Unapređenje grednog konačnog elementa za analizu brodske konstrukcije

Palaversa, Marin

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:499826

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-25

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Marin Palaversa

Zagreb, siječanj 2015.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Student:

Doc. dr. sc. Pero Prebeg, dipl. ing.

Marin Palaversa

Zagreb, siječanj 2015.

Izjavljujem da sam ovaj rad izradio samostalno uz pomoć znanja stečenih tijekom studija i navedene literature.

Zahvaljujem se mentoru doc. dr. sc. Peri Prebegu te prof. dr. sc. Vedranu Žaniću od kojeg je i potekla glavna ideja ovog diplomskog rada.

Na kraju diplomskog studija se zahvaljujem i Hrvatskom registru brodova (HRB) koji me stipendirao za vrijeme trjanja studija te time omogućio njegov lakši i uspješniji završetak.

Marin Palaversa

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne i diplomske ispite studija brodogradnje

Sveuč	ilište u Zagrebu
Fakultet stro	jarstva i brodogradnje
Datum	Prilog
Klasa:	
Ur.broj:	

Mat. br.: 0035162907

DIPLOMSKI ZADATAK

Student:

Marin Palaversa

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku: Opis zadatka:

UNAPREĐENJE GREDNOG KONAČNOG ELEMENTA ZA ANALIZU BRODSKE KONSTRUKCIJE IMPROVEMENT OF BEAM FINITE ELEMENT FOR SHIP STRUCTURAL ANALYSIS

U radu je potrebno istražiti mogućnost povećanja točnosti analize odziva brodske konstrukcije modelirane pločama i grednim konačnim elementima. Dosad provedena istraživanja su pokazala da formulacije grednog konačnog elementa koje se standardno koriste u komercijalnim aplikacijama za analizu linearnog statičkog odziva brodske konstrukcije (npr. MAESTRO) imaju određene nedostatke glede točnosti *i/ili* jednostavnosti korištenja. U radu će se izvesti konačni element proširene ekscentrične grede koji će se potom integrirati u program za analizu 2D sklopova brodske konstrukcije BIFEM/PLO2X. Primjenjivost i točnost navedene formulacije ispitat će se kroz nekoliko prikladnih primjera.

Zadatak obuhvaća slijedeće korake:

- 1. Prikaz i obradu standardno korištenih formulacija grednog konačnog elemenata za analizu linearnog statičkog odziva 2D sklopova.
- 2. Izvod proširene (korigirane) formulacije ekscentričnog grednog konačnog elementa.
- Upoznavanje i opis mogućnosti programa za analizu 2D sklopova brodske konstrukcije BIFEM/PLO2X.
- 4. Programiranje i ugradnju izvedenog konačnog elementa u program BIFEM/PLO2X.
- 5. Usporedbu rezultata proračuna odziva s korigiranim i nekorigiranim formulacijama na prikladnim primjerima.

U radu koristiti programe BIFEM/ PLO2X i MAESTRO, dostupne na FSB-u.

Zadatak zadan: 13. studenog 2014. Rok predaje rada: 15. siječnja 2015.

Predviđeni datumi obrane:

21., 22. i 23. siječnja 2015.

Predsjednica Povjerenstva: Naiha Syrich Prof. dr. sc. Nastra Degiuli

Zadatak zadao: Doc. dr. sc. Por Prebeg

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA	II
POPIS TABLICA	.IV
POPIS OZNAKA	.VI
SAŽETAK	VII
SUMMARY	/III
1. UVOD	1
2. PREGLED FORMULACIJA GREDNOG KONAČNOG ELEMENTA ZA ANALIZU LINEARNOG STATIČKOG ODZIVA	3
 2.1. Uvod 2.2. Hibridni gredni konačni element 2.3. Obični ekscentrični gredni konačni element 2.4. Modificirani ekscentrični gredni konačni element 	3 7 7 . 10
3. PRORAČUN ODZIVA KONSTRUKCIJE – OPIS MODELA I REZULTATI	. 12
 3.1. Opis ispitne konstrukcije i proračunskih modela 3.2. Rezultati proračuna odziva "finim modelom" 3.3. Rezultati proračuna odziva "grubim modelom" 	. 12 . 15 . 19
4. ANALIZA REZULTATA PRORAČUNA ODZIVA KONSTRUKCIJE EKSCENTRIČNIM GREDNIM KONAČNIM ELEMENTIMA I PREDLOŽENA POBOLJŠANJA	. 21
4.1. Analiza rezultata proračuna	. 21
4.2. Poboljšanje običnog ekscentričnog grednog konačnog elementa	. 22
 OPIS PROGRAMA BIFEM/PLO2X I UGRADNJA MODIFICIRANOG EKSCENTRIČNOG GREDNOG KONAČNOG ELEMENTA 	. 29
5.1. Opis i mogućnosti programa BIFEM/PLO2X	. 29
 5.2. Ljuskasti element ugrađen u PLO2X 5.3. Gredni element ugrađen u PLO2X i mogućnosti novog PLO2X 	. 30
6 ZAKLIUČAK	36
	38
DODATAK 1 – PRORAČUN ODZIVA ISPITNE KONSTRUKCIJE U MathCAD-u	. 50

Slika 1.	Model dijela paralelnog srednjaka broda za prijevoz putnika i vozila (lijevo) i presiek uzduž jedne palube (desno) prema [1]
Slika 2: Gi	redni konačni element s prikazanim stupnjevima slobode i čvornim silama u
Slika 3: Gi Slika 4: Ra	redni konačni element s ekscentricitetom
Slika 5.	ekscentričnog grednog konačnog elementa
Slika 7.	"Fini model" u MAESTRO-u s prikazanim štapnim elementima za određivanje aksijalnih naprezanja
Slika 8. Slika 9.	Slučajevi opterećenja ispitne konstrukcije
Slika 10.	Grafički prikaz naprezanja σ_x duž grede s prikazanim interpolacijskim funkcijama za slučaj opterećenja 1
Slika 11.	Grafički prikaz aksijalnih pomaka <i>u</i> duž grede s prikazanim interpolacijskim funkcijama za slučaj opterećenja 2
Slika 12.	Grafički prikaz naprezanja σ_x duž grede s prikazanim interpolacijskim funkcijama za slučaj opterećenja 2
Slika 13.	Grafički prikaz aksijalnih pomaka <i>u</i> duž grede s prikazanim interpolacijskim funkcijama za slučaj opterećenja 3
Slika 14.	Grafički prikaz naprezanja σ_x duž grede s prikazanim interpolacijskim funkcijama za slučaj opterećenja 3
Slika 15.	Distribucija naprezanja σ_x za slučaj opterećenja 1 dobivena finim modelom i grubim modelom s ekscentričnim grednim elementima 20
Slika 16.	Distribucija naprezanja σ_x za slučaj opterećenja 2 dobivena finim modelom i grubim modelom s ekscentričnim grednim elementima 20
Slika 17.	Distribucija naprezanja σ_x za slučaj opterećenja 1 dobivena finim modelom i grubim modelom s ekseentričnim gradnim elementima
Slika 18. Slika 19	Funkcije oblika štapnog elementa s tri čvora
Slika 20	elementom s tri čvora
Slike 21	elementom s tri čvora
	elementom s tri čvora
Slika 22.	Naprezanja σ_x duz konstrukcije dobivena "finim modelom" i izracunata stapnim elementom s tri čvora
Slika 23. Slika 24.	Primjer ulazne datoteke za PLO2
Slika 25. Slika 26.	Primjer izlazne datoteke programa PLO2X s prikazanim rezultatima proračuna. 33 Primjer dijela programskog kôda PLO2X pisanog programskim jezikom Fortran koji prikazuje matricu krutosti modificiranog ekscentričnog grednog konačnog elementa

Fakultet strojarstva i brodogradnje

POPIS TABLICA

Tablica 1.	Dimenzije ispitne konstrukcije
Tablica 2.	Vrijednosti aksijalnog pomaka <i>u</i> duž ispitne konstrukcije za slučaj opterećenja 1
Tablica 3.	Vrijednosti aksijalnog pomaka <i>u</i> duž ispitne konstrukcije za slučaj opterećenja 2 16
Tablica 4.	Vrijednosti naprezanja σ_x duž ispitne konstrukcije za slučaj opterećenja 1 17
Tablica 5.	Vrijednosti naprezanja σ_x duž ispitne konstrukcije za slučaj opterećenja 2 17
Tablica 6.	Vrijednosti naprezanja σ_x duž ispitne konstrukcije za slučaj opterećenja 3 17
Tablica 7.	Vrijednosti aksijalnog pomaka <i>u</i> duž ispitne konstrukcije za slučaj opterećenja 3
Tablica 8.	Vrijednosti pomaka u_2 i v_2 , kuta zakreta Θ_2 te naprezanja σ_x kod proračuna
	grubim modelom s prikazanim odstupanjima u odnosu na fini model za slučaj opterećenja 1
Tablica 9.	Vrijednosti pomaka u_2 i v_2 , kuta zakreta Θ_2 te naprezanja σ_x kod proračuna
	grubim modelom s prikazanim odstupanjima u odnosu na fini model za slučaj opterećenja 2
Tablica 10.	Vrijednosti pomaka u_2 i v_2 , kuta zakreta \mathcal{O}_2 te naprezanja \mathcal{O}_x kod proračuna
	grubim modelom s prikazanim odstupanjima u odnosu na fini model za slučaj opterećenja 3
Tablica 11.	Vrijednosti naprezanja σ_x kod proračuna grubim modelom i poboljšanim običnim
	ekscentričnim grednim konačnim elementom za sve slučajeve opterećenja22
Tablica 12.	Vrijednosti pomaka u_x duž konstrukcije kod proračuna štapnim elementom s tri
Tablica 13.	čvora
m 111 44	tri čvora
Tablica 14.	Vrijednosti pomaka u_x duž konstrukcije kod proračuna štapnim elementom s tri čvora
Tablica 15.	Vrijednosti naprezanja σ_x duž konstrukcije kod proračuna štapnim elementom s
	tri čvora

Diplomski rad

POPIS DODATAKA

DODATAK 1 – PRORAČUN ODZIVA ISPITNE KONSTRUKCIJE U MathCAD-u

POPIS OZNAKA

Oznaka	Jedinica	Opis
Α	m^2 , mm^2	površina poprečnog presjeka grednog nosača
$[B_u], [B_v]$		matrica ovisnosti deformacije u elementu i pomaka u čvorovima
<i>a</i> , <i>b</i>	m, mm	stranica u smjeru osi x i y membranskog, pločastog i ljuskastog konačnog elementa
$\{C_u\}, \{C_v\}$		vektor koeficijenata uz nepoznanice interpolacijskog polinoma pomaka štapnog i grednog konačnog elementa
$[D_e]$		konstitutivni operator
$[D_k]$		diferencijalni operator
Ε	N/mm ²	Youngov modul elastičnosti
F_{x}	Ν	sila u smjeru osi x
F_y	Ν	sila u smjeru osi y
$[H_u], [H_v]$		matrica nepoznanica u interpolacijskom polinomu pomaka štapnog i grednog konačnog elementa
I_x, I_y, I_z	m^4 , mm^4	momenti inercije poprečnog presjeka oko osi x, y i z
[K]		matrica krutosti konačnog elementa
$[K_{\rm s}]$		matrica koja sadrži članove uz čvorne pomake (stupnjeve
I		slobode) kod proračuna čvornih sila
	III, IIIII Nm Nmm	momenti oko osi v vi z
N	N	unutrašnia sila u smjeru osi x
$[N_{n}]$, $[N_{n}]$	11	funkcije oblika štapnog i grednog konačnog elementa
Q_{v}, Q_{z}	Ν	unutrašnja sila u smjeru osi y i z
$[T], [T_k]$		matrica transformacije grednog konačnog elementa
t	m, mm	debljina (dimenzija u smjeru osi z) membranskog, pločastog i ljuskastog konačnog elementa
<i>u</i> , <i>v</i> , <i>w</i>	m, mm	stupnjevi slobode (pomaci) u smjeru osi x, y i z
β		omjer stranica membranskog, pločastog i ljuskastog konačnog elementa
$\{\delta_u\}, \{\delta_v\}$		vektor poopćenih pomaka štapnog i grednog konačnog elementa
$\mathcal{E}_{\mathcal{X}}$		duljinska deformacija u smjeru osi x
$\Theta_x, \ \Theta_y, \ \Theta_z$	rad	kutovi zakreta (stupnjevi slobode) poprečnog presjeka oko osi x, y i z
ν		Poissonov koeficijent
σ , σ_x	N/mm ²	normalna komponenta naprezanje u smjeru osi x

SAŽETAK

U radu su opisane formulacije grednog konačnog elementa: hibridna, obična ekscentrična i modificirana ekscentrična koje se najčešće upotrebljavaju u analizi odziva brodskih konstrukcija. Ispitana je njihova točnost kod proračuna čvornih pomaka i normalnog aksijalnog naprezanja u odnosu na model s finom mrežom te je dana i njihova međusobna usporedba. Uočeni su problemi kod proračuna unutrašnje aksijalne sile i s njom povezanih naprezanja kod običnog ekscentričnog grednog elementa te je predložena korekcija. Izveđen je i gredni konačni element sa sedam stupnjeva slobode te su pokazani njegovi nedostaci. Na kraju rada je opisan još i ljuskasti element koji je, uz modificirani ekscentrični gredni konačni element, ugrađen u program PLO2X te je prikazan detaljni proračun čvornih pomaka, unutrašnjih sila i naprezanja za promatranu konstrukciju.

Ključne riječi: čvrstoća broda; metoda konačnih elemenata; gredni konačni element; hibridni gredni element; ekscentrični gredni element; modificirani ekscentrični gredni element; PLO2

SUMMARY

Hybrid, native eccentric and modified eccentric beam finite element formulations, most commonly employed in the analysis of the strength of ship structures, are described and discussed in this work. Their accuracy in terms of the nodal displacements and normal axial stresses is tested against a fine mesh model and they are also compared to each other. Existence of error in calculation of internal axial force and related stresses when native eccentric beam element is used was demonstrated and certain correction is proposed. A seven-degrees-of-freedom element is presented as well as the negative aspects of its use. At the end shell element implemented in PLO2X software together with modified eccentric beam element is described as well as detailed calculation of nodal degrees of freedom, internal forces and stresses for structure considered in this work.

Key words: strength of ship structures; finite element method; beam finite element; hybrid beam element; eccentric beam element; modified eccentric beam element; PLO2

1. UVOD

Da bi bilo koji predmet plutao na površini neke tekućine, potrebno je da gustoća samog predmeta bude manja od gustoće okolne tekućine. Kod plovnih objekata to se postiže odvajanjem dijela volumena od tekućine koja se nalazi oko njega čemu služi brodska oplata. Međutim kada bi se trup broda izradio samo od limova različitih dimenzija bez sustava ukrepljenja, tada bi bilo moguće graditi jedino brodove manjih dimenzija koji bi uz to imali i relativno veliku masu konstrukcije u odnosu na masu cijelog broda s teretom ili bi došlo do velikih deformacija i na kraju kolapsa cijele konstrukcije. Iz tog razloga se brodska oplata ukrepljuje sustavom većih i manjih nosača koji se, u slučaju gradnje metalnog broda, s njom spajaju zavarivanjem. Tako nastaje konstrukcija brodskog trupa, a slično se izrađuje i konstrukcija nadgrađa. Iz navedenog proizlazi da je temeljni odnos u čvrstoći brodskih konstrukcije metodom konačnih elemenata to je odnos između grednog i nekog ravninskog konačnog elementa kako se može vidjeti na modelu broda za prijevoz putnika i vozila (ropax) (Slika 1 – žuto i crveno su označeni gredni konačni elementi, a plavo ravninski).

Slika 1. Model dijela paralelnog srednjaka broda za prijevoz putnika i vozila (lijevo) i presjek uzduž jedne palube (desno) [1]

U procesu izrade roštilja brodske konstrukcije ukrepe su duž jednog ruba spojene (obično zavarene kod metalnih brodova) s limovima koji su postavljeni okomito na njih. Iz tog razloga se težište ukrepe najčešće ne nalazi na njenom spoju s opločenjem već je udaljeno za neku vrijednost *e* od njega. Kod savijanja se pak ukrepa savija zajedno s dijelom opločenja za koje je zavarena te je neutralna linija tipično negdje između spoja ukrepe s opločenjem i težišta

samog ukrepe (na nekoj udaljenosti manjoj od *e* od spoja ukrepe s opločenjem). Kada bi se željelo točno modelirati ovaj odnos, trebalo bi poznavati položaj neutralne linije u svakom razmatranom slučaju opterećenja, a to uključuje poznavanje točnog poprečnog presjeka dijela konstrukcije koji sudjeluje u savijanju (ukrepa i dio opločenja za koje je zavarena). Veličina koja to omogućuje naziva se sunosiva širina i može se izračunati na više načina (u brodograđevnoj praksi najčešće prema pravilima klasifikacijskih društava). Ona ovisi o vrsti i distribuciji opterećenja te načinu učvršćenja krajeva. Pošto su različite ukrepe u brodskoj konstrukcije moralo izračunati čitav niz sunosivih širina te ih unositi u proračunski model. Gredni konačni element koji ovo omogućuje naziva se hibridni element i opisan je u potpoglavlju 2.2, a detaljnije u [3].

Ako se želi izbjeći određivanje sunosive širine te time olakšati i ubrzati proces proračuna odziva brodske konstrukcije, onda se gubi mogućnost izravnog određivanja položaja neutralne linije oko koje se stvarno događa savijanje. Elementi koji nemaju tu mogućnost, ali zato ubrzavaju i olakšavaju proračun nazivaju se ekscentrični gredni konačni elementi. Problem kod upotrebe ovih elemenata je što oni neutralnu liniju fiktivno smještaju u svoje vlastito težište (obični ekscentrični gredni konačni element) ili na mjesto spoja opločenja i ukrepe (modificirani ekscentrični konačni element) te su zbog toga skloniji pogrešnom izračunu odziva. Ipak, kako je pokazano u [1], kod proračuna mrežom konačnih elemenata standardne gustoće, moguće je dobiti dovoljno točne rezultate posebno u smislu normalnih naprezanja u gornjem (vlastitom) pojasu ukrepe. U donjem pojasu (pripadajućem opločenju) ti su rezultati redovito manje točni.

U nastavku ovog rada se razmatra distribucija aksijalnih pomaka i s njima povezanih naprezanja upravo u donjem pojasu odnosno duž spoja grednog elementa s elementima ljuske kojima je modelirano pripadajuće opločenje. Pokazat će se da su rezultati proračuna najmanje točni za slučaj u kojem je konstrukcija opterećena vertikalnom silom i to zbog neadekvatne funkcije oblika koja opisuje aksijalne pomake kao i problemi koji se javljaju kod upotrebe elemenata s funkcijama oblika višeg reda. Od dva razmatrana ekscentrična gredna konačna elementa vidjet će se da modificirani ekscentrični gredni konačni element pokazuje bolje ponašanje kao što je utvrđeno i u [1] i [6] zbog čega je ugrađen u program PLO2X.

2. PREGLED FORMULACIJA GREDNOG KONAČNOG ELEMENTA ZA ANALIZU LINEARNOG STATIČKOG ODZIVA

2.1. Uvod

Kako je napisano u prethodnom poglavlju, u ovom radu se razmatraju gredni konačni elementi kojima se modeliraju ukrepe spojene na brodsku oplatu. Ovi konačni elementi imaju tri stupnja slobode u svakom čvoru: jedan translacijski u smjeru osi x (u), jedan translacijski u smjeru osi y (v) te jedan rotacijski oko osi z (Θ) kojima odgovaraju vanjska uzdužna sila F_x (unutrašnja \mathcal{N}), poprečna F_y (unutrašnja Q_y) te moment savijanja M_z (unutrašnji \mathcal{M}_z). Stupnjevi slobode s odgovarajućim komponentama opterećenja prikazani su u koordinatnom sustavu (Slika 2) kojem os x prolazi kroz težište elementa, a ishodište se nalazi u prvom čvoru.

Slika 2: Gredni konačni element s prikazanim stupnjevima slobode i čvornim silama u definiranim koordinatnim sustavom

Prikazani gredni konačni element može se dobiti kombinacijom grednog konačnog elementa s dva stupnja slobode u čvorovima (v i Θ) te štapnog elementa s jednim stupnjem slobode u čvorovima (u). U nastavku će biti prikazan izvod oba elementa.

Pošto gredni konačni element s dva stupnja slobode u svakom čvoru ima ukupno četiri stupnja slobode (za element s dva čvora), može se interpolirati polinomom trećeg stupnja:

$$v(x) = B_0 + B_1 x + B_2 x^2 + B_3 x^3 \tag{1}$$

što se u matričnom obliku zapisuje kao

$$v(x) = [H_v(x)] \cdot \{C_v\} = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \begin{cases} B_0 \\ B_1 \\ B_2 \\ B_3 \end{cases}$$
(2)

Prema grednoj teoriji Eulera i Bernoullija (vidjeti npr. [2]) kut zakreta poprečnog presjeka (Θ) predstavlja prvu derivaciju vertikalnog pomaka (v) pa se vektor poopćenih čvornih pomaka δ_v može pisati kao

(3)

$$\delta_{\nu}(x) = \begin{cases} \nu(x) \\ \nu'(x) \end{cases} = \begin{bmatrix} 1 & x & x^2 & x^3 \\ 0 & 1 & 2x & 3x^2 \end{bmatrix} \begin{cases} B_0 \\ B_1 \\ B_2 \\ B_3 \end{cases}$$

Sada se mogu uvrstiti rubni uvjeti:

- čvor 1 je u x = 0 gdje vrijedi $v = v_1$ i $v' = v'_1 = \Theta_1$ pa se dobiva

$$v_1 = B_0 \tag{4}$$

$$v'_1 = \theta_1 = B_1$$

- čvor 2 je u
$$x = L$$
 gdje vrijedi $v = v_2$ i $v' = v'_2 = \Theta_2$ te se dobiva

$$v_{2} = B_{0} + B_{1}L + B_{2}L^{2} + B_{3}L^{3}$$

$$v_{2}' = \theta_{2} = B_{1} + 2L \cdot B_{2} + 3L^{2} \cdot B_{3}$$
(5)

Gronji odnosi se u matričnom obliku mogu zapisati kao:

$$\begin{cases} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \end{cases} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & L & L^2 & L^3 \\ 0 & 1 & 2L & 3L^2 \end{bmatrix} \begin{pmatrix} B_0 \\ B_1 \\ B_2 \\ B_3 \end{pmatrix}$$
(6)

odnosno

$$\{\delta_{\nu}\} = [A_{\nu}] \cdot \{C_{\nu}\} \Rightarrow \{C_{\nu}\} = [A_{\nu}]^{-1} \cdot \{\delta_{\nu}\}$$

$$\tag{7}$$

Uz

$$[A_{\nu}]^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{-3}{L^2} & \frac{-2}{L} & \frac{3}{L^2} & \frac{-1}{L} \\ \frac{2}{L^3} & \frac{1}{L^2} & \frac{-2}{L^3} & \frac{1}{L^2} \end{bmatrix}$$
(8)

te ako se (8) uvrsti u (7), a ovo u (2), dobiva se:

$$v(x) = [H_{v}(x)] \cdot [A_{v}]^{-1} \cdot \{\delta_{v}\} = [N_{v}(x)] \cdot \{\delta_{v}\}$$
(9)

Funkcija $N_v(x)$ se naziva funkcija oblika te opisuje distribuciju čvornih pomaka duž elementa. Za ovaj element se dobiju dobro poznati Hermiteovi polinomi:

$$[N_{\nu}(x)] = \left[1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3} \quad x \left(1 - \frac{2x}{L} + \frac{x^2}{L^2}\right) - \frac{x^2}{L^2} \left(\frac{2x}{L} - 3\right) \quad \frac{x^2}{L} \left(\frac{x}{L} - 1\right)\right]$$
(10)

Sada je potrebno uvesti konstitutivni $(D_{e,v})$ i diferencijalni $(D_{k,v})$ operator za savijanje:

$$\begin{bmatrix} D_{e,v} \end{bmatrix} = \begin{bmatrix} EI_z \end{bmatrix}$$

$$\begin{bmatrix} D_{k,v} \end{bmatrix} = \begin{bmatrix} \frac{d^2}{dx^2} \end{bmatrix}$$
(11)

pa se onda uz

Fakultet strojarstva i brodogradnje

$$[B_{\nu}(x)] = [D_{k,\nu}] \cdot [N_{\nu}(x)]$$
(12)

može izračunati matrica krutosti grednog konačnog elementa s dva stupnja slobode u čvorovima:

$$[K_{v}] = [D_{e,v}] \int_{0}^{L} [B_{v}]^{T} \cdot [B_{v}] \cdot dx = EI_{z} \begin{bmatrix} \frac{12}{L^{3}} & \frac{6}{L^{2}} & -\frac{12}{L^{3}} & \frac{6}{L^{2}} \\ \frac{6}{L^{2}} & \frac{4}{L} & -\frac{6}{L^{2}} & \frac{2}{L} \\ -\frac{12}{L^{3}} & -\frac{6}{L^{2}} & \frac{12}{L^{3}} & -\frac{6}{L^{2}} \\ \frac{6}{L^{2}} & \frac{2}{L} & -\frac{6}{L^{2}} & \frac{4}{L} \end{bmatrix}$$
(13)

Analognim razmatranjem se može odrediti i matrica krutosti štapnog elementa. Pošto taj element ima dva čvora i samo jedan stupanj slobode u svakom čvoru, za interpolaciju je dovoljan polinom prvog stupnja:

$$u(x) = A_0 + A_1 x \tag{14}$$

što se u matričnom obliku može napisati kao

$$u(x) = [H_u(x)] \cdot \{C_u\} = [1 \quad x] \begin{cases} A_0 \\ A_1 \end{cases}$$
(15)

Sada se mogu uvrstiti rubni uvjeti:

- čvor 1 je u x = 0 gdje vrijedi $u = u_1$ pa se dobiva

$$u_1 = A_0 \tag{16}$$

- čvor 2 je u x = L gdje vrijedi $u = u_2$ pa se dobiva

$$u_2 = A_0 + A_1 L (17)$$

odnosno u matričnom obliku:

te vrijedi

$$\{\delta_u\} = [A_u] \cdot \{C_u\} \Rightarrow \{C_u\} = [A_u]^{-1} \cdot \{\delta_u\}$$
⁽¹⁹⁾

Uz

$$[A_u]^{-1} = \begin{bmatrix} 1 & 0\\ -\frac{1}{L} & \frac{1}{L} \end{bmatrix}$$
(20)

te ako se (20) uvrsti u (19), a ovo u (15), može se pisati:

$$u(x) = [H_u(x)] \cdot [A_u]^{-1} \cdot \{\delta_u\} = [N_u(x)] \cdot \{\delta_u\}$$
(21)

Fakultet strojarstva i brodogradnje

Funkcija $N_u(x)$ se naziva funkcija oblika te opisuje distribuciju čvornih pomaka duž elementa:

$$[N_u(x)] = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix}$$
(22)

Sada je potrebno uvesti konstitutivni $(D_{e,u})$ i diferencijalni $(D_{k,u})$ operator za sabijanje/istezanje:

$$\begin{bmatrix} D_{e,u} \end{bmatrix} = \begin{bmatrix} AE \end{bmatrix}$$

$$\begin{bmatrix} D_{k,u} \end{bmatrix} = \begin{bmatrix} \frac{d}{dx} \end{bmatrix}$$
(23)

pa se onda uz

$$[B_u(x)] = [D_{k,u}] \cdot [N_u(x)]$$
(24)

može izračunati matrica krutosti štapnog konačnog elementa s jednim stupnjem slobode u čvorovima:

$$[K_{u}] = \begin{bmatrix} D_{e,u} \end{bmatrix} \int_{0}^{L} [B_{u}]^{T} \cdot [B_{u}] \cdot dx = AE \begin{bmatrix} \frac{1}{L} & -\frac{1}{L} \\ -\frac{1}{L} & \frac{1}{L} \end{bmatrix}$$
(25)

Na kraju se matrice (13) i (25) mogu proširiti potrebnim recima i stupcima pa se dobiva matrica krutosti grednog konačnog elementa sa stupnjevima slobode prikazanim na slici (Slika 2):

$$[K] = \begin{bmatrix} \frac{AE}{L} & 0 & 0 & -\frac{AE}{L} & 0 & 0\\ 0 & \frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} & 0 & -\frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} \\ 0 & \frac{6EI_z}{L^2} & \frac{4EI_z}{L} & 0 & -\frac{6EI_z}{L^2} & \frac{2EI_z}{L} \\ -\frac{AE}{L} & 0 & 0 & \frac{AE}{L} & 0 & 0 \\ 0 & -\frac{12EI_z}{L^3} & -\frac{6EI_z}{L^2} & 0 & \frac{12EI_z}{L^3} & -\frac{6EI_z}{L^2} \\ 0 & \frac{6EI_z}{L^2} & \frac{2EI_z}{L} & 0 & -\frac{6EI_z}{L^2} & \frac{4EI_z}{L} \end{bmatrix}$$
(26)

Odnos između čvornih sila i pomaka je kako slijedi:

$$\begin{cases} F_{x1} \\ F_{y1} \\ M_{z1} \\ F_{x2} \\ F_{y2} \\ M_{z2} \end{cases} = [K] \cdot \begin{cases} u_1 \\ v_1 \\ \theta_1 \\ u_2 \\ v_2 \\ \theta_2 \end{cases}$$
(27)

2.2. Hibridni gredni konačni element

Hibridni gredni konačni element nosi taj naziv zato što se površina poprečnog presjeka u aksijalnom članu matrice krutosti računa prema dimenzijama grednog elementa (samo ukrepa) dok se u proračunu momenta inercije poprečnog presjeka u obzir uzima i pripadajuće opločenje određene sunosive širine kako je objašnjeno u [1] i [3] pa matrica krutosti *[K]* ima oblik (28).

Ovaj gredni konačni element općenito daje dobre rezultate i pokazuje dobro ponašanje za različite vrste opterećenja međutim nedostatak mu je što je prije proračuna potrebno izračunati vrijednost sunosive širine (obično prema pravilima klasifikacijskih društava) koja ovisi o načinu opterećenja, rubnim uvjetima i sl. Pošto će se ovi podaci razlikovati za pojedine dijelove brodske konstrukcije koji se modeliraju grednim konačnim elementima (npr. rebrenice će općenito imati drugačiju sunosivu širinu od jakih uzdužnih nosača dna, a moguće i od sponja koje će se opet razlikovati od rebara i proveza), onda ovaj proračun koji se provodi prije same uporabe grednog konačnog elementa (jer mu je sunosiva širina ulazni podatak), može biti jako dugotrajan i zamoran. Upravo iz ovog razloga nastoji se upotrebljavati gredne konačne elemente s ekscentricitetom za koje nije potrebno prije provoditi proračun sunosive širine.

$$[K_{HYB}] = \begin{bmatrix} \frac{A_bE}{L} & 0 & 0 & -\frac{A_bE}{L} & 0 & 0 \\ 0 & \frac{12EI_{z,bp}}{L^3} & \frac{6EI_{z,bp}}{L^2} & 0 & -\frac{12EI_{z,bp}}{L^3} & \frac{6EI_{z,bp}}{L^2} \\ 0 & \frac{6EI_{z,bp}}{L^2} & \frac{4EI_{z,bp}}{L} & 0 & -\frac{6EI_{z,bp}}{L^2} & \frac{2EI_{z,bp}}{L} \\ -\frac{A_bE}{L} & 0 & 0 & \frac{A_bE}{L} & 0 & 0 \\ 0 & -\frac{12EI_{z,bp}}{L^3} & -\frac{6EI_{z,bp}}{L^2} & 0 & \frac{12EI_{z,bp}}{L^3} & -\frac{6EI_{z,bp}}{L^2} \\ 0 & \frac{6EI_{z,bp}}{L^2} & \frac{2EI_{z,bp}}{L} & 0 & -\frac{6EI_{z,bp}}{L^2} & \frac{4EI_{z,bp}}{L} \end{bmatrix}$$
(28)

U izrazu (28) se A_b (eng. b - beam) odnosi na površinu poprečnog presjeka grede, a $I_{z,bp}$ (eng. bp - beam i *plating*) na površinu "hibridnog" poprečnog presjeka grede i pripadajućeg opločenja određene sunosive širine kako je objašnjeno u [1] i [3].

2.3. Obični ekscentrični gredni konačni element

Obični ekscentrični gredni konačni element se tako naziva jer je njegovo težište pomaknuto u odnosu na čvorove (Slika 3) za neku vrijednost *e*. Naime, za razliku od hibridnog elementa kod kojeg se putem sunosive širine može odrediti težište "hibridnog" poprečnog presjeka koji sudjeluje u savijanju pa se onda u to težište postavljaju i čvorovi, kod ekscentričnog elementa to nije moguće (jer nema unosa sunosive širine) pa se moment inercije računa samo za poprečni presjek grede. Glavna prednost ovog elementa je što se izbjegava proračun sunosive širine te je

Fakultet strojarstva i brodogradnje

stoga s proračunom odziva moguće započeti odmah nakon definiranja modela. Kako bi se ilustrirali problemi koji nastaju kod primjene ovog grednog konačnog elementa, izvest će se njegova matrica krutosti.

U uvodu ovog poglavlja kod definicije koordinatnog sustava (Slika 2) u kojem je izveden element s matricom krutosti (26), bilo je pretpostavljeno da se os koja prolazi kroz težište elementa (težišna os) poklapa s osi koja prolazi kroz čvorove (čvorna os) odnosno da čvorovi elementa leže u težištu njegovog poprečnog presjeka. Kod ekscentričnog grednog konačnog elementa ova pretpostavka više ne vrijedi (Slika 3) pa je potrebno vidjeti kako ovo utječe na pojedine članove matrice krutosti u izrazu (26).

Slika 3: Gredni konačni element s ekscentricitetom [3]

Ovom problemu se može pristupiti tako da se koordinatni sustav (Slika 2) uzme kao lokalni koordinatni sustav u kojem je izvedena matrica (26), a drugi koordinatni sustav (Slika 3) kao globalni koordinatni sustav u koji je potrebno smjestiti prethodno izvedeni gredni konačni element. Tada će se nova matrica krutosti dobiti jednostavnim množenjem matrice krutosti (26) s matricom transformacije.

Da bi se dobila matrica transformacije, potrebno je odrediti odnose između "lokalnih" i "globalnih" pomaka. Može se vidjeti (Slika 4) da će globalnom pomaku U_1 odgovarati lokalni pomak u_1 koji je potrebno umanjiti za vrijednost $e \Theta_1$ uslijed zakreta do kojeg dolazi zbog ekscentričnosti težišne osi (x) u odnosu na čvornu os X. Matematički se to može zapisati ovako:

$$U_1 = u_1 - e \cdot \theta_1 \tag{29}$$

Isti odnos vrijedi i za drugi čvor. Ostali pomaci u globalnom koordinatnom sustavu odgovaraju pomacima u lokalnom jer im se osi y i z poklapaju pa dobivamo sljedeću matricu transformacije:

$$[T_{ECC}] = \begin{bmatrix} 1 & 0 & -e & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -e \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(30)

Slika 4: Razlika u aksijalnom pomaku u globalnom i lokalnom koordinatnom sustavu kod ekscentričnog grednog konačnog elementa

Sada se uz pomoć odnosa

$$[K_{ECC}] = [T_{ECC}]^T \cdot [K] \cdot [T]$$
(31)

može izračunati matrica krutosti običnog grednog konačnog elementa:

$$[K_{ECC}] = \begin{bmatrix} \frac{AE}{L} & 0 & -\frac{AE}{L} \cdot e & -\frac{AE}{L} & 0 & \frac{AE}{L} \cdot e \\ 0 & \frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} & 0 & -\frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} \\ -\frac{AE}{L} \cdot e & \frac{6EI_z}{L^2} & \frac{4EI_z}{L} + \frac{AE}{L} \cdot e^2 & \frac{AE}{L} \cdot e & -\frac{6EI_z}{L^2} & \frac{2EI_z}{L} - \frac{AE}{L} \cdot e^2 \\ -\frac{AE}{L} & 0 & \frac{AE}{L} \cdot e & \frac{AE}{L} & 0 & -\frac{AE}{L} \cdot e \\ 0 & -\frac{12EI_z}{L^3} & -\frac{6EI_z}{L^2} & 0 & \frac{12EI_z}{L^3} & -\frac{6EI_z}{L^2} \\ \frac{AE}{L} \cdot e & \frac{6EI_z}{L^2} & \frac{2EI_z}{L} - \frac{AE}{L} \cdot e^2 & -\frac{AE}{L} \cdot e & -\frac{6EI_z}{L^2} & \frac{4EI_z}{L} + \frac{AE}{L} \cdot e^2 \end{bmatrix}$$
(32)

Za navedeni element matrica koja povezuje unutrašnje sile i pomake glasi:

$$[K_{S,ECC}] = \begin{bmatrix} -\frac{AE}{L} & 0 & \frac{AE}{L} \cdot e & \frac{AE}{L} & 0 & -\frac{AE}{L} \cdot e \\ 0 & \frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} & 0 & -\frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} \\ \frac{AE}{L} \cdot e & -\frac{6EI_z}{L^2} & -\frac{4EI_z}{L} - \frac{AE}{L} \cdot e^2 & -\frac{AE}{L} \cdot e & \frac{6EI_z}{L^2} & -\frac{2EI_z}{L} + \frac{AE}{L} \cdot e^2 \\ -\frac{AE}{L} & 0 & \frac{AE}{L} \cdot e & \frac{AE}{L} & 0 & -\frac{AE}{L} \cdot e \\ 0 & \frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} & 0 & -\frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} \\ \frac{AE}{L} \cdot e & \frac{6EI_z}{L^2} & \frac{2EI_z}{L} - \frac{AE}{L} \cdot e^2 & -\frac{AE}{L} \cdot e & -\frac{6EI_z}{L^2} & \frac{4EI_z}{L} + \frac{AE}{L} \cdot e^2 \end{bmatrix}$$
(33)

Ako usporedimo matrice (32) i (26) možemo uočiti:

- članovi (1,3), (1,6), (4,3) i (4,6) u matrici (32) su različiti od 0 što znači da će se uslijed zakretanja poprečnog presjeka pojaviti dodatna komponenta aksijalne sile. To također znači da savijanje više nije nepovezano sa sabijanjem/istezanjem.
- članovi (3,1), (3,4), (6,1) i (6,4) u matrici (32) su različiti od 0 što znači da će aksijalni pomak dovesti do pojave dodatne komponente momenta savijanja čime savijanje i istezanje/sabijanje postaju povezani
- 3. članovi (3,3), (3,6), (6,3) i (6,6) u matrici (32) imaju dodatak uslijed djelovanja aksijalne sile $\frac{AE}{I} \cdot e$ na udaljenosti e od težišne osi

Ovi dodatni članovi u matrici krutosti će dovesti do pogrešaka kod upotrebe običnog ekscentričnog grednog elementa što je prepoznato i u literaturi ([3], [4], [5]).

2.4. Modificirani ekscentrični gredni konačni element

Zbog problema koji se mogu očekivati kod upotrebe običnog ekscentričnog grednog konačnog elementa (zbog dodatnih članova u matrici krutosti) kako je opisano u prethodnom potpoglavlju te kako će biti pokazano u sljedećem poglavlju, prišlo se izvođenju boljeg konačnog elementa. Jedni od prvih pokušaja bili su uvođenjem dodatnog čvora (u sredini elementa) zbog čega je bilo moguće dobiti štapni element s kvadratnom funkcijom oblika ([5]), ali taj se element nije pokazao znatno boljim od prethodno opisanog. Mnogo uspješnijim se pokazao element koji će se opisati u nastavku (detaljan izvod se može pronaći u[6]).

U prethodno opisanom elementu kod proračuna aksijalne krutosti upotrebljavala se površina poprečnog presjeka grede (*A*) te moment inercije istog poprečnog presjeka oko osi koja prolazi kroz njegovo težište. Zbog ekscentrično postavljene težišne osi u odnosu na čvorove (čvornu os), dobivaju se dodatni članovi u matrici krutosti, a, kako je prikazano u poglavlju 3, i loši

rezultate proračuna naprezanja (jer se kod savijanja stvarna neutralna linija obično nalazi znatno pomaknuta prema čvornoj osi u odnosu na težišnu os). Bolji rezultati se mogu dobiti ako se moment inercije računa oko čvorne osi. Tada matrica krutosti novog elementa postaje vrlo slična matrici krutosti hibridnog grednog konačnog elementa, ali bez potrebe prethodnog računanja sunosive širine.

Matrica krutosti modificiranog grednog konačnog elementa:

$$[K_{MODECC}] = \begin{bmatrix} \frac{AE}{L} & 0 & -\frac{AE}{L} \cdot e & -\frac{AE}{L} & 0 & \frac{AE}{L} \cdot e \\ 0 & \frac{12EI_{z0}}{L^3} & \frac{6EI_{z0}}{L^2} & 0 & -\frac{12EI_{z0}}{L^3} & \frac{6EI_{z0}}{L^2} \\ -\frac{AE}{L} \cdot e & \frac{6EI_{z0}}{L^2} & \frac{4EI_{z0}}{L} & \frac{AE}{L} \cdot e & -\frac{6EI_{z0}}{L^2} & \frac{2EI_{z0}}{L} \\ 0 & -\frac{AE}{L} & 0 & \frac{AE}{L} \cdot e & \frac{AE}{L} & 0 & -\frac{AE}{L} \cdot e \\ 0 & -\frac{12EI_{z1}}{L^3} & -\frac{6EI_{z0}}{L^2} & 0 & \frac{12EI_{z0}}{L^3} & -\frac{6EI_{z0}}{L^2} \\ \frac{AE}{L} \cdot e & \frac{6EI_{z0}}{L^2} & \frac{2EI_{z0}}{L} & -\frac{AE}{L} \cdot e & -\frac{6EI_{z0}}{L^2} & \frac{4EI_{z0}}{L} \end{bmatrix} \end{bmatrix}$$
(34)

gdje je I_{z0} moment inercije poprečnog presjeka grede oko čvorne osi te iznosi:

$$I_{z0} = I_z + A \cdot e^2 \tag{35}$$

Kod proračuna matrice koja povezuje unutrašnje sile i pomake napravljena je još jedna korekcija kako bi se uklonila povezanost savijanja i sabijanja/istezanja pa su tako sada članovi matrice (36) (1,3), (1,6), (3,1), (3,4), (6,1) i (6,4) jednaki 0. Matrica tada glasi:

$$[K_{S,MODECC}] = \begin{bmatrix} -\frac{AE}{L} & 0 & 0 & \frac{AE}{L} & 0 & 0 \\ 0 & \frac{12EI_{z0}}{L^3} & \frac{6EI_{z0}}{L^2} & 0 & -\frac{12EI_{z0}}{L^3} & \frac{6EI_{z0}}{L^2} \\ 0 & -\frac{6EI_{z0}}{L^2} & -\frac{4EI_{z0}}{L} & 0 & \frac{6EI_{z0}}{L^2} & -\frac{2EI_{z0}}{L} \\ -\frac{AE}{L} & 0 & 0 & \frac{AE}{L} & 0 & 0 \\ 0 & \frac{12EI_{z0}}{L^3} & \frac{6EI_{z0}}{L^2} & 0 & -\frac{12EI_{z0}}{L^3} & \frac{6EI_{z0}}{L^2} \\ 0 & -\frac{6EI_{z0}}{L^2} & \frac{2EI_{z0}}{L} & 0 & -\frac{6EI_{z0}}{L^2} & \frac{4EI_{z0}}{L} \end{bmatrix}$$
(36)

Od ovog elementa se može očekivati da bude nešto krući zbog momenta inercije uvećanog za Steinerov dodatak, ali kod proračuna naprezanja to bi trebalo iščeznuti. Naime, kod ovog elementa se neutralna linija (fiktivno) nalazi u čvornoj osi što nije realno (u stvarnosti će se nalaziti iznad čvorne osi) pa će to dijelom korigirati nešto veću vrijednost momenta inercije.

3. PRORAČUN ODZIVA KONSTRUKCIJE – OPIS MODELA I REZULTATI

3.1. Opis ispitne konstrukcije i proračunskih modela

Ispitna konstrukcija je tipična tankostjena konstrukcija koja se najčešće susreće kao dio stvarnih brodskih konstrukcija i za čiji odziv je dominantan odnos između ukrepe i pripadajućeg opločenja. Prikazana je s koordinatnim sustavom na slikama (Slika 5 i Slika 6), a dimenzije su joj prikazane u tablici (Tablica 1).

Slika 5. Ispitna konstrukcija s prikazanim koordinatnim sustavom

Slika 6. Ispitna konstrukcija s označenim dimenzija

Materijal od kojeg je konstrukcija izrađena je čelik modula elastičnosti $E = 210000 \text{ N/mm}^2$ i Poissonova keoficijenta $\nu = 0.3$.

Prema opisanoj ispitnoj konstrukciji izrađena su dva modela: model s velikom gustoćom mreže konačnih elemenata ("fini model") i model u kojem je konstrukcija modelirana samo s jednim grednim konačnim elementom i dva konačna elementa ljuske ("grubi model").

Tablica 1. Dimenzije ispitne	konstrukcije
Duljina (<i>L</i>)	1000 mm
Širina opločenja (<i>b</i> _d)	300 mm
Debljina opločenja (t _d)	5 mm
Visina struka T-profila (<i>h</i> _s)	100 mm
Širina struka T-profila (ts)	10 mm
Širina gornjeg pojasa T-profila (b_g)	80 mm
Debljina gornjeg pojasa T-profila (t_g)	8 mm

"Fini model"

Ovaj model je izrađen u MAESTRO-u (Slika 7) te su upotrebljeni dostupni ljuskasti elementi. Kako se može vidjeti na slici, postavljeni su štapni elementi jako male površine poprečnog presjeka (da ne utječu na ukupnu čvrstoću konstrukcije) kako bi se izmjerilo aksijalno naprezanje na sljedećim mjestima:

- spoju T-ukrepe i opločenja (*SigX*_{plate})
- blizu težišta ukupnog ("hibridnog") poprečnog presjeka (*SigX*_{bp})
- blizu težišta poprečnog presjeka T-ukrepe bez opločenja (*SigX_b*) _
- na vrhu gornjeg pojasa T-ukrepe ($SigX_{top}$) _

Slika 7. "Fini model" u MAESTRO-u s prikazanim štapnim elementima za određivanje aksijalnih naprezanja

Ovaj model će nam poslužiti kao osnova za procjenu točnosti pojedinih formulacija grednog konačnog elementa.

"Grubi model"

Grubi model je modeliran jednim grednim konačnim elementom (dimenzija T-ukrepe) i dva elementa ljuske (po jedan sa svake strane grednog elementa). Ovaj model je prvo izrađen u MathCAD-u nakon čega je najtočnija formulacija ugrađena i u BIFEM/PLO2X. Slijed proračuna u MathCAD-u prikazan je u dodatku 1, a rezultati proračuna u PLO2X u poglavlju 5.

Rubni uvjeti i slučajevi opterećenja

Definirana su tri slučaja opterećenja:

- 1. slučaj opterećenja: sila $F_y = -10000$ N u x = 1000 mm (Slika 8a)
- 2. slučaj opterećenja: sila F_x = -100000 N u x = 1000 mm (Slika 8b)
- 3. slučaj opterećenja: moment M_z = -1000000 Nmm u x = 1000 mm (Slika 8c)

Rubni uvjeti:

• u svim čvorovima u x = 0 spriječeni su svi translacijski i rotacijski pomaci (uklještenje)

c) slučaj opterećenja 3

Slika 8. Slučajevi opterećenja ispitne konstrukcije

3.2. Rezultati proračuna odziva "finim modelom"

U ovom potpoglavlju će biti prikazani rezultati proračuna prethodno opisanim finim modelom za sva tri slučaja opterećenja. Prvo će se prikazati rezultati proračuna aksijalnog pomaka u, a nakon toga i aksijalnog naprezanja σ_x .

Slučaj opterećenja 1														
x [mm]	0	125	250	375	500	625	750	875	1000					
u _{plate} [mm]	0,00E+00	-3,90E-02	-7,16E-02	-9,85E-02	-1,20E-01	-1,37E-01	-1,49E-01	-1,55E-01	-1,53E-01					
u _{bp} [mm]	0,00E+00	-5,58E-04	-2,04E-04	4,29E-04	1,09E-03	1,67E-03	2,22E-03	3,12E-03	5,41E-03					
u _b [mm]	0,00E+00	3,78E-02	7,12E-02	9,93E-02	1,22E-01	1,40E-01	1,53E-01	1,61E-01	1,61E-01					
u _{top} [mm]	0,00E+00	6,40E-02	1,19E-01	1,66E-01	2,04E-01	2,34E-01	2,55E-01	2,67E-01	2,70E-01					

Tablica 2. Vrijednosti aksijalnog pomaka u duž ispitne konstrukcije za slučaj opterećenja 1

Slika 9. Grafički prikaz aksijalnih pomaka *u* duž grede s prikazanim interpolacijskim funkcijama za slučaj opterećenja 1

Slučaj opterećenj	Slučaj opterećenja 2														
x [mm]	0	125	250	375	500	625	750	875	1000						
u _{plate} [mm]	0,00E+00	-1,77E-02	-3,64E-02	-5,49E-02	-7,35E-02	-9,20E-02	-1,11E-01	-1,29E-01	-1,47E-01						
u _{bp} [mm]	0,00E+00	-1,84E-02	-3,75E-02	-5,65E-02	-7,55E-02	-9,45E-02	-1,14E-01	-1,33E-01	-1,51E-01						
u _b [mm]	0,00E+00	-1,91E-02	-3,86E-02	-5,81E-02	-7,75E-02	-9,70E-02	-1,16E-01	-1,36E-01	-1,55E-01						
u _{top} [mm]	0,00E+00	-1,96E-02	-3,94E-02	-5,91E-02	-7,89E-02	-9,86E-02	-1,18E-01	-1,38E-01	-1,58E-01						

Tablica 3. Vrijednosti aksijalnog pomaka u duž ispitne konstrukcije za slučaj opterećenja 2

Slika 11. Grafički prikaz aksijalnih pomaka *u* duž grede s prikazanim interpolacijskim funkcijama za slučaj opterećenja 2

Slika 12. Grafički prikaz naprezanja σ_x duž grede s prikazanim interpolacijskim funkcijama za slučaj opterećenja 2

Diplomski rad

Tablica 4. Vrijednosti naprezanja σ_x duž ispitne konstrukcije za slučaj opterećenja 1

Slučaj opterećenj	Slučaj opterećenja 1																		
x [mm]	7,81	39,06	101,56	164,06	195,31	257,81	320,31	382,81	414,06	476,56	539,06	601,56	664,06	695,31	757,81	820,31	882,81	914,06	976,56
SigX _{plate} [N/mm ²]	-73,369	-67,215	-61,885	-56,608	-54,040	-49,129	-44,553	-40,229	-38,128	-33,998	-29,926	-25,897	-21,923	-19,966	-16,133	-12,410	-8,900	-7,722	-4,002
SigX _{bp} [N/mm ²]	-1,628	-1,978	0,088	0,048	0,064	0,093	1,097	1,143	1,130	1,056	0,940	0,792	0,610	0,504	0,272	0,101	0,542	1,581	11,862
SigX _b [N/mm ²]	59,991	66,727	62,106	57,516	55,364	51,111	46,858	42,585	40,441	36,141	31,828	27,507	23,179	21,013	16,689	12,445	8,655	7,224	0,666
SigX _{top} [N/mm ²]	112,210	111,970	102,850	95,472	91,834	84,584	77,384	70,226	66,658	59,536	52,425	45,322	38,230	34,689	27,622	20,585	13,462	9,435	-0,387

Tablica 5. Vrijednosti naprezanja σ_x duž ispitne konstrukcije za slučaj opterećenja 2

Slučaj opterećenja 2																			
x [mm]	7,81	39,06	101,56	164,06	195,31	257,81	320,31	382,81	414,06	476,56	539,06	601,56	664,06	695,31	757,81	820,31	882,81	914,06	976,56
SigX _{plate} [N/mm ²]	-31,318	-28,341	-30,729	-31,365	-31,387	-31,323	-31,217	-31,145	-31,123	-31,100	-31,098	-31,115	-31,159	-31,195	-31,295	-31,387	-31,197	-30,729	-28,341
SigX _{bp} [N/mm ²]	-27,554	-31,101	-31,958	-31,979	-31,990	-31,995	-31,959	-31,922	-31,909	-31,894	-31,893	-31,904	-31,930	-31,949	-31,988	-31,998	-31,956	-31,958	-31,101
SigX _b [N/mm ²]	-28,885	-32,569	-32,893	-32,709	-32,700	-32,694	-32,691	-32,685	-32,682	-32,679	-32,678	-32,681	-32,687	-32,690	-32,694	-32,696	-32,763	-32,893	-32,569
SigX _{top} [N/mm ²]	-32,718	-33,123	-33,190	-33,176	-33,162	-33,162	-33,175	-33,192	-33,196	-33,199	-33,201	-33,197	-33,192	-33,186	-33,175	-33,162	-33,186	-33,197	-33,123

Tablica 6. Vrijednosti naprezanja σ_x duž ispitne konstrukcije za slučaj opterećenja 3

Slučaj opterećenj	Slučaj opterećenja 3																		
x [mm]	7,81	39,06	101,56	164,06	195,31	257,81	320,31	382,81	414,06	476,56	539,06	601,56	664,06	695,31	757,81	820,31	882,81	914,06	976,56
SigX _{plate} [N/mm ²]	-5,711	-6,170	-6,462	-6,535	-6,539	-6,523	-6,504	-6,493	-6,489	-6,486	-6,487	-6,487	-6,486	-6,487	-6,493	-6,539	-6,513	-6,462	-6,170
SigX _{bp} [N/mm ²]	0,294	0,273	0,294	0,218	0,201	0,194	0,199	0,205	0,207	0,210	0,209	0,209	0,210	0,209	0,205	0,201	0,250	0,294	0,273
SigX _b [N/mm ²]	6,162	6,982	6,966	6,921	6,912	6,906	6,905	6,906	6,907	6,907	6,907	6,907	6,907	6,907	6,906	6,912	6,938	6,966	6,982
SigX _{top} [N/mm ²]	10,598	11,408	11,363	11,374	11,377	11,379	11,377	11,374	11,373	11,373	11,372	11,372	11,372	11,372	11,373	11,380	11,374	11,365	11,408

Slučaj opterećenja 3														
x [mm]	0	125	250	375	500	625	750	875	1000					
u _{plate} [mm]	0,00E+00	-3,71E-03	-7,60E-03	-1,15E-02	-1,53E-02	-1,92E-02	-2,31E-02	-2,70E-02	-3,07E-02					
u _{bp} [mm]	0,00E+00	1,73E-04	2,99E-04	4,18E-04	5,42E-04	6,65E-04	7,84E-04	9,10E-04	1,08E-03					
u _b [mm]	0,00E+00	4,08E-03	8,19E-03	1,23E-02	1,64E-02	2,05E-02	2,46E-02	2,88E-02	3,28E-02					
u _{top} [mm]	0,00E+00	6,68E-03	1,35E-02	2,02E-02	2,70E-02	3,38E-02	4,05E-02	4,73E-02	5,40E-02					

Tablica 7. Vrijednosti aksijalnog pomaka u duž ispitne konstrukcije za slučaj opterećenja 3

Slika 13. Grafički prikaz aksijalnih pomaka *u* duž grede s prikazanim interpolacijskim funkcijama za slučaj opterećenja 3

Slika 14. Grafički prikaz naprezanja σ_x duž grede s prikazanim interpolacijskim funkcijama za slučaj opterećenja 3

3.3. Rezultati proračuna odziva "grubim modelom"

U tablicama (Tablica 8, Tablica 9 i Tablica 10) te na slikama (Slika 15, Slika 16 i Slika 17) su prikazani rezultati proračuna aksijalnog pomaka u_2 , vertikalnog pomaka v_2 , kuta zakreta poprečnog presjeka Θ_2 te naprezanja σ_x u x = 0 i x = L grubim modelom za sva tri slučaja opterećenja.

Tablica 8.	. Vrijednosti pomaka	u <i>u</i> 2 i <i>v</i> 2, kuta zakreta	Θ_2 te naprezanja	σ_x kod proračuna	grubim
mod	lelom s prikazanim o	dstupanjima u odnos	u na fini model za	slučaj opterećenja	1

Slučaj opterećenja 1					
Model	MAESTRO fina mreža	Mod. eksc. greda (1 KE)	Ob. eksc. gr. greda (1 KE)	Mod. eksc. greda odstupanje [%]	Ob. eksc. greda odstupanje [%]
Pomak <i>u</i> ₂ [x10 ⁻¹ mm]	-1,533	-1,430	-1,430	-6,72	-6,72
Pomak v 2 [mm]	-2,998	-2,257	-3,898	-24,72	30,02
Kut Θ_2 [x10 ⁻³ rad]	-4,233	-3,784	-3,784	-10,61	-10,61
Naprezanje σ _x u x= 7.81 mm [N/mm ²]	-73,369	-30,050	28,411	-59,04	-138,72
Naprezanje σ _x u x = 976.56 mm [N/mm ²]	-4,002	-30,050	28,411	650,86	809,90

Tablica 9. Vrijednosti pomaka u_2 i v_2 , kuta zakreta Θ_2 te naprezanja σ_x kod proračuna grubim modelom s prikazanim odstupanjima u odnosu na fini model za slučaj opterećenja 2

Slučaj opterećenja 2												
Model	MAESTRO	Mod. eksc.	Obična eksc.	Mod. eksc. greda	Ob. eksc. greda							
	fina mreža	greda (1 KE)	greda (1 KE)	odstupanje [%]	odstupanje [%]							
Pomak <i>u</i> ₂ [x10 ⁻¹ mm]	-1,469	-2,570	-2,570	74,92	74,92							
Pomak v 2 [mm]	0,054	-1,431	-1,431	2750,00	2750,00							
Kut Θ_2 [x10 ⁻³ rad]	0,108	-2,862	-2,862	2750,00	2750,00							
Naprezanje $\sigma_{\rm x}$ u												
x= 7.81 mm [N/mm ²]	-31,318	-54,071	-9,853	72,65	-68,54							
Naprezanje $\sigma_{\rm x}$ u												
x = 976.56 mm [N/mm ²]	-28,341	-54,071	-9,853	90,79	-65,23							

Tablica 10.	Vrijednosti pomaka u_2 i v_2 , kuta zakreta \mathcal{O}_2 te naprezanja σ_x kod proračuna
grubim modelo	om s prikazanim odstupanjima u odnosu na fini model za slučaj opterećenja 3

Slučaj opterećenja 3											
Model	MAESTRO	Mod. eksc.	Obična eksc.	Mod. eksc. greda	Ob. eksc. greda						
	fina mreža	greda (1 KE)	greda (1 KE)	odstupanje [%]	odstupanje [%]						
Pomak <i>u</i> ₂ [x10 ⁻¹ mm]	-0,307	-0,290	-0,290	-5,41	-5,41						
Pomak v₂ [mm]	-0,423	-0,378	-0,378	-10,64	-10,64						
Kut Θ_2 [x10 ⁻³ rad]	-0,847	-0,757	-0,757	-10,65	-10,65						
Naprezanje $\sigma_{\rm x}$ u											
x= 7.81 mm [N/mm ²]	-5,711	-6,010	5,682	5,24	199,50						
Naprezanje $\sigma_{\rm x}$ u											
x = 976.56 mm [N/mm ²]	-6,170	-6,010	5,682	-2,60	192,08						

Slika 15. Distribucija naprezanja σ_x za slučaj opterećenja 1 dobivena finim modelom i grubim modelom s ekscentričnim grednim elementima

Slika 16. Distribucija naprezanja σ_x za slučaj opterećenja 2 dobivena finim modelom i grubim modelom s ekscentričnim grednim elementima

Slika 17. Distribucija naprezanja σ_x za slučaj opterećenja 1 dobivena finim modelom i grubim modelom s ekscentričnim grednim elementima

4. ANALIZA REZULTATA PRORAČUNA ODZIVA KONSTRUKCIJE EKSCENTRIČNIM GREDNIM KONAČNIM ELEMENTIMA I PREDLOŽENA POBOLJŠANJA

4.1. Analiza rezultata proračuna

Nakon izvršenih proračuna prema modelima opisanim u prethodnom poglavlju, može se analizirati i usporediti dobivene rezultate. Odnos između pomaka u i naprezanja σ_x slijedi iz teorije elastičnosti:

$$\sigma_x = E \cdot \varepsilon_x = E \cdot \frac{\delta u_x}{\delta x} \tag{37}$$

Kako se vidi iz gornjeg izraza, naprezanje σ_x predstavlja derivaciju aksijalnog pomaka po x uvećanu *E* puta što proizlazi i iz usporedbe dijagrama σ_x -x i *u*-x iz prethodnog poglavlja (npr. Slika 13 i Slika 14 pokazuju dijagrame na kojima se to vidi).

Funkcija oblika štapnog elementa kojim je grednom elementu s dva stupnja slobode u čvoru (v i Θ) dodan i treći (u) opisana je izrazima (14) i (22). Ako se uvrsti (22) u (37) dobiva se:

$$\sigma_x = \frac{E}{L} \cdot \begin{bmatrix} -1 & 1 \end{bmatrix} \cdot \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
(38)

Iz gornjeg izraza slijedi da je naprezanje σ_x uvijek konstantno po elementu što se ne poklapa sa stvarnom distribucijom u slučaju opterećenja 1 (Slika 10). To će se ilustrirati u potpoglavlju 4.3.

Rezultati proračuna naprezanja za običnu ekscentričnu gredu dani su u tablicama (Tablica 8 i Tablica 10). Ako ih se usporedi s rezultatima proračuna "finim modelom" može se uočiti da je predznak naprezanja potpuno kriv dok je za modificiranu gredu točan. Izraz za proračun aksijalnih sila kod običnog ekscentričnog grednog konačnog elementa slijedi iz matrice u izrazu (33). Npr. za silu N_1 vrijedi:

$$N_1 = -\frac{AE}{L} \cdot u_1 + \frac{AE}{L} \cdot e \cdot \theta_1 + \frac{AE}{L} \cdot u_2 - \frac{AE}{L} \cdot e \cdot \theta_2$$
(39)

Kako se može vidjeti, na aksijalnu silu kod ekscentričnog grednog elementa utječe i kut zakreta u čvoru odnosno savijanje i sabijanje/istezanje su povezani kao što je već bilo rečeno kod opisa ovog elementa. Što je ekscentricitet *e* veći, to će i odstupanje biti veće. Kada vrijednost $e \Theta$ premaši vrijednost *u*, promijenit će se i predznak sile *N*. To se dogodilo u navedenom slučaju (u kojem je vrijednost $e \Theta$ skoro dvostruko veća od vrijednosti *u*) pa je dobiven pogrešan predznak naprezanja σ_x .

4.2. Poboljšanje običnog ekscentričnog grednog konačnog elementa

Kako je navedeno u prethodnom potpoglavlju, obični ekscentrični gredni konačni element daje pogrešne rezultate naprezanja na spoju nosača i opločenja u smjeru osi x dok su izračunati aksijalni pomaci u jednaki onima izračunatim modificiranim grednim konačnim elementom. Uzrok tome je povezanost unutrašnje sile N s kutom zakreta poprečnog presjeka Θ odnosno vrijednost ekscentriciteta e različita od 0. Ovdje se predlaže promjena članova u matrici za proračun unutrašnjih sila prikazanoj u izrazu (33) dok se matrica krutosti običnog ekscentričnog grednog konačnog elementa ostavlja nepromijenjena (kako bi se sačuvale relativno dobre vrijednosti u, v i Θ). Nova matrica za proračun unutrašnjih sila (masnim slovima su napisani promijenjeni članovi):

$$[K_{S,ECC}] = \begin{bmatrix} -\frac{AE}{L} & 0 & \mathbf{0} & \frac{AE}{L} & 0 & \mathbf{0} \\ 0 & \frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} & 0 & -\frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} \\ \frac{AE}{L} \cdot e & -\frac{6EI_z}{L^2} & -\frac{4EI_z}{L} - \frac{AE}{L} \cdot e^2 & -\frac{AE}{L} \cdot e & \frac{6EI_z}{L^2} & -\frac{2EI_z}{L} + \frac{AE}{L} \cdot e^2 \\ -\frac{AE}{L} & 0 & \mathbf{0} & \frac{AE}{L} & 0 & \mathbf{0} \\ 0 & \frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} & 0 & -\frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} \\ \frac{AE}{L} \cdot e & \frac{6EI_z}{L^2} & \frac{2EI_z}{L} - \frac{AE}{L} \cdot e^2 & -\frac{AE}{L} \cdot e & -\frac{6EI_z}{L^2} & \frac{4EI_z}{L} + \frac{AE}{L} \cdot e^2 \end{bmatrix}$$
(40)

Ako se sada obavi proračun naprezanja s novom matricom prema izrazu (40), dobit će se rezultati usporedivi s rezultatima modificirane ekscentrične grede kako se vidi u tablici (Tablica 11).

Tablica 11.Vrijednosti naprezanja σ_x kod proračuna grubim modelom i poboljšanim
običnim ekscentričnim grednim konačnim elementom za sve slučajeve opterećenja

Model	MAESTRO	Mod. eksc.	Ob. eksc. gr.
	fina mreža	greda (1 KE)	poboljšana (1 KE)
Naprezanje $\sigma_{\rm x}$ za SO1 u			
x= 7.81 mm [N/mm ²]	-73,369	-30,050	-30,049
Naprezanje $\sigma_{\rm x}$ za SO1 u			
x = 976.56 mm [N/mm ²]	-4,002	-30,050	-30,049
Naprezanje $\sigma_{\rm x}$ za SO2 u			
x= 7.81 mm [N/mm ²]	-31,318	-54,071	-54,071
Naprezanje $\sigma_{\rm x}$ za SO2 u			
x = 976.56 mm [N/mm ²]	-28,341	-54,071	-54,071
Naprezanje $\sigma_{\rm x}$ za SO3 u			
x= 7.81 mm [N/mm ²]	-5,711	-6,010	-6,010
Naprezanje $\sigma_{\rm x}$ za SO3 u			
x = 976.56 mm [N/mm ²]	-6,170	-6,010	-6,010

4.3. Poboljšanje funkcije oblika ekscentričnih grednih konačnih elemenata

U potpoglavlju 4.1 opisan je nedostatak linearne funkcije oblika kojom je zadana distribucija pomaka po elementu. To posebno dolazi do izražaja u prvom slučaju opterećenja gdje je stvarna distribucija naprezanja duž elementa linearna dok iz linearne funkcije oblika slijedi konstantno naprezanje po elementu za slučaj rubnih uvjeta ispitne konstrukcije (Slika 15). Logičan put bi bio odabrati funkciju oblika koja najbolje opisuje finim modelom izračunate pomake i naprezanja duž elementa. Kako se može zaključiti promatrajući dijagrame na slikama (Slika 9 do Slika 14), kvadratna funkcija oblika bi bila dovoljna za sva tri slučaja opterećenja kao i njena derivacija (linearna funkcija) za opis naprezanja. U ovom poglavlju će biti izveden takav element i pokazane njegove loše strane.

U literaturi [5] je prikazan element s kvadratnom funkcijom oblika i sedam stupnjeva slobode. On se može izvesti analogno načinu na koji je izveden štapni element s dva stupnja slobode i gredni element s četiri u potpoglavlju 2.1. Ovdje će se drugačije pristupiti tom problemu. Pošto je iz proračuna s finom mrežom poznata točna distribucija pomaka po elementu (Slika 9 – Slika 14), odabrat će se kombinacija funkcija uz tri čvorna pomaka (u x = 0, x = L te x = L/2) koja najbolje opisuje stvarnu distribuciju pa štapni element dobiva treći čvor u x = L/2 i novu funkciju oblika:

$$[N_u(x)] = \left[\frac{4x}{L}\left(1 - \frac{x}{L}\right) \quad 1 - \frac{3x}{L} + \frac{2x^2}{L^2} \quad \frac{x}{L}\left(\frac{2x}{L} - 1\right)\right]$$
(41)

odnosno

$$u(x) = [N_u(x)] \cdot \{\delta_u\} = \left[\frac{4x}{L} \left(1 - \frac{x}{L}\right) \quad 1 - \frac{3x}{L} + \frac{2x^2}{L^2} \quad \frac{x}{L} \left(\frac{2x}{L} - 1\right)\right] \cdot \begin{cases} u_D \\ u_1 \\ u_2 \end{cases}$$
(42)

gdje je u_D čvor koji se nalazi u x = L/2.

Ove tri funkcije (OB1 uz u_1 , OB2 uz u_2 i OBD uz u_D) prikazane su na slici (Slika 18). Uvrštavanjem čvornih pomaka u_1 , u_D i u_2 može se odrediti pomake u svim točkama štapa (Tablica 12). Na slici (Slika 19) vidi se podudarnost vrijednosti pomaka proračunatih pomoću opisanih funkcija oblika i stvarnih (dobivenih "finim modelom").

Sada se može izraz (42) uvrstiti u (37) te izračunati naprezanja duž štapa koja su prikazana u tablici (Tablica 13). Na slici (Slika 20) vidi se jako dobro podudaranje naprezanja proračunatih deriviranjem gornjih funkcija oblika i stvarnih. Slični rezultati se dobiju i za ostale slučajeve opterećenja.

Slika 18. Funkcije oblika štapnog elementa s tri čvora

Tablica 12.	Vrijednosti pomaka ux duž konstrukcije kod proračuna štapnim elementom s tri
	čvora

Slučaj opterećenja 1 - pomaci												
x	OB1	OB1*u ₁	OBD	OBD*u _D	OB2	OB2*u ₂	u _{KVAD}					
0	1,00	0,00E+00	0,00	0,00E+00	0,00	0,00E+00	0,00E+00					
125	0,66	0,00E+00	0,44	-5,26E-02	-0,09	1,44E-02	-3,82E-02					
250	0,38	0,00E+00	0,75	-9,02E-02	-0,13	1,92E-02	-7,10E-02					
375	0,16	0,00E+00	0,94	-1,13E-01	-0,09	1,44E-02	-9,83E-02					
500	0,00	0,00E+00	1,00	-1,20E-01	0,00	0,00E+00	-1,20E-01					
625	-0,09	0,00E+00	0,94	-1,13E-01	0,16	-2,40E-02	-1,37E-01					
750	-0,13	0,00E+00	0,75	-9,02E-02	0,38	-5,75E-02	-1,48E-01					
875	-0,09	0,00E+00	0,44	-5,26E-02	0,66	-1,01E-01	-1,53E-01					
1000	0,00	0,00E+00	0,00	0,00E+00	1,00	-1,53E-01	-1,53E-01					

Slika 19. Pomaci u_x duž konstrukcije dobiveni "finim modelom" i izračunati štapnim elementom s tri čvora

125

250

375

500

625

750 875

1000

-2,00E-03 0,00E+00 2,00E-03

-1,50E-03 0,00E+00 1,00E-03

-1,00E-03 0,00E+00 0,00E+00

0,00E+00 0,00E+00 -2,00E-03

5,00E-04 0,00E+00 -3,00E-03

1,00E-03 0,00E+00 -4,00E-03

-1,00E-03

-5,00E-04 0,00E+00

ICA 15.	v rije	tri čvora										
	Slučaj opterećenja 1 - naprezanja											
	x	OC1	OC1*u ₁	OCD	OCD*u _D	OC2	OC2*u ₂	$\sigma_{\rm kvad}$				
	0	-3,00E-03	0,00E+00	4,00E-03	-1,01E+02	-1,00E-03	3,22E+01	-6,88E+01				

-2,50E-03 0,00E+00 3,00E-03 -7,57E+01 -5,00E-04 1,61E+01 -5,96E+01

-5,05E+01

-2,52E+01

0,00E+00

2,52E+01

5,05E+01

7,57E+01

1,01E+02

0,00E+00

5,00E-04

1,00E-03

1,50E-03

2,00E-03

2,50E-03

3,00E-03

0,00E+00

-1,61E+01

-3,22E+01

-4,83E+01

-6,44E+01

-8,05E+01

-9,66E+01

-5,05E+01

-4,13E+01

-3.22E+01

-2.31E+01

-1,39E+01

-4,76E+00

4.38E+00

Slika 20. Naprezanja σ_x duž konstrukcije dobivena "finim modelom" i izračunata štapnim elementom s tri čvora

Sada će se pokazati nedostaci ovog elementa. Kod proračuna pomaka i naprezanja odgovarajuće funkcije oblika su bile pomnožene s čvornim pomacima u_1 , u_D i u_2 koji su dobiveni očitavanjem vrijednosti aksijalnog pomaka na mjestu x = 0, x = L/2 i x = L kod finog modela. Međutim kod stvarnih proračuna ovim elementom neće biti moguće imati rezultate proračuna finim modelom pa je potrebno izvesti matricu krutosti tog elementa te izračunati vrijednosti u_1 , u_D i u_2 .

Uvrštavajući nove funkcije oblika (41) u (24) pa potom u (25) može se dobiti matrica krutosti štapnog elementa s tri opisana čvora:

$$\begin{bmatrix} K_{u,KVAD} \end{bmatrix} = \frac{AE}{3L} \begin{bmatrix} 16 & -8 & -8 \\ -8 & 7 & 1 \\ -8 & 1 & 7 \end{bmatrix}$$
(43)

Sada se (43) i (13) mogu proširiti i zbrojiti pa se dobiva matrica slična onoj u izrazu (26). Tu matricu treba pomnožiti matricom transformacije. Analogno razmatranju za pomak u_1 i u_2 , može se dobiti odnos između u_D i U_D :

$$U_D = u_D - e \cdot \theta \left(\frac{L}{2}\right) = u_D + \frac{3e}{2L} \cdot v_1 + \frac{e}{4} \cdot \theta_1 - \frac{3e}{2L} \cdot v_2 + \frac{e}{4} \cdot \theta_2$$
(44)

pa onda matrica transformacije ima oblik:

	1	0	$\frac{3e}{2L}$	$\frac{e}{4}$	0	$-\frac{3e}{2L}$	$\frac{e}{4}$	
	0	1	0	-e	0	0	0	
	0	0	1	0	0	0	0	
$[\mathbf{I}_k] =$	0	0	0	1	0	0	0	(45)
	0	0	0	0	1	0	-e	
	0	0	0	0	0	1	0	
	0	0	0	0	0	0	1	

Matrica krutosti elementa tada iznosi: (prvi redak i prvi stupac odgovaraju pomaku U_D dok su ostali analogni prije izvedenim matricama):

$$[K_{KECC}] = \begin{bmatrix} \frac{16AE}{3L} & -\frac{8AE}{3L} & \frac{8AEe}{L^2} & \frac{4AEe}{L} & -\frac{8AE}{L} & -\frac{8AE}{3L} & \frac{8AEe}{L^2} & \frac{4AEe}{L} \\ -\frac{8AE}{3L} & \frac{7AE}{3L} & -\frac{4AEe}{L^2} & -\frac{3AEe}{L^2} & \frac{AE}{3L} & \frac{4AEe}{L^2} & -\frac{AEe}{L} \\ \frac{8AEe}{L^2} & -\frac{4AEe}{L^2} & \frac{12EI_{z0}}{L^3} & \frac{6EI_{z0}}{L^2} & -\frac{4AEe}{L^2} & -\frac{12EI_{z0}}{L^3} & \frac{6EI_{z0}}{L^2} \\ \frac{4AEe}{L} & -\frac{3AEe}{L} & \frac{6EI_{z0}}{L^2} & \frac{4EI_{z0}}{L} & -\frac{AEe}{L} & -\frac{6EI_{z0}}{L^2} & \frac{2EI_{z0}}{L} \\ -\frac{8AE}{3L} & \frac{3E}{3L} & -\frac{4AEe}{L^2} & -\frac{AEe}{L} & \frac{7AE}{3L} & \frac{4AEe}{L^2} & \frac{3AEe}{L} \\ -\frac{8AE}{3L} & \frac{4AEe}{3L} & -\frac{4AEe}{L^2} & -\frac{AEe}{L} & \frac{7AE}{3L} & \frac{4AEe}{L^2} & -\frac{3AEe}{L} \\ -\frac{8AEe}{L^2} & \frac{4AEe}{L^2} & -\frac{12EI_{z0}}{L^3} & -\frac{6EI_{z0}}{L^2} & \frac{4AEe}{L^2} & \frac{12EI_{z0}}{L^3} & -\frac{6EI_{z0}}{L} \\ -\frac{4AEe}{L} & -\frac{AEe}{L^2} & \frac{6EI_{z0}}{L^2} & \frac{2EI_{z0}}{L^2} & \frac{3AEe}{L^2} & \frac{4EI_{z0}}{L^2} & \frac{4EI_{z0}}{L^2} \\ -\frac{4AEe}{L} & -\frac{AEe}{L} & \frac{6EI_{z0}}{L^2} & \frac{2EI_{z0}}{L} & -\frac{3AEE}{L} & -\frac{6EI_{z0}}{L^2} & \frac{4EI_{z0}}{L} \\ -\frac{6EI_{z0}}{L^2} & \frac{4EI_{z0}}{L^2} & -\frac{6EI_{z0}}{L^2} & \frac{4EI_{z0}}{L^2} & \frac{4EI_{z0}}{L^2} \\ -\frac{6EI_{z0}}{L^2} & \frac{6EI_{z0}}{L^2} & \frac{6EI_{z0}}{L^2} & \frac{6EI_{z0}}{L^2} & \frac{6EI_{z0}}{L^2} & \frac{6EI_{z0}}{L^2} & \frac{6EI_{z0}}{L^2} \\ -\frac{6EI_{z0}}{L^2} & \frac{6EI_{z0}}{L^2} \\ -\frac{6EI_{z0}}{L^2} & \frac{6EI_{z0}}{L^2} & \frac{6EI_{z0}}{L^$$

Ako se izvrše proračuni ovim grednim elementom za slučaj opterećenja 1, dobit će se sljedeći rezultati:

$$u_D = -0.293 \text{ mm}$$

 $u_2 = -0.143 \text{ mm}$

Sada se ti rezultati mogu uvrstiti u izraze za proračun naprezanja pa se dobivaju vrijednosti prikazane u tablicama (Tablica 14 i Tablica 15). Kako se vidi na slikama (Slika 21 i Slika 22), odstupanja u odnosu na fini model su značajna.

U ostalim slučajevima opterećenja dobiju se rezultati koji se svojom točnošću poklapaju s rezultatima ostalih ekscentričnih grednih elemenata.

Razlog ovakvog ponašanja ovog elementa leži u ovisnosti pomaka u_D ne samo o kutu zakreta Θ već i o vertikalnom pomaku v kako se može vidjeti u matrici transformacije u izrazu (45). Iz tog razloga će ponašanje ovog elementa biti najlošije upravo kod djelovanja vertikalne sile dok će se smanjenjem omjera Θ/v povećavati i točnost proračuna u_D .

Tablica 14.Vrijednosti pomaka u_x duž konstrukcije kod proračuna štapnim elementom s tri
čvora

Slučaj opterećenja 1 - pomaci												
x	OB1	OB1*u ₁	OBD	OBD^*u_D	OB2	OB2*u ₂	u _{KVAD}					
0	1,00	0,00E+00	0,00	0,00E+00	0,00	0,00E+00	0,00E+00					
125	0,66	0,00E+00	0,44	-1,28E-01	-0,09	1,34E-02	-1,15E-01					
250	0,38	0,00E+00	0,75	-2,20E-01	-0,13	1,79E-02	-2,02E-01					
375	0,16	0,00E+00	0,94	-2,75E-01	-0,09	1,34E-02	-2,61E-01					
500	0,00	0,00E+00	1,00	-2,93E-01	0,00	0,00E+00	-2,93E-01					
625	-0,09	0,00E+00	0,94	-2,75E-01	0,16	-2,23E-02	-2,97E-01					
750	-0,13	0,00E+00	0,75	-2,20E-01	0,38	-5,36E-02	-2,73E-01					
875	-0,09	0,00E+00	0,44	-1,28E-01	0,66	-9,38E-02	-2,22E-01					
1000	0,00	0,00E+00	0,00	0,00E+00	1,00	-1,43E-01	-1,43E-01					

Slika 21. Pomaci u_x duž konstrukcije dobiveni "finim modelom" i izračunati štapnim elementom s tri čvora

Tablica 15.Vrijednosti naprezanja σ_x duž konstrukcije kod proračuna štapnim elementom s
tri čvora

Slučaj (Slučaj opterećenja 1 - naprezanja												
x	OC1	OC1*u1	OCD	OCD^*u_D	OC2	OC2*u ₂	$\sigma_{\rm KVAD}$						
0	-3,00E-03	0,00E+00	4,00E-03	-2,46E+02	-1,00E-03	3,00E+01	-2,16E+02						
125	-2,50E-03	0,00E+00	3,00E-03	-1,85E+02	-5,00E-04	1,50E+01	-1,70E+02						
250	-2,00E-03	0,00E+00	2,00E-03	-1,23E+02	0,00E+00	0,00E+00	-1,23E+02						
375	-1,50E-03	0,00E+00	1,00E-03	-6,15E+01	5,00E-04	-1,50E+01	-7,65E+01						
500	-1,00E-03	0,00E+00	0,00E+00	0,00E+00	1,00E-03	-3,00E+01	-3,00E+01						
625	-5,00E-04	0,00E+00	-1,00E-03	6,15E+01	1,50E-03	-4,50E+01	1,65E+01						
750	0,00E+00	0,00E+00	-2,00E-03	1,23E+02	2,00E-03	-6,01E+01	6,30E+01						
875	5,00E-04	0,00E+00	-3,00E-03	1,85E+02	2,50E-03	-7,51E+01	1,10E+02						
1000	1,00E-03	0,00E+00	-4,00E-03	2,46E+02	3,00E-03	-9,01E+01	1,56E+02						

Slika 22. Naprezanja σ_x duž konstrukcije dobivena "finim modelom" i izračunata štapnim elementom s tri čvora

5. OPIS PROGRAMA BIFEM/PLO2X I UGRADNJA MODIFICIRANOG EKSCENTRIČNOG GREDNOG KONAČNOG ELEMENTA

5.1. Opis i mogućnosti programa BIFEM/PLO2X

Program PLO2 dio je sustava BIFEM koji je namijenjen proračunu odziva brodske konstrukcije metodom konačnih elemenata. PLO2 služi za proračun odziva ukrepljenih ploča i roštilja na koje djeluje opterećenje okomito na njihovu ravninu.

```
ISPITNA KONSTRUKCIJA
NASLOV
JEDINICE
            MM
                 N
1
                           210000
                                       0.3
MATERIJA
KRAJ
GENERAT
          2
            ò
XKOORD
XKOORD
           1000.
YKOORD
            0.
           150.
300.
YKOORD
YKOORD
KRAJ
KRAJ
LIM
                    1
                               3
                                                        2
                                                                   1
           5
                                             1
KRAJ
UKREPA
                          2
                                    2
                                               1
                                                           2
                                                                       1
                1
KRAJ
GREDA
                1
                          1640
                                       73.573
                                                       10850000
KRAJ
RUBUV
           1
                 1
                      3
                            1
                                  111
KRAJ
SONASLOV
              VERTIKALNA SILA
KRA1
KRAJ
KRAJ
SILA
            5
                 0
                         0
                               0
                                     -10000
                                               0
                                                     0
KRAJ
SONASLOV
              AKSIJALNA SILA
KRAJ
KRAJ
KRAJ
                         0
                                         -100000
            5
                 0
                               0
                                     0
                                                      0
SILA
KRAJ
              ZAKRETNI MOMENT
SONASLOV
KRAJ
KRAJ
KRAJ
                                               -1000000
            5
                 0
                         0
                               0
                                     0
SILA
                                         0
KRAJ
ZAVRSETAK
```

Slika 23. Primjer ulazne datoteke za PLO2

Slika 23 prikazuje ulaznu datoteku programa PLO2 za proračun odziva konstrukcije opisane u poglavlju 3. Sada će se prateći sliku ukratko opisati način rada i mogućnosti programa.

Na početku se unose mjerne jedinice te se određuju svojstva materijala (modul elastičnosti i Poissonov koeficijent). Može se ukupno unijeti do 10 različitih materijala.

Nakon materijala potrebno je odrediti geometriju. Program može geometriju generirati automatski na temelju unesenih podataka – koordinata stupaca (pravci okomiti na os x) i redaka (pravci okomiti na os y). Generator geometrije će na njihovim sjecištima postaviti čvorove, a između njih konačne elemente. Moguće je, međutim, i ručno generirati geometriju i to unošenjem koordinata čvorova (do 240 čvorova) ili elemenata (do 400 elemenata).

Nakon geometrije definiraju se svojstva limova i ukrepa. Za limove se unosi njihova debljina, materijal od kojeg su izrađeni te reci i stupci između kojih se prostiru (može se definirati do 50 različitih limova). Ukrepa se definira na isti način s tim da se njoj dodjeljuje greda odgovarajućih svojstava (definira se do 100 ukrepa i greda). Greda se opisuje površinom poprečnog presjeka te momentima inercije oko osi x i y.

Rubni uvjeti se mogu definirati za svaki čvor, a najviše se može definirati do 100 različitih skupina rubnih uvjeta. Moguće je spriječiti ili dopustiti translaciju u smjeru osi z, rotaciju oko osi x te rotaciju oko osi y.

Na kraju se definira opterećenje koje se može zadavati u obliku koncentrirane sile ili momenta u čvorovima, tlaka po ravninskim elementima, propisanih translacijskih i rotacijskih pomaka te linijskog opterećenja od sila ili momenata duž linije čvorova. Također je moguće zadavati više različitih slučajeva opterećenja kao i njihovih kombinacija.

Kada se ulazna datoteka učita u PLO2, izvršit će se proračun te će program izgenerirati izlaznu datoteku s rezultatima. PLO2 za svaki slučaj opterećenja računa:

- pomake: translacijski u smjeru osi z, rotacijski oko osi x i rotacijski oko osi y za svaki čvor
- naprezanja u težištu pločastih elemenata odnosno sile i momente na krajevima za gredne elemente
- reakcije u osloncima

Za idealizaciju stvarne konstrukcije upotrebljavaju se pravokutni i trokutni pločasti elementi te gredni element. Svi elementi imaju tri stupnja slobode u čvoru: translacijski pomak u smjeru osi z, rotacijski pomak oko osi y te rotacijski pomak oko osi x. U okviru ovog rada ugrađen je novi gredni element te su pločasti elementi zamijenjeni ljuskastim.

5.2. Ljuskasti element ugrađen u PLO2X

U okviru ovog rada pločasti elementi su zamijenjeni ljuskastim kako bi stupnjevi slobode ravninskih elemenata odgovarali grednom elementu opisanom u poglavlju 2.

Ljuskasti element je dobiven kombinacijom membranskog i pločastog elementa. Ovdje će biti samo ukratko opisani, a detaljan opis i izvod se mogu naći u literaturi [8] i [9].

Membranski element ima dva translacijska stupnja slobode u svakom čvoru: jedan u smjeru osi x, a drugi u smjeru osi y. Ovdje ćemo upotrijebiti samo onaj u smjeru osi x (Slika 24). Element je izveden uz pretpostavku linearne distribucije naprezanja po rubovima te je stoga polje pomaka opisano kvadratnom funkcijom. Matrica krutosti membranskog elementa:

Na kraju kombinacijom gornja dva elementa može se dobiti element ljuske koji ima po tri stupnja slobode u čvoru, a lokalni koordinatni sustav mu se poklapa s prethodno opisanim.

Matrica krutosti ovog elementa prikazana je na stranici 32.

Marin Palaversa

Diplomski rad

Sve članove matrice krutosti potrebno je pomnožiti s $\frac{Et^3}{12ab(1-v^2)}$. Vrijedi $\beta = \frac{b}{a}$ gdje su *a* i *b* veličine prema slici (Slika 24).

Fakultet strojarstva i brodogradnje

5.3. Gredni element ugrađen u PLO2X i mogućnosti novog PLO2X

U okviru ovog rada u PLO2 su ugrađeni novi ravninski i gredni element. Ravninski element je element ljuske opisan u prethodnom potpoglavlju, a umjesto starog grednog elementa ugrađen je novi element modificirane ekscentrične grede opisan u potpoglavlju 2.4. Ugradnjom novih elemenata način proračuna se nije promijenilo, ali su neki stupnjevi slobode i s njima povezane čvorne sile i naprezanja promijenjeni.

Kako je napisano u potpoglavlju 5.1 PLO2 je imao mogućnost proračuna vertikalnog pomaka w, kuta zakreta oko osi x Θ_x i kuta zakreta oko osi y Θ_y te s njima povezanih čvornih sila i momenata. Ugradnjom novih elemenata u PLO2 broj stupnjeva slobode se nije promijenio, ali su se promijenili neki od njih pa tako sada PLO2X može računati (u svakom čvoru):

- pomak u smjeru osi x (*u*)
- zakret oko osi y (Θ_y)
- pomak u smjeru osi z (w)

Sve ostale mogućnosti PLO2X koje su prethodno bile opisane ostaju iste.

Ugradnjom novog grednog konačnog elementa moguće je točnije proračunati odziv, posebno naprezanja. Pošto novi element ima pretpostavljenu distribuciju naprezanja kod savijanja takvu da se neutralna linija poklapa s čvornom osi, bit će moguće, jednom kada je poznat moment savijanja, odrediti naprezanja u gornjem pojasu poznavajući samo udaljenost kraja gornjeg pojasa od čvorne osi čime se izbjegava poseban proračun položaja težišta "hibridnog" poprečnog presjeka. Naprezanja na spoju nosača i opločenja će se računati na temelju poznate aksijalne sile.

Nakon ugradnje novih elemenata u PLO2X izvršen je proračun na "grubom modelu" opisanom u potpoglavlju 3.1. Rezultati su prikazani na primjeru izlazne datoteke PLO2X na slici (Slika 25) za slučaj opterećenja 1. Može se vidjeti kako se rezultati proračuna poklapaju s onima u tablici (Tablica 8) za modificiranu ekscentričnu gredu (čvor 5 odgovara spoju grednog i ljuskastog elementa).

POMACI I ROTACIJE CVOROVA

CVOR	Z-POMAK	Х-РОМАК	Y-ROTACIJA	
1	0.000000E+00	0.000000E+00	0.000000E+00	
2	0.000000E+00	0.000000E+00	0.00000E+00	
3	0.00000E+00	0.000000E+00	0.00000E+00	
4	-0.225766E+01	-0.126161E+00	-0.370134E-02	
5	-0.225816E+01	-0.143143E+00	-0.378509E-02	
6	-0.225766E+01	-0.126161E+00	-0.370134E-02	

Još je na kraju važno napomenuti kako je ugradnjom novog grednog elementa tek neznatno promijenjen oblik ulazne datoteke. Naime, prije je kod definiranja grednog elementa bilo potrebno unijeti površinu njegovog poprečnog presjeka te momente inercije oko osi x i y. Sada više nije potrebno unositi moment oko osi x već ekscentričnost težišta grednog elementa u odnosu na čvornu os (ravninu opločenja). Ovo bi se moglo uzeti kao nedostatak novog elementa jer smo kao jednu od prednosti ekscentričnih grednih elemenata u odnosu na hibridni naveli i jedan parametar manje pošto nije potrebno računati sunosivu širinu. Međutim, osim što bi se u program mogla ugraditi rutina koja će na temelju unesenih dimenzija poprečnog presjeka nosača izravno računati sve potrebne veličine pa tako i položaj težišta, ovakvo rješenje se susreće i u drugim programima namijenjenim proračunu odziva metodom konačnih elemenata kao što je npr. FEMAP/Nastran.

```
C**LOKALNA MATRICA KRUTOSTI
      G=ORT(M,1)/(2.*(1.+ORT(M,2)))
      FI=0.
      ESTIF(1,1)=12.*ORT(M,1)*BEAM(NBEAM,3)/(DULJ**3)
      ESTIF(2,1)=0.
      ESTIF(3,1)=6.*ORT(M,1)*BEAM(NBEAM,3)/(DULJ**2)
      ESTIF(4,1) = -ESTIF(1,1)
      ESTIF(5,1)=0.
      ESTIF(6,1)=ESTIF(3,1)
      ESTIF(2,2)=BEAM(NBEAM,1)*ORT(M,1)/DULJ
      ESTIF(3,2)=-BEAM(NBEAM,1)*ORT(M,1)*BEAM(NBEAM,2)/DULJ
      ESTIF(4,2)=0.
      ESTIF(5,2)=-ESTIF(2,2)
      ESTIF(6,2)=-ESTIF(3,2)
      ESTIF(3,3)=4.*ORT(M,1)*BEAM(NBEAM,3)/DULJ
      ESTIF(4,3) = -ESTIF(6,1)
      ESTIF(5,3) = -ESTIF(3,2)
      ESTIF(6,3)=(2.*ORT(M,1)*BEAM(NBEAM,3))/DULJ
      ESTIF(4,4)=ESTIF(1,1)
      ESTIF(5,4)=0.
      ESTIF(6,4)=ESTIF(4,3)
      ESTIF(5,5)=ESTIF(2,2)
      ESTIF(6,5)=ESTIF(3,2)
      ESTIF(6,6)=ESTIF(3,3)
      DO 10 J=2.6
      K = 1 - 1
      DO 10 I=1,K
      ESTIF(I,J)=ESTIF(J,I)
10
```

Slika 26. Primjer dijela programskog kôda PLO2X pisanog programskim jezikom Fortran koji prikazuje matricu krutosti modificiranog ekscentričnog grednog konačnog elementa

```
Marin Palaversa
```

```
C**LOKALNA (=GLOBALNA) MATRICA KRUTOSTI
     COMM=COMM*T*T/(6.*AREA)
     DODD=AREA/(T*T)
     BSQ=(BS/AS)**2
     POI=ORT(M,2)
     ESTIF(1,1)=4.*(BSQ+1./BSQ)+(14.-4.*POI)/5.
     ESTIF(2,1)=0.
     ESTIF(3,1)=AS*(2.*BSQ+(1.+4.*POI)/5.)
      ESTIF(4,1)=2.*(1./BSQ-2.*BSQ)-(14.-4.*POI)/5.
      ESTIF(5,1)=0.
     ESTIF(6,1)=AS*(2.*BSQ+(1.-POI)/5.)
     ESTIF(7,1)=-2.*(BSQ+1./BSQ)+(14.-4.*POI)/5.
     ESTIF(8,1)=0.
     ESTIF(9,1)=AS*(BSQ-(1.-POI)/5.)
     ESTIF(10,1)=-2.*(2./BSQ-BSQ)-(14.-4.*POI)/5.
     ESTIF(11,1)=0.
     ESTIF(12,1)=AS*(BSQ-(1.+4.*POI)/5.)
     ESTIF(2,2)=((BS/AS)*(4.-POI**2)+(3.*(1.-POI))/(2.*(BS/AS)))*DODD
     ESTIF(3,2)=0.
     ESTIF(4,2)=0.
     ESTIF(5,2)=-(BS/AS)*(4.-POI**2)+(3.*(1.-POI))/(2.*(BS/AS))*DODD
     ESTIF(6,2)=0.
     ESTIF(7,2)=0.
     ESTIF(8,2)=(-(BS/AS)*(2+POI**2)-(3.*(1.-POI))/(2.*(BS/AS)))*DODD
     ESTIF(9,2)=0.
     ESTIF(10,2)=0.
     ESTIF(11,2)=((BS/AS)*(2.+POI**2)-(3.*(1.-POI))/(2.*(BS/AS)))*DODD
     ESTIF(12,2)=0.
     ESTIF(3,3)=((4.*BSQ)/3.+4.*(1.-POI)/15.)*AS*AS
     ESTIF(4,3)=-ESTIF(6,1)
     ESTIF(5,3)=0.
     ESTIF(6,3)=((2.*BSQ)/3.-(1.-POI)/15.)*AS*AS
     ESTIF(7,3)=AS*(-BSQ+(1.-POI)/5.)
     ESTIF(8,3)=0.
     ESTIF(9,3)=(BSQ/3.+(1.-POI)/15.)*AS*AS
     ESTIF(10,3)=ESTIF(12,1)
     ESTIF(11,3)=0.
      ESTIF(12,3)=((2.*BSQ)/3.-4.*(1.-POI)/15.)*AS*AS
      ESTIF(4,4)=ESTIF(1,1)
```

Slika 27. Primjer dijela programskog kôda PLO2X pisanog programskim jezikom Fortran koji prikazuje dio matrice krutosti ljuskastog konačnog elementa (ostali članovi se zbog simetričnosti dobiju iz navedenih)

6. ZAKLJUČAK

U ovom radu su uspoređeni ekscentrični gredni konačni elementi međusobno kao i s referentnim finim modelom u smislu rezultata proračuna aksijalnih pomaka (u) i naprezanja σ_x . Pokazalo se kako se modificiranim ekscentričnim grednim konačnim elementom dobivaju jako točne vrijednosti naprezanja kod slučaja čistog savijanja odnosno opterećenja zakretnim momentom na kraju. U slučaju opterećenja aksijalnom silom distribucija naprezanja je bila dobra, ali iznos je bio pogrešan dok je u slučaju opterećenja vertikalnom silom distribucija bila pogrešna. Razlog tome je linearna funkcija oblika kojom su interpolirani aksijalni pomaci. Ovo se nastojalo popraviti povišenjem stupnja interpolacijskog polinoma čime se dobio gredni konačni element sa sedam stupnjeva slobode (šest na krajevima i jedan aksijalni u sredini) međutim zbog povezanosti dodatnog (središnjeg) aksijalnog pomaka s čvornim zakretom i vertikalnim pomakom odnosno čvornom vertikalnom silom i momentom, njegove vrijednosti postaju pretjerano velike u slučaju djelovanja vertikalne sile (slučaj opterećenja 1). Za ostala dva slučaja opterećenja točnost proračunatih pomaka i naprezanja dostiže točnost modificiranog ekscentričnog grednog konačnog elementa.

Što se tiče običnog ekscentričnog grednog konačnog elementa, pokazana je korigirana matrica za proračun unutrašnjih sila u čvorovima. Naime, matrica koja slijedi iz izvoda tog elementa povezuje aksijalnu silu, osim s aksijalnim pomakom, i s kutom zakreta zbog čega se u slučajevima kada je savijanje (a time i kut zakreta) dominantno (kao što su slučaj opterećenja 1 i 3) dobivaju pogrešne vrijednosti naprezanja koja mogu biti čak i krivog predznaka. Ako se članovi u matrici za proračun unutrašnjih sila koji povezuju aksijalnu silu i kut zakreta izjednače s nulom (po uzoru na modificirani ekscentrični gredni element), onda se dobivaju rezultati usporedivi s rezultatima modificiranog ekscentričnog grednog konačnog elementa. Treba međutim imati na umu da će kod proračuna običnim ekscentričnim grednim konačnim elementom vrijednosti naprezanja u gornjem pojasu obično biti manje točne od vrijednosti naprezanja proračunatih modificirani ekscentričnim grednim elementom kako je pokazano u [1].

Pošto se u ovom radu kao i u [1] i [6] modificirani ekscentrični element pokazao bolji u smislu točnosti rezultata proračuna naprezanja, ugrađen je u novu verziju programa PLO2. Također je ugrađen i novi ravninski element (ljuske) kako bi stupnjevi slobode tog elementa odgovarali stupnjevima slobode ugrađenog grednog elementa pri čemu su traženi podaci u ulaznoj datoteci tek neznatno promijenjeni.

U nastavku rada na ovoj temi moglo bi se:

- proučiti odnos između ravninskih elemenata koji su u spojevima povezani s grednim elementom. Naime, tijekom izrade ovog diplomskog rada uočeno je kako karakteristike ravninskog elementa imaju vrlo velik utjecaj na rezultate proračuna odziva ekscentričnim grednim konačnim elementima dok je njihov utjecaj na rezultate proračuna hibridnom elementom znatno manji
- pokušati odrediti korekciju naprezanja σ_x izračunatih na temelju unutrašnjih čvornih sila dobivenih uporabom modificiranog grednog konačnog elementa za slučaj djelovanja vertikalne sile (slučaj opterećenja 1) i aksijalne sile (slučaj opterećenja 2)
- u PLO2X dodati sljedeće stupnjeve slobode ljuskastom elementu: translacijski pomak u smjeru osi y (v) i kut zakreta oko osi x (Θ_x), a grednom elementu kut zakreta oko osi x (Θ_x) čime bi se omogućio proračun roštilja brodskih konstrukcija s poboljšanim grednim konačnim elementom

- [1] Palaversa, M.: Testni primjer za strukturnu optimizaciju, Završni rad, FSB Zagreb, 2012.
- [2] Palaversa, M.: Usporedba matematičkih modela kod problema savijanja grede s uključenim utjecajem smika za potrebe analize i projektiranja tankostjenih monotonih konstrukcija, Projekt B, FSB Zagreb, 2014.
- [3] Hughes, O.: Ship structural design: a rationally-based, computer-aided, optimization approach, SNAME, Jersey City, 1988.
- [4] Gupta, A.K., Ma, P.S.: Error in eccentric beam formulation, International Journal for Numerical Methods in Engineering, Vol. 11, 1473-1483, 1977.
- [5] Miller, R.E.: Reduction of the error in eccentric beam modelling, International Journal for Numerical Methods on Engineering, Vol. 15, 575-582, 1980.
- [6] Fricke, W.: A new beam element for finite element modelling of stiffened plate fields, Schiffstechnik, Vol. 46, 144-152, 1999.
- [7] Žanić, V., Jančijev, T.: Priručnik za korisnika programa PLO2, FSB, Zagreb, 1989.
- [8] Przemieniecki, J. S.: Theory of matrix structural analysis, McGraw-Hill, New York, 1968.
- [9] Jančijev, T., Jelić, G.: Opis modula programskog sklopa LM4, Brodarski institut, Zagreb, 1975.
- [10] Sorić, J.: Metoda konačnih elemenata, Golden marketing-Tehnička knjiga, Zagreb, 2004.

DODATAK 1 – PRORAČUN ODZIVA ISPITNE KONSTRUKCIJE U MathCAD-u

U nastavku je prikazan matematički model proračuna odziva ispitne konstrukcije u MathCADu, tijek proračuna i rezultati.

1. unos ulaznih podataka:

INPUT

```
Modul elastičnosti: E := 210000 N/mm<sup>2</sup>
Duljina: Luk := 1000 mm
Širina donjeg pojasa: bd := 300 mm
Debljina donjeg pojasa: td := 5 mm
Visina struka: hs := 100 mm
Debljina struka: ts := 10 mm
Širina gornjeg pojasa: bg := 80 mm
Debljina gornjeg pojasa: tg := 8 mm
Poissonov koeficijent za čelik: Pp := 0.3
```

2. proračun osnovnih karakteristika presjeka:

OUTPUT

Površina poprečnog presjeka ukrepe: Ab :=
$$(hs \cdot ts) + (bg \cdot tg)$$

Ab = 1.64×10^3 mm²
Položaj težišta ukrepe: yb := $\frac{\left[bg \cdot tg \cdot \left(hs + \frac{td}{2} + \frac{tg}{2}\right) + hs}{bg \cdot tg + hs \cdot ts} ts \cdot \left(\frac{hs}{2} + \frac{td}{2}\right)\right]}{bg \cdot tg + hs \cdot ts}$
Woment inercije pop. presjeka ukrepe: Ib := $\frac{(ts \cdot hs^3)}{12} + ts \cdot hs \cdot \left(yb - \frac{hs}{2} - \frac{td}{2}\right)^2 + \frac{(bg \cdot tg^3)}{12} + bg \cdot tg \cdot \left(\frac{td}{2} + hs + \frac{tg}{2} - yb\right)^2$
Ib = 1.975×10^6 mm⁴
Moment inercije pop. presjeka ukrepe
Ib := Ib + Ab \cdot yb²
Ib = 1.085×10^7 mm⁴

3. određivanje vrijednosti članova matrice krutosti, matrice koja povezuje unutrašnje čvorne sile i pomake te ispravljene matrice koja povezuje unutrašnje čvorne sile i pomake običnog ekscentričnog grednog konačnog elementa:

Obična ekscentrična greda

		^u 61	- ^{- У} ьт	9 _{ь1}	⁸ 62	V ₆₂		
		$ \frac{(E \cdot Ab)}{Luk} $	0	$-\frac{yb \cdot (E \cdot Ab)}{Luk}$	-(E·Ab) Luk	0	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	u _{b1}
		0	$12 \cdot \frac{(E \cdot Ib)}{Luk^3}$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	0	$-12 \cdot \frac{(E \cdot Ib)}{Luk^3}$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	V _{b1}
		$-\frac{yb \cdot (E \cdot Ab)}{Luk}$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	$4{\cdot}\frac{(E{\cdot}Ib)}{Luk} + yb^2{\cdot}\frac{(E{\cdot}Ab)}{Luk}$	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	$-6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	$2 \cdot \frac{(E \cdot Ib)}{Luk} - yb^2 \cdot \frac{(E \cdot Ab)}{Luk}$	Θ _{b1}
Matrica krutosti ob. eksc. grednog kon. el.:	kecc :=	(E·Ab) Luk	0	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	(E·Ab) Luk	0	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	u _{b2}
		0	$-12 \cdot \frac{(E \cdot Ib)}{Luk^3}$	$-6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	0	$12 \cdot \frac{(E \cdot Ib)}{Luk^3}$	$-6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	v _{b2}
		$\frac{yb \cdot (E \cdot Ab)}{Luk}$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	$2 \cdot \frac{(E \cdot Ib)}{Luk} - yb^2 \cdot \frac{(E \cdot Ab)}{Luk}$	$-\frac{yb \cdot (E \cdot Ab)}{Luk}$	$-6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	$4 \cdot \frac{(E \cdot Ib)}{Luk} + yb^2 \cdot \frac{(E \cdot Ab)}{Luk}$	Θ _{b2}
		3.444 × 10 ⁵	0	-2.534 × 10 ⁷ -3.444 × 1	.0 ⁵ 0	2.534 ×	107	
		0	4.976 × 10 ³	2.488×10^{6} 0	-4.976 × 3	10 ³ 2.488 ×	10 ⁶	
	kecc =	-2.534×10^{7}	2.488 × 10 ⁶	3.523×10^9 2.534×10^9	-2.488×10^{7}	10 ⁶ –1.035 ×	10 ⁹	
		-3.444 × 10 ⁰	0	2.534×10^{7} 3.444×10^{6}	0 ^C	-2.534 ×	10	
		0	-4.976 × 10	-2.488 × 10° 0	4.976 × 1	0 [°] -2.488×	10°	
		(2.534 × 10	2.488 × 10	-1.035×10 -2.534×1	.0 -2.488 × 1	10 3.523 ×	10 /	

		$\frac{-(E \cdot Ab)}{Luk}$	0	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	$\frac{(E \cdot Ab)}{Luk}$	0	$\frac{yb \cdot (E \cdot Ab)}{Luk}$
		0	$12 \cdot \frac{(E \cdot Ib)}{Luk^3}$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	0	$-12{\cdot}\frac{(E{\cdot}Ib)}{Luk}^3$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$
Matrica za proračun unutračnijih sila ob	lifeana :	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	$-6 \cdot \frac{(E \cdot Ib)}{Luk^2}$ -	$4 \cdot \frac{(E \cdot Ib)}{Luk} - yb^2 \cdot \frac{(E \cdot Ab)}{Luk}$	$-\frac{yb \cdot (E \cdot Ab)}{Luk}$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	$-\left[2 \cdot \frac{(E \cdot Ib)}{Luk} - yb^2 \cdot \frac{(E \cdot Ab)}{Luk}\right]$
eksc. grednog kon. el.:	AISecc .=	$\frac{-(E \cdot Ab)}{Luk}$	0	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	(E·Ab) Luk	0	$-\frac{yb \cdot (E \cdot Ab)}{Luk}$
		0	$12 \cdot \frac{(E \cdot Ib)}{Luk^3}$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	0	$-12 \cdot \frac{(E \cdot Ib)}{Luk^3}$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$
		yb·(E·Ab) Luk	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	$2 \cdot \frac{(E \cdot Ib)}{Luk} - yb^2 \cdot \frac{(E \cdot Ab)}{Luk}$	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	$-6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	$4 \cdot \frac{(E \cdot Ib)}{Luk} + yb^2 \cdot \frac{(E \cdot Ab)}{Luk}$
		$\frac{-(E \cdot Ab)}{Luk}$	0	0	(E·Ab)	0	0
		σ	12- <u>(E-Ib)</u> Luk ³	6. <u>(E·Ib)</u> Luk ²	0	-12 (E·Ib) Luk ³	6: <u>(E:Ib)</u> Luk ²
· · · · · · · · · · · · · · · · · · ·		yb·(E·Ab) Luk	$-6 \cdot \frac{(E \cdot Ib)}{Luk^2}$ -	$4 \cdot \frac{(E \cdot Ib)}{Luk} - yb^2 \cdot \frac{(E \cdot Ab)}{Luk}$	$-\frac{yb \cdot (E \cdot Ab)}{Luk}$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	$- \left[2 \cdot \frac{(E \cdot Ib)}{Luk} - yb^2 \cdot \frac{(E \cdot Ab)}{Luk} \right]$
ispravijena matrica za proračun unutrasnjin sila ob. eksc. grednog kon. el.:	kfseccisp :=	$\frac{-(E \cdot Ab)}{Luk}$	0	0	(E·Ab) Luk	0	0
		0	$12 \cdot \frac{(E \cdot Ib)}{Luk^3}$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$	0	$-12 \cdot \frac{(E \cdot Ib)}{Luk^3}$	$6 \cdot \frac{(E \cdot Ib)}{Luk^2}$
		$\frac{yb \cdot (E \cdot Ab)}{Luk}$	$6 \cdot \frac{(E \cdot Ib)}{Lut^2}$	$2 \cdot \frac{(E \cdot Ib)}{Luk} - yb^2 \cdot \frac{(E \cdot Ab)}{Luk}$	$-\frac{yb \cdot (E \cdot Ab)}{Luk}$	$-6 \cdot \frac{(E \cdot Ib)}{Lut^2}$	$4 \cdot \frac{(E \cdot Ib)}{Luk} + yb^2 \cdot \frac{(E \cdot Ab)}{Luk}$

Marin Palaversa

Diplomski rad

4. određivanje vrijednosti članova matrice krutosti i matrice koja povezuje unutrašnje čvorne sile i pomake modificiranog ekscentričnog grednog konačnog elementa:

Modificirana ekscentrična greda

$Matrica knutosti mod. eksc. grednog kon. el.: kmeece = \begin{bmatrix} \frac{(E-Ab)}{Luk} & 0 & \frac{yb-(E-Ab)}{Luk} & 0 & 0 & \frac{yb-(E-Ab)}{Luk} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $				u _{b1}	v _{b1}	Θ _{b1}	u _{b2}	v _{b2}	Θ _{b2}	
$Matrica krutosti mod. eksc. grednog kon. el.: kmoecc := \begin{bmatrix} 0 & 12 \frac{(E-1b0)}{Luk^2} & 6 \frac{(E-1b0)}{Luk^2} & 4 \frac{(E-1b0)}{Luk} & 9 \frac{(E-Ab)}{Luk} & -6 \frac{(E-1b0)}{Luk^2} & 2 \frac{(E-1b0)}{Luk} & 9 \frac{(E-Ab)}{Luk} & 0 & \frac{9}{2} \frac{(E-Ab)}{Luk} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $			(<u>E</u> I	·Ab) .uk	0	$-\frac{yb \cdot (E \cdot Ab)}{Luk}$	$\frac{-(E \cdot Ab)}{Luk}$	0	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	u _{b1}
$Matrica krutosti mod. eksc. grednog kon. el.: kmoecc > \begin{bmatrix} \frac{yb}{Lk} (\frac{E}{kb}) & \frac{e}{kb} (\frac{E}{kb}) & \frac{e}{k$				0	$12 \cdot \frac{(E \cdot Ib0)}{Luk^3}$	$6 \cdot \frac{(E \cdot Ib0)}{Iuk^2}$	0	$-12 \cdot \frac{(E \cdot Ib0)}{Luk^3}$	$6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	v _{b1}
$ \text{Matrica krutosti mod. eksc. grednog kon. el.: kmoecc} := \begin{bmatrix} -\frac{(E-Ab)}{Luk} & 0 & \frac{yb\cdot(E-Ab)}{Luk} & \frac{(E-Ab)}{Luk} & 0 & \frac{yb\cdot(E-Ab)}{Luk} & -\frac{(E-Ib0)}{Luk^2} & -\frac{(E-Ib0)}{Luk^2} & -\frac{(E-Ib0)}{Luk^2} & -\frac{(E-Ib0)}{Luk} & -\frac{(E-Ib0)}{Luk^2} & -\frac{(E-Ib0)}{Luk} & -\frac{(E-Ib0)}{Luk} & -\frac{(E-Ib0)}{Luk} & -\frac{(E-Ib0)}{Luk^2} & -\frac{(E-Ib0)}{Luk} & -\frac{(E-Ib0)}{Luk} & -\frac{(E-Ib0)}{Luk} & -\frac{(E-Ib0)}{Luk} & -\frac{(E-Ib0)}{Luk} & -\frac{(E-Ib0)}{Luk} & -\frac{(E-Ib0)}{Luk^2} & -\frac{(E-Ib0)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E-Ib0)}{Luk^2} & -\frac{(E-Ib0)}{Luk} & 0 & 0 & 0 \\ 0 & -6 \cdot \frac{(E-Ib0)}{Luk^2} & -\frac{(E-Ib0)}{Luk} & 0 & 0 & 0 \\ 0 & 12 \cdot \frac{(E-Ib0)}{Luk^2} & 0 & -12 \cdot \frac{(E-Ib0)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E-Ib0)}{Luk^2} & 0 & -12 \cdot \frac{(E-Ib0)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E-Ib0)}{Luk^2} & 0 & -12 \cdot \frac{(E-Ib0)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E-Ib0)}{Luk^2} & 0 & -12 \cdot \frac{(E-Ib0)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E-Ib0)}{Luk^2} & 0 & -12 \cdot \frac{(E-Ib0)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E-Ib0)}{Luk^2} & 0 & -12 \cdot \frac{(E-Ib0)}{Luk^2} & 0 & -12 \cdot \frac{(E-Ib0)}{Luk} & 0 \\ 0 & 0 & 0 & \frac{(E-Ib0)}{Luk^2} & 0 & -12 \cdot \frac{(E-Ib0)}{Luk} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(E-Ib0)}{Luk^2} & 0 & -12 \cdot \frac{(E-Ib0)}{Luk^2} & 0 & -12 \cdot \frac{(E-Ib0)}{Luk^2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$			_ <u>yb</u> .	(E-Ab) Luk	$6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	4- (E-Ib0) Luk	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	$-6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	2- (E-Ib0) Luk	Θ _{b1}
$Matrica za proračun unutrašnjih sila mod.$ $kfsmoecc := \begin{cases} \frac{-(E - Ab)}{Luk} & 0 & 0 & \frac{(E - Ib0)}{Luk^2} & 0 & 12 & \frac{(E - Ib0)}{Luk^2} & -\frac{(E - Ib0)}{Luk^2} & 0 & 0 \\ \frac{yb (E - Ab)}{Luk} & 6 & \frac{(E - Ib0)}{Luk^2} & 2 & \frac{(E - Ib0)}{Luk} & -6 & \frac{(E - Ib0)}{Luk^2} & 4 & \frac{(E - Ib0)}{Luk} & 0 & 0 \\ 0 & 2.735 \times 10^4 & 1.367 \times 10^7 & 0 & -2.735 \times 10^4 & 1.367 \times 10^7 \\ 0 & 2.735 \times 10^4 & 1.367 \times 10^7 & 0 & -2.735 \times 10^4 & 1.367 \times 10^7 \\ -2.534 \times 10^7 & 1.367 \times 10^7 & 0 & 2.735 \times 10^4 & -1.367 \times 10^7 \\ 0 & -2.735 \times 10^4 & -1.367 \times 10^7 & 0 & 2.735 \times 10^4 & -1.367 \times 10^7 \\ 0 & -2.735 \times 10^4 & -1.367 \times 10^7 & 0 & 2.735 \times 10^4 & -1.367 \times 10^7 \\ 0 & -2.735 \times 10^4 & -1.367 \times 10^7 & 0 & 2.735 \times 10^4 & -1.367 \times 10^7 \\ 0 & -2.735 \times 10^4 & -1.367 \times 10^7 & -2.534 \times 10^7 & -1.367 \times 10^7 & 9.116 \times 10^9 \\ \end{array}$	Matrica krutosti mod. eksc. grednog kon. el.:	kmoecc :=	<u>-(F</u> I	E-Ab) Luk	0	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	$\frac{(E \cdot Ab)}{Luk}$	0	$-\frac{yb\cdot(E\cdot Ab)}{Luk}$	u _{b2}
$Matrica za proračun unutrašnjih sila mod.$ $kfsmoecc := \begin{bmatrix} \frac{-(E-Ab)}{Luk} & 6 & \frac{(E-Ib0)}{Luk} & 2 & \frac{(E-Ib0)}{Luk} & -6 & \frac{(E-Ib0)}{Luk} & 4 & \frac{(E-Ib0)}{Luk} & 4 & \frac{(E-Ib0)}{Luk} & ($				0	$-12 \cdot \frac{(E \cdot Ib0)}{Luk^3}$	$-6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	0	$12 \cdot \frac{(E \cdot Ib0)}{Luk^3}$	$-6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	v _{b2}
$Matrica za proračun unutrašnjih sila mod.$ $kfsmoecc = \begin{bmatrix} \frac{-(E - Ab)}{Luk} & 0 & 0 & \frac{(E - Ab)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E - Bo)}{Luk} & 0 & 0 & \frac{(E - Ab)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E - Bo)}{Luk} & 0 & 0 & \frac{(E - Ab)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E - Bb)}{Luk} & 0 & 0 & \frac{(E - Ab)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E - Bb)}{Luk} & 0 & 0 & \frac{(E - Ab)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E - Bb)}{Luk} & 0 & 0 & \frac{(E - Ab)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E - Bb)}{Luk} & 0 & 0 & \frac{(E - Ab)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E - Bb)}{Luk} & 0 & 0 & \frac{(E - Ab)}{Luk} & 0 & 0 \\ 0 & 12 \cdot \frac{(E - Bb)}{Luk} & 0 & 0 & \frac{(E - Ab)}{Luk} & 0 & 0 \\ 0 & 0 & 0 & \frac{(E - Ab)}{Luk} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(E - Ab)}{Luk} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$			yb·(E-Ab) .uk	$6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	$2 \cdot \frac{(E \cdot Ib0)}{Luk}$	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	$-6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	$4 \cdot \frac{(E \cdot Ib0)}{Luk}$	⊖ _{b2}
$Matrica za proračun unutrašnjih sila mod. kfsmoecc := \begin{cases} -(E \cdot Ab) & 0 & 0 & (E \cdot Ab) \\ Luk & 0 & 0 & (E \cdot Ib0) \\ 12 \cdot (E \cdot Ib0) & 6 \cdot (E \cdot Ib0) \\ Luk^3 & Luk^2 & 0 & -12 \cdot (E \cdot Ib0) \\ Luk^3 & Luk^2 & 0 & 0 \\ Luk^2 & -1 & 0 & 0 \\ Luk^2 & -$		kmoecc =	-2.53 -3.44 2.534	$ \begin{array}{c} 4 \times 10^{5} \\ 0 \\ 4 \times 10^{7} \\ 4 \times 10^{5} \\ 0 \\ 4 \times 10^{7} \end{array} $	$0 \\ 2.735 \times 10^4 \\ 1.367 \times 10^7 \\ 0 \\ -2.735 \times 10^4 \\ 1.367 \times 10^7 \\ 0$	$\begin{array}{c} -2.534 \times 10^{7} \\ 1.367 \times 10^{7} \\ 9.116 \times 10^{9} \\ 2.534 \times 10^{7} \\ -1.367 \times 10^{7} \\ 4.558 \times 10^{9} \end{array}$	-3.444×10^{5} 0 2.534×10^{7} 3.444×10^{5} 0 -2.534×10^{7}	$\begin{matrix} 0 \\ -2.735 \times 10^4 \\ -1.367 \times 10^7 \\ 0 \\ 2.735 \times 10^4 \\ -1.367 \times 10^7 \end{matrix}$	$\begin{array}{c} 2.534 \times 10^{7} \\ 1.367 \times 10^{7} \\ 4.558 \times 10^{9} \\ -2.534 \times 10^{7} \\ -1.367 \times 10^{7} \\ 9.116 \times 10^{9} \end{array}$	
	Matrica za proračun unutrašnjih sila mod. eksc. grednog kon. el.:	kfsmoe	-cc :=	- <u>(E · A</u> 0 - <u>(E · A</u> Luk	Lb) 0 12·(E·I Lut -6·(E·I Lut .b) 0 12·(E·I Lut (E·It	$\frac{b0)}{k^3} = 6 \cdot \frac{(E \cdot It)}{Luk}$ $\frac{b0)}{k^2} = -4 \cdot \frac{(E \cdot I)}{Luk}$ 0 $\frac{b0)}{k^3} = 6 \cdot \frac{(E \cdot It)}{Luk}$ $b0) = (E \cdot It)$	$\frac{(E \cdot Ab)}{Luk}$ $\frac{b0)}{2} = 0$ $\frac{(E \cdot Ab)}{Luk}$	$-12 \cdot \frac{(E \cdot Ib0)}{Luk^3}$ $6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$ 0 $-12 \cdot \frac{(E \cdot Ib0)}{Luk^3}$ (E \cdot Ib0)	$\begin{array}{c} 0 \\ \hline 0 \\ \hline 6 \cdot \frac{(E \cdot Ib0)}{Luk^2} \\ -2 \cdot \frac{(E \cdot Ib0)}{Luk} \\ 0 \\ \hline 0 \\ \hline 6 \cdot \frac{(E \cdot Ib0)}{Luk^2} \\ 0 \\ \hline \end{array}$	<u>)</u>

Marin Palaversa

5. određivanje vrijednosti članova matrice krutosti ljuskastog konačnog elementa:

			0	1	2	3	4	5	6	7	8	9	10	11
		0	7.295·10 ⁵	0	0	6.167·10 ⁵	0	0	-7.032·10 ⁵	0	0	-6.429·10 ⁵	0	0
		1	0	2.891·10 ³	7.772·10 ³	0	1.382·10 ³	2.965·10 ³	0	-1.507·10 ³	-1.883·10 ³	0	-2.889·10 ³	-6.691·10 ³
		2	0	7.772·10 ³	3.472.106	0	-2.965·10 ³	-5.075·10 ⁵	0	1.883 [.] 10 ³	8.681.105	0	-6.691·10 ³	-2.751·10 ⁶
		3	6.167·10 ⁵	0	0	7.295·10 ⁵	0	0	-6.429·10 ⁵	0	0	-7.032·10 ⁵	0	0
		4	0	1.382.103	-2.965·10 ³	0	2.891·10 ³	-7.772·10 ³	0	-2.889·10 ³	6.691·10 ³	0	$-1.507 \cdot 10^{3}$	1.883·10 ³
Matrica krutosti elementa ljuske:	kse =	5	0	2.965·10 ³	-5.075·10 ⁵	0	-7.772·10 ³	3.472.106	0	6.691·10 ³	-2.751.106	0	-1.883·10 ³	8.681.105
		6	-7.032·10 ⁵	0	0	-6.429·10 ⁵	0	0	7.295·10 ⁵	0	0	6.167·10 ⁵	0	0
		7	0	-1.507·10 ³	1.883·10 ³	0	-2.889·10 ³	6.691·10 ³	0	2.891·10 ³	-7.772·10 ³	0	1.382·10 ³	-2.965·10 ³
		8	0	-1.883·10 ³	8.681·10 ⁵	0	6.691·10 ³	-2.751.106	0	-7.772·10 ³	3.472.106	0	2.965·10 ³	-5.075·10 ⁵
		9	-6.429·10 ⁵	0	0	-7.032·10 ⁵	0	0	6.167 [.] 10 ⁵	0	0	7.295·10 ⁵	0	0
		10	0	-2.889·10 ³	-6.691·10 ³	0	-1.384·10 ³	-1.883 [.] 10 ³	0	1.382·10 ³	2.965·10 ³	0	2.891·10 ³	7.772·10 ³
		11	0	-6.691·10 ³	-2.751.106	0	1.883.103	8.681·10 ⁵	0	-2.965·10 ³	-5.075.105	0	7.772.103	3.472·10 ⁶

6. određivanje vrijednosti članova globalne matrice krutosti ispitne konstrukcije i stupnjeva slobode u čvorovima kod proračuna običnim ekscentričnim grednim konačnim elementom za sva tri slučaja opterećenja:

2 x SE + 1 ECC.

7. određivanje vrijednosti unutrašnjih sila u čvorovima kod proračuna običnim ekscentričnim grednim konačnim elementom za sva tri slučaja opterećenja:

8. određivanje vrijednosti normalnih naprezanja na mjestima čvorova kod proračuna običnim ekscentričnim grednim konačnim elementom za sva tri slučaja opterećenja:

9. određivanje vrijednosti unutrašnjih sila u čvorovima i normalnih naprezanja na mjestima čvorova kod proračuna običnim ekscentričnim grednim konačnim elementom za sva tri slučaja opterećenja i s ispravljenom matricom koja povezuje unutrašnje čvorne sile i pomake:

Diplomski rad

Marin Palaversa

10. određivanje vrijednosti članova globalne matrice krutosti ispitne konstrukcije, čvornih stupnjeva slobode i unutrašnjih sila kod proračuna modificiranim ekscentričnim grednim konačnim elementom:

2 x SE + 1 MOD. ECC.

	kmoeco	3,3 + kse3	,3 + ksel _{3,5}	3 kmoecc3	,4 + kse _{3,4} +	ksel _{3,4} km	oecc _{3,5} + kse _{3,}	5 + ksel _{3,5}	kse _{3,6}	kse ₃ ,	, ^{kse} 3,8	ksel _{3,6}	ksel _{3,7}	ksel _{3,8}
	kmoeco	4,3 ^{+ kse} 4	,3 ^{+ ksel} 4,3	3 kmoecc ₄	,4 + kse _{4,4} +	ksel _{4,4} km	$ecc_{4,5} + kse_{4,5}$	5 ^{+ ksel} 4,5	kse _{4,6}	kse ₄ ,	^{kse} 4,8	ksel _{4,6}	ksel _{4,7}	ksel _{4,8}
	kmoeco	5,3 + kse5	,3 + ksel _{5,3}	3 kmoecc ₅	,4 + kse _{5,4} +	ksel _{5,4} km	$oecc_{5,5} + kse_{5,5}$	5 ^{+ ksel} 5,5	kse _{5,6}	kse _{5,}	^{kse} 5,8	ksel _{5,6}	ksel _{5,7}	ksel _{5,8}
		kse _{6,3}			kse _{6,4}		kse _{6,5}		kse _{6,6}	kse _{6,}	^{kse} 6,8	0	0	0
Globalna matrica krutosti: kgmoeccs :=		kse _{7,3}			kse _{7,4}		kse _{7,5}		kse _{7,6}	kse ₇ ,	, ^{kse} 7,8	0	0	0
		kse _{8,3}			kse _{8,4}		kse _{8,5}		kse _{8,6}	kse ₈ ,	, ^{kse} 8,8	0	0	0
		ksel _{6,}	3		ksel _{6,4}		ksel _{6,5}		0	0	0	ksel _{6,6}	ksel _{6,7}	ksel _{6,8}
		ksel ₇	3		ksel _{7,4}		ksel _{7,5}		0	0	0	ksel _{7,6}	$\mathbf{ksel}_{7,7}$	ksel _{7,8}
	l	ksel ₈ ,	3		ksel _{8,4}		ksel _{8,5}		0	0	0	ksel _{8,6}	ksel _{8,7}	ksel _{8,8}
	<i>,</i>	6		7	5							>		
	1.803 ×	100	0 -2	.534 × 10'	-6.429 × 10 ⁻⁷	0	0	-6.429 × 10 ⁻	0		0			
	0	3.31	3×10^4 -1	369 × 10 ⁷	0	-2.889 × 10 ³	6.691 × 10 ³	0	-2.889	× 10 ³	6.691 × 1	03		
	-2.534 >	× 10 ⁷ –1.30	i9 × 10 ⁷ 9.	123 × 10 ⁹	0	6.691 × 10 ³	-2.751×10^{6}	0	6.691 >	× 10 ³	-2.751 ×	10 ⁶		
	-6.429 >	× 10 ⁵	0	0	7.295×10^{5}	0	0	0	0		0			
kgmoeccs =	0	-2.88	19 × 10 ³ 6.	691 × 10 ³	0	$2.891 imes 10^3$	-7.772×10^{3}	0	0		0			
	0	6.69	1×10^{3} -2	.751 × 10 ⁶	0	-7.772×10^{3}	3.472×10^{6}	0	0		0			
	-6.429 >	< 10 ⁵	0	0	0	0	0	7.295 × 10 ⁵	0		0			
	0	-2.88	19 × 10 ³ 6.	691 × 10 ³	0	0	0	0	2.891	× 10 ³	-7.772 ×	10 ³		
			³							3		.6		

11. određivanje vrijednosti normalnih naprezanja na mjestima ispitne konstrukcije kod proračuna modificiranim ekscentričnim grednim konačnim elementom:

U nastavku je prikazan proračun čvornih pomaka ispitne konstrukcije ekscentričnim grednim konačnim elementom sa sedam stupnjeva slobode i hibridnim grednim elementom. Proračun unutrašnjih sila i naprezanja nije prikazan pošto u ovom radu za te elemente rezultati tih proračuna nisu niti bili razmatrani.

12. određivanje vrijednosti članova matrice krutosti ekscentričnog grednog konačnog elementa sa sedam stupnjeva slobode:

$ \text{Matrica krutosti mod. eksc. grednog kon. el.:} \\ \text{kmiecc} = \begin{cases} \frac{16}{3} \frac{(E-Ab)}{1 \text{ tuk}} & \frac{-8}{3} \frac{(E-Ab)}{1 \text{ tuk}} & \frac{8}{3} \frac{(E-Ab)}{1 \text{ tuk}} & \frac{8}{3} \frac{(E-Ab)}{1 \text{ tuk}} & \frac{4}{3} \frac{(E-Ab)}{1 $			u _{bd}	u _{b1}	V _{b1}	Θ _{b1}	u _{b2}	v _{b2}	Θ _{b2}	
$Matrica krutosti mod. eksc. grednog kon. el.: kmiecc := \begin{cases} (E.Ab) & 7(E.Ab) & 4yb (E.Ab) & 4yb $			$\frac{16}{3} \cdot \frac{(E \cdot Ab)}{Luk}$	$\frac{-8}{3} \cdot \frac{(E \cdot Ab)}{Luk}$	$\frac{(E \cdot Ab)}{Luk^2}$	$4{\cdot}yb{\cdot}\frac{(E{\cdot}Ab)}{Luk}$	$\frac{-8}{3} \cdot \frac{(E \cdot Ab)}{Luk}$	$-8 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk^2}$	$4 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk}$	u _{bd}
$ Matrica krutosti mod. eksc. grednog kon. el.: \\ kmiecc := \begin{cases} 8.yb. \frac{(E-Ab)}{Luk^2} & -4.yb. \frac{(E-Ab)}{Luk^2} & 12 \cdot \frac{(E-Bb)}{Luk^3} & 6 \cdot \frac{(E-Bb)}{Luk^2} & -4.yb. \frac{(E-Ab)}{Luk^2} & -12 \cdot \frac{(E-Bb)}{Luk^3} & 6 \cdot \frac{(E-Bb)}{Luk^2} & -4.yb \cdot \frac{(E-Ab)}{Luk^2} & -4.yb \cdot \frac{(E-Ab)}{Luk^2} & -12 \cdot \frac{(E-Bb)}{Luk^3} & 6 \cdot \frac{(E-Bb)}{Luk^2} & -4.yb \cdot \frac{(E-Ab)}{Luk} & -4.yb \cdot \frac{(E-Ab)}{Luk^2} & -4.yb \cdot \frac{(E-Ab)}{Luk^2} & -3.yb \cdot (E-Ab)} & -4.yb \cdot \frac{(E-Ab)}{Luk^2} & -4.yb \cdot \frac{(E-Ab)}{Luk} & -4.yb \cdot \frac{(E-Ab)}{Luk^2} & -4.yb \cdot \frac{(E-Ab)}{Luk} & -4.yb \cdot \frac{(E-Ab)}{Luk} & -4.yb \cdot \frac{(E-Ab)}{Luk} & -4.yb \cdot \frac{(E-Ab)}{Luk} & -4.yb \cdot \frac{(E-Ab)}{Luk^2} & -4.yb \cdot \frac{(E-Ab)}{Luk} & -4.yb \cdot \frac{(E-Ab)}{Luk^2} & -4.yb \cdot \frac{(E-Ab)}{Luk} & -4.yb \cdot \frac{(E-Ab)}{Luk} & -4.yb \cdot \frac{(E-Ab)}{Luk^2} & -4.yb \cdot \frac{(E-Ab)}{Luk} & -4.yb \cdot \frac{(E-Ab)}{Luk} & -4.yb \cdot \frac{(E-Ab)}{Luk^2} $			-8 (E·Ab) 3 Luk	7(E·Ab) 3Luk	4 yb (E·Ab)	3yb·(E·Ab) Luk	(E·Ab) 3Luk	4-yb (E·Ab)	yb∙(E∙Ab) Luk	u _{b1}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			$8 \cdot yb \cdot \frac{(E \cdot Ab)}{2}$	$-4 \cdot yb \cdot \frac{(E \cdot Ab)}{L + 2}$	$12 \cdot \frac{(E \cdot Ib0)}{L + 3}$	$6 \cdot \frac{(E \cdot Ib0)}{L + 2}$	$-4 \cdot yb \cdot \frac{(E \cdot Ab)}{L + 2}$	$-12 \cdot \frac{(E \cdot Ib0)}{L + 3}$	$6 \cdot \frac{(E \cdot Ib0)}{L + 2}$	V _{b1}
$kniecc = \begin{cases} \frac{-8}{3} \cdot \frac{(E \cdot Ab)}{Luk} & \frac{(E \cdot Ab)}{3Luk} & -4 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk^2} & \frac{-yb \cdot (E \cdot Ab)}{Luk^2} & \frac{7(E \cdot Ab)}{3Luk} & 4 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk^2} & -\frac{3yb \cdot (E \cdot Ab)}{Luk} & 4 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk^2} & -\frac{3yb \cdot (E \cdot Ab)}{Luk} & 4 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk^2} & -\frac{3yb \cdot (E \cdot Ab)}{Luk^2} & -\frac{3yb \cdot (E \cdot Ab)}{Luk^2} & -\frac{3yb \cdot (E \cdot Ab)}{Luk^2} & -\frac{6}{Lb0} & -$	Matrica krutosti mod. eksc. grednog kon. el.:	kmiecc :=	4·yb· $\frac{(E \cdot A \cdot b)}{Luk}$	- 3yb·(E·Ab) Luk	$6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	$4 \cdot \frac{(E \cdot Ib0)}{Luk}$	$\frac{-yb \cdot (E \cdot Ab)}{Luk}$	$-6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	$2 \cdot \frac{(E \cdot Ib0)}{Luk}$	® _{ь1}
$kniecc = \begin{pmatrix} e \cdot Ab \\ Luk^{2} \\ +yb \cdot \frac{(E \cdot Ab)}{Luk^{2}} \\ +yb \cdot \frac{(E \cdot Ab)}{Luk} \\ -\frac{yb \cdot (E \cdot Ab)}{Luk} $			$\frac{-8}{3} \cdot \frac{(E \cdot Ab)}{Luk}$	(E·Ab) 3Luk	$-4 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk^2}$	$\frac{-yb \cdot (E \cdot Ab)}{Luk}$	7(E·Ab) 3Luk	$4 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk^2}$	$\frac{3yb\cdot(E\cdot Ab)}{Luk}$	u _{b2}
$4 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk} - \frac{yb \cdot (E \cdot Ab)}{Luk} - 6 \cdot \frac{(E \cdot Ib0)}{Luk^2} - 2 \cdot \frac{(E \cdot Ib0)}{Luk} - \frac{3yb \cdot (E \cdot Ab)}{Luk} - 6 \cdot \frac{(E \cdot Ib0)}{Luk^2} - 4 \cdot \frac{(E \cdot Ib0)}{Luk} - 9 \cdot 104 \times 10^5 - 2.027 \times 10^5 - 1.014 \times 10^8 - 9.184 \times 10^5 - 2.027 \times 10^5 - 1.014 \times 10^8 - 9.184 \times 10^5 - 2.027 \times 10^5 - 1.014 \times 10^5 - 2.027 \times 10^5 - 1.014$			$-8 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk^2}$	$4 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk^2}$	$-12 \cdot \frac{(E \cdot Ib0)}{Luk^3}$	$-6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	$4 \cdot yb \cdot \frac{(E \cdot Ab)}{Luk^2}$	$12 \cdot \frac{(E \cdot Ib0)}{Luk^3}$	$-6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	V _{b2}
$kmiecc = \begin{cases} 1.83^{7} \times 10^{6} & -9.184 \times 10^{5} & 2.027 \times 10^{5} & 1.014 \times 10^{8} & -9.184 \times 10^{5} & -2.027 \times 10^{5} & 1.014 \times 10^{8} \\ -9.184 \times 10^{5} & 8.036 \times 10^{5} & -1.014 \times 10^{5} & -7.602 \times 10^{7} & 1.148 \times 10^{5} & 1.014 \times 10^{5} & -2.534 \times 10^{7} \\ 2.02^{7} \times 10^{5} & -1.014 \times 10^{5} & 2.735 \times 10^{4} & 1.367 \times 10^{7} & -1.014 \times 10^{5} & -2.735 \times 10^{4} & 1.367 \times 10^{7} \\ 1.014 \times 10^{8} & -7.602 \times 10^{7} & 1.367 \times 10^{7} & 9.116 \times 10^{9} & -2.534 \times 10^{7} & 4.558 \times 10^{9} \\ -9.184 \times 10^{5} & 1.148 \times 10^{5} & -1.014 \times 10^{5} & -2.534 \times 10^{7} & 8.036 \times 10^{5} & 1.014 \times 10^{5} & -7.602 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -7.602 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -7.602 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -7.602 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -7.602 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -7.602 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -7.602 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -7.602 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -7.602 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -2.634 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -2.634 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -2.634 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} & 1.014 \times 10^{5} & -2.634 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} \\ -2.027 \times 10^{5} & 1.014 \times 10^{5} & -2.735 \times 10^{4} & -1.367 \times 10^{7} \\ -2.027 \times 10^{5} & 1$			$4 \cdot yb \cdot \frac{(E \cdot A \cdot b)}{Luk}$	$\frac{yb \cdot (E \cdot Ab)}{Luk}$	$6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	$2 \cdot \frac{(E \cdot Ib0)}{Luk}$	$\frac{3yb \cdot (E \cdot Ab)}{Luk}$	$-6 \cdot \frac{(E \cdot Ib0)}{Luk^2}$	$4 \cdot \frac{(E \cdot Ib0)}{Luk}$	® _{b2}
$kmiecc = \begin{bmatrix} -9.18 \times 10^5 & 8.036 \times 10^5 & -1.014 \times 10^5 & -7.602 \times 10^7 & 1.148 \times 10^5 & 1.014 \times 10^5 & -2.534 \times 10^7 \\ 2.027 \times 10^5 & -1.014 \times 10^5 & 2.735 \times 10^4 & 1.367 \times 10^7 & -1.014 \times 10^5 & -2.735 \times 10^4 & 1.367 \times 10^7 \\ 1.014 \times 10^8 & -7.602 \times 10^7 & 1.367 \times 10^7 & 9.116 \times 10^9 & -2.534 \times 10^7 & -1.367 \times 10^7 & 4.558 \times 10^9 \\ -9.184 \times 10^5 & 1.148 \times 10^5 & -1.014 \times 10^5 & -2.534 \times 10^7 & 8.036 \times 10^5 & 1.014 \times 10^5 & -7.602 \times 10^7 \\ -2.027 \times 10^5 & 1.014 \times 10^5 & -2.735 \times 10^4 & -1.367 \times 10^7 & 1.014 \times 10^5 & -7.602 \times 10^7 \end{bmatrix}$			(1.837 × 1	0 ⁶ -9.184 × 10	⁵ 2.027 × 10 ⁵	1.014 × 10 ⁸	-9.184 × 10 ⁵ -2	.027 × 10 ⁵ 1.01	4 × 10 ⁸	I
$kmiecc = \begin{bmatrix} 2.027 \times 10^5 & -1.014 \times 10^5 & 2.735 \times 10^4 & 1.367 \times 10^7 & -1.014 \times 10^5 & -2.735 \times 10^4 & 1.367 \times 10^7 \\ 1.014 \times 10^8 & -7.602 \times 10^7 & 1.367 \times 10^7 & 9.116 \times 10^9 & -2.534 \times 10^7 & -1.367 \times 10^7 & 4.558 \times 10^9 \\ -9.184 \times 10^5 & 1.148 \times 10^5 & -1.014 \times 10^5 & -2.534 \times 10^7 & 8.036 \times 10^5 & 1.014 \times 10^5 & -7.602 \times 10^7 \\ -2.027 \times 10^5 & 1.014 \times 10^5 & -2.735 \times 10^4 & -1.367 \times 10^7 & 1.014 \times 10^5 & 2.735 \times 10^4 & -1.367 \times 10^7 \end{bmatrix}$			-9.184 ×	10^5 8.036 × 10^5	-1.014×10^{5}	-7.602×10^7	1.148 × 10 ⁵ 1.	014×10^{5} -2.5	34 × 10 ⁷	
$kmiecc = 1.014 \times 10^{8} -7.602 \times 10^{7} 1.367 \times 10^{7} 9.116 \times 10^{9} -2.534 \times 10^{7} -1.367 \times 10^{7} 4.558 \times 10^{9} -9.184 \times 10^{5} 1.148 \times 10^{5} -1.014 \times 10^{5} -2.534 \times 10^{7} 8.036 \times 10^{5} 1.014 \times 10^{5} -7.602 \times 10^{7} -2.027 \times 10^{5} 1.014 \times 10^{5} -2.735 \times 10^{4} -1.367 \times 10^{7} 1.014 \times 10^{5} 2.735 \times 10^{4} -1.367 \times 10^{7}$			2.027 × 1	0^{5} -1.014 × 10	52.735×10^4	1.367 × 10 ⁷	-1.014×10^{5} -2	.735 × 10 ⁴ 1.36	67 × 10 ⁷	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		kmi	ecc = 1.014 × 1	$0^8 - 7.602 \times 10^8$	1.367 × 10	9.116 × 10 ⁹	-2.534 × 10 ⁷ -1		8 × 10 ⁹	
$-2.027 \times 10^{-7} - 1.014 \times 10^{-7} - 2.735 \times 10^{+7} - 1.367 \times 10^{-7} - 1.367 \times 1$			-9.184 ×	10^{2} 1.148 × 10^{2}	-1.014 × 10 ²	-2.534 × 10 ⁷	8.036 × 10 ² 1.	014×10^{2} -7.6	02 × 10′	
1011 10^8 2501 10^7 1027 10^7 1550 10^9 700 10^7 1027 10^7			-2.027 ×	10 1.014 × 10	-2.735×10^{4}	-1.367 × 10'	1.014×10^{-7} 2.	$735 \times 10^7 - 1.3$	67 × 10'	

Ekscentrični	gredni	konačni	element	sa	sedam	stup	nj	eva	slobode
	-	-	-						

13. određivanje globalne matrice krutosti ispitne konstrukcije i čvornih pomaka kod proračuna ekscentričnim grednim konačnim elementom sa sedam stupnjeva slobode:

		kmi	ecc _{0,0}	kmiecc _{0,4}		kmiecc _{0,5}			kmie	^{cc} 0,6		0	0	0	0	0	0
		kmi	ecc _{4,0} kmieco	4,4 + kse3,3 +	ksel _{3,3} kn	^{iecc} 4,5 + kse _{3,4}	+ ksel _{3,4}	kmied	^{cc} 4,6 + k	se3,5	+ ksel _{3,5}	kse _{3,6}	kse _{3,7}	kse _{3,8}	ksel _{3,6}	ksel _{3,7}	ksel _{3,8}
		kmi	ecc _{5.0} kmieco	5,4 + kse4,3 +	ksel _{4.3} kn	$iecc_{5,5} + kse_{4,4}$	+ ksel _{4,4}	kmiec	cc _{5.6} + k	se _{4.5}	+ ksel _{4.5}	kse _{4.6}	kse _{4.7}	kse4.8	ksel4.6	ksel _{4,7}	ksel4.8
		kmi	ecc _{6.0} kmieco	6.4 + kse5.3 +	ksel _{5.3} kn	iecc _{6.5} + kse _{5.4}	+ ksel _{5.4}	kmiec	$c_{6,6}^{c} + k$	se _{5.5}	+ ksel 5.5	kse _{5.6}	kse _{5.7}	kse _{5.8}	ksel _{5.6}	ksel _{5.7}	ksel _{5.8}
Globalna matrica krutosti:			0	kse _{6.3}		kse _{6.4}			kse	6.5		kse _{6.6}	kse _{6.7}	kse _{6.8}	0	0	0
Giobalita matrica krutosti.	kgmieccs :=		0	kse ₇₃		kse _{7 4}			kse	°, s		kse _{7.6}	kse ₇₇	kse _{7.8}	0	0	0
			0	kse _{g 3}		kse _{g 4}			kse	30 S		kse _{s 6}	kse _{g 7}	kse _g g	0	0	0
			0	ksel ₆		ksel ₆			kse	16.5		0	0	0	ksel ₆	ksel ₆₇	ksel ₆ o
			0	ksel _{7,2}		ksel _{7 4}			kse	17.5		0	0	0	ksel _{7.6}	ksel, 7	ksel _{7 o}
			0	ksel		ksel			kse	1		0	0	0	ksel.	ksel, 7	ksel.
		C		8,5		8,4				8,5					8,0	8,7	8,8
			0	1	2	3	4		5		6		7		8		9
		0	1.837.106	-9.184·10 ⁵	-2.027.1	0 ⁵ 1.014·10 ⁸		0		0		0		0		0	0
		1	-9.184·10 ⁵	2.263.106	1.014.1	0 ⁵ -7.602·10 ⁷	-6.429	·10 ⁵		0		0	-6.429.1	105		0	0
		2	-2.027·10 ⁵	1.014·10 ⁵	3.313.1	04 -1.369.107		0	-2.889	·10 ³	6.691	103		0 -	2.889.10	3 6.0	591·10 ³
		3	1.014.108	-7.602·10 ⁷	-1.369.1	0 ⁷ 9.123 [.] 10 ⁹		0	6.691	·10 ³	-2.751	106		0	6.691.10	3 -2.7	751·10 ⁶
	1	4	0	-6.429·10 ⁵		0 0	7.295	·10 ⁵		0		0		0		0	0
	kgmieccs =	5	0	0	-2.889.1	0 ³ 6.691.10 ³		0	2.891	·10 ³	-7.772	103		0		0	0
		6	0	0	6.691.1) ³ -2.751·10 ⁶		0	-7.772	·10 ³	3.472	106		0		0	0
		7	0	-6.429·10 ⁵		0 0		0		0		0	7.295.1	105		0	0
		8	0	0	-2.889.1	0 ³ 6.691·10 ³		0		0		0		0	2.891.10	3 -7.3	772·10 ³
		9	0	0	6.691.1	0 ³ -2.751·10 ⁶		0		0		0		0 -	7.772.10	3 3.4	472·10 ⁶
		10															

	-	1
dvmieccs :=	 kgmieccs 	-fvvmip

dumieccs := kgmieccs⁻¹ fumip

dmmieccs := kgmieccs⁻¹·fmmip

		0	
	0	-0.014	u _D
	1	-0.029	u _{b2}
	2	-0.378	V _{b2}
	3	-7.568.10-4	Θ
dmmieccs =	4	-0.025	°b2
	5	-0.378	
	6	-7.172.10-4	
	7	-0.025	
	8	-0.378	
	9	-7.172.10-4	

14. određivanje vrijednosti članova matrice krutosti hibridnog grednog konačnog elementa:

$$Matrica krutosti hibridnog grednog kon. el.: khyb := \begin{cases} \frac{(E-Ab)}{Lik} & 0 & 0 & \frac{-(E-Ab)}{Lik} & 0 & 0 \\ 0 & 12 \cdot \frac{(E-Ibp)}{Lik^3} & 6 \cdot \frac{(E-Ibp)}{Lik^2} & 0 & -12 \cdot \frac{(E-Ibp)}{Lik^2} & 6 \cdot \frac{(E-Ibp)}{Lik^2} \\ 0 & 6 \cdot \frac{(E-Ibp)}{Lik^2} & 4 \cdot \frac{(E-Ibp)}{Lik^2} & 0 & -6 \cdot \frac{(E-Ibp)}{Lik^2} & 2 \cdot \frac{(E-Ibp)}{Lik} \\ 0 & 0 & 0 & \frac{(E-Ab)}{Lik^2} & 2 \cdot \frac{(E-Ibp)}{Lik^2} & 0 \\ 0 & -12 \cdot \frac{(E-Ibp)}{Lik^2} & -6 \cdot \frac{(E-Ibp)}{Lik^2} & 0 & 12 \cdot \frac{(E-Ibp)}{Lik^2} & -6 \cdot \frac{(E-Ibp)}{Lik^2} \\ 0 & 6 \cdot \frac{(E-Ibp)}{Lik^2} & 2 \cdot \frac{(E-Ibp)}{Lik^2} & 0 & 12 \cdot \frac{(E-Ibp)}{Lik^2} & -6 \cdot \frac{(E-Ibp)}{Lik^2} \\ 0 & 6 \cdot \frac{(E-Ibp)}{Lik^2} & 2 \cdot \frac{(E-Ibp)}{Lik^2} & 0 & 12 \cdot \frac{(E-Ibp)}{Lik^2} & 4 \cdot \frac{(E-Ibp)}{Lik} \\ 0 & 6 \cdot \frac{(E-Ibp)}{Lik^2} & 2 \cdot \frac{(E-Ibp)}{Lik^2} & 0 & -6 \cdot \frac{(E-Ibp)}{Lik^2} & 4 \cdot \frac{(E-Ibp)}{Lik} \\ 0 & 6 \cdot \frac{(E-Ibp)}{Lik^2} & 2 \cdot \frac{(E-Ibp)}{Lik^2} & 0 & 0 & -3.444 \times 10^5 & 0 & 0 \\ 0 & 1.567 \times 10^4 & 7.835 \times 10^6 & 0 & -1.567 \times 10^4 & 7.835 \times 10^6 \\ 0 & 7.835 \times 10^6 & 5.224 \times 10^9 & 0 & -7.835 \times 10^6 & 2.612 \times 10^9 \\ 0 & -1.567 \times 10^4 & -7.835 \times 10^6 & 0 & 1.567 \times 10^4 & -7.835 \times 10^6 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.224 \times 10^9 \\ 0 & 7.835 \times 10^6 & 2.612 \times 10^9 & 0 & -7.835 \times 10^6 & 5.22$$

15. određivanje globalne matrice krutosti ispitne konstrukcije kod proračuna hibridnim grednim konačnim elementom:

		$(khyb_{3,3} + k)$	$se_{3,3} + ksel_3$	3 khyb _{3,4} +	kse _{3,4} + ksei	1 _{3,4} khy	b _{3,5} +	+ kse _{3,5} + kse	el _{3,5} kse _{3,6}	kse _{3,7} ks	e _{3,8} ksel _{3,6}	ksel _{3,7}	ksel _{3,8}
		$khyb_{4,3} + k$	se _{4,3} + ksel ₄	3 khyb _{4,4} +	$kse_{4,4} + kse_{4,4}$	1 _{4,4} khy	ь _{4,5} +	+ kse _{4,5} + kse	^{e1} 4,5 ^{kse} 4,6	kse _{4,7} ks	e _{4,8} ksel _{4,6}	ksel _{4,7}	ksel _{4,8}
		$khyb_{5,3} + k$	se _{5,3} + ksel ₅	3 khyb _{5,4} +	kse _{5,4} + ksel	1 _{5,4} khy	b _{5,5} +	+ kse _{5,5} + kse	^{el} 5,5 ^{kse} 5,6	kse _{5,7} ks	e _{5,8} ksel _{5,6}	ksel _{5,7}	ksel _{5,8}
		ks	^{se} 6,3		kse _{6,4}			kse _{6,5}	kse _{6,6}	kse _{6,7} ks	e _{6,8} 0	0	0
Globalna matrica krutosti:	kghybs :=	ks	^{se} 7,3		kse _{7,4}			kse _{7,5}	kse _{7,6}	kse _{7,7} ks	e _{7,8} 0	0	0
		ks	^{se} 8,3		kse _{8,4}			kse _{8,5}	kse _{8,6}	kse _{8,7} ks	e _{8,8} 0	0	0
		ks	el _{6,3}		ksel _{6,4}			ksel _{6,5}	0	0	0 ksel _{6,6}	ksel _{6,7}	ksel _{6,8}
		ks	el _{7,3}		ksel _{7,4}			ksel _{7,5}	0	0	0 ksel _{7,6}	ksel _{7,7}	ksel _{7,8}
		ks	el _{8,3}		ksel _{8,4}			ksel _{8,5}	0	0	0 ksel _{8,6}	ksel _{8,7}	ksel _{8,8}
												`	
		1.803 × 10 ⁰	0	0	-6.429 × 10 ⁰	0		0	-6.429 × 10 ⁵	0	0		
		0	2.145 × 10 ⁴	-7.851×10^{6}	0	-2.889 ×	10 ³	6.691 × 10 ³	0	-2.889 × 1	0 ³ 6.691 × 10	3	
		0	-7.851×10^{6}	5.231 × 10 ⁹	0	6.691 ×	10 ³	-2.751 × 10 ⁶	0	6.691 × 10	³ -2.751 × 1	06	
		-6.429×10^{5}	0	0	7.295 × 10 ⁵	0		0	0	0	0		
	kghybs =	0	-2.889×10^{3}	6.691×10^{3}	0	2.891 ×	10 ³	-7.772×10^{3}	0	0	0		
		0	$6.691 imes 10^3$	-2.751×10^{6}	0	-7.772 ×	10 ³	3.472×10^{6}	0	0	0		
		-6.429×10^{5}	0	0	0	0		0	$7.295 imes 10^5$	0	0		
		0	-2.889×10^3	6.691×10^3	0	0		0	0	2.891 × 10	³ -7.772 × 1	0 ³	
		0	6.691×10^3	-2.751×10^{6}	0	0		0	0	-7.772 × 1	3^{3} 3.472 × 10	6	

16. određivanje čvornih pomaka ispitne konstrukcije kod proračuna hibridnim grednim konačnim elementom za sva tri slučaja opterećenja:

17. prikaz upotrebljenih vektora opterećenja za sva tri slučaja opterećenja:

