Bučarić, Luka

Undergraduate thesis / Završni rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:345243

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-29

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Luka Bučarić

Zagreb, 2020.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentor: Doc. dr. sc. Matija Hoić, mag. ing. mech. Student: Luka Bučarić

Zagreb, 2020.

Izjavljujem da sam ovaj rad izradio samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem mentoru doc. dr. sc. Matiji Hoiću na korisnim savjetima tijekom izrade završnog rada, te pristupačnosti.

Također zahvaljujem svojim roditeljima, prijateljima i djevojci na podršci tijekom studiranja.

Luka Bučarić

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveuč Fakultet stro	ilište u Zagrebu jarstva i brodogradnje
Datum	Prilog
Klasa:	
Ur.broj:	

ZAVRŠNI ZADATAK

Student:

Luka BUČARIĆ

Mat. br.: 0035204889

Naslov rada na hrvatskom jeziku:

Portalni granik s konzolom

Naslov rada na engleskom jeziku:

Portal crane with a cantilever

Opis zadatka:

Potrebno je konstruirati poluportalni granik s konzolom. Mehanizam za dizanje treba biti opremljen standardnom kukom. Nosivu konstrukciju granika potrebno je izvesti tako da teret može mimoići nosivi stup granika. Pogoni svih mehanizama trebaju biti električni. Granik treba zadovoljavati sljedeće parametre:

Q = 15 kN;

H = 6 m;

L = 10 m;

 $L_1 = 3 \text{ m};$

K = 1200 mm;

 $v_{\rm diz} = 10$ m/min;

 $v_{\rm voz} = 15$ m/min.

- Najveći teret: Visina zida:
- Raspon kotača:
- Doseg konzole:
- Dimenzija kockastog tereta: Brzina dizanja:
- Brzina vožnje vitla/mosta:

Rad treba sadržavati:

- 1. Uvodno razmatranje o portalnim granicima.
- 2. Analizu radnih principa postojećih rješenja.
- 3. Nekoliko koncepcijskih rješenja.
- 4. Izbor optimalne varijante za zadane projektne zahtjeve.
- 5. Proračun mehanizma za dizanje i vožnju.
- 6. Proračun nosive konstrukcije i izbor standardnih komponenti.
- 7. Sklopne crteže s potrebnim presjecima i detaljima.

Proračun pisati pregledno s pripadajućim skicama.

U radu navesti korištenu literaturu i eventualno dobivenu pomoć. Zadatak zadan:

28. studenog 2019.

Zadatak zadao:

Datum predaje rada: 1. rok: 21. veljače 2020. 2. rok (izvanredni): 1. srpnja 2020. 3. rok: 17. rujna 2020.

Predviđeni datumi obrane: 1. rok: 24.2. - 28.2.2020. 2. rok (izvanredni): 3.7.2020. 3. rok: 21.9. - 25.9.2020.

Predsjednik Povjerenstva:

Prof. dr. sc. Igor Balen

Aloic Doc. dr. sc. Matija Hoić

SADRŽAJ

SADRŽ	AJ	I
POPIS S	LIKAГ	V
POPIS T	`ABLICA	V
POPIS T	EHNIČKE DOKUMENTACIJE	Ί
POPIS C	DZNAKAVI	Π
SAŽETA	AKXI	Π
SUMMA	ARY	Π
1. UV	ODNO RAZMATRANJE O PORTALNIM GRANICIMA	1
1.1.	Portalni granici s voznim vitlom	1
1.2.	Portalni granici s okretnim vitlom	2
2. AN	ALIZA POSTOJEĆIH RJEŠENJA	3
2.1.	Poluportalni granici s jednim glavnim nosačem	3
2.1.	1. Poluportalni granik tvrtke ABUS Kransysteme GmbH	3
2.1.	2. Poluportalni granik tvrtke Henan Hengyuan Crane	4
2.2.	Poluportalni granici s dva glavna nosača	5
2.2.	1. Poluportalni granik tvrtke AICRANE	5
2.3.	Zaključak analize postojećih rješenja	6
3. KO	NCEPCIJSKA RJEŠENJA	7
3.1.	Koncept 1	7
3.2.	Koncept 2	8
3.3.	Koncept 3	9
3.4.	Koncept 41	0
3.5.	Odabir optimalne varijante	2
4. ME	HANIZAM ZA PRIHVAT I DIZANJE TERETA 1	3
4.1.	Dimenzioniranje i izbor sklopa kuke1	3
4.1.	1. Kuka	3
4.1.	2. Provjera čvrstoće nosača kuke1	4
4.1.	3. Provjera nosivosti aksijalnog ležaja1	5
4.1.	4. Matica kuke	6
4.2.	Izbor koloturnika 1	6
4.3.	Dimenzioniranje čeličnog užeta1	7
4.4.	Dimenzioniranje i izbor užnice	7
4.5.	Provjera čvrstoće osovine užnice	8

	4.6.	Provjera ležaja užnice	19
	4.7.	Dimenzioniranje bubnja	20
	4.7	.1. Promjer bubnja	20
	4.7	.2. Dimenzije profila žljebova	20
	4.7	.3. Radna i ukupna duljina bubnja	21
	4.7	.4. Provjera stijenke bubnja	22
	4.7	.5. Progib bubnja	24
	4.7	.6. Dimenzioniranje čeone ploče bubnja	24
	4.7	.7. Veza čeone ploče i bubnja	25
	4.7	.8. Veza užeta s bubnjem	25
	4.7	.9. Promjer osovine bubnja	27
	4.7	.10. Odabir ležaja bubnja	27
	4.8.	Odabir elektromotora	
	4.8	.1. Provjera kočnice motora	29
5.	PR	ORAČUN OKVIRA VITLA	31
	5.1.	Provjera kritične poprečne kvadratne cijevi	31
	5.2.	Provjera kritične uzdužne kvadratne cijevi	33
	5.3.	Osovinica za prihvat kraja užeta	35
6.	OD	ABIR KOTAČA I POGONA ZA VOŽNJU VITLA	37
	6.1.	Odabir pogona za vožnju vitla	37
	6.1	.1. Provjera elektromotora obzirom na pokretanje	39
	6.1	.2. Provjera elektromotora obzirom na proklizavanje kotača	40
	6.1	.3. Provjera kočnice elektromotora	42
7.	NO	SIVA KONSTRUKCIJA POLUPORTALNOG GRANIKA	43
	7.1.	Glavni nosači	43
	7.1	.1. Provjera krutosti glavnih nosača mosta	43
	7.1	.2. Provjera čvrstoće glavnih nosača	45
	7.1	.3. Provjera zavara glavnog nosača	47
	7.2.	Čeoni nosač	49
	7.2	.1. Provjera čvrstoće čeonog nosača	50
	7.2	.2. Provjera krutosti čeonog nosača	51
	7.3.	Stupovi	52
	7.3	.1. Provjera stupova na izvijanje	52
	7.4.	Nosač stupova	54
	7.4	.1. Provjera čvrstoće nosača stupova	54

7.4	.2. Provjera krutosti nosača stupova	55
7.5.	Provjera stabilnosti nosive konstrukcije	56
8. OD	ABIR KOTAČA I POGONA ZA VOŽNJU GRANIKA	
8.1.	Odabir kotača nosača stupova	
8.2.	Odabir kotača čeonog nosača	
8.3.	Odabir pogona za vožnju granika	
8.4.	Provjera elektromotora obzirom na pokretanje	
8.5.	Provjera elektromotora obzirom na proklizavanje kotača	
8.6.	Provjera kočnice elektromotora	
ZAKLЛ	JČAK	
LITERA	ATURA	
PRILOC	3	

POPIS SLIKA

Slika 1. Smjerovi gibanja tereta	1
Slika 2. Portalni granik s jednim glavnim nosačem	1
Slika 3. Portalni granik s okretnim vitlom [1]	2
Slika 4. Poluportalni granik tvrtke ABUS Kransysteme GmbH [2]	3
[3] Slika 5. Poluportalni granik s jednim glavnim nosačem tvrtke Henan Hengyuan Crane	4
Slika 6. Poluportalni granik s dva glavna nosača tvrtke AICRANE [4]	5
Slika 7. Nosiva konstrukcija koncepta 1	7
Slika 8. Vitlo koncepta 1	8
Slika 9. Nosiva konstrukcija koncepta 2	8
Slika 10. Vitlo koncepta 2	9
Slika 11. Nosiva konstrukcija koncepta 3	9
Slika 12. Vitlo koncepta 3	. 10
Slika 13. Nosiva konstrukcija koncepta 4	. 10
Slika 14. Vitlo koncepta 4	, 11
Slika 15. Oznake mjera jednokrake kuke kovane u kalupu [5]	.13
Slika 16. Oznake mjera nosača kuke [5]	.14
Slika 17. Oznake mjera matice kuke [5]	.16
Slika 18. Običan faktorski koloturnik s prijenosnim omjerom ik = 2 [6]	.16
Slika 19. Profil užnice [8]	. 18
Slika 20. Proračunski model osovine s jednom užnicom	. 18
Slika 21. Mjere čelične bešavne cijevi vanjskog promjera D = 171 mm [9]	. 20
Slika 22. Osnovne mjere bubnja [8]	.20
Slika 23. Duljinske mjere bubnja [8]	. 21
Slika 24. Naprezanje elementa stijenke bubnja [8]	. 22
Slika 25. Veza užeta s bubnjem [8]	.26
Slika 26. Okvir vitla	. 31
Slika 27. Proračunski model poprečne kvadratne cijevi	. 31
Slika 28. Zavar kritične kvadratne cijevi	. 32
Slika 29. Proračunski model bubnja kad je teret u najvišem položaju	.34
Slika 30. Proračunski model uzdužne kvadratne cijevi	. 34
Slika 31. Zavar lima osovinice za prihvat kraja užeta	.36
Slika 32. UPE 330 profil [9]	.43
Slika 33. Podjela glavnog nosača na gredu i konzolu	.43
Slika 34. Proračunski model grede	.45
Slika 35. Proračunski model konzole	.46
Slika 36. Zavar konzole i stupa	. 47
Slika 37. Položaj vitla pri najvećem opterećenju čeonog nosača	.49
Slika 38. Sile na čeoni nosač	. 50
Slika 39. Proračunski model izvijanja stupa [10]	. 52
Slika 40. Proračunski model nosača stupova	.54
Slika 41. Stabilnost konstrukcije	56

POPIS TABLICA

Tablica 1. Karakteristike poluportalnog granika tvrtke Henan Hengyuan Crane [3]	4
Tablica 2. Karakteristike poluportalnog granika tvrtke AICRANE [4]	5
Tablica 3. Prednosti i mane koncepata	12
Tablica 4. Dimenzije jednokrake kuke kovane u kalupu oznake HN = 2 , 5 , [mm] [5]	13
Tablica 5. Mjere nosača kuke za kuku, HN = 2 , 5 , [mm] [5]	14
Tablica 6. Mjere matice kuke za kuku HN = 2, 5 , [mm] [5]	16
Tablica 7. Mjere profila užnice, [mm] [8]	18
Tablica 8. Karakteristike odabranog elektromotora za dizanje tereta	29
Tablica 9. Karakteristike odabranog elektromotora za vožnju vitla	39
Tablica 10. Karakteristike odabranih elektromotora vožnju granika	61

POPIS TEHNIČKE DOKUMENTACIJE

LB-ZR-2020	Poluportalni granik s konzolom
LB-ZR-2020-500	Vitlo
LB-ZR-2020-800	Sklop kuke

POPIS OZNAKA

Oznaka	Jedninica	Opis
Aj	mm ²	Površina jezgre vijka
A _s	mm ²	Površina poprečnog presjeka stupa
$A_{\rm zav}$	mm ²	Površina zavara
а	mm	Udaljenost sile od oslonca
$c_{\rm B}$	-	Proračunski koeficijent
c _p	-	Koeficijent pregibanja užeta
С	Ν	Dinamička nosivost ležaja
C_0	Ν	Statička nosivost ležaja
<i>C</i> ₁	Ν	Opterećenje ležaja
d	mm	Promjer užeta
d_5	mm	Promjer rukavca na kojeg naliježe nosivi lim
d_7	mm	Promjer na kojem su postavljeni vijci
d_{o}	mm	Promjer osovine užnice
D_1	mm	Vanjski promjer glavine na koju je zavarena čeona ploča
$D_{\rm b}$	mm	Promjer bubnja
$D_{\mathrm{u}\check{\mathrm{z}}}$	mm	Promjer užnice
Ε	N/mm ²	Youngov modul
f	_	Faktor ispune užeta
$f_{\rm s}$	-	Faktor statičkog opterećenja ležaja
F	Ν	Sila koja djeluje na nosač kuke
$F_{10h_{min}}$	h	Zahtijevani nazivni vijek trajanja ležaja
F _{B_max}	Ν	Maksimalno opterećenje ležaja bubnja
$F_{ m N}$	Ν	Dopuštena sila u vijku
$F_{\rm NS}$	Ν	Sila koja djeluje na nosač stupova
$F_{\rm V}$	Ν	Sila u užetu pred ulazom u vijčanu vezu
Fa	Ν	Aksijalno opterećenje ležaja
$F_{\mathbf{k}}$	Ν	Opterećenje kotača
$F_{\rm kr}$	Ν	Kritična sila
F _n	Ν	Normalna sila u vijku
F _{stup}	Ν	Sila koja djeluje na stup

$F_{\mathrm{u}\check{\mathrm{z}}}$	Ν	Sila u užetu	
$F_{\rm rN}$	Ν	Radijalna nosivost vratila reduktora	
G _{ČN}	Ν	Težina čeonog nosača	
G _{EM,kot}	Ν	Težina elektromotora kotača	
$G_{\rm V}$	Ν	Težina vitla sa svim elementima	
Ga	Ν	Adhezijska težina na pogonskim kotačima	
$G_{\rm kot}$	Ν	Težina kotača	
$G_{\rm stup}$	Ν	Težina stupa	
h	mm	Visina profila žlijeba bubnja	
Н	mm	Visina dizanja	
I _{min}	mm ⁴	Minimalni moment tromosti presjeka stupa	
$i_{ m k}$	_	Prijenosni odnos koloturnika	
i _{min}	mm	Minimalni polumjer inercije	
i _{red}	_	Prijenosni odnos reduktora	
Iy	mm ⁴	Moment tromosti presjeka oko osi y	
$J_{\rm EM}$	kgm ²	Inercija sklopa elektromotora	
k	—	Koeficijent broja pogonskih kotača	
$k_{\rm st}$	_	Koeficijent stabilnosti	
lo	mm	Duljina izvijanja	
$l_{\rm b}$	mm	Ukupna duljina bubnja	
$l_{\rm r}$	mm	Radna duljina bubnja	
l_{s}	mm	Visina stupa	
M _b	Nmm	Moment na izlaznom vratilu reduktora	
M _{dop}	Nmm	Dopušteni moment savijanja	
$M_{\rm k}$	Nmm	Moment kočenja	
$M_{ m k,potr}$	Nmm	Potrebni moment kočenja	
<i>M</i> _{max}	Nmm	Maksimalni moment savijanja	
M _n	Nmm	Nominalni moment elektromotora	
$M_{\rm p}$	Nmm	Moment pokretanja	
$M_{ m pr}$	Nmm	Moment prevrtanja	
M _{st}	Nmm	Statički moment kočenja	
M _{stab}	Nmm	Moment stabilizacije	
M _{ub}	Nmm	Moment potreban za ubrzanje translacijskih i rotacijskih masa	
$m_{ m EM}$	kg	Masa elektromotora	

$m_{ m tr,g}$	kg	Ukupna translacijska masa granika	
$m_{ m tr,V}$	kg	Ukupna translacijska masa vitla	
$n_{ m EM}$	min ⁻¹	Brzina vrtnje vratila elektromotora	
n_1	min ⁻¹	Nazivna brzina vrtnje elektromotora	
n_2	min ⁻¹	Brzina vrtnje izlaznog vratila reduktora	
$n_{ m b}$	min ⁻¹	Brzina vrtnje bubnja	
$n_{ m m}$	min ⁻¹	Brzina vrtnje ležaja	
Р	W	Nazivna snaga elektromotora	
P _r	Ν	Dinamičko ekvivalentno opterećenje ležaja	
$P_{\rm V}$	W	Snaga potrebna za ustaljenu vožnju vitla	
p	N/mm ²	Površinski pritisak	
$p_{ m dop}$	N/mm ²	Dopušteni površinski pritisak	
Q	Ν	Nosivost granika	
$Q_{\rm t}$	t	Nosivost granika	
q	N/mm	Specifična težina glavnog nosača	
$q_{\check{C}N}$	N/mm	Specifična težina čeonog nosača	
$q_{\rm NS}$	N/mm	Specifična težina nosača stupova	
r_1	mm	Radijus profila žlijeba bubnja	
$R_{\rm e}$	N/mm ²	Granica tečenja	
R _m	N/mm ²	Lomna čvrstoća	
S	mm	Debljina nosivog lima	
S	-	Faktor sigurnosti	
t	mm	Korak užeta	
t_{\min}	S	Minimalno vrijeme pokretanja	
$t_{ m p}$	S	Vrijeme pokretanja	
$t_{\rm z}$	S	Vrijeme zaustavljanja	
$u_{ m k}$	_	Broj užeta iznad pomičnog bloka	
$v_{ m b}$	m/s	Obodna brzina bubnja	
$v_{\rm diz}$	m/s	Brzina dizanja tereta	
$v_{\rm voz}$	m/s	Brzina vožnje	
W _{vk}	Ν	Otpor ustaljene vožnje	
Wy	mm ³	Moment otpora presjeka oko osi y	
W	mm	Debljina čeone ploče bubnja	
w _b	mm	Progib bubnja	

W _{dop}	mm	Dopušteni progib
$W_{\rm NK}$	Nmm	Moment otpora presjeka nosača kuke
Ζ	_	Broj vijaka
α	rad	Obuhvatni kut
β	o	Kut trapeznog žlijeba pritisne pločice
δ	mm	Debljina stijenke bubnja
ε	—	Eksponent vijeka trajanja ležaja
${\eta}_0$	—	Stupanj djelovanja valjnih ležajeva
$\eta_{ m B}$	—	Stupanj djelovanja pri namatanju užeta na bubanj
$\eta_{ m K}$	_	Stupanj djelovanja kočnice elektromotora
$\eta_{ m R}$	_	Stupanj djelovanja reduktora
$\eta_{ m diz}$	_	Stupanj djelovanja pri dizanju tereta
$\eta_{ m kol}$	_	Stupanj djelovanja koloturnika
$\eta_{ m koc}$	_	Stupanj djelovanja u kočnom stanju
λ	_	Vitkost stupa
$\lambda_{ m p}$	_	Granična vitkost stupa
μ	_	Faktor trenja
μ_1	_	Modificirani faktor trenja
$ u_{ m k}$	_	Faktor sigurnosti potreban za usporenje masa u gibanju
$\nu_{ m n}$	_	Faktor sigurnosti
τ	N/mm ²	Naprezanje na smik
$\sigma_{\mathrm{D}(-1)\mathrm{dop}}$	N/mm ²	Dopušteno naprezanje pri dinamičkom opterećenju
$\sigma_{ m NK}$	N/mm ²	Naprezanje nosača kuke
$\sigma_{ m dop}$	N/mm ²	Dopušteno naprezanje
$\sigma_{ m ekv}$	N/mm ²	Ekvivalentno naprezanje
$\sigma_{ m f}$	N/mm ²	Naprezanje na savijanje
$\sigma_{ m f,max}$	N/mm ²	Najveće naprezanje na savijanje
$\sigma_{ m f,dop}$	N/mm ²	Dopušteno naprezanje na savijanje
$\sigma_{ m kr}$	N/mm ²	Kritično naprezanje
$\sigma_{ m red}$	N/mm ²	Reducirano naprezanje
σ_{x}	N/mm ²	Normalno naprezanje
$\sigma_{ m x,dop}$	N/mm ²	Dopušteno normalno naprezanje
σ_{arphi}	N/mm ²	Cirkularno naprezanje
$\sigma_{ m \phi,dop}$	N/mm ²	Dopušteno cirkularno naprezanje

 $\omega_{\rm EM}$ rad/min Kutna brzina vratila elektromotora

 $\omega_{\rm b}$ rad/min Kutna brzina bubnja

SAŽETAK

Zadatak ovog završnog rada je konstrukcija poluportalnog granika s konzolom. Teret se podiže i prenosi u formi kockastih kutija preko standardne kuke. Zahtijevani raspon mosta iznosi 10 m, doseg konzole 3 m, a visina zida na koji će biti oslonjen granik iznosi 6 m. Nosivost granika je 15 kN, što je približno 1,5 t. Nosiva konstrukcija granika treba biti izvedena tako da teret može mimoići nosive stupove granika.

U prvom dijelu rada provedena je analiza postojećih konstrukcijskih rješenja, te su dana četiri konceptualna rješenja. U drugom dijelu rada proveden je proračun elemenata za prihvat i dizanje tereta te analitički proračun nosive konstrukcije vitla i granika. Također je izvršen odabir pogonskih jedinica mehanizma za dizanje te vožnju vitla i granika. Rad je zaključen izradom CAD modela i tehničke dokumentacije u programskom paketu Solidworks.

Ključne riječi: poluportalni granik, konzola, vitlo, mehanizam za dizanje, mehanizam za vožnju

SUMMARY

The assignment of this final thesis was a design of a semi gantry crane with a cantilever. The load will be lifted and transferred using standard hook. Required bridge span is 10 m, required cantilever span is 3 m, while wall height is 6 m. Load capacity of the crane is 15 kN, which is approximately 1,5 t. Crane must be designed so that load can be moved through legs of the crane.

In the first part of the assignment, a short analysys of the existing structural solutions of semi gantry cranes has been carried out and there has been given four conceptual solutions. In the second part, calculation of the load lifting elements for the chosen conceptual solution has been made, as well as the analytical calculation of the trolley load-bearing structure and the semi gantry crane. Furthermore, the selection of corresponding load lifting, as well as the trolley drive and crane drive has been made. The assignment is concluded with a CAD model and technical documentation in the SolidWorks program.

Keywords: semi gantry crane, cantilever, winch, lifting mechanism, driving mechanism

1. UVODNO RAZMATRANJE O PORTALNIM GRANICIMA

Granici su sredstva prekidne dobave za obavljanje dobavnih odnosno manipulacijskih postupaka unutar ograničenog radnog prostora. Granik ima tri ili više pogonskih mehanizama, kojima se teret zavješen na nosivom sredstvu ili zahvaćen zahvatnim sredstvom diže, spušta i horizontalno prenosi.

Portalni granici su granici kojima postolje ima oblik portala. Most portalnih granika oslanja se na nogare koje su obično pričvršćene na tlo mehanizmom koji omogućuje pokretanje cijele konstrukcije. Portalni granici najčešće se kreću po tračnicama duž površine preko koje prenose teret, ali se mogu izvesti i za kretanje po podu bez tračnica ili kao nepomični granici. Ako su nogari postavljeni samo s jedne strane mosta, a na drugoj su tračnice postavljene na razini glavnog nosača, takav se granik naziva poluportalni granik. Osnovni smjerovi pomicanja tereta portalnim granikom prikazani su na slici 1.

Slika 1. Smjerovi gibanja tereta

1.1. Portalni granici s voznim vitlom

Portalni granici s voznim vitlom imaju most s jednim ili s dva punostijena ili rešetkasta nosača. Mostovi sa simetrično opterećenim jednim nosačem koji služe za prijenos komandne robe, grade se kao punostijeni nosači za raspone do 25 m i duljine mosta do 40 m. Za veće raspone, do 40 m, i veće duljine mosta upotrebljavaju se rešetkasti nosači zato što imaju manje plohe izložene vjetru. Mostovi s jednim nosačem uobičajene konstrukcije grade se za nosivosti do 16 t i za vitlo koje se kreće po donjem pojasu nosača, tj. ovjesnim vitlom. Za veće nosivosti koriste se mostovi s dva nosača i vitlom koje se kreće po nosačima.

Slika 2. Portalni granik s jednim glavnim nosačem

1.2. Portalni granici s okretnim vitlom

Portalni granici s okretnim vitlom, koji su zapravo okretni granici s krutim ili pomičnim dohvatnikom grade se s jednostavnim i niskim nogarima. Zbog velike mase mosta, njihova je brzina vožnje malena i iznosi od 0,25 m/s do 0,5 m/s. Također zbog velike mase okretnog vitla ono ima manju brzinu vožnje od voznog vitla.

Slika 3. Portalni granik s okretnim vitlom [1]

2. ANALIZA POSTOJEĆIH RJEŠENJA

U radu je potrebno konstruirati poluportalni granik pa će se u ovom poglavlju razmatrati postojeća rješenja poluportalnih granika. Razmatrat će se poluportalni granici s jednim glavnim nosačem te poluportalni granici s dva glavna nosača.

Kod prikazivanja karakteristika postojećih rješenja, proizvođači nude raspon vrijednosti što znači da se prilagođavaju potrebama kupca.

2.1. Poluportalni granici s jednim glavnim nosačem

2.1.1. Poluportalni granik tvrtke ABUS Kransysteme GmbH

Poluportalni granik s jednim glavnim nosačem tvrtke ABUS prikazan na slici 4., opremljen je ovjesnim vitlom te se koristi za terete maksimalne mase do 10 t. Doseg glavnog nosača kreće se u rasponu do 15 m, ovisno o nosivosti granika. Glavni nosač izveden je kao zavareni kutijasti profil, a nogari su izvedeni od kvadratnih cijevi. Pogonski kotači su kotači na razini glavnog nosača, a podni kotači ne kreću se po tračnicama već po podu hale.

Slika 4. Poluportalni granik tvrtke ABUS Kransysteme GmbH [2]

2.1.2. Poluportalni granik tvrtke Henan Hengyuan Crane

Tvrtka Henan Hengyuan Crane nudi poluportalni granik s jednim glavnim nosačem i vitlom za bočnu ugradnju. Glavni nosač i nogari izvedeni su kao zavareni kutijasti profili. Karakteristike granika nosivosti 10 t dane su u tablici 1.

Slika 5. Poluportalni granik s jednim glavnim nosačem tvrtke Henan Hengyuan Crane [3]

Nosivost (t)		10
Doseg (m)		18 – 35
Visina podizanja tereta (m)		10 – 13
Pogonska grupa		A5 – A8
	Podizanja tereta	8,5
Brzina (m/min)	Vožnje vitla	43,8
	Vožnje granika	40

Tablica 1. Karakteristike poluportalnog granika tvrtke Henan Hengyuan Crane [3]

2.2. Poluportalni granici s dva glavna nosača

2.2.1. Poluportalni granik tvrtke AICRANE

Na slici 6 prikazan je poluportalni granik s dva glavna nosača tvrtke AICRANE. Glavni nosači su, kao i nogari, izvedeni od zavarenih kutijastih profila. Spoj glavnih nosača s nogarima ostvaren je vijcima. Za dodatno ukrućenje nogara koriste se poprečne grede. U tablici 2. dane su karakteristike granika nosivosti 5 t.

Slika 6. Poluportalni granik s dva glavna nosača tvrtke AICRANE [4]

Nosivost (t)	5
Doseg (m)	5 – 20
Visina podizanja tereta (m)	6 – 12
Brzina podizanja tereta (m/min)	0,8-8
Brzina vožnje vitla (m/min)	20 - 30
Brzina vožnje granika (m/min)	20 - 30
Pogonska grupa	A3 – A4

Tablica 2. Karakteristike poluportalnog granika tvrtke AICRANE [4]

2.3. Zaključak analize postojećih rješenja

Analizom postojećih rješenja utvrđeno je da ne postoji poluportalni granik koji bi zadovoljio glavnu funkciju granika traženog zadatkom, tj. transport tereta izvan nosivog stupa te da pri transportu teret mimoiđe nosivi stup granika. Stoga su proučene izvedbe nosive konstrukcije.

Nosiva konstrukcija poluportalnih granika najčešće je izvedena od zavarenih kutijastih profila iz razloga što su oni otporniji na uvijanje glavnih nosača, koje je izazvano inercijom tereta. Rešetkaste izvedbe te izvedbe sa standardnim profilima rijetko se mogu naći u primjeni.

3. KONCEPCIJSKA RJEŠENJA

U ovom poglavlju bit će dano nekoliko koncepata funkcionalnih rješenja za traženi zadatak. Za svaki koncept bit će dan opis te skica koncepta. Nakon prikaza koncepata slijedi odabir koncepta koji će ići u daljnji proračun. O konceptu koji će ići u daljnji proračun odlučivat će se primjenom metode analize prednosti i mana pojedinog koncepta.

3.1. Koncept 1

Koncept 1, prikazan na slici 7., izveden je kao poluportalni granik s jednim glavnim nosačem i ovjesnim vitlom. Glavni nosač je izveden od jednog I profila te je vijcima pričvršćen na poprečnu gredu koja je vijcima pričvršćena na nogare. Zbog osiguranja stabilnosti te osiguranja da teret zadanih dimenzija može kroz njih proći, nogari su postavljeni pod određenim kutom. Konstrukcija vitla je izvedena od dva nosiva lima i dva poprečna U profila na koja će biti pričvršćeni bubanj i elektromotor te protuuteg. Vitlo je prikazano na slici 8.

Slika 7. Nosiva konstrukcija koncepta 1

Slika 8. Vitlo koncepta 1

3.2. Koncept 2

Koncept 2, slika 9., izveden je kao poluportalni granik s jednim glavnim nosačem i ovjesnim vitlom. Razlika u odnosu na koncept 1 je u tome što je poprečna greda zamijenjena konzolom čime je smanjena maksimalna visina granika. Budući da je širina glavnog nosača veće u donosu na glavni nosač koncepta 1, bubanj i elektromotor smješteni su između nosivih limova vitla čime je izbjegnuto korištenje protuutega. Za povećanje krutosti dodana su rebra. Vitlo je prikazano na slici 10.

Slika 9. Nosiva konstrukcija koncepta 2

Slika 10. Vitlo koncepta 2

3.3. Koncept 3

Koncept 3, slika 11., predstavlja poluportalni granik s dva glavna nosača. Glavni nosači su izvedeni od U profila te su zavareni za stupove. Vozna staza vitla nalazi se na donjoj stranici U profila. Ovakav tip konstrukcije rasterećuje nosače jer svaki nosač nosi pola tereta te daje potrebnu stabilnost granika. Vitlo je izvedeno od dva nosača na kojima su smješteni kotači, elektromotor i ležaj bubnja, i dvije poprečne grede za povećanje krutosti okvira vitla.

Slika 11. Nosiva konstrukcija koncepta 3

Slika 12. Vitlo koncepta 3

3.4. Koncept 4

Koncept 4 izveden je od dva zavarena kutijasta profila. Kutijasti profili nataknuti su na nogare i pričvršćeni vijcima. Poprečna greda izvedena je iz dva dijela i spojena prirubnicom, a dijelovi grede su zavareni za glavne nosače. Vitlo je izvedeno od dva uzdužna nosača na koje su pričvršćeni nosači te jednog poprečnog nosača na kojeg su pričvršćeni bubanj i elektromotor.

Slika 13. Nosiva konstrukcija koncepta 4

Slika 14. Vitlo koncepta 4

3.5. Odabir optimalne varijante

Izbor koncepta koji će ići u detaljnu razradu odredit će se analizom prednosti i mana. U tablici 3 prikazane su prednosti i mane koncepata na temelju kojih će se odlučiti o najpogodnijem konceptu za daljnju razradu.

Konc	cept 1	Konc	cept 2	Konc	ept 3	Konc	ept 4
Prednost	Mana	Prednost	Mana	Prednost	Mana	Prednost	Mana
Jedan glavni nosač	Torzijsko opterećenje glavnog nosača zbog inercije tereta	Jedan glavni nosač	Zavarena izvedba glavnog nosača	Jednoliko opterećenje glavnih nosača		Jednoliko opterećenje glavnih nosača	Zavarena izvedba glavnih nosača
Glavni nosač izveden od standardnog profila	Limovi vitla su opterećeni savijanjem	Smanjena visina granika	Zavari konzola nose svo opterećenje	Stabilnost konstrukcije		Stabilnost konstrukcije	Bubanj postavljen paralelno s glavnim nosačem čime je smanjen doseg vitla
Jednostavna izvedba vitla	Potreban protuuteg na vitlu	Jednostavna izvedba vitla	Torzijsko opterećenje glavnog nosača zbog inercije tereta	Jednostavna izvedba vitla		Jednostavna izvedba vitla	
	Veliko opterećenje zavara poprečnih nosača na vitlu		Upitna mogućnost prolaza kotača ispod konzola	Smanjena visina granika			
	Bubanj postavljen paralelno s glavnim nosačem čime je smanjen doseg vitla		Limovi vitla su opterećeni savijanjem				
			Bubanj postavljen paralelno s glavnim nosačem čime je smanjen doseg vitla				

Tablica 3. Prednosti i mane koncepata

Iz tablice 3 vidi se da koncepti s jednim glavnim nosačem imaju velik broj mana, stoga se oni neće razmatrati. U daljnju razradu ići će koncept 3 koji ima najveći broj prednosti, njih četiri, te nema mana.

4. MEHANIZAM ZA PRIHVAT I DIZANJE TERETA

Budući da nisu zadani uvjeti rada granika, pretpostavljeno je da će granik raditi u srednje teškim uvjetima rada te mu je dodijeljena pogonska grupa 2m prema DIN 15020.

4.1. Dimenzioniranje i izbor sklopa kuke

4.1.1. Kuka

Izraz za izračun potrebnog broja kuke glasi:

HN =
$$\frac{\nu_{\rm n} \cdot Q}{R_{\rm e}} = \frac{2 \cdot 1,53}{25} = 0,1224$$
, (4.1)

gdje je:

 $\nu_n = 2 - nazivni faktor sigurnosti za pogonsku grupu 2m [5],$

 $Q_t = \frac{Q}{g} = \frac{15}{9,81} = 1,53 \text{ t} - \text{nosivost u tonama},$

 $R_{\rm e} = 25 \text{ kN/cm}^2$ – granica tečenja za materijal razreda čvrstoće M.

Odabrana je kuka HN = 2,5, a odabrani materijal kuke je StE285. Na slici 15. prikazane su oznake mjera jednokrake kuke kovane u kalupu, a u tablici 4. dane su dimenzije odabrane kuke.

Slika 15. Oznake mjera jednokrake kuke kovane u kalupu [5]

Broj kuke	a_1	a_2	a_3	b_1	b_2	d_1	Navoj kuke	e_1	e_2	<i>e</i> ₃	h_1	h_2	l_1	f_1	g_1	r_1	r_2	<i>r</i> ₃	r_4	r_5	<i>r</i> ₆	r_7	Masa ≈ kg
025	36	28	41	22	19	20	M 16	85	88	74	28	24	144	22	9	3	5	43	75	75	42	40	0,8

Prema [5] provjeru čvrstoće kuke potrebno je provjeriti ukoliko mjere kuke ne odgovaraju u potpunosti važećoj normi ili kada treba izraditi kuku veće nosivosti od normiranih kuka pa se stoga čvrstoća kuke neće provjeravati.

4.1.2. Provjera čvrstoće nosača kuke

Za kuku HN = 2,5 postoji normirani nosač. Oznake mjera nosača kuke prikazane su na slici 16., a mjere nosača dane su u tablici 5.

Slika 16. Oznake mjera nosača kuke [5]

Tablica 5. Mjere	e nosača kuke za	1 kuku, HN =	2, 5, [mm] [5]
------------------	------------------	--------------	----------------

Broj kuke	b_1	b_2	b_3	b_4	с	d_2	<i>d</i> 4 j6	<i>d</i> 5 h9	d_6	h_1	h_2	<i>h</i> ₃ h11	<i>r</i> ₁ max	r_2	S	<i>s</i> ₁	<i>s</i> ₂	t_1	<i>t</i> ₂	$t_3 \\ max$	u_1
2,5	80	125	22,5	17	8	37	40	30	19	40	21,5	37	0,6	1,6	10	0,5	1,2	2	2	1	63,5

Nosač kuke provjerava se kao nosač na dva oslonca opterećen na savijanje. Prema tome, izraz za naprezanje nosača kuke glasi:

$$\sigma_{\rm NK} = \frac{M_{\rm NKmax}}{W_{\rm NK}} \le \sigma_{\rm dop} \,, \tag{4.2}$$

gdje je:

M_{NKmax} – maksimalni moment koji opterećuje nosač kuke,

W_{NK} – moment otpora presjeka nosača kuke i

 σ_{dop} – dopušteno naprezanje.

Maksimalni moment koji opterećuje nosač kuke računa se prema izrazu:

$$M_{\rm NKmax} = \frac{F \cdot l}{4} = \frac{15000 \cdot 100}{4} = 375000 \text{ Nmm}, \qquad (4.3)$$

gdje je:

F = 15000 N – sila koja djeluje na nosač, odgovara maksimalnoj težini tereta i $l = b_1 + 2s = 100$ mm – krak sile.

Moment otpora presjeka nosača kuke računa se prema izrazu:

$$W_{\rm NK} = \frac{h_3^2}{6} \cdot (b_1 - d_2) = 9811,2 \,\rm{mm^3}$$
. (4.4)

Za materijal C35 dopušteno naprezanje iznosi:

$$\sigma_{\rm dop} = 80 \dots 120 \ \frac{\rm N}{\rm mm^2}.$$
 (4.5)

Uvrštavanjem izraza (4.3) i (4.4) u izraz (4.2) slijedi da naprezanje nosača kuke pri maksimalnom teretu iznosi:

$$\sigma_{\rm NK} = 38,22 \ \frac{\rm N}{\rm mm^2}.$$
 (4.6)

Usporedbom izraza (4.5) i (4.6) slijedi da je izraz (4.2) zadovoljen!

Još treba provjeriti površinski pritisak između nosivih limova i nosača kuke. Izraz za površinski pritisak glasi:

$$p = \frac{F}{2d_5 \cdot s} = \frac{15000}{2 \cdot 30 \cdot 10} = 25 \frac{N}{mm^2} \le p_{dop}, \qquad (4.7)$$

gdje je:

F = 15000 N - sila koja djeluje na nosač, odgovara maksimalnoj težini tereta,

 $d_5 = 30 \text{ mm} - \text{promjer rukavca na kojeg naliježe nosivi lim,}$

s = 10 mm - debljina nosivog lima i

 $p_{dop} = 80 \dots 120 \frac{N}{mm^2} - dopušteni površinski pritisak.$

Površinski pritisak zadovoljava!

4.1.3. Provjera nosivosti aksijalnog ležaja

Prema [4] preporučeni aksijalni ležaj je ležaj 51108 proizvođača *SKF*. Aksijalni ležaj kuke provjerava se na statičku nosivost. Uvjet statičke nosivosti glasi:

$$C_0 > C_1 , \qquad (4.8)$$

gdje je:

C₀ – statička nosivost ležaja i

C₁ – statičko opterećenje ležaja.

(4.9)

Statičko opterećenje ležaja računa se prema izrazu:

gdje je:

 $F_a = Q = 15000 \text{ N} - \text{aksijalno opterećenje ležaja i}$

 $f_s = 0.8 \dots 1.2 = 1.2 - \text{faktor statičkog opterećenja}.$

Statička nosivost ležaja 51108 iznosi $C_0 = 63000$ N.

Budući je izraz (4.8) zadovoljen, odabrani ležaj zadovoljava.

4.1.4. Matica kuke

Oznake mjera matice kuke dane su slikom 17., a mjere matice kuke dane su tablicom 6.

 $C_1 = F_a \cdot f_s = 18000 \text{ N}$,

Slika 17. Oznake mjera matice kuke [5]

Tablica 6. Mjere matice kuke za kuku HN = 2, 5, [mm] [5]

Broj kuke	Navoj d_1	d_7	<i>d</i> ₈ E9	d_9	<i>d</i> ₁₁ H12	h	l_5	l_6	r_4	<i>t</i> ₁₁	<i>t</i> ₁₂	<i>t</i> ₁₃
2,5	M 36	70	60	63	8	44	32	10	0,6	4	12	8

4.2. Izbor koloturnika

Odabran je obični faktorski koloturnik s prijenosnim omjerom $i_k = 2$. Primjer takvog koloturnika prikazan je slikom 18.

Slika 18. Običan faktorski koloturnik s prijenosnim omjerom $i_k = 2$ [6]

Stupanj djelovanja takvog koloturnika računa se prema izrazu:

$$\eta_{\rm kol} = \frac{1}{u_{\rm k}} \cdot \frac{1 - \eta_0^{i_{\rm k}}}{1 - \eta_0} = 0,99 , \qquad (4.10)$$

gdje je:

 $u_k = i_k = 2$ – broj užeta iznad pomičnog bloka, odgovara prijenosnom odnosu koloturnika i $\eta_0 = 0.98$ – stupanj djelovanja valjnih ležajeva.

4.3. Dimenzioniranje čeličnog užeta

Potrebni promjer užeta računa se prema izrazu:

$$d \ge \sqrt{\frac{4 \cdot F_{u\check{z}} \cdot S}{f \cdot \pi \cdot R_{\rm m}}} = \sqrt{\frac{4 \cdot 7575,76 \cdot 4,5}{0,455 \cdot \pi \cdot 1570}} = 7,795 \,\,{\rm mm}\,,\tag{4.11}$$

gdje je:

 $F_{u\check{z}} = \frac{Q}{u_k \cdot \eta_{kol}} = \frac{15000}{2 \cdot 0.99} = 7575,76 \text{ N} - \text{maksimalna sila u užetu,}$

S – faktor sigurnosti, prema [7] za pogonsku grupu 2m iznosi S = 4,5,

f – faktor ispune, za normalno pleteno uže 6x19 iznosi f = 0,455 i

 $R_{\rm m} = 1570 \ \frac{\rm N}{\rm mm^2} - lomna$ čvrstoća žice.

Odabrano je uže oznake 8 DIN 3060 6x19 - FC 1570 U zS.

4.4. Dimenzioniranje i izbor užnice

Potrebni promjer užnice računa se prema izrazu:

$$D_{\mathrm{u}\check{z}} \ge \left(\frac{D_{\mathrm{u}\check{z}}}{d}\right)_{\mathrm{min}} \cdot d \cdot c_{\mathrm{p}} = 20 \cdot 8 \cdot 1 = 160 \mathrm{~mm}$$
, (4.12)

gdje je:

 $\left(\frac{D_{u\check{z}}}{d}\right)_{\min} = 20 - \min$ imalni dozvoljeni odnos $\left(\frac{D_{u\check{z}}}{d}\right)$ za pogonsku grupu 2m [8], d = 8 - promjer užeta i

 $c_{\rm p}$ – koeficijent pregibanja užeta, prema [8] za broj pregiba $b_{\rm p}$ = 3 iznosi $c_{\rm p}$ = 1.

Odabrani promjer užnice iznosi: $D_{uz} = 160 \text{ mm}.$

Profil užnice prikazan je na slici 19., a u tablici 7. dane su mjere profila užnica.

Slika 19. Profil užnice [8]

Tablica 7. Mjere profila užnice, [mm] [8]

r	d	h	b	a
4,2	8	15	18	4

4.5. Provjera čvrstoće osovine užnice

Proračunski model osovine s jednom užnicom je greda oslonjena na dva oslonca opterećena poprečnom silom na sredini grede. Proračunski model prikazan je na slici 20. zajedno s pripadajućim "Q" i "M" dijagramima.

Slika 20. Proračunski model osovine s jednom užnicom

Maksimalni moment savijanja iznosi:

$$M_{\rm max} = Q \cdot \frac{90}{4} = 15000 \cdot \frac{90}{4} = 337500$$
 Nmm. (4.13)
Dopušteni moment savijanja osovine iznosi:

$$M_{\rm dop} = \pi \cdot \frac{d_o^3}{32} \cdot \sigma_{\rm dop} = \pi \cdot \frac{45^3}{32} \cdot 90 = 805155,84 \text{ Nmm}, \tag{4.14}$$

gdje je

 $d_o = 45 \text{ mm} - \text{promjer osovine i}$ $\sigma_{dop} = 90 \frac{N}{mm^2} - \text{dopušteno naprezanje za materijal E295.}$

Budući je maksimalni moment savijanja osovine manji od dopuštenog, osovina zadovoljava.

4.6. Provjera ležaja užnice

Prema [8] preporučeni ležaj za tip užnice "C" je 6209-2RS1 proizvođača *SKF*. Budući će užnica biti na dva ležaja, uz pretpostavku da ležajevi neće biti aksijalno opterećeni, dinamičko ekvivalentno opterećenje jednog ležaja iznosi:

$$P_{\rm r} = F_{\rm u\check{z}} = 7575,76 \,\rm N.$$
 (4.15)

Dinamička opterećenost ležaja računa se prema izrazu:

$$C_{1} = P_{\rm r} \cdot \left(\frac{60 \cdot n_{\rm m} \cdot L_{10\rm h_{\rm min}}}{10^{6}}\right)^{\frac{1}{\epsilon}},\tag{4.16}$$

gdje je:

 $n_{\rm m} = \frac{v_{\rm diz} \cdot i_{\rm k}}{D_{\rm uz} \cdot \pi} = \frac{10 \cdot 2}{0.160\pi} = 39,79 \, {\rm min^{-1}} - {\rm brzina vrtnje ležaja},$

 $L_{10h \text{ min}} = 10000 \text{ h} - \text{zahtijevani nazivni vijek trajanja ležaja i}$

 $\varepsilon = 3 - \text{eksponent vijeka trajanja za kuglične ležajeve.}$

Slijedi da dinamička opterećenost iznosi:

$$C_1 = 21813,96 \text{ N.} \tag{4.17}$$

Dinamička nosivost ležaja 6209-2RS1 iznosi:

$$C = 35100 \text{ N.}$$
 (4.18)

Budući da je $C_1 < C$ odabrani ležaj zadovoljava.

4.7. Dimenzioniranje bubnja

4.7.1. Promjer bubnja

Potrebni promjer bubnja računa se prema izrazu:

$$D_b \ge \left(\frac{D_b}{d}\right)_{\min} \cdot d \cdot c_p = 18 \cdot 8 \cdot 1 = 144 \text{ mm}, \qquad (4.19)$$

gdje je:

 $\left(\frac{D_{\rm b}}{d}\right)_{\rm min} = 18 - {\rm minimalni} \ {\rm dozvoljeni} \ {\rm odnos} \left(\frac{D_{\rm b}}{d}\right) {\rm za} \ {\rm pogonsku} \ {\rm grupu} \ {\rm 2m} \ [8].$

Bubanj će biti izveden od debelostjene bešavne čelične cijevi vanjskog promjera D = 171 mm i debljine stijenke $\delta = 10$ mm proizvođača *FRANKSTAHL*.

Na slici 21. prikazane su karakteristike odabrane cijevi.

Slika 21. Mjere čelične bešavne cijevi vanjskog promjera D = 171 mm [9]

4.7.2. Dimenzije profila žljebova

Budući se na bubanj namata jedno uže, bubanj će biti jednosmjerno ožljebljen. Žlijebovi čuvaju uže i osiguravaju jednakomjerno namatanje užeta.

Slika 22. Osnovne mjere bubnja [8]

Prema preporukama i iskustvenim podacima, dimenzije profila žlijeba iznose:

Visina profila žlijeba:
$$0,375 \cdot d \le h \le 0,4 \cdot d$$
Radijus profila žlijeba: $r_1 = 0,53 \cdot d$ (4.20)Korak užeta: $t \cong 1,15 \cdot d$

Za uže promjera d = 8 mm, uvrštavanjem u izraze (5.13) slijedi:

$$3 \text{ mm} \le h \le 3,2 \text{ mm},$$

 $r_1 = 4,24 \text{ mm i}$ (4.21)
 $t \cong 9,2 \text{ mm}.$

Odabrane su sljedeće dimenzije profila žlijeba:

Visina profila žlijeba:
$$h = 3 \text{ mm}$$
Radijus profila žlijeba: $r_1 = 4,5 \text{ mm}$ Korak užeta: $t = 9 \text{ mm}$

4.7.3. Radna i ukupna duljina bubnja

Na slici 23. prikazane su duljinske mjere bubnja.

Slika 23. Duljinske mjere bubnja [8]

Radna duljina bubnja računa se prema izrazu:

$$l_{\rm r} = \frac{i_{\rm k} \cdot H}{D\pi} \cdot t = \frac{2 \cdot 6000}{171 \cdot \pi} \cdot 9 = 201,04 \,\,{\rm mm}\,,\tag{4.23}$$

gdje je:

 $i_{\rm k} = 2 - prijenosni omjer koloturnika,$

H = 6000 mm - visina dizanja,

D = 171 mm - promjer bubnja i

t = 9 mm - korak užeta.

Radna duljina bubnja iznosit će $l_r = 205$ mm.

gdje je:

Ukupna dužina bubnja računa se prema izrazu:

$$l_{\rm b} = l_{\rm r} + s_1 + s_2 + s_3 + s_4 + s_5 = 355 \,\rm{mm}\,, \tag{4.24}$$

 $s_1 = t + (40 \ do \ 50) = 9 + 41 = 50 \ mm,$ $s_2 \cong t = 10 \ mm,$ $s_3 = 4t = 4 \cdot 9 = 36 \ mm,$ $s_4 = (2,5 \ do \ 3,5) \cdot t = 3 \cdot 9 = 27 \ mm \ i$ $s_5 = (2 \ do \ 3) \cdot t = 3 \cdot 9 = 27 \ mm.$

4.7.4. Provjera stijenke bubnja

Stijenka bubnja opterećena je na uvijanje, savijanje i prolom. Naprezanje zbog uvijanja je najčešće malo te se stoga može zanemariti, dok je savijanje ima utjecaj kod vrlo dugačkih bubnjeva. Opterećeno uže namata se na bubanj pod opterećenjem i steže stijenku bubnja slično djelovanju vanjskog tlaka pa se stijenka bubnja prvenstveno dimenzionira prema naprezanjima koja odatle slijede. [8]

Slika 24. Naprezanje elementa stijenke bubnja [8]

Cirkularno (tlačno) naprezanje računa se prema izrazu:

$$\sigma_{\varphi} = -0.5 \cdot \frac{F_{\rm u\check{z}}}{t \cdot s} = -0.5 \cdot \frac{7575,76}{9 \cdot 7} = -60,13 \ \frac{\rm N}{\rm mm^2} \ , \tag{4.25}$$

gdje je:

 $s = (\delta - h) = (10 - 3) = 7$ mm.

Za materijal S235JR dopušteno cirkularno naprezanje iznosi $|\sigma_{\varphi,dop}| \le 100 \frac{N}{mm^2}$.

Normalno naprezanje od lokalnog savijanja stijenke na mjestu namatanja užeta računa se prema izrazu:

$$\sigma_{\rm x} = 0.96F \sqrt{\frac{1}{D_{\rm b} \cdot s^3}} = 0.96 \cdot 7575.76 \sqrt{\frac{1}{165 \cdot 7^3}} = 30.25 \frac{\rm N}{\rm mm^2}, \qquad (4.26)$$

gdje je:

 $D_{\rm b} = D - 2h = 171 - 2 \cdot 3 = 165 \text{ mm}$ - promjer bubnja nakon obrade žlijeba.

Dopušteno normalno naprezanje od lokalnog savijanja stijenke za materijal S235JR iznosi $\sigma_x \leq 50 \; \frac{N}{mm^2}$.

Budući su cirkularna i normalna naprezanja manja od dopuštenih vrijednosti, odabrana debljina stijenke bubnja zadovoljava.

Glavna naprezanja bubnja na mjestu namatanja užeta su:

$$\sigma_{1} = \sigma_{x} = 30,25 \frac{N}{mm^{2}},$$

$$\sigma_{2} = 0 i$$

$$\sigma_{3} = \sigma_{\phi} = -60,13 \frac{N}{mm^{2}}.$$
(4.27)

Slijedi da ekvivalentno naprezanje iznosi:

$$\sigma_{\rm ekv} = \sigma_1 - \sigma_3 = 30,25 - (-60,13) = 90,38 \,\frac{\rm N}{\rm mm^2}$$
 (4.28)

Dopušteno naprezanje za materijal S235JR iznosi:

$$\sigma_{\rm dop} = \frac{R_e}{S} = \frac{235}{2} = 117,5 \ \frac{\rm N}{\rm mm^2},\tag{4.29}$$

gdje je:

 $R_e = 235 \frac{N}{mm^2}$ – granica razvlačenja za materijal S235JR i S = 2 – faktor sigurnosti.

Budući je ekvivalentno naprezanje stijenke bubnja manje od dopuštenog naprezanja, odabrani bubanj zadovoljava kriterij čvrstoće.

4.7.5. Progib bubnja

Osim čvrstoće stijenke, potrebno je provjeriti i progib bubnja. Za provjeru progiba, proračunski model bubnja bit će greda pa izraz za progib glasi:

$$w_{\rm b} = \frac{F_{\rm u\check{z}} \cdot l_{\rm b}^3}{48EI_y} = \frac{7575,76 \cdot 355^3}{48 \cdot 210000 \cdot 16451180} = 2 \cdot 10^{-3} \,\,{\rm mm},\tag{4.30}$$

gdje je:

 $E = 210000 \frac{\text{N}}{\text{mm}^2} - \text{Youngov modul i}$

 $I_y = 16451180 \text{ mm}^4 - \text{moment tromosti presjeka bubnja.}$

Dopušteni progib bubnja iznosi:

$$w_{\rm dop} = \frac{l_{\rm b}}{600} = \frac{355}{600} = 0,59 \,\rm{mm.}$$
 (4.31)

Budući je progib bubnja manji od dopuštenog bubanj zadovoljava kriterij krutosti.

4.7.6. Dimenzioniranje čeone ploče bubnja

Debljina čeone ploče računa se prema izrazu:

$$w_{\rm CP} \ge \sqrt{1,44\left(1 - \frac{2}{3}\frac{D_1}{D_b}\right) \cdot \frac{F_{\rm H}}{\sigma_{\rm dop}}} = 3 \text{ mm.}$$
 (4.32)

gdje je:

 $D_1 = 55 \text{ mm} - \text{vanjski}$ promjer glavine na koju je zavarena čeona ploča,

 $D_{\rm b} = 165 \ {\rm mm} - {\rm vanjski}$ promjer bubnja nakon obrade,

 $F_{\rm H} = 0,1 \cdot F_{\rm už} = 757,576 \, {\rm N} \, ,$

 $\sigma_{dop} = \frac{R_e}{S} = \frac{235}{2.5} = 94 \frac{N}{mm^2} - dopušteno naprezanje,$

- $R_e = 235 \frac{\text{N}}{\text{mm}^2}$ granica razvlačenja za čelik S235JR i
- S = 2,5 -faktor sigurnosti.

Odabrana debljina ploče iznosi $w_{CP} = 5 \text{ mm.}$

4.7.7. Veza čeone ploče i bubnja

Veza čeone ploče i bubnja ostvarena je vijcima. Vijci su ravnomjerno raspodijeljeni po obodu bubnja. Uz pretpostavku da se moment prenosi isključivo trenjem, potrebni broj vijaka računa se iz izraza:

$$F_{\mathrm{u}\check{z}} \cdot \frac{D_{\mathrm{b}}}{2} \le z \cdot \mu \cdot F_{\mathrm{N}} \cdot \frac{d_{7}}{2}, \qquad (4.33)$$

gdje je:

z – potrebni broj vijaka,

 $\mu = 0,2 - faktor trenja za čelik,$

 $F_{\rm N}$ – dopuštena sila u jednom vijku i

 $d_7 = 210 \text{ mm} - \text{promjer}$ na kojem su postavljeni vijci.

Koristit će se vijci M10, kvalitete 5.6. Promjer jezgre vijka M10 iznosi $A_j = 52,3 \text{ mm}^2$ [10], a granica tečenja za materijal kvalitete 5.6 iznosi $R_e = 300 \frac{\text{N}}{\text{mm}^2}$.

Izraz za računanje dopuštene sile u vijku glasi:

$$F_{\rm N} = \sigma_{\rm dop} \cdot A_{\rm j} \,. \tag{4.34}$$

Dopušteno naprezanje u vijku uz faktor sigurnosti S = 2,5 iznosi:

$$\sigma_{\rm dop} = \frac{R_e}{S} = \frac{300}{2.5} = 120 \frac{\rm N}{\rm mm^2}$$
(4.35)

Slijedi da dopuštena sila u vijku iznosi:

$$F_{\rm N} = 6276 \,{\rm N}\,.$$
 (4.36)

Iz izraza (4.33) proizlazi da potrebni broj vijaka iznosi:

$$z \ge \frac{F_{u\check{z}} \cdot D_{b}}{\mu \cdot F_{N} \cdot d_{7}} = \frac{7575,76 \cdot 165}{0,2 \cdot 6276 \cdot 210} = 4,74.$$
(4.37)

Odabrani broj vijaka je z = 6.

4.7.8. Veza užeta s bubnjem

Vezu užeta s bubnjem treba proračunati prema najvećoj sili u užetu kod nazivnog opterećenja, uzimajući u obzir užetno trenje s $\mu = 0,1$ [8]. Pri najnižem položaju kuke, na bubnju trebaju ostati još dva navoja užeta, ne računajući navoje koji služe za pričvršćenje. Prema tome, obuhvatni kut užeta za dva navoja užeta prije vijčane veze jednak je $\alpha = 4\pi$ rad.

Slika 25. Veza užeta s bubnjem [8]

Sila u užetu pred ulazom u vijčanu vezu iznosi:

$$F_{\rm v} = \frac{F_{\rm u\check{z}}}{{\rm e}^{\mu\alpha}} = \frac{7575,76}{{\rm e}^{0,1\cdot4\pi}} = 2156,13 \,{\rm N}.$$
 (4.38)

Ukupna normalna sila u jednom vijku računa se pomoću izraza:

$$F_{\rm n} = 2 \cdot \frac{F_{\rm v}}{(\mu + \mu_1) \cdot (e^{\mu \alpha} + 1)} =, \tag{4.39}$$

gdje je:

 $\mu_1 = \frac{\mu}{\sin(\beta)} = \frac{0.1}{\sin(40^\circ)} = 0.156$ – modificirani faktor trenja za trapezni žlijeb pritisne pločice,

 $\beta = 40^{\circ}$ – kut trapeznog žlijeba pritisne pločice i

 $\alpha = 2\pi$ rad – obuhvatni kut od L do D.

Slijedi da ukupna normalna sila u jednom vijku iznosi:

$$F_{\rm n} = 2930.1 \,\mathrm{N}.$$
 (4.40)

Koristit će se vijci M8, kvalitete 8.8. Promjer jezgre vijka iznosi $d_1 = 6,647$ mm, poprečni presjek jezgre $A_j = 32,8 \text{ mm}^2$ [10], a granica tečenja za materijal kvalitete 8.8 iznosi $R_e = 640 \frac{\text{N}}{\text{mm}^2}$.

Potreban broj vijaka računa se prema izrazu:

$$z \ge \frac{F_{\rm n}}{\sigma_{\rm dop}} \left(\frac{1.3}{A_{\rm j}} + \frac{32 \cdot \mu_1 \cdot h}{\pi d_1^3} \right) = \frac{2930.1}{256} \cdot \left(\frac{1.3}{32.8} + \frac{32 \cdot 0.156 \cdot 14}{\pi \cdot 6.647^3} \right) = 1.3 , \quad (4.41)$$

gdje je:

 $\sigma_{\rm dop} = \frac{R_e}{S} = \frac{640}{2,5} = 256 \frac{N}{mm^2}$ – dopušteno naprezanje za materijal vijaka

Odabrani broj vijaka je z = 2.

4.7.9. Promjer osovine bubnja

Potreban promjer osovine bubnja računa se prema izrazu:

$$d_{\rm os} \ge \sqrt{\frac{32 \cdot c_{\rm b} \cdot F_{\rm B,max}}{\pi \cdot \sigma_{\rm dop}}} = 41,41 \text{ mm}, \qquad (4.42)$$

gdje je:

 $c_{\rm B} = 2 - \text{proračunski koeficijent prema [8]},$

 $F_{B,max} = F_{u\check{z}} = 7575,76 \text{ N} - \text{maksimalno opterećenje ležaja i}$ $\sigma_{dop} = 90 \frac{\text{N}}{\text{mm}^2}$ - dopušteno naprezanje za čelik E295.

Odabrani promjer osovine je $d_{os} = 45$ mm.

4.7.10. Odabir ležaja bubnja

Ležajno mjesto izvedeno je kao slobodno ležajno mjesto opterećeno samo radijalnim opterećenjem. Uz pretpostavku da je ležaj najnepovoljnije opterećen kad se uže nalazi na kraju bubnja sa strane ležaja, dinamičko radijalno opterećenje ležaja iznosi:

$$P_{\rm r} \cong F_{\rm u\check{z}} = 7575,76 \,{\rm N}.$$
 (4.43)

Brzina vrtnje bubnje iznosi:

$$n_{\rm b} = \frac{i_{\rm k} \cdot v_{\rm diz}}{D_{\rm b} \cdot \pi} = \frac{2 \cdot 10}{0.165\pi} = 38,58 \,\rm{mm^{-1}}. \tag{4.44}$$

Dinamičko opterećenje ležaja računa se prema izrazu:

$$C_{1} = P_{\rm r} \cdot \left(\frac{60 \cdot n_{\rm b} \cdot L_{10\rm h,min}}{10^{6}}\right)^{\frac{1}{\epsilon}},\tag{4.45}$$

gdje je:

 $L_{10h,min} = 10000 h - zahtijevani nazivni vijek trajanja ležaja i$

 $\varepsilon = 3 - \text{eksponent vijeka trajanja za kuglične ležajeve.}$

Slijedi da dinamička opterećenost ležaja iznosi:

$$C_1 = 21590,57 \text{ N.}$$
 (4.46)

Odabran je sklop ležaja i kućišta SYJ 45 TF s dinamičkom nosivošću C = 33200 N proizvođača *SKF*.

4.8. Odabir elektromotora

Potrebna snaga za podizanje tereta računa se prema izrazu:

$$P = \frac{Q \cdot v_{\rm diz}}{\eta_{\rm diz}},\tag{4.47}$$

gdje je:

Q = 15000 N - nosivost granika,

 $v_{\rm diz} = 0,1\dot{6} \ \frac{\rm m}{\rm s}$ – brzina podizanja tereta i

 $\eta_{\rm diz}$ – ukupni gubici pri podizanju tereta.

Ukupni gubici pri podizanju tereta iznose:

$$\eta_{\rm diz} = \eta_{\rm R} \cdot \eta_{\rm B} \cdot \eta_{\rm K} \cdot \eta_{\rm kol} = 0.97 \cdot 0.98 \cdot 0.97 \cdot 0.99 = 0.913 , \qquad (4.48)$$

gdje je:

 $\eta_{\rm R} = 0.97 - \text{gubici u reduktoru},$

 $\eta_{\rm B} = 0.98 - {\rm gubici}$ pri namatanju užeta na bubanj,

 $\eta_{\rm K} = 0,97 - {
m gubici}$ u kočnici i

 $\eta_{\rm kol} = 0,99 - {\rm gubici}$ u koloturniku.

Slijedi da potrebna snaga za podizanje tereta iznosi:

$$P = \frac{15000 \cdot 0.1\dot{6}}{0.913} = 2738,23 \,\text{W}. \tag{4.49}$$

Brzina vrtnje bubnja računa se prema izrazu:

$$n_{\rm b} = \frac{\omega_{\rm b}}{2\pi} = \frac{242,42}{2\pi} = 38,58 \,{\rm min^{-1}},$$
 (4.50)

gdje je:

 $\omega_{\rm b} = \frac{2 \cdot v_{\rm b}}{D_{\rm b}} = \frac{2 \cdot 20}{0,165} = 242,42 \frac{\text{rad}}{\text{min}} - \text{kutna brzina bubnja, a}$ $v_{\rm b} = i_{\rm k} \cdot v_{\rm diz} = 2 \cdot 10 = 20 \frac{\text{m}}{\text{min}} - \text{obodna brzina bubnja.}$

Potrebni moment na izlaznom vratilu reduktora treba iznositi:

$$M_{\rm b} = F_{\rm u\check{z}} \cdot \frac{D_{\rm b}}{2} = 625 \text{ Nm.}$$
 (4.51)

Prema potrebnoj snazi elektromotora te momentu i brzini vrtnje izlaznog vratila reduktora, iz kataloga proizvođača *Watt Drive* [11] odabire se elektromotor s ugrađenom kočnicom i reduktorom oznake CG062-11P-L100L-04F-TH-TF-BBRGD50. Karakteristike odabranog elektromotora dane su u tablici 8.

Nazivna snaga elektromotora	Р	3 kW
Nazivna brzina vrtnje elektromotora	n_1	1440 min ⁻¹
Maksimalni moment kočenja kočnice	M _k	50 Nm
Brzina vrtnje izlaznog vratila reduktora	n_2	43 min ⁻¹
Moment izlaznog vratila reduktora	<i>M</i> ₂	674 Nm
Prijenosni omjer reduktora	i _{red}	33,86
Promjer izlaznog vratila	d_1	Ø35 k6
Ukupna masa sklopa elektromotora	$m_{ m EM}$	60,1 kg

Tablica 8. Karakteristike odabranog elektromotora za dizanje tereta

4.8.1. Provjera kočnice motora

Potreban moment kočenja odredit će se približno, na temelju iskustva s uporabom kočnica u proizvodnim pogonima. Prema [12], moment kočenja treba biti:

$$M_{\rm k} \ge \nu_{\rm k} \cdot M_{\rm st} \,, \tag{4.52}$$

gdje je:

 $\nu_k = 2 - faktor sigurnosti potreban za usporenje masa u gibanju i$

M_{st} – statički moment kočenja.

Statički moment kočenja računa se prema izrazu:

$$M_{\rm st} = Q \cdot \frac{v_{\rm diz}}{\omega_{\rm EM}} \cdot \eta_{\rm koč} , \qquad (4.53)$$

gdje je:

 $\omega_{\rm EM}$ – kutna brzina vratila elektromotora i

 $\eta_{\rm koč}$ – gubici u kočnom stanju.

Kutna brzina vratila elektromotora računa se prema izrazu:

$$\omega_{\rm EM} = \frac{2\pi n_{\rm EM}}{60} = \frac{2\pi \cdot 1440}{60} = 150,8 \ \frac{\rm rad}{\rm s},\tag{4.54}$$

gdje je:

 $n_{\rm EM} = 970 \, {\rm min}^{-1} - {\rm brzina}$ vrtnje vratila elektromotora.

Gubici u kočnom stanju računaju se prema izrazu:

$$\eta_{\rm koč} = 2 - \frac{1}{\eta_{\rm diz}} = 2 - \frac{1}{0,913} = 0,905$$
 (4.55)

Slijedi da statički moment kočenja iznosi:

$$M_{\rm st} = 15000 \cdot \frac{\frac{10}{60}}{150,8} \cdot 0,905 = 15 \,\rm Nm.$$
 (4.56)

Prema toma moment kočenja treba biti:

$$M_{\rm k} \ge 2 \cdot 15 = 30 \,\rm Nm.$$
 (4.57)

Moment kočenja kočnice odabranog elektromotora iznosi $M_{\rm k} = 50$ Nm, dakle kočnica zadovoljava.

4.8.2. Provjera radijalnog opterećenja vratila reduktora

Prema [11], radijalna nosivost izlaznog vratila odabranog reduktora iznosi:

$$F_{\rm rN} = 7300 \,{\rm N}.$$
 (4.58)

Budući je sila koja opterećuje bubanj jednaka $F_{uz} = 7575,76$ N, te uzimajući u obzir da će jedan dio sile preuzeti ležaj bubnja, može se uzeti da reduktor zadovoljava.

5. PRORAČUN OKVIRA VITLA

Na slici 26. prikazana je konstrukcijska izvedba okvira vitla. Okvir vitla je izveden od dvije uzdužne kvadratne cijevi i tri poprečne kvadratne cijevi. Poprečne cijevi su zavarene za uzdužne cijevi čime se sprječava savijanje uzdužnih cijevi u blizini kotača. Kritičan dio okvira vitla je poprečna kvadratna cijev na koju je vezan kraj užeta te uzdužna kvadratna cijev na koju će biti pričvršćen ležaj bubnja pa će se samo za njih provjeriti čvrstoća i krutost. Također potrebno je dimenzionirati osovinicu za prihvat kraja užeta te provjeriti zavare limova osovinice.

Slika 26. Okvir vitla

5.1. Provjera kritične poprečne kvadratne cijevi

Na slici 27. prikazan je proračunski model kritične poprečne kvadratne cijevi.

Slika 27. Proračunski model poprečne kvadratne cijevi

Prema [10] najveći moment savijanja za takav proračunski model iznosi:

$$M_{\rm max} = F_{\rm u\check{z}} \cdot \frac{520}{8} = 492424,4 \,\rm Nmm \,.$$
 (5.1)

Slijedi da najveće naprezanje na savijanje promatrane cijevi iznosi:

$$\sigma_{\rm f,max} = \frac{M_{\rm max}}{W_{\rm y}} = \frac{492424.4}{47318} = 10.41 \ \frac{\rm N}{\rm mm^2} \,. \tag{5.2}$$

gdje je:

 $W_y = 47318 \text{ mm}^3 - \text{statički}$ moment otpora presjeka promatrane kvadratne cijevi.

Dopušteno naprezanje za materijal S235JRH iznosi $\sigma_{f,dop} = 117, 5 \frac{N}{mm^2}$.

Budući je najveće naprezanje na savijanje manje od dopuštenog, kvadratna cijev zadovoljava kriterij čvrstoće.

Za proračunski model prikazan slikom 27., prema [10] najveći progib iznosi:

$$w = \frac{F_{\rm u\check{z}} \cdot 520^3}{EI_{\rm v} \cdot 192} = 0,014 \text{ mm.}$$
(5.3)

gdje je:

 $E = 210000 \frac{N}{mm^2} - Youngov modul i$

 $I_y = 1892710 \text{ mm}^4$ – statički moment tromosti presjeka promatrane kvadratne cijevi.

Dopušteni progib iznosi:

$$w_{\rm dop} = \frac{520}{600} = 0.8\dot{6}$$
 mm. (5.4)

Budući je najveći progib manji od dopuštenog, promatrana kvadratna cijev zadovoljava kriterij krutosti.

Zavari promatrane kvadratne cijevi bit će opterećeni smično te savijanjem.

Slika 28. Zavar kritične kvadratne cijevi

Površina poprečnog presjeka zavara iznosi:

$$A_{\rm zav} = 2 \cdot (56 \cdot 5) = 560 \,\,{\rm mm}^2. \tag{5.5}$$

Statički moment tromosti presjeka zavara oko osi y iznosi:

$$I_y = 2 \cdot \frac{5 \cdot 56^3}{12} = 146346, \dot{6} \text{ mm}^4.$$
(5.6)

Statički moment otpora presjeka oko osi y iznosi:

$$W_y = \frac{I_y}{28} = \frac{146346, \acute{6}}{28} = 5226, \acute{6} \text{ mm}^3.$$
 (5.7)

Naprezanje na smik iznosi:

$$\tau = \frac{\frac{F_{\rm u\check{z}}}{2}}{A_{\rm zav}} = 6,76 \,\frac{\rm N}{\rm mm^2}.$$
(5.8)

Naprezanje na savijanje iznosi:

$$\sigma_{\rm f} = \frac{M_{zav}}{W_v} = 97,84 \ \frac{\rm N}{\rm mm^2},$$
(5.9)

gdje je:

 $M_{zav} = 511363,8$ Nmm – moment savijanja kojim je opterećen zavar.

Slijedi da reducirano naprezanje zavara iznosi:

$$\sigma_{\rm red} = \sqrt{\sigma_{\rm f}^2 + 3 \cdot \tau^2} = \sqrt{97,84^2 \cdot 3 \cdot 6,76^2} = 98,54 \,\frac{\rm N}{\rm mm^2}\,. \tag{5.10}$$

Da bi zavar zadovoljio kriterij čvrstoće, reducirano naprezanje mora biti manje od dopuštenog naprezanja pri dinamičkom opterećenju. Dopušteno naprezanje pri dinamičkom opterećenju za pogonsku grupu 2m prema [13] iznosi:

$$\sigma_{\rm D(-1)dop} = 180 \ \frac{\rm N}{\rm mm^2}.$$
 (5.11)

Budući je reducirano naprezanje zavara manje od dopuštenog, zavar zadovoljava kriterij čvrstoće.

5.2. Provjera kritične uzdužne kvadratne cijevi

Najveće opterećenje kritične uzdužne kvadratne cijevi javit će se kada je teret u najvišem položaju, kako je prikazano na slici 29.

Slika 29. Proračunski model bubnja kad je teret u najvišem položaju

Iz jednadžbi ravnoteže dobiva se da sila

$$F_{\rm NL} = \frac{G_{\rm BU}}{2} + F_{\rm u\check{z}} \cdot \frac{520}{620} = \frac{189,73}{2} + 7575,76 \cdot \frac{520}{620} = 6448,73 \,\rm N, \tag{5.12}$$

gdje je:

 $G_{\rm BU} = 189,73 \text{ N} - \text{težina bubnja.}$

Osim sile $F_{\rm NL}$, na uzdužnu kvadratnu cijev djelovat će i polovina sile u užetu kojom uže djeluje na poprečnu kvadratnu cijev. Na slici 30. prikazan je proračunski model kritične uzdužne kvadratne cijevi.

Slika 30. Proračunski model uzdužne kvadratne cijevi

Prema [10] najveći moment savijanja za takav proračunski model iznosi:

$$M_{\max} = \left(F_{\mathrm{NL}} + \frac{F_{\mathrm{u}\check{z}}}{2}\right) \cdot \frac{1100}{8} = \left(6448,73 + \frac{7575,76}{2}\right) \cdot \frac{1100}{8}$$

= 1407533,88 Nmm. (5.13)

Slijedi da najveće naprezanje na savijanje promatrane cijevi iznosi:

$$\sigma_{\rm f,max} = \frac{M_{\rm max}}{W_{\rm v}} = \frac{1407533,88}{47318} = 29,75 \ \frac{\rm N}{\rm mm^2},\tag{5.14}$$

gdje je:

 $W_{\rm v} = 47318 \text{ mm}^3 - \text{statički}$ moment otpora presjeka promatrane kvadratne cijevi.

Dopušteno naprezanje za materijal S235JRH iznosi $\sigma_{f,dop} = 117, 5 \frac{N}{mm^2}$.

Budući je najveće naprezanje na savijanje manje od dopuštenog, kvadratna cijev zadovoljava kriterij čvrstoće.

Za proračunski model prikazan slikom ... najveći progib prema [10] iznosi:

$$w = \frac{\left(F_{\rm NL} + \frac{F_{\rm u\check{z}}}{2}\right) \cdot 1100^3}{EI_y \cdot 192} = \frac{\left(6448,73 + \frac{7575,76}{2}\right) \cdot 1100^3}{210000 \cdot 1892710 \cdot 192} = 0,18 \text{ mm.}$$
(5.15)

gdje je:

 $E = 210000 \frac{N}{mm^2} - Youngov modul i$

 $I_y = 1892710 \text{ mm}^4 - \text{statički moment tromosti presjeka promatrane kvadratne cijevi.}$

Dopušteni progib iznosi:

$$w_{\rm dop} = \frac{1100}{600} = 1,83$$
 mm. (5.16)

Budući je najveći progib manji od dopuštenog, promatrana kvadratna cijev zadovoljava kriterij krutosti.

5.3. Osovinica za prihvat kraja užeta

Naprezanje na savijanje osovinice iznosi:

$$\sigma_{\rm f} = \frac{M_{\rm os}}{W_{\rm os}} = 72,34 \ \frac{\rm N}{\rm mm^2},$$
 (5.17)

gdje je:

 $M_{\rm os} = F_{\rm u\check{z}} \cdot \frac{30}{4} = 7575,76 \cdot \frac{30}{4} = 56818,2 \text{ Nmm} - \text{moment savijanja osovinice i}$ $W_{\rm os} = \frac{\pi d_{\rm os}^3}{32} = \frac{\pi \cdot 20^3}{32} = 785,4 \text{ mm}^3 - \text{moment otpora osovinice i}$ $d_{\rm os} = 20 \text{ mm} - \text{promjer osovinice.}$

Za materijal osovinice odabire se konstrukcijski čelik S235JR, čije dopušteno naprezanje na savijanje [14] iznosi:

$$\sigma_{\rm f,dop} = \frac{\sigma_{\rm fDI}}{2} = \frac{260}{2} = 130 \ \frac{\rm N}{\rm mm^2}$$
, (5.18)

gdje je:

 $\sigma_{\rm fDI} = 260 \ \frac{\rm N}{\rm mm^2}$ – trajna dinamička čvrstoća za materijal S235JR.

Budući je postojeće naprezanje na savijanje manje od dopuštenog, osovinica zadovoljava kriterij čvrstoće.

Zavar lima osovinice za prihvat kraja užeta opterećen je vlačnim opterećenjem.

Slika 31. Zavar lima osovinice za prihvat kraja užeta

Površina zavara iznosi:

$$A_{\rm zav} = 56 \cdot 14 - 50 \cdot 8 = 384 \,\rm{mm^2}. \tag{5.19}$$

Naprezanje zavara iznosi:

$$\sigma_{\rm vl} = \frac{\frac{F_{\rm u\check{z}}}{2}}{A_{\rm zav}} = \frac{\frac{7575,76}{2}}{384} = 9,86 \frac{\rm N}{\rm mm^2}.$$
 (5.20)

Dopušteno naprezanje zavara za pogonsku grupu 2m, prema [13] iznosi:

$$\sigma_{\rm D(-1)dop} = 180 \ \frac{\rm N}{\rm mm^2}.$$
 (5.21)

Budući je naprezanje zavara manje od dopuštenog, zavar zadovoljava kriterij čvrstoće.

6. ODABIR KOTAČA I POGONA ZA VOŽNJU VITLA

Za klasično vitlo na četiri kotača, teret je smješten približno simetrično u odnosu na sve kotače te se zanemaruje horizontalni pomak tijekom podizanja tereta. Prema tome opterećenje pojedinog kotača iznosi:

$$F_{\rm k} = \frac{G_{\rm V} + Q}{4} = \frac{1986,33 + 15000}{4} = 4246,58 \,\rm N$$
, (6.1.)

gdje je:

 $G_{\rm V} = 1986,33 \text{ N} - \text{težina vitla sa svim elementima i}$

Q = 15000 N - težina tereta.

Kotači će biti odabrani pomoću Demagovog alata [15]u kojeg se upisuju sljedeći parametri:

Opterećenje kotača u kg: 435 kg,	Materijal kotača: sferoidni lijev,	
Brzina gibanja: 16 m/min,	Profil tračnice: ravni i	
Spektar opterećenja: srednji (0,5 \leq k \leq 0,63),	Materijal tračnice: S235JR.	

Odabrani su kotači promjera $d_k = 112$ mm. Oba Pogonska kotača su oznake:

DRS-112-A30-D-47-K-X-A10,

a gonjeni kotači su oznake:

6.1. Odabir pogona za vožnju vitla

Potrebna snaga za ustaljenu vožnju vitla iznosi:

$$P_{\rm V} = \frac{F_{\rm V} \cdot v_{\rm voz}}{\eta_{\rm voz}},\tag{6.2}$$

gdje je:

 $F_{\rm V}$ – sila potrebna za ustaljenu vožnju vitla,

 $v_{\rm voz} = 15 \ \frac{\rm m}{\rm min} = 0,25 \ \frac{\rm m}{\rm s} - {\rm brzina}$ vožnje vitla i

 $\eta_{\rm voz} = 0.97 -$ stupanj korisnosti mehanizma za vožnju vitla.

Sila potrebna za ustaljenu vožnju vitla računa se prema izrazu:

$$F_{\rm V} = m_{\rm tr,V} \cdot g \cdot f_{\rm e} , \qquad (6.3)$$

gdje je:

 $m_{\rm tr,V}$ – ukupna translacijska masa vitla i

 $f_{\rm e}$ – ekvivalentni koeficijent otpora vožnje za kotače s valjnim ležajevima, prema [15] iznosi $f_{\rm e} = 0,01$.

Ukupna translacijska masa vitla iznosi:

$$m_{\rm tr,V} = m_{\rm OV} + m_{\rm BU} + m_{\rm EM} + \frac{Q}{g} = 78,78 + 19,34 + 60,1 + \frac{15000}{9,81}$$

$$= 1687,27 \,\rm kg$$
(6.4)

Slijedi da sila potrebna za ustaljenu vožnju vitla iznosi:

$$F_{\rm V} = 1687,27 \cdot 9,81 \cdot 0,01 = 165,52 \,\,{\rm N}\,. \tag{6.5}$$

Konačno, snaga potrebna za ustaljenu vožnju vitla iznosi:

$$P_{\rm V} = \frac{165,52 \cdot 0,25}{0,97} = 42,66 \,\rm W\,. \tag{6.6}$$

Potrebna sila za pokretanje vitla odredit će se približno, na temelju potrebne sile pokretanja:

$$F_{\rm p} = F_{\rm V} + \beta_{\rm V} \cdot m_{\rm tr,V} \cdot \frac{v_{\rm voz}}{t_{\rm p}} = 165,52 + 1,2 \cdot 1687,27 \cdot \frac{0,25}{4} = 292,1 \,\,{\rm N}\,, \qquad (6.7)$$

gdje je:

 $\beta_{\rm V}$ – faktor koji uzima u obzir utjecaj rotacijskih masa; prema [16] iznosi $\beta_{\rm V}$ = 1,2 i $t_{\rm p}$ = 4 s – odabrano vrijeme pokretanja mehanizma za vožnju vitla prema [16]

Prema [16] nominalna sila vožnje iznosi:

$$F_{\rm n} = (0,5 \dots 0,6)F_{\rm p} = 0,6 \cdot F_{\rm p} = 0,6 \cdot 292,1 = 175,26 \,\rm N \,.$$
 (6.8)

Prema tome, potrebna nominalna snaga za vožnju iznosi:

$$P_{\rm n} = \frac{F_{\rm n} \cdot v_{\rm voz}}{\eta_{\rm voz}} = \frac{175,26 \cdot 0,25}{0,97} = 45,17 \,\rm W\,. \tag{6.9}$$

Potrebna brzina vrtnje kotača vitla pri ustaljenoj vožnji iznosi:

$$n_{\rm k} = \frac{v_{\rm voz}}{d_{\rm k} \cdot \pi} = \frac{15}{0.112 \cdot \pi} = 42,63 \,\,{\rm min^{-1}}\,. \tag{6.10}$$

Iz kataloga proizvođača *Demag* [15] odabire se elektromotor s ugrađenom kočnicom i reduktorom oznake WUE 10 DD-B14.0-11-1-30.4 ZBF 63 A 4 B003. Karakteristike odabranog elektromotora dane su u tablici 9.

Nazivna snaga elektromotora	Р	0,13 kW
Nazivna brzina vrtnje elektromotora	n_1	1370 min ⁻¹
Maksimalni moment kočenja kočnice	M _k	1,4 Nm
Brzina vrtnje izlaznog vratila reduktora	<i>n</i> ₂	45,1 min ⁻¹
Moment izlaznog vratila reduktora	M_2	24 Nm
Prijenosni omjer reduktora	i _{red}	30,4
Inercija sklopa elektromotora	J _{EM}	0,00459 kgm ²
Ukupna masa sklopa elektromotora	$m_{ m EM}$	16 kg

Tablica 9. Karakteristike odabranog elektromotora za ve	ožnju	vitla
---	-------	-------

Stvarna brzina vožnje vitla iznosi:

$$v_{\rm v} = n_2 \cdot d_{\rm k} \cdot \pi = 45.1 \cdot 0.112 \cdot \pi = 15.87 \ \frac{\rm m}{\rm min}.$$
 (6.11)

6.1.1. Provjera elektromotora obzirom na pokretanje

Kod pokretanja mehanizma za vožnju, elektromotor treba ostvariti sljedeći moment pokretanja:

$$M_{\rm p} = M_{\rm st} + M_{\rm ub} , \qquad (6.12)$$

gdje je:

 $M_{\rm st}$ – statički moment potreban za svladavanje otpora ustaljene vožnje i

 $M_{\rm ub}$ – moment potreban za ubrzanje translacijskih i rotacijskih masa.

Statički moment potreban za svladavanje otpora ustaljene vožnje računa se prema izrazu:

$$M_{\rm st} = \frac{F_{\rm V}}{\eta_{\rm voz}} \cdot \frac{v_{\rm stv}}{\omega_{\rm EM}} = \frac{165,52}{0,97} \cdot \frac{0,25}{143,47} = 0,297 \,\,{\rm Nm}\,, \tag{6.13}$$

gdje je:

 $\omega_{\rm EM} = \frac{2\pi \cdot n_1}{60} = \frac{2\pi \cdot 1370}{60} = 143,47 \frac{\rm rad}{\rm s} - {\rm kutna \ brzina \ elektromotora.}$

Moment potreban za ubrzanje translacijskih i rotacijskih masa računa se prema izrazu:

$$M_{\rm ub} = \left(\beta \cdot J_{\rm EM} + m_{\rm tr,V} \cdot \left(\frac{v_{\rm v}}{\omega_{\rm EM}}\right)^2 \cdot \frac{1}{\eta_{\rm voz}}\right) \cdot \frac{\omega_{\rm EM}}{t_{\rm p}}$$
$$= \left(1,2 \cdot 0,00459 + 1687,27 \cdot \left(\frac{0,2645}{143,47}\right)^2 \cdot \frac{1}{0,97}\right) \cdot \frac{143,47}{4}$$
$$= 0,41 \,\rm Nm$$
(6.14)

gdje je:

 $\beta = 1,2 - faktor koji uzima u obzir utjecaj rotacijskih masa,$

 $J_{\rm EM} = 0,00459 \, \rm kgm^2 - inercija \, \rm sklopa \, elektromotora,$

 $m_{\rm tr,V} = \rm kg - ukupna translacijska masa vitla,$

$$v_{\rm v} = 15,87 \ \frac{\rm m}{\rm min} = 0,2645 \ \frac{\rm m}{\rm s} - {\rm stvarna} \ {\rm brzina} \ {\rm vožnje},$$

 $\omega_{\rm EM} = 143,47 \, \frac{\rm rad}{\rm s} - {\rm kutna} \, {\rm brzina} \, {\rm elektromotora},$

 $\eta_{\rm voz} = 0,97 - {\rm stupanj}$ korisnosti mehanizma za vožnju vitla i $t_{\rm p} = 4 {\rm s} - {\rm odabrano}$ vrijeme pokretanja.

Slijedi da potrebni moment pokretanja treba biti:

$$M_{\rm p} = 0.297 + 0.41 = 0.707 \,\,{\rm Nm.}$$
 (6.15)

Nominalni moment elektromotora iznosi:

$$M_{\rm n} = \frac{P}{\omega_{\rm EM}} = \frac{130}{143,47} = 0.91 \,\,{\rm Nm}\,.$$
 (6.16)

Odnos momenta pokretanja i nominalnog momenta iznosi:

$$\frac{M_{\rm p}}{M_{\rm n}} = \frac{0.707}{0.91} = 0.78 \tag{6.17}$$

Prema [16] taj odnos treba biti, $\frac{M_p}{M_n} \le 1,7$, što znači da odabrani elektromotor zadovoljava.

6.1.2. Provjera elektromotora obzirom na proklizavanje kotača

Provjera snage elektromotora obzirom na mogućnost proklizavanja kotača, vrši se bez tereta. U tom slučaju ukupna težina koja opterećuje vitlo iznosi:

$$F_{\rm bt} = (m_{\rm OV} + m_{\rm BU} + m_{\rm EM}) \cdot g = (78,78 + 19,34 + 60,1) \cdot 9,8 = 1552,14 \,\text{N}.$$
(6.18)

Sila na jednom kotaču tada iznosi:

$$F_{\rm k}^{\rm bt} = \frac{F_{\rm bt}}{4} = \frac{1552,14}{4} = 388,04 \,\rm N.$$
 (6.19)

Adhezijska težina na pogonskim kotačima za neopterećeno vitlo iznosi:

$$G_{\rm a} = F_{\rm k}^{\rm bt} + F_{\rm k}^{\rm bt} = 388,04 + 388,04 = 776,08 \,\rm N.$$
 (6.20)

Otpor ustaljene vožnje gonjenih kotača za neopterećeno vitlo iznosi:

$$W_{\rm vk} = \left(F_{\rm k}^{\rm bt} + F_{\rm k}^{\rm bt}\right) \cdot f_{\rm e} = (388,04 + 388,04) \cdot 0,01 = 7,76 \,\rm N. \tag{6.21}$$

Minimalno vrijeme pokretanja neopterećenog vitla iznosi:

$$t_{\min} = 1.2 \cdot \frac{\beta \cdot (m_{\rm OV} + m_{\rm BU} + m_{\rm EM}) \cdot v_{\rm v}}{\mu_{\rm a} \cdot G_{\rm a} - W_{\rm vk}}$$

$$= 1.2 \cdot \frac{1.2 \cdot (78.78 + 19.34 + 60.1) \cdot 0.2645}{0.2 \cdot 776.08 - 7.76} = 0.41 \, \rm s,$$
(6.22)

gdje je:

 μ_a – koeficijent adhezije za suhe tračnice u zatvorenom prostoru, prema [16] iznosi $\mu_a = 0.2$

Inercija rotacijskih i translacijskih masa za neopterećeno vitlo iznosi:

$$J_{\rm uk} = \beta \cdot J_{\rm EM} + \frac{(m_{\rm OV} + m_{\rm BU} + m_{\rm EM})}{\eta_{\rm voz}} \cdot \left(\frac{v_{\rm v}}{\omega_{\rm EM}}\right)^2$$
(6.23)
1,2 \cdot 0,00459 + $\frac{(78,78 + 19,34 + 60,1)}{0,97} \cdot \left(\frac{0,2645}{143,47}\right)^2 = 0,00606 \, \rm kgm^2.$

Otpor ustaljene vožnje za neopterećeno vitlo iznosi:

$$W_{\rm v} = F_{\rm bt} \cdot f_{\rm e} = 1552,14 \cdot 0,01 = 15,5214 \,\mathrm{N}.$$
 (6.24)

Moment potreban za ustaljenu vožnju iznosi:

$$M_{\rm st} = \frac{W_{\rm v}}{\eta_{\rm voz}} \cdot \frac{v_{\rm v}}{\omega_{\rm EM}} = \frac{15,5214}{0,97} \cdot \frac{0,2645}{143,47} = 0,03 \text{ Nm.}$$
(6.25)

Moment pokretanja kojim bi vitlo ubrzalo u vremenu t_{\min} iznosi:

$$M_{\rm p} = J_{\rm uk} \cdot \frac{\omega_{\rm EM}}{t_{\rm min}} + M_{\rm st} = 0,00606 \cdot \frac{143,47}{0,41} + 0,03 = 2,15 \,\rm Nm.$$
 (6.26)

Srednji moment pokretanja elektromotora iznosi:

$$M_{\rm p,sr} \cong 1.5M_{\rm n} = 1.5 \cdot 0.91 = 1.365 \,\rm Nm.$$
 (6.27)

Budući je srednji moment pokretanja elektromotora manji od momenta pokretanja, neće doći do proklizavanja kotača.

6.1.3. Provjera kočnice elektromotora

Potrebni moment kočenja elektromotora iznosi:

$$M_{\rm k_{potr}} = \eta_{\rm koč} \cdot m_{\rm tr,V} \cdot g \cdot \frac{v_{\rm v}}{\omega_{\rm EM}} \cdot \left(\frac{\beta}{g} \cdot \frac{v_{\rm v}}{t_{\rm z}} - \frac{f_{\rm e}}{1000}\right)$$

$$= 0,9691 \cdot 1687,27 \cdot 9,81 \cdot \frac{0,2645}{143,47} \cdot \left(\frac{1,2}{9,81} \cdot \frac{0,2645}{3} - \frac{0,01}{1000}\right) = 0,32 \,\,{\rm Nm}\,,$$
(6.28)

gdje je:

 $\eta_{koč} = 2 - \frac{1}{\eta_{voz}} = 2 - \frac{1}{0.97} = 0.9691$ – stupanj djelovanja mehanizma za vožnju vitla u kočnom stanju i

 t_z – potrebno vrijeme zaustavljanja vitla bez kočenja, prema [16] odabrano je $t_z = 3$ s.

Budući je moment kočenja ugrađene kočnice veći od potrebnog momenta kočenja, odabrana kočnica zadovoljava.

7. NOSIVA KONSTRUKCIJA POLUPORTALNOG GRANIKA

Nosiva konstrukcija sastoji se od dva glavna nosača, čeonog nosača te stupova. U nastavku slijedi odabir profila nosača i stupova te proračun čvrstoće i krutosti.

7.1. Glavni nosači

Glavni nosači mosta izvedeni su od vruće valjanih UPE 330 profila. Materijal profila je čelik S235JRH. Mjere profila zajedno sa statičkim karakteristikama poprečnog presjeka prikazane su na slici 32. Budući je uvjet progiba stroži u odnosu na čvrstoću, prvo će se provjeriti krutost nosača a zatim čvrstoća.

Slika 32. UPE 330 profil [9]

7.1.1. Provjera krutosti glavnih nosača mosta

Progib glavnih nosača izračunat će se tako da će se zasebno analizirati progib uslijed vlastite težine glavnih nosača te zasebno progib uslijed djelovanja težine vitla i tereta. Superpozicijom navedenih progiba dobit će se ukupni progib nosača.

Budući su glavni nosači kruto vezani za stupove, glavni nosači se mogu podijeliti na gredu i konzolu kako je prikazano na slici 33.

Slika 33. Podjela glavnog nosača na gredu i konzolu

Za gredu ukliještenu na jednom kraju i opterećenu vlastitom težinom, prema [10], najveći progib iznosi:

$$w_{\rm g,q} = \frac{q \cdot 10000^4}{185 \cdot El_y} = \frac{0,522 \cdot 10000^4}{185 \cdot 210000 \cdot 11010 \cdot 10^4} = 1,22 \text{ mm},\tag{7.1}$$

gdje je:

 $q = 0,522 \frac{N}{mm}$ - specifična težina glavnog nosača, $E = 210000 \frac{N}{mm^2}$ - Youngov modul i

 $I_y = 11010 \cdot 10^4 \text{ mm}^4$ – moment tromosti presjeka glavnog nosača oko osi y.

Za gredu ukliještenu na jednom kraju i opterećenu koncentriranom silom, prema [10], najveći progib iznosi:

$$w_{\rm g,F} = \frac{\frac{G_{\rm V} + Q}{2} \cdot 10000^3}{48\sqrt{5} \cdot EI_y} = \frac{\frac{1986,33 + 15000}{2} \cdot 10000^3}{48\sqrt{5} \cdot 210000 \cdot 11010 \cdot 10^4} = 3,42 \text{ mm},\tag{7.2}$$

gdje je:

 $G_V = 1986,33 \text{ N} - \text{težina vitla sa svim elementima i}$

Q = 15000 N - težina tereta.

Slijedi da ukupni progib grede ukliještene na jednom kraju iznosi:

$$w_{g,uk} = w_{g,q} + w_{g,F} = 1,22 + 3,42 = 4,64 \text{ mm.}$$
 (7.3)

Dopušteni progib grede, prema [17], iznosi:

$$w_{\rm g,dop} = \frac{l_{\rm g}}{600} = \frac{10000}{600} = 16, \dot{6} \, \rm{mm.}$$
 (7.4)

Za konzolu opterećenu vlastitom težinom, prema [10], najveći progib iznosi:

$$w_{k,q} = \frac{q \cdot 3000^4}{8 \cdot EI_y} = \frac{0,522 \cdot 3000^4}{8 \cdot 210000 \cdot 11010 \cdot 10^4} = 0,23 \text{ mm.}$$
(7.5)

Za konzolu opterećenu koncentriranom silom, prema [10], najveći progib iznosi:

$$w_{\rm k,F} = \frac{\frac{G_{\rm V} + Q}{2} \cdot 3000^3}{3 \cdot EI_y} = \frac{\frac{1986,33 + 15000}{2} \cdot 3000^3}{3 \cdot 210000 \cdot 11010 \cdot 10^4} = 3,31 \,\rm{mm.}$$
(7.6)

Ukupni progib konzole iznosi:

$$w_{k,uk} = w_{k,q} + w_{k,F} = 0.23 + 3.31 = 3.54 \text{ mm.}$$
 (7.7)

Dopušteni progib konzole, prema [17], iznosi:

$$w_{\rm dop} = \frac{l_{\rm k}}{600} = \frac{3000}{600} = 5 \,\,{\rm mm}\,.$$
 (7.8)

Budući su ukupni progib grede i ukupni progib konzole manji od dopuštenih vrijednosti, glavni nosači zadovoljavaju kriterij krutosti.

7.1.2. Provjera čvrstoće glavnih nosača

Kod provjere čvrstoće također će se glavni nosač rastaviti na gredu i na konzolu te će se zasebno provjeriti čvrstoća grede i čvrstoća konzole.

Proračunski model grede prikazan je na slici 34.

Slika 34. Proračunski model grede

Najveći moment savijanja grede dobit će se sumiranjem momenta savijanja zbog vlastite težine i momenta savijanja zbog težine vitla i tereta kako slijedi:

$$M_{\rm g,max} = M_{\rm g,q} + M_{\rm g,F}$$
. (7.9)

Prema [10], najveći moment savijanja grede ukliještene na jednom kraju i opterećene vlastitom težinom iznosi:

$$M_{\rm g,q} = \frac{q \cdot l_{\rm g}^2}{8} = \frac{0.522 \cdot 10000^2}{8} = 6525000 \,\,\text{Nmm.} \tag{7.10}$$

Prema [10], najveći moment savijanja grede ukliještene na jednom kraju i opterećene koncentriranom silom iznosi:

$$M_{\rm g,F} = \frac{3 \cdot \frac{G_{\rm V} + Q}{2} \cdot l_{\rm g}}{16} = \frac{3 \cdot \frac{1986,33 + 15000}{2} \cdot 10000}{16}$$
(7.11)

= 15924684,38 Nmm.

Prema tome, najveći moment savijanja grede iznosi:

$$M_{\rm g,max} = 6525000 + 15924684,38 = 22449684,38$$
 Nmm. (7.12)

Slijedi da naprezanje grede iznosi:

$$\sigma_{\rm f,g} = \frac{M_{\rm g,max}}{W_{\rm v}} = \frac{22449684,38}{667,1\cdot10^3} = 33,65 \ \frac{\rm N}{\rm mm^2}.$$
 (7.13)

Proračunski model konzole prikazan je na slici 35.

Slika 35. Proračunski model konzole

Najveći moment savijanja konzole dobit će se sumiranjem momenta savijanja zbog vlastite težine i momenta savijanja zbog težine vitla i tereta kako slijedi:

$$M_{\rm k,max} = M_{\rm k,q} + M_{\rm k,F} \,. \tag{7.14}$$

Prema [10], najveći moment savijanja konzole opterećene vlastitom težinom iznosi:

$$M_{\rm k,q} = \frac{q \cdot l_{\rm k}^2}{2} = \frac{0.522 \cdot 3000^2}{2} = 2349000 \,\,\rm Nmm. \tag{7.15}$$

Prema [10], najveći moment savijanja konzole opterećene koncentriranom silom iznosi:

$$M_{\rm g,F} = \frac{G_{\rm V} + Q}{2} \cdot l_{\rm k} = \frac{1986,33 + 15000}{2} \cdot 3000 = 25479495 \,\,{\rm Nmm}. \tag{7.16}$$

Prema tome, najveći moment savijanja konzole iznosi:

$$M_{\rm k,max} = 2349000 + 25479495 = 27828495$$
 Nmm. (7.17)

Slijedi da naprezanje grede iznosi:

$$\sigma_{\rm f,k} = \frac{M_{\rm k,max}}{W_{\rm y}} = \frac{27828495}{667,1\cdot10^3} = 41,72 \ \frac{\rm N}{\rm mm^2}.$$
 (7.18)

Dopušteno naprezanje na savijanje za materijal odabranog nosača iznosi $\sigma_{dop} = 117, 5 \frac{N}{mm^2}$.

Budući da je su najveća naprezanja grede i konzole manja od dopuštene vrijednosti, glavni nosač zadovoljava kriterij čvrstoće.

7.1.3. Provjera zavara glavnog nosača

Zavari koje treba provjeriti su zavari između konzole i stupa te zavari između grede i stupa. Zavari imaju istu geometriju koja je prikazana na slici 36.

Slika 36. Zavar konzole i stupa

Površina zavara iznosi:

$$A_{\text{zav,k}} = 330 \cdot 6 + 2 \cdot 74 \cdot 6 = 2572 \text{ mm}^2. \tag{7.19}$$

Statički moment tromosti oko osi y iznosi:

$$I_{y,k} = \frac{74 \cdot 342^3}{12} - \frac{68 \cdot 330^3}{12} = 43034076 \text{ mm}^4.$$
(7.20)

Statički moment otpora oko osi z iznosi:

$$W_{y,k} = \frac{I_{y,k}}{171} = \frac{43034076}{171} = 251661,26 \text{ mm}^3.$$
 (7.21)

Najveća sila kojom je opterećen zavar konzole iznosi:

$$F_{\rm z,k} = \frac{(G_{\rm V} + Q)}{2} + q l_{\rm k} = \frac{(1986,33 + 15000)}{2} + 0,522 \cdot 3000 = 10059,17 \,\,\text{N}.$$
 (7.22)

Najveći moment savijanja kojim je opterećen zavar konzole iznosi:

$$M_{z,k} = \frac{(G_V + Q)}{2} \cdot 3000 + q l_k \cdot \frac{3000}{2}$$

$$= \frac{(1986,33 + 15000)}{2} \cdot 3000 + 0,522 \cdot 3000 \cdot \frac{3000}{2} = 27828495 \text{ Nmm.}$$
(7.23)

Prema tome naprezanja zavara konzole iznose:

$$\tau_{z,k} = \frac{F_{z,k}}{A_{zav,k}} = \frac{10059,17}{2572} = 3,91 \frac{N}{mm^2} i$$
 (7.24)

$$\sigma_{z,k} = \frac{M_{z,k}}{W_{y,k}} = \frac{27828495}{251661,26} = 110,58 \frac{N}{mm^2}.$$
 (7.25)

Slijedi da reducirano naprezanje zavara konzole iznosi:

$$\sigma_{\rm red,k} = \sqrt{\sigma_{\rm z,k}^2 + 3 \cdot \tau_{\rm z,k}^2} = \sqrt{110,58^2 \cdot 3 \cdot 3,91^2} = 110,79 \,\frac{\rm N}{\rm mm^2}.$$
 (7.26)

Dopušteno naprezanje pri dinamičkom opterećenju za pogonsku grupu 2m prema [13] iznosi:

$$\sigma_{\rm D(-1)dop} = 180 \ \frac{\rm N}{\rm mm^2}$$
 (7.27)

Budući je reducirano naprezanje zavara konzole manje od dopuštenog, zavar konzole zadovoljava kriterij čvrstoće.

Zavar grede i stupa ima istu geometriju kao i zavar konzole i stupa, ali su drugačija opterećenja. Zavara grede je najnepovoljnije opterećen kad je vitlo u položaju prema slici 43. Tada sila koja djeluje na zavar iznosi:

$$F_{z,g} = \frac{(G_V + Q)}{2} \cdot \left(1 - \frac{1}{16\sqrt{5}}\right) + \frac{5}{8}ql_g$$

$$= \frac{(1986,33 + 15000)}{2} \cdot \left(1 - \frac{1}{16\sqrt{5}}\right) + \frac{5}{8} \cdot 0,522 \cdot 10000 = 11518,27 \text{ N}.$$
(7.28)

Moment savijanja kojim je opterećen zavar iznosi:

$$M_{z,g} = \frac{3 \cdot \frac{(G_V + Q)}{2} \cdot l_g}{16} + \frac{ql_g}{8}$$

$$= \frac{3 \cdot \frac{(1986,33 + 15000)}{2} \cdot 10000}{16} + \frac{0,522 \cdot 10000}{8} = 15925336,88 \text{ N.}$$
(7.29)

Prema tome naprezanje na smik zavara grede iznosi:

$$\tau_{\rm z,g} = \frac{F_{\rm z,g}}{A_{\rm zav,k}} = \frac{11518,27}{2572} = 4,78 \,\frac{\rm N}{\rm mm^2}\,. \tag{7.30}$$

Naprezanje na savijanje zavara grede iznosi:

$$\sigma_{\rm z,g} = \frac{M_{\rm z,g}}{W_{\rm y,g}} = \frac{15925336,88}{251661,26} = 63,28 \ \frac{\rm N}{\rm mm^2}.$$
 (7.31)

Slijedi da reducirano naprezanje zavara grede iznosi:

$$\sigma_{\text{red},g} = \sqrt{\sigma_{z,g}^2 + 3 \cdot \tau_{z,g}^2} = \sqrt{63,28^2 \cdot 3 \cdot 4,78^2} = 63,82 \frac{\text{N}}{\text{mm}^2}.$$
 (7.32)

Dopušteno naprezanje pri dinamičkom opterećenju za pogonsku grupu 2m prema [13] iznosi:

$$\sigma_{\rm D(-1)dop} = 180 \ \frac{\rm N}{\rm mm^2}.$$
 (7.33)

Budući je reducirano naprezanje zavara grede manje od dopuštenog, zavar grede zadovoljava kriterij čvrstoće.

7.2. Čeoni nosač

Čeoni nosač izveden je od RHS 140x100x8 profila. Budući se glavni nosači oslanjaju na čeoni, najveće opterećenje čeonog nosača bit će kad se teret nalazi najbliže čeonom nosaču, kako je prikazano slikom 37.

Slika 37. Položaj vitla pri najvećem opterećenju čeonog nosača

Proračunski model prikazan slikom 37. je statički neodređen problem. Rješavanjem problema dobiva se da sila F_A iznosi:

$$F_{\rm A} = \frac{(G_{\rm V} + Q)}{2} \cdot \frac{l_1^3}{l_g^3} + \frac{3}{8}ql_g$$

$$= \frac{(1986,33 + 15000)}{2} \cdot \frac{9215^3}{10000^3} + \frac{3}{8} \cdot 0,522 \cdot 10000 = 8603,43 \text{ N},$$
(7.34)

gdje je:

 $l_1 = 10000 - 785 = 9215 \text{ mm} - \text{udaljenost sile od uklještenja i}$

 $l_{\rm g} = 10000 \text{ mm} - \text{duljina grede.}$

Sada kad je poznato opterećenje čeonog nosača provjerit će se njegova čvrstoća i krutost.

7.2.1. Provjera čvrstoće čeonog nosača

Budući se na čeoni nosač oslanjaju dva glavna nosača, opterećenje čeonog nosača bit će $2F_A$. Proračunski model čeonog nosača prikazan je slikom 38.

Slika 38. Sile na čeoni nosač

Iz jednadžbi ravnoteže dobivaju se reakcije u osloncima:

$$F_{\rm k1} = F_{\rm k2} = F_{\rm A} + q_{\rm \check{C}N} \cdot \frac{1980}{2} = 8603,43 + 0,27 \cdot \frac{1980}{2} = 8870,73 \,\rm{N},$$
 (7.35)

gdje je:

 $q_{\rm CN} = 0,27 \ \frac{\rm N}{\rm mm}$ – specifična težina čeonog nosača.

Najveći moment savijanja iznosi:

$$M_{\rm max} = 2713342,5$$
 Nmm. (7.36)

Slijedi da najveće naprezanje čeonog nosača iznosi:

$$\sigma_{\rm f,max} = \frac{M_{\rm max}}{W_{\rm v}} = \frac{2713342.5}{103,610 \cdot 10^3} = 26,19 \ \frac{\rm N}{\rm mm^2}. \tag{7.37}$$

Dopušteno naprezanje za materijal čeonog nosača iznosi $\sigma_{dop} = 117, 5 \frac{N}{mm^2}$.

Budući je najveće naprezanje čeonog nosača manje od dopuštenog, odabrani profil zadovoljava kriterij čvrstoće.

7.2.2. Provjera krutosti čeonog nosača

Progib čeonog nosača izračunat će se tako da će se zasebno analizirati progib uslijed vlastite težine čeonog nosača te zasebno progib uslijed djelovanja sila F_A . Superpozicijom navedenih progiba dobit će se ukupni progib čeonog nosača.

Prema [10] izraz za progib uslijed djelovanja vlastite težine nosača q_{CN} glasi:

$$w_{\check{C}N,q} = \frac{5 \cdot q_{\check{C}N} \cdot l_{\check{C}N}^4}{E I_y \cdot 384} = \frac{5 \cdot 0.27 \cdot 1980^4}{210000 \cdot 518,052 \cdot 10^4 \cdot 384} = 0.05 \text{ mm}, \tag{7.38}$$

gdje je:

 $l_{CN} = 1980 \text{ mm} - \text{udaljenost}$ oslonaca čeonog nosača.

Prema [10] izraz za progib uslijed djelovanja sila F_A glasi:

$$w_{\check{C}N,F} = \frac{F_{A} \cdot a}{24 \cdot EI_{y}} \cdot \left(3 \cdot l_{\check{C}N}^{2} - 4 \cdot a^{2}\right)$$

$$= \frac{8603,43 \cdot 400}{24 \cdot 210000 \cdot 518.052 \cdot 10^{4}} \cdot \left(3 \cdot 1980^{2} - 4 \cdot 400^{2}\right) = 1,47 \text{ mm},$$
(7.39)

gdje je:

a = 400 mm - udaljenost sila od oslonaca.

Sada kad su poznati potrebni progibi, superpozicijom navedenih progiba izračunat će se ukupni progib čeonog nosača kako slijedi:

$$w_{\check{C}N} = w_{\check{C}N,q} + w_{\check{C}N,F} = 0.05 + 1.47 = 1.52 \text{ mm.}$$
 (7.40)

Dozvoljeni progib čeonog nosača iznosi:

$$w_{\rm dop} = \frac{1980}{600} = 3,3 \text{ mm}.$$
 (7.41)

Budući je ukupni progib manji od dopuštenog, čeoni nosač zadovoljava kriterij krutosti.

7.3. Stupovi

Stupovi su izvedeni od RHS 200x100x8 profila. Zbog njihove velike duljine, potrebno je provjeriti hoće li doći do izvijanja. Najveće opterećenje stupova bit će kad je vitlo vertikalno iznad stupova. Tada će stupovi biti opterećeni cijelom težinom vitla i tereta, težinom konzole te dijelom težine grede. Prema tome sila koja djeluje na stup iznosi:

$$F_{\text{stup}} = \frac{(G_{\text{V}} + Q)}{2} + q l_{\text{k}} + \frac{5}{8} q l_{\text{g}}$$
$$= \frac{(1986,33 + 15000)}{2} + 0,522 \cdot 3000 + \frac{5}{8} \cdot 0,522 \cdot 10000$$
$$= 16309,17 \text{ N}.$$
 (7.42)

7.3.1. Provjera stupova na izvijanje

Vitkost stupa računa se prema izrazu:

$$\lambda = \frac{l_0}{i_{\min}},\tag{7.43}$$

gdje je:

 l_0 – duljina izvijanja i

 i_{\min} – minimalni polumjer inercije.

Za proračunski model prema slici 39. slijedi da duljina izvijanja iznosi:

$$l_0 = 2l_s = 2 \cdot 5712 = 11424 \text{ mm}, \tag{7.44}$$

gdje je:

 $l_{\rm s} = 5500 \text{ mm} - \text{visina stupa}.$

Slika 39. Proračunski model izvijanja stupa [10]

Minimalni polumjer inercije iznosi:

$$i_{\min} = \sqrt{\frac{I_{\min}}{A_{\rm s}}} = \sqrt{\frac{6854350}{4475}} = 39,14 \,\,{\rm mm},$$
(7.45)

gdje je:

 $I_{\min} = I_z = 6854350 \text{ mm}^4 - \text{minimalni moment tromosti presjeka stupa i}$ $A_s = 4475 \text{ mm}^2 - \text{površina poprečnog presjeka stupa.}$

Slijedi da vitkost stupa iznosi:

$$\lambda = \frac{11424}{39,14} = 291,88.$$
 (7.46)

Granična vitkost stupa iznosi:

$$\lambda_{\rm p} = \pi \sqrt{\frac{E}{R_{\rm e}}} = \pi \sqrt{\frac{210000}{235}} = 93,91 \,,$$
 (7.47)

gdje je:

 $E = 210000 \frac{N}{mm^2} - Youngov modul i$ $R_e = 235 \frac{N}{mm^2} - \text{granica razvlačenja.}$

Budući je vitkost stupa manja od granične vitkosti proračun izvijanja vršit će se po Eulerovom izrazu. Prema [18], izraz za kritično naprezanje za materijal S235JRH glasi:

$$\sigma_{\rm kr} = \pi^2 \frac{E}{\lambda^2} = \pi^2 \frac{21000}{291,88^2} = 24,33 \ \frac{\rm N}{\rm mm^2}.$$
 (7.48)

Prema tome, kritična sila izvijanja iznosi:

$$F_{\rm kr} = \sigma_{\rm kr} \cdot A_{\rm s} = 24,33 \cdot 4475 = 108876,75 \,\rm N. \tag{7.49}$$

Dopuštena sila kojom se smiju opteretiti stupovi tada iznosi:

$$F_{\rm dop} = \frac{F_{\rm kr}}{S} = \frac{108876,75}{5} = 21775,35 \,\rm N,$$
 (7.50)

gdje je:

S – faktor sigurnosti za izvijanje, prema [10], za čelik iznosi S = 5

Budući je najveća sila koja djeluje na stup manja od dopuštene, neće doći do izvijanja.

7.4. Nosač stupova

Nosač stupova izveden je od RHS 150x100x12,5. Najveće opterećenje nosača bit će onda kad su vitlo i teret vertikalno iznad nosača. Tada je nosač opterećen cijelom težinom vitla i tereta, težinom stupova, težinom konzole te dijelom težine grede. Prema tome sile koje djeluju na nosač stupova iznose:

$$F_{\rm NS} = F_{\rm stup} + G_{\rm stup} = 16309,17 + 2435,53 = 18744,7 \,\rm N,$$
 (7.51)

gdje je:

 $F_{\text{stup}} = 16309,17 \text{ N} - \text{sila koja djeluje na stup i}$

 $G_{\text{stup}} = 2435,53 \text{ N} - \text{težina stupa.}$

7.4.1. Provjera čvrstoće nosača stupova

Proračunski model nosača stupova zajedno s "Q" i "M" dijagramima dan je na slici 40.

Slika 40. Proračunski model nosača stupova

Iz jednadžbi ravnoteže dobivaju se reakcije u osloncima:

$$F_{k3} = F_{k4} = F_{NS} + q_{NS} \cdot \frac{2180}{2} = 18744,7 + 0,42 \cdot \frac{2180}{2} = 19202,5 \text{ N},$$
 (7.52)

gdje je:

 $q_{\rm NS} = 0.42 \ \frac{\rm N}{\rm mm^2}$ – specifična težina nosača stupova.

Najveći moment savijanja iznosi:

$$M_{\rm max} = 8778339,5$$
 Nmm. (7.53)
Slijedi da najveće naprezanje nosača stupova iznosi:

$$\sigma_{\rm f,max} = \frac{M_{\rm max}}{W_{\rm v}} = \frac{8778339,5}{141,347 \cdot 10^3} = 62,1 \ \frac{\rm N}{\rm mm^2}.$$
 (7.54)

Dopušteno naprezanje za materijal nosača stupova iznosi $\sigma_{dop} = 117, 5 \frac{N}{mm^2}$

Budući je najveće naprezanje nosača stupova manje od dopuštenog, odabrani profil zadovoljava kriterij čvrstoće.

7.4.2. Provjera krutosti nosača stupova

Kao i kod čeonog nosača, progib nosača stupova izračunat će se tako da će se zasebno analizirati progib uslijed vlastite težine nosača te zasebno progib uslijed djelovanja sila F_{NS} . Superpozicijom navedenih progiba dobit će se ukupni progib nosača stupova.

Prema [10] izraz za progib uslijed djelovanja vlastite težine nosača $q_{\rm NS}$ glasi:

$$w_{\rm NS,q} = \frac{5 \cdot q_{\rm NS} \cdot l_{\rm NS}^4}{E I_{\rm V} \cdot 384} = \frac{5 \cdot 0.42 \cdot 2180^4}{210000 \cdot 706.733 \cdot 10^4 \cdot 384} = 0.08 \text{ mm}, \tag{7.55}$$

gdje je:

 $l_{\rm NS} = 2180 \ {\rm mm} - {\rm udaljenost}$ oslonaca nosača stupova.

Prema [10] izraz za progib uslijed djelovanja sila $F_{\rm NS}$ glasi:

$$w_{\check{C}N,F} = \frac{F_{NS} \cdot b}{24 \cdot El_{y}} \cdot (3 \cdot l_{NS}^{2} - 4 \cdot b^{2})$$

$$= \frac{18744,7 \cdot 455}{24 \cdot 210000 \cdot 706,733 \cdot 10^{4}} \cdot (3 \cdot 2180^{2} - 4 \cdot 455^{2}) = 3,22 \text{ mm},$$
(7.56)

gdje je:

b = 455 mm - udaljenost sila od oslonaca.

Sada kad su poznati potrebni progibi, superpozicijom navedenih progiba izračunat će se ukupni progib čeonog nosača kako slijedi:

$$w_{\rm NS} = w_{\rm NS,q} + w_{\rm NS,F} = 0,08 + 3,22 = 3,3$$
 mm. (7.57)

Dozvoljeni progib čeonog nosača iznosi:

$$w_{\rm dop} = \frac{2180}{600} = 3,63 \text{ mm}.$$
 (7.58)

Budući je ukupni progib manji od dopuštenog, čeoni nosač zadovoljava kriterij krutosti.

7.5. Provjera stabilnosti nosive konstrukcije

Budući se konstrukcija ne može fiksirati uz podlogu, može doći do prevrtanja iste te je stoga potrebno osigurati potrebnu stabilnost. Prema normi ISO 4304, moment stabilizacije mora biti veći od momenta prevrtanja uz uvećanje najvećeg tereta za 50%.

Slika 41. Stabilnost konstrukcije

Statička sigurnost protiv prevrtanja definirana je kao:

$$k_{\rm st} = \frac{M_{\rm stab}}{M_{\rm pr}},\tag{7.59}$$

gdje je:

 $M_{\rm stab}$ – moment stabilizacije i

 $M_{\rm pr}$ – moment prevrtanja.

Moment stabilizacije iznosi:

$$M_{\text{stab}} = (G_{\check{C}N} + 2 \cdot G_{\text{kot}} + G_{\text{EM},k}) \cdot 10 + 2 \cdot (q \cdot 13000) \cdot 3,5$$

= (549,36 + 2 \cdot 97,12 + 137,34) \cdot 10 + 2 \cdot (0,522 \cdot 13000) \cdot 3,5 (7.60)
= 56311,4 Nm,

gdje je:

 $G_{\rm \check{C}N} = 549,36 \text{ N} - \text{težina čeonog nosača,}$

 $G_{\rm kot} = 97,12 \text{ N} - \text{težina kotača,}$

 $G_{\rm EM,k} = 137,34 \text{ N} - \text{težina elektromotora kotača i}$

 $q = 0,522 \frac{\text{N}}{\text{mm}}$ - specifična težina glavnog nosača.

Moment prevrtanja iznosi:

$$M_{\rm pr} = (G_{\rm V} + 1.5Q) \cdot 2.25 = (1986.33 + 1.5 \cdot 15000) \cdot 2.25$$

= 55094.25 Nm. (7.61)

Slijedi da koeficijent stabilnosti iznosi:

$$k_{\rm st} = \frac{56311.4}{55094.25} = 1,022. \tag{7.62}$$

Budući je proračun proveden uz uvećanje najvećeg tereta za 50%, dobiveni koeficijent stabilnosti je prihvatljiv i konstrukcija je sigurna od prevrtanja.

8. ODABIR KOTAČA I POGONA ZA VOŽNJU GRANIKA

Vožnja granika ostvarena je pomoću dva pogonska kotača te dva gonjena kotača. Kotači će se odabrati iz kataloga proizvođača *Demag*. Pogon kotača ostvaren je pomoću dva elektromotora. Elektromotori će se također odabrati iz kataloga proizvođača *Demag*.

8.1. Odabir kotača nosača stupova

Dimenzije kotača slijede iz opterećenja kotača. Proračunsko opterećenje kotača definirano je izrazom:

$$F_{\rm k} = \frac{2F_{\rm max} + F_{\rm min}}{3},\tag{8.1}$$

gdje je:

 F_{max} – sila na kotaču za slučaj najvećeg tereta na graniku koji je u položaju u kojem maksimalno opterećuje razmatrani kotač i

 F_{\min} – sila na kotaču za slučaj najvećeg tereta na graniku koji je u položaju u kojem minimalno opterećuje razmatrani kotač.

Najveće opterećenje kotača stupova bit će onda kad se vitlo i teret nalaze iznad kotača. To opterećenje izračunato je u sedmom poglavlju i dano je izrazom (7.52).

Najmanje opterećenje kotača stupova bit će onda kad se vitlo i teret nalaze u položaju prema slici 37. Tada opterećenje stupa iznosi:

~ >

10

$$F_{\text{st,min}} = \frac{(G_{\text{V}} + Q)}{2} + ql_{\text{g}} - F_{\text{A}} + ql_{\text{k}}$$
$$= \frac{(1986,33 + 15000)}{2} + 0,522 \cdot 10000 - 8603,43 + 0,522 \cdot 3000$$
(8.2)

Najmanje opterećenje kotača tada iznosi:

$$F_{\min} = F_{\text{st,min}} + G_{\text{stup}} + q_{\text{NS}} \cdot \frac{2180}{2} = 6675,74 + 2435,53 + 0,42 \cdot \frac{2180}{2}$$

$$= 9596,1 \text{ N}$$
(8.3)

Prema tome, proračunsko opterećenje kotača iznosi:

$$F_{\rm k} = \frac{2 \cdot 19202,5 + 9596,1}{3} = 16000,37 \,\rm N. \tag{8.4}$$

Odabrani su kotači promjera $d_k = 125$ mm. Pogonski kotač je oznake:

DRS-125-A30-A-47-K-X-A10,

a gonjeni kotač je oznake:

Odabrani profil tračnica je 100x60.

8.2. Odabir kotača čeonog nosača

Najveće opterećenje kotača čeonog nosača izračunato je u sedmom poglavlju te je dano izrazom (7.21). Prema tome F_{max} iznosi:

$$F_{\rm max} = F_{\rm k1} = 8893,03$$
 N. (8.5)

Najmanje opterećenje kotača čeonog nosača bit će kad će se teret nalaziti na konzoli. U tom slučaju svu težinu vitla i tereta preuzimaju kotači stupova pa su kotači čeonog nosača opterećeni samo polovinom težine grede. Prema tome F_{min} iznosi:

$$F_{\min} = \frac{3}{8}ql_{\rm g} + q_{\check{\rm C}{\rm N}} \cdot \frac{1810}{2} = \frac{3}{8} \cdot 0,522 \cdot 10000 + 0,32 \cdot \frac{1810}{2} = 2247,1 \,\text{N}. \tag{8.6}$$

Slijedi da proračunsko opterećenje kotača čeonog nosača iznosi:

$$F_{\rm k} = \frac{2F_{\rm max} + F_{\rm min}}{3} = \frac{2 \cdot 8893,03 + 2247,1}{3} = 6677,72 \,\rm N. \tag{8.7}$$

Zbog manjeg proračunskog opterećenja, za kotače čeonog nosača mogu se izabrati kotači manjeg promjera od kotača nosača stupova ali će se radi izbjegavanja različitih brzina vrtnje kotača izabrati kotači istog promjera kao i za kotače nosača stupova. Također, odabire se isti profil tračnice.

Oznaka pogonskog kotača je:

a oznaka gonjenog:

8.3. Odabir pogona za vožnju granika

Potrebna snaga za ustaljenu vožnju granika iznosi:

$$P_{\rm V} = \frac{F_{\rm V} \cdot v_{\rm voz}}{\eta_{\rm g}} \cdot k , \qquad (8.8)$$

gdje je:

 $F_{\rm V}$ – sila potrebna za ustaljenu vožnju granika,

 $v_{\rm voz} = 15 \ \frac{\rm m}{\rm min} = 0,25 \ \frac{\rm m}{\rm s} - {\rm brzina}$ vožnje granika,

 $\eta_{\rm g}=0,97-$ stupanj korisnosti mehanizma za vožnju granika i

k = 0.5 -koeficijent broja pogonskih kotača (2 pogonska kotača).

Sila potrebna za ustaljenu vožnju granika računa se prema izrazu:

$$F_{\rm V} = m_{\rm tr,g} \cdot g \cdot f_{\rm e} , \qquad (8.9)$$

gdje je:

 $m_{\rm tr,g}$ – ukupna translacijska masa granika i

 f_e – ekvivalentni koeficijent otpora vožnje za kotače s valjnim ležajevima, prema [15] iznosi $f_e = 0,01$.

Ukupna translacijska masa granika iznosi:

$$m_{\rm tr,g} = m_{\rm tr,V} + m_{\rm NK} = 1687,27 + 2256,1 = 3943,37 \,\rm kg$$
 (8.10)

gdje je:

 $m_{\rm tr,V} = 1687,27 \text{ kg} - \text{translacijska masa vitla i}$

 $m_{\rm NK} = 2256,1 \, \rm kg - masa$ nosive konstrukcije granika određena programskim paketom SolidWorks.

Slijedi da sila potrebna za ustaljenu vožnju vitla iznosi:

 $F_{\rm V} = 3943,37 \cdot 9,81 \cdot 0,01 = 386,84 \,\rm N$. (8.11) Konačno, snaga potrebna za ustaljenu vožnju vitla iznosi:

$$P_{\rm V} = \frac{386,84 \cdot 0,25}{0,97} \cdot 0,5 = 49,85 \,\rm W\,. \tag{8.12}$$

Potrebna sila za pokretanje granika odredit će se približno, na temelju potrebne sile pokretanja:

$$F_{\rm p} = F_{\rm V} + \beta_{\rm V} \cdot m_{\rm tr,g} \cdot \frac{v_{\rm voz}}{t_{\rm p}} = 386,84 + 1,2 \cdot 3943,37 \cdot \frac{0,25}{4} = 682,59 \,\,{\rm N}\,, \quad (8.13)$$

gdje je:

 $\beta_{\rm V}$ – faktor koji uzima u obzir utjecaj rotacijskih masa; prema [16] iznosi $\beta_{\rm V}$ = 1,2 i $t_{\rm p}$ = 4 s – odabrano vrijeme pokretanja mehanizma za vožnju granika prema [16]

Prema [16] nominalna sila vožnje iznosi:

$$F_{\rm n} = (0.5 \dots 0.6) F_{\rm p} = 0.6 \cdot F_{\rm p} = 0.6 \cdot 682,59 = 409,55 \,\mathrm{N} \,.$$
 (8.14)

Prema tome, potrebna nominalna snaga za vožnju iznosi:

$$P_{\rm n} = \frac{F_{\rm n} \cdot v_{\rm voz}}{\eta_{\rm g}} \cdot k = \frac{409,55 \cdot 0,25}{0,97} \cdot 0,5 = 52,78 \,\rm W\,. \tag{8.15}$$

Potrebna brzina vrtnje kotača vitla pri ustaljenoj vožnji iznosi:

$$n_{\rm k} = \frac{v_{\rm voz}}{d_{\rm k} \cdot \pi} = \frac{15}{0.125 \cdot \pi} = 38.2 \, {\rm min^{-1}} \,. \tag{8.16}$$

Iz kataloga proizvođača *Demag* [15] odabiru se elektromotori s ugrađenom kočnicom i reduktorom oznake AME 10 DD-M0-30-1-32.9 ZBF 63 A 4 B003. Karakteristike odabranih elektromotora dane su u tablici 9.

Nazivna snaga elektromotora	Р	0,13 kW
Nazivna brzina vrtnje elektromotora	n_1	1370 min ⁻¹
Maksimalni moment kočenja kočnice	M _k	1,4 Nm
Brzina vrtnje izlaznog vratila reduktora	<i>n</i> ₂	41,6 min ⁻¹
Moment izlaznog vratila reduktora	M_2	30 Nm
Prijenosni omjer reduktora	i _{red}	32,9
Inercija sklopa elektromotora	$J_{\rm EM}$	0,0034 kgm ²
Ukupna masa sklopa elektromotora	$m_{ m EM}$	15 kg

Tablica 10. Karakteristike odabranih elektromotora vožnju granika

Stvarna brzina vožnje granika iznosi:

$$v_{\rm g} = n_2 \cdot d_{\rm k} \cdot \pi = 41.6 \cdot 0.125 \cdot \pi = 16.34 \ \frac{\rm m}{\rm min} = 0.27 \ \frac{\rm m}{\rm s}.$$
 (8.17)

8.4. Provjera elektromotora obzirom na pokretanje

Kod pokretanja mehanizma za vožnju granika, elektromotor treba ostvariti sljedeći moment pokretanja:

$$M_{\rm p} = M_{\rm st} + M_{\rm ub} , \qquad (8.18)$$

gdje je:

 $M_{\rm st}-$ statički moment potreban za svladavanje otpora ustaljene vožnje i

 $M_{\rm ub}$ – moment potreban za ubrzanje translacijskih i rotacijskih masa.

Statički moment potreban za svladavanje otpora ustaljene vožnje računa se prema izrazu:

$$M_{\rm st} = \frac{F_{\rm V}}{\eta_{\rm g}} \cdot \frac{v_{\rm voz}}{\omega_{\rm EM}} = \frac{386,84}{0,97} \cdot \frac{0,27}{143,47} = 0,751 \,\,{\rm Nm}\,,\tag{8.19}$$

gdje je:

 $\omega_{\rm EM} = \frac{2\pi \cdot n_1}{60} = \frac{2\pi \cdot 1370}{60} = 143,47 \frac{\rm rad}{\rm s} - {\rm kutna \ brzina \ elektromotora.}$

Moment potreban za ubrzanje translacijskih i rotacijskih masa računa se prema izrazu:

$$M_{\rm ub} = \left(\beta \cdot J_{\rm EM} + m_{\rm tr,g} \cdot \left(\frac{\nu_{\rm g}}{\omega_{\rm EM}}\right)^2 \cdot \frac{1}{\eta_{\rm g}}\right) \cdot \frac{\omega_{\rm EM}}{t_{\rm p}}$$
$$= \left(1,2 \cdot 0,0034 + 3943,37 \cdot \left(\frac{0,27}{143,47}\right)^2 \cdot \frac{1}{0,97}\right) \cdot \frac{143,47}{4}$$
(8.20)
$$= 0.66 \,\mathrm{Nm}.$$

gdje je:

 $\beta = 1,2 - faktor koji uzima u obzir utjecaj rotacijskih masa,$

 $J_{\rm EM} = 0,0034 \, \rm kgm^2 - inercija \, \rm sklopa \, elektromotora,$

 $m_{\rm tr,g} = 3943,37 \ \rm kg - u$ kupna translacijska masa granika,

$$v_{\rm g} = 16,34 \ \frac{\rm m}{\rm min} = 0,2645 \ \frac{\rm m}{\rm s} - {\rm stvarna} \ {\rm brzina} \ {\rm vožnje},$$

 $\omega_{\rm EM} = 143,47 \frac{\rm rad}{\rm s} - {\rm kutna} {\rm brzina} {\rm elektromotora},$

 $\eta_{\rm g} = 0,97 - {
m stup}$ anj korisnosti mehanizma za vožnju granika i

 $t_{\rm p} = 4 \text{ s} - \text{odabrano vrijeme pokretanja.}$

Slijedi da potrebni moment pokretanja treba biti:

$$M_{\rm p} = 0.751 + 0.66 = 1.411$$
 Nm. (8.21)

Nominalni moment elektromotora iznosi:

$$M_{\rm n} = \frac{P}{\omega_{\rm EM}} = \frac{130}{143,47} = 0.91 \,\,{\rm Nm}\,.$$
 (8.22)

Odnos momenta pokretanja i nominalnog momenta iznosi:

$$\frac{M_{\rm p}}{M_{\rm n}} = \frac{1,411}{0,91} = 1,55.$$
(8.22)

Prema [16] taj odnos treba biti, $\frac{M_p}{M_n} \le 1,7$, što znači da odabrani elektromotor zadovoljava.

8.5. Provjera elektromotora obzirom na proklizavanje kotača

Provjera snage elektromotora obzirom na mogućnost proklizavanja kotača, vrši se bez tereta. U tom slučaju ukupna težina koja opterećuje nosivu konstrukciju iznosi:

$$F_{\rm bt,g} = m_{\rm tr,g} \cdot g - Q = 3943,37 \cdot 9,81 - 15000 = 23684,46 \,\rm N. \tag{8.23}$$

Sila na jednom kotaču granika tada iznosi:

$$F_{\rm k}^{\rm G} = \frac{F_{\rm bt,g}}{4} = \frac{23684,46}{4} = 5921,12 \,\rm N.$$
 (8.24)

Adhezijska težina na pogonskim kotačima granika za neopterećeno vitlo iznosi:

$$G_{\rm a} = F_{\rm k}^{\rm G} + F_{\rm k}^{\rm G} = 5921,12 + 5921,12 = 11842,24 \,\rm N.$$
 (8.25)

Otpor ustaljene vožnje gonjenih kotača granika za neopterećeno vitlo iznosi:

$$W_{\rm vk,g} = \left(F_{\rm k,g}^{\rm bt} + F_{\rm k,g}^{\rm bt}\right) \cdot f_{\rm e} = (5921,12 + 5921,12) \cdot 0,01 = 118,42 \,\rm N. \tag{8.26}$$

Minimalno vrijeme pokretanja granika s neopterećenim vitlom iznosi:

=

$$t_{\min} = 1,2 \cdot \frac{\beta \cdot \frac{F_{\text{bt,g}}}{g} \cdot v_{\text{v}}}{\mu_{\text{a}} \cdot G_{\text{a}} - W_{\text{vk}}}$$

$$1,2 \cdot \frac{1,2 \cdot \frac{23684,46}{9,81} \cdot 0,27}{0,2 \cdot 11842,24 - 118,42} = 0,42 \text{ s},$$
(8.27)

gdje je:

 μ_a – koeficijent adhezije za suhe tračnice u zatvorenom prostoru, prema [16] iznosi $\mu_a = 0,2$

Inercija rotacijskih i translacijskih masa za neopterećeno vitlo iznosi:

$$J_{\rm uk} = \beta \cdot J_{\rm EM} + \frac{\frac{F_{\rm bt,g}}{g}}{\eta_{\rm g}} \cdot \left(\frac{v_{\rm g}}{\omega_{\rm EM}}\right)^2 = 1.2 \cdot 0.0034 + \frac{\frac{23684.46}{9.81}}{0.97} \cdot \left(\frac{0.27}{143.47}\right)^2 \quad (8.28)$$
$$= 0.013 \,\rm kgm^2.$$

Otpor ustaljene vožnje za neopterećeno vitlo iznosi:

$$W_{\rm v} = F_{\rm bt,g} \cdot f_{\rm e} = 23684,46 \cdot 0,01 = 236,8446 \,\mathrm{N}.$$
 (8.29)

Moment potreban za ustaljenu vožnju iznosi:

$$M_{\rm st} = \frac{W_{\rm v}}{\eta_{\rm g}} \cdot \frac{v_{\rm v}}{\omega_{\rm EM}} = \frac{236,8446}{0,97} \cdot \frac{0,27}{143,47} = 0,46 \,\,{\rm Nm}. \tag{8.30}$$

Moment pokretanja kojim bi vitlo ubrzalo u vremenu t_{min} iznosi:

$$M_{\rm p} = J_{\rm uk} \cdot \frac{\omega_{\rm EM}}{t_{\rm min}} + M_{\rm st} = 0.013 \cdot \frac{143.47}{0.42} + 0.46 = 4.9 \,\rm Nm.$$
 (8.31)

Srednji moment pokretanja elektromotora iznosi:

$$M_{\rm p,sr} \cong 1,5M_{\rm n} = 1,5 \cdot 0,91 = 1,365 \,\,{\rm Nm}.$$
 (8.32)

Budući je srednji moment pokretanja elektromotora manji od momenta pokretanja, neće doći do proklizavanja kotača.

8.6. Provjera kočnice elektromotora

Potrebni moment kočenja elektromotora iznosi:

$$M_{\rm kpotr} = \eta_{\rm ko\check{c},g} \cdot m_{\rm tr,g} \cdot g \cdot \frac{v_g}{\omega_{\rm EM}} \cdot \left(\frac{\beta}{g} \cdot \frac{v_g}{t_z} - \frac{f_{\rm e}}{1000}\right)$$

$$0,9691 \cdot 3943,37 \cdot 9,81 \cdot \frac{0,27}{143,47} \cdot \left(\frac{1,2}{9,81} \cdot \frac{0,27}{3} - \frac{0,01}{1000}\right) = 0,78 \,\,{\rm Nm}\,,$$

$$(6.28)$$

gdje je:

=

 $\eta_{ko\check{c},g} = 2 - \frac{1}{\eta_g} = 2 - \frac{1}{0.97} = 0.9691$ – stupanj djelovanja mehanizma za vožnju granika u kočnom stanju i

 t_z – potrebno vrijeme zaustavljanja granika bez kočenja, prema [16] odabrano je $t_z = 3$ s.

Budući je moment kočenja ugrađene kočnice veći od potrebnog momenta kočenja, odabrana kočnica zadovoljava.

ZAKLJUČAK

Prema zahtjevima zadanim zadatkom, u radu je konstruiran poluportalni granik s konzolom. Konstruiranje je rađeno po smjernicama DfA (Design for Assembly), tj. tako da je granik lakše i jeftinije sklopiti u cjelinu. Dakle, svi korišteni dijelovi su standardni, svi vijci su lako dostupni te je korišten minimalan broj različitih dimenzija vijaka kako bi se smanjio potreban broj različitih alata.

Nosiva konstrukcija granika, kao i okvir vitla su u cijelosti izrađeni od gotovih standardnih profila koji imaju značajne prednosti pred zavarenim konstrukcijama, posebice po pitanju pouzdanosti, nosivosti i cijene (manje zavara).

Kotači i elektromotori odabrani su iz kataloga proizvođača *Demag*, dok su ležajevi odabrani iz kataloga proizvođača *SKF*.

LITERATURA

[1] Serdar J., Prenosila i dizala, Izvadak iz tehničke enciklopedije, Leksikografski zavod "Miroslav Krleža", 1995.

[2] <u>https://www.abuscranes.com/cranes/overhead-travelling-cranes/single-girder-semi-goliath-crane</u>

[3] https://www.hycranecn.com/single-girder-semi-gantry-crane-pd6871749.html

[4] https://aimixcrane.com/semi-gantry-crane/

[5] e-učenje; Transportni uređaji; Podloge za predavanja; 2.4 – Kuke, sklop kuke.pdf

[6] e-učenje; Transportni uređaji; Podloge za predavanja; 3_3.1_3.2 POGONSKI ELEMENTI I MEHANIZMI_Uvod_Koloturnici.pdf

[7] e-učenje; Transportni uređaji; Podloge za predavanja; 2_2.1_2.2 - NOSIVA,OVJESNA I ZAHVATNA SREDSTVA_Uvod+Uzad.pdf

[8] e-učenje; Transportni uređaji; Podloge za predavanja; 3.3 – Uznica i bubnjevi.pdf

[9] https://www.thesteel.com/hr

[10] Kraut B., Strojarski priručnik, Sajema d.o.o., Zagreb. 2009.

[11]http://www.wattdrive.com/images/downloads/printmedien/catalogues/50076915_Rev04_ 10-2019_WG20_Technical_Catalogue.pdf

[12] e-učenje; Transportni uređaji; Podloge za predavanja; 3.4_3.5 - Kocnice_Zadrzaci.pdf

[13] Herold Z., Stezni i zavareni spoj, Fakultet strojarstva i brodogradnje, Zagreb

[14] Horvat. Z i suradnici, Vratilo, Fakultet strojarstva i brodogradnje, Zagreb

[15] <u>http://www.demag-designer.com/camosHTML5Client/cH5C/go?q=1#s</u>

[16] Ščap. D., Prenosila i dizala, Podloge za konstrukciju i proračun, Fakultet strojarstva i brodogradnje, Zagreb

[17] Hoić, M., TRANSPORTNI UREĐAJI; VJEŽBE 12

[18] Alfirević. I., Nauka o čvrstoći I, Tehnička knjiga D.D. – Zagreb, 1995.,

PRILOG

- I. Aksijalni ležaj 51108
- II. Radijalni ležaj 6209-2RS1
- III. Sklop ležaja i kućišta SYJ 45 TF
- IV. Elektromotor mehanizma za dizanje
- V. Elektromotor za vožnju vitla
- VI. Elektromotor za vožnju granika
- VII. Model poluportalnog granika s konzolom
- VIII. CD-R
- IX. Tehnička dokumentacija

I. Aksijalni ležaj 51108

SKF

51108

Popular item

Dimensions

d		40	mm
D		60	mm
Н		13	mm
d 1	~	60	mm
D ₁	~	42	mm
r _{1,2}	min.	0.6	mm
D ₁ r _{1,2}	≈ min.	42 0.6	mm mm

Abutment dimensions

d _a	min.	52	mm
Da	max.	48	mm
ra	max.	0.6	mm

Calculation data			
Basic dynamic load rating	С	25.5	kN
Basic static load rating	C ₀	63	kN
Fatigue load limit	Pu	2.32	kN
Reference speed		5000	r/min
Limiting speed		7000	r/min
Minimum load factor	A	0.02	
M			

Mass

Mass bearing (including seat washer where applicable)

0.12 kg

II. Radijalni ležaj 6209-2RS1

SKE					
6209-2RS1 Popular item SKF Explorer					
		d D d ₁ D ₂ r _{1,2}	≈ ≈ min.	45 85 19 57.6 75.19 1.1	mm mm mm mm
Abutment dimensions		d _a d _a D _a r _a	min. max. max. max.	52 57.5 78 1	mm mm mm
Calculation data	-				
basic dynamic load rating	C -		35	.6	ктч kN
Fatique load limit	P.		0.9	915	kN
Limiting speed	· u		50	00	r/min
Calculation factor	k,		0.0	025	
Calculation factor	f ₀		14	.2	
Mass					
Mass bearing		(0.42		kg

III. Sklop ležaja i kućišta SYJ 45 TF

SKE				
SYJ 45 TF				
Compliance with standard			JIS	
Housing material			Cast iron	
Sealing solution			Standard se additional flir	als with ngers
Dimensions				
A ₁ 1	d		45	mm
	d 1	~	56.8	mm
	А		52	mm
	Α1		36	mm
	в		49.2	mm
jean T	в4		8	mm
A	н		107.5	mm
D _N	н 1		54	mm
SWN_	н ₂		20	mm
E RE	J		143.5	mm
Gu - G-	J	max.	151	mm
	J	min.	136	mm
	L		190	mm
	Ν		24.5	mm
	N 1		17	mm
N4	⁵ 1		30.2	mm
J7 N1	Threa	ded hole		
-N-	R _G		1/4-28 UNF	
	R ₁		4	mm
	Rα		45	•
	Greas	e fitting		
	DN		6.5	mm
	SW N		7	mm
	GN		1/4-28 SAE-L1	Г

		Downla	le e		
		Dowel p	ins		
		J 6		174	mm
		J ₇		18	mm
		N 4		4	mm
Calculation data					
Basic dynamic load rating	С		33.	2	kN
Basic static load rating	C ₀		21.	6	kN
Fatigue load limit	P.		0.9	15	КN
Limiting speed			43	00	r/min
with shaft tolerance h6					
Mass					
Mass bearing unit			2.25	5	kg
Mounting information					
Thread grub screw		G	2	M8x1	
Hexagonal key size for grub screw		N		4	mm
Recommended tightening torque for grub screw				6.5	N-m
Recommended diameter for attachment bolts, mm		G		14	mm
Recommended diameter for attachment bolts, inch		G		0.5625	in
Included products					
Housing				SYJ 509	
Bearing				YAR 209	-2F

IV. Elektromotor mehanizma za dizanje

Gear series :	Helical geared motor		
Type :	CG062-11P-L100L-04F-TH-TF-BBRGD50		
Operation data :			
Ambient temperature :	+20	°C	
Type of operation :	S3S6 ED 40min		
Motor data :			
Series :	WEG Modular System Motor (EUSAS)		
Housing material :	Aluminium		
Efficiency class η :	IE3-88.0%		
Type :	11P		
Motor power :	3	[kW]	
Rated speed :	1440	[rpm]	
Rated torque :	20	[Nm]	
Voltage :	230/400	[V]	
Frequency	50	[Hz]	
Connection :	D/Y		
Rated current :	10.9 / 6.30	[A]	
Starting to rated current :	7.8		
cos φ' :	0.78		
Protection class :	IP 55		
Mounting position of the terminal box :	side 1 cable entry I		
nsulation class :	F		
Mass moment of inertia :	11.96 x 10 ⁻³	[kgm ²]	
Further motor executions :			
Fan :	self ventilated		
Temperature controller :	Bimetal switch NCC (TH) and PTC thermistor (TF) for switch off		
Ball bearing :	Standard		
Brake data :			
Type :	BBR50	[Nm]	
Supply voltage for rectifier :	190-240V (connected in the motor terminal box)		
Rectifier / brake type :	Choice is necessary!		
Low noise execution :	Brake in low noise execution		
Gear data :			
Max. perm. thermal power limit at +20 °C and S3S6 ED	16	[kW]	
Output speed :	43	[man]	
Dutput torque :	674	[Nm]	
Service factor :	0.90	[]	
Gear stages :	2		
Ratio :	33.86		
Circum ferential backlash (min-max)	5' - 12'		
Perm, input torque at fB1 :	17.7	[Nm]	
Max. perm. input speed :	3000	[man]	
Mounting position :	M1	[. p.m]	
Dutput shaft :	Ø 35 k6 x 70	[mm]	
Keyway	DIN6885.1		

Painting :	LC1 - Indoor installation, neutral atmosphere NDFT 60 μm (C1 - DIN EN ISO 12944-5)	
Color :	RAL 7011 (Iron grey)	
Total weight :	60.1	
Input side :		
Type :	Direct mounting	
Input shaft :	Ø 34 k6	
	50.000	

Further executions gear unit : Lubricant :

Mineral oil - CLP ISO VG 220

V. Elektromotor za vožnju vitla

Technical description

ltem 1

1	Demag angular geared brake motor
	WUE 10 DD-B14.0-11-1-30.4 ZBF 63 A 4 B003

Due to their compact design, Demag angular geared brake motore are the optimum solution for drives for which limited space is available.

The modern modular system offers a wide output range. Even high transmission ratios can still be designed in two stages. This provides for an optimised geometry of the teeth, but also for a particular smoothness of running and high efficiency.

Due to the special integrated shaft-hub connection, the gearbox is very well suited for reversing operation.

The variety of drive shafts or solid shaft, with key or splines the possible mounting variants as a hollow-shaft gearbox with torque bracket, foot or flange-mounting design enable you to implement a cost-effective solution which meets the requirements of the application optimally.

The Z-type cylindrical rotor motor is available as compact geared motor for direct drive input. If the geared motor is designed for coupling connection, the KB or Z-type motor is connected via a roller spider coupling. The Demag Z cylindrical rotor motor as brake motor can be used for various applications and is optimally adapted to the Demag modular gearbox system.

The Z motor has a major advantage compared to other motors:

Already in the standard design the brake torque can be selected for a wide range of applications. Almost any possible brake torque can be ordered, ranging from without brake (ZN motor) up to finely graded brake torques and braking capacities (ZB motor).

Since the motor and the brake are two separate systems, the spring-operated DC disk brake can be controlled separately according to the individual requirements. A wide range of brake modules is available for this purpose.

The various options make it possible to implement the most efficient technical configuration of the Z motor for all types of tasks. The spectrum ranges form the modification of the motor flywheel over winding protection to integral pulse generators.

The motor is designed acc. to standard EN 60034-1.

Already the basic design of the angular geared brake motor offers many possibilities for optimum solutions of drive applications. The gearbox is available with many options, so it can efficiently be adapted to different tasks. The spectrum ranges from torque brackets over special lubricants to special paint finishes.

The angular geared brake motor is designed according to our publication 203 151 44, which we will send to you upon request.

Note: The motor used is not subject to the EuP Directive.

Technical data:

Mounting code	WUE10DD-B14.0-11-1/30,4 - ZBF 63 A 4-B003
Output speed	45,1 rpm
Motor speed	1370 rpm
Output	0,130 KW
Cyclic Duration Factor	40 %
Type of enclosure of motor	IP 54
Ambient temperature	-10+40 °C
Installation altitude	≤ 1.000 m
Transmission ratio	30,40

Terminal box position Mounting position Total weight, net approx.	right, 1 horizontal 16 kg
<u>Current data:</u> Voltage Frequency Current	D/Y 220-230/380-400 V 50 Hz D/Y 0,74/0,43 A
<u>Technical data of the brake:</u> Brake torque Voltage Current Brake rectifier GE	1,4 Nm 180 V DC 0,11 A 400V AC
Equipment: Insulation to temperature class F Fan disk Brake rectifier GE SE current relay Housing type U solid shaft with splined profile, on b Direct input	ooth sides
<u>Colour:</u> RAL 5009, azure blue	

Documentation: Installation guide EU document according to the Machinery Directive

VI. Elektromotor za vožnju granika

Technical description

Item 1

1 Demag offset geared brake motor AME 10 DD-M0-30-1-40.8 ZBF 63 A 4 B003

Due to their compact design, Demag offset geared brake motore are the optimum solution for drives for which limited space is available.

The modern modular system offers a wide output range. Even high transmission ratios can still be designed in two stages. This provides for an optimised geometry of the teeth, but also for a particular smoothness of running and high efficiency.

Due to the special integrated shaft-hub connection, the gearbox is very well suited for reversing operation.

The variety of drive shafts hollow-shaft or solid shaft, with key or splines and the possible mounting variants as a hollow-shaft gearbox with torque bracket, foot or flange-mounting design enable you to implement a cost-effective solution which meets the requirements of the application optimally.

The Z-type cylindrical rotor motor is available as compact geared motor for direct drive input. If the geared motor is designed for coupling connection, the KB or Z-type motor is connected via a roller spider coupling. The Demag Z cylindrical rotor motor as brake motor can be used for various applications and is optimally adapted to the Demag modular gearbox system.

The Z motor has a major advantage compared to other motors:

Already in the standard design the brake torque can be selected for a wide range of applications. Almost any possible brake torque can be ordered, ranging from without brake (ZN motor) up to finely graded brake torques and braking capacities (ZB motor).

Since the motor and the brake are two separate systems, the spring-operated DC disk brake can be controlled separately according to the individual requirements. A wide range of brake modules is available for this purpose.

The various options make it possible to implement the most efficient technical configuration of the Z motor for all types of tasks. The spectrum ranges form the modification of the motor flywheel over winding protection to integral pulse generators.

The motor is designed acc. to standard EN 60034-1.

Already the basic design of the offset geared brake motor offers many possibilities for optimum solutions of drive applications. The gearbox is available with many options, so it can efficiently be adapted to different tasks. The spectrum ranges from torque brackets over special lubricants to special paint finishes.

The offset geared brake motor is designed according to our publication 203 151 44, which we will send to you upon request.

Note: The motor used is not subject to the EuP Directive.

Technical data

Toornino or olong.	
Mounting code	AME10DD-M0-30-1/40,8 - ZBF 63 A 4-B003
Output speed	33,6 rpm
Motor speed	1370 rpm
Output	0,130 KW
Cyclic Duration Factor	40 %
Type of enclosure of motor	IP 54
Ambient temperature	-10+40 °C
Installation altitude	≤ 1.000 m
Transmission ratio	40,80
Terminal box position	right, 1

Mounting position Total weight, net approx.	horizontal 15 kg
<u>Current data:</u> Voltage Frequency Current	D/Y 220-230/380-400 ∨ 50 Hz D/Y 0,74/0,43 A
<u>Technical data of the brake:</u> Brake torque Voltage Current Brake rectifier GE	1,4 Nm 180 V DC 0,11 A 400V AC
Equipment: Insulation to temperature class F Fan disk Brake rectifier GE SE current relay Shaft-mounted Solid shaft with involute spline prof Direct input	ile

<u>Colour:</u> RAL 5009, azure blue

Documentation: Installation guide

EU document according to the Machinery Directive

VII. Model poluportalnog granika s konzolom

 \bigtriangleup

									-	
Г 0	 20) 3() 40	50	60	70	80	90	10)(

23	Podlo	ška 12			16	DIN 7349	-	Vi	jci Kranje	C	
22	Podlo	śka 21			1	DIN 125	-	Vi	jci Kranje	C	
21	Rascje	epka 2,5 x 2	28		1	DIN 94	-	mł	oo Oßwa	ld	
20	Vijak I	M12x1,25 x	,25 x 50			DIN 6922	8.8	Vijci Kranjec			
19	Vijak N	Л12х1,25 х	60		2	DIN 6922	8.8	Vi	jci Kranje	C	
18	Matico	a M12x1,25	5		4	DIN 6923	8	Vi	jci Kranje	C	
17	Osovir	nica za prił	nvat kraja už	źeta	1	LB-ZR-2020-560	S235JR		Ø 30 x 48		
16	Matico	a M16			2	DIN 934	6	Vijci Kranjec			
15	Vijak N	Л10 x 25			6	DIN 933	5.6	Vi	jci Kranje	C	
14	Matico	a M10			6	DIN 934	6	Vi	jci Kranje	C	
13	Matico	a M8x1			2	DIN 934	8	Vijci Kranjec			
12	Vijak N	∕/8x1 x 50			2	DIN 976	8.8	Vi	jci Kranje	eC .	
11	Matico	a M8x1			2	DIN 6923	8	Vi	jci Kranje	C	
10	Pritisno	a pločica			1	LB-ZR-2020-550	S355JR	4	7 x 10 x 2	0	
9	Pločic	a za sprječ	avanje koa	ksijalnosti	1	LB-ZR-2020-540	S235JR	20	0 x 80 x 1	0	
8	Zavare	ena glavin	a bubnja		1	LB-ZR-2020-530	-	Q	240 x 80		
7	Sklop (elektromot	tora i redukt	ora	1	-	-	Watt Drive			
6	Gonje	ni kotač			2	-	-	Demag			
5	Okvir v	vitla			1	LB-ZR-2020-520	-	1240 x 811 x 166			
4	Pogonski kotači DRS 112 s pogonom				1	-	-	Demag			
3	Sklop ležaja i bubnja SYJ 45 TF					-	-	SKF			
2	Vijak N	Л16 x 60			2	DIN 933	5.6	Vijci Kranjec			
1	Zavareni bubanj				1	LB-ZR-2020-510	-	-			
Poz.		Nazi	v dijela		Kom.	Crtež broj Norma	Materijal	Sirove dimenzije Proizvođač			Masa
Вго	j naziva	– code		Datum	I	me i prezime	Potpis		<u></u>		
			Projektirao Doznadio		Lu	Jka Bučarić		\ ((7-anab	
			Crtan			jka Bučarić				Zd	יו או
			Pregledao								
	50 - tol	erancije	Objekt:				Objekt broj:				
Ø45	R7/h6	-0,051	-				R. N. broj:				
Ø35	H7/h6	+0,041	Napomena:							Ko XXXXX	opija XXXXXXXXX
Ø20	H7/h6	+0,034	Materijal:			Masa:					
10 P	9/h9	+0,021		Haziv:			l		Pozicija:	x‱ Form	at: A1
	,,,,,	-0,051	Mjerilo origin	ala		VITLO		7		. 1	
			1:5	Cata	t brok		00 500				1 · D
<u> </u>					2 UI.OI:	LB-ZR-20	20-500			List:	
\vee					րողու						

13	
	10

13	Pločico	a 25 x 6				2	DIN 15058	S235JR	m	bo Oßwa	ld	
12	Vijak N	410 x 14				4	DIN 933	5.6	V	ijci Kranje	C	
11	Nosač	kuke				1	LB-ZR-2020-870	C35	12	25 x 80 x 4	40	
10	Ležaj 5	51108				1	-	-		SKF		
9	Matico	a kuke				1	LB-ZR-2020-860	C35	Ģ	Ø70 x 44		
8	Bočni	lim 2				1	LB-ZR-2020-850	14	38	5 x 270 x	10	
7	Ležaj 6	5209 2RS1				2	-	-		SKF		
6	Poklop	oac užnice				2	LB-ZR-2020-840	S235JR	ý (Ø115 x 11		
5	Vijak N	Л5 x 10				8	DIN 933	5.6	V	ijci Kranje	eC .	
4	Ljuska					2	LB-ZR-2020-830	S235JR	Q	050 x 18		
3	Bočni	lim 1				1	LB-ZR-2020-820	S235JR	38	5 x 270 x	10	
2	Osovir	na užnice				1	LB-ZR-2020-810	E295		Ø 55 x 125	5	
1	Kuka					1	DIN 15401	S†E285		HN=2,5		
Poz.	Naziv dijela					Kom.	Crtež broj Norma	Materijal	Si	rove dimen Proizvođa	zije č	Masa
Вго	j naziva	– code		Dat	um		Ime i prezime Potpis					
			Projektirao			<u> </u>	<u>Jka Bučarić</u>			Zagreb		
			Razradio				<u>Jka Bučarić</u>					
			Prenledan									
			regicado									
19	SO - tol	erancije	Objekt:					Objekt broj:				
Ø85	H8/f7	+0,125						R. N. hroi:				
		+0,036	Nanomena:								K	pija
Ø85 I	R7/n6	-0,118	indpomenta:									
Ø60) R7/n6 -0.050 Materijal:					Masa:						
Ø45	R7/p6	-0,051	$\Box \oplus$	⊢ N	aziv:					Pozicija:	Form	at: A2
Ø40	R7/p6	-0,051	Mjerilo origina	ala			SKLOP KI	UKE		11	Listo	va:]
0 10	H7/f8	H7/f8 +0,089 1:5 Crte						-2020-800				1

 ε
 μιστρ
 LB-2R-20/20-800
 List:
 1

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100