these processes 

spatiotemporally and to take advantage of individual strengths of the different models. 

Illustrative examples include Xu et al. [48,50] who combined a discrete cellular Potts model 

for platelets, red blood cells, and white blood cells with the continuum Navier-Stokes 

equations, and Biasetti et al. [111], who investigated the relationship of flow vortices, 

coagulation, and thrombus deposition while including both plasma and membrane phase 

biochemical reactions. See, too, the works by Leiderman & Fogelson [51], Scianna & Preziosi 

[52], Flamm & Diamond [53], and others. 

Many phenomenonological models have also been employed to identify potentially useful 

metrics for predicting the location and timing of thrombus development within the 

aneurysmal sac. For example, a particle-hemodynamics analysis by Basciano et al. [23] 

suggested a generally greater maximum time-averaged shear stress on simulated particles in 

the proximal and middle AAA as well as a potential correlation between measures of near-

wall particle transit times and future thrombus deposition. These findings indirectly support 

computational results by Biasetti et al. [6,111], which suggest that platelets can activate 

within proximal regions of high fluid shear stress (e.g., flow vortices) and convect toward the 
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wall distally to deposit in zones of low wall shear stress. Although larger sample sizes are 

needed to confirm and extend these results, such studies are promising, indeed prerequisite, to 

modeling the development of thrombus-laden AAAs over physiologically relevant 

timeframes. Timing and location of thrombus deposition alone represent, however, only one 

aspect of understanding the role of ILT in AAA progression. Thus, the heterogeneous 

structure and inherent mechanical properties of the thrombus itself is described below. 

 

3.2. ILT structure and mechanical properties 

Based on gross examination, two major types of ILT have been described in AAAs: “discrete 

transition” and “continuous transition” [13]. In the discrete type, the thrombus appears to be 

layered, with sharp demarcations and weak attachments between adjacent layers. Properties, 

therefore, are generally distinct amongst the multiple (often three primary) layers. In contrast, 

in the continuous transition thrombus, there are gradual transmural changes in structure with 

strong radial connectivity. These differences could reflect the nature in which the thrombus 

was formed; that is, by temporally separated discrete deposition events resulting in various 

thicknesses versus a slow gradual build-up. Interestingly, the aforementioned study by 

Basciano et al. [23] appears to have captured a potential discrete deposition event (see  

Figure 3.1). Note the changes in the volumes of lumen, ILT, and AAA sac over time showing 

a possible discrete deposition event between June 2005 and March 2006. Furthermore, noting 

that multiple studies have observed both continuous and stepwise (or “staccato”) expansion of 

AAAs [21,22], the type of thrombus deposition (i.e. continuous versus discrete) may reflect, if 

not contribute to, these modes of expansion.  
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Figure 3.1: Patient’s AAA volume history, from [23] 

 

The three regions of layered ILT (Figure 3.2) are often referred to as luminal (nearest the 

blood), medial (or middle), and abluminal (nearest the aneurysmal wall). The luminal layer 

appears red due to the high content of erythrocytes, while the medial layer appears white to 

yellow, due in part to the lysing of erythrocytes. In contrast, in thick ILT, the deepest 

(abluminal) layer may appear brown [12,13]. In some cases (up to 40% of cases in one study 

[10]), a liquid phase is also found at the interface between the abluminal layer and the wall, 

suggestive of local liquefaction. It should be noted, however, that not all layered ILT contain 

all three layers. Thin thrombi may consist entirely of “luminal-type” thrombus, while thicker 

thrombi may have luminal and medial layers, luminal and abluminal layers, or all three. There 

is, therefore, a need to develop a more consistent and inclusive terminology to describe the 

type of thrombus observed in future studies. Given clear differences in biochemical and 

biomechanical properties of the three layers, as determined by gross morphology, histology, 

and mechanical tests, the terms “luminal”, “medial”, and “abluminal” are used in this Thesis 

to refer to intrinsic differences in clot type, not simply positions relative to the wall. That is, a 

luminal thrombus should include all thrombi with certain specific characteristics (e.g., high 

numbers of activated platelets and infiltrating neutrophils) even if part of it is immediately 

adjacent to the aortic wall. Thus, over time, a luminal thrombus may be buried by subsequent 

clot deposition and evolve into medial and eventually abluminal thrombi following 

erythrocyte lysis, leukocyte apoptosis, and various degrees of fibrinolysis. 
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Figure 3.2: Gross and ultrastructural appearance of a layered intraluminal thrombus sample 

from a human AAA, from Wang et al. [12] 

 

In terms of fibrin structure, the luminal layer is characterized by thick primary fibers of 

fibrin with fine interconnecting secondary fibers forming a well-organized matrix. These 

secondary interconnections are lost in the medial layer with evidence of progressing matrix 

degradation [12,13], consistent with the observation that thin fibrin fibers cleave more quickly 

than thick ones [112]. This finding is also consistent with the observation that small 

interconnected channels termed “canaliculi” found throughout the ILT appear to increase in 

mean area from the luminal toward the abluminal layer [9]. Within the abluminal layer, the 

matrix is almost completely degraded, with minimal fibrin organization [12].  

Just as our understanding of structural characteristics of ILT has increased 

significantly over the past few decades, so too has our understanding of the mechanical 

properties. An early study by Di Martino et al. [113] reported uniaxial, tensile data for 
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circumferentially oriented surgical samples of ILT and used a simple linearly elastic Hookean 

model. While no distinction was made as to the layer of ILT tested, only “well-organized” 

thrombi were selected for testing, which likely reflects the luminal layer; reported Young’s 

moduli were 0.05 to 0.2 MPa. To quantify potential viscous properties of ILT, both linear [13] 

and nonlinear [114] viscoelastic models have been proposed. These results suggest that elastic 

behavior dominates in multiple layers, though viscous effects may be important in attenuating 

pressure waves. Although linearized constitutive relations continue to be used, it has become 

increasingly clear that such models cannot capture all responses [115,116]. This finding 

should not be unexpected given that Vorp et al. [63] demonstrated many years ago that ILT 

may undergo large strains in vivo. 

Wang et al. [12] conducted uniaxial tensile tests on luminal and medial layers of ILT 

in both circumferential and axial directions and fit the data with a nonlinear, hyperelastic 

constitutive relation. They reported distinct mechanical properties for two layers, with 

increased stiffness and strength exhibited by the luminal layer; results from circumferential 

and axial tests further suggested material isotropy. Vande Geest et al. [117] similarly 

concluded that the luminal layer was isotropic and nonlinearly hyperelastic using biaxial tests; 

they were only able to test the luminal layer, however, noting that medial and abluminal 

layers were too weak. Interestingly, they noted significant differences in the predicted 

mechanical behavior when comparing results from the biaxial and prior uniaxial results, 

highlighting the importance of appropriate protocols when formulating constitutive relations. 

Indeed, although tests are usually designed to explore tensile behavior, Ashton et al. [64] used 

unconfined compression tests to calculate a drained secant modulus at 5% strain for all three 

layers. Interestingly, they reported significantly higher compressive stiffness for abluminal 

than for medial and luminal layers, a gradient opposite that observed in most tensile tests.  

Recently, biaxial tests on all three layers by Tong et al. [8] suggested the need to 

classify ILT even further by both position and age, due to possible evolving phases of 

development of the mechanical and histological properties of each of the three layers. 

Specifically, they observed a decreasing maximum tangent modulus and tensile stress at 

failure from the luminal to the abluminal layer, but suggested that the tensile modulus may 

increase for each layer as it evolves through four phases over time (Figure 3.3), most notably 

in the axial direction for the luminal layer [8]. These phases were histologically distinct 

(Figure 3.4): Phase I (very fresh) was characterized by an abundance of erythrocytes, Phase II 

(young) by loose fibrin networks entrapping the erythrocytes, Phase III (intermediate) by 

disrupted erythrocytes and a condensing fibrin network, and Phase IV (old) by disrupted 
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fibrin networks and condensed residue proteins. They also reported a subclass of generally 

older luminal ILT that demonstrated anisotropic behavior with increased stiffness in the axial 

direction. Interestingly, associated mechanical testing of the underlying aortic wall similarly 

revealed increased anisotropy when located directly underneath an older, anisotropic ILT. 

Thus, biochemomechanical models of ILT may not only require delineation of the layers of 

thrombus, but also their unique evolution in properties and their influence on the mechanics of 

the underlying wall. This consideration leads us naturally to the associated spatiotemporal 

biochemical activity of ILT. 

 

 
Figure 3.3: Maximum tangential moduli of ILT from human AAAs divided by luminal (L), 

medial (M), and adventitial (A) layers and phase type, from Tong et al. [8] 
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Figure 3.4: Histological phases of ILT maturation, from Tong et al. [8] 

 

3.3. The biologically active ILT 

Thrombus may occur throughout the body, including other focal areas of ILT (e.g., deep vein 

or coronary thrombosis), yet thrombi within AAAs are characterized by unique biochemical 

and biomechanical properties secondary to their persistent contact with flowing blood and 

their apparent inability to heal through mesenchymal cell invasion and collagen deposition 

[55]. As a result, ILT within AAA may contribute to the often chronic inflammation of the 

underlying aortic wall, with persistent renewal of cellular activity at the luminal interface via 

the aggregation, entrapment, and recruitment of activated platelets and inflammatory cells. 

Consequently, ILT can serve as a reservoir for myriad proteinases that can be released and 

activated during fibrinolysis. Any attempt to understand and model the effects of ILT on AAA 

progression thus requires insight into not only its mechanical properties and its often eccentric 

spatio-temporal distribution within an aneurysm [11], but also its heterogeneous synthesis, 

storage, and release of relevant biomolecules: mitogenic, synthetic, proteolytic, and so forth.  
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3.4.  Prominent role of the luminal layer in ILT activity and renewal 

The luminal layer is the primary site in the ILT for new thrombus deposition via activated 

platelets and cellular activity. Interestingly, cellular content almost exclusively remains 

isolated to the luminal layer, with cells (including neutrophils, macrophages, and 

lymphocytes) generally found only to a depth of ~1 cm, despite the aforementioned network 

of interconnected canaliculi that permeate the ILT [9]. Circulating leukocytes, consisting 

predominately of neutrophils, are actively recruited by and retained in the luminal layer, aided 

by the exposure of P-selectin by activated platelets and the affinity of neutrophils for binding 

to the co-polymer of fibrin-fibronectin in the clot [10]. Neutrophils in the luminal layer can 

produce interleukin-8 (IL-8) and leukotriene B4, which reinforce further neutrophil invasion 

[118,119]. Indeed, in vitro tests confirm a potent neutrophil chemotactic activity of the 

luminal layer that can be inhibited by antibodies to RANTES or IL-8 or by the IL-8 receptor 

antagonist, reparixin [118]. Ultimately, the neutrophil content of the luminal layer can be 12-

fold greater than that of blood [65].  

Neutrophils are highly active cells that express and release a number of proteolytic 

enzymes, including myeloperoxidase (MPO), leukocyte elastase (LE), matrix 

metalloproteinases (MMPs) 8 and 9, and urokinase plasminogen activator (uPA) [66]. Lucent 

halos have even been observed around neutrophils in regions of fibrin degradation [68], likely 

due to local activation of plasmin via urokinase plasminogen activator (uPA) or direct activity 

of secreted LE or cathepsin G [83]. Notably, MMP-8 is a potent collagenase for type I 

collagen whereas MMP-9 has specificity for partially degraded collagen [66]. Both of these 

MMPs, along with MMP-2, are elevated in AAAs, while the MMP inhibitors TIMP-1 and -2 

are decreased [66,67]. Nevertheless, both TIMP-1, released from platelet α-granules [67], and 

the elastase inhibitor α1-antitypsin (α1-AT) exist in the luminal layer, potentially explaining 

(along with latency of the pro-form of the enzymes) some reports of high MMP-9 and elastase 

levels in the luminal layer but low activity [69]. Indeed, a negative gradient of latent MMP-9 

but positive gradient of active MMP-9 has been reported from luminal to abluminal layers of 

ILT [10]. Importantly, binding of an inhibitor to its target can depend strongly on whether the 

protease is cell/matrix bound or freely soluble; thus, there is a need for careful control and 

documentation of methods of measurement. Indeed, LE, MMP-9, plasmin, and tissue 

plasminogen activator (tPA) can bind to fibrin [55], whereas clot retraction and fibrinolysis 

can release proMMP-9, elastase/ α1-AT, MMP/NGAL (neutrophil gelatinase-associated 

lipocalin), and RANTES [10,118].  
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Most proMMPs can be activated by other proteases (e.g., the serine protease plasmin) or 

by reactive oxygen species and nitric oxide [67]. An exception is the activation of proMMP-2, 

which generally utilizes a membrane-type MMP on the cell surface, such as MT1-MMP. 

While MMP-9 is frequently produced by inflammatory cells, the main source of MMP-2 in 

the aortic wall appears to be SMCs. This difference may explain the predominant role of 

MMP-2 in small AAAs, when SMCs are likely more abundant, compared to larger AAAs 

where MMP-9 activity is increased and SMCs are decreased [67]. Of note, MMP-2 has a 

greater ability to degrade elastin than does MMP-9 [67], though MMP-2, -7, -9, and -12 all 

have activity against insoluble elastin [120]. Future studies are needed to quantify 

spatiotemporal fluctuations of MMP levels and their respective regulation by gene expression, 

zymogen activation, inhibition, and inactivation [121]. In theory, temporal imbalances 

between proteases and inhibitors could lead to a destabilizing increase in matrix degradation 

(i.e., a “spike” in protease activity) that could overwhelm the currently available inhibitors. 

For example, delivery of fresh blood deep within an ILT due to hemorrhage into the thrombus 

(radiographically known as the “crescent sign”; see Figure 3.5) could release and activate 

numerous bound proteases from the fibrin matrix that could overwhelm inhibitors and lead to 

rapid degradation of the wall. Notably, in one study, the crescent sign was seen in 21% 

(11/52) of ruptured aneurysms but 0% (0/56) of asymptomatic non-ruptured aneurysms [122].  

 

 

Figure 3.5: Contrast-enhanced CT scan of AAA with crescent, from [72] 

While most thrombi tend to resolve over time, those in AAAs show few signs of healing 

by endothelial cell coverage or mesenchymal cell invasion and replacement of the fibrin 

network with collagen (cf. [123]). In vitro experiments reveal the inability of SMCs to seed 

the luminal layer, likely due to the high proteolytic activity. Indeed, luminal extracts induce 

anoikis of SMCs and stromal cells of bone marrow origin, although this effect could be 
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blocked by protease inhibitors, including α1-AT. Notably, LE can degrade fibronectin, a key 

adhesive protein for adherent cell survival, and LE has been identified in neutrophils and the 

matrix around dying cells in the luminal layer [55]. Neutrophils are also capable of detaching 

endothelial cells from their underlying extracellular matrix [55]. Ultimately, many neutrophils 

undergo apoptosis (common in the luminal layer), which may lead to further expression of 

chemotactic and pro-coagulant factors. Additionally, the luminal layer is characterized by 

high levels of hemagglutination as erythrocytes deteriorate and release free hemoglobin, a 

powerful oxidizing agent capable of forming free radicals [65]. 

Of the cell-derived proteases produced within the luminal layer, LE and MMP-9 are two of 

the most frequently studied enzymes in AAA development. Notably, a significant correlation 

has been observed between LE and MMP-9 when compared within the luminal, as well as 

abluminal, layer [69]. While MMP-9 can be inhibited by TIMP-1, neutrophils can upregulate 

MMP-9 activity by releasing NGAL, which binds MMP-9 and prevents its inactivation [11]. 

Interestingly, NGAL has been identified in ILT, interphase fluid, and even aortic media not 

covered by thrombus, consistent with the ability of NGAL to diffuse from thrombus to wall 

and/or to be produced by leukocytes invading from the vasa vasorum, including monocyte 

derived macrophages [67]. Leukocyte elastase (LE) can also increase MMP-9 activity by 

directly activating proMMP-9, indirectly activating it through the activation of proMMP-3 

[83], or by degrading TIMP-1, thereby protecting MMP-9 from inhibition [66]. Of note, 

TIMP-1 not only can inhibit active MMP-9, it can also inhibit the activation of proMMPs and 

neoangiogenesis [67]. 

 

3.5.  Luminal ILT – aortic interactions  

Because the ILT is a heterogeneous structure, with its primary cellular activity in the luminal 

layer, those elements of the aortic wall nearest the luminal layer would be expected to be most 

at risk for proteolytic attack. Indeed, aneurysmal walls covered by a thin (≤ 1.0 cm) thrombus 

have significantly higher levels of leukocyte elastase (LE) activity, concentrations of active 

MMP-9 and total MMP-8, and ratios of active MMP-9/TIMP-1 than those covered by a thick 

(≥ 2.5 cm) thrombus [66]. MMP-9 and LE concentrations are also higher in luminal layers 

compared with deeper layers, and a significant negative correlation exists between the 

concentration and activity of LE in the abluminal layer and ILT volume, suggesting that LE 

may not penetrate well a thick ILT [69]. Of note, the slightly alkaline environment in the 

aneurysmal wall next to a thin ILT may also accelerate local degradation by elastase [66]. 
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In addition to cell-derived proteolytic activity, the luminal layer is characterized by high 

levels of fibrinolytic activity, as evidenced by elevated release of plasmin-antiplasmin 

complexes (PAPs) and D-dimers (a measure of cross-linked fibrin degradation), greater 

immunostaining for plasminogen and plasminogen activators, and greater 
99m

Tc-Aprotinin 

activity (a potential imaging agent that binds serine proteases like plasmin and elastase) 

compared with other layers [124]. Although fibrin may deposit throughout the thrombus, it 

decreases significantly toward the abluminal layer, consistent with activated platelets being 

predominately confined to the luminal layer [9]. Indeed, Touat et al. [68] demonstrated that 

procoagulant activity and markers of platelet activation were 3 to 5 fold higher in the luminal 

compared with deeper layers. Yet, because activated platelets degranulate within the clot [9], 

there is a potential for diffusion/convection of biomolecules through the canaliculi. Overall, 

these findings suggest possible continual cycles of fibrin deposition and degradation within 

the luminal layer, indicative of an active remodeling and renewal of the fibrin matrix [56,83]. 

Whether fibrin deposition within the luminal layer could eventually become dense enough to 

exclude further cellular infiltration (thus rendering the layer more inert) remains to be proven, 

although findings by Tong et al. [8] for older luminal layers having few erythrocytes supports 

this possibility. 

In summary, the luminal layer on an ILT is a site of renewable biochemical activity via the 

accumulation of platelets, recruitment of proteolytically active leukocytes (notably 

neutrophils), formation of fibrin, erythrocyte hemagglutination, and retention of tPA and 

plasminogen for postponed progressive fibrinolysis [65]. With continued deposition of 

thrombus, either gradually or discretely, the luminal layer may eventually become buried. 

This process could trigger a unique evolution of properties of the ILT and underlying aortic 

wall. 

 

3.6. Medial and abluminal layers 

The medial layer is characterized by a transition from the active cellular luminal layer and the 

disorganized, degrading abluminal layer. It is generally devoid of intact erythrocytes and only 

rarely has infiltrating leukocytes despite a dense fibrin network. The abluminal layer is 

distinguished by its location adjacent to the aortic wall in thick ILTs, a brown discoloration, 

lack of cells, degraded fibrin network, and weak gelatinous material with high compressive 

stiffness [64,68]. Its interface with the aneurysmal wall may exist as a liquid interphase with 

high levels of soluble proteins [10]. The lack of cellular content in the deeper layers of the 

ILT renders the clot unable to synthesize new proteases in these regions; nevertheless, 
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biomolecules bound to the fibrin matrix during its formation in the luminal layer may persist 

and be released and/or activated. As a result, measurements of proteolytic activity in these 

layers may potentially vary in time and space as well as from patient to patient, depending on 

past and current fibronolytic activity. For example, Folkesson et al. [69] found abluminal 

proteases to be predominately inactive whereas Fontaine et al. [10] reported active MMP-9 at 

the liquid interface between the ILT and wall.  

The ability of the degrading fibrin matrix to release bound proMMPs in the presence of 

plasmin (potentially formed by a ready supply of plasminogen activators, such as tPA, in the 

immediately adjacent wall [124]), may activate MMPs at the interface and cause subsequent 

degradation of the underlying wall. Indeed, the aneurysmal wall has shown 100-fold higher 

tPA activity than the ILT [125], and MMP-9 activity has been localized to the inner wall of 

AAA [126], as has elastase activity [66] and plasmin [74], consistent with an ILT-mediated 

degradation of the wall. Yet, remnant SMCs, infiltrating macrophages, and endothelial cells 

from the vasa vasorum may also produce MMP-9 [127], which may relate to the ability of 

these cells to migrate toward and neovascularize the injured aortic wall. For example, noting 

that plasmin is a key activator of proMMP-9, plasminogen
-/-

 mice had reduced macrophage 

migration through the extracellular matrix that was rescued with administration of active 

MMP-9 [128]. Nevertheless, increased MMP-9 activity in the wall significantly exceeded the 

increase in MMP-9 expression [127], consistent with diffusion/convection from the ILT 

and/or increased release and activation of stored MMPs.  

It remains to be shown whether deeper layers of ILT may eventually become depleted of 

stored pro-enzymes as they degrade. If so, their level of proteolytic activity may vary 

depending on the spatiotemporal availability of activators and inhibitors, leading to a 

potentially significant source of patient variability in proteolytic activity. Indeed, there is a 

large range of reported MMP-9 levels in the ILT, interface, and wall (e.g., see Figure 3.6), 

thus highlighting the need to develop improved patient-specific methods of determining 

proteolytic content and activity in thrombi. It is important to note that while averaged data on 

biochemical potential and activity are insightful for population-based studies, patient-specific 

determinations of rupture risk may require individualized spatiotemporal assessment of key 

enzymes and regulators, or at least localized measures of net proteolytic activity.  
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Figure 3.6: Protease activity level in AAAs, from [10] 

 

3.7.  The fibrinolytic system and AAAs  

Just as LE, MMPs, and other proteases are important in AAA development and progression, 

the fibrinolytic system is fundamental to regulating the ILT. Plasminogen, synthesized by the 

liver and released into the blood, is naturally bound within the fibrin matrix during its 

formation and is present in large quantities in thrombus [54]. Cleavage of plasminogen, 

classically by uPA or tPA, to the potent serine protease plasmin results in many proteolytic 

consequences, including direct degradation of fibrin and extracellular matrix [83], direct or 

indirect activation of various proMMPs (including MMP-1, -3, -7, -9, -10, -12, and -13) 

[67,124], regulation of growth factors and chemokines [129,130], and proteolysis of cellular 

anchoring fibers, which may induce anoikis [65,131]. Plasmin also exerts a fibrin-catalyzed 

positive feedback to activate additional plasminogen. The major inhibitory proteins in the 

fibrinolytic system are plasminogen activator inhibitor 1 (PAI-1), which inhibits uPA and 

tPA, and α2-antiplasmin (α2-AP), which binds to and inhibits active plasmin to form PAP 

complexes. Interestingly, while plasmin can activate MMPs, MMPs can also affect the 

fibrinolytic system. For example, activation of proMMP-9 by MMP-3 can cleave plasminogen 

and inactivate PAI-1, α2-AP, and α1-AT [83]. Similarly, elastase can indirectly activate 

plasminogen through alternative pathways [69]. 

While some report that the luminal layer releases most of the D-dimers [124], indicating 

degradation of fibrin, the medial and especially abluminal layer appear to undergo greater net 
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fibrinolysis, likely due to the lack of significant new fibrin deposition within these deeper 

layers. Suggestive of abluminal plasminogen activation by activators in the inner wall, 

Fontaine et al. [10] reported that free uPA and tPA activities were only noted in the wall, 

while plasminogen was identified only in the ILT; however, Houard et al. [124] later reported 

that while tPA in the wall localizes to the inner media (and vasa vasorum in the adventitia), 

abundant tPA and uPA immunostaining are also present in the luminal ILT, potentially bound 

to fibrin and associated with neutrophils, respectively. Co-incubation of ILT and wall extracts 

in the presence of fibrin also produces plasmin in vitro [10]. The degree to which patient-

specific and layer-specific variability in the samples of thrombi tested influence these results 

may require further consideration.  

Notably, PAI-1 and α2-AP may not be as effective in inhibiting plasmin activity when their 

targets are bound to fibrin or the cell surface [83,131]. Since plasminogen, tPA, and plasmin 

can each bind to fibrin (as can α2-AP) [83,132] and localize to fibrin-rich areas in the luminal 

layer [124], they could potentially exert local activity before becoming soluble and thereby 

vulnerable to increased inhibition. Thus, PAPs are often present in areas of active fibrinolysis, 

such as the thrombus-wall interface [10], even though they are inhibitory complexes. In fact, a 

positive correlation exists between PAPs and D-dimers in all ILT layers [124]. In addition to 

decreasing inactivation, binding of plasminogen, such as to an inducible cell surface receptor, 

may also increase its activation and serve to direct its proteolytic activity to specific targets 

[129]. Clearly, therefore, it is important to report and interpret measures of fibrinolytic 

enzymes (and MMPs) carefully in terms of their expression (mRNA), storage/binding 

(stained), or release (solubilized) as well as whether the protein is latent, activated, or 

inhibited. For example, upregulation of a particular gene may lead to increased transcription 

and translation of a protease or cytokine but no immediate increase in its extracellular activity 

due to intracellular storage or release of only the latent form. 

Synthesis of tPA and PAI-1 appear isolated to the wall, while uPA is expressed by 

inflammatory cells within the wall and luminal layer of the ILT [10,124]. Interestingly, SMCs 

can use constitutive tPA on their cell surface to locally activate plasmin and cause pericellular 

proteolysis of attachment molecules like fibronectin [131], a process potentially involved in 

activation, migration, and/or anoikis in the aortic media; tPA also localizes to the adventitia, 

possibly related to its release by endothelial cells of the vasa vasorum [124]. As for PAI-1, it 

was highly stained in the luminal layer of the ILT, but most readily released from the medial 

and abluminal layers consistent with its strong affinity for the γγ-fibrin chain, which is intact 

in the luminal layer but degraded in deeper layers [124]. Given the significant ability of the 
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fibrinolytic system both to remodel the ILT and regulate proteolysis of the extracellular 

matrix of the underlying wall, the spatiotemporal distribution of plasmin, its activators, and its 

inhibitors represent key data that could improve future patient-specific models of AAA 

progression and rupture risk. 

 

3.8.  A unique role for matrikines 

Despite appropriate emphasis on proteolytic enzymes that directly affect the remodeling of 

fibrin and extracellular matrix, degradation products of matrilysis (including elastin [133], 

laminin [134], and fibrin [135]) are not simply removed. Rather, these products may serve as 

active signaling and catalytic molecules, termed matrikines [83], that help regulate 

inflammation, repair, angiogenesis, and other processes. Of these, the elastin degradation 

products (EDPs) are likely of particular significance in AAAs given their chemotaxis for 

monocytes, neutrophils, fibroblasts, and endothelial cells [136], stimulation of the release of 

elastase in the wall by neutrophils [66], augmentation of MMP-1 production by aortic SMCs, 

promotion of angiogenesis [136], and influence on the differentiation of Th1 cells that can 

upregulate interferon-γ (IFN-γ and interleukin-2 (IL-2) [48].  

Interestingly, Nackman et al. [136] demonstrated that perfusion of a segment of the 

infrarenal aorta in a rat with an elastin peptide fragment (VGVAPG) could reproduce the 

extensive neovascularization of the wall that occurs in elastase-infusion, a classic rodent 

model of AAAs, despite the aortic diameter increasing only 26% with the peptide fragment 

instead of 142% with elastase. This importance of elastin breakdown products stimulating 

neovascularization (as opposed to just hypoxia from a thickening ILT) may explain, in part, 

why significant differences in neovascularization were noted between aneurysmal walls and 

control aorta, but not between thick versus thin thrombus covered aneurysmal walls [74] or 

thrombus covered versus non-covered aneurysmal walls [15]. Faisal et al. [134] similarly 

showed that a laminin peptide found in AAAs, due to release from the degrading ECM, can 

upregulate uPA and MMP-9 in macrophages. Notably, laminin is a susceptible target of 

plasmin degradation [137]. Finally, fibrinogen derived peptides may increase leukocyte 

chemotaxis and permeability of the aneurysmal wall [138]. 

In healthy aorta, the media has been considered an immunologically “privileged” site to 

which immune cells have minimal access [139,140]; yet, when the well-organized elastic 

lamellar units are disrupted, otherwise inaccessible antigens and degradation products may 

become exposed and participate in the observed shift from innate to adaptive immunity in 

AAAs. In addition to EDPs, these local mediators may include post-translationally modified 
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proteins, reactive oxygen species (ROS), and bi-products of SMC apoptosis [138]. Proteolysis 

of extracellular matrix can also release and activate transforming growth factor beta (TGF-β), 

a key biomolecule in the regulation collagen synthesis and secretion [138]. Notably, plasmin 

at cell surfaces is an activator of TGF-β [141], and whether via TGF-β or other factors, 

increase in the pro-collagen gene expression in AAAs is mediated by soluble tissue factors 

[142]. Indeed, even in regions beyond the infrarenal aorta, AAAs have been associated with 

increased aortic collagen, elevated expression of MMP-2 by SMCs, diffuse arteriomegaly, 

arterial elongation, and peripheral aneurysms, which suggest a widespread process [142,143]. 

Whether this process is causal or responsive to the aneurysm is yet unknown. 

 

3.9.  Convection/diffusion 

Adding to the complexity of identifying the major proteolytic enzymes and signaling 

molecules that influence AAA progression, these macromolecules likely convect/diffuse 

through the canaliculi of the ILT toward the underlying wall. Adolph et al. [9] showed, for 

example, that ILT is fluid permeable, although diffusion becomes limited across very thick 

thrombi. Levels of LE and MMP-9, which are produced predominately in the active luminal 

layer, decrease through the depth of the ILT [69]. Similarly, proteases, degradation products, 

antigens, and other soluble biomolecules may be transported radially through the aneurysmal 

wall toward the adventitia, which can play a major role in arterial responses to disease, 

including fibroblast activation, neovascularization, immunoinflammation, and fibrosis [138]. 

It is also likely that the permeability increases as the endothelial lining is lost [15] and the 

organized structure of the healthy aortic wall is degraded [65]. Along these lines, recent 

attempts at modeling the thrombus and aneurysmal wall as porohyperelastic structures 

[144,145] may provide insight into the complex interstitial fluid flows in thrombus-laden 

AAAs. Thus, a complete model of the biochemical influences of various mediators may 

require accurate quantification of the transmural hydraulic conductance, diffusion down 

concentration gradients, binding affinities, and wall permeability [138].  

 

3.10.  Role of animal models 

In concluding the discussion of biochemical processes in ILT, note that diverse animal models 

have been used to study AAAs because of the difficulty of obtaining human tissue, 

particularly under controlled longitudinal conditions. The two most common animal models 

of AAAs that can also lead to formation of thrombus are the angiotensin II (Ang-II) infusion 
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model [146] and the elastase intraluminal perfusion model [75]. The former involves 

subcutaneous implantation of an osmotic mini-pump whereas the latter involves direct 

perfusion of the infrarenal aorta during open surgery. Note that the Ang-II model is typically 

used in Apo-E deficient mice and produces dissecting aneurysms in the suprarenal aorta, as 

opposed to dilatory aneurysms in the infrarenal aorta as classically seen in humans. Moreover, 

intramural thrombi within the dissected wall in the Ang-II model can heal through cellular 

invasion and eventual replacement of the fibrin matrix with collagen [123]. Thus, the natural 

history of AAAs in the Ang-II infusion model may have distinct differences from the human 

pathology, particularly in terms of thrombus formation and evolution.  

In contrast, although the elastase perfusion model tends not to yield ILT in mice, the same 

experiment in rats often does, and the aneurysms are appropriately in the infrarenal aorta. 

Using this model, Coutard et al. [132] demonstrated higher levels of MMP-9, elastase, uPA, 

plasmin, and microparticles in the ILT compared with the wall, while MMP-2 activation was 

similar. Interestingly, ILT correlated positively with wall levels of pro- and active MMP-2, 

elastase, and plasmin, whereas total wall MMP-9, MMP-2 activation, plasmin activity, and 

microparticle release correlated with aneurysm diameter. The potential importance of these 

and other factors in future modeling and therapeutic efforts is highlighted by the attenuation 

of aneurysm development in various experimental models of AAA by depletion of 

neutrophils, T-cells, macrophages, or mast cells [11,15], inhibition of platelet aggregation or 

activation [118], inhibition of neutrophil recruitment [132], knockout of plasminogen [128], 

deficiency of uPA [128], knockout of MMP-9 [67], or increases in PAI-1 [128], TIMP-1 [11], 

or catalase [65]. 

 

3.11. Role of ILT in AAA wall mechanics 

Clinical and experimental observations 

While a primary focus thus far has been on biomechanical properties of and biochemical 

processes within the ILT itself, numerous studies have attempted to determine effects of the 

ILT on the underlying wall. Compared to thrombus-free wall, the wall beneath an ILT may 

have increased inflammation and neovascularization as well as fewer elastic fibers and 

smooth muscle cells, many of which are apoptotic [70]. An increase in phenotypically 

synthetic SMCs, many with elongated processes suggesting ongoing migration, has also been 

noted [70,133]. In comparison, aneurysmal wall without ILT can have dense collagenous 

matrix with phenotypically contractile SMCs and increased staining for alpha-actin [70], 

although expression of MMP-1, -7, -9, and -12 can be higher than in the covered wall [147]. 
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While both thrombus-covered and thrombus-free wall exhibit increased CD68+ macrophage 

counts and caspase-3 staining for apoptosis, the thrombus-covered wall can also have 

increased CD3+ T-cells, CD8+ cytotoxic T-cells, and CD20+ B-cells, along with increased 

TUNEL staining for DNA fragmentation in the intima and media, often in association with 

inflammatory cells [70]. Clearly, there are significant differences in the structure of the 

matrix, cellular content, and inflammatory status of the wall underneath an ILT that require 

further investigation to improve future modeling.  

Interestingly, thrombus has been found to be thinner, on average, in ruptured versus non-

ruptured aneurysms [66], though thick thrombus covered walls may have fewer remaining 

elastic fibers, more inflammation, and lower tensile strength compared with wall covered with 

thin ILT [74]. A possible reason for this apparent discrepancy is that any wall covered by 

thick thrombus likely was originally covered by thin thrombus (i.e. a luminal layer in direct 

contact with the wall); thus, changes may reflect cumulative damage from the past because 

intact lamellae are not regenerated in adulthood. One may hypothesize, therefore, that the 

most active degeneration of the wall occurs in regions of thin thrombus and that thickening of 

the ILT with subsequent deposition events may be somewhat protective, at least insofar as the 

wall is farther from the active luminal layer. In fact, if a thin thrombus presents excess 

proteolytic molecules to the wall, which in turn heightens wall degeneration and lesion 

expansion, and if expansion leads to hemodynamic changes conducive to new clot deposition, 

then one would naturally expect thrombus to be thick in regions of significant wall 

degeneration. Indeed, Swedenborg & Eriksson [11] note that loss of elastin may primarily 

cause a decrease in axial support, leading to an elongation and tortuosity of the aorta that may 

induce endothelial injury due to disturbed blood flow and abnormal wall stress. Thus, despite 

increased aneurysmal diameter correlating with both increased rupture risk and ILT volume in 

some reports [11,67], one must interpret cautiously possible causation as the expanding 

geometry and associated hemodynamic changes may naturally precipitate further ILT 

deposition. Nevertheless, the growth rate of ILT in moderately sized AAAs may be a better 

predictor of rupture risk than total amount of ILT or the common metric of maximum 

diameter of the lesion [148], which potentially explains why a simple static ratio of lesion size 

to ILT volume has been unrevealing when comparing ruptured and non-ruptured AAAs 

[11,149]. 

Alternatively, or perhaps complementarily, the fibrinolysis that predominates in the 

abluminal layer may release and activate previously bound or soluble proteases (e.g., plasmin 

or MMPs) that could then diffuse into the adjacent wall and directly degrade the ECM or 
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activate other proteases, thus contributing to the increased degradation behind thicker 

thrombi. Additionally, thick thrombi may also exacerbate hypoxic conditions in the wall that 

may contribute to neovascularization from the vasa vasorum or even alter collagen production 

[1,74], though a convection/diffusion model of oxygen transport by Sun et al. [150] suggested 

that thickening of the ILT beyond approximately 5 mm may not have much more effect on 

mural oxygen tension. Of note, formation of these neovessels not only requires proteases for 

endothelial cell invasion, it establishes a direct path for circulating inflammatory cells to 

invade the degenerating media. Indeed, inflammatory cell retention, elastin degradation, and 

lymphoid neogenesis all correlate with adventitial neovascularization [138]. 

 

Implications of spatial distribution – the shoulder and neck regions 

Multiple studies have focused on the shoulder regions of the AAA (i.e., proximal and 

distal regions between the dilated and non-dilated aorta) as they may both reflect “early” 

stages of aneurysmal development (which are difficult to study due to the asymptomatic 

nature of the early disease process) and represent regions that may dictate the axial expansion 

of the lesion into the proximal and distal necks (i.e., the adjacent non-dilated areas) of the 

infrarenal aorta. Moreover, the proximal neck is particularly important clinically as the 

location for seating the endovascular stents that are increasingly used for AAA repair.  

Assuming the thrombus approximately “space-fills” the dilated portions of the body of an 

AAA (see Figure 3.7), the active luminal layer of the ILT would always remain in contact 

with the evolving shoulder of an aneurysm. As suggested by Yoshimura [151], this situation 

would predict increased thrombus-derived proteases in the shoulders of the lesion. Indeed, 

Curci et al. [120] observed that areas of “active” elastic lamellar degradation predominated in 

the proximal shoulder region, while the body of the lesion consisted of mostly “amorphous” 

fibrocollagenous regions with few remaining elastic fibers and only scattered “inflammatory” 

and “active” regions. The shoulder also appears to be a site of increased MMP-9 activity, 

decreased medial thickness, fewer intact lamellar units, and increased pJNK, inflammation, 

and neovascularization [127]. Notably, JNK may be a pivotal intracellular signaling molecule 

in SMCs and macrophages that can be upregulated by a plethora of biomolecules frequently 

associated with AAAs, including MMP-2 and 9, angiotensin-II, histamine, interleukins, IFN-

γ, and TNF-α [15,127]. Interestingly, expression of both TNF-α and its activating enzyme 

TACE are not only higher in AAAs compared to control aortas, they are also higher in the 

neck compared with the apex of the lesion, where they co-localize with macrophages of the 

media and adventitia. TNF-α can also induce other inflammatory cytokines and several 
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MMPs, promote apoptosis, and increase uPA, tPA, and PAI-1 levels (which are pro-

angiogenic) [152]. The delivery of a TNF-α specific binding protein has even been shown to 

prevent AAA formation in a rat elastase perfusion model [152].  

 

 

Figure 3.7: Simplified schema of the possible formation of a layered “space filling” ILT by 

multiple cycles of AAA sac enlargement and ILT deposition secondary to disturbed flow 

 

Early damage to the aortic wall is not confined to the shoulder, however. Increased 

degeneration in the non-aneurysmal neck region has been associated with maximum AAA 

diameter [127], and the neck can be a site of early inflammatory cell infiltration with elevated 

levels of MMP-12 strongly bound to elastic fiber fragments, which may augment its 

elastolytic activity [120]. In comparing samples of aneurysmal necks from different patients, 

those with mild degeneration were characterized by damage to inner medial elastin with some 

mid-medial and patchy outer-medial loss of SMCs, while more heavily damaged samples 

showed widespread degeneration with significant loss of smooth muscle in the outer media 

[127]. This observation may suggest an initial process of damage to the inner wall, 

particularly to the elastic fibers, followed by a strong adventitial response.  

Computationally, many finite element studies suggest that the highest values of wall stress 

occur at sites other than the maximal diameter. Li et al. [153] specifically suggested that 

elevated shoulder stress associates with rapidly expanding AAAs. Growth and remodeling 

(G&R) simulations from [43] also suggest that the shoulder represents a region where elastin 



Lana Virag  PhD Thesis 

Faculty of Mechanical Engineering and Naval Architecture 81 

 

may fail mechanically as an aneurysm enlarges, thus leading to steep gradients in stress. The 

computational models of AAAs expanding axially against fixed ends (e.g., at the renal arteries 

and iliac bifurcations) also predict decreasing axial stress in the neck and shoulder regions, 

which suggests a potentially increased risk of tortuosity (e.g., buckling) [73]. Consistent with 

the proposal by Swedenborg & Eriksson [11] that elongation and tortuosity may result from 

elastin degradation, the computational results may potentially link changes in the neck and 

shoulder regions with the induction of disturbed flow and subsequent thrombus deposition. 

Interestingly, hemodynamic simulations also demonstrate regions of backflow in the proximal 

neck of the aneurysm, which may convect important biomolecules, including proteases and 

inflammatory mediators, from nearby thrombus to the proximal neck. Indeed, NGAL-MMP-9 

complexes, which are abundant in the luminal layer, have been found in the neck [127], 

though they might also originate from early infiltrating leukocytes in the wall as well. In 

addition, thrombin and fibrin from the nearby thrombus may activate endothelial cells, which 

are still present in the neck and possibly shoulder regions, to increase production of tPA and 

uPA [46] and thus potentially affect ILT remodeling.  

Particular attention should be given to the neck and shoulder regions of the AAA, 

including their biomechanical and biochemical properties, their role in the axial expansion of 

the aneurysm, and their relation to nearby thrombus. Future data regarding changes in these 

regions may provide important clues to understand early aneurysm formation and tortuosity 

that may ultimately guide new therapeutics, such as stent seating and design, and improve 

future G&R models which must account for the evolving non-aneurysmal aortic regions in the 

modeling domain. 

 

ILT shielding, attachment, and compressibility 

It has long been appreciated that mathematical models of the aneurysmal wall can provide 

important insight into the biomechanics, and thus structural stability, of these potentially life-

threatening lesions. While the earliest models did not include ILT, their incorporation into 

models of AAAs has developed over the past two decades from axisymmetric [17,154] to 2-D 

eccentric and finally to fully 3-D patient-specific geometries [155–157]. The majority of these 

computational studies, as well as an in vitro experimental study using a synthetic AAA model 

with thrombus [18], support the initial work by Inzoli et al. [17] that an ILT may provide a 

mechanically protective effect (i.e. a “cushioning” or “shielding”) by reducing the stress on 

the aneurysmal wall; yet, others question the ability of the porous thrombus to reduce wall 
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stress consistently, as assessed computationally [20] or by direct intraoperative pressure 

measurements in vivo [19]. Clearly, controversy remains.  

Two important factors in determining the presence or extent of this potential stress 

shielding are the attachment of the thrombus to the underlying wall and the degrees of 

porosity and compressibility of the ILT. Adhesion of platelets to collagen has been 

investigated extensively, but connection of fibrin to the aneurysmal wall has not. As noted 

earlier, several papers report a “liquid phase” at the interface between the ILT and wall 

[10,11], suggesting that thrombus may not be attached to the wall, at least in some instances. 

The type of thrombus layer in contact with the wall may also affect the degree of attachment; 

that is, an actively remodeling thin luminal layer in direct contact with an aneurysmal wall 

could be attached differently than a degenerated abluminal layer as observed in many thick 

ILT. Most finite element analyses that include ILT have assumed its perfect attachment to the 

wall. While a potential reduction of intraluminal pressurization of the wall by the ILT could 

reduce wall stress, Meyer et al. [20] showed that the thrombus can still have a stress-reducing 

role even if it does not directly reduce pressurization on the wall as long as the ILT is fully 

attached. With only partial attachment, however, a porous thrombus capable of transmitting 

pressure also has the potential to generate stress concentrations and increase wall stress. 

Clearly, there is a pressing need for greater experimental insight to resolve this question since 

any estimation of stress distributions, and thus rupture risk, will depend on the mechanical 

tethering of the ILT and wall.  

The compressibility of the ILT will also directly affect its mechanical behavior and its 

ability to shield the aneurysmal wall. Using non-invasive ultrasound, Vorp et al. [63] 

suggested that ILT is incompressible, and the vast majority of computational works to date 

have invoked incompressibility when modeling ILT. Yet, some question this assumption. In 

vitro experiments on fibrin gels demonstrated a dramatic decrease in clot volume due to water 

expulsion (and thus manifold increase in protein content) with negative compressibility upon 

stretching [158]. This volume change may be associated with the exposure of hydrophobic 

groups upon protein unfolding and bundling of stretched fibrin fibers. Of note, the 

compressibility of the fibrin gels was limited to strains of ~0.5, as further stretching did not 

alter volume. Provocatively, an in vivo study by Truijers et al. [159] that quantified volumes 

of lumen, intraluminal thrombus, and whole AAA through the cardiac cycle in 17 patients 

using dynamic electrocardiographically-gated CT angiography showed wide patient-specific 

variability (0.4% to 43.6% compressibility by volume between diastole and peak systole). No 

correlation was found between compressibility of thrombus and aneurysm size, thrombus 
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volume, or pulse pressure. Since this study analyzed the volume of thrombus within the entire 

aneurysm, no distinction can be made between the compressibility of the heterogeneous layers 

of ILT that may possess different inherent mechanical properties and times of deposition; 

nevertheless, this study strongly suggests that not all ILT are incompressible. Furthermore, 

since thrombus is constantly evolving, the compressibility of a given ILT may change over 

time. The potentially evolving compressibility of ILT may not only affect its stress-shielding 

of the wall (and require a reformulation of the constitutive relations used for its mechanical 

modeling), it may also significantly affect the transport of key biomolecules produced by the 

ILT. Clearly, studies are needed to determine the compressibility, attachment, and stress 

buffering capability of ILT in a patient-specific manner, as some ILT may provide significant 

shielding effects while others may not. 

 

Strength and failure of the ILT and wall 

Aneurysms rupture when local wall stress exceeds wall strength [71]. Hence, including the 

potential ability of ILT to alter spatiotemporally both the mechanical stress and the inherent 

strength of the underlying aneurysmal wall may improve our ability to predict patient-specific 

rupture risk. Indeed, Vande Geest et al. [160] already proposed ILT thickness as a key 

parameter in formulating a statistical estimate of wall strength, and Tong et al. [8] showed that 

aneurysmal wall underneath older thrombus was generally weaker in the high loading domain 

during biaxial testing compared with that under young thrombus.  

Gasser et al. [161] tested the hypothesis that mechanical failure of ILT itself could lead to 

subsequent AAA rupture. They subjected specimens of luminal, medial, and abluminal ILT to 

uniaxial fatigue and strength tests and concluded that ILT fails before the wall. Indeed, CT 

evidence suggests that focal hemorrhage into the ILT, described radiographically as a 

“crescent sign” (Figure 3.8), associates with an increased risk of rupture or impending rupture 

[83]. Such a failure could not only expose the wall to increased stress (if the assumption of 

stress-shielding by the ILT is true), the fresh hemorrhage into the ILT could also weaken the 

underlying wall structurally via the delivery and release of active proteases (as discussed 

earlier), both of which may increase rupture risk. 

In addition to revealing the crescent sign, medical imaging may provide further insights 

into the mechanics and interactions of the ILT and aortic wall that could significantly advance 

the assessment of rupture risk by revealing patient-specific properties of the thrombus and 

wall non-invasively. For example, Nchimi et al. [162] reported a correlation of phagocytic 

leukocytes and changes in magnetic resonance signal via the use of superparamagnetic iron 
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oxide (SPIO) at the luminal interface of the thrombus, thus suggesting a potential means of 

determining activity of the luminal layer. Later, Richards et al. [163] showed that distinct 

mural uptake of ultrasmall SPIO (or USPIO) in the aneurysmal wall associated with a three-

fold higher expansion rate than no or non-specific USPIO uptake despite similar maximum 

diameters. This finding is consistent with the idea that active areas of inflammation augment 

the degradation and remodeling of the extracellular matrix and hence influence expansion. 

Moreover, MRI may help differentiate distinct layers of ILT within some aneurysms in vivo 

(e.g., see Figure 3.8). Whether these layers correspond to the biochemically and/or 

biomechanically distinct layers discussed herein requires future investigation. Nevertheless, 

the potential for medical imaging to inform the next generation of patient-specific G&R 

models of AAAs holds significant promise. 

 

 

Figure 3.8: Clearly visible layers of ILT, from [72] 
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4. Growth and remodeling of thrombus-laden aneurysm 

4.1. Methodology 

The present model for the formation and maturation of ILT was motivated by prior review of 

the literature [84] and expectation that the aortic wall in closest proximity to the luminal layer 

of ILT (i.e., underneath thin thrombus) could experience augmented G&R and potential 

weakening secondary due to thrombus-derived proteases [55,118]
. 
Note that the thickness of 

the luminal layer is limited by the depth (~2 mm) [117] to which blood components can 

penetrate the evolving fibrin mesh. The medial and abluminal layers in thicker ILTs are 

largely acellular and consist of a variably degraded fibrin mesh. Apoptosis and degradation of 

fibrin can create fluid-filled voids that form transmural canaliculi of increasing cross-sectional 

area from the lumen to the wall [9]. Such canaliculi could allow transport of blood borne cells 

and proteins deeper within the ILT, but this possibility has not been confirmed experimentally 

and was not considered herein. Rather, from the above considerations, fibrin, fibrin 

degradation products (FDPs), RBCs, and voids were assumed to be the most significant 

space-occupying constituents of a layered ILT. Although contributions of inflammatory cells 

and proteases to overall clot volume were neglected, the leukocytes and associated proteolysis 

(which are critical to the biological activity of the thrombus) were nevertheless included 

within the luminal layer.  

As noted above, a constant overall luminal diameter as the AAA evolved was assumed; 

that is, once a thrombus initiated, it continuously filled the available space within the 

aneurysm to maintain a constant luminal diameter as seen on many medical images of large 

AAAs. This of course is not always true, but it seems like a reasonable assumption supported 

by some clinical observations. For example, see figure 9 from (Zambrano et al., 2015) 

showing changes in cross-sectional area of four different patients over time. Three of them 

(patients P-6, P-8 and P-9) show the increase of the cross-sectional AAA outer area while the 

lumen area remained nearly constant. Thus, pre-existing thrombus was effectively pushed 

deeper into the model ILT as the AAA dilated and new thrombus formed luminally. A new 

layer of thrombus layer deposited on any previous ILT, at each time step to maintain a 

constant luminal diameter, is hereinafter labeled as layer i. Naturally, this suggests that 

deposited thrombus transitions from initially luminal to medial and eventually abluminal. 

Thus, medial and abluminal layers were not prescribed a priori, they emerged as a result of 

AAA progression. In this way, mathematical model of an ILT within an AAA presented 



Lana Virag  PhD Thesis 

Faculty of Mechanical Engineering and Naval Architecture 86 

 

herein could describe evolving biomechanical and biochemical behaviors of the thrombus and 

its constituents (e.g., fibrin, FDPs, RBCs, and voids) as a function of time and position.  

 

Fibrin 

Fibrin accumulates when activated thrombin cleaves fibrinogen into fibrin, which then 

polymerizes to form an interconnected cross-linked mesh. Formation of fibrin has been 

modeled in several ways [46,50], typically based on in vitro studies that do not necessarily 

represent in vivo behavior. Such models necessarily describe clots that develop in minutes and 

dissolve in hours, highly atypical for ILT in aneurysms. Clearly, there is a need for more 

understanding of the in vivo mechanisms and mechanics.  

Similar to G&R models for arterial adaptations and disease progression, a sufficient supply 

of fibrinogen at the luminal surface of an ILT was assumed, such that the rate of production of 

fibrin ( f

im ) in layer i  does not depend on the concentration of hemodynamically supplied 

fibrinogen. Rather, the production of new fibrin decreased with increasing fibrin density f

i  

or increased with an increased number of platelets plt

iM ,  

 ,( ) ( ) 1 ( )f f plt f

i plt i im K M     ,       (23) 

where ,

f

pltK   is a simple correlation parameter. In contrast, degradation of fibrin depends on 

the concentration of plasmin, which is derived from the conversion of plasminogen in the 

blood. Interestingly, fibrinolysis appears to be inversely proportional to the density of the 

fibrin mesh and mechanical stretch [56]. Thus, a rate-type parameter for the removal of fibrin 

was considered to be 

 ( ) 1 ( )
( )

( )

pls f

i if f f

q q q

i

M
K k w

  


 


  ,      (24) 

where 
f

qk  is a homeostatic value independent of plasmin, stretch, and mesh density. pls

iM  is 

the mass of plasmin, i  is the fibrin stretch, and 
f

qw  is a weighting function. Hence, similar to 

constituents in the wall, the mass of fibrin was computed as: 

  
0

( ) (0) ( ) ( ) d

s

f f f f f

i i i i iM s M Q s m q s     ,     (25) 

where (0)f

iM  is the initial mass of fibrin in a newly deposited luminal layer, and 

0

( ) ( 0) exp( ( ) d )

s

f f f

i i qQ s q s K      . 
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Cells/Platelets 

The majority of blood-derived cells within an ILT reside in the luminal layer [9,118]. It has 

been proposed that the proximity of the luminal layer to flowing blood allows these cells to be 

replenished; as new layers are deposited, however, cells can generally not penetrate into or 

survive within the deeper medial and abluminal layers. Hence, a first order decay process for 

cells previously in a luminal layer that became buried during new deposition of ILT as the 

lesion enlarged (with a half-life of 7-11 days for platelets and 120 days for erythrocytes) was 

assumed.  

The boundary of the luminal layer was defined by either: (a) a critical fibrin mesh density 

,f RBC

crit  that was reached when RBCs were excluded or (b) a critical radius critr  that was 

attained beyond which cells could not be replenished. This critical radius was defined as a 

function of a critical mass of fibrin f

critM , such that 

( ) d
crit

i

r

f f

i crit

r

M r r M .         (26) 

Therefore, the quantity of platelets (or other blood-borne cells) in the luminal layer depended 

on the quantity in the luminal blood, plt

lM , which could potentially vary in time (e.g., in a 

flow field having evolving vortical structures [111]). In the deeper layers, these platelets were 

presumed to degrade according to a first-order process, with the rate-type parameter inversely 

related to the half-life 1/2

plt : 

1/2

ln 2plt

q plt
K


 .          (27) 

In this way, consistent with histological findings [8], new fibrin was predominately deposited 

in the luminal layer where the mass of platelets was necessarily highest.  

In summary, the mass of platelets was calculated as 

,1

,2

,

( ),1

( ),2 ,

( ) ( ) ( )    and    ,   

( ) ( ) ( ) ( )

( ) ( ) ,   

plt i
q crit

plt i
q crit

plt f f plt

l i crit j crit

Kplt plt i

i l crit i crit

Kplt i f f plt

l crit j crit

M r r j i

M M e r r

M e j i

 

 

    

   

   

 

 

    


  


   

,  (28) 

where ,1i

crit  is the time at which a critical mass of fibrin (and critr ) was achieved, thus 

transitioning the initial luminal layer to medial with a low platelet count. Similarly, the time 
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,2i

crit  represents when the limit of the luminal layer was achieved by reaching the critical mass 

fraction of fibrin.  

The distribution of RBCs within the ILT was defined similarly, with the exception of using 

a mass fraction instead of the mass. Note that ( ) 1 ( )RBC f

i i      in the luminal layer because 

the sum of the mass fractions over all constituents must equal one, 1f RBC v FDP

i i i i       , 

and voids and fibrin degradation products are generally absent in the luminal layer. Thus, 

  

 

,1

,2

,

( ),1

( ),2 ,

1 ( ) ( ) ( )    and    

( ) min (1 ( )) ,1 ( ) ( ) ( )

min (1 ( )) ,1 ( ) ( )

RBC i
q crit

RBC i
q crit

f f f RBC

i i crit j crit

KRBC f i f

i i crit i i crit

Kf i f f f RBC

i crit i j crit

r r

e r r

e

 

 

     

       

      

 

 


  


    

    


.  (29) 

Like the platelets, the leukocytes were assumed to not contribute significantly to the volume 

of the ILT; hence, they were excluded from the mass fraction summation. Their presence was 

important nonetheless for the production of proteases such as plasmin, MMPs, and 

macrophage or neutrophil elastases. Thus, the quantity of leukocytes (primarily neutrophils) 

N

iM was modeled similar to the mass of platelets, with defined concentrations in the luminal 

layer and a first-order decay within the deeper layers. 

 

Plasmin, EDPs, and neovascularization 

Plasminogen is converted to plasmin by different enzymes, most importantly tissue 

plasminogen activator (tPA) and urokinase plasminogen activator (uPA). The tPA is found on 

endothelial cells, while the uPA comes mainly from the blood stream via mesenchymal and 

inflammatory cells. For this simplified model, two primary sources of active plasmin were 

considered: the leukocyte-rich luminal layer of the ILT and the aortic wall itself. The latter 

may be due to an influx of inflammatory cells into the aneurysmal wall from multiple sources, 

including an increased vasa vasorum [15]. Regardless of the source, an increased production 

of plasmin within an evolving wall consistent with immunohistological reports [10] was 

assumed. The overall increase in activated plasmin (while excluding the kinetics associated 

with changing concentrations of plasminogen, tPA, uPA, and the inhibitors PAI-1 and alpha-2 

antiplasmin) was sought to be captured phenomenologically, future studies should seek to 

quantify and incorporate these complexities spatially and temporally. For now, however, the 

assumption that the mass of activated plasmin pls

iM  that degrades fibrin was used, such that 
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1

0

( ) ( ) ( ) ( )
i

pls pls N pls pls f

i N i wall f j

j

M K M M K M   




   ,     (30) 

where pls

NK  is a correlation factor between plasmin and neutrophils in the thrombus, 
pls

fK  is 

the amount of plasmin consumed per unit of fibrin, and ( )pls

wallM   is the mass of plasmin in the 

wall calculated by 

( ) ( ) ( )pls pls EDP pls VV

wall EDP tot VV totM K M K A    .      (31) 

Plasmin generated within the wall is considered to depend largely on the total mass of elastin 

degradation products EDP

totM , which are chemoattractants for inflammatory cells and stimulate 

neovascularization of the wall (i.e., increase the amount/area of vasa vasorum VV

totA  that allows 

increased migration of inflammatory cells into the remodeling wall [136]). Correlations 

between plasmin and EDPs/vasa vasorum were accounted for by pls

EDPK  and pls

VVK , 

respectively. 

The production rate of EDPs, EDP

im , was prescribed by the amount of elastin degraded over 

the previous time step, that is, 

  
d ( ) ( )

( )
d

e e e
EDP i i i
i

M M M
m

  


 

 
  


,      (32) 

while the EDPs degraded with rate-type parameter 
EDP

qK : 

( ) exp  d

s

EDP EDP

i qq s K


 
 

   
 
 .       (33) 

Thus the total mass of EDPs in each layer i  was 

  
0

( ) ( ) (s ) d

s

EDP EDP EDP

i i iM s m q    ,       (34) 

and the total mass of EDPs, EDP

totM  for the aortic wall was  

( ) ( )EDP EDP

tot i

i

M s M s .        (35) 

Development of vasa vasorum has been thought to be connected with increased hypoxia 

due to thick ILTs [74]. Yet, Mäyränpää et al. [15] reported that the expression of genes 

associated with intramural neovascularization is the same or only slightly increased in 

thrombus-covered versus thrombus-free walls in AAAs. Interestingly, EDPs also appear to 

affect neovascularization [136]. For example, both intraluminal infusion of the rat aorta with 

elastase (to create AAAs) and direct delivery of EDPs to the wall cause comparable 
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neovascularization [136]. The development of vasa vasorum was modeled as a function of the 

mass of EDPs, but neglected the influence of hypoxia. Thus,  

 0

0

( )  d

s

VV VV VV EDP

tot EDP totA s A K M    ,       (36) 

where 
0

VVA  denotes a homeostatic area of vasa vasorum in healthy aorta and VV

EDPK  is a 

correlation factor that relates vasa vasorum growth per unit of EDPs per unit time. 

 

Voids and fibrin degradation products 

The fibrin mesh in the luminal layer is characterized by thick primary fibers and fine 

interconnecting secondary fibers. Since thinner fibers cleave more quickly than thicker ones 

[112], these secondary interconnections are lost in the medial layer, thus leaving small 

interconnected channels (“voids” or “canaliculi”) throughout much of the ILT [9]. Degraded 

fibrin was assumed to turn partly into fibrin degradation products (FDPs) and to be partly 

removed by macrophages, which leaves voids. Overall, the mean void area increased from 

the luminal toward the abluminal layer. 

 

Biochemomechanical interaction of ILT and the wall 

To model biochemomechanical interactions between the aortic wall and ILT, two models 

must be interconnected. Stress in the ILT was modeled similar to that in the wall. The stored 

energy of fibrin-rich ILT was assumed to be [8], 

 2 21
1 2 1 4

2

ˆ ( 3) exp (1 )( 3) ( 1) 1f f aniso anisok
W I k I I

k
          

 
,  (37) 

where   and 1k  have units of stress, 2k  is dimensionless, 
1 ( )tr( )f

nI  C , and 

4 ( )( ) ( )f T

nI    m C m . Similar to that for intramural matrix, ( )

f

n C  is the right Cauchy-Green 

tensor, m  represents the orientation of the fibers, and  0,1aniso   is a measure of 

mechanical anisotropy. Since anisotropy of the luminal layer may increase with aging [8],   

was modeled as a function of the time that the layer was in contact with the flowing blood and 

associated wall shear stress, that is 

   max ,0

,

( , ) ( ) ( ) 1 exp ( ) exp ( 1)
w

aniso aniso aniso aniso w
w w t i

w h

f g K K K


      



 
       

 

, (38) 
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where max

anisoK , aniso

tK  and 
w

anisoK
 are correlation factors and ,0i  is the time at which the current 

luminal layer was formed. In cases of isotropic ILT, 0aniso  , and Eq. (37) reduces to: 

 21
1 2 1

2

ˆ ( 3) exp ( 3) 1f f k
W I k I

k
      

 
.      (39) 

Similar to elastin, a neo-Hookean strain energy function was used to model the mechanics of 

the fibrin degradation products: 

 FDP FDP

( )
ˆ trFDP

nW  C 1 .        (40) 

Erythrocytes (RBCs) and voids only affected the compressive properties. 

Biochemical effects of the proteolytically active luminal layer were incorporated via 

additional terms in the degradation functions for collagen and elastin. In general, the survival 

function of all structurally important constituents was modeled by a first order decay, similar 

to Eq. (2): 

( ) exp ( ) d

s

k k

i qq s K


  
 

   
 
 .       (41) 

The 
k

qK  in Eq. (41) need not be constant as were kK  in Eq. (41). For example, whereas eK  

for elastin in a normal aging aorta depends primarily on its natural half-life ( 1/2

e ) of ~40 

years, namely 
 

1/2

ln 2e e

q e
K k


  , the increased degradation of elastin in an aneurysm due to 

inflammation was modeled as 

,( ) ( , )e e e elas

q q q elasK t k w M r t  ,        (42) 

where, e

qk  is the constant degradation rate associated its normal half-life and the second term 

represents further degradation due to an increased concentration of inflammatory cell released 

elastases, elasM , with weighting factor 
,

e

q elasw . 

For collagen, the model from [34] was extended to be 

 

 

,

0

( ) ( , )

c c

nc c c MMP

q q q MMPc c

n

W
K k w M r

W


 

 
 

 

F

F
,     (43) 

where c

qK  depends on the ratio of the current (
 

c

c

n

W





F
) to the homeostatic (

 0

c

c

n

W

F
) value of 

fiber tension, and c

qk  is the homeostatic half-life; the additional terms account for the presence 
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of MMPs (i.e., collagenases) that were activated by ILT-related plasmin as well as other 

mechanisms. 

Similar to plasmin and oxygen, the distribution of MMPs may depend on two cell sources: 

those from the luminal layer in the ILT and those coming from the vasa vasorum within the 

aortic wall. Each of these sources may evolve as the lesion expands. This situation implies 

diffusion with two sources and a line sink. Ideally, to calculate distribution of MMPs, amount 

of different types separately, activation of MMPs by plasmin, half-life of MMPs and many 

other factors should be all taken into account. Convection also requires modelling of flow 

through the ILT. However, there is a lack of experimental data about all of these problems, 

and therefore, MMP distribution was captured phenomenologically based on available data. 

Therefore, as a first approximation, considering only a quasi-static solution 

 
elas

elasM
D M




    

        (44) 

was solved using available experimental data on the radial distribution of proteases [55,118], 

where D  is the diffusion coefficient. The luminal boundary condition was defined as the 

elastase/MMPs available from the luminal layer, elas N

N totK M  (or MMP N

N totK M  for MMPs), where 

/elas MMP

NK  describes how much elastase/MMP was produced per unit of leukocytes per time 

step. The location of the source of the proteases was prescribed at radius Lr  by: 

1
( ) ( ) ( )

( )

N

L i iN
itot

r s M s r s
M s

  ,       (45) 

similar to a center of gravity calculation for each layer i. The concentration of elastase/MMPs 

at the outer radius depended on the area of vasa vasorum and quantity of inflammatory cells: 

( ) ( )elas WBC elas VV

WBC tot VV totK M s K A s . Thus, the overall distribution of proteases was: 

( ) ( ) ( ) ( )
( , ) ln( ) ( )

ln( ( ) / )

k N k WBC k VV
k k NN tot WBC tot VV tot

N tot

L o o

K M s K M s K A s r s
M r s K M s

r s r r

 
  ,  (46) 

where k  can indicate elastases or collagenases (indeed any MMP). The mass of inflammatory 

cells in the wall, WBC

totM , was modelled similar to Eq. (1), with degradation depending on 

cellular half-life and production WBC

totm  increasing with increases in mass of EPDs and vasa 

vasorum, such that 

,

0

( )
( ) ( )

VV
WBC WBC EDPtot
tot EDP VV totVV

A
m K M

A




 

 
  

 
,      (47) 
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where 
,

WBC

EDP VVK  is a correlation factor that relates the proliferation of white blood cells with 

EDPs and neovascularization, and   is power parameter. 

With the above survival functions, the mass of collagen can be calculated by Eq. (1); 

because there is no production of elastin, its evolving mass can be calculated by the reduced 

expression: 

( ) (0) ( )e e eM s M Q s .        (48) 

The half-life of SMCs was also prescribed by a first order decay rate [34], but its 

degradation was additionally linked to the degradation of elastin to model anoikis (a type of 

apoptosis caused by loss of attachment to the surrounding matrix). AAA initiation when there 

is a local loss of elastin was assumed, which in turn results in a local loss of smooth muscle 

via anoikis. The elastin degradation function was prescribed similar to that used by Valentín 

et al. [96], namely 

 ( ) exp ( ) d ( )

s

SMC SMC e

i qq s K Q s


  
 

   
 
 .      (49) 

Yet, smooth muscle cells can also become more synthetic, so maximal active stress mT  

decreased as [96] 

         0 1m m m m eT s T Q s     ,      (50) 

where m  is a scaling parameter that controlled the degree of proportionality between elastin 

content and vasoactivity.  

To summarize, Figure 1.4 outlines interactions among the primary contributors that affect 

the G&R of a thrombus-laden AAA. The left side of the schema highlights the most important 

reactions in the thrombus: fibrin is produced by thrombin and degraded by plasmin. The right 

side refers to processes within the aortic wall: MMPs degrade structurally significant 

constituents, thus releasing elastin degradation products and increasing neovascularization. 

Arrows connecting the two boxes delineate the impact of thrombus on the wall and the 

influence of intramural cells on the maturation of thrombus. Of particular note, plasmin 

produced in the ILT by leukocytes can diffuse into the wall and help activate proMMPs. 

Conversely, inflammatory cells within the wall can impact the conversion of plasminogen to 

plasmin by degrading the fibrin to which it was bound. Clearly, there are complex 

biochemical interactions between the ILT and wall of the AAA. 
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4.2. Parameter values 

Similar to growth and remodeling parameters for the aortic wall (Table 1) the constitutive 

relations and parameters were classified by level of consensus and function (Table 4). Again, 

easily measured parameters (such as thrombus stiffness [8]) were classified as “observed”.  

 

Table 4: Parameter values used for G&R of ILT. 

Class Role Parameter value Eq. # Refs. 

O
b
se

rv
ed

 

Homeostatic 

kinetics 

1/2 15 daysRBC  1/2 5 daysPLT  , 

1/2 20 daysWBC  , 
1/2 40 yearsEDP  , 

1/2 4 yearsf   
e.g., (27) 

[87,98,

99] 

Passive 

elasticity 

0.0082 MPaf  , 1 0.0123 MPak  , 

2 0.6k   

(37) [8,97] 

B
o
u
n
d
ed

 

Pre-stretches f 1.08G   See Figure 

2.1 

[96] 

Luminal layer 

definition 

14

crit 0.9 10  kg mm M   , RBC

crit 0.9  ,  

PLT

crit 0.9  , N

crit 0.9   

(28) (29) [8] 

Vasa vasorum 4 2

0 5 10  mmVVA    (36) [9] 

Masses of cells 10.15 g mmplt

lM  , 10.2 g mmN

lM   (28) [117] 

E
m

p
ir

ic
al

 

 

Correlation 

factors 

,

12150 mm  (kg day)VV

WBC

EDP VV EDPK   , 

10.01 g  (g day)pls

N pls NK   , 

10.25 g  (g day)f

plt f pltK   , 

15.5 g  gMM

MM

N P N

PK  , 

10.01 g  g
WBCMM

M

W P

MP

BCK 

20.00015 g  mmMM

MMP

PV VV VK  , 

10.12 g  g
Nel

el

N as

asK  , 

10.002 g  g
WBCe

elas

WBC lasK  , 

20.00035 g  mmel

elas

V s VV a VK   

(31) 

(30) 

(46) 

 

Weighting 1125 (g day)f

q plsw   , (24) (42)  
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factors 1

, 500 (g day)e

q elas elasw   , 

1

, 750 (g day)c

q MMP MMPw    

(43) 

 

In contrast to the wall, “bounded” parameters were not defined by parametric studies from 

the literature, but were estimated from indirect experimental observations, as, for example, on 

the extent of the vasa vasorum [74] or the critical mass of a luminal layer of thickness 2 mm 

[117]. Additionally, “empirical” parameters have not been quantified directly, but were 

chosen to model findings reported in the literature (e.g., spatial distribution of MMPs and 

elastases [55]). 

 

4.3. Biochemical influence of thrombus on aortic wall 

In order to account for mechanical effects of intraluminal thrombus in finite element analysis, 

one must first implement model into finite element code. However, note that contrary to finite 

elements describing aortic wall whose number remains the same throughout analysis, but their 

mass changes, finite elements describing ILT would have constant mass while their number 

would increase rapidly in each time step, starting from zero in healthy aorta. Thus, for the first 

approximation of the model only biochemical influence was modeled, whereas mechanical 

effects ware neglected. This was achieved by using Matfeap. Matfeap is an interface between 

Matlab and the finite element analysis program FEAP that allows communication and 

exchange of variables through a common block between these two programs (Figure 4.1).  

 

 

Figure 4.1: Communication between Matlab and FEAP 

 

Three basic Matfeap functions are as follows: 

 feapcmd: this routine is used to invoke FEAP macro routines, i.e. to assign commands 

from Matlab to FEAP  
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 feapgetm: the routine that either reads a common block variable from the standard input 

or writes a common block variable to the standard output 

 feapsetm: similar to feapgetm, except that it receives data from the client using 

feaprecvint and feaprecvdbl where feapgetm sends data. 

Therefore, Matfeap enables one part of code to be calculated in FEAP, and the other part in 

Matlab. In this case, the spatial distribution of proteases through ILT and aortic wall is 

calculated in Matlab in each time step. This information is then sent back to FEAP in order to 

calculate masses of elastin and collagen, stresses and displacements. 

As a test example for verification of communication between two programs, aging of 

healthy aorta was simulated. During aging elastin is uniformly degraded with half-life 1/2

e  of 

40 years. Since elastin is not produced during maturity, its mass is calculated by Eq. (1) 

simplified to form  ( ) 0e e eM s M Q , where survival function is

 
 

1/20

ln 2
0 exp d

s

e e

e
Q q s 



 
    

 
 . Matlab received current time s  from FEAP, calculated 

eQ  and returned it back to FEAP. Note that during aging geometry of the vessel remains 

cylindrical, meaning the results obtained by Matfeap can be compared with semi-analytical 

solution. The comparison of results is shown in Figure 4.2. Clearly, the results match 

perfectly. Simulations also agree with clinical observation that due to loss of elastin aorta 

slowly dilates with age, with average expansion rate of 0.07 mm/year [94]. 

 

 

Figure 4.2: Evolution of inner radius during aging obtained by Matfeap and Matlab 
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In order to model biochemical effects of thrombus on aneurysm expansion, in every time 

step Matlab needs to calculate distribution of elastase and collagenase (Eq. (46)). Therefore, 

part of the code in Matlab should calculate and write in common block four constants – two 

for each protease – at each axial position, which will enable FEAP to calculate masses of 

constituents, stresses and strains. On the other hand, it needs to receive information about 

geometry of thrombus (i.e., inner radius of the wall) for calculation of Lr , and radial 

degradation of elastin at each axial location. Mass of degraded elastin is necessary as it is 

directly connected to elastin degradation products, and thus growth of vasa vasorum and 

number of leukocytes in the wall.  

To minimize size of the common block, cylindrical aneurysm was modeled. Unlike aneurysm 

without thrombus, where elastin was degraded uniformly in radial direction as a function of 

time (or additionally, axial and circumferential location, for fusiform and saccular 

aneurysms), this is not the case for thrombus-laden aneurysm. Figure 4.3 shows evolution of 

elastin mass fractions at different radial locations. Since luminal layer of ILT is the most 

proteolytically active, intimal elastin was degraded more rapidly than adventitial elastin 

(Figure 4.3). Thus, after 7 years elastin was almost completely degraded in the inner parts of 

the wall adjacent to the ILT, whereas some elastin still remained in the outer parts of the wall. 

 

 

Figure 4.3: Evolution of mass fraction of elastin at different radial locations 
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Corresponding evolutions of maximum diameter and expansion rates are shown in Figure 

4.4 and Figure 4.5. It is interesting to note that expansion rate is not monotonic curve, as it 

was the case for aneurysm growth simulations presented both above and in the literature (e.g., 

[73]). These periods of more rapid and slower periods of growth seem to be more realistic, as 

was suggested by clinical observations (e.g., [21]). 

 

Figure 4.4: Evolution on maximum diameter of thrombus-laden aneurysm 

 

 

Figure 4.5: Dilatation rate of thrombus-laden aneurysm 
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However, exchange of data between two programs significantly increases computational 

time. Even for simulation of aging, where only one variable in common block (i.e., current 

time) was needed, computational time increased several times. Note that simulations of 

thrombus-laden fusiform and saccular aneurysms would require much larger number of 

common variables – intimal radius and amount of degraded elastin in each of several 

thousand elements, which would slow down the process remarkably. Besides being time 

consuming, it is also important to remember that mechanical effects cannot be taken into 

account using Matfeap. Additionally, there is a lack of experimental data about molecular 

distributions and heterogeneities in mechanical properties in the axial and circumferential 

direction in the literature, which will make the translation of some of the modelling 

assumptions to 3D quite a complex problem. For all these reasons, the first approximation of 

the model was performed on cylindrical geometry using semi-analytical solution, and used to 

study whether intraluminal thrombus influences expansion of aneurysm at all. If thrombus did 

not affect the outcome of AAA growth, it would not be necessary to use the more complex 

model (i.e., the G&R model of the aortic wall alone is sufficient). Additionally, it was used to 

investigate which bounded parameters influence AAA growth the most, either positively or 

negatively, and to recognize the key features of the thrombus-laden model. This parametric 

study will be most helpful when implementing the model into finite elements for analysis of 

2D and 3D geometries. While these geometries will be much more realistic, they will also 

introduce further assumptions, as almost all experimental (especially histological) data 

considers only distance from the lumen, and not axial or circumferential heterogeneities. 

Moreover, the analysis of key parameters will be computationally much more expensive on 

realistic geometries, and these simplified 1D analyses give important insight into the main 

model features. The model was also verified by modeling potential effects of commonly 

proposed rupture and stabilization factors and comparing the results with clinical 

observations. It can also provide insight into possible roles of risk factors on the natural 

history of AAAs.  

 

4.4. Biochemomechanical influence of thrombus on 1-D aneurysm expansion 

The simulated development of an AAA was initiated by prescribing a uniform 5% loss of 

elastin in an initially healthy, but aged aorta (defined by the original material parameters). 

This insult led to acute changes in stress, and stress-mediated G&R, and an early dilatation. 

Assuming a space-filling deposition of thrombus (Figure 3.7 and Figure 4.6), and its 
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associated biochemical effects (e.g., further degradation of the aortic wall via increased 

quantity of MMPs), allowed the potential effects of thrombus to be modeled for the first time. 

As can be seen in Figure 4.6 initially three-layered healthy aorta expands, and, under 

assumption of constant luminal area, thrombus deposits concentrically. The assumption that 

luminal layer remains constant is not necessarily a bad assumption – clinical observations in 

[164] have shown that for the most patients it is correct (see Figure 4.7 on the right), yet 

thrombus is commonly depositing eccentrically (Figure 4.7 in the middle). Unfortunately, this 

cannot be modeled using semi-analytical solution.  

 

 

Figure 4.6: Space-filling deposition of thrombus during AAA evolution 

 

 

Figure 4.7: Lumen and AAA’s outer cross-sectional areas at the region of maximum diameter 

for patient P-9 after 4 follow-ups, from [164] 

4.4.1. Geometric changes 

The progression of a representative AAA for the aforementioned model parameters (cf. Table 

4) is shown in Figure 4.8. The dot-dashed line at 9.925 mm denotes the constant luminal 

radius, which enforces a space-filling thrombus. The lower-most gray line denotes the extent 

of the luminal layer of ILT, typically about 2 mm thick. The solid black line denotes the 

interface between the abluminal layer of the ILT and the intima, the dashed gray (barely 

visible) line denotes that between the intima and media, the dashed black line denotes that 

between the media and adventitia, and the upper-most gray line denotes the outer radius of the 

aneurysmal wall. For the first 2.5 years (i.e., until the inner radius dilated by 2 mm, the 
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maximum thickness of a luminal layer), the lesion continued to expand significantly as the 

proteolytically active luminal layer remained in contact with the aortic wall. In particular, the 

intimal-medial thickness decreased due to the loss of elastin (proteolytically) and smooth 

muscle (via anoikis). As the lesion enlarged, intermediate and abluminal layers of ILT formed 

and acted as a barrier to the diffusion of biomolecules from the luminal layer, effectively 

diminishing the direct biochemical influence of the ILT. Thus the adventitia thickened, and 

the concavity of the growth curve switched from positive to negative (i.e., the lesion slowed 

its growth, perhaps moving towards stabilization). In this idealized geometry, the thrombus 

had a minimal biochemical effect on progression of the lesion as soon as sufficiently thick 

intermediate layers of ILT formed; in actual fusiform AAAs, however, the lesion geometry is 

often complex and the thrombus is often eccentric, hence unique locations of thin thrombus 

(e.g., the shoulder of the lesion) could exist throughout development wherein clot-related 

enzymatic activity could remain important to the overall G&R of the wall. 

 

 

Figure 4.8: Simulated evolution of the central region of an idealized axisymmetric AAA 

harboring a space-filling thrombus 
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4.4.2. Elastases/collagenases distribution.  

Figure 4.9(a) highlights the evolution of proteolytic activity in the aortic wall normalized to 

the value at G&R time s = 0 (e.g., from MMPs) in the wall due to the evolving thickness of 

the ILT. The MMPs within the neighboring wall initially increased as the thickness of the 

luminal layer of the ILT increased, but fell sharply as the less proteolytically active 

intermediate layer formed. After 25 years, the final MMP concentration was reduced ~3 fold 

relative to the peak value, but was yet higher than the initial value due to an increased cross-

sectional area of vasa vasorum (and thus intramural inflammation) secondary to the 

production of EDPs (see Eq. (36), Figure 4.9(b)). Cross sectional area of vasa vasorum and 

mass of EDPs are both normalized by their initial, homeostatic value. 

 

 

Figure 4.9: Evolution of the normalized net concentration of matrix metalloproteinases 

(MMPs) (a); growth of vasa vasorum and the mass of elastin degradation (b) 

 

4.4.3. Composition of the aortic wall and ILT 

The evolution of elastase in the wall was analogous to that of the general MMPs, leading to an 

initially rapid degradation of elastin that diminished as the thrombus thickened (Figure 4.10). 

The solid line represents elastin, the dashed line smooth muscle cells (SMC), and the dotted 

line collagen, all in the case of stiffening due to increased collagen accumulation.  
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Figure 4.10: Evolution of total masses of the primary structural constituents of the wall, 

normalized per unit axial length 

 

Likewise, the collagen decreased rapidly as the luminal layer formed, yet thickening of the 

thrombus and increased stress-mediated deposition yielded a net increase in collagen over 

time. Smooth muscle increased briefly as stress increased, but then declined as elastin was 

lost and anoikis occurred. 

Distributions of constituents within the ILT at the end of simulation are shown in Figure 

4.11. The solid black line represents fibrin, the dashed black line red blood cells (RBC), the 

gray solid line voids (canaliculi), and the gray dashed line fibrin degradation products (FDP). 

Note that luminal layer is easily distinguished, unlike the medial and abluminal layers (see 

Wilson et al.[84] for details on identifying different layers within ILT). Fresh thrombus at the 

luminal interface (i.e., near a radius of 9.925 mm) was characterized by low amounts of fibrin 

and large numbers of RBCs (recall that the volume fraction of platelets was neglected). In the 

deeper, more mature parts of the luminal layer, fibrin was increased and RBCs diminished. 

The border between the luminal and intermediate layer was evident by the steep decrease in 

RBCs as they could not penetrate farther into the thrombus. Similarly, platelets were unable to 

reach deeper parts of the ILT, wherein new fibrin production was impaired. As a result, the 

mass fraction of this fibrin decreased as its degradation exceeded production. The distinction 

between intermediate and abluminal layers was less evident; both were devoid of platelets and 

characterized by increasing fibrin degradation products (FDPs) and voids as the fibrin 

degraded. It is possible that development of an abluminal layer may be influenced by (a) a 

large deposition of initial thrombus with deeper regions that were not luminal long enough for 

the fibrin mesh to mature fully, (b) degradation of the clot from activated plasmin generated at 
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the ILT/wall interface, and/or (c) structural disruption of the thrombus that allows fresh blood 

into deeper layers – none of which were considered in this initial model. Nevertheless, these 

results correspond qualitatively to the reported distribution of constituents in four phases of an 

aging, layered ILT [8]: phase I (fresh thrombus, new luminal layer) was characterized by 90% 

RBCs and 10% thin fibrin bundles; phase II (older luminal layer) had less than 10% RBCs, 

some condensed proteins (FDPs), and increasing thin and thick fibrin fibers; phases III and IV 

(i.e., older thrombus) had few RBCs and condensed proteins dominated as fibrin degraded. 

 

 

Figure 4.11 : Radial distribution of mass fractions of structurally important constituents at the 

time 25s   years 

 

4.4.4. Stress distribution. 

To examine the mechanical influence of the ILT, radial stress and pressure (calculated as 

 1 3tr t ) were plotted versus depth through the thrombus and wall for one (long-term) 

instant during the evolution of the lesion and clot (Figure 4.12(a) and (b)). Note that the 

luminal and outer adventitial layers satisfy the prescribed traction boundary conditions. A 

prior clinical study [165] reported that the ratio of pressure (at end systole) within the 

thrombus to that within the flowing blood was 0.90±0.09, 0.86±0.10, and 0.81±0.09 at depths 

of 1, 2, and 3 cm, respectively. Figure 4.12 reveals that predicted reductions in pressure at 

depths of 1 and 1.5 cm (maximum thrombus depth in this simulation) were comparable, 0.94 

and 0.93, respectively.  
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To evaluate the mechanical predictions of the model further, numerical equibiaxial tension 

tests of the aneurysmal wall underlying fresh and old thrombus were compared with 

experimental finding [8] (Figure 4.12(c)). Setup for experimental biaxial tension test can be 

seen in Figure 4.13. Abbreviations in the figure denote as follows: exp – experimental, sim – 

model simulation, circ – stresses in circumferential direction. It was found that the model and 

data shared two major features. First, the wall under fresh thrombus was more compliant 

when compared with that under older thrombus. Second, anisotropy of the wall increased with 

maturation of thrombus.  
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Figure 4.12: (a) Simulated transmural distribution of radial stress; (b) pressure throughout the 

intraluminal thrombus; (c) comparison of emergent equibiaxial tension results for the aortic 

wall; (d) equibiaxial tension tests on different layers of ILT 

 

Note, therefore, that a numerical biaxial test of the initially non-aneurysmal aorta revealed 

an almost isotropic behavior due to the homeostatic definition: four families of collagen fibers 

oriented axially, circumferentially, and helically at ±45°, intact, isotropic elastin, and 

circumferentially oriented smooth muscle that was highly compliant.  

 

 

Figure 4.13: Specimen mounted in a biaxial tensile testing device, taken from [8] 
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Wall stiffening thus occurred due to the progressive loss of elastin and stiffening of 

collagen over time while anisotropy increased due to an active re-orientation of collagen 

fibers towards the circumferential direction. Although the experimental values represented 

average findings, not those obtained by following changes in one aneurysm over time as in 

this model, the overall agreement was nonetheless encouraging. 

Comparison of numerical and experimental equibiaxial tension tests of fresh, luminal, 

medial, and abluminal thrombi (Figure 4.12(d)) also shows good agreement. The luminal 

layer is the stiffest and possesses the highest amount of the primary load-bearing material 

(fibrin); the mass fraction of fibrin (Figure 4.11), and thus stiffness, decreases in other layers. 

 

4.4.5. Possible clinical outcomes 

In prior G&R simulations of AAAs without thrombus, the effects of key aspects of collagen 

turnover on AAA progression were explored parametrically, including rates of production and 

values for the half-life, deposition stretch, and stiffness [73]. Similarly, three cases for 

collagen stiffness in AAAs herein were considered: loss of stiffness, constant stiffness, or 

increased stiffness. For simplicity, changes in stiffness relative to the homeostatic value and 

the ratio of the current to the initial stretch were modeled: 3 3

( )
( ) (0)

(0)

c
c c

c

s
c s c




  for stiffening, 

the inverse of this ratio for softening, and    0c cs   for maintenance in the healthy aorta 

(i.e., constant stiffness in maintenance). This model confirmed the prior results that a 

sufficiently high production can stabilize AAA enlargement in the absence of thrombus 

(results not shown). To consider the effect of increased ILT stiffness on lesion expansion, four 

cases were modeled with different fibrin properties (Figure 4.14). The black lines denote 

lesions with stiffer collagen and the gray lines baseline collagen properties. Moreover, the 

solid lines show results for stiffer ILT relative to the dashed lines which show results for more 

compliant ILT. Stiffer ILT was modeled using the upper limit of model parameters for the 

isotropic luminal layer determined in Tong et al. [8] ( 0.0099 MPa  , 1 0.016 MPak  , 

2 0.9k  ); compliant ILT was modeled with the lower limit ( 0.0065 MPa  , 

1 0.0086 MPak  , 2 0.3k  ). Each case was modeled with and without stiffening of collagen 

in the aortic wall. 
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Figure 4.14: Simulated dilatation of AAAs having different mechanical properties of ILT 

 

Results indicated that stiffening either the fibrin in the thrombus or the collagen in the 

aneurysmal wall reduced the diameter at which the AAA slowed its growth, with possible 

stabilization. That is, stiffening of collagen alone may not be necessary for ultimately 

arresting enlargement in thrombus-laden AAAs (at least for the range of parameters tested). 

Further simulations using more realistic geometries may prove useful to better explore the 

mechanical contribution of fibrin.  
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5. Modeling roles of rupture risk factors 

One goal of computationally modelling aneurysmal G&R is to help clinicians predict rupture 

risk. Although multiple risk factors have been suggested for AAA rupture [166], a few key 

factors were considered within the limitations of the model. Herein, rupture was assumed to 

be possible when any normal component of wall stress reached 460 kPa [167]. It is worth 

noting that strength is heterogeneously distributed just like mechanical properties, and 

constitutive laws for the evolution of strength also need to be developed. These laws will also 

likely depend on a variety of parameters, e.g. age, sex, family history of rupture risk factors, 

etc. It is also worth noticing that computational models should be part of clinical procedure, 

yet clinicians should look for family history and all other parameters. 

However, the point of this paper however is not to model strength or even to predict exact 

rupture times, but to investigate whether certain factors increase, decrease or not influence at 

all the likelihood of rupture. This is a qualitative study to determine how ILT influences 

growth of AAA and what makes rupture more or less likely. We do not claim certain 

aneurysm will rupture exactly at certain size. For illustrative purposes a simple metric has 

been chosen to predict possible higher risk of rupture. More sophisticated assessment of 

rupture potential should be used for patient-specific cases. 

 

5.1. Smoking 

Smoking has been linked to multiple vascular diseases. Among other effects, smoking 

elevates oxidative stress, compromises the arterial endothelium, and promotes atherogenesis 

[168]. It also promotes monocyte migration into the subintimal space, which promotes 

localized inflammation of the wall [169], and it increases the concentration of plasma 

fibrinogen and alters the activity of platelets, which together promote thrombosis on the 

dysfunctional endothelium [169]. Finally, smoking correlates strongly with increased aortic 

blood pressure, heart rate, and arterial stiffness [77], with smoking-induced stiffening 

appearing to be isotropic, as reflected by a consistent increase in an elastin-associated 

parameter and a marked increase in the collagen-associated parameters [170]. 

Many studies associate smoking with larger AAAs [79,171] and enlargement rates [172]. 

Some studies suggest that cessation of smoking may inhibit aneurysmal enlargement, even 

though two years of cessation does not reduce arterial stiffness [173]; indeed, it can take up to 

a decade to reduce stiffness to the level of never-smokers [78]. Similarly, five years of 

abstinence can reduce fibrinogen concentrations to the range of never-smokers [174].  
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Motivated by these studies, the natural histories of aneurysms in simulated smokers, ex-

smokers, and those who had never smoked were investigated. Smoking was modelled by an 

increased elastin stiffness, collagen stiffness, inflammation, and platelet activity. Parameter 

values that differ between simulations are shown in Table 5. Endothelial and smooth muscle 

cell dysfunction are characteristic of aneurysms independent of smoking and were implicitly 

included in the model for both smokers and non-smokers.  

Simulated AAA diameter was greater at 20 years for smokers (4,96 cm) than non-smokers 

(4.09 cm), with an associated mean dilatation rate 0.043 cm/year greater than that for non-

smokers. Figure 5.1 shows evolution of a non-smoker (solid black line), increased elastin 

stiffness (dashed line), both increased elastin stiffness and inflammation (dash-dotted line), an 

increased elastin and collagen stiffness plus elevated inflammation (dotted line), and an 

increased stiffness, higher inflammation, and increased platelet activity (solid grey line) – that 

is, full effects of smoking. These results are consistent with clinical observations. Bhak et al. 

[79] reported that smoking associated with a 0.05±0.01 cm/year increase in linear 

enlargement rate. These results suggest further that increased stiffness is a key factor that 

leads to large aneurysms in smokers (Figure 5.1). 

 

Table 5: Parameters for non-smokers and smokers: e

1c , 
2

cc  and 
3

cc  are parameters in the stored 

energy functions for elastic and collagenous fibers (cf. [170]). 

 

 e

1c  

[kPa] 

2

cc  

[kPa] 

3

cc  

[-] 

,MMP

c

qw   

[g
-1 

day
-1

] 

,

e

q elasw   

[g
-1 

day
-1

] 

plt

lM  

 [g mm
-1

] 

Non-smokers 74.6 498.2 22 10 60 0.15 

Smokers 148.7 861.3 44 20 120 0.2 
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Figure 5.1: Simulated evolution of AAAs in a non-smoker, cases of different effects of 

smoking on the aortic wall, and full effects of smoking 

 

There was only a slight decrease in AAA size due to increased production of fibrin through 

a higher platelet activity, which resulted in a slightly stiffer but thinner luminal layer. Note 

that this finding does not mean that increased platelet activity could potentially stabilize 

AAAs since platelets are chemotactic for neutrophils and monocytes [175] and can cause 

higher inflammation and enlargement rates. 

 

Changes in rates of dilatation after smoking cessation have not been studied well. As it has 

been shown that stiffness is reduced only after 10 years [78], an immediate decrease in 

enlargement rate would not be expected. Rather, the competing effects to evolve after several 

years would be expected: a reduced growth due to attenuated rates of elastin degradation but 

increased enlargement due to a decrease in collagen stiffness. Thus, consistent with general 

public health guidelines, immediate cessation of smoking is recommended, preferably before 

AAA development. 

 

5.2. Aneurysm stabilization factors 

Numerous studies have proposed the use of anti-inflammatory drugs for reducing or 

arresting the enlargement of AAAs, some of which act directly on MMPs [176,177] while 
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others reduce inflammation indirectly (e.g., via platelet inhibitors [178] or 

immunosuppressive agents [179]). For example, one study in mice showed that preserving 

medial elastin can attenuate aneurysmal dilatation [176] while another study in mice showed 

that non-specific inhibition of collagenases can led to lesion stabilization [177]. Nevertheless, 

non-specific MMP inhibition has not reduced aneurysmal progression in human patients 

[180]. Clearly, there is a need for increased understanding of the biochemical mechanisms of 

aneurysm formation and evolution. 

Figure 5.2 shows that the thrombus-laden aneurysm model supports results from [176], 

whereby inhibition of elastase activity (i.e., decreasing the degradation of elastin, 

, 10 1/(g day)e

q elasw   vs. 
, 30 1/(g day)e

q elasw  ) helped to decrease the likelihood of rupture 

and to some extent led towards stabilization, independent of collagen stiffness. In the figure 

simulated evolution of rapid elastin degradation are presented with solid lines versus dashed 

lines for normal elastin degradation. Note that the aneurysm was initiated by degrading 5% of 

elastin (Figure 5.2(b)). Maximum wall stresses 
max

t  (black lines) and decrease of elastin 

stress 
max

e
t  (grey lines) due to elastin damage after a stretch of 2.2 can be seen in Figure 

5.2(c).  

 



Lana Virag  PhD Thesis 

Faculty of Mechanical Engineering and Naval Architecture 113 

 

 

Figure 5.2: Simulated AAA evolution (a), corresponding degradation of elastin (b) and 

evolution of maximum wall stresses and elastin stresses (c) in cases of rapid and normal 

elastin degradation 
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The current model similarly suggests that high rates of collagen degradation (

1 1

,MMP 20 g  dayc

qw   ) could lead to progressive enlargement (solid line in Figure 5.3) while 

reduced inflammation ( 1 1

,MMP 10 g  dayc

qw   ) could prevent rupture despite continued 

enlargement (dashed line in Figure 5.3). Thus, the current results suggest that rates of 

degradation of structural constituents (e.g., concentrations of proteases, controlled by 

parameters 
,

e

q elasw  and 
,

c

q MMPw  in Eq. (42) and (43)) should indeed affect aneurysmal 

progression. Note that stiffening was modelled in these simulations by changing the 

exponential parameter for collagen in the stored energy function relative to the homeostatic 

value and the ratio of the current to the initial stretch (i.e., 3 3( ) (0) ( ) (0)c c c cc s c s  ). 

 

 

Figure 5.3: Simulated AAA evolution (a), with associated dilatation rates (b), for different 

rates of collagen degradation in the case of collagen stiffening. “x” denotes expected rupture 

 

5.3. Effects of sex and age 

Sex differences have been identified in cardiovascular aging and in the evolution, 

management, and response to treatment of many cardiovascular diseases, including AAAs 

[181]. For example, females have stiffer large arteries pre-puberty, but more compliant ones 

post-puberty [182]. Additionally, age-associated endothelial function declines in men years 
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before women [183]. These findings, among many others, could contribute to the increased 

prevalence of AAAs in men compared to women [184]. Yet, males have a 3-4 times lower 

risk of rupture than females [181], possibly due to higher strength of the AAA wall [4]. 

Similarly, noting that males have stiffer arteries on average [185], previous G&R models 

suggested that increased material stiffness and turnover of collagen decreases the likelihood 

of rupture, [73]. 

Beyond the effects of sex, age may also play a role in AAA progression. Wilson et al. [43] 

demonstrated in a G&R model that aortic properties at the age of lesion initiation may 

strongly influence AAA progression. Such properties likely depend on a patient’s biological 

age (e.g., genetics, smoking status, comorbidities, and exercise) as opposed to simply a 

chronological age. For example, the observation that females who undergo open surgical 

repair for AAA are significantly older compared to males [185] may be reflective of their 

“younger” biological status as suggested by their later decline of endothelial function. Thus, 

differences in AAA enlargement in males and females were explored by prescribing different 

values of collagen stiffness (increasing collagen stiffness in males, but consistent stiffness in 

females) and different initial aortic microstructures. Initiation of an aneurysm at a younger 

age, typically in men, was taken into account by higher amounts of elastin and a thinner 

intima. Additionally, assuming equivalent elastin material properties, elastin in younger 

patients is less pre-stretched compared to the remaining elastin in older patients due to the 

slow increase in diameter with age and the lack of elastin turnover. Values of parameters that 

differ among simulations are presented in Table 6. 

 

Table 6: Parameters for younger and older patients: int and med  are volume fractions of 

intima and media, respectively; eG  is the initial pre-stretch of elastin; 
e  is the initial volume 

fraction of elastin in aortic wall. 

 
int  

[%] 

med  

[%] 

eG  

[-] 

e

1c  

[kPa] 

e  

[%] 

Young 4 80 1.3 87.8 33.6 

Old 16 52 1.4 74.6 27.4 

 

Inducing aneurysms in an initially stiffer aortic wall led to lower enlargement rates, with 

less likelihood of rupture (Figure 5.4). Expected rupture was denoted with “x” marker. With 

regards to age, a younger aortic wall was more compliant and experienced greater dilatation 
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(whether ruptured or unruptured). It also had greater amounts of elastin, the preservation of 

which may help prevent rupture (see section 5.2). Therefore, the biological age at which an 

aneurysm develops likely has an important impact on AAA evolution, and might be an 

additional factor contributing to the high rupture risk in females. 

 

 

 

Figure 5.4: Simulated evolution of AAAs for males and females of varying age.  

 

5.4. Hypertension 

Hypertension is thought to be a key factor in AAA enlargement [79] and rupture-risk, 

particularly in aneurysms smaller than 5.5 cm [186]. Hypertension leads to progressive 

changes in vascular structure, function, and material properties that often manifest grossly as 

increased wall thickness, radial dilatation, and axial lengthening [5], all of which are G&R 

responses. To evaluate possible effects of hypertension on AAA progression, two cases are 

considered: patients who were hypertensive before developing an AAA and patients who 

developed hypertension during the progression of the lesion. In the former, firstly the G&R of 

a hypertensive (but non-aneurysmal) aorta was simulated and used as the initial state in which 

the aneurysm developed. Results suggested that aneurysms originating from a hypertensive 

wall tend either to rupture or to stabilize at smaller sizes (Figure 5.5(a)), depending on the 

properties of collagen. In the figure solid lines represent enlargement for constant collagen 

material properties; dashed lines represent enlargement during collagen stiffening; dash-

dotted lines represent enlargement of normotensive aneurysm with constant collagen 

properties; dotted lines represent enlargement of normotensive aneurysm with collagen 
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stiffening. ‘x’ denotes expected rupture. Furthermore, the results suggested that lack of 

treatment of hypertension before aneurysmal development might increase the likelihood of 

rupture, since the aneurysms modelled as normotensive but with otherwise the same G&R 

parameters showed a tendency towards stabilization, not rupture. 

 

 

Figure 5.5: Evolution of AAA diameter (a) and enlargement rate (b) from an initially 

hypertensive aorta 

 

When hypertension developed during aneurysmal progression, the increased luminal load 

increased the inner radius further which changed the wall stresses that drive much of the 

G&R. Three degrees of hypertension [187] defined as increases in mean arterial pressure of 

40% (36 mmHg), 60% (54 mmHg), and 80% (72 mmHg) as Cases 1, 2, and 3, respectively, 

are considered. As expected, a greater increase in blood pressure resulted in a larger evolving 

diameter. Figure 5.6 shows evolution of AAAs arising from a heathy aorta after either 

retaining normal blood pressure (solid) or spontaneously developing increased blood pressure 

to different degrees: stage 1 (dashed), 2 (dash-dotted), or 3 (dotted). The average increase in 

enlargement rate of a hypertensive aneurysm over 15 years was 0.235, 0.228 and 0.221 

mm/year per 10 mmHg increase (i.e., stages 1, 2 and 3, respectively). These values are in 
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good agreement with clinical observations of 0.02 ±0.01 cm/year per 10 mmHg [79]. 

Interestingly, the present computational results also suggested that a later development of 

hypertension is more likely to lead to rupture even though earlier hypertension may lead to 

larger AAAs Figure 5.7(a)). This finding highlights the importance of G&R compensation for 

it is not strictly the diameter that determines rupture, but rather the failure of the cells to 

adequately respond to a perturbation (i.e., dilatation need not imply an improper response). In 

this case, a relatively healthier wall (i.e., earlier in AAA development) was better able to 

compensate for a higher blood pressure than was a wall exposed to the same pressure after 

being more extensively damaged via the AAA progression, as seen from evolution of stresses 

(Figure 5.7(b)). 

 

Figure 5.6: Evolution of AAAs arising from a heathy aorta after either retaining normal blood 

pressure or spontaneously developing different stages of hypertension 
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Figure 5.7: Evolution of AAAs from an initially normotensive aorta following the 

development of stage 3 hypertension at different times during AAA progression (a), and 

evolution of corresponding maximal stresses (b). “x” denotes expected rupture 

 

5.5. Thickness of intraluminal thrombus 

Another potential risk factor that has garnered increased attention is the size of the ILT. 

Different measures of ILT size, including thickness [74], volume [188], and relative cross-

sectional area [171], have been correlated with rapid enlargement or rupture. Yet other studies 

suggest that ILT volume is the same in ruptured and intact AAAs [189], and case reports of 

unruptured giant thrombus-laden aneurysms (e.g., 25 cm in [190]) have been described. 
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Because of the cylindrical geometry and concentric thrombus used herein, ILT thickness, 

area, and volume are all a direct function of AAA diameter, and therefore, differential effects 

of these metrics of ILT size could not be evaluated. Nevertheless, it should be noted that the 

distribution of proteases ( elasM  for elastase and MMPM  for collagenases) in this 1D model 

depends on both the available proteases from each source (luminal layer of the ILT and vasa 

vasorum in the aortic wall) and the distance between the two sources; hence, it is proportional 

to ILT thickness.  

The amount of available proteases in the luminal layer varies significantly among patients, 

from virtually non-existent to very high (e.g., see measured MMP-9 activity in both thrombus 

and wall specimens from 35 patients in Figure 3 in [10]). Thus, the possible evolution of an 

AAA for different degrees of protease activity in the ILT (by increasing ( )k N

N totK M s  in Eq. 

(46)) is investigated. Figure 5.8 shows differences in predicted AAA enlargement in cases 

wherein the ILT and vasa vasorum have equal proteolytic activity ((a)-(d)) (

1g0  g1  M

MMP

MPN NK  ) or the ILT is much more proteolytically active ((e)-(h)) (

11000 g  gMM

MM

N P N

PK  ). In the latter case, the proteolytic activity in the wall increased 

sharply as long as the luminal layer was directly attached to the aneurysmal wall (i.e., while 

the solid and dashed lines in Figure 5.8(a) coincide), thus resulting in rapid enlargement of the 

aneurysm. Note that peak of expansion rate of 5 mm/year (Figure 5.8(g)) lasts very shortly, 

and is calculated for every time step; if aneurysms was followed every 6-12 month, average 

dilatation rate would have been much lower, around 3 mm/year. Although on average this 

might still be too rapid expansion, the parameters are not set to simulate average aneurysm, 

but one with very high proteolytic activity. As study in [191] showed in Tables II and III, 12% 

of aneurysms 3-3.4 cm in diameter expand to 4 cm in less than two years, meaning their 

expansion rate is at least 3mm/year (growing at least 0.6 cm in less than 2 years). Even more 

interestingly, 3% grew to from 3-3.4 cm to 5 cm in less than 2 years, having expansion rate 

more than 0.8 cm/year! Therefore, it can be concluded that simulated 3-5 mm/year expansion 

is indeed above average, but by no means unphysical. 

As less proteolytically active deeper layers formed and acted as a barrier to protease 

diffusion, proteolytic activity decreased abruptly and the enlargement rate declined (Figure 

5.8(c) and (g)). Note that elevated activity in the luminal layer led to a reduction in 

enlargement rate once the luminal layer was displaced from the wall, even causing a near 

cessation of enlargement temporarily (Figure 5.8(e)).  
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Several studies (e.g., [21]) report that the majority of AAAs dilate discontinuously, with 

periods of enlargement alternating with periods of quiescence. Though the precise causes of 

this phenomenon have not been determined, the current results suggest that ILT, specifically 

altering the proximity of the biologically active luminal layer to the wall, may directly 

influence enlargement rates and thus play a role in determining clinical outcomes. Although 

only one cycle of enlargement and arrest is allowed in this axisymmetric cylindrical 

geometry, extending this model to 3D patient-specific geometries will allow further testing of 

the relationship of ILT, discontinuous enlargement, and patient-specific outcomes by 

exploring more complex enlargement patterns due to eccentric deposition of thrombus (i.e., 

where one portion of the ILT remains thinner than the other), non-continuous deposition of 

thrombus, local bulging, and multiple regions where the wall is adjacent to thin thrombus 

throughout AAA development. 

For both levels of activity within the luminal layer, a second peak of MMP activity and 

enlargement rate was observed due to the increase in proteases from a developing vasa 

vasorum, driven (in this model) by elastin degradation products. Interestingly, this second 

MMP peak is greater in the model with a lower luminal activity even though the enlargement 

rate is lower, perhaps due to the more consistent release of EDPs from the slower elastin 

degradation occurring in the case of lower luminal activity.  

As expected, note from Figure 5.8(a) and (e) that the simulated AAA was larger after 20 

years in the case of high proteolytic activity (5.5 cm vs. 4.5 cm in outer diameter). Yet, there 

is little indication that thrombus thickness increases the likelihood of AAA rupture, as seen 

from simulations in previous sections where expected ruptures occurred in both small and 

large aneurysms while some large simulated aneurysms (9 cm) remained stable. Further finite 

element analyses are warranted for confirmation, but it should not be expected that ILT 

thickness or other simple measures of ILT size to enable rupture predictions directly. 
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Figure 5.8: Evolution of radius, MMPs, and enlargement rate for AAAs with low proteolytic 

activity in the luminal layer of ILT (a-d) versus high proteolytic activity (e-h). (a,e) Evolution 

of radius at the ILT/wall interface (solid line), lumen/luminal layer interface (dotted line) and 

luminal layer/wall (for thin ILTs) or luminal/medial layer interface (when medial layer of 

thrombus is developed) (dashed line). (b,f) Evolution of the normalized total amount of 
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MMPs in the wall (solid line) and intima (dashed line). (c,g) Evolution of AAA enlargement 

rate. (d,h) Evolution of maximal stresses in aortic wall 

 

5.6. Limitations and proposed experiments 

The current model was developed using a cylindrical geometry to focus on the importance 

of different constitutive assumptions and ranges of parameter values before introducing 

complex geometric effects that arise with local, eccentric aneurysmal dilatation. Although 

patient-specific models must be considered in future studies, including fluid-solid-growth 

(FSG) simulations, the current simple geometric model yet yielded general insights into both 

the important roles that ILT may play during the evolution of AAAs and the potential roles of 

diverse risk and stabilization factors. Given this new insight, attention should now focus on 

the collection of data that will render complex simulations meaningful. For example, most 

prior experimental findings focus solely on the radial direction for both the thrombus and 

AAA wall; thus, molecular distributions and heterogeneities in mechanical properties are 

virtually unknown in axial and circumferential directions. Full 4-D information (radial, 

circumferential, and axial distributions of structural constituents and biomolecules at multiple 

times during lesion evolution) will thus be needed to create realistic patient-specific models 

including the biochemomechanics associated with ILT. 

Another potential limitation of the current model is the assumption that luminal area 

remains constant and concentric throughout the G&R process. Some clinical observations 

support this assumption of constant luminal diameter in thrombus-laden aneurysms (e.g., 

[164]), but this is not universal, especially in smaller lesions. Non-uniform thrombus 

deposition is undoubtedly related to the complex evolving hemodynamics [23,164], which can 

vary depending on the location, size, and shape of the lesion. Future studies should explore 

the added complexities of incorporating a hemodynamically driven evolution of thrombus 

deposition within a FSG model. With such a 4D model, the G&R effects of eccentric 

thrombus deposition and potential internal dissection of thrombus could be explored. 

Additional simplifications of our model include neglect of convection-mediated transport 

of biomolecules through both the thrombus and wall, which could affect the morphology of 

the thrombus [68]. There is similarly a need to refine the constitutive relations for the 

production of these biomolecules. For example, the activation of plasmin or MMPs (e.g., by 

tPA and uPA or plasmin, respectively) was not modeled explicitly, and neither was their 

inhibition (e.g., PAI or TIMP). For MMPs, this modelling is even more complex for the 

different sub-types (e.g., MMP1 vs. MMP2, and so forth) should be derived separately. In 
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order to avoid a number of additional assumptions and associated parameters, and due to the 

lack of spatiotemporal experimental data, plasmin and MMP distributions were modeled 

phenomenologically.  

Notwithstanding the use of phenomenological relations to reduce the complexity of the 

modelling, this introduces numerous parameters, some of which are difficult to determine 

directly from experiments. Fortunately, however, the vast majority of the requisite parameters 

could be estimated indirectly from experimental observations: parameters describing growth 

of vasa vasorum (Eq. (36)) were based on data in [15] that showed an approximately 7-10 

fold increase in the neovascularized proportion of the aortic wall from healthy to large 

aneurysmal (Fig. 2C); the initial area of neovascularization was inferred from [74] (around 

0.2% of initial area). Vorp et al. showed similar results for increases in the percent area of 

inflammatory cells [74]. Parameter VV

EDPK  in Eq. (36) was calibrated to fit the given bound. In 

the absence of human data, weighing factors in equations (42) and (43) were based on animal 

models. Experiments on elastase-induced aneurysms in rats showed that elastolytic activity 

was significantly elevated within the aortic wall of animals perfused with thioglycollate plus 

plasmin 9 days after perfusion (207.6± 54.8 μg elastin-rhodamine lysed/18 hr; control rats, 

25.43±11.13) [75]. Similarly, an approximately 50-fold increase in type 1 collagen 

degradation products has been observed in aneurysms compared to controls [76], assumingly 

over 20-30 years. The calculated values of weighting factors for elastase and collagenase were 

similar, as they should be, considering their physical meaning is the amount of protein 

degraded per unit of protease per time. Several studies ([136,192–194]) provided insight into 

realistic ranges of increased inflammation, and helped us bound the parameters defining 

increases in inflammation (i.e., production of leukocytes). Many of the remaining equations 

are well-known and frequently used as G&R constitutive relations. Because some of the 

parameters have been shown to vary significantly among patients (e.g., proteolytic activity in 

the luminal layer [10]), the stated range was explored parametrically. A full parameter 

sensitivity study would also be useful, but was beyond the present scope given our focus on 

the first examination of potential effects of common risk factors.  

In summary, further refinement of the model in terms of both identifying relevant 

pathophysiological ranges of parameters and the means to assess more exact values for 

patient-specific models can and should proceed as the necessary experimental and clinical 

data become available. As outlined in the review [84], there is a pressing need for better 

quantification of: 
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 Biomolecular kinetics – identify cellular sources of relevant biomolecules (e.g., plasmin, 

MMPs, and inflammatory chemokines and cytokines), including rates of 

production/degradation, activation / inhibition, and convection / diffusion, as well as their 

evolving circumferential and axial distributions.  

 Stress-strain relations motivated by microstructure – quantify the nonlinear 

heterogeneously distributed mechanical properties of the multi-layered ILT and 

aneurysmal wall, ideally with direct correlations to histological constituents and properties 

(e.g., collagen-content, elastic fragmentation, fibrin density, etc.). 

 Failure/rupture – quantify regionally, and propose constitutive relations for, the evolution 

of the strength of the ILT and aneurysmal wall, including models of failure that consider 

the propagation of dissections or frank rupture. 

Out of many possible experiments, some of the possibilities that could improve this thrombus-

laden aneurysm model, assist with the calibration of the model parameters, as well as increase 

the understanding of the pathophysiology of the disease are: 

1. In humans, during the open surgical repairs, samples of ILT and wall could be harvested, 

and locations of high MMP activity or neutrophil content in the luminal ILT or wall could 

be defined. One could study whether these locations could be correlated with the areas of 

local high dilatation rate defined from prior imaging (e.g., from CT scans obtained during 

follow-ups). 

2. In murine models with ILT (rat elastase model, for example), one could try to eliminate 

functional neutrophils and/or MMPs (in genetic mutants or with drugs). The experimental 

results could be compared with predictions of the presented model.  

3. In murine models, one could try to induce AAAs in older vs younger rats to test the 

prediction that older rats with stiffer aortas may have less AAA expansion than young 

rats, as predicted here. 
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6. Conclusion 

Computational biomechanics is increasingly used to investigate complex processes in 

vascular health and disease. Prior G&R models of aortic aneurysms (cf. [43,44]) have 

provided considerable insight that complement histopathological studies and clinical 

observations, but have heretofore failed to include the biochemomechanical effects of 

intraluminal thrombus on the aneurysmal wall. These effects are considered to be fundamental 

to the evolution of this disease and therefore for predicting clinical outcomes related to AAA 

enlargement and rupture.  

Notwithstanding advantages of this first generation model, it was necessarily limited by the 

assumed cylindrical geometry, which did not admit local dilatations of the aneurysmal wall 

and thus axial or circumferential variations in thrombus properties (e.g., shoulder regions of 

an aneurysm with continued thin thrombus). This was necessary due to limitation of Matfeap 

simulations – they are computationally and time consuming, require a large size of common 

block, incapable of taking into account mechanical effects of ILT, and there is also a lack of 

experimental data about molecular distributions and heterogeneities in mechanical properties 

in the axial and circumferential direction in the literature. Yet, this limitation does not 

diminish the capability of the model to study whether intraluminal thrombus influences 

expansion of aneurysm and to investigate which bounded parameters influence AAA growth 

the most. 

Similarly, the assumption of a space-filling thrombus did not allow a hemodynamically-

driven progression of the ILT, which likely occurs in vivo. To continue to gain increased 

insight, subsequent finite element based G&R models should probably consider, in order of 

increasing complexity, axisymmetric, non-axisymmetric, and finally patient-specific 

geometries [195]. Fortunately, computational models of lesions having complex geometries 

have already been achieved [42,95], though not with an evolving thrombus. The final goal, of 

course, is a comprehensive fluid-solid-growth model that integrates the diverse 

biochemomechanical factors that govern the hemodynamics, endothelial (dys)function (e.g., 

shear stress induced paracrine signaling), thrombus formation and progression (e.g., platelet 

activation and turnover of fibrin), inflammation, intramural cellular proliferation and 

apoptosis (e.g., phenotypic switching and anoikis of smooth muscle cells), and 

chemomechanical-dependent turnover of extracellular matrix. The focus herein on a 

geometrically simple model was prudent for exploring and verifying the new constitutive 

frameworks and assumptions for the roles of ILT on the evolution of the aneurysmal wall. 
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Prior G&R studies showed that the stiffness of collagen plays a dominant role in predicting 

clinical endpoints (e.g., arrest, progressive expansion, or rupture) in AAAs that do not harbor 

an ILT [73]. The model confirmed these prior results, but suggested further that factors in 

addition to collagen may also be important in thrombus-laden lesions. In particular, 

simulations herein with identical properties of the aneurysmal wall were capable of 

differential clinical outcomes depending on properties of the ILT. These results follow 

directly from the ability of the thrombus to not only bear load, but also to affect the turnover 

of extracellular matrix in the underlying wall via proteolysis. Of course, there is a need for 

novel experiments to better determine the many related G&R parameters in Table 4, 

ultimately in a patient-specific manner. For example, although experimental determination of 

concentrations of MMPs and elastases in different layers of the ILT and AAA wall has 

revealed insight into the biological activity of heterogeneous thrombi, there is a need for data 

on continuous distributions from the lumen to the outer wall of the aneurysm. Experimentally 

motivated studies of the mechanical influence of ILT on the wall have similarly been 

provocative, yet this issue remains controversial. Even though most of the studies support a 

“cushioning” effect on the wall, some suggest that whether the thrombus will decrease or 

increase the peak wall stress depends on its porosity and attachment to the wall. Apart from 

data on the existence of a “liquid interphase” in some large ILTs with a completely disrupted 

abluminal layer [10], which may suggest that attachment weakens with age, there are no data 

on this issue. Likewise, there is still a need for further data on regional variations in the 

composition, structure, and mechanics of the aneurysmal wall (e.g., better information on the 

reorientation of collagen fibers and, crucially, changes in the stiffness of collagen due to 

altered pre-stretches or cross-linking). Such data promise to improve current models. 

Nevertheless, this initial study suggested new insights into both the important roles that 

ILT may play during the evolution of an aneurysm and the potential roles of diverse risk 

factors and therapeutic strategies. That is, basic results were largely consistent with clinical 

observations, intuition, and previous computational G&R models having more complex 

geometries but without thrombus. Simulations yielded, for example, average rates of 

enlargement of ~2 mm/year, while rapid enlargement (10 mm/year and more) led to rupture. 

Smoking increased enlargement rates by ~0.43 mm/year, and hypertension increased 

enlargement by ~0.22 cm/year per 10 mmHg, both of which are consistent with clinical 

observations [79]. The model was also consistent with observations that female sex, smoking, 

and hypertension increase likelihood of rupture-risk. It also introduces a hypothesis that 

mechanical state of aneurysm (e.g., the amount of elastin remaining or the pre-stretch of the 
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deposited collagen) significantly influences ability of AAA adapt to changes and damages. 

While stiffening the collagen fibers could help to stabilize an enlarging aneurysm (as shown 

previously in models without thrombus [73]), this might not be sufficient in cases of high 

proteolytic activity of thrombus (see Figure 5.8(e)-(h); stress after 20 years is at 

approximately 455 kPa, and rupture is expected within a year) or an abrupt change in blood 

pressure (e.g., see Figure 5.6 and Figure 5.7). Limiting proteolytic activity also appears to be 

important because a biologically active luminal layer of thrombus could otherwise increase 

enlargement rates and rupture risk when in close proximity to a remodeling wall (e.g., in a 

thin thrombus or in posterio-lateral or shoulder regions where the ILT contacts the wall). 

Indeed, an evolving ILT may contribute in this way to clinically observed discontinuous 

patterns of enlargement (see Figure 5.8(d) and (h)). In conclusion, therefore, that ILT should 

not be neglected in future experimental and computational models. 

As noted above, due to lack of experimental data about molecular distributions and 

heterogeneities in mechanical properties in the axial and circumferential direction, the 

translation of some of the modelling assumptions to 3D will not be straight forward. 

Therefore, experimentation that will provide the requisite data for developing and validating 

the growth and remodeling model, which ultimate aim is to enhance the ability to understand 

and predict the complex, biochemomechanical processes occurring during AAA progression, 

and thus improve patient-specific risk stratification and clinical outcome is highly 

encouraged. 

In conclusion, a careful, integrated consideration of the evolving mechanical, chemical, 

and biological properties of biologically active, multi-layered intraluminal thrombus on the 

natural history of AAAs will be needed to maximize the potential of computational models to 

help identify and ameliorate rupture-risk factors (or, equally important, promoting 

stabilization factors), provide patient-specific diagnostics and interventional planning, and 

ultimately improve clinical outcomes. 

 

6.1. Original scientific contribution 

1. Development of the numerical model that describes: 

a) formation of abdominal aortic aneurysm considering radial structural changes in the 

aortic wall, 

b) formation and radial changes in structure of intraluminal thrombus, 
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2. Implementation of growth and remodeling model into finite elements, and modeling 

biochemical influence of thrombus on aneurysmal wall (while mechanical effects are 

neglected). 

3. Modeling of the interaction between thrombus and wall will allow us to investigate 

influence of thrombus on AAA expansion and rupture risk, 

4. Support or rejection, within model assumptions, of hitherto proposed rupture risk or 

stabilization factors. 
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