Parna turbina kogeneracijske termoelektrane na biomasu

Marinović, Šimun

Undergraduate thesis / Završni rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:888116

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-27

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Šimun Marinović

Zagreb, 2020.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

PARNA TURBINA KOGENERACIJSKE TERMOELEKTRANE NA BIOMASU

ZAVRŠNI RAD

Mentori:

Prof. dr. sc. Zvonimir Guzović

Student:

Šimun Marinović

Zagreb, 2020.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru, profesoru Zvonimiru Guzoviću na potpori, stručnoj pomoći i savjetima pruženim tijekom izrade ovog rada.

Šimun Marinović

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za završne ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveučilište u Zagrebu				
Fakaltet strojarstva i brodogradnje				
Datum	Prilog			
Klasa:				
Ur.broj:				

ZAVRŠNI ZADATAK

Šimun Marinović Student:

Mat. br.: 0069073145

Naslov rada na	PARNA TURBINA KOGENERACIJSKE TERMOELEKTRANE NA
hrvatskom jeziku:	BIOMASU
Naslov rada na	STEAM TURBINE OF COGENERATION POWER PLANT ON
engleskom jeziku:	BIOMASS

Opis zadatka:

Stručne analize pokazuju da Republika Hrvatska raspolaže sa značajnim energetskim resursima. biomase iz poljoprivrede, voćarstva i šumarstva, što uz industrijski i dio gradskog otpada, omogućava godišnju uštedu uvoza nafte od 650 000 tona. Gradnjom malih kogeneracijskih termoelektrana na biomasu moguće je zadovoljiti veliki dio vlastitih potreba lokalnih zajednica za električnom i toplinskom energijom. Stoga je u završnom radu potrebno predložiti toplinsku shemu kogeneracijske termoelektrane na biomasu i izraditi predprojekt parne kondenzacijske turbine.

U okviru završnog zadatka potrebno je:

- opisati mogućnosti proizvodnje električne energije pomoću biomase;
- 2. na temelju studija isplativosti za Republiku Hrvatsku definirati optimalne parametre kogeneracijskog postrojenja i njegovih komponenti te odrediti potrebnu količinu pare na ulazu u turbinu;
- izraditi termodinamički i aerodinamički proračun parne turbine;
- izraditi crtež uzdužnog presjeka parne turbine s glavnim mjerama.

U tekstu završnog rada potrebno je navesti korištenu literaturu i eventualno dobivenu pomoć tijekom izrade.

Zadatak zadan:

28. studenog 2019.-

1. rok: 21. veljače 2020. 2. rok (izvanredni): 1. srpnja 2020. 3. rok: 17. rujna 2020.

Zadatak zadao:

Prot. dr. sc. Zvonimir Guzović

Datum predaje rada:

Prodvideni datumi obrane: 1. rok: 24.2. - 28.2.2020. 2. rok (izvanredni): 3.7.2020. 3, rok: 21.9. - 25.9.2020.

Predsjednik Povjerenstva:

Prof. dr. sc. Igor Balen

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA	II
POPIS TABLICA	. III
POPIS TEHNIČKE DOKUMENTACIJE	IIV
POPIS OZNAKA	V
SAŽETAK	VIII
SUMMARY	. IX
1. BIOMASA	1
1.1. Osnovni oblici šumske biomase	2
1.2. Opskrba šumskom biomasom	5
1.2.1. Prijevoz šumske biomase	5
1.2.2. Skladištenje i prijenos šumske biomase	6
1.3. Mogućnosti za energetsko iskorištavanje šumske biomase u Hrvatskoj	6
1.4. Otječaj prinijene sumske biomase 1.5. Mogućnosti za smanijvanje emisija pri izgaranju šumske biomase	/
1.6. Budući trendovi korištenja energije biomase	9
2. KOGENERACIJSKA TERMOELEKTRANA	. 10
2.1. Općenito	. 10
2.2. Različiti tipovi kogeneracijskih postrojenja	.11
2.3. Kogeneracija na biomasu	. 12
3. PARNE TURBINE	. 14
3.1. Općenito o parnim turbinama	. 14
3.2. Energetska bilanca parne turbine	. 15
3.3. Podjela parnih turbina	. 18
3.4. Proces pretvorbe energije	. 20
3.4.1. Pretvorba energije u stupnju akcijske turbine	. 22
3.4.2. Pretvorba energije u stupnju reakcijske turbine	. 23
4. TERMODINAMIČKI I AERODINAMIČKI PRORAČUN TURBINE	. 26
4.1. Toplinska shema kogeneracijske termoelektrane na biomasu	. 26
4.2. Ulazni podatci za proračun	. 26
4.3. Algoritam proračuna	. 27
4.4. Prikaz provedbe proračuna za pojedini stupanj pomoću računalnog programa	40
Matiad	.42
4.5. Fodatci dobiveni protacunoni	. 30 59
5. ZAKLJUČAK	. 60
6 LITERATURA	61
7 PRILOZI	. 01 67
	. 02

POPIS SLIKA

Slika 1.1.	Ciklus ugljičnog dioksida	2
Slika 1.2.	Sječka	3
Slika 1.3.	Udjeli vlage, ogrjevne vrijednosti, gustoća i energetska gustoća najčešćih oblika	a
	šumske biomase	5
Slika 2.1.	Shematski prikaz pretvorbe energije u kogeneracijskom postrojenju	11
Slika 2.2.	Kogeneracijska termoelektrana u Slatini	12
Slika 2.3.	Shematski prikaz kogeneracijske elektrane na biomasu	13
Slika 3.1.	Shematski prikaz presjeka reakcijske turbine	15
Slika 3.2.	Prikaz ekspanzije u turbini	16
Slika 3.3.	Curtisova turbina	20
Slika 3.4.	Pretvorba energije u stupnju akcijske turbine	22
Slika 3.5.	Pretvorba energije u stupnju reakcijske turbine	23
Slika 4.1.	Shema kogeneracijskog postrojenja	26
Slika 4.2.	Atlas profila Moskovskog energetskog instituta	30
Slika 4.3.	Efektivni kut statorske rešetke u ovisnosti o relativnom koraku te kutu ugradnje	
	profila	31
Slika 4.4.	Polazne krivulje za koeficijent profilnih gubitaka ζ'_{pr}	32
Slika 4.5.	Polazne krivulje za koeficijent rubnih gubitaka $\zeta'_{kanc} \frac{l}{h}$	32
Slika 4.6.	Korekcijski faktor k_{α_1} za koeficijente gubitaka za statorsku rešetku	33
Slika 4.7.	Korekcijski faktor za koeficijente gubitaka zbog odstupanja kuta α_0 od α_0^{rasc}	33
Slika 4.8.	Korekcijski faktor k_{kr} za koeficijente gubitaka	33
Slika 4.9.	Atlas profila Moskovskog energetskog instituta	36
Slika 4.10.	Kut ugradnje lopatica rotorske rešetke β_u u ovisnosti o β_{2e} i \bar{t}	37
Slika 4.11.	Korekcijski faktor $k_{\Delta\beta}$ za koeficijent gubitaka za rotorsku rešetku	38
Slika 4.12.	Prikaz provedbe proračuna u programu Matlab, linije 1-57	42
Slika 4.13.	Prikaz provedbe proračuna u programu Matlab, linije 58-111	43
Slika 4.14.	Prikaz provedbe proračuna u programu Matlab, linije 112-168	44
Slika 4.15.	Prikaz provedbe proračuna u programu Matlab, linije 169-226	45
Slika 4.16.	Prikaz provedbe proračuna u programu Matlab, linije 227-282	46
Slika 4.17.	Prikaz provedbe proračuna u programu Matlab, linije 283-336	47
Slika 4.18.	Prikaz provedbe proračuna u programu Matlab, linije 337-389	48
Slika 4.19.	Prikaz provedbe proračuna u programu Matlab, linije 390-410	49

POPIS TABLICA

Tablica 1.1	Godišnje količine i energetski potencijal raznih oblika drvne biomase	7
Tablica 4.1	Prikaz ulaznih podataka za proračun turbine	
Tablica 4.2	Prikaz proračunom dobivenih veličina za stupnjeve 15.	50
Tablica 4.3	Prikaz proračunom dobivenih veličina za stupnjeve 610.	53
Tablica 4.4	Prikaz proračunom dobivenih veličina za stupnjeve 1114	56
Tablica 4.5	Izračun snage stupnjeva turbine	59

POPIS TEHNIČKE DOKUMENTACIJE

BROJ CRTEŽA	Naziv iz sastavnice
01-02-2020	Parna turbina 3,3 MW stupnjevi 1-11
02-02-2020	Parna turbina 3,3 MW stupnjevi 12-14

POPIS OZNAKA

Oznaka	Jedinica	Opis
P_{el}	MW	električna snaga
η_{meh}	-	mehanički stupanj iskoristivosti
η_{el}	-	električni stupanj iskoristivosti
D	kg/s, t/h	maseni protok na ulazu u turbinu
p_0	bar	tlak na ulazu u turbinu
ϑ_0	°C	temperatura na ulazu u turbinu
p_k	bar	konačni tlak na izlazu iz zadnjeg stupnja
D_{od}	kg/s, t/h	maseni protok oduzimanja
<i>s</i> ₀	kJ/kgK	entropija na ulazu u prvi stupanj
p_{od}	bar	tlak oduzimanja
$d_{sr,1}$	mm	srednji promjer statora
$d_{k,1}$	mm	korijenski promjer
l_1	mm	visina lopatice statora
u_1	m/s	obodna brzina
R	-	reaktivnost stupnja na srednjem promjeru
$(u/c_f)_{opt}$	-	optimalni odnos obodne i fiktivne brzine stupnja
$(u/c_f)_r$	-	računski odnos obodne i fiktivne brzine stupnja
$\Delta(u/c_f)_{opt}$	%	promjena optimalnog odnosa obodne i fiktivne brzine stupnja
C_f	m/s	fiktivna brzina stupnja
Δh_{is}	kJ/kg	izentropski toplinski pad stupnja
$\Delta h_{S,is}$	kJ/kg	izentropski toplinski pad u statorskoj rešetci
C _{1t}	m/s	teoretska apsolutna brzina toka pare na izlazu iz statorske rešetke
h_0	kJ/kg	specifična entalpija na ulazu u statorsku rešetku
$h_{t,1}$	kJ/kg	teoretska specifična entalpija na izlazu iz statorske rešetke
$h_{t,2}$	kJ/kg	teoretska specifična entalpija na izlazu iz rotorske rešetke
p_0	bar	tlak na ulazu u statorsku rešetku
p_1	bar	tlak na izlazu iz statorske rešetke
p_2	bar	tlak na izlazu iz rotorske rešetke
${v_0}$	m^3/kg	specifični volumen na ulazu u statorsku rešetku
$v_{t,1}$	m^3/kg	specifični volumen na izlazu iz statorske rešetke
$v_{t,2}$	m^3/kg	specifični volumen na izlazu iz rotorske rešetke
x_0	kg/kg	sadržaj pare na ulazu u stupanj
<i>x</i> ₂	kg/kg	sadržaj pare na izlazu iz stupnja
a_1	m/s	brzina zvuka na izlazu iz statorske rešetke
M_{1t}	-	teoretski Machov broj na izlazu iz statorske rešetke
ε_1	-	odnos tlaka na izlazu i ulazu u statorsku rešetku

Fakultet strojarstva i brodogradnje

Šimun Marinović		Završni rad
F_1	mm^2	potrebna površina izlaznog presjeka statorske rešetke
$e_1 l_1$	mm	fiktivna visina sapnice
e_1	-	parcijalnost sapnica
α_u	0	kut ugradnje lopatica statorske rešetke
$\bar{t}_{opt,1}$	-	relativni optimalni korak lopatica statorske rešetke
b_1	mm	duljina tetive profila statorske rešetke
$t_{1,opt}$	mm	stvarni optimalni korak lopatica statorske rešetke
Z_1	-	broj lopatica statorske rešetke
t _{1,kor}	mm	korigirani stvarni korak statorske rešetke
$ar{t}_{1,kor}$	-	korigirani relativni korak statorske rešetke
ζ'_{pr}	-	koeficijent profilnih gubitaka
k.	_	korekcijski faktor za koeficijente gubitaka u ovisnosti o
$\kappa \alpha_1$		kutu α_{1e}
k_{vh}	-	korekcijski faktor za koeficijente gubitaka zbog odstupanja
		korekcijski faktor za koeficijente gubitaka kod odstupanja
k_{kr}	-	relativne debljine izlaznog brida
$\zeta'_{kanc} \frac{l}{b}$	-	koeficijent rubnih gubitaka
ζ_s	-	koeficijent gubitaka statorske rešetke
φ	-	koeficijent brzine za statorsku rešetku
<i>c</i> ₁	m/s	stvarna apsolutna brzina toka pare na izlazu iz statorske rešetke
$lpha_1$	0	kut toka pare na izlazu iz statorske rešetke
-	m/a	stvarna relativna brzina toka pare na ulazu u rotorsku
<i>w</i> ₁	111/8	rešetku
eta_1	0	kut stvarne relativne brzine toka pare na ulazu u rotorsku rešetku
$\Delta h_{g,S}$	kJ/kg	gubitak u statorskoj rešetci
$\Delta h_{R,is}$	kJ/kg	izentropski toplinski pad u rotorskoj rešetci
w _{2t}	m/s	teoretska relativna brzina toka pare na izlazu iz rotorske rešetke
a_2	m/s	brzina zvuka na izlazu iz rotorske rešetke
M_{2t}	-	teoretski Machov broj na izlazu iz rotorske rešetke
<i>E</i> ₂	-	odnos tlaka na izlazu i ulazu u rotorsku rešetku
F_2	mm^2	potrebna površina izlaznog presjeka rotorske rešetke
Δl	mm	potrebno prekrivanje između lopatica rotorske i statorske rešetke
l_2	mm	visina lopatice rotorske rešetke
$d_{sr,2}$	mm	srednji promjer rotorske rešetke
u_2	m/s	obodna brzina na srednjem promjeru rotorske rešetke
Bre	0	potrebni izlazni kut profila lopatice rotorske rešetke
β_u	0	kut ugradnje lopatica rotorske rešetke

$\bar{t}_{opt,2}$	-	relativni optimalni korak lopatica rotorske rešetke
b_2	mm	duljina tetive profila rotorske rešetke
t _{2,opt}	mm	stvarni optimalni korak lopatica rotorske rešetke
Z_2	-	broj lopatica rotorske rešetke
t _{2,kor}	mm	korigirani stvarni korak rotorske rešetke
$\bar{t}_{2,kor}$	-	korigirani relativni korak rotorske rešetke
ψ	-	koeficijent brzine za rotorsku rešetku
β_2	0	kut stvarne relativne brzine toka pare na izlazu iz rotorske rešetke
<i>W</i> ₂	m/s	stvarna relativna brzina toka pare na izlazu iz rotorske rešetke
$\Delta h_{g,R}$	kJ/kg	gubitak u rotorskoj rešetci
<i>C</i> ₂	m/s	stvarna apsolutna brzina toka pare na izlazu iz rotorske rešetke
α2	0	kut stvarne apsolutne brzine toka pare na izlazu iz rotorske rešetke
$\Delta h_{g,ib}$	kJ/kg	gubitak uslijed izlazne brzine
η_u	-	stupanj djelovanja na obodu kola
ξ_{vent}	-	gubitak regulacijskog stupnja zbog ventilacije
ξ_{tr}	-	gubitak uslijed trenja diska
ξ_{seg}	-	gubitak na krajevima segmenta sapnica
$\xi_{y,S}$	-	gubitak uslijed propuštanja kroz međustupanjsku brtvu na statoru
$\xi_{y,R}$	-	gubitak uslijed propuštanja kroz međustupanjsku brtvu na rotoru
ξ_y	-	ukupni gubitak zbog propuštanja kroz međustupanjsku brtvu
ξ_w	-	gubitak zbog vlažne pare
ξ_{parc}	-	gubitak uslijed parcijalnosti
η_i	-	unutarnji stupanj djelovanja
Δh_i	kJ/kg	iskorišteni toplinski pad stupnja
Δh_g	kJ/kg	gubitak stupnja
h _{izl}	kJ/kg	stvarna entalpija pare na izlazu iz stupnja

Energetsko iskorištavanje šumske ili drvne biomase poznato je još od prapovijesti. Stoljećima je ona bila primaran i gotovo jedini energent, isprva za grijanje nastambi i pripremu hrane, a od industrijske revolucije i za pogon strojeva, vozila i sl. Iako je njezina primjena u posljednja dva stoljeća značajno smanjena jer je gotovo posvuda zamijenjena fosilnim gorivima i električnom energijom, u vrijeme tzv. prve energetske krize, sedamdesetih godina prošlog stoljeća, njezin značaj ponovno počinje rasti. Do promjena je došlo kada se pomalo počelo shvaćati da fosilna goriva neće trajati vječno i da je njihova intenzivna primjena uzrokovala nepopravljiva oštećenja okoliša. Jedan od načina učinkovitog iskorištavanja energije biomase je gradnja malih kogeneracijskih termoelektrana na biomasu kojima je moguće zadovoljiti veliki dio vlastitih potreba lokalnih zajednica za električnom i toplinskom energijom.

Stoga je u okviru ovog završnog rada potrebno predložiti shemu kogeneracijske termoelektrane na biomasu te izraditi predprojekt parne kondenzacijske turbine.

Fokus završnog rada je konstrukcija parne turbine zajedno sa termodinamičkim i aerodinamičkim proračunom.

Ključne riječi: parna turbina, kogeneracija, termoelektrana, biomasa

SUMMARY

Energy exploitation of forests or wood biomass has been known since prehistoric times. For centuries, it has been primary and almost the only energy source, initially for heating houses and preparing food, and since industrial revolution for powering machines, vehicles, etc. aswell. Although its use has been significantly reduced in the last two centuries because it has been replaced almost everywhere by fossil fuels and electricity, at the time of the so-called the first energy crisis, in the 1970s, its significance begins to grow again. The changes came when it was gradually realized that fossil fuels would not last forever and that their intensive use caused irreparable damage to the environment. One way to make efficient use of biomass energy is to build small biomass cogeneration plants that can meet a large amount of the local communities own needs for electricity and heat.

Therefore, in the framework of this paper, it is necessary to propose a scheme of biomass cogeneration thermal power plant and to design a steam condensation turbine.

The focus of the paper is the design of the steam turbine along with thermodynamic and aerodynamic calculation.

Key words: steam turbine, cogeneration, thermal power plant, biomass

1. BIOMASA

Kroz povijest čovjek se je oduvijek služio biološkim izvorima energije, koristeći proizvode fotosinteze biljaka ne samo kao hranu nego i kao gorivo. Stoljećima, drvo je bilo primaran i gotovo jedini energent, do početka intenzivne uporabe fosilnih goriva. Posljednjih 30-ak godina, šumska biomasa ponovno dobiva svoj značaj, shvaćanjem problema preostalih zaliha fosilnih goriva kao i time da je njihova intenzivna primjena uzrokovala nepopravljiva oštećenja za okoliš.

Biomasa je određena kao biorazgradivi dio proizvoda, ostatka i otpadaka od poljoprivrede, šumarstva i drvne industrije, kao i biorazgradivi dio komunalnog i industrijskog otpada čije je energetsko korištenje dopušteno. Dakle, radi se o gorivu uglavnom prirodnog porijekla koje je u cijelosti obnovljivo jer se, nakon što se potroši nadoknađuje prirodnim procesima. Osim ogrjevnog drveta, biomasu čine i najrazličitiji produkti iz biljnog i životinjskog svijeta. Tako se biomasa može podijeliti na šumsku ili drvnu (ostaci i otpaci iz šumarstva i drvno prerađivačke industrije, brzorastuće drveće te drvo koje nastaje kao sporedni proizvod u poljoprivredi), ne drvnu biomasu (proizvodi ciljanog uzgoja npr. brzorastuće alge i trave te ostaci i otpaci iz poljoprivrede) te biomasu životinjskog porijekla koja uključuje životinjski otpad i ostatke.

Konačni pojavni oblici biomase nastaju različitim postupcima pretvorbe i obrade iz prvobitne sirovine: biljaka, ostataka iz šumarske, drvno prerađivačke i poljoprivredne proizvodnje, otpadaka i sl.

Mogućnosti za energetsko iskorištavanje biomase su brojne. Najčešće je izravno iskorištavanje pri čemu ona, bez prethodne pretvorbe u druge oblike, služi kao gorivo u ložištima raznih veličina i izvedbi: od kamina, peći i kotlova za grijanje do velikih energetskih postrojenja (energana, toplana, elektrana, kogeneracijskih postrojenja), pri čemu se proizvode toplinska i sve češće električna energija. Za razliku od toga, posredno iskorištavanje najprije podrazumijeva pretvorbu biomase raznim biokemijskim procesima u plinovita (bioplin) i tekuća goriva (biodizel, alkohol i sl.), čijim se izgaranjem u ložištima raznih izvedbi ili u motorima s unutarnjim izgaranjem potom dobivaju toplinska i električna energija ili mehanički rad.

Danas se biomasa prije svega spominje kao zamjena za fosilna goriva, gdje god je to moguće, čemu su glavni razlog mnogo manje štetne emisije koje nastaju pri izgaranju. Naime, biomasa je neutralna u odnosu na ugljični dioksid, jer taj isti CO_2 koji nastaje njezinim izgaranjem potom se koristi za rast i razvoj drugih biljaka. To znači da je cjelokupna emisija CO_2 koja nastaje izgaranjem biomase uključena u zatvoreni ciklus CO_2 na zemlji.

Slika 1.1. Ciklus ugljičnog dioksida, nastajanje i primjena biomase

1.1 Osnovni oblici šumske biomase

Šumska ili drvna biomasa je ona koja potječe iz šumarstva i drvno prerađivačke industrije. Ona se dobiva iz prirodnih ili novo podignutih šuma tzv. plantažnih. Radi se o najčešćem obliku biomase koji se energetski iskorištava i koji je kao izvor energije posve obnovljiv i uglavnom *Fakultet strojarstva i brodogradnje* 2 neutralan s obzirom na zahtjeve za ravnotežom stakleničkih plinova kao uzročnika klimatskih promjena.

Šumska biomasa ujedno je i jedan od najvećih prirodnih, odnosno obnovljivih izvora energije jer se procjenjuje da danas u svijetu ima više od 4 milijarde ha površine pod šumama, pri čemu treba dodati još oko 4 milijuna ha godišnje, koliko se novih šuma podiže svake godine.

Šumska biomasa danas se pojavljuje, odnosno energetski iskorištava u četiri osnovna uporabna oblika. Kao cjepanice, sječka, briketi i peleti. Suvremena ložišta za šumsku biomasu svojom su geometrijom u pravilu prilagođena primjeni točno određenog uporabnog oblika. Tako se, primjerice, cjepanice danas uglavnom koriste u pećima na drva, kaminima i sl. Za razliku od toga, kod sječke, briketa i peleta u pravilu je omogućeno automatsko dovođenje do ložišta, čime se uvelike olakšava primjena.

Slika 1.2 Sječka

Cjepanice su veći, više ili manje pravilni komadi drvne biomase koji nastaju rezanjem i cijepanjem drvne sirovine, bez ikakve značajne daljnje obrade, osim sušenja. Za primjenu cjepanica u ložištima važno je da budu od zdravog i suhog drva. Udio vlage u cjepanicama smije iznositi najviše do 20%, što se ostvaruje sušenjem na vanjskom zraku u trajanju do dvije godine. Ako su svi ti uvjeti zadovoljeni, ostvaruje se izgaranje sa udjelom pepela manjim od 0,5%. Najveće prednosti izvora topline koji koriste cjepanice su razmjerno niski troškovi goriva

i razmjerno visok stupanj djelovanja, oko 90%. Energija koja se dobije izgaranjem 3 kg cjepanica ekvivalentna je onoj iz 1 l loživog ulja.

Sječka su komadići drvne biomase raznih dimenzija i oblika koji nastaju sječenjem i usitnjavanjem drvne sirovine. Najčešće se koristi u ložištima s toplinskim učinom većim od 50 kW pa sve do više MW, što znači i u kotlovima za centralno grijanje obiteljskih kuća, stambenih, javnih i poslovnih zgrada, ali i u industrijskim energanama i termoenergetskim postrojenjima. Specifična potrošnja energije pri proizvodnji sječke iznosi 2 - 5 kWh/t sječke, što je manje od 0,5% energije koja se može dobiti njezinim izgaranjem. Za primjenu sječke u ložištima važno je da ima što manji udio vlage i da komadići imaju što ravnomjernije dimenzije jer se jedino tako može osigurati djelovanje automatiziranih ložišta bez pojave smetnji.

Briketi su geometrijski pravilni komadi prešane usitnjene drvne sirovine, u pravilu valjkastog oblika, odnosno kružnog poprečnog presjeka. Po obliku, dimenzijama i načinu uporabe su slični cjepanicama, ali imaju mnogo veći energetski potencijal i mnogo bolje izgaraju. Proizvode se prešanjem sito usitnjenog drvnog otpada i bez dodavanja vezivnih sredstava. U sirovini ne smije biti kore, a udio vlage trebao bi najviše iznositi 10%. Udio pepela pri njihovom izgaranju uglavnom ne prelazi 0,5%. Uz to, energija koja se dobije izgaranjem 2 kg briketa ekvivalentna je onoj iz 1 l loživog ulja.

Peleti su geometrijski pravilni komadići prešane usitnjene drvne sirovine, u pravilu valjkastog oblika ili poput tableta. Po obliku se može reći da se radi o vrlo malim briketima. Proizvode se prešanjem piljevine i strugotina osušenog drveta velike ogrjevne vrijednosti (hrasta, bukve, jasena, graba, topole, lipe i dr) pod tlakom do 1000 bar. Udio vlage u peletima iznosi najviše 8%. zbog čega sirovinu prije proizvodnje treba osušiti. Osnovna prednost primjene peleta su, osim velike ogrjevne vrijednosti, njihov oblik i dimenzije zahvaljujući čemu se jednostavno prevoze, skladište te posve automatizirano dovode do ložišta. Energija koja se dobije izgaranjem 2kg peleta ekvivalentna je onoj iz 1 l loživog ulja.

Šimun Marinović

and south a large of the	parametri					
oblik biomase	udio vlage <i>U</i> , %	gornja ogrjevna vrijednost H _a , MJ/kg	donja ogrjevna vrijednost H _d , MJ/kg	gustoća p, kg/m ¹	energetska gustoča, MJ/m ³	
peleti	10	19,8	16,4	600	9840	
prosušena sječka od tvrdog drva	30	19,8	12,2	320	3900	
sječka od tvrdog drva	50	19,8	8,0	450	3600	
prosušena sječka od mekog drva	30	19,8	12,2	250	3050	
sječka od mekog drva	50	19,8	8,0	350	2800	
kora	50	20,2	8,2	320	2620	
piljevina	50	19,8	8,0	240	1920	

Slika 1.3. Udjeli vlage, ogrjevne vrijednosti, gustoća i energetska gustoća najčešćih oblika šumske biomase

1.2. Opskrba šumskom biomasom

1.2.1 Prijevoz šumske biomase

U usporedbi s fosilnim gorivima, šumska ili drvna biomasa ima značajno manju energetsku gustoću, što znači da su troškovi njezinog prijevoza viši. Zbog toga bi putevi njezinog prijevoza trebali biti što kraći, kako bi troškovi bili što niži. Općenito se smatra, da se biomasu za energetsko iskorištavanje isplati transportirati do udaljenosti od 50 km.

Za prijevoz biomase na manje udaljenosti (do 10 km) koriste se traktori s prikolicama, a na srednje i veće udaljenosti kamioni. Za prijevoz trupaca, bala i drvnih ostataka koristi se i željeznica i to uobičajeno za velike udaljenosti, pri čemu postoje različiti vagoni za različite oblike biomase.

Za prijevoz biomase brodovima odlučujuće su količine, a primjer je prekooceanska trgovina peletima. Osim peleta, brodovima se može prevoziti i drvna sječka i balirana biomasa. Udio transporta u cijeni biomase kao goriva iznosi 10 - 20%. Najčešće se uz postrojenje nalazi skladište dovoljno za rad od nekoliko dana, a biomasa se redovito dovozi od pojedinačnih dobavljača.

1.2.2 Skladištenje i prijenos šumske biomase

Skladištenje šumske ili drvne biomase je postupak koji se provodi uvijek kada postoji vremenska razlika između njezine proizvodnje, odnosno isporuke i primjene u ložištu. Biomasa se u pravilu skladišti neposredno pokraj ložišta u kojem se koristi, kako bi se osigurao njegov nesmetani rad.

Jedan od glavnih tehničko – tehnoloških problema pri energetskom iskorištavanju biomase je mala energetska vrijednost po jedinici mase, odnosno mala nasipna težina. To zahtijeva velike prostore skladištenja, pa se iz tog razloga pristupa peletiranju, odnosno briketiranju biomase čime se znatno povećava nasipna težina.

Rasuta biomasa poput kore ili sječke najčešće se skladišti u bunkerima (prostorijama u zgradi posebno namijenjenim za skladištenje tog tipa biomase). Piljevina i finiji drvni otpad se najčešće skladište u silosima kako bi se spriječila emisija prašine u okolicu. Promjer silosa može iznositi i do 15 m, a visina do 40m. Za automatsko ispuštanje biomase iz silosa koristi se rotirajući vijak s miješalicom. Balirana drvna biomasa najčešće se skladišti na otvorenom prostoru jer je manje sklona biološkoj degradaciji i manje osjetljiva na vlagu. Pokrivanje tog prostora tada nije potrebno.

1.3. Mogućnosti za energetsko iskorištavanje šumske biomase u Hrvatskoj

Energetsko iskorištavanje šumske ili drvne biomase u Hrvatskoj ima dugu tradiciju, a posebice kada se radi o ogrjevnom drvu i drvnim ostacima. No, danas je njezin udio u pokrivanju potreba za energijom značajno smanjen. S jedne su strane tome razlog sve veća uporaba drugih energenata koji pružaju veću udobnost primjene, a s druge strane, treba spomenuti i razmjerno nisku ekološku svijest stanovništva koje daje prednost 'suvremenim' energentima, bez obzira na očite prednosti biomase, niži troškovi za drvo itd.

Na žalost, takvo stanje je u suprotnosti s potencijalom koje Hrvatska ima za iskorištavanje biomase. Naime, površina šumskog zemljišta u Hrvatskoj iznosi 2,580 mil. Ha, od čega je

površina pod šumama, odnosno obrasla šumska površina 2,377 mil. Ha, što čini oko 42% kopnene površine Hrvatske.

Kada se radi o vrsti drva, prevladavaju listače (84%), dok je četinjača 16%. Pri tome je najzastupljenija bukva (35%), a zatim slijede hrastovi (25%), jela i smreka (13%), grab (8%), jasen (3%) i borovi (2%).

Drvna zaliha u Hrvatskoj se procjenjuje na oko 552,15 mil. m^3 . Pri tome tehnička oblovina čini 40%, ogrjevno i industrijsko drvo 40%, a otpad 20%. Trenutačno raspoloživa drvna biomasa za iskorištavanje u energetske svrhe može se procijeniti na oko 5,59 mil. m^3 godišnje, odnosno oko 70,56 PJ.

Oblik drvne biomase	Količine,	Energetski
	mil. m ³	potencijal,
	godišnje	PJ
Drvo	1,89	24,33
Drvni otpaci	0,7	8,65
Kora	0,21	2,01
Ostaci iz drvno prerađivačke industrije	1,39	17,89
Drvna biomasa iz djelatnosti Hrvatskih voda, Hrvatskih cesta i HEP-a	0,4	4,8
Energetski nasadi	1,0	12,8
ukupno	5,59	70,56

Tablica 1.1 Godišnje količine i energetski potencijal raznih oblika drvne biomase

1. 4. Utjecaj primjene šumske biomase

Emisije koje nastaju pri izgaranju šumske ili drvne biomase su njezin najvažniji utjecaj na okoliš. Naime, treba reći da se, strogo promatrajući, šumska biomasa i fosilna goriva s obzirom

na emisije pri izgaranju uopće ne razlikuju jer u oba slučaja nastaju velike količine ugljičnog dioksida i brojnih drugih štetnih tvari. No, u obzir valja uzeti i činjenicu da je preostalo i novo zasađeno drveće zapravo svojevrstan 'ponor' CO_2 jer ga troše za svoj rast i razvoj, što je i razlog zašto se energetsko iskorištavanje šumske biomase smatra CO_2 neutralnim. Dakle, može se reći da se primjenom biomase umjesto fosilnih goriva ugljik koje je pohranjen u fosilnim gorivima zapravo vraća na zemlju, a ne odlazi u atmosferu gdje kao CO_2 stvara efekt staklenika i uzrokuje klimatske promjene.

Ipak, istodobno se ne može reći ni da pri primjeni biomase kao goriva nema nikakvog onečišćenja okoliša štetnim emisijama. Naime, pri izgaranju biomase nastaju emisije još nekih štetnih tvari kao npr. dušičnih i sumpornih oksida, koje nisu 'neutralne', a do emisija također dolazi i u svim koracima procesa njezinog iskorištavanja. Zbog toga se pri usporedbi emisija fosilnih goriva i biomase uvijek mora uzeti u obzir cjelokupan proces energetskog iskorištavanja. Uz sve to, mora se naglasiti da CO_2 neutralnost šumske biomase vrijedi samo uz pretpostavku ponovnog uzgoja iste količine drva koja je iskorištena za njezino pridobivanje.

1.5. Mogućnosti za smanjivanje emisija pri izgaranju šumske biomase

Emisije pri izgaranju šumske ili drvne biomase mogu se smanjiti raznim tehničkim mjerama koje mogu biti primarne, one kojima se utječe na odvijanje procesa izgaranja te sekundarne, kojima se utječe na izvedbu ložišta i/ili sustava odvoda dimnih plinova.

Primarne mjere za smanjivanje emisija obuhvaćaju postupke kojima se izravno utječe na odvijanje procesa izgaranja kako i se pri tome smanjilo ili izbjegnulo nastajanje pojedinih štetnih dimnih plinova. Najčešće podrazumijevaju promjenu sastava goriva, smanjenje udjela vlage u gorivu, izgaranje sa stupnjevanim dovođenjem zraka ili goriva, te recirkulaciju dimnih plinova.

Sekundarne mjere za smanjivanje emisija obuhvaćaju postupke, odnosno načine kojima se utječe na izvedbu ložišta i/ili sustava za odvod dimnih plinova kako bi se iz njih izdvojile i na odgovarajući način zbrinule štetne tvari, a najčešće podrazumijevaju smanjivanje emisija NO_x , smanjivanje emisije sumpornih oksida odnosno smanjivanje emisije čestica.

1.6. Budući trendovi korištenja energije biomase

Uporaba biomase za proizvodnje u budućnosti zahtijevati će daljnji razvitak tehnologija koje će omogućiti povećanje stupnja iskoristivosti goriva i sniziti cijenu tako proizvedene energije na ekonomski konkurentnu razinu.

Na temelju analiza svih mogućnosti ekonomičnog iskorištenja biomase za proizvodnju električne energije jedna od najisplativijih tehnologija je rasplinjavanje biomase. Dobiveni plin moguće je uz visok stupanj učinkovitosti koristiti u plinskoj turbini.

Biomasa je jedini obnovljivi izvor energije iz kojeg je moguće proizvoditi visokovrijedna tekuća i plinovita goriva, a u budućnosti se očekuje njihova još veća primjena, što bi uvelike smanjilo potrošnju fosilnih goriva u prometu. Proizvodnja biogoriva iz biomase jedna je od tehnologija za koju se očekuje da će u budućnosti doživjeti svoju punu potvrdu.

Značajnu ulogu u široj primjeni biomase za proizvodnju energije može imati i biotehnologija i genetički inženjering. Uzgoj biljnih vrsta kod kojih će efikasnost fotosinteze biti veća od dosadašnje može osigurati velike količine biomase kao mogućeg goriva i sirovine za kemijsku preradu.

2. KOGENERACIJSKE TERMOELEKTRANE

2.1. Općenito

Kogeneracijska postrojenja su postrojenja u kojima se istovremeno proizvodi električna i toplinska energija. Činjenica da se ispušni plinovi ili para iz procesa proizvodnje električne energije dodatno koriste i za proizvodnju toplinske energije, temelj je visoke energetske učinkovitosti, odnosno ekonomičnosti takvih postrojenja. Iz visoke energetske učinkovitosti te stoga smanjene emisije štetnih tvari u okoliš, proizlazi i njihova ekološka prihvatljivost, što je veoma značajno svojstvo. S obzirom da ukupni stupanj učinkovitosti ovakvih postrojenja može prijeći čak i 90%, jasno je da su kogeneracijska postrojenja danas najučinkovitija, a pritom i ekološki vrlo prihvatljiva rješenja za proizvodnju toplinske i električne energije.

U konvencionalnim termoelektranama više od polovice primarne energije se ne može korisno upotrijebiti. U kogeneracijskim postrojenjima upravo se ta toplina, neiskorištena pri proizvodnji električne energije, koristi za proizvodnju toplinske energije. Proizvedena toplinska energije može se koristiti u razne svrhe. U industriji se kogeneracijska postrojenja najčešće koriste za proizvodnju pare različitih parametara koja se zatim koristi kao toplina u različitim tehnološkim procesima.

Područja primjene kogeneracije vrlo su brojna, kako u industrijskom tako i u općem sektoru potrošnje. S energetskog stajališta, najpogodniji objekti za primjenu kogeneracije su oni kod kojih se toplinska energija troši kontinuirano i duži vremenski period tijekom dana, tjedna ili godine.

Ključni kriteriji pri izboru kogeneracije jesu značajke potrošnje toplinske i električne energije jer je kogeneracija najučinkovitija kada pokriva temeljno toplinsko i električno opterećenje. Bitno je da li temeljna toplinska i električna opterećenja čine znatan dio ukupne godišnje potrošnje energije i da li traju više od 3000 do 5000 sati godišnje, jer samo u tom slučaju kogeneracija postaje isplativa te se može pristupiti obradi tehničkih i ekonomskih čimbenika.

Slika 2.1. Shematski prikaz pretvorbe energije u kogeneracijskom postrojenju

2.2. Različiti tipovi kogeneracijskih postrojenja

Kroz razvoj kogeneracijskih postrojenja, došlo je do otkrića raznih izvedbi kojima se može uspješno istovremeno proizvoditi toplinska i električna energija. Različite izvedbe tih postrojenja mogu se podijeliti na 4 osnovna tipa, kogeneracija na bazi motora s unutrašnjim izgaranjem, na bazi plinsko turbinskog agregata, na bazi parno turbinskog agregata te na bazi gorivih ćelija.

U ovome radu najviše će nas zanimati izvedba kogeneracijskog postrojenja na bazi parno turbinskog agregata. Takav tip postrojenja bazira se na protutlačnim ili kondenzacijsko oduzimnim parnim turbinama, koje u sprezi s električnim generatorima proizvode toplinsku i električnu energiju.

Ovakva postrojenja s parnim turbinama koriste se najčešće za veće snage i u industriji koja za svoje potrebe treba veće količine topline tj. vodene pare. Nešto češće koriste se postrojenja s kondenzacijskom turbinom, jer kod postrojenja s protutlačnom turbinom proizvedena električna energija je nusproizvod i ovisi o količini potrebne toplinske energije, te zbog toga takva postrojenja ne mogu raditi kada nema potrebe za toplinskom energijom.

Zbog ekonomskih razloga, mala parno turbinska kogeneracijska postrojenja snage do 5 MW imaju opravdanje samo za kruta goriva, poput drvnih ostataka, ugljena, biomase. Najpovoljnija

je solucija kada je izvor goriva sam tehnološki proces industrijskog postrojenja, pa se na taj način uz proizvodnju energije rješava i problem otpada. Upravo jedna izvedba takvog parno turbinskog postrojenja koje kao gorivo koristi biomasu biti će u fokusu ovog rada.

2.3. Kogeneracija na biomasu

Šumska ili drvna biomasa se danas sve češće koristi kao energent u velikim energetskim postrojenjima, za istodobnu proizvodnju toplinske i električne energije. Ta je tehnologija dobro poznata i pouzdana, čemu su najbolji dokaz brojna postrojenja koja su u pogonu već dugi niz godina.

Takva postrojenja sastoje se od tri glavna dijela, na osnovi kojih se potom dimenzioniraju, odabiru i izvode ostali dijelovi, a to su kotao, skladište šumske biomase te sustav za dovođenje šumske biomase do ložišta.

Slika 2.2. Kogeneracijska termoelektrana u Slatini

Najvažniji dio ovakvih postrojenja u kojem se odvija pretvorba raznih oblika energije su kotlovski i turbo-generatorski dio. U kotlovskom dijelu najprije dolazi do izgaranja biomase u ložištu pri čemu se proizvodi para koja potom u turbo-generatorskom dijelu ekspandira te pogoni parnu turbinu koja potom okreće električni generator i proizvodi električnu energiju. Sva otpadna toplina potom se koristi za proizvodnju toplinske energije za pokrivanje potreba toplinarskog sustava ili tehnoloških procesa. Omjer proizvodnje toplinske i električne energije pri tome najčešće iznosi 2 : 1, što znači da od ukupne raspoložive energije, 2/3 pretvara u toplinsku, a 1/3 u električnu energiju.

Slika 2.3. Shematski prikaz kogeneracijske elektrane na biomasu

3. PARNE TURBINE

3.1 Općenito o parnim turbinama

Parne turbine su pogonski strojevi koji toplinsku energiju pare pretvaraju u kinetičku energiju, a potom rotacijom rotora u mehanički rad. Kao pogonski medij obično se rabi vodena para. Toplinska energija pare, koja je dobivena u parnom kotlu ili nuklearnom reaktoru, a očituje se kao povišenje parametara (tlaka i temperature) iznad stanja okoline, pretvara se u mehanički rad posrednim putem. Prva faza procesa je ekspanzija pare, tj. pad tlaka i temperature, te porast obujma. Ekspanzijom se postiže ubrzavanje strujanja pare, te se na taj način toplinska energija pretvara u kinetičku. U drugoj fazi te posredne pretvorbe, kinetička energija parnog mlaza koristi se za stvaranje obodne sile na rotoru i njegovo pokretanje, čime dobivamo pretvorbu kinetičke energije u mehanički rad. Rotor turbine spojen je spojkom s nekim radnim strojem (generator, pumpa, itd.) kojemu se predaje mehanički rad.

Posredna pretvorba energije posredovanjem kinetičke energije parnog mlaza velike brzine (reda veličine nekoliko stotina m/s) daje parnoj turbini jedno od osnovnih obilježja, vrlo veliku brzinu vrtnje rotora. Glavnina najvećih stacionarnih turbina ima brzinu vrtnje od 3000 o/min, dok brodske, industrijske i razni tipovi manjih i sasvim malih jedinica imaju još veće brzine vrtnje. Gornja granica je oko 30000 o/min.

Shema parne turbine prikazana je na slici 3.1. Para dolazi u ulazni dio kućišta kroz paro razvodne ventile i brzo zatvarajući ventil svježe pare, koji radi jednostavnosti nisu prikazani na slici. Proces ekspanzije postupno se odvija unutar turbine. Para prolazi izmjenično kroz redove nepokretnih statorskih i pokretnih rotorskih lopatica, pri čemu statorske lopatice usmjeruju mlaz pare na rotorske lopatice. Profili obiju vrsta lopatica, njihova dužina i međusobni položaj određuju se u skladu sa zakonima strujanja pare. Red statorskih i rotorskih lopatica čine jedan stupanj turbine. Turbine mogu imati samo jedan stupanj, pa do nekoliko desetaka stupnjeva, što zavisi o snazi jedinice i parametrima pare. Statorske lopatice prvog stupnja nazivamo ulaznim sapnicama, jer kroz njih ulazi para u protočni dio turbine. Rotorske su lopatice učvršćene na rotor, a statorske na kućište. Na mjestu gdje rotor izlazi iz kućišta, s prednje i stražnje strane, ugrađene su brtvenice, koje sprječavaju prodiranje pare iz kućišta u atmosferu, ili zraka iz atmosfere u kućište ako je tlak pare u kućištu niži od atmosferskog tlaka. Obično se ugrađuju razni tipovi labirintnih brtava. Rotor turbine okreće se u dvama kliznim ležajevima, mazanim

cirkulacijskim sustavom za mazanje, koji su smješteni u posebna kućišta, ležajna postolja, tako da ne dolazi do dodira između pare i ulja za mazanje. Stražnji ležaj je obično čvrsto vezan za temelj, dok prednji pri aksijalnom toplinskom dilatiranju turbine klizi po temeljnoj ploči, vođen klinom za vođenje. U prednjem ležajnom postolju smješten je regulator brzine vrtnje, pumpa za mazanje i drugi pomoćni uređaji, koji pokreću rotor. Stražnje ležajno postolje obuhvaća obično spojku, a može nositi i prednji ležaj gonjenog stroja, ako taj nema svoje posebno prednje ležajno postolje.

Slika 3.1. Shematski prikaz presjeka reakcijske turbine

Ispušna para turbine ima zbog ekspanzije znatno veći obujam od svježe pare, zbog toga su presjeci za prolaz pare prema izlaznom kraju turbine sve veći (duže lopatice), veliki presjek ispušnog otvora.

3.2. Energetska bilanca parne turbine

Teorijski, pretvorba energije u turbini može se pratiti s pomoću prikaza u dijagramu i-s (h-s) na slici 3.2.

Slika 3.2. Prikaz ekspanzije u turbini

Na ulazu u turbinu svježa para ima parametre p_1 i t_1 , koji su nešto niži od parametara na izlazu iz generatora pare p_0 , t_0 . Tlak pare pred turbinom obično je za oko 5% niži od tlaka na izlazu iz kotla, odnosno reaktora. Taj gubitak tlaka uvjetovan je otporima ulaznog parovoda i armature između generatora pare i turbine. Pad temperature – za 3 do 10°C, nastaje zbog gubljenja topline u okoliš kroz stijenu i izolaciju parovoda. Veličina pada temperature ovisi o dužini cjevovoda, stanju i brzini pare, te o karakteristikama toplinske izolacije cjevovoda. Tlak i temperatura pare pred turbinom određuju i specifičnu entalpiju pare u točki 1, koju ucrtavamo u dijagram i-s, a vrijednost specifične entalpije pare na ulazu u turbinu označava se s i_1 .

Od točke 1 započinje proces pretvorbe energije u turbini, a parametri pare u toj točki određuju gornju ili ulaznu energetsku razinu pri toj pretvorbi. Donja, ili izlazna energetska razina zadana je tlakom na izlazu iz turbine p_2 , koji zavisi o vrsti pogona, tj. o tome da li je turbina izvedena s kondenzacijom ili na neki protutlak.

Prema tome, sama turbina nema utjecaja na parametre pare ispred nje same, ni na tlak iza nje. Ta dva uvjeta nametnuta su izvana, i turbini preostaje jedino, da iz zadane razlike energetskih razina izvuče što više mehaničke energije.

U teorijskom slučaju tijek ekspanzije u turbini od tlaka p_1 do tlaka p_2 mogao bi teći izentropski, tj. po liniji s=konst., pri čemu se pretpostavlja ekspanzija pare bez gubitaka. U

takvom bi se slučaju u mehanički rad mogla pretvoriti razlika entalpija po jednom kilogramu pare:

$$H_t = i_1 - i_2$$

Razlika specifičnih entalpija H_t zove se izentropski (adijabatski) ili teorijski toplinski pad. Uvedemo li sada u račun protjecajnu količinu pare kroz turbinu D, možemo lako izračunati koliku snagu može u teorijskom slučaju dati neka turbina sa zadanim protokom pare i teorijskim toplinskim padom:

$$P_t = D \cdot H_t$$

Dobiveni izraz za P_t daje teorijsku snagu turbine, kada bi ekspanzija tekla izentropski. Teorijska korisnost jedna je od najvažnijih obilježja turbinskog ciklusa. Nju dobivamo razmatranjem izentropske ekspanzije, kao odnos između teorijski iskorištene topline u turbini i ulazne topline.

S prijašnjim oznakama imamo: Ulazna toplina:

$$Q_1 = D \cdot i_1$$

Teorijska izlazna toplina:

$$Q_{2'} = D \cdot i_{2'}$$

Teorijski iskorištena toplina u turbini:

$$Q_t = Q_1 - Q_{2'}$$
$$Q_t = D \cdot (i_1 - i_{2'}) = D \cdot H_t$$

Teorijska korisnost:

$$\eta_t = \frac{Q_t}{Q_1} = \frac{D \cdot (i_1 - i_{2'})}{D \cdot i_1} = \frac{i_1 - i_{2'}}{i_1}$$

Teorijska izlazna toplina:

$$\eta_t Q_1 = Q_1 - Q_{2'}$$

 $Q_{2'} = (1 - \eta_t) \cdot Q_1$

Teorijska izlazna toplina Q_2 , gubitak je, na koji izvedba turbine nema utjecaja. On zavisi samo o početnom stanju pare i konačnom tlaku ekspanzije, a te su veličine dane kao vanjski faktori. Promatranjem formule za izračunavanje teorijske korisnosti uočavamo da se njezina vrijednost približava jedinici u dva slučaja: povećavanjem vrijednosti i_1 , i smanjivanjem vrijednosti i_2 .

To znači da se bolja iskoristivost dobiva povišenjem energetske razine tj. tlaka i temperature pare na ulazu u turbinu i sniženjem energetske razine pare na izlazu tj. sniženjem tlaka ispušne pare. Takvo razmatranje teorijske iskoristivosti osnova je teorije svih toplinskih strojeva. Posebnu važnost povećanju tog odnosa pridajemo pri projektiranju termoelektrana, čime se smanjuje glavni gubitak termoenergijskog ciklusa. Važnost gubitka s teorijskom izlaznom toplinom $Q_{2'}$ proizlazi iz toga što je taj gubitak po svojoj veličini najveći gubitak kružnog procesa parne termoelektrane, ili bilo kojeg procesa sa parnom turbinom.

3.3. Podjela parnih turbina

Parne turbine najčešće rade s vodenom parom. Ima izvedenih postrojenja koja rade s živinom parom, međutim to je samo od eksperimentalnog značaja, kao i postrojenja s parom freona.

Parne turbine se prema načinu i mjestu gdje se para odvodi od turbine mogu podijeliti na kondenzacijske parne turbine i parne turbine s protutlakom, na kondenzacijske parne turbine s jednom ili više oduzimanja te protutlačne parne turbine s jednim ili više oduzimanja.

Kondenzacijske parne turbine su one kod kojih se para koja izlazi iz turbine odvodi u kondenzator. Para u kondenzatoru kondenzira pomoću rashladnog fluida, a toplina kondenzacije se ne koristi ni za kakve daljnje svrhe grijanja već se predaje okolini. U pravilu je tlak pare koja se kondenzira niži od atmosferskog da bi se snizila temperatura pri kojoj nastaje kondenzacija, a iskoristila u najvećoj mogućoj mjeri radna sposobnost pare za dobivanje rada. Kondenzat se odvodi u generator pare kao napojna voda. Ekspanzijom pare do tlaka dosta nižeg od atmosferskog, a time i do temperature koja je samo malo viša od temperature okoline dobiva se iz pare skoro maksimalni rad. Ovo i odgovara namjeni ovih turbina, koje prije svega služe za proizvodnju električne energije u termoelektranama. U ovakvim postrojenjima je potrebno iz topline dobiti najveći mogući rad. To se pak može postići samo ako se ekspanzija pare produži skoro do temperature okoline. Kako se ekspanzija pare u turbini, kako je navedeno, vrši skoro do temperature okoline, zbog dobivanja najvećeg mogućeg rada, to je nemoguće iskoristiti toplinu kondenzacije za daljnje svrhe.

Protutlačne parne turbine se primjenjuju onda kada je pored mehaničkog rada (odnosno električne energije) potrebna za neke industrijske ili komunalne potrebe toplina. U tom slučaju s ekspanzijom pare se ne ide (kao kod kondenzacijske turbine skoro do temperature okoline) skoro do temperature okoline, već do tlakova odnosno temperatura koji su potrebni za neki proces. Para koja izlazi iz turbine odvodi se potrošačima pare ili potrošačima topline te pare. Kako su pri većini ovakvih procesa potrebne više temperature pare, to su tlakovi obično viši od atmosferskog. Zato se ovakve turbine i nazivaju protutlačne.

Parne turbine s oduzimanjem pare (tzv. reguliranim oduzimanjem, pošto se parametri oduzete pare reguliraju) i kondenzacijom su kombinacija prethodna dva tipa turbina. Kod ovih turbina se jedan dio pare, koji je ekspandirajući od ulaznog tlaka predao određeni rad rotoru, oduzima iz turbine i odvodi potrošačima pare. Ostatak pare ekspandira dalje do tlaka kondenzacije pri čemu se iz nje dobiva i dalje rad. I ovakve turbine služe dakle kao i turbine s protutlakom u spojnim procesima za dobivanje električne energije iz topline i za snabdijevanje potrošača toplinom. Ukoliko se para, koja dalje ekspandira u turbini nakon mjesta u kojem se određeni dio oduzima, ne uvodi u kondenzator već i ona ostaje na višem tlaku onda je to turbina s oduzimanjem i protutlakom. Ukoliko potrošači zahtijevaju paru različitih tlakova i temperatura, mogu se graditi turbine s dva oduzimanja, tri oduzimanja, itd. Mogućnosti kombinacije ovakvih tipova su mnogobrojne, pa se susreću veoma različiti tipovi.

Također, još jedna od često korištenih podjela je podjela parnih turbina prema načinu rada, odnosno bolje rečeno prema načinu na koji se ostvaruje sila u rotorskim lopaticama. Prema tome kriteriju turbine se mogu podijeliti uglavnom na tri tipa. Ti tipovi su akcijski, reakcijski i kombinirani.

Kod akcijske turbine para ekspandira uglavnom u statorskim lopaticama (tj. statorskoj rešetci) turbinskog stupnja. Sile koje se dobivaju na obodu rotorskog kola i koje djeluju na lopatice su posljedica uglavnom skretanja tj. promjene pravca relativne brzine. Ova promjena impulsa zbog skretanja daje sile koje djeluju na lopatice rotora. Ovakav tip turbine, kod kojeg se kinetička energija dobivena ekspanzijom u jednoj statorskoj rešetki koristi u više rotorskih rešetki, naziva se po pronalazaču Curtisova turbina, slika 3.3.

Slika 3.3. Curtisova turbina

Kod reakcijskih turbina, para ekspandira kako u statorskim lopaticama (statorskoj rešetci), tako i u rotorskim lopaticama (tj. rotorskoj rešetci). Ova ekspanzija je uglavnom najčešće takva da se ostvaruje podjednaka promjena toplinskog toka i u statorskoj i u rotorskoj rešetci. U ovom slučaju se dakle sila na obodu rotorskih lopatica ne dobiva samo kao posljedica skretanja. Zbog promjene toplinskog pada u rotorskoj rešetci para se ubrzava, pa je sila posljedica i tog ubrzavanja. Zbog pojave ove reakcijske sile ovakva turbina se i naziva reakcijska turbina. Veoma često se ovakav tip turbine naiva prema svom pronalazaču Parsonsova turbina.

Kombiniranog tipa su one turbine koje imaju kako akcijske, bilo jednostavne ili Curtisove, tako i reakcijske stupnjeve.

3.4. Proces pretvorbe energije

U ovome poglavlju razmatrati će se rad jednog stupnja turbine, kao osnovne jedinice njezina protočnog dijela. Turbina može imati samo jedan stupanj ili više stupnjeva, u kojima se *Fakultet strojarstva i brodogradnje* 20 stalno ponavlja načelno isti proces, kao u prvom stupnju, te slijedeća razmatranja jednako vrijede za jednostupne i višestupne turbine.

Stupanj parne turbine obuhvaća red statorskih lopatica i sljedeći red rotorskih lopatica u smjeru strujanja pare. U njemu se odvija osnovna pretvorba energije, to jest ekspanzijom pare stvara se brzina parnog mlaza, zatim se brzina poništava i pretvara u mehanički rad rotora.

Prvi dio tog procesa, tj. ekspanzija, sastoji se u tome da se odgovarajućim oblikovanjem presjeka za prolaz pare omogući stalno istjecanje pare iz prostora s višim tlakom u prostor s nižim tlakom. Ako je turbina jednostupna, riječ je o tlakovima p_1 i p_2 prema slici 3.2., te taj jedan stupanj prerađuje cijelu razliku tlakova pare, koja stoji turbini na raspolaganju. Kod višestupne turbine svaki stupanj prerađuje dio te razlike, i to tako da započinje s tlakom na izlazu iz prethodnog stupnja, a stanje pare na izlazu iz promatranog stupnja ulazno je stanje sljedećeg stupnja.

Iz iskustva je poznato da će brzina strujanja kroz bilo kakav otvor biti to veća što je veća razlika tlakova ispred i iza otvora. To vrijedi i za parnu turbinu, s tim da ovdje utječu ne samo tlakovi, nego i temperature, tj. energetske razine ispred i iza stupnja, a te su energetske razine dane specifičnim entalpijama pare. Iz toga, može se zaključiti da će brzine strujanja pare zavisiti o raspoloživom toplinskom padu stupnja. Ako je raspoloživi toplinski pad veći, dobivaju se veće brzine i više mehaničke energije na osovini rotora po kilogramu pare.

Proces ekspanzije može načelno teći na dva osnovna načina, pri čemu razlikujemo ekspanziju u akcijskoj i ekspanziju u reakcijskoj turbini. Osnovna razlika je u tome što kod reakcijske turbine ekspanzija teče kroz čitav stupanj, a kod akcijske se proces ekspanzije završava u statorskom dijelu.

Drugi dio procesa, tj. poništavanje brzine pare i njezina pretvorba u rat rotora, zbiva se kod svih tipova turbina u rotorskom dijelu. Kanal za prolaz pare između dviju rotorskih lopatica tako je oblikovan da para ulazi u smjeru koji se približno podudara sa smjerom okretanja rotora, a zatim zaokreće, gurajući pri tome rotor prema naprijed, u smjer približno suprotan smjeru okretanja, i s tim smjerom izlazi iz rotorskog kanala. Zbog suprotnosti smjera strujanja pare na izlazu iz rotora i smjera gibanja rotora dobiva se zapravo poništavanje brzine pare, njezina kinetička energija na taj način se predaje rotoru.

3.4.1. Pretvorba energije u stupnju akcijske turbine

Slika 3.4. Pretvorba energije u stupnju akcijske turbine

Ekspanzija se odvija samo u statorskom dijelu, dok se u rotorskom kanalu odvija samo skretanje parnog mlaza i primopredaja kinetičke energije između pare i rotora. Način postupne pretvorbe brzine pare u mehanički rad rotora prikazan je s pomoću takozvanih trokuta brzina. Prvi, ulazni trokut prikazuje brzinu na izlazu iz statora c_s , te vektorsko odbijanje obodne brzine – u od brzine c_s radi određivanja veličine i smjera relativne brzine w_s na ulazu u rotor. Kroz rotorski se kanal para kreće brzinom w, koja postupno mijenja smjer, dok na izlazu ne dobijemo brzinu w_i , koja je nešto manja od w_s zbog gubitka u rotoru. Apsolutna brzina pare c_i na izlazu iz stupnja dobiva se kao rezultanta brzine pare rotora u. Te tri brzine tvore izlazni trokut.

Rezultat tog procesa je taj, da je brzina c_i znatno manja od brzine c_s , tj. apsolutna brzina pare je većim dijelom potrošena. Pogonski moment za okretanje rotora dobiva se kod akcijske turbine samo zbog skretanja parnog mlaza.
Akcijske turbine odlikuju se robusnošću protočnog dijela i većom sigurnošću u pogonu, jer se sastoje od manjeg broja stupnjeva s krupnim lopaticama. Ispred i iza rotorskog dijela vlada isti tlak, te zračnosti oko lopatica mogu biti veće što povećava sigurnost, bez posebne opasnosti od bježanja pare okolnim putem u sljedeći stupanj. Kola se buše u svrhu potpunijeg izjednačenja tlaka. Rotor se može izvesti s diskovima, a između njih su takozvane dijafragme, u koje se ulažu statorske lopatice. Kada tlakovi ispred i iza rotorskog reda ne bi bili isti, takva izvedba ne bi bila moguća, jer bi nastajale velike aksijalne sile, koje bi potiskivale rotor u smjeru strujanja pare.

Akcijska turbina u općem slučaju ima nešto lošiju korisnost od reakcijske, ako se pri današnjem stanju razvoja obiju vrsta uopće može govoriti o ozbiljnim razlikama u pogledu ekonomičnosti.

3.4.2. Pretvorba energije u stupnju reakcijske turbine

Slika 3.5. Pretvorba energije u stupnju reakcijske turbine

Kod reakcijske turbine, ekspanzija se odvija u čitavom stupnju, što je uočljivo iz krivulje promjene tlaka. Ulazni i izlazni trokut brzina nastaju na isti način, kao i kod akcijskog stupnja, s tom razlikom da je relativna brzina pare na izlazu iz rotorskog kanala w_i veća od ulazne relativne brzine w_s . To je zbog toga što se i u rotoru odvija dio procesa ekspanzije, te pri strujanju pare kroz rotorski kanal relativna brzina raste. I u tom slučaju se kao konačni rezultat dobiva apsolutna izlazna brzina c_i , koja je manja od ulazne c_s čime se postiže pretvaranje kinetičke energije parnog mlaza u mehanički rad na osovini rotora. Pogonski moment se kod reakcijske turbine dobiva dijelom skretanjem parnog mlaza u rotorskom kanalu, kao i kod akcijske turbine. Drugi dio pogonskog momenta nastaje zbog ekspanzije pare u rotorskom kanalu i stvaranja reaktivnog pritiska. Po tome je ta skupina turbina i dobila ime – reakcijske turbine.

Usporedbom trokuta brzina akcijskog i reakcijskog stupnja lako uočavamo da se kod reakcijskog stupnja ne dobiva toliko drastično smanjenje apsolutne brzine pare kao kod akcijskog. Zbog toga reakcijski stupanj ne može na zadovoljavajući način preraditi toliku razliku entalpija kao akcijski, te će reakcijska turbina općenito imati veći broj stupnjeva od akcijske, što je njezin nedostatak, to jest dobiva se mnogo redova manjih i osjetljivih lopatica.

Nadalje, tlak ispred i iza rotorskog reda nije jednak. Zbog toga se rotor radi kao bubanj, bez diskova, da bi se smanjile površine na koje djeluje ta razlika tlaka i tako dobio manji aksijalni potisak rotora. Aksijalni potisak smanjuje se još i posebnim mjerama, kao što je npr. ugradnja specijalne labirintne brtve velikog promjera. Razlika tlakova ispred i iza rotora stvara gubitke zbog bježanja pare kroz zračnost oko rotorskih lopatica, te zračnosti moraju biti što manje. Ta okolnost smanjuje sigurnost turbine, jer lakše dolazi do dodira rotirajućih i mirujućih dijelova.

Nasuprot svim tim lošim stranama, glavna je prednost reakcijske turbine njezina bolja korisnost, koja proizlazi iz ekspanzijskog strujanja u rotoru. Zbog ekspanzije para nastoji što bolje popuniti rotorski kanal, te ne dolazi do odcjepljenja mlaza od stijena kanala i vrtloženja pare u njemu. Taj argument je u prvoj polovini prošlog stoljeća imao posebnu težinu, jer se i nisu gradile veće jedinice. Danas, obje vrste turbina već su toliko unaprijeđene da su nedvojbeno jednako sigurne u pogonu, a potrošnja pare je ista. Dapače, današnje akcijske turbine imaju profile lopatica donekle slične reakcijskim, te su po pretvorbi energije između klasične akcijske i klasične reakcijske turbine.

Reakcijski način gradnje neprihvatljiv je kod jednostupnih turbina zbog malog toplinskog pada, koji može preraditi jedan stupanj. Ni izvedba s parcijalnim privodom ne dolazi u obzir kod reakcijskog stupnja jer bi para strujala kroz raspor između statora i rotora. Zbog toga se *Fakultet strojarstva i brodogradnje* 24

kod reakcijskih turbina uvijek ugrađuje kao prvi jedan akcijski stupanj ili stupanj Curtisa čime se omogućuje regulacija snage isključivanjem pojedinih skupina sapnica.

4. TERMODINAMIČKI I AERODINAMIČKI PRORAČUN TURBINE

0,092 44,2 2399,4 8,368 Nel = 3300 kW 52 455 3326, 3 21,77 50 |450 3317,2 21,47 ÎÌ Zrak, Isuhi 32°C $\eta_k = 88, \%$ Qsteam=17407,5 kW Imokri 25°C 0 Qtuel=19781,3 kW 0,087 |43,2 50 450 180,8 8,77 3317,2 0,3 1,1 150 2,9 163,3 odmuljiv. 2790, 13, 62,5 | 105,7 2775 0,102 0,0 t/h 447,7 21,77 U ejektor 3,5 43,2 1254,7 kJ/kg 180,8 8,77 1,2 104,8 439,4 21,77 3,0 | 20 157,4 84,2 0,0 1,2 2790, 0,8 50 450 163,3 2,9 3317,2 0,3 2790, 6,3 2790, 0,8 3.0 66,8 279,4 8,77 2790, 5,9 3,0 66.8 Tehnologija 279,4 8,77 Quehn=4074,8 kW 3,5 125 525,2 173,4 4 105 2 1.00-128,81 440,5 173,4 3,0 110 461,5 6,3 2,61 110 Grijanje 461,5 6,3 Q_{grij}=4023,1 kW 3 90 377,2 172,8 3.5 70 1mm=128,8°C 293,3 172,8 3,0 80,0 2,61 80,0 335,2 5,9 335,2 5,9

4.1. Toplinska shema kogeneracijske termoelektrane na biomasu

Slika 4.1. Shema kogeneracijskog postrojenja

4.2. Ulazni podatci za proračun

Tablica 4.1. Prikaz ulaznih po	odataka za	proračun	turbine
--------------------------------	------------	----------	---------

P _{el}	3, 3 <i>MW</i>
D	21,47 t/h
D _{od}	13 t/h
n	$10500 \ min^{-1}$
p_0	50 bar
T_0	450 °C
p_{od}	2,9 bar
p_k	0,092 bar

4.3. Algoritam proračuna

1. U prvom koraku odabire se konstantan srednji ili korijenski promjer statorskih lopatica $d_{1,sr}$.

2. Pretpostavlja se visina statorskih lopatica l_1 .

3. Računa se obodna brzina za srednji promjer statorskih lopatica $n = 10500 \ min^{-1}$

$$u_1 = \frac{d_{sr} \cdot \pi \cdot n}{60} \tag{4.1}$$

4. Računa se reaktivnost stupnja na srednjem promjeru, R

$$R = \frac{1.8}{1.8 + \frac{d_{ST}}{l_1}} \tag{4.2}$$

5. Računa se optimalni odnos obodne i fiktivne brzine stupnja, $(u/c_f)_{opt}$

$$\left(\frac{u}{c_f}\right)_{opt} = \frac{\varphi \cdot \cos \alpha_{1e}}{2 \cdot \sqrt{1-R}} \tag{4.3}$$

 $\varphi = 0.95$ - pretpostavljeni koeficijent brzine statorskih lopatica $\alpha_{1e} = 12^{\circ}$ - efektivni izlazni kut profila statorskih lopatica

U nekim stupnjevima moralo se je odstupiti od optimalnog omjera obodne i fiktivne brzine u/c_F kako bi se na izlazu određenog stupnja postigli željeni parametri (tlak reguliranog oduzimanja i konačni tlak). Najveće odstupanje ne bi smjelo prelaziti 5% optimalnog omjera, ali uz postojeća konstrukcijska rješenja, nije bilo moguće postići potrebne parametre pare uz tako malo odstupanje. Odstupanje optimalnog omjera brzina od stvarnog omjera računa se prema formuli:

$$\Delta(u/c_f) = \frac{\left[(u/c_f)_r - (u/c_f)_{opt} \right]}{(u/c_f)_{opt}} \cdot 100\%$$
(4.4)

6. Računa se fiktivna brzina stupnja, c_F

$$c_F = \frac{u_1}{\left(\frac{u}{c_f}\right)_{opt}} \tag{4.5}$$

7. Računa se izentropski toplinski pad stupnja, Δh_{is}

$$\Delta h_{is} = \frac{c_F^2}{2} \tag{4.6}$$

8. Računa se izentropski toplinski pad u statorskoj rešetci, $\Delta h_{1,is}$

$$\Delta h_{1,is} = (1-R) \cdot \Delta h_{is} \tag{4.7}$$

9. Računa se teoretska apsolutna brzina toka pare na izlazu iz statorske rešetke, c_{1t}

$$c_{1t} = \sqrt{2 \cdot \Delta h_{1,is}} \tag{4.8}$$

10. Računa se specifična entalpija, tlak, teoretski specifični volumen i udio pare na ulazu u stupanj (indeks 0), na izlazu iz statorske rešetke (indeks 1) i na izlazu iz stupnja (indeks 2). $h_0, p_0, v_0, x_0, h_{1t}, p_1, v_{1t}, x_1, h_{2t}, p_2, v_{2t}, x_2$

11. Računa se brzina zvuka na izlazu iz statorske rešetke, a_1

$$a_1 = \sqrt{\kappa \cdot p_1 \cdot v_{1t}} \tag{4.9}$$

12. Računa se teoretski Machov broj na izlazu iz statorske rešetke, M_{1t}

$$M_{1t} = \frac{c_{1t}}{a_1} \tag{4.10}$$

13. Računa se odnos tlaka na izlazu iz statorske rešetke i tlaka na ulazu u statorsku rešetku, ε_1

$$\varepsilon_1 = \frac{p_1}{p_0} \tag{4.11}$$

14. Računa se kritični odnos tlakova, ε_{kr}

$$\varepsilon_{kr} = \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa}{\kappa-1}} = 0,5457 - za \ \kappa = 1,3$$
 (4.12)

15. Računa se potrebna površina izlaznog presjeka statorske rešetke za $\varepsilon_1 > \varepsilon_{kr}$, odnosno $M_{1t} < 1, F_1$

$$F_1 = \frac{D \cdot v_{1t}}{\mu_1 \cdot c_{1t}}$$
(4.13)

 $\mu_1 = 0,97 -$ koeficijent protoka za statorsku rešetku Potrebna površina izlaznog presjeka statorske rešetke za $M_{1t} > 1, F_1$

$$F_1 = \frac{D \cdot 10^2}{\mu_1 \cdot B \cdot \sqrt{\frac{p_0}{v_0}}}$$
(4.14)

B – faktor kritičnog strujanja

$$B = \sqrt{g \cdot \kappa \cdot \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{\kappa-1}}} = 2,09 \tag{4.15}$$

16. Računa se fiktivna visina sapnica, $e_1 \cdot l_1$

$$e_1 \cdot l_1 = \frac{F_1}{\pi \cdot d_{sr} \cdot \sin \alpha_{1e}} \tag{4.16}$$

17. Računa se parcijalnost sapnica, e_1

Šimun Marinović

$$e_1 = \frac{e_1 \cdot l_1}{l_1} \tag{4.17}$$

 l_1 – pretpostavljena visina statorskih lopatica

Ukoliko je e_1 veći od 1 potrebno je iterativnim postupkom dobiti l_1 , za koji vrijednost e_1 neće prelaziti 1.

18. Odabire se profil lopatica statorske rešetke na temelju efektivnog izlaznog kut profila statorskih lopatica α_{1e} i teoretskog Machovog broja na izlazu iz statorske rešetke M_{1t} , iz atlasa profila prikazanog na slici 4.2.

Oznaka profíla	°ı€ ^β zΕ ο	za ^{ras} č, prosč	i opt	M ^{op*} ; M ^{op†}	ΰ <u>s</u> , см	f., см:	/ _{min} .cw*	‴,.cu≯ m/n
C-90-09A C-90-12A C-90-15A C-90-22A C-90-22A C-90-27A C-90-33A C-90-33A C-55-15A C-55-20A C-45-25A C-65-20A C-65-20A C-65-20A C-70-25A C-90-12B C-90-12B C-90-15P	$\begin{array}{c} 8-11\\ 10-14\\ 13-17\\ 16-20\\ 20-24\\ 24-30\\ 30-36\\ 35-42\\ 12-18\\ 17-23\\ 21-28\\ 27-34\\ 17-23\\ 22-28\\ 17-23\\ 22-28\\ 10-14\\ 13-17\\ 10-14\\ 13-17\\ \end{array}$	$\begin{array}{c} 70-120\\ 70-120\\ 70-120\\ 70-120\\ 70-120\\ 70-120\\ 70-120\\ 70-120\\ 45-75\\ 45-75\\ 45-75\\ 45-85\\ 45-85\\ 45-85\\ 45-85\\ 55-90\\ 70-120\\$	$\begin{array}{c} 0,72-0,85\\ 0,72-0,87\\ 0,70-0,85\\ 0,70-0,80\\ 0,65-0,75\\ 0,62-0,75\\ 0,62-0,75\\ 0,62-0,75\\ 0,62-0,75\\ 0,72-0,87\\ 0,70-0,85\\ 0,60-0,70\\ 0,60-0,70\\ 0,60-0,70\\ 0,50-0,67\\ 0,72-0,87\\ 0,70-0,85\\ 0,58-0,68\\ 0,55-0,65\\ \end{array}$	$\begin{array}{c} \texttt{D} \circ \ 0, \texttt{S0} \\ \texttt{D} \circ \ 0, \texttt{S5} \\ \texttt{D} \circ \ 0, \texttt{S0} \\ \texttt{D} \circ \ 0, \texttt{S0} \\ \texttt{D} \circ \ 0, \texttt{90} \\ \texttt{D} \circ \ \texttt{1}, \texttt{15} \\ \texttt{1}, \texttt{4} - \texttt{1}, \texttt{8} \\ \texttt{1}, \texttt{4} - \texttt{1}, \texttt{7} \end{array}$	6,06 5,2540 5,15 4,71 4,5 5,66 5,2 4,09 4,2	3,45 4,09 3,3 2,72 2,35 2,03 1,84 1,75 4,41 2,15 3,30 1,49 2,26 1,89 3,31 2,30 2,30 2,00	0,416 0,591 0,36 0,245 0,116 0,090 0,(81) 1,195 0,275 0,703 0,118 0,338 0,326 0,326 0,326 0,237 0,155 0,155	0,471 0,575 0,45 0,265 0,195 0,163 0,141 0,912 0,273 0,536 0,154 0,348 0,235 0,420 0,413 0,324 0,238 0,228

Slika 4.2. Atlas profila Moskovskog energetskog instituta

19. Za odabrani profil, iz atlasa profila na slici 4.2. očitava se relativni korak \bar{t} , optimalni kut ulaznog toka $\alpha_0^{ras\check{c}}$, duljina tetive profila statorske rešetke b_1 te kut ulaznog toka α_0 .

20. Računa se odstupanje ulaznog kuta toka α_0 od optimalnog kuta ulaznog toka α_0^{rasc} ,

$$\left(\alpha_0^{ras\check{c}}-\alpha_0\right)$$

21. Za odabrani profil statorske rešetke očitava se kut ugradnje statorskih lopatica α_u iz dijagrama prikazanog na slici 4.3.

Slika 4.3. Efektivni kut statorske rešetke u ovisnosti o relativnom koraku \bar{t} te kutu ugradnje profila α_u

22. Računa se stvarni optimalni korak lopatica statorske rešetke, $t_{1,opt}$

$$t_{1,opt} = b_1 \cdot \bar{t}_{opt,1} \tag{4.18}$$

23. Računa se broj lopatica statorske rešetke, Z_1 , koji zaokružujemo na prvi veći cijeli parni broj

$$Z_1 = \frac{d_{sr} \cdot \pi}{t_{1,opt}} \tag{4.19}$$

24. Računa se korigirani stvarni korak statorske rešetke, $t_{1,kor}$

$$t_{1,kor} = \frac{d_{sr} \cdot \pi}{Z_1} \tag{4.20}$$

25. Računa se korigirani relativni korak statorske rešetke, $\bar{t}_{1,kor}$

$$\bar{t}_{1,kor} = \frac{t_{1,kor}}{b_1}$$
 (4.21)

26. Očitava se koeficijent profilnih gubitaka ζ'_{pr} pomoću teoretskog Machovog broja M_{1t} na izlazu iz rešetke iz dijagrama na slici 4.4.

Slika 4.4. Polazne krivulje za koeficijent profilnih gubitaka ζ'_{pr}

27. Očitava se koeficijent rubnih gubitaka $\zeta'_{kanc} \frac{l}{b}$, pomoću teoretskog Machovog broja M_{1t} na izlazu iz rešetke, iz dijagrama na slici 4.5.

28. Očitava se korekcijski faktor za koeficijente profilnih gubitaka $k_{\alpha_1}^{pr}$, te korekcijski faktor za koeficijente rubnih gubitaka $k_{\alpha_1}^{kanc}$ iz dijagrama na slici 4.6. pomoću kuta α_{1e}

29. Očitava se korekcijski faktor za koeficijente profilnih k_{vh}^{pr} te lokalnih k_{vh}^{kanc} gubitaka zbog odstupanja ulaznog kuta toka od optimalnog ulaznog kuta toka ($\alpha_0^{rasč} - \alpha_0$) iz dijagrama na slici 4.7.

Slika 4.5. Polazne krivulje za koeficijent rubnih gubitaka $\zeta'_{kanc} \frac{l}{h}$

Slika 4.6. Korekcijski faktor k_{α_1} za koeficijente gubitaka za statorsku rešetku

Slika 4.7. Korekcijski faktor k_{vh} za koeficijente gubitaka zbog odstupanja α_0 od α_0^{rasc}

30. Očitava se korekcijski faktor k_{kr} za koeficijente gubitaka kod odstupanja relativne debljine izlaznog brida Δ_{kr} od Δ_{kr}/o iz dijagrama na slici 4.7.

31. Računa se koeficijent gubitka za statorsku rešetku, ζ_s

$$(\zeta_s)_{atlas} = \zeta'_{pr} \cdot k^{pr}_{\alpha_1} \cdot k^{pr}_{vh} \cdot k^{pr}_{kr} + \left(\zeta'_{kanc} \frac{l}{b}\right) \cdot \frac{b_1}{l_1} \cdot k^{kanc}_{\alpha_1} \cdot k^{kanc}_{vh} \cdot k^{kanc}_{kr}$$
(4.22)

$$\zeta_s = (\zeta_s)_{atlas} + 0.02 \tag{4.23}$$

32. Računa se koeficijent brzine za statorsku rešetku, φ

$$\varphi = \sqrt{1 - \zeta_s} \tag{4.24}$$

33. Računa se stvarna apsolutna brzina toka pare na izlazu iz statorske rešetke, $c_{\rm 1}$

$$c_1 = \varphi \cdot c_{1t} \tag{4.25}$$

34. Računa se kut toka pare na izlazu iz statorske rešetke, α_1

$$\alpha_1 = \sin^{-1} \left(\frac{\mu_1}{\varphi} \cdot \sin \alpha_{1e} \right) \tag{4.26}$$

35. Računa se stvarna relativna brzina toka pare na ulazu u rotorsku rešetku, w_1

$$w_1 = \sqrt{c_1^2 + U_1^2 - 2 \cdot c_1 \cdot U_1 \cdot \cos \alpha_1} \tag{4.27}$$

36. Računa se kut stvarne relativne brzine toka pare na ulazu u rotorsku rešetku, β_1

$$\beta_1 = \sin^{-1}\left(\frac{c_1}{w_1} \cdot \sin\alpha_1\right) \tag{4.28}$$

37. Računa se gubitak u statorskoj rešetci, $\Delta h_{g,S}$

$$\Delta h_{g,S} = \Delta h_{1,is} \cdot \zeta_s \tag{4.29}$$

38. Računa se izentropski toplinski pad u rotorskoj rešetci, $\Delta h_{2,is}$

$$\Delta h_{2.is} = R \cdot \Delta h_{is} \tag{4.30}$$

39. Računa se teoretska relativna brzina toka pare na izlazu iz rotorske rešetke, w_{2t}

$$w_{2t} = \sqrt{2 \cdot \Delta h_{2,is} + w_1^2} \tag{4.31}$$

40. Računa se brzina zvuka na izlazu iz rotorske rešetke, a_2

$$a_2 = \sqrt{\kappa \cdot p_2 \cdot v_{2t}} \tag{4.32}$$

41. Računa se teoretski Machov broj na izlazu iz rotorske rešetke, M_{2t}

$$M_{2t} = \frac{w_{2t}}{a_2} \tag{4.33}$$

42. Računa se odnos tlaka na izlazu iz rotorske rešetke i tlaka na ulazu u rotorsku rešetku, ε_2

$$\varepsilon_2 = \frac{p_2}{p_1} \tag{4.34}$$

43. Računa se potrebna površina izlaznog presjeka rotorske rešetke za $M_{2t} < 1$

$$F_2 = \frac{D \cdot v_{2t}}{\mu_2 \cdot w_{2t}} \tag{4.35}$$

 $\mu_2 = 0.93 - \text{koeficijent protoka za rotorsku rešetku}$

44. Odabire se potrebno prekrivanje između lopatica statorske i rotorske rešetke, Δl

45. Računa se visina lopatica rotorske rešetke, l_2

$$l_2 = l_1 + \Delta l \tag{4.36}$$

46. Računa se obodna brzina na srednjem promjeru rotorske rešetke, u_2

Ako je srednji promjer konstantan (samo kod regulacijskih stupnjeva), tada vrijedi:

$$d_{2sr} = d_{1sr} \tag{4.37}$$

Kod ostalih stupnjeva vrijedi $d_{2sr} = d_{1k} - 0,002 + l_2$ (smanjeno za 0,002 zbog prekrivanja između statorskih i rotorskih lopatica)

$$u_2 = \frac{d_{2sr} \cdot \pi \cdot n}{60} \tag{4.38}$$

47. Računa se potrebni izlazni kut profila lopatice rotorske rešetke, β_{2e}

$$\beta_{2e} = \sin^{-1} \left(\frac{F_2}{d_{sr} \cdot \pi \cdot l_2 \cdot e_1} \right) \tag{4.39}$$

48. Odabire se profil lopatice rotorske rešetke iz atlasa profila na temelju M_{2t} i β_{2e} iz atlasa profila na slici 4.8.

Oznaka profíla	™ı€ ^{βl} aÊ	z₀ ^{rasč} , j,rasč o	i opt	$M_{1t}^{00^{\circ}}; M_{2t}^{00^{\circ}}$	δε, см	f1, см ¹	/ _{min} , cw+	‴
0-30-107 P-23-14А P-30-21А P-30-21А P-46-29А P-46-29А P-60-33А P-60-38А P-23-14Ак P-23-14Ак P-27-17Б P-27-17Бк P-36-21Б P-35-2516 P-21-18P P-25-22P	$ \begin{array}{c} 12-16\\ 12-16\\ 15-19\\ 19-24\\ 22-28\\ 25-32\\ 30-36\\ 35-42\\ 12-16\\ 15-19\\ 15-19\\ 15-19\\ 15-19\\ 15-19\\ 15-19\\ 19-24\\ 22-28\\ 16-20\\ 20-24\\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0,60-0,75\\ 0,60-0,70\\ 0,58-0,68\\ 0,55-0,65\\ 0,45-0,58\\ 0,43-0,55\\ 0,41-0,51\\ 0,60-0,75\\ 0,60-0,70\\ 0,57-0,65\\ 0,57-0,68\\ 0,55-0,65\\ 0,55-0,65\\ 0,55-0,65\\ 0,60-0,70\\ 0,54-0,67\\ \end{array}$	$ \begin{array}{c} \Box 0 & 0,95 \\ \Box 0 & 0,95 \\ D 0 & 0,95 \\ D 0 & 0,85 \\ D 0 & 0,95 \\ 0,0 & 0,95 \\ 0,8-1,15 \\ 0,85-1,15 \\ 0,85-1,16 \\ 0,85-1,10 \\ 0,85-1,16 \\ 1,35-1,6 \\ 1,35-1,6 \\ \end{array} $	2,59 2,57 2,56 2,56 2,56 2,56 2,56 2,57 2,57 2,57 2,57 2,57 2,57 2,57 2,57	2,44 2,07 1,85 1,62 1,02 0,76 2,35 1,81 2,06 1,79 1,11 1,51 1,16 0,99	$\begin{array}{c} 0.43\\ 0.215\\ 0.205\\ 0.131\\ 0.071\\ 0.044\\ 0.018\\ 0.387\\ 0.152\\ 0.216\\ 0.216\\ 0.073\\ 0.126\\ 0.118\\ 0.084\\ \end{array}$	$\begin{array}{c} 0,39\\ 0,225\\ 0,234\\ 0,168\\ 0,112\\ 0,079\\ 0,035\\ 0,331\\ 0,165\\ 0,296\\ 0,216\\ 0,101\\ 0,159\\ 0,142\\ 0,100\\ 0,100\\ \end{array}$

Slika 4.8. Atlas profila Moskovskog energetskog instituta

49. Iz atlasa profila na slici 4.8 očitava se relativni optimalni korak lopatica rotorske rešetke, $\bar{t}_{2,opt}$, optimalni kut ulaznog toka, $\beta_1^{ras\check{c}}$, duljina tetive profila rotorske rešetke b_2 te kut ulaznog toka β_1

50. Računa se odstupanje ulaznog kuta toka β_1 od optimalnog kuta ulaznog toka $\beta_1^{rasč}$,

$$\left(\beta_1^{\operatorname{rasč}}-\beta_1\right)$$

51. Očitava se kut ugradnje lopatica rotorske rešetke, β_u , pomoću β_{2e} i $\bar{t}_{2,opt}$ iz dijagrama na slici 4.10.

Slika 4.10. Kut ugradnje lopatica rotorske rešetke β_u u ovisnosti o β_{2e} i \bar{t}

52. Računa se stvarni optimalni korak lopatice rotorske rešetke, $t_{2,opt}$

$$t_{2,opt} = b_2 \cdot \bar{t}_{2,opt} \tag{4.40}$$

53. Računa se broj lopatica rotorske rešetke, Z_2 , koji zaokružujemo na prvi veći cijeli neparni broj

$$Z_2 = \frac{d_{sr} \cdot \pi}{t_{2,opt}} \tag{4.41}$$

54. Računa se korigirani stvarni korak rotorske rešetke, $t_{2,kor}$

$$t_{2,kor} = \frac{d_{sr} \cdot \pi}{Z_2} \tag{4.42}$$

55. Računa se korigirani relativni korak rotorske rešetke, $\bar{t}_{2,kor}$

$$\bar{t}_{2,kor} = \frac{t_{2,kor}}{b_2}$$
(4.43)

56. Očitava se koeficijent profilnih gubitaka ζ'_{pr} pomoću teoretskog Machovog broja M_{2t} na izlazu iz rešetke iz dijagrama na slici 4.4.

57. Očitava se koeficijent rubnih gubitaka $\zeta'_{kanc} \frac{l}{b}$, pomoću teoretskog Machovog broja M_{2t} na izlazu iz rešetke, iz dijagrama na slici 4.5.

58. Očitava se korekcijski faktor za koeficijente profilnih gubitaka $k_{\Delta\beta}^{pr}$, te korekcijski faktor za koeficijente rubnih gubitaka $k_{\Delta\beta}^{kanc}$ iz dijagrama na slici 4.11. pomoću kuta $\Delta\beta$,

Slika 4.11. Korekcijski faktor $k_{\Delta\beta}$ za koeficijent gubitaka za rotorsku rešetku

59. Očitava se korekcijski faktor za koeficijente profilnih k_{vh}^{pr} te lokalnih k_{vh}^{kanc} gubitaka zbog odstupanja ulaznog kuta toka od optimalnog ulaznog kuta toka ($\beta_1^{rasč} - \beta_1$) iz dijagrama na slici 4.6.

60. Očitava se korekcijski faktor k_{kr} za koeficijente gubitaka kod odstupanja relativne debljine izlaznog brida Δ_{kr} od Δ_{kr}/o iz dijagrama na slici 4.8.

61. Računa se koeficijent gubitka rotorske rešetke, ζ_R

$$(\zeta_R)_{atlas} = \zeta'_{pr} \cdot k^{pr}_{\Delta\beta} \cdot k^{pr}_{vh} \cdot k^{pr}_{kr} + \left(\zeta'_{kanc} \frac{l}{b}\right) \cdot \frac{b_2}{l_2} \cdot k^{kanc}_{\Delta\beta} \cdot k^{kanc}_{vh} \cdot k^{kanc}_{kr}$$
(4.44)

$$\zeta_R = (\zeta_R)_{atlas} + 0.04 \tag{4.45}$$

62. Računa se koeficijent gubitka brzine za rotorsku rešetku, ψ

$$\psi = \sqrt{1 - \zeta_R} \tag{4.46}$$

63. Računa se kut stvarne relativne brzine toka pare na izlazu iz rotorske rešetke, β_2

$$\beta_2 = \sin^{-1} \left(\frac{\mu_2}{\psi} \cdot \sin \beta_{2e} \right) \tag{4.47}$$

64. Računa se stvarna relativna brzina toka pare na izlazu iz rotorske rešetke, $w_{\rm 2}$

$$w_2 = \psi \cdot w_{2t} \tag{4.48}$$

65. Računa se gubitak entalpije u rotorskoj rešetci, $\Delta h_{g,R}$

$$\Delta h_{g,R} = \frac{w_{2t}^2}{2} \cdot (1 - \psi^2) \tag{4.49}$$

66. Računa se stvarna apsolutna brzina toka pare na izlazu iz rotorske rešetke, $c_{\rm 2}$

$$c_2 = \sqrt{w_2^2 + U_1^2 - 2 \cdot w_2 \cdot U_1 \cdot \cos \beta_2}$$
(4.50)

67. Računa se kut stvarne apsolutne brzine toka pare na izlazu iz rotorske rešetke, α_2

$$\alpha_2 = \sin^{-1}\left(\frac{w_2 \cdot \sin\beta_2}{c_2}\right) \tag{4.51}$$

68. Računa se gubitak entalpije uslijed izlazne brzine, $\Delta h_{g,ib}$

$$\Delta \mathbf{h}_{g,ib} = \frac{c_2^2}{2} \tag{4.52}$$

69. Računa se stupanj djelovanja na obodu kola, η_u

$$\eta_u = 1 - \frac{\Delta h_{g,S} + \Delta h_{g,R} + \Delta h_{g,ib}}{\Delta h_{is}}$$
(4.53)

70. Računaju se gubitci regulacijskog stupnja

a) gubitak regulacijskog stupnja zbog ventilacije, ξ_{vent}

$$\xi_{vent} = \frac{0.065}{\sin \alpha_1} \cdot \frac{1 - e_1}{e_1} \cdot \left(\frac{U}{c_F}\right)_{opt}^3 \tag{4.54}$$

b) gubitak uslijed trenja diska, ξ_{tr}

$$\xi_{tr} = 0.637 \cdot 10^{-3} \cdot \frac{d_{sr}}{l_1} \cdot \frac{1}{\sin \alpha_1} \cdot \left(\frac{U}{c_F}\right)_{opt}^3$$
(4.55)

c) gubitak na krajevima segmenta sapnica, ξ_{seg}

$$\xi_{seg} = 0.25 \cdot \frac{b_2 \cdot l_2}{F_1} \cdot \left(\frac{U}{c_F}\right)_{opt} \cdot \eta_u \cdot i$$
(4.56)

i – broj privoda pare, i=2

d) gubitak uslijed parcijalnosti, ξ_{parc}

$$\xi_{parc} = \xi_{vent} + \xi_{seg} \tag{4.57}$$

71. Računaju se gubitci ostalih stupnjeva

a) gubitak uslijed propuštanja kroz međustupanjsku brtvu, ξ_y

$$\xi_{ys} = 0.475 \cdot \frac{\delta_1}{e \cdot l_1 \cdot \sin \alpha_1 \cdot \sqrt{Z_s}} \tag{4.58}$$

 δ_1 – raspor rotora (1. – 11. stupnja = 0,3 mm; 13. – 14. stupnja = 0,45 mm) Z_S – broj šiljaka, Z_S = 4

$$\xi_{yr} = 0.525 \cdot \frac{\delta_2}{\varepsilon \cdot l_2 \cdot \sin \alpha_1} \sqrt{\left(\frac{\lambda+1}{\lambda}\right)^2 \cdot \frac{1}{1-\rho} - 1} \cdot \frac{v_1}{v_2} \cdot \frac{1}{\sqrt{Z_R}}$$
(4.59)

 δ_2 – raspor rotora, δ_2 = 0,5 mm

 $\lambda = \frac{d_{2ST}}{l_2}$ $Z_R - \text{broj šiljaka}, Z_R = 2$

$$\xi_y = \xi_{yr} + \xi_{ys} \tag{4.60}$$

b) gubitak zbog vlažne pare, ξ_w

$$\xi_w = a \cdot \frac{y_0 + y_2}{2} \tag{4.61}$$

a = 0.4 - 0.9 - odabrano 0.55

 $y_0 = 1 - x_0$ (vlažnost na ulazu u stupanj) $y_2 = 1 - x_2$ (vlažnost na izlazu u stupanj)

72. Računa se unutarnji stupanj djelovanja, η_i

$$\eta_i = \eta_u - \xi_{parc} - \xi_{tr} - \xi_y - \xi_w \tag{4.62}$$

73. Računa se iskorišteni toplinski pad stupnja, Δh_i

$$\Delta h_i = \eta_i \cdot \Delta h_{is} \tag{4.63}$$

74. Računa se gubitak stupnja, Δh_g

$$\Delta h_g = (1 - \eta_i) \cdot \Delta h_{is} \tag{4.64}$$

75. Računa se stvarna entalpija pare na izlazu iz stupnja, h_{izl}

$$h_{izl} = h_0 - \Delta h_i \tag{4.65}$$

4.4. Prikaz provedbe proračuna za pojedini stupanj pomoću računalnog programa Matlab

```
2
       %TERMODINAMIČKI I AERODINAMIČKI PRORAČUN TURBINE
 3
 4
       8///////
 5
 6
      %ulazni podatci:
 7
       %D=5.963888; %kg/s %količina pare na ulazu
8 -
      kapa=1.3; %izentropski koeficijent
9 -
      mi1=0.97; %koef. protoka za statorsku rešetku
10 -
      P el=3300000; %W $električna snaga
      p_od=2.9; %bar %tlak oduzimanja
11 -
      12 -
13
       %p0=50; %bar %tlak pare na ulazu u turbinu %odkomentirati kod regulacijskog
14
       %stupnja
      %T0=450; %°C %temperatura pare na ulazu u turbinu %odkomentirati kod
15
16
      %regulacijskog stupnja
17 -
      p kon=0.092; %bar %tlak pare na izlazu iz turbine
18 -
      n=10500; %o/min %brzina vrtnje turbine
19 -
      g=9.80665; %gravitacija
20
21
      22
23
       % konstantni srednji ili korijenski promjer statorskih lopatica
24 -
      d1 sr<mark>=</mark>0.42634 %m
25
26
       %visina statorskih lopatica
27 -
       11=0.05634 %m
28
29
       %korijenski promjer statorskih lopatica
30 -
       d1 k=d1 sr-l1 %m
31
32
       %obodna brzina
33 -
      U1=d1_sr*pi*(n/60) %m/s
34
35
      %reaktivnost stupnja na srednjem promjeru
36 -
      R=1.8/(1.8+d1_sr/l1)
37
38
      %pretpostavljeni koef. brzine statorskih lopatica
39 -
      fi=0.95:
40
41
       %efektivni izlazni kut profila statorskih lopatica
42 -
       alfa1_ef=12; %°
43
44
       %optimalni odnos obodne i fiktivne brzine stupnja
45 -
       U_kroz_C_f_opt=(fi*cosd(alfa1_ef))/(2*sqrt(1-R))
46
47
       %stvarni odnos obodne i fiktivne brzine stupnja
48 -
       U_kroz_C_f_r=0.3815
49
50
       %fiktivna brzina stupnja
51 -
      C_f=U1/U_kroz_C_f_r %m/s
52
53
       %izentropski toplinski pad stupnja
54 -
      delta_h_is=(C_f^2)/(2*1000) %kJ/kg
55
56
       %izentropski toplinski pad u statorskoj rešetci
57 -
       delta_h1_is=(1-R)*delta_h_is %kJ/kg
```

Slika 4.12. Prikaz provedbe proračuna u programu Matlab, linije 1-57

```
Šimun Marinović
```

```
Završni rad
```

```
59
        %teoretska apsolutna brzina toka pare na izlazu iz statorske rešetke
60 -
        C1_t=sqrt(2*delta_h1_is*1000) %m/s
 61
 62
        %tlak pare na ulazu u statorsku rešetku
 63
        %p0=p0 %bar %odkomentirati kod regulacijskog stupnja
 64 -
        p0=0.5538 %p2 od prošlog stupnja %zakomentirati kod regulacijskog stupnja
 65
 66
        Stemperatura pare na ulazu u statorsku rešetku
        %T0=T0 %°C %odkomentirati za regulacijski stupanj
 67
 68
 69
        %specifična entalpija pare na ulazu u statorsku rešetku
 70
        $h0=XSteam('h pT',p0,T0) %kJ/kg %odkomentirati za regulacijski stupanj
 71 -
        h0=2572.8859 %izlazna entalpija prethodnog stupnja; zakomentirati za regulacijski
 72
 73
        %temperatura pare na ulazu u stupanj
 74 -
        T0=XSteam('T_ph',p0,h0) %zakomentirati za regulacijski stupanj
 75
76
        %specifični volumen pare na ulazu u statorsku rešetku
        %v0=XSteam('v_pT',p0,T0) %m^3/kg
77
78 -
        v0=XSteam('vV_p',p0) %m^3/kg %odkomentirati u zasićenom području
79
 80
        %specifična entropija pare na ulazu u statorsku rešetku
 81
        %s0=XSteam('s pT',p0,T0); %kJ/kg*K
82 -
        s0=XSteam('sV p',p0); %kJ/kg odkomentirati za zadnji stupanj
83
        %udio pare u pari na ulazu u statorsku rešetku
 84
 85 -
        x0=XSteam('x_ph',p0,h0) %kg/kg
 86
 87
        %specifična entalpija pare na izlazu iz statorske rešetke
88 -
        h1_t=h0-delta_h1_is %kJ/kg
 89
 90
        %specifična entropija pare na izlazu iz statorske rešetke
 91 -
        s1=s0; %kJ/kg*K
92
93
 94
        %temperatura pare na izlazu iz statorske rešetke
 95 -
        T1=XSteam('T hs', h1 t, s1) %°C
 96
 97
        %tlak pare na izlazu iz statorske rešetke
98 -
       p1=XSteam('p_hs',h1_t,s1) %bar
99
100
        %specifični volumen pare na izlazu iz statorske rešetke
        %v1_t=XSteam('v_pT',p1,T1) %m^3/kg
101
       v1_t=XSteam('vV_p',p1) %m^3/kg %odkomentirati kada udemo u zasićeno područje
102 -
103
104
        %udio pare u pari na izlazu iz statorske rešetke
105 -
        x1=XSteam('x_ph',p1,h1_t) %kg/kg
106
107
        %specifična entalpija pare na izlazu iz rotorske rešetke
108 -
        h2 t=h0-delta h is %kJ/kg
109
110
        %specifična entropija pare na izlazu iz rotorske rešetke
111 -
        s2=s0; %kJ/kg*K
```

Slika 4.13. Prikaz provedbe proračuna u programu Matlab, linije 58-111

```
Šimun Marinović
```

```
113
         %temperatura pare na izlazu iz rotorske rešetke
114 -
         T2=XSteam('T hs',h2 t,s2) %°C
115
116
        %tlak pare na izlazu iz rotorske rešetke
        p2=XSteam('p_hs',h2_t,s2) %bar
117 -
118
119
        $specifični volumen pare na izlazu iz rotorske rešetke
120
        %v2_t=XSteam('v_pT',p2,T2) %m^3/kg
        v2_t=XSteam('vV_p',p2) %m^3/kg %odkomentirati u zasićenom području
121 -
122
123
        %udio pare na izlazu iz rotorske rešetke
124 -
        x2=XSteam('x ph',p2,h2 t) %kg/kg
125
         %brzina zvuka na izlazu iz statorske rešetke
126
127 -
         a1=sqrt(kapa*p1*10^5*v1 t) %m/s
128
129
        %teoretski Machov broj na izlazu iz statorske rešetke
130 -
        M1_t=C1_t/a1
131
        %odnos tlaka na izlazu i ulazu u statorsku rešetku
132
133 -
        epsilon1=p1/p0
134
135
        %kritični odnos tlakova
136 -
        epsilon_kr=(2/(kapa+1))^(kapa/(kapa-1))
137
138
        %potrebna površina izlaznog presjeka statorske rešetke
139 -
        B=sqrt(g*kapa*(2/(kapa+1))^((kapa+1)/(kapa-1)));
140 -
        if (epsilon1 > epsilon kr)
141 -
            F1=(D*v1 t)/(mi1*C1 t)*1000000 %mm^2
142 -
        else
143 -
             F1=(D*10^2)/(mi1*B*sqrt((p0)/v0))*100 %mm^2
144 -
        end
145
146
147
        %fiktivna visina sapnica
148 -
        e1l1=F1/(pi*d1_sr*1000*sind(alfa1_ef)) %mm
149
150
        %parcijalnost sapnica
151 -
        e1=e111/(11*1000)
152
153
        8/////
154
        %odabir profila lopatica statorske rešetke iz atlasa profila pomoću
155
        %alfa1 ef i m1 t
156
        %očitavanje karakteristika odabranog profila lopatice
157 🔘
        alfa u<mark>=</mark>33 %
158 -
        t1_opt_crtano=0.77 %
159 -
        b1=0.05254 % m
160 -
        alfa0<mark>=</mark>90 %°
161 -
        alfa0_rasc<mark>=</mark>95 %°
162 -
        odstupanje_ulaznog_kuta_od_optimalnog_stator=alfa0_rasc-alfa0 %°
163
         %/////
164
165
166
        %stvarni optimalni korak lopatica statorske rešetke
167 -
         t1_opt=b1*t1_opt_crtano %m
168
```

Slika 4.14. Prikaz provedbe proračuna u programu Matlab, linije 112-168

Šimun Marinović

```
Završni rad
```

```
%broj lopatica statorske rešetke
169
170 -
        21 crtano=(d1 sr*pi)/t1 opt %zaokružujemo na prvi veći cijeli parni broj
171
        8//////
172 🔘
        Z1=34 %unesemo Z1 na temelju Z1'
173
        8//////
174
        %korigirani stvarni korak statorske rešetke
175 -
        t1 kor=(d1 sr*pi)/Z1 %m
176
177
        %korigirani relativni korak statorske rešetke
178 -
        t1_kor_crtano=t1_kor/b1
179
180
        181
        %koeficijent gubitka statorske rešetke
182
183 🔘
        zeta pr crtano=0.07
184 -
        k alfa1 pr=1.05
185 -
        k vh pr=1.01
186 -
        k kr pr=1
        zeta_kanc_1_b=0.016
187 -
        k alfa1 kanc=1.05
188 -
189 -
        k vh kanc=1.01
190 -
        k_kr_kanc=1
191
        8///////
192
193 -
        zeta_s_atlas=zeta_pr_crtano*k_alfa1_pr*k_vh_pr*k_kr_pr+zeta_kanc_1_b*(b1/11)...
194
                      *k_alfa1_kanc*k_vh_kanc*k_kr_kanc
195
        zeta_s<mark>=</mark>zeta_s_atlas+0.02
196 -
197
198
199
        %%zeta pr' - koeficijent profilnih gubitaka
200
        %%zeta kanc l b - koeficijent rubnih gubitaka
201
        %%k alfa1 - korekcijski faktor za koeficijente gubitaka u ovisnosti o kutu
        %%alfa1 e
202
203
        %k vh - korekcijski faktor za koeficijente gubitaka zobg odstupanja ulaznog
204
        %%toka od optimalnog
205
        %%k kr - korekcijski faktor za koeficijente gubitaka kod odstupanja
206
        %%relativne debljine izlanog brida
207
208
209
        %koeficijent brzine za statorsku rešetku
210 -
        fi_s=sqrt(1-zeta_s)
211
212
        $stvarna apsolutna brzina toka pare na izlazu iz statorske rešetke
213 -
        C1=fi s*C1 t %m/s
214
215
        %kut toka pare na izlazu iz statorske rešetke
        alfa1=asind((mi1/fi s)*sind(alfa1 ef)) %°
216 -
217
218
        %stvarna relativna brzina toka pare na ulazu u rotorsku rešetku
219 -
        W1=sqrt(C1^2+U1^2-2*C1*U1*cosd(alfa1)) %m/s
220
221
        %kut stvarne relativne brzine toka pare na ulazu u rotorsku rešetku
        beta1=asind((C1/W1)*sind(alfa1)) %°
222 -
223
224
        %gubitak u statorskoj rešetci
225 -
        delta_h_g_s=delta_h1_is*zeta_s %kJ/kg
226
```

Slika 4.15. Prikaz provedbe proračuna u programu Matlab, linije 169-226

Završni rad

```
Šimun Marinović
```

```
%izentropski toplinski pad u rotorskoj rešetci
227
228 -
        delta h2 is=R*delta h is %kJ/kg
229
230
        %teoretska relativna brzina toka pare na izlazu iz rotorske rešetke
231 -
        W2_t=sqrt(2*delta_h2_is*1000+W1^2) %m/s
232
        %brzina zvuka na izlazu iz rotorske rešetke
233
234 -
        a2=sqrt(kapa*p2*10^5*v2_t) %m/s
235
236
        Steoretski Machov broj na izlazu iz rotorske rešetke
237 -
        M2 t<mark>=</mark>W2 t/a2
238
239
        %odnos tlaka na izlazu i ulazu u rotorsku rešetku
240 -
        epsilon2=p2/p1
241
        %potrebna površina izlaznog presjeka rotorske rešetke
242
243
244 -
        mi2=0.93; %koeficijent protoka za rotorsku rešetku
245
246 -
        B=sqrt(g*kapa*(2/(kapa+1))^((kapa+1)/(kapa-1)));
247 -
        if (M2 t < 1)
248 -
            F2=(D*v2_t)/(mi2*W2_t)*1000000 %mm^2
249 -
        else
250 -
            F2=(D*10^2)/(mi2*B*sqrt(p1/v1_t))*100 %mm^2
251 -
        end
252
253
        %///
254
        %odabire se potrebno prekrivanje između lopatica statorske i rotorske
255 -
        delta 1<mark>=</mark>0.00166%m
256
        8///
257
258
        %visina lopatica rotorske rešetke
259 -
        12<mark>=</mark>11+delta 1 %m
260
261
        %srednji promjer rotorske rešetke za regulacijski stupanj
262
        %d2 sr=d1 sr %m
263
        %srednji promjer rotorske rešetke za sve stupnjeve osim regulacijskog
264
265 -
        d2_sr=d1_k-0.002+12 %m
266
267
        %obodna brzina na srednjem promjeru rotorske rešetke
268 -
        U2=(d2_sr*pi*n)/60 %m/s
269
270
        %potrebni izlazni kut profila lopatice rotorske rešetke
271 -
        beta2_e=asind(F2/(pi*d2_sr*1000*12*1000*e1)) %°
272
273
        %/////
274
        %odabiranje profila lopatica rotorske rešetke iz atlasa profila na temelju
275
        %M2 t i beta2 e
        %očitavanje karakteristika profila lopatica
276
277 🔘
        beta u<mark>=</mark>82
278 -
        t2_opt_crtano=0.64 %
        b2=25.6 % mm
279 -
280
        %beta1=30 %°
        beta1_rasc=32.5 %°
281 -
        odstupanje_ulaznog_kuta_od_optimalnog_rotor=beta1_rasc-beta1 %°
282 -
```

Slika 4.16. Prikaz provedbe proračuna u programu Matlab, linije 227-282

```
Završni rad
```

```
Šimun Marinović
```

```
284
        %stvarni optimalni korak lopatice rotorske rešetke
285 -
        t2 opt=b2*t2 opt crtano
286
        %/////
287
288
        %broj lopatica rotorske rešetke
289
        290 -
        Z2 crt= (d2 sr*1000*pi)/t2 opt %zaokružujemo na prvi veći cijeli neparni broj
291 🔘
        Z2=83
        292
293
294
295
296
        %korigirani stvarni korak rotorske rešetke
297 -
        t2 kor=(d2 sr*pi*1000)/Z2 %m
298
299
        %korigirani relativni korak rotorske rešetke
300 -
        t2 kor crtano=t2 kor/b2
301
302
        %koeficijent gubitka rotorske rešetke
        $/////
303
304 🔘
        zeta_pr_crt_r<mark>=</mark>0.04
        k_delta_beta_pr_r<mark>=</mark>1.01
305 -
306 -
        k_vh_pr_r=1.5
307 -
        k kr pr r=1
308 -
        zeta_kanc_crt_1_b_r=0.0355
309 -
        k delta beta kanc r=1.1
310 -
        k_vh_kanc_r=1.7
311 -
        k_kr_kanc_r<mark>=</mark>1
312
        8/////
313 -
        zeta r atlas=zeta pr crt r*k delta beta pr r*k vh pr r*k kr pr r+zeta kanc crt l b r...
314
                      *(b2/(12*1000))*k_delta_beta_kanc_r*k_vh_kanc_r*k_kr_kanc_r
315
316
317 -
        zeta r=zeta r atlas+0.04
318
319
        %%zeta pr' - koeficijent profilnih gubitaka
320
        %%zeta kanc' l b - koeficijent rubnih gubitaka
321
        %%k delta beta pr - korekcijski faktor za koeficijente gubitaka u ovisnosti o kutu
322
323
        %%alfa1 e
        %k_vh - korekcijski faktor za koeficijente gubitaka zobg odstupanja ulaznog
324
        %%toka od optimalnog
325
        %%k kr - korekcijski faktor za koeficijente gubitaka kod odstupanja
326
327
        %%relativne debljine izlanog brida
328
329
        %koeficijent gubitka brzine u rotorskoj rešetci
330 -
        psi=sqrt(1-zeta r)
331
332
        %kut stvarne relativne brzine toka pare na izlazu iz rotorske rešetke
333 -
        beta2=asind((mi2/psi)*sind(beta2_e)) %°
334
        %stvarna relativna brzina toka pare na izlazu iz rotorske rešetke
335
336 -
        W2=psi*W2_t %m/s
```

Slika 4.17. Prikaz provedbe proračuna u programu Matlab, linije 283-336

```
337
338
        %gubitak u rotorskoj rešetci
339 -
        delta_h_g_r=(W2_t^2/2)*(1-psi^2) %J/kg
340
341
        $stvarna apsolutna brzina toka pare na izlazu iz rotorske rešetke
        C2=sqrt(W2^2 +U2^2-2*U2*W2*cosd(beta2)) %m/s
342 -
343
        %kut stvarne apsolutne brzine toka pare na izlazu iz rotorske rešetke
344
345 -
        alfa2=asind(W2*sind(beta2)/C2) %°
346
347
        %gubitak uslijed izlazne brzine
348 -
        delta_h_g_ib=C2^2/2 %J/kg
349
350
        %stupanj djelovanja na obodu kola
351 -
        eta_u=1-((delta_h_g_s*1000)+delta_h_g_r+delta_h_g_ib)/(delta_h_is*1000)
352
353
        %gubitci regulacijskog stupnja
354
        옿옿옿
355
        ***
356 -
        i=2; %broj privoda pare
357 -
        delta1=0.0003; %m, raspor statora (od 1.-11. stupnja =0,3mm,
358
        %13.-14. stupnja=0,45mm)
359 -
        Zs=4; %broj šiljaka
360 -
        delta2=0.0005; %raspor rotora
361 -
        Zr=2; %broj šiljaka
362 -
        lambda=d2 sr/12;
363 -
        a=0.55; %0,4-0,9
364 -
        y0=1-x0; %vlažnost na ulazu u stupanj
365 -
        y2=1-x2; %vlažnost na izlazu iz stupnja
366
        % a) gubitak regulacijskog stupnja zbog ventilacije
367
368 -
        zeta_vent=0.065/sind(alfa1)*((1-e1)/e1)*(U_kroz_C_f_opt)^3
369
370
        % b) gubitak uslijed trenja na diska
371 -
        zeta tr=0.000637*(d1 sr/l1)*(1/sind(alfa1))*(U kroz C f opt)^3
372
373
        % c) gubitak na krajevima segmenta sapnica
374
375 -
        zeta_seg=0.25*((b2*12*1000)/F1)*(U_kroz_C_f_opt)*eta_u*(i)
376
377
378
379
        % d)gubitak uslijed parcijalnosti
380 -
        zeta parc=zeta vent+zeta seg
381
        $gubitci ostalih stupnjeva (kod regulacijskog stupnja =0)
382
383
        % a) gubitak uslijed propuštanja kroz međustepenu brtvu
384
385 -
        zeta ys=0.475*delta1/(e1*l1*sind(alfa1)*sqrt(Zs))
386 -
        zeta_yr=0.525*delta2/(e1*11*sind(alfa1))*sqrt(((lambda+1)/lambda)^2*1/(1-R)-1)...
                *v1 t/v2 t*1/sqrt(Zr)
387
388
389 -
        zeta_y=zeta_ys+zeta_yr
```



```
390
391
       % b) gubitak zbog vlažne pare
392 -
       zeta_w<mark>=</mark>a*(y0+y2)/2
393
394
       %unutarnji stupanj djelovanja
395
396
         %za regulacijski stupanj
            %eta_i=eta_u-zeta_parc-zeta_tr-zeta_w
397
398
        %za ostale stupnjeve
399 -
            eta_i<mark>=</mark>eta_u-zeta_y-zeta_w
400
401
402
403
       %iskorišteni toplinski pad stupnja
404 -
       delta_h_i=eta_i*delta_h_is %kJ/kg
405
406
        %gubitak stupnja
407 -
        delta_h_g=(1-eta_i)*delta_h_is %kJ/kg
408
409
        $stvarna entalpija pare na izlazu iz stupnja
        h_izl=h0-delta_h_i %kJ/kg
410 -
```

Slika 4.19. Prikaz provedbe proračuna u programu Matlab, linije 390-410

4.5. Podatci dobiveni proračunom

Proračun je proveden pomoću računalnog programa Matlab, kao što je prikazano na prethodnim slikama. Za izračun pojedinih termodinamičkih veličina korištena je funkcija *XSteam*, koja pokriva cijelo područje h-s dijagrama. U tablicama 4.2, 4.3 i 4.4 dane su sve izračunate veličine za sve stupnjeve turbine.

	1. stupanj	2. stupanj	3. stupanj	4. stupanj	5. stupanj
$d_{1 sr} [mm]$	441	272,125	273,82	275,89	278,34
$l_1 [mm]$	10	12,05	13,82	15,89	18,34
$d_{1,k}[mm]$	431	260	260	260	260
$u_1 [m/s]$	242,4524	149,6085	150,5404	151,6784	153,0254
R	0,0392	0,0743	0,0833	0,0939	0,106
$(u/c_f)_{opt}$	0,474	0,4829	0,4853	0,4881	0,4914
$(\boldsymbol{u}/\boldsymbol{c}_f)_r$	0	0	0	0	0
$\Delta(u/c_f)_{opt}\%$	0%	0%	0%	0%	0%
$c_f [m/s]$	511,4951	309,8174	310,2223	310,7463	311,4064
$\Delta h_{\rm is} [kJ/kg]$	130,8136	47,9934	48,1189	48,2816	48,487
$\Delta h_{S,is} [kJ/kg]$	125,6837	44,43	44,1115	43,7464	43,346
<i>c</i> _{1t} [m/s]	501,3655	298,0941	297,0235	295,7917	294,435
p_0 [bar]	50	32,4198	27,5321	23,2715	19,5678
θ ₀ [°C]	450	403,8573	385,4151	366,6626	347,4985
h _0 [kJ/kg]	3317,032	3236,3194	3202,7075	3168,3241	3132,9788
$v_0 \left[m^3 / kg \right]$	0,0633	0,09226	0,106	0,1221	0,1411
$x_0[kg/kg]$	1	1	1	1	1
$h_{1t} \left[kJ/kg \right]$	3191,3483	3191,8894	3158,596	3124,57777	3089,6328
θ ₁ [°C]	384,8126	380,9333	362,6361	344,0484	325,0633
<i>p</i> ₁ [<i>bar</i>]	33,002	27,874	23,6053	19,8947	16,6772
$v_{1t} [m^3/kg]$	0,0875	0,1037	0,1194	0,1378	0,1597
$x_1 [kg/kg]$	1	1	1	1	1
$h_{2t} \left[kJ/kg \right]$	3186,2184	3188,326	3154,5886	3120,0425	3084,4918
θ ₂ [°C]	382,138	379,0908	360,5623	341,6992	322,3971
<i>p</i> ₂ [<i>bar</i>]	32,4198	27,5321	23,2715	19,5678	16,3577
$v_{2t} \left[m^3 / kg \right]$	0,0887	0,1047	0,1207	0,1396	0,1621
$x_2 \left[kg/kg \right]$	1	1	1	1	1
$a_1 \left[m/s \right]$	612,7333	613,1438	605,2553	597,0338	588,4188
M_{1t}	0,8182	0,4862	0,4907	0,4954	0,5004
ε ₁	0,66	0,8598	0,8574	0,8549	0,8523
ε _{kr}	0,5457	0,5457	0,5457	0,5457	0,5457
$F_1 [mm^2]$	1073,1546	2139,8682	2471,1036	2864,7553	3334,7614
$e_1 l_1 [mm]$	3,7256	12,05	13,82	15,89	18,34

Šimun Marinović

Završni rad

<i>e</i> ₁	0,3726	1	1	1	1
profil stator	S-90-12A	S-90-12A	S-90-12A	S-90-12A	S-90-12A
<i>α_u</i> [°]	33	33	33	33	33
$\overline{t}_{1,opt}$	0,77	0,77	0,77	0,77	0,77
$b_1[mm]$	52,54	52,54	52,54	52,54	52,54
α ₀ [°]	90	90	90	90	90
$\alpha_{0,rasc} [mm]$	95	95	95	95	95
$\alpha_{0,rasc}$ –	5	5	5	5	5
α_0	40.4558	10.4558	40.4558	40.4558	40.4558
1 ,opt [11 , 11]	40,4558	40,4558	40,4558	40,4558	40,4558
t [mm]	30	22	22	22	22
$\iota_{1,kor} [mm]$	30,4043 0 7225	0 7206	39,1014	0.7409	39,7409 0.7565
<i>L</i> 1,kor	0,7323	0,7390	0,7442	0,7496	0,7303
ζpr	0,019	0,02	0,02	0,02	0,02
$k_{\alpha 1}^{r}$	1,1	1,1	1,1	1,1	1,1
k_{vh}^{p}	1	1,01	1,01	1,01	1,01
k_{kr}^{p}	1	1	1	1	1
$\zeta'_{kanc} \frac{l}{b}$	0,018	0,02	0,018	0,019	0,019
$k_{\alpha 1}^{kanc}$	1,15	1,1	1,1	1,1	1,1
k_{vh}^{kanc}	1,01	1,01	1,01	1,01	1,01
k_{kr}^{kanc}	1	1	1	1	1
$(\zeta_s)_{atlas}$	0,1307	0,1185	0,0982	0,092	0,0827
ζ_s	0,1507	0,1385	0,1182	0,112	0,1027
φ	0,9216	0,9282	0,939	0,9423	0,9473
$c_1 \left[m/s \right]$	462,0334	276,6815	278,9101	278,733	278,9075
<i>α</i> ₁ [°]	12,6411	12,5494	12,4021	12,3579	12,2925
$w_1 \left[m/s \right]$	231,6172	134,6307	135,788	134,5437	133,429
β ₁ [°]	25,884	26,5219	26,1769	26,3195	26,4253
$\Delta h_{g,S} [kJ/kg]$	18,9462	6,1537	5,2161	4,9003	4,4513
$\Delta h_{R,is}[kJ/kg]$	5,1299	3,5634	4,0074	4,5353	5,141
w _{2t} [m/s]	252,7972	158,9094	162,6446	164,841	167,5865
$a_2 \left[m/s \right]$	611,5179	612,2985	604,2873	595,9172	587,1205
M _{2t}	0,4134	0,2595	0,2692	0,2766	0,2854
ε2	0,9824	0,9877	0,9859	0,9836	0,9808
$F_2 [mm^2]$	2250,8075	4227,0771	4759,1195	5430,8533	6202,938
$\Delta l [mm]$	1	1,95	1,18	1,11	1,66
$l_2 [mm]$	11	14	15	17	20
<i>d</i> _{2,sr} [<i>mm</i>]	441	272	273	275	278
$u_2 \left[m/s \right]$	242,4524	149,5398	150,0896	151,1891	152,8385
β _{2e} [°]	23,3549	20,7259	21,7174	21,6913	20,7976
profil rotor	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A
$\boldsymbol{\beta}_{u}$ [°]	82	80	79	79	80
$\bar{t}_{2,opt}$	0,63	0,63	0,64	0,645	0,635

Šimun Marinović

Završni	rad

$b_2 [mm]$	25,6	25,6	25,6	25,6	25,6
β _{1,rasc} [°]	32,5	32,5	32,5	32,5	32,5
$\beta_{1,rasc}$ - β_1 [°]	6,616	5,9719	6,3231	6,1805	6,0747
$t_{2.opt}$ [mm]	16,128	16,128	16,384	16,512	16,256
Z ₂	87	53	53	53	55
$t_{2,kor} [mm]$	15,9246	16,1229	16,1822	16,3007	15,8793
$\overline{t}_{2,kor}$	0,6221	0,6298	0,6321	0,6367	0,6203
ζ'_{pr}	0,055	0,058	0,058	0,058	0,058
$k_{\Lambda\beta}^{pr}$	1	1,01	1,02	1,02	1,02
k_{nk}^{pr}	1,15	1,01	1,15	1,15	1,15
	1	1	1	1	1
$\zeta'_{kanc} \frac{l}{h}$	0,065	0,08	0,078	0,078	0,078
$k_{\Delta \beta}^{kanc}$	1,1	1,1	1,15	1,15	1,15
k_{vh}^{kanc}	1,35	1,2	1,3	1,3	1,3
k_{kr}^{kanc}	1	1	1	1	1
$(\zeta_R)_{atlas}$	0,2879	0,2523	0,267	0,2436	0,2173
ζ_R	0,3279	0,2923	0,307	0,2836	0,2573
ψ	0,8198	0,8413	0,8324	0,8464	0,8618
β ₂ [°]	26,7246	23,0307	24,4183	23,9613	22,5299
$w_2 [m/s]$	207,249	133,5751	135,3914	139,5187	144,4266
$\Delta h_{g,R} [kJ/kg]$	10,4771	3,684	4,0612	3,8535	3,6131
$c_2 [m/s]$	109,4277	58,6433	62,0594	61,4158	58,6527
<i>α</i> ₂ [°]	58,3979	63,0134	64,4064	67,3066	70,6493
$\Delta h_{g,ib}[kJ/kg]$	5,9872	1,7195	1,9257	1,886	1,7201
η_u	0,7293	0,7586	0,7672	0,7796	0,7982
ξvent	0,0533	-	-	-	-
ξ _{tr}	0,0137	-	-	-	-
ξ_{seg}	0,0454	-	-	-	-
$\xi_{y,S}$	-	0,0272	0,024	0,0209	0,0182
$\xi_{y,R}$	-	0,0309	0,0286	0,0266	0,025
ξ_y	-	0,0581	0,0526	0,0476	0,0432
ξ _w	-	-	-	-	-
ξ_{parc}	0,0986	-	-	-	-
η_i	0,617	0,7004	0,7146	0,7321	0,7549
$\Delta h_i [kJ/kg]$	80,7125	33,6119	34,3834	35,3453	36,6051
$\Delta h_{g} \left[kJ/kg ight]$	50,1011	14,3762	13,7355	12,9364	11,8819
$\Delta h_{izl} [kJ/kg]$	3236,3194	3202,7075	3168,3241	3132,9788	3096,3737

	6. stupanj	7. stupanj	8. stupanj	9. stupanj	10. stupanj
$d_{1,sr}\left[mm ight]$	279,81	282,92	288,86	295,61	305,05
$l_1 [mm]$	19,81	22,92	28,86	35,61	45,05
$d_{1,k}\left[mm ight]$	260	260	260	260	260
$u_1 \left[m/s \right]$	153,8336	155,5434	158,6826	162,5201	167,7099
R	0,113	0,1273	0,1515	0,1782	0,21
$(u/c_f)_{opt}$	0,4933	0,4973	0,5044	0,5125	0,5227
$(\boldsymbol{u}/\boldsymbol{c}_f)_r$	0,444	0,4227	0,428	0,4356	0,444
$\Delta(\boldsymbol{u}/\boldsymbol{c}_f)_{opt}\%$	10%	15%	15%	15%	15%
$c_f [m/s]$	346,472	367,9759	370,7538	373,0948	377,7252
$\Delta h_{is} [kJ/kg]$	60,0214	67,7031	68,7292	69,5999	71,3382
$\Delta h_{S,is} [kJ/kg]$	53,2371	59,0869	58,3169	57,1975	56,357
<i>c</i> _{1t} [m/s]	326,3038	343,7643	341,5169	338,2234	335,7292
<i>p</i> ₀ [<i>bar</i>]	16,3577	12,9973	9,9129	7,4285	5,4586
θ ₀ [°C]	327,7704	303,575	276,3568	247,9694	218,3285
h _0 [kJ/kg]	3096,3737	3051,5438	3001,1068	2948,2517	2892,8446
$v_0 [m^3/kg]$	0,1638	0,1983	0,2484	0,3822	0,4052
$x_0[kg/kg]$	1	1	1	1	1
$h_{1t} \left[kJ/kg \right]$	3043,1366	2992,4569	2942,7899	2891,0542	2836,4876
θ ₁ [°C]	300,1646	272,8799	246,0112	218,1526	188,8997
<i>p</i> ₁ [<i>bar</i>]	13,3477	10,2704	7,7702	5,7762	4,1974
$v_{1t} \left[m^3 / kg \right]$	0,1916	0,2377	0,2996	0,3822	0,4955
$x_1 [kg/kg]$	1	1	1	1	1
$h_{2t} \left[kJ/kg \right]$	3036,3523	2983,8407	2932,3776	2878,6518	2821,5064
θ ₂ [°C]	296,6385	268,3935	240,5817	211,6759	181,0677
p ₂ [bar]	12,9973	9,9129	7,4285	5,4586	3,9033
$v_{2t} \left[m^3 / kg \right]$	0,1956	0,2443	0,3101	0,3991	0,5238
$x_2 \left[kg/kg \right]$	1	1	1	1	1
$a_1 \left[m/s \right]$	576,6388	563,4325	550,0799	535,6937	519,9573
M _{1t}	0,5659	0,6101	0,6208	0,6314	0,6457
ε ₁	0,816	0,7902	0,7838	0,7776	0,7689
ε_{kr}	0,5457	0,5457	0,5457	0,5457	0,5457
$F_1 [mm^2]$	3610,7206	4252,5413	5392,8839	6947,1204	9073,6061
$e_1l_1[mm]$	19,81	22,92	28,86	35,61	45,05
<i>e</i> ₁	1	1	1	1	1
profil stator	S-90-12A	S-90-12A	S-90-12A	S-90-12A	S-90-12A
<i>α_u</i> [°]	33	33	33	33	33
$\overline{t}_{1,opt}$	0,77	0,77	0,77	0,77	0,77
$b_1[mm]$	52,54	52,54	52,54	52,54	52,54
α ₀ [°]	90	90	90	90	90
$\alpha_{0,rasc} [mm]$	95	95	95	95	95

Tablica 4.3 Prikaz proračunom dobivenih veličina za stupnjeve 6.-10.

Šimun Marinović

Završni rad

$\alpha_{0,rasc}$ –	5	5	5	5	5
α[°]					
t _{1,opt} [mm]	40,4558	40,4558	40,4558	40,4558	40,4558
Z ₁	22	22	24	24	24
t _{1,kor} [mm]	39,9568	40,4009	37,7816	38,6953	0,0399
$\bar{t}_{1,kor}$	0,7605	0,769	0,7191	0,7365	0,76
ζ'_{pr}	0,02	0,019	0,018	0,018	0,018
$k^{pr}_{\alpha 1}$	1,1	1,1	1,1	1,1	1,1
k_{vh}^{pr}	1,01	1,01	1,01	1,01	1,01
k_{kr}^{pr}	1	1	1	1	1
$\zeta'_{kanc} \frac{l}{b}$	0,018	0,018	0,018	0,017	0,018
$k_{\alpha 1}^{kanc}$	1,1	1,1	1,1	1,1	1,1
k_{vh}^{kanc}	1,01	1,01	1,01	1,01	1,01
k_{kr}^{kanc}	1	1	1	1	1
$(\boldsymbol{\zeta}_s)_{atlas}$	0,0753	0,0669	0,0567	0,0495	0,0433
ζ_s	0,0953	0,0869	0,0767	0,0695	0,0633
φ	0,9512	0,9555	0,9609	0,9646	0,9678
$c_1 \left[m/s \right]$	310,3733	328,4791	328,159	326,2579	324,926
<i>α</i> ₁ [°]	12,2411	12,1844	12,1155	12,0679	12,027
$w_1 \left[m/s \right]$	163,3272	179,4677	176,1872	170,7444	164,6492
$oldsymbol{eta}_1$ [°]	23,7606	22,7245	23,0118	23,5464	24,2818
$\Delta h_{g,S} [kJ/kg]$	5,0713	5,1377	4,4727	3,9754	3,5686
$\Delta h_{R,is}[kJ/kg]$	6,7843	8,6162	10,4123	12,4023	14,9811
w _{2t} [m/s]	200,6102	222,3534	227,7423	232,2892	238,8967
$a_2 \left[m/s \right]$	574,8875	561,1382	547,218	532,1656	515,5313
M_{2t}	0,349	0,3962	0,4162	0,4365	0,4634
ε2	0,9737	0,9652	0,956	0,945	0,9299
$F_2 [mm^2]$	6252,6501	7046,8725	8731,2565	11017,6811	14059,647
$\Delta l \ [mm]$	1,19	1,08	1,14	1,39	0,95
$l_2 [mm]$	21	24	30	37	46
$d_{2,sr} [mm]$	279	282	288	295	304
$u_2 \left[m/s \right]$	153,3883	155,0376	158,3363	162,1847	167,1327
β _{2e} [°]	19,9148	19,2748	18,9318	18,5422	18,4573
profil rotor	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A
$\boldsymbol{\beta}_{\boldsymbol{u}}$ [°]	78	77	77	77	77
$\overline{t}_{2,opt}$	0,64	0,645	0,63	0,63	0,6
$b_2 [mm]$	25,6	25,6	25,6	25,6	25,6
$\boldsymbol{\beta}_{1,rasc}$ [°]	32,5	32,5	32,5	32,5	32,5
$\beta_{1,rasc}$	8,7394	9,7755	9,4839	8,9535	8,2182
$t_{2 ont} [mm]$	16,384	16,512	16,128	16,128	15,36
Z,0pt []	55	55	57	59	63
$t_{2,kor} [mm]$	15,9364	16,1078	15,8733	15,7079	15,1594

Šimun Marinović					Završni rad
$\bar{t}_{2,kor}$	0,6225	0,6292	0,6201	0,6136	0,5922
ζ'_{pr}	0,058	0,058	0,058	0,057	0,055
$k^{pr}_{\Delta B}$	1,01	1,01	1,01	1,01	1,01
k_{vh}^{pr}	1,35	1,5	1,45	1,4	1,3
k_{kr}^{pr}	1	1	1	1	1
$\zeta'_{kanc} \frac{l}{b}$	0,075	0,068	0,069	0,062	0,06
k^{kanc}_{\Deltameta}	1,1	1,3	1,3	1,1	1,1
k_{vh}^{kanc}	1,6	1,7	1,7	1,7	1,6
k_{kr}^{kanc}	1	1	1	1	1
$(\zeta_R)_{atlas}$	0,2399	0,2482	0,2151	0,1608	0,1309
ζ_R	0,2799	0,2882	0,2551	0,2008	0,1709
ψ	0,8485	0,8437	0,8631	0,894	0,9105
β ₂ [°]	21,9209	21,3377	20,4624	19,3185	18,8673
$w_2 [m/s]$	170,2238	187,5998	196,8769	207,6598	217,5162
$\Delta h_{g,R} \left[kJ/kg \right]$	5,6342	7,1237	6,6358	5,4178	4,8792
$c_2 [m/s]$	63,7102	71,0474	73,6256	76,555	80,2813
<i>α</i> ₂ [°]	85,9242	73,8998	69,2195	63,8141	61,1832
$\Delta h_{g,ib}[kJ/kg]$	2,0295	2,5239	2,7096	2,9303	3,2225
η_u	0,7878	0,7816	0,7995	0,8229	0,8364
ξvent	-	-	-	-	-
ξ_{tr}	-	-	-	-	-
ξ _{seg}	-	-	-	-	-
$\xi_{y,S}$	0,017	0,0147	0,0119	0,0095	0,0075
$\xi_{y,R}$	0,0239	0,0219	0,0198	0,0174	0,0152
ξ_y	0,0409	0,0366	0,0317	0,0269	0,0227
ξ_w	-	-	-	-	-
ξ_{parc}	-	-	-	-	-
η_i	0,7469	0,7449	0,7678	0,7961	0,8137
$\Delta h_i [kJ/kg]$	44,8299	50,4369	52,8551	55,4071	58,0454
$\Delta h_{g} \left[kJ/kg \right]$	15,1915	17,2661	15,9837	14,1927	13,2927
$\Delta h_{izl} [kJ/kg]$	3051,5438	3001,1068	2948,2517	2892,8446	2834,7992

	11. stupanj	12. stupanj	13. stupanj	14. stupanj
<i>d</i> _{1,sr} [<i>mm</i>]	311,89	404,45	410,15	433,14
$l_1 [mm]$	51,89	21,45	40,15	63,14
$d_{1,k}\left[mm ight]$	260	383	370	370
$u_1 \left[m/s \right]$	171,4704	222,358	225,4917	254,6245
R	0,2305	0,0871	0,1498	0,2658
$(u/c_f)_{opt}$	0,5296	0,4863	0,5038	0,5422
$(u/c_f)_r$	0,497	0,437	0,401	0,4295
$\Delta(\boldsymbol{u}/\boldsymbol{c}_f)_{opt}\%$	10,66%	10%	20%	20,79%
$c_f [m/s]$	345,011	508,8284	562,3235	592,8394
$\Delta h_{is} [kJ/kg]$	59,5163	129,4532	158,1039	175,7293
$\Delta h_{S,is} [kJ/kg]$	49,8004	118,1721	134,4188	129,0239
<i>c</i> _{1t} [m/s]	302,6563	486,1524	518,4955	507,9841
$p_0 [bar]$	3,9033	2,9	1,42	0,5243
θ ₀ [°C]	187,3261	161,2586	109,7131	82,5033
h_0 [kJ/kg]	2834,7992	2785,9834	2685,9514	2565,8942
$v_0 [m^3/kg]$	0,5318	0,676	1,2203	2,9446
$x_0 [kg/kg]$	1	1	0,9979	0,9647
$h_{1t} \left[kJ / kg \right]$	2788,9988	2667,8113	2551,5326	2436,8703
θ ₁ [°C]	163,3863	111,6842	86,3769	50,9481
p ₁ [bar]	3,1118	1,5168	0,6106	0,1294
$v_{1t} [m^3/kg]$	0,632	1,1474	2,6873	11,5092
$x_1 [kg/kg]$	1	0,9884	0,9555	0,9344
$h_{2t} \left[kJ/kg \right]$	2775,2829	2656,5302	2527,8475	2390,1649
θ ₂ [°C]	156,2154	109,7157	82,5043	44,1847
<i>p</i> ₂ [<i>bar</i>]	2,9	1,42	0,5243	0,092
$v_{2t} [m^3/kg]$	0,6671	1,22	3,0992	15,8692
$x_2 [kg/kg]$	1	0,985	0,9482	0,9204
$a_1 [m/s]$	505,7584	475,6437	461,8691	440,0799
M _{1t}	0,5984	1,022	1,122	1,1543
ε ₁	0,7972	0,523	0,43	0,2469
ε _{kr}	0,5457	0,5457	0,5457	0,5457
$F_1 [mm^2]$	5067,3323	5604,3725	10706,934	28222,687
$e_1 l_1 [mm]$	51,89	21,45	40,15	93,14
<i>e</i> ₁	0,4794	1	1	1
profil stator	S-90-12A	S-90-12A	S-90-12A	S-90-21A
<i>α_u</i> [°]	33	33	33	33
$\bar{t}_{1.ont}$	0,77	0,77	0,77	0,77
$b_1 [mm]$	52,54	52,54	52,54	52,54
α ₀ [°]	90	90	90	90
$\alpha_{0,rasc} [mm]$	95	95	95	95

Tablica 4.4 Prikaz proračunom dobivenih veličina za stupnjeve 11.-14.

Završni rad

$\alpha_{0,rasc}$ –	5	5	5	5
<u>α</u> ₀ [°]	10.1770			
t _{1,opt} [mm]	40,4558	40,4558	40,4558	40,4558
Z ₁	26	32	32	36
t _{1,kor} [mm]	37,6858	39,7068	40,2066	40,4166
$\bar{t}_{1,kor}$	0,7173	0,7557	0,7664	0,7693
ζ'_{pr}	0,019	0,03	0,042	0,07
$k_{\alpha 1}^{pr}$	1,1	1,05	1,05	1,05
k_{vh}^{pr}	1,01	1,01	1,01	1,01
k_{kr}^{pr}	1	1	1	1
$\zeta'_{kanc} \frac{l}{b}$	0,018	0,016	0,016	0,016
$k_{lpha 1}^{kanc}$	1,1	1,1	1,1	1,05
k_{vh}^{kanc}	1,01	1,01	1,01	1,01
k_{kr}^{kanc}	1	1	1	1
$(\boldsymbol{\zeta}_s)_{atlas}$	0,0414	0,0754	0,0678	0,0838
ζ_s	0,0614	0,0954	0,0878	0,1038
φ	0,969	0,9511	0,9551	0,9467
$c_1 \left[m/s \right]$	293,2242	462,3931	495,2099	480,8958
α ₁ [°]	12,0146	12,2418	12,1902	12,3002
$w_1 \left[m/s \right]$	130,4866	249,5849	278,8971	238,3702
$oldsymbol{eta}_1$ [°]	27,8102	23,1307	22,0201	25,4538
$\Delta h_{g,S} [kJ/kg]$	2,8102	11,2684	11,8023	13,3935
$\Delta h_{R,is}[kJ/kg]$	13,7156	11,2811	23,6851	46,7054
w _{2t} [m/s]	210,8519	291,2984	353,7708	387,5965
$a_2 \left[m/s \right]$	501,5703	474,6341	459,6192	435,6386
M_{2t}	0,4204	0,6137	0,7697	0,8897
<i>ε</i> ₂	0,9321	0,9363	0,8587	0,7107
$F_2 [mm^2]$	8004,6447	10597,6408	22163,1937	103579,08
$\Delta l \ [mm]$	1,11	1,55	1,85	0,86
$l_2 [mm]$	53	23	42	64
$d_{2,sr} \left[mm ight]$	311	404	410	462
$u_2 \left[m/s \right]$	170,9812	222,1106	225,4093	253,9978
β _{2e} [°]	18,8124	21,5348	24,1736	49,2824
profil rotor	R-30-21A	R-30-21A	R-30-21A	R-30-21A
$\boldsymbol{\beta}_{u}$ [°]	77	80	82	82
$\bar{t}_{2,opt}$	0,59	0,65	0,64	0,64
$b_2 [mm]$	25,6	25,6	25,6	25,6
β _{1,rasc} [°]	32,5	32,5	32,5	32,5
$\beta_{1,rasc}$ - β_1 [°]	4,6102	9,3687	10,4799	7,0462
$t_{2,ont}$ [mm]	15,3599	16,64	16,384	16,384
Ζ,ορτ Ι	65	77	79	89
$t_{2,kor} [mm]$	15,0313	16,4832	16,3044	16,308

Šimun Marinović

Zavr<u>šni rad</u>

0,5872	0,6439	0,6369	0,637
0,055	0,045	0,04	0,04
1,01	1,01	1,01	1,01
1,12	1,45	1,5	1,5
1	1	1	1
0,06	0,04	0,0355	0,0355
1,1	1,1	1,1	1,1
1,3	1,7	1,7	1,7
1	1	1	1
0,1037	0,1492	0,1011	0,0786
0,1437	0,1892	0,1411	0,1186
0,9254	0,9005	0,9267	0,9388
18,9097	22,2782	24,2627	48,6632
195,1196	262,3048	327,8707	363,8705
3,1934	8,0255	8,8273	8,9147
64,6817	101,5551	153,4741	273,55
77,8552	78,2885	61,3855	87,1362
2,0919	5,1567	11,7772	37,4148
0,864	0,8111	0,795	0,6601
-	-	-	-
-	-	-	-
-	-	-	-
0,0138	0,0158	0,0084	0,0036
0,03	0,0184	0,0124	0,0067
0,0438	0,0342	0,0208	0,0103
-	-	-	-
-	-	-	-
0,8202	0,7727	0,7594	0,6183
48,8158	100,0319	120,052	108,6465
10,7005	29,4212	38,0467	67,0827
2785,9834	2685,9514	2565,8942	2457,2477
	0,58720,0551,011,1210,061,11,31,310,10370,14370,925418,9097195,11963,193464,681777,85522,09190,8640,01380,030,04380,820248,815810,70052785,9834	0,58720,64390,0550,0451,011,011,121,45110,060,041,11,11,31,7110,10370,14920,14370,18920,92540,900518,909722,2782195,1196262,30483,19348,025564,6817101,555177,855278,28852,09195,15670,8640,81110,01380,01580,030,01840,04380,03420,82020,772748,8158100,031910,700529,42122785,98342685,9514	0,58720,64390,63690,0550,0450,041,011,011,011,121,451,51110,060,040,03551,11,11,11,31,71,71110,10370,14920,10110,14370,18920,14110,92540,90050,926718,909722,278224,2627195,1196262,3048327,87073,19348,02558,827364,6817101,5551153,474177,855278,288561,38552,09195,156711,77720,8640,81110,7950,01380,01580,00840,030,01840,01240,04380,03420,02080,82020,77270,759448,8158100,0319120,05210,700529,421238,04672785,98342685,95142565,8942
4.6. Izračun električne snage

Snaga stupnja:

$$P_{stupanj} = D \cdot (h_0 - h_2) \cdot \eta_i \tag{4.66}$$

Snaga stupnjeva turbine:

STUPANJ	h ₀ [kJ/kg]	h ₂ [kJ/kg]	η_i	D [kg/s]	P _{stupanj} [kW]
1	3317,032	3186,2184	0,617	5,963888	481,3573
2	3236,3194	3188,326	0,7004	5,963888	200,4736
3	3202,7075	3154,5886	0,7146	5,963888	205,0729
4	3168,3241	3120,0425	0,7321	5,963888	210,8053
5	3132,9788	3084,4918	0,7549	5,963888	218,2952
6	3096,3737	3036,3523	0,7469	5,963888	267,361
7	3051,5438	2983,8407	0,7449	5,963888	300,771
8	3001,1068	2932,3776	0,7678	5,963888	314,716
9	2948,2517	2878,6518	0,7961	5,963888	330,45
10	2892,8446	2821,5064	0,8137	5,963888	346,1911
11	2834,7992	2775,2829	0,8202	2,352777	114,8514
12	2785,9834	2656,5302	0,7727	2,352777	235,3447
13	2685,9514	2527,8475	0,7594	2,352777	282,4841
14	2565,8942	2390,1649	0,6183	2,352777	255,6373

Tablica 4.5 Izračun snage stupnjeva turbine

 $\Sigma = 3763,8109$

Električna snaga:

$$P_{el} = \eta_{meh} \cdot \eta_{el} \cdot \Sigma P_{stupanj} = 0.94 \cdot 0.95 \cdot 3763.8109 = 3361.0831 \, kW \tag{4.67}$$

5. ZAKLJUČAK

U ovom radu proveden je termodinamički i aerodinamički proračun parne turbine snage 3,3 MW za primjenu u kogeneracijskoj termoelektrani na biomasu. Turbina ima dvije grupe stupnjeva, 1.-11. stupanj, zatim slijedi regulirano oduzimanje na tlaku 2.9 bar, te druga grupa stupnjeva 12.-14.

Električna snaga dobivena je izračunom snage svih stupnjeva, umanjenom za mehaničke i električne gubitke te iznosi 3361,0831 kW.

6. LITERATURA

- [1] Kraut, B.: Strojarski priručnik, Tehnička knjiga Zagreb, 1970.
- [2] Guzović, Z.: Podloge iz predmeta Toplinske turbine, Zagreb, 1996.
- [3] Guzović, Z.: Konstrukcija i proračun čvrstoće elemenata parnih i plinskih turbina, Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, 2010
- [4] Guzović, Z.: Podloge za vježbe iz predmeta Turbostrojevi II, Zagreb, 1994.
- [5] Elčić, Z.: Parne turbine, ABB Karlovac, 1995.
- [6] Guzović, Z.: Konstrukcija i proračun čvrstoće elemenata parnih i plinskih turbina Prilog: Slike, dijagrami i tablice, Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, 1994.
- [7] Program korištenja energije biomase i otpada, Energetski institut "Hrvoje Požar", Zagreb, 1998.
- [8] Program kogeneracije, Energetski institut "Hrvoje Požar", Zagreb, 1998.
- [9] Labudović, B.: Osnove primjene biomase, Energetika marketing, Zagreb, 2012.

7. PRILOZI

- I. CD-R disc
- II. Tehnička dokumentacija

