DIPLOMSKI RAD

Marijan Balaško

SVEUČILIŠTE U ZAGREBU
FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor: Prof. dr. sc. Zoran Domitran, dipl. ing.

Student: Marijan Balaško

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stećena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru dr. sc. Zoranu Domitranu, dipl. ing na pomoći i korisnim savjetima prilikom izrade rada.

Posebno se zahvaljujem svojoj obitelji, majci Blaženki i bratu Marku na velikoj podršci tijekom studija.

Zahvaljujem se prijatelju Igoru Pongracu, te tvrtki Data & Test Solutions na pruženoj podršci.

Zahvaljujem se i svim kolegama koji su mi olakšali studiranje i učinili ga lijepim.

Marijan Balaško
DIPLOMSKI ZADATAK

Student: Marijan Balaško
Mat. br.: 0035190314

Naslov rada na hrvatskom jeziku: Uređaj za simulaciju aktivnog živog zida u nogometu
Naslov rada na engleskom jeziku: Simulation Device for Defensive Wall in Football

Opis zadataka:

Razvoj tehničkih pomagala pri treningu igrača nogometa u stalnom je porastu. Primjenom naprava i simulacijskih uređaja kod treninga igrača, omogućuje se bolja učinkovitost i rezultati igrača. Živi zid u nogometu je česta situacija koja iziskuje simultanu radnju više igrača, gdje se gubi vrijeme treninga kod igrača koji glume živi zid i produžuje nepotrebno vrijeme priprema uz mogućnost ozljede igrača tijekom treninga.

Potrebno je dati koncepcijsko rješenje rada uređaja za simulaciju igrača živog zida koji u kombinaciji sa vizijskim susretom može zaustaviti loptu tijekom ispučavanja te izvršiti barem dva smjera mogućih gibanja koja simuliraju reakciju igrača. Definirati tehničke zahtjeve i opterećenja na sustav kod rada te dati prijedlog mehanizama i dimenzioniranje najviše opterećenih dijelova sustava. Uređaj mora biti mobilan od napajanja i u radu neovisan od napajanja sa električnom mreža.

U radu je potrebno:
- prikazati shematski nekoliko mogućih koncepata,
- uporabom 3D programskog paketa modelirati odabrano konstrukcijsko rješenje uređaja,
- provesti proračun čvrstoće najnepovoljnijih dijelova.

Vrijednosti potrebne za proračun i odabir pojedinih komponenti usvojiti iz iskustvenih vrijednosti te u dogovoru s mentorom. Cjelovito konstrukcijsko rješenje prikazati sklopnim crtežom, a dijelove u dogovoru s mentorom razraditi do razine radioničkih. U radu navesti korištenu literaturu, norme kao i eventualnu pomoć.

Zadatak zadao: Doc. dr.sc. Zoran Domitran

Predsjednica Povjerenstva: Prof. dr. sc. Tanja Jurčević Lulić
SADRŽAJ

SADRŽAJ .. I

POPIS SLIKA ... III

POPIS TABLICA .. V

POPIS TEHNIČKE DOKUMENTACIJE .. VI

POPIS OZNAKA .. VII

SAŽETAK ... XII

SUMMARY .. XIII

1. UVOD

1.1. Slobodni udarac .. 2

1.2. Nogometna lopta .. 3

1.2.1. Brzina nogometne lopte .. 3

1.3. Pregled postignutih golova, efikasnost igrača ... 4

1.4. Skok igrača ... 6

2. Analiza tržišta

2.1. Sprava 1. *Soccer Wall Pro-single* .. 7

2.2. Sprava 2. *Air Tom Soccer Training Mannequin* .. 8

2.3. Sprava 3. *Forza Soccer Air Mannequin* ... 9

2.4. Sprava 4. *Diamond Football Senior Pro Free Kick Mannequin* 10

2.5. Robot golman *iRoboGoalie* .. 11

2.6. Zaključak analize tržišta ... 12

3. Razvoj uređaja

3.1. Definiranje ciljeva ... 13

3.2. Generiranje koncepta ... 13

3.2.1. Funkcijska dekompozicija .. 13

3.2.2. Morfološka matrica ... 15

3.2.1.1. Sustav za ostvarivanje gibanja ... 19

3.2.1.1.1. Odabir mehanizma za ostvarivanje gibanj .. 19

3.2.1.1.2. Pogon mehanizama za gibanje .. 22

3.2.1.3. Koncept 1.1, sustav za ostvarivanje gibanja .. 22

3.2.1.4. Koncept 1.2, sustav za ostvarivanje gibanja .. 23

3.2.1.5. Koncept 1.3, sustav za ostvarivanje gibanja .. 24

3.2.1.6. Koncept 1.4, sustav za ostvarivanje gibanja .. 24

3.2.1.7. Koncept 1.5, sustav za ostvarivanje gibanja .. 25

3.2.1.8. Koncept 1.6, sustav za ostvarivanje gibanja .. 26

3.2.1.9. Vrednovanje parcijalnih koncepata sustava za preuzimanje udara lopte .. 26

3.2.1.1. Koncept 2.1, sustav za preuzimanje udara lopte 27

3.2.1.2. Koncept 2.2, sustav za preuzimanje udara lopte 27

3.2.1.3. Koncept 2.3, sustav za preuzimanje udara lopte 28

3.2.1.4. Koncept 2.4, sustav za preuzimanje udara lopte 29

3.2.1.5. Koncept 2.5, sustav za preuzimanje udara lopte 29
4. Konstrukcija i proračun ... 36
 4.1. Udar lopte... 36
 4.2. Skok igrača ... 38
 4.3. Silueta igrača ... 42
 4.3.1. Dodirni pritisak ... 43
 4.3.1. Savijanje udarom lopte .. 43
 4.3.1. Procjena mase siluete ... 44
 4.4. Proračun sustava za ostvarivanje gibanja 45
 4.4.1. Analiza i proračun paralelnog mehanizma 45
 4.4.1.1. Stupnjevi slobode mehanizma 45
 4.4.1.2. Određivanje dimenzija paralelograma 46
 4.4.1.3. Odabir opruge .. 50
 4.4.1.4. Potrebna radna sila pneumatskog cilindra 53
 4.4.1.5. Proračun krakova paralelnog mehanizma 55
 4.4.1.6. Odabir ležaja paralelnog mehanizma 60
 4.4.1.1. Kontrola naprezanja u kućištu ležaja (završetak cijevi): 62
 4.4.1.2. Kontrola naprezanja u osovina mehanizma 63
 4.4.1. Odabir komponenata pneumatskog sustava 64
 4.4.1.1. Odabir pneumatskog cilindra 66
 4.4.1.2. Dimenzioniranje sustava dobave zraka 66
 4.5. Pohranj energije potrebne za rad uređaja 69
 4.5.1. Procjena potrebne količine energije 69
 4.5.1.1. Potrebno energije za rad kompresora: 69
 4.5.1.2. Potrebno energije za rad elektro ventila 69
 4.5.1.3. Potrebno energije za rad ostale opreme 70
 4.5.2. Odabir baterije .. 70
 4.6. Proračun konstrukcije .. 72
 4.6.1. Kontrola naprezanja u gredi 72
 5. Prikaz 3D modela konačnog rješenja ... 75
 6. ZAKLJUČAK .. 77
LITERATURA ... 78
PRILOZI .. 81
POPIS SLIKA

Slika 1. Povijest nogometa ... 1
Slika 2. Sprave za vježbanje ... 2
Slika 3. Efikasnost igrača kod izvođenja slobodnog udarca 5
Slika 4. Broj postignutih pogodaka iz slobodnih udaraca kluba u sezoni 6
Slika 10. Funkcijska dekompozicija uređaja ... 14
Slika 11. Funkcijska dekompozicija parcijalne funkcije - udar prihvatiti - 14
Slika 12. Black box model glavne funkcije uređaja 15
Slika 13. Paralelni mehanizam ... 20
Slika 14. Klizač (translatoid) ... 20
Slika 15. Skica koncepta 1.1 .. 23
Slika 16. Skica koncepta 1.2 .. 23
Slika 17. Skica koncepta 1.3 .. 24
Slika 18. Skica koncepta 1.4 .. 25
Slika 19. Skica koncepta 1.5 .. 25
Slika 20. Skica koncepta 1.6 .. 26
Slika 21. Skica koncepta 2.1 .. 27
Slika 22. Skica koncepta 2.2 .. 28
Slika 23. Skica koncepta 2.3 .. 28
Slika 24. Koncept 2.4 ... 29
Slika 25. Koncept 2.5 ... 29
Slika 26. Koncept 2.6 ... 30
Slika 27. Skica koncepta 1.1 ... 31
Slika 28. Skica koncepta 2.2 ... 32
Slika 29. Skica koncept 3 ... 33
Slika 30. Skica koncept 4 ... 34
Slika 32. Dijagram udara lopte [21] .. 37
Slika 33. Faze skoka .. 38
Slika 34. Dijagram snage, pomaka, brzine i sile kod skoka s mjesta [19] 39
Slika 35. Ovisnost ubrzanja o vremenu tijekom skoka 41
Slika 36. Ovisnost brzine o vremenu tijekom skoka 42
Slika 37. Ovisnost pomaka o vremenu tijekom skoka 42
Slika 38. Skica presjeka [26] .. 43
Slika 40. Skica osnovnog paralelograma .. 46
Slika 41. Skica krajnjih položaja mehanizma .. 46
Slika 42. Ovisnost duljine stranice α o kutu zakreta φ 47
Slika 43. Promjena duljine dijagonale paralelograma u ovisnosti o kutu α 48
Slika 44. Model paralelograma u programskom alatu Adams student edition .. 49
Slika 45. Zadane sile na pareleni mehanizam u programskom alatu Adams 49

Fakultet strojarstva i brodogradnje
Slika 46. Skica mehaničkog modela za određivanje sile opruge

Slika 47. Promjena duljine opruge u ovisnosti o kutu zakreta mehanizma

Slika 48. Promjena duljine opruge u ovisnosti o kutu zakreta mehanizma _Adams

Slika 49. Skica mehaničkog modela za određivanje sile cilindra

Slika 50. Promjena potrebne sile cilindra u ovisnosti o kutu zakreta mehanizma

Slika 51. Skica mehaničkog modela paralelograma

Slika 52. Iznosi sile u osloncima A i B

Slika 53. Skica opterećenja lijepljenog spoja

Slika 54. Presjek kliznog ležaja

Slika 55. Kritični presjek na kućištu ležaja

Slika 56. Sile u osloncu A paralelnog mehanizma

Slika 57. Skica sila u osloncu A

Slika 58. Skica mehaničkog modela presjeka 1 osovine ležaja A

Slika 59. Princip rada pneumatskog sustava

Slika 60. Shema pneumatskog sustava

Slika 61. Dimenzije Festo DSNU-40-200 pneumatskog cilindra [33]

Slika 62. Kompresor Nardi ESPRIT 3 [34]

Slika 63. Eektrično upravljan pneumatski ventil 5/3 Festo [33]

Slika 64. Pneumatska grupa Festo MSB4-1/4:J4:D4-WP za pripremu zraka

Slika 65. Električne karakteristike elektro ventila Festo CPE18 [35]

Slika 66. Svojstva baterije [36]

Slika 67. Pad kapaciteta baterije u odnosu na broj radnih ciklusa [36]

Slika 68. Skica mehaničkog modela grede

Slika 69. Uređaj za simulaciju obrambenog zida

Slika 70. Bokocrt uređaja, silueta igrača u donjem i gorenjem položaju

Slika 71. Kopčanje mehanizma za konstrukciju uređaja

Slika 72. Rastavljava podupora

Slika 73. Moguće konfiguracije uređaja
POpis Tablica

Tablica 1. Zahtjevi svojstava lopte za vanjski nogomet ... 3
Tablica 2. Zahtjevi svojstava lopte za dvoranski nogomet i nogomet na pijesku 3
Tablica 3. Brzina ispućane lopte .. 4
Tablica 4. Pregled postignutih golova na svjetskim prvenstvima 2006; 2010 i 2018. godine. 4
Tablica 5. Prosječne vrijednosti postignutih golova na svjetskim prvenstvima 2006; 2010 i 2018. godine ... 5
Tablica 6. Podaci o skoku igrača .. 6
Tablica 7. Bodovanje postojećih proizvoda .. 12
Tablica 8. Morfološka matrica ... 15
Tablica 9. Principi rada linearnih vodilica .. 20
Tablica 10. Usporedba principa uležištenja pomičnih dijelova linearna 21
Tablica 11. Ocjene pogona ... 22
Tablica 12. Vrednovanje parcijalnih rješenja sustava za ostvarivanje gibanja 27
Tablica 13. Vrednovanje parcijalnih rješenja sustava za preuzimanje udara lopte 30
Tablica 14. Vrednovanje koncepata ... 35
Tablica 15. Odabrana svojstva materijala oplate siluete igrača ... 45
Tablica 16. Usporedba rješenja ... 56
Tablica 17. Usporedba svojstava materijala .. 57
Tablica 18. Podaci o ležaju .. 61
Tablica 19. Ulazni podaci za kontrolu ležaja ... 61
Tablica 22. Svojstva baterije LG 18650HG2 [35] .. 70
POPISE TEHNIČKE DOKUMENTACIJE

MB20-00-00 Sklopni crtež uređaja
MB20-01-00 Mehanizam za ostvarivanje gibanja
MB20-02-00 Konstrukcija
POPIS OZNAKA

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Jedinica</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{\text{oplate}})</td>
<td>m(^2)</td>
<td>Površina oplate siluete</td>
</tr>
<tr>
<td>(A_{s1})</td>
<td>mm(^2)</td>
<td>Površina poprečnog presjeka štapa 1</td>
</tr>
<tr>
<td>(A_{s1})</td>
<td>mm(^2)</td>
<td>Površina lijepljenog spoja štapa 1</td>
</tr>
<tr>
<td>(a_1)</td>
<td>m/s(^2)</td>
<td>Akceleracija u prvoj fazi skoka</td>
</tr>
<tr>
<td>(a_2)</td>
<td>m/s(^2)</td>
<td>Akceleracija u odrazu</td>
</tr>
<tr>
<td>(a)</td>
<td>mm</td>
<td>Duljina stranice 1 paralelograma</td>
</tr>
<tr>
<td>(b_s)</td>
<td>mm</td>
<td>Širina siluete</td>
</tr>
<tr>
<td>(b)</td>
<td>mm</td>
<td>Duljina stranice 2 paralelograma</td>
</tr>
<tr>
<td>(c_i)</td>
<td>m/s</td>
<td>Brzina lopte nakon sudara</td>
</tr>
<tr>
<td>(c_{\text{op}})</td>
<td>N/mm</td>
<td>Krutost opruga</td>
</tr>
<tr>
<td>(c_1)</td>
<td>N/mm</td>
<td>Krutost jedne opruge</td>
</tr>
<tr>
<td>(D_{sr})</td>
<td>mm</td>
<td>Srednji promjer opruge</td>
</tr>
<tr>
<td>(D_{s1})</td>
<td>mm</td>
<td>Vanjski promjer štapa 1</td>
</tr>
<tr>
<td>(D_{cil})</td>
<td>mm</td>
<td>Promjer pneumatskog cilindra</td>
</tr>
<tr>
<td>(d_s)</td>
<td>mm</td>
<td>Razmak srednjih ploha oplate</td>
</tr>
<tr>
<td>(d)</td>
<td>mm</td>
<td>Duljina dijagonale 1 paralelogama</td>
</tr>
<tr>
<td>(d_{\text{max}})</td>
<td>mm</td>
<td>Maksimalna duljina dijagonale 1 paralelogama</td>
</tr>
<tr>
<td>(d_{\text{min}})</td>
<td>mm</td>
<td>Minimalna duljina dijagonale 1 paralelogama</td>
</tr>
<tr>
<td>(d_{\text{op}})</td>
<td>mm</td>
<td>Promjer žice opruge</td>
</tr>
<tr>
<td>(d_{s1})</td>
<td>mm</td>
<td>Unutarnji promjer štapa 1</td>
</tr>
<tr>
<td>(d_{1-1})</td>
<td>mm</td>
<td>Promjer osovine na mjestu 1</td>
</tr>
<tr>
<td>(d_k)</td>
<td>mm</td>
<td>Promjer klipnjače pneumatskog cilindra</td>
</tr>
<tr>
<td>(\Delta E_k)</td>
<td>Nm</td>
<td>Promjena kinetička energija lopte</td>
</tr>
<tr>
<td>(E_{k0})</td>
<td>Nm</td>
<td>Kinetička energija lopte prije sudara</td>
</tr>
<tr>
<td>(E_{k1})</td>
<td>Nm</td>
<td>Kinetička energija lopte nakon sudara</td>
</tr>
<tr>
<td>(E_{\text{jezgre}})</td>
<td>N/mm(^2)</td>
<td>Modul elastičnosti materijala jezgre</td>
</tr>
<tr>
<td>(E_{\text{lopte}})</td>
<td>N/mm(^2)</td>
<td>Modul elastičnosti lopte</td>
</tr>
<tr>
<td>(E)</td>
<td>N/mm(^2)</td>
<td>Modul elastičnosti čelika</td>
</tr>
<tr>
<td>(E_{gfrp})</td>
<td>N/mm(^2)</td>
<td>Modul elastičnosti staklenim vlknima ojačanog polimera</td>
</tr>
<tr>
<td>(E_K)</td>
<td>kWh</td>
<td>Količina energije za rad kompresora</td>
</tr>
<tr>
<td>(E_V)</td>
<td>kWh</td>
<td>Količina energije za rad elektro-ventila</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>E_{ostalo}</td>
<td>kWh</td>
<td>Količina energije za rad ostale opreme uređaja</td>
</tr>
<tr>
<td>E</td>
<td>kWh</td>
<td>Ukupna količina energije za rad uređaja</td>
</tr>
<tr>
<td>E_{bl}</td>
<td>kWh</td>
<td>Pohranjena količina energije jednog baterijskog članka</td>
</tr>
<tr>
<td>E_{bat}</td>
<td>kWh</td>
<td>Pohranjena količina energije u baterijskom paketu</td>
</tr>
<tr>
<td>F_{udar}</td>
<td>N</td>
<td>Sila udara lopte</td>
</tr>
<tr>
<td>F_{opruga}</td>
<td>N</td>
<td>Sila opruga</td>
</tr>
<tr>
<td>$F_{opruga,1}$</td>
<td>N</td>
<td>Sila jedne opruge</td>
</tr>
<tr>
<td>$F_{opruga,p=+35}$</td>
<td>N</td>
<td>Potreban sila u poruzi pri zakretu mehanizma za 35</td>
</tr>
<tr>
<td>$F_{opruga,p=-35}$</td>
<td>N</td>
<td>Potreban sila u poruzi pri zakretu mehanizma za -35</td>
</tr>
<tr>
<td>$F_{opruga,1}$</td>
<td>N</td>
<td>Potreban sila jedne opruge</td>
</tr>
<tr>
<td>$F_{cilindra}$</td>
<td>N</td>
<td>Sila pneumatskog cilindra</td>
</tr>
<tr>
<td>F_x</td>
<td>N</td>
<td>Sila u smjeru osi x</td>
</tr>
<tr>
<td>F_y</td>
<td>N</td>
<td>Sila u smjeru osi x</td>
</tr>
<tr>
<td>F_{R1}</td>
<td>N</td>
<td>Sila u osovini na mjestu 1</td>
</tr>
<tr>
<td>f</td>
<td>mm</td>
<td>Produljenje opruge</td>
</tr>
<tr>
<td>G</td>
<td>N/mm²</td>
<td>Modul klijanja materijal opruge</td>
</tr>
<tr>
<td>g</td>
<td>m/s²</td>
<td>Gravitacijsko ubrzanje</td>
</tr>
<tr>
<td>H_s</td>
<td>mm</td>
<td>Udaljenost ruba slute od nosive grede</td>
</tr>
<tr>
<td>h</td>
<td>m</td>
<td>Visina slobodnog pada lopte</td>
</tr>
<tr>
<td>h_1</td>
<td>m</td>
<td>Visina odbijanja lopte</td>
</tr>
<tr>
<td>h_{max}</td>
<td>m</td>
<td>Maksimalna visina skoka</td>
</tr>
<tr>
<td>h_c</td>
<td>mm</td>
<td>Debljina jezgre</td>
</tr>
<tr>
<td>h_f</td>
<td>mm</td>
<td>Debljina oplate</td>
</tr>
<tr>
<td>h_c</td>
<td>mm</td>
<td>Hod pneumatskog cilindra</td>
</tr>
<tr>
<td>I_{s1}</td>
<td>mm⁴</td>
<td>Moment tromosti presjeka štapa 1</td>
</tr>
<tr>
<td>$I_{bat,1}$</td>
<td>A</td>
<td>Jakost struje jednog baterijskog članka</td>
</tr>
<tr>
<td>$I_{bat,max}$</td>
<td>A</td>
<td>Jakost struje pražnjenja baterijskog paketa</td>
</tr>
<tr>
<td>I_{ured}</td>
<td>A</td>
<td>Maksimalna jakost struje na bateriju pri radu uređaja</td>
</tr>
<tr>
<td>i_f</td>
<td>-</td>
<td>Broj navoja opruge s radnim djelovanjem</td>
</tr>
<tr>
<td>i</td>
<td>mm</td>
<td>Polumjer tromosti</td>
</tr>
<tr>
<td>k_1</td>
<td>-</td>
<td>Koeficijent restitucije lopte</td>
</tr>
<tr>
<td>k</td>
<td>-</td>
<td>Faktor za vlačne i tlačne opruge prema DIN 2089</td>
</tr>
<tr>
<td>k_{gv}</td>
<td>-</td>
<td>Faktor gubitaka zraka u pneumatskom sustavu</td>
</tr>
<tr>
<td>k_i</td>
<td>-</td>
<td>Faktor istodobnosti</td>
</tr>
<tr>
<td>L_{max}</td>
<td>mm</td>
<td>Duljina konzole siluete pri savijanju</td>
</tr>
<tr>
<td>Symbol</td>
<td>Units</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>L_K</td>
<td>mm</td>
<td>Duljina neopterećenog dijela opruge</td>
</tr>
<tr>
<td>L_s</td>
<td>mm</td>
<td>Udaljenost između silueta</td>
</tr>
<tr>
<td>$L_{G/2}$</td>
<td>mm</td>
<td>Polovica duljine grede</td>
</tr>
<tr>
<td>l</td>
<td>mm</td>
<td>Duljina opruge</td>
</tr>
<tr>
<td>$l_{\phi=35}$</td>
<td>mm</td>
<td>Duljina opruge kod zakreta mehanizma za 35</td>
</tr>
<tr>
<td>$l_{\phi=-35}$</td>
<td>mm</td>
<td>Duljina opruge kod zakreta mehanizma za -35</td>
</tr>
<tr>
<td>l_o</td>
<td>mm</td>
<td>Slobodna duljina izvijanja</td>
</tr>
<tr>
<td>l_{s1}</td>
<td>mm</td>
<td>Duljina lijepljenog spoja štapa 1</td>
</tr>
<tr>
<td>M</td>
<td>Nm</td>
<td>Moment</td>
</tr>
<tr>
<td>M_{R1}</td>
<td>Nmm</td>
<td>Moment savijanja osovini na mjestu 1</td>
</tr>
<tr>
<td>$M_{G,u}$</td>
<td>Nmm</td>
<td>Moment uvijanja grede uslijed udara loptom</td>
</tr>
<tr>
<td>$M_{G,m}$</td>
<td>Nmm</td>
<td>Moment savijanja grede uslijed ovješene mase</td>
</tr>
<tr>
<td>M_s</td>
<td>Nmm</td>
<td>Moment savijanja</td>
</tr>
<tr>
<td>m_{oplate}</td>
<td>kg</td>
<td>Masa oplate siluete</td>
</tr>
<tr>
<td>m_{jezgre}</td>
<td>kg</td>
<td>Masa jezgre siluete</td>
</tr>
<tr>
<td>$m_{mech,op}$</td>
<td>kg</td>
<td>Pročijenjena masa komponenti za proračun opruge</td>
</tr>
<tr>
<td>m_{s1}</td>
<td>g</td>
<td>Masa štapa 1</td>
</tr>
<tr>
<td>$m_{bat,cl}$</td>
<td>kg</td>
<td>Masa baterije uređaja</td>
</tr>
<tr>
<td>$m_{bat,1}$</td>
<td>g</td>
<td>Masa baterijskog članka</td>
</tr>
<tr>
<td>m_s</td>
<td>kg</td>
<td>Masa siluete i mehanizma</td>
</tr>
<tr>
<td>N_{bat}</td>
<td>-</td>
<td>Broj baterijskih članaka</td>
</tr>
<tr>
<td>$N_{serijski}$</td>
<td>-</td>
<td>Broj serijski povezanih baterijskih članaka</td>
</tr>
<tr>
<td>$N_{paralel}$</td>
<td>-</td>
<td>Broj paralelno povezanih baterijskih članaka</td>
</tr>
<tr>
<td>n_{cil}</td>
<td>-</td>
<td>Broj cilindara</td>
</tr>
<tr>
<td>n_{cil}^{min}</td>
<td>min$^{-1}$</td>
<td>Broj radnih ciklusa u minuti</td>
</tr>
<tr>
<td>n_V</td>
<td>-</td>
<td>Broj elektro-ventila</td>
</tr>
<tr>
<td>P_K</td>
<td>kW</td>
<td>Snaga kompresora</td>
</tr>
<tr>
<td>P_V</td>
<td>kW</td>
<td>Snaga elektro-ventila</td>
</tr>
<tr>
<td>P</td>
<td>kW</td>
<td>Maksimalna snaga uređaja</td>
</tr>
<tr>
<td>P_{srednje}</td>
<td>kW</td>
<td>Srednja snaga uređaja</td>
</tr>
<tr>
<td>P_{bat}</td>
<td>kW</td>
<td>Maksimalna snaga baterijskog paketa</td>
</tr>
<tr>
<td>$p_{\text{izraža}}$</td>
<td>N/mm2</td>
<td>Pritisak u ležaju</td>
</tr>
<tr>
<td>p_{dop}</td>
<td>N/mm2</td>
<td>Dopusćeni pritisak</td>
</tr>
<tr>
<td>p_{cil}</td>
<td>bar</td>
<td>Tlak u pneumatskom cilindru</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>p_a</td>
<td>bar</td>
<td>Atmosferski tlak</td>
</tr>
<tr>
<td>Q_1</td>
<td>m3/s</td>
<td>Protok zraka na ulazu u kompresor</td>
</tr>
<tr>
<td>Q_{max}</td>
<td>m3/s</td>
<td>Maksimalan protok stlačenog zraka kada rade svi cilindri</td>
</tr>
<tr>
<td>Q_{cil}</td>
<td>m3/s</td>
<td>Maksimalan protok stlačenog zraka jednog cilindra</td>
</tr>
<tr>
<td>Q_K</td>
<td>m3/s</td>
<td>Nazivni protok zraka odabranog kompresora</td>
</tr>
<tr>
<td>R_{lopte}</td>
<td>mm</td>
<td>Polumjer lopte</td>
</tr>
<tr>
<td>R_A</td>
<td>N</td>
<td>Sila u osloncu A</td>
</tr>
<tr>
<td>R_B</td>
<td>N</td>
<td>Sila u osloncu B</td>
</tr>
<tr>
<td>R_{p_02}</td>
<td>N/mm2</td>
<td>Granica razvlačenja</td>
</tr>
<tr>
<td>S</td>
<td>-</td>
<td>Faktor sigurnosti</td>
</tr>
<tr>
<td>S_G</td>
<td>-</td>
<td>Faktor sigurnosti čvrstoće grede</td>
</tr>
<tr>
<td>s</td>
<td>m</td>
<td>Prijedeni put</td>
</tr>
<tr>
<td>s_0</td>
<td>m</td>
<td>Početni put</td>
</tr>
<tr>
<td>s_1</td>
<td>m</td>
<td>Prijedeni put pri čučnju</td>
</tr>
<tr>
<td>s_2</td>
<td>m</td>
<td>Prijedeni put odraza</td>
</tr>
<tr>
<td>$s_{2,a}$</td>
<td>m</td>
<td>Početna visina vertikalnog hitca</td>
</tr>
<tr>
<td>s_3</td>
<td>m</td>
<td>Prijedeni put vertikalnog hitca</td>
</tr>
<tr>
<td>s_5</td>
<td>m</td>
<td>Prijedeni put čučnja</td>
</tr>
<tr>
<td>s_6</td>
<td>m</td>
<td>Prijedeni put doskoka</td>
</tr>
<tr>
<td>t_{udara}</td>
<td>s</td>
<td>Trajanje udara lopte</td>
</tr>
<tr>
<td>t_1</td>
<td>s</td>
<td>Trajanje prve faze skoka</td>
</tr>
<tr>
<td>t_2</td>
<td>s</td>
<td>Trajanje odraza</td>
</tr>
<tr>
<td>$t_{h,\text{max}}$</td>
<td>s</td>
<td>Trajanje vertikalnog hitca do maksimalne visine</td>
</tr>
<tr>
<td>t_3</td>
<td>s</td>
<td>Trajanje čučnja</td>
</tr>
<tr>
<td>t_6</td>
<td>s</td>
<td>Trajanje doskoka</td>
</tr>
<tr>
<td>t_{kraja}</td>
<td>h</td>
<td>Vijek trajanja ležaja</td>
</tr>
<tr>
<td>t_{rad}</td>
<td>h</td>
<td>Vrijeme rada uređaja</td>
</tr>
<tr>
<td>$t_{\text{rad,k}}$</td>
<td>h</td>
<td>Vrijeme rada kompresora</td>
</tr>
<tr>
<td>$U_{\text{bat,1}}$</td>
<td>V</td>
<td>Nazivni napon jednog baterijskog članka</td>
</tr>
<tr>
<td>U_{bat}</td>
<td>V</td>
<td>Nazivni napon baterije uređaja</td>
</tr>
<tr>
<td>V_{jezgre}</td>
<td>m3</td>
<td>Volumen jezgre siluete</td>
</tr>
<tr>
<td>v_1</td>
<td>m/s</td>
<td>Brzina udara lopte pri slobodnom padu</td>
</tr>
<tr>
<td>v_{max}</td>
<td>m/s</td>
<td>Maksimalna brzina lopte</td>
</tr>
<tr>
<td>v</td>
<td>m/s</td>
<td>Brzina</td>
</tr>
<tr>
<td>v_0</td>
<td>m/s</td>
<td>Brzina na početku skoka</td>
</tr>
<tr>
<td>v_1</td>
<td>m/s</td>
<td>Brzina u prvoj fazi skoka</td>
</tr>
<tr>
<td>(v_2)</td>
<td>m/s</td>
<td>Brzina u skoku na kraju odraza</td>
</tr>
<tr>
<td>(v_3)</td>
<td>m/s</td>
<td>Brzina na početku vertikalnog hitca</td>
</tr>
<tr>
<td>(v_{sk,brzo})</td>
<td>m/s</td>
<td>Maksimalna brzina pri slobodnom padu</td>
</tr>
<tr>
<td>(v_s)</td>
<td>m/s</td>
<td>Brzina na početku čučnja</td>
</tr>
<tr>
<td>(v_k)</td>
<td>m/s</td>
<td>Brzina na kraju čučnja</td>
</tr>
<tr>
<td>(\eta_{\rho})</td>
<td>-</td>
<td>Stupanj djelovanja pretvarača napona električne struje</td>
</tr>
<tr>
<td>(\lambda_{sl})</td>
<td>-</td>
<td>Vitkost štapa 1</td>
</tr>
<tr>
<td>(\rho_{jezgre})</td>
<td>kg/m³</td>
<td>Gustoća materijal jezgre</td>
</tr>
<tr>
<td>(\sigma_{\text{max}})</td>
<td>N/mm²</td>
<td>Maksimalno naprezanje pri dodirnom pritisku</td>
</tr>
<tr>
<td>(\sigma_{\text{dop,jezgre}})</td>
<td>N/mm²</td>
<td>Dopušteno naprezanje u materijalu jezgre</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>N/mm²</td>
<td>Naprezanje</td>
</tr>
<tr>
<td>(\sigma_{\text{dop,vlak}})</td>
<td>N/mm²</td>
<td>Dopušteno vlačno naprezanje u materijalu oplate</td>
</tr>
<tr>
<td>(\sigma_{\text{dop,tlak}})</td>
<td>N/mm²</td>
<td>Dopušteno tlačno naprezanje u materijalu oplate</td>
</tr>
<tr>
<td>(\sigma_{sl})</td>
<td>N/mm²</td>
<td>Naprezanje u štapu 1</td>
</tr>
<tr>
<td>(\sigma_k)</td>
<td>N/mm²</td>
<td>Kritično naprezanje kod elastičnog izvijanja</td>
</tr>
<tr>
<td>(\sigma_{sl})</td>
<td>N/mm²</td>
<td>Naprezanje u kućištu ležaja štapa 1</td>
</tr>
<tr>
<td>(\sigma_{v,1})</td>
<td>N/mm²</td>
<td>Naprezanje u osovinii na mjestu 1</td>
</tr>
<tr>
<td>(\sigma_{el})</td>
<td>N/mm²</td>
<td>Ekvivalentno naprezanje</td>
</tr>
<tr>
<td>(\tau_{\text{dop}})</td>
<td>N/mm²</td>
<td>Dopušteno smično naprezanje u opruzi</td>
</tr>
<tr>
<td>(\tau_i)</td>
<td>N/mm²</td>
<td>Idealno torzijsko naprezanje u opruzi</td>
</tr>
<tr>
<td>(\tau_k)</td>
<td>N/mm²</td>
<td>Maksimalno torzijsko naprezanje u opruzi</td>
</tr>
<tr>
<td>(\tau_{ls})</td>
<td>N/mm²</td>
<td>Maksimalno dopušteno smično naprezanje lijepljenog spoja</td>
</tr>
<tr>
<td>(\tau_{ls,1})</td>
<td>N/mm²</td>
<td>Smično naprezanje lijepljenog spoja štapa 1</td>
</tr>
<tr>
<td>(\tau_{v,1})</td>
<td>N/mm²</td>
<td>Smično naprezanje u osovinii na mjestu 1</td>
</tr>
<tr>
<td>(\tau_{cil})</td>
<td>s</td>
<td>Trajanje hoda cilindra</td>
</tr>
<tr>
<td>(\tau_G)</td>
<td>N/mm²</td>
<td>Naprezanje zbog uvijanja</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>°</td>
<td>Kut zakreta paralelnog mehanizma</td>
</tr>
</tbody>
</table>
SAŽETAK

Ključne riječi: Paralelni mehanizam, uređaj za vježbanje, obrambeni zid u nogometu, sportska oprema, konstruiranje i razvoj proizvoda.
SUMMARY

This thesis deals with the development of a device that emulates a defensive wall in a football free kick. A review of free kicks and their efficacy in scoring goals was performed. In the first part of the thesis, conducted market analysis had implied that no other device which fulfills the assignment requirements already existed. The goals for the development of the device were defined afterward. Functional decomposition and morphological matrix were created. They were then used to design partial concepts which were subsequently graded. By merging the partial concepts, five new concepts were defined, of which the best one was chosen for a detailed design development. For analysis purposes, the vertical jump study of a football player had been carried out and the results were used to determine the ball kick. Critical device components were calculated and dimensioned. Necessary components for the device were selected. The 3D model of the device and the technical documentation were made using the software package SolidWorks 2018 (Dassault Systems).

Key words: Parallel mechanism, training device, soccer free kick defense wall, sports equipment, product design and development.
1. UVOD

Slika 1. Povijest nogometa

Kako je nogomet postao profesionalni sport javlja se potreba za opremom. Najviše se razvijala oprema za igrače (obuća, odjeće i zaštitna oprema), lopte i infrastruktura za gledatelje. Treneri su za potrebe uvježbavanja koristili priručna sredstva koja su korištena kao razne prepreke za uvježbavanje spretnosti i izdržljivosti. Funkcije opreme se nisu znatno promijenile do danas. Trenutno se na treningu koriste prepreke, naprave za uvježbavanje određenih pokreta i simulaciju situacija. Dostupna sredstva za vježbanje prikazana su na Slika 2. Osim raznih prepreka koriste se uređaji za ispućavanje lopte i sprave za vježbanje. Uglavnom su to nepomične prepreke na kojima je jedino napređivala zaštita igrača od ozljeda korištenjem modernih materijala.
Slika 2. Sprave za vježbanje

1.1. Slobodni udarac

Slobodni udarac je situacija u nogometu kada se izvodi ispučavanje lopte nakon privremeno prekinute igre zbog prekršaja. Izvodi se s mjesta na kojem se prekršaj dogodio. Slobodne udarce dijelimo na izravne i neizravne. Kod izravnog udarca se može postići pogodak. Kod neizravnog slobodnog udarca pogodak se ne može postići jednim dirom lopte (lopta koja uđe u gol, a ne dodirne nikoga na putu u gol).

Izravni slobodni udarac dosuđuje se kada je počinjen prekršaj koje sudac smatra nesmotrenim potezom, pri upotrebi prevelike snage na protivničkog igrača, udaranje protivničkog igrača, podmetanje noge, držanje/povlačenje protivničkog igrača, namjerno igranje rukom itd.

Neizravni slobodni udarac se izvodi ako vratar počini neki od prekršaja unutar svojeg kaznenog prostora: kontrolira loptu rukama dulje od 6 sekundi, a da se nije prethodno oslobodio lopte; ponovno dotakne loptu nakon što se oslobodio, a da lopta nije dotaknula drugog igrača; dodirne loptu rukama koju mu je uputio suigrač ili ako primi rukama loptu ubačenu u igru od suigrača. Neizravni udar dosuđuje se i kod opasne igre kada igrač sprječava protivničkog igrača kod napredovanja, ometanja vratar kod izvođenja ispućavanja itd.

Ako je slobodni udarac dosuđen u prostoru gdje se može izvesti izravni udarac na gol, ekipa koja se brani može u dogovoru s golmanom postaviti obrambeni zid. Obrambenim zidom štiti dio gola i otežava protivničkom igraču postizane gola. Obrambeni zid mora biti postavljen na udaljenosti većoj od 9,14 m (10 yards) od pozicije izvođenja udarca.
obrambenom zidu se koristi do 5 igrača. Ostali igrači mogu sudjelovati u obrani, ali ne smiju biti na manjoj udaljenosti od propisane.

1.2. Nogometna lopta

FIFA dijeli nogomet u 3 kategorije: vanjski nogomet, Futsal (dvoranski nogomet) i nogomet na pijesku. Svojstva nogometne lopte definirana su pravilnikom međunarodne organizacije FIFA-e. Za svaku nogometnu kategoriju zadana su svojstva koja lopta mora ispuniti [1]. Na službenim natjecanjima mora se koristiti lopta koja je prošla testiranja i ima odgovarajući certifikat. Tablica 1 Tablica 2 navedeni su zahtjevi svojstava nogometne lopte za igru na otvorenom, dvoranski nogomet (futsal) i nogomet na pijesku.

Tablica 1. Zahtjevi svojstava lopte za vanjski nogomet

<table>
<thead>
<tr>
<th></th>
<th>Vanjski nogomet</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FIFA Quality Pro</td>
<td>FIFA Quality Pro</td>
<td>FIFA Quality Pro</td>
</tr>
<tr>
<td>Veličina 5 [mm]</td>
<td>685-695</td>
<td>680-700</td>
<td>635-660</td>
</tr>
<tr>
<td>Veličina 4 [mm]</td>
<td>635-660</td>
<td>635-600</td>
<td></td>
</tr>
<tr>
<td>Opseg [mm]</td>
<td>685-695</td>
<td>680-700</td>
<td>635-660</td>
</tr>
<tr>
<td>Odskok (na 20) [mm]</td>
<td>1350-1550</td>
<td>1250-1550</td>
<td>1100-1600</td>
</tr>
<tr>
<td>Odskok (na 5) [mm]</td>
<td>>1250</td>
<td>>1150</td>
<td>>1100</td>
</tr>
<tr>
<td>Masa [g]</td>
<td>420-445</td>
<td>410-450</td>
<td>350-390</td>
</tr>
</tbody>
</table>

Tablica 2. Zahtjevi svojstava lopte za dvoranski nogomet i nogomet na pijesku

<table>
<thead>
<tr>
<th></th>
<th>Dvoranski nogomet</th>
<th></th>
<th>Nogomet na pijesku</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FIFA Quality Pro</td>
<td>FIFA Quality Pro</td>
<td>FIFA Quality Pro</td>
<td>FIFA Quality Pro</td>
</tr>
<tr>
<td>Opseg [mm]</td>
<td>625-635</td>
<td>620-640</td>
<td>680-700</td>
<td>680-700</td>
</tr>
<tr>
<td>Odskok (na 20) [mm]</td>
<td>550-650</td>
<td>550-650</td>
<td>1000-1500</td>
<td>1000-1500</td>
</tr>
<tr>
<td>Odskok (na 5) [mm]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Masa [g]</td>
<td>410-430</td>
<td>400-440</td>
<td>420-440</td>
<td>400-440</td>
</tr>
</tbody>
</table>

1.2.1. Brzina nogometne lopte

Tablica 3. Brzina ispučane lopte

<table>
<thead>
<tr>
<th>Vrsta udarca</th>
<th>Brzina [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punom snagom</td>
<td>27,1±2,2</td>
</tr>
<tr>
<td>Vanjski zalet</td>
<td>23,5±2,3</td>
</tr>
<tr>
<td>Unutarnji zalet</td>
<td>20,9±3,1</td>
</tr>
</tbody>
</table>

1.3. **Pregled postignutih golova, efikasnost igrača**

Tablica 4. Pregled postignutih golova na svjetskim prvenstvima 2006; 2010 i 2018. godine.

<table>
<thead>
<tr>
<th></th>
<th>FIFA World Cup 2006</th>
<th>FIFA World Cup 2010</th>
<th>FIFA World Cup 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broj golova</td>
<td>Broj golova iz igre</td>
<td>Broj golova iz igre</td>
<td>Broj golova iz igre</td>
</tr>
<tr>
<td>Broj ukupno</td>
<td>179</td>
<td>145</td>
<td>157</td>
</tr>
<tr>
<td>postignutih</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>golova</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broj golova</td>
<td>93</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>Broj golova</td>
<td>52,0</td>
<td>75,9</td>
<td>63,7</td>
</tr>
<tr>
<td>iz igre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slobodnih</td>
<td>24</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>udaraca</td>
<td>13,4</td>
<td>10,3</td>
<td>12,1</td>
</tr>
<tr>
<td>Broj penala</td>
<td>13</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>Broj kornera</td>
<td>12</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Broj ubačaja</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3,4</td>
<td>0,7</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prosječna vrijednost [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iz igre</td>
<td>63,8</td>
</tr>
<tr>
<td>Kornera</td>
<td>12,3</td>
</tr>
<tr>
<td>Slobodnih udaraca</td>
<td>12,0</td>
</tr>
<tr>
<td>Penala</td>
<td>9,2</td>
</tr>
<tr>
<td>Ubačaja</td>
<td>2,7</td>
</tr>
</tbody>
</table>

![Slika 3. Efikasnost igrača kod izvođenja slobodnog udarca](image-url)
Slika 4. Broj postignutih pogodaka iz slobodnih udaraca klubova u sezoni

Iz prethodnog pregleda vidljiva je potreba za povećanjem efikasnosti igrača kod izvođenja slobodnih udaraca. To se može postići uvježbavanjem, a u tome može pomoći naprava koja može oponašati igrače koji stojte u obrambenom zidu.

1.4. Skok igrača

Prema znanstvenom članku [16] preuzete su vrijednosti navedene u Tablica 6. U tablici se uspoređuje vertikalni skok s mjesta za igrače na različitim pozicijama igre. Maksimalna visina skoka iznosi približno 45 cm. Taj podatak određuje zahtjev za uređaj koji se konstruiru u ovom radu.

<table>
<thead>
<tr>
<th>Tablica 6. Podaci o skoku igrača</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broj sudionika</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Visina skoka [cm]</td>
</tr>
<tr>
<td>Specifična snaga [w/kg]</td>
</tr>
<tr>
<td>Specifična sila [N/kg]</td>
</tr>
<tr>
<td>Brzina [cm/s]</td>
</tr>
</tbody>
</table>
2. Analiza tržišta

Pregledom tržišta nije pronađen gotov proizvod koji bi odgovarao zadatkom uređaju. U nastavku su prikazane slične sprave koje se mogu koristiti za uvježbavanje slobodnog udarca. Svraha ovog pregleda je prikupljanje ideja koje će poslužiti za smjernice kod razvoja novog proizvoda.

2.1. Sprava 1. Soccer Wall Pro-single

Proizvodač sprave je Soccer Innovations, Dallas, USA Slika 5. Sprava se sastoji od donjeg dijela koji služi za učvršćivanje konture igrača za podlogu i gornjeg dijela koji predstavlja konturu igrača. Donji dio sastoji se od međusobno povezanih klinova koji se zabijaju u zemlju. Funkcija tog dijela je učvršćivanje naprave za podlogu i preuzimanje opterećenja s gornjeg dijela. Između gornjeg i donjeg dijela sprave ugrađena je opruga čija je svrha smanjenje krutost naprave kako bi se prilikom udara mogla deformirati i sniziti maksimalan iznos sile. Kontura igrača je izrađena od metalnih cijevi i polimerne mreže. Sprava se koristi za uvježbavanje dribling-a, prolazaka, pučanja, taktičke formacije, slobodnih udaraca, prepreka izvan terena itd. Sprava je rastavljava i lako prenosiva. Masa cijele naprave iznosi samo 3,2 kg [5].

2.2. **Sprava 2. Air Tom Soccer Training Mannequin**

<table>
<thead>
<tr>
<th>Prednosti:</th>
<th>Nedostaci:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostavnost</td>
<td>-Potreba za zabijanjem u tlo,</td>
</tr>
<tr>
<td>-Multi-funkcionalnost</td>
<td>-Nemogućnost korištenja na različitim podlogama</td>
</tr>
<tr>
<td>-Mala masa</td>
<td>-Visoka cijena u odnosu na slične proizvode</td>
</tr>
<tr>
<td>-Rastavljivost</td>
<td>-Stup je izrađen od metala što daje mogućnost ozljede pri kontaktu igrača i naprave</td>
</tr>
<tr>
<td>-Prenosivost</td>
<td>-Nema mogućnosti podešavanja</td>
</tr>
<tr>
<td>-Dobra apsorpcija udara</td>
<td></td>
</tr>
</tbody>
</table>

Slika 6. Sprava 2. Air Tom Soccer Training Mannequin [6]
Prednosti:
- Multi-funkcionalnost
- Dobra absorpcija udara
- Zaštitna igrača od ozljeda
- Mogućnost korištenja na različitim podlogama

Nedostaci:
- Potreba za pumpom
- Složenije sastavljanje i rukovanje
- Viša cijena od sličnih proizvoda
- Velika masa
- Nema mogućnost podešavanja

2.3. Sprava 3. Forza Soccer Air Mannequin

2.4. **Sprava 4. Diamond Football Senior Pro Free Kick Mannequin**

Diamond Football Senior Pro Free Kick Mannequin je lutka proizvođača *Diamond* [8]. *Diamond* je engleska firma specijalizirana za proizvodnju i prodaju nogometne opreme. Konstrukcija lutke izrađena od PA (poliamid), cijevi i metalnih šipki. Lutka se može povezati s podlogom preko klinova koji se zabiju u zemljancu podlogu ili pomoću postolja koje postiže stabilnost pomoću vlastite težine. Dvije vrste učvršćivanja omogućuju korištenje na više vrsti podloga. Ukupna masa sprave je 12 kg s postoljem od 10 kg. Visina sprave je 180 cm. Dostupne su i manje visine. Ova sprava ima najnižu cijenu.

Slika 8. **Sprava 4. Diamond Football Senior Pro Free Kick Mannequin [8]**
2.5. Robot golman iRoboGoalie

2.6. Zaključak analize tržišta

Tablica 7. Bodovanje postojećih proizvoda

<table>
<thead>
<tr>
<th></th>
<th>Naprava 1</th>
<th>Naprava 2</th>
<th>Naprava 3</th>
<th>Naprava 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Cijena</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Rastavljenost</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Prenosivost</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Podesivost</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Sigurnost kod korištenja</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Neovisno o alatu</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Zbroj ocjena</td>
<td>28</td>
<td>17</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

1-potpuno ne zadovoljava, 2-uglavnom ne zadovoljava, 3-djelomično zadovoljava, 4-uglavnom zadovoljava, 5-potpuno zadovoljava.
3. Razvoj uređaja

3.1. Definiranje ciljeva

Aktivni uređaj za simulaciju obramenog zida može pomoći u uvježbavanju profesionalnih igrača i amatera. Bitno je zadovoljiti funkcije uređaja, ali pritom treba paziti i na ograničenja. Nakon prikupljanja informacija o sportu, igračima i sličnim dostupnim proizvodima mogu se definirati ciljevi:

- Mora ispunjavati glavnu funkciju: oponašanje kretanja igrača u obramenom zidu, izvršiti gibanje u barem dva smjera,
- Mora oponašati visinu skoka od 45cm,
- Treba biti neovisan o izvoru energije tijekom rada,
- Mora biti mobilan,
- Mora biti siguran za korištenje,
- Treba raspoznati trenutak ispućavanja lopte,
- Mora moći preuzeti opterećenje uzrokovano udarom lopte,
- Treba imati mogućnost odabira od 1 do 5 igrača,
- Cijena uređaja mora biti pristupačna kako bi uređaj bio konkurentan u profesionalnim i amaterskom sportu,
- Uređaj mora biti jednostavan za korištenje te
- Mora imati minimalne potrebe za održavanje.

3.2. Generiranje koncepta

3.2.1. Funkcijska dekompozicija

Za lakše pronalaženje više mogućih rješenja potrebno je napraviti funkcijsku dekompoziciju. To je postupak u kojem se glavna funkcija proizvoda rastavlja na više parcijalnih funkcija koje su međusobno povezane tokom energije, signala i materijala. Funkcijski model daje uvid u tehnički sustav na apstraktnoj razini bez konkretnih tehničkih rješenja. Najviša razina apstraktnog prikaza tehničkog sustava je crna kutija (black box). Prikaz uređaja za simulaciju živog zida preko crne kutije prikazan je na Slika 12. Funkcijska dekompozicija uređaja i parcijalne funkcije prikazane u nastavku (Slika 10 i Slika 12).
Slika 10. Funkcijska dekompozicija uređaja

Slika 11. Funkcijska dekompozicija parcijalne funkcije -udar prihvatiti-
3.2.2. Morfološka matrica

U morfološku matricu unesena su moguća rješenja za parcijalne funkcije navedene u funkcijoskoj dekompoziciji. Odabirom jednog riješena za svaku funkciju dobiva se jedan koncept.

Tablica 8. Morfološka matrica

<table>
<thead>
<tr>
<th>Funkcija</th>
<th>Rješenje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Uređaj na željenu poziciju dovesti</td>
<td>Kotač</td>
</tr>
<tr>
<td></td>
<td>Vlastiti pogon</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Odabir broja igrača omogućiti</td>
<td>Ručno</td>
</tr>
<tr>
<td>3. Električnu energiju prihvatiti</td>
<td>Kabel</td>
</tr>
<tr>
<td>Broj</td>
<td>Opis</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>4.</td>
<td>Električnu energiju pretvoriti</td>
</tr>
<tr>
<td>5.</td>
<td>Energiju poraniti</td>
</tr>
<tr>
<td>6.</td>
<td>Podatak prihvatiti</td>
</tr>
<tr>
<td>7.</td>
<td>Odluku donijeti</td>
</tr>
<tr>
<td>8.</td>
<td>Položaj lopte odrediti</td>
</tr>
<tr>
<td>9.</td>
<td>Udar prihvatiti</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
</tr>
<tr>
<td>11.</td>
<td>Vibracije, udar prigušiti</td>
</tr>
<tr>
<td>13. Mehaničku energiju prenositi</td>
<td>poluga</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Lančani prijenos</td>
</tr>
<tr>
<td>14. Gibanje ostvariti</td>
<td>Linearna vodilica</td>
</tr>
<tr>
<td>15. Gibanje ograničiti</td>
<td>Gumeni odbojnik</td>
</tr>
<tr>
<td>16. Položaj odrediti</td>
<td>Potencijalno</td>
</tr>
</tbody>
</table>
Slijedeći korak je odabrati po jedno tehničko rješenje za svaku funkciju. Tako dobivamo smjernice za koncept koji zadovoljava funkciji zahtjeve.

3.2.1. Sustav za ostvarivanje gibanja

Sustav za ostvarivanje gibanja sastoji se od mehanizma koji ograničava stupnjeve slobode gibanja (definira smjer gibanja) i pogonskog dijela.

3.2.1.1. Odabir mehanizma za ostvarivanje gibanja

Glavna funkcija mehanizma je simulacija skoka obrambenog igrača. Osnovne faze gibanja su:

- Ubrzavanje (skok),
- Jednoliko usporeno gibanje (vertikalni hitac) do postizanja maksimalne visine te
- Jednoliko ubrzano gibanje (slobodni pad) s maksimalne visine do tla.

Vertikalni skok s mjesta može se približno opisati kao translacija u smjeru okomitom na podlogu. Takvo gibanje može ostvariti:

- Paralelni mehanizam prikazan na Slici 11,
Slika 13. Paralelni mehanizam

- Linearna vodilica prikazana na Slici 12,

Slika 14. Klizač (translatoid)

Pregled princa uležištenja vodilica je prikazan u Tablica 9. Podjela i principi su preuzeti iz priručnika [17].

Tablica 9. Principi rada linearnih vodilica

<table>
<thead>
<tr>
<th>Vođenje s valjnim tijelom</th>
<th>Linearne vodilice</th>
<th>Princip rada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valjno tijelo: kugla</td>
<td>Kuglice su valjno tijelo između pomičnih dijelova.</td>
<td></td>
</tr>
<tr>
<td>Valjno tijelo: valjak</td>
<td>Valji su valjno tijelo između pomičnih dijelova.</td>
<td></td>
</tr>
<tr>
<td>Valjno tijelo: kotačić</td>
<td>Kotačić s ležajevima je komponenta između pomičnih dijelova.</td>
<td></td>
</tr>
</tbody>
</table>

| Hidrodinamičko klizanje | Metal/metal | Između pomičnih dijelova formira se kontinuirani sloj maziva. Potreban tlak maziva ostvaruje se gibanjem. |
| | Metal/polimer |

| Hidrostaticko klizanje | Aerostatički | Između pomičnih dijelova formira se kontinuirani sloj |
Hidrostatički fluida pumpanjem i zmeđu kliznih ploha.

Magnetizmom se ostvaruje razmak između pomičnih dijelova, nema fizičkog kontakt.

Tablica 10. Usporedba principa uležištenja pomičnih dijelova linearne vodilice.

<table>
<thead>
<tr>
<th>Svojstvo</th>
<th>Vođenje s valjnim tijelom</th>
<th>Hidrodinamičko trena</th>
<th>Hidrostatičko trena</th>
<th>Magnetizam</th>
<th>Težinski faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nosivost</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Krutost</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Točnost</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Tarna svojstva</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Brzina</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mogućnost prigušivanja</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sigurnost kod upotrebe</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Standardizacija</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vijek trajanja</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cijena</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ukupno</td>
<td>132 (134)</td>
<td>116</td>
<td>114</td>
<td>113</td>
<td>83</td>
</tr>
</tbody>
</table>

0-potpuno ne zadovoljava, 1-uglavnom ne zadovoljava, 3-djelomično zadovoljava, 5-potpuno zadovoljava.
3.2.1.2. Pogon mehanizama za gibanje

Kako bi se suzio izbor, napravljena je Tablica 11. s bodovanjem svojstava pogona. Svojstvima su dodijeljeni težinski faktori kako bi se povećao doprinos bodova za one koje imaju veću važnost za uređaj koji se razvija u ovom radu. Maksimalan iznos težinskog faktora dodijeljen je brzini i cijeni, dok su ostale karakteristike dobile manju vrijednost. Brzina ima veliku važnost zato što je to svojstvo nužno za ispunjavanje funkcije uređaja, a niska cijena je definirana kao cilj.

Tablica 11. Ocjene pogona

<table>
<thead>
<tr>
<th>svojstva</th>
<th>Vrsta pogona</th>
<th>navojno vreteno</th>
<th>zupčast i remen</th>
<th>zubna letva</th>
<th>linearni el. motor</th>
<th>lanac</th>
<th>pneumatski i cilindar</th>
<th>hidraulički cilindar</th>
<th>težinski faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>radna sila</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>krutost</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>brzina</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>točnost</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>buka</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>cijena</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>zbroj</td>
<td>50</td>
<td>70</td>
<td>62</td>
<td>58</td>
<td>64</td>
<td>62</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0-potpuno ne zadovoljava, 1-uglavnom ne zadovoljava, 3-djelomično zadovoljava, 5-potpuno zadovoljava.

Najveći zbroj bodova dobio je zupčasti remen. Dobra rješenja pogona su i pneumatski cilindar, lanac i Zubna letva, a hidraulički cilindar i navojno vreteno se neće dalje razmatrati kao moguće rješenje.

3.2.1.3. Koncept 1.1, sustav za ostvarivanje gibanja

Koncept 1.1. je linearna vodilica od profila i kotačića s ležajevima. Koristi se lančani prijenos pogonjen istosmjernim elektro motorom. Istosmjernim pretvaračem se upravlja elektromotor. Za određivanje položaja koristi se inkrementalni davač (enkoder) postavljen na vratilo motora.
Dijelovi koncepta 1.1:

1. Nosač kotačića
2. Kotačić s ležajevima
3. Profilirana vodilica
4. Konstrukcija
5. Remenica
6. Zupčasti remen
7. Istosmjerni elektromotor

3.2.1.4. Koncept 1.2, sustav za ostvarivanje gibanja

Dijelovi koncepta 1.2:

1. Vodilica
2. Konstrukcija
3. Pneumatski cilindar
4. Opruga
5. Klizač vodilice
6. Beskontaktni senzor
7. Odbojnik

3.2.1.5. Koncept 1.3, sustav za ostvarivanje gibanja

Koncept 1.3. je linearna vodilica s vođenjem preko valjkastog ležaja. Pogonski element je zubna letva pogonjena servomotorom. Položaj se određuje preko povratne veze servomotornog elektropogona.

![Slika 17. Skica koncepta 1.3](image)

Dijelovi koncepta 1.3:

1. Linearna vodilica s valjkastim ležajevima
2. Pogonski zupčanik
3. Zubna letva
4. Servomotor
5. Konstrukcija

3.2.1.6. Koncept 1.4, sustav za ostvarivanje gibanja

Za ostvarivanje gibanja koncepta 1.4. koristi se paralelni mehanizam. Pogonski element je pneumatski cilindar. Oprugom se kompenzira težina ovješene mase. Položaj se određuje potenciometrom postavljenim na zglog mehanizma.
Dijelovi koncepta 1.4:
1. Pneumatski cilindar
2. Opruga
3. Paralelni mehanizam
4. Potenciometar

3.2.1.7. Koncept 1.5, sustav za ostvarivanje gibanja

Za ostvarivanje gibanja koncepta 1.5. koristi se paralelni mehanizam. Pogonski element je lančani prijenos pogonjen istosmjeranim elektromotorom. Elektromotor je upravljan sa istosmjeranim pretvaračem. Težina ovješene mase kompenzira se protu utegom.
Dijelovi koncepta 1.5:

1. Lančanik
2. Lanac
3. Paralelni mehanizam
4. Uteg
5. Elektromotor

3.2.1.8. **Koncept 1.6, sustav za ostvarivanje gibanja**

Za ostvarivanje gibanja koncepta 1.6. koristi se paralelni mehanizam. Pogonski element je linearni elektromotor. Elektromotor je upravljan sa istosmjernim pretvaračem. Težina ovješene mase kompenzira se oprugom.

![Diagram koncepta 1.6](image)

Slika 20. Skica koncepta 1.6

Dijelovi koncepta 1.5:

1. Opruga
2. Paralelni mehanizam
3. Linearni elektromotor

3.2.1.9. **Vrednovanje parcijalnih koncepata sustava za preuzimanje udara lopte**

Koncepti sustava za ostvarivanje gibanja bodovani su prema kriterijima koje bi trebali zadovoljiti. Mali broj bodova dobili su koncepti 1.3 i 1.4. Oni se u danjem razvoju uređaja neće razmatrati kao moguće rješenje.
Tablica 12. Vrednovanje parcijalnih rješenja sustava za ostvarivanje gibanja

<table>
<thead>
<tr>
<th>Kriterij</th>
<th>Koncept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>Masa</td>
<td>4</td>
</tr>
<tr>
<td>Jednostavnost</td>
<td>3</td>
</tr>
<tr>
<td>Broj dijelova</td>
<td>3</td>
</tr>
<tr>
<td>Cijena</td>
<td>3</td>
</tr>
<tr>
<td>Potreba za održavanjem</td>
<td>3</td>
</tr>
<tr>
<td>Zbroj</td>
<td>16</td>
</tr>
</tbody>
</table>

1-potpuno ne zadovoljava, 2-uglavnom ne zadovoljava, 3-djelomično zadovoljava, 4-uglavnom zadovoljava, 5-potpuno zadovoljava.

3.2.1. Sustav za preuzimanje udara lopte

3.2.1.1. Koncept 2.1, sustav za preuzimanje udara lopte

U konceptu 2.1, okvir (1) je oblikovan prema vanjskoj konturi igrača. Unutar okvira napeta polimerna mreža (2).

3.2.1.2. Koncept 2.2, sustav za preuzimanje udara lopte

Koncept 2.2. je pločasti materijal. Silueta je podijeljena na dva dijela. Preklapanjem ploča (1) i (3) određuje se visina igrača. Podešavanje visine vrši se ručno pomoću vijaka (3). Učvršćivanje siluete igrača vrši se preko steznog spoja koji omogućava pomak siluete kod udara.

Slika 21. Skica koncepta 2.1
3.2.1.3. Koncept 2.3, sustav za preuzimanje udara lopte

Koncept 2.3. također posjeduje pločasti materijal. Silueta je podijeljena na dva dijela (1) i (2). Pomakom ploča određuje se visina igrača. Pomak se vrši električnim aktuarom (4) preko linearnih vodilica (3). Pločasta silueta se na sustav za ostvarivanje gibanja učvršćuje preko elastičnih elemenata (5) za prigušivanje udara.
3.2.1.4. Koncept 2.4, sustav za preuzimanje udara lopće

Koncept 2.4. je lutka na napuhavanje. Izravno se učvršćuje na sustav za ostvarivanje gibanja. Različitim dimenzijama na se lutki simulira različita tjelesna građa igrača. Smanjivanje prijenosa impulsa sile na ostatak uređaja vrši elastičnost siluete.

![Slika 24. Koncept 2.4](image_url)

3.2.1.5. Koncept 2.5, sustav za preuzimanje udara lopće

Kod koncepta 2.5, silueta igrača je izrada lijevanjem pjenastog materijala u kalup. Izravno se učvršćuje na sustav za ostvarivanje gibanja. Prigušivanje udara vrši materijal.

![Slika 25. Koncept 2.5](image_url)
3.2.1.6. Koncept 2.6, sustav za preuzimanje udara lopte

Koncept 2.6. je elastična polimerna ploča učvršćena kopčama (3) na okvirnu konstrukciju od polimerni cijevi (2). Prigušivanje udara se vrši deformacijom. Dimenzija igrača se mijenja promjenom dijela (1).

![Slika 26. Koncept 2.6](image)

3.2.1.7. Vrednovanje parcijalnih koncepata sustava za preuzimanje udara lopte

Koncepti sustava za preuzimanje udara lopte bodovani su prema kriterijima koje bi trebali zadovoljiti. Mali broj bodova dobio je koncept 2.5. On se u danjem razvoju uređaja neće razmatrati kao moguće rješenje.

Tablica 13. Vrednovanje parcijalnih rješenja sustava za preuzimanje udara lopte

<table>
<thead>
<tr>
<th>Kriterij</th>
<th>Koncept 2.1</th>
<th>Koncept 2.2</th>
<th>Koncept 2.3</th>
<th>Koncept 2.4</th>
<th>Koncept 2.5</th>
<th>Koncept 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Podesivost</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Prigušenje udara</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Cijena</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Zbroj</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

1-potpuno ne zadovoljava, 2-uglavnom ne zadovoljava, 3-djelomično zadovoljava, 4-uglavnom zadovoljava, 5-potpuno zadovoljava.

Kombiniranjem najbolje ocijenjenih parcijalnih koncepata napravljeni su sljedeći koncepti.
3.2.2. Koncept 1

Slika 27. Skica koncepta 1

Dijelovi koncepta 1:
1. Upravljački sustav
2. Lutka
3. Mehanizam za vertikalni pomak lutke
4. Nosiva konstrukcija
5. Kotači
3.2.3. Koncept 2

![Slika 28. Skica koncepta 2](attachment:image.png)

Dijelovi koncepta 2:

1. Silueta igrača
2. Paralelni mehanizam
3. Upravljački sustav
4. Kotač
5. Nosiva konstrukcija
3.2.4. **Koncept 3**

![Slika 29. Skica koncepta 3](image.png)

Dijelovi koncepta 3:

1. Silueta igrača
2. Mehanizam za vertikalni pomak lutke
3. Nosiva konstrukcija
4. Upravljački sustav
3.2.1. Koncept 4

Slika 30. Skica koncept 4

Dijelovi koncepta 4:
- Silueta igrača (lutka)
- Mehanizam:
 1. Zaštitno kućište
 2. Spremnik zraka
 3. Elektro-ventil
4. Pneumatski cilindar
5. Graničnik
6. Vodilica
7. Linearni ležaj
8. Opruga
9. Temeljna ploča
10. Baterija
11. Upravljački sustav
12. Konstrukcija

3.2.1. Vrednovanje i odabir koncepta

Tablica 14. Vrednovanje koncepta

<table>
<thead>
<tr>
<th>Kriterij</th>
<th>Koncept 1</th>
<th>Koncept 2</th>
<th>Koncept 3</th>
<th>Koncept 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prenosivost</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Odabir broja igrača</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Jednostavnost</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Potreba za održavanje</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Prosječna ocjena</td>
<td>3,25</td>
<td>3,75</td>
<td>3,25</td>
<td>3,75</td>
</tr>
</tbody>
</table>
4. Konstruiranje i proračun

4.1. Udar lopte

Iz zahtjeva za svojstva nogometne lopte prema Tablica 1 Može se izračunati koeeficijent restitucije. Koeeficijent restitucije je definiran kao omjer relativne brzine udaljavanja čestica nakon sudara i brzine približavanja prije sudara gledano u pravcu normale gibanja čestica [20]. Koeeficijent restitucije je općenito funkcija: materijala, oblika tijela i brzine, a može poprimiti vrijednosti između 0 (idealno plastičan sudar) i 1 (idealno elastičan sudar).

Slika 31. Slobodni pad lopte na podlogu [20]

Ulazni podaci:

\[h = 2 \text{ m} \]
\[h_1 = 1,1 \div 1,6 \text{ m} \]
\[m_{lopte} = 0,45 \text{ kg} \]

Brzina udara lopte o podlogu iznosi:

\[v_1 = \sqrt{2gh} = \sqrt{2 \cdot 9,81 \cdot 2} = 6,26 \text{ m/s}. \]

Za ravan sudar brzina nakon sudara je:

\[c_i = k_i v_i \]. \quad (2)

Zbog brzine \(c \) lopta će doseći visinu \(h_1 \)

\[h_1 = c / 2g \],
\[c_i = \sqrt{2gh_1} \] \quad (3)
Uvrštavanjem i sređivanjem izraza (1); (2) i (3) dobiva se izraz:

\[k_1 = \sqrt{\frac{h_1}{h}}. \]

\[k_i = \sqrt{\frac{1.1}{2}} \div \sqrt{\frac{1.6}{2}} = 0.74 \div 0.89. \] \hspace{1cm} (4)

Gubitak kinetičke energije kod sudara:

\[\Delta E_k = \sum E_{k0} - \sum E_{k2}. \] \hspace{1cm} (5)

Za promatrani udar lopte (slobodni pad s 2 m visine) o nepomičnu podlogu gubitak kinetičke energije iznosi:

\[\Delta E_k = \frac{mv^2}{2} - \frac{mc^2}{2} = \frac{m_{lopte}v_{max}^2}{2} (1 - k) = \frac{0.45 \cdot 6.26^2}{2} (1 - 0.8) = 1.76 \text{Nm} \] \hspace{1cm} (6)

Kod slobodnog udarca lopte brzina lopte je priближно 30 m/s. Kod udara lopte o nepomičnu podlogu pri brzini od 30 m/s gubitak kinetičke energije iznosi:

\[\Delta E_k = \frac{mv^2}{2} - \frac{mc^2}{2} = \frac{m_{lopte}v_{max}^2}{2} (1 - k) = \frac{0.45 \cdot 30^2}{2} (1 - 0.8) = 40.5 \text{Nm} \] \hspace{1cm} (7)

\[a_{udara} = \frac{v_{max}}{t_{udara}} = \frac{30}{0.013} = 2307.7 \text{m/s}^2. \] \hspace{1cm} (8)

Prosječna sila tijekom udara iznosi:

\[F_{udara} = m_{lopte}a_{udara} = 0.45 \cdot 2307.7 = 1038.5 \text{N}. \] \hspace{1cm} (9)
4.2. Skok igrača

Potrebno je analizirati vertikalni skok čovjeka kako bi se odredila brzina i ubrzanje koji će se koristiti u daljnjem proračunu konstrukcije. Osim zahtjeva za konstrukciju rezultati ove analize mogu se koristiti za programiranje računala koje upravlja akturom.

Pretpostavke:

- Tijelo se ponaša kao kruto tijelo (nema promijene težišta),
- Ubrzanja su konstantna te
- Samo se vertikalno gibanje razmatra (paralelno s djelovanjem gravitacije)

Skok igrača može se podijeliti po fazama:

1. Čučanj od h=0 do , h=h_{min}
2. Odraz: v=0 do v=max, h=h_{min} do h=h_x (jednoliko ubrzano)
3. Vertikalni let v=max do v=0, od h=h_x h=h_{max} (jednoliko usporeno)
4. Slobodni pad od v=0 do v=max, od h=max do h=0. (jednoliko ubrzano)
5. Doskok čučanj od v=max do v=0, h=0 do h=h_{min} (jednoliko usporeno)
6. Doskok od h= min do h=0.

Slika 33. Faze skoka
Slika 34. Dijagram snage, pomaka, brzine i sile kod skoka s mjesta [19]

Na Slika 34 je prikazan dijagram skoka sportaša s mjesta. U dijagramu su prikazani snaga, pomak, brzina i sila na podlogu kod skoka s mjesta u ovisnosti o vremenu. Crvenim linijama dijagram je podijeljen na faze skoka. Prema dijagramu sa Slika 34 i podataka iz Tablica 6 napravit će se približni matematički opis gibanja koji će se koristiti kod proračuna mehanizma:

Jednoliko ubrzano gibanje opisano jednadžbama:

\[a = \frac{dv}{dt} = \text{konst}, \quad (10) \]
\[v(t) = \frac{ds}{dt} = v_0 + at, \quad (11) \]
\[s(t) = s_0 + v_0t + \frac{1}{2}at^2. \quad (12) \]

1. Čučanj

Pretpostavke:

\[v_0 = 0 \]
\[s_0 = 0 \]
\[t_0 = 0 \text{ s} \]
\[t_1 = 0,25 \text{ s} \]

prijedeni put: \[s_i = 0,1 \text{ m} \]

Iz (11) i (12) slijedi:
\[a_1 = -2 \frac{s_1}{t_1^2} = 2 \frac{0,1}{0,25^2} = -3,2 \text{ m/s}^2 \]
\[v_1 = v_0 - a_1 t_1 = 0 - 3,2 \cdot 0,25 = -0.8 \text{ m/s} \]

2. Odraz

Pretpostavke:

- Odabran je brzina na kraju odraza prema Tablica 6 \(v = 2,6 \text{ m/s} \)
- Put odraza \(s = 0.2 \text{ m} \) (čučanj+ odraz \(s_0 + s_{odr} = 0,1 + 0,1 \text{ m} \))

Iz (11) i (12) slijedi:

\[t_2 = 2 \frac{s}{v} = 2 \frac{0,2}{2,6} = 0,15 \text{ s}, \]
\[a_2 = \frac{v_2 - v_1}{t_2} = \frac{2,6 + 0,8}{0,15} = 22,6 \text{ m/s}^2. \]

3. i 4. Vertikalni let, slobodni pad (vertikalni hitac)

Pretpostavke:

- Početna brzina vertikalnog hitaca: \(v_1 = v_2 = 2,6 \text{ m/s} \),
- Početna visina \(s_{0,a} = 0,1 \text{ m} \),
- \(g = 9,81 \text{ m/s}^2 \).

Maksimalna visina skoka se postiže u trenutku \(v = 0 \). Trajanje leta do maksimalne visine prema (11) može se izračunati:

\[t_{h,max} = \frac{v_1}{g} = \frac{2,6}{9,81} = 0,265 \text{ s.} \]

Maksimalna visina skoka (udaljenost od tla) postiže se kada je \(v = 0 \):

\[s_1 = \frac{v_1^2}{2g} = \frac{2,6^2}{2 \cdot 9,81} = 0,34 \text{ m}, \]
\[h_{max} = s_{0,a} + s_1 = 0,1 + 0,34 = 0,44 \text{ m.} \]

Kod slobodnog pada postiže se maksimalna brzina u trenutku kada je \(h = 0 \):

\[v_{4,h=0} = \sqrt{2gh_{max}} = \sqrt{2 \cdot 9,81 \cdot 0,44} = 2,94 \text{ m/s.} \]

Vrijeme trajanja slobodnog pada

\[t_{h=0} = \frac{v_{4,h=0}}{g} = \frac{2,94}{9,81} = 0,3 \text{ s.} \]
5. Čučanj doskok

Pretpostavke:

- Pretpostavljeni prijeđeni put: \(s_i = 0,2 \text{ m} \)
- Brzina na početku \(v_i = v_{4,0} = 2,94 \), a na kraju \(v_n = 0 \)

\[
\begin{align*}
t_s &= 2 \frac{s_i}{v_i} = 2 \frac{0,2}{2,94} = 0,14 \text{ s} \\
a_s &= \frac{v_i}{t_s} = \frac{2,94}{0,14} = 21 \text{ m/s}^2
\end{align*}
\]

(19)

6. Čučanj doskok

Pretpostavke:

- Prijeđeni put: \(s_e = 0,2 \text{ m} \) (put do \(h=0 \text{ m} \))
- Vrijeme trajanja \(t_e = 0,3 \text{ s} \) prema Slika 34.

\[
\begin{align*}
a_e &= \frac{s_e}{t_e^2} = \frac{0,2}{0,3^2} = 2,2 \text{ m/s}^2 \\
v &= a_e t_e = 2,2 \cdot 0,3 = 0,66 \text{ m/s}
\end{align*}
\]

(20)

![Diagram](image)

Slika 35. Ovisnost ubrzanja o vremenu tijekom skoka
Slika 36. Ovisnost brzine o vremenu tijekom skoka

Slika 37. Ovisnost pomaka o vremenu tijekom skoka

4.3. Silueta igrača

Silueta igrača prenosi udarno oterećenje loptom na konstrukciju mehanizma za ostvarivanje gibanja. Masa siluete mora biti mala kako bi se potrebno ubrzanje koje oponaša skok moglo ostvariti sa što manjom silom na pneumatskom cilindru. Prema konceptu odabrana je polimera ploča. Ploča mora preuzeti dodirni pritisak od lopte i savijanje uzrokovano udarom. Kao moguće rješenje odabrana je kompozitna ploča proizvedena kao strukturni kompozit izrađen od jezgre i vanjskih slojeva. Kao materijal jezgre odabrana je PVC (poli-vinil-klorid) pijena, a vanjski slojevi su napravljeni od GFRP-a (Glass Fiber Reinforced Polymer). Ovakvom strukturom dobivena je ploča niske mase s dobrim
mehaničkim svojstvima. Geometrija siluete nacrtana korištenjem mjera ljudskog tijela preuzetih iz [17].

4.3.1. Dodirni pritisak

Dodirni pritisak između lopte i ploče proračunat je prema približnom izrazu preuzetim iz [24]. Kod provjere dodirnog pritiska vanjski slojevi se zanemaruju. Svojstva lopte su preuzeta iz članka [22], a svojstva PVC pijene prema [23].

\[
\sigma_{\text{max}} = 0,388 \sqrt{4F \left(\frac{E_L E_{\text{jezgre}}} {E_L + E_{\text{jezgre}}} \right)^2 \frac{1}{R_L^2}}
\]

(21)

Svojstva materijala jezgre prema [23] su:

- \(E_{\text{jezgre}} = 104 \, \text{N/mm}^2\)
- \(\rho_{\text{jezgre}} = 55 \, \text{kg/m}^3\)
- \(\sigma_{\text{dop,jezgre}} = 0,75 \, \text{N/mm}^2\)

Svojstva lopte prema [22] su:

- \(E_L = 0,066 \, \text{N/mm}^2\)
- \(R_L = 216 \, \text{mm}\)

Naprezanje u dodiru iznosi:

\[
\sigma_{\text{max}} = 0,17 \, \text{N/mm}^2 < \sigma_{\text{dop,jezgre}} = 0,75 \, \text{N/mm}^2
\]

4.3.1. Savijanje udarom lopte

Udar lopte na mjesto udaljeno od oslonca uzrokuje savijanje. Iz sigurnosnih razloga pretpostavlja se da će sva naprezanja preuzeti vanjski kompozitni slojevi.

Slika 38. Skica presjeka [26]

Prema [26] izraz za naprezanje u vanjskim slojevima je:

\[
\sigma = \frac{M}{bdh_t}
\]

(22)

Gdje je:

\[
d_t = h_t + h_t
\]

(23)
Maksimalni moment savijanja događa se u slučaju udara lopte u rub siluete. Vrijednost maksimalnog momenta postiže se kod oslonca na $L_{\text{max}} = 900$ mm:

$$ M = F_{\text{udara}} \cdot L_{\text{max}} = 934650 \text{ Nmm}. \quad (24) $$

Srednja svojstva vanjskih slojeva kompozita ojačanog staklenim vlaknima (GFRP) orijentacije vlakana $0/90^\circ$ prema [26] iznosi:

$$ \sigma_{\text{dop,tlak}} = 410 \text{ N/mm}^2, \quad \sigma_{\text{dop,vlak}} = 422 \text{ N/mm}^2. $$

Odabrana je debljina jezgre i širina siluete na mjestu maksimalnog momenta:

- $h_\text{s} = 30$ mm,
- $b_\text{s} = 600$ mm.

Maksimalno naprezanje iznosi:

$$ \sigma = 76,98 < \sigma_{\text{dop,tlak}} = 410 \text{ N/mm}^2. \quad (25) $$

Maksimalno naprezanje je manje od minimalno dopuštenog naprezanja za odabrani materijal.

4.3.1. Procjena mase siluete

Za potrebe proračuna mehanizma za ostvarivanje gibanja potrebno je odrediti masu siluete. Podaci potrebni za procjenu mase siluete dobiveni su iz CAD modela siluete.

$$ V_{\text{jezgre}} = 0,0192 \text{ m}^3, \quad A_{\text{oplate}} = 1,41 \text{ m}^2. $$

- Masa jezgre

$$ m_{\text{jezgre}} = V_{\text{jezgre}} \cdot \rho_{\text{jezgre}} = 1,1 \text{ kg}. \quad (26) $$

- Masa oplate.

Procjena mase 1 m^2 GFRP oplate napravljena je programskim alatom prema [25]. Na Slika 39 prikazani su odabrani ulazni podaci i rezultati.

$$ m_{\text{oplate}} = A_{\text{oplate}} \cdot m_{\text{s,oplate}} = 1,55 \text{ kg}. \quad (27) $$
Tablica 15. Odabrana svojstva materijala oplate siluete igraća

<table>
<thead>
<tr>
<th>Vrsta vlakna</th>
<th>Staklena vlakna, 2,6 [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa po površini vlakna, [g/m²]</td>
<td>200</td>
</tr>
<tr>
<td>Voluman vlakana u kompozitu, [%]</td>
<td>Ručni postupak, 35</td>
</tr>
<tr>
<td>Broj slojeva, [-]</td>
<td>3</td>
</tr>
<tr>
<td>Širina, [mm]</td>
<td>1000</td>
</tr>
<tr>
<td>Duljina, [mm]</td>
<td>1000</td>
</tr>
<tr>
<td>Vrsta smole</td>
<td>Epoksi smola, 1,15 [g/cm³]</td>
</tr>
</tbody>
</table>

Slika 39. Svojstva oplate siluete igraća [25]

Ukupnu masu siluete igraća čine: masa jezgre, masa oplate i masa prihvata. Masa prihvata je procijenjena na 0,5 kg.

\[m_{\text{siluete}} = m_{\text{jezgre}} + m_{\text{oplate}} + m_{\text{prihvata}} = 3,15 \text{ kg}. \]

(28)

4.4. Proračun sustav za ostvarivanje gibanja

4.4.1. Analiza i proračun paralelnog mehanizma

Sustav za ostvarivanje gibanja sastoji se od paralelnog mehanizma, pneumatskog cilindra i opruge kojom će se kompenzirati ovješena masa u početnom položaju.

4.4.1.1. Stupnjevi slobode mehanizma

Paralelni mehanizam koji se analizira u ovom zadatku je ravninski mehanizam. Za ravninske mehanizme broj stupnjeva slobode se može odrediti prema:
\[w = 3(n-1) - 2p_1 - 2p_2.\] \hspace{1cm} (29)

Gdje su \(p_1\) kinematički parovi s jednim stupnjem slobode gibanja, a \(p_2\) s 2 stupnjima slobode gibanja, \(n\) broj pokretnih članova.

\[w = 3(4-1) - 2\cdot4 - 0 = 1.\] \hspace{1cm} (30)

Broj stupnjeva slobode gibanja promatranog paralelnog mehanizma je \(w=1\). Dodavanjem člana različite duljine od ostalih članova mehanizam postaje statički određena konstrukcija. Taj dodatni član mojem slučaju će biti pneumatski cilindar.

4.4.1.2. Određivanje dimenzija paralelograma.

Potrebno je odrediti dimenzije paralelnog mehanizma koji može ostvariti pomak \(h=450\) mm. Pomak je odabran prema podacima iz Tablica 6. Duljinu stranice \(a\) možemo odrediti prema izrazu:

\[a = \frac{0.5h}{\sin(\varphi)}.\] \hspace{1cm} (31)

Slika 40. Skica osnovnog paralelograma

Slika 41. Skica krajnjih položaja mehanizma
Graf jednadžbe (31) prikazan je na Slika 42. Iz grafa se može odrediti potrebna duljina stranice a paralelograma.

Slika 42. Ovisnost duljine stranice a o kutu zakreta ϕ

Potrebno je odrediti poziciju prihvata pneumatskog cilindra. Neka od mogućih rješenja su:

1. Postaviti cilindar unutar paralelograma tako da se os cilindra poklapa s diagonalom paralelograma,

2. Postaviti cilindar unutar paralelograma tako da se os cilindra ne poklapa s diagonalom paralelograma. Moguće je varirati prijenosni omjer između hoda cilindra i hoda paralelograma ali cilindar svojim djelovanjem izravno savija krakove paralelograma te

Kod druga dva rješenja cilindar savojno opterećuje krakove paralelograma, što je nepovoljno za konstrukciju. Kod 3. slučaja je moguće je koristiti paralelogram minimalnih dimenzija.

Duljina diagonalne paralelograma može se izračunati prema:

$$d = \sqrt{a^2 + b^2 - 2ab \cos(\alpha)},$$

$$\alpha = \varphi + 90,$$

Za slučaj ugradnje pneumatskog cilindra unutar paralelograma tako da os cilindara bude diagonalna paralelograma odnos duljine diagonalne u početnom i krajnjem položaju kod paralelograma ograničena je duljinom potpuno sklopljenog i potpuno razvučenog cilindra.
Pretpostavljen je omjer:

\[
\frac{d_{\text{max}}}{d_{\text{min}}} \leq 1,5. \tag{34}
\]

Ovaj omjer je odabran zato što je duljina sklopljenog cilindra uvijek veća od njegovog radnog hoda ako se koristi uobičajena izvedba dvoradnog ili jednoradnog cilindra. Graf promijene duljine dijagonale \(d\) u ovisnosti o kutu \(\alpha\) pri odabranim vrijednostima stranica \(a\) i \(b\) koje zadovoljavaju \(d_{\text{max}}/d_{\text{min}} = 1,5\) omjer prikazan je na Slika 43.

Slika 43. Promjena duljine dijagonale paralelograma u ovisnosti o kutu \(\alpha\)

Odabrane su dimenzije paralelograma:

\begin{itemize}
 \item \(a = 400\) mm
 \item \(b = 180\) mm
\end{itemize}

Za postizanje traženog vertikalnog pomaka \(h = 450\) mm kut rotacija stranice \(a\) treba biti \(\varphi = \pm 35^\circ\).

Napravljen je model paralelograma u programskom alatu Adams (student edition) kako bi se dobivena rješenja mogla kontrolirati. Kod modeliranja modela u programskom alatu odabrani su štapovi, a paralelogramu je dodijeljena masa tako da će momenti tromosti tijela utjecati na rezultat.
Slika 44. Model paralelograma u programskom alatu *Adams student edition*

Slika 45. Zadane sile na pareleni mehanizam u programskom alatu *Adams*
При ротацији паралелни меканизам има и хоризонтални помак који се може израчунати изrazом:

\[L_{hor} = x_{max} - x_{min} = 72,3 \text{ mm.} \] \hspace{1cm} (35)

Гдје су:

\[x_{max} = a = 400 \text{ mm,} \]
\[x_{min} = \cos(\phi) = \cos(35) = 327,66 \text{ mm.} \] \hspace{1cm} (36)

4.4.1.3. **Odabir opruge**

Опрuga treba компензирати масу силуете и меканизам у почетном полошју. Тако се умањује потребна радна сила пневматског цилиндра.

![Diagram](image)

Slika 46. Skica mehaničkog modela za određivanje sile opruge

\[\frac{mg}{b} = \frac{F_{opruge}}{l} = \frac{F_{x=x1}}{a}. \] \hspace{1cm} (37)

Сила у опрузи је једнака:

\[F_{opruge} = \frac{l}{b} mg. \] \hspace{1cm} (38)

Гдје је:

\[l = \sqrt{a^2 + b^2 - 2ab \cos(90 - \phi)}, \] \hspace{1cm} (39)

\[\cos(90 - \phi) = \sin(\phi). \]

Моће се записати

\[l = \sqrt{a^2 + b^2 - 2ab \sin(\phi)}. \] \hspace{1cm} (40)

За одabrane димензије паралелограма:

\[l_{\phi=35} = 324,2 \text{ mm,} \]
\[l_{\phi=35} = 516,7 \text{ mm.} \] \hspace{1cm} (41)
Slika 47. Promjena duljine opruge u ovisnosti o kutu zakreta mehanizma

Slika 48. Promjena duljine opruge u ovisnosti o kutu zakreta mehanizma _Adams

Masa koju opruga treba kompenzirati:

\[m = m_{siliste} + m_{mek,op}. \quad (42) \]

Masa mehanizma koja djeluje na mehanizam procijeniti će se kako bi se mogao napraviti odabir opruge:

\[m_{mek,op} = 1,5 \, \text{kg}. \]

\[m = m_{siliste} + m_{mek,op} = 4,65 \, \text{kg}. \quad (43) \]

Potrebna sila poruge iznosi:

\[F_{oopruga, \phi = -35} = \frac{l_{q=-35}}{b} \cdot mg = 103 \, \text{N}, \]

\[F_{oopruga, \phi = +35} = \frac{l_{q=+35}}{b} \cdot mg = 64 \, \text{N}. \quad (44) \]
Potrebna krutost idealne opruge koja bi mogla kompenzirati masu pri bilo kojem položaju paralelnog mehanizma iznosi:

\[c_{op} = \frac{dF}{ds} = \frac{F_{opruge,\varphi=-35} - F_{opruge,\varphi=+35}}{l_{\varphi=35} - l_{\varphi=+35}} = 0,2 \text{ N/mm}. \] (45)

Hod opruge:

\[f = l_{\varphi=-35} - l_{\varphi=+35} = 193 \text{ mm}. \] (46)

Koristiti će se dvije paralelno postavljene opruge pa će potreba sila u jednoj opruzi biti:

\[F_{opruge,1} = \frac{F_{opruge,\varphi=-35}}{2} = 51,5 \text{ N}. \] (47)

Pretpostavljena je dimenzija opruge:

\[D_{a} = 10 \text{ mm}. \] (48)

Odabran je materijal opruge: patentirano vučena žica za opruge DIN 17223 prema [27]. Svojstva su:

\[G = 83000 \text{ N/mm}^2, \]
\[E = 210000 \text{ N/mm}^2, \]
\[\sigma_{M} = 1750 \text{ N/mm}^2. \]

Dопуштено smično naprezanje za hladno oblikovane vlačne opruge približno iznosi:

\[\tau_{dop} = 0,45\sigma_{M} = 787,5 \text{ N/mm}^2. \] (49)

Potreban promjer žice opruge je:

\[d_{op} = \sqrt[3]{\frac{8F_{opruge,1} \cdot D_{a}}{\pi \cdot \tau_{i}}} = 1,18 \text{ mm}. \] (50)

Odabran je standardni promjer žice opruge:

\[d_{op} = 1,25 \text{ mm}. \]

Potreban broj navoja s opružnim djelovanjem:

\[i_{i} = \frac{G \cdot d_{w}^{4} \cdot f}{8D_{a}^{3} \cdot F_{opruge,1}} = 95. \] (51)

Idealno torzijsko naprezanje:

\[\tau_{i} = \frac{8D_{a}}{\pi \cdot d_{op}^{3}} \cdot F_{opruge,1} = 671,5 \text{ N/mm}^2. \] (52)
Faktor k za vlačne i tlačne vijčane opruge prema DIN 2089 za odabrane dimenzije iznosi:

\[
D_u / d_{op} = 10 / 1,25 = 8, \\
k = 1,17.
\] (53)

Maksimalno torzijsko naprezanje manje je od dopuštenog za odabran materijal:

\[
\tau_k = k \cdot \tau_i = 785,6 \text{ N/mm}^2 < \tau_i = 787,5 \text{ N/mm}^2
\] (54)

Krutost opruge:

\[
c_i = \frac{G \cdot d_{op}^3}{8D_u \cdot i_i} = 0,267 \text{ N/mm}.
\] (55)

Krutost opruga povezanih u paralelu se zbraja:

\[
c_{op} = c_i + c_i = 0,534 \text{ N/mm}.
\] (56)

Vrijednost krutosti je veća od idealne vrijednosti. To će se zanemariti zato što je svrha opruga kompenzacija težina u donjem položaju mehanizma (\(\varphi = -35^\circ\)).

Duljina neopterećenog tijela opruge (bez ušica)

\[
L_k \approx (i_i + 1) \cdot d_{op} = 120 \text{ mm}.
\] (57)

4.4.1.4. Potrebna radna sila pneumatskog cilindra

\[\begin{align*}
\text{Slika 49. Skica mehaničkog modela za određivanje sile cilindra} \end{align*} \]

Prema skici na Slika 49 može se približno odrediti potrebna sila koju treba ostvariti pneumatski cilindar. Masa koju cilindar treba ubrzati približno će iznositi 4,65 kg prema jednadžbi (43). Ubrzanje koje je potrebno za oponašanje skoka igrača određeno je u poglavlju 4.2. Iznos ubrzanja je:

\[a \approx 20 \text{ m/s}^2 \]
Može se zapisati:

\[\frac{b}{ma} = \frac{d}{F_{\text{cilindra}}}, \]

(58)

Duljina stranice d:

\[d = \sqrt{a^2 + b^2 - 2ab \cos(\varphi + 90)}, \]

(59)

\[\cos(\varphi + 90) = -\sin(\varphi). \]

Može se zapisati kao:

\[d = \sqrt{a^2 + b^2 + 2ab \sin(\varphi)}, \]

(60)

Iz (58) proizlazi izraz za potreban iznos sile na pneumatskom cilindru:

\[F_{\text{cilindra}} = d \cdot \frac{ma}{b}. \]

Za \(d = d_{\text{min}} \):

\[F_{\text{cilindra, min}} = 167,5 \text{ N.} \]

Za \(d = d_{\text{max}} \):

\[F_{\text{cilindra, max}} = 267 \text{ N.} \]

\[\begin{align*}
\varphi [\text{°}] & \quad F_{\text{cilindra}} [\text{N}] \\
0 & \quad 0 \\
10 & \quad 20 \ \\
20 & \quad 30 \ \\
30 & \quad 40 \\
\end{align*} \]

Slika 50. Promjena potrebne sile cilindra u ovisnosti o kutu zakreta mehanizma

Maksimalna potrebna sile cilindra javlja se kod gornjeg položaja mehanizma (\(\varphi = +35^\circ \)). Ta vrijednost neće nikada biti postignuta zato što prema analizi skoka pretpostavljeni odraz igrača (jednoliko ubrzani gibanje) je na vertikalnom pomaku \(s_z = 0.2 \text{ m} \). Ostatak puta mehanizam će se gibati jednoliko usporeno uslijed djelovanja gravitacije. Za ostvarivanje tog pomaka potrebno je mehanizam rotirati od \(\varphi = -35^\circ \) za vrijednost:

\[\phi = \pm 35^\circ \]
\[\sin(\varphi_s) = \frac{s_2}{a}, \]
\[\varphi_s = \sin^{-1}\left(\frac{s_2}{a}\right) = 30^\circ \]

Pa je novi položaj mehanizma:
\[\varphi_s = -35 + \varphi_s = -5^\circ \]

Iznos potrebne radne sile pneumatskog cilindra kod kuta \(\varphi_2 \):
\[F_{\text{cilindra,} \varphi_2} = d_2 \cdot \frac{ma}{b} = d = \sqrt{a^2 + b^2 + 2ab \sin(\varphi)} \cdot \frac{ma}{b} = 219,1 \text{ N.} \]

Potreban hod cilindra iznosi:
\[h_c = d_{\text{max}} - d_{\text{min}} = 192,5 \text{ mm.} \]

4.4.1.5. **Proračun krakova paralelnog mehanizma**

Prvi korak je određivanje opterećenja koja djeluju na štapove. Na mehanizam će se primijeniti princip solidifikacije. Paralelni mehanizam promatrati će se kao kruto tijelo. Ako se zanemari trenje u ležajevima, krakovi paralelograma se mogu promatrati kao osno opterećeni štapovi. Zato možemo pretpostaviti smjer djelovanja reakcijskih sila \(R_A \) i \(R_B \). Skica mehaničkog modela prikazana je na slici.

Slika 51. **Skica mehaničkog modela paralelograma**
Promatra se slučaj:

- Udar loprete u rub siluete igrača $F_{udara} = 1040 \text{ N}$,
- Donji položaj mehanizma te
- Maksimalno ubrzanje $a \approx 20 \text{ m/s}^2$.

Iznose sila R_A i R_B možemo izračunati iz jednadžbi ravnoteže:

$$\sum F_x = 0, \quad R_A \cos(\varphi) + R_B \cos(\varphi) - F_{udara} = 0, \quad \text{(66)}$$

$$\sum M_A = 0, \quad R_b \cos(\varphi) + F_{udara} y - ma \cdot a \cos(\varphi) = 0. \quad \text{(67)}$$

Iz jednadžbe (67) slijedi:

$$R_B = \frac{-F_{udara} y + ma \cdot a \cos(\varphi)}{b \cos(\varphi)} = -5633 \text{ N}. \quad \text{(68)}$$

Iz jednadžbe (66) slijedi:

$$R_A = \frac{F_{udara} - R_A \cos(\varphi)}{\cos(\varphi)} = 6903 \text{ N}. \quad \text{(69)}$$

Slika 52. Iznosi sila u osloncima A i B

Usporedba analitičkog rješenja i rješenja dobivenog programskim alatom Adams MSC.

<table>
<thead>
<tr>
<th></th>
<th>R_A</th>
<th>R_B</th>
<th>Odstupanje [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analitičko</td>
<td>6903</td>
<td>5633</td>
<td>7,99</td>
</tr>
<tr>
<td>Adams MSC</td>
<td>6392</td>
<td>5162</td>
<td>9,12</td>
</tr>
</tbody>
</table>
Dobivene su razlike rješenjima zato što je procijenjena masa štapova paralelograma pribrojena masi siluete, a položaj ukupne mase je postavljen na vanjski rub paralelograma. U dalnjem proračunu koristiti će se veće vrijednosti sila.

Tablica 17. Usporedba svojstava materijala

<table>
<thead>
<tr>
<th>Materijal</th>
<th>Vlačna čvrstoća, [MPa]</th>
<th>Modul elastičnosti, [GPa]</th>
<th>Gutoća [g/cm³]</th>
<th>specifična čvrstoća [MPa/g/cm³]</th>
<th>Specifični modul elastičnosti [GPa/g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminij (6061)</td>
<td>260</td>
<td>70</td>
<td>2,7</td>
<td>96,2963</td>
<td>25,92593</td>
</tr>
<tr>
<td>čelik</td>
<td>550</td>
<td>210</td>
<td>7,8</td>
<td>70,51282</td>
<td>26,92308</td>
</tr>
<tr>
<td>GFRP</td>
<td>400</td>
<td>26,6</td>
<td>2</td>
<td>200</td>
<td>13,3</td>
</tr>
</tbody>
</table>

(Tablica 17) prikazana su mehanička svojstva materijala. Konstrukcija paralelograma mora biti što manje mase kako bi potreban radna sila cilindra i opruge bila što manja. Zbog toga je odabran materijal štapova paralelograma GFRP (staklenim vlaknima ojačan polimer).

4.4.1.5.1. Provjera čvrstoće i izvijanja na maksimalno opterećenom štapu

Svojstva odabranog materijala prema [26]:

\[\sigma_{dop,tlak} = 410 \text{ N/mm}^2, \]

\[E_{gfrp} = 26600 \text{ N/mm}^2. \]

Krak paralelograma sastoji se od dva paralelno postavljena jednak štapa dimenzija:

\[a = 400 \text{ mm}, \]

\[a_1 = 40 \text{ mm}, \]

\[b_1 = 9 \text{ mm}. \]

Naprezanje u jednom štapu iznosi:

\[\sigma_{sl} = \frac{R_s/2}{A_{sl}} = 8,88 \text{ N/mm}^2 < \sigma_{dop,tlak} = 410 \text{ N/mm}^2. \] \((70) \)

Naprezanje u štapu je manje od dopuštenog.

Najmanji aksijalni moment tromosti presjeka štapa iznosi:

\[I_{min,sl} = \frac{a b_1^3}{12} = 2430 \text{ mm}^4. \] \((71) \)
Polumjer tromosti je:

$$i = \sqrt{\frac{l_{\text{min}}}{A_{\text{si}}}} = 2,5981 \text{ mm.}$$ \hspace{1cm} (72)

Slobodna duljina izvijanja je:

$$l_{\text{a}} = a = 400 \text{ mm.}$$ \hspace{1cm} (73)

Vitkost štaba je:

$$\lambda_{\text{si}} = \frac{l_{\text{a}}}{i} = 153,96.$$ \hspace{1cm} (74)

Za $\lambda_{\text{si}} > 40$ [29] kritično naprezanje za elastično izvijanje prema Euleru iznosi:

$$\sigma_k = \pi^2 \frac{E_{\text{GFRP}}}{\lambda_{\text{si}}^2} = 11,08 \text{ N/mm}^2.$$ \hspace{1cm} (75)

Sigurnost od izvijanja iznosi:

$$\frac{\sigma_k}{\sigma_{\text{si}}} = 1,25.$$ \hspace{1cm} (76)

Masa proračunatog štaba prema CAD modelu iznosi:

$$m_{\text{si}} = 415 \text{ g.}$$

Podaci potrebni za proračun su preuzeti prema priručniku [29]. Kao i potrebne jednadžbe. Odabrane je cijev dimenzija:

$$D_{\text{si}} = 30 \text{ mm},$$

$$d_{\text{si}} = 28 \text{ mm}.$$
\(\sigma_{\text{dop,tak}} = 258 \text{ N/mm}^2, \)

\(E = 20684 \text{ N/mm}^2. \)

Površina poprečnog presjeka cijevi:

\[
A_{s_1} = \frac{(D_{s_1}^2 - d_{s_1}^2)\pi}{4} = 91,1 \text{ mm}^2. \tag{77}
\]

Naprezanje u jednom štapu iznosi:

\[
\sigma_{s_1} = \frac{R_A/2}{A_{s_1}} = 35,1 \text{ N/mm}^2 < \sigma_{\text{dop,tak}} = 258 \text{ N/mm}^2. \tag{78}
\]

Naprezanje u štapu je manje od dopuštenog.

Aksijalni moment tromosti presjeka cijevi štapa iznosi:

\[
I_{\text{min,}s_1} = \frac{\pi (D_{s_1}^4 - d_{s_1}^4)}{64} = 9588,9 \text{ mm}^4. \tag{79}
\]

Polumjer tromosti je:

\[
i = \sqrt{\frac{I_{\text{min}}}{A_{s_1}}} = 8,306 \text{ mm.} \tag{80}
\]

Slobodna duljina izvijanja prema [29] je:

\[
l_0 = a = 400 \text{ mm.} \tag{81}
\]

Vitkost štapa je:

\[
\lambda_{s_1} = \frac{l_0}{i} = 48,16. \tag{82}
\]

Za \(\lambda_{s_1} > 40 \) [29] kritično naprezanje za elastično izvijanje prema Euleru iznosi:

\[
\sigma_k = \frac{\pi^2 E_{\text{GRP}}}{\lambda_{s_1}^2} = 88,02 \text{ N/mm}^2. \tag{83}
\]

Sigurnost od izvijanja iznosi:

\[
\frac{\sigma_k}{\sigma_{s_1}} = 2,5. \tag{84}
\]

Dimenzije odabrane cijevi zadovoljavaju čvrstoćom i sigurnošću protiv izvijanja

Masa proračunatog štapa prema \(\text{CAD} \) modelu iznosi:

\[
m_{s_1} = 100 \text{ g.}
\]
Masa cijevi je više od četiri puta manja od mase pravokutnog štapa uz veći faktor sigurnosti.
Na završetke cijevi potrebno je zalijepiti nastavke koji će biti kućište ležaja.

4.4.1.5.2. Provjera čvrstoće lijepljenog spoja

![Slika opterećenja lijepljenog spoja](image)

Maksimalni dozvoljeno smično naprezanje za strukturno ljepilo Elan-tech® AS 89.1/AW 89.2 bez toplinske obrade prema [30] iznosi:
\[\tau_{ls} = 18 \text{ N/mm}^2. \]

Pretpostavljen faktor sigurnosti za dinamički opterećen lijepljeni spoj \(S_l = 5 \)
Dopušteno naprezanje umanjeno faktorom sigurnosti iznosi:
\[\tau_{dop,ls} = \frac{\tau_{ls}}{S_l} = 3,5 \text{ N/mm}^2. \] \hspace{1cm} (85)

Površina lijepljenog spoja je:
\[A_{ls} = d_{ls} \pi l_{ls}. \] \hspace{1cm} (86)

Naprezanje u lijepljenom spoju:
\[\tau_{ls} = \frac{R_{\lambda}}{2 A_{ls}}. \] \hspace{1cm} (87)

Iz jednadžbi (86), (87) i dopuštenog naprezanja dobije se izraz za potrebnu duljinu spoja:
\[l_{ls} = \frac{R_{\lambda}}{\tau_{dop,ls} d_{ls} \pi} = 10,1 \text{ mm} \] \hspace{1cm} (88)

4.4.1.6. Odabir ležajeva paralelnog mehanizma

Odlučeno je korištenje polimernih kliznih ležajeva. Razlog odabira te vrste ležajeva je njihova mala masa, ne zahtijevaju održavanje i prihvatljivih su cijena.
Slika 54. Presjek kliznog ležaja

Tablica 18. Podaci o ležaju

<table>
<thead>
<tr>
<th>Oznaka ležaja</th>
<th>P210FM-0608-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unutarnji promjer, d₁, [mm]</td>
<td>12</td>
</tr>
<tr>
<td>Vanjski promjer, d₂, [mm]</td>
<td>14</td>
</tr>
<tr>
<td>Promjer prirubnice, d₃, [mm]</td>
<td>20</td>
</tr>
<tr>
<td>Duljina, b₁, [mm]</td>
<td>9</td>
</tr>
<tr>
<td>Širina prirubnice, b₂, [mm]</td>
<td>1</td>
</tr>
<tr>
<td>Duljina skošenja, f₁, [mm]</td>
<td>0,3</td>
</tr>
<tr>
<td>Maksimalno dopušteni površinski tlak, [N/mm²]</td>
<td>50</td>
</tr>
</tbody>
</table>

Kontrola dopuštenog tlaka:

\[
p_{\text{ležaj}} = \frac{R_{\lambda} / 2}{d_1(b_1 - b_2)} = 33,3 \text{ N/mm}^2 < p_{\text{dop}} = 50 \text{ N/mm}^2. \tag{89}
\]

Tlak u ležaju je manji od dopuštenog. Ležaj zadovoljava.

Programskim alatom [31] napravljena je procjena vijeka trajanja ležaja uzimajući u razmatranje podatke iz Tablica 19. Vijek trajanja odabranog ležaja je:

\[t_{\text{ležaj}} = 3540 \text{ h.} \]

Tablica 19. Ulazni podaci za kontrolu ležaja

<table>
<thead>
<tr>
<th>Maksimalna temperatura, °C</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimalna temperatura, °C</td>
<td>-10</td>
</tr>
<tr>
<td>Vrsta gibanja</td>
<td>ljuljanje</td>
</tr>
<tr>
<td>Kut ljuljanja, [°]</td>
<td>70</td>
</tr>
<tr>
<td>Frekvencija ljuljanja, [min⁻¹]</td>
<td>100</td>
</tr>
<tr>
<td>Trajanje radnog ciklusa, [s]</td>
<td>1</td>
</tr>
<tr>
<td>Trajanje pauze, [s]</td>
<td>20</td>
</tr>
<tr>
<td>Materijal osovine</td>
<td>st37, tokareno</td>
</tr>
<tr>
<td>Materijal kućišta</td>
<td>aluminij</td>
</tr>
<tr>
<td>maksimalna zračnost zbog trošenja, [mm]</td>
<td>0,25</td>
</tr>
</tbody>
</table>
4.4.1.1. **Kontrola naprezanja u kućištu ležaja (završetak cijevi):**

Odabran je materijal za kućište ležaja je Al 6061 T6. Svojstva odabranog materijala navedena su u Tablica 20:

<table>
<thead>
<tr>
<th>Svojstva materijala Al 6061 T6 [32]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granica tečenja, R_e, [N/mm2]</td>
</tr>
<tr>
<td>Modul elastičnosti, E_{6061T6}, [N/mm2]</td>
</tr>
<tr>
<td>G gustoča, ρ_{6061T6}, [g/cm3]</td>
</tr>
</tbody>
</table>

Odabrani faktor sigurnosti $S=2.5$. Dopušteno naprezanje iznosi:

$$\sigma_{dop} = \frac{R}{S} = 110 \text{ N/mm}^2.$$ (90)

Slika 55. Kritični presjek na kućištu ležaja

Polovina površine kritičnog presjeka je naznačena na Slika 55. Prema CAD programskom alatu iznosi:

$A_{krit} = 104 \text{ mm}$.

Naprezanje u presjeku iznosi:

$$\sigma_{kl} = \frac{R_{max}}{A_{krit}} = 30,8 \text{ N/mm}^2 < \sigma_{dop} = 110 \text{ N/mm}^2.$$ (91)

Naprezanje je manje od dopuštenog. Čvrstoća kućišta ležaja zadovoljava.

Sigurnost:

$$S = \frac{\sigma_{dop}}{\sigma_{kl}} = 3.57$$ (92)
4.4.1.2. Kontrola naprezanja u osovina mehanizma.

Slika 56. Sile u osloncu A paralelnog mehanizma

Slika 57. Skica sile u osloncu A

Slika 58. Skica mehaničkog modela presjeka 1 osovine ležaja A

Kontrola naprezanja osovine ležaja A na mjestu presjeka 1 prema Slika 56.

Pretpostavljen je slučaj maksimalnog iznosa sile (udar lopte, donji položaj mehanizma).

Iznos sile u štapu 1 je približno jednak:

\[F_{s1} = \frac{R_a}{2} \approx 3200 \text{ N}, \]

\[F_{prop} = 52 \text{ N}. \]
Sila F_{R1} u presjeku jedan iznosi:

$$F_{R1} = F_{s1} + F_{opr} = 3252 \text{ N.} \quad (93)$$

Dimenzije prema CAD modelu su:

$L_1 = 27 \text{ mm},$

$L_2 = 6 \text{ mm},$

$d_{i-1} = 12 \text{ mm}.$

Moment M_{R1} u presjeku jedan iznosi:

$$M_{R1} = F_{s1} L_1 + F_{opr}(L_1 + L_2) = 20916 \text{ Nmm.} \quad (94)$$

Naprezanja iznose:

$$\sigma_{i-1} = \frac{F_{R1}}{A_{i-1}} = \frac{F_{R1}}{d_{i-1}^2 \pi} = 28,75 \text{ N/mm}^2,$$

$$\tau_{i-1} = \frac{M_{R1}}{W_i} = \frac{M_{R1}}{\pi d_{i-1}^3} = 123,3 \text{ N/mm}^2 \quad (95)$$

Prema teoriji najveće distorzije energije (HMH) ekvivalentno naprezanje iznosi:

$$\sigma_{ekvi} = \sqrt{\sigma_{i-1}^2 + 3\tau_{i-1}^2} = 123.8 \text{ N/mm}^2. \quad (96)$$

Odabran je materijal St 60-2. Granica razvlačenja prema [37] iznosi:

$R_e = 340 \text{ N/mm}^2.$

Ekvivalentno naprezanje je manje od granice razvlačenja, a faktor sigurnosti iznosi:

$$S_{i-1} = \frac{R_e}{\sigma_{ekvi}} = 2,75. \quad (97)$$

4.4.1. Odabir komponenata pneumatskog sustava

Potreban je odabrati komponente pneumatskog sustava. Pneumatski sustav sastoji se od sustava koji pretvara mehaničku energiju u potencijalnu energiju stlačenog zraka i sustava koji energiju zraka pretvara u mehaničku energiju.
Slika 59. Princip rada pneumatskog sustava

Slika 60. Shema pneumatskog sustava
4.4.1.1. Odabir pneumatskog cilindra

Pneumatski cilindar odabire se prema kriterijima:

- Potrebne sile
- Potrebnoj hodu
- Potrebne brzine
- Konstrukcije cilindra (priključci, uvlačenje cilindara, spoj klipnjača, učvršćivanje cilindara)

Ako se pretpostavi radni tlak \(p_0 = 6 \) bar i koeficijent \(k = 0.5 \) (trenje, ostatak tlaka) prema [27] dobije se potreban promjer cilindra:

\[
D_{cil} = \sqrt[4]{\frac{4 \times F_{cilindara}}{\pi \cdot k \cdot p_0}} = \sqrt[4]{\frac{4 \times 220}{\pi \times 0.5 \times 0.6}} = 30.55 \text{ mm.}
\] (98)

Odabire se veći standardni promjer cilindra \(D_{cil} = 40 \text{ mm.} \)

Potreban tlak u cilindru standardne dimenzije kako bi se postigla tražena sila:

\[
p_{cil} = \frac{F_{cilindara}}{k} \times \frac{4}{D_{cil}^2 \cdot \pi} = 0.35 \text{ MPa.}
\] (99)

Odabran je pneumatski cilindar Festo DSNU-40-200. Udar kod hoda klipa u krajnje položaje prigušuje se elastičnim elementom ugrađenim u cilindar.

![Slika 61. Dimenzije Festo DSNU-40-200 pneumatskog cilindra [33]](image)

4.4.1.2. Dimenzioniranje sustava dobave zraka

Prema [27] provedeno je dimenzioniranje sustava dobave zraka. Pretpostavlja se da gubici zraka u sustavu iznose uobičajenih \(k_{gv} = 20\% \). Pretpostavka je upotreba \(n_{cil} = 5 \) istovjetnih cilindara (simulacija 5 igrača). Broj ciklusa cilindara (uvlačenje i izvlačenje klipnjače) u minuti iznosi \(n_c = 6 \) uz koeficijent istodobnosti \(k_i = 1 \). Promjer klipnjače je
\(d_k = 20 \text{ mm.} \) Trajanje hoda cilindra je zbroj trajanja faze odraza i vertikalnog leta do maksimalne visine:

\[
\tau_c = t_z + t_{h\text{max}} = 0,1 + 0,265 = 0,365 \text{ s.} \quad (100)
\]

Ukupni potreban protok zraka sveden na ulaz u kompresor (pri \(p_a = 1,01325 \text{ bar i } \rho_a = 1,29 \text{ kg/m}^3 \)) iznosi:

\[
Q_i = (1 + k_{g_c}) \frac{P_a + P_s}{P_s} n_e n_{el} \frac{\pi((D_{cil}^2 - d_k^2) + D_{cil}^2)}{4} h_c =
\]

\[
= (1 + 0,2) \frac{3,5+1,01325}{1,01325} \cdot 0,1 \cdot 5 \cdot \frac{\pi((0,04^2 -0,02^2)+0,04^2)}{4} \cdot 0,1925 =
\]

\[
= 1,13 \cdot 10^{-3} \text{ m}^3/\text{s} \quad (101)
\]

Maksimalan protok stlačenog zraka kroz cjevovod kada svi cilindri rade istovremeno iznosi:

\[
Q_{\text{max}} = (1 + k_{g_c}) \frac{k_n}{\tau_c} \frac{\pi((D_{cil}^2 - d_k^2) + D_{cil}^2)}{4} h_c =
\]

\[
= (1 + 0,2) \frac{1 \cdot 5}{0,365} \cdot \frac{\pi((0,04^2 -0,02^2)+0,04^2)}{4} \cdot 0,1925 = 6,959 \cdot 10^{-3} \text{ m}^3/\text{s} \quad (102)
\]

Protok jednog cilindra:

\[
Q_{cole} = \frac{1}{\tau_c} \frac{\pi((D_{cil}^2 - d_k^2) + D_{cil}^2)}{4} h_c =
\]

\[
= \frac{1}{0,365} \cdot \frac{\pi((0,04^2 -0,02^2)+0,04^2)}{4} \cdot 0,1925 = 1,159 \cdot 10^{-3} \text{ m}^3/\text{s} \quad (103)
\]

Kompresor se odabire prema potrebnom protoku na ulazu. Dodatan zahtjevi su niska buka i što manja težina. Odabran je kompresor: \textit{Nardi ESPRIT} 3 15L. 65/4 [34].

Protok kompresora je veći od minimalno potrebnog:

\[
Q_k = 7,5 \text{ m}^3/\text{h} > Q_i = 4,07 \text{ m}^3/\text{h}. \quad (104)
\]

<table>
<thead>
<tr>
<th>Volumen spremnika, [L]</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broj cilindara</td>
<td>2</td>
</tr>
<tr>
<td>Protok na ulazu, [m(^3)/h]</td>
<td>7,5</td>
</tr>
<tr>
<td>Nazivna snaga, [kW]</td>
<td>0,65</td>
</tr>
<tr>
<td>Radni pritisak, [bar]</td>
<td>10</td>
</tr>
<tr>
<td>Buka, [dB]</td>
<td>53</td>
</tr>
<tr>
<td>Masa, [kg]</td>
<td>18,5</td>
</tr>
<tr>
<td>Dimenzije, [cm]</td>
<td>47x22x40</td>
</tr>
</tbody>
</table>
Slika 62. Kompresor Nardi ESPRIT 3 [34]
Prema dobivenom protoku odabran je električno upravljan pneumatski ventil 5/3 Festo CPE18-M1H-5/3G-1/4

Slika 63. Električno upravljan pneumatski ventil 5/3 Festo [33]
- Odabrana je pneumatska grupa Festo MSB4-1/4:J4:D4-WP za pripremu zraka.
- Filter finoće 5 μm,
- Spustom kondenzata
- Regulator tlaka s mogućnošću podešavanja izlaznog tlaka
- Podmazivanjem

Slika 64. Pneumatska grupa Festo MSB4-1/4:J4:D4-WP za pripremu zraka
4.5. Pohrana energije potrebne za rad uređaja

Potrebna energija za rad uređaje pohranjuje se u bateriji zato što uređaj mora biti neovisan o vanjskom izvoru energije. Vrijeme rada uređaja pretpostavlja se $t_{rad}=2$ h.

4.5.1. Procjena potrebne količine energije.

4.5.1.1. Potrebno energije za rad kompresora:

Vrijeme rada kompresora približno se određuje množenjem vremena rada uređaja s omjerom potrebnog protoka zraka i potoka koji kompresor ostvaruje. Omjer je predstavlja potrebni radni ciklus kompresora.

$$t_{rad,k} = t_{rad} \frac{Q}{Q_k} = 1,1 \text{ h.}$$

Ako potrebnu energiju dovodimo iz baterije energiju treba uvećati za gubitak zbog pretvorbe energije (istostojerna električna energija u izmjeničnu). Efikasnost pretvarača napona je $\eta_p = 0.9$. Količina pohranjene energije za rad kompresora je:

$$E_k = \frac{P_t t_{rad,k}}{\eta_p} = 0,79 \text{ kWh.}$$

4.5.1.2. Potrebno energije za rad elektro ventila

Slika 65. Električne karakteristike elektro ventila Festo CPE18 [35]

U uređaju se nalazi $n_c=5$ ventila. Pretpostavljeno je $n_c=6$ ciklusa u minuti ($n_c=360$ u satima).

U jednom ciklusu ventil promijeni položaja $n_p=3$. Vrijeme rada ventila u jednom ciklusu je približno vrijeme pomicanja siluete:

$$t_{rad,v} \approx 1 \text{ s.}$$

Prema podatku o potrošnji energije iz Slika 65 može se približno odrediti potrebna količina pohranjene energije za 2 radna sata:

$$E_v = \frac{P_v n_c n_p t_{rad,v} \times 2}{\eta_p} = 5 \text{ Wh}$$
4.5.1.3. Potrebno energije za rad ostale opreme

Potrebno je procijeniti utrošak energije za vizijski sustav, komunikaciju i upravljanje. Vizijski sustav čine kamere (obično dvije) i računala za obradu snimke. Komunikacija je sustav za bežično primanje i slanje podataka prema pametnom telefonu korisnika te panel sa svjetlosnom obavijesti o statusu uređaja. Pod pojmom upravljanje misli se na računalo koje komunicira s ostalim sustavima i donosi odluku o djelovanju. Pretpostavka je da će taj sustav imati snagu stolnog računala (300W) pa će se za 2 sata rada utrošiti:

\[E_\text{ostalo} = P_{\text{ostalo}} \cdot t_{\text{rad}} = 600 \text{ Wh}. \] (108)

4.5.2. Odabir baterije

Baterija se bira prema potrebnoj količini pohranjene energije, potrebnoj snazi i dopuštenom zagrijavanju. Potrebno energije za dva sata rada iznosi:

\[E = E_k + E_v + E_\text{ostalo} = 0,958 \text{ kWh}. \] (109)

Maksimalna potrebna snaga baterije (snaga kompresora + prosječna snaga ostalih trošila):

\[P = P_k + \frac{E_v + E_\text{ostalo}}{t_{\text{rad}}} = 0,953 \text{ kW}. \] (110)

Srednja snaga uređaja:

\[P_{\text{srednje}} = \frac{E}{t_{\text{rad}}} = 0,479 \text{ kW}. \] (111)

Odabrana je baterijski članak: LG 18650HG2 (3.0Ah):

Tablica 22. Svojstva baterije LG 18650HG2 [35]

Nazivni kapacitet, \(K_{\text{Bat}} \), [Ah]	3
Nazivni napon, \(U_{\text{bat}} \), [V]	3,6
Nazivna struja pražnjenja \(I_{\text{bat}} \), [A]	20
Dimenzije, [mm]	18x65
Masa, \(m_{\text{bat}} \), [g]	45
Specifična gustoća energije, [Wh/kg]	240

U Tablici 22 prikazani su osnovni podaci o odabranom baterijskom članku. Odabrana baterija je litij-ionska baterija kemijskog sastava: Li[NiMnCo]O2 (H-NMC) / Graphite + SiO. Karakteristike napona i kapaciteta pri različitim jakostima struje pražnjenja prikazane su na Slika 66.
Slika 66. Svojstva baterije [36]

Baterijski članak će isporučiti količinu energije u ovisnosti o strujna pražnjenja i broju odrađenih ciklusa. Koeficijent \(k_b \) je izračunat kao omjer kapaciteta baterije nakon 500 radnih ciklusa i nazivnog kapaciteta. Podaci su preuzeti iz dijagrama na Slika 67.

\[
k_b = 0.76
\]

Slika 67. Pad kapaciteta baterije u odnosu na broj radnih ciklusa [36]

Slika 67 prikazuje Energiju jednog baterijskog članka pri struji pražnjenja od 3 i nakon 500 ciklusa iznosi:

\[
E_{b1} = k_b \times 10,3 = 7,83 \text{ Wh}.
\]

Potreban broj članaka baterije je:

\[
N_{bat} = \frac{E}{E_{b1}} = \frac{125,7}{7,83} \cong 16.7.
\]

Broj članaka za odabranu konfiguraciju iznosi:

\[
N_{bat} = 126.
\]
Odabrana je konfiguracija baterije 18P7S (18 paralelno povezanih članaka x 7 serijski povezano). Napon baterijskog paketa je između 21 V (prazna baterija) i 29,4 V (puna baterija). Napon odgovara standardnim pretvaračima naponja (istosmjerni električna struja u izmjeničnu električnu struju 50Hz, 230 V) i odgovara za rad pneumatskih elektro-ventila.

Pohranjena energija u baterijskom paketu je:

\[E_{\text{bat}} = N_{\text{bat}} E_{b1} = 0,987 \text{kWh} > E = 0,953 \text{kWh}. \]

\[(115)\]

Baterijski paket će omogućiti dva sata rada uređaja prvih 500 radnih ciklusa.

Masa baterijskih članaka baterijskog paketa:

\[m_{\text{bat},1} = N_{\text{bat}} m_{\text{bat}1} = 5,7 \text{ kg}. \]

\[(116)\]

Maksimalna nazivna struja pražnjenja baterijskog paketa:

\[I_{\text{bat},\text{max}} = N_{\text{paralel}} I_{\text{bat}1} = 140 \text{ A}. \]

\[(117)\]

Nazivni napon baterijskog paketa:

\[U_{\text{bat}} = N_{\text{serijni}} U_{\text{bat}1} = 25,2 \text{ V}. \]

\[(118)\]

Maksimalna snaga baterijskog paketa:

\[P_{\text{bat}} = U_{\text{bat}} I_{\text{bat}} = 3,528 \text{ kW} >> P = 0,953 \text{ kW}. \]

\[(119)\]

Baterijski paket može isporučiti potrebnu snagu uređaju.

Maksimalna jakost struje pri radu uređaja:

\[I_{\text{ured}} = \frac{P}{U_{\text{bat}}} = 37,8 \text{ A}<< I_{\text{bat},\text{max}} = 140 \text{ A}. \]

\[(120)\]

Baterijski paket je višestruko ječi od potrebnog pa se zagrijavanje neće kontrolirati.

4.6. **Proračun konstrukcije**

4.6.1. **Kontrola naprezanja u gredi**

Greda mora preuzeti opterećenje izazvano udarom lopte i težinom komponenti. Odabrana je kvadratna cijev kao nosivi element. Dimenzije cijevi su (90x90) mm, debljine stjenke 3 mm. Materijal cijevi je 5754 AlMg3. Svojstva materijala su:

\[R_{p0,2} = 80 \text{ N/mm}^2, \]
\[E = 68000 \text{ N/mm}^2. \]
Dimenzije za proračun prema *cad* modelu su:

\[H_s = 800 \text{ mm}, \]
\[L_s = 700 \text{ mm}, \]
\[m_s = 9.8 \text{ kg}, \]
\[L_{G/2} = 1500 \text{ mm}. \]

Slika 68. Skica mehaničkog modela grede

Moment uvijanja uzrokovan udarom lopte iznosi:

\[M_{G,u} = F_{\text{udar}} H_s = 832000 \text{ Nmm}. \] \hspace{1cm} (121)

Sila \(F_{G,u} \) iznosi:

\[F_{G,u} = F_{\text{udar}} \approx 1040 \text{ N}. \] \hspace{1cm} (122)

Moment savijanja iznosi zbog udara lopte:

\[M_{G,s} = F_{G,u} L_{G/2} \approx 1560000 \text{ Nmm}. \] \hspace{1cm} (123)

Moment savijanja uslijed ovješenje mase iznosi:

\[M_{G,m} = mg (L_s + 2L_c) = 201890 \text{ Nmm}. \] \hspace{1cm} (124)

Ukupni moment savijanja:

\[M_s = \sqrt{M_{G,m}^2 + M_{G,s}^2} = 1569568 \text{ Nmm}. \] \hspace{1cm} (125)

Za odabrani kvadratni presjek vrijedi:

\[I_y = I_s, \quad I_z = I_2 \] \hspace{1cm} (126)
Možemo napisati:

\[I = \frac{a^4 - a^5}{12} \] \hspace{1cm} (127)

Ukupni moment savijanja je zarotiran u odnosu na glavne osi. Zato je potrebno odrediti kut rotacije i izračunati nove momente tromosti za zarotirani koordinatni sustav.

\[\varphi = \tan^{-1}\left(\frac{M_{\text{gs}}}{M_{\text{gm}}}\right) = 7,37^\circ \] \hspace{1cm} (128)

Aksijalni momenti tromosti za novi koordinatni sustav prema [39] uz uvrštavanje jednadžbe (126) i sređivanjem ne ovisi o kutu rotacije:

\[I_\varphi = I_x \cos^2(\varphi) + I_y \sin^2(\varphi) = I \left(\cos^2(\varphi) + \sin^2(\varphi)\right) = I \] \hspace{1cm} (129)

Naprezanje uslijed savijanja iznosi:

\[\sigma = \frac{M}{I} e = 54 \text{ N/mm}^2. \] \hspace{1cm} (130)

Naprezanje zbog uvijanja računa se prema izrazu preuzetom iz [38]. \(A_s \) je površina koju omeđuje srednja linija presjeka, a \(t \) je debljina stjene zatvorene koture.

\[\tau_s = \frac{M_{\text{gs}}}{2A_s t} = 18 \text{ N/mm}^2. \] \hspace{1cm} (131)

Ekvivalentno naprezanje prema teoriji najveće distorzijske energije iznosi:

\[\sigma_{\text{ekv}} = \sqrt{\sigma_\sigma^2 + 3\tau_s^2} = 62,35 \text{ N/mm}^2. \] \hspace{1cm} (132)

Faktor sigurnosti iznosi

\[S_\sigma = \frac{R_{\text{plu}}}{\sigma_{\text{ekv}}} = 1,28. \] \hspace{1cm} (133)
5. Prikaz 3D modela konačnog rješenja

Na slikama u nastavku prikazano je konstrukcijsko rješenje uređaja za simulaciju obrambenog zida izrađeno u programskom alatu SolidWorks 2018 (Dassault Systemes).

Slika 69. Uređaj za simulaciju obrambenog zida

Slika 70. Bokocrt uređaja, silueta igrača u donjem i gorenjem položaju

Slika 71. Kopčanje mehanizma za konstrukciju uređaja
Slika 72. Rastavljiva podupora

Slika 73. Moguće konfiguracije uređaja
6. ZAKLJUČAK

Na tržištu ne postoji sličan uređaj. Uređaj je primarno namijenjen klubovima i nogometnim školama. Svrha uređaja je školovanje mladih igrača te održavanje forme iskusnih igrača.

LITERATURA

[12] Analysis of Goal Scored on Russia World Cup 2018, Halil Orbay Çobanoğlu
Correspondence: Halil Orbay Çobanoğlu, Muzaffer Çil Anadolu High School, Ministry of National Education, Eskişehir, Turkey, 2019.

http://facta.junis.ni.ac.rs/pe/pe201303/pe201303-03.pdf

[19] Plyometric muscular action tests in judo- and non-judo athletes, Lu´is Fernandes Monteiroa,, Lu´is Miguel Massuc, Jos´e Garc´ıa Garca´e, Vicent Carratalad and Jorge Proenc, aFaculty of Physical Education and Sports, Lus´ofona University, Lisbon, Portugal, Valencia University, Valencia, Spain, 2011.

[21] Study of impact force on modern soccer balls, Asaka Koizumi, Sungchan Hong, Keiko Sakamoto, Ryota Sasaki, Takeshi Asai, University of Tsukuba, Japan, 2014,
http://www.ezentrumbilder.de/rg/pdf/td_en_Airex_C70.pdf, studeni. 2019

https://www.academia.edu/17743196/Theoretical_Study_of_the_Effect_of_Ball_Properties_on_Impact_Force_in_Soccer_Heading, studeni. 2019
Marian Balaško

Diplomski rad

[29] The Pultex Pultrusion design manual, 2004, Volume 5-Revision 9, Creative Pultrusiones

[33] Festio PARTdataMenager 11.00, Festo, siječanj 2020.

[38] Pustaić, Dragan; Tonković, Zdenko; Wolf, Hinko, Mehanika deformabilnih tijela: 2. Čvrstoća elemenata konstrukcija, Zagreb 2014.

PRILOZI

I. CD-R disc

II. Tehnička dokumentacija
Krunaste matice (DIN 937) nakon pritezanja osigurati rascjepkom DIN 94.