Eksperimentalno određivanje hidrodinamičkih značajki osigurača protoka plina

Pavičević, Matija

Undergraduate thesis / Završni rad

2014

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:671405

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-20

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

EKSPERIMENTALNO ODREĐIVANJE HIDRODINAMIČKIH ZNAČAJKI OSIGURAČA PROTOKA PLINA

Matija Pavičević

1192032916

Zagreb, 2014

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

EKSPERIMENTALNO ODREĐIVANJE HIDRODINAMIČKIH ZNAČAJKI OSIGURAČA PROTOKA PLINA

Voditelj rada: Prof. dr. sc. Hrvoje Kozmar

Matija Pavičević

Zagreb, 2014

ZAHVALE

Zahvaljujem se mentoru prof. dr. sc. Hrvoju Kozmaru koji mi je predložio temu za ovaj završni rad te me svojim primjedbama i prijedlozima usmjeravao na pravilan pristup obradi završnog rada.

Također se zahvaljujem dr. sc. Berislavu Pavloviću koji me vodio kroz cijeli proces provedbe samog eksperimenta i usmjeravao me na pravi put. Zahvalio bih mu se i na vremenu i trudu koje je uložio u ovaj projekt jer bez njega sve ovo ne bi bilo moguće.

Zahvaljujem se i Odjelu mjerenja Gradske plinare Zagreb koji mi je omogućio korištenje svojih prostora i instalacije za ispitivanje pada tlaka te svih ostalih mjernih instrumenata korištenih pri samom ispitivanju.

Zahvaljujem se i svojoj obitelji i prijateljima na razumijevanju i ogromnoj podršci tijekom cijelog studija.

ZADATAK

SADRŽAJ

ZAHVALE
1. UVOD
1.1. Opće karakteristike osigurača15
1.2. Princip rada osigurača protoka plina16
1.3. Analiza sila na mehanizam i njihov utjecaj na rad osigurača protoka plina17
1.3.1. Odnos površina <i>A/A</i> ₀ 19
2. HIDRODINAMIČKI MODEL STRUJANJA ZRAKA KROZ OSIGURAČ PROTOKA
PLINA
2.1. Osnovni model strujanja fluida22
2.1.1. Stacionarno izotermičko stlačivo strujanje23
2.1.2. Stacionarno izotermičko nestlačivo strujanje24
2.2. Dimenzijska analiza25
2.2.1. Ispitivane fizikalne veličine26
2.2.2. Funkcijska ovisnost pomaka pomičnog dijela <i>h</i> i otvora osigurača A29
3. EKSPERIMENTALNO ODREĐIVANJE HIDRODINAMIČKIH ZNAČAJKI
OSIGURAČA PROTOKA PLINA
3.1. Uređaj za eksperimentalno određivanje hidrodinamičkih značajki osigurača
protoka plina
3.2. Mjerna oprema36
3.2.1. Procjena ukupne mjerne nesigurnosti mjernog lanca
3.3. Realizacija eksperimenta
3.3.1. Procedura mjerenja
3.4. Procjena mjerne nesigurnosti rezultata eksperimenta42
3.4.1. Reynoldsov broj <i>Re</i> 43

3.4.2. Koeficijent lokalnog gubitka K_R	44
3.4.3. Geometrijski odnos A/A ₀	45
4. OBRADA I ANALIZA REZULTATA MJERENJA	46
4.1. Pregled rezultata mjerenja	46
4.2. Obrada i analiza rezultata eksperimenta	53
4.2.1. Ovisnost i određivanje $K_R = K_R(Re, A/A_0)$	56
4.3. Analiza dobivenih rezultata	60
4.3.1. Usporedba analitičkih aproksimativnih izraza s rezultatima mjerenja	60
4.3.2. Analiza dobivenih rezultata	76
5. Zaključak	78
	80
PRILOG	62

SAŽETAK

Cilj ovoga rada je eksperimentalno određivanje hidrodinamičkih značajki osigurača protoka plina.

Određivane su hidrodinamičke značajke osigurača protoka plina PL-GS 25 Z, tip C. Takvi osigurači imaju veliku primjenu u postojećoj niskotlačnoj gradskoj plinskoj mreži s ulaznim tlakom do 1 bar i protokom do 25 m³/h. Glavna namjena im je zaustavljanje protoka plina unutar niskotlačnog plinskog cjevovoda u slučaju vanjskih oštećenja ili bilo kakvih drugih pojava koje uzrokuju nagli pad tlaka iza samog osigurača. Ovakva izvedba osigurača u uporabi je već više od 20 godina.

Unatoč njihovoj dugogodišnjoj primjeni osigurači protoka plina dosad nisu u potpunosti teorijski analizirani, radi čega se pristupilo eksperimentalnom određivanju njihovih hidrodinamičkih značajki u okviru ovog rada. Rad je proveden kroz nekoliko segmenata:

- Definiran je hidrodinamički model temeljen na pretpostavkama izotermičkog, nestlačivog i jednodimenzijskog strujanja zraka kroz ispitivani osigurač protoka plina. Dimenzijskom analizom utvrđena je međusobna ovisnost osnovnih bezdimenzijskih značajki.
- Osigurač je nadograđen aluminijskim utorom koji na sebi ima navoj za regulaciju pomaka pomičnog dijela osigurača. Ovime se dobiva točno određena promjena površine kroz koju struji plin u ovisnosti o pomaku pomičnog dijela osigurača.
- Osigurač je ugrađen u postojeću instalaciju za ispitivanje kućnih regulatora tlaka u Gradskoj plinari Zagreb namijenjenu ispitivanju raznih uređaja koji se uobičajeno koriste u niskotlačnoj plinskoj mreži. Provedene su manje modifikacije sustava s obzirom na brtvljenje postojeće instalacije.
- Provedena su mjerenja tlaka, protoka i temperature fluida za zadano područje otvora pomičnog dijela osigurača, te za zadano područje ulaznih tlakova i protoka. Ispitivanja su provedena za pomake otvora pomičnog dijela od 0,2625 mm do 1,05 mm, vrijednosti ulaznog pretlaka od 20 mbar do 420 mbar i protoke u području od 0 m3/h do 25 m3/h.
- Analiza rezultata mjerenja je provedena s obzirom na ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju za zadano područje otvora osigurača. Izvedeni su matematički izrazi koji kvantificiraju hidrodinamičke značajke osigurača protoka plina.

POPIS OZNAKA S MJERNIM JEDINICAMA

Oznaka		Mjerna
Oznaka	INdZIV	jedinica
p_{ST}	Standardni tlak	Pa
T_{ST}, ϑ_{ST}	Standardna temperatura	K, °C
p_1	Ulazni tlak	Pa
p_2	Izlazni tlak	Ра
F_1	Sila uslijed ulaznog tlaka	Ν
F_2	Sila uslijed izlaznog tlaka	Ν
Λp	Pad tlaka	Pa
F	Ukupna sila na oprugu	N
k	Krutost opruge	N/m
0	Volumenski protok	m ³ /s
х т	Masa	ka
h	Pomak pomičnog dijela	m
n	Tlak na ulaznoi komori	Pa
РОК Д.	Površina poprečnog presieka	m ²
	Librzanie slobodnog pada	m/s ²
9 n	Tlak na izlaznoj komori	Pa
P_{IK}	Površina poprečnog presieka osovine osigurača	m ²
h	Pomak opruge u zatvorenom staniu	m
<i>n</i> ₀	Gustoća fluida	ka/m ³
μ O	Gustoća fluida na ulazu u cijev	kg/m ³
ρ_1	Gustoća fluida na izlazu iz cijevi	kg/m ³
μ_2	Brzina	m/s
12	Brzina Brzina strujanja flujda na ulazu u osigurač	m/s
<i>v</i> ₁	Brzina strujanja fluida na izlazu iz osigurača	m/s
<i>U</i> 2 <i>A</i> -	Površina poprečnog presieka cijevi	m ²
K_{-}	Koeficiient lokalnog gubitka	-
R_R	Revnoldsov broi	_
D.	Linutarnii promier cijevi	m
	Dinamička viskoznost	Pas
μ D	Specifična plinska konstanta	l/kaK
T T	Ansolutna temperatura fluida	K
1 Ma	Machov broi	-
11 u	Minimalna srednja brzina strujanja flujda kroz cijev	m/s
^v min	Brzina širenja zvuka u zraku	m/s
п	Bezdimenziiska varijabla	-
П.	Bezdimenzijska varijabla	_
П ₁	Bezdimenzijska varijabla	_
П ₂ П.	Bezdimenzijska varijabla	_
113	Ekspononti	_
u_1, u_2, u_3 h h h	Eksponenti	-
u_1, u_2, u_3	Eksponenti	-
נ ₁ , נ ₂ , נ ₃ ח	Vaniski promier pomičnog dijela	m
$ $	Linutarnii promier kućišta	m
ν_2	Duliina	m
3		111

-

Oznaka	Naziv	Mjerna jedinica
α	Kut	0
x	Duljina	m
e	Procjena pogreške mjerenja	-
\bar{e}	Srednja vrijednost pogreške	-
u_e	Nesigurnost pogreške	-
ν	Stupanj slobode u standardnoj devijaciji	-
$t_{v,95}$	Težinski faktor Studentove razdiobe	-
u	Ukupna procjena nesigurnosti	-
R	Karakteristična veličina	-
x_j	Nezavisna varijabla	-
e_i	Pogreška mjerenja	-
P	Rezultat mjerenja	-
μ_0	Dinamička viskoznost	Pas
T_0	Referentna temperatura	K
С	Sutherlandova konstanta	K
\mathcal{Y}_{c}	Vrijednost aproksimacijske varijable	-
<i>a</i> ₀ , <i>a</i> ₁	Aproksimacijske konstante	-
d_i	Razlika aproksimacijske varijable i polinoma	-
SS_{rez}	Rezidualna suma kvadrata	-
SS_{reg}	Regresiona suma kvadrata	-
SS_{tot}	Ukupna suma kvadrata	-
r^2	Koeficijent determinacije	-
B_{1}, B_{2}, b	Koeficijenti	-
B_{1ap} , B_{2ap} , b_{ap}	Aproksimacijski koeficijenti	-
C_1, D_1, C_3, D_3	Koeficijenti	-

POPIS SLIKA

Broi	Naziv

- 1.1 Shematski prikaz osigurača protoka plina
- 1.2 Sile na mehanizam osigurača protoka plina
- 1.3 Presjek osigurača protoka plina
- 2.1 Prikaz hidrodinamičkog modela strujanja kroz osigurač protoka plina
- 2.2a Izvršni član osigurača u zatvorenom položaju
- 2.2b Izvršni član osigurača u otvorenom položaju
- 2.3 Ovisnost površine otvora osigurača A o pomaku pomičnog dijela osigurača h
- 3.1 Shematski prikaz uređaja za ispitivanje osigurača protoka plina
- 3.2 Uređaj za ispitivanje osigurača protoka plina
- 3.3 Izvedba otvora za mjerenje statičkog tlaka uzvodno i nizvodno od osigurača
- 3.4 Procedura mjerenja vrijednosti za određivanje hidrodinamičkih karakteristika osigurača protoka plina
- 4.1a Ovisnost koeficijenta lokalnog gubitka osigurača o Reynoldsovom broju
- 4.1b Ovisnost koeficijenta lokalnog gubitka osigurača o Reynoldsovom broju u logaritamskom mjerilu
- 4.2a Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0,2625 \text{ mm} (A/A_0 = 0,04364).$
- 4.2b Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0,2625 \text{ mm} (A/A_0 = 0,04364)$ u logaritamskom mjerilu.
- 4.3a Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0.35 \text{ mm} (A/A_0 = 0.05853).$
- 4.3b Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0.35 \text{ mm} (A/A_0 = 0.05853)$ u logaritamskom mjerilu.
- 4.4a Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0,525 \text{ mm} (A/A_0 = 0,08883).$
- 4.4b Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0,525 \text{ mm} (A/A_0 = 0,08883)$ u logaritamskom mjerilu.

Broj	Naziv
4.5a	Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0,7 \text{ mm} (A/A_0 = 0,11982).$
4.5b	Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0,7 \text{ mm} (A/A_0 = 0,11982)$ u logaritamskom mjerilu
4.6a	Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 1,05 \text{ mm} (A/A_0 = 0,18388)$
4.6b	Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 1,05 \text{ mm} (A/A_0 = 0,18388)$ u logaritamskom mjerilu
4.7	Ovisnost koeficijenta B1 o odnosu A/A0
4.8	Ovisnost koeficijenta B ₂ o odnosu A/A ₀
4.9	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0,2625 \text{ mm} (A/A_0 = 0,04364)$, pri ulaznom tlaku $p_1 = 100 \text{ mbar u}$ logaritamskom mjerilu.
4.10	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0,2625$ mm ($A/A_0 = 0,04364$), pri ulaznom tlaku $p_1 = 200$ mbar u logaritamskom mjerilu.
4.11	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.35$ mm ($A/A_0 = 0.05853$), pri ulaznom tlaku $p_1 = 50$ mbar u logaritamskom mjerilu.
4.12	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.35$ mm ($A/A_0 = 0.05853$), pri ulaznom tlaku $p_1 = 100$ mbar u logaritamskom mjerilu.
4.13	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.35$ mm ($A/A_0 = 0.05853$), pri ulaznom tlaku $p_1 = 200$ mbar u logaritamskom mjerilu.
4.14	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.35$ mm ($A/A_0 = 0.05853$), pri ulaznom tlaku $p_1 = 300$ mbar u logaritamskom mjerilu.
4.15	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.35$ mm ($A/A_0 = 0.05853$), pri ulaznom tlaku $p_1 = 400$ mbar u logaritamskom mjerilu.
4.16	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0,525$ mm ($A/A_0 = 0,08883$), pri ulaznom tlaku $p_1 = 50$ mbar u logaritamskom mjerilu.

Broj	Naziv
4.17	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.525$ mm ($A/A_0 = 0.08883$), pri ulaznom tlaku $p_1 = 100$ mbar u logaritamskom mjerilu.
4.18	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.525$ mm ($A/A_0 = 0.08883$), pri ulaznom tlaku $p_1 = 200$ mbar u logaritamskom mjerilu.
4.19	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.525$ mm ($A/A_0 = 0.08883$), pri ulaznom tlaku $p_1 = 300$ mbar u logaritamskom mjerilu.
4.20	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.525$ mm ($A/A_0 = 0.08883$), pri ulaznom tlaku $p_1 = 400$ mbar u logaritamskom mjerilu
4.21	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.7$ mm ($A/A_0 = 0.11982$), pri ulaznom tlaku $p_1 = 50$ mbar u logaritamskom mjerilu.
4.22	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.7$ mm ($A/A_0 = 0.11982$), pri ulaznom tlaku $p_1 = 100$ mbar u logaritamskom mjerilu.
4.23	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.7$ mm ($A/A_0 = 0.11982$), pri ulaznom tlaku $p_1 = 200$ mbar u logaritamskom mjerilu.
4.24	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.7$ mm ($A/A_0 = 0.11982$), pri ulaznom tlaku $p_1 = 300$ mbar u logaritamskom mjerilu.
4.25	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.7$ mm ($A/A_0 = 0.11982$), pri ulaznom tlaku $p_1 = 400$ mbar u logaritamskom mjerilu.
4.26	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 1.05$ mm ($A/A_0 = 0.18388$), pri ulaznom tlaku $p_1 = 100$ mbar u logaritamskom mjerilu.
4.27	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 1.05 \text{ mm} (A/A_0 = 0.18388)$, pri ulaznom tlaku $p_1 = 200 \text{ mbar u}$ logaritamskom mjerilu.
4.28	Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 1.05$ mm ($A/A_0 = 0.18388$), pri ulaznom tlaku $p_1 = 300$ mbar u logaritamskom mjerilu.

Broj	Naziv			

4.29 Odstupanje aproksimativne krivulje K_{R}' od rezultata dobivenih mjerenjem kod h = 1.05 mm ($A/A_0 = 0.18388$), pri ulaznom tlaku $p_1 = 400$ mbar u logaritamskom mjerilu.

POPIS TABLICA

Broj I	Naziv
--------	-------

- 3.1 Mjerna oprema
- 4.1 Koeficijenti C_1, D_1, C_3, D_3 i pripadajući koeficijent determinacije r^2
- 4.2 Usporedba koeficijenata dobivenih eksperimentalnim putem i aproksimativnih koeficijenata
- 4.3 Odstupanja koeficijenta lokalnog gubitka K_R' određenog aproksimacionim izrazima u odnosu na vrijednosti koeficijenta lokalnog gubitka K_R dobivenih mjerenjem pri različitim vrijednostima ulaznog tlaka p_1 .

1. UVOD

1.1. Opće karakteristike osigurača

Zbog velike vjerojatnosti oštećenja gradskog plinovoda prilikom izvođenja radova na gradskim prometnicama te korištenja gorivih plinova neophodno je osigurati sustav od nastajanja velikih havarija. Osigurač protoka plina je jednostavan i učinkovit način osiguranja gradske plinske mreže čije karakteristike zadovoljavaju zahtjeve na nagli pad tlaka, odnosno naglu promjenu izlaznog tlaka

Značajni parametri korišteni prilikom projektiranja osigurača protoka plina su:

- vrsta fluida,
- ulazni tlak,
- izlazni tlak,
- područje protoka fluida.

Pri tome je potrebno uzeti u obzir sljedeće utjecajne faktore:

- namjena osigurača protoka plina
- područje tlaka
- način ugradnje u mrežu
- odstupanja pada tlaka.

Prema postojećim pravilnicima osigurači protoka plina kao i svi ostali instrumenti korišteni u plinskoj mreži koriste zrak kao ispitni fluid. U praksi je moguće koristiti bilo koji fluid kao radni medij što zahtijeva iskazivanje karakteristika osigurača protoka plina u bezdimenzijskim značajkama koje vrijede za sve vrste newtonskih fluida.

Ulazni tlak je efektivni tlak na ulazu u osigurač protoka plina. Razlika između minimalnog ulaznog i izlaznog tlaka predstavlja minimalni pad tlaka pri kojem osigurač protoka plina radi ispravno, odnosno dopušta strujanje fluida. Ovaj pad tlaka predstavlja raspoloživu energiju tlaka potrebnu za odvijanje strujanja kroz osigurač protoka plina. [1]

Izlazni tlak je efektivni tlak na izlazu iz osigurača protoka plina. Ovaj je tlak u praksi mjeren kao pretlak u odnosu na atmosferski tlak. Iznos izlaznog tlaka je minimalna željena vrijednost pri kojoj je pad tlaka dovoljno velik da postoji potreba za zaustavljanjem protoka plina kroz osigurač protoka plina [1].

Područje protoka fluida predstavlja raspon protoka u m³/h kod standardnog stanja gdje je standardno stanje prema ISO 5024 definirano tlakom $p_{ST} = 101325$ Pa i temperaturom $T_{ST} = 288,15$ K ($\vartheta_{ST} = 15$ °C) [2]. Određivanje područja protoka fluida odgovara rasponu snage priključenih trošila koja se nalaze iza samog osigurača protoka plina. U slučaju većeg broja potrošača, problem postaje nešto složeniji zbog nepredvidljivih režima rada sustava što je potrebno uzeti u obzir prilikom provođenja analize mjerenja [3].

Osnovna namjena osigurača protoka plina je nagli prekid strujanja kroz cjevovod u slučaju naglog porasta pada tlaka u svrhu sprječavanja eventualnih nezgoda koje mogu nastati zbog eksplozivnosti radnog medija.

1.2. Princip rada osigurača protoka plina

Osigurač protoka plina sastoji se od nekoliko osnovnih dijelova (vidi sliku 1.1):

- ulazna sekcija,
- konusna sapnica,
- izvršni član,
- opruga,
- izlazna sekcija,
- kućište.

SLIKA 1.1 Shematski prikaz osigurača protoka plina

Princip rada osigurača protoka plina sastoji se u tome da plin ulaznog tlaka p_1 koji djeluje na pomični dio silom F_1 , prolazi kroz prstenasti prostor između konusne sapnice i pomičnog dijela u unutrašnji dio kućišta te dalje nizvodno u prostor iza samog osigurača, gdje vlada tlak p_2 . Tlak p_2 djeluje na pomični dio silom F_2 orijentiranom u smjeru suprotnom od sile ulaznog tlaka p_1 . Zbog razlike u tlakovima p_1 i p_2 dolazi do pojave pada tlaka Δp koji djeluje preko pomičnog dijela na oprugu karakteristike k. Opruga je ugrađena u centralni dio kućišta tako da joj je donja strana ukliještena između triju poprečnih graničnika unutar samog kućišta, a gornja strana pričvršćena na pomični dio osigurača. Djelovanje ukupne sile na oprugu je uvijek u smjeru strujanja plina, pa je tako opruga preko pomičnog dijela konstantno opterećena ukupnom silom F. U slučaju naglog porasta pada tlaka Δp ukupna sila F na oprugu također naglo poraste. Zbog navedenog porasta ukupne sile dolazi do preopterećenja opruge što rezultira pomakom pomičnog dijela u nulti položaj. U nultom položaju otvor između pomičnog dijela i konusne sapnice ne postoji pa samim time niti bilo kakvo strujanje kroz osigurač nije moguće. U slučaju povećanja ulaznog tlaka p_1 dolazi do povećanja i izlaznog tlaka p_1 čime se ukupna sila na pomični dio tek neznatno mijenja. Upravo ta pojava zajedno s izborom opruge valjane karakteristike k omogućuje djelovanje osigurača u velikom radnom području, a ne za samo jednu vrijednost ulaznog tlaka.

Ovakvi osigurači protoka plina primjenjuju se u niskotlačnim (100 mbar pretlaka) i srednjetlačnim (1 do 4 bar pretlaka) distributivnim sustavima [4]. Prednost im je brza reakcija na naglu promjenu izlaznog tlaka p_2 te vrlo jednostavna izvedba i ugradnja [3].

Njihov glavni nedostatak je činjenica da su izrađeni od plastičnog materijala zbog čega područje djelovanja među osiguračima nije konstantno.

Osnovni zadatak osigurača protoka plina je zaustavljanje protoka *Q* kroz osigurač u slučaju oštećenja gradskog plinskog cjevovoda nizvodno od osigurača. Zaustavljanje protoka nužno je zbog eksplozivnih svojstava radnog medija. Popravni radovi na plinskoj mreži mogu rezultirati puknućem instalacije te se kao posljedica pojavljuje istrujavanje plina u okoliš. Plin u prisustvu vatre i zraka postaje goriv ili u nekim slučajevima čak i eksplozivan što za posljedicu može imati opasne ozljede.

1.3. Analiza sila na mehanizam i njihov utjecaj na rad osigurača protoka plina

Prethodno je navedeno da se rad osigurača protoka plina temelji na ravnoteži sila koje su izazvane ulaznim i izlaznim tlakovima. Na slici 1.2 dan je shematski prikaz pomičnog dijela osigurača protoka plina s označenim silama koje na njega djeluju.

Iz suma svih sila na pomični dio osigurača protoka plina proizlazi slijedeći izraz:

$$m\left(\frac{d^2h}{dt^2}\right) + p_{UK}A_i + mg - p_{IK}(A_i - A_{OS}) - k(h_0 + h) + F = 0$$
(1.1)

pri čemu je

 $m\left(\frac{d^2h}{dt^2}\right)$, sila na mehanizam osigurača protoka plina uslijed njegovog ubrzanja,

pri čemu je

m, masa mehanizma osigurača protoka plina,

 $\frac{d^2h}{dt^2}$, ubrzanje mehanizma osigurača protoka plina,

 $p_{UK}A_i$, sila na izvršni član uslijed tlaka zraka u ulaznoj komori,

pri čemu je

 p_{UK} , tlak zraka u ulaznoj komori, A_i , površina ulaznog dijela pomičnog dijela,

mg, sila na mehanizam uslijed ubrzanja sile teže,

pri čemu je

 $g = 9,80665 \text{ m/s}^2$ ubrzanje sile teže,

 $p_{IK}(A_i - A_{OS})$, sila na izvršni član uslijed tlaka zraka u izlaznoj komori,

pri čemu je

 p_{IK} , tlak zraka u izlaznoj komori, A_{OS} , površina poprečnog presjeka osovine osigurača protoka plina,

 $k(h_0 + h)$, sila opruge na mehanizam osigurača protoka plina,

pri čemu je

k, konstanta opruge, h_0 , pomak opruge u zatvorenom stanju osigurača protoka plina, h, pomak mehanizma osigurača protoka plina,

F, sila fluida na mehanizam osigurača protoka plina. Sila istog iznosa djeluje u suprotnom smjeru na kontrolni volumen fluida.

Pri stacionarnom stanju strujanja fluida kroz osigurač protoka plina prvi član na lijevoj strani jednadžbe 1.1 opada, tlak u ulaznoj komori p_{UK} jednak je ulaznom tlaku p_1 , a tlak u izlaznoj komori p_{IK} jednak je tlaku p_2 [5], pa izraz 1.1 poprima sljedeći oblik:

$$p_1 A_i + mg - p_2 (A_i - A_{OS}) - k(h_0 + h) + F = 0$$
(1.2)

Jednadžba kontinuiteta [6] ima sljedeći oblik:

$$\rho_1 v_1 A_0 = \rho_2 v_2 A_0 \tag{1.3}$$

pri čemu je

 ρ_1, ρ_2 , gustoća fluida na ulazu i izlazu iz cijevi, kg/m³, v_1, v_2 , brzina fluida na ulazu i izlazu iz cijevi, m/s, A_0 , površina poprečnog presjeka cijevi, m².

Za zadane geometrijske veličine i eksperimentalno određene vrijednosti tlaka p_2 te položaj *h* mehanizma osigurača protoka plina moguće je odrediti veličinu sile *F* na mehanizam.

Primjenom zakona o održanju energije zapisanog u obliku modificirane Eulerove jednadžbe za stacionarno strujanje [7] dobiva se

$$\frac{dp}{\rho} + vdv = -\frac{1}{2}K_R v^2 \tag{1.4}$$

gdje na desnoj strani jednadžbe dolazi do pojave koeficijenta lokalnog gubitka osigurača protoka plina $K_{\rm R}$. Ovaj koeficijent predstavlja omjer gubitka statičkog tlaka fluida i dinamičkog tlaka fluida koji struji kroz osigurač. U općem slučaju koeficijent lokalnog gubitka je funkcija Reynoldsovog broja i geometrije osigurača protoka plina, odnosno

$$K_R = K_R \left(Re, \frac{A}{A_0} \right) \tag{1.5}$$

Reynoldsov broj za strujanje kroz cijev definiran je sljedećim izrazom

$$Re = \frac{\rho v D_0}{\mu} \tag{1.6}$$

pri čemu je

 ρ , gustoća fluida, v, brzina strujanja fluida,

 D_0 , unutarnji promjer cjevovoda,

 μ , koeficijent dinamičke viskoznosti.

1.3.1. Odnos površina A/A₀

Odnosom površina A/A_0 moguće je definirati koeficijent lokalnog gubitka K_R u funkciji promjene geometrije prstenastog otvora kroz koji postoji strujanje fluida pri čemu je

A, površina poprečnog presjeka prstenastog otvora osigurača.

Ova površina ima funkcijsku ovisnost o pomaku položaja pomičnog dijela osigurača protoka plina *h.*

 A_0 , površina poprečnog presjeka cjevovoda,

pri čemu je A₀ definirana kao

$$A_0 = \frac{{D_0}^2 \pi}{4} \tag{1.7}$$

Površina poprečnog presjeka prstenastog otvora osigurača protoka plina, a samim time i odnos A/A_0 određuju se iz položaja mehanizma osigurača. Direktan utjecaj na koeficijent lokalnog gubitka osigurača K_R imaju poremećajne tj. ulazne veličine kao što su ulazni tlak p_1 i maseni protok fluida kroz osigurač te brzina strujanja nizvodno od osigurača v_2 . Važno je naglasiti da brzina v_2 ima znatno veći utjecaj na promjenu koeficijenta lokalnog gubitka od ulaznog tlaka p_1 jer su u praksi njene promjene značajnije.

Značajan utjecaj na položaj mehanizma osigurača ima površina pomičnog dijela što je vidljivo iz jednadžbe 1.2. Što je ta površina veća to je veći i utjecaj izlaznog tlaka p_2 te ulaznog tlaka p_1 na pomak mehanizma h zbog znatno većih sila koje djeluju na mehanizam, odnosno površinu pomičnog dijela osigurača protoka plina. Jasno je i da će krutost opruge k imati značajan utjecaj na pomak pomičnog dijela i to na način da će veća krutost opruge za iste uvjete strujanja izazvati manji pomak i obrnuto. Utjecaj funkcijske ovisnosti lokalnog koeficijenta gubitka K_R o pomaku mehanizma osigurača te njegov utjecaj na rad osigurača protoka plina detaljnije će bit obrađen u nastavku ovoga rada.

Na slici 1.3 prikazan je u presjeku osigurač protoka plina sa svim dijelovima označenima na slici.

SLIKA 1.3 Presjek osigurača protoka plina

2. HIDRODINAMIČKI MODEL STRUJANJA ZRAKA KROZ OSIGURAČ PROTOKA PLINA

Geometrija osigurača protoka plina je prilično kompleksna, no unatoč toj kompleksnosti strujanje plina kroz osigurač moguće je promatrati kao jednodimenzijsko [5]. Kad je riječ o jednodimenzijskom strujanju, pojave koje se odvijaju unutar osigurača mogu se opisati zakonima mehanike fluida. Promjena geometrije osigurača protoka plina stvara gubitke. Gubici nastali zbog promjene geometrije osigurača imaju veliki utjecaj na pad tlaka kroz sam osigurač, na ekspanziju strujanja nizvodno od osigurača te na odvajanje graničnog sloja u nizvodnoj sekciji.

Energija unutar promatranog sustava je prema zakonu očuvanja energije očuvana na način da se energija strujanja djelomično pretvara u energiju dinamičkog tlaka, a djelomično u energiju vrtložnih strujanja. Energija dinamičkog tlaka proizlazi iz brzine strujanja čestica fluida, dok energija vrtložnih strujanja nastaje zbog pojave lokalnih otpora. Rezultat otpora, uzrokovanih promjenama geometrije i brzine strujanja, je pad tlaka kroz osigurač.

Važno je napomenuti da trenutno nisu poznati matematički izrazi koji bi omogućili određivanje lokalnih hidrauličkih gubitaka koji ovise o promjenjivim geometrijskim veličinama armature i režimu strujanja fluida. Upravo zbog tog potrebno je eksperimentalnim putem određivati tražene gubitke [8].

Hidrodinamički model strujanja fluida bazira se na djelovanju svih relevantnih fizikalnih veličina na kontrolni volumen, zakonu o očuvanju energije te zakonu o očuvanju mase. Pretpostavke [9] korištene uz gore navedene zakone su:

- a) fluid koji struji kroz osigurač protoka plina je jednofazan, jednokomponentan i newtonski,
- b) strujanje je jednodimenzijsko i stacionarno,
- c) promjene fizikalnih veličina poprečno na smjer strujanja zanemarive su u odnosu na promjene u smjeru strujanja fluida kroz osigurač.

Na slici 2.1 je prikazan kontrolni volumen kroz osigurač protoka plina s naznačenim fizikalnim veličinama koje djeluju na kontrolni volumen.

2.1. Osnovni model strujanja fluida

Osnovni model strujanja fluida kroz osigurač protoka plina koristi newtonske fluide kao radni medij, odnosno fluidi korišteni u plinskoj distributivnoj mreži uvijek su u plinovitom stanju. Za primjenu modela izotermičkog strujanja fluida kroz osigurač potrebno je zadovoljiti tri uvjeta.

Prvi uvjet je toplinska izoliranost cijevi. Toplinska izoliranost cijevi utječe na toplinsku ravnotežu između energije radnog medija, prouzročene trenjem između čestica fluida, i unutarnje stijenke na način da sprječava predaju energije okolišu. Ovakvo ravnotežno stanje pojavljuje se u sustavima gdje su brzina strujanja i promjena tlaka relativno dugotrajne, gdje su temperature unutar cjevovoda i okoline jednake i gdje su brzine strujanja znatno niže od brzine širenja zvuka [6].

Drugi uvjet je zanemarivanje pada tlaka Δp manjeg od 250 mbar. Prema Joule-Thomsonovom [10] efektu temperatura idealnog plina ne mijenja se kod prigušenja na niži tlak, ali kod prigušenja realnih plinova u sustavima u kojima se ne dovodi energija pojavljuje se, pri višim tlakovima, veća ili manja promjena temperature. Ustanovljeno je da se zraku prigušenom za 1 bar snižava temperatura za 0,25 °C. U našem slučaju gdje je najveće prigušenje, odnosno gdje pad tlaka iznosi 228,7 mbar, temperatura će pasti za 0,06 °C, što je zanemarivo.

Treći je razlog zanemarivanje eventualnog porasta temperature zbog rada kompresora. Prema Rayleighovom modelu strujanja [11] gdje je strujanje jednodimenzijsko, neviskozno, stacionarno i gdje postoji izmjena topline kroz stijeknu cjevovoda, temperature unutar cjevovoda i okoline na relativno kratkoj udaljenosti poprimaju iste vrijednosti. Kako je udaljenost kompresora od same instalacije veća od 30 m i kako cijevi nisu izolirane, porast temperature zbog rada kompresora također je zanemariva.

Gore navedene tvrdnje potvrđene su mjerenjima temperature na ulazu i izlazu iz osigurača čime je pokazano da je promjena temperature doista zanemariva.

Model stacionarnog jednodimenzijskog izotermičkog strujanja moguće je odrediti iz zakona o održanju energije u obliku modificirane Eulerove jednadžbe za stacionarno strujanje i jednadžbe kontinuiteta [7]. Eulerova jednadžba za stacionarno strujanje dana je izrazom

$$\frac{dp}{\rho} + vdv = -\frac{1}{2}K_R v^2 \tag{1.4}$$

Izraz 1.4 može se prikazati u sljedećem obliku

$$\frac{dp}{\rho} + d(\frac{1}{2}v^2) = -\frac{1}{2}K_R v^2 \tag{2.1}$$

pri čemu je

p, tlak fluida,

 ρ , gustoća fluida,

v, srednja brzina strujanja fluida,

 K_R , koeficijent lokalnog gubitka.

Jednadžba kontinuiteta ima sljedeći oblik

$$\rho vA = konst.$$
 (2.2)

pri čemu je

A, površina poprečnog presjeka strujanja,

Za gore prikazan osnovni model razmatrat će se sljedeća dva modela strujanja:

- a) stacionarno izotermičko stlačivo strujanje,
- b) stacionarno izotermičko nestlačivo strujanje.

2.1.1. Stacionarno izotermičko stlačivo strujanje

Model stacionarnog izotermičkog stlačivog strujanja dan je izrazom 2.1

$$\frac{dp}{\rho} + d(\frac{1}{2}v^2) = -\frac{1}{2}K_R v^2 \tag{2.1}$$

gdje za slučaj izotermičkog stlačivog strujanja vrijedi jednadžba stanja [12] u obliku

$$p = \rho RT \tag{2.3}$$

pri čemu je

R, plinska konstanta, J/kgK,

T, apsolutna temperatura fluida, K.

Dijeljenjem jednadžbe 2.3 s varijablama p i ρ dobiva se transformirani oblik jednadžbe stanja u obliku

$$\frac{1}{\rho} = \frac{RT}{p} \tag{2.4}$$

Uvođenjem izraza 2.4 u jednadžbu 2.1 te integracijom dobiva se

 $RTln\left(\frac{p_2}{p_1}\right) + \frac{1}{2}v_2^2 - \frac{1}{2}v_1^2 + \frac{1}{2}K_Rv_1^2 = 0$ (2.5)

Daljnjim sređivanjem jednadžbe 2.5 dobiva se konačan izraz za koeficijent lokalnog gubitka K_R u obliku

$$K_R = 1 - \left(\frac{v_2}{v_1}\right)^2 + \frac{2RT}{v_1^2} \ln\left(\frac{p_1}{p_2}\right)$$
(2.6)

pri čemu je

- v_2 , srednja brzina strujanja fluida uzvodno od osigurača,
- v_1 , srednja brzina strujanja fluida nizvodno od osigurača,
- p_1 , tlak fluida uzvodno od osigurača,
- p_2 , tlak fluida nizvodno od osigurača.

Iz pretpostavljenih ulaznih podataka proizlazi da prva dva člana s desne strane jednadžbe imaju zanemariv utjecaj na ukupnu vrijednost koeficijenta lokalnog gubitka u odnosu na treći član s prirodnim logaritmom zbog relativno malih brzina strujanja fluida kroz osigurač [5].

Prema jednadžbi kontinuiteta iz osnovnog modela strujanja fluida, jednadžba 2.2 poprima sljedeći oblik

$$\rho_1 v_1 A_1 = \rho_0 v_0 A = \rho_2 v_2 A_2 \tag{2.7}$$

pri čemu je

- ρ_1 , gustoća fluida uzvodno od osigurača, kg/m³,
- ρ_0 , gustoća fluida u osiguraču, kg/m³,

 ρ_2 , gustoća fluida nizvodno od osigurača, kg/m³,

 v_0 , brzina strujanja u osiguraču, m/s,

 A_1 , površina poprečnog presjeka cjevovoda uzvodno od osigurača, m²,

A, površina otvora osigurača, m²,

 A_2 , površina poprečnog presjeka cjevovoda nizvodno od osigurača, m².

2.1.2. Stacionarno izotermičko nestlačivo strujanje

Direktnim integriranjem jednadžbe 2.1 uz $\rho = konst.$ dobiva se sljedeći oblik Bernoulijeve jednadžbe [13] za stacionarno strujanje nestlačivog fluida

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2 + \frac{1}{2}K_R \rho v_1^2$$
(2.8)

Jednadžba kontinuiteta za nestlačivo strujanje istog je oblika kao i jednadžba kontinuiteta za stlačivo strujanje 2.7

$$\rho_1 v_1 A_1 = \rho_0 v_0 A = \rho_2 v_2 A_2 \tag{2.9}$$

Uz pretpostavku da su površine poprečnog presjeka cijevi uzvodno i nizvodno od osigurača jednake $A_1 = A_2 = A_0$, koeficijent lokalnog gubitka K_R iz jednadžbe 2.8 te korištenjem jednadžbe 2.9 poprima konačni oblik

$$K_R = \frac{\Delta p}{\frac{1}{2}\rho v_1^2} = \frac{p_1 - p_2}{\frac{1}{2}\rho v_1^2}$$
(2.10)

pri čemu je

 Δp , pad tlaka kroz osigurač protoka plina.

Fizikalno, izraz za koeficijent lokalnog gubitka predstavlja omjer gubitka potencijalne energije tlaka i kinetičke energije fluida [6]. Kako bi se strujanje fluida kroz osigurač protoka plina smatralo nestlačivim potrebno je zadovoljiti još jedan uvjet nestlačivosti. Taj uvjet je vrijednost Machovog broja niža od 0,3 [14]. Naime, Machov broj *Ma* je bezdimenzijska značajka koja govori koliko je brzina kretanja fluida veća od brzine zvuka u fluidu. Brzina širenja zvuka u zraku iznosi oko $c \approx 330$ m/s, a minimalna vrijednost brzine strujanja fluida pri kojoj se strujanje smatra nestlačivim je $v_{min} = 0,3c = 100$ m/s, stoga prema jednadžbi

$$Ma = \frac{v_{min}}{c} \tag{2.11}$$

pri čemu je

Ma, Machov broj, v_{min} , minimalna srednja brzina strujanja fluida kroz cijev, c, brzina širenja zvuka u zraku,

proizlazi da Machov broj za uvjet nestlačivog strujanja ne smije premašivati vrijednost od 0,3. Kako u ovom radu brzina strujanja zraka kroz cijev ne premašuje 7 m/s, maksimalna vrijednost Machovog broja iznosi Ma = 0.02 što zadovoljava kriterij nestlačivosti fluida.

2.2. Dimenzijska analiza

Dimenzijska analiza predstavlja znanstveni temelj eksperimentalnog istraživanja složenih fizikalnih pojava kako u mehanici fluida, tako i u ostalim područjima fizike. Primjenom dimenzijske analize [13] smanjuje se potrebni broj mjerenja za istraživanje neke pojave, a olakšavaju se prikaz i tumačenje rezultata mjerenja. Tijekom provedbe eksperimenata sve mjerene veličine daju informacije u nekom dimenzijskom obliku. Na primjer, moguće je odrediti ovisnost pada tlaka o pomaku pomičnog dijela osigurača protoka plina, ili je pak moguće odrediti ovisnost pada tlaka preko osigurača o protoku. Sve te informacije moguće je iskoristiti za točno određeni fluid i za točno određene uvjete u kojima su provođena mjerenja. Taj bi proces zahtijevao izvođenje velike količine mjerenja za svaki otvor osigurača i za različite plinove koji se koriste kao radni medij. Kako bi se cijeli proces ubrzao potrebna je generalizacija problema.

Dimenzijskom analizom rezultati iskazani u bezdimenzijskom obliku ne daju informaciju o međusobnoj ovisnosti fizikalnih veličina. Ovim načinom gdje dolazi do međusobnog grupiranja fizikalnih veličina u bezdimenzijske veličine postiže se bolje razumijevanje fizikalnih zbivanja u samom osiguraču protoka plina. Važno je naglasiti da je izbor skupa osnovnih fizikalnih veličina u principu proizvoljan, te se može koristiti bilo koji skup od četiri dimenzionalno nezavisne fizikalne veličine. Dimenzionalna nezavisnost osnovnog skupa fizikalnih veličina podrazumijeva da se dimenzija niti jedne fizikalne veličine izabranog skupa ne može prikazati dimenzijama preostalih fizikalnih veličina u tom skupu. Prema Π teoremu [15] slijedi da je svaki fizikalni zakon između n dimenzijskih veličina, neovisnih o promjeni mjerila, moguće svesti na k bezdimenzijskih veličina gdje je n - k jednako broju osnovnih dimenzija; duljine L, mase M i vremena T.

2.2.1. Ispitivane fizikalne veličine

Slijedi popis varijabli i njihove dimenzije izražene preko osnovnih dimenzija u *MLT* sustavu [5]:

- a) brzina strujanja v, $[v] = LT^{-1}$,
- b) dinamička viskoznost fluida μ , $[\mu] = ML^{-1}T^{-1}$,
- c) gustoća fluida ρ , $[\rho] = ML^{-3}$,
- d) pad tlaka kroz osigurač, Δp , $[\Delta p] = ML^{-1}T^{-2}$,
- e) pomak mehanizma osigurača h, [h] = L,
- f) promjer cjevovoda D_0 , $[D_0] = L$.

Opća funkcijska veza između gore navedenih varijabli može se zapisati kao:

$$f(v, \mu, \rho, \Delta p, h, D_0) = 0$$
(2.12)

Broj dimenzijskih veličina iznosi n = 6. Broj osnovnih veličina iznosi k = 3.

Prema Π teoremu slijedi da je n - k = 6 - 3 = 3, iz čega slijedi da je iz gore navedenih varijabli moguće definirati tri bezdimenzijske varijable.

Izraz 2.12 prelazi u bezdimenzijski zapis kako slijedi

$$\phi(\Pi_1, \Pi_2, \Pi_3) = 0 \tag{2.13}$$

gdje su Π_1, Π_2, Π_3 bezdimenzijske varijable kojima su opisani rezultati eksperimenta. Kombinacijom dimenzijskih varijabli potrebno je odrediti izraze za ova tri Π parametra.

Uzimajući dimenzijske varijable ρ , v, D_0 i μ dobiva se prva bezdimenzijska varijabla Π_1

$$\Pi_1 = \rho^{a_1} D_0^{b_1} v^{c_1} \mu = M^0 L^0 T^0 \tag{2.14}$$

odnosno: $(ML^{-3})^{a_1}(L)^{b_1}(LT^{-1})^{c_1}ML^{-1}T^{-1} = M^0L^0T^0$ iz čega slijedi sustav jednadžbi

М:	a_1			+1	= 0
L:	$-3a_{1}$	$+b_1$	$+c_{1}$	-1	= 0
<i>T</i> :			$-c_{1}$	-1	= 0

Ovo predstavlja sustav od tri jednadžbe s tri nepoznanice iz čega nakon transformacije slijedi

$$a_1 = -1$$

 $c_1 = -1$
 $b_1 = 1 + 3(-1) - (-1) = -1$

nakon čega se dobiva konačni izraz za Π_1

$$\Pi_1 = \rho^{-1} D_0^{-1} v^{-1} \mu^1 = \left(\frac{\rho v D_0}{\mu}\right)^{-1} = \frac{1}{Re}$$
(2.15)

Bitan zahtjev kod primjene izraza 2.14 je dimenzijska homogenost, tj. dimenzija članova na lijevoj mora biti ista onoj na desnoj strani jednadžbe.

Na sličan način iz varijabli ρ , v, D_0 i Δp dobiva se druga bezdimenzijska varijabla Π_2

$$\Pi_2 = \rho^{a_2} D_0^{\ b_2} v^{c_2} \Delta p = M^0 L^0 T^0 \tag{2.16}$$

odnosno $(ML^{-3})^{a_2}(L)^{b_2}(LT^{-1})^{c_2}ML^{-1}T^{-2} = M^0L^0T^0$ iz čega slijedi sustav jednadžbi

М:	a_2			+1	= 0
L:	$-3a_{2}$	$+b_{2}$	$+c_{2}$	-1	= 0
<i>T</i> :			$-c_{2}$	-2	= 0

Ovaj sustav također predstavlja sustav od tri jednadžbe s tri nepoznanice iz čega slijedi

$$a_2 = -1$$

 $c_2 = -2$
 $b_2 = 1 + 3(-1) - (-2) = 0$

odnosno konačni izraz za bezdimenzijsku varijablu Π_2

$$\Pi_2 = \rho^{-1} v^{-2} \Delta p^1 = \left(\frac{\Delta p}{\rho v^2}\right)^1 = \frac{1}{2} K_R$$
(2.17)

Analogno tome određuje se i izraz za treću bezdimenzijsku varijablu Π_3

$$\Pi_2 = \rho^{a_3} D_0^{\ b_3} v^{c_3} h = M^0 L^0 T^0 \tag{2.18}$$

odnosno $(ML^{-3})^{a_3}(L)^{b_3}(LT^{-1})^{c_3}L^1 = M^0L^0T^0$ iz čega ponovno slijedi sustav tri jednadžbe s tri nepoznanice

ili

 $a_3 = 0$ $c_3 = 0$ $b_3 = -1$ Iz čega konačni izraz za bezdimenzijsku varijablu Π_3 poprima oblik

$$\Pi_3 = D_0^{-1} h^1 = \frac{h}{D_0} \tag{2.19}$$

Na temelju dobivenih II varijabli proizlazi funkcijska ovisnost ϕ

$$\phi\left(\frac{\rho v D_0}{\mu}, \frac{\Delta p}{\rho v^2}, \frac{h}{D_0}\right) = 0$$
(2.20*a*)

ili

$$\phi\left(Re, K_R, \frac{A}{A_0}\right) = 0 \tag{2.20b}$$

pri čemu je

A, površina otvora osigurača,

 A_0 , površina poprečnog presjeka cjevovoda.

Površina otvora osigurača A ima funkcijsku ovisnost o pomaku izvršnog elementa osigurača protoka plina h, odnosno vrijedi

$$A = A(h) \tag{2.21}$$

Prema izrazu 2.20b, pretvorbom u eksplicitni oblik može se prikazati funkcijska ovisnost jedne od tri Π varijabli u odnosu od preostale dvije varijable. U ovom slučaju posebice je zanimljiv prikaz koeficijenta lokalnog gubitka K_R u ovisnosti od Reynoldsovog broja i bezdimenzijskog odnosa površina A i A_0 kako slijedi

$$K_R = K_R \left(Re, \frac{A}{A_0} \right) \tag{2.22}$$

Prethodno je spomenuto da koeficijent lokalnog gubitka predstavlja omjer gubitka potencijalne i kinetičke energije fluida. Reynoldsov broj [6] predstavlja omjer inercijskih i viskoznih sila i glavni je kriterij prelaska laminarnog u turbulentno strujanje. Kod niskih vrijednosti Reynoldsovog broja, gdje je utjecaj viskoznosti velik, odvija se laminarni režim strujanja fluida, dok pri velikim iznosima Reynoldsovog broja se utjecaj viskoznosti značajno smanjuje i dolazi do turbulentnog režima strujanja fluida. Odnos A/A_0 je geometrijski parametar osigurača. To znači da u općenitom slučaju on predstavlja smanjenje ili povećanje promatranog kritičnog presjeka u odnosu na neki drugi dovoljno udaljeni orijentacioni presjek.

Ovakav bezdimenzijski zapis ovisnosti jedne bezdimenzijske varijable u odnosu od druge dvije znatno pojednostavljuje prikaz ovisnosti jedne fizikalne veličine u odnosu od ostalih pet fizikalnih veličina kojima je opisana zadana problematika. Ovime je mnogo jednostavnije grafičko prikazivanje danih ovisnosti jer je vrijednost jedne bezdimenzijske varijable primjenjiva na sve newtonske fluide kao što su npr. argon, butan, kisik, metan ili pak voda, itd.

2.2.2. Funkcijska ovisnost pomaka pomičnog dijela h i otvora osigurača A

Prethodno je putem dimenzijske analize prikazano postojanje triju bezdimenzijskih varijabli za zadani problem. Jedna od tih triju bezdimenzijskih varijabli prikazuje geometrijski odnos između površine kritičnog presjeka *A* i površine poprečnog presjeka cjevovoda A_0 . Površina kritičnog presjeka *A* prema izrazu 2.2 u funkcijskoj je ovisnosti od pomaka pomičnog dijela *h* osigurača protoka plina. Nadalje će biti prikazan proračun određivanja ovisnosti površine kritičnog presjeka o pomaku pomičnog dijela. Na slici 2.2a prikazan je dio pomičnog dijela osigurača u zatvorenom položaju.

Veličine označene na slici su kako slijedi

 D_1 , promjer vanjskog ruba pomičnog dijela osigurača,

 D_2 , promjenjivi promjer sapnice osigurača,

 α , kut konusa sapnice u odnosu na *x*-os,

 h_0 , nulti položaj pomičnog dijela osigurača.

U nultom položaju izvršni član naliježe na konusnu sapnicu kućišta osigurača protoka plina, odnosno $h_0 = 0$ m, pri čemu nema strujanja protoka plina kroz osigurač. Prema tome su promjeri vanjskog ruba pomičnog dijela osigurača i promjer sapnice osigurača jednaki, odnosno $D_1 = D_2$ što je ujedno i rubni uvjet za određivanje funkcijske ovisnosti otvora osigurača o pomaku pomičnog dijela.

S obzirom na dovoljno široku konusnu sapnicu, prilikom pomicanja pomičnog dijela osigurača ne dolazi do naglog povećanja kritične površine što uvelike olakšava proračun ove funkcijske ovisnosti. Na slici 2.2b prikazan je dio pomičnog dijela osigurača u otvorenom položaju.

SLIKA 2.2b Pomični dio osigurača u otvorenom položaju

Prilikom translacije pomičnog dijela osigurača za h dolazi do formiranja krnjeg stošca definiranog duljinom s prema slici, te promjerom D_2 koji je prema slici za 2x veći od promjera D_1 . Prema izrazu za površinu plašta krnjeg stošca određuje se površina kritičnog presjeka kako slijedi

$$A = s(h)\pi\left(\frac{D_1}{2} + \frac{D_2}{2}\right)$$
(2.23*a*)

pri čemu je

s, udaljenost između vanjskog ruba pomičnog dijela osigurača i sapnice,

Iz slike 2.2b moguće je odrediti promjenu duljine s o pomaku h kako slijedi

$$s(h) = \frac{h}{\sin \alpha} \tag{2.24}$$

pri čemu je

$$D_2 = D_1 + 2x(h) \tag{2.25}$$

pri čemu je

x, razlika u duljini polumjera vanjskog ruba pomičnog dijela i sapnice.

Prema slici 2.2b vidljiva trigonometrijska veza između duljine x i pomaka pomičnog dijela osigurača prema izrazu

$$x(h) = \frac{h}{\tan \alpha} \tag{2.26}$$

pri čemu je

h, pomak pomičnog dijela osigurača protoka plina.

Ubacivanjem izraza 2.24, 2.25, 2.26 u izraz 2.23a slijedi konačan izraz za ovisnost kritične površine o pomaku pomičnog dijela osigurača

$$A = \frac{h\pi}{\sin\alpha} \left(D_1 + \frac{h}{\tan\alpha} \right) \tag{2.23b}$$

U dijagramu na slici 2.3 prikazana je ovisnost površine poprečnog presjeka A o pomaku pomičnog dijela osigurača h. Linija kroz točke na dijagramu je aproksimativna krivulja čiji su parametri određeni metodom najmanjih kvadrata. Prikazan je i koeficijent determinacije R^2 koji je jednak jedinici, što ukazuje na linearnu ovisnost površine otvora osigurača A o pomaku pomičnog dijela osigurača h.

3. EKSPERIMENTALNO ODREĐIVANJE HIDRODINAMIČKIH ZNAČAJKI OSIGURAČA PROTOKA PLINA

3.1. Uređaj za eksperimentalno određivanje hidrodinamičkih značajki osigurača protoka plina

Određivanje hidrodinamičkih značaiki osigurača protoka plina provodi se eksperimentalnim putem na način da se raznim ispitivanjima odredi koeficijent lokalnog gubitka. Kako su već ranije provedena razna ispitivanja na temelju kojih su određivani koeficijenti lokalnog gubitka kućnih regulatora tlaka plina, mjerni uređaj nije bilo potrebno konstruirati, već se moglo modificirati postojeći. Na slici 3.1 shematski je prikaz mjernog uređaja za ispitivanje osigurača protoka plina [5]. Najveća modifikacija provedena je na ugradbenom dijelu uređaja gdje je taj dio prilagođen ugradnji osigurača protoka plina. Osnovna svrha ovog mjernog uređaja je mogućnost postizanja predviđenih režima rada osigurača protoka plina. Uređaj se sastoji od nekoliko osnovnih dijelova:

- kompresor,
- priključni cjevovodi,
- regulator tlaka za podešavanje ulaznog tlaka,
- ventil za podešavanje protoka,
- mjerila temperature, tlaka i protoka.

Osnovne karakteristike uređaja su sljedeće:

- područje ulaznog tlaka : 20 mbar do 3,5 bar;
- područje protoka: 0,01 do 65 m³/h;
- radni medij: zrak.

Glavni dio mjernog uređaja je kompresor. Kompresor, koji je od instalacije udaljen 30 m, spojen je na regulator za podešavanje ulaznog tlaka neizoliranim cjevovodom promjera 50 mm. Neizoliranost i duljina cjevovoda omogućuju izjednačavanje temperature radnog fluida s temperaturom okoline te stabilizaciju tlačnih oscilacija. Između kompresora i regulatora ugrađen je spremnik volumena 400 dm³ te još tri spremnika volumena 50 dm³, čija je svrha također povezana sa stabilizacijom sustava zbog oscilacija uzrokovanih tlačnim radom kompresora.

Priključni cjevovodi koji spajaju ispitni osigurač protoka plina i regulator za podešavanje ulaznog tlaka nazivnog su promjera 27,028 mm. Isti nazivni promjer odgovara vanjskom ugradbenom promjeru osigurača protoka plina. Kako bi se osigurao aksijalno simetričan profil strujanja fluida kroz ispitivani osigurač područje uzvodno od osigurača izvedeno je ravnim cjevovodom duljine sto nazivnih promjera cjevovoda.[5] Ova sekcija nema dodatnih priključaka čime je opravdano pretpostaviti da je polje strujanja fluida kroz ulazni cjevovod, a samim time i mjerenje ulaznog tlaka, stabilno.

 1 - kompresor 2 - veliki spremnika 3 - tri mala spremnika 4 - regulator za podešavanje ulaznog tlaka 5 - osigurač protoka plina 7 - ventil za podešavanje protoka 8 - rotametar 9 - barometar 10 - termometar 	
P B B C C C C C C C C C C C C C C C C C	

SLIKA 3.1 Shematski prikaz uređaja za ispitivanje osigurača protoka plina

ispitivani osigurač digitalni manometar 0 - 2000 mbar digitalni manometar 0 - 100 mbar barometar 0 - 100 mbar	săavanje ulaznog tlaka
rotametar 0,01 - 0,1 m ³ /h	24 - 500 mbar
notametar 0,09 - 0,9 m ³ /h	regulator za podešavanje u

SLIKA 3.2 Uređaj za ispitivanje osigurača protoka plina

Regulator tlaka na ulazu u mjerni uređaj ima mogućnost finog podešavanja vrijednosti ulaznog tlaka u području od 2 do 6,5 bar na vrijednost od 24 do 500 mbar izlaznog tlaka. Utjecaj ovog elementa mjernog uređaja na samo mjerenje nije bitan zbog osjetnika za mjerenje tlaka koji je pozicioniran na ulaznoj sekciji osigurača i osjetnika za mjerenje pada tlaka preko osigurača protoka plina čije su vrijednosti relevantne za konačne rezultate mjerenja.

Mjerenje tlaka provedeno je prema normi DIN 33822 [16] koja nalaže da se mjerenje tlaka provodi na udaljenosti od pet nazivnih promjera cjevovoda uzvodno, odnosno nizvodno od ispitivanog osigurača. Također, kako bi se smanjio utjecaj mogućih lokalnih poremećaja strujanja, norma EN 331 [17] nalaže izvođenje otvora za mjerenje tlaka kako je prikazano na slici 3.3. Mjerenje se odvija sa četiri otvora promjera 3 mm koji su impulsnim cjevovodima spojeni na kolektor volumena 49 cm³ na koji je spojen osjetnik tlaka. Volumen kolektora dimenzioniran je na način da njegova veličina bude dovoljna za stabilizaciju tlaka fluida, odnosno dovoljno velik za osrednjavanje veličine tlaka na neku stabilnu vrijednost, u svrhu veće i pouzdanije točnosti mjerenja ulaznog, a posebice izlaznog tlaka kod kojeg zbog geometrije samog osigurača protoka plina dolazi do stvaranja vrtloga, a samim time i do poremećaja strujanja fluida koji mogu uzrokovati raspodjelu statičkog tlaka fluida u raznim točkama presjeka cjevovoda.

SLIKA 3.3 Izvedba otvora za mjerenje statičkog tlaka uzvodno i nizvodno od osigurača

Iz iskustvenih podataka [5] vidljivo je da se za ovaj mjerni uređaj temperatura unutar cjevovoda znatno ne razlikuje od temperature okoline. Sukladno tome, mjerena je samo temperatura okoline standardnim staklenim živinim termometrom na relativno maloj udaljenosti od samog mjernog uređaja čime se dodatno izbjegla eventualna mogućnost pogreške kod očitanja temperature zraka.

Mjerenje protoka provodi se na izlaznom dijelu mjernog uređaja rotametrima koji pokrivaju cijelo radno područje ventila. Zbog veće ulazne energije fluida, pri većim tlakovima i protocima, gubici nastali nakon osigurača i prije rotametara velikih protoka nemaju znatan utjecaj na rezultate mjerenja protoka u odnosu na one rotametre malih protoka pozicionirane neposredno nakon izlaznog dijela osigurača. Podešavanje
protoka provodi se ventilima priključenim na same rotametre. Kod velikih rotametara primijenjeni su kuglasti ventili, dok su kod malih rotametara primijenjeni igličasti ventili.

3.2. Mjerna oprema

Fizikalne veličine koje definiraju hidrodinamičke značajke osigurača protoka plina i koje je potrebno mjeriti su:

- a) apsolutna temperatura na ulazu u osigurač,
- b) apsolutni tlak fluida na ulazu u osigurač,
- c) apsolutni tlak fluida na izlazu iz osigurača,
- d) pad tlaka fluida preko osigurača,
- e) srednja brzina strujanja na ulazu u osigurač,
- f) pomak pomičnog dijela osigurača.

S obzirom na to da nije moguće direktno mjerenje svih navedenih veličina, mjerene su pojedine veličine:

- a) atmosferski tlak,
- b) pretlak fluida na ulazu u osigurač,
- c) pretlak fluida na izlazu iz osigurača,
- d) temperatura fluida na ulazu u osigurač,
- e) protok fluida,
- f) okret pomičnog dijela osigurača.

U tablici 3.1 je naveden popis mjerne opreme za mjerenje svih veličina s relevantnim podacima kao što su: vrsta mjerila, mjerni opseg i razred točnosti.

Mjerena veličina	Mjerni uređaj	Vrsta	Mjerno područje	Razred točnosti
Ulazni tlak	WIKA 10294638	Manometar	0 - 1,6 bar pretlaka	6,14 mbar
Pad tlaka	Rombach SJ-24	Manometar u obliku U-cijevi	0 - 60 mbar pretlaka	0,24 mbar
Pad tlaka	WIKA CG264	Digitalni manometar	0 - 100 mbar	0,13 mbar
Atmosferski tlak	Viasala UPTB 220	Kapacitivni	500 - 1100 mbar	0,01 mbar
Temperatura okoline	TLOS sa živom	Stakleni termometar	10 - 30 °C	0,1 °C
Protok	ROTA Yokogawa 223091/0011	Rotametar s lebdećim elementom	1 - 15,5 dm³/min	3 %
Protok	ROTA G1 440	Rotametar s lebdećim elementom	0,4 - 4 m³/h	3 %
Protok	ROTA G2 2500	Rotametar s lebdećim elementom	2 - 25 m³/h	3 %
Okret pomičnog dijela		Ručno	0 - 360°	3°

TABLICA 3.1 Mjerna oprema

3.2.1. Procjena ukupne mjerne nesigurnosti mjernog lanca

Vrlo važno je određivanje ukupne mjerne nesigurnosti mjernog lanca kako bi se odredili prosječno odstupanje konačnih rezultata i utjecaj pojedinih varijabli na točnost mjerenja. Procjena mjerne nesigurnosti pokazivača dana je izrazom [18]

$$e' = \bar{e} \pm u_e \tag{3.1}$$

pri čemu je

 \bar{e} srednja vrijednost pogreške dobivena iz n mjerenja definirana kao [18]

$$\bar{e} = \frac{1}{n} \sum_{i=1}^{n} e_i \tag{3.2}$$

 u_e nesigurnost procjene pogreške uz pretpostavku da rezultati mjerenja slijede normalnu razdiobu definirana kao [18]

$$u_e = \pm t_{\nu,95} \sqrt{\frac{1}{\nu} \sum_{i=1}^n (e_i - \bar{e})^2}$$
(3.3)

pri čemu je

 $t_{v,95}$, težinski faktor Studentove razdiobe uz 95%-tnu procjenu vjerojatnosti da prva vrijednost pogreške leži unutar navedenog u izrazu 3.3. $t_{v,95}$ određuje se iz tablica [18].

v, stupanj slobode u standardnoj devijaciji srednje vrijednosti definiran kao v = n - 1.

Kako ukupni rezultat mjerenja ovisi o nesigurnosti mjerenja svih fizikalnih veličina, ukupna procjena nesigurnosti u mjerenja definirana je kao [18]

$$u = \pm \sqrt{\sum_{j=1}^{m} \left(\frac{\partial R}{\partial x_j} u_j\right)^2}$$
(3.4)

pri čemu je

R, ukupni rezultat mjerenja, odnosno funkcija svih fizikalnih veličina; tlaka, temperature, protoka i pomaka. Veličina R predstavlja karakterističnu veličinu koja predstavlja ponašanje sustava kao Reynoldsov broj Re ili koeficijent lokalnog gubitka K_R

 x_j , nezavisna varijabla, odnosno nezavisne varijable su pojedine fizikalne veličine; tlak, temperatura, protok i pomak. Ukupno se provodi mjerenje m veličina.

Parcijalne derivacije predstavljaju promjenu zavisne varijable (veličina R) s pojedinim mjerenim veličinama, x_i .

U praksi nesigurnost u je geometrijska suma pogrešaka mjerenja pojedinih fizikalnih veličina dana izrazom

$$u = \pm \sqrt{\sum_{j=1}^{m} e_j^2}$$
(3.5)

pri čemu je

 e_i , pogreška mjerenja svake fizikalne veličine a definira se kao

$$e_j = \frac{\delta x_j}{x_j} \tag{3.6}$$

Pogreške mjerenja pojedinih veličina dobivaju se iz n uzastopnih mjerenja svakog osjetnika kod jedne vrijednosti ulazne veličine. Ponavljanjem ovakve procedure preko cijelog područja mjerenja dobivaju se podaci o pogreškama pokazivanja i intervalu preciznosti koji daju mogućnost procjene prave vrijednosti mjerenih veličina i njihov utjecaj na ukupni rezultat.

Procjena ukupne mjerne nesigurnosti s mjernom opremom navedenoj u tablici 3.1 definira se kao

$$u_{i} = \sqrt{e_{p_{M_{1}}}^{2} + e_{\Delta p}^{2} + e_{P_{a}}^{2} + e_{T}^{2} + e_{Q}^{2} + e_{L}^{2}}$$
(3.7)

odnosno

$$u_1 = \sqrt{\left(\frac{6,14}{1600}\right)^2 + \left(\frac{0,24}{60}\right)^2 + \left(\frac{0,01}{1013,25}\right)^2 + \left(\frac{0,1}{293,15}\right)^2 + \left(\frac{3}{100}\right)^2 + \left(\frac{3}{360}\right)^2} = 0,031 \quad (3.8a)$$

$$u_{2} = \sqrt{\left(\frac{6,14}{1600}\right)^{2} + \left(\frac{0,13}{100}\right)^{2} + \left(\frac{0,01}{1013,25}\right)^{2} + \left(\frac{0,1}{293,1}\right)^{2} + \left(\frac{3}{100}\right)^{2} + \left(\frac{3}{360}\right)^{2}} = 0,031 \quad (3.8b)$$

Potrebno je odrediti dvije ukupne mjerne nesigurnosti mjernog lanca zbog korištenja dvije različite mjerne postave gdje je pad tlaka Δp mjeren s dva različita instrumenta ovisno o mjernom području. Neovisno o mjernoj postavi, mjerna nesigurnost iznosi 0,031 % pri korištenju U-cijevi i digitalnog manometra.

Iz rezultata je vidljivo da najveći doprinos mjernoj nesigurnosti ima mjerenje protoka, dok mjerenje ostalih veličina ima znatno manji utjecaj na ukupnu mjernu nesigurnost.

Važno je naglasiti da su gore navedeni rezultati za ukupnu mjernu nesigurnost prema jednadžbama 3.8a i 3.8b dobiveni na temelju rezultata umjeravanja. Ovdje nisu uzeti u

obzir uvjeti u kojima je provedeno mjerenje tijekom eksperimenta, što se odnosi na uvjete okoline i utjecaj izvedbe ispitne instalacije.

Također, bitno je naglasiti da iz ovih podataka nije moguće dobiti direktna saznanja o mjernoj nesigurnosti određivanja hidrodinamičkih značajki, već samo o mjernoj nesigurnosti mjernog lanca. Mjerna nesigurnost hidrodinamičkih značajki bit će obrađena u poglavljima koja slijede.

3.3. Realizacija eksperimenta

Za realizaciju eksperimenta posebna važnost posvećena je proceduri mjerenja gdje je detaljno opisano na koji način, pri kojim konstantnim ulaznim, odnosno izlaznim vrijednostima, te kojim redoslijedom je mjerenje provedeno. Bez točno navedenog slijeda provođenja mjerenja lako je moguće da eksperiment ne bi bio ponovljiv, a samim time i nevaljan.

3.3.1. Procedura mjerenja

Mjerenjem je obuhvaćeno cijelo radno područje osigurača protoka plina, tj. za sljedeće vrijednosti:

- pretlak na ulazu: $p_{M1} = 24 \text{ do } 450 \text{ mbar}$,
- pad tlaka: $\Delta p = 1$ do 230 mbar,
- protok: $Q = 0,06 \text{ do } 12 \text{ m}^3/\text{h}$,
- položaj pomičnog dijela: h = 0,175 do 1,05 mm.

Mjerenje je provedeno na način da se konstantnim drži otvor osigurača protoka plina. Konstantni otvor određuje se pomoću uklještenja izvršnog elementa osigurača tako da se uklještenje izvršnog elementa vrši pomoću dvije M4 matice koje se nalaze na vijku s normalnim M4 navojem prilijepljenim na izvršni element osigurača, a vodilica s navojem prilijepljena je na stražnji rub osigurača. Pomak h izvršnog elementa određuje se zaokretom samog elementa po navoju gdje jedan okret prema ISO 724 [19] predstavlja pomak od 0,7 mm, odnosno standardnu dimenziju koraka navoja. Tlak na ulazu u mjerni uređaj podešava se na konstantnu vrijednost tako da se na regulatoru tlaka pozicioniranom na ulazu u mjerni uređaj drži konstantna otvorenost ventila. Za ovako podešene veličine provodi se variranje protoka u raspoloživom području. Variranje protoka provodi se na način da se za promatranu seriju početni protok podesi na minimalnu vrijednost pri kojoj je moguće registrirati zamjetljiv pad tlaka preko osigurača. Nakon određenog vremena kada se sustav stabilizira, uspostavlja se stacionarno strujanje što je vidljivo iz stabilnosti očitanja mjernih instrumenata. Kada je sa sigurnošću utvrđena stacionarnost strujanja fluida kroz osigurač, provodi se očitanje i zapis svih mjerenih veličina; ulaznog tlaka, pada tlaka, atmosferskog tlaka, temperature i protoka. Ovakvo očitanje predstavlja jednu mjernu točku. Nakon ovoga slijedi podešavanje protoka na novu veću vrijednost protoka te ponavljanje procedure. Variranje protoka provodi se sve dok se za zadani otvor osigurača ne postigne maksimalna moguća vrijednost pada tlaka, odnosno dok pad tlaka ne postane veći od polovine pretlaka na ulazu u osigurač zbog čega dolazi do zagušenja strujanja kroz osigurač odnosno do pretvorbe ulazne kinetičke energije u gubitke uzrokovane padom tlaka. Ovisno o mogućnostima u svakoj seriji je provedeno ispitivanje na osam do šesnaest točaka. Nakon završetka ispitivanja kod jednog ulaznog tlaka, provedeno je podešavanje ulaznog tlaka na novu vrijednost i ponavljanje serije ispitivanja preko područja protoka, a nakon završetka ispitivanja kod jednog otvora, provedeno je podešavanje otvora osigurača na novu vrijednost i ponavljanje serije ispitivanja preko područja ulaznih tlakova.

Ispitivanje je provedeno pri sljedećim položajima pomičnog dijela osigurača: 0,2625; 0,35; 0,25; 0,7 i 1,05 mm. Ulazni tlakovi u osigurač protoka plina su u području od 19 do 419 mbar pretlaka. Za ove položaje pomičnog dijela i područje ulaznih tlakova provedeno je variranje protoka i mjerenje svih veličina. Ukupno su provedena mjerenja u 489 točaka, a zbog lošeg brtvljenja pri ulaznim tlakovima višim od 450 mbar pretlaka izvođenje mjerenja nije bilo moguće. Na slici 3.4 shematski je prikaz procedure ispitivanja.

SLIKA 3.4 Procedura mjerenja vrijednosti za određivanje hidrodinamičkih karakteristika osigurača protoka plina.

3.4. Procjena mjerne nesigurnosti rezultata eksperimenta

Kad je riječ o nesigurnosti eksperimentalnih podataka, prvenstveno se misli na nesigurnost mjerenja fizikalnih veličina koje određuju hidrodinamičke značajke ispitivanog osigurača protoka plina. Mjerenje više varijabli uključenih u problem uzrokuje povećanje nesigurnosti mjerenja. Ako se pretpostavi da rezultat mjerenja *P* ovisi o *n* varijabli, ili $P = P(x_1, x_2, ..., x_n)$, svaka sa svojom vlastitom nesigurnošću; npr. x_1 ima nesigurnost δx_1 , tada se ukupna nesigurnost određuje kao [18]

$$\delta P = \sqrt{\left(\frac{\partial P}{\partial x_1}\delta x_1\right)^2 + \left(\frac{\partial P}{\partial x_2}\delta x_2\right)^2 + \dots + \left(\frac{\partial P}{\partial x_n}\delta x_n\right)^2} \tag{3.9}$$

pri čemu je

 $\frac{\partial P}{\partial x_i}$, koeficijent osjetljivosti [18]

Kako je vrlo mala statistička vjerojatnost da će sve mjerene veličine istovremeno poprimiti maksimalne vrijednosti pogreške, ovaj izraz daje statistički vjerojatniju procjenu nesigurnosti nego jednostavno zbrajanje pojedinih komponenata mjerne nesigurnosti. Gore navedeni izraz temelji se na aproksimaciji Taylorovog reda.

U poglavlju o dimenzijskoj analizi prikazano je da je moguće svaku bezdimenzijsku varijablu prikazati pomoću tri fizikalne veličine vremena *T*, duljine *L* i mase *M* uz odgovarajuću eksponencijalnu funkcijsku ovisnost u svrhu dobivanja bezdimenzijske varijable. Slijedeći taj princip veličinu *P* je također moguće izraziti kao eksponencijalnu funkciju ostalih varijabli, npr. $P = konst. x_1^{a_1} x_2^{a_2} x_3^{a_3} \dots$, tada je svaka derivacija u izrazu proporcionalna s *P* i odgovarajućem eksponentu, a obrnuto proporcionalna s tom varijablom [18] kako slijedi

$$\frac{\partial P}{\partial x_1} = \frac{a_1 P}{x_1}, \frac{\partial P}{\partial x_2} = \frac{a_2 P}{x_2}, \frac{\partial P}{\partial x_3} = \frac{a_3 P}{x_3}, \dots$$
(3.10)

Kombinacijom izraza 3.9 i izraza 3.10 slijedi izraz

$$\frac{\delta P}{P} = \sqrt{\left(a_1 \frac{\delta x_1}{x_1}\right)^2 + \left(a_2 \frac{\delta x_2}{x_2}\right)^2 + \left(a_3 \frac{\delta x_3}{x_3}\right)^2 + \cdots}$$
(3.11)

Iz ovog izraza vrlo je jednostavno odrediti vrijednost δP .

Već ranije je, ponovno iz dimenzijske analize, pokazano postojanje triju bezdimenzijskih varijabli: Reynoldsovog broja Re, koeficijenta lokalnog gubitka K_R i geometrijski odnos površine otvora osigurača i površine poprečnog presjeka cjevovoda A/A_0 čije se vrijednosti dobivaju iz izmjerenih podataka. Kako sve te veličine ovise o mjerenim podacima, prilikom određivanja njihovih vrijednosti nužno je procijeniti mjerne nesigurnosti prema prethodno navedenoj proceduri što će u nastavku biti prikazano za svaku varijablu zasebno.

3.4.1. Reynoldsov broj Re

Reynoldsov broj definiran je prema izrazu 2.15 kao

$$Re = \frac{\rho v D_0}{\mu} \tag{3.12}$$

Budući da se gustoća ρ i brzina strujanja v određuju izračunavanjem iz izmjerenih vrijednosti tlaka, temperature i promjera cjevovoda, a viskoznost μ iz Sutherlandove formule:

$$\mu = \mu_0 \frac{T_0 + C}{T + C} \left(\frac{T}{T_0}\right)^{\frac{3}{2}}$$
(3.13)

pri čemu je

- μ , dinamička viskoznost pri temperaturi T,
- μ_0 , dinamička viskoznost pri temperaturi T_0 ,
- T_0 , referentna temperatura očitana iz tablica,
- T, stvarna temperatura fluida,
- C, Sutherlandova konstanta za plinovite tvari očitana iz tablica, $C_{ZRAK} = 120$ K.

to treba uzeti u obzir kod procjene nesigurnosti. Uzimajući gore navedene tvrdnje u obzir izraz 3.12 prelazi u oblik

$$Re = \frac{\rho v D_0}{\mu} = \frac{\frac{p_a + p_{M1}}{R(273, 16 + t)} \frac{4Q}{3600 D_0^2 \pi} D_0}{\mu_0 \frac{T_0 + 120}{(273, 16 + t) + 120} \left(\frac{273, 16 + t}{T_0}\right)^{\frac{3}{2}}}$$
(3.14)

pri čemu je

R, specifična plinska konstanta za zrak,

Mjerna nesigurnost za pojedine veličine uzeta je iz tablice 3.1, dok se za viskoznost uzima procjena od 0,05 % na temelju razlike nastale iz izračunavanja iz Sutherlandove formule za razliku temperature od 0,1 °C. Vrijednosti u postocima za ostale veličine su slijedeće; tlak p_1 : 0,04%, temperatura *t*: 0,06 %, protok *Q*: 3 %, promjer cjevovoda D_0 : 1,3 %. Za plinsku konstantu *R* te konstantu 4/3600 π se pretpostavlja da su teoretske vrijednosti pa se uzimaju bez nesigurnosti.

Nesigurnost određivanja Reynoldsovog broja određuje se prema izrazu 3.11 kao

$$\frac{\delta Re}{Re} = \sqrt{\left(\frac{\delta p}{p}\right)^2 + \left(\frac{\delta Q}{Q}\right)^2 + \left(\frac{\delta t}{t}\right)^2 + \left(\frac{\delta D_0}{D_0}\right)^2 + \left(\frac{\delta \mu}{\mu}\right)^2}$$
(3.15*a*)

$$\frac{\delta Re}{Re} = \sqrt{0.04^2 + 3^2 + 0.06^2 + 1.3^2 + 0.05^2} \approx 4.31\%$$
(3.15b)

iz čega je vidljivo da najveći doprinos mjernoj nesigurnosti određivanja Reynoldsovog broja imaju promjer cjevovoda i protok. Ukupna procijenjena nesigurnost Reynoldsovog broja je približno jednaka 4,3 % i pripada razredu zadovoljavajuće točnosti.

3.4.2. Koeficijent lokalnog gubitka K_R

Koeficijent lokalnog gubitka K_R definira se prema izrazu 2.17 kao

$$K_{R} = \frac{\Delta p}{\frac{1}{2}\rho v_{1}^{2}}$$
(3.16)

Kako se vrijednosti za pad tlaka Δp , gustoću ρ i brzinu strujanja v izračunavaju iz izmjerenih vrijednosti, to će trebati uzeti u obzir kod procjene nesigurnosti. Izraz za K_R se može transformirati na slijedeći način

$$K_{R} = \frac{\Delta p}{\frac{1}{2} \frac{p_{a} + p_{M1}}{R(273.16 + t)} \left(\frac{4Q}{3600D_{0}^{2}\pi}\right)^{2}}$$
(3.17)

Mjerna nesigurnost za pojedine veličine također je uzeta iz tablice 3.1. Vrijednosti u postocima za korištene veličine su kako slijedi; ulazni tlak p_{M1} : 0,04%, pad tlaka Δp : 0,04%, ulazni apsolutni tlak p_a : 0,01%, temperatura *t*: 0,06%, protok *Q*: 3%, promjer cjevovoda D_0 : 1,3%. Za plinsku konstantu *R* te konstantu 4/3600 π se pretpostavlja da su teoretske vrijednosti, te se uzimaju bez nesigurnosti.

Nesigurnost određivanja koeficijenta lokalnog gubitka K_R određuje se prema 3.11 kao

$$\frac{\delta K_R}{K_R} = \sqrt{\left(\frac{\delta p_{M1}}{p_{M1}}\right)^2 + \left(\frac{\delta \Delta p}{\Delta p}\right)^2 + \left(\frac{\delta p_a}{p_a}\right)^2 + 2\left(\frac{\delta Q}{Q}\right)^2 + \left(\frac{\delta t}{t}\right)^2 + 4\left(\frac{\delta D_0}{D_0}\right)^2}$$
(3.18*a*)

$$\frac{\delta K_R}{K_R} = \sqrt{0.04^2 + 0.04^2 + 0.01^2 + 2(3)^2 + 0.06^2 + 4(1.3)^2} \approx 4.98\%$$
(3.18b)

Iz čega je odmah vidljivo da najveći doprinos nesigurnosti koeficijentu lokalnog gubitka daje protok Q zbog množenja s eksponentom 2 i promjer cjevovoda D_0 zbog množenja s eksponentom 4. Unatoč tome ukupna procijenjena nesigurnost koeficijenta lokalnog gubitka od približno 4,98 % je zadovoljavajuća.

3.4.3. Geometrijski odnos A/A₀

Odnos A/A_0 predstavlja geometrijski odnos površine otvora osigurača i površine poprečnog presjeka cjevovoda.

Površina *A* direktno je ovisna o pomaku pomičnog dijela osigurača *h*, te je njihov odnos dan izrazima 2.23a do 2.26. Vrijednosti u postocima za korištene veličine su sljedeće; pomak pomičnog dijela *h*: 0,84%, promjer cjevovoda D_0 : 1,3%.

Ako se pretpostavi ranije dokazana zavisnost između pomaka h i površine A nesigurnost odnosa A/A_0 može se procijeniti kao

$$\frac{\delta\left(\frac{A}{A_0}\right)}{\delta\frac{A}{A_0}} = \sqrt{\left(\frac{\delta h}{h}\right)^2 + \left(\frac{\delta D_0}{D_0}\right)^2} \tag{3.19a}$$

$$\frac{\delta\left(\frac{A}{A_0}\right)}{\delta\frac{A}{A_0}} = \sqrt{(1,3)^2 + (0,84)^2} \approx 1,54\%$$
(3.19b)

Vidljivo je da je nesigurnost pomaka pomičnog dijela bitno manja u odnosu na nesigurnost određivanja promjera cjevovoda.

Ukupna procijenjena nesigurnost koeficijenta lokalnog gubitka K_R je približno 4,98 %, čime pripada razredu zadovoljavajuće točnosti. Isto tako vrijedi i za procjenu nesigurnosti Reynoldsovog broja od približno 4,31 % i geometrijskog odnosa od približno 1,54 %. Ovo je prvenstveno rezultat korištenja mjerne opreme dovoljno dobrih karakteristika. U ovim procjenama nisu uzeti u obzir ostali utjecajni faktori kao što su utjecaj izvedbe ispitne instalacije, moguće pogreške kod očitavanja mjerenih veličina i ostale utjecajne veličine koje mogu utjecati na rezultate mjerenja.

4. OBRADA I ANALIZA REZULTATA MJERENJA

4.1. Pregled rezultata mjerenja

Kako je prethodno spomenuto, općenita slika strujanja fluida kroz ventile je izrazito kompleksna, što uvelike otežava teorijsko opisivanje takvih strujanja. Iz tog razloga lokalni gubici određuju se eksperimentalnim putem iz izmjerenih rezultata. Važno je za napomenuti da tako dobiveni rezultati vrijede samo za jednu i istu vrstu ventila. U literaturi je prava rijetkost pronaći informacije o lokalnim gubicima u funkciji Reynoldsovog broja i otvora ventila prvenstveno zbog najčešće uporabe ventila pri potpunom otvoru odnosno pri maksimalnom protoku kroz ventil [20].

U nastavku će biti prikazani rezultati eksperimentalnog određivanja koeficijenta lokalnog gubitka ispitivanog niskotlačnog osigurača protoka plina za određeno područje Reynoldsovih brojeva i za promatrano područje otvora.

U dijagramu na slici 4.1a, kao i na svim ostalim slikama s indeksom a u nastavku, prikazana je ovisnost koeficijenta lokalnog gubitka K_R o Reynoldsovom broju Re, odnosno o geometrijskom odnosu površine otvora i površine poprečnog presjeka cjevovoda A/A_0 . S druge strane, u dijagramu na slici 4.1b, kao i na svim ostalim slikama sa indeksom b, prikazana je ovisnost koeficijenta lokalnog gubitka K_R o Reynoldsovom broju Re, odnosno o geometrijskom odnosu površine otvora i površine poprečnog presjeka cjevovoda A/A_0 u logaritamskom mjerilu zbog veće preglednosti izmjerenih rezultata. Rezultati su dobiveni za područje Reynoldsovog broja od približno Re = 57 pa do $Re = 1.53 \times 10^2$. Koeficijent lokalnog gubitka kreće se u intervalu od $K_R = 570$ pa do $K_R = 2.23 \times 10^5$. Rezultati su prikazani na način da su skupovi točaka grupirani za konstantne otvore A/A_0 , no zbog velike deformabilnosti materijala pomičnog dijela osigurača pri višim ulaznim tlakovima dolazi do lagane deformacije koja se na svim mjerenjima manifestira laganom translacijom točaka na nešto niže vrijednosti. To je za ovakvu vrstu ventila, bez korištenja čvršćih materijala, nažalost neizbježno. Iz dijagrama je vidljivo da pri najnižim vrijednostima Reynoldsovog broja koeficijent lokalnog gubitka poprima značajno veće vrijednosti nego pri višim vrijednostima gdje ima sve blaži pad odnosno, dok koeficijent lokalnog gubitka ne poprimi približno konstantnu vrijednost.

Na dijagramima je jasno vidljivo da je područje rada osigurača protoka plina moguće podijeliti u tri područja. Prvo i najosjetljivije područje jest područje laminarnog strujanja fluida do vrijednosti Reynoldsovog broja od približno $Re \approx 600$ gdje je koeficijent lokalnog gubitka ovisan o Reynoldsovom broju i geometrijskom odnosu A/A_0 . Drugo područje je prijelazno područje u intervalu od $Re \approx 600$ do $Re \approx 4000$ i koeficijent lokalnog gubitka također je ovisan o Reynoldsovom broju i geometrijskom odnosu A/A_0 . Treće područje je potručje potpune turbulencije gdje je vrijednost Reynoldsovog broja veća od $Re \approx 4000$, a vrijednost koeficijenta lokalnog gubitka ovisna je samo o geometrijskom odnosu A/A_0 . U praksi radno područje osigurača pretežno se nalazi u intervalu do $Re \approx 4000$ odnosno u prijaznom području rada osigurača.

U dijagramima na slikama 4.2a i 4.2b pa do 4.6a i 4.6b prikazana je ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju za svaki odnos A/A_0 posebno. Na

ovim dijagramima prikazani su rezultati za područje ulaznih tlakova gdje p_{Mi} predstavlja početno podešenu vrijednost na regulatoru ulaznog tlaka, a p_{Mi}' početno podešenu vrijednost ponovljenog mjerenja za isti geometrijski odnos u svrhu kontrole dobivenih rezultata.

SLIKA 4.1a Ovisnost koeficijenta lokalnog gubitka osigurača o Reynoldsovom broju

SLIKA 4.1b Ovisnost koeficijenta lokalnog gubitka osigurača o Reynoldsovom broju u logaritamskom mjerilu

SLIKA 4.2a Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0,2625 \text{ mm} (A/A_0 = 0,04364).$

SLIKA 4.2b Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0,2625 \text{ mm} (A/A_0 = 0,04364)$ u logaritamskom mjerilu.

SLIKA 4.3a Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0.35 \text{ mm} (A/A_0 = 0.05853).$

SLIKA 4.3b Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0.35 \text{ mm} (A/A_0 = 0.05853)$ u logaritamskom mjerilu.

SLIKA 4.4a Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0,525 \text{ mm} (A/A_0 = 0,08883).$

SLIKA 4.4b Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0,525 \text{ mm} (A/A_0 = 0,08883)$ u logaritamskom mjerilu.

SLIKA 4.5a Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0.7 \text{ mm} (A/A_0 = 0.11982).$

SLIKA 4.5b Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 0,7 \text{ mm} (A/A_0 = 0,11982)$ u logaritamskom mjerilu.

SLIKA 4.6a Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 1,05 \text{ mm} (A/A_0 = 0,18388).$

SLIKA 4.6b Ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju kod $h = 1,05 \text{ mm} (A/A_0 = 0,18388)$ u logaritamskom mjerilu.

4.2. Obrada i analiza rezultata eksperimenta

Prethodno je spomenuta i dimenzijskom analizom dokazana ovisnost koeficijenta lokalnog gubitka K_R o Reynoldsovom broju Re i geometrijskom odnosu površine otvora osigurača i površine poprečnog presjeka cjevovoda A/A_0 , kao što su i spomenute poteškoće prilikom teoretskog određivanja funkcijske veze $K_R = K_R(Re, A/A_0)$ koja direktno proizlazi iz fizikalnih zbivanja u osiguraču. Zbog te kompleksnosti traži se funkcijska ovisnost korištenjem brojčanih jednadžbi koje će na najbolji mogući način kvantificirati rezultate eksperimenata. U nastavku će se određivati funkcijska ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju i otvoru regulatora, koja na zadovoljavajući način kvantificira rezultate eksperimenta i odražava fizikalna zbivanja u osiguraču.

Kako bi se dobili aproksimativni izrazi koji kvantificiraju rezultate eksperimenta i hidrodinamičke značajke bit će korištena metoda najmanjih kvadrata. Metoda najmanjih kvadrata daje aproksimativni izraz čija su odstupanja od stvarnih vrijednosti najmanja. Prema potrebi se podešavaju vrijednosti aproksimativnih koeficijenata.

Regresijska analiza za varijablu u obliku y = f(x) daje linearnu aproksimaciju u obliku [18]

$$y_c = a_0 + a_1 x$$
 (4.1)

pri čemu je

 y_c , vrijednost varijable dobivene direktno iz aproksimacione jednadžbe za dane vrijednosti od x.

 $a_0 i a_1$, konstante.

Razlika između bilo koje zavisne varijable y_i i polinoma definira se kao

$$d_i = y_i - y_{ci} \tag{4.2}$$

pri čemu je

 y_{ci} , vrijednost aproksimacije dobivene iz podataka o stvarnim vrijednostima x_i , y_i .

Zbroj kvadrata ovih razlika za sve vrijednosti od y_i , i = 1, 2, 3, ..., n dan je izrazom

$$D = \sum_{i=1}^{n} (y_i - y_{ci})^2$$
(4.3)

pri čemu je cilj dobiti najmanje vrijednosti varijable *D*. Korištenjem izraza 4.1 i 4.3 dobiva se

$$D = \sum_{i=1}^{n} (y_i - (a_0 + a_1 x))^2$$
(4.4)

Diferenciranjem jednadžbe 4.4 totalni diferencijal dD prelazi u oblik

$$dD = \frac{\partial D}{\partial a_0} da_0 + \frac{\partial D}{\partial a_1} da_1 \tag{4.5}$$

Kako bi se suma kvadrata svela na minimalnu vrijednost *dD* mora težiti nuli, odnosno svaka parcijalna derivacija u izrazu 4.5 mora biti jednaka nuli

$$\frac{\partial D}{\partial a_0} = \frac{\partial}{\partial a_0} \left\{ \sum_{i=1}^n (y_i - (a_0 + a_1 x))^2 \right\} = 0$$
(4.6*a*)

$$\frac{\partial D}{\partial a_0} = \frac{\partial}{\partial a_0} \left\{ \sum_{i=1}^n (y_i - (a_0 + a_1 x))^2 \right\} = 0$$
(4.6b)

Ovako definiran sustav sastoji se od dvije linearne jednadžbe s dvije nepoznanice čijim se rješenjem dolazi do nepoznatih koeficijenata $a_0 i a_1$.

Regresijska aproksimacija ne slijedi egzaktno stvarne vrijednosti od x_i i y_i već postoji neko odstupanje između stvarnih izmjerenih podataka i aproksimacije. To odstupanje dobiva se određivanjem sume kvadrata odstupanja stvarnih vrijednosti y_i od vrijednosti dobivenih aproksimacijom y_{ci} prema izrazu

$$SS_{rez} = \sum_{i=1}^{n} (y_i - y_{ci})^2$$
(4.7)

pri čemu je

SS_{rez}, rezidualna suma kvadrata.

Rezidualna suma kvadrata je mjera preciznosti kojom se opisuje aproksimativno ponašanje skupa podatka, pod uvjetom da odražava logičku fizikalnu vezu između nezavisne i zavisne varijable. Ona predstavlja onaj dio varijacije zavisne varijable koji nastaje kao rezultat djelovanja svih ostalih faktora osim nezavisne varijable x. Standardna pogreška aproksimacije dobiva se iz rezidualne sume kvadrata podijeljene s brojem stupnjeva slobode, a definirana je izrazom

$$S_{rez} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - y_{ci})^2}{\nu}}$$
(4.8)

pri čemu je

v, broj stupnjeva slobode dan izrazom v = n - 2.

Suma kvadrata odstupanja aproksimativnih vrijednosti zavisne varijable od njene aritmetičke sredine definirana je izrazom

$$SS_{reg} = \sum_{i=1}^{n} (y_{ci} - \bar{y})^2$$
(4.9)

pri čemu je

 SS_{reg} , regresijska suma kvadrata.

Regresijska suma kvadrata predstavlja onaj dio varijacije zavisne varijable koji nastaje kao rezultat djelovanja nezavisne varijable, a isključuju se svi ostali faktori.

Suma kvadrata odstupanja stvarnih vrijednosti zavisne varijable od njene aritmetičke sredine definirana je izrazom

$$SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
(4.10)

pri čemu je

SS_{tot}, ukupna suma kvadrata.

Ukupna suma kvadrata je zbroj rezidualne i regresivne sume kvadrata.

Odnos regresijske i ukupne sume kvadrata naziva se koeficijent determinacije i definiran je izrazom

$$r^2 = \frac{SS_{reg}}{SS_{tot}} \tag{4.11}$$

Odnos rezidualne i ukupne sume kvadrata naziva se koeficijent alijenacije (poravnanja) i definiran je izrazom

$$\frac{SS_{rez}}{SS_{tot}} = 1 - r^2 \tag{4.12}$$

Koeficijent determinacije r^2 prikazuje kvantitativnu mjeru linearne veze između x i y, a kreće se u rasponu od 0 do 1. Što je r^2 bliži jedinici veza između x i y, to je ta veza linearnija, i obrnuto. U nastavku će biti prikazano određivanje aproksimacije ovisnosti koeficijenta lokalnog gubitka o Reynoldsovom broju metodom najmanjih kvadrata za nekoliko slučajeva.

Ovisnost $K_R = K_R(Re, A/A_0)$ odredit će se prema rezultatima mjerenja prikazanim u dijagramu na slici 4.1b za $A/A_0 = konst$ i prema [5] u sljedećem obliku

$$K_R = \frac{B_1}{Re^b} + B_2 \tag{4.13}$$

pri čemu su

 $B_1, B_2 i b$, koeficijenti određeni za svaki otvor A/A_0 .

Nakon određivanja koeficijenata $B_1, B_2 i b$ za svaki otvor A/A_0 , odredit će se ovisnost istih o odnosu A/A_0 . Ove ovisnosti biti će određene za neke radne tlakove P_{M2} .

Unaprijed pretpostavljenim koeficijentom B₂, izraz 4.13 transformira se na sljedeći način

$$K_R - B_2 = \frac{B_1}{Re^b}$$
(4.14)

Logaritmiranjem izraz 4.14 transformira se u oblik

$$\log(K_R - B_2) = \log B_1 - b(\log Re)$$
(4.15*a*)

odnosno uvođenjem varijabli X i Y

$$Y = B_1' - bX \tag{4.15b}$$

pri čemu je

 $Y = \log(K_R - B_2)$ $B'_1 = \log B_1$ $X = \log Re$

iz čega je jasno da je riječ o linearnoj jednadžbi sa nepoznatim koeficijentima $B'_1 i b$.

Koeficijent B_2 variran je na način da se dobije maksimalna vrijednost koeficijenta determinacije r^2 za pripadajući odnos A/A_0 uz konstantnu vrijednost koeficijenta b (b = 2). Tako su dobiveni koeficijenti $B_1, B_2 i b$ u ovisnosti o donosu A/A_0 . Na slikama 4.7 do 4.9 prikazana je ovisnost ovih koeficijenata o donosu A/A_0 . Na isti su način, uzimajući u obzir dobivene vrijednosti koeficijenata $B_1, B_2 i b$ i na temelju [5], određeni aproksimativni izrazi za određivanje koeficijenata $B_{1ap}, B_{2ap} i b_{ap}$ o odnosu A/A_0 prema sljedećim izrazima:

$$B_{1ap} = \frac{C_1}{\left(\frac{A}{A}\right)^{d_1}} + D_1 \tag{4.16a}$$

$$b_{ap} = \frac{\frac{C_2}{C_2}}{\left(\frac{A}{A_1}\right)^{d_2}} + D_2 \tag{4.16b}$$

$$B_{2ap} = \frac{\frac{C_3}{C_3}}{\left(\frac{A}{A_0}\right)^{d_3}} + D_3$$
(4.16c)

Logaritmiranjem izraza 4.16a do 4.16c njihov oblik prelazi u:

$$\log(B_{1c} - D_1) = \log C_1 - d_1 \left(\log \frac{A}{A_0} \right)$$
(4.16d)

$$\log(b_c - D_2) = \log C_2 - d_2 \left(\log \frac{A}{A_0}\right)$$
(4.16*e*)

$$\log(B_{2c} - D_2) = \log C_3 - d_3 \left(\log \frac{A}{A_0} \right)$$
(4.16*d*)

Primjenom metode najmanjih kvadrata te uz pretpostavku da je koeficijent $d_i = -1$ dobivaju se koeficijenti prikazani u tablici 4.1.

TABLICA 4.1 Koeficijenti C_1, D_1, C_3, D_3 i pripadajući koeficijent determinancije r^2

i	Ci	Di	r ²
1	-0,361801771	0,21942400	0,9997
3	-0,253166814	0,24393911	0,9688

Iz tablice je vidljivo da su vrijednosti koeficijenta determinancije vrlo visoke, odnosno $r^2 \ge 0.95$, što dokazuje valjanost izraza 4.16a do 4.16c.

Kada se dobivene vrijednosti koeficijenata iz tablice 4.1uvrste u izraze 4.16a do 4.16c, dobivaju se aproksimativne vrijednosti koeficijenata $B_{1ap}i B_{2ap}$ za svaki otvor prikazan u tablici 4.2. Usporedbom tih aproksimacijskih vrijednosti i vrijednosti koeficijenata koje opisuju pojedine krivulje, moguće je prikazati odstupanja koeficijenata eksperimentalnih krivulja i koeficijenata aproksimativnih krivulja, te na temelju toga donijeti valjane zaključke.

TABLICA 4.2 Usporedba koeficijenata	dobivenih	eksperimentalnim	putem i	predviđenih
koeficijenata dobivenih aproksimacijom	1			

<i>p</i> _{ul,} mbar	<i>h</i> , mm	A/A_0	<i>B</i> ₁	B _{1ap}	e%	b	<i>B</i> ₂	B _{2ap}	e%
50	0,2625	0,043635	5,09568	5,146742	1,00	2	3,917985	3,875132	-1,09
100	0,2625	0,043635	5,166196	5,146742	-0,38	2	3,87683	3,875132	-0,04
200	0,2625	0,043635	5,166195	5,146742	-0,38	2	3,869254	3,875132	0,15
50	0,35	0,058527	4,634585	4,628046	-0,14	2	3,644332	3,597529	-1,28
100	0,35	0,058527	4,634587	4,628046	-0,14	2	3,595416	3,597529	0,06
200	0,35	0,058527	4,634587	4,628046	-0,14	2	3,550968	3,597529	1,31
300	0,35	0,058527	4,63459	4,628046	-0,14	2	3,527746	3,597529	1,98
400	0,35	0,058527	4,63459	4,628046	-0,14	2	3,523695	3,597529	2,10
50	0,525	0,088828	3,976888	3,97961	0,07	2	3,280287	3,236916	-1,32
100	0,525	0,088828	3,976888	3,97961	0,07	2	3,252717	3,236916	-0,49
200	0,525	0,088828	3,976889	3,97961	0,07	2	3,217216	3,236916	0,61
300	0,525	0,088828	3,976889	3,97961	0,07	2	3,187104	3,236916	1,56
400	0,525	0,088828	3,97689	3,97961	0,07	2	3,142982	3,236916	2,99
50	0,7	0,119821	3,56766	3,571182	0,10	2	3,148039	3,000708	-4,68
100	0,7	0,119821	3,567661	3,571182	0,10	2	3,114984	3,000708	-3,67
200	0,7	0,119821	3,567662	3,571182	0,10	2	3,094591	3,000708	-3,03
300	0,7	0,119821	3,567663	3,571182	0,10	2	3,054109	3,000708	-1,75
400	0,7	0,119821	3,567663	3,571182	0,10	2	2,995967	3,000708	0,16
100	1,05	0,183884	3,061372	3,058533	-0,09	2	2,721847	2,692354	-1,08
200	1,05	0,183884	3,06137	3,058533	-0,09	2	2,663311	2,692354	1,09
300	1,05	0,183884	3,06137	3,058533	-0,09	2	2,617962	2,692354	2,84
400	1,05	0,183884	3,061371	3,058533	-0,09	2	2,586196	2,692354	4,10

U dijagramima na slikama 4.7 i 4.8 grafički je prikazana ovisnost dvaju promjenljivih koeficijenata B_1 i B_2 o odnosu A/A_0 .

SLIKA 4.7 Ovisnost koeficijenta B_1 o odnosu A/A_0

SLIKA 4.8 Ovisnost koeficijenta B_2 o odnosu A/A_0

4.3. Analiza dobivenih rezultata

4.3.1. Usporedba analitičkih aproksimativnih izraza s rezultatima mjerenja

Utvrđivanje prihvatljivosti ranije navedenih aproksimativnih izraza jedino je moguće usporedbom sa stvarnim izmjerenim rezultatima. Određene pokazatelje o tome pružaju podaci o iznosima koeficijenta determinancije r^2 koji su navedeni u tablicama 4.1 i 4.3. Cilj usporedbe analitičkih aproksimativnih izraza s rezultatima mjerenja je prikazivanje procjene nesigurnosti određivanja koeficijenta lokalnog gubitka K_R za neku proizvoljnu vrijednost Reynoldsovog broja i odnosa površina A/A_0 .

Koeficijent lokalnog gubitka u ovisnosti o Reynoldsovom broju i odnosu A/A_0 definiran je izrazom 4.13

$$K_R = \frac{B_1}{Re^b} + B_2 \tag{4.13}$$

za $A/A_0 = konst.$ i izrazima 4.16a do 4.16c

$$B_{1ap} = \frac{C_1}{\left(\frac{A}{A_0}\right)^{d_1}} + D_1 \tag{4.16a}$$

$$b_{ap} = \frac{\frac{C_2}{C_2}}{\left(\frac{A}{A_0}\right)^{d_2}} + D_2 \tag{4.16b}$$

$$B_{2ap} = \frac{C_3}{\left(\frac{A}{A_0}\right)^{d_3}} + D_3 \tag{4.16c}$$

U tablici 4.3 prikazana su odstupanja koeficijenta lokalnog gubitka K_R dobivenog gore navedenim izrazima u odnosu na vrijednosti dobivene mjerenjem pri različitim ulaznim tlakovima.

TABLICA 4.3 Odstupanja koeficijenta lokalnog gubitka K_{Rap} određenog aproksimacionim izrazima u odnosu na vrijednosti koeficijenta lokalnog gubitka K_R dobivenih mjerenjem pri različitim vrijednostima ulaznog tlaka p_1 .

	Re	KR	KR'	e%		Re	KR	KR'	e%
<i>p</i> ⊔∟ ~ 50	255	52073	62637	20,29	<i>p</i> ∪∟ ~ 100	72	167245	237051	41,74
	318	46991	53825	14,54		137	83093	101330	21,95
<i>h</i> = 0,2625 mm	376	44493	48573	9,17	<i>h</i> = 0,2625 mm	196	65400	72196	10,39
	438	43816	44450	1,45		261	55282	57584	4,16
$t^2 = 0,7019$	483	48075	42168	-12,29	$r^2 = 0,8046$	326	50096	49437	-1,32
	249	56913	63732	11,98		385	48770	44575	-8,60
	312	51776	54492	5,25		455	46509	40535	-12,84
	375	49377	48591	-1,59		513	46617	38031	-18,42
	432	48427	44802	-7,49		565	46654	36213	-22,38
	483	49978	42183	-15,60					
	De	<i>K</i> D		-0/		De	KD		-0/
	Re	470000	407055	e%		Re	<u> </u>		e%
ρ _{UL} ~ 200	450	178339	197255	10,61	<i>p</i> _{UL} ~ 50	112	52800	55533	5,18
h 0.0005 mm	153	81191	89256	9,93	h 0.05 mm	214	29286	31443	7,37
<i>n</i> = 0,2625 mm	219	57554	64802	12,59	<i>n</i> = 0,35 mm	337	21839	23399	7,14
2 0 0507	291	49716	52422	5,44	2 0 0000	401	18457	19837	7,48
r = 0,9567	364	40894	45378	-1,12	r = 0,9683	070	1/5/5	18087	2,91
	436	42825	40786	-4,76		673	10853	16739	-0,68
	508	40677	3/5/2	-7,63		806	10113	15589	-3,25
	5/8	40136	35192	-12,32		884	15839	150/1	-4,85
						983	15732	14513	-7,75
						1161	15504	13731	-11,44
	D a	KD	KDI	-0/		De	KD		-0/
	Re	70000		<i>e</i> %		Re		<u> </u>	<i>e</i> %
$p_{\rm UL} \sim 100$	/3	76690	83624	9,04	ρ _{UL} ~ 200	79	66534	67960	2,14
h 0.05 mm	141	39281	39639	0,91	k 0.05 mm	152	33863	33332	-1,57
n = 0.35 mm	202	29337	29331	-0,02	n = 0,35 mm	218	24715	24976	1,06
2 0 0005	269	22959	23987	4,48	2 0.0075	290	19925	20642	3,60
r = 0,9885	336	19780	20961	5,97	r = 0,9975	362	17457	18131	3,86
	401	17985	19019	5,75		434	16276	16473	1,21
	467	17019	17608	3,46		467	15624	15900	1,77
	533	16136	16546	2,54		5/6	14386	14417	0,22
	597	15541	15/33	1,24		647	13780	13722	-0,42
	561	15194	15064	-0,86		750	13279	12926	-2,66
	733	15121	14453	-4,42		910	12663	12029	-5,01
	835	14579	13/49	-5,69					
	865	146/6	135/1	-7,53					
	961	14376	13070	-9,08					

	Re	KR	KR'	e%		Re	KR	KR'	e%
p _{UL} ~ 300	85	61804	58492	-5,36	<i>p</i> _{UL} ~ 400	92	57159	52561	-8,04
	164	31476	29654	-5,79		185	27665	26581	-3,92
<i>h</i> = 0,35 mm	235	22970	22482	-2,12	<i>h</i> = 0,35 mm	254	21207	21096	-0,52
	313	18472	18690	1,18		339	17065	17680	3,60
$r^2 = 0,9975$	391	15787	16497	4,50	$r^2 = 0,9927$	422	14979	15698	4,80
	467	14021	15058	7,40		506	13720	14367	4,72
	566	13118	13779	5,04		590	13067	13400	2,55
	636	12744	13099	2,79		674	12443	12669	1,82
	844	11900	11719	-1,52		838	11691	11640	-0,44
	996	11637	11045	-5,09		1004	11339	10915	-3,74
	Re	KR	KR'	e%		Re	KR	KR'	е%
p _{UL} ~ 50	69	30506	28215	-7,51	<i>р</i> _{UL} ~ 100	67	34282	27431	-19,98
	133	13870	14484	4,43		141	11783	12947	9,88
<i>h</i> = 0,525 mm	191	10127	11082	9,43	<i>h</i> = 0,525 mm	202	8919	9997	12,09
	254	8749	9282	6,09		275	7564	8328	10,10
$r^2 = 0,9837$	380	7467	7547	1,07	$r^2 = 0,9622$	348	6876	7384	7,39
	442	7248	7053	-2,69		408	6544	6854	4,74
	504	6905	6678	-3,29		474	6219	6425	3,31
	566	6681	6381	-4,49		545	6083	6078	-0,08
	696	6212	5919	-4,72		604	5928	5846	-1,38
	754	6076	5762	-5,17		664	5838	5649	-3,24
						742	5603	5436	-2,98
						916	5325	5080	-4,60
						1027	5533	4910	-11,26
	Re	KR	KR'	e%		Re	KR	KR'	е%
p _{UL} ~ 200	81	26098	20181	-22,67	p _{UL} ~ 300	167	9970	9820	-1,50
	156	10668	11050	3,58		239	7545	7761	2,86
<i>h</i> = 0,525 mm	223	8665	8663	-0,02	<i>h</i> = 0,525 mm	310	6367	6718	5,51
	296	7174	7373	2,77		404	5640	5922	5,00
$r^2 = 0,9746$	370	6266	6602	5,36	$r^2 = 0,9920$	553	4787	5193	8,48
	444	5809	6087	4,79		630	4599	4948	7,59
	516	5352	5720	6,88		786	4130	4585	11,02
	588	5099	5440	6,69		862	4157	4451	7,07
	660	4947	5215	5,42		939	4047	4335	7,12
	731	4974	5035	1,23		1094	3937	4146	5,31
	801	4826	4883	1,18		1116	4027	4123	2,38
	874	4647	4751	2,24		1334	3965	3928	-0,93
	1019	4606	4535	-1,54		1558	4043	3778	-6,55
	1138	4565	4395	-3,72		1783	3822	3658	-4,29
						2234	3769	3480	-7,67
						2680	3665	3353	-8,51
						2906	3565	3301	-7,41

	Re	KR	KR'	e%		Re	KR	KR'	e%
<i>p</i> _{UL} ~ 400	155	9779	9376	-4,12	<i>p</i> ∪∟ ~ 50	57	14735	19868	34,84
	232	7320	7135	-2,53		126	9153	9014	-1,52
<i>h</i> = 0,525 mm	317	5883	6006	2,09	<i>h</i> = 0,7 mm	189	6794	6848	0,79
	416	5286	5276	-0,19		252	5743	5839	1,67
$r^2 = 0,9184$	576	4325	4620	6,82	$r^2 = 0,9206$	371	4931	4878	-1,07
	660	4039	4396	8,84		494	4543	4359	-4,05
	750	3813	4206	10,31		561	4435	4168	-6,02
	825	3718	4077	9,66		690	4239	3896	-8,09
	999	3442	3845	11,71		740	4205	3812	-9,35
	1159	3376	3685	9,15		819	4152	3701	-10,86
	1301	3400	3572	5,06					
	1427	3393	3488	2,80					
	1909	3219	3254	1,09					
	2151	3133	3169	1,15					
	2631	3206	3040	-5,18					
	2925	3253	2978	-8,45					
	3349	3469	2904	-16,29					
	Re	KR	KR'	e%		Re	KR	KR'	e%
<i>р</i> _{UL} ~ 100	61	13874	17053	22,91	p _{UL} ~ 200	160	6894	6736	-2,29
	140	7896	7737	-2,01		219	5730	5561	-2,95
<i>h</i> = 0,7 mm	207	6038	6026	-0,20	<i>h</i> = 0,7 mm	291	4633	4804	3,69
	267	5052	5252	3,96		351	4108	4416	7,50
$r^2 = 0,9736$	040				2 0 0000				F 40
	316	4655	4851	4,21	$r^{-} = 0,9336$	437	3830	4038	5,43
	316 393	4655 4318	4851 4412	4,21 2,18	r = 0,9336	437 521	3830 3507	4038 3782	5,43 7,84
	316 393 470	4655 4318 4167	4851 4412 4115	4,21 2,18 -1,25	r = 0,9336	437 521 585	3830 3507 3425	4038 3782 3633	5,43 7,84 6,07
	316 393 470 518	4655 4318 4167 4007	4851 4412 4115 3973	4,21 2,18 -1,25 -0,85	r = 0,9336	437 521 585 722	3830 3507 3425 3211	4038 3782 3633 3397	5,43 7,84 6,07 5,79
	316 393 470 518 576	4655 4318 4167 4007 3842	4851 4412 4115 3973 3829	4,21 2,18 -1,25 -0,85 -0,34	r = 0,9336	437 521 585 722 855	3830 3507 3425 3211 3109	4038 3782 3633 3397 3232	5,43 7,84 6,07 5,79 3,96
	316 393 470 518 576 682	4655 4318 4167 4007 3842 3715	4851 4412 4115 3973 3829 3623	4,21 2,18 -1,25 -0,85 -0,34 -2,48	r = 0,9336	437 521 585 722 855 1011	3830 3507 3425 3211 3109 3036	4038 3782 3633 3397 3232 3088	5,43 7,84 6,07 5,79 3,96 1,71
	316 393 470 518 576 682 800	4655 4318 4167 4007 3842 3715 3645	4851 4412 4115 3973 3829 3623 3453	4,21 2,18 -1,25 -0,85 -0,34 -2,48 -5,27	r = 0,9336	437 521 585 722 855 1011 1140	3830 3507 3425 3211 3109 3036 3068	4038 3782 3633 3397 3232 3088 2994	5,43 7,84 6,07 5,79 3,96 1,71 -2,41
	316 393 470 518 576 682 800 1013	4655 4318 4167 4007 3842 3715 3645 3452	4851 4412 4115 3973 3829 3623 3453 3234	4,21 2,18 -1,25 -0,85 -0,34 -2,48 -5,27 -6,32	r = 0,9336	437 521 585 722 855 1011 1140 1426	3830 3507 3425 3211 3109 3036 3068 3035	4038 3782 3633 3397 3232 3088 2994 2839	5,43 7,84 6,07 5,79 3,96 1,71 -2,41 -6,46
	316 393 470 518 576 682 800 1013	4655 4318 4167 4007 3842 3715 3645 3452	4851 4412 4115 3973 3829 3623 3453 3234	4,21 2,18 -1,25 -0,85 -0,34 -2,48 -5,27 -6,32	r = 0,9336	437 521 585 722 855 1011 1140 1426 1840	3830 3507 3425 3211 3109 3036 3068 3035 2878	4038 3782 3633 3397 3232 3088 2994 2839 2686	5,43 7,84 6,07 5,79 3,96 1,71 -2,41 -6,46 -6,67
	316 393 470 518 576 682 800 1013	4655 4318 4167 4007 3842 3715 3645 3452	4851 4412 4115 3973 3829 3623 3453 3234	4,21 2,18 -1,25 -0,85 -0,34 -2,48 -5,27 -6,32	r = 0,9336	437 521 585 722 855 1011 1140 1426 1840 2048	3830 3507 3425 3211 3109 3036 3068 3035 2878 2863	4038 3782 3633 3397 3232 3088 2994 2839 2686 2630	5,43 7,84 6,07 5,79 3,96 1,71 -2,41 -6,46 -6,67 -8,14
	316 393 470 518 576 682 800 1013	4655 4318 4167 4007 3842 3715 3645 3452	4851 4412 4115 3973 3829 3623 3453 3234	4,21 2,18 -1,25 -0,85 -0,34 -2,48 -5,27 -6,32	r = 0,9336	437 521 585 722 855 1011 1140 1426 1840 2048 2456	3830 3507 3425 3211 3109 3036 3068 3035 2878 2863 2903	4038 3782 3633 3397 3232 3088 2994 2839 2686 2630 2540	5,43 7,84 6,07 5,79 3,96 1,71 -2,41 -6,46 -6,67 -8,14 -12,50

	Re	KR	KR'	e%		Re	KR	KR'	e%
<i>p</i> ∪∟ ~ 300	173	6091	5834	-4,22	<i>р</i> _{UL} ~ 400	347	3318	3538	6,63
	266	4725	4579	-3,09		423	3138	3258	3,82
<i>h</i> = 0,7 mm	330	3917	4134	5,54	<i>h</i> = 0,7 mm	498	2884	3062	6,17
	416	3522	3751	6,50		574	2760	2913	5,54
$r^2 = 0,9210$	466	3255	3590	10,29	$r^2 = 0,7564$	658	2551	2786	9,21
	528	3152	3429	8,79		807	2482	2618	5,48
	612	2903	3260	12,30		973	2320	2486	7,16
	781	2769	3022	9,14		1123	2300	2395	4,13
	934	2689	2873	6,84		1437	2241	2258	0,76
	1081	2621	2765	5,49		1678	2190	2182	-0,37
	1340	2637	2623	-0,53		1902	2145	2126	-0,89
	1549	2618	2539	-3,02		2144	2080	2077	-0,14
	1772	2512	2467	-1,79		2385	2075	2035	-1,93
	1994	2431	2408	-0,95		2866	2138	1969	-7,90
	2218	2449	2359	-3,67		3402	2110	1914	-9,29
	2659	2463	2281	-7,39		3824	2078	1879	-9,58
	3192	2364	2211	-6,47		4541	2179	1831	-15,97
	3999	2506	2133	-14,88					
	Re	KR	KR'	e%		Re	KR	KR'	e%
<i>p</i> ∪L ~ 100	269	1760	1737	-1,31	p _{UL} ~ 200	293	1590	1466	-7,80
	334	1590	1592	0,13		438	1400	1264	-9,71
<i>h</i> = 1,05 mm	533	1384	1359	-1,81	<i>h</i> = 1,05 mm	581	1269	1158	-8,75
	663	1398	1277	-8,66		722	1069	1091	2,06
$r^2 = 0,9649$	794	1216	1218	0,16	$t^2 = 0,9533$	865	1115	1042	-6,55
	926	1131	1173	3,71		1014	973	1004	3,19
	1167	1083	1115	2,95		1224	922	964	4,56
	1345	1067	1082	1,41		1430	917	934	1,85
	1553	1010	1053	4,26		1860	862	890	3,25
	1915	967	1013	4,76		2263	841	861	2,38
	2411	951	976	2,63		2673	827	839	1,45
	2900	928	948	2,16		3138	773	819	5,95
	3688	939	917	-2,34		3925	813	794	-2,34
	4812	934	886	-5,14		5415	766	763	-0,39
						7792	743	733	-1,35

	Re	KR	KR'	e%		Re	KR	KR'	e%
p _{UL} ~ 300	316	1470	1281	-12,86	<i>р</i> _{UL} ~ 400	338	1438	1159	-19,40
	472	1241	1111	-10,48		506	1133	1011	-10,77
<i>h</i> = 1,05 mm	628	1076	1020	-5,20	<i>h</i> = 1,05 mm	673	1004	931	-7,27
	782	987	963	-2,43		837	922	880	-4,56
$r^2 = 0,9012$	934	895	922	3,02	$r^2 = 0,9112$	930	899	858	-4,56
	1088	869	891	2,53		1084	814	829	1,84
	1326	851	854	0,35		1321	786	795	1,15
	1662	801	818	2,12		1789	689	750	8,85
	2226	736	778	5,71		2275	678	720	6,19
	2449	737	766	3,93		2872	662	695	4,98
	3104	695	739	6,33		3599	623	673	8,03
	4009	687	714	3,93		4263	640	658	2,81
	5744	664	683	2,86		5941	600	632	5,33
	9378	660	648	-1,82		8271	587	610	3,92
						10834	585	594	1,54
						15377	574	576	0,35

Vidljivo je da su odstupanja aproksimativnih vrijednosti najveća pri nižim i višim Reynoldsovim brojevima te pri višim vrijednostima ulaznog tlaka.

U dijagramima na slikama 4.9 do 4.29 grafički su prikazana poklapanja aproksimativnih krivulja s rezultatima mjerenja.

SLIKA 4.9 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.2625 \text{ mm} (A/A_0 = 0.04364)$, pri ulaznom tlaku $p_1 = 100 \text{ mbar u logaritamskom mjerilu.}$

SLIKA 4.10 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.2625 mm ($A/A_0 = 0.04364$), pri ulaznom tlaku $p_1 = 200$ mbar u logaritamskom mjerilu.

SLIKA 4.11 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.35 mm ($A/A_0 = 0.05853$), pri ulaznom tlaku $p_1 = 50$ mbar u logaritamskom mjerilu.

SLIKA 4.12 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.35 mm ($A/A_0 = 0.05853$), pri ulaznom tlaku $p_1 = 100$ mbar u logaritamskom mjerilu.

SLIKA 4.13 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.35 mm ($A/A_0 = 0.05853$), pri ulaznom tlaku $p_1 = 200$ mbar u logaritamskom mjerilu.

SLIKA 4.14 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.35 mm ($A/A_0 = 0.05853$), pri ulaznom tlaku $p_1 = 300$ mbar u logaritamskom mjerilu.

SLIKA 4.15 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.35 mm ($A/A_0 = 0.05853$), pri ulaznom tlaku $p_1 = 400$ mbar u logaritamskom mjerilu.

SLIKA 4.16 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.525 mm ($A/A_0 = 0.08883$), pri ulaznom tlaku $p_1 = 50$ mbar u logaritamskom mjerilu.

SLIKA 4.17 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.525 mm ($A/A_0 = 0.08883$), pri ulaznom tlaku $p_1 = 100$ mbar u logaritamskom mjerilu.

SLIKA 4.18 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.525 mm ($A/A_0 = 0.08883$), pri ulaznom tlaku $p_1 = 200$ mbar u logaritamskom mjerilu.

SLIKA 4.19 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.525 mm ($A/A_0 = 0.08883$), pri ulaznom tlaku $p_1 = 300$ mbar u logaritamskom mjerilu.

SLIKA 4.20 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.525 mm ($A/A_0 = 0.08883$), pri ulaznom tlaku $p_1 = 400$ mbar u logaritamskom mjerilu.

SLIKA 4.21 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.7 \text{ mm} (A/A_0 = 0.11982)$, pri ulaznom tlaku $p_1 = 50 \text{ mbar u logaritamskom mjerilu.}$

SLIKA 4.22 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.7 mm ($A/A_0 = 0.11982$), pri ulaznom tlaku $p_1 = 100$ mbar u logaritamskom mjerilu.

SLIKA 4.23 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.7 mm ($A/A_0 = 0.11982$), pri ulaznom tlaku $p_1 = 200$ mbar u logaritamskom mjerilu.

SLIKA 4.24 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod $h = 0.7 \text{ mm} (A/A_0 = 0.11982)$, pri ulaznom tlaku $p_1 = 300 \text{ mbar u logaritamskom mjerilu.}$

SLIKA 4.25 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 0.7 mm ($A/A_0 = 0.11982$), pri ulaznom tlaku $p_1 = 400$ mbar u logaritamskom mjerilu.

SLIKA 4.26 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 1.05 mm ($A/A_0 = 0.18388$), pri ulaznom tlaku $p_1 = 100$ mbar u logaritamskom mjerilu.

SLIKA 4.27 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 1.05 mm ($A/A_0 = 0.18388$), pri ulaznom tlaku $p_1 = 200$ mbar u logaritamskom mjerilu.

SLIKA 4.28 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 1.05 mm ($A/A_0 = 0.18388$), pri ulaznom tlaku $p_1 = 300$ mbar u logaritamskom mjerilu.

SLIKA 4.29 Odstupanje aproksimativne krivulje K_R' od rezultata dobivenih mjerenjem kod h = 1.05 mm ($A/A_0 = 0.18388$), pri ulaznom tlaku $p_1 = 400$ mbar u logaritamskom mjerilu.

4.3.2. Analiza dobivenih rezultata

Rezultati iz dijagrama na slici 4.1b predstavljaju ovisnost koeficijenta lokalnog gubitka K_R o Reynoldsovom broju *Re* za pet različitih geometrijskih odnosa A/A_0 , odnosno za pet različitih otvora osigurača protoka plina. Iz dijagrama je vidljivo da koeficijent lokalnog gubitka poprima najviše vrijednosti kod najmanjeg otvora te kod niskih Reynoldsovih brojeva, unatoč najmanjim energetskim gubicima u tom području. Iz rezultata je vidljivo da pri konstantnim otvorima i porastu iznosa Reynoldsovog broja vrijednost koeficijenta lokalnog gubitka opada sve do neke određene vrijednosti nakon čega se taj pad smanjuje - sve dok koeficijent lokalnog gubitka ne počne poprimati konstantnu vrijednost. Postoji određena analogija između prikazanih rezultata i rezultata očitanih iz [20], [21], [22], [23].

Iz dijagrama je također vidljivo da prilikom povećanja parametara ulaznog tlaka, vrijednosti koeficijenta lokalnog gubitka imaju nešto niže vrijednosti od onih pri nižim tlakovima i istim vrijednostima Reynoldsovog broja. Iako u teoriji do tog pomaka ne bi smjelo doći, ovi eksperimentalni podaci dokazuju upravo suprotno. Uzrok je vjerojatno promjena iznosa sile s povećanjem ulaznog tlaka koja izaziva mali, ali ne i zanemarivi pomak pomičnog dijela osigurača koji se odražava na samu karakteristiku prikazanu u dijagramu.

Prema dijagramu, područje rada osigurača protoka plina moguće je podijeliti u tri djela. Područje laminarnog strujanja koje se nalazi u području do približno $Re = 3 * 10^2$ u kojem koeficijent lokalnog gubitka K_R ovisi o Reynoldsovom broju i o geometrijskom odnosu A/A_0 . U prijelaznom području strujanja koje se nalazi u području Reynoldsovog broja od $Re = 3 * 10^2$ do 10^4 , koeficijent lokalnog gubitka K_R je ovisan o Reynoldsovom broju i o geometrijskom odnosu A/A_0 . U području turbulentnog strujanja gdje su vrijednosti Reynoldsovog broja $Re > 10^4$, koeficijent lokalnog gubitka K_R ovisi samo o geometrijskom odnosu A/A_0 . U tom području K_R više nije funkcija Reynoldsovog broja. U praksi se ovaj tip osigurača protoka plina ne koristi u području strujanja.

Na slikama 4.2a do 4.6b prikazani su rezultati za svaki otvor zasebno u običnom i u logaritamskom mjerilu, zbog bolje preglednosti rezultata eksperimenta.

U dijagramima na slikama 4.7 i 4.8 prikazane su ovisnosti aproksimativnih koeficijenata korištenih za određivanje funkcijske ovisnosti koeficijenta lokalnog gubitka o Reynoldsovom broju i geometrijskom odnosu A/A_0 . S obzirom na visoki iznos koeficijenta determinacije r^2 dolazi se do zaključka da su vrijednosti aproksimativnih koeficijenta u granicama zadovoljavajuće točnosti čime je opravdano njihovo korištenje u određivanju eksperimentalnih značajki osigurača protoka plina. U tablici 4.2 prikazana su odstupanja tih koeficijenata od onih predviđenih aproksimacijom u iznosu od $\pm 4.7\%$.

Iz rezultata prikazanih u tablici 4.3 vidljivo je da su odstupanja koeficijenta lokalnog gubitka dobivenog iz aproksimativnih izraza u odnosu na eksperimentalne vrijednosti u rasponu od približno $\pm 20\%$; samo je u jednom slučaju pri najmanjem otvoru i ulaznom tlaku od $p_1 = 100$ mbar odstupanje značajnije izraženo i doseže +41,47%.

Ova odstupanja su prema [5] relativno velika iz nekoliko razloga. Jedan je u činjenici što se u izrazu za koeficijent lokalnog gubitka u nazivniku pojavljuje kvadrat protoka, a

protok je mjeren s relativno velikom nesigurnošću. Osim toga, mjernu nesigurnost određivanja vrijednosti koeficijenta lokalnog gubitka treba tražiti i u činjenici da osigurač protoka plina uglavnom radi u prijelaznom području strujanja koje je vrlo nestabilno i ima nestacionaran karakter te je za to područje veoma teško odrediti pouzdane vrijednosti.

Na dijagramima na slikama 4.9 do 4.29 prikazano je poklapanje aproksimativnih krivulja danih koeficijentima u tablici 4.2 s rezultatima mjerenja za svaki otvor pri različitim vrijednostima ulaznog tlaka p_1 zasebno uz odgovarajuću vrijednost koeficijenta determinancije r^2 .

Prema [5] vrijedno je analizirati izraz

$$K_R = \frac{B_1}{Re^b} + B_2 \tag{4.13}$$

Za područje laminarnog strujanja najveći udio u izrazu ima drugi član desne strane jednadžbe, a konstanta B_1 ima znatno manji udio. Za male Reynoldsove brojeve konstanta B_1 se ne može zanemariti, iako ne poprima jako velike iznose. Stoga se može reći da je za područje laminarnog strujanja koeficijent lokalnog gubitka funkcija Reynoldsovog broja. U prijelaznom području strujanja još uvijek postoji utjecaj prvog člana, ali značajno manji. Prijelazom u turbulentno područje strujanja utjecaj prvog člana postaje zanemariv zbog velike vrijednosti Reynoldsovog broja i fiksnog iznosa konstante b = 2 koja uvelike povećava iznos nazivnika prvog člana.

Isto tako, postoji analogija rezultata na dijagramu na slici 4.1b s Moodyjevim dijagramom koji se odnosi na strujanje kroz cjevovode i koji prikazuje ovisnost koeficijenta otpora trenja o Reynoldsovom broju i relativnoj hrapavosti površine stijenke cjevovoda.

Rezultati mjerenja također ukazuju na nestlačivost strujanja u području rada osigurača protoka plina. Ovo proizlazi iz činjenice da je maksimalna vrijednost Machovog broja Ma = 0,02, što je puno manje od Machovog broja koji predstavlja prijelaz iz nestlačivog u stlačivo strujanje, a iznosi Ma = 0,3.

Iz dijagrama na slici 4.1b uočljiva je i sličnost oblika krivulja koeficijenta lokalnog gubitka K_R u ovisnosti o Reynoldsovom broju Re za razne geometrijske odnose A/A_0 . S promjenom geometrijskog odnosa više nije ostvarena geometrijska sličnost. Svaka nova vrijednost odnosa A/A_0 uzrokuje promjenu geometrije osigurača protoka plina. Promjena geometrije osigurača u hidrodinamičkom smislu uzrokuje promjenu objekta ispitivanja i opravdano je očekivati različite rezultate. Iz dijagrama na slikama 4.1b i 4.9 do 4.30 uočljivo je da osigurač kao objekt pri promjeni odnosa A/A_0 zadržava trendove, tj. oblici krivulja ostaju slični usprkos neostvarenoj geometrijskoj sličnosti.

5. Zaključak

U ovom radu je provedeno eksperimentalno određivanje hidrodinamičkih značajki osigurača protoka plina. Iz dobivenih rezultata za određivanje koeficijenta lokalnog gubitka K_R u funkciji Reynoldsovog broja Re mogu se uočiti tri hidrodinamička područja rada osigurača protoka plina:

a) područje laminarnog strujanja za $Re < 3 * 10^2$, pri čemu je koeficijent lokalnog gubitka K_R funkcija Reynoldsovog broja i geometrijskog odnosa A/A_0 i vrijedi izraz:

$$K_R = K_R(Re, A/A_0).$$

b) prijelazno područje strujanja za $3 * 10^2 < Re < 10^4$, pri čemu je koeficijent lokalnog gubitka K_R funkcija Reynoldsovog broja i geometrijskog odnosa A/A_0 i vrijedi izraz:

$$K_R = K_R(Re, A/A_0).$$

c) turbulentno područje strujanja za $Re > 10^4$, pri čemu je koeficijent lokalnog gubitka K_R funkcija samo geometrijskog odnosa A/A_0 i vrijedi izraz:

$$K_R = K_R (A/A_0).$$

Dimenzijskom analizom je utvrđena ovisnost koeficijenta lokalnog gubitka u funkciji Reynoldsovog broja u obliku:

$$K_R = \frac{B_1}{Re^b} + B_2,$$

pri čemu su konstante B_1 i B_2 funkcije odnosa A/A_0 , a konstanta *b* iznosi 2. Konstante su definirane u obliku:

$$B_{1ap} = \frac{C_1}{\left(\frac{A}{A_0}\right)^{d_1}} + D_1,$$

$$b_{ap} = \frac{C_2}{\left(\frac{A}{A_0}\right)^{d_2}} + D_2,$$

$$B_{2ap} = \frac{C_3}{\left(\frac{A}{A_0}\right)^{d_3}} + D_3,$$

pri čemu su C_1, C_2, C_3, D_1, D_2 i D_3 promjenjive konstante, a također vrijedi $d_1 = d_2 = d_3 = -1$.

Rezultati ukazuju da se za zadane radne uvjete kod opisa fizikalnih zbivanja u osiguraču protoka plina može sa dovoljnom točnošću primijeniti model izotermičkog nestlačivog strujanja. Za ispitivano područje rada određene su vrijednosti analiziranih koeficijenata uz korištenje metode najmanjih kvadrata. Izvedene aproksimacijske jednadžbe dobro opisuju ponašanje koeficijenta lokalnog gubitka u ovisnosti o Reynoldsovom broju, otvoru pomičnog dijela osigurača protoka plina, ulaznom tlaku i protoku. Može se primijetiti trend pomaka krivulje koja prikazuje ovisnost koeficijenta lokalnog gubitka o Reynoldsovom broju pri povećanju vrijednosti ulaznog tlaka.

Najvjerojatniji uzrok je povećanje sile na pomični dio osigurača protoka plina pri većim ulaznim tlakovima, jer je osigurač izrađen od plastike. Bitno je napomenuti da osigurač protoka plina radi u području prijelaznog strujanja te da su kritične radne točke pri kojima osigurač zaustavlja protok, unatoč gore navedenom pomaku, funkcionalne i ne predstavljaju rizik od eventualnih kvarova.

U budućem radu bilo bi bitno ispitati hidrodinamičke karakteristike osigurača protoka plina, pri čemu bi taj dio plinskog mrežnog sustava bio izrađen od metala ili nekog drugog materijala kvalitetnijeg od uobičajeno korištene plastike. Poboljšanja ispitnog sustava bilo bi moguće ostvariti kvalitetnijim brtvljenjem mjernog uređaja, izradi nove ispitne instalacije i korištenjem preciznije mjerne opreme posebice u području niskih ulaznih tlakova gdje je vjerojatnost pojave pogreške najveća. Također bi bilo bitno izraditi matematički model strujanja fluida kroz osigurač protoka plina, a i kompletnu ispitnu instalaciju.

LITERATURA

- 1. Schlumberger Rombach Handbook, Schlumberger Rombach GmbH, Karlsruhe, (1996).
- 2. ISO 5024, Petroleum liquids and liquified petroleum gases, Messurement Standard reference conditions, International organisation for standardisation, Genve (1999).
- 3. Šunić M.; Pavlović B., *Efikasnost mjerenja i obračuna potrošnje plina, Energetika marketing*, Zagreb (2000).
- 4. Plinski priručnik, Zavod za produktivnost, Zagreb, (1980).
- 5. Pavlović B., Eksperimentalno određivanje hidrodinamičkih značajki regulatora tlaka plina, Zagreb, (2002).
- 6. Munson B.R.; Young D.F.; Okiishi T.H., *Fundamentals of fluid mechanics 4th edition*, Iowa, USA (2000).
- 7. Daugherty R.L.; Franzini J.B., *Fluid Mechanics with engineering applications*, McGraw-Hill, London (1997).
- 8. Bašta T.B., *Mašinska hidraulika*, Mašinski Fakultet, Beograd (1990).
- 9. Doliner Z.; Virag Z.; Šunić M., *Hidrodinamičko modeliranje stlačivog strujanja fluida u plinskim mrežama, VIII međunarodni susret stručnjaka za plin*, Opatija (5. do 7.svibnja 1993).
- 10. Edmister W. C.; Lee B.I., *Applied Hydrocarbon Thermodynamics*. Vol. 1 (2nd ed.) (1984).
- 11. Hodge B.K.; Koenig K., Compressible Fluid Dynamics with Personal Computer Applications (1995).
- 12. Galović A., Termodinamika I, Fakultet strojarstva i brodogradnje, Zagreb, (2007).
- 13. Virag Z., *Mehanika fluida, odabrana poglavlja, primjeri i zadaci*, Fakultet strojarstva i brodogradnje, Zagreb, (2002).
- 14. Virag Z., Dinamika Plinova, Fakultet strojarstva i brodogradnje, Zagreb, (2003).
- 15. Boucher; Alves, *Dimensionless Numbers* (1960).
- 16. DIN 33822, *Gasdruckregelgeräte und Sicherheitseinrichtung in der Gasinstalation*, Deutsche institut für normung, Berlin (1988).
- 17.EN 331, *Manual operated ball valves for gas instalations*, European Commitee for Standardisation, (1999).

- 18. Figliola R.S., Basley D.E., *Theory and design for mechanical measurements*, John Wiley and sons, New York (1991).
- 19. ISO 724, ISO general-purpose metric screw threads -- Basic dimensions (1993).
- 20. White F.M., Fluid Mechanics, McGraw-Hill, New York (1999).
- 21.I.E. Idelchik, Handbook of Hydraulic resistance, Begell house, New York, (1996).
- 22.R.W. Miller, *Flow measurement engineeing handbook*, McGraw-Hill, New York (1989).
- 23. Inženjerski priručnik IP1, Temelji inženjerskih znanja, Školska knjiga, Zagreb (1996).

PRILOG