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Abstract

Numerical framework for simulation of wave impact loads on ships and offshore
structures in ocean environment is developed in this study, where fully nonlin-
ear, viscous, turbulent and compressible two–phase flow is considered. Number
of numerical methods and models are developed, tested and applied to provide
a clear, comprehensive, reliable, robust and efficient numerical procedure for as-
sessing wave impact loads on marine structures, with emphasis on green sea loads.

The computational efficiency of the framework is improved by developing en-
hanced hydro–mechanical coupling strategies which reduce the number of nonlin-
ear iterations required for the fluid flow–rigid body motion coupling to converge.
A detailed verification and validation of the present numerical model is performed
in order to ascertain the accuracy and precision in calculating green sea pressure
loads, where a novel geometrical Volume–of–Fluid method is used and evaluated.
Furthermore, a two–phase flow model is developed where water is assumed to be
incompressible, while air is modelled as ideal adiabatic gas. The abrupt change in
fluid properties across the interface, mainly density and compressibility, is han-
dled with the Ghost Fluid Method, while Volume–of–Fluid method is used for
interface capturing. The Ghost Fluid Method allows a one–cell–sharp represen-
tation of the interface with respect to the density field as well as compressibility
effects, thus accurate and conservative trapped air cushioning effects can be cap-
tured, which is the main goal of the present numerical model. A pressure based
formulation and the assumption of isentropic compression/expansion results in
a highly efficient method, where no notable overheads exist with respect to the
incompressible version of the model. The model is thoroughly verified and vali-
dated for flows without significant compressibility effects, as well as events where
trapped air compression effects are important, such as breaking wave impact and
free fall impact.

Finally, a complete procedure for assessing wave impact loads is conducted



with the developed model for an Ultra Large Container Ship, where green water
loads on a deck structure at the bow are sought. The procedure relies on linear
frequency domain method to provide a long term distribution of ship response,
which is in turn used to define a deterministic design wave. Two different ap-
proaches for defining the design wave are used and compared.

The development conducted in this work is performed within the Naval Hydro
Pack software library, which is based on collocated Finite Volume method–based
Computational Fluid Dynamics software foam–extend, community driven fork
of the open–source software OpenFOAM.

Keywords:
Wave impact loads, Green sea loads, Two–phase compressible flow, Ghost Fluid
Method, Polyhedral Finite Volume method, Naval Hydro Pack, foam–extend





Prošireni Sažetak

Brodovi i pučinski objekti izloženi su djelovanju vjetra i valova, pri čemu udarna
valna opterećenja predstavljaju posebnu opasnost za sigurnost posade, opreme i
broda. Relativno niska vjerojatnost pojave ekstremnih valnih udara čini ih teškim
za opisati i predvidjeti, dok predstavljaju vrlo značajan faktor prilikom projekti-
ranja konstrukcija pomorskih objekata. Ekstremna valna opterećenja zbog toga
predstavljaju važan izazov ne samo zbog sigurnosti konstrukcija već i zbog poten-
cijalnih ušteda koje se mogu postići smanjenjem dimenzija konstruktivnih eleme-
nata novogradnje uslijed boljeg poznavanja pojave valnog udara. Postoje razne
pojave koje su vezane uz udarna valna opterećenja poput udaranja pramca (eng.
"slamming") i opterećenja uslijed vode na palubi (eng. "green sea"). Karak-
teristike takvih pojava su komplicirana i brzo mijenjajuća geometrija slobodne
površine, te visoki gradijenti tlaka tokom udara uz moguće utjecaje stlačivosti
zarobljenih mjehura zraka. Trendovi u pomorskoj industriji usmjereni su projek-
tima koji u sve većoj mjeri izlažu objekte nepovoljnim valnim udarima, poput
sve dužih brodova za prijevoz kontejnera kod kojih velika vertikalna gibanja na
pramcu uzrokuju udaranje pramca te opterećenje uslijed vode na palubi, ili Float-
ing Production, Storage and Offloading objekata koji se sidre na način da im je
ograničeno zaošijanje zbog čega se nisu u mogućnosti okrenuti pramcem u smjer
vala i vjetra, te su iz tog razloga izloženi velikim amplitudama ljuljanja prilikom
čega dolazi do prolijevanja vode na palubu [1].

Prilikom predviđanja takvih opterećenja, linearne spektralne metode koje se
zasnivaju na potencijalnom modelu strujanja su vrlo korisne [2]. Koristeći spek-
tralan pristup odzivu pomorskih objekata moguće je odrediti dugoročan odziv
konstrukcije, koji pruža važne informacije vezane za cijeli životni vijek objekta
koje su od velike važnosti prilikom projektiranja. Pomoću spektralne analize može
se odrediti vjerojatnost premašivanja određenog ekstremnog događaja što je vrlo
korisno za detekciju i opis takvog događaja. Iako se vjerojatnost premašivanja
može odrediti za ekstreman događaj, predviđanje lokalnog odziva konstrukcije



uslijed istog nadilazi mogućnosti pojednostavljene linearne spektralne metode.
Iz tog se razloga pribjegava metodama koje točnije opisuju fiziku poput eksper-
imentalnih ispitivanja ili Računalne Dinamike Fluida (RDF). Eksperimentalne
metode imaju dugu tradiciju i visoku točnost, te se desetljećima uspješno koriste
za određivanje ekstremnih valnih opterećenja. Numeričke metode kao što je RDF
su pod intenzivnim razvojem u industriji i akademskom svijetu, te je potreban
daljnji razvoj na području robusnosti i isplativosti za svakodnevno korištenje u
industriji.

Iako su eksperimentalne metode pouzdane, često su kompleksne, skupe i dugo-
trajne, zbog čega se u industrijskom projektiranju uglavnom koriste za konačnu
potvrdu projekta, ili unutar velikih industrijskih istraživanja. S obzirom na nave-
deno, postoji potreba za bržim metodama koje se mogu koristiti ranije u projek-
tnom procesu. Numeričke metode su jeftinije, brže i mogu se vršiti u prirod-
noj veličini izbjegavajući problem skaliranja, zbog čega predstavljaju alternativu
eksperimentalnom ispitivanju. Razna istraživanja se bave poboljšanjem točnosti,
robusnosti i pouzdanosti RDF metoda kako bi se mogle koristiti u industrijske
svrhe. Postoje dvije osnovne grupe RDF metoda: metoda Lagrangeovih čestica
(eng. "Smoothed Particle Hydrodynamics") i metode kontrolnih volumena (eng.
"Finite Volume"). Obje grupe metoda imaju određene prednosti i nedostatke,
međutim u posljednje vrijeme metode bazirane na kontrolnim volumenima dobi-
vaju više pozornosti zbog šireg raspona aplikacije te računalne učinkovitosti.

Prilikom valnog udara mjehur zraka može ostati zarobljen unutar vode ili
između slobodne površine i površine trupe pomorskog objekta. Zarobljen zrak
može značajno promijeniti trajanje i intenzitet tlačnih opterećenja prilikom udara
[3, 4, 5, 6]. Stlačivost zraka ima značajan utjecaj tokom udara zbog prijenosa
mehaničke energije između vala i zračnog mjehura zbog čega volumen, tlak i
gustoća zraka osciliraju. Stlačivost zraka prilikom udara produžuje djelovanje
tlačnog opterećenja na konstrukciju, što može uzrokovati veći prijenos energije
na konstrukciju te veći strukturni odziv. Nadalje, ako je zračni mjehur u dot-
icaju s objektom, površina na koju djeluje udarni tlak se povećava [6]. Dakle,
pouzdano modeliranje kompresibilnosti zraka je vrlo važno kako bi metoda mogla



generalno odrediti pojavu udarnih valnih opterećenja.

Tema ovog rada je numeričko modeliranje udarnih valnih opterećenja pomoću
metode kontrolnih volumena s naglaskom na praktičnu primjenu u industriji.
Glavni cilj rada je doći do sveobuhvatnog, pouzdanog, robusnog i računalno
učinkovitog numeričkog okruženja za predviđanje udarnih valnih opterećenja na
pomorske objekte, s naglaskom na opterećenja uslijed vode na palubi. Razne
metode su razvijene, testirane i primijenjene u ovom radu. Kako bi se poboljšala
računalna učinkovitost, unaprijeđena je sprega gibanja krutog tijela i jednadžbe
tlaka što omogućuje smanjenje broja nelinearnih iteracija vodeći do manjeg ukupnog
proračunskog vremena. Provedena je detaljna verifikacija i validacija numeričkog
okruženja za proračune opterećenja uslijed vode na palubi, kako bi se odredila
točnost i preciznost pristupa. Testiranje, validacija i sprega nelinearne metode
viših redova (eng. "Higher Order Spectral method", HOS) za efikasne proračune
propagacije morskih valova je provedena. HOS pruža rubne uvjete RDF metodi
za modeliranje kompleksnih valnih polja, kako bi se smanjilo trajanje i domena
RDF proračuna. Najveći doprinos ovog rada je razvoj dvofaznog modela strujanja
sa stlačivim modelom zraka, čija je točnost, robusnost i računalna učinkovitost
pokazana u detaljnoj verifikaciji i validaciji provedenoj u ovom radu. Metoda je u
mogućnosti modelirati zračne mjehure tijekom valnog udara, što je demonstrirano
na primjeru udara slamajućeg vala. Kao konačni ishod rada, razvijene numeričke
metode su sintetizirane kako bi se proveo proračun opterećenja palubne konstruk-
cije broda za prijevoz kontejnera. Proračun koristi rezultate linearne spektralne
metode koja je korištena kako bi se definiralo projektno stanje mora relevantno
za ekstremno opterećenje uslijed vode na palubi.

I Cilj i hipoteza

Cilj ovog rada je uspostava sveobuhvatnog, pouzdanog, robusnog i računalno
učinkovitog numeričkog okruženja za proračune udarnih valnih opterećenje na
pomorske objekte s naglaskom na opterećenja uslijed vode na palubi. U ovom
višeskalnom pristupu je potrebno lokalna udarna valna opterećenja povezati s
dugoročnim odzivom pomorskog objekta kako bi se u obzir uzela cjeloživotna



eksploatacija. Na ovaj način je statistički opis odziva objekta povezan s deter-
minističkim opterećenjem koje se može koristiti prilikom projektiranja.

Hipoteza rada je da razvoj dvofaznog modela strujanja baziranog na metodi
kontrolnih volumena pri čemu se u obzir uzima stlačivost zraka bez značajnog
povećanja potrebnih računalnih resursa omogućuje generalne proračune udarnih
valnih opterećenja. Uz napredan algoritam za spregu gibanja krutog tijela i lin-
earnu spektralnu metodu za proračun odziva pomorskog objekta takva metoda bi
omogućila proračune realističnih i relevantnih strukturnih opterećenja uz razumne
računalne resurse.

II Znanstveni doprinos

Ovaj rad doprinosi znanstvenom polju brodogradnje pružajući računalno učinkovito,
sveobuhvatno i robusno numeričko okruženje za proračun udarnih valnih opterećenja.
Metode koje su razvijene, validirane i primijenjene u ovom radu su kombinirane
kako bi se dobio generalan hidrodinamički model koji može modelirati udare
morskih valova u punoj veličini. Relativno niske potrebe za računalnim resursima
omogućuju da se proračuni provedu unutar jednog dana na osobnom računalu,
omogućujući da se metoda koristi u procesu projektiranja.

Dvofazni model strujanja koji u obzir uzima stlačivost zraka proširuje val-
janost pristupa na širok spektar tipova valnih udara u usporedbi s konvencional-
nim nestlačivim modelom strujanja. Fenomen zračnog jastuka može imati velik
utjecaj na prostornu i vremensku distribuciju tlačnih opterećenja, pri čemu često
dolazi do povećanja prijenosa energije s vala na konstrukciju. Razvijeni model
strujanja koristi jedinstveni pristup modeliranju slobodne površine u smislu diskon-
tinuiteta karakteristika fluida na slobodnoj površini koji se zasniva na metodi
kontrolnih volumena i Ghost Fluid Method. Nadalje, razvijeni algoritmi za
spregu gibanja krutog tijela i jednadžbe tlaka unaprjeđuju računalnu učinkovi-
tost metode pri simulacijama gibajućih objekata na valovima. Dodatan doprinos
je ostvaren primjenom nove metode za praćenje slobodne površine koja se zove
"isoAdvector", koja je detaljno testirana i validirana za primjenu na opterećenja



uslijed vode na palubi.

Osim razvoja novih numeričkih modela, rad doprinosi usporedbom dva ra-
zličita pristupa definicije tzv. projektnog vala baziranog na dugoročnom odzivu
objekta. Metode su uspoređene na temelju opterećenja, računalne učinkovitosti
i praktičnosti, što pruža objektivnu procjenu dva pristupa.
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1. Introduction

Marine objects encounter different types of loadings that are characteristic to
the ocean environment. Extreme wave loads are one of the more dangerous ones
when it comes to structural integrity and survivability of the vessel. Relatively
small probability of occurrence of these events makes them difficult to predict and
describe, while they often influence the structural scantlings to a large extent.
Thus, prediction of extreme wave loads presents an important challenge not only
for safety reasons but also financial savings of the new–build. There are several
distinct types of wave impact phenomena which are of interest, such as slam-
ming and green sea loads. The characteristics of these phenomena are violent
free surface flows with rapidly changing geometry, accompanied by high pressure
gradients during the impact and possible air compressibility effects. The trends
in the naval and offshore industry drive towards designs that are more exposed
to wave impact loads, such as longer container ships resulting in more extreme
vertical motion of the bow exposing the bow to both larger slamming loads due
to large bow flare, and green sea loads. Another example are the Floating Pro-
duction, Storage and Offloading (FPSO) vessels that are being anchored with
confined yaw rotation, rendering them unable to weather–vane [1] and exposing
them to large roll motions resulting in significant water shipping.

A large portion of the response caused by extreme wave loadings can be pre-
dicted with linear frequency domain methods [2], which can be effectively used
in order to establish long term predictions. These predictions are invaluable in
the design process as they provide information regarding the entire life–time of
the vessel, including probability levels of extreme response that are of interest
and identification of the same. However, they suffer from the fact that only lin-
ear response can be captured excluding highly nonlinear phenomena which are
usually associated with extreme wave impact loading and may cause structural
failure. This is where high–fidelity methods come into play in order to predict
deterministic loads, which can be divided into two basic groups: experimental
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and numerical. Experimental approach enjoys a long tradition and high level of
confidence, and it has been successfully used for decades to obtain more detailed
information regarding wave impact loads. High fidelity numerical methods such
as Computational Fluid Dynamics (CFD) are undergoing intensive development,
where a lot of room remains to improve the reliability and feasibility of these
methods to be used daily within the industrial design process.

Whereas experimental methods are well established and reliable, they are of-
ten cumbersome, time–consuming and expensive. Additionally, for phenomena
related with wave impact the scaling of results presents a significant source of
error and uncertainty, even more so if compressibility effects are present. Thus,
within industrial design processes, they are mostly used to confirm a final project,
or within large industrial research projects. Thus, the need for faster methods
is present in order to be able to iterate early in the design process. Numerical
methods generally require smaller amount of time and are less expensive, thus
presenting a viable alternative. For this reason, significant effort is being exerted
in academia and industry to enhance the accuracy, robustness and reliability
of CFD methods. There are two distinct groups of CFD methods that are the
most prominent for simulating violent wave impacts: Finite Volume (FV) based
methods and Smoothed Particle Hydrodynamics (SPH) methods. Both groups
have respective advantages and disadvantages; however it seems that FV based
methods provide a more computationally efficient framework, as well as a more
flexible range of applications.

During wave impact a significant air volume can remain trapped inside the
body of water or between the free surface and the hull surface. The trapped air
can significantly change the pressure loads during the impact, both in intensity
and duration [3, 4, 5, 6]. Compressible air properties play an important role dur-
ing the impact due to the energy transfer between the wave and the air bubble,
causing the air bubble to oscillate in volume, pressure and density. The compres-
sion of air prolongs the force peak acting upon the structure, which in general
enables a larger amount of energy to be transferred to the structure causing more
severe structural response. Furthermore, if the air pocket is in contact with the
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structure, it can increase the surface area where the high pressure is acting [6].
Thus, in order to have a general numerical framework for assessing wave im-
pact loads air compressibility needs to be taken into account. Furthermore, the
method should be able to accurately describe the evolution of the free surface
during violent impacts from far field to the point of impact.

This study focuses on the FV numerical modelling of wave impact loads with
emphasis on everyday practical industrial applications. The goal is to establish
a clear, comprehensive, reliable, robust and efficient numerical framework for
assessing wave impact loads on marine structures, with emphasis on green sea
loads. For that purpose, a number of numerical models are developed, tested
and applied to the problem. For the sake of computational efficiency, enhanced
hydro–mechanical coupling algorithms are developed enabling smaller number of
nonlinear iteration loops, resulting in smaller overall computational time. De-
tailed verification and validation is performed in order to assess the accuracy and
precision of the framework in calculating green sea loads. A nonlinear potential
flow based method for propagation of irregular wave fields called the Higher Or-
der Spectral (HOS) method is tested, validated and coupled to CFD framework
to provide a highly resolved wave field without additional cost of large–scale,
long–time CFD simulations. The largest contribution of this study is a robust,
accurate and efficient compressible two–phase flow model that is developed, ver-
ified and validated, handling violent breaking wave impacts with trapped air
pockets. Finally, the numerical models are synthesised into a complete green
sea load analysis of a deck structure on an Ultra Large Container Ship (ULCS),
starting from the linear spectral–domain ship response analysis all the way to
pressure loads acting on the structure.

1.1. Previous and Related Studies

In order to simulate green water loads in a physically realistic manner, a proper
flow model needs to be applied without posing limitations with respect to the
characteristics of wave impact, and the interaction between the flow and the
floating object needs to be accounted for in a numerically stable and efficient

3
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way. Another key aspect in two–phase FV models is interface capturing for
modelling the two immiscible fluids.

1.1.1. Interface Capturing

In this study the free surface is modelled using interface capturing techniques.
Several interface capturing methods are commonly used in CFD: volume frac-
tion based Volume–of–Fluid (VOF) method [10, 11]; Level Set (LS) method [12],
which is often based on the signed distance function; and the Phase Field (PF)
method [13], where a hyperbolic tangent function is used as the indicator field.

VOF is broadly used in FV algorithms due to its intrinsic conservative na-
ture, which preserves the individual mass of each phase to machine tolerance.
Two main approaches are present regarding the VOF method: algebraic and
geometric approach. The downside of algebraic VOF is the smearing of the in-
terface, which encouraged many authors to develop special compressive schemes
[14, 11, 15] or include additional compressive terms in the transport equation [16,
17]. To describe the interface more precisely, geometric reconstruction methods
have emerged, such as the Piecewise Linear Reconstruction Calculation (PLIC)
method developed by Gueyffier et al. [18], as well as the approach described by
Popinet [19], used in the Gerris flow solver. In this study, both algebraic and
geometric VOF methods will be used, where a new geometric method recently
developed by Roenby et al. [20] called isoAdvector will be thoroughly tested. It
provides a sharp interface with no mass conservation issues, while it generalises
to arbitrary polyhedra and parallelises without overhead.

In the LS method, signed distance function is often used to capture the in-
terface [21, 22]. The sharp interface is defined as zero value iso–surface (or level
set) of the distance function. In LS, special attention is needed to preserve the
signed distance profile of the LS field during advection, which is often achieved
by additional redistancing equation [23], or by calculating the distance directly
after solving the LS transport equation in a narrow band near the interface. LS
method based on signed distance function does not conserve mass, thus conser-
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vative LS methods [24, 25] have emerged, which convect a Heaviside function
bounded between 0 and 1, where the 0.5 contour presents the interface.

In the PF method, a tangent hyperbolic function is used to capture the loca-
tion of the interface [13], which remains preserved during advection as opposed
to the signed distance function in LS method. The fundamental advantage of the
method is that there exists a transport equation which converts the hyperbolic
tangent function without deformation and whose source terms can be made into
fully implicit transport terms [26]. To harness the advantages of both PF and LS
method, Sun and Beckermann [27, 28] used the LS method to derive a modified
LS transport equation, which has additional terms that implicitly redistance the
signed distance function. Such procedure avoids the need for additional redis-
tancing equations or explicit calculation [26].

In addition to interface capturing, interface modelling requires additional
treatment regarding kinematic and dynamic free surface boundary conditions.
Kinematic boundary condition ensures the continuity of velocity field across the
interface, while the dynamic boundary condition yields discontinuities of pressure
gradient and tangential velocity gradient, caused by discontinuity of density and
viscosity. The discontinuities can be modelled using conditional averaging [29],
yielding the two–phase momentum equation which includes the density gradient,
as used by many authors [30, 31, 32, 33, 34, 35, 36]. The density field is calcu-
lated by blending the densities of the two phases at the interface, resulting in a
smeared density variation at the interface approximating the sharp discontinuity.
The non–zero density gradient at the interface should be balanced by the discon-
tinuity of the pressure gradient at the free surface. In the conditionally averaged
approach, this balance is resolved in the momentum equation, often causing spu-
rious acceleration of the lighter phase [37].

To model the discontinuities at the interface more accurately, the free sur-
face jump conditions arising from free surface boundary conditions should also
be taken into account. Free surface jump conditions are often taken into account
using the Embedded Free Surface method [38, 39, 40] or the GFM [41, 42, 43,
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44, 45, 46, 47, 48, 49, 50], which differ in the numerical treatment of the inter-
face jump conditions. The GFM along with LS method for interface capturing
was first presented by Fedkiw et al. [48, 49]. Kange et al. [47] adopted the
method for multi–phase laminar flow, while Desjardins et al. [42] used the GFM
with the conservative LS formulation to simulate incompressible two–phase tur-
bulent atomization of liquid diesel jet. The GFM has also been used with VOF
interface capturing method for compressible multiphase flows by Bo and Grove
[41]. Huang et al. [50] presented Finite Difference (FD) based GFM with LS
for curvilinear structured grids, with simplified tangential stress balance jump
condition. The above mentioned publications regarding Embedded Free Surface
method and GFM rely on structured grids. Queutey and Visonneau [35] present
an approach similar to GFM for arbitrary polyhedral grids, with the assumption
that the interface is aligned with the internal grid faces. Recently, Vukčević [37]
implemented second order–accurate GFM on arbitrary polyhedral grids, where
the kinematic free surface boundary condition and the normal stress balance are
taken into account exactly, with a simplified model for tangential stress balance.
Such a simplification is justified for large–scale problems where surface tension
and viscosity play a minor role [50].

1.1.2. Hydro–Mechanical Coupling

The occurrence of green sea critically depends on the motion of the vessel with
respect to the free surface. It is for that reason that special attention should be
dedicated towards the coupling between the equations that govern the fluid flow
and rigid body motion.

The coupling of body motion and fluid flow is commonly performed on the
level of the nonlinear pressure–velocity loop (SIMPLE or PIMPLE), i.e. after the
flow solution rigid body motion equations are solved and the computational grid
is moved accordingly. The procedure is then repeated within each time–step un-
til convergence. This is the conventional strongly coupled, partitioned approach.
The PIMPLE algorithm is comprised of multiple PISO pressure–velocity loops,
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where pressure is updated multiple times per one momentum equation–update
[51]. This approach has been verified in numerous publications. Orihara and
Miyata [52] use a predictor–corrector algorithm for the in–house code WISDAM–
X, where they recalculate the entire flow field after every body motion correction.
Castiglione et al. [53] imply that the in–house code CFDShip-Iowa uses a sim-
ilar approach, where the complete fluid flow solution is obtained in each body
motion–fluid flow iteration. Wu et al. [54] describe the execution sequence of
the CFD code used in their study where a similar procedure is employed. To
achieve convergence of the coupling, multiple body motion–fluid flow iterations
are needed. Simonsen et al. [55] and Vukčević and Jasak [56] reported that a
minimum of five nonlinear iterations were needed per time–step to ensure conver-
gence. For the fluid flow itself to converge, smaller number of nonlinear iterations
is sufficient, typically two for wave related problems. Thus, the body motion–
fluid flow coupling presents a considerable overhead in terms of computational
time.

Efforts have been made by some authors to enhance the hydro–mechanical
coupling, however mostly in cases where the moving body is also deforming, and
the volume of the body is discretised. In these cases, it is possible to mono-
lithically couple the matrices that arise from discretising the fluid flow and the
structure. This approach is mostly applied using the Finite Element method
[57, 58, 59, 60, 61, 62, 63, 64], however in some publications FV is used as well
[65, 66, 67]. Some authors state that the monolithic FSI model with a discretised
structure can calculate rigid body dynamics as a special case. Hachem et al. [59]
state that the rigid body can be modelled by imposing special conditions to the
Navier–Stokes equations for the stencils inside the structure. Legay et al.[63] and
Mosher et al. [68] show that rigid body can be simulated within the presented
model by substituting the structural system of equations with the rigid body
motion equations. For marine hydrodynamic applications, discretising the struc-
ture presents a cumbersome and unnecessary task. Thus, the existing monolithic
approaches are not appropriate for marine hydrodynamics.
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1.1.3. Calculating Green Sea Loads With CFD

Temarel et al. [69] give an extensive overview of experimental and numerical
studies related to wave impact loads, assessing the current level of readiness for
tackling present industrial challenges. For green sea loads, which are of primary
interest in this study, the authors concluded that limited success is achieved both
with experimental and numerical approach in quantifying realistic operational
loads. Thus, this field presents an active area of research, which is confirmed
by the large number of recently published papers on the subject. Greco et al.
[70] used the numerical solver developed by Greco and Lugni [71] to calculate
wave loads on a patrol ship, including green sea loads with comparison to the
experiments. Lu et al. [72] developed a time domain numerical method based on
Finite Volume (FV) method used for green sea load simulations. Xu [73] used
SPH to simulate breaking wave plunging onto a deck. Zhao et al. [74] studied
the influence of structure motion on pressure loads due to green sea effects using
a FV based method. Kim et al. [75] used a linear method for assessing the ship
motion, and a nonlinear viscous method to calculate green sea loads on a con-
tainer vessel. Ruggeri et al. [76] used WAMIT software based on the potential
flow model and a viscous FV code StarCCM+ to devise guidelines for green sea
load calculations. Zhu et al. [77] conducted numerical simulations of green sea
events for a FPSO vessel. Kudupudi and Datta [78] calculated green sea loads
on a moving vessel where the motion is calculated with a panel method software
where comparable results are obtained with respect to experimental measure-
ments. Silva et al. [1] conducted an experimental campaign with green sea
events in oblique waves upon a FPSO. The tested wave field settings are selected
based on the frequency domain linear method, while experimental measurements
are used to detect the absolute maximum RWA, which is reproduced using CFD
in the subsequent publication [79]. The simulation includes rigid body motion
and it successfully reproduces the experimental measurements. Pakozdi et al.
[80] used CFD in order to predict green water loads on a Tension Leg Platform
(TLP) in a 10 000 year extreme event. They used an approach that is equiva-
lent to the Regular Equivalent Design Wave [81], however the selection of regular
wave characteristics are based on crest height and free surface elevation rise ve-
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locity based on irregular wave measurements in a wave tank, instead on a long
term statistical distribution. The authors state that this approach reduces the
required computational time since it does not require irregular wave propagation
in CFD. However, the drawback of this approach is that it requires experimen-
tal measurements to detect the irregular extreme events in order to measure the
steepness and rise time.

In order to reduce the overall computational time for assessing green wa-
ter loads, Pakozdi et al. [82] developed a framework where a potential theory
based method is coupled with CFD in order to minimise the CFD domain and
the duration of the simulated time. A reasonable comparison with experimental
measurements were achieved. Joga et al. [83] compared two commercial CFD
codes in assessing water ingress into open cargo holds of a container ship during
green sea events in irregular beam seas. Both codes predicted motion with rea-
sonable accuracy, whereas authors concluded that assessing volume of shipped
water poses a greater challenge.

Majority of FV based methods mentioned above use the incompressible two–
phase free surface flow model, which is adequate for most naval hydrodynamic
applications. However, in extreme wave impacts compressibility effects can play
an important role [6]. Thus, flow models where air is considered compressible
have been developed by numerous authors as shown in the subsequent section.

1.1.4. Compressible Two–Phase Flow

SPH based methods have been applied to compressible two–phase flows by nu-
merous authors. Guilcher et al. [84] investigated scale effects on a wave impact
against a wall with trapped air pocket, successfully applying the developed com-
pressible SPH method. In another publication, Guilcher et al. [9] showed a
validation of the approach on benchmark cases, namely the liquid piston case
and free–falling water column, which will be used in this study as well. Luo et
al. [85, 86] used a Consistent Particle Method to simulate wave breaking with
trapped air pocket and sloshing in two connected tanks, showing good agree-
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ment with the experiment. Rostami and Ketabdari [87] validated their weakly
compressible SPH method on a 2D dam break with horizontal column impact,
however no trapped air pockets were investigated. Lind et al. [88] showed a novel
SPH method with a sharp interface treatment, validated on a dam break case
with trapped air pocket.

The shortcomings of SPH methods prevent them from being used for indus-
trial problems on a daily basis despite the fact that they can effectively be used
to simulate aerated wave impacts and related phenomena. The computational
cost is often too great, and simulating complex geometries such as ships with
superstructure becomes a problem, as well as accurate integration of 6–degrees–
of–freedom motion of a floating object due to difficult treatment of impermeable
boundary conditions. It is for this reason that FV based methods receive more
attention and popularity, for they allow a more efficient numerical handling, while
the treatment of body boundary conditions is straightforward, where automatic
meshing strategies are available for generating body–fitted grids [89]. FV meth-
ods have certain disadvantages with respect to SPH based methods that need to
be recognised, such as treatment of the sharp interface dividing the two phases.
Nonetheless, there is an increasing number of publications dealing with develop-
ment and application of FV methods for compressible two–phase flow in naval
hydrodynamics.

Braeunig et al. [7] used a FV based numerical method to explore the pos-
sibility of exact scaling between model–scale and full–scale LNG sloshing and
derived the gas that should be used in model scale to ensure good quality scal-
ing. Dumbser [90] developed a higher order WENO FV method for compressible
two–phase flow. The method is validated on a number of dam–break cases com-
paring the results to experiments and shallow water flow theory. Plumerault et
al. [91] developed a two–phase compressible method that allows aerated water
flow, which can be very important in highly violent wave impacts. The method
is validated against experimental results for a wave impact against a wall with
entrained air. Costes at al. [92] used a nonlinear potential flow based numerical
method in conjunction with a compressible two–phase FV method to simulate

10



1.1. Previous and Related Studies

wave impact with trapped air pocket. The potential flow solver is used to prop-
agate the wave field, while the more expensive FV compressible method is used
only in the vicinity of the structure. Miller et al. [93] developed a compressible
two–phase method specialised for simulating underwater explosions, where both
air and water compressibility are accounted for. A three–dimensional shallow
water explosion simulation is shown, where mass is not fully conserved. Ma et al.
[8] developed a higher–order FV method for handling aerated two–phase wave
impacts, where the dispersion of air in water is handled with the VOF approach.
The method proved accurate for fundamental cases as well as for a 2D wave im-
pact case with trapped air pocket. The approach was also used to study rigid
plate entry [94] where the influence of aeration was investigated experimentally
and numerically, showing good correspondence between the two sets of results.
Furthermore, sloshing with trapped air effects is investigated in de-pressurised
tank with experimental comparison [95], showing once more the accuracy of the
presented numerical approach. However, the drawback of higher–order numerical
schemes is that they generally suffer from instabilities and are computationally
more expensive. Calderón–Aánchez et al. [96] investigated a free fall of a hori-
zontal water column with rectangular cross–section using OpenFOAM software,
where the compressibility is explicitly accounted for. The ability of the code
to capture compressible impact effects on this simple canonical case is demon-
strated for various density ratios between the two phases. Zou et al. [97] used
a commercial software FLUENT to investigate the effects of viscosity and air
compressibility on violent sloshing events, concluding that lower pressures are
obtained when a compressible air model is used as opposed to the incompressible
model. Lyu et al. [98] investigated different interface capturing methods in a FV
framework for simulating sloshing impacts, where both compressible and incom-
pressible methods are used. They concluded that VOF based interface capturing
is the most suitable to predict the motion of the liquid and pressure loads.
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1.2. Objective and Hypothesis of Research

The objective of this research is to establish a clear, comprehensive, reliable, ro-
bust and efficient numerical framework for assessing wave impact loads on marine
structures, with emphasis on green sea loads. The local wave impact loads are to
be related with the long term response covering the entire life–time of the vessel
in a multiscale approach. In this manner, the statistical description of the ves-
sel’s response is related to deterministic loads which can be used in the structural
design process.

The hypothesis is that developing a two–phase flow model based on FV frame-
work where the air compressibility effects are taken into account without increas-
ing the computational demands would provide a general method for assessing
wave impact loads. Thus, a single simulation could be performed where air cush-
ioning effects can be taken into account, if they occur, with only a minor compu-
tational overhead. Together with advanced hydro–mechanical coupling strategies
and the linear frequency domain methods, realistic and relevant structural loads
can be assessed that can be used in the design process.

1.3. Scientific Contribution

The present study contributes by providing an efficient, comprehensive and ro-
bust numerical framework for assessing wave impact loads. The methods that are
developed, applied and validated in this study are combined to create a unique,
versatile and high–fidelity flow model which can tackle general large–scale ocean
wave impacts. Relatively low computational demands enable the calculations to
be performed within reasonable amount of time on a desktop computer, facilitat-
ing the design process.

The two–phase flow model which models volumetric compressibility of air
widens the range of wave impact types that can be considered with respect to
the commonly used incompressible approach. Air cushioning effects can play an
important role in distributing the impact loads over large surfaces and longer time
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intervals, intensifying the energy transfer to the structure. The model features
unique numerical treatment of the sharp change in compressibility properties be-
tween water and air based on the Ghost Fluid Method. Next, the developed
hydro–mechanical coupling strategies reduce the overall computational time re-
quired for simulations with floating objects. Additional contribution is related
to application of a novel geometric interface capturing method called isoAdvec-
tor, which was thoroughly tested and validated for green water loads in this study.

In addition to the development of new numerical models, thesis contributes
by giving a comparison of two different methods for defining the design wave
condition based on the long term ship response distribution. The methods are
compared in terms of loads, computational efficiency, and ease of use, giving an
objective judgement of the two approaches.
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The conducted research will be briefly outlined and discussed in this chapter point
by point. The relevance and outcomes of each developed method and conducted
study will be discussed in terms of the goal of the research. The chapter is
comprised of the following topics, that correspond to attached papers:

1. Higher Order Spectral method; nonlinear spectral wave propagation method
based on potential flow theory (PAPER 1),

2. Enhanced hydro–mechanical coupling; advanced strategies for coupling rigid
body motion equations and the pressure equation (PAPER 3 and PAPER
4),

3. Verification and validation of the numerical model for assessing green sea
loads (PAPER 5),

4. Development of a two–phase flow model where air is modelled as a com-
pressible ideal gas (PAPER 6),

5. Operational green sea loads calculation for an Ultra Large Container Ship
(PAPER 7).

2.1. Higher Order Spectrum Method

Higher Order Spectral method is a nonlinear potential flow based method for
propagating irregular wave fields with high computational efficiency. In this study
the method was validated, coupled with CFD and tested for the present applica-
tion. The validation and CFD coupling is published in PAPER 1. The original
idea was to use HOS in irregular wave green sea simulations in order to resolve
nonlinear wave–to–wave interaction and wave modulation outside of the CFD
domain (temporally and spatially), reducing the CFD domain to a minimum.
This sort of application is depicted in PAPER 1, where a long–time evolution of
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a short–crested irregular wave field is performed with HOS, the extreme wave is
detected and simulated with CFD, and a response of a container ship is calculated.

Although the coupling of HOS and CFD showed to be efficient and produced
the desired outcome, it is difficult to relate results form HOS with operational
profile of a ship. Since HOS is nonlinear, it cannot be used in conjunction with
frequency domain methods for calculating ship response. Thus, in order to obtain
statistically meaningful data, long–time CFD simulations including ship motion
needs to be conducted. This sort of simulation was performed in the course of
this study, as shown in PAPER 8. It takes more than a week for this sort of simu-
lation to calculate on a coarse grid using substantial computer resources (48–core
cluster), which is not feasible in industrial setting. It is for this reason that it
was concluded that HOS will not be used for this purpose. Instead, linear motion
response is used to define wave conditions that can be used in a CFD simulation
to calculate realistic green sea loads, as discussed in Sec. 2.5.

Except for random irregular wave fields, HOS can be used to simulate focused
irregular wave groups, where phase shifts of wave components are not random.
This can be used to check the level of nonlinearity developing during focusing,
which can be high if the obtained wave system is steep. HOS was applied for
this purpose in PAPER 2, where it showed that the difference with respect to the
linear solution is small, thus rendering the linear solution adequate for simulations
that will reproduce experimental measurements (Fig. 2.1). Since focused wave
groups represent a type of design waves, this is a relevant application for this
study.

Another application of HOS related to CFD which is not applicable to this
study is wave spectrum calibration. When performing irregular wave simulations
where a longer CFD domain is required which permits developments of significant
amounts of wave–to–wave nonlinearities and wave modulations, the wave power
spectrum obtained in the simulation does not correspond to the target spectrum.
This is also present in experimental measurements. In order to resolve this, wave
calibration is performed where the input spectrum is modified in order to pro-
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Figure 2.1: Surface elevation of a focused wave obtained with HOS and CFD (PAPER 2).

duce the target spectrum once the nonlinearities have changed it. Using HOS the
calibration can be performed at a fraction of the computational cost compared to
CFD. An attempt of calibrating the sea spectrum with HOS is shown in PAPER 8.

Tu summarise, during this research project it was found that HOS has limited
applicability to the considered problem, but it is useful for other applications.

2.2. Enhanced Hydro–Mechanical Coupling

The efficiency of the coupling between fluid flow and rigid body motion can have
a large influence on the overall efficiency of the simulation. If the coupling re-
quires more nonlinear iterations per time–step with respect to a simulation where
no rigid body motion is simulated, it increases the computational time. In this
study, two enhanced approaches are developed in order to minimise the compu-
tational overhead of simulating rigid body motion coupled with CFD.

In PAPER 3, an enhanced strategy for coupling the pressure equation and
rigid body motion equations is developed, verified and validated. The two sets of
equations are more tightly coupled by performing rigid body motion integration
once per pressure equation step updating the boundary velocity of the object, at
which the position of the computational grid is not updated, saving computational
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time. The method is tested on a seakeeping case, where it shown to be up to
four times more efficient while obtaining equivalently accurate results. Fig. 2.2
shows the comparison of first order heave amplitude and phase with respect to the
number of nonlinear iterations per time–step. The enhanced approach produced
the reference solution with 3 iterations, while it took 8 with the conventional
approach.
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Figure 2.2: Convergence of heave motion items with the conventional and enhanced hydro–
mechanical coupling algorithms (PAPER 3). z1 stands for the first order amplitude, γz1 stands
for the phase shift of heave while N stands for the number of nonlinear iteration loops per
time–step.

In PAPER 4, a monolithic strategy where the pressure equation and rigid
body motion are coupled at the level of linear equation system solver is devised.
At each iteration of the linear solution process for the pressure equation, rigid
body motion equations are solved with the latest available pressure field. The
motion increment resulting from the updated pressure change is introduced di-
rectly into the linear system, achieving two–way coupling. The method is verified
and validated, while a seakeeping performance test showed that acceleration of
2.4 times in computational time is achieved.

The two coupling methods that are developed showed significant advantages
over the existing coupling strategy in terms of computational efficiency. For prob-
lems including rigid body motion in this study, the enhanced approach proved
to be sufficient, whereas the monolithic approach unnecessary over–resolves the
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coupling. Since the enhanced approach is slightly more efficient than the mono-
lithic method, it is used in this study in order to achieve savings in computational
time. The monolithic approach proved to be useful for cases with added mass
instabilities.

2.3. Green Sea Loads Verification & Validation

In order to ascertain the accuracy of the numerical framework in predicting pres-
sure loads caused by green sea or water on deck, a detailed verification and
validation study is performed and published in PAPER 5. Experimental results
published by Lee et al. [99] are used for the comparison, where pressure on deck
of a fixed FPSO model is measured in nine different incident regular waves. The
fixed object case is selected in order to minimise the possible source of error in
the final results. For this study the incompressible two–phase flow model is used
[100] which utilises the GFM and isoAdvector interface capturing method.

The results showed high level of accuracy in comparison to experimental re-
sults, with numerical uncertainties being comparable to the experimental uncer-
tainties. Fig. 2.3 shows comparison of peak pressures at different pressure gauges
for one of the wave cases, where the two sets of results show similar behaviour.
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Figure 2.3: Pressure peak results comparison for wave case ID 5 (PAPER 5).

In PAPER 5, a novel geometric interface capturing method based on VOF
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2.4. Compressible Two–Phase Flow

approach called isoAdvector [20] is applied to the present numerical framework
and compared to the existing algebraic version. The method proved to give a sig-
nificant improvement to the resolution of the free surface in violent wave impact
cases, as shown in Fig. 2.4. The isoAdvector provides a sub–grid resolution of
the interface, enabling intricate geometry of the free surface to be captured with
relatively coarse grids. Fig. 2.4 shows that droplets and air bubbles are resolved
with the isoAdvector, while the algebraic VOF method results in significant
smearing of the interface.

Notwithstanding the less accurate representation of the interface, the algebraic
VOF approach produces only slightly less accurate result for the pressure loads.
Fig. 2.5 shows the comparison of pressure integrals between the experimental re-
sults, isoAdvector and algebraic VOF, where the algebraic VOF exhibits slightly
larger under–prediction comparing to the isoAdvector. Since isoAdvector is
fully explicit in time, it requires the CFL number to be below one. The algebraic
VOF method is implicit, enabling larger time–steps which reduces the overall
computational time. Thus, the algebraic VOF presents a more reasonable choice
for industrial–grade simulations which need to be computed efficiently and where
pressure loads are of primary interest as opposed to the geometry of the interface.

The numerical framework on which the study is based proved to be accurate
in terms of green sea loads. The verification and validation study shows that it
can be used in order to conduct green sea loads studies for industrial cases with
high level of confidence (see PAPER 5 for more details).

2.4. Compressible Two–Phase Flow

In violent wave impacts occurring in irregular waves, trapped air effects can influ-
ence the energy transferred from the wave to the structure. The cushioning effect
of trapped air bubble distributes the impact pressure over larger area and longer
duration of time, which increases the force impulse exerted on the structure [6].
Although such effects are more frequent in slamming events, they can also occur
in violent, plunging type green sea events. In order for this study to result in
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2. Discussion of Method and Results

(a) t = 0.06 T, (b) t = 0.19 T,

(c) t = 0.32 T, (d) t = 0.45 T,

(e) t = 0.58 T, (f) t = 0.71 T,

(g) t = 0.84 T, (h) t = 0.97 T.

Figure 2.4: Visual comparison of the volume fraction field α (denoted "alpha") in simulation
where the isoAdvector (left) and the algebraic VOF method (right) are used (PAPER 5).

a general numerical tool for assessing extreme wave impact loads, the compress-
ibility of the air phase must be taken into account. PAPER 6 presents detailed
mathematical and numerical background of a numerical model developed in this
study, including an extensive verification and validation of the model.

The developed two–phase numerical method models water as an incompress-
ible liquid, while air is assumed to be a compressible ideal adiabatic gas. The
simplification of the air phase model results in a numerically stable and efficient
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Figure 2.5: Pressure integral comparison between the isoAdvector and the algebraic VOF
method for wave 9 (PAPER 5).

method, while accounting for compressible effects that are important in naval
hydrodynamics. The aim of this development is to be able to capture effects
where air is volumetrically compressed, i.e. compression effects caused by ap-
plying external forces on a closed air domain. The compressibility effects due to
high air velocities, as well as pressure shock modelling, are of no interest. Thus,
a numerical method was devised under these premises in order to minimise the
overhead in terms of computational resources while maintaining the same level
of accuracy and robustness.

Verification and validation performed in PAPER 6 shows that high level of ac-
curacy and precision can be achieved with the developed model, while no overhead
in terms of computational resources are exhibited with respect to the counterpart
incompressible numerical method. As an example, Fig. 2.6 shows the comparison
of impact pressure of a square water column against a flat surface, as shown in
Fig. 2.7. The present model reproduces the results reported by other authors,
accurately describing the oscillation of the air bubble. In order to compare the ac-
curacy of the developed compressible approach to its counterpart incompressible
version, and to validate that it can be used for green sea simulations accurately,
one of the cases from Sec. 2.3. is repeated. Fig. 2.8 shows the comparison
of peak pressure obtained in the experiment, with the incompressible flow model
and the present compressible model. The two numerical models show very similar
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2. Discussion of Method and Results

results, validating the current approach for green water loads, with good overall
agreement with the experiment. Another aspect that is important from the in-
dustrial application point of view is the computational efficiency of the method.
Ideally, the compressible method would be equally fast as the incompressible one
if no compressibility effects are present. This is tested on a regular head wave
seakeeping case, where both accuracy and computational time are shown to be
comparable between the incompressible and compressible formulation. It took
4.7 hours to simulate one wave period with the incompressible method on a Intel
Core i5-3570K processor, while it took 3.6 hours with the compressible formula-
tion on a slightly faster Intel Core i7-4820K processor.
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Figure 2.6: Pressure signal comparison during the impact of the falling water column. Pressure
measured at the center of the bottom boundary is compared to Braeunig et al. [7], Ma et al.
[8] and Guilcher et al. [9] (PAPER 6).

The main objective of the developed compressible two–phase model is to be
able to predict violent wave impacts with air cushioning effects. To that end,
large–scale experimental wave impacts with trapped air conducted by Bullock et
al. [6] are used as a benchmark case. Fig. 2.9 shows the evolution of the breaking
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2.4. Compressible Two–Phase Flow

(a) t = 0.05 s, (b) t = 0.60 s,

(c) t = 0.85 s, (d) t = 0.90 s,

(e) t = 0.95 s, (f) t = 1.00 s,

Figure 2.7: Evolution of the interface, velocity and pressure field in the free fall of the water
column (PAPER 6).

wave impacting a vertical wall, where a trapped air bubble can be seen. Compar-
ison of the pressure force measured at the wall during the impact is shown in Fig.
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Figure 2.8: Comparison of average pressure peaks for the green sea loading case (PAPER 6).

2.10. The pressure force rise and the force peak are well predicted, as well as the
first sub–atmospheric peak. As discussed in PAPER 6, the pressure oscillations
caused by air bubble expansion and contraction are damped more rapidly in the
experiment compared to the CFD simulation. There are two probable reasons: i)
the structural response of the vertical wall and the surrounding wave flume struc-
ture was significant, where according to Bullock et al. [6] the vibrations could be
felt which is also evident from the video recording of a camera mounted on the
wave flume side; ii) in the experiment the vertical wall had holes going all the
way through the structure, enabling the trapped air to escape during the impact,
evacuating part of the impact energy with it. Fig. 2.11 shows a photograph of
the vertical wall, where the 10 cm diameter holes are visible. In future studies,
the holes will be taken into account in a 3D simulation.

Overall, the novel two–phase compressible method proved to be accurate,
robust and efficient, rendering it applicable to industrial wave impact problems.
Specifically, the seakeeping and green sea tests showed that it can be used in
realistic green sea event predictions where motion response of a ship is calculated
along with water on deck causing pressure loads on deck structures, which is the
topic of the next section.
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2.5. Irregular Waves Green Sea Loads

(a) t = 18.25 s, (b) t = 18.50 s,

(c) t = 18.75 s, (d) t = 19.00 s,

Figure 2.9: Evolution of the interface, velocity and pressure field in breaking wave impact event
with trapped air (PAPER 6).

2.5. Irregular Waves Green Sea Loads

The ultimate outcome of this study is a numerical framework for predicting green
sea loads on ships or offshore objects. To demonstrate and test the numerical
framework developed in this study a complete, industrial–grade green sea load
calculation procedure is performed for an Ultra Large Container Ship, shown
in PAPER 7. The procedure starts by calculating long term distribution of
the Relative Wave Amplitude (RWA) which denotes the vertical position of the
free surface with respect to an arbitrary point on the deck of the ship. The
long term distribution is obtained by employing the linear frequency domain
method for predicting ship response in irregular waves. Based on the long term
prediction, different types of Equivalent Design Wave (EDW) are defined, which
are deterministic wave fields allowing time–domain realisation. Two different
types of EDW are tested and compared in PAPER 7:

• Regular Equivalent Design Wave: a monochromatic incident wave;
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Figure 2.10: Force signal comparison for the breaking wave case (PAPER 6).

• Response Conditioned Wave: irregular wave with non–random phase shifts,
where the wave components depend on wave and response spectra.

For each of the design wave approaches, a CFD simulation is performed with
the compressible two–phase method. They are compared with respect to green
water loading occurring on the breakwater positioned at the deck of the ULCS,
required computational resources and modelling complexity. For the Response
Conditioned Wave, time–realised linear solution of heave and pitch motion is
used in order to initialise the simulation a small amount of time prior to the
extreme event. In this way the time that needs to be simulated with CFD is
minimised, reducing the overall computational time. The Response Conditioned
Wave produced a green sea event even though the linear realisation predicted a
RWA maximum close to the freeboard height. Fig. 2.12 shows the RWA and
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2.5. Irregular Waves Green Sea Loads

Figure 2.11: Photograph of the vertical wall from the breaking wave impact experiment [6]
(PAPER 6), with holes going through the wall that are not included in the present CFD study.

the linear realisation of the surface elevation at the fore perpendicular in the Re-
sponse Conditioned Wave case, while Fig. 2.13 shows the green sea event.

In terms of pressure loads the Regular Equivalent Design Wave produced the
most severe green sea event resulting in highest pressure loads exerted on the
breakwater. The Response Conditioned Wave approach resulted in loads that
were 1.9 time smaller. In terms of computational resources, the three methods
are comparable where it takes between 14 and 17 hours of computational time to
obtain the result on a desktop PC, depending on the processor speed. From the
point of view of the complexity of setting up the CFD simulation, the Regular
Equivalent Design Wave is more simple and requires a smaller amount of man–
hours. The Response Conditioned Wave approach require a linear realisation in
order to provide initial conditions, which adds a layer of complexity in the pre–
processing step.
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2. Discussion of Method and Results

In PAPER 7 the developed numerical framework proved to be robust and
computationally efficient, allowing industrial–grade simulations to be conducted
where impact wave loads can be calculated and used in the design process. The
computational resources and time required to perform the simulation allow the
framework to be used in every–day design process, since moderate computational
time is needed on modest desktop PC-s. With the availability of larger com-
puter resources the computational time would reduce to within one working day,
enabling the iterative design process.
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Figure 2.12: Linear realisation of the free surface elevation and RWA at FP in the Response
Conditioned Wave approach (PAPER 7).
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2.5. Irregular Waves Green Sea Loads

(a) t = 56.4 s, (b) t = 58.0 s,

(c) t = 58.8 s, (d) t = 59.6 s,

Figure 2.13: The green sea event from the Response Conditioned Wave simulation (PAPER 7).
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Assessing wave impact loads on marine objects exposed to ocean environment
presents a challenging and important problem in the design process. The violent
and complex nature of wave impacts makes them difficult to predict and repro-
duce. Experimental and numerical approaches are being developed and used in
order to provide a more accurate description of these phenomena, however they
are often too expensive and time–consuming for a typical every–day design pro-
cess. Thus, a need exists for methods that allow quick and accurate assessment
of complex wave impact loads on realistic intricate geometries.

A comprehensive, robust, efficient and accurate numerical framework based
on the FV method is developed for performing industrial–grade wave impact
loads calculations which can be used in a realistic design process. The key fea-
ture of the approach is the two–phase flow model where air is modelled as an
ideal compressible gas, allowing physical wave impacts to be simulated where
air cushioning effects influence the phenomenon. Together with the enhanced
hydro–mechanical coupling strategy, the framework permits complex, realistic
industrial–grade simulations to be performed on a desktop PC in a reasonable
amount of time, rendering it a useful design tool.

The two–phase flow model treats water as an incompressible liquid, while
air is modelled as an adiabatic ideal gas. The interface between the two phases
is modelled using the VOF interface capturing method, where both algebraic
and geometric approaches are tested and used in this study. The discontinuity
of density and compressibility across the interface is handled by employing the
Ghost Fluid Method method, where specialised numerical schemes are devised
to provide a one–cell–sharp change in fluid properties. The model is verified and
validated in detail, exhibiting adequate level of accuracy and good agreement
with other methods in the literature, including experimental results. Addition-
ally, the developed model proved to be capable of capturing compressible wave



impact pressure oscillations due to a trapped air bubble, where the results are
compared to large–scale experimental data.

In order to assess the accuracy of the numerical framework an extensive veri-
fication and validation study is performed for a simple 3–D geometry of a FPSO,
where green sea pressure loads are compared to experimental results. The study
showed that acceptable accuracy can be achieved and that the framework can
assess wave impact pressures with good accuracy. Here, the geometric and alge-
braic VOF methods are compared, and it is concluded that while the geometric
approach offers a more resolved interface, the algebraic approach presents a more
computationally efficient method while attaining acceptable level of accuracy with
respect to pressure impact loads, which are of primary interest.

Finally, the numerical framework is tested on industrial–grade, multi–scale
calculation of green sea pressure loads on a deck structure of an Ultra Large
Container Ship. The long term response of the ship is calculated using linear
frequency–domain method, which is used to define the deterministic Equivalent
Design Wave, which in turn is used to perform the CFD simulations, where ship
motion is calculated as well. The robustness and efficiency of the framework is
demonstrated, where a desktop PC is used to preform the simulations, while the
computational grid is generated using an automatic meshing software, resulting
in an unstructured topology.

In future study, the developed framework will be tested for other wave im-
pact related phenomena, namely slamming and sloshing. Sloshing of liquid cargo
in ship holds presents an important problem from the structural integrity point
of view, since sloshing induced wave impacts can cause high pressure loads on
the cargo hold bulkheads. Compressibility of the gas phase plays an important
role for sloshing, since the wave impact of the most adverse cases often include
trapped gas pockets. In the present framework the sloshing excitation can be
naturally calculated by performing a complete simulation of the ship in waves
together with cargo holds.
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3. Conclusions and Future Work

Another goal for future work is to expand the framework to be capable of
calculating the structural response to the wave impact. Pressure loads calculated
in CFD can be transferred to a structural model, where the response in terms of
deformation and stress could be calculated, giving valuable information for the
structural design.
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Abstract 

In this paper a framework for efficient irregular wave simulations using Higher Order Spectral method coupled with fully nonlinear 
viscous, two-phase Computational Fluid Dynamics (CFD) model is presented. CFD model is based on solution decomposition via Spectral 
Wave Explicit Navier–Stokes Equation method, allowing efficient coupling with arbitrary potential flow solutions. Higher Order Spectrum is 
a pseudo-spectral, potential flow method for solving nonlinear free surface boundary conditions up to an arbitrary order of nonlinearity. It 
is capable of efficient long time nonlinear propagation of arbitrary input wave spectra, which can be used to obtain realistic extreme waves. 
To facilitate the coupling strategy, Higher Order Spectrum method is implemented in foam-extend alongside the CFD model. Validation of 
the Higher Order Spectrum method is performed on three test cases including monochromatic and irregular wave fields. Additionally, the 
coupling between Higher Order Spectrum and CFD is validated on three hour irregular wave propagation. Finally, a simulation of a 3D 

extreme wave encountering a full scale container ship is shown. 
© 2017 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

Keywords: Higher Order Spectral method; Irregular waves; Extreme waves; CFD; Foam-extend. 

1. Introduction 

With increased availability of CPU resources during past 
few decades, Computational Fluid Dynamics (CFD) is becom- 
ing a standard practice for simulation of transient free-surface 
waves. CFD methods that model fully-nonlinear, two-phase, 
viscous flow exhibit high computational costs, which prohibit 
long time wave evolution in a large domain. This disadvantage 
is partially overcome using domain decomposition strategies, 
where the flow in a small, relevant part of the domain is re- 
solved using CFD, while the farfield flow is resolved using 

potential flow, a computationally cheaper model. Given the 
potential flow solution, the CFD simulation naturally develops 
nonlinear, viscous flow with vorticity effects. First decompo- 

∗ Corresponding author. 
E-mail addresses: inno.gatin@fsb.hr , innogatin@gmail.com (I. Gatin), 

vuko.vukcevic@fsb.hr (V. Vukčević), h.jasak@wikki.co.uk , hrvoje.jasak@ 

fsb.hr (H. Jasak). 

sition method was developed by Van Dalsem and Steger [1] , 
called Fortified Navier–Stokes (FNS) method. Van Dalsem 

and Steger used the decomposition to ‘fortify’ the solution of 
subset equations in the boundary layer, while solving ordinary 

Navier–Stokes in the rest of the domain. Jacobsen et al. [2] in- 
troduced a domain decomposition method for wave modelling 

using relaxation zones. Paulsen et al. [3] used one-way cou- 
pling between fully nonlinear potential flow solver (developed 

by Ensig-Karup et al. [4] ) and fully nonlinear viscous CFD 

solver to investigate wave loads on a circular surface piercing 

cylinder. The same method was used to calculate steep reg- 
ular wave loads on a bottom mounted cylinder [5] . Pistidda 
and Ottens [6] used the Euler Overlay Method for domain 

decomposition to calculate the Response Amplitude Operator 
(RAO) for a moonpool of a deep water construction vessel. 

Vuk ̌cevi ́c and Jasak [7] developed a modified Spectral 
Wave Explicit Navier–Stokes Equation (SWENSE) [8–10] so- 
lution decomposition method which is used alongside domain 

decomposition. The solution is decomposed into incident and 

http://dx.doi.org/10.1016/j.joes.2017.09.003 
2468-0133/© 2017 Shanghai Jiaotong University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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diffracted fields, where the incident field is obtained from the 
potential flow model, while the diffracted field is solved via 
two-phase, viscous CFD model. All of the above mentioned 

CFD methods are computationally expensive because they are 
modelling highly resolved spatial flow features with nonlinear 
and coupled equations in time domain. Hence, they cannot be 
used to perform a large number of long time irregular wave 
field propagations needed to obtain a naturally emerging ex- 
treme wave. 

Extreme wave loads are gaining more attention due to in- 
creasing number of offshore objects being installed world- 
wide. Extreme waves emerge due to focusing of wave spec- 
trum components, which is influenced by nonlinear wave 
modulation and wave-to-wave interaction. It is considered that 
the influence of wind and atmospheric pressure, bathymetry 

and current [11] also plays a role in extreme wave generation. 
Apart from the focusing of unidirectional spectrum, geomet- 
ric focusing of directional spectrum can also cause extreme 
wave events. 

Assessment of extreme wave loads demands accurate wave 
modelling. Since extreme waves occur randomly in an irreg- 
ular sea state, in order to obtain a statistically and physically 

accurate extreme wave, irregular sea state needs to be evolved 

for a long time on a large domain. Moreover, the evolution 

of the irregular sea state has to take into account nonlin- 
ear effects of wave interaction and modulation. CFD takes 
into account all nonlinearities of the flow, and inherently the 
nonlinearities of wave-to-wave interaction and wave modula- 
tion. However, even with domain decomposition methods, it is 
challenging to propagate arbitrary wave field for a sufficient 
amount of time to observe a natural emergence of extreme 
waves. Apart from that, long time CFD simulation might ac- 
cumulate discretization errors which will inevitably influence 
the wave field. To obtain a realistic extreme wave in an ir- 
regular sea state, as much as a thousand peak periods need 

to be simulated. Paulsen et al. [3] reported that one irregu- 
lar wave peak period took 8 hours to compute on 10 CPU’s, 
extrapolating to almost a year for 1000 peak periods, which 

might be necessary to obtain a realistic extreme wave. 
Nonlinear wave field can be efficiently propagated using 

spectral potential flow approach. In this work, potential flow 

pseudo-spectral Higher Order Spectral (HOS) method is used. 
Nonlinearities of wave-to-wave interaction and wave modu- 
lation are taken into account, while viscous effects, vorticity, 
wave breaking, diffraction and radiation are neglected. Since 
the latter effects have minor influence on extreme wave emer- 
gence, HOS method can be used to perform a long time evo- 
lution of an irregular wave field on a large-scale domain to 

obtain a statistically and physically consistent extreme wave. 
HOS can then be coupled with CFD in a small spatial domain 

containing the extreme wave, and for a short period of time 
to capture viscous effects, wave breaking and fluid–structure 
interaction. In this work one-way coupling between HOS and 

CFD is achieved using the decomposition model [7] . 
HOS method was first developed by Dommermuth and Yue 

[12] and West et al. [13] independently. West et al. used order 
consistent Taylor and perturbation series expansion, which is 

adopted by most HOS algorithms today [14,15] . Since the 
publication of the original method in 1987, numerous au- 
thors continued its development. Ducrozet et al. [15] enhanced 

numerical efficiency and aliasing treatment, while Tanaka 
[14] combined HOS with complex amplitude function. Dom- 
mermuth [16] developed a time relaxation scheme which en- 
ables HOS calculation to be initialized with a linear solution. 
This is of crucial importance since wave energy spectra are 
defined for linear wave components. 

In this paper a mathematical overview of the HOS method 

is given, followed by a detailed description of numerical pro- 
cedure. The CFD model and coupling with potential flow by 

Vuk ̌cevi ́c and Jasak [7] is used. Three test cases are consid- 
ered for HOS validation purposes. The first case considers 
monochromatic wave train propagation, where modal ampli- 
tudes are compared with analytical Stokes solution. Second 

test case considers propagation of four uniformly steep spec- 
tra, where the HOS solution is compared to viscous, two- 
phase CFD solution. Third test case shows naturally occurring 

Benjamin–Feir instabilities [17] . In addition to the validation 

of the implemented HOS model, the coupling between HOS 

and CFD using SWENSE is also validated on a three hour ir- 
regular wave propagation case. Finally, an example simulation 

of a 3D extreme wave encountering a full scale container ship 

is shown. According to ITTC guidelines, the present method 

applied on this case presents a fully-nonlinear seakeeping cal- 
culation. 

2. Mathematical model 

In this section mathematical model for the HOS method is 
outlined; the reader is referred to [12–15] for more details. 

Pseudo-spectral HOS method is used to reformulate non- 
linear partial differential equation set via perturbation, Taylor 
and Fourier series into a set of ordinary differential equations. 

2.1. Governing equations 

In this model, free-surface flow is assumed irrotational, 
inviscid and incompressible. Surface gravity wave propagation 

is described with the following governing equations: 

• Laplace equation for incompressible, irrotational, inviscid 

flow: 

∇ 

2 φ(x, y, z, t ) = 0, (1) 

where φ is the velocity potential, while x, y, z are spatial 
coordinates and t is time. 

• Dynamic free surface boundary condition: 

∂φ

∂t 
+ gz + 

1 

2 

( ∇φ) 2 = 0, (2) 

where g is the gravitational acceleration in the direction of 
negative z axis. 

• Kinematic free surface boundary condition: 

∂η

∂t 
+ 

(
∂φ

∂x 
, 
∂φ

∂y 

)
·
(

∂η

∂x 
, 
∂η

∂y 

)
= 

∂φ

∂z 
, (3) 
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where η = η(x, y, t ) is a single valued function of the free 
surface displacement. 

Depth is considered uniform and the bottom impermeable, 
while the domain is assumed periodic in the horizontal direc- 
tions [15] . 

Eqs. (2) and (3) can be rewritten in terms of surface po- 
tential ψ(x, y, t ) = φ(x, y, η(x, y, t ) , t ) , as they are valid for 
z = η(x, y, t ) : 

∂ψ 

∂t 
+ gη + 

1 

2 

(
∂ψ 

∂x 
, 
∂ψ 

∂y 

)2 

− 1 

2 

( 

∂φ

∂z 

∣∣∣∣
z= η

) 2 ( 

1 + 

(
∂η

∂x 
, 
∂η

∂y 

)2 
) 

= 0, (4) 

∂η

∂t 
+ 

(
∂ψ 

∂x 
, 
∂ψ 

∂y 

)
·
(

∂η

∂x 
, 
∂η

∂y 

)

− ∂φ

∂z 

∣∣∣∣
z= η

( 

1 + 

(
∂η

∂x 
, 
∂η

∂y 

)2 
) 

= 0. (5) 

2.2. Higher Order Spectral method 

A pseudo-spectral, HOS method has been used to obtain a 
nonlinear solution of free surface boundary conditions, Eqs. 
(4) and (5) . All spatial derivatives are evaluated in wave num- 
ber space, while time derivatives are evolved in physical space 
instead of the frequency domain. The shape function for ve- 
locity potential used in the wave number space is: 

φ(x, y, z, t ) = 

∑ 

k 

∑ 

l 

c k,l (t ) 
cosh 

(
K k,l ( z + d ) 

)
cosh (K k,l d ) 

e iK k x e iK l y , (6) 

where c k,l ( t ) are the time-dependent Fourier coefficients, while 
K k,l , K k and K l are wave numbers defined as: 

K k = 

2πk 

L x 
, (7) 

K l = 

2π l 

L y 
, (8) 

K k,l = 

√ 

K 

2 
k + K 

2 
l . (9) 

Fourier series decomposition given by Eq. (6) allows us to 

calculate horizontal derivatives analytically, whereas vertical 
derivative needs special treatment as it represents vertical ve- 
locity of the free surface W , at the unknown wave elevation 

η. Hence, it is necessary to use the full form of the shape 
function given by Eq. (6) , calculate its derivative it in z di- 
rection, and evaluate it at the exact free surface location. This 
presents a Dirichlet problem for the velocity potential φ on 

a boundary of complicated shape η( x, y, t ). In order to cir- 
cumvent this difficulty, the surface potential is expanded in a 
Taylor series around z = 0 in terms of η: 

φ(x, y, η, t ) = ψ(x, y, t ) = 

∞ ∑ 

i=0 

ηi 

i! 

∂ i 

∂z i 
φ(x, y, 0, t ) . (10) 

The vertical derivative of surface potential is: 

W (x, y, t ) = 

∂φ

∂z 

∣∣∣∣
z= η

= 

∞ ∑ 

i=0 

ηi 

i! 

∂ i+1 

∂z i+1 
φ(x, y, 0, t ) . (11) 

To keep the solution up to an arbitrary order of nonlinearity, 
the potential is expanded in perturbation series in terms of 
wave slope ε = K a, where K is the wave number and a is 
the wave amplitude: 

φ(x, y, z, t ) = φ1 + εφ2 + ε2 φ3 + · · · = 

M ∑ 

m=1 

φ(m) , (12) 

where M is the perturbation series order of nonlinearity. With 

every order of φ expanded in a Taylor series using Eq. (10) , 
surface potential can be written as: 

ψ(x, y, t ) = 

M ∑ 

m=1 

M−m ∑ 

i=0 

ηi 

i! 

∂ i 

∂z i 
φ(m) (x, y, 0, t ) . (13) 

The orders of nonlinearities are determined with respect to 

the product of ηi and ∂ i φ( m ) / ∂z i , and the second sum in Eq. 
(13) is truncated at M − m to account for order consistency. 
The unknowns in Eq. (13) are the individual orders of 
velocity potential φ( m ) , which are calculated sequentially by 

equating the terms of the same order: 

φ(1) = ψ(x, y, t ) , 

φ(2) = −η
∂ 

∂z 
φ(1) , 

. . . 

φ(m) = −
m−1 ∑ 

i=1 

ηi 

i! 

∂ i 

∂z i 
φ(m−i) ; m = 2, 3 . . . , M. (14) 

Once the individual orders of φ are obtained, vertical velocity 

W can be evaluated. Vertical velocity of the free surface is 
also expanded in a perturbation series, while the individual 
orders are calculated using orders of φ as follows: 

W 

(m) = 

m−1 ∑ 

i=0 

ηi 

i! 

∂ (i+1) 

∂z (i+1) 
φ(m−i) ; m = 1 , 2, . . . , M. (15) 

Total vertical velocity is then obtained by summing all 
individual orders: 

W (x, y, t ) = 

M ∑ 

m=1 

W 

(m) . (16) 

In theory, the order of nonlinearity M at which the ex- 
pansion is truncated is arbitrary. The main advantage of this 
approach is that no iterations are needed per time step to re- 
solve the coupling of the boundary conditions. Furthermore, 
Fourier transform facilitates the calculation of spatial deriva- 
tives, accelerating the numerical procedure. 

3. Numerical model 

The Fast Fourier Transform (FFT) algorithm is used for 
efficient calculation of the Fourier transform, while the fifth- 
order Cash–Karp embedded Runge–Kutta scheme with error 
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control and adjustable time-step size [18] is used to solve or- 
dinary differential equations. In this section, emphasis is given 

on numerical procedure and initialisation of HOS calculation. 
Dealiasing, time integration and coupling with CFD are also 

briefly explained. 

3.1. Numerical procedure 

The numerical procedure starts with a discrete surface po- 
tential ψ and surface elevation η which are obtained from the 
previous time step or initial conditions. The discrete values are 
located on a uniform discrete mesh with nodes equidistantly 

spaced along the domain’s length L x and width L y . Hence, 
the mesh is fully defined with a number of nodes N x in x and 

N y in y direction, yielding mesh resolution �x = L x /N X and 

�y = L y /N y . Using Eq. (6) , the vertical derivative of velocity 

potential can generally be written as: 

∂ j φ

∂z j 
= 

∂ j 

∂z j 

( ∑ 

k 

∑ 

l 

c k,l (t ) 
cosh 

(
K k,l ( z + d ) 

)
cosh (K k,l d ) 

e iK k x e iK l y 
) 

= 

∑ 

k 

∑ 

l 

c k,l (t ) K 

j 
k,l 

sinh 

(
K k,l ( z + d ) 

)
cosh (K k,l d ) 

e iK k x e iK l y . (17) 

While calculating individual terms of a given order in 

Eq. (14) , the spatial derivatives are calculated in wave num- 
ber space. After evaluating each order φ( m ) in physical space, 
it is transformed via FFT into wave number space. This is 
required in order to efficiently calculate vertical derivative 
of φ( m ) , used in calculation of φ(m+1) . Once the individual 
derivatives are calculated, they are inversely transformed back 

into physical space before multiplying with a corresponding 

power of η. In the following equations, Fourier transform of 
a discrete field f is denoted with F ( f ) , and the inverse trans- 
form is denoted with F 

−1 ( f ) . Eq. (14) can be written as: 

φ(1) = ψ(x n , t ) , 

φ(m) = −
m−1 ∑ 

j=1 

η j 

j! 
F 

−1 

{ ∑ 

k 

∑ 

l 

c (m− j) 
k,l (t ) K 

j 
k,l e 

iK k x e iK l y 
} 

;

m = 2, 3 , . . . , M, (18) 

where c (m− j) 
k,l (t ) is the Fourier coefficient of order m − j of 

the k, l th Fourier mode. It is calculated by performing FFT 

on preceding orders of φ on a discrete spatial mesh: 

c (m− j) 
k,l (t ) = F 

{
φ(m− j) (x, y, t ) 

}
. (19) 

Once all the orders of φ are evaluated, orders of vertical 
velocity W are calculated using Eq. (15) : 

W 

(1) = F 

−1 

{ ∑ 

k 

∑ 

l 

c (1) 

k,l (t ) K k,l e 
iK k x e iK l y 

} 

, 

W 

(m) = 

m−1 ∑ 

j=0 

η j 

j! 
F 

−1 

{ ∑ 

k 

∑ 

l 

c (m− j) 
k,l (t ) K 

( j+1) 

k,l e iK k x e iK l y 
} 

;

m = 1 , 2, . . . , M. (20) 

The inverse Fourier transforms occurring in Eq. (20) are 
already calculated in Eq. (18) , except for the last order of 

vertical velocity W 

( M ) , for which the inverse Fourier transform 

has to be calculated separately. The inverse Fourier transforms 
calculated in Eq. (18) are hence stored for efficiency. 

Once φ, η and W are known, we proceed by evaluating 

the coupling terms in Eqs. (4) and (5) . Spatial horizontal 
derivatives are calculated in the wave number space, hence 
the surface elevation displacement η (available on discrete 
spatial mesh) has to be transformed via FFT. When all the 
derivatives are calculated, they are transformed back to the 
physical space and multiplied. Time marching boundary con- 
dition equations, Eqs. (4) and (5) can finally be written as: 

∂ψ(x, y, t ) 

∂t 
= −g η(x, y, t ) 

−1 

2 

( 

F 

−1 

{ ∑ 

k 

∑ 

l 

c ψ 

k,l (t ) iK k,l e 
iK k x e iK l y 

} ) 2 

+ 

1 

2 

W 

2 

⎛ 

⎝ 1 + 

( 

F 

−1 

{ ∑ 

k 

∑ 

l 

c ηk,l (t ) iK k,l e 
iK k x e iK l y 

} ) 2 
⎞ 

⎠ , (21) 

∂η(x, y, t ) 

∂t 
= W 

⎛ 

⎝ 1 + 

( 

F 

−1 

{ ∑ 

k 

∑ 

l 

c ηk,l (t ) iK k,l e 
iK k x e iK l y 

} ) 2 
⎞ 

⎠ 

−F 

−1 

{ ∑ 

k 

∑ 

l 

c ψ 

k,l (t ) iK k,l e 
iK k x e iK l y 

} 

×F 

−1 

{ ∑ 

k 

∑ 

l 

c ηk,l (t ) iK k,l e 
iK k x e iK l y 

} 

, (22) 

where c ψ 

k,l (t ) and c ηk,l (t ) are the Fourier coefficients obtained 

by performing a Fourier transform on discrete values of ψ 

and η, respectively. Fig. 1 shows the flow chart of the HOS 

method during one time step. 

3.2. Time integration 

Time integration of Eqs. (21) and (22) is performed with 

the fifth-order Cash–Karp embedded Runge–Kutta scheme 
with error control and adjustable time-step size. For more de- 
tails on time integration the reader is referred to Press et al. 
[18] . 

3.3. Initialization of the wave field in a HOS simulation 

In order to initialize a HOS simulation, discrete values 
of ψ(x, y, t = 0) and η(x, y, t = 0) are needed. Initialization 

of HOS simulation is not trivial since linear initial condi- 
tions generally do not satisfy the free surface boundary con- 
ditions. As shown by Dommermuth [16] , initializing the sim- 
ulation with a linear solution leads to unstable simulation, 
since nonlinearities do not have the time to develop before 
the emergence of spurious high frequency standing waves. 
Dommermuth developed a time relaxation scheme to avoid 

this problem, enabling initialisation of HOS simulation with 

a linear solution. This adjustment scheme smooths out the 
natural emergence of nonlinear terms over time by relaxing 
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Fig. 1. Flow chart of the HOS algorithm. 

the nonlinear RHS terms in free surface boundary conditions, 
Eqs. (4) and (5) : 

∂ψ 

∂t 
+ gη = G 

(
1 − e 

−
(

t 
T a 

)n )
, (23) 

∂η

∂t 
− W 

(1) = F 

(
1 − e 

−
(

t 
T a 

)n )
, (24) 

where T a is the relaxation time, and n is the relaxation expo- 
nent. According to Dommermuth [16] , time relaxation period 

T a should be at least as long as the period of the longest 
wave that can occur in the simulation. G and F are the non- 
linear parts of dynamic and kinematic free surface boundary 

conditions, respectively: 

G = −1 

2 

(
∂ψ 

∂x 
, 
∂ψ 

∂y 

)2 

+ 

1 

2 

W 

2 

( 

1 + 

(
∂η

∂x 
, 
∂η

∂y 

)2 
) 

, (25) 

F = −W 

(1) −
(
∂ψ 

∂x 
, 
∂ψ 

∂y 

)(
∂η

∂x 
, 
∂η

∂y 

)
+ W 

( 

1 + 

(
∂η

∂x 
, 
∂η

∂y 

)2 
) 

. 

(26) 

Note that linear terms are not relaxed. 

3.4. Dealiasing 

In the HOS simulation, aliasing is inevitable since mul- 
tiplication of periodic fields is performed in physical space 
instead of spectral space [19] for the products in the free 
surface boundary conditions, Eqs. (4) and (5) , and for the 
products in sequential system of equations for φ and W , 
Eqs. (14) and (15) . In this work, dealiasing is performed by 

extending the spectra using zero-padding [19] . Zero-padding 

is a technique where the wave number space is extended to 

the size of the physical mesh and the extended part of the 
wave number space is set to zero. More details can be found 

in Canuto et al. [19] . Number of modes that may be kept in 

wave number space is determined using the half rule: 

N = 

M + 1 

2 

N F 

, (27) 

where N F 

is the number of modes in wave number space, 
while N is the number of physical mesh nodes. M is the 
nonlinearity order used in the calculation. According to Eq. 
(27) , to maintain the same number of alias-free wave num- 
bers N F 

, for a high nonlinearity order M , larger physical 
mesh N should be used. This causes the simulation to be 
progressively slower with increasing order of nonlinearity M . 

3.5. Coupling HOS and CFD 

Decomposition model [7] based on SWENSE with implicit 
relaxation zones and implicitly redistanced Level Set method 

for interface capturing is used to achieve one way coupling of 
HOS and CFD. HOS solution in terms of velocity and surface 
elevation field is imposed into the CFD domain. The surface 
elevation in any point in time and space is provided by direct 
Fourier transform: 

η(x, y, t ) = 

∑ 

k 

∑ 

l 

c ηk,l (t ) e 
iK k ix e iK l y . (28) 

The velocity field is not directly available, hence it is calcu- 
lated from the velocity potential assuming the following shape 
function: 

φ(x, y, z, t ) = 

∑ 

k 

∑ 

l 

c ψ 

k,l (t ) 
cosh 

(
K k,l ( z + d ) 

)
cosh (K k,l d ) 

e iK k x e iK l y . 

(29) 

The velocity field is obtained by differentiating Eq. (29) in 

three Cartesian directions: 

v x (x, y, z, t ) = 

∑ 

k 

∑ 

l 

c ψ 

k,l (t ) iK k 
cosh 

(
K k,l 

(
z ′ + d 

))
cosh (K k,l d ) 

e iK k x e iK l y , 

v y (x, y, z, t ) = 

∑ 

k 

∑ 

l 

c ψ 

k,l (t ) iK l 
cosh 

(
K k,l 

(
z ′ + d 

))
cosh (K k,l d ) 

e iK k x e iK l y , 

v z (x, y, z, t ) = 

∑ 

k 

∑ 

l 

c ψ 

k,l (t ) K k,l 
sinh 

(
K k,l 

(
z ′ + d 

))
cosh (K k,l d ) 

e iK k x e iK l y , 

(30) 

where z ′ stands for the vertical coordinate modified using 

Wheeler correction: 

z ′ = qz + d(q − 1) , (31) 

where q = d/ ( d + η(x, y, t ) ) . 

3.6. Viscous flow model 

Governing equations of the incompressible, viscous, two- 
phase, and turbulent flow are shown in this section. 
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Conservation of mass is described with the following equa- 
tion: 

∇ · u = 0, (32) 

where u stands for a velocity field in global coordinate sys- 
tem. Equation of momentum conservation for a moving com- 
putational grid reads: 

∂u 

∂t 
+ ∇ · ( ( u − u M 

) u ) − ∇ · ( νe ∇u ) = − 1 

ρ
∇ p d , (33) 

where u M 

represents the relative grid motion velocity accord- 
ing to the Space Conservation Law [20] , νe is the effective 
kinematic viscosity taking into account the fluid kinematic 
viscosity and turbulent eddy viscosity, allowing general eddy 

viscosity turbulence models. ρ is the density field, while pd 

stands for dynamic pressure: p d = p − ρg •x, where p stands 
for total pressure, g is the gravitational acceleration, and x 

is the radii vector. In the present numerical model, the Ghost 
Fluid Method (GFM) is used to discretize free surface bound- 
ary conditions in the CFD model [21] . The GFM method 

takes into account the jump in density and pressure gradient 
on the interface, removing the spurious air velocities near the 
free surface. The reader is referred to Vuk ̌cevi ́c et al. [21] for 
more details on the GFM method. 

The Level Set method is used for interface capturing with 

implicit redistancing [7] : 

∂�

∂t 
+ ∇ · (c�) − �∇ · c − b∇ · ( ∇ �) = b 

√ 

2 

ε
tanh 

(
�

ε
√ 

2 

)
, 

(34) 

where � stands for the Level Set field, while b and ε are nu- 
merical parameters, diffusion coefficient and width parameter, 
respectively. c is the modified convective velocity. For further 
details regarding viscous flow model the reader is referred to 

Vuk ̌cevi ́c et al. [7] . 

4. Validation of the implemented HOS method 

Three test cases are performed to validate the implemented 

HOS algorithm: 

• Comparison of nonlinear monochromatic wave propaga- 
tion with nonlinear analytical Stokes solution, following 

Dommermuth [16] . 
• Comparison of irregular sea state propagation with viscous, 

two-phase CFD study performed by Lupieri et al. [22] . 
• A qualitative comparison of Benjamin–Feir (BF) instability 

emergence with experimental results performed by Su et al. 
[23] and Lake et al. [24] , and a quantitative comparison 

of induced BF instability emergence with analytic solution 

obtained by Stiassnie and Shemer [25] . 

4.1. Monochromatic wave train validation 

Long time evolution of a progressive monochromatic wave 
train is conducted and compared with a nonlinear analytical 
Stokes solution following Dommermuth [16] . Linear solution 

Table 1 
Comparison of HOS results and exact Stokes solution modal amplitudes. 

Order Modal amplitude, m Relative error, % 

Analytical solution HOS solution 

1 9.9870520 ×10 −2 9.9870524 ×10 −2 4.34 ×10 −6 

2 5.0594125 ×10 −3 5.0594197 ×10 −3 1.43 ×10 −4 

3 3.8584235 ×10 −4 3.8584342 ×10 −4 2.78 ×10 −4 

4 3.4929691 ×10 −5 3.4929838 ×10 −5 4.20 ×10 −4 

5 3.4769679 ×10 −6 3.4769678 ×10 −6 −3 . 26 × 10 −6 

6 3.6763951 ×10 −7 3.6763189 ×10 −7 −2.07 ×10 −3 

7 4.0531740 ×10 −8 4.0530830 ×10 −8 −2.24 ×10 −3 

8 4.6076934 ×10 −9 4.6026818 ×10 −9 −1.09 ×10 −1 

is imposed as the initial condition from which a nonlinear 
solution up to 8th order is obtained. 

Dommermuth [16] presented a HOS simulation for a wave 
with intermediate steepness K a = 0. 1 , showing convergence 
of modal amplitudes during the simulation. In this study, the 
wave number is set to K = 1 , giving the wave amplitude of 
a = 0. 1 m. Relaxation time is T a = 8 T , where T is the wave 
period, and the relaxation exponent is set to n a = 4. 

The wave train is propagated using HOS during 100 pe- 
riods, yielding 200 s of simulated time, which required 80 s 
of CPU time on a single core of a Intel Core i5-3570K CPU 

at 3.40 GHz. 
Table 1 presents the comparison of HOS simulation modal 

amplitudes with analytical solution in terms of relative errors 
defined as: 

ε = ( c kHOS − c kS ) /c kHOS , (35) 

where c kHOS is the k th modal amplitude from the HOS simula- 
tion, while c kS is the k th modal amplitude from the analytical 
Stokes solution. It can be seen that the relative errors are very 

small, being only 4. 34 × 10 

−6 % for the first order. Relative 
error increases for higher orders; however it remains accept- 
ably small: the largest being ≈0.1% for 8th order with modal 
amplitude of ≈ 4. 6 × 10 

−9 m. Order-wise rate of convergence 
over time is compared with the solution obtained by Dommer- 
muth [16] in Fig. 2 . The convergence rates agree well with 

Dommermuth’s results, indicating consistent and valid imple- 
mentation. It should be noted that order consistency proposed 

by West et al. [13] is not used here since it produced inferior 
results. Instead, the formulation developed by Dommermuth 

and Yue [12] is employed for this particular test case. 

4.2. Propagation of unidirectional wave spectrum 

Lupieri et al. [22] presented a viscous, two-phase CFD 

simulation of uniformly steep uni-directional spectra. Wave 
components are focused to create a steep focused wave, and 

changes in each spectrum are observed due to nonlinear and 

viscous effects. Focusing technique [26] is used to obtain a 
positive superposition of components at a desired location, 
and the wave energy spectrum is calculated for various loca- 
tions along the basin. In HOS, FFT is performed in the spatial 
domain, i.e. spatial signal is transformed into wave number 
space. Lupieri et al. performed FFT to transform a temporal 
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Fig. 2. Convergence rate of modal amplitudes, (a) Dommermuth [16] , (b) 
present HOS result. 

wave elevation signal into frequency domain. Although it is 
possible to perform a time spectral analysis of the wave ele- 
vation signal in HOS, it is not possible to achieve the same 
conditions of wave focusing. The reason for this is the time 
relaxation needed by HOS to initialize the simulation using a 
linear solution. As the relaxation time is several times longer 
than the propagation time of waves from the wave maker 
to the focusing location (used by Lupieri et al. [22] ), HOS 

results are converted to the frequency domain S ηη( ω) from 

wavenumber spectrum S ηη( K ) using the dispersion relation. 
Input spectra are constructed to have components with 

equal individual wave steepness. Four steepnesses are used: 
H i /λi = 1 / 715 , 1 / 400, 1 / 300 and 1/210. Components are 
equidistantly spaced in the wavenumber space instead of 
the frequency space. Fig. 3 depicts the input spectrum with 

H i /λi = 1 / 715 . 
For the first three cases with H i /λi = 1 / 715 , 1 / 400, 1 / 300, 

the spectra are calculated at t = 37 s while the focusing time 
is T f = 35 s. In the case of the highest steepness H i /λi = 

1 / 210, relaxation time needs to be prolonged to T f = 80 s due 

Fig. 3. Input spectrum for steepness H i /λi = 1 / 715 . 

Table 2 
HOS simulation parameters. 

H i / λi 1/715 1/400 1/300 1/210 

N x 1024 1024 1024 2048 
M 6 6 6 10 
T a , s 25 25 25 60 
T f , s 35 35 35 80 

to higher nonlinearity of the spectrum, especially at focusing 

time. The time of focusing is increased to T f = 80 s. The 
steeper the waves being simulated, the larger the difference 
between linear and non-linear solution. Thus, steeper waves 
demand higher relaxation time to permit stable development 
of the non-linear solution [16] . 

HOS simulation parameters are summarized in Table 2 for 
each test case. N x is the number of physical mesh points, M 

is the order of nonlinearity, T a is the relaxation time, while T f 

is the focusing time. Following Eq. (27) , number of alias-free 
Fourier modes corresponds to 2 N x / (M + 1) . Length of the 
domain used in all simulations is 72.3 m, which corresponds 
to 18 wave lengths of the longest input wave. For the first 
three cases, 1.3 s of CPU time per one second of simulated 

time is required, while the last case took 5 s of CPU time 
per second on a single core of Intel Core i5-3570K CPU at 
3.40 GHz. Results are shown in Figs. 4–7 . 

Results shows good agreement in all test cases compar- 
ing with viscous results. Magnitude of the highest spec- 
trum peak corresponding to ω ≈3.2 rad/s is well predicted 

in all test cases. Furthermore, the rightmost smaller peak 

at ω ≈8 rad/s is well presented. In the case of highest 
steepness H i /λi = 1 / 210 two peaks are present at the right- 
most of the spectrum (6 < ω < 8 rad/s), and both are well 
predicted in HOS calculation. For the first two cases with 

milder steepness, shape of the spectrum in the mid fre- 
quency range (4 < ω < 6 rad/s) agrees well with the viscous 
results. According to Lupieri et al. [22] , the lower frequency 

peaks (0 < ω < 2 rad/s) in Figs. 4 (a)–7 (a) correspond to sec- 
ond sloshing mode of the CFD basin used in their simula- 
tion. These peaks are not present in HOS simulation due to 
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Fig. 4. Spectrum comparison for H i /λi = 1 / 715 , t = 37 s, ( a ) Lupieri et al. [22] , ( b ) present result. 

Fig. 5. Spectrum comparison for H i /λi = 1 / 400, t = 37 s, ( a ) Lupieri et al. [22] , ( b ) present result. 

unbounded periodic wave propagation. The cases for steep- 
ness H i /λi = 1 / 300 and 1/210 correspond to wave breaking 

events at the focusing time, causing larger discrepancies in 

the mid frequency range (4 < ω < 6 rad/s), which increase for 
larger steepness. HOS method is not able to capture wave 
braking events since η is a single valued function. When η

has more than one solution (multi-valued function), the fail- 
ure of convergence is caused by spurious high wave number 
components, which are truncated via filtering. In Figs. 4 (b)–
7 (b), it can be seen that the frequency range is truncated at 
approximately 11 rad/s. This truncation enables HOS simu- 
lation to continue beyond the breaking event, causing energy 

loss. This is shown in Fig. 8 , where computed energy over 

time is compared with the initial energy of the linear spec- 
trum. This energy loss is present in the viscous study as well, 
however it is caused mainly by viscous dissipation in wave 
breaking mechanism. As expected, cases that correspond to 

wave braking events show larger energy loss after the focus- 
ing time. 

4.3. Development of Benjamin–Feir instabilities 

In their study, Benjamin and Feir [17] discovered an insta- 
bility that occurs in monochromatic wave train. The instabil- 
ity was confirmed by numerous experiments, Feir [27] being 

the first. As shown by McLean et al. [28] and McLean [29] , 
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Fig. 6. Spectrum comparison for H i /λi = 1 / 300, t = 37 s, ( a ) Lupieri et al. [22] , ( b ) present result. 

Fig. 7. Spectrum comparison for H i /λi = 1 / 210, t = 84 s, ( a ) Lupieri et al. [22] , ( b ) present result. 

there are two main types of instabilities in wave trains. Type I 
is the Benjamin–Feir instability, which occurs for waves of 
steepness Ka < 0.38, while type II occurs for Ka > 0.4. Only 

Benjamin–Feir instabilities will be considered in this section, 
which manifest as the emergence of nonlinear side bands 
whose amplitudes grow exponentially once they emerge. Side 
bands emerge near the carrier frequency and near higher or- 
der modes. The growth is initialized by an initial disturbance 
which is always present in nature and in numerical simulation 

(due to numerical errors), or it can be imposed. The growth of 
nonlinear sidebands occurring in HOS simulation is compared 

with theory and experiment. 
First, a qualitative comparison is performed where the nat- 

ural growth is observed, i.e. there is no imposed initial dis- 
turbance. Wave parameters used in the simulation and the 

HOS parameters are given in Table 3 . HOS simulation is ini- 
tialized using a linear solution. Simulation required ≈2 s of 
CPU time per one second of simulated time on a single core 
of Intel Core i5-3570K CPU at 3.40 GHz. 

Time evolution of nonlinear side-bands in frequency do- 
main is given in Fig. 9 , and the dispersion relation is used 

to transform from the wave number to the frequency domain. 
Time domain Fourier analysis is difficult in HOS simulation 

since the occurrence of Benjamin–Feir instabilities is tran- 
sient in time, and cannot be captured accurately by perform- 
ing Fourier transform on the time elevation signal. The non- 
linearities in HOS simulation evolve in time in the whole 
spatial domain, while in the experiment, nonlinearities evolve 
with waves propagating in space. A probe measuring eleva- 
tion over time in the experiment will always be exposed to the 
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Fig. 8. Spectral energy computed in space during simulated time window. 

Table 3 
Wave and HOS simulation parameters. 

Ka K , rad/m T , s T a , s n a M N x 

0.25 16.1 0.5 5 4 8 1024 

same level of nonlinearity, since it is always equally distanced 

from the wave maker. This allows a time Fourier transform 

which produces spectrum in the frequency domain. Fig. 10 (a) 
and (b) presents spectra for the corresponding wave steepness 
from the experimental studies of Su et al. [23] and Lake et al. 
[24] , respectively. 

According to Benjamin and Feir [17] , the strongest in- 
stability growth is for δ = K a where δ = � f / f . �f is the 
frequency separation of the carrier frequency f and the fre- 
quencies of the higher and lower nonlinear side bands. It can 

be seen in Fig. 9 that the frequencies of the nonlinear side 
bands near the carrier frequency are approximately 9.7 and 

14.8 rad/s. The carrier frequency is ω = 12. 56 rad/s which 

gives �ω = 3 . 14 rad/s. The frequencies of the fastest grow- 
ing side bands are expected to be 9.4 and 15.7 rad/s, which is 
close to the obtained values. Part of the difference is caused 

by the use of linear dispersion relation. 
A quantitative comparison is performed for a case where 

the initial instabilities are imposed. Following Stiassnie and 

Shemer [25] the initial solution comprises carrier Airy wave 
with kA = 0. 13 and two sidebands harmonics with amplitudes 
10% of the carrier wave, with ±22% wavenumber separation 

in respect to the carrier wave. Following Dommermuth and 

Yue [12] the carrier wavenumber is set to K c = 9 rad/m to al- 
low integral wavenumbers of sidebands; for the subharmonic 
K − = 7 rad/m and for the superharmonic K + 

= 11 rad/m. In 

HOS simulation the order of nonlinearity is set to M = 4, 

while the number of grid points is N = 128 . Time relaxation 

and order consistency are not used. 
Time histories of the three harmonics obtained with HOS 

and by Stiassnie and Shemer are presented in Fig. 11 , where 
η/ η0 is the wave amplitude normalised by carrier wave ampli- 
tude, and t / T 0 is the time scaled with carrier wave period. It 

can be seen that evolution of individual harmonics agrees well 
with the analytical solution. HOS simulation predicts the first 
minimum of the carrier mode near t ≈80 T , while the analyt- 
ical solution predicts t ≈60 T . However, the distance between 

carrier mode minima is ≈85 T for both HOS simulation and 

the analytical solution. It can be concluded that there is a 
delay in the nonlinearity development at the beginning of the 
simulation, but the time scale of nonlinear behaviour is well 
predicted. 

5. Validation of coupling HOS and CFD 

The coupling between HOS and CFD described in Sec- 
tion 3.6 is validated on a three hour irregular wave propa- 
gation. The validation is performed by comparing the wave 
energy spectrum obtained from HOS with the spectrum ob- 
tained in CFD measured at the same location. HOS simula- 
tion is initialised using JOSWAP spectrum with H s = 17 m, 
T p = 15 . 5 s and γ = 2. 6 . In the HOS simulation, M = 3 

is used, N x = 2048 , and domain length is L x = 60, 000 m. 
Two-dimensional CFD simulation is carried out with domain 

2160 m long, 100 m deep and 40 m high (above the calm 

free surface). Near the free surface the cells have the size of 
0.5 × 0.5 m, while the grid counts 136,800 cells. Fixed time 
step of �t = 0. 31 s is used which corresponds to 50 time- 
steps per peak period of the spectrum. Inlet relaxation zone is 
700 m long, while the outlet is 1000 m long, leaving 460 m 

of unaffected CFD domain. Long relaxation zones are neces- 
sary in order to prevent the reflection of the longest waves 
that can occur in the sea state, and to prevent standing waves 
corresponding to the natural frequency of the numerical wave 
tank. Given the small depth of the domain, the velocity field 

from HOS solution is imposed to the bottom boundary in 

order to mimic the rest of the fluid below the level of the 
bottom boundary. Fig. 12 shows the volume fraction field re- 
constructed from the level set variable in one time instant. 
The free surface is well preserved with very little smearing. 
The waves propagate from left to right. 

As in the experimental wave basin test, the initial linear 
spectrum needs to be calibrated in order to obtain the imposed 

JONSWAP spectrum in the HOS realisation. Calibration of 
the initial HOS condition is performed by running at least ten 

three hour realisations of the target spectrum, and acquiring 

the average correction factors for the initial linear spectrum. 
In Fig. 13 the target spectrum is compared to the spectrum 

obtained before and after calibration. 
The calibration coefficients are applied to the linear JON- 

SWAP spectrum with random phase shifts used to initialise 
the HOS simulation coupled to the CFD simulation. Fig. 14 

shows the comparison of wave energy spectrum obtained from 

the HOS simulation, and the spectrum measured in the cor- 
responding CFD simulation. The damping of spectral wave 
energy is minimal, and the spectrum shape corresponds well. 
The agreement is better for lower frequencies, while higher 
frequencies ( ω > 0.6 rad/s) exhibit larger relative damping, 
which is caused by smaller spatial and temporal resolution 

relative to wave component height, length and period. In 
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Fig. 9. Development of nonlinear side bands in HOS simulation. 
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Fig. 10. Experimental nonlinear side bands development, (a) Su et al. [23] , (b) Lake et al. [24] . 

Fig. 11. Time histories of the carrier, subharmonic and superharmonic wave amplitudes, ( a ) analytic solution by Stiassnie and Shemer [25] , ( b ) present result. 
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Fig. 12. Snapshot from the irregular wave propagation CFD simulation. 

Fig. 13. Comparison of wave energy spectrum obtained with HOS before 
and after calibration. 

Fig. 14. Comparison of wave energy spectrum obtained with HOS and CFD. 

Table 4 
Quantitative comparison of wave energy spectrum obtained with HOS and 
CFD. 

H s , m T p , s 

HOS 17.12 12.76 
CFD 16.13 13.11 

Table 4 the two spectra are compared quantitatively, where 
H s and T p are compared. The significant wave height cor- 
responds quite well, where damping in CFD results in 1 m 

smaller height corresponding to 5.8% difference. For the peak 

period the difference is smaller, being less than 2%. Note that 
the peak period differs significantly with respect to the the- 
oretical value of 15.5 s. This is caused by the fact that the 
spectrum used in HOS is truncated for stability reasons, hence 
the theoretical expression for the peak period calculation de- 
rived based on the wave elevation distribution is not valid, 
however it enables a quantitative comparison. 

6. CFD simulation of a 3D extreme wave encountering a 

full scale container ship 

In this section a simulation of a 3D extreme wave en- 
countering a freely floating full-scale container ship is pre- 
sented. The hull form parameters of the KRISO Container 
Ship (KCS) are available at the Tokyo Workshop on CFD in 

Ship Hydrodynamics [30] . 
Unstructured grid with 1.2 million cells is used, mostly 

composed out of hexahedral cells ( ≈83%), the rest being 

polyhedral cells. At the hull surface, the grid is aligned with 

the hull surface with boundary layer refinement. The transition 

from the boundary layer cells to the surrounding background 

orthogonal grid is accomplished with polyhedral cells. Sec- 
ond order backward scheme is used for temporal discretisation 

in the momentum equation, while implicit first order upwind 

scheme is used for convection with second order, upwind bi- 
ased deferred correction. Second order scheme with explicit 
limited non-orthogonal correction is used for the discretisa- 
tion of the Laplace operator for the diffusion term in the mo- 
mentum equation and the pressure. No turbulence modelling 

is used in this case since the ship has zero initial velocity, 
hence adverse pressure gradients can be expected near the 
hull in the wave field, rendering conventional eddy viscosity 

turbulence models non-valid. 
A 3D extreme wave is obtained using HOS, where the 

HOS simulation is initialized using a linear directional spec- 
trum. Directional spreading is modelled using the following 

expression [31] : 

D(θ ) = 

{
A (n) cos n θ for | θ | ≤ π/ 2, 

0 for | θ | > π/ 2, 
(36) 

where A ( n ) is the normalisation coefficient, θ is the domi- 
nant wave propagation direction, and n is the arbitrary di- 
rectionality parameter. As the initial condition for HOS sim- 
ulation, JONSWAP spectrum is used with significant wave 
height H s = 10. 5 m, peak period T p = 9 . 5 s, and direction- 
ality constant n = 8 . Dominant wave propagation direction is 
set to θ = 25 

◦ with respect to longitudinal ship axis. Extreme 
wave occurred after ≈56 T p with wave height H = 21 . 91 m, 
as it can be seen on Fig. 15 at approximately x = 900 m and 

y = 200 m. 
30 s of simulation took 132 h of CPU time on a Intel 

Core i7-4820K CPU at 3.70 GHz. Fig. 16 sequentially shows 
the encounter of the extreme wave on the KCS. At time 
zero, CFD simulation is initialized with the HOS solution 

corresponding to time T HOS = 526 s. HOS simulation is then 

ran alongside the CFD simulation to produce the necessary 
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Fig. 15. Free surface elevation with freak wave event, t = 532 s. 

Fig. 16. Three-dimensional freak wave encountering a full scale KCS. (The colour legend in this figure corresponds to Fig. 15 ). 

blending results at the required time instances. At CFD sim- 
ulation time T = 5 . 8 s the extreme wave encounters the bow 

of the container ship, while the green water event can be seen 

after the impact at T = 7 . 8 s. Fig. 17 shows the translational 
motion of the ship’s centre of gravity during the simulation. It 
can be noticed that sway motion is greater than surge motion, 
due to the angle of dominant wave propagation direction. On 

Fig. 18 the rotation of the ship is shown, where significant 
roll angle can be seen. 

Unfortunately, neither experimental nor numerical data are 
available for comparison today. 

7. Summary 

In this paper a framework for efficient irregular wave sim- 
ulation using HOS and CFD coupling is presented. HOS is a 

pseudo-spectral, potential flow method for solving nonlinear 
free surface boundary conditions. It is primarily used to prop- 
agate arbitrary wave energy spectra, taking into account non- 
linear wave-to-wave interaction and wave modulation. Among 

other applications, HOS can be used for low CPU cost ex- 
treme wave initialization for fully non-linear CFD simulations 
of wave impact and wave breaking. 

The accuracy and validity of the implemented HOS model 
is assessed with three validation test cases. In the first test 
case, HOS solution of a propagating monochromatic wave 
train is considered, where modal amplitudes up to 8th order 
compare well with the analytical Stokes solution. The com- 
parison verifies that given a linear initial condition, HOS can 

evolve the nonlinear solution accurately. Rate of convergence 
is also compared and shows good agreement with results ob- 
tained by Dommermuth [16] . 
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Fig. 17. Translational motion of the ship’s centre of gravity during the ex- 
treme wave impact. 

Fig. 18. Rotational motion of the ship around the centre of gravity during 
the extreme wave impact. 

The second test case presents the propagation of four dif- 
ferent uniformly steep, uni-directional input spectra where the 
solutions are compared with the viscous study performed by 

Lupieri et al. [22] . Results show good agreement, especially 

for wave spectra with smaller steepness. 
The final validation case simulates the occurrence of 

Benjamin–Feir type instability in a propagating monochro- 
matic wave train. Benjamin-Feir instability produced by HOS 

method agrees well with experimental and theoretical studies. 
In order to test the precision of the HOS–CFD coupling, 

energy wave spectra obtained in HOS and corresponding CFD 

simulation is compared. The two spectra correspond well, in- 
dicating minor damping of wave energy. 

Finally, an example CFD simulation is shown where the 
coupling of HOS and CFD is used to simulate a 3D direc- 

tional extreme wave encountering a full-scale, freely floating 

container ship. 
In future efforts the presented coupling will be utilised in 

order to calculate extreme response of naval objects such as 
green water, slamming and motion. 
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ABSTRACT

Validation of the Naval Hydro CFD software pack for focused wave load-
ing on a fixed FPSO is presented in this paper. Naval Hydro is based
on Finite Volume CFD software called foam–extend–4.0, and it is spe-
cialised for large–scale, two-phase surface flows encountered in naval hy-
drodynamics. Simulations are performed using SWENSE method (Spec-
tral Wave Explicit Navier–Stokes Equations) for solution decomposition,
while implicit relaxation zones are employed for wave initialisation and
damping. Numerical results are submitted to a blind comparison with
experimental results within the CCP–WSI Blind Test Workshop. Six
cases are considered altogether where different incident waves and in-
cident angles are considered. Pressure loads and free surface elevation
are considered in this work.

KEY WORDS: Focused Wave Loads; FPSO; Wave Run–up; Naval
Hydro Pack; CFD.

INTRODUCTION

Static naval objects such as Floating Production Storage and Offloading
(FPSO) vessels are often exposed to severe weather conditions, where
the operationality, life span, and structural integrity may be endangered.
There is an ongoing effort in the scientific community aimed at the
development, validation and certification of computational methods
for predicting wave–body interaction. Finite Volume (FV) based
Computational Fluid Dynamics (CFD) methods comprise one of the
largest and most popular groups of computational methods for various
problems, including naval hydrodynamics, and are more increasingly
subjected to rigorous verification and validation in order to assure and
promote their accuracy and applicability in modern marine industry.
This paper presents a part of such an undertaking within the CCP–WSI
Blind Test Workshop, where numerical results submitted by participants
are compared to experimental measurements.

In this work Naval Hydro software pack is used to conduct simulations

of focused wave loading on a static FPSO model. Naval Hydro pack is
based on open–source, FV based CFD software called foam–extend–4.0,
and it is specialised for large–scale, two phase flows with rigid body
motion and wave generation. The discontinuities across the interface are
taken into account with the Ghost Fluid Method (GFM) Vukčević, Jasak,
and Gatin 2017, which imposes the free surface boundary conditions
within the FV framework. For efficient wave propagation, SWENSE
method Vukčević, Jasak, and Malenica 2016a; Vukčević, Jasak, and
Malenica 2016b is employed, which is a solution decomposition
approach where the flow field is decomposed into the incident portion
arising from the potential wave theory, and diffracted component caused
by inherent nonlinearities of Navier–Stokes equations. Surface waves
are initialised and damped by using implicit relaxation zones Jasak
et al. 2015, which are placed at the inlet and outlet of the computational
domain, gradually blending the fully nonlinear CFD solution to the
target incident wave field. The wave field is initialised with the
NewWave theory Tromans et al. 1991.

Six cases are considered in total, divided in two parts: in Part 1
different focusing wave characteristics are used, with zero incident
angle corresponding to head waves conditions. In Part 2, the same
wave conditions are used with different incident angles. Pressure and
surface elevation signals on several locations are reported. In addition to
wave–body interaction simulations, the wave propagation is checked by
performing empty–domain computations, where the signal is compared
to the incident linear wave elevation signal and to the results of Higher
Order Spectrum (HOS) nonlinear wave theory implemented in Naval
Hydro Gatin et al. 2017. Using the data from the empty–domain
simulations, the effect of fixed FPSO to the wave field is examined by
comparing the two surface elevation data sets.

The paper is organised as follows: in the next section the numerical
model is briefly presented, including GFM and SWENSE. Third section
describes the test cases considered in the study, with geometry and wave
field definitions. Next, the numerical set–up is presented, including com-
putational domain geometry and discretisation details. In the fifth section
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results of empty–domain computations are presented with surface eleva-
tion comparison including experimental results, followed by wave load
results. Finally, discussion and a brief conclusion are given.

NUMERICAL MODEL

This section briefly outlines the numerical methodology used in this
work, including GFM and SWENSE.
Immiscible, two–phase, incompressible, viscous and turbulent flow
model is governed by continuity and Navier-Stokes equations, which
have the following form within SWENSE method Vukčević, Jasak, and
Malenica 2016a:

∇•uP = −∇•uI , (1)

∂(uP)
∂t

+∇•(uuP) − ∇•(νe f f∇uP) =

− ∂(uI)
∂t
− ∇•(uuI) + ∇•(νe f f∇uI) − 1

ρ
∇pd + ∇u•∇νe f f ,

(2)

where indices P and I denote diffracted and incident components of
the flow, respectively. The velocity field is denoted with U, νe f f stands
for effective kinematic viscosity, ρ is the fluid density, while pd is the
dynamic pressure defined as pd = p − ρg•x. Here, p is total pressure,
g denotes constant gravitational acceleration, while x stands for radii
vector with respect to the origin of the coordinate system.
The interface is defined by using the Level Set method derived from the
Phase Field equation Sun and Beckermann 2007; Sun and Beckermann
2008, which is more suitable for decomposition than the more popular
Volume of Fluid (VOF) method. For more details on interface capturing
and implementation of SWENSE method in Naval Hydro pack the
reader is directed to Vukčević, Jasak, and Malenica 2016a.

In order for the above equations to be valid for both fluids (air and water),
the discontinuities of pressure gradient, density and dynamic pressure
must be taken into account. In the Naval Hydro pack, GFM is utilised for
discretisation of the free surface boundary conditions Vukčević, Jasak,
and Gatin 2017. The discontinuities are described by jump conditions,
which state:

p−d − p+
d = −(ρ− + ρ+)g•x , (3)

1
ρ−
∇p−d −

1
ρ+
∇p+

d = 0, (4)

where superscripts + and - denote values infinitesimally close to the in-
terface on the water and air side, respectively. The above equations stem
from the dynamic free surface boundary condition, where the normal
stress balance is satisfied exactly, while the tangential stress balance is
approximated Vukčević, Jasak, and Gatin 2017.

FOCUSED WAVE LOADING ON FPSO

The considered test cases correspond to experimental studies from Mai
et al. 2016, which are presented in this section. The geometry of the
experimental program is shown in Figure 1, where three different FPSO
models are shown. In this study, only the longest model is considered,
label Model 3 in Mai et al. 2016. The dimensions of the wave basin are
also indicated on the figure, as well as wave gauges (WG) and their posi-
tions. Front and side view of the bow of the vessel is shown in Figure 2,
with indicated positions of pressure gauges. Schematic view of the ex-
perimental wave tank is shown in Figure 3. The working depth h is 2.93

m.
As mentioned above, six different cases are considered which are divided
in two parts:

1. Part 1: three wave cases with different spectral characteristics, as
shown in Table 1,

2. Part 2: three wave cases with different incident angles, as shown
in Table 2.

In Table 1 and Table 2, a denotes the amplitude of the focused wave,
Tp is the peak period of the JONSWAP spectrum, Hs is the significant
wave height, ka denotes wave steepness, α stands for the incident angle,
where zero degrees denotes head waves, and φ denotes the phase shift of
individual wave components in the NewWave theory.

Fig. 1
Geometry of the experimental set–up A Collaborative
Computational Project in Wave Structure Interaction n.d.

Fig. 2
Pressure gauges at the bow of the FPSO A Collaborative
Computational Project in Wave Structure Interaction n.d.

Table 1 Wave parameters for test cases in Part 1

CCP–WSI ID a, m Tp, s Hs ,m ka α, o φ, rad
11BT1 0.069 1.456 0.077 0.13 0 π

12BT1 0.091 1.456 0.103 0.18 0 π

13BT1 0.094 1.362 0.103 0.21 0 π
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Fig. 3
Schematic view of the wave tankA Collaborative Compu-
tational Project in Wave Structure Interaction n.d.

Table 2 Wave parameters for test cases in Part 2

CCP–WSI ID a, m Tp, s Hs ,m ka α, o φ, rad
21BT1 0.089 1.456 0.103 0.17 0 π

22BT1 0.089 1.456 0.103 0.17 10 π

23BT1 0.089 1.456 0.103 0.17 20 π

SIMULATION SET–UP

In order to reduce the required computational time, computational
domain is significantly reduced with respect to the dimensions of the
physical wave tank. In order to avoid the influence of boundaries,
implicit relaxation zones are placed next to outlet boundaries Jasak et al.
2015. Figure 4 shows the computational domain with the FPSO model.
The relaxation zones are indicated with the red colour at the calm free
surface. The blue portion of the free surface is the full CFD part of the
domain. The domain is 20.7 m long, 7 m wide, and the depth is set to
2.93 m. The inlet boundary is set to 4.5 m in front of the FPSO, while
the outlet is set 15 m behind the stern. In the experimental wave tank the
bottom has variable depth, however given the depth of the wave tank and
spectral wave characteristics the influence of the bottom on the wave
field can be neglected. Hence, constant depth is set in the numerical
domain, with depth that corresponds to the shallower part of the wave
tank.

Three different computational grids are used in this work, one for each
incident angle case with characteristics shown in Table 3. Grids are
of hybrid type, containing structured and unstructured regions, where
structured hexahedral cells prevail. In order to keep the direction of
wave propagation parallel with the grid direction, grids for cases 22BT1
and 23BT1 are generated by rotating the FPSO model and fitting the
computational mesh to the rotated model. Figure 5 shows the top view of
the grid in the horizontal plane on the calm free surface. The finest grid
level stretches from the FPSO model to the inlet boundary in order to
allow the waves to propagate in uniform grid resolution until they reach
the FPSO model. Cell size in the finest region corresponds to ∆x = 0.01
m, ∆y = 0.02 m and ∆z = 0.005 m. Figure 6, Figure 7 and Figure 8
show discretised FPSO model for grids 1, 2 and 3, respectively. It can
be seen that grids are very similar except for the orientation of the model.

Time–step is controlled in all simulations in order to maintain the
Courant–Friedrich–Lewy (Co) number below 1. This results in time–
steps ranging between 0.005 and 0.015 seconds. Second order backward
scheme is used for time marching, and upwind biased scheme with sec-
ond order differed correction is used for convection. All other opera-
tors and interpolations are performed using linear second order schemes.
Conjugate Gradient linear solver is used for the pressure, momentum and

free surface transport equations, with absolute tolerance set to 1E-7.

Fig. 4 Computational domain with relaxation zones (red colour).

Table 3 Computational grid characteristics

Grid ID CCP–WSI ID No. cells
1 11BT1, 12BT1, 13BT1, 21BT1 4 134 460
2 22BT1 4 138 516
3 23BT1 4 138 521

Fig. 5
Top view of grid 1 on the horizontal plane at the calm free
surface. Inlet boundary is on the left hand side of the figure.

Fig. 6 View of the discretised FPSO model in grid 1.
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Fig. 7 View of the discretised FPSO model in grid 2.

Fig. 8 View of the discretised FPSO model in grid 3.

WAVE PROPAGATION TESTS

Before moving on to wave loading simulations, wave propagation is
checked in order to ensure valid incident wave group. Grids without the
FPSO model is generated which corresponds exactly to grids 1, 2 and 3.
Equivalent numerical settings are used described in the previous section.

The focused wave is generated by superimposing 244 linear wave
components equidistantly spaced between 0.1 and 2 Hz A Collaborative
Computational Project in Wave Structure Interaction n.d. Focusing point
is set at the bow of the FPSO, at time T = 10 s. Free surface elevation
is measured in time on locations indicated in Figure 1 corresponding to
WG 16, 17 and 24. The measured surface elevation signal is compared
to linear evolution and experimental results. The shorter domain which
is used in CFD in front of the FPSO with respect to the experiment may
cause a difference in the level of nonlinearity of the wave field at the
focusing location since there is less time for nonlinear wave–to–wave
interaction and wave modulation to develop. In order to asses the
influence which different domain length may have on the wave field,
and ultimately on wave loads, surface elevation signal from CFD is
compared to fully nonlinear HOS method Gatin et al. 2017 which is
based on the potential flow model. In HOS simulations, equivalent
amount of time and space to the experiment is given for development of
nonlinearities in the wave field.

For the sake of brevity, only the comparison for WG 16 will be shown
here, which is located at the bow of the model. Figure 9 shows the
surface elevation comparison for case 11BT1, where EFD stands for
experimental results. The four signals correspond well, where the HOS
signal shows higher wave crests surrounding the focused wave through.
At the focused wave through CFD signal is more similar to HOS than to
the linear solution, unlike the remained of the signal. Figure 10 shows
signal comparison for case 12BT1, where similar behaviour is observed
at the wave through. However, at the wave crest preceding the focusing
wave through, CFD and HOS correspond better with respect to the
linear solution indicating stronger nonlinearities in the wave field. This
is expected since 12BT1 wave case is steeper than 11BT1. For case
13BT1 this behaviour is even more pronounced, as shown in Figure 11,
since this is the steepest wave case. Cases 21BT1, 22BT1 and 23BT1
have the same spectral properties, giving equivalent wave fields. Hence,
one graph is given for these three cases on Figure 12. Similar behaviour
to case 12BT1 is exhibited, since the wave steepness is similar as well.
All surface elevation signals correspond very well to experimental
measurements.

Overall the surface elevation signals show reasonable correspondence be-
tween linear, CFD, HOS and experimental results, with some differences
which should be kept in mind. Nonetheless, acceptably accurate wave
loads should be obtained using these numerical settings.
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Fig. 9
Empty domain surface elevation comparison at WG 16 for
case 11BT1.

WAVE LOADS RESULTS

In order to examine the effects of wave–body interaction, the surface
elevation is compared for simulations with and without the FPSO model.
Pressure signals are also reported, where only 1 to 6 pressure gauges
are reported for cases 11BT1, 12BT1 and 13BT1 since the flow is
symmetric. For case 21BT1 all pressure gauges (1 to 9) are reported in
order to facilitate the comparison with 22BT1 and 23BT1 cases.
Figure 13 shows the top view of the wave field in the most severe case
13BT1, at the time of focusing. Figure 14 and Figure 15 show cases
22BT1 and 23BT1 where the difference in the incident angle can be
observed.

The comparison of surface elevation signals at WG 16, 17 and 24 for
case 11BT1 is given in Figure 16, where the incident elevation from
the empty domain simulations is compared to the diffracted wave field
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Fig. 10
Empty domain surface elevation comparison at WG 16 for
case 12BT1.
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Fig. 11
Empty domain surface elevation comparison at WG 16 for
case 13BT1.

in the presence of the FPSO model. For the two gauges in front of the
bow, wave amplitudes are larger with respect to the incident wave field.
As expected, at wave gauge behind the stern (WG 24) the amplitudes
are smaller due to wave energy dissipation. Very similar behaviour
is observed on Figure 17 and Figure 18 for cases 12BT1 and 13BT1,
respectively. Since case 21BT1 is also a head wave condition, similar
results to Part 1 cases are observed on Figure 19. For the oblique case
22BT1 shown in Figure 20 diffracted wave shows larger differences with
respect to head wave cases. This is especially true for surface elevation
gauge 17. Surprisingly, for larger incident angle (23BT1) the incident
and diffracted wave fields show little difference for gauge 17, as shown
in Figure 21.

As mentioned above, relative pressure is measured at the bow of the
model, on positions indicated on Figure 2. Figure 22, Figure 23 and
Figure 24 show relative pressure signals for cases 11BT1, 12BT1 and
13BT1, respectively. Gauges at the same vertical positions are grouped
together on individual graphs for easier comparison. As expected, pres-
sure is higher on the centreline with respect to gauges positioned at 45o

with respect to the centreline. On Figure 25, Figure 26 and Figure 27
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Fig. 12
Empty domain surface elevation comparison at WG 16 for
case 21BT1.

pressure signals for cases 21BT1, 22BT1 and 23BT1 are presented, re-
spectively. For case 21BT1 gauges positioned at symmetric positions
with respect to the centreline show identical pressure signals, which is
expected since the incident angle is 0o for this case. For case 22BT1
shown on Figure 26 pressure measured on gauges P7, P8 and P9 is higher
than pressure measured at the corresponding gauges on the opposite side
(P4, P5 and P6) due to their position on the windward side. For case
23BT1 this effect is more pronounced, where the gauges on the wind-
ward side show very similar pressure values to gauges positioned at the
centreline. However, no significant increase in maximum pressure peak
is observed for different heading angles. Differences are smaller than 20
Pa.

Fig. 13
Free surface elevation at the time of focusing for case
13BT1.

CONCLUSION

Wave loading of a simplified FSPO model is investigated in this
work using numerical simulations. Naval Hydro software pack based
on open–source software foam–extend–4.0 is used, which employs
advanced numerical methods for simulating large–scale, incompressible
and viscous two–phase flow. The study is performed for the CCP–WSI
Blind Test Workshop A Collaborative Computational Project in Wave
Structure Interaction n.d., where the numerical results of various
participants will be compared to experimental values.
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Fig. 14
Free surface elevation at the time of focusing for case
22BT1.

Fig. 15
Free surface elevation at the time of focusing for case
23BT1.
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Fig. 16
Comparison of free surface elevation signals for WG 16,
17 and 24 (from top to bottom), for case 11BT1.

-0.1

-0.05

0

0.05

WG 16, Incident wave

WG 16, Diffracted wave

-0.1

-0.05

0

0.05

S
u
rf

a
c
e
 e

le
v
a
ti

o
n
, 
m

WG 17, Incident wave

WG 17, Diffracted wave

6 8 10 12 14

Time, s

-0.05

0

0.05

WG 24, Incident wave

WG 24, Diffracted wave

Fig. 17
Comparison of free surface elevation signals for WG 16,
17 and 24 (from top to bottom), for case 12BT1.
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Fig. 18
Comparison of free surface elevation signals for WG 16,
17 and 24 (from top to bottom), for case 13BT1.

Irregular wave group defined with the NewWave theory is used for wave
generation. Six different wave cases are examined, where four have zero
incident angle, while two cases have 10 and 20 degrees wave incident
angle with respect to the central plane of the FPSO model. Accuracy of
wave propagation in the present CFD model is checked by performing
simulations without the FPSO model and comparing the free surface
elevation to the linear solution, nonlinear solution based on potential
flow model, and experimental results. The comparison showed that
small differences exist between the surface elevation measured in CFD
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Fig. 19
Comparison of free surface elevation signals for WG 16,
17 and 24 (from top to bottom), for case 21BT1.
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Fig. 20
Comparison of free surface elevation signals for WG 16,
17 and 24 (from top to bottom), for case 22BT1.

and the linear solution, while good correspondence is achieved with
respect to experimental results.

Comparison of surface elevation signals between the simulations with
and without the FPSO model showed reasonable trends, where the
diffraction increased the elevation at the bow and lowered it at the
stern of the vessel. Pressure measured at the bow at six locations for
symmetrical cases and nine for asymmetrical is also presented, showing
that no significant increase in pressure is caused by 10 and 20 degrees
incident angle.
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Fig. 21
Comparison of free surface elevation signals for WG 16,
17 and 24 (from top to bottom), for case 23BT1.
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Fig. 22 Relative pressure signals for case 11BT1.

The study produced physical and consistent results, while the accuracy
is yet to be determined in the scope of the CCP–WSI Blind Workshop by
comparing all the presented results to experimental measurements.
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A B S T R A C T

An enhanced coupling strategy for the resolution of 6–degrees–of–freedom rigid body motion and unsteady
incompressible fluid flow in Finite Volume collocated arrangement using PIMPLE algorithm and rigid mesh
motion is presented in this paper. The improved coupling is achieved by calculating the 6–degrees–of–freedom
motion equations after each pressure correction step in the pressure–velocity PISO (Pressure Implicit With
Splitting of Operators) algorithm. Solving the 6–degrees–of–freedom equations after each solution of the
pressure equation of the PISO loop accelerates the convergence, leading to smaller number of nonlinear
pressure–velocity iterations needed per time–step. The novel approach is verified and validated on a heaving
decay case, while the achieved acceleration in terms of the number of PISO loops is demonstrated on seakeeping
simulations of a container ship.

1. Introduction

Numerical simulations using Computational Fluid Dynamics (CFD)
are frequently used in computational naval hydrodynamics for asses-
sing wave induced loads and motions (Larsson et al., 2013, 2015a,
2015b). There are numerous reasons why wave induced loads and
motions of floating objects are important in marine engineering. Fuel
consumption of ships sailing in waves is one of them, due to the
increase of oil price during the last couple of decades, as well as the
increasingly rigorous regulations regarding harmful gas emission.
Seakeeping characteristics of ships are important for safety and
comfort of crew and passengers, as well as for assessing acceleration
loads (e.g. heavy deck equipment, superstructures etc.).

CFD is proving to be a useful tool in predicting behaviour of ships in
waves. Numerous publications (e.g. Orihara and Miyata, 2003; Carrica
et al., 2008, 2011, 2012; Bhushan et al., 2009; Kim, 2011; Castiglione
et al., 2011; Wu et al., 2011; Guo et al., 2012; Miyata et al., 2014;
Mousaviraad et al., 2015; Sadat-Hosseini et al., 2013; Simonsen et al.,
2013; Tezdogan et al., 2015) tend to depict the accuracy and potential
of CFD for solving such problems, using different ways to couple 6–
degrees–of–freedom (6–DOF) motion and fluid flow. The coupling of
body motion and fluid flow is commonly performed on the level of the
nonlinear pressure–velocity loop (SIMPLE or PIMPLE), i.e. after the
flow solution rigid body motion equations are solved and the computa-
tional grid is moved accordingly. The procedure is then repeated within

each time–step until convergence. This is the conventional strongly
coupled approach, hereinafter referred to as conventional approach.
The PIMPLE algorithm is comprised of multiple PISO pressure–
velocity loops, where pressure is updated multiple times per one
momentum equation–update (Issa, 1986).

The above mentioned, conventional approach has been verified in
numerous publications. Orihara and Miyata (2003) use a predictor–
corrector algorithm for the in–house code WISDAM–X, where they
recalculate the entire flow field after every body motion correction.
Castiglione et al. (2011) imply that the in–house code CFDShip-Iowa
uses a similar approach, where the complete fluid flow solution is
obtained in each body motion–fluid flow iteration. Wu et al. (2011)
describe the execution sequence of the CFD code used in their study
where a similar procedure is employed. To achieve convergence of the
coupling, multiple body motion–fluid flow iterations are needed.
Simonsen et al. (2013) and Vukčević and Jasak (2015) reported that
a minimum of five pressure–velocity (PISO) loops were needed per
time–step to ensure convergence. For the fluid flow itself to converge,
smaller number of PISO loops is sufficient, typically two for wave
related problems. Hence, the body motion–fluid flow coupling presents
a considerable overhead in terms of CPU time.

A modified approach for coupling the rigid body motion equations
and fluid flow is described, verified and validated in this paper.
Pressure field and body motion are tightly coupled at the body
boundary in large scale naval hydrodynamics problems. Pressure

http://dx.doi.org/10.1016/j.oceaneng.2017.08.009
Received 6 December 2016; Received in revised form 13 June 2017; Accepted 7 August 2017

⁎ Corresponding author.
E-mail addresses: inno.gatin@fsb.hr (I. Gatin), vuko.vukcevic@fsb.hr (V. Vukčević), h.jasak@wikki.co.uk, hrvoje.jasak@fsb.hr (H. Jasak), h.rusche@wikki.co.uk (H. Rusche).

Ocean Engineering 143 (2017) 295–304

Available online 18 August 2017
0029-8018/ © 2017 Elsevier Ltd. All rights reserved.

MARK

87



influences the body motion through the force acting on the body, while
the moving body influences the flow through the change of body
boundary velocity and relative grid motion fluxes (see Demirdžić and
Perić, 1988). Rigid grid motion is used, i.e. the grid is not deformed
when the body is moving. Enhancing the coupling between the pressure
equation and the body motion equations has been proposed before for
resolving the coupling of fluid flow and elastic bodies (Fernández et al.,
2005), however no similar approach is encountered for a special case of
rigid bodies that are modelled as boundaries of the fluid domain, where
no volume discretisation of the body is present.

In this work the convergence of the body motion–fluid flow
coupling is accelerated by further resolving the coupling via updated
6–DOF solutions after each pressure correction equation within the
PISO loop in addition to the standard motion update after each PISO
loop. The grid position is not updated between every pressure correc-
tion in order to save CPU time. This is allowed since relative flux caused
by the grid motion does not influence the pressure equation due to its
elliptic nature for incompressible flows. Furthermore, the influence of
the new grid position is considered negligible since the motions are
generally small within a time–step, even for large overall motions (e.g.
manoeuvres). We stress that the grid motion and relative fluxes are
updated after each PISO loop in a given time–step, correctly account-
ing for the complete 6–DOF–fluid flow coupling. Tighter coupling leads
to a smaller number of PISO iterations needed to ensure body motion–
fluid flow coupling convergence, which in turn reduces the overall CPU
time.

The benefit of the presented approach over the conventional
approach is the tighter coupling of the pressure equation and the 6–
DOF equations which dictate the motion of the body, which in turn
represents the boundary of the fluid domain. In the conventional
approach, the 6–DOF equations are solved once per PISO loop, i.e once
per pressure–velocity coupling. In the proposed approach, 6–DOF
equations are solved a significantly larger number of times: in addition
to the standard update in every pressure–velocity coupling loop, the 6–
DOF equations are additionally solved every time the pressure equation
is solved.

This paper is organised as follows. First, the numerical model of the
enhanced approach for fluid flow–6–DOF coupling is described,
comprising the governing equations, brief description of the numerical
procedure and a detailed procedure of the novel algorithm. Second, a
test case of a heaving cylinder is presented to verify and validate the
novel approach by comparing the results with experimental and
analytical results. Next, container ship seakeeping test cases are
presented to demonstrate the improvement of convergence of rigid
body motion–fluid flow coupling achieved with the new approach,
accompanied by a discussion of the results. Finally a brief conclusion is
given.

2. Numerical method

The enhanced 6–DOF–fluid flow coupling scheme is implemented
in foam–extend (Jasak, 2009), a community driven fork of OpenFOAM
open source software, which uses second–order accurate finite volume
spatial discretisation with arbitrary polyhedral grid support (Jasak and
Gosman, 2001). In this section a brief overview of the discretised
governing equations for incompressible two–phase flow is given. The
numerical procedure based on the PISO algorithm including the
solution of 6–DOF rigid body motion equations is shown. Finally, the
novel approach for coupling 6–DOF body motion equations with the
pressure equation is presented.

2.1. Fluid flow governing equations

In free surface hydrodynamic problems, the incompressible two–
phase flow is governed by the momentum equation, continuity
equation and the free surface transport equation. Two phases are

modelled with a single set of governing equations, where the disconti-
nuity in pressure gradient and density at the interface is resolved using
the Ghost Fluid Method (GFM) (Vukčević, 2016; Vukčević et al., 2017).
The GFM imposes pressure jump conditions at the free surface
ensuring a sharp transition of fluid properties. For incompressible
fluids the conservation of mass is governed by:

u∇ · = 0, (1)

where u represents a continuous velocity field in the global coordinate
system. For a moving computational grid the momentum equation
reads:

t
ν

ρ
pu u u u u∂

∂ + ∇ · (( − ) ) − ∇ · ( ∇ ) = − 1 ∇ ,M e d (2)

where uM is the relative grid motion velocity which stems from the
Space Conservation Law (Demirdžić and Perić, 1988); νe is the effective
kinematic viscosity comprising appropriate phase viscosity and turbu-
lent eddy viscosity; ρ is the density field, and pd stands for dynamic
pressure: p p ρg x= − ·d . Note that due to the GFM, volumetric fluxes
are used for convection instead of mass fluxes (see Vukčević et al., 2017
for details). Algebraic Volume of Fluid (VOF) (Rusche, 2002) method is
used for interface capturing with additional convective term for inter-
face compression:

α
t

α α αu u∂
∂ + ∇ · ( ) + ∇ · ( (1 − )) = 0,r (3)

where α is the volume fraction, and ur stands for artificial compressive
velocity field which is oriented in the normal direction towards the free
surface (Weller, 2008). The third term is active only near the free
surface due to the nonlinear term α α(1 − ). The details on the
evaluation of ur can be found in Rusche (2002).

Detailed discretisation of temporal derivative, convection and
diffusion in (2) in integral form can be found in Jasak (1996), while
already discretised equations are used in the text below. The semi–
discretised momentum equation for each cell reads:

∑a a
ρ

pu u b+ = − 1 ∇ ,P P
f

N N d
(4)

where aP stands for the diagonal coefficient, aN for the off–diagonal
coefficients, and subscripts P and N stand for values in the parent cell
centre and neighbouring cell centres, respectively. Parent cell is the cell
for which the equation is being solved for, and the neighbouring cells
are all the cells which share a face with the parent cell (Jasak and
Gosman, 2001). ∑f is the sum over all neighbouring faces f, and b
stands for the source term. Following notation proposed by Jasak
(1996), (4) can be written as:

H
a a

p
ρ

u u= ( ) − 1 ∇ ,P
N

P P

d

(5)

where H u( )N presents an explicit operator:

∑H au u b( ) = − + .N
F

N N
(6)

The pressure equation is derived by interpolating (5) on cell faces and
substituting into the discretised form of (1), yielding:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∑ ∑

a ρ
p

a
s s H u· 1 1 ∇ = · ( ( ))

( ) ,
f

f
P f

d
f f

f
N f

P f (7)

where sf stands for surface normal vector, and subscripts f denote
values at face centres. For a detailed derivation of the pressure
equation with the GFM, the reader is referred to Vukčević et al. (2017).

2.2. Numerical procedure

The solution of above equations is achieved in a segregated manner
in a PIMPLE loop, a combination of SIMPLE and PISO algorithms,
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where the PISO loop is repeated multiple times per time–step. The
pressure velocity coupling is resolved in the PISO manner, while the
repetition of PISO multiple times per time step is specific to SIMPLE
algorithm. Within the PISO loop, the momentum equation is solved
once, while the pressure equation, (7), is solved multiple times. After
each pressure correction step, the velocity field is updated explicitly
using (5).

2.3. Coupling of fluid flow and 6–DOF body motion equations

In most naval hydrodynamic problems pressure forces acting on a
moving body dominate over viscous forces, resulting in a strong
coupling of 6–DOF body motion and pressure at the body boundary.
The boundary velocity is determined by solving the 6–DOF body
motion ODE, where the right hand side represents the excitation force
F and moment M:

F F F= + ,p v (8)

M M M= + ,p v (9)

where indices p and v denote pressure and viscous parts, respectively.
Pressure and viscous forces are calculated in the global inertial
reference frame by integrating the pressure and shear stress on the
body surface, respectively:

∑
∑
∑
∑

p

ρ ν

p

ρ ν

F s

F s T

M r s

M r s T

= ,

= · *,

= × ,

= × ( · *),

p
bf

bf bf

v
bf

bf e bf bf

p
bf

bf bf bf

v
bf

bf bf e bf bf

,

,
(10)

where index bf denotes face at the body boundary, T* is the deviatoric
part of the stress tensor T which is twice the symmetric part of the
velocity gradient tensor u∇ . r is the radii vector of the face centre with
respect to the centre of gravity. In the conventional approach used in
PIMPLE algorithms, the pressure force Fp converges in an oscillatory
manner in successive PISO loops during one time–step due to the
elliptic nature of the pressure equation, while the viscous force exhibits
smoother convergence. If the pressure forces are dominant, such
oscillations deteriorate the convergence rate of body motion–fluid flow
coupling.

The pressure equation and the rigid body motion equations are
mutually coupled, where the pressure influences the 6–DOF equations
through (10), while the body velocity solution influences the pressure
equation through (6). The strong coupling between pressure and body
boundary velocity is present even without moving the grid.

In this work an enhanced approach for 6–DOF–fluid flow coupling
is proposed, in which 6–DOF body motion equations are solved after
each pressure correction equation within the PISO loop, allowing
tighter coupling with the pressure equation. After the solution of the
pressure equation, the forces acting on the body are recalculated and
body motion ODEs are solved:

ω ω ω

t
m

t

v F

I M I

∂
∂ = / ,

∂
∂ = · ( − × ( · )),−1

(11)

where v is the velocity of the centre of mass of the body, ω is the
rotational velocity with respect to the centre of mass, while I stands for
the tensor of inertia of the body. Fifth-order Cash-Karp embedded
Runge-Kutta scheme with error control and adjustive time-step size
(Press et al., 2002) is used for integration of rigid body motion
equations, while no under–relaxation is used.

The change of the body velocity is inserted in the pressure equation

through (6) by updating the source term b for cells adjacent to the body
boundary. The source can be decomposed into the contribution from
the boundary condition at the moving body and the remaining part of
the source:

b b b u= + ( ),r bf (12)

where ubf stands for the velocity of the body boundary faces, b u( )bf is
the part of the source term which is a function of the velocity at the
body boundary, while br stands for the remaining portion of the source
term (other boundary conditions, non–orthogonal correction of the
diffusion term etc.). The body boundary velocity is calculated from the
rigid body kinematics obtained from (11) as:

ωu v r= + × .bf bf (13)

The body boundary, i.e. the grid, is not moved in the pressure loop to
save CPU time. Instead, the grid is moved only once per PISO loop, to
allow complete coupling with the velocity field and the free surface.
Hence the 6–DOF equations are further resolved at the negligible
expense of additional rigid body motion ODE solution per each
pressure correction equation. The flow chart of the PIMPLE loop
including the enhanced 6–DOF body motion coupling is shown in
Fig. 1.

3. Decaying heave motion of a cylinder

In this section verification and validation of the proposed approach
is presented on a case of 2D decaying heave motion of a cylinder.
Verification is performed by refining the spatial and temporal resolu-
tion simultaneously, following Eça and Hoekstra (2008). Experimental
and theoretical results published by Ito (1977) and Maskell and Ursell
(1970) are used for validation, respectively.

Fig. 1. Flow chart of the segregated solution algorithm.
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The experimental and theoretical data are given in dimensionless
form, where the temporal and spatial scales are normalised with the
initial displacement δ and with g R/ , respectively, where R denotes the
cylinder radius. Hence, the cylinder dimensions are selected arbitrarily:
R = 1 m, while the initial displacement is set to δ R= 2/3 upward. The
computational domain is 60 m wide, with a water depth of 20 m and
10 m height above the free surface. Fig. 2 shows the computational
domain with boundaries and cylinder position with respect to the free
surface. Implicit relaxation zones (Jasak et al., 2015) are positioned at
the left and right boundary for wave absorption, and extend 15 m
towards the cylinder. Wave velocity boundary condition is set on the
left, right and bottom boundary, while zero gradient is set on the top
boundary. Zero gradient pressure boundary condition is set on all
boundaries except the top, where total pressure is prescribed.

Second order backward temporal discretisation scheme is used,
while implicit upwind scheme with deferred second order correction is
used to discretise the convection term in the momentum equation.
Second order scheme with explicit limited non–orthogonal correction
is used for the discretisation of the diffusion term. For the interface
capturing equation second order scheme with deferred correction is
used for the convection, while turbulence equations are convected with
first order upwind scheme. Four PISO correctors are used per time–
step for all simulations, where two pressure corrections per PISO loop
are employed. All equations are solved to the tolerance of (−8)
calculated with the L1 norm, guaranteeing that the final residual does
not exceed this value. However, the actual accuracy of the calculations
is expressed via initial residual of all equations prior to the last solution
in the time–step, and it will be shown for the below simulations. These
residuals need to be sufficiently small to show that the pressure–
velocity–free surface system has converged to a satisfactory level.

3.1. Verification

Verification procedure for unsteady flow from Eça and Hoekstra
(2008 is adopted, where four grids are used in order to establish the
total uncertainty arising from temporal and spatial discretisation
errors. According to the recommendations of Eça and Hoekstra
(2014), for complex flow cases at least four refinement levels are
needed to get a reliable uncertainty assessment. Refinement ratio r = 2
is used which defines the ratio between the temporal resolution τ τ/i i−1
and spatial resolution h h/i i−1 of adjacent refinement levels i. Temporal
and spatial resolution are refined simultaneously, i.e.
h h τ τ h h τ τ h h τ τ r/ = / = / = / = / = / =3 4 3 4 2 3 2 3 1 2 1 2 . The values for the coar-
sest level are set to: h = 0.125 m1 , which is the vertical and horizontal
dimension of a typical cell near the free surface; τ = 0.05 s1 . This results
in 19 050, 72 554, 283 386 and 1 120 410 cells for grids corresponding to
refinement levels 1, 2, 3, and 4, respectively. The corresponding time–
steps are τ = 0.05 s1 , τ = 0.025 s2 , τ = 0.0125 s3 and τ = 0.00625 s4 . Since
the time–step is fixed, the Courant–Friedrichs–Lewy (CFL) number
varies between 0.5 and 2.5, with a mean of ≈1.1. Since the spatial and
temporal resolution are refined simultaneously, the CFL number
behaves similarly in all simulations. The computational grid is un-
structured, composed mostly of hexahedral cells (≈95%), and a minor

portion of polyhedral cells (≈5%). The coarsest grid is shown in Fig. 3,
where it can be seen that the grid is refined in the vicinity of the free
surface.

Eça and Hoekstra (2014) recommend using a least squares
approach for discretisation error estimate when the flow field is
complex and when unstructured grids are used, which will be summar-
ized here for clarity. Evaluation of ith grid uncertainty for well behaved
data sets with four or more refinement levels can be expressed as:

U F σ ϕ ϕ= ϵ + + − ,i S i i fit (14)

where Ui presents the grid uncertainty for grid i, F = 1.5S is the safety
factor, ϵi is the discretisation error, σ is the standard deviation of the
least squares fit, ϕi is the value of the observed simulation variable on
grid i, and ϕfit is the corresponding value obtained from the least
squares fit. The data is considered well behaved if the relation σ Δ< is
fulfilled, where Δ defines a data range parameter defined as:

Δ ϕ ϕ N= ( − )/( − 1),max min (15)

where ϕmax and ϕmin denote maximum and minimum value of the
variable obtained using different refinement levels. In cases when τi and
hi are simultaneously varied, ϵi is determined as (Eça and Hoekstra,
2008):

αh h τ hϵ = *, * = ( ) ,i i
p

i i i
2 1/3

(16)

where α is a constant that needs to be calculated, while p is the
achieved order of accuracy. When more than three refinement level
results are available, least squares method is used to obtain α and p by
minimising the following function:

∑S ϕ α p ϕ ϕ αh( , , ) = ( − ( + * )) ,
i

N

i i
p

0
=1

0 2
(17)

where ϕ0 presents the estimate of the exact solution. The convergence
is considered monotone if p0.5 ≤ ≤ 2.1. The standard deviation of the
least squares fit is determined as:

σ
ϕ ϕ αh

N
= ∑ ( − ( + * ))

− 3 .i
N

i i
p

=1 0 2

(18)

Fig. 4 shows the heave signal in time for the four refinement levels,
where z stands for the heave displacement. Fig. 5 shows the enlarged
graph in order to see the analysed portion of the signal more clearly.
The uncertainty analysis is performed on heave signal characteristics in
temporal and frequency domain. In temporal domain, first two extrema
of the signal are used, while in the frequency domain the mean value
and harmonics with the largest magnitudes are analysed. The harmonic
amplitudes are obtained by performing a Fast Fourier Transform on
the first 10 s of the signal. Fig. 6 shows the initial residuals of the last
solution in the time–step for pressure, momentum and interface
capturing equations during the simulation for the finest refinement
level. The residuals exhibit similar behaviour for all variables, main-
taining at the level of (−5) or less during the simulation. Fig. 7 shows
the spectrum of the heave signal for all refinement levels, where Z

Fig. 2. Computational domain for the heaving cylinder test case. Fig. 3. Coarse computational grid corresponding to refinement level 1 for the heaving
cylinder test case.
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stands for the Fourier amplitude of the heave signal. Circles denote the
amplitudes that are analysed.

Table 1 shows the complete verification data for two items in
temporal domain: zext1 and zext2, denoting the first and the second
extrema of the heave signal; and three items in frequency domain:

mean Z0, first Z1 and second Z2 order amplitudes. The uncertainties are
calculated for the finest grid, i.e. i = 4 in (14). Standard deviation σ is
smaller than the data range parameter Δ for all items, hence the data is
well behaved. Since p0.5 < < 2.1 for all items, monotone convergence
is achieved. Order of convergence is between 1 and 2 for all items
except the mean value. Uncertainties are acceptably small for all items
ranging from 0.03% to 2.1%, except for the mean of heave motion Z0
which exhibits 10% of uncertainty due to its small absolute value.

3.2. Validation

Results obtained using the finest temporal and spatial discretisation
are used for the validation including the uncertainties calculated in the
previous section following (Eça et al., 2016), where they are compared
against experimental data presented by Ito (1977) and theoretical
results published by Maskell and Ursell (1970). The comparison is
performed for the same items used in the verification study. Fig. 8
shows the comparison of dimensionless heave signals. The present
result agrees with theory and experiment reasonably well, within the
range set by the theoretical and experimental data. Comparison of
temporal and spectral items between the theoretical, experimental and
numerical results are presented in Table 2. Relative difference is
calculated as D ϕ ϕ ϕ= ( − )/a b a b a− , where indices denote the correspond-
ing method: E is experimental, T theoretical and C is the result of the
present CFD method. The relative differences between the experimen-
tal and theoretical results are generally larger than the difference of the
CFD result with either of them. It can be noticed that the CFD result
corresponds better to the theoretical data, while larger differences
occur with respect to the experimental results.

The result comparison including discretisation uncertainties are
graphically presented in Fig. 9, where the uncertainties from Table 1
are used. Note that absolute values of corresponding items are shown
for better visibility. The error bars, which present the discretisation
uncertainty interval, are often very close together and visually form a
single line. Generally the numerical results agree better with theoretical

Fig. 4. Cylinder heave signals obtained using different temporal and spatial refinements.

Fig. 5. Enlarged view of the analysed portion of the cylinder heave signal.

Fig. 6. Initial residuals of the equations before the last solution in the time–step, during
the fine resolution simulation.

Fig. 7. Spectrum of cylinder heave oscillation.

Table 1
Verification results for the cylinder heave decay case.

Item ϕ0 p σ Δ U4, %

z δ/ext1 −0.6414 1.2767 0.000132 0.00174 0.07
z δ/ext2 0.3647 1.0104 0.000173 0.01247 2.09
Z δ/0 0.0442 0.8980 0.000670 0.00641 10.20
Z δ/1 0.1984 1.9306 0.000177 0.00278 0.03
Z δ/2 0.2017 1.3634 0.000976 0.00154 0.28
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results, especially for the temporal items, zext1 and zext2.

4. Performance comparison on a seakeeping case

In this section a typical seakeeping case is considered in order to
compare the enhanced approach with the conventional approach. The
two methods are compared in terms of performance, including the 6–
DOF–fluid flow coupling sensitivity study, where the number of PISO
correctors per time–step is varied.

Seakeeping simulations of KRISO Container Ship (KCS) are per-
formed to assess the acceleration achieved with the enhanced approach
for 6–DOF–fluid flow coupling. Regular head waves are imposed at
design Froude number Fr = 0.261, while the wave parameters are chosen
to correspond to 2.10 C5 case from the Tokyo Workshop on CFD in Ship
Hydrodynamics (2015) (National Maritime Reasearch Inistitute, 2015).

In order to compare the two coupling strategies, all parameters of
the simulations are the same in all cases except the number of PISO
correctors per time–step. Simulations with 2, 4, 8, 10 and 14 PISO
correctors are conducted with the conventional approach, while 2, 3, 4,
8 and 14 PISO correctors are used with the proposed approach. Four
pressure correction steps are used per PISO corrector in all simula-
tions. k–ω SST turbulence model is used (Menter, 1994) with wall
functions, where the average y+ on the hull is 50. Mean, first order and
phase shift of the first order of resistance, heave and pitch are
compared. Moving window Fourier transform for every encounter
period is used to obtain frequency domain signals throughout succes-
sive periods. Fig. 10 shows an example of the moving window Fourier
transform of the first order amplitude of heave. The periodic un-
certainty is below 2% for all simulations, hence it is considered not to
have a significant influence on the comparison below. More details on
how the periodic convergence is attained can be found in Vukčević and
Jasak (2015). The required CPU time per time step is also compared. A
cluster with distributed memory is used with nodes: CPU2x Intel Xeon
E5-2637 v3 4core, 3.5 GHz, 15 MB L3 Cache, DDR42133, with Infini–
Band communication. Two nodes, i.e. eight cores are used for each
simulation.

KCS model characteristics can be found at Tokyo 2015 CFD
Workshop website (National Maritime Reasearch Inistitute, 2015).
Heave and pitch motions are free, and half of the model is simulated
using a symmetry boundary condition at the vertical centre plane. Inlet
boundary is positioned at L1 PP from the fore perpendicular, outlet at
L2 PP from the aft perpendicular, while the farfield boundary at the side
of the ship is set at the distance of L1.5 PP from the symmetry plane. The
depth of the domain is set to L1.5 PP, while the top boundary is set to
L1 PP from the free surface. The velocity at the inlet, outlet, bottom and
farfield is prescribed from the stream function wave theory, while the
dynamic pressure boundary condition is set to zero gradient. Fixed
pressure is set at the top boundary, with zero gradient on the velocity
field. Wave height to cell height ratio is H z/Δ ≈ 20, while wave length to
cell length ratio near the hull is λ x/Δ ≈ 335. Implicit relaxation zones
(Jasak et al., 2015) are used in order to gradually impose the incident
wave field into the computational domain and to damp the waves at the
outlet boundary, in order to prevent reflection. Length of relaxation
zones are λ/2 at the inlet and side boundary, and λ1 at the outlet. Fig. 11
shows the discretised hull surface, symmetry plane and a plane normal
to the longitudinal direction on the main cross section. The rudder is
fixed at zero angle, and the model is towed at constant carriage velocity
corresponding to Froude number of 0.261. Same grid with 950,000
cells is used in all simulations, while the time step is set to

tΔ = 0.0046 s, which corresponds to 400 time–steps (Vukčević, 2016)
per encounter wave period. At least 10 encounter periods are simulated

Fig. 8. Cylinder heave signal comparison.

Table 2
Validation results for the cylinder heave decay case.

Item Experimental Theory CFD DE T− , % DE C− , % DT C− , %

z δ/ext1 −0.6015 −0.6573 −0.6409 −9.28 −6.56 2.49
z δ/ext2 0.2977 0.3521 0.3596 −18.26 −20.76 −2.11
Z δ/0 0.0468 0.0366 0.0410 21.71 12.39 −12.02
Z δ/1 0.1848 0.2103 0.1981 −13.83 −7.25 5.79
Z δ/2 0.1971 0.2134 0.2010 −8.28 −1.98 5.81

Fig. 9. Comparison of numerical, experimental and theoretical results including the
numerical uncertainties.

Fig. 10. Example of periodic convergence of first order amplitude of heave, obtained
using the conventional and enhanced approach with 4 PISO correctors per time step.

I. Gatin et al. Ocean Engineering 143 (2017) 295–304

30092



in all simulations. Fig. 12 shows one time instance from the simulation,
where the incident, diffracted and radiated wave systems can be
observed.

The results are compared in Fig. 13. The solution obtained using 14
PISO correctors with conventional approach is used as a reference
(denoted by symbol ⋄). The conventional scheme result using two PISO
correctors is far from the reference (converged) solution for all
measured items. With the enhanced approach, two PISO correctors
generally produce the solution which is close to the converged solution.
It can also be seen that with the conventional approach at least four
correctors are needed to obtain acceptable accuracy. In the following
text results shall be analysed item by item.

In Fig. 13 the first row of graphs shows the comparison for total
resistance RT . For the zeroth order RT 0 and first order RT1 of total
resistance, the result obtained with the conventional approach using
two PISO correctors is far from the converged solution. The enhanced
approach achieves the solution which is close to the converged solution
with fewer number of PISO correctors, while the solution does not
change considerably with increasing number of PISO correctors,
especially for the first order of total resistance.

The second row of graphs in Fig. 13 shows heave results. First order
z1 and phase shift γz1 of heave confirm that two correctors with the
enhanced approach produce the solution close to the reference solu-
tion. For the zeroth order z0, the two methods exhibit different
behaviour: the conventional approach diverges, while the enhanced
approach converges after 8 PISO correctors. It should be noted that the
first order and phase shift are more important for motions from a
practical point of view compared to mean value, and that mean values
of heave an pitch have significantly smaller absolute values.

The third row of graphs in Fig. 13 presents the result comparison
for pitch motion. All three items show that the enhanced approach
produces a solution close to the converged one with two PISO

Fig. 11. Computational grid used in the KCS seakeeping simulations.

Fig. 12. View of free surface elevation in KCS seakeeping simulation for t = 18.2 s.

Fig. 13. Results comparison: RT stands for total resistance, z for heave, ϕ for pitch. Index number 0 indicates zeroth Fourier series order (mean), while 1 stands for the first order of

oscillation. γ is the phase shift of the item indicated in the index. N represents the number of PISO correctors per time–step.
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correctors, and that the result shows low dependence on the number of
PISO correctors.

The main objective of this work is to reduce the required CPU time
for transient simulations with body motion. Hence, a comparison of
average CPU time per time–step for all simulations is shown in the first
graph in Fig. 14. It can be noticed that two correctors with the
enhanced approach require slightly more CPU time than two correctors
with the conventional approach. This slight difference is caused by
solving the motion equations once per each pressure correction
equation. However, since smaller number of PISO correctors can be
used with the enhanced approach (e.g. 2 instead of 4–8), a savings in
CPU time of a factor of two and more can be achieved. Table 3 shows
the total CPU time required for individual simulations.

As can be seen in Fig. 14, a different trend of the number of
pressure equation linear solver iterations is exhibited by the two
approaches, where the enhanced approach uses fewer number of
iterations for small number of PISO correctors, however the conven-
tional approach seems to converge to a smaller number of iterations.
Nonetheless, the difference in the number of iterations is not sig-
nificant in both cases. Krylov subspace Conjugate Gradient (CG) linear
system solver with Cholesky preconditioner has been used in all
simulations for the pressure equation.

Fig. 15 shows the comparison of the L1 norm residuals of the last
PISO corrector in the time–step, for velocity (4) and pressure (7)
equations, averaged over all time–steps in the simulation. The resi-

duals are shown with respect to the total number of PISO correctors
used in the simulation. The velocity residuals represent the average of
the component–wise time–step averaged residuals. For small number
of PISO correctors, the residuals are lower for the enhanced approach,
while both approaches converge to a similar value of ≈5·10−6 for
pressure and ≈3·10−6 for velocity. The residuals of the 6–DOF motion
equations are not shown here since they are few orders of magnitudes
smaller than the fluid flow equations residuals, hence they are not
relevant for the comparison.

4.1. Time–step sensitivity study

In order to determine the sensitivity of the results with respect to
the number of time–steps per encounter wave period, a temporal
resolution refinement study is performed. The sensitivity is investi-
gated by using 25, 50, 100, 200, 400 and 800 time–steps per encounter
wave period. Six PISO correctors and the coarse 600,000 cells grid is
used in all simulations.

Fig. 16 shows heave, pitch and resistance amplitudes with respect
to the number of time–steps per encounter period. All items converge
with increasing temporal resolution, while first order amplitudes show
smaller sensitivity then the mean values with respect to the temporal
resolution. Hence, significant savings in computational time can be
achieved by using coarse temporal resolution, while attaining reason-
able accuracy. The difference in computational time between 25 and
800 time–steps per encounter period is 32 times. Fig. 17 shows the
phases with respect to the number of time–steps per one encounter
wave period. The phases are more sensitive to the temporal resolution,
indicating that the dispersion error is higher than the dissipation error.
Since phases are generally less important, especially in the early design
stages, coarse temporal resolution presents an attractive option for
quick estimation of seakeeping performance.

Fig. 14. Comparison of CPU time and the average number of pressure equation linear solver iterations per time–step for varying number of PISO correctors.

Table 3
Total CPU time for 20 encounter periods for individual seakeeping simulations.

N 2 3 4 8 10 14
Enhanced 19.0 h 11.5 h 34.6 h 68.0 h N/A 112.5 h
Conventional 16.5 h N/A 32.0 h 62.0 h 83.0 h 113.0 h

Fig. 15. Comparison of average time–step nonlinear residuals throughout the simulation for varying number of PISO correctors.
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5. Conclusion

An enhanced method for coupling body motion and fluid flow in
CFD simulations is presented, verified and validated in this paper.
Along with the usual update of 6–DOF body motion equations after the
converged pressure–velocity–free surface solution, 6–DOF motion
equations are additionally solved after each pressure correction
equation in the PISO loop, without moving the grid. The method

accelerates the convergence of body motion–fluid flow coupling,
reducing the number of PISO correctors per time–step while preser-
ving the accuracy.

The present approach for coupling body motion and fluid flow is
verified and validated on a heave decay simulation of a cylinder. The
verification showed that the achieved order of accuracy is in accordance
with the employed discretisation schemes, verifying the present
method. The order of accuracy ranges from 0.89 to 1.93, while the

Fig. 16. Convergence of heave, pitch and resistance amplitudes with increasing number of time steps per encounter period. Heave is normalised with wave amplitude ζ , and pitch with

wave stepness kζ , where k stands for the wave number.

Fig. 17. Convergence of heave, pitch, and resistance phases with number of time steps per encounter period.
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uncertainties are reasonably small. Comparison with experimental and
theoretical results of heave motion verified that accurate results are
obtained, where the numerical results fall in the range between the
experimental and theoretical data for majority of the quantities.

To test the acceleration which can be achieved using the enhanced
scheme, simulations of a KCS model in regular head waves are
performed using the conventional approach and the enhanced ap-
proach with varying number of PISO correctors. Mean, first order and
phase shift of resistance, heave and pitch motions are compared.

The analysis of results showed that the proposed enhanced 6–
DOF–fluid flow coupling approach takes less PISO correctors to reach
convergence, whereas conventional approach demands four to eight
PISO correctors to achieve satisfactory accurate solution. With the
enhanced approach, two PISO correctors are sufficient to achieve
satisfactory results for mean of resistance and first order amplitudes
of motion, which are industrially relevant. Also, accurate prediction of
phase shifts is obtained. Hence, significant savings of a factor of two
and more in terms of CPU time can be achieved using the proposed
approach, while retaining accuracy.

For future research, the issue of added mass instability will be
addressed to investigate weather the proposed method enhances the
stability of simulation in case of numerically unstable cases.
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Abstract: In Fluid Structure Interaction (FSI) problems encoun-
tered in marine hydrodynamics, the pressure field and the velocity
of the rigid body are tightly coupled. This coupling is traditionally
resolved in a partitioned manner by solving the rigid body motion
equations once per nonlinear correction loop, updating the position
of the body and solving the fluid flow equations in the new configura-
tion. The partitioned approach requires a large number of nonlinear
iteration loops per time–step. In order to enhance the coupling, a
monolithic approach is proposed in Finite Volume (FV) framework,
where the pressure equation and the rigid body motion equations are
solved in a single linear system. The coupling is resolved by solving
the rigid body motion equations once per linear solver iteration
of the pressure equation, where updated pressure field is used to
calculate new forces acting on the body, and by introducing the
updated rigid body boundary velocity in to the pressure equation. In
this paper the monolithic coupling is validated on a simple 2D heave
decay case. Additionally, the method is compared to the traditional
partitioned approach (i.e. “strongly coupled” approach) in terms of
computational efficiency and accuracy. The comparison is performed
on a seakeeping case in regular head waves, and it shows that the
monolithic approach achieves similar accuracy with fewer nonlinear
correctors per time–step. Hence, significant savings in computational
time can be achieved while retaining the same level of accuracy.
Keywords: monolithic coupling, pressure equation, rigid body
motion, computational fluid dynamics, marine hydrodynamics,
seakeeping
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1 Introduction
In computational marine hydrodynamics, the problems

including Fluid Structure Interaction (FSI) involving floating
bodies are often encountered. Furthermore, elasticity of the
body can be neglected in most applications, modelling only
six degrees of freedom for the rigid body motion. In majority
of cases, the problem includes a body at the free surface,
forced into motion by wave forces or initial non–equilibrium
of mass and displaced volume. In either case, the oscillatory
motion of the floating body is primarily a result of interplay
of pressure forces acting on the body, and the gravitational
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force. Since the fluid is incompressible, the pressure field
is sensitive to the change in the body velocity. For this
reason, this paper focuses on the coupling of the pressure
equation and rigid body motion equations. The coupling is
performed monolithically, where the pressure equation and
rigid body motion equations are solved simultaneously. The
development is performed in Naval Hydro software pack
based on foam–extend open–source software.

Monolithic solution strategy is well documented in the
literature for FSI involving deformable bodies, where the
fluid and the structure are modelled within the same spatial
discretisation framework (Hachem et al., 2013; Legay et al.,
2011), or on separate grids (Farah et al., 2016; Hu et al.,
2016). Finite Element Method is mostly used to discretise the
structure and fluid flow equations (Bna et al., 2013; Farah
et al., 2016; Hachem et al., 2013; Heil et al., 2008; Jog and
Pal, 2011; Langer and Yang, 2016; Legay et al., 2011; Yang
et al., 2016), while FV is used in some publications (Eken
and Sahin, 2016; Hu et al., 2016). Some authors state that
the monolithic FSI model with a discretised structure can
calculate rigid body dynamics as a special case. Hachem
et al. (2013) state that the rigid body can be modelled by
imposing special conditions to the Navier–Stokes equations
for the stencils inside the structure. Legay et al. (2011) and
Robinson-Mosher et al. (2011) show that rigid body can
be simulated within the presented model by substituting the
structural system of equations with the rigid body motion
equations.

The publications mentioned above discretise the structure
in order to provide a general framework for deforming bodies.
In case of rigid bodies, the discretisation of the body volume
would present an unnecessary overhead. Integrating the rigid
body motion equations only requires information of mass,
angular inertia of the body, and relative position of the centre
of gravity, which are constant.

The novelty of this work is in the monolithic approach
to the pressure–rigid body motion coupling within the FV
framework where the body is represented as a boundary of
the fluid domain, while the volume inside the body is not
discretised. The approach offers a more resolved solution
of the coupling comparing to the widely used partitioned
approach (Orihara and Miyata, 2003; Castiglione et al., 2011;
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Wu et al., 2011; Simonsen et al., 2013; Vukčević and Jasak,
2015a; Simonsen et al., 2013; Tezdogan et al., 2015; Miyata
et al., 2014), enabling a reduction of the number of nonlinear
iterations per time–step. In the present approach, the pressure
field and the solid body motion equations are coupled at the
level of linear solver step of the pressure equation. After each
linear solver iteration, the updated pressure field is used to
calculate forces acting on the rigid body, which are in turn
used to repeatedly integrate the solid body motion equations.
The updated velocity of the solid body is then injected in
the right hand side of the pressure equation as the change of
volumetric flux at the body boundary.

The paper is organized as follows. First, the numerical
model is presented, comprising the discretisation of the
coupling of the pressure equation and the rigid body motion
equations, followed by details regarding the linear solver and
the Aitkens relaxation method. Next, validation of the present
approach is performed on a 2D heave decay test case by
comparing with the well established partitioned approach.
In the fourth section the two methods are compared on a
seakeeping case in regular head waves. Finally, an overview
of results and conclusion are given.

2 Numerical model
In this section the mathematical and numerical formulation

of the monolithic coupling of the pressure equation and rigid
body motion equation is described.

The momentum equation or incompressible, two phase
flow states (Vukčević et al., 2016a):

∂u

∂t
+ ∇ ·((u − uM ) u) − ∇ ·(νe∇u) = −

1
ρ
∇pd (1)

where u stands for the velocity field, while uM is the relative
grid motion velocity accounting for the Space Conservation
Law (Demirdžić and Perić, 1988). νe stands for the effective
kinematic viscosity, ρ is the density, while pd stands for
the dynamic pressure: pd = p − ρg ·x, where g denotes the
gravitational constant, while x represents the radii vector.

The pressure equation is derived from the mass
conservation law, which can be written in the following form
for incompressible flow:

∇ ·u = 0 (2)

The change of the boundary velocity δub of the rigid body
can be accounted for explicitly in the continuity equation as:

∇ ·u + ∇ ·(δub) = 0 (3)

The discretisation of Eq. (2) in the integral FV framework will
be omitted for brevity, the reader is directed to Jasak (1996)
for details. The discretisation of Eq. (2) yields the pressure
equation, which can be written in the form:∑

f

s f ·

(
1

aP

)
f

(
∇pd

ρ

)
f

=
∑
f

s f ·
(H(uN )) f

(aP) f
(4)

where f denotes the face index, s f stands for the surface area
vector: s f = s f n, where s f stands for the area of the face,
while n denotes the face unit normal vector. aP is the diagonal
coefficient from the discretised momentum equation, Eq. (1)
(Jasak, 1996). H is a linear operator stemming from the
discretisation of the momentum equation, which is a function
of explicit neighbouring cell velocities uN . The discretisation
of the divergence of change of the boundary velocity in
integral form states:∫

V

∇ ·(δub)dV =
∮
S

n ·δubdS =
∑
f

s f ·δub f (5)

where the Gauss’s theorem is employed to transform the
volume integral into a surface integral. The final discretised
form of the pressure equation monolithically coupled with the
rigid body motion states:∑

f

s f ·

(
1

aP

)
f

(
∇pd

ρ

)
f

=

∑
f

s f ·
(H(uN )) f

(aP) f
−

∑
f

s f ·δub f

(6)

The last term on the right hand side of Eq. (6) provides the
coupling between the pressure equation and the rigid body
motion. Note that mathematically, ub f presents a velocity
field defined at face centres, with non–zero values only where
only for faces at the rigid body boundary.

To obtain the change of velocity δub , rigid body motion
equations are integrated:

∂v

∂t
= F/m

∂ω

∂t
= I−1

· (M − ω × (I ·ω))

(7)

where v denotes the translational velocity of the centre of
mass, F is the total exerted force on the body, while m stands
for the mass of the body. ω is the rotational velocity, I is
the tensor of inertia, while M stands for the external moment
acting on the body. The force and moment acting on the body
are calculated as the sum of pressure and viscous forces:

F =
∑
b f

sb f pb f + Fv

M =
∑
b f

rb f × sb f pb f + Mv

(8)

where the summation is carried out on boundary faces
denoted with index b f , while Fv and Mv denote the viscous
portion of the force and moment, respectively. The pressure
at the boundary face pb f is calculated from the dynamic
pressure as: pb f = pd,b f + ρg ·xb f . Hence, it represents the
cross coupling term with the pressure equation, Eq. (6). The
change of the boundary velocity δub f is finally calculated as
the change of the translational and rotational velocity of the
boundary face b f in the two adjacent linear solver iterations:

δun
b f = vn − vn−1 + (ωn − ωn−1) × xb f (9)

100



Journal of Marine Science and Application (2017) 16: 375-381 377

where n denotes the linear solver iteration, while xb f denotes
the radii vector of the boundary face.

Eq. (6) to Eq. (9) present a closed system regarding
the pressure–rigid body motion coupling. At linear solver
iteration level the following algorithm is employed to conduct
the coupling:

1) Initialize δub f to zero,
2) Perform one iteration of the linear solver for the

dynamic pressure equation, Eq. (6),
3) Update the dynamic pressure pd ,
4) Calculate the new forces and moments, Eq. (8), while

keeping the viscous portion of the force constant,
5) Integrate the rigid body motion equations, Eq. (7),
6) Calculate the change of the boundary velocity, Eq. (9).
7) Go to next linear solver iteration,
8) Repeat 2) to 7) until convergence.

A flow chart of the nonlinear corrector used in this work is
shown on Fig. 1. Note that multiple pressure corrections are
performed in one nonlinear corrector.

In the two phase flow solver, Ghost Fluid Method is
used (Vukčević, 2016) to impose the free surface boundary
conditions in the FV framework, while Spectral Wave
Explicit Navier Stokes Equations (SWENSE) (Vukčević et
al., 2016a) is used to imposed the wave field in the CFD
domain.

2.1 Linear solver and rigid body motion integration
In this work the discretised pressure equation is solved

using a preconditioned Conjugate Gradient (Saad, 2003)
method for sparse linear systems. Cholesky factorisation is
used as a preconditioner.

Integration of rigid body motion equations is performed
using Fifth-order Cash-Karp embedded Runge-Kutta scheme
with error control and adjustive time-step size (Press et al.,
2002).

2.2 Aitkens relaxation
In order to stabilise the calculation of the rigid body

motion, Aitken’s adaptive relaxation (Irons and Tuck, 1969)
is employed. Since the solution of the pressure can vary
dramatically in the first several iterations of the linear solver,
the coupling with the rigid body motion equations can be
unstable. In order to circumvent the instability, a dynamic
relaxation is needed to exert heavy relaxation at the beginning
of the linear solution process, and gradually increase the
relaxation factor as the pressure solution starts to converge.

Using Aitken’s algorithm, the acceleration of translational
and rotational motion is relaxed. Here, the algorithm will
be presented only for translational acceleration a for brevity.
Acceleration ak of the kth iteration is obtained using the
relaxation factor ωk :

ak = (1 − ωk ) ãk + ωk ak−1 (10)

where tilde denotes the calculated value. The relaxation factor
is calculated based on the information from the previous

Start the nonlinear iteration loop

Solve body motion
equations, Eq. (7),

update boundary position

Convect the
free surface

Solve u

Solve pd: Eq. (4) for partitioned
approach; Eq. (6) to Eq. (9)

for monolithic approach

Update u explicitly

Pressure
converged?

Solve turbulence

Nonlinear
corrector

converged?

Advance
time–step

Yes

No

(NpCorr)

Yes
No

(NnCorr)

Fig. 1 Flow chart of the nonlinear corrector

iterations:

ωk = ωk−1 + (ωk−1 − 1)
(∆ak−1 − ∆ak ) ·∆ak

(∆ak−1 − ∆ak )
2 (11)

where ∆ak = ak−1 − ak , while ∆ak−1 = ak−2 − ak−1.

3 Heaving barge test case
In this section the novel monolithic coupling of the

pressure equation and rigid body motion is validated on
2D heave decay case of a barge. The results are compared
with the partitioned approach, where the rigid body motion
equations are updated once per nonlinear correction loop.

The 2D floating barge is set above the hydrostatic
equilibrium position by 0.01 m at time zero to produce a
heave decay motion. The mass of the barge is 0.32 kg,
with height of 0.12 m, width of 0.2 m, and draught of
0.08 m. 32 160 cells are used for both the monolithic and
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Fig. 2 Comparison of the force signal and heave motion for
the 2D heave decay case

partitioned simulation, while a fixed time step of 0.001 42 s
is set corresponding to ≈ 400 time–steps per natural period
of oscillation. The number of time–steps per period of
oscillation is selected based on the authors experience, which
can be found in Vukčević et al. (2016). The same number
of nonlinear correctors is used per time–step, as well as
the number of pressure corrections per nonlinear loop in
every simulation. Eight nonlinear correctors per time–step
and four pressure correctors per each nonlinear loop are
used. The domain is 2 meters wide, 0.5 meters deep beneath
the free surface and 0.5 meters high above the free surface.
The computational grid is rigidly moving together with
the moving body. Fixed zero value boundary condition for
velocity is prescribed on the side boundaries and bottom,
while a mixed fixed value and zero gradient boundary
condition is placed at the top boundary. For pressure, zero
gradient is placed on sides and bottom, while fixed value is
set on the top boundary. For the VOF field, zero gradient
boundary condition is placed on all boundaries.

For discretisation of the temporal term in the momentum
equation backward second order scheme is used, while
implicit upwind scheme with deferred second order
correction is used for the convection term. The diffusion
term in momentum equation, and the pressure equation are
discretised using second order accurate scheme with explicit
non–orthogonal correction. Same discretisation is used in all

Fig. 3 Perspective view of the seakeeping simulation

calculations performed for this study.
The results are shown in Fig. 2, where the time signal

of vertical force acting on the barge and heave motion are
shown for the two simulations. Results of the monolithic
coupling approach show good agreement with the partitioned
approach, which validates the novel monolithic approach
since the partitioned approach has been validated (Vukčević
and Jasak, 2015a; Vukčević and Jasak, 2015b; Vukčević et al.,
2016b).

4 Seakeeping test case

A comparison of seakeeping simulation results is shown
in this section for partitioned and novel monolithic approach.
The convergence of the results with respect to the number of
nonlinear correctors per time–step and the number of pressure
correctors per each nonlinear corrector is compared, as well
as computational demands.

Seakeeping simulation for the KRISO Container Ship
(KCS) model in regular head waves is simulated (Fig. 3),
where the simulation set–up corresponds to the C5 case
from the Tokyo Workshop on CFD in Ship Hydrodynamics
(Larsson et al., 2015). Simulations are performed in model
scale for Froude number Fr = 0.261, with length LPP =

6.05 m, breadth B = 0.85 m and drought T = 0.285 m.
Regular incident wave is imposed with wave length λ =

11.84 m and wave height H = 0.196 m. Relatively coarse grid
is used with 600 000 cells to discretise half of the domain.
Implicit relaxation zones Jasak et al., (2015) are used to
initialize the waves at the inlet boundary, and to damp the
waves at the outlet. The inlet boundary is at a distance of
1LPP in front of the bow, while the outlet is 2LPP from the
aft perpendicular. Side boundary is placed at 1.5LPP from
the centre line of the ship, while the depth of the domain
is set to 1.5LPP and height above the free surface to 1LPP .
The ship is free to heave and pitch, while the surge velocity
is set to a constant value. Eight simulations are performed
altogether, where the number of nonlinear correctors per
time–step and number of pressure correctors per nonlinear
corrector in individual simulation are shown in the test matrix,
Table 1.
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Table 1 The test matrix showing the number of nonlinear
correctors, NnCorr per time–step and the number
of pressure correctors, NpCorr per each nonlinear
corrector for each simulation

Simulation No. NnCorr NpCorr

1 2 2

2 2 4

3 2 8

4 4 4

5 6 4

6 8 4

7 10 4

8 14 4
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Fig. 4 Comparison of seakeeping results of partitioned and
monolithic approach for coupling body motion and
pressure equation, with respect to the number of
pressure corrections NpCorr

Fig. 4 shows the comparison of results of the two different
coupling strategies with respect to the number of pressure
corrections per nonlinear corrector, NpCorr (see Fig. 1). The
results correspond to simulations 1, 2 and 3 from Table 1.
Hereafter, CT stands for total resistance coefficient, z is heave,
φ is pitch. η stands for wave amplitude, while k stands for the
wave number. Mean values of harmonic oscillations in time
are indicated with index 0, and first order amplitudes with 1.
γ is the phase shift of the item indicated in the index. The
first row of graphs shows, from left to right, the mean, first
order amplitude and first order phase shift of the resistance
coefficient. The second row shows the dimensionless heave
motion, while the third shows the dimensionless pitch motion.
Experimental data from Tokyo Workshop on CFD in Ship
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Fig. 5 Comparison of required computational time per
time–step and the average number of pressure
equation iterations with respect to the number of
pressure corrections NpCorr

Hydrodynamics (Larsson et al., 2015) is also included for
reference, however the reader is referred to Vukčević and
Jasak (2015a) and Vukčević and Jasak (2015b) for detailed
validation of seakeeping with finer grids. The partitioned
approach differs significantly from the monolithic approach
for most items. The cause is that two nonlinear correctors
per time–step are not sufficient for the partitioned approach
to produce accurate results. This is further demonstrated
on Fig. 6, where the partitioned approach exhibits a large
variation in results obtained using 2, 4, 6, 8, 10 and 14
nonlinear correctors per time–step. The partitioned approach
does not update the rigid body motion equations inside the
pressure loop, i.e. the number of rigid body motion updates
per time–step does not depend on NpCorr. Hence, the variation
of results with changing number of NpCorr is due to the
unresolved fluid flow solution. For most items the results
obtained using the partitioned approach show very little
dependence on NpCorr, except for the mean value of heave,
z0. Hence, it can be concluded that the mean value of heave
is sensitive to the accuracy of the pressure field solution.
The monolithic approach shows dependence on NpCorr for
more items (γCT1, φ0, γφ1), since increasing the number
of pressure corrections improves the coupling between the
pressure force and rigid body motion. On Fig. 5 the average
computational time per time–step is compared for the two
approaches with respect to the number of pressure correctors
per nonlinear corrector, as well as the average number of
pressure equation linear solver iterations. As expected, the
monolithic approach takes more computational time per time–
step than partitioned approach, which is caused by solving the
rigid body motion equations once per pressure linear solver
iteration. Also, higher number of linear solver iterations is
required, which can be prescribed to the fact that the source
of the system of equations is changing throughout the solution
process.

Fig. 6 shows the comparison of results for the two
approaches with respect to the number of nonlinear correctors
per time–step. The results correspond to simulations with
indices 2 and 4 to 8 from Table 1. Again, experimental
data is included for reference. Most items exhibit differences
within 10%, while some exhibit higher differences. It should
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Fig. 6 Comparison of seakeeping results of partitioned and
monolithic approach for coupling body motion and
pressure equation, with respect to the number of
nonlinear correctors per time–step NnCorr

be noted here that the focus of this paper is not on
validation of seakeeping, rather on proving the benefits of
the monolithic coupling. Hence, coarse spatial resolution
is used since authors believe it is sufficient to show the
advantages of the proposed approach. For detailed validation
of the same test case the reader is referred to Vukčević
and Jasak 2015a. For the partitioned approach the solution
generally converges with 8 or more PISO correctors. For
most items, the monolithic approach exhibits convergence
with smaller number of correctors, and significantly smaller
deviations between the solutions using 2, 4 and 6 correctors.
For most items the monolithic approach achieves solution
that is closed to the converged value with only 2 correctors.
Hence, the monolithic approach shows smaller sensitivity to
the number of nonlinear correctors per time–step. The most
important items from the practical point of view (CT0, z1
and φ1) are virtually insensitive to the number of nonlinear
correctors. Hence, savings in computational time can be
achieved while retaining the same level of accuracy for this
items by using fewer nonlinear correctors per time–step.
The items that showed larger sensitivity to the number of
nonlinear correctors are the mean of heave z0, mean of pitch
φ0 and phase shift of pitch γφ1. The variation of mean of
heave with the varying number of nonlinear correctors is
similar for partitioned and monolithic approach. It is likely
that the accuracy of fluid flow solution influences the result
more than the accuracy of the pressure–rigid body motion
coupling, which is indicated in Fig. 4. Mean of pitch, φ0, has
a very small absolute value, hence the absolute differences
between the partitioned and monolithic approach are not large.
Again, Fig. 7 shows that it takes more computational time
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Fig. 7 Comparison of required computational time per
time–step and the average number of pressure
equation iterations with respect to the number of
nonlinear correctors per time–step NnCorr

per time–step and more iterations of the pressure equation
linear solver for the monolithic approach comparing to the
partitioned approach.

Despite the fact that the monolithic approach requires
more computational time per nonlinear corrector, significant
savings can be achieved by using two instead of eight
nonlinear correctors per time–step. According to Fig. 7, a
reduction in overall computational time by a factor of 2.4 can
be achieved in this manner.

5 Conclusions
Monolithic coupling of pressure equation and rigid body

motion equations is shown in this paper for application
in the field of computational marine hydrodynamics. The
novel approach is first validated, and compared against the
traditional partitioned approach in order to establish the
validity and benefits of the method.

The validation is performed on a 2D heave decay
simulation of a barge. The monolithic coupling approach
is compared against the partitioned approach, showing very
good agreement.

The performance of the two coupling methods is tested on
a seakeeping case in regular head waves, where sensitivity to
the number of pressure correctors per nonlinear corrector, as
well as the number of nonlinear correctors per time step is
investigated. Accuracy and computational time is compared
for the two methods: monolithic coupling showed smaller
sensitivity to the number of nonlinear correctors per time step,
and it is shown that accurate results can be obtained with only
two nonlinear correctors per time step. It is observed that the
monolithic approach is computationally more expensive then
the partitioned approach per nonlinear corrector, however it
enables fewer nonlinear correctors to be used per time–step,
offering a significant speed–up (by a factor of 2.4 for the
given test case).

The developed monolithic coupling of pressure equation
and rigid body motion is insensitive to the number of
nonlinear correctors per time–step due to the better resolved
coupling between the pressure equation and rigid body
motion equations. The method offers significant savings in
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computational time and is applicable in a wide range of
problems in the field of marine hydrodynamics.
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Jasak H, Vukčević V, Gatin I, 2015. Numerical simulation of wave
loads on static offshore structures. CFD for Wind and Tidal
Offshore Turbines, 95-105.

Jog CS, Pal RK, 2011. A monolithic strategy for fluid-structure
interaction problems. International Journal for Numerical
Methods in Engineering, 85(4), 429-460.
DOI: 10.1002/nme.2976

Langer U, Yang HD, 2016. Robust and efficient monolithic
fluid-structure-interaction solvers. International Journal for
Numerical Methods in Engineering, 108(4), 303-325.
DOI: 10.1002/nme.5214

Larsson L, Stern F, Visonneau M, Hirata N, Hino T, Kim J, 2015.
Tokyo 2015: A Workshop on CFD in Ship Hydrodynamics. Vol. 3,
NMRI (National Maritime Research Institute), Tokyo, Japan.

Legay A, Zilian A, Janssen C, 2011. A rheological interface model
and its space-time finite element formulation for fluid-structure
interaction. International Journal for Numerical Methods in
Engineering, 86(6), 667-687.
DOI: 10.1002/nme.3060

Miyata H, Orihara H, Sato Y, 2014. Nonlinear ship waves
and computational fluid dynamics. Proceedings of the Japan
Academy Series B—Physical and Biological Sciences, 90, 278-
300.
DOI: 10.2183/pjab.90.278

Orihara H, Miyata H, 2003. Evaluation of added resistance in
regular incident waves by computational fluid dynamics motion
simulation using an overlapping grid system. Journal of Marine
Science and Technology, 8, 47-60.
DOI: 10.1007/s00773-003-0163-5

Press WH, Teukolsky SA, Vetterling WT, Flannery BP, 2002.
Numerical Recipes in C++: The Art of Scientific Computing.
Cambridge University Press, Cambridge.

Robinson-Mosher A, Schroeder C, Fedkiw R, 2011. A symmetric
positive definite formulation for monolithic fluid structure
interaction. Journal of Computational Physics, 230(4), 1547-
1566.
DOI: 10.1016/j.jcp.2010.11.021

Saad Y, 2003. Iterative methods for sparse linear systems. 2nd
edition, Society for Industrial and Applied Mathematics
Philadelphia.

Simonsen CD, Otzen JF, Joncquez S, Stern F, 2013. EFD and CFD
for KCS heaving and pitching in regular head waves. Journal of
Marine Science and Technology, 18, 435-459.
DOI: 10.1007/s00773-013-0219-0

Tezdogan T, Demirel YK, Kellett P, Khorasanchi M, Incecik A,
Turan O, 2015. Full-scale unsteady RANS CFD simulations
of ship behaviour and performance in head seas due to slow
steaming. Ocean Engineering, 97, 186-206.
DOI: 10.1016/j.oceaneng.2015.01.011
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A B S T R A C T

An extensive verification and validation for green sea load simulations is presented. The calculations are per-
formed using the Naval Hydro pack, a library based on foam–extend, which is an open source Computational
Fluid Dynamics software. The geometric Volume of Fluid method is used for interface advection, while the Ghost
Fluid Method is employed to discretise the free surface boundary conditions at the interface. Pressure measured at
the deck of a fixed structure is compared to experimental data for nine regular waves. Verification is performed
using four refinement levels in order to reliably assess numerical uncertainties. A detailed uncertainty analysis
comprises both numerical and experimental data. Comparable uncertainties are exhibited in simulations and
experiments, with good agreement of results.

1. Introduction

In the field of offshore and marine engineering, wave loading poses a
wide range of different challenges which are important in the design
process. One of the more difficult wave–related problems to describe and
reliably estimate is the green sea load. Green sea, or water on deck, is a
consequence of a highly nonlinear interaction between the floating
structure and the free surface waves, which comprise incident, diffracted
and radiated waves. The complex origin of the phenomenon renders the
prediction of green sea occurrence challenging. Apart from that, violent
two phase flow develops once the water is on the deck, which is difficult
to predict via simplified flow theories. Green sea effect cause both local
and global structural loads which can endanger the structural integrity,
and therefore must be taken into account in the design process.

Given the complexity of the problem, experimental and numerical
means are currently utilised to calculate green sea loads. According to
Tamarel et al. (Temarel et al., 2016), both experimental and numerical
methods available today are not mature to reliably assess green sea loads.
Hence, further research is needed to establish confidence in both fields.
As a result, a wide variety of methods have been developed and applied
in recent years. Greco et al. (2012) used the numerical solver developed
by Greco and Lugni (2012) to calculate wave loads on a patrol ship,
including green sea loads with comparison to experiments. Lu et al.
(2012) developed a time domain numerical method based on Finite

Volume (FV) method used for green sea load simulations. Xu (2013) used
Smoothed Particle Hydrodynamics to simulate breaking waves plunging
onto a deck. Zhao et al. (2014) studied the influence of structure motion
on the pressure loads due to green sea effects using a FV based method.
Kim et al. (2013) used a linear method for assessing the ship motion, and
a nonlinear viscous method to calculate green sea loads on a container
vessel. Ruggeri et al. (2013) usedWAMIT software based on the potential
flow model and a viscous FV code StarCCMþ to devise guidelines for
green sea load calculations. Joga et al. (2014) compared two viscous FV
codes with experimental results of water ingress into open ship holds
during green sea events. Pakozdi et al. (2014) coupled a potential flow
based method and a viscous model to conduct simulations of green sea
events. Zhu et al. (2009) conducted numerical simulations of green sea
events for a Floating Production, Storage and Offloading (FPSO) vessel.

In this work, a detailed validation study of green sea loads on a static
structure is conducted. Experimental results published by Lee et al.
(2012) are used for the comparison. Nine regular wave cases are inves-
tigated, including the uncertainty analysis of numerical and experimental
results. Naval Hydro software pack is used for numerical simulations,
which is an extension of the collocated FV based CFD open source soft-
ware foam–extend (Weller et al., 1998; Jasak, 2009). The Naval Hydro
package is specialised for viscous, two phase, large scale flows. Nonlinear
stream function regular wave theory by Rienecker and Fenton (1981) is
used for wave generation. The potential wave flow and CFD are coupled
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in a one–way fashion using implicit relaxation zones (Jasak et al., 2015)
by imposing the wave solution at the boundaries of the domain and
gradually transitioning to the nonlinear CFD solution towards the middle
of the domain. The interface is captured using the Volume of Fluid (VOF)
method where a novel geometric approach developed by Roenby et al.
(2016) is employed, called isoAdvector. Free surface boundary condi-
tions are discretised using the Ghost Fluid Method (GFM) (Vuk�cevi�c,
2016), providing a infinitesimally sharp pressure and density gradient
distribution at the interface.

The aim of this paper is to assess the accuracy and feasibility of a
modern naval hydrodynamics CFD software for predicting green sea
loads. In order to reduce the possible sources of error to a minimum, a
simple static geometry is analysed with publicly available experimental
results (Lee et al., 2012). Since numerical simulations of wave induced
motions and loads have been validated using the Naval Hydro package in
the past (Vuk�cevi�c, 2016; Vuk�cevi�c et al., 2015, 2016; Jasak et al., 2014),
green sea load validation is the missing piece for conducting complete
numerical simulations with moving bodies where green sea loads are
calculated.

This paper is organised as follows: in the second chapter the numer-
ical method is outlined. The third chapter gives basic information about
experimental measurements that are used for comparison. In the fourth
chapter the numerical simulations of green sea loads are described in
detail, including the simulation set–up, uncertainty analysis procedure
and comparison of the results with the experiments. Finally, a brief
conclusion is given.

2. Numerical model

In this section the numerical model used in this work is presented.
Governing equations describing two–phase, incompressible and viscous
flow are:

∇⋅u ¼ 0; (1)

∂u
∂t

þ ∇⋅ðuuÞ � ∇⋅ðν∇uÞ ¼ �1
ρ
∇pd; (2)

where u denotes the velocity field, ν stands for the kinematic viscosity of
the corresponding phase, ρ is the density, while pd stands for dy-
namic pressure:

pd ¼ p� ρg⋅x: (3)

Here, p is the absolute pressure, g is the gravitational acceleration, while
x denotes the radii vector. Note that the momentum equation has been
divided through by the density, assuming a two–phase free surface sys-
tem of incompressible immiscible fluids. Eq. (1) and Eq. (2) are dis-
cretised in collocated FV fashion yielding the pressure and momentum
equation (Vuk�cevi�c et al., 2017), respectively. The equations are solved
implicitly. Eq. (2) is valid for both phases, where the discontinuity of
dynamic pressure and density at the interface is taken into account with
the GFM (Vuk�cevi�c, 2016; Vuk�cevi�c et al., 2017). The dynamic pressure
and density jump conditions are a consequence of normal stress balance
at the free surface. The tangential stress balance is modelled approxi-
mately, while the surface tension is neglected. The two jump conditions
arising from the normal stress balance are:

p�d � pþd ¼ ��
ρ� þ ρþ

�
g⋅x ; (4)

1
ρ�

∇p�d � 1
ρþ

∇pþd ¼ 0: (5)

Superscripts ”þ” and ”�” denote the water and air phase, respectively.
Eq. (4) states that the jump of dynamic pressure across the interface is
proportional to the jump in density, while Eq. (5) states that the jump of

specific dynamic pressure gradient is zero. The jump conditions are
introduced into the discretisation via specialised discretisation schemes,
ensuring that Eq. (4) and Eq. (5) are satisfied. The reader is referred to
Vuk�cevi�c et al. (2017) for details.

In order to advect the interface, a geometric VOF method called iso-
Avector (Roenby et al., 2016) is used. Standard advection equation is
used in order to transport the volume fraction variable α:

∂α
∂T

þ ∇⋅ðαuÞ ¼ 0: (6)

Written for a finite control volume P, and discretised in time using the
first order accurate Euler method, Eq. (6) states:

∫
VP

αPðt þ ΔtÞ � αPðtÞdV ¼ �∫ tþΔt
t

I
SP

α n udS dτ; (7)

where VP is the volume of the control volume P, SP is the closed boundary
surface of the control volume, n is the unit normal vector of the boundary
surface, while τ denotes the time integration variable. For a surface
boundary discretised with a finite number of faces, the closed surface
integral is replaced with a sum of surface integrals across the faces:

VPðαPðt þ ΔtÞ � αPðtÞÞ ¼ �
X
f

∫ tþΔt
t ∫ Sf

α nf udSf dτ; (8)

where f denotes the face index. The volume integral of the temporal term
is discretised assuming a second order accurate FVmethod (Jasak, 1996).
Instead of evaluating the temporal and surface integrals in Eq. (8) by
employing conventional discretisation schemes, in the isoAdvector
method they are integrated explicitly directly from the information about
the moving iso–surface of the volume fraction, representing the interface,
through a polyhedral cell. In this way, sub–grid resolution is achieved for
interface advection. This results in a sharp interface and bounded volume
fraction field. The reader is directed to (Roenby et al., 2016) for more
details on the isoAdvector method.

2.1. Wave modelling

Regular waves are imposed into the CFD domain via implicit relax-
ation zones (Jasak et al., 2015). Relaxation zones are regions in the
computational domain where the theoretical wave solution is imposed by
smoothly transitioning to the calculated CFD solution. The same method
is used to dampen the waves at the outlet, where the CFD solution is
gradually replaced by the imposed solution, the incident wave in this
case. A stream functionwavemodel (Rienecker and Fenton, 1981) is used
which is fully nonlinear, permitting a shorter CFD domain since the wave
nonlinearities are resolved outside of the CFD domain.

3. Green sea experiments

The experimental tests were performed in the towing tank of Seoul
National University, with the details and results published in (Lee et al.,
2012). A simplified model of a FPSO vessel is used, where three different
bow shape configurations are tested. The computations in this work are
performed for one of the geometries, called Rect0 in the original paper
(Lee et al., 2012). The structure is static in order to reduce the number of
possible sources of error when comparing the results. Ten pressure
gauges are positioned at the deck of the model. The geometry of the
model and position of pressure gauges are shown in Fig. 1. A vertical wall
is positioned at the deck to simulate the breakwater. Pressure data is
measured for nine incident wave cases, with wave parameters shown in
Table 1. Pressure gauges are labelled as indicated in Fig. 1 in a separate
figure for clarity.

In (Lee et al., 2012) detailed experimental results are presented for
pressure peaks of individual gauges. The reported values are average
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pressure peaks over 35 incident wave periods. Maximum and minimum
values of peaks are also reported, enabling the assessment of periodic
uncertainty. However, from the elastic structural response point of view,
the integral of force (i.e. pressure) is more relevant than extremely short
force peaks. For that reason, additional post–processing of raw

experimental data is performed in order to establish the average pressure
time integral in one wave period, as well as maximum and mini-
mum values.

The total experimental uncertainties are calculated as the super-
position of measuring uncertainties: bias and precision limit of pressure
gauges; and of periodic uncertainty of the pressure peak or pressure in-
tegral in time. The bias and precision limit are stated in (Lee et al., 2012).
Periodic uncertainty is calculated as:

UEP ¼ ϕmax � ϕmin

NE
; (9)

where ϕ denotes an arbitrary measured item in one wave period, such as
pressure peak or pressure integral, while NE stands for the number of
periods included in the analysis. ϕmax and ϕmin are the maximum and
minimum values measured during NE periods. Total experimental un-
certainty is then:

UET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

EM þ U2
EP

q
; (10)

where UEM stands for measuring uncertainties comprised of bias and
precision limit of the pressure gauges.

4. Green sea simulations

In this section the simulations of green sea loading are presented.
First, the simulation setup is described in detail, followed by a brief
description of the numerical uncertainty analysis used in this work.
Second, the results are shown, where first a sensitivity study is performed
regarding domain size, in order to justify the reduction of the domain size
described below. Next, the results are compared to experimental data,
followed by a short discussion. Finally, another sensitivity study is per-
formed regarding the interface capturing method, where the isoAdvector
method is compared to the conventional algebraic VOF method
(Rusche, 2002).

4.1. Simulation setup

Simulations have been performed for all wave cases for geometry
Rect0 with vertical stem. Four grids are used for each wave case in order
to establish the numerical uncertainty, while the results from the finest
grid are used as reference results for the comparison. Fig. 2 shows the
computational domain for wave 4 as an example, with indicated
boundaries. The wall on the deck is simulated as a domain boundary,
hence the deck of the model is not included beyond the wall. It is
assumed that this simplification does not influence the flow on the deck.
Despite the symmetry of the computational domain with respect to the
longitudinal plane, the violent flow occurring on deck during the green
water phenomenon is not necessarily symmetric. Hence, the full domain
is simulated as opposed to only half. The characteristics of fine grids for

Fig. 1. Geometry of the FPSO model: a) model dimensions and pressure gauge positions
(pressure gauges are indicated with black dots) (Lee et al., 2012), b) schematic of pressure
gauges arrangement with labels.

Table 1
Incident wave parameters.

Wave ID λ, m a, m ka

1 2.25 0.04500 0.126
2 2.25 0.05625 0.157
3 2.25 0.06750 0.188
4 3.00 0.06000 0.126
5 3.00 0.07500 0.157
6 3.00 0.09000 0.188
7 3.75 0.07500 0.126
8 3.75 0.09375 0.157
9 3.75 0.11250 0.188

Fig. 2. Computational domain.
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all wave cases are presented in Table 2. Here, L is the domain length,
while LR indicates the length of inlet and outlet relaxation zones. λ=Δx
and a=Δz denote the number of cells per wave length and wave ampli-
tude, respectively. H denotes the height of the domain above the deck in
metres, where different heights are used depending on the wave ampli-
tude and expected wave run–up against the wall. The freeboard height is
0.045 m above the free surface (Lee et al., 2012). Δzdeck denotes the
height of the cell above the deck. At certain height from the deck, the cell
height is linearly increased towards the top boundary in order to reduce
the number of cells. Also, the cell size is reduced linearly in the horizontal
direction from the inlet boundary towards the structure. Hence, λ=Δx is
measured next to the structure. Fig. 3 shows the computational grid in
the longitudinal central plane and on the surface of the structure used for
wave 4. Note that the coarse grid is presented for better visibility of grid
lines. The simple geometry of the structure enables fully structured and
orthogonal grids to be generated.

Depth and breadth of the domain are constant for all wave cases,
where the depth is D ¼ 1m, and breadth B ¼ 3m. It should be noted here
that the depth of the wave tank in the experiments was 3.5 m, however
only 1 m is included in the simulation in order to save computational
time. To avoid influence of this simplification, wave velocity from the
stream function wave theory is prescribed at the bottom in order to make
it transparent to the flow. This treatment assumes that the diffracted
wave field is negligible at the depth of 1 m. Similarly, the breadth is also
reduced from 8 to 3 m, with relaxation zones near the starboard and
portside boundaries preventing reflection of the diffracted wave field.

Considering the violent free surface flows at the deck, and the explicit
nature of the isoAdvector method, the time step is adjusted during the
simulation to maintain a maximum fixed Courant–Fredrich–Lewy (CFL)
number of Co ¼ 0:75. The same Co is used in all simulations and on all
grids, which results in consistent time step variation on different grids.
For reference, average time–step for wave 1 on fine grid is 0.0006 s,
while for wave 9 it is 0.001 s.

As indicated in Fig. 1, the circular pressure gauges are 18 mm in
diameter. Cells used on the deck are rectangular, where the horizontal

dimensions of the cell, which correspond to the spatial discretisation of
the deck surface, ranges from 4 to 13 mm, depending on the grid. Hence,
the deck surface discretisation resolution is always higher compared to
the area of the pressure gauge used in the experiment. As stated in (Lee
et al., 2012) the sampling rate of pressure gauges used in the experiment
is 5 kHZ, corresponding to a time–step of 0.0002 s, which is comparable
to time–steps used in the simulations.

No turbulence modelling is used in this work since it can be consid-
ered to have a negligible influence on pressure distribution at the
structure. Moreover, the pressure and velocity gradients in the flow on
deck are extremely violent, rendering standard single–phase, wall
bounded models inapplicable. The influence of turbulence should,
however, be investigated in the future.

4.2. Uncertainty analysis

The total numerical uncertainty is dominated by discretisation and
periodic uncertainty, since the iterative uncertainty is kept low by using
sufficient number of nonlinear correctors per time–step and converging
linear systems to a tight tolerance (� 10�9). In order to assess the dis-
cretisation uncertainty, a grid and time–step refinement uncertainty
study is performed with the least squares approach developed by Eca &
Hoekstra (Eça and Hoekstra, 2014). In case of unsteady flow, the
time–step has to be varied as well as the grid resolution (Eça and
Hoekstra, 2008). In this work the time–step is reduced simultaneously
with the cell size by maintaining a fixed CFL number. For the least
squares approach, at least four refinement levels are needed in order to
calculate the uncertainty. Constant refinement ratio of r ¼ ffiffiffi

2
p

is used for
all wave cases, which is defined as the ratio between spatial and temporal
resolution between adjacent refinement levels: r ¼ hi�1=hi ¼ τi�1=τi,
where hi stands for the representative cell size of refinement level i, while
τi stands for the time step. Since Co changes linearly with the cell size, τ
also varies linearly, hence the condition r ¼ τi�1=τi is satisfied. Table 3
lists the number of cells for all grids and wave cases. All simulations were
performed on processors Intel Xeon E5-2637 v3 15M Cache 3.50 GHz.
CPU time per wave period on eight cores for the coarse grid ranges be-
tween 1.3 and 1.9 h, while on the fine grid it ranges from 7.3 to 15.6 h,
depending on the wave case.

According to Eca & Hoekstra (Eça and Hoekstra, 2014), the uncer-
tainty assessment begins with assessing the error of discretisation:

εi ¼ αhpi* ; hi* ¼
�
τih2i

�1=3
; (11)

using the least squares fit. Here, α is an unknown constant, and p is the
obtained order of accuracy. The least squares fit is obtained by mini-
mising the following function:

Table 2
Computational grid characteristics.

Wave ID L, m LR, m H, m λ=Δx a=Δz Δzdeck , m

1 6.5 2.5 0.15 375 15.5 5.84⋅10�4

2 6.5 2.5 0.15 375 19.4 5.84⋅10�4

3 6.5 2.5 0.30 225 23.3 1.36⋅10�3

4 7.7 3.1 0.30 333 20.7 1.34⋅10�3

5 7.7 3.1 0.60 333 16.3 3.92⋅10�3

6 7.7 3.1 0.60 333 19.5 7.91⋅10�3

7 14.0 4.0 0.60 354 15.8 2.24⋅10�3

8 14.0 4.0 0.60 354 19.8 2.24⋅10�3

9 14.0 4.0 0.60 354 27.3 4.28⋅10�3

Fig. 3. Computational grid for wave 4 case: a) grid in the longitudinal central plane, b) surface grid of the structure.
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Sðϕ0; α; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

N

ðϕi � ðϕ0 þ αhp�iÞÞ2
vuut ; (12)

where ϕ0 denotes the estimate of the exact solution, while N denotes the
number of refinement levels. Minimisation of Eq. (12) leads to a
nonlinear system of equations, which needs to be solved iteratively. In
case the observed order of accuracy p is larger than two, the first or
second order terms are used, i.e. the following are solved:

ε1;i ¼ αhi*;
ε2;i ¼ αh2i*;

(13)

and the fit with smaller standard deviation is used. If p<0:5, first and
second order terms are retained in addition to Eq. (13):

ε12;i ¼ α1hi* þ α2h2i*; (14)

where the fit with the smallest standard deviation is used. Standard de-
viation is calculated as:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðϕi � ðϕ0 þ αhp�iÞÞ2
N � 3

s
: (15)

Once ε, ϕ0 and σ are known, the uncertainty of the result can be
established. If the data is well behaved, the following expression is used
for assessing the refinement uncertainty:

Ui ¼ FSεi þ σ þ ��ϕi � ϕfit

��; (16)

where FS is the safety factor, while ϕfit presents the least squares fitted
value of the solution for grid i. The data is well behaved if σ <Δ, where Δ
expresses the data range:

Δ ¼ ðϕmax � ϕminÞ=ðN � 1Þ; (17)

where ϕmax and ϕmin represent the maximum and minimum value from
all refinement levels. In case the data is not well behaved, i.e. σ>Δ, the
uncertainty is assessed as:

Ui ¼ 3
σ

Δ
�
εi þ σ þ ��ϕi � ϕfit

���: (18)

In this work the uncertainty is assessed for the finest refinement level, i.e.
in the above expressions i ¼ 4. Since the discretisation uncertainty study
theoretically requires a smooth variable in time, the uncertainty is
assessed for the vertical force exerted on the deck, i.e. the spatial integral
of pressure, instead of the pressure measured at gauge locations.

Total computational uncertainty is assessed as the superposition of
the discretisation and periodic uncertainty:

UCT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

CD þ U2
CP

q
; (19)

where UCD denotes the discretisation uncertainty established using Eq.
(16) or Eq. (18), while UCP represents the periodic uncertainty calculated

Table 3
Grid sizes used in the uncertainty analysis.

Wave ID Number of cells

Grid 1 Grid 2 Grid 3 Grid 4

1 498 720 948 780 1 969 077 3 928 939
2 498 720 948 780 1 969 077 3 928 939
3 276 699 518 476 1 077 515 2 181 103
4 291 546 546 952 1 140 179 2 299 683
5 319 035 603 876 1 236 052 2 509 667
6 238 617 453 796 934 552 1 887 253
7 627 009 1 181 376 2 313 248 4 561 172
8 627 009 1 181 376 2 313 248 4 561 172
9 484 674 905 268 1 754 384 3 454 682

Fig. 4. Vertical force exerted on deck for wave 6.

Table 4
Discretisation uncertainties for vertical force peak and integral measured on the deck.

Wave ID F0;max, N UCD;F , % I0, Ns UCD;I , %

1 21.83 8.8 22.02 0.4
2 37.45 15.0 36.27 11.4
3 62.25 5.3 59.45 8.5
4 39.56 12.7 42.21 20.7
5 61.09 2.2 61.03 4.4
6 163.27 35.8 105.95 16.0
7 72.07 1.4 71.66 0.3
8 159.93 0.2 115.61 0.03
9 284.39 8.2 166.02 1.9

Fig. 5. Pressure signal at gauge 7 for wave 9.

Fig. 6. Pressure signal at gauge 1 for wave 9.
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in the same manner as for the experimental data:

UCP ¼ ϕmax � ϕmin

NC
; (20)

where NC denotes the number of periods included in the analysis. Fig. 4
shows the signal of vertical force acting on the deck for wave 6. For every
wave case, 20 wave periods are simulated, where the last 14 are used in
the analysis to avoid initial transient effects.

Numerical discretisation uncertainties calculated with the vertical
force on deck are summarised in Table 4 for all wave cases, where F0;max

denotes the estimated exact solution (corresponding to ϕ0 in Eq. (12)) of
vertical force peak Fmax, while I0 denotes the estimated exact solution for
the force integral, i.e. force impulse. Fmax and I are calculated as:

Fmax ¼
PNC

i¼1Fi;max

NC
; (21)

I ¼
PNC

i¼1∫
T
0FiðtÞdt
NC

; (22)

where Fi;max denotes the force peak for period i, while T denotes the wave
period. In Table 4, UCD;F and UCD;I denote the discretisation uncertainty
for force peak Fmax and force impulse I, respectively. Uncertainties show
large differences from one wave case to another, however they remain
below 10% for most items, and go as low as 0.03%. The outliers are wave
4 and 6 with uncertainties higher than 10%.

4.3. Results

As stated earlier, two sets of results are compared within this study:

� The average pressure peak during one period:

pmax ¼
PNC

i¼1pi;max

NC
; (23)

Fig. 7. Perspective view of the green sea event for wave 3.

Fig. 8. Pressure peak comparison between different domain sizes for wave 7. Fig. 9. Pressure integral comparison between different domain sizes for wave 7.
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where pi;max denotes the pressure peak during i-th wave period.

� The average pressure time integral over one wave period:

P ¼
PNC

i¼1∫
T
0piðtÞdt
NC

: (24)

Although the pressure peak that occurs during green sea event is an
obvious quantity for comparison, it is not necessarily relevant for the
structural response. If the pressure peak lasts a very short amount of time,
it will not influence the structural response. On the other hand, it is a
known fact that in numerical simulations, high pressure peaks can occur
when a free surface impacts against a solid boundary. Hence, to provide a
more complete comparison, the pressure integral in time is also
compared. Fig. 5 shows an example of the pressure signal in time
measured by gauge 7 for wave 9, where extremely transient pressure
peaks can be seen. Large differences in pressure peaks increase the pe-
riodic pressure peak uncertainty, which is observed in the results shown
below. However, the integral of pressure in time is not sensitive to high

transient peaks. For gauges further away from the wall, pressure peaks
are less prominent, as shown in Fig. 6 where gauge 1 pressure signal is
shown for the same wave case.

In order to accurately capture the total pressure at the horizontal deck
during a complete wave period, it is necessary to capture the thinnest
layer of water that can occur during the wave recession from the deck. In
order to achieve that, at least one cell centre is needed between the free
surface and deck at all times. It can be observed in Table 2 that different
cell sizes are used at the deck for different wave cases. The minimum
depth of water on deck depends on wave amplitude and period. Waves
with shorter period give a smaller amount of time for the water to pour
down from the deck. Similarly, larger wave amplitude implies more
water on deck. Fig. 7 sequentially shows one period of a green sea event
for wave 3, where the thin layer of water can be seen after the collapse of
water run–up against the wall.

4.3.1. Influence of the domain size
As stated earlier, breadth and depth of the domain were reduced with

respect to experimental setup in order to reduce the number of cells. The

Fig. 10. Pressure peak results comparison for wave 1.

Fig. 11. Pressure peak results comparison for wave 2.

Fig. 12. Pressure peak results comparison for wave 3.

Fig. 13. Pressure peak results comparison for wave 4.

Fig. 14. Pressure peak results comparison for wave 5.

Fig. 15. Pressure peak results comparison for wave 6.
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breadth was reduced from 8 to 3m, while the depth of 1 m is used instead
of 3.5 m. Depth was reduced by prescribing the incident wave velocity at
the bottom boundary, hence the wave diffraction effects were neglected
from this depth on. Breadth was reduced where similar boundary con-
dition is imposed: relaxation zones were prescribed near the side
boundaries in order to eliminate diffracted waves and prevent reflection.

In order to test the validity of these assumptions, and to assess their
influence on pressure results, two additional tests are performed with
different domain breadth and depth. Tests are performed for one wave
only on the coarsest refinement level. Wave 7 case is used for this com-
parison for two reasons: it is in the group of longest waves, where limited
depth could have the greatest influence, and because it exhibited poorest
agreement with the experiment, as shown below. Hence, if these as-
sumptions are not valid, an improvement in result quality should
be exhibited.

The first test is performed by increasing the breadth of the compu-
tational domain from 3 to 6 m, while keeping the rest of the dimensions
fixed. Side boundary conditions and size of the relaxation zones are not
changed. In the second test the depth is increased from 1 m to 3.5 m,
corresponding to the experimental setup. In this case the velocity

boundary condition on the bottom is changed from incident wave ve-
locity to non–slip, non–permeable wall boundary condition.

Fig. 8 shows the comparison of the three CFD results and experi-
mental results for pressure peaks. Results denoted with CFD correspond
to the original setup used in this study, obtained on the coarsest refine-
ment level. The remaining two CFD results are denoted with the changed
dimension with respect to the original setup. The influence of the domain
size is almost none for most wave gauges, except for gauge 7 and 8 where
a very small change is observed.

Fig. 9 shows the comparison for pressure integrals. The variation of
the domain size had a negligible influence on the pressure integrals for all
gauges. Hence, the simplifications made to reduce the number of cells
had no influence on the results, and are justified.

4.3.2. Pressure peaks
The comparison of pressure peak results with corresponding un-

certainties are shown in Figs. 10–18. Complete results with uncertainties
are given in tabular form in Sec. A.1. The average value of the pressure

Fig. 16. Pressure peak results comparison for wave 7.

Fig. 17. Pressure peak results comparison for wave 8.

Fig. 18. Pressure peak results comparison for wave 9.

Fig. 19. Temporal pressure integral results comparison for wave 1.

Fig. 20. Temporal pressure integral results comparison for wave 2.

Fig. 21. Temporal pressure integral results comparison for wave 3.
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peak is denoted on the y–axis while the x–axis denotes the index of the
pressure gauge as indicated in Fig. 1. The error bars present the total
numerical and experimental uncertainties, Eq. (19) and Eq. (10),
respectively. CFD stands for the result obtained using the present nu-
merical methods, while EFD stands for Experimental Fluid Dynamics.

Results for wave 1 are presented in Fig. 10. Relative differences be-
tween the results are considerable, however the absolute difference is not
large since the pressure load for this case is small. The uncertainties are
similar for most gauges, except for a few where experimental results
exhibit higher uncertainties. This wave case has the smallest amplitude,
requiring higher mesh resolution. Pressure peaks for wave 2 shown in
Fig. 11 show similar agreement as wave 1, with slightly larger numerical
uncertainties.

For wave 3, results in Fig. 12 show good agreement with experimental
results. For eight out of nine gauges the uncertainty intervals overlap, and
the trend is very well captured.

Wave 4 shows good agreement in Fig. 13, where uncertainty intervals
overlap for all gauges, while the uncertainties are similar between the
numerical and experimental result.

For wave 5, pressure peaks in Fig. 14 correspond well to experimental
data, with gauge 8 and 9 showing larger discrepancies. Gauge 7, 8 and 9
are located close to the wall, where the most violent flow occurs, making
the pressure in that area more challenging to predict and increasing the
periodic uncertainties.

For wave 6, both experimental and numerical results shown in Fig. 15
predict considerably higher pressure peaks for gauge 7 near the wall than
the gauges further from the wall. Results agree well for gauges further
from the wall, however significant over–estimation is observed for
gauges 7 and 8, as well as high uncertainties. The high uncertainties for
gauges 7 and 8 are the consequence of extremely transient pressure peaks
in the numerical result as shown in Fig. 5. For this case, numerical un-
certainties are relatively large for all gauges due to high grid un-
certainties, as shown in Table A6.

Unlike other cases, results for wave 7 show significant underestima-
tion when comparing to the experimental data, as shown in Fig. 16. The

trends, however, are well captured. The uncertainties are generally
smaller than experimental uncertainties, except for gauges 7 and 8.

For wave 8 the results shown in Fig. 17 show good agreement with
the experiment with low uncertainties, where gauge 7 stands out with
higher uncertainties. In this case, as for wave 7, the pressure peaks are
underestimated, but the difference is significantly smaller. As in majority
of cases, the trend is well captured.

Wave 9 exhibits good agreement for gauges further from the wall as
shown on Fig. 18, whereas gauges next to the wall show over–prediction
with larger uncertainties originating mostly from periodic uncertainties
(see Table A9). The over–prediction might also be related to compress-
ibility effects, which will be investigated in the future.

4.3.3. Pressure integrals
The comparison of integrals of pressure in time for all wave cases is

shown in Figs. 19–27. Complete results with uncertainties are given in
tabular form in Sec. A.2. Same as for the pressure peaks, the x–axis on the
graphs denotes the pressure gauge label, while integral of pressure P is
shown on the y–axis.

The numerical results of pressure integrals for wave 1 shown in
Fig. 19 exhibit very low uncertainties, while the agreement with exper-
imental results is similar as for pressure peaks.

For wave 2, results in Fig. 20 show that the trend is well captured,
while the values are somewhat underestimated. Numerical uncertainties
are similar for all gauges.

In Fig. 21, pressure integrals for wave 3 show good agreement with
the experiment, with smaller uncertainties for experimental measure-
ments. For this wave case, pressure peaks show better agreement than the
time integrals, which are generally underestimated.

For wave 4, good agreement is achieved as indicated in Fig. 22, with
higher numerical uncertainties comparing to the experiment. The high
numerical uncertainties originate from discretisation uncertainties, while
periodic uncertainty has a minor contribution (see Table A13).

For wave 5, Fig. 23 shows good agreement with overlapping

Fig. 22. Temporal pressure integral results comparison for wave 4.

Fig. 23. Temporal pressure integral results comparison for wave 5.

Fig. 24. Temporal pressure integral results comparison for wave 6.

Fig. 25. Temporal pressure integral results comparison for wave 7.
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uncertainty intervals, except for gauge 7 and 9. Numerical uncertainties
are generally smaller than experimental for this case.

In Fig. 24 uncertainty intervals for wave 6 are overlapping for nine
out of ten gauges, the only outlier being gauge 9. Same as for pressure
peaks for this wave case, numerical uncertainties are larger than exper-
imental due to large grid uncertainty.

As for pressure peaks, wave 7 exhibits considerable under–estimation
for pressure integrals shown in Fig. 25, with small uncertainties and good
prediction of the trend. The consistent underestimation of pressure in this
case should be investigated from both numerical and experimental side.
The difference might be caused by transversal reflection occurring in the
experiment due to finite tank breadth, which is not present in the nu-
merical simulation. Also, compressibility effects may influence the re-
sults, hence the effect of compressibility will be investigated in the future.

Wave 8 again shows good trend agreement and low uncertainties in
Fig. 26, however the values are underestimated. Larger difference is
observed in this case than for pressure peaks.

For wave 9 shown in Fig. 27 the trend is well captured with lower
numerical uncertainties than experimental results. Unlike pressure
peaks, here the values are underestimated for most gauges, except gauge
number 10.

4.4. Discussion

Overall the results for both pressure peaks and integrals exhibit good
agreement with the experimental data. Pressure peaks compare better
with experiments for pressure gauges further from the wall, where the
influence of water impingement is smaller. However, for waves 1 to 5 the
peaks are well predicted even close to the wall with acceptable un-
certainties, while waves 6 to 9 exhibit higher uncertainties and de-
viations for pressure gauge 7, which is next to the wall and at the centre
line. Wave 6 shows very large deviation and uncertainty for gauge 8,
which is an outlier in the results, and should be investigated. For long
waves, i.e. 7 to 9, pressure peaks exhibit small uncertainties and well

captured trends. The results agree well with the experimental data for
wave 8 and 9, while wave 7 shows significant under–estimation.

Pressure integrals are predicted well for all gauges for waves 1 to 6,
where the uncertainty intervals overlap. Trends agreewith experiments as
well, except for waves 1 and 4, where difference in trends is observed. For
waves 7 to 9 the uncertainties are very low and the trends are captured
accurately, however the values are significantly underestimated. The
under–estimation is smaller for higher amplitudes, i.e. wave 7 shows the
largest difference. This consistent underestimation of pressure for waves
with λ ¼ 3:75 m will be investigated in the future. The difference could
indicate an inconsistency between the numerical simulations and exper-
iments with regards to the wave elevation and reflection.

Regarding wave steepness in individual cases, no correlation can be
seen in the graphs between trends of the curves, discrepancies and wave
steepness. On the other hand, the trends show similarities between waves
with the same wave length, while the wave height only influences the
magnitude of pressure loads. Thus, it can be concluded that wave celerity
has a larger influence on the character of the green water event than
wave steepness in this case.

Overall summary of pressure peak and integral result comparison is
given in Table 5. For each wave the average absolute and relative dif-
ference between numerical and experimental result across all pressure
gauges is given. E denotes the difference of numerical and experimental
result which is expressed in absolute values and in percentages relative to
the experimental result, where the indices pmax and P stand for pressure
peak and integral, respectively. For pressure peaks, absolute difference
ranges from 30 to 70 Pa for wave cases 1 to 5, while the difference in-
creases for waves 6 to 9, ranging from 130 to 250 Pa. However the
relative differences show smaller variation, except for wave 7 where
larger discrepancies occur. Average relative difference for pressure peaks
for all cases is 21%. Pressure integrals show smaller relative differences
with the average difference across all wave cases of 18%. From the
practical engineering point of view, the differences for small waves, 1, 2
and 3 are of smaller importance due to the small absolute value of
pressure loads. On the other hand, larger differences for waves 6 and 7
should be investigated further since these would have a larger influence
on the structural design due to higher absolute pressure loads.

Fig. 28. Pressure peak comparison between the isoAdvector and the algebraic VOF
method for wave 9.

Table 5
Overall result comparison.

Wave ID Epmax, Pa Epmax, % EP, Pas EP, %

1 37.21 25.61 15.20 22.65
2 68.75 21.91 36.33 24.13
3 30.56 8.46 23.73 12.61
4 34.58 18.64 13.44 13.04
5 48.90 14.76 14.65 7.89
6 172.52 29.82 25.63 11.14
7 251.12 39.10 109.96 34.59
8 130.79 17.31 93.31 21.88
9 229.60 15.84 71.80 13.99

Fig. 26. Temporal pressure integral results comparison for wave 8.

Fig. 27. Temporal pressure integral results comparison for wave 9.
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4.5. Influence of the interface advection method

To compare the performance of the isoAdvector method for interface
advection, an additional simulation is carried out for wave 9, where
conventional algebraic VOF method is used with interface compression
(Rusche, 2002). Fig. 28 shows the pressure peak results for wave 9 where
in addition to experimental and numerical results, the numerical results
with conventional algebraic VOF are given. Fig. 29 presents the com-
parison of the temporal integral of pressure. Note that in these graphs
only the periodic uncertainty is included for numerical results, since the

refinement study has not been performed with the algebraic VOF
method. The results are similar for pressure peaks except for pressure
gauges 7 and 8, where higher values are obtainedwith the algebraic VOF.
Pressure integral results agree well between the two simulations, how-
ever the algebraic VOF exhibits slightly larger underestimation with
respect to the experimental data. Fig. 30 sequentially shows a visual
comparison of volume fraction field α for simulation where isoAdvector
and algebraic VOF are used. With isoAdvector, the interface is confined
within a single cell even when very violent free surface flow occurs. With
algebraic VOF, the interface is smeared, and the geometry of the free
surface is described less precisely.

Being a more complex method, isoAdvector requires a larger number
of operations comparing to the algebraic VOF. Hence, an increase in CPU
time is expected. Both simulations are performed using 24 cores on Intel
Xeon Processor E5-2637 v3. Simulation with the algebraic VOF took
37.5 h, while the simulation using isoAdvector took 45 h to compute.
Hence, an increased cost of 20% is exhibited in this case. Note that the
increase in computational cost depends on the cost of the pressur-
e–velocity coupling algorithm used in the solution procedure.

5. Conclusion

A comprehensive set of numerical simulations of green sea loads have
been conducted using the FV based CFD software called Naval Hydro
pack which is based on foam–extend. The Ghost Fluid Method is applied
for discretisation of the free surface boundary conditions, while the
geometric isoAdvector method is used for interface capturing.

Fig. 30. Visual comparison of the volume fraction field α (denoted ”alpha”) in simulation where the isoAdvector (left) and the algebraic VOF method (right) are used.

Fig. 29. Pressure integral comparison between the isoAdvector and the algebraic VOF
method for wave 9.
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All results are compared to experimental data in order to validate the
present method for green sea load calculation. A case of a static,
simplified FPSO model is used with a breakwater on deck, with regular
incident waves. Nine wave cases are analysed with varying amplitude
and steepness, where the pressure at ten locations on deck is measured.
Uncertainties are assessed for both experimental and numerical data,
yielding a comprehensive comparison. Detailed uncertainty analysis of
numerical results is performed via grid and time–step resolution study, as
well as periodic uncertainty analysis.

Compared pressure–related quantities are the average pressure peak
and time integral of pressure during the wave period. Comparison of
pressure peaks shows good overall agreement with comparable un-
certainties between experimental and numerical data. Trends of peak
pressure across pressure gauges agree well with experiments for seven
out of nine wave cases, where the two smallest waves, wave 1 and 2
showed some discrepancy. Values and uncertainty intervals overlap for
the majority of pressure gauges for waves 3, 4, 5, 6 and 9. Waves 1 and 2
show reasonable agreement, while waves 7 and 8 show underestimation

of experimental results.
For temporal pressure integrals, trends are well captured for waves 2,

3, 5, 6, 7, 8 and 9, while waves 1 and 4 show slightly different trends.
Values correspond well for waves 1, 3, 4, 5 and 6, while integrals for
wave 2 and 9 are slightly underestimated. Waves 7 and 8 show larger
underestimation which requires further investigation on both numerical
and experimental side.

Overall, results show reasonable accuracy and high level of confi-
dence. Comparable uncertainty between numerical and experimental
results show that similar precision can be expected in terms of pressure
on deck. Future work will involve prediction of realistic green sea loads
for offshore objects in irregular waves.
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Appendix. Results in tabular format

Complete results of both numerical and experimental studies are given in this section in tabular form, with break–down of numerical uncertainties.

A.1. Pressure peak results

Table A1
Pressure peak results for wave 1.

Gauge ID pmax;C , Pa UCT , Pa UCD , Pa UCP, Pa pmax;E , Pa UET , Pa

1 114.63 10.35 10.10 2.25 168.00 15.41
2 123.69 11.15 10.90 2.33 145.00 12.06
3 117.26 11.08 10.33 4.00 139.00 11.67
4 130.84 13.85 11.53 7.68 119.00 16.49
5 116.03 11.01 10.23 4.09 138.00 10.97
6 102.78 9.60 9.06 3.17 175.00 11.60
7 95.63 8.70 8.43 2.18 163.00 26.99
8 119.38 10.96 10.52 3.06 139.00 13.61
9 62.66 5.71 5.52 1.47 115.00 9.87
10 86.69 8.04 7.64 2.51 117.00 11.30

Table A2
Pressure peak results for wave 2.

Gauge ID pmax;C , Pa UCT , Pa UCD , Pa UCP, Pa pmax;E , Pa UET , Pa

1 217.51 37.26 32.55 18.15 312.00 22.15
2 224.13 34.16 33.54 6.48 272.00 19.81
3 287.62 83.59 43.04 71.66 277.00 15.76
4 206.41 31.54 30.89 6.39 185.00 16.31
5 190.97 29.22 28.58 6.09 223.00 11.74
6 248.64 39.06 37.20 11.89 298.00 12.60
7 295.03 46.53 44.15 14.69 424.00 27.91
8 243.91 37.13 36.50 6.85 367.00 17.55
9 158.58 24.65 23.73 6.69 307.00 18.26
10 279.21 59.03 41.78 41.70 248.00 12.75

Table A3
Pressure peak results for wave 3.

Gauge ID pmax;C , Pa UCT , Pa UCD , Pa UCP, Pa pmax;E , Pa UET , Pa

1 385.93 23.06 20.30 10.94 407.00 16.81
2 420.63 23.84 22.12 8.88 409.00 16.12
3 456.87 28.15 24.03 14.66 420.00 17.15
4 288.67 17.66 15.18 9.02 244.00 18.89
5 241.12 17.49 12.68 12.04 271.00 11.44
6 332.49 21.39 17.49 12.32 346.00 14.50
7 522.20 35.21 27.46 22.04 541.00 27.18
8 425.62 36.13 22.38 28.36 452.00 16.12
9 318.71 23.54 16.76 16.53 413.00 15.04
10 339.52 20.77 17.86 10.61 348.00 14.53
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Table A4
Pressure peak results for wave 4.

Gauge ID pmax;C , Pa UCT , Pa UCD , Pa UCP, Pa pmax;E , Pa UET , Pa

1 259.10 34.24 32.78 9.89 254.00 17.11
2 250.67 37.25 31.71 19.54 204.00 16.01
3 201.02 27.07 25.43 9.26 159.00 13.87
4 169.31 21.62 21.42 2.95 141.00 16.17
5 160.91 23.66 20.36 12.05 135.00 10.90
6 185.47 24.70 23.46 7.72 207.00 12.64
7 329.82 46.27 41.73 19.99 373.00 27.21
8 227.19 29.67 28.74 7.36 172.00 12.84
9 174.71 22.55 22.10 4.47 209.00 10.54
10 215.57 28.11 27.27 6.80 172.00 11.61

Table A5
Pressure peak results for wave 5.

Gauge ID pmax;C , Pa UCT , Pa UCD , Pa UCP, Pa pmax;E , Pa UET , Pa

1 340.91 9.28 7.63 5.29 360.00 20.15
2 339.31 9.19 7.59 5.18 310.00 16.01
3 373.49 10.82 8.36 6.88 306.00 13.42
4 300.17 9.41 6.72 6.59 278.00 22.48
5 220.82 8.12 4.94 6.44 270.00 12.78
6 319.33 15.67 7.14 13.95 262.00 12.99
7 756.78 72.07 16.93 70.06 757.00 35.95
8 543.68 38.66 12.16 36.70 388.00 17.11
9 311.14 8.13 6.96 4.21 397.00 11.08
10 281.68 8.27 6.30 5.36 279.00 12.08

Table A6
Pressure peak results for wave 6.

Gauge ID pmax;C , Pa UCT , Pa UCD , Pa UCP, Pa pmax;E , Pa UET , Pa

1 472.46 177.72 169.35 53.92 450.00 27.14
2 473.75 176.85 169.81 49.39 390.00 23.25
3 397.45 143.55 142.46 17.66 356.00 18.60
4 507.24 183.41 181.81 24.12 414.00 31.39
5 376.76 137.54 135.05 26.06 381.00 20.42
6 449.28 167.66 161.04 46.65 422.00 14.67
7 1515.21 599.12 543.11 252.93 1183.00 67.99
8 1618.54 762.50 580.15 494.81 625.00 18.74
9 567.73 205.30 203.49 27.17 588.00 13.91
10 376.77 140.75 135.05 39.65 270.00 12.38

Table A7
Pressure peak results for wave 7.

Gauge ID pmax;C , Pa UCT , Pa UCD , Pa UCP, Pa pmax;E , Pa UET , Pa

1 349.21 9.15 5.04 7.63 529.00 39.67
2 321.73 13.29 4.64 12.45 479.00 20.43
3 333.95 9.44 4.82 8.11 478.00 20.77
4 345.99 12.41 4.99 11.36 618.00 44.59
5 266.71 6.72 3.85 5.50 564.00 16.99
6 308.68 10.57 4.46 9.59 477.00 13.32
7 801.19 133.25 11.56 132.75 1390.00 69.72
8 502.13 25.91 7.25 24.87 808.00 16.73
9 298.24 6.79 4.30 5.26 538.00 12.65
10 265.99 6.59 3.84 5.36 424.00 13.20

Table A8
Pressure peak results for wave 8.

Gauge ID pmax;C , Pa UCT , Pa UCD , Pa UCP, Pa pmax;E , Pa UET , Pa

1 482.15 11.23 1.11 11.17 555.00 23.30
2 427.90 17.32 0.99 17.29 638.00 24.35
3 448.10 28.21 1.03 28.19 520.00 23.09
4 645.67 15.46 1.49 15.39 793.00 40.47
5 479.41 6.84 1.11 6.75 688.00 20.56
6 522.08 16.02 1.20 15.98 640.00 16.65
7 1695.05 311.41 3.91 311.39 1943.00 55.10
8 992.93 45.14 2.29 45.08 1048.00 31.46
9 628.03 15.94 1.45 15.87 699.00 20.66
10 487.77 10.80 1.12 10.74 593.00 20.83
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Table A9
Pressure peak results for wave 9.

Gauge ID pmax;C , Pa UCT , Pa UCD , Pa UCP, Pa pmax;E , Pa UET , Pa

1 596.71 51.93 48.76 17.88 670.00 41.02
2 652.95 55.40 53.36 14.91 724.00 29.57
3 580.83 49.43 47.46 13.80 593.00 24.23
4 846.06 72.93 69.13 23.21 939.00 44.75
5 719.55 61.81 58.80 19.06 857.00 20.05
6 774.05 64.49 63.25 12.59 776.00 21.67
7 3697.68 655.71 302.15 581.94 2498.00 112.74
8 1877.29 206.91 153.40 138.86 1357.00 36.96
9 1069.49 92.66 87.39 30.79 977.00 38.47
10 791.68 65.44 64.69 9.84 697.00 26.35

A.2. Pressure integral results

Table A10
Pressure integral results for wave 1.

Gauge ID PC , Pa s UCT , Pa s UCD, Pa s UCP, Pa s PE , Pa s UET , Pa s

1 47.52 0.85 0.17 0.84 71.57 11.68
2 44.09 0.89 0.16 0.88 63.22 10.42
3 34.75 0.91 0.13 0.90 47.37 7.43
4 69.44 0.87 0.25 0.84 71.96 9.10
5 65.86 0.59 0.24 0.54 47.15 6.18
6 58.34 0.80 0.21 0.77 100.35 5.16
7 80.47 0.72 0.29 0.66 81.61 3.83
8 77.13 1.12 0.28 1.08 79.12 3.75
9 52.09 1.59 0.19 1.58 74.26 2.65
10 52.57 0.64 0.19 0.61 44.88 4.45

Table A11
Pressure integral results for wave 2.

Gauge ID PC , Pa s UCT , Pa s UCD, Pa s UCP, Pa s PE , Pa s UET , Pa s

1 99.74 11.96 11.39 3.62 139.56 16.38
2 89.01 10.40 10.17 2.16 124.41 13.97
3 78.44 10.25 8.96 4.97 105.65 5.44
4 110.06 12.87 12.57 2.77 130.15 7.31
5 108.17 12.59 12.36 2.43 110.00 3.08
6 108.69 12.49 12.42 1.37 152.58 1.83
7 145.92 17.36 16.67 4.84 202.38 3.08
8 140.51 16.26 16.05 2.57 180.32 4.02
9 113.34 13.41 12.95 3.50 170.46 3.22
10 100.72 11.77 11.51 2.48 142.34 7.51

Table A12
Pressure integral results for wave 3.

Gauge ID PC , Pa s UCT , Pa s UCD, Pa s UCP, Pa s PE , Pa s UET , Pa s

1 152.55 13.42 12.96 3.48 191.71 4.59
2 148.23 13.11 12.60 3.62 178.96 3.55
3 135.35 11.85 11.50 2.86 156.00 7.72
4 159.21 13.94 13.53 3.37 167.67 6.32
5 152.89 13.16 12.99 2.08 146.54 1.76
6 147.28 12.81 12.52 2.73 183.92 2.75
7 218.97 18.80 18.61 2.68 245.51 7.48
8 206.77 18.10 17.57 4.33 225.16 9.04
9 171.43 15.15 14.57 4.14 204.30 5.15
10 143.22 12.35 12.17 2.07 160.71 2.46

Table A13
Pressure integral results for wave 4.

Gauge ID PC , Pa s UCT , Pa s UCD, Pa s UCP, Pa s PE , Pa s UET , Pa s

1 107.27 22.37 22.24 2.42 119.08 8.85
2 104.79 21.90 21.72 2.79 112.43 5.74
3 90.96 19.15 18.86 3.35 95.59 4.13
4 118.34 24.64 24.53 2.32 114.77 8.10
5 113.80 23.85 23.59 3.55 75.41 4.15
6 112.86 23.98 23.40 5.27 141.68 1.41
7 160.76 33.46 33.32 2.96 163.19 8.00
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Table A13 (continued )

Gauge ID PC , Pa s UCT , Pa s UCD, Pa s UCP, Pa s PE , Pa s UET , Pa s

8 141.36 29.42 29.30 2.59 112.17 11.15
9 122.60 26.17 25.41 6.26 117.99 9.41
10 110.28 23.22 22.86 4.10 106.96 2.80

Table A14
Pressure integral results for wave 5.

Gauge ID PC , Pa s UCT , Pa s UCD, Pa s UCP, Pa s PE , Pa s UET , Pa s

1 138.80 6.37 6.11 1.80 127.59 17.02
2 139.27 6.52 6.13 2.21 120.27 17.11
3 125.99 5.93 5.55 2.09 118.51 15.49
4 148.84 6.99 6.55 2.44 157.94 10.25
5 143.80 7.00 6.33 2.98 137.86 3.08
6 137.18 6.95 6.04 3.44 135.83 2.31
7 243.18 11.91 10.70 5.22 294.40 5.99
8 224.98 10.54 9.90 3.61 217.40 3.54
9 178.82 8.71 7.87 3.72 211.75 2.82
10 130.81 6.45 5.76 2.90 130.15 20.70

Table A15
Pressure integral results for wave 6.

Gauge ID PC , Pa s UCT , Pa s UCD, Pa s UCP, Pa s PE , Pa s UET , Pa s

1 192.48 30.88 30.75 2.82 168.38 19.74
2 182.24 29.32 29.12 3.43 163.53 19.25
3 156.74 25.33 25.04 3.78 140.47 6.80
4 197.39 32.31 31.54 7.01 193.44 13.82
5 192.70 31.58 30.79 7.04 232.45 19.51
6 185.06 29.98 29.57 4.94 198.40 16.85
7 361.07 58.04 57.69 6.41 415.91 10.43
8 332.94 53.78 53.19 7.94 332.86 12.63
9 262.31 42.14 41.91 4.40 327.00 6.18
10 155.51 26.09 24.85 7.95 134.95 2.99

Table A16
Pressure integral results for wave 7.

Gauge ID PC , Pa s UCT , Pa s UCD, Pa s UCP, Pa s PE , Pa s UET , Pa s

1 158.47 3.27 0.51 3.23 234.89 11.51
2 154.73 2.53 0.50 2.48 222.80 8.79
3 140.76 2.93 0.45 2.90 210.26 12.02
4 183.33 3.91 0.59 3.87 279.12 21.62
5 182.57 2.32 0.59 2.24 303.16 6.69
6 169.02 4.19 0.54 4.16 272.94 6.48
7 304.56 6.80 0.98 6.73 529.92 8.32
8 266.56 3.89 0.86 3.79 427.49 6.72
9 222.36 2.44 0.71 2.33 366.28 4.14
10 158.95 2.69 0.51 2.64 194.10 3.80

Table A17
Pressure integral results for wave 8.

Gauge ID PC , Pa s UCT , Pa s UCD, Pa s UCP, Pa s PE , Pa s UET , Pa s

1 263.23 5.78 0.07 5.78 322.13 18.72
2 242.58 7.85 0.07 7.85 329.91 13.27
3 221.99 5.70 0.06 5.70 276.22 15.84
4 311.79 4.72 0.08 4.72 397.30 26.77
5 305.47 3.80 0.08 3.80 411.73 9.18
6 279.10 3.64 0.08 3.64 410.62 7.44
7 508.78 11.36 0.14 11.36 693.53 23.35
8 455.81 7.82 0.12 7.82 551.77 13.61
9 378.50 5.88 0.10 5.88 479.35 8.50
10 250.51 3.85 0.07 3.85 278.32 5.50
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Table A18
Pressure integral results for wave 9.

Gauge ID PC , Pa s UCT , Pa s UCD, Pa s UCP, Pa s PE , Pa s UET , Pa s

1 347.14 8.97 6.50 6.18 412.80 13.40
2 339.30 9.75 6.35 7.40 422.13 15.10
3 302.76 8.63 5.67 6.51 377.98 19.25
4 452.83 10.91 8.48 6.87 511.01 26.72
5 443.78 10.25 8.31 6.00 523.13 16.85
6 406.69 9.61 7.61 5.87 508.34 9.43
7 727.35 19.11 13.62 13.41 843.18 16.82
8 632.93 14.63 11.85 8.59 690.75 26.37
9 522.18 13.17 9.77 8.83 585.76 14.96
10 378.33 9.45 7.08 6.25 360.47 18.52
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aUniversity of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana
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Abstract

An efficient, pressure–based segregated Finite Volume solution method for
two–phase free surface flow simulations including compressibility effects is
presented in this paper. Incompressible treatment of the heavier phase en-
ables efficient long evolutions of wave fields without the need for a separate
solver for handling wave field evolution. Air is treated as an ideal gas un-
dergoing isentropic compression/expansion, removing the need for an addi-
tional energy equation, and related numerical difficulties. The discontinuity
in properties at the free surface between the two phases is treated using the
Ghost Fluid Method, correctly accounting for the abrupt change in density
and compressibility.

Detailed verification and validation is conduced on three simple test cases
comprising a liquid piston, free fall impact of a horizontal water column and
a regular wave propagation to test the stability and accuracy for cases with
and without significant compressibility effects. The present approach is com-
pared with the incompressible formulation for industrial–grade simulations,
showing that the same level of accuracy can be achieved without significant
overhead in computational time. Finally, a compressible wave breaking im-
pact from a large–scale experimental campaign is reproduced, showing that
the method is capable of capturing trapped air cushioning effects with good
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accuracy where it is essential to account for compressibility of the gas phase.

Keywords: Compressible Two Phase Model, Finite Volume, Pressure
Based, Validation, Wave Impact, Green Sea, Ghost Fluid Method.

1. Introduction

In the field of computational naval hydrodynamics the issue of compress-
ible two phase flow presents a significant computational challenge. Appli-
cation of Computational Fluid Dynamics (CFD) for resolving violent events
where air compressibility plays an important role is becoming more popular,
where the simulation objective is to assess structural loads of exposed struc-
tures. Typical problems involving air compressibility are sloshing, slamming
and violent wave impacts. In such events, compressible behaviour of air en-
trained between the water and structure has an important influence in the
overall structural loading [1, 2]. Thus, numerical methods have been devel-
oped in order to address this problem. Numerous approaches exist, with two
most prominent groups being the Smoothed Particle Hydrodynamics (SPH)
and the Finite Volume (FV) approach.

An abundance of SPH methods have been successfully applied to two–
phase compressible flow, producing realistic and accurate results when com-
pared to experimental and analytical data. Guilcher et al. [3] investigated
scale effects on a wave impact against a wall with trapped air pockets, suc-
cessfully applying the compressible SPH method. In another publication,
Guilcher et al. [4] showed a validation of the approach on benchmark cases,
namely the liquid piston case and free–falling water column, which will be
used in this study as well. Luo et al. [5, 6] used a Consistent Particle
Method to simulate wave breaking with trapped air pocket and sloshing in
two connected tanks, showing good agreement with the experiment. Rostami
and Ketabdari [7] validated their weakly compressible SPH method on a 2D
dam break with horizontal column impact, However, no trapped air pockets
were investigated. Lind et al. [8] showed a novel SPH method with a sharp
interface treatment, validated on a dam break case with a trapped air pocket.

Despite the fact that SPH method can be used to effectively simulate
aerated wave impacts and related phenomena, it remains computationally
expensive for industrial applications. Furthermore, simulating complex ge-
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ometries such as ships with superstructure becomes a problem, as well as
accurate integration of 6–degrees–of–freedom motion of a floating object due
to difficulties in treating of impermeable boundary conditions. For this rea-
son the industry and research increasingly focuses their effort in developing
FV based methods which are computationally more efficient for this type of
application and allow consistent treatment of boundary conditions, while au-
tomatic grid generation tools provide body–fitted grids for the most intricate
geometries. FV based methods have their respective challenges and problems
which must be recognized. Treatment of an infinitesimally sharp interface be-
tween the two phases poses the most challenging issue. Nonetheless, there is
an increasing number of publications dealing with development and applica-
tion of FV methods for compressible two–phase flow in naval hydrodynamics.

Braeunig et al. [9] used a FV based numerical method to explore the
possibility of exact scaling between model–scale and full–scale LNG sloshing
and derived the gas properties that should be used in model scale to ensure
good quality scaling. Dumbser [10] developed a pressure–based higher order
WENO FV method for compressible two–phase flow. The method is vali-
dated on a number of dam–break cases comparing the results to experiments
and shallow water flow theory. Plumerault et al. [11] developed a pressure–
based two–phase compressible method that allows aerated water flow, which
can be very important in highly violent wave impacts. The method is val-
idated against experimental results for a wave impact against a wall with
entrained air. Costes at al. [12] used a nonlinear potential flow based nu-
merical method in conjunction with a compressible two–phase FV method
to simulate wave impact with trapped air pocket. The potential flow solver
is used to propagate the wave field, while the more expensive FV compress-
ible method is used only in the vicinity of the structure. Miller et al. [13]
developed a compressible pressure–based two–phase method specialised for
simulating underwater explosions, where both air and water compressibility
play an important role. Mixture–momentum formulation is used where com-
pressibility properties are smeared across the interface using the VOF field. A
three–dimensional shallow water explosion simulation is shown, where mass
is not fully conserved. Ma et al. [14] developed a higher–order FV method
for handling aerated two–phase wave impacts, where the dispersion of air in
water is handled with the Volume of Fluid approach. The method proved
accurate for fundamental cases as well as for a 2D wave impact case with
trapped air pocket. The approach was also used to study rigid plate en-
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try [15] where the influence of aeration was investigated experimentally and
numerically, showing good agreement between the two sets of results. Fur-
thermore, sloshing with trapped air effects is investigated in a de-pressurised
tank with experimental comparison [16], showing once more the accuracy of
the presented numerical approach. However, the drawback of higher–order
numerical schemes is that they generally suffer from instabilities and are
computationally more expensive. Calderón–Aánchez et al. [17] investigated
a free fall of a horizontal water column with rectangular cross–section us-
ing OpenFOAM software, where the compressibility is explicitly accounted
for. The ability of the code to capture compressible impact effects on this
simple canonical case is demonstrated for various density ratios between the
two phases. Zou et al. [18] used a commercial software FLUENT to investi-
gate the effects of viscosity and air compressibility on violent sloshing events,
concluding that lower impact pressures are obtained when a compressible air
model is used as opposed to the incompressible model. Lyu et al. [19] investi-
gated different interface capturing methods in a FV framework for simulating
sloshing impacts, where both compressible and incompressible methods are
used. They concluded that Volume of Fluid (VOF) based interface captur-
ing is the most suitable to predict the motion of the liquid and pressure loads.

The objective of this study is to devise a two–phase flow model based on
the FV method, where one phase is a compressible gas, while the other is
an incompressible liquid, which could tackle industrial–grade simulations in
terms of stability, efficiency and accuracy. The framework is designed in a
way to provide a variety of computational features in a single program, to
enable performing simulations that include wave propagation, rigid body mo-
tion of floating objects and compressible wave impact effects. In addition, in
cases where compressibility effects are negligible, the method should perform
equivalently to its incompressible counterpart [20]. In this manner, a single
code can be applied to a wide variety of problems in naval hydrodynamics.
It is for this reason that the present numerical framework will be tested on
realistic 3D cases such as seakeeping of a container vessel in head seas, in
addition to canonical cases which will be used for verification and validation
of the method.

The numerical model presented in this paper is based on the two–phase,
incompressible flow model developed by Vukčević et al. [20], which uses the
Ghost Fluid Method (GFM) to implicitly discretise the free surface boundary

4

128



conditions across the interface. The formulation provides a numerically sharp
interface which handles the jump in pressure gradient and density across the
interface. The approach offers a balanced treatment of pressure and density
gradient terms in the momentum and the pressure equation, which removes
the problem of spurious air velocities. Since air is considered compressible
in this study, additional effort is employed to formulate a compressible GFM
formulation in order to account for the abrupt change in compressibility of
the two phases. The mathematical derivation and numerical implementation
of the compressible GFM is described in detail in the two following sections.
The gas phase is modelled as an isentropic ideal gas to produce a stable
formulation of the pressure equation in low–Mach number regimes and re-
moves the need to solve the conditional energy equation. This assumption is
justified for the following reasons that are specific to naval hydrodynamics:

• Compressibility effects in naval hydrodynamics of interest here are re-
lated to volumetric compression of air by the liquid phase. This type of
phenomena are highly transient, a few–hundred millisecond in duration
[2], rendering any heat transfer between the trapped air pocket and the
surrounding water negligible,

• Heat transfer rate between air and water is low for problems under
consideration, thus a large temperature difference is needed to drive
significant amount of heat from one fluid to the other. In the event of
trapped air pocket, the temperature rise is not significant [16],

• In the event when there is sufficient time for significant heat transfer,
there is no temperature difference between air and water to drive it,
since in most naval hydrodynamic phenomena the temperature differ-
ence between air and water is small or zero.

The liquid phase is considered ideally incompressible, which facilitates the
handling of mass conservation and avoids a plethora of numerical problems
related to high speed of sound in liquids. The present approach is focused on
volumetric compressibility effects that are important in naval hydrodynam-
ics. Thus, pressure shock propagation in the liquid is not considered since it
is not relevant for applications in this field. Furthermore, resolving pressure
shocks requires temporal and spatial resolution that are prohibitive for ev-
eryday industrial use. The present numerical framework enables running the
simulations at Courant numbers well above one, as will be demonstrated in
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Sec. 5.2.

In the second and third section of the paper the mathematical and nu-
merical model of the two–phase incompressible/compressible formulation is
presented in detail. The derivation of the specialised interface–corrected dis-
cretisation schemes is shown in the FV framework. The fourth section is
dedicated to verification and validation, where three canonical cases are con-
ducted: i) liquid piston 1D case, testing the basic capability of the code to
correctly account for compression of air and to conserve energy and mass;
ii) a falling water column 2D case is performed with a high pressure impact
in order to assure that the present approach can tackle violent compressibil-
ity effects; iii) in the third test case the accuracy and precision of the code
to propagate a regular wave field is tested where no compressibility effects
are present, including an extensive grid and time–step convergence study.
The fifth section is dedicated to testing the numerical framework for more
complex, three–dimensional cases that are more realistic in terms of indus-
trial application. Two cases are considered here: a green sea loading case
where pressure results are compared to experiments and to the solution of
the incompressible solution; and a head waves seakeeping case of a containter
vessel, comparing motion and total resistance to incompressible solution and
experimental results. Computational time is also compared between com-
pressible and incompressible formulation, showing no significant overhead.
Finally, a compressible breaking wave impact is simulated where the results
are compared to a large–scale experimental data. The paper is completed
with an overview of the study and conclusions.

2. Mathematical Model

In this section the governing equations of viscous, turbulent, two–phase
flow with compressible gas phase and incompressible liquid phase which are
mutually immiscible are given. The equations governing both phases are com-
bined into a single set of equations, where the Ghost Fluid Method (GFM)
[21, 22, 23, 24, 25, 26, 27] is employed to account for the discontinuity of fluid
properties across the interface. The mathematical model presented in this
section represents an extension of the GFM for incompressible two–phase
model shown in [20] to a special case where one phase is compressible and
the other incompressible.
In the following text, governing equations for incompressible and compress-
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ible phase will be considered separately, followed by a description of the
unified mathematical model for both phases. Finally, the mathematical for-
mulation of the jump conditions at the free surface is given.

2.1. Incompressible phase

For single–phase, incompressible, viscous and turbulent flow used in this
study the continuity equation reads:

∇•u = 0 , (1)

where u denotes the velocity field. Following Vukčević et al [20] the momen-
tum equation can be written as:

∂u

∂t
+∇•(uu)−∇•(R) = − 1

ρI
∇p+ g , (2)

where R stands for the Reynolds stress tensor, accounting for general turbu-
lence modelling. ρI is the constant density field of the incompressible fluid, g
is gravitational acceleration while p stands for pressure field. For simulations
in this study Reynolds Averaged Navier–Stokes model is used yielding the
following momentum conservation equation:

∂u

∂t
+∇•(uu)−∇• (νe∇u) = − 1

ρI
∇p+ g , (3)

where νe stands for effective cinematic viscosity, comprised of fluid kinematic
viscosity and turbulent viscosity.

2.2. Compressible phase

For general compressible flow, the mass conservation equation states:

∂ρc
∂t

+∇• (ρcu) = 0 , (4)

where ρc denotes the density field of the compressible fluid. 4 can be written
in the following form:

∇•u = − 1

ρc

(
∂ρc
∂t

+ u•∇ρc
)

. (5)
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Note that the right hand side of Eqn. 5 presents the difference between the
compressible and incompressible conservation of mass. The momentum con-
servation equation for the compressible phase can be written as:

∂ (ρcu)

∂t
+∇•(ρcuu)−∇u•∇µe −∇• (µe∇u) = −∇p+ ρcg , (6)

where µe stands for effective dynamic viscosity. Following Vukčević et al [20]
pressure is decomposed into dynamic and static part:

p = pd + ρcg•x , (7)

where x stands for the position vector. Introducing Eqn. 7 into Eqn. 6 reads:

∂ρcu

∂t
+∇•(ρcuu)−∇u · ∇µe −∇• (µe∇u) = −∇pd −∇ρcg · x . (8)

By applying the chain rule on Eqn. 8, introducing Eqn. 5 and normalising
with ρc the following form is obtained:

∂u

∂t
+∇•(uu)− 1

ρc
∇u · ∇µe −

1

ρc
∇• (µe∇u)− u∇•u =

− 1

ρc
∇pd −

1

ρc
∇ρcg•x . (9)

In order to close the system of equations governing the compressible flow, i.e.
Eqn. 5 and Eqn. 9, appropriate equation of state must be chosen. Since the
compressible phase is gas in this application, ideal gas model is employed.
Furthermore, to avoid an additional energy conservation equation, isentropic
compression/expansion of the gas phase is assumed. In naval hydrodynamics
CFD, this assumption is valid for the following reasons:

1. Compressibility effects in naval hydrodynamics are short–lived; the
heat transfer between gas and liquid is negligible,

2. Heat transfer intensity between air and water, which are of interest in
naval hydrodynamics, is small. Therefore, a large temperature differ-
ence between the phases would be needed to drive a significant heat
transfer across the interface,

3. In a majority of problems related to naval hydrodynamics, air and
water have the same temperature, thus no significant heat transfer
exists between the non–compressed air and water.
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Under these assumptions the equation of state for an ideal gas undergoing
adiabatic pressure compression/expansion reads:

p

ργc
= ac = const. , (10)

where γ denotes the constant ratio of specific heats while ac stands for isen-
tropic constant.

Capturing compressible pressure waves is not of importance in naval
hydrodynamics, instead the volumetric compressible events are of interest.
Thus, the goal is to be able to capture air compressibility in events of trapped
gas pockets, where the gas is compressed due to a reduction of volume under
the influence of forces acting on its boundary. Having this in mind, a pressure
based method is developed in this study, where pressure related operators in
Eqn. 5 need to be reformulated in terms of pressure as a working variable.
A total derivative of ρc is expressed as:

∂ρc
∂p

=
1

acγ

(
p

ac

) 1−γ
γ

, (11)

assuming isentropic compression/expansion of an ideal gas. Applying Eqn. 11
on Eqn. 5 yields:

∇•u = − 1

ρc

∂ρc
∂p

(
∂p

∂t
+ u•∇p

)
. (12)

Substituting Eqn. 7 into Eqn. 12 results in the final form of the compressible
mass conservation equation:

∇•u = − 1

ρc

∂ρc
∂p

(
∂pd
∂t

+∇•(pdu)− pd∇•u +
∂ (ρcg•x)

∂t
+ u•∇ρcg•x

)
. (13)

2.3. Two–phase formulation

In order to model two–phase flow, above equations need to be combined
into a single equation set. Volume of Fluid (VOF) method [28, 29] is em-
ployed to handle interface capturing, where volume fraction fields αk are used
to differentiate between individual phases. Here, k is the phase index (I for
incompressible phase and c for compressible). The conservation of mass for
both phases states:

∂ (αkρk)

∂t
+∇• (αkρku) = 0 . (14)
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By definition, αk is 1 when the cell is fully occupied by fluid k, and 0 when no
fluid k is present in the cell. For two–phase flow it follows that αc = 1− αI .
Thus, it is only necessary to convect one fraction field while the other is de-
fined algebraically. In this study, only the incompressible phase fraction field
αI is convected since it ensures mass conservation because the convecting
velocity satisfies Eqn. 1.

Applying Eqn. 1 and ρI = const. to Eqn. 14 yields:

∂αI
∂t

+∇• (αIu) = 0 . (15)

Finally the combined, two–phase equations are obtained by multiplying equa-
tions for two phases with corresponding volume fraction fields and superim-
posing them. The combined two–phase conservation of mass equation is
obtained by combining Eqn. 1 and Eqn. 13:

∇•u = − (1− αI)
1

ρc

∂ρc
∂p

(
∂pd
∂t

+∇•(pdu)

− pd∇•u +
∂ (ρcg•x)

∂t
+ u•∇ρcg•x

)
. (16)

Note that the velocity field is considered continuous across the interface, i.e.
uc = uI . The momentum equation is obtained in the same manner, using
Eqn. 3 and Eqn. 9:

∂u

∂t
+∇•(uu)− 1

ρ
∇u•∇µe −

1

ρ
∇• (µe∆u) =

− 1

ρ
∇pd − (1− αI)

(
1

ρc
∇ρcg · x− u∇•u

)
, (17)

where ρ = αIρI + (1− αc) ρc. Eqns. 16, 17, 15 and 10 make a closed system
of equations which model a two–phase liquid incompressible/gas compress-
ible fluid. In order for the model to be numerically stable and robust, the
discontinuities at the interface need to be accounted for.

2.4. Interface discontinuities and jump conditions in the presence of phase
compressibility

Across the interface ρ and ∂ρc/∂p have a discontinuity which is non–
trivial for numerical treatment. In this study the discontinuities are taken
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into account by employing the GFM developed by Vukčević et al. [20],
and extending the implemented method for treatment of a compressible gas
phase. The discontinuities, or the jump conditions can be written as [23, 24]:

[ρ] = ρ− − ρ+ , (18)

[
∂ρ

∂p

]
=

(
∂ρ

∂p

)−
−
(
∂ρ

∂p

)+

, (19)

where ”+” denotes values infinitesimally close to the interface at the liquid
side and ”−” at the gas side. Note that ∂ρ/∂p+ = 0 since the liquid phase
is considered incompressible. In effect Eqn. 19 expresses the jump in com-
pressibility across the interface. Although viscosity has a jump across the
interface as well, it will be considered continuous across the interface as dis-
cussed in [20], which is justified for high Reynolds number flows that are of
interest.

Apart from the discontinuities of fluid properties, additional jump con-
ditions arise from kinematic and dynamic free surface boundary conditions.
If the surface tension effects are neglected, dynamic free surface boundary
condition states that pressure must be continuous across the interface:

[p] = 0 . (20)

Since the governing equations are written in terms of dynamic pressure pd,
Eqns. 20, 18 and 7 are combined to yield:

[pd] = − [ρ] g•x . (21)

The kinematic free surface boundary condition states that the velocity field
must be continuous across the interface:

[u] = u− − u+ = 0 . (22)

In addition to the above jump conditions, additional conditions arise from the
jump of governing equations themselves [23, 24, 30]. As shown by Vukčević
et al. [20], by applying the jump operator on Eqn. 3 an additional jump
condition is obtained: [

1

ρ
∇pd

]
= 0 , (23)
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which states that the dynamic pressure gradient divided with density must
remain continuous across the interface. For the combined momentum equa-
tion (Eqn. 17) applying the jump operator yields:

[
1

ρ
∇pd

]
=

[
−∇• (uu) + u∇•u− 1

ρ
∇ρg · x

]
, (24)

where viscous terms vanished due to the assumption mentioned above. The
jump of temporal term reduces to zero since the velocity is continuous across
the interface. Expanding the right hand side with the jump operator and
taking into account that u∇•u+ = 0 and ∇ρI = 0, yields:

[
1

ρ
∇pd

]
= [−∇• (uu)] + (u∇•u)− − 1

ρ−c
∇ρ−c g · x . (25)

According to Eqn. 24 the gradient of dynamic pressure divided by the density
has a discontinuity across the interface stemming from the compressibility of
the gas phase. The third term on the right hand side represents the jump
due to possible nonlinear hydrostatic pressure caused by non–zero density
gradient in the gas phase. The second term is proportional to divergence in
the gas phase, which is a measure of compressibility of gas. It is straightfor-
ward to prove that u∇•u− is not zero, i.e. (u∇•u)− 6= (u∇•u)+: if the jump
operator is applied on Eqn. 16 the following is obtained:

∇•u− = − 1

ρ−c

(
∂ρc
∂t

−
+ u•∇ρ−c

)
. (26)

Despite the fact that the velocity field is continuous across the interface, the
divergence of velocity has a jump due to compressibility of the gas phase.
Generally, convection jump in Eqn. 25 is non–zero as well, and must be taken
into account. Dynamic pressure gradient, convection and divergence of ve-
locity jumps are interdependent and have a nonlinear relationship. Thus,
an iterative approach must be employed in order to resolve the free surface
boundary problem. In this study, existing nonlinear loops used to couple
equations Eqn. 17 and Eqn. 16 are also used to converge the jump conditions
as well.

The above equations present a set of conditions that need to be imposed
on the governing equations whenever a mathematical operation is performed
which uses informations from both sides of the interface. In the following
text, numerical implementation of the above jump conditions is shown.
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3. Numerical model

In this section the complete numerical model developed in this study is
presented. First, discretisation of governing equations will be outlined, creat-
ing a basis for further development of numerical operators which satisfy the
jump conditions. Implementation of all operators requiring jump conditions
is also described.

3.1. Discretisation of Governing Equations

Collocated, FV method is used to discretise governing equations, Eqns.
17, 16 and 14 [31]. The notation in the following text adheres to Vukčević
et al. [20], as shown in Fig. 1: sf is the surface area vector of a face, while
df stands for the vector from cell centre P to cell centre N , where P and N
represent two adjacent cells that share a face. Terms enclosed in curly braces
{·} indicate that implicit FV discretisation is used, while explicit evaluation
is used for the remaining terms. For details on FV discretisation used in
foam-extend, the reader is directed to [32, 28].

f

P

Vy

z

x

N

d

sf

f

r

Fig. 1: Schematic representation of a polyhedral control volume P, which shares a face f
with its immediate neighbour N .
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The discretised form of Eqn. 17 states:
{
∂u

∂t

}
+ {∇•(uu)} −

{
1

ρ
∇u•∇µe

}
−
{

1

ρ
∇• (µe∇u)

}
=

− 1

ρ
∇pd − (1− αI)

(
1

ρc
∇ρcg · x− {u∇•u}

)
. (27)

As stated in Sec. 2.4, temporal and viscous terms are continuous across the
interface, and do not require special treatment. Convection, dynamic pres-
sure gradient, density gradient and u•∇u terms require special treatment
when calculated across the interface. For the conservation of mass, Eqn. 16,
the discretised form can be written as:

{∇•u} = − (1− αI)
1

ρc

∂ρc
∂p

({
∂pd
∂t

}
+ {∇•(pdu)}

− {pd∇•u}+
∂ (ρcg•x)

∂t
+ u•∇ρcg•x

)
. (28)

Due to the discontinuities across the free surface, all terms in Eqn. 28 require
special treatment. The pressure equation is obtained from Eqn. 28 following
[32]. Discretised left hand side of conservation of mass, Eqn. 28, in integral
form reads: ∫

CV

∇•u dV =

∫

∂CV

ds•u =
∑

f

sf •uf , (29)

where CV stands for the control volume, V is the cell volume, f is the control
volume face index, ds is the infinitesimal surface normal vector, while sf
stands for the face area vector. Cell–centred velocity is expressed by using
the semi–discretised form of the momentum equation:

uP =
H(uN)

aP
− 1

ρaP
(∇pd +∇ρg•x) , (30)

where aP denotes the summed diagonal coefficient for cell P , while H(uN)
represents a linearised operator containing off–diagonal and source contribu-
tion resulting from the discretisation of implicit velocity operators. In order
to substitute face centred velocity uf using Eqn. 30, it must be interpolated
to cell faces:

uf =
(H(uN))f

(aP )f
−
(

1

aP

)

f

(
1

ρ

)

fΓ

(
(∇pd)fΓ

+ (∇ρ)fΓ
g•x
)

, (31)
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where index fΓ denotes terms that need special attention across the interface.
By substituting Eqn. 31 into Eqn. 29, the discretised conservation of mass
can be written as:

∑

f

sf •

(
1

aP

)

f

(
1

ρ

)

fΓ

(∇pd)fΓ
=

∑

f

sf •

(
(H(uN))f

(aP )f
−
(

1

ρ

)

fΓ

(∇ρ)fΓ
g•x

)

+

∫

CV

fC (pd, ρ) dV , (32)

where

fC (pd, ρ) = − (1− αI)
1

ρc

∂ρc
∂p

({
∂pd
∂t

}
+ {∇•(pdu)}

− {pd∇•u}+
∂ (ρcg•x)

∂t
+ u•∇ρcg•x

)
. (33)

Below is a summary of all terms in Eqns, 27, 32 and 33, with comments on
their treatment at the free surface:

1. From the momentum equation, Eqn. 27:

• ∂u
∂t

is a cell–centred temporal derivative operator for the velocity
field which is continuous across the interface. No special treatment
is needed;

• ∇•(uu) generally has a jump across the interface, as indicated in
Eqn. 24, which needs to be taken into account;

• 1
ρ
∇u•∇µe is continuous across the interface due to the assump-

tions made on the viscosity across the interface, except for the
1/ρ term. However, since the present method takes into account
the discontinuity of ρ, the cell–centred value which is used in this
term will be exact near the interface. Therefore, although this
term has a jump, it requires no special attention in the numerical
implementation of operators;

• ∇• (µe∇u) has no special treatment in this study due to assump-
tions of continuous viscosity field;
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• 1
ρ
∇pd has a jump across the free surface as shown in Eqn. 24,

which needs to be accounted for in the explicit operator;

• 1
ρc
∇ρcg · x is discontinuous since ρ has a discontinuity across the

interface, and because the gradient of density is zero in the incom-
pressible phase, while in the compressible phase it can be non–
zero. Thus the explicit density gradient operator needs special
treatment at the interface;

• u∇•u is discontinuous across the interface since ∇•u is discontin-
uous, as indicated in Eqn. 26.

2. From the conservation of mass, Eqn. 32:

• (1/aP )f is the inverse diagonal coefficient of the momentum equa-
tion interpolated on cell faces. It is continuous across the interface
and can be interpolated using ordinary linear interpolation;

• (1
ρ
)fΓ

is the inverse of the density field interpolated on faces. Due
to discontinuity of density across the interface, interpolation can-
not be performed linearly;

• (∇pd)fΓ
is an implicit surface normal gradient operator which re-

quires special treatment across the interface due to the jump con-
dition stated in Eqn. 24. This term is a part of the pressure
Laplacian operator, and will be analysed in the remainder of the
text;

• (H(uN))f arises from the off–diagonal and source contribution of
terms in the momentum equation. Since (H(uN))f is a function
of velocity which is continuous across the interface, it requires no
special attention during interpolation;

• (∇ρ)fΓ
is an explicit surface normal gradient operator of density.

Since neither density nor gradient of density are continuous across
the interface, special attention is needed;

• fC (pd, ρ) contains (1−αI) rendering it inactive in the incompress-
ible phase. Thus, the entire term has a jump over the interface.
In order to handle the jump consistently, the term is set zero for
all cells where αI < 0.5, i.e. for all dry cells (Sec. 3.2), while the
(1−αI) term is removed. Even though the term is not active in the
incompressible phase, operators within the term require compact
stencil information, requiring special attention at the interface.
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3. From Eqn. 33, which is active only in the compressible phase:

• ∂pd
∂t

is a cell–centred operator, requiring no compact stencil in-
formation. However, due to the jump of pd across the interface
(Eqn. 21), the term requires special attention in the case when the
interface crosses a cell centre in time, i.e. when an ”incompressible
cell” becomes ”compressible”. Note that the opposite case is not
relevant, due to the multiplication of the whole term with (1−αI);
• ∇•(pdu) represents convection of dynamic pressure. Due to the

jump of dynamic pressure across the interface, the term requires
special treatment across the interface;

• pd∇•u term contains a two–fold discontinuity at the interface: both
pd and ∇•u are discontinuous. However, pd is a cell centred value,
and since the present method resolves a sharp pd field, no special
attention is needed. ∇•u requires special attention, as indicated
earlier;

• ∂(ρcg•x)
∂t

presents a temporal change of hydrostatic pressure. It
requires special attention when an incompressible cell becomes
compressible;

• u•∇ρcg•x contains cell centred gradient of density, which needs
special attention near the interface due to the discontinuity of
density and density gradient.

In the following section the GFM interpolation is described, while Sec. 3.3
presents a detailed analysis of discretisation of terms requiring special atten-
tion at the interface, as listed above.

3.2. The Ghost Fluid Method

In GFM, mathematical operations for cells that are close to the interface
are performed by extrapolating the fields to the cells across the interface.
The computational stencil is never in two phases at once, which is achieved
by treating the cells in the other phase as ”ghost cells” of the same phase.
This prevents the errors that occur when interpolation across the interface is
performed using second or higher order accuracy, where the true shape of the
gradient containing a step–change is not accounted for. The discontinuity of
variables across the interface presents a singularity in the gradient, which is
numerically difficult to treat.
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Detailed description of the GFM is shown in [20], while the basic notation
is repeated here for convenience. Since this study deals with a combination of
an incompressible liquid and a compressible gas phase, the cells occupied by
water will be referred as wet cells, while those occupied by air dry cells. Wet
and dry cells are detected using the VOF liquid fraction field representing
the incompressible phase: cell P is considered wet if αI > 0.5 and vice–versa.
The second order accurate FV method which is used in this study is char-
acterised by a compact computational stencil, meaning that only the cells
sharing a face with cell P will be used to evaluate discretisation operators.
Therefore, only the cells that are the closest to the interface will require spe-
cial attention. A face between a wet and a dry cell is called interface face.
Any interpolation on the interface face requires special treatment if the in-
terpolated field contains a discontinuity.

In this study, dynamic pressure and density fields are extrapolated using
the GFM, while the jump in velocity operators is taken into account through
volumetric flux discontinuity (see Sec. 3.3.7). Two scenarios need to be
covered when extrapolating a general scalar variable φ using GFM: first,
when the owner cell P is wet and neighbour cell N is dry, and second, when
the owner cell P is dry and N is wet. Rxtrapolation starts by assessing
the values on both sides of the interface, denoted as φ+ and φ−, which are
governed by the jump conditions. Once φ+ and φ− are calculated, they are
used to extrapolate cell–centred values across the interface with the following
expressions [20]:

• P is wet and N is dry:

φ+
NΓ

= φ+ +
1− λ
λ

(
φ+ − φP

)
, (34)

φ−
PΓ

= φ− +
λ

1− λ
(
φ− − φN

)
. (35)

• P is dry and N is wet:

φ−
NΓ

= φ− +
1− λ
λ

(
φ− − φP

)
, (36)

φ+
PΓ

= φ+ +
λ

1− λ
(
φ+ − φN

)
. (37)
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Here, φ+
NΓ

indicates the extrapolated value in cell N of the variable φ on
the liquid side (+). It will be used to interpolate values at the interface
face between cells P and N when performing the operations for wet cell P .
φ−
PΓ

, φ−
NΓ

and φ+
PΓ

have analogue meanings. λ stands for a dimensionless
distance between cell centre P and location of the interface along vector df
connecting the two cell centres (for details see [20]). In the VOF framework
it is calculated as:

λ =
αP − 0.5

αP − αN
. (38)

In this study, extrapolation of dynamic pressure using GFM described in [20]
is extended by taking into account the altered jump conditions expressed by
the right hand side of Eqn. 25. In the following text, the GFM extrapolation
derived in [20] is repeated for convenience, followed by the extension for
incompressible/compressible two–phase flow.

3.2.1. Dynamic pressure extrapolation for incompressible flow

In order to extrapolate the dynamic pressure to cell centres across the
interface unsing Eqn. 36 and 37, values p+

d and p−d must first be determined.
Discretising Eqn. 23 and using Eqn. 21, expressions for p+

d and p−d are ob-
tained (see [33] for full derivation):

• P is wet and N is dry:

p+
d =

λβ−

βw
pdN +

(1− λ)β+

βw
pdP −

λβ−

βw
H , (39)

p−d =
λβ−

βw
pdN +

(1− λ)β+

βw
pdP +

λβ+

βw
H , (40)

• P is dry and N is wet:

p+
d =

λβ+

βd
pdN +

(1− λ)β−

βd
pdP −

λβ−

βd
H , (41)

p−d =
λβ+

βd
pdN +

(1− λ)β−

βd
pdP +

λβ+

βd
H , (42)

where the following substitutions are used to adhere to Vukčević et al. [20]:

β =
1

ρ
, (43)
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H = [pd] = p−d − p+
d = (ρ+ − ρ−)g•xΓ , (44)

βw = λβ− + (1− λ)β+ , (45)

βd = λβ+ + (1− λ)β− , (46)

where xΓ denotes the radii vector of the intersection of vector df and the free
surface, see Fig. 2. Substituting Eqns. 39–42 to Eqns. 34–37, extrapolated
dynamic pressure values can be expressed in terms of cell–centred values:

• P is wet and N is dry:

p+
dNΓ

=
β−

βw
pdN +

(
1− β−

βw

)
pdP −

β−

βw
H , (47)

p−dPΓ
=
β+

βw
pdP +

(
1− β+

βw

)
pdN +

β+

βw
H , (48)

• P is dry and N is wet:

p−dNΓ
=
β+

βd
pdN +

(
1− β+

βd

)
pdP +

β+

βd
H , (49)

p+
dPΓ

=
β−

βd
pdP +

(
1− β−

βd

)
pdN −

β−

βd
H . (50)

Extrapolated values defined by Eqns. 47 to 50 are used in the discretisation
of dynamic pressure gradient for cells next to the interface, which will be
shown in detail later. They are used in following cases [20]:

• p+
dNΓ

- used when P is wet (N is dry) for the discretisation of cell P ;

• p−dPΓ
- used when P is wet (N is dry) for the discretisation of cell N ;

• p−dNΓ
- used when P is dry (N is wet) for the discretisation of cell P ;

• p+
dPΓ

- used when P is dry (N is wet) for the discretisation of cell N .
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N

dry cell, αN <0.5

P

wet cell, αP >0.5

α=0.5β−

β+

df

xΓ

Fig. 2: Compact computational stencil near the free surface. Interface face shared by cells
P and N is marked with a red line. xΓ is the location of the free surface for this interface
face [20].

3.2.2. Dynamic pressure extrapolation for incompressible/compressible flow

In Sec. 3.2.1 expressions for the GFM interpolation of the dynamic pres-
sure across the interface are given for the case when both phases divided by
a sharp interface are incompressible. These expressions will serve as a basis
for the numerical model developed in this study, where the liquid phase is
considered incompressible, while the gas phase is considered compressible.
In order to derive the expressions for the dynamic pressure for incompress-
ible/compressible two–phase model, Eqn. 25 is discretised and combined with
Eqn. 21 to obtain p+

d and p−d values near the interface. The derivation is
performed in the same fashion as for the incompressible mixture shown in
[20, 33]. The resulting expressions are as follows:

• P is wet and N is dry:

p+
d =

λβ−

βw
pdN +

(1− λ)β+

βw
pdP −

λβ−

βw
H

+ df •
λ (1− λ)

βw

(
[∇•(uu)]− (u∇•u)−

)

+
λβ−

βw

(
ρN − ρ−

)
g•x , (51)
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p−d =
λβ−

βw
pdN +

(1− λ)β+

βw
pdP +

λβ+

βw
H

+ df •
λ (1− λ)

βw

(
[∇•(uu)]− (u∇•u)−

)

+
λβ−

βw

(
ρN − ρ−

)
g•x , (52)

• P is dry and N is wet:

p+
d =

λβ+

βd
pdN +

(1− λ)β−

βd
pdP −

λβ−

βd
H

− df •
λ (1− λ)

βd

(
[∇•(uu)]− (u∇•u)−

)

− (1− λ) β−

βd

(
ρ− − ρP

)
g•x , (53)

p−d =
λβ+

βd
pdN +

(1− λ)β−

βd
pdP +

λβ+

βd
H

− df •
λ (1− λ)

βd

(
[∇•(uu)]− (u∇•u)−

)

− (1− λ) β−

βd

(
ρ− − ρP

)
g•x . (54)

Additional terms occurring in Eqns. 51–54 are proportional to effects of
compressibility in the gas phase. The term [∇•(uu)] represents the jump in
the convection term from the momentum equation, which is intentionally
left under the jump operator [•] since it is calculated indirectly using volu-
metric flux jump (see Sec. 3.3.7). The term (u∇•u)− represents transport
of velocity divergence on the compressible side of the interface. It will be
shown later that first order assumption is made in evaluation of this term,
where the value calculated at the dry cell centre will be used. The last term
is proportional to the gradient of hydrostatic pressure caused by the change
of density of the compressible phase in space. All three additional terms
vanish in case when compressibility effects are negligible, which renders the
method effective in low Mach conditions without volumetric compressibility
effects. Without these three terms, Eqns. 51–54 correctly reduce to their
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incompressible counterparts, Eqns. 39–42. As shown later in the paper, this
permits running complex flow simulations including large time–scale wave
evolution and small time–scale volumetric compressibility effects in a single
run, without the need of interchanging incompressible and compressible flow
models.

Substituting Eqns. 51–54 into Eqns. 34–37, extrapolated dynamic pres-
sure values are expressed in terms of cell–centred values:

• P is wet and N is dry:

p+
dNΓ

=
β−

βw
pdN +

(
1− β−

βw

)
pdP −

β−

βw
H

+ df •
(1− λ)

βw

(
[∇•(uu)]− (u∇•u)−

)

+
β−

βw

(
ρN − ρ−

)
g•x , (55)

p−dPΓ
=
β+

βw
pdP +

(
1− β+

βw

)
pdN +

β+

βw
H

+ df •
λ

βw

(
[∇•(uu)]− (u∇•u)−

)

+
λβ−

(1− λ) βw

(
ρN − ρ−

)
g•x , (56)

• P is dry and N is wet:

p−dNΓ
=
β+

βd
pdN +

(
1− β+

βd

)
pdP +

β+

βd
H

− df •
(1− λ)

βd

(
[∇•(uu)]− (u∇•u)−

)

− (1− λ) β−

λβd

(
ρ− − ρP

)
g•x , (57)
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p+
dPΓ

=
β−

βd
pdP +

(
1− β−

βd

)
pdN −

β−

βd
H

− df •
λ

βd

(
[∇•(uu)]− (u∇•u)−

)

− β−

βd

(
ρ− − ρP

)
g•x . (58)

Cell–centred extrapolation of dynamic pressure expressed with Eqns. 55–58
is used for discretisation in the same manner as for the incompressible two–
phase flow. Depending on whether P is dry or wet, and from which cell the
discretisation is being carried out, the corresponding expression is used (see
Sec. 3.2.1).

3.2.3. Density extrapolation for incompressible/compressible flow

Apart from dynamic pressure extrapolation, the density field must also
be extrapolated using the GFM in order to correctly evaluate the discontinu-
ous gradient of density. In order to extrapolate the density field using Eqns.
34–37, values close to the interface in both phases (ρ− and ρ+) must be de-
termined. Since the liquid phase is considered incompressible, its density is
constant in space and time, i.e. ρ+ = ρI = const. On the other hand, density
in the gas phase is not known and must be calculated.

Pressure and density of the gas phase are related by Eqn. 10; if p− is
known, ρ− can easily be calculated as:

ρ− =

(
p−

ac

) 1
γ

=

(
p−d + ρ−g•x

ac

) 1
γ

, (59)

where Eqn. 7 is employed to substitute p−. Note that Eqn. 59 is nonlinear
with respect to ρ−. The nonlinearity can be avoided by remembering that
p− = p+ (Eqn. 20):

ρ− =

(
p+

ac

) 1
γ

=

(
p+
d + ρ+g•x

ac

) 1
γ

, (60)

where ρ+ is constant. In order to calculate ρ−, p+
d must first be evaluated

using Eqn. 51 or Eqn. 53, depending on whether cell P is wet or dry. Note
that Eqns. 51 and 53 depend on ρ− themselves, requiring a nonlinear loop
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in order to converge.

Once ρ− is determined, it can be used to extrapolate the density of the
gas phase across the interface to the wet cell centre using Eqns. 35 and 36.
Extrapolating density of the liquid phase is not necessary, since ρI = const.

3.3. Interface Corrected Discretisation Schemes

In Sec. 3.1 implications of the jump conditions on individual terms from
the governing equations are analysed. In this section, discretisation of each
of these terms that require special attention on the interface is presented.
There are three distinct groups of operators that need to be addressed:

1. Temporal terms: when a cell switches to compressible from incom-
pressible from one time–step to another, special treatment needs to be
applied in order to prevent unphysically large temporal change;

2. Scalar gradient terms: both cell–centred and face–normal gradients
of dynamic pressure and density need to be addressed, where GFM
extrapolation shown in Sec. 3.2 will be used. While cell–centred gradi-
ents are explicit, face–normal gradient of dynamic pressure is implicit
since it is a part of the implicit pressure Laplacian operator. Special
attention will be given to this term;

3. Velocity operators: convection and divergence of velocity are handled
using volumetric flux jump that arises from the pressure equation. Both
implicit and explicit versions of the convection operator need to be
devised, while the divergence operator is always explicit.

3.3.1. Dynamic Pressure Temporal Derivative Discretisation

Temporal derivative of density and dynamic pressure contain a singular-
ity for cells that change phase due to the motion of the interface within a
time–step. Since both terms exist only in the compressible phase, only the
scenario when the cell changes from the incompressible to compressible phase
needs to be addressed. In the opposite case, the temporal change is simply
zero due to incompressibility.

Temporal derivative of dynamic pressure can be discretised using the
implicit first order Euler method as:

∂pd
∂t

=
pnd − pod

∆t
, (61)
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where n stands for the current time–step value and o for the old time–step
value. For cells that were wet in the old time step, and are dry in the current
(termed new dry cells hereafter), dynamic pressure jump (Eqn. 21) needs to
be added to the old time–step value:

(
∂pd
∂t

)

Γ

=
pnd − (pod + (ρI − ρc) g•x)

∆t
. (62)

The new dry cells are marked using the following criteria:

(αoI − αnI ) > 0.5 . (63)

Note that the density from the compressible phase is not present in the previ-
ous time step, and current time–step value is used instead. Since the density
difference between air and water, which are relevant for marine applications,
is four or more orders of magnitude larger than the temporal change in air
density, this assumption has a negligible influence on accuracy.
In order to achieve second order accuracy in time, backward scheme is used:

∂pd
∂t

=
1

∆t

(
3

2
pnd − 2pod +

1

2
pood

)
, (64)

where pood stands for the dynamic pressure from the second last time–step
before the current one. In this case, there are three possible combinations
that require special treatment due to conditions in the dynamic pressure:

• n corresponds to a dry cell, while o and oo correspond to a wet cell. In
this case, a jump must be added in dynamic pressure for both o and
oo values of dynamic pressure:

(
∂pd
∂t

)

Γ

=
1

∆t

(
3

2
pnd − 2 (pod + (ρI − ρc) g•x) +

1

2
(pood + (ρI − ρc) g•x)

)
.

(65)

• n and o correspond to a dry cell, while oo correspond to a wet cell. In
this case dynamic pressure value from oo must be corrected:

(
∂pd
∂t

)

Γ

=
1

∆t

(
3

2
pnd − 2pod +

1

2
(pood + (ρI − ρc) g•x)

)
. (66)
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• n and oo correspond to a dry cell, while o corresponds to a wet cell.
Here, pod needs to be corrected:

(
∂pd
∂t

)

Γ

=
1

∆t

(
3

2
pnd − 2 (pod + (ρI − ρc) g•x) +

1

2
pood

)
. (67)

In the case when pnd corresponds to a wet cell, no special treatment is nec-
essary since the temporal change of dynamic pressure is not assessed for the
incompressible phase. Also, if the cell has been dry during the last three
time–steps, no special treatment is needed since no jump in dynamic pres-
sure occurred.

3.3.2. Density Temporal Derivative Discretisation

Another temporal derivative term that needs special treatment is the rate
of change of ρ in time. For the incompressible phase, this term is zero and
requires no special attention. In cases when a wet cell becomes a dry, special
treatment is needed. In order to asses the temporal change of density in cells
for which old time–step density values are not available, Eqn. 5 is utilised:

(
∂ρ

∂t

)

Γ

= −ρ∇•u− u•∇ρ , (68)

where terms on the right hand side are evaluated using the jump conditions,
as described in the following text. Eqn. 68 can be used in this manner since
ρ is not implicitly solved for. Instead, it is calculated using the equation of
state, Eqn. 10.

3.3.3. Discretisation of Dynamic Pressure Gradient Term

Explicit, cell–centred gradient operator for dynamic pressure can be writ-
ten in the following form using the Gauss theorem [34]:

∇pd =
1

VP

∫

CV

∇pd dV =
1

VP

∮

∂CV

pd dS =
1

VP

∑

f

sf •pdf , (69)

where pdf stands for the face interpolated dynamic pressure, which requires
special attention at the interface. By using a central differencing interpola-
tion, dynamic pressure gradient for cell P reads:

∇pdP =
1

VP

∑

f

sf (fxpdP + (1− fx)pdN) , (70)
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where fx is the interpolation weight for central differencing defined as fx =
fN/PN , where fN denotes a vector from cell centre P to face centre f , while
PN is the vector connecting the two cell centres.

∑
f denotes summation

over cell faces. For interface cells, the sum over cell faces need to be separated
for ordinary and interface faces, since interface faces require special attention:

(∇pdP ) =
1

VP

∑

f�Γ

sf (fxpdP + (1− fx)pdN)

+
1

VP

∑

fΓ

sf

(
fxpdP + (1− fx)p+/−

dNΓ

)
, (71)

where
∑

f�Γ
denotes the sum over ordinary faces, while

∑
fΓ stands for the

sum over interface faces. p
+/−
dNΓ

presents the extrapolated dynamic pressure
value obtained using Eqn. 55 or 57, depending on whether P is wet or dry,
respectively. For the gradient calculated in the neighbour cell N across the
interface, equivalent expression is used where extrapolated values for p

+/−
dPΓ

are used instead.

3.3.4. Discretisation of the Density Gradient Term

Interface corrected, explicit, cell–centred density gradient is discretised in
the same manner as the dynamic pressure gradient shown in Sec. 3.3.3:

(∇ρ)PΓ
=

1

VP

∑

f�Γ

sf (fxρP + (1− fx)ρN)

+
1

VP

∑

fΓ

sf
(
fxρP + (1− fx)ρ−NΓ

)
. (72)

Note that ρ−NΓ
is used instead of ρ

+/−
NΓ

since the GFM extrapolation will be
used only from the dry side, as the gradient of density is zero in the incom-
pressible phase. ρ−NΓ

is determined using Eqn. 36 in conjunction with Eqn. 60.
When discretising terms for a dry cell N , Eqn. 35 is used to determine ρ−PΓ

.

3.3.5. Discretisation of the Pressure Laplacian Term

The term on the left hand side of Eqn. 32 represents the pressure Lapla-
cian term and requires special attention. For incompressible two–phase flow,
the implicit treatment is achieved by extrapolating the dynamic pressure
values with respect to cell centred values using Eqns. 47–50. It is shown
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by Vukčević et al. [20] that for incompressible two phase–flow the pres-
sure equation remains symmetric notwithstanding the jump conditions. For
the incompressible/compressible mixture, the extrapolated values have ad-
ditional terms (see Eqns. 55–58) which are explicit with respect to dynamic
pressure, while the implicit portion remains unchanged. Thus, the implicit,
interface corrected pressure Laplacian developed by Vukčević et al. [20] is
supplemented with the explicit sources due to jump of compressibility across
the interface. The implicit portion of the jump conditions remains symmet-
ric, however the pressure equation is no longer symmetric due to implicit
treatment of dynamic pressure convection. The explicit compressible jump
conditions are also not symmetric, which leads to a jump in the source of the
pressure Laplacian, as shown below.

The pressure Laplacian (left hand side of Eqn. 32) is discretised as:

∑

f

sf •

(
1

aP

)

f

(β)fΓ
(∇pd)fΓ

=
∑

f

(
1

aP

)

f

(β)fΓ
|sf |

(pdN − pdP )Γ

|df |

+
∑

f

k•

(
1

aP

)

f

(β∇pd)of , (73)

where k stand for the non–orthogonal correction vector, which is obtained
using the over–relaxed approach [32]. The second term on the right hand side
is explicit, and contributes to the source of the pressure Laplacian and the
respective conservative flux. The first term is implicit face normal gradient
contribution, which requires special treatment due to jump conditions. Note
that Eqn. 73 holds no assumptions on the compressibility of either of the
phases, thus it is identical to the expressions in [20]. For a wet interface cell
P , the first term on the right hand side can be divided into two sums:

∑

f

(
1

aP

)

f

(β)fΓ
|sf |

(pdN − pdP )Γ

|df |
=

=
∑

f�Γ

(
1

aP

)

f

(β)f |sf |
pdN − pdP
|df |

+
∑

fΓ

(
1

aP

)

f

(β)fΓ
|sf |

p+
dNΓ
− pdP
|df |

. (74)
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To examine the contribution of one interface face for the mixture of compress-
ible and incompressible fluid, the second sum is expanded by substituting
p+
dNΓ

with Eqn. 55:
(

1

aP

)

f

(β)fΓ
|sf |

p+
dNΓ
− pdP
|df |

=

(
1

aP

)

f

|sf |
|df |

β+β−

βw
·

(
pdN − pdP −H + df •

(1− λ)

β−
(
[∇•(uu)]− (u∇•u)−

)
+
(
ρN − ρ−

)
g•x

)
,

(75)

where (β)fΓ
is replaced with β+, since the density in the liquid phase is

constant. The last two terms in Eqn. 75 arise from the compressible jump
conditions, while the first three correspond to the implicit jump condition
and the explicit hydrostatic jump condition, which are the same as for the
incompressible two–phase flow. The treatment and matrix contribution of the
implicit and hydrostatic jump conditions is shown in details by Vukčević et
al. [20], and will not be repeated here. Instead, only the source contribution
from the compressible portion of the jump condition will be examined in
detail. The compressible portion of the source contribution for a wet P cell
can be written as:

SP =

(
1

aP

)

f

|sf |
|df |

β+β−

βw
·

(
df •

(1− λ)

β− ([∇•(uu)]− (u∇•u)N) +
(
ρN − ρ−

)
g•x

)
. (76)

As mentioned earlier, the term [∇•(uu)] is the jump in the convection term,
which is calculated using the volumetric flux jump (see below). The term
(u∇•u)− is replaced with (u∇•u)N , i.e. first order accurate evaluation of this
term is used.
By writing the equivalent of Eqns. 74 – 76 for the neighbouring dry cell N ,
and employing Eqn. 56 the source contribution for cell N is expressed as:

SN =

(
1

aN

)

f

|sf |
|df |

β+β−

βw

·
(

df •
λ

β− ([∇•(uu)]− (u∇•u)N) +
λ

(1− λ)

(
ρN − ρ−

)
g•x

)
, (77)
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where (β)fΓ
is replaced with β−, assuming first order accuracy since β− 6=

const. Unlike the implicit and hydrostatic part of the pressure Laplacian,
the compressible jump conditions result in asymmetric source terms, since
SP 6= SN . In other words, interface cells P and N will have a different source
contribution from the same face. Equations for a dry P and wet N cell can
be derived analogously to above equations, and will be omitted for sake of
brevity.

3.3.6. Discretisation of Surface Normal Density Gradient Term

As described in Sec. 3.1, Eqn. 32 requires explicit evaluation of the sur-
face normal density gradient on cell faces. Ordinary, second order accurate
discretisation of this term assuming orthogonal grid reads:

(∇ρ)f =
ρN − ρP
|df |

. (78)

For non–orthogonal grids an explicit correction is applied similarly as de-
scribed in Sec. 3.3.5. For interface faces, GFM extrapolation is used in order
to correct for the jump in density. For a wet cell P the following expression
is used:

(∇ρ)fΓ =
ρ−NΓ
− ρP
|df |

, (79)

while for a dry cell N the surface gradient reads:

(∇ρ)fΓ =
ρN − ρ−PΓ

|df |
. (80)

Here, ρ−NΓ
and ρ−PΓ

are determined as described in Sec. 3.3.4.
Above expressions take into account the jump in density when evaluating
surface normal gradient of the density field. However, the jump in the gra-
dient itself is handled through the discretisation of the pressure Laplacian,
due to the third term on the right hand side of Eqn. 25 (see Sec. 3.3.5 for
details). In other words, the surface normal density gradient is not unique for
interface faces, instead wet and dry cells will get different contributions from
this term. Wet cells will have no equivalent contribution since the density
gradient is zero in the incompressible phase, while the dry cell contribution
can be non–zero.
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3.3.7. Volumetric Flux Jump

Using Eqn. 31 volumetric flux for face f can be written as:

Ff =sf •uf =

sf •
(H(uN))f

(aP )f
− sf •nf

(
1

aP

)

f

(β)fΓ

(
(∇pd)fΓ

+ (∇ρ)fΓ
g•x
)

, (81)

where nf denotes face normal vector. Evaluation of volumetric flux must
be corrected at the interface since both face normal dynamic pressure and
density gradients in Eqn. 81 are discontinuous. Looking from the wet cell P
side, the volumetric flux on an interface face reads:

(Ff )ΓP
= sf •uf =

sf •
(H(uN))f

(aP )f
− sf •nf

(
1

aP

)

f

β+



p+
dNΓ
− pdP
|df |

+
�
�
�
�
��>

0
ρ+
NΓ
− ρP
|df |

g•x


 ,

(82)

where the density gradient vanishes due to incompressibility of the liquid
phase. Substituting p+

dNΓ
with Eqn. 55 yields:

(Ff )ΓP
=

sf •
(H(uN))f

(aP )f
− sf •nf

(
1

aP

)

f

β+β−

βw

1

|df |

(
pdN − pdP −H

+df •
(1− λ)

β−
(
[∇•(uu)]− (u∇•u)−

)
+
(
ρN − ρ−

)
g•x

)
. (83)

Looking from the dry cell N side, the volumetric flux on an interface face
reads:

(Ff )ΓN
= sf •uf =

sf •
(H(uN))f

(aP )f
− sf •nf

(
1

aP

)

f

β+

(
pdN − p−dPΓ

|df |
+
ρN − ρ−PΓ

|df |
g•x

)
.

(84)
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Substituting p−dPΓ
with Eqn. 56 and ρ−PΓ

with Eqn. 36 yields:

(Ff )ΓN
=

sf •
(H(uN))f

(aP )f
− sf •nf

(
1

aP

)

f

β+β−

βw

1

|df |

(
pdN − pdP −H

−df •
λ

β−
(
[∇•(uu)]− (u∇•u)−

)
+
(
ρN − ρ−

)
g•x

)
. (85)

Comparing Eqns. 83 and 85, it follows that the flux on the same face has
a different magnitude depending on whether the discretisation is performed
from the side of cell P or cell N . This means that there is a volumetric flux
jump equal to:

[Ff ] = (Ff )ΓP
− (Ff )ΓN

=

−sf •nf

(
1

aP

)

f

β+

βw

df
|df |

•
(
[∇•(uu)]− (u∇•u)−

)
. (86)

The jump of volumetric flux should be taken into account in convection and
divergence terms by correcting the face interpolated fluxes with Eqn. 86.
Note that the jump in flux is present only numerically across the interface
face, since the ghost cells change the actual phase of the opposing cell. Physi-
cally, the flux jump across the interface is zero due to Eqn. 22. Consequently,
the velocity itself has no jump for cell–centred operations.

In order to clarify the meaning of the volumetric flux jump, Fig. 3 shows
a schematic representation of a one–dimensional liquid piston case discre-
tised with five control volumes (cells). There is no mass or heat flux through
domain boundaries. The bottom two cell centres are denoted with P and
N . The vertical piston is divided into three layers, where two pockets of
air (top and bottom) are separated by a layer of water. The water moves
downwards under the influence of gravity, compressing the bottom air pocket
while expanding the top one. At the bottom part of the piston, the inter-
face is located somewhere between cell centre P and face f2. The interface,
denoted by Γ in the figure, moves with velocity uf . Since water is modelled
as incompressible, velocity at face f1 must be equal to the interface velocity
to satisfy the continuity equation. For cell P the continuity equation can be
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discretised as:

(∇•u)P =
1

VP

∫

CV

∇•u dV =
1

VP

∫

∂CV

n•u dS

=
1

VP

∑

f

Sfnf •uf =
1

VP
(Sf1nf1•uf1 + Sf2nf2•uf2) = 0 , (87)

where the remaining faces of cell P have no contribution since the flux is
zero. The above equation yields the following condition:

uf1 = uf2 , (88)

since

Sf1 = Sf2 , (89)

nf1 = −nf2 , (90)

nf1•uf1 = uf1 , (91)

nf2•uf2 = uf2 . (92)

Eqn. 88 states that the velocity (i.e. volumetric flux) on face f2 must be
equal to the one on f1 in order to satisfy the continuity equation for cell
P . However, from the physical point of view the flux through the imaginary
face f2 is not equal to the flux across f1 due to the compression of air phase
between the interface and face f2. The jump in flux described by Eqn. 86
handles this difference, by applying a correction which is proportional to the
divergence of velocity in the air phase. The correction fills the space between
the interface and face f2 with water, as well as cell N . Looking from the air
side, a similar correction is applied, filling the space between the interface
and face f1 with air, in order to correctly calculate the flux on face f2. Note
that the magnitude of the correction is affected by the actual position of the
interface due to term β+/βw in Eqn. 86. The closer the interface to cell P ,
the larger the correction.

3.3.8. Discretisation of the Dynamic Pressure Convection Term

Convection of dynamic pressure in Eqn. 33 is implicit with respect to
dynamic pressure. It has a two–fold discontinuity across the interface due to
the discontinuity of the convective flux (see Sec. 3.3.7) and the discontinuity
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Fig. 3: A schematic representation of a one–dimensional liquid piston case. Γ denotes the
position of the interface which is moving downwards with velocity uΓ. There is neither
mass or heat flux through domain boundaries. Air in the top pocket is being expanded,
while air in the bottom is getting compressed.
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in dynamic pressure prescribed with Eqn. 21. Ordinary second order accurate
discretisation for cell P using Gauss theorem states:

∇•(upd)P =
1

VP

∫

CV

∇•upd dV =
1

VP

∮

∂CV

pd dS•u

=
1

VP

∑

f

sf •ufpdf =
1

VP

∑

f

Ffpdf , (93)

where Ff denotes volumetric face flux. Dividing the sum over all cell faces
for interface cells yields:

∇•(upd)PΓ
=

1

VP

∑

f�Γ

Ff (fxpdP + (1− fx)pdN)

+
1

VP

∑

fΓ

(Ff )PΓ

(
fxpdP + (1− fx)p−dNΓ

)
, (94)

where (Ff )PΓ
stands for the interface face volumetric flux that contains the

jump arising from jump conditions in Eqn. 25 (see Eqn. 83)). For cell N ,
(Ff )PΓ

is used instead. Note that convection of dynamic pressure term is
active only in the compressible gas phase, rendering extrapolation from the
incompressible phase unnecessary. Therefore, p−dNΓ

is used instead of p
+/−
dNΓ

in
the above expressions.

3.3.9. Discretisation of Velocity Convection Term

Velocity convection term in the momentum equation (Eqn. 17) is treated
implicitly. Ordinary FV discretisation states:

∇•(uu)P =
1

VP

∫

CV

∇•(uu) dV =
1

VP

∮

∂CV

n•uu dS

=
1

VP

∑

f

sf • (ufuf ) =
1

VP

∑

f

Ffuf . (95)

Dividing the sum over all cell faces for interface cells yields:

∇•(uu)PΓ
=

1

VP

∑

f�Γ

Ff (fxuP + (1− fx)uN)

+
1

VP

∑

fΓ

(Ff )PΓ
(fxuP + (1− fx)uN) . (96)
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Apart from the implicit convection term, the explicit interface jump [∇•(uu)]
of convection also needs to be defined. For an interface face dividing cell P
and cell N , the jump can be written as:

[∇•(uu)] =
1

VP
(Ff )PΓ

(fxuP + (1− fx)uN)− 1

VN
(Ff )NΓ

(fxuP + (1− fx)uN)

=

(
1

VP
(Ff )PΓ

− 1

VN
(Ff )NΓ

)
(fxuP + (1− fx)uN) , (97)

where (Ff )PΓ
and (Ff )NΓ

are defined by Eqns. 83 and 85. Note that [∇•(uu)]
and the volumetric flux jump are interdependent and require nonlinear in-
terations to converge. Since the jump also depends on the solution of the
pressure equation, the algorithm relies on the segregated solution procedure
to couple the pressure and momentum equations and to converge the jump
conditions.

3.3.10. Discretisation of the Velocity Divergence Term

Divergence of velocity is discretised as:

∇•uP =
1

VP

∫

CV

∇•u dV =
1

VP

∮

∂CV

dS•u

=
1

VP

∑

f

sf •uf =
1

VP

∑

f

Ff . (98)

For interface cells the sum is divided for internal and interface faces:

∇•uPΓ
=

1

VP

∑

f�Γ

Ff +
1

VP

∑

fΓ

(Ff )PΓ
, (99)

where (Ff )NΓ
is used for the neighbouring interface cell N .

4. Verification and Validation

Three verification and validation cases are presented in this section. The
first test case consists of a 1D liquid piston where the basic capability of the
approach to simulate compression of the air phase is tested. In the second
test case a free–falling horizontal water column impact is simulated where
impact pressures are compared to other numerical methods in the literature.
The third test case verifies that the approach can be used for regular wave
propagation with negligible compressibility effects.
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4.1. Liquid Piston
The liquid piston case is a basic test for compressible two–phase flow

solvers. The test corresponds to Fig. 3: it is a one–dimensional problem
where the layer of water is suspended between two air pockets. The water
oscillates under the influence of interchanging gravitational energy and inter-
nal energy of the air phase. If the domain boundaries permit no mass or heat
flux, and if both fluids are considered inviscid, the process is adiabatic. Thus,
the oscillation of the water column should persist indefinitely. This test case
was used as a benchmark by Ma et al. [14] and Guilcher et al. [4], and the
results of this implementation will be compared to theirs for validation. The
schematic representation of the test case with dimensions is shown in Fig. 4.
The density of water is set to 1000 kg/m3, density of air to 1 kg/m3, while
the initial pressure of air is set to p = 1 bar. Both phases are considered
inviscid. Second order temporal scheme is used for all temporal derivatives.
For convection of velocity and dynamic pressure, second order linear scheme
is used. For interface convection a second order accurate van Leer bounded
scheme is used with deferred correction.

Verification study is performed by systematically varying spatial and tem-
poral resolution, where the procedure suggested by Eça & Hoekstra [35, 36]
for unsteady flows is employed. A code based on these procedures is used
which is freely available [37]. The convergence study is performed with re-
spect to the maximum pressure value during the first period of oscillation on
the bottom boundary (see Fig. 6). Table 1 shows the results for the entire
test matrix used for the verification, where the number of cells and time–step
size are marked. Note that the result for 240 cells with 0.04 s time–step is
not available since the simulation diverged due to a large Courant number.
The output of the uncertainty calculation code is presented in Tab. 2

The case is validated against results obtained by Ma et al. [14] and
Guilcher et al. [4]. Comparison of pressure on the bottom boundary in time
is shown on Fig. 5. The three signals are in good agreement without notable
differences.

To check the conservation of energy, a 10 seconds simulation time is per-
formed. Figs. 6 and 7 show pressure and density time signals at the top and
bottom boundary, respectively. Pressure and density oscillationn does not
decay in time, proving that the conservation of energy is achieved.
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Fig. 4: A schematic representation of a one–dimensional liquid piston case.

Table 1: Test matrix results for the liquid piston test case. The values denote the peak
pressure of the first oscillation period in Pa.

NCells

∆t, s
0.04 0.02 0.01 0.005 0.0025

15 297288.98 303836.10 305526.95 305787.79 304039.69
30 284618.65 290061.17 292051.66 293511.72 295654.25
60 277320.55 284783.39 287491.17 287494.11 287930.21
120 277409.95 283421.45 285358.84 285850.38 286060.13
240 N/A 283801.79 285392.08 285743.46 285994.18

4.2. Free fall of a water column

In this test case a free fall impact of a horizontal square cross–section
water is simulated, where impact pressure against a horizontal impermeable
wall is measured. Fig. 8 shows the schematic representation of the case.
Same initial pressure, air and water properties are used as in the liquid pis-
ton case. Initial velocity field in the entire domain is set to zero. First order
Euler temporal scheme is used for time–integration, while velocity and dy-
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Table 2: Verification results for the liquid piston test case. The notation follows Eça
& Hoekstra [35]: φ0 denotes the extrapolated exact solution, φ1 denotes the finest level
solution, q denotes the achieved accuracy in space, while p denotes achieved accuracy in
time. ppeak denotes the peak pressure.

Item φ0, Pa φ1, Pa Uφ p q
ppeak 285780.00 285994.18 0.2% 2.00 2.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time, s

1e+05

1.5e+05

2e+05

2.5e+05

3e+05

p
, 
P

a

Present
Ma et al.
Guilcher et al.

Fig. 5: Comparison of pressure at the bottom boundary of the liquid piston case against
results obtained by Ma et al. [14] and Guilcher et al. [4]

namic pressure convection are discretised using first order upwind scheme.
For interface convection a second order accurate van Leer bounded scheme
is used as in the previous test case. The domain is discretised using 200 cells
in the horizontal direction and 1 200 cells in the vertical direction. A fixed
Courant number of 0.9 is maintained during the simulation by varying the
time–step size. The time–step varied between 0.005 seconds at the beginning
of the simulation, reducing to 2.5× 10−4 during the impact.

Pressure measured at the bottom boundary at the centre of the domain
is compared to results obtained by Braeunig et al. [9], Ma et al. [14] and
Guilcher et al. [4]. The comparison of pressure signals is presented in Fig.
9. The peak of the pressure signal obtained with the present approach cor-
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Fig. 6: Comparison of pressure at the bottom and top boundary of the liquid piston case
during 10 seconds.

responds well with the results obtained by Guilcher et al. The coarse grid
result by Ma et al. and the result obtained by Braeunig et al. predict lower
pressure values, while the fine grid result by Ma et al. gives a significantly
larger pressure peak of 34 bars. Comparing to the remaining results which
range between 22.6 to 25.4 bars this is an outlier.

Fig. 10 shows the variation of the air density entrained in the cavity. The
geometry of the free surface with visualisation of the velocity and pressure
fields is shown in Figs. 11 and 12 for several time instances. After the first
impact shown on Fig. 11c, a pocket of air gets entrained underneath the
water column. The cavity fist expands as seen in Figs. 11d and e, and then
compresses as visible in Figs. 11f, 12a and b. Then, the cavity expands again
as shown in Figs. 12c and d. The oscillation can be seen in the complete
pressure signal shown in Fig. 13.
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Fig. 7: Comparison of density at the bottom and top boundary of the liquid piston case
during 10 seconds.

4.3. Regular Wave Propagation

The goal of this study is to devise a compressible two–phase flow model
that can be applied to a large variety of problems in the field of naval hydro-
dynamics. For that end, it is important to assure that wave propagation can
be handled accurately and efficiently , when phase compressibility effects are
negligible. In this section, a detailed verification and validation is performed
for propagation of a regular wave. The regular wave is initialised using the
stream function wave theory with a period T = 3 s, height H = 0.1 m and
wave length λ = 13.93 m. A two–dimensional domain is 60 m long, 6 m deep
and 0.3 m high above the free surface. Inlet and outlet implicit relaxation
zones [38] are placed at the edges of the domain, with a length of 22 m, leav-
ing 16 m of unaffected length in the middle of the domain. Fig. 14 shows the
velocity field in the simulation, where the black vertical lines indicate the end
of the inlet and outlet relaxation zones. The waves propagate from left to
right. Same discretisation schemes are used as in the liquid piston case, thus
second order accuracy is expected. All simulations are performed for 10 wave
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Fig. 8: A schematic representation of falling water column test case. A horizontal water
column with a rectangular cross–section is suspended in air at time zero. Under the
influence of gravity the column impacts the bottom horizontal surface.
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Fig. 9: Pressure signal comparison during the impact of the falling water column. Pressure
measured at the center of the bottom boundary is compared to Braeunig et al. [9], Ma et
al. [14] and Guilcher et al. [4].

43

167



0.6 0.64 0.68 0.72
Time, s

0

2

4

6

8

10

ρ
, 

k
g

/m
3

Fig. 10: Air density variation in the air cavity during the impact of the falling water
column.

periods, i.e. for 30 seconds. For verification and validation, surface elevation
signal measured in the middle of the domain (denoted with a white vertical
line in Fig. 14) is used. First and second order harmonic amplitudes, η1

and η2 are obtained by using Fast Fourier Transform of the surface elevation
measured in the last wave period (i.e. from t = 27 to t = 30). Fig. 15 shows
the time evolution of the surface elevation.

Verification is performed using the same procedure as in Sec. 4.1 by
systematically varying spatial and temporal resolution. The grid is non–
uniformly distributed along the vertical and horizontal axis in order to opti-
mise the number of cells. In the vertical direction, uniform cell size is used 0.1
m above and below the free surface, while linear grading is applied outside,
by enlarging the cells towards the bottom and the top boundary. Similar
is applied in the horizontal direction, where uniformly distributed cells are
placed in the middle of domain extending 8 m to each side, while linear grad-
ing is applied from that point towards the inlet and outlet boundaries. The
verification test matrix with results for the first order amplitude is presented
in Table 3, where the number of cells corresponds to the number of cells in
the vertical direction in the uniformly distributed region around the inter-
face. The number of cells in the horizontal direction in the central uniformly
distributed region is obtained by multiplying this number with 1.5. Results
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(a) t = 0.05 s, (b) t = 0.60 s,

(c) t = 0.65 s, (d) t = 0.70 s,

(e) t = 0.75 s, (f) t = 0.80 s,

Fig. 11: Evolution of the interface, velocity and pressure field in the free fall of the water
column. Part 1.
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(a) t = 0.85 s, (b) t = 0.90 s,

(c) t = 0.95 s, (d) t = 1.00 s,

Fig. 12: Evolution of the interface, velocity and pressure field in the free fall of the water
column. Part 2.

for second order harmonic amplitude are shown in Table 4. Note that the
second order amplitude is two orders of magnitude smaller comparing to the
first order amplitude due to a relatively linear wave.

The output of the numerical uncertainty analysis is shown in Table 5.
Second order accuracy in space is achieved for η1, while the order of con-
vergence in time of 1.61 is achieved. For η2, second order accuracy in space
is achieved as well, while first and second order exponents are used in time
[36]. The grid uncertainty for η1 is low being 0.4%, while for second order it
is relatively higher, i.e. 10.9%. The second order amplitude is only 0.5 mm,
while the cell height on the finest grid is ∆z = 0.2/64 = 0.003 m, i.e. 3 mm.
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Fig. 13: Pressure signal measured during the free fall of the water column.

Thus, given that the second order amplitude is six times smaller than the
finest cell, the obtained uncertainty is acceptable.

Numerical results are validated against the solution of the stream func-
tion wave theory. Comparison of surface elevation signals are shown in Fig.
15, while the harmonic amplitudes are compared in Tab. 6. The error be-
tween the stream function solution and numerical results is calculated as
Err = (ηSF − ηCFD) /ηSF . For the first order amplitude, the error is 0.25%,
while the second order amplitude exhibited relative error of 8.7%, which
is acceptable considering the magnitude of η2 compared to the cell height.
Overall, this test case proves that the present model is capable of simulating
wave propagation accurately and precisely.

In order to compare the computational efficiency with the counterpart
incompressible numerical model, two simulations are carried out with equiv-
alent settings on the same computer: a single core of a Intel Core i7-4820K
CPU (3.70GHz). It took 785 seconds of wall–clock time to finish 30 seconds
of simulation with 11 700 cells grid using the compressible solver, while it
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took 760 seconds with the incompressible. Thus, the two approaches are
almost equivalent in terms of computational efficiency.

Fig. 14: Regular wave propagation case. The colour represents the magnitude of the
velocity, the black vertical lines denote the ends of inlet and outlet relaxation zones, while
the white vertical line denotes the location of the wave probe.

Table 3: Test matrix results for the wave propagation test case. The values denote the
first order harmonic amplitude (η1) of free surface elevation in meters.

NCells

∆t, s
0.02 0.01 0.005 0.0025

16 0.048422 0.048882 0.049179 0.049199
32 0.049681 0.049822 0.049918 0.049981
64 0.049995 0.050027 0.050049 0.050079

Table 4: Test matrix results for the wave propagation test case. The values denote the
second order harmonic amplitude (η2) of free surface elevation in meters.

NCells

∆t, s
0.02 0.01 0.005 0.0025

16 0.000560 0.000586 0.000533 0.000557
32 0.000603 0.000585 0.000565 0.000536
64 0.000530 0.000548 0.000537 0.000534

5. Industrial Cases: Validation

Validation of industrially relevant cases is performed in this section, where
numerical results are compared to experimental data. Additionally, numeri-
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Table 5: Verification results for the wave propagation test case. The notation follows Eça
& Hoekstra [35]: φ0 denotes the extrapolated exact solution, φ1 denotes the finest level
solution, p denotes the achieved accuracy in space, while q denotes achieved accuracy in
time. η1 and η2 denote first and second order harmonic amplitudes of the free surface
elevation, respectively.

Item φ0 φ1 Uφ p q
η1, m 5.01× 10−2 5.01× 10−2 0.4% 2.00 1.61
η2, m 5.12× 10−4 5.34× 10−4 10.9% 2.00 ∗ 1,2

∗ 1,2 Fit was made using first and second order exponents
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Fig. 15: Time signal of surface elevation in the wave propagation case. Comparison
between the present result obtained with NCells = 64 and ∆t = 0.0025 from Tab. 3 and
4, and the Stream function wave theory solution.

Table 6: Validation results for the wave propagation test case. Numerical results cor-
respond to the solution obtained with NCells = 64 and ∆t = 0.0025 from Tab. 3 and
4.

Item Stream function Numerical result Err, %
η1, m 0.049952 0.050079 -0.25%
η2, m 0.000585 0.000534 8.7%
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cal results obtained with the present approach are compared to the its coun-
terpart incompressible formulation [20] in terms of accuracy and performance.
Two test cases are considered: a green sea loading case and a seakeeping case
of a container vessel in regular head waves.

5.1. Green Sea Loading

Wave on deck or green sea phenomenon can often include violent wave
impacts against vertical structures such as breakwaters. It is important to
ensure that the present model can be used to accurately predict such loads.
In this section a benchmark case is used to validate the method against ex-
perimental data published by Lee et al. [39]. A detailed verification and
validation of the incompressible framework has been performed in the past
[40] using the same experimental data, where nine different incident regular
waves are considered. However, only the most severe incident wave will be
considered here, where the result will be compared to the experimental data
and numerical results from Gatin et al. [40] in order to study the influence
of compressibility on the results. The incident wave corresponds to wave ID
9 from [40], with wave length λ = 3.75 m, amplitude a = 0.1125 m, with a
resulting wave steepness of ka = 0.188, where k denotes the wave number.
A simplified, fixed model of a FPSO (Floating Production, Storage and Of-
floading) vessel termed ”RECT0” [39] is considered, with geometry shown in
Fig. 16a. Pressure probes are positioned at ten locations on the horizontal
deck, arranged as shown in Fig. 16b.

Computational domain used in the simulation is shown in Fig. 17. Im-
plicit relaxation zones are placed on the inlet, outlet, starboard and portside
boundaries in order to facilitate the wave generation and to prevent wave
reflection. The regular wave is generated using the stream function theory.
A computational grid with 3.45 million cells was used, corresponding to the
finest grid level in [40]. Grid characteristics are shown in Tab. 7, where L
denotes the domain length, LR indicates the length of inlet and outlet re-
laxation zones, while λ/∆x and a/∆z denote the number of cells per wave
length and wave amplitude, respectively. H stands for the height of the do-
main above the deck in metres. Note that the freeboard height is 0.045 m
above the free surface [39]. ∆zdeck stands for the height of the cell above the
deck. In order to provide a fair comparison, same numerical settings are used
for the simulation with the present compressible model with respect to the
incompressible simulation performed in [40]. A geometric interface capturing

50

174



VOF method called isoAdvector [41] is employed to provide a sharp interface
definition. A fixed Courant number of Co = 0.75 is used, resulting in average
time–step of around 0.001 s.

Following [40], the compared items are average pressure peak pmax and
average pressure integral over one wave period P , which are calculated as:

pmax =

∑NC
i=1 pi,max
NC

, (100)

P =

∑NC
i=1

∫ T
0
pi (t) dt

NC

, (101)

where pi,max denotes the pressure peak during i-th wave period, while NC

stands for the number of wave periods. Additionally, periodic uncertainty is
calculated for both items as:

UCP =
φmax − φmin

NC

, (102)

where φ denotes either pmax or P . Comparison of average pressure peaks be-
tween experimental and compressible and incompressible numerical results
is shown in Fig. 18. The differences between incompressible and compress-
ible two–phase models are negligible, which draws two conclusions: first, the
compressibility effects such as trapped air are not present in this case, and
second, the compressible formulation gives equivalent results to the incom-
pressible model when no compressibility effects are present. Gatin et al. [40]
assumed that the large overestimation of the pressure peak with respect to
experimental results for pressure gauge ID 7 could be a consequence of com-
pressibility effects which are not accounted for in the numerical model. Here,
that assumption is proved to be wrong. Another reason that might cause
the overshooting of the pressure peak is the fact that the breakwater is con-
sidered perfectly rigid in the simulation, while in the experiment a plexiglas
wall is used. The dynamic response of the plexiglas could have an influence
on the reduction of the pressure peak. Further efforts will be employed to
detect the source of discrepancy. Nonetheless, for the remaining pressure
gauges the comparison is acceptably accurate. The comparison of pressure
integrals in time is shown in Fig. 19, where a similar agreement between the
incompressible and compressible results are achieved as for pressure peaks.
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In terms of computational time, the incompressible simulation took 45.7
hours using 32 cores of a Intel Xeon Processor E5-2637 v3 (15M Cache,
3.50 GHz), while the compressible took 27.7 hours on 64 cores of the same
processor, showing comparable computational requirements.

Table 7: Computational grid characteristics for the green sea loading case.

L, m LR, m H, m λ/∆x a/∆z ∆zdeck, m
6.5 2.5 0.15 375 15.5 5.84 · 10−4

5.2. Seakeeping

A ship sailing in waves can be subjected to compressible wave loading
effects due to slamming and green water phenomena. In order to be able to
effectively predict such loading the motion of the ship in waves must be ac-
curately calculated. To that end a seakeeping simulation is performed in this
section where a KRISO Container Ship (KCS) model is considered sailing in
regular head waves. Wave characteristics, ship speed and scale correspond to
the C5 case from the Tokyo Workshop on CFD in Ship Hydrodynamics [42],
where experimental results can be found as well. Model length is LPP = 6.05
m, breadth B = 0.85 m and draught T = 0.285 m. A regular incident wave
with wave length λ = 11.84 m and wave height H = 0.196 m is imposed using
the stream function wave theory. Unstructured computational grid is used
with 950 000 cells, shown in Fig. 20. k–ω SST turbulence model is used in
this simulation. Fluid–structure interaction occurring between the wave field
and the ship is resolved using an enhanced coupling algorithm [43]. Wave
generation and absorption is performed using implicit relaxation zones which
are placed at the inlet and outlet boundaries. The inlet relaxation zone has
a length of λ/2, while the outlet has a length of λ. The domain boundaries
are positioned 1LPP in front of the fore perpendicular, 2LPP from the aft
perpendicular, and 1.5LPP from the side. A fixed time–step is used result-
ing in 400 time–steps per encounter wave period, i.e. ∆t = 0.0046 seconds.
During the simulation the maximum Courant number ranges between 9 and
18.

The time signal of heave motion is shown in Fig. 21, where incompressible
and compressible formulations are compared. In order to provide a quanti-
tative comparison, the last period of heave, pitch and total resistance signals
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the wave front propagation on deck was recorded at the rate of 30
frames per second. The starboard side of the deck was covered
with a checkerboard sheet with a 0.02 m�0.02 m grid to help
track the wave front.

The wavemaker was calibrated to generate selected regular
waves, and the calibrated waves are summarized in Table 2. The
maximum error of the calibrated wave length was 0.1% and 3.1%
for the wave amplitude.

2.4. Measurement method

The model was located far away from the wave absorber in
order to maximize the measurement time until the first reflected
wave reached the model. Data procurement started before the
first wave front reached the wave probe and ended after the
reflected waves were recorded by the wave probe. Only the
harmonic part of the measured signal (35 periods) was used in

Fig. 1. (a) FPSO bow models (Rect0), (b) FPSO bow models (Rect5), (c) FPSO bow models (Round).
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Fig. 16: Geometry of the FPSO model: a) model dimensions and pressure gauge posi-
tions (pressure gauges are indicated with black dots) [39], b) schematic of pressure gauges
arrangement with labels.

are transformed into frequency space via FFT.

Table 8 shows the comparison of zeroth and first order harmonic ampli-
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Fig. 17: Computational domain for the green sea loading case.
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Fig. 18: Comparison of pressure average pressure peaks for the green sea loading case.

tudes, and phase shift of the first order harmonic for heave z, pitch φ and
total resistance coefficient CT . The present compressible and its counterpart
incompressible models give very similar results, confirming that the two mod-
els are equivalent when the compressibility effects are absent. Both results
compare well to experimental results, showing under 1.5% error for total re-
sistance, and up to 5.5% error for first order amplitudes of motion. Note that
relative errors are not presented for phase shifts, since they depend on the
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Fig. 19: Comparison of pressure average pressure integral in time for the green sea loading
case.

arbitrary choice of the incident wave phase shift. The phase shifts differences
range from 0.8o for heave motion to 4o for pitch motion.

In order to establish the overhead resulting from the compressible formu-
lation, the computational time is compared for the two approaches. Both
simulations were carried out on desktop computers: the incompressible sim-
ulation was performed on a Intel Core i5-3570K CPU at 3.40GHz, while the
compressible one was performed on Intel Core i7-4820K CPU at 3.70GHz. It
takes 4.7 hours of computational time per one wave period with the incom-
pressible version, while it takes 3.6 hours with the compressible formulation.
Note that the computer used for the compressible simulations has superior
processor characteristics. Thus, the required computational resources are
comparable between two formulations, rendering the present approach rele-
vant for industrial applications.

6. Breaking wave impact with a trapped air bubble

This section presents the final test for the present model: a violent break-
ing wave impact with a trapped air bubble presented by Bullock et al. [2].
An extensive experimental campaign was conducted where large scale reg-
ular wave impacts against a vertical and inclined wall were measured. For
this comparison, a wave with height H = 1.25 m, period of T = 8 s at calm
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Fig. 20: Computational grid used in the KCS seakeeping simulation.
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Fig. 21: Heave signal comparison in the seakeeping case.

water level depth of dc = 1 m is selected, which results in a high–aeration
impact [2] where a large air bubble is trapped between the wave front and
the vertical wall. The experiments were conducted in a 350 m long, 5 m
wide and 7 m deep Grosser Wellenkanal at the Forschungszentrum Küste in
Hannover, Germany.

Simulation is conduced in a 2D domain that included 121 meters in front
of the vertical wall, where the first 50 meters are the inlet relaxation zone
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Table 8: Comparison of 0th and 1st order harmonic amplitudes and phase shift of 1st
harmonic of heave z, pitch φ and total resistance CT for the seakeeping case. γ denotes
the phase shift of the first harmonic.

Experimental Compressible Incompressible
CT,0 5.421 5.495 5.447
Err,CT,0 , N/A -1.37 -0.48
CT,1 25.101 23.447 23.329
Err,CT,1 , % N/A 6.59 7.06
γCT , o -20.543 -16.766 -16.102
z1/a 0.9312 0.8993 0.9004
Err,z1 , % N/A 3.43 3.31
γz,

o -98.579 -98.462 -97.793
φ1/ka 1.1185 1.0626 1.0572
Err,φ1 , % N/A 5.00 5.48
γφ, o -33.295 -29.128 -29.141

where the regular waves are initialised. Another 54 m of the domain is in-
cluded behind the wall to provide comparable conditions to the experiment,
where the wave was spilling over the wall. The height of the domain is 8
meters, corresponding to the depth of the wave tank. The bottom is placed
at z = 0 m, while the undisturbed free surface level is at z = 4 m. The depth
dc = 1 m refers to water depth in front of the vertical wall, i.e. on the top
of the mound. Fig 22 shows the view of the simulation domain where the
vertical wall and the slope are indicated. The domain is discretised using
127 120 cells, with refinement near the vertical wall, presented on Fig. 23.
isoAdvector method is used for interface capturing [41]. Nonlinear stream
function wave theory is used to initialise the wave field and impose the on-
coming waves at the domain inlet relaxation zone. The initial condition of
the free surface is shown in Fig. 24, where a considerable asymmetry of the
surface elevation around the calm free surface can be seen due to the shallow
water condition. A fixed Courant number of 0.9 is used in order to resolve
the violent wave impact. Three wave periods are simulated where the third
one resulted in a breaking event with a trapped air bubble. It takes two wave
periods for the reflected wave against the wall to interact with the oncoming
waves creating a breaking event in front of the wall. Equivalent event was
selected in the experimental results, i.e. the first period that resulted in a
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breaking event with trapped air bubble. Due to the longer domain, it took
5 periods in the experiment to obtain a breaking wave.

Pressure acting on the vertical wall is measured at positions correspond-
ing to the experimental set–up. The vertical positions in meters of pressure
gauges at the wall with respect to the bottom of the wave tank are: 3.49,
3.65, 3.74, 3.90, 4.04, 4.20, 4.39, 4.55, 4.70, 4.74, 4.90, 4.94, 5.10, 5.14, 5.30,
5.54, 5.70, and 5.89. In order to smooth out the noise present in pressure
signals both in experiments and simulations, the integral of pressure is com-
pared. The integral is calculated using the trapezoidal integration rule, where
pressure values from the pressure gauges are assumed to be constant in the
transversal direction.

Figs. 25 and 26 show the impact of the breaking wave with trapped air
in the simulation. The initial air bubble separates into two parts, where
one travels upwards while the second remains trapped in the bottom corner
during the impact. After the impact, the run–up collapses creating a second
breaking event travelling against incoming waves. Fig. 27 shows the com-
parison of the force acting on the vertical wall during the impact against the
measured force in the experiment. The first peak after the impact agrees well
with experimental measurements, as well as the first pressure drop, where
sub–atmospheric pressure is recorded resulting in a negative force. From that
point onwards (around t = 11.32 s), the force measured in the experiments
damps within another period of oscillation, while in the simulation the pres-
sure oscillation continues for another 7-8 periods. There are several possible
reasons for discrepancy in energy loss of the oscillating air bubble:

• The simulation is 2D, thus any 3D effects are not influencing the impact.
However, from the report and videos of the experimental campaign it
can be concluded that 3D effects did not play a significant role in the
first impact,

• In the simulation the wall and the surrounding structure are considered
perfectly rigid, i.e. no energy transfer is possible from the fluid to the
structure. According to Bullock et al. [2] a significant structural re-
sponse was noticed during the experiment where the impacts generated
”forces that caused both the caisson and the reinforced-concrete walls of
the channel to vibrate” (page 605). The transfer of energy from the
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Slope (mound)

Wave direction

Fig. 22: Numerical domain for the wave impact test case. The vertical wall is placed on a
two–segment inclined slope which is covered with gravel in the experiment.

wave to the caisson and the channel walls could be responsible for the
damping of the bubble oscillation,

• In the experiment the vertical wall had equally spaced holes bored
through the entire thickness of the wall to permit the water level to
equalise on both sides of the wall. There were six columns of holes
with three holes in each, where the holes had a circular cross–section
with a diameter of around 10 cm. Fig. 28 shows a photograph of the
vertical wall where the holes are visible. In an event of a breaking
wave impact with trapped air, the air could escape from the bubble
through the holes due to the large pressure difference. The escaping
air would deflate the trapped bubble reducing the subsequent pressure
oscillations. The effect of holes will be examined in future studies
by performing a 3D simulation with the exact geometry of the wall
including holes.

From the structural response point of view, the first force peak and through
are more important than the force tail since they carry a large amount of
energy due to high values acting on a large surface over an extended amount
of time [2]. Thus, the present approach proves to be accurate with this
respect, and can be used to accurately assess compressible wave impact loads.
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Fig. 23: View of the computational grid in front of the vertical wall in the wave impact
simulation.

Fig. 24: Initial condition of the free surface elevation in the wave impact case.

7. Conclusion

A two–phase flow model with incompressible liquid and a compressible
gas phase based on FV method intended primarily for various applications
in marine engineering is presented in this paper. The implementation is per-
formed in the Naval Hydro Pack software library based on foam–extend CFD
software. The sharp change in fluid properties across the free surface is taken
into account using the Ghost Fluid Method where specialised discretisation
schemes are developed for arbitrary polyhedral unstructured grids. In this
study the GFM is extended to take into account the jump in compressibility
of the two phases, allowing the liquid phase to be considered incompressible

60

184



(a) t = 18.25 s, (b) t = 18.50 s,

(c) t = 18.75 s, (d) t = 19.00 s,

(e) t = 19.25 s, (f) t = 19.50 s.

Fig. 25: Evolution of the interface, velocity and pressure field in breaking wave impact
event with trapped air. Part 1.

which avoids problems related with high speed of sound in water making the
approach computationally inexpensive.

Verification and validation of the present approach is conducted on a 1D
liquid piston case, a free fall impact of a horizontal water column, and reg-
ular wave propagation. The method proved to be accurate in capturing air
compression and expansion effects, compressible impacts and simple wave
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(a) t = 19.75 s, (b) t = 20.00 s,

(c) t = 20.25 s, (d) t = 20.50 s.

Fig. 26: Evolution of the interface, velocity and pressure field in breaking wave impact
event with trapped air. Part 2.

propagation where compressibility effects are negligible.

The aspect of industrial application of the method is tested on two test
cases: a green water loading case and container vessel seakeeping in regular
head waves. The method shows good correspondence with experimental re-
sults for both cases, while showing equivalent computational demands to its
incompressible counterpart.

Finally, the ability of the method to capture wave impacts with trapped
air effects is tested by comparing the simulation results to a large–scale ex-
perimental campaign. The present approach managed to reproduce the force
peak exerted on a vertical wall, whereas the force oscillation after the first
peak is overestimated. The possible reasons for the underestimated energy
dissipation of the trapped air bubble oscillation will be studied in the future,
where the most likely cause of discrepancy are the holes in the vertical wall
present in the experiment, which were not modelled in the simulation. The
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Fig. 27: Force signal comparison for the breaking wave case.

air bubble can deflate through these holes, damping the pressure oscillation.

Overall the present approach accurately and precisely models compress-
ibility effects in two–phase flows characteristic for marine engineering. The
method also proved to be applicable to realistic industrial cases with unstruc-
tured body–fitted grids and wave induced body motion, without an overhead
in computational time. Future study will be focused on studying compress-
ible breaking wave impacts in more details.
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Fig. 28: Photograph of the vertical wall from the breaking wave impact experiment [2].
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pressure of a free falling liquid block with OpenFOAM, Ocean Engineer-
ing 103. doi:10.1016/j.oceaneng.2015.04.060.

[18] C. F. Zou, D. Y. Wang, Z. H. Cai, Effects of boundary layer and liquid
viscosity and compressible air on sloshing characteristics, International
Journal of Naval Architecture and Ocean Engineering 7 (4) (2015) 670–
690. doi:10.1515/ijnaoe-2015-0047.

66

190



[19] W. Lyu, O. el Moctar, R. Potthoff, J. Neugebauer, Experimental and
numerical investigation of sloshing using different free surface capturing
methods, Applied Ocean Research 68 (2017) 307–324. doi:10.1016/j.
apor.2017.09.008.
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[40] I. Gatin, V. Vukčević, H. Jasak, J. Seo, S. H. Rhee, CFD verification
and validation of green sea loads, Ocean Engineering 148 (2018) 500–
515. doi:10.1016/j.oceaneng.2017.10.026.

[41] J. Roenby, H. Bredmose, H. Jasak, A computational method for sharp
interface advection, Open Science 3 (11). doi:10.1098/rsos.160405.

[42] L. Larsson, F. Stern, M. Visonneau, N. Hirata, T. Hino, J. Kim (Eds.),
Tokyo 2015: A Workshop on CFD in Ship Hydrodynamics, Vol. 3, NMRI
(National Maritime Research Institute), Tokyo, Japan, 2015.

[43] I. Gatin, V. Vukčević, H. Jasak, H. Rusche, Enhanced coupling of solid
body motion and fluid flow in finite volume framework, Ocean Engineer-
ing 143 (December 2016) (2017) 295–304. doi:10.1016/j.oceaneng.

2017.08.009.

69

193



PAPER 7



Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Green sea loads in irregular waves with Finite Volume method

Inno Gatina,∗, Nikola Vladimira, Šime Malenicab, Hrvoje Jasaka,c

aUniversity of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, Zagreb, Croatia
b Bureau Veritas Marine & Offshore, Departement Recherche, Le Triangle de l’Arche, 8 Cours du Triangle - CS 50101, 92937, Paris La Defense Cedex, France
cWikki Ltd, Studio 459 China Works, 100 Black Prince Road, London, United Kingdom

A R T I C L E I N F O

Keywords:
Green sea loads
Equivalent Design Wave
Compressible two phase model
Finite Volume
Ghost Fluid Method

A B S T R A C T

Extreme green sea loads upon a vertical deck structure of an Ultra Large Container Ship are calculated in this
paper using Finite Volume based CFD simulations in full scale, where two different approaches for the definition
of the Equivalent Design Wave are used. Linear frequency–domain method is used to calculate the long–term
response in terms of Relative Wave Elevation, which in turn is used to define a deterministic Equivalent Design
Wave which is then used in the CFD simulation. The simulations are conducted using a newly developed flow
model that takes into account air compression in violent free–surface phenomena. Regular Equivalent Design
Wave and Response Conditioned Wave approaches are used and compared in terms of loads exerted on the deck
structure and required computational resources. Some differences in loads are found between the methods,
whilst similar computational resources are required. The Regular Equivalent Design Wave gives larger loads,
making it a safer choice. However, the Response Conditioned Wave takes into account the relevant ocean wave
conditions as well as the response of the ship, resulting in smaller loads which would enable smaller structural
scantlings and cost savings.

1. Introduction

Assessing realistic green water loads is a challenging task where the
statistics related to the operational profile of the ship needs to be
translated into a deterministic load. Linear frequency–domain methods
provide the essential tool for defining the statistical description of ship
response with respect to the operational profile. In case of green sea
loads, motion response of the ship is used together with the statistical
description of the wave field to produce the Relative Wave Elevation
(RWE) distribution. However, linear methods do not offer means of
assessing loads resulting from green sea events, where a high fidelity
method must be included. Recently, Finite Volume (FV) Computational
Fluid Dynamics (CFD) methods are being increasingly used for de-
terministic green sea simulations based on long–term distributions of
green sea events. These simulations require a deterministic description
of the wave field which in some way represents the statistical de-
scription of the ship response and sea state.

A number of publications successfully applied FV based CFD to
calculate green sea loads on marine structures. Kudupudi and Datta
(2009) calculated green sea loads on a moving vessel where the motion
is calculated with a panel method software where comparable results
are obtained with respect to experimental measurements. Silva et al.

(2017a) conducted an experimental campaign with oblique waves
green sea events upon a FPSO. The tested wave field settings are se-
lected based on the frequency domain linear method, while experi-
mental measurements are used to detect the absolute maximum RWE,
which is reproduced using CFD in the subsequent publication (Silva
et al., 2017b). The simulation includes rigid body motion and it suc-
cessfully reproduces the experimental measurements, while a tre-
mendous amount of computational resources was necessary to produce
the result: 12 days on 480 cores to simulate 30 s of real time in full
scale, for a computational grid discretised with 40 million cells. Pakozdi
et al. (2016) used CFD in order to predict green water loads on a
Tension Leg Platform in a 10 000 year extreme event. They used an
approach that is equivalent to the regular Equivalent Design Wave;
however the selection of regular wave characteristics are based on crest
height and free surface elevation rise velocity based on irregular wave
measurements in a wave tank, instead of a long–term statistical dis-
tribution. The authors state that this approach reduces the required
computational time since it does not require irregular wave propaga-
tion in CFD. The drawback of this approach is that it requires experi-
mental measurements to detect the irregular extreme events in order to
measure the steepness and rise time.

In order to reduce the overall computational time for assessing
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green water loads, Pakozdi et al. (2014) developed a framework where
a potential theory based method is coupled with CFD in order to
minimise the size of the CFD domain and the duration of the simulated
time. A reasonable comparison with experimental measurements is
achieved. Joga et al. (2014) compared two commercial CFD codes in
assessing water ingress into open cargo holds of a container ship during
green sea events in irregular beam seas. Both codes predicted motion
with reasonable accuracy. The authors concluded that assessing volume
of shipped water poses a greater challenge.

In this study a specialised CFD software library called the Naval
Hydro Pack, based on foam–extend, is used to investigate two different
approaches for assessing green sea loads in full scale for a deck struc-
ture of an Ultra Large Container Ship (ULCS). The two tested ap-
proaches for defining the Equivalent Design Wave are (Hauteclocque
et al., 2012):

• Regular Equivalent Design Wave: regular incident wave,

• Response Conditioned Wave: irregular focused wave.

To the authors best knowledge, no similar comparison has been
published where CFD is used to evaluate individual approaches. The
present numerical framework has been verified and validated by Gatin
et al. (2018) for assessing green water pressure loads. Here, a novel
numerical formulation where water is incompressible and air is com-
pressible which is described, verified and validated in an upcoming
publication, is applied to the problem of wave–body interaction. During
wave impacts against large–flare bows such as the ones present in
container ships, a volume of air can get trapped between the wave and
the structure, which then redistributes the impact energy in time and
space. In general, the air pocket will prolong the duration of high
pressure loads and increase the surface area upon which they act
(Obhrai et al., 2004; Bullock et al., 2007), intensifying the energy
transfer between the wave and the structure. For this reason, and for
reasons of numerical stability, it is important to encompass air com-
pression in simulations where it may occur. The present method in-
troduces air compression effects without significant computational
overhead, rendering the numerical framework more general. Linear
frequency domain method is used in order to calculate the long–term
distribution of the RWE, where the dynamic coefficients needed for the
analysis are calculated using HYDROSTAR software. Equivalent Design
Wave is determined based on the long–term distribution of the RWE.
Head wave condition is analysed since it represents the most critical
heading for the observed deck structure: a vertical transversally posi-
tioned wall–type breakwater at the bow. Two CFD simulations are
conducted corresponding to the two design wave definitions: a regular
wave simulation where the Regular Equivalent Design Wave is used,
and a focused irregular wave train based on Response Conditioned
Wave theory. The two simulations are compared in terms of pressure
loads on the breakwater and computational time.

This paper is organised as follows. The second section briefly out-
lines the numerical model presenting the two–phase compressible/in-
compressible approach. In the third section basic information regarding
the analysed container ship are given, including the linear frequency
domain analysis data. The fourth section is dedicated to the CFD si-
mulations, where the two different design wave definition approaches
are used, including a discussion and the comparison. Additionally, to
validate the linear and CFD approach a comparison against experi-
mental data is performed for a model–scale KRISO Container Ship
(KCS). Finally, a brief conclusion is given.

2. Numerical model

The numerical model behind the FV based method is briefly pre-
sented in this section. The flow model assumes incompressible water
phase and a compressible air phase. The Ghost Fluid Method (GFM) is
employed to resolve field discontinuities at the interface, including the

abrupt change in phase compressibility.
Two–phase, viscous and turbulent flow with incompressible liquid

phase and a compressible air phase is modelled with the following
momentum conservation equation:

⎜ ⎟
∂
∂

+ ∇⋅ − ∇⋅ = − ∇ − ⎛
⎝

∇ ⋅ − ∇⋅ ⎞
⎠t ρ

p
ρ

ρu uu R g x u u( ) ( ) 1 1 ,d
(1)

where u stands for the velocity field, ρ is the discontinuous density field
and R is the Reynolds stress tensor, allowing general turbulence mod-
elling. pd denotes the dynamic pressure calculated as = − ⋅p p ρg xd ,
where p stands for static pressure, g is the gravity vector, while x de-
notes the radii vector. Conservation of mass for two phase flow used in
this study states:
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In the above equations, the GFM is employed to provide a sharp
evaluation of the gradient and divergence operators where specialised
discretisation schemes are used for computational cells near the inter-
face. Thus, in water the right hand side of Eqn. (2) reduces to zero since
∂ ∂ =ρ p/ 0 for incompressible fluid, while in cells occupied by air the
term is active. Similarly, the last term on the right hand side of Eqn. (1)
also reduces to zero for cells occupied by water since ∇ =ρ 0 and
∇⋅ =u 0. In this study, air is considered to be an isentropic ideal gas,
where the following holds:

∂
∂

=
−ρ

p a γ
p
a

1 ,
c c

γ
γ

1

(3)

where γ denotes the constant specific heats ratio while ac stands for the
isentropic constant. In this paper values of =γ 1.4 and =a 100 000c are
used.

The free surface is modelled with the Volume of Fluid (VOF) in-
terface capturing method with an additional interface compression
term (Rusche, 2002):

∂
∂

+ ∇⋅ + ∇⋅ − =α
t

α α αu u( ) ( (1 )) 0 ,r (4)

where α denotes the volume fraction, while ur stands for compressive
velocity field which is oriented in the normal direction towards the free
surface (Weller). A Courant number–sensitised formulation is used in
this study as described by Jasak et al. (2014).

The GFM acts by extrapolating the values from cells next to the
interface onto cells across the interface making the ”ghost cells”. In that
way, standard FV interpolation schemes can be used without creating
the interpolation error due to large differences in fields on different
sides of the interface. For example, when evaluating the density gra-
dient for a cell occupied by air next to the interface, density is extra-
polated to the cell occupied by water on the other side of the interface,
and standard gradient scheme is applied where the extrapolated value
is used instead of the actual value that corresponds to density in water.
In order to extrapolate different fields across the interface, it is neces-
sary to determine physical jump conditions which govern the change of
properties across the interface. Dynamic free surface boundary condi-
tion dictates that the static pressure must be equal on both sides of the
interface:

= − =− +p p p[ ] 0, (5)

where ⋅[ ] denotes the jump operator, + and − indices denote the value
infinitesimally close to the interface from the water side and air side,
respectively. The above equation can be written in terms of dynamic
pressure as:

= − ⋅p ρ g x[ ] [ ] .d (6)

Eqn. (6) states that dynamic pressure has a jump across the
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interface, which can be used to extrapolate dynamic pressure from
water to air and vice–versa. The kinematic free surface boundary con-
dition states that the velocity must be continuous across the interface:

= − =− +u u u[ ] 0 . (7)

Further jump conditions arise from the governing equations
(Desjardins et al., 2008; Huang et al., 2007; Queutey and Visonneau,
2007). The jump condition arising from the momentum equation (Eqn.
(1)) states:

⎡
⎣⎢

∇ ⎤
⎦⎥

= ⎡
⎣⎢

−∇⋅ + ∇⋅ − ∇ ⋅ ⎤
⎦⎥ρ

p
ρ

ρuu u u g x1 ( ) 1 ,d
(8)

which in effect states that dynamic pressure gradient divided with the
discontinuous density field has a jump that depends on the compres-
sibility of air. In case when compressibility effects are negligible, the
right hand side reduces to zero, which in turn reduces the equation to
the form shown by Vukčević et al. (2017) for incompressible two phase
flow.

Eqns. (6) and (8) are used to extrapolate the dynamic pressure and
correct the dynamic pressure gradient. They are also used for extra-
polation of the density field from the air side, where the density field is
not constant. The jump condition for the density field states:

= −− +ρ ρ ρ[ ] , (9)

where +ρ is constant, while −ρ needs to be calculated. Since air is
considered as an adiabatic ideal gas, the following holds:
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The above set of equations close the system for a two–phase flow
model where water is considered incompressible while air is treated as
an ideal gas. Details regarding the implementation of numerical
schemes and other will be published in a separate paper dedicated to
the verification and validation of the model. The reader is also referred
to Vukčević et al. (2017) for more details on the implementation of the
GFM for incompressible two–phase flow, which forms a basis for the
present approach.

3. SkyBench container ship

The ship considered in this work is an Ultra Large Container Ship
(ULCS) belonging to the so called ”SkyBench” design, see Fig. 1. Ship
characteristics are shown in Table 1, where LOA stands for length over
all, LPP is the length between perpendiculars, B is the breath of the ship,
H is ship height, T draught, Δ stands for displacement in tons and V is
ship speed in knots. Iyy stands for longitudinal moment of inertia, LCG
is the longitudinal position of centre of gravity with respect to the aft
perpendicular, and VCG is the vertical position of centre of gravity with

respect to the calm free surface level. The large length of the ship results
in high relative motion of the ship bow, rendering the bow structure
and cargo vulnerable to green water loads. To mitigate this risk, a
breakwater is positioned at the bow, whose structural design should
take into account possible loads due to water on deck. In order to cal-
culate design loads that can be exerted on the breakwater, a design
wave field must first be defined based on the definition of the opera-
tional profile. Definition of a relevant design wave is not trivial, since it
must represent a realistic maximum load that can be expected during
the life time of the ship.

3.1. Ship response calculation

Definition of the design wave or irregular wave field is based on the
selected Dominant Load Parameter (DLP). In this case, Relative Wave
Elevation (RWE) is selected as DLP since the objective of this work is to
assess maximum design loads of a breakwater structure at the ship's
bow due to green water. RWE is the vertical distance between the free
surface and a point fixed on the ship, e.g. deck at the bow. For a point
positioned at the fore perpendicular on the deck level, negative RWE
indicates water on deck, i.e. a green water event. The statistical de-
scription of ship motion with respect to relevant sea states (wave
spectra) is calculated by using linear seakeeping theory based on the
potential flow model. First, hydrodynamic coefficients need to be as-
sessed for the relevant frequency range, i.e. the Response Amplitude
Operator (RAO).

In this work, HYDROSTAR software is used to calculate the hydro-
dynamic coefficients. Fig. 2 shows the surface mesh of the underwater
part of the ship used in HYDROSTAR. Since the head wave condition
poses the greatest risk with respect to green water impacts on the
breakwater, only this heading is considered, while the long–term ana-
lysis takes into account all relevant headings. With the calculated hy-
drodynamic coefficients, RAO-s for heave, pitch and RWE are calcu-
lated, as shown in Figs. 3 and 4. RWE is calculated with respect to the
point defined with the intersection of the fore perpendicular FP and the

Fig. 1. SkyBench ULCS.

Table 1
General ship characteristics of the SkyBench
ULCS.

LOA, m 400.0
LPP , m 383.0
B, m 58.6
H, m 30.5
T, m 14.5
Δ, t 212913.0
V, kt 23.0
Iyy, kg m2

2.04× 1012

LCG, m 184.2
VCG, m 12.9
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calm free surface in the ship's reference frame, i.e. for point defined
with vector (196.3, 0,0).

3.2. Design wave definition

Two design wave approaches are tested in this work: Regular
Equivalent Design Wave and Response Conditioned Wave (irregular
waves with non–random phase shifts). Both are based on a long–term
distribution of the DLP based on the operational profile of the ship. In
this case the wave scatter diagram for North Atlantic from IACS
Recommendation No. 34 is used for the long–term distribution analysis
for the 25 year life–time of the ship. The ship is assumed to sail with
5 kt speed according to the rules from classification societies.

Obtained design wave characteristics are as follows:

1. Regular Equivalent Design Wave: wave amplitude =a 10.6 m, wave
frequency =ω 0.4 rad/s. The wave characteristics are defined using
the long–term RWE value corresponding to a probability of −10 8,
which equals =RWE 34.45long m. The amplitude is simply calculated
by using the maximum RAO value RAORW A max, from Fig. 4 which is
3.25m/m as (Hauteclocque et al., 2012):

= =a
RWE

RAO
10.6.long

RW A max, (11)

The frequency of the wave is determined simply by using the fre-
quency corresponding to RAORW A max, , i.e. =ω 0.4 rad/s.

2. Response Conditioned Wave: based on the Pierson–Moskowitz sea
spectrum with =H 14.5s m and =T 16.2p s, where Relative Wave
Amplitude RAO is used as described in (Hauteclocque et al., 2012).
The wave spectrum characteristics are chosen in a way to corre-
spond to the wave condition that has the largest contribution in the
long–term RWE response. Fig. 5 shows the relative contributions of
individual wave spectra to the long–term RWE value. The details
regarding the definition of wave component amplitudes and phase
sifts are given in Sec. 5.2.

4. KCS seakeeping in regular waves

Before moving on to performing green sea simulations for the
SkyBench container ship, the CFD and linear approach are compared to
experimental data in order to establish possible differences for this type
of ship. Due to lack of experimental data for the SkyBench ship, the
comparison study is performed for a KCS model, a similar ship that is

Fig. 2. Surface mesh used in the HYDROSTAR software.

Fig. 3. Response Amplitude Operator for heave and pitch motion.

Fig. 4. Response amplitude operator for relative wave amplitude.

Fig. 5. Relative contribution of the different sea states to the RWE long–term value.
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used as a benchmark hull on a number of workshops for CFD validation
(Larsson et al., 2015). KCS model particulars are shown in Table 2,
where Fr stands for the Froude number and λM the scale of the model.
Note that the values in the table are given in model scale. First order
amplitudes of heave and pitch motion are compared for five different
wave frequencies, with model–scale wave characteristics shown in
Table 3. Note that full scale wave frequencies correspond to a range
between 0.37 and 0.64 rad/s, which covers the frequencies used in this
study as shown in Sec. 3.2. Further details regarding CFD simulations
can be found in (Vukčević and Jasak, 2015; Vukčević et al., 2016;
Vukčević, 2016).

Comparison of heave amplitudes is presented in Fig. 6, where good
general agreement is observed between the three sets of results. The
CFD results is in notably better agreement with the experimental data
than the linear results for the lowest and third wave frequency, while
very good agreement is observed for high wave frequencies between the
three methods. Fig. 7 shows the comparison of pitch motion ampli-
tudes, where significant disagreement can be seen between experi-
mental data and the linear solution, while CFD results agree quite well.
Similar to heave results, the three results are in good agreement for
higher frequencies where motions are smaller. Overall it can be con-
cluded that some differences can be expected between the CFD result
and linear solution for a container vessel, especially for pitch motion for
lower frequencies. The reasons for this disagreement is likely to be
related to inherent simplifications included in the linear frequency–-
domain method.

5. Green sea CFD simulations for the SkyBench ship

In this section the two design wave approaches listed above are used
to calculate the green sea loading on the breakwater of the SkyBench
container ship in full scale using CFD. The methods are compared in

terms of loading exerted on the structure and computational time re-
quired to perform the simulation.

Both simulations are simulated using the same computational grid
generated using cfMesh software (JuretićcfMesh, 2017). The grid is
unstructured containing 2 374 416 cells, which are mostly hexahedral
(97.8%). Additional refinement is applied at the bow deck near the
breakwater and the front bulwark in order to capture green water ef-
fects. A view of the grid in the central longitudinal plane near the
breakwater is shown on Fig. 8, while the surface grid of the ship is
shown in Fig. 9. The cells on the deck are cubic with sides of 0.375m.
The grid resolution is considered sufficient based on previous similar
studies (e.g. (Gatin et al., 2017)). The computational domain is 1 330 m
long, 635m wide, 343m deep and 152m high above the calm free
surface level. The size of the computational domain is based on the
main ship dimensions according to the authors experience. Length is
equivalent to roughly 3.5LPP, breadth to 11B, depth to 1LPP and height
to 1/2LPP. The computational domain with domain boundaries is shown
in Fig. 10. The origin of the coordinate system is at the calm free surface
level, midship, at the longitudinal central plane. The positive x direc-
tion is oriented towards the bow of the ship, positive y direction is fa-
cing portside while positive z axis is directed upwards. Waves are in-
troduced using implicit relaxation zones (Jasak et al., 2015), which are
indicated with red colour at the calm free surface in Fig. 10. In the
relaxation zones, a gradual transition is made between the incident
wave field prescribed with an arbitrary wave solution (linear or non-
linear potential flow solution) and the CFD solution. Wave velocity field
and surface elevation from the analytical wave theory are introduced
into the momentum and VOF equation (Eqn. (1) and (4)), where a

Table 2
General ship characteristics of the KCS
model.

λM 37.89
LPP , m 6.07
B, m 0.85
T, m 0.285
Δ, kg 956
Fr 0.261
Iyy, kg m2 2236.5
LCG, m 3.13
VCG, m 0.093

Table 3
Incident wave characteristics used in the KCS seakeeping study in model scale.

λ, m 3.949 5.164 6.979 8.321 11.840
H, m 0.062 0.078 0.123 0.149 0.196
ω, rad/s 3.951 3.455 2.972 2.722 2.282

Fig. 6. Comparison of heave amplitude for KCS in regular waves.

Fig. 7. Comparison of pitch amplitude for KCS in regular waves.

Fig. 8. Side view of the grid refinements at the bow of the ship.
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weighting factor is used to allow gradual blending between the solution
of respective equations and the analytical solution. The reader is re-
ferred to Jasak et al. (2015) for more details on the implementation of
the relaxation zones. The relaxation zones also serve as absorption
zones for radiated and diffracted waves. Inlet, outlet, portside and
starboard boundaries have zero–gradient boundary condition for pres-
sure, while the VOF and the velocity field are evaluated using linear
wave field solution. The bottom boundary also has a zero–gradient
condition for pressure, while VOF is fixed to 1, and the velocity is also
evaluated using the linear wave solution. In this way, the bottom
boundary acts as a infinite depth boundary condition. The top boundary
is set to a fixed value pressure boundary condition where =p 100 000
Pa, VOF field is set to zero, while zero gradient is used for the velocity
field.

Second order backward temporal discretisation scheme is used for
all temporal derivatives, while second order upwind biased convection
scheme with deferred correction is used for velocity and pressure
convection terms. The coupling of the rigid body motion equations and
the fluid flow is performed using an enhanced approach where the rigid
body motion equations are solved once per pressure–corrector step
(Gatin et al., 2017), where a geometric method is used for integration of

rigid body motion equations (Müller and Terze, 2016). Two degrees of
freedom are considered: heave and pitch, while the remaining are
constrained, since vertical plane motion is dominantly relevant with
respect to green water occurrence in head waves condition.

5.1. Regular Equivalent Design Wave simulation

From the wave modelling point of view, the Regular Equivalent
Design Wave approach is the simplest one. Setting up a regular wave
CFD simulation is relatively simple compared to an irregular wave field.
Fig. 11 shows the initial condition in the simulation, where the free
surface elevation can be seen. The simulation is performed with
Courant number fixed to 20, resulting in an average time step of 0.04 s,
oscillating between 0.01 and 0.1 s.

Nine wave periods are simulated, where loads on the breakwater
became acceptably periodic after three periods. Fig. 12 shows the green
sea event during a typical wave period. A significant amount of water is
shipped onto the deck, encountering the breakwater. Time trace of
longitudinal force acting on the breakwater is shown in Fig. 13. Note
that although the force peak is not periodic, the shape of the force curve
becomes periodic after three periods. From the structural point of view,
the longitudinal force impulse represented by the area under the
longitudinal force signal is also important together with transient lo-
calised force peaks. Therefore, the force impulse is also compared in
this study, calculated as:

∫=I F t dt( ) ,X t

t
X

1

2

(12)

where t1 and t2 stand for the beginning and end time of integration,
while FX represents the instantaneous longitudinal force acting on the
breakwater. Heave and pitch motion shown in Figs. 14 and 15, re-
spectively, show periodic convergence after three periods as well as the
shape of the longitudinal force. Unlike the KCS, Figs. 14 and 15 show
that the linear solution overestimates heave and pitch motion with
respect to the CFD results. Thus, predictions regarding RWE using the
linear solution are on the safe side. The possible reason for this over-
estimation could be the shipped water which changes the mass prop-
erties of the vessel, primarily increasing the pitch moment of inertia,
which is not accounted for in the linear frequency-domain approach.
The linear method mostly underestimates the motion for KCS while it
overestimates the motion for ULCS, since in KCS seakeeping cases the
green sea phenomena is not present. Figs. 16 and 17 show the vertical
position and velocity, respectively, of a point on the bow of the ship
with coordinates (196.3, 0,16) with respect to midship. Again, the linear
solution overestimates both the motion and velocity of the point at the
bow.

To provide a quantitative means of comparison, a force impulse
during the third green sea event is calculated: = ×I 2.877 10X

7 Ns. The

Fig. 9. Surface discretisation of the ship bow in the CFD computational grid.

Fig. 10. View of the CFD compuational domain. The relaxation zones are in-
dicated with red colour on the calm free surface. The blue colour indicates
undisturbed CFD solution region. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)

Fig. 11. Initial condition of the free surface elevation in the Regular Equivalent
Design Wave simulation of the SkyBench ship.

I. Gatin et al. Ocean Engineering 171 (2019) 554–564

559200



simulation took 14.3 h to complete three wave periods (approximately
50 s of simulated time) on four cores of the Intel Core i5-3570 K CPU
(3.40 GHz).

5.2. Response Conditioned Wave simulation

As explained by de Hauteclocque et al. (2012), as opposed to the
Regular Equivalent Design Wave, the Response Conditioned Wave takes
into account the wave conditions relevant to the service of the ship, as
well as the respective RAO of the Dominant Load Parameter. Thus, a
more realistic wave event is obtained comparing to the Regular

Equivalent Design Wave. Response Conditioned Wave is an irregular
wave train where amplitudes and phase shifts are determined from the
wave energy spectrum and RAO:

∑= ⋅ − − − −
=

=

ζ x t ζ ω ω t t k x x RAO ω( , ) ( ) cos( ( ) ( ) ( )) ,
i

i N

a i i F i F ϕ i
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Fig. 12. A typical green sea event from the Regular Equivalent Wave Simulation of the SkyBench ship. Colour indicates free surface elevation. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 13. Longitudinal force acting on the breakwater in the Regular Equivalent
Design Wave simulation of the SkyBench ship.

Fig. 14. Comparison of heave motion between the linear solution and CFD in
the Regular Equivalent Design Wave simulation of the SkyBench ship.

Fig. 15. Comparison of pitch motion between the linear solution and CFD in the
Regular Equivalent Design Wave simulation of the SkyBench ship.

Fig. 16. Vertical position comparison of a point on the bow of the SkyBech for
the Regular Equivalent Design Wave case.
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Here, ζ x t( , ) denotes the surface elevation at time t and longitudinal
coordinate x. N is the number of wave components, ζ ω( )a i is the wave
component amplitude corresponding to frequency ωi while ki is the
wave component wave number that satisfies the linear dispersion re-
lation. tF and xF denote time and position of focusing, respectively. In
this simulation, =t 50F s, and =x FF P, where FP stand for fore per-
pendicular. RAOϕ denotes the phase shifts of response components,
RWE in this case. Sζ is the wave energy spectrum, RAO denotes the
response RAO, while ηLT stands for the long–term response value, equal
to 34.45 in this case. m0 is the zeroth order moment of the response
spectrum, while ωΔ is the frequency step used to discretise the spec-
trum.

For the initialisation of the CFD simulation, the surface elevation
and wave field velocity from the linear solution are used, that corre-
spond to an arbitrary point in time at which the simulation is initialised.
The motion of the ship is also initialised, comprising heave and pitch
positions and velocities, where the motion is calculated using the linear
frequency–domain method based on the RCW. In contrast to starting
the simulation from time zero, the duration of the CFD simulation is
minimised in this way, while still accounting for all nonlinear effects
during a green sea event which are not present in the linear solution.

Fig. 18 shows the linear realisation of the free surface elevation at
FP, and the RWE signal deducted by freeboard height. The simulation is
started at 30 s, i.e. 20 s before the focusing time, with the time step of

=tΔ 0.08 s, which resulted in time–average maximum Courant number
of 24, oscillating mostly between 10 and 30.

The initial condition of the simulation is shown in Fig. 19, corre-
sponding to =t 30 s. Figs. 20 and 21 show heave and pitch motion
comparison between the linear and CFD solution. Some differences are
visible between the two sets of solutions, both in amplitude and phase.
However, the overall agreement is acceptable. Figs. 22 and 23 show the
comparison of vertical position and velocity of a point on the bow,
exhibiting similar differences between the linear and CFD solution. The
difference between the linear and CFD solution visible in Figs. 21 and

Fig. 17. Vertical velocity comparison of a point on the bow of the SkyBech for
the Regular Equivalent Design Wave case.

Fig. 18. Linear realisation of the free surface elevation and RWE at FP in the
Response Conditioned Wave approach. Positive values of the full black line
indicate water level above deck.

Fig. 19. Initial condition in the Response Conditioned Wave simulation of the
SkyBench ship, =t 30.0 s.

Fig. 20. Comparison of heave motion between the linear solution and CFD in
the Response Conditioned Wave simulation of the SkyBench ship.

Fig. 21. Comparison of pitch motion between the linear solution and CFD in the
Response Conditioned Wave simulation of the SkyBench ship.

Fig. 22. Vertical position comparison of a point on the bow of the SkyBech for
the Response Conditioned Wave case of the SkyBench ship.
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23 arise mostly from the phase difference. The reason for this phase
difference could be the nonlinearities present in the CFD simulation,
taking into account the large bow and stern flare. This differences
should be investigated in the future, however the agreement is rea-
sonable for present purposes.

Fig. 24 shows the green sea event, where a large quantity of shipped
water on the deck can be seen. Force signal in time acting on the
breakwater is shown in Fig. 25. Note that the linear solution, shown in
Fig. 18, predicted that the second RWE peak (at around =t 73 s) will be
larger than the first (at around =t 57 s), while in the CFD simulation
the first peak resulted in a green sea event, while no water was shipped
during the second RWE peak. The reason for this could be the nonlinear
motion damping which is produced by the green sea event that hap-
pened during the first RWE peak at around =t 73 s, that reduced the
motion before the next RWE peak making it effectively smaller than the
first one. Also, pitch motion from the CFD simulation is larger than the
linear solution during the first RWE peak (Fig. 21), resulting in a larger
RWE value. The force impulse generated by the Response Conditioned
Wave is around = ×I 1.52 10X

7 Ns. The computational time required to
obtain the green sea event, i.e. to simulate from =t 30 s to =t 64 s, is
17.2 h on an Intel Core i5-3570 K CPU (3.40 GHz).

Note that for the RCW simulation the linear solution predicts gen-
erally smaller motion than CFD, while in the case of REDW the opposite
can be seen. This is especially true for the first portion of the heave
signal before =t 55 s (Fig. 20), whereas in last part of the simulation
CFD shows smaller motion than the linear solution. As explained ear-
lier, this damping of motion after the green water occurrence is likely to
be a consequence of the effect of the shipped water on mass and inertia.
For pitch motion shown in Fig. 21 the linear solution is smaller than
CFD during the entire simulation. The most probable reason behind this
seemingly inconsistent difference between the motion comparison
produced by REDW and RCW is the fact that the REDW has the resonant
frequency. The linear potential–flow based solution is likely to give
overestimated motion for resonant conditions since it lacks viscous
damping as well as damping stemming from the nonlinearity of the
underwater geometry of the vessel as a function of motion which is not
taken into account, while it has a significant influence especially for
large–flare hull forms such as the one analysed in this study. Thus, the
accuracy of the linear method is completely different in the periodically
converged resonant motion than in the transient, non–periodic motion
excited by RCW.

5.3. Discussion and comparison

Two methods for defining the Equivalent Design Wave are

Fig. 23. Vertical velocity comparison of a point on the bow of the SkyBech for
the Response Conditioned Wave case of the SkyBench ship.

Fig. 24. The green sea event from the Response Conditioned Wave simulation of the SkyBench ship. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 25. Longitudinal force acting on the breakwater in the Response
Conditioned Wave simulation of the SkyBench ship.
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compared in this section. Table 4 shows the comparison in terms of
force peak and impulse exerted on the breakwater, required computa-
tional time and complexity of pre–processing for the CFD simulation.
Large differences are obtained with respect to force peak and impulse,
where Regular Equivalent Design Wave exhibited the larger force. Re-
sponse Conditioned Wave showed 2.2 times smaller force peak and 1.9
times smaller force impulse. Fig. 26 shows the comparison of the
pressure force exerted on the breakwater in time, where differences in
both peak force and area under the curve can be observed. The two
methods are comparable in terms of required computational time, while
Regular Equivalent Design Wave requires smaller amount of pre–-
processing time due to its simplicity with respect to wave field defini-
tion. The Response Conditioned Wave requires a higher amount of
pre–processing in order to consistently initialise the CFD simulation
with respect to the linear realisation.

As described by de Hauteclocque et al. (2012), the Regular
Equivalent Design Wave does not take into account the actual wave
conditions relevant to the service of the ship, but only the RAO of the
Dominant Load Parameter (RWE in this case) which results in a large
response. On the other hand, the Response Conditioned Wave takes into
account both amplitudes and phases of the Dominant Load Parameter's
RAO and the sea state which is relevant for the particular DLP and
heading, producing a more realistic response. In this comparison it is
confirmed that the Regular Equivalent Design Wave produces sig-
nificantly higher pressure loads on the breakwater.

6. Conclusion

In this paper two different methods for defining the Equivalent
Design Wave for a green sea event based on long–term statistical dis-
tribution are tested using FV based CFD. Linear frequency domain
method is used to calculate the long–term response in terms of Relative
Wave Elevation at the deck of the Ultra Large Container Ship. Based on

the long–term distribution, a Regular Equivalent Design Wave and a
Response Conditioned Wave are defined. A CFD simulation for each of
these methods is conducted, where loads exerted on the wall–type
breakwater positioned at the bow are compared as well as computa-
tional time.

The Regular Equivalent Design Wave requires smaller amount of
effort from the set–up of the CFD simulation point of view, minimising
the probability of user error. It produced higher loads on the break-
water. The Response Conditioned Wave approach resulted in smaller
green sea loads which should be more realistic given that the actual
ocean conditions are taken into account, while being more demanding
from the man–hour point of view. For the Response Conditioned Wave
approach, the linear realisation of the surface elevation and body mo-
tion are used to provide initial conditions for the CFD simulation with
rigid body motion, in order to minimise the amount of time that needs
to be simulated with CFD. This required significantly more man–hours
to set–up with respect to the first approach since the initialisation of the
simulation needs to be performed in way that is consistent with the
linear realisation. From the computational time point of view, the two
methods are comparable requiring 14.3 and 17.2 h of computational
time on a desktop PC, respectively.

The comparison shown in this paper demonstrates that the Response
Conditioned Wave provides smaller design green water loads for this
particular vessel comparing to the Regular Equivalent Design Wave
approach. Thus, using RCW for structural design would result in smaller
scantlings and cost savings. Since RCW takes into account the relevant
ocean wave conditions as well as the response, it generally produces
more relevant design wave, which should also be true for other load
parameters such as slamming or similar. At the same time, RCW does
not introduce additional cost with respect to computational resources.
Despite the added complexity in the pre–processing stage, the authors
conclude that RCW presents a more suitable option for predicting ex-
treme wave response using CFD comparing to REDW.
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{inno.gatin, vuko.vukcevic, hrvoje.jasak}@fsb.hr
2Wikki Ltd, 459 Southbank House, SE1 7SJ, London, United Kingdom, h.jasak@wikki.co.uk

Keywords: Green Sea Loads, Irregular Waves, Naval Hydro pack, Higher Order Spectrum, isoAdvector.

An overview of the current state of the ongoing effort to devise a comprehensive multiscale procedure for determination
of green sea loads on ships and offshore structures is given in this paper. The aim of the research is to asses deterministic
green water loads on arbitrary deck structures and equipment that corresponds to the stochastic nature of the sea states
which the naval object encounters.
First step of the procedure is to calculate the ship motion response for wave spectra which are relevant for the service
of the ship. The motion response is calculated using linear seakeeping method in frequency domain. The hydrodynamic
coefficients needed for the linear seakeeping calculation are obtained using rapid CFD simulations in Naval Hydro pack
where the free surface is modelled as a linearised boundary condition [1]. In this manner, the interface is not resolved,
significantly simplifying the meshing process, reducing the number of cells, and increasing the stability and robustness of
simulation. Figure 1 shows an example of the vertical force signal acting on the hull in a diffraction simulation, where the
free surface elevation is also depicted.
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Figure 1: Free surface elevation and vertical force signal from the wave diffraction simulation.

Once the hydrodynamic coefficients are calculated, linear seakeeping theory is used to obtain the motion spectra for
relevant degrees of freedom for all relevant wave spectra. Using the motion and wave spectra, the spectra of surface
elevation relative to the deck can be calculated, which in turn can be used to calculate the probability of exceedance of
the surface elevation over the deck [2]. The wave spectrum exhibiting the largest probability of exceedance is than used
in the deterministic study.
The next step is to perform a two–phase global performance CFD simulation, where three hours of selected wave spectrum
realisation are simulated encountering the naval object of interest. Motion of the naval object is calculated in order to
capture the fully nonlinear interaction with the free surface. In order to obtain realistic motion of the ship, the wave field
captured in CFD has to correspond to the selected wave spectrum. In order to achieve this, a nonlinear spectral method
based on potential flow theory called Higher Order Spectrum (HOS) [3] is used to calibrate the input spectrum to achieve
the target spectrum. Figure 2 shows the comparison of the target spectrum, spectrum obtained before calibration after 3
hours of HOS propagation, and of the calibrated spectrum. The calibration is performed automatically during the HOS
simulation, where multiple three hour realisations are run back–to–back in order to calculate the calibration coefficients.
Figure 2 also shows the comparison of spectrum obtained in the CFD simulation against the calibrated HOS spectrum
used as input. Amount of energy being damped in the CFD simulation is acceptably low.
Coupling of HOS and CFD is in one way, where SWENSE method is used in order to decompose the field into incident

(HOS) and diffracted components [4, 5]. SWENSE enables stable simulations of wave propagation with minimum wave
damping.
The fluid flow and body motion are coupled in an enhanced manner, accelerating the convergence and enabling lowew
number of outer PISO loops per time–step to be used. Vukčević et al. [6] demonstrated that only two PISO correctors
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Figure 2: Comparison of wave spectrum: a) Target, non–calibrated and calibrated spectrum obtained using HOS, b) Calibrated
spectrum from HOS and from CFD simulation.

per time–step are sufficient to obtain converged solution of the fluid flow–motion coupling. The enhanced coupling is
achieved by introducing additional updates of the motion solver after each pressure correction inside the PISO loop, while
the grid position is not updated to save CPU time.
Combined together, SWENSE and enhanced coupling of the motion and fluid flow provide fast and robust seakeeping
simulations, making a three hour simulation possible in reasonable amount of CPU time. Figure 3 shows the resistance
signal in a test global performance simulation of a DTC hull. Half of the domain is simulated by using the symmetry
boundary condition in the central plane, which is discretised using 1 600 000 cells. 2 hours and 20 minutes are simulated,
which took 7 days and 20 hours on five Intel Xeon Processors E5-2637 v3 with 15M Cache working on 3.50 GHz.
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Figure 3: Resistance of DTC hull during a global performance simulation in irregular waves.

During the global performance simulation, the deck wetness is monitored, producing a data history of green sea events.
By inspection of the amount of shipped water, duration and location of the green sea event, the most adverse event is
selected. For that event, a detailed CFD simulation is performed where only a part of the ship is modelled, whereas the
motion of the ship and wave kinematics are imposed from the global performance simulation. Here a fine grid resolution
can be used in order to model intricate deck structures and equipment, such as pipes, valves, winches etc. Thus, detailed
pressure distributions and loads, as well as water ingress can be predicted.
In order to gain confidence in the capability of the code in assessing pressure loads in a water on deck incident, a
detailed validation is performed based on experimental studies published by Lee et al. [7], where a fixed FPSO model
is encountered by various regular waves. Pressure is measured on ten locations on deck for 35 encounter wave periods,
reporting periodic uncertainty. Figure 4 presents a snapshot from one of the simulations, where the geometry of the FPSO
can be observed. In order to resolve the advection of the interface more accurately, a geometric VOF method is used
called isoAdvector [8]. isoAdvector enables sharp and accurate advection of the free surface, which is important in case
of violent free surface flows that are encountered in green sea events. Figure 5 shows the comparison of the α field in the
simulation where isoAdvector is used and in the simulation where conventional algebraic implicit VOF method is used.
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Figure 4: Snapshot of the green sea simulation. Figure 5: Comparison of the α VOF field in simulation
with isoAdvector (left) and with algebraic VOF (right).

In order to compare numerical and experimental data, pressure peaks and pressure integrals in time are compared. Figure 6
shows the comparison of pressure peaks and integrals for one of the wave cases. The abscissa denotes the indication
number of the pressure gauge on the deck, while the ordinate presents the average pressure peak and average time integral
of pressure during one wave period. Error bars denote the numerical and experimental uncertainties, which are comprised
of discretization and periodic uncertainty, and of measuring bias and periodic uncertainty, respectively.
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(b) Pressure time integral comparison.

Figure 6: Comparison of pressure on deck between experimental and numerical results.

The proposed procedure can be applied in practice whenever a more precise prediction of green sea load on arbitrary
deck structure geometry needs to be assessed. The procedure will predict deterministic extreme pressure loads on deck
structures for a realistic set of sea states which can be expected based on the location of the naval object.
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References

[1] M. O. Woolliscroft and K. J. Maki, “A fast-running CFD formulation for unsteady ship maneuvering performance
prediction,” Ocean Eng., vol. 117, pp. 154–162, 2016.
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