Utjecaj brzine opterećivanja na rezultate statičkog vlačnog ispitivanja

Dragojević, Roman

Undergraduate thesis / Završni rad

2009

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:028721

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-20

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Roman Dragojević

Zagreb, 2009.

SVEUČILIŠTE U ZAGREBU FAKULTET STOJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Voditelj rada:

Doc.dr.sc. Danko Ćorić

Student:

Roman Dragojević 0035150096

Zagreb, 2009

SAŽETAK

U ovom završnom projektu *Utjecaj brzine opterećivanja na rezultate statičkog vlačnog ispitivanja*, analizirana je mehanička otpornost materijala uvidom utjecaja, vanjskog čimbenika, brzine prirasta opterećenja (v_{po}) kod statičkog vlačnog ispitivanja.

Ovaj rad je usmjeren utvrđivanju promjene ponašanja materijala prilikom statičkog vlačnog ispitivanja, kao rezultat variranja prije navedene brzine prirasta opterećenja. Metodologija sadrži vlačno ispitivanje aluminijskih epruveta različitim brzinama prirasta opterećenja. Ispitivanja su provedena na kidalici, tipa EU40mod, s rasponom brzina optererećenja od 2 $N/mm^2 \cdot s^{-1}$ do 100 $N/mm^2 \cdot s^{-1}$. Kroz provedena ispitivanja pokušala se kvantitativno utvrditi zakonitost promjene karakterističnih mehaničkih svojstava materijala: granice razvlačenja, vlačne čvrstoće, konačnog naprezanja i istezljivosti pri različitim brzinama prirasta naprezanja u epruveti.

SADRŽAJ

Popis slika	1
Popis tablica	4
Popis oznaka i mjernih jedinica	6
Izjava	8
1. Uvod	9
2. Uređaji za statičko vlačno ispitivanje	12
3. Ispitni uzorak	15
4. Statičko vlačno ispitivanje	18
5. Osnovna svojstva aluminija i njegovih legura	29
6. Eksperimentalni dio	32
6.1. Rezultati ispitivanja	36
6.1.1. Prva ispitna grupa	36
6.1.2. Druga ispitna grupa	42
6.1.3. Treća ispitna grupa	43
6.1.4. Četvrta ispitna grupa	44
6.1.5. Peta ispitna grupa	45
6.1.6 Šesta ispitna grupa	46
6.1.7 Sedma ispitna grupa	47
7. Analiza dobivenih rezultata	48
7.1. Mehanička svojstva aluminija	49
7.1.1. Konvencionalna granica razvlačenja	50
7.1.2. Vlačna čvrstoća	51
7.1.3. Konačno naprezanje	52
7.1.4 Istezljivost	54
Zaključak	56
Privitak 1.	57
Privitak 2.	60
Privitak 3.	64
Privitak 4.	67
Privitak 5.	70
Privitak 6.	73
Literatura	82

POPIS SLIKA

St	tr.
Slika 1. Oblici kristalne rešetke kod metala1	0
Slika 2. Shematski prikaz nesavršenosti kristalne građel	1
Slika 3. Vrste kidalica: a) hidraulična, b) elektromehanička	2
Slika 4. Hvataljke na kidalici: a) shematski prikaz epruvete u celjustima stezaljke,	
b) pneumatske hvataljke, c) mehaničke hvataljkeI	3
Slika 5. Komponente kidalice: 1) mehanizam za stezanje epruvete, 2) pogonski mehanizam,	
3) upravljačka konzola, 4) pisač, 5) računalo, 6) traverza, 7) vodilice1	4
Slika 6. Oblici epruveta za statičko vlačno ispitivanje: a) okrugla epruveta, b) plosnata	_
epruveta	5
Slika 7. Epruveta za ispitivanje mehaničkih svojstava elastomera (gume)I	6
Slika 8. Epruvete od polimernih masa (plastomeri, elastomeri i duromeri)I	6
Slika 9. Epruvete od čelika (1), nodularnog ljeva (2), drva (3)	6
Slika 10. Uzimanje uzorka za ispitivanje mehaničkih svojstava zavara	
(ZUT-zona utijecaja topline)	7
Slika 11. Shematski prikaz otpornosti materijalaI	8
Slika 12. Dijagram kidanja za niskougljični konstrukcijski čelik	9
Slika 13. Prikaz razvoja "vrata" epruvete2	0
Slika 14. Epruveta nakon kidanja2	1
Slika 15. Inženjerski dijagram σ - ε za niskougljični konstrukcijski čelik2	2
Slika 16. Određivanje deformacijskih komponenti u σ - ε dijagramu2	4
Slika 17. Kvalitativni prikaz stvarnog dijagrama σ - ε (1), te odgovarajućeg inženjerskog	
dijagrama (2)2	?5
Slika 18. Konvencionalni dijagrami naprezanje – istezanje: meki čelik – 1, poboljšani tvrdi	
čelik – 2, sivi lijev – 3, mjed – 4, tehnički čisti aluminij – 52	?6
Slika 19. Konvencionalne granice razvlačenja za plastične deformacije 0,01% i 0,2%2	7
Slika 20. Gornja granica razvlačenja i donja granica razvlačenja2	8
<i>Slika 21.</i> Određivanje gornje i donje granice razvlačenja za različite oblike tečenja2	28
Slika 22. Kidalica EU40 mod: 1-mehanizam za stezanje epruvete, 2-hidraulični cilindar, 3-	
upravljačka konzola, 4-računalo i pisač, 5- traverza, 6-vodeći stupovi, 7-pogon3	2
<i>Slika 23. Prikaz aluminijske epruvete i načina određivanja</i> L_0 <i>i</i> d_0	3
Slika 24. Hvataljike za prihvat epruvete	}4

	Str.
Slika 25. Električni ekstezimetar na prednapregnutoj aluminijskoj epruveti	34
Slika 26. Aluminijska epruveta nakon kidanja	35
Slika 27. Dijagram kidanja epruvete Al 1	37
Slika 28. Dijagram kidanja epruvete Al 2	37
Slika 29. Dijagram kidanja epruvete Al 3	38
Slika 30. Inženjerski $σ$ -ε dijagram epruvete Al 1	39
Slika 31. Inženjerski $σ$ -ε dijagram epruvete Al 2	39
Slika 32. Inženjerski $σ$ -ε dijagram epruvete Al 3	39
Slika 33. Dijagram F-t epruvete Al 3	40
Slika 34. Dijagram F-v epruvete Al 3	41
Slika 35. Prikaz promjene konvencionalne granice razvlačenja u ovisnosti o brzini	
opterećivanja	50
Slika 36. Prikaz promjene vlačne čvrstoće u ovisnosti o brzini opterećivanja	51
Slika 37. Prikaz promjene konačnog naprezanja u ovisnosti o brzini opterećivanja	52
Slika 38. Prikaz promjene vrijednosti karakterističnih naprezanja u ovisnosti o brzini	
opterećivanja	53
Slika 39. Prikaz promjene istezljivosti u ovisnosti o brzini opterećivanja	55
Slika P.1.1. Dijagram kidanja epruvete Al 4	57
Slika P.1.2. Dijagram kidanja epruvete Al 5	57
Slika P.1.3. Inženjerski σ - ε dijagram epruvete Al 4	58
Slika P.1.4. Inženjerski σ - ε dijagram epruvete Al 5	58
Slika P.2.1. Dijagram kidanja epruvete Al 6	60
Slika P.2.2. Dijagram kidanja epruvete Al 7	60
Slika P.2.3. Dijagram kidanja epruvete Al 8	61
Slika P.2.4. Inženjerski σ - ε dijagram epruvete Al 6	61
Slika P.2.5. Inženjerski σ - ε dijagram epruvete Al 7	62
Slika P.2.6. Inženjerski σ - ε dijagram epruvete Al 8	62
Slika P.2.7. Dijagram F-t epruvete Al 8	63
Slika P.2.8. Dijagram F-v epruvete Al 8	63
Slika P.3.1. Dijagram kidanja epruvete Al 9	64
Slika P.3.2. Dijagram kidanja epruvete Al 10	64
Slika P.3.3. Inženjerski σ -ε dijagram epruvete Al 9	65
Slika P.3.4. Inženjerski σ - ε dijagram epruvete Al 10	65

	Str.
Slika P.4.1. Dijagram kidanja epruvete Al 11	67
Slika P.4.2. Dijagram kidanja epruvete Al 12	67
Slika P.4.3. Inženjerski σ - ε dijagram epruvete Al 11	68
Slika P.4.4. Inženjerski σ - ε dijagram epruvete Al 12	68
Slika P.5.1. Dijagram kidanja epruvete Al 13	70
Slika P.5.2. Dijagram kidanja epruvete Al 14	70
Slika P.5.3. Inženjerski σ - ε dijagram epruvete Al 13	71
Slika P.5.4. Inženjerski σ - ε dijagram epruvete Al 14	71
Slika P.6.1. Dijagram kidanja epruvete Al 15	73
Slika P.6.2. Dijagram kidanja epruvete Al 16	73
Slika P.6.3. Inženjerski σ - ε dijagram epruvete Al 15	74
Slika P.6.4. Inženjerski σ - ε dijagram epruvete Al 16	74
Slika P.6.5. Dijagram F-t epruvete Al 16	75
Slika P.6.6. Dijagram F-v epruvete Al 16	75

POPIS TABLICA

Str
Tablica 1. Fizikalna i mehanička svojstva aluminija
Tablica 2. Prikaz aluminijskih legura
Tablica 3. Značajke kidalice EU 40mod
Tablica 4. Karakteristike ekstenzimetra
Tablica 5. Podaci o epruvetama prve skupine
Tablica 6. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnog produljenja,
epruveta prve ispitne grupe
Tablica 7. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruvete prve ispitne
grupe
Tablica 8. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za epruvete
prve skupine40
Tablica 9. Vrijednosti istezljivosti epruveta prve ispitne grupe40
Tablica 10. Vrijednosti utvrđene statičkim vlačnim ispitivanjem
Tablica 11. Vrijednosti istezljivosti
Tablica P.1.1. Podaci o epruvetama druge skupine
Tablica P.1.2. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnog
produljenja epruveta druge ispitne grupe57
Tablica P.1.3. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta druge
ispitne grupe
Tablica P.1.4. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za
epruvete druge skupine
Tablica P.1.5. Vrijednosti istezljivosti epruveta druge ispitne grupe
Tablica P.2.1. Podaci o epruvetama treće skupine
Tablica P.2.2. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnog
produljenja epruveta treće ispitne grupe60
Tablica P.2.3. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta treće
ispitne grupe61
Tablica P.2.4. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za
epruvete treće skupine62
Tablica P.2.5. Vrijednosti istezljivosti epruveta treće ispitne grupe
Tablica P.3.1. Podaci o epruvetama četvrte skupine

		Str.
Tablica P.3.2	. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnog	
	produljenja epruveta četvrte ispitne grupe	64
Tablica P.3.3	. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta četv	vrte
	ispitne grupe	65
Tablica P.3.4	. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za	
	epruvete četvrte skupine	66
Tablica P.3.5	. Vrijednosti istezljivosti epruveta četvrte ispitne grupe	66
Tablica P.4.1	. Podaci o epruvetama pete skupine	67
Tablica P.4.2	. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnog	
	produljenja epruveta pete ispitne grupe	67
Tablica P.4.3	. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta pete	2
	ispitne grupe	68
Tablica P.4.4	. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za	
	epruvete pete skupine	68
Tablica P.4.5	. Vrijednosti istezljivosti epruveta pete ispitne grupe	69
Tablica P.5.1	. Podaci o epruvetama šeste skupine	70
Tablica P.5.2	. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnog	
	produljenja epruveta šeste ispitne grupe	70
Tablica P.5.3	. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta šest	te
	ispitne grupe	71
Tablica P.5.4	. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za	
	epruvete šeste skupine	71
Tablica P.5.5	. Vrijednosti istezljivosti epruveta šeste ispitne grupe	72
Tablica P.6.1	• Podaci o epruvetama sedme skupine	73
Tablica P.6.2	. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnog	
	produljenja epruveta sedme ispitne grupe	73
Tablica P.6.3	. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta sed	me
	ispitne grupe	.74
Tablica P.6.4	. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za	
	epruvete sedme skupine	.74
Tablica P.6.5	. Vrijednosti istezljivosti epruveta sedme ispitne grupe	.75

POPIS OZNAKA I MJERNIH JEDINICA

Ε	N/mm ²	modul elastičnosti ili Young-ov modul
v	$N/mm^2 \cdot s^{-1}$	brzina opterećivanja
L_0	mm	početna mjerna duljina epruvete
S_0	mm ²	početna površina poprečnog presijeka epruvete
d_0	mm	početni promjer poprečnog presijeka okrugle epruvete
d	mm	promjer okrugle epruvete
a_0	mm	početna debljina poprečnog presijeka četvrtaste epruvete
b_0	mm	početna širina poprečnog presijeka četvrtaste epruvete
ΔL	mm	produljenje epruvete
F	Ν	sila
$F_{\rm e}$	Ν	sila razvlačenja ili tečenja
$F_{\rm m}$	Ν	maksimalna sila
$F_{\rm k}$	Ν	konačna sila
$\Delta L_{\rm u}$	mm	konačno produljenje epruvete
Lu	mm	konačna mjerna duljina epruvete
σ	N/mm ²	naprezanje
3	mm/mm	relativno produljenje (istezanje)
R _e	N/mm ²	granica razvlačenja (granica tečenja, naprezanje tečenja)
$R_{\rm m}$	N/mm ²	vlačna čvrstoća ili naprezanje pri maksimalnoj sili
$R_{\rm k}$	N/mm ²	konačno naprezanje
<i>E</i> u	mm/mm	konačno relativno produljenje (konačno istezanje)
E _{el}	mm/mm	elastična deformacija
$\mathcal{E}_{\mathrm{pl}}$	mm/mm	plastična deformacija
$\mathcal{E}_{\mathrm{uk}}$	mm/mm	ukupna deformacija
$\sigma_{ m s}$	N/mm ²	stvarno naprezanje
\mathcal{E}_{S}	mm/mm	stvarno istezanje (stvarno relativno produljenje)
$d_{\rm s}$		
	mm	stvarni promjer epruvete
k	mm	stvarni promjer epruvete konstanta materijala
k n	mm	stvarni promjer epruvete konstanta materijala koeficijento čvrsnuća

$A_{11,3}$	%	istezljivost duge epruvete
Ζ	%	kontrakcija
$S_{ m u}$	mm^2	konačna površina ili površina epruvete nakon kidanja
$R_{\rm p0,01}$	N/mm ²	konvencionalna granica razvlačenja za trajnu deformaciju 0,01%
$R_{\rm p0,2}$	N/mm ²	konvencionalna granica razvlačenja za trajnu deformaciju 0,2%
$R_{ m eh}$	N/mm ²	gornja granica razvlačenja
$R_{\rm el}$	N/mm ²	donja granica razvlačenja
υ	0 C	temperatura
t	S	vrijeme

IZJAVA

Izjavljujem da sam ovaj rad izradio samostalno služeći se stečenim znanjem na fakultetu strojarstva i brodogradnje, te navedenom literaturom.

Zahvala:

Zahvaljujem mentoru, docentu dr.sc. Danku Ćoriću na ukazanom strpljenju i korisnim savjetima.

Zahvaljujem Doroteji Solina na lektorskoj pomoći.

Zahvaljujem svojim roditeljima na omogućavanju bezbrižnog studiranja.

1. UVOD

Postojeća hrvatska norma, HRN EN 10002-1, dijeli brzine opterećenja u dvije grupe koje ovise o modulu elastičnosti materijala (*E*), gdje jednu grupu čine materijali sa $E < 150000 N/mm^2$, a drugu sa $E \ge 150000 N/mm^2$. Sama brzina opterećenja predstavlja brzinu prirasta naprezanja u epruveti, tijekom vlačnog ispitivanja na kidalici. Brzine prirasta opterećenja prve grupe kreću se u rasponu od 2...10 $N/mm^2 \cdot s^{-1}$, a za drugu grupu 6...30 $N/mm^2 \cdot s^{-1}$. Neka slična ispitivanja, s ciljem utvrđivanja utjecaja brzine prirasta opterećenja provedena su od strane J.H.Lima-a člana "Automotive Steel Applications Research Group", te su pokazala osjetljivost mekih čelika na promjene brzine prirasta opterećenja u odnosu na tvrde čelike. Ispitivanja su provedena u rasponu brzina opterećenja od 0,003 $N/mm^2 \cdot s^{-1}$ do 200 $N/mm^2 \cdot s^{-1}$ [1]. Pri tom se pokazalo da se povećanjem brzine smanjuje deformabilnost čelika uz pojavu efekta očvrsnuća hladnim deformiranjem.

Hipoteza je ovog rada da će više brzine ispitivanja uzrokovati veće hladno očvrsnuće i time porast mehaničkih svojstava materijala. Za pretpostaviti je da prilikom hladne deformacije dolazi do povećavanja gustoće dislokacija, što će za posljedicu zacijelo imati povećanje čvrstoće materijala uz istovremeni pad istezljivosti.

Pri odabiru materijala za određenu eksploatacijsku upotrebu nužno je poznavati njegova mehanička svojstva. Mehanička će svojstva predstavljati izdržljivost materijala u različitim slučajevima opterećenja: statičkog, dinamičkog i udarnog pri određenoj temperaturi. Kristalna struktura materijala i njegova mehanička svojstva usko su povezani, ali direktne korelacije mehaničkih svojstava i kristalne građe nerijetko neće odgovarati stvarnoj situaciji. Razlog tome leži u nepravilnostima kristalne strukture prvenstveno dislokacijama.

Veći dio kristaliziranih materijala kao što su metali, kristalizira u obliku polikristaličnih agregata. Ti su polikristalični agregati sačinjeni od kristala ili zrna koji su određene kristalne strukture. Standardne oblike kristalne rešetke kod metala predstavljaju BCC, FCC i HCP kristalna rešetka (sl.1).

Slika 1. Oblici kristalne rešetke kod metala [2]

Kristali ili zrna povezani su međusobno granicama zrna. Te granice zrna predstavljaju neravne površine, sadrže nesavršenosti zbog nejednolikog rasporeda atoma. Nesavršenosti na granici zrna nastaju prilikom kristalizacije, skrućivanja iz taljevine, gdje dolazi do rasta zrna koje nije ravnomjerno u svim smjerovima zbog čega dolazi do stvaranja nesavršenosti. Prilikom doticaja zrna tijekom rasta, dolazi do zarobljavanja nesavršenosti na mjestima doticanja. Ta mjesta ujedno predstavljaju granice zrna. Iz svega navedenog proizlazi da će metal u krutom agregatnom stanju posjedovati nesavršenu kristalnu strukturu uzrokovanu međusobnom interakcijom zrna i formiranjem brojnih nepravilnosti kristalne građe. Ovakav će materijal predstavljat realni materijal koji neće imati ista svojstva kao kada bi se radilo o idealnom materijalu savršene kristalne strukture bez prisutnih defekata. Nesavršenosti su u konačnici nepravilnosti kristalne rešetke koje utječu na smanjenje mehaničkih svojstava realnog materijala u odnosu na idealnu tvar. Ujedno ta mehanička svojstva neće biti u potpunosti jednaka u svim smjerovima u slučaju anizotropnih materijala. Nastale nesavršenosti dijelimo u četiri grupe (sl. 2.). Prvu skupinu čine točkaste ili nuldidemzionalne nesavršenosti u obliku praznina ili vakancija koje prestavljaju mjesta u kristalnoj rešetki koja nisu zaposjednuta atomima ili ionima. Također ovdje spadaju i intersticijski ili supstitucijski otopljeni atomi legirnog elementa. Drugu skupinu čine linijske ili jednodimenzionalne nesavršenosti, odnosno dislokacije koje uzrokuje distorzije smještene na liniji. Treću skupinu čine površinske ili dvodimenzionalne nesavršenosti koje su prisutne u polikristalnim čvrstim tvarima u obliku granica zrna i granica faza. Posljednu četvrtu skupinu čine prostorne (volumne) ili trodimenzionalne nesavršenosti što se odnosi na pore, pukotine i/ili uključine u materijalu. Kod metala prisutno je gibanje nesavršenosti pod djelovanjem opterećenja što u značajnoj mjeri određuje mehaničku otpornost materijala.

Slika 2. Shematski prikaz nesavršenosti kristalne građe

Zbog svega navedenog proizlazi potreba za eksperimentalnim utvrđivanjem mehaničkih svojstava realnog materijala u eksploatacijskim uvjetima. Kako se za vrijeme eksploatacije ne može ispitivati mehanička svojstva, odnosno to nebi bilo praktično, eksploatacijski uvijeti se simuliraju tijekom ispitivanja. Tako je potrebno prilagoditi vrstu opterećenja, iznos oprerećenja, temperaturu i dr.

2. UREĐAJI ZA STATIČKO VLAČNO ISPITIVANJE

Kada se promatra materijale iz konstrukcijske perspektive tada će njihovo najvažnije mehaničko svojstvo biti čvrstoća. Čvrstoća je otpor materijala deformaciji i lomu ili sposobnost materijala da podnosi naprezanja koja su prouzrokovana vanjskim opterećenjima [3]. Podaci o čvrstoći materijala koji će omogućiti odabir i dimenzioniranje proizlaze iz statičkog vlačnog ispitivanja.

Statičko vlačno ispitivanje predstavlja najvažnije ispitivanje na području karakterizacije mehaničke otpornosti materijala. Ovakav oblik ispitivanja spada pod razorne metode ispitivanja materijala. Provođenjem vlačnog ispitivanja dobivaju se osnovni podatci o mehaničkim svojstvima materijala. Uređaji za statično vlačno ispitivanje nazivaju se univerzalne kidalice. Postoje različiti tipovi kidalica, a na sl. 3 prikazana je hidraulična i elektromehanička kidalica.

Slika 3. Vrste kidalica: a) hidraulična, b) elektromehanička [4]

Na kidalicama je moguće ostvariti vlačno opterećenje te se princip ispitivanja, sastoji od izlaganja ispitnog uzorka ili epruvete konstantnom statičkom opterećenju, koje će za posljedicu imati razvlačenje epruvete sve do njenog kidanja. Epruveta predstavlja uzorak materijala odgovarajućeg oblik i dimenzija. Ispitni uzorak se postavlja vertikalno u

havataljke, mehanizam za stezanje epruvete, koji može biti mehanički ili pneumatski (sl. 4). Prilikom provođenja ispitivanja prate se vrijednosti sile i pripadajućeg produljenja epruvete.

Slika 4. Hvataljke na kidalici: a) shematski prikaz epruvete u čeljustima stezaljke, b) pneumatske hvataljke, c) mehaničke hvataljke [4]

Osnovne komponente današnjih kidalica čine: mehanizam za stezanje epruvete, pogonski mehanizam, traverza, vodilice, upravljačka konzola, računalo i pisač (sl. 5.).

Slika 5. Komponente kidalice: 1) mehanizam za stezanje epruvete, 2) pogonski mehanizam,
3) upravljačka konzola, 4) pisač, 5) računalo, 6) traverza, 7) vodilice [3]

Pogonski mehanizam omogućuje pomicanje traverze i time opterećivanje epruvete odnosno njeno razvlačenje sve do kidanja. Upravljačka konzola omogućava operativno upravljanje kidalicom tijekom ispitivanja. Preko računala, i odgovarajućeg programskog paketa, zadaju se parametri ispitivanja i prati cijeli tok ispitivanja. Konačni rezultati ispitivanja prikazuju se tablično i dijagramski i ispisuju preko pisača.

Na kidalici se najčešće ispituju metalni materijali ali moguće je ispitivati i druge vrste materijale kao što su polimeri, kompoziti, drvo i sl.

3. ISPITNI UZORAK

Ispitni uzorak ili epruveta općenito predstavlja, uobličeni materijal odgovarajućih dimenzija. Za ispitivanje na kidalici oblik, dimenzije i poprečni presjek epruvete propisani su normom HRN EN 10002-1.

Generalno oblik i dimenzije epruvete ovise o obliku i dimenziji proizvoda ili poluproizvoda iz kojeg se epruveta vadi te od mehaničkih svojstava koja se žele utvrditi. Ispitni uzorak se obično izrađuje lijevanjem, prešanjem (epruvete od limova), obradom odvajanja čestica ili može biti izrezan iz gotovog proizvoda. Proizvodi koji imaju kontinuirani poprečni presjek (žice, šipke, itd.) mogu se direktno ispitivati na kidalici [5].

Poprečni presjek epruvete može biti različit, u obliku kruga, pravokutnika, kvadrata ili neki drugi višestranični lik. Najčešće se u praksi koriste epruvete s okruglim i četvrtastim poprečnim presjekom (sl. 6.).

Epruvete se po duljini dijele u dvije kategorije: duge i kratke. Izraz po kojemu se određuje početna mjerna duljina epruvete (L_0) s obzirom na početnu površinu poprečnog presjeka (S_0) glasi:

$$L_0 = k \cdot \sqrt{S_0}$$
, [mm]

gdje je: *k* opće prihvaćena vrijednost koja za kratke epruvete iznosi 5,65,a za duge 11,3. Epruvete ne smiju biti manje od 20 mm. Ispitni uzorci koji zadovoljavaju prije navedeni izraz predstavljaju proporcionalne epruvete. U slučajevima kada je poprečni presjek premali da bi se zadovoljila minimalna duljina epruvete od 20 mm može se upotrijebiti i nepropoprcionalna epruveta. U tom slučaju duljina se određuje neovisno od poprečnog presjeka [5].

Slika 6. Oblici epruveta za statičko vlačno ispitivanje: a) okrugla epruveta, b) plosnata epruveta [6]

Početna površina presjeka okruglih epruveta određuje se preko izraza:

$$S_0 = \frac{d_0^2 \cdot \pi}{4}$$
, $[mm^2]$

gdje d_0 predstavlja početni promjer poprečnog presjeka epruvete.

Četvrtasti poprečni presjek epruvete definiran je izrazom:

$$S_0 = a_0 \cdot b_0$$
, [mm²]

gdje su a0 i b0 početna duljina i širina poprečnog presijeka epruvete.

Na sljedećim slikama pokazani su specifični oblici epruveta za pojedine vrste materijala:

Slika 7. Epruveta za ispitivanje mehaničkih svojstava elastomera (gume) [7]

Slika 8. Epruvete od polimernih masa (plastomeri, elastomeri i duromeri) [4]

Slika 9. Epruvete od čelika (1), nodularnog ljeva (2), drva (3) [4]

Osim epruveta kojima se utvrđuju mehanička svojstva osnovnog materijala postoje i epruvete za ispitivanje mehaničkih osobina spojeva kao što su npr. epruvete izrezane iz zavara, sl. 10.

Slika 10. Uzimanje uzorka za ispitivanje mehaničkih svojstava zavara (ZUT-zona utijecaja topline) [4]

4. STATIČKO VLAČNO ISPITIVANJE

Važnost provođenja statičkog vlačnog ispitivanja leži u utjecaju njegovih rezultata na odabir materijala i dimenzioniranje proizvoda bilo da je riječ o nekom elementu konstrukcije ili strojnom dijelu.

Statičkim vlačnim pokusom ispituje se ponašanje materijala u uvjetima jednoosnog vlačnog opterećenja, pri čemu se prati elastična i plastična deformacija materijala. Time se određuju mehanička svojstva koja definiraju mehaničku otpornost materijala. Mehanička otpornost materijala samo je dio otpornosti otpornost materijala uz otpornost vanjskim utjecajima te otpornost trošenju (sl. 11). Mehanička svojstva materijala determinirana su mikrostrukturnim stanjem materijala, koje je pak određeno kemijskim sastavom materijala i tehnološkim procesom obrade.

Slika 11. Shematski prikaz otpornosti materijala

Prije početka ispitivanja potrebno je pripremiti materijal za ispitivanje. Materijal treba bit uobličen u ispitni uzorak, odnosno epruvetu kako je objašnjeno u predhodnom poglavlju. Dimenzije i oblik epruvete propisani su normom s obzirom već na vrstu materijala.

Na epruvetama, prije samog ispitivanja, potrebno je izmjeriti dimenzije početnog presijeka i početnu mjernu duljinu (L_o).

Epruvete se zatim postavljaju u čeljusti kidalice. Nakon postavljanja započinje se s opterećivanjem koje je kontinuiranog karaktera.

Prilikom opterećivanja dolazi do pojave elastičnih i plastičnih deformacija. Rasterećenjem epruvete u području elastičnih deformacija epruveta se vraća na početnu mjernu duljinu L_0 bez pojave ikakvih trajnih deformacija u materijalu. Kod plastičnog deformiranja materijala situacija je sasvim drugačija, jer rasterećenjem epruvete u plastičnom području u materijalu ostaje izvjesno trajno produljenje pri čemu se epruveta zbog konstantnosti volumen istovremeno sužava. Uz plastičnu deformaciju ujedno se javlja i određena elastična deformacija koja naravno po rasterećenju isčezava. Sa gledišta konstruiranja i primijene proizvoda ne smije doći do pojave trajnih deformacija prilikom eksploatacije jer bi to uzrokovalo pojavu pukotina i trajnih oštećenja te u konačnici lom. Kod nekih konstrukcijskih dijelova u građevini pojava izvjesne plastične deformacije se tolerira zbog hladnog očvrsnuća materijala.

Tijek vlačnog statičkog ispitivanja ne prekida se sve do pojave loma epruvete. Kao rezultat praćenja sile i pripadajućeg produljenja epruvete, dobiva se dijagram sila-produljenje koji se još naziva i dijagramom kidanja (sl. 12). Na osi apcisa nalazi se vrijednost produljenja (ΔL) izražena u milimetrima (mm), a na osi ordinata navedena je vrijednost sile (*F*) izražena u njutnima (N) ili kilonjutnima (kN).

Slika 12. Dijagram kidanja za niskougljični konstrukcijski čelik [6]

Dijagram kidanja, prikazan na slici 12, obilježavaju sljedeće karakteristične vrijednosti:

- $F_{\rm e}$, [N] sila razvlačenja ili tečenja,
- $F_{\rm m}$, [N] maksimalna sila,

- F_k , [N] konačna sila,
- ΔL_u , [mm] konačno produljenje epruvete, produljenje epruvete nakon kidanja

Karakteristična vrijednost sile F_e predstavlja granicu između područja elastičnog i plastičnog ponašanja materijala. Do vrijednosti sile tečenja materijal je napregnut isključivo elastično te ne dolazi do pojave trajnih deformacija. Ovo područje karakterizira linearna ovisnost sile i produljenja, a promjer epruvete (*d*) je gotovo konstantan i jednak početnom (d_0) .

Nakon dostizanja sile tečenja materijal nije više samo elastično deformiran već i plastično te dolazi do pojave trajnih deformacija u materijalu. U tom području leže još dvije karakteristične vrijednosti sile: F_m i F_k .

Sila F_m predstavlja maksimalnu ili najveću silu zabilježenu na kidalici tijekom kidanja epruvete. Iako je ovo maksimalna sila očitana na kidalici, ona nije popraćena maksimalnim naprezanjem koje se javlja u materijalu, a razlog leži u postepenom smanjenju poprečnog presjeka epruvete. Nakon što sila dostigne vrijednost maksimalne sile (F_m) dolazi do lokaliziranja deformacije i pojave "vrata" epruvete (sl. 13).

Slika 13. Prikaz razvoja "vrata" epruvete [9]

Druga karakteristična sila u plastičnom području je konačna sila F_k pri kojoj dolazi do pojave najvećih naprezanja u materijalu (ispitnom uzorku) i loma epruvete.

Na pokidanoj epruveti (sl. 14) potrebno je izmjeriti konačnu mjernu duljinu (L_u) i konačni promjer (d_u). Nakon mjerenja konačne mjerne duljine računa se konačno produljenje epruvete (ΔL_u) iz izraza:

$$\Delta L_{\rm u} = L_{\rm u} - L_{\rm o} , \, [\rm mm],$$

gdje su: L_u konačna mjerna duljina i L_0 početna mjerna duljina epruvete.

Slika 14. Epruveta nakon kidanja [9]

Utvrđeni dijagram kidanja ne uzima u obzir dimenzije epruvete, zbog čega nije podoban u inženjerskom pogledu, jer mehanička otpornost materijala svakako ovisi o njegovom presjeku, te da bi se zaista moglo vrednovati mehaničke osobine nekog materijala ili uspoređivati mehanička otpornost različitih materijala u obzir je potrebno uzeti i dimenzije poprečnog presjeka epruvete. Na taj način iz dijagrama F- Δ L dolazi se do inženjerskog ili konvencionalnog dijagrama naprezanje-istezanje (sl. 15). Inženjerski dijagram prikazuje ovisnost naprezanja (σ) i relativnog produljenja, istezanja (ϵ).

Izrazi za određivanje naprezanja σ i istezanje ε su sljedeći:

•
$$\sigma = \frac{F}{S_0}$$
, N/mm²,

gdje je F sila, a S_0 početna površina poprečnog presjeka epruvete,

•
$$\varepsilon = \frac{\Delta L}{L_0}$$
, mm/mm,

gdje je ΔL produljenje epruvete, a L_0 početna mjerna duljina epruvete.

Slika 15. Inženjerski dijagram σ - ε za niskougljični konstrukcijski čelik [6]

Karakteristične vrijednosti mehaničkih značajki materijala koje se mogu isčitati iz inženjerskog dijagrama jesu sljedeće:

• *R*_e – granica razvlačenja (granica tečenja, naprezanje tečenja)

$$R_e = \frac{F_e}{S_0}$$
, N/mm²

• *R*_m – vlačna čvrstoća ili naprezanje pri maksimalnoj sili

$$R_m = \frac{F_m}{S_0}$$
, N/mm²

• R_k – konačno naprezanje

$$R_k = \frac{F_k}{S_0}$$
, N/mm²

• $\varepsilon_{\mathbf{u}}$ – konačno relativno produljenje (konačno istezanje)

$$\varepsilon_u = \frac{\Delta L_u}{L_0}$$
, mm/mm

Naprezanje R_e predstavlja granično naprezanje između elastičnog i plastičnog područja deformacije. To je ono naprezanje kod kojeg se epruveta produljuje pri konstantnom naprezanju ili čak uz privremeno smanjenje naprezanja [6]. Ujedno prestavlja stvarno naprezanje jer je do te vrijednosti promjer epruvete konstantan. Dakle sva naprezanja niža od granice razvlačenja izračunata temeljem početne površine presjeka epruvete (S_0) odgovaraju stvarnim naprezanjima. Linearna ovisnost $\sigma - \varepsilon$ koja se proteže do vrijednosti R_e predočena je Hookeovim pravcem za koji vrijedi Hookeov zakon:

$$\sigma = E \cdot \varepsilon$$
 , N/mm²

gdje simboli σ i ε predstavljaju naprezanje i relativno produljenje, a *E* je modul elastičnosti ili Young-ov modul koji predstavlja omjer naprezanja i istezanja:

$$E = \frac{\sigma}{\varepsilon}$$
, N/mm²

Modul elastičnosti (*E*) predstavlja elastičnu konstantu materijala koja ovisi o čvrstoći veze između strukturnih jedinica u kristalnoj ili amorfnoj strukturi. Iz navedenog proizlazi da se statičkim vlačnim ispitivanjem može odrediti vrijednost modula elastičnosti, jer su poznate vrijednosti naprezanja i relativnog produljenja.

Naprezanje R_m predstavlja naprezanje pri maksimalnoj sili. Ovo naprezanje je veće od granice razvlačenja te ga obilježava plastična deformacija materijala. Kako relacija $R_m = F_m/S_o$ ne uzima u obzir promjenu površine poprečnog presjeka jasno je da vlačna čvrstoća neće ocrtavati pravo stanje naprezanja u materijalu. Vlačna čvrstoća R_m je osnovno mehaničko svojstvo na temelju kojeg se materijali vrednuju prema njihovoj mehaničkoj otpornosti [6]. Poslije ove vrijednosti dolazi do promjene karaktera deformiranja jer jednoliku deformaciju uzduž epruvete zamjenjuje lokalizirana deformacija na jednom mjestu koja vodi formiranju "vrata" epruvete.

Konačno naprezanje R_k je naprezanje pri kojem dolazi do loma epruvete. Ovu točku popratit će i odgovarajuće konačno relativno produljenje ili konačno istezanje (ε_u).

Na slici 16 u dijagramu naprezanje-istezanje prikazane su određene deformacijske komponente koje se javljaju tijekom ispitivanja.

Grafičkom metodom moguće je razlučiti elastičnu (ε_{el}) i plastičnu deformaciju (ε_{pl}) od ukupne deformacije (ε_{uk}).

Slika 16. Određivanje deformacijskih komponenti u σ - ε dijagram [4]

Iako ovaj inženjerski dijagram ne ocrtava u potpunosti stvarno stanje naprezanja i istezanja, ovisnost između naprezanja i istezanja u elastičnom području čini ga dostatnim u inženjerske svrhe. Naime svaki strojni dio ili element konstrukcije mora biti tako dimenzioniran da je djelujuće naprezanje niže od granice razvlačenja, a u tom području vjerodostojne podatke daje i inženjerski σ - ε dijagram.

Stvarni dijagram σ - ε (sl. 17) temelji se na stvarnim vrijednostima naprezanja i istezanja tijekom razvlačenja epruvete. Stvarno naprezanje (σ_s) sljedi iz izraza:

$$\sigma_s = \frac{F}{S}$$
, N/mm²

gdje je F sila opterećenja, a S stvarna površina poprečnog presjeka epruvete.

Stvarno istezanje (ε_s) opisuje se sljedećim jednadžbama:

$$\varepsilon_s = \ln \frac{L}{L_0}$$
, mm/mm

 \rightarrow (do vrijednosti maksimalne sile F_m)

ili

$$\varepsilon_s = 2\ln\frac{d_o}{d_s}$$
, mm/mm

 \rightarrow (nakon što sila dostigne vrijednost maksimalno sile F_m)

gdje je L trenutna duljina epruvete , L_0 početna mjerna duljina epruvete, d_0 početni promjer epruvete, a d_s prestavlja stvarni promjer epruvete.

Slika 17. Kvalitativni prikaz stvarnog dijagrama σ-ε (1), te odgovarajućeg inženjerskog dijagrama (2) [6]

Stvarno naprezanje u području elastičnih deformacija ($\sigma \leq R_e$), opisuje izraz:

$$\sigma_s = E \cdot \varepsilon_s$$
, N/mm²

a u području plastičnih deformacija ($\sigma > R_e$) stvarno naprezanje slijedi iz jednadžbe:

$$\sigma_s = R_e + k \cdot \varepsilon_s^n$$
, N/mm²

gdje je: R_e - granica razvlačenja, k – konstanta materijala, ε_s – stvarno relativno produljenje, a n – koeficijent očvrsnuća koji se kreće u granicama od 0,25 do 0,5 ovisno o vrsti materijala. Umnožak $k \cdot \varepsilon_s^n$ predstavlja očvrsnuće materijala usljed plastičnog deformiranja.

U plastičnom području vrijednosti σ_s su veće od odgovarajućeg inženjerskog naprezanja (σ), a ta razlika posebice postaje značajna nakon što sila dostigne vrijednost maksimalne sile F_m , odnosno naprezanje dostigne vrijednost vlačne čvrstoće R_m .

Osim karakterističnih naprezanja koja određuju mehaničku otpornost materijala, statičkim vlačnim ispitivanjem utvrđuje se i deformabilnost materijala iskazana kroz istezljivost (A) i kontrakciju (Z). Ova dva svojstva opisuju deformabilnost materijala u uzdužnom i poprečnom smjeru .

Izraz za utvrđivanje A je sljedeći:

$$A = \frac{L_u - L_0}{L_0} \cdot 100 \, , \ \%$$

gdje *A* predstavlja istezljivost kratke epruvete, a ukoliko ako se radi o dugoj epruveti tada se koristi oznaka $A_{11,3}$. Istezljivost kratke i duge epruvete je različito jer kratka epruveta uvijek ima veću istezljivost zbog lokalno koncentrirane deformacije na mjestu "vrata" epruvete. Ako se ova deformacija promatra s obzirom na početnu mjernu duljinu, naravno da je za kratku epruvetu ona veća nego za dugu. L_u predstavalja duljinu epruvete nakon kidanja, a L_0 duljina epruvete prije ispitivanja.

Istezljivost *A* predstavlja konačno produljenje materijala u uzdužnom smjeru u odnosu na početnu mjernu duljinu L_0 [6].

Kontrakcija Z ili konačno suženje poprečnog presjeka epruvete karakterizira deformabilnost materijala u smjeru poprečnom na smjer djelovanja sile [6]:

$$Z = \frac{S_0 - S_u}{S_0} \cdot 100, \ \%$$

gdje je S_0 početna površina epruvete, a S_u konačna površina ili površina epruvete nakon kidanja.

Različiti metalni materijali imaju različite krivulje naprezanje - istezanje (sl. 18).

Slika 18. Konvencionalni dijagrami naprezanje – istezanje: meki čelik – 1, poboljšani tvrdi čelik – 2, sivi lijev – 3, mjed – 4, tehnički čisti aluminij – 5 [6]

Ako se uspoređuju prikazane krivulje očito je da vrijednosti karakterističnih naprezanja i deformacija variraju od materijala do materijala. Tako dok tehnički čisti aluminij ima izrazito

nisku vrijednost vlačne čvrstoće R_m u odnosu na poboljšani tvrdi čelik, njegova istezljivost je nadasve višestruko veća od tog istog poboljšanog čelika.

Osim toga kod nekih materijala kao mekog čelika izražena je točka prijelaza između elastičnog i plastičnog područja što omogućuje jednostavno utvrđivanje granice razvlačenja $R_{\rm e}$. Kod drugih materijala kao npr. mjedi ili tehnički čistog aluminija ovaj prijelaz nije izražen, te se stoga mora određivati konvencionalna ili dogovorena granica razvlačenja.

Konvencionalna granica razvlačenja prestavlja ono naprezanje koje ostavlja određenu trajnu deformaciju u materijalu nakon rasterećenja. Ovisno o veličini deformacije razlikuju se dvije konvencionalne granice razvlačenja $R_{p0,01}$ i $R_{p0,2}$. $R_{p0,01}$ je ono naprezanje koje ostavlja u materijalu trajnu deformaciju od svega 0,01%, dok je plastična deformacija u slučaju granice razvlačenja $R_{p0,2}$ nešto veća i iznosi 0,2%. Način određivanja konvencionalne granice razvlačenja grafički je opisan dijagramom na sl. 19. Za određivanje $R_{p0,01}$ (tehnička granica elastičnosti) povlači se pri vrijednosti deformacije 0,01% pravac paralelan sa linearnim dijelom krivulje, te ordinata presjecišta pravca i krivulje naprezanje – istezanje označava traženo naprezanje. Analogno tome određuje se i $R_{p0,2}$ s tom razlikom da se pravac povlači pri vrijednosti deformacije od 0,2%.

Slika 19. Konvencionalne granice razvlačenja za plastične deformacije 0,01% i 0,2% [6]

Ako je granica razvlačenja izražena, kao kod mekog čelika, često puta se može uočiti lagani pad naprezanja pri vrijednosti granice razvlačenja. Kod takvih materijala moguće je odrediti dvije karakteristične vrijednosti granice razvlačenja: gornju granicu razvlačenja ($R_{\rm eh}$) i donju granicu razvlačenja ($R_{\rm el}$) (sl. 20). Prema normi HRN EN 10002-1 definirane su grafičke metode određivanja $R_{\rm eh}$ i $R_{\rm el}$ za različite oblike tečenja materijala (sl. 21).

Slika 20. Gornja granica razvlačenja i donja granica razvlačenja [5]

Slika 21. Određivanje gornje i donje granice razvlačenja za različite oblike tečenja [5]

5. OSNOVNA SVOJSTVA ALUMINIJA I NJEGOVIH LEGURA

Budući da su eksperimentalna ispitivanja provedena na epruvetama načinjenim od aluminija ovdje je dan kratak pregled osnovnih značajkih aluminija i Al-legura.

Aluminij se u prirodi pojavljuje samo u obliku kemijskog spoja, oksida i smjesa oksida. Proizvodi se iz oksidne rude zagrijavanjem s jeftinim redukciskim sredstvom kao što je ugljik u obliku koksa.

Aluminij se može ekstrahirati i uz pomoć redukcijskog sredstva metalnog kalija, ali je to vrlo skupi oblik pročišćavanja zbog čega se danas više ne koristi. Kemijska jednadžba za dobivanje aluminija uz pomoć metalnog kalija jest sljedeća:

$AlCl_3 + 3K \longrightarrow Al + 3KCl$

Također postoji mogućnost proizvodnje aluminija iz glinice (Al_2O_3) uz dodatak kriolita koji spušta talište. Smjesa glinice i kriolita tali se na oko 950^oC i aluminij se putem elektrolitičke redukcije taloži na katodi. Ekonomski najisplativije je dobivanje glinice iz boksita, glavne rude za dobivanje aluminija.

Kao kemijski element, atom aluminija (Al) ima broj 13 što predstavlja njegov atomski broj, odnosno broj protona u jezgri. Aluminij kao metal se ne ubraja u plemenite metale. Nije magnetičan, dobro reflektira svjetlost i toplinu. Njegova mala masa koja proizlazi iz relativno niske gustoće čini ga lakim metalom. Srebrenkaste je boje, a na zraku i vodenim otopinama prevlači se tankim slojem oksida. Taj kompaktni sloj oksida debljine 0,01 µm pruža antikorozivnost. Ipak nečistoće ili precipitati koji se javljaju u aluminiju mogu prouzročiti točkastu koroziju (pitting). Točkasta korozija može se spriječiti ograničavanjem udjela štetnih primjesa i umjetnim stvaranjem neporoznog zaštitnog sloja (fosfatiranjem, kromiranjem i anodizacijom). Stvaranje oksidnog sloja na površini predstavlja kontinutrani postupak, a ako dođe do oštečenja sloja trenutno započinje stvaranje novog. Povećanjem oksidiranosti površine, povećava se otpornost na koroziju. Zahvaljujući oksidnom sloju aluminij je otporan i na koncentriranu dušičnu kiselinu. Međutim osjetljiv je na koncentrirane lužine koje razaraju oksidni sloj [11].

U usporedbi sa čelikom Al i Al-legure su 2,9 puta lakše, a njihova je toplinska vodljivost 13 puta veća nego nehrđajućeg čelika, odnosno četiri puta u odnosu na ugljični čelik [12].

Al i Al-legure zadržavaju mehaničku otpornost pri niskim temperaturama. Posjeduju dobra svojstva oblikovljivosti deformiranjem, te se postupcima prešanja mogu proizvoditi profili vrlo složenih oblika. Također su mogući i različiti postupci valjanja i dubokog vučenja.

Aluminij se može zavarivati ali treba voditi računa o oksidnom sloju koji ima visoku temperaturu taljenja (2050⁰C) [12].

Fizikalna i mehanička svojstva aluminija navedena su u tablici 1.

gustoća	kg/m^3	2700
talište	⁰ C	660
modul elastičnosti	N/mm ²	69000
toplinska rastezljivost	10 ⁻⁶ /K	23,8
električna vodljivost	$m/\Omega mm^2$	3637,8
granica razvlačenja	N/mm ²	20120
vlačna čvrstoća	N/mm ²	40180
istezljivist (ovisno o stanju)	%	450

 Tablica 1. Fizikalna i mehanička svojstva aluminija [11]

Premda čisti aluminij ima bolju korozijsku postojanost aluminijske legure su u većoj upotrebi zbog boljih mehaničkih svojstava. Aluminijske legure se koriste u lijevanom i gnječenom stanju, a mehanička svojstva mogu se dodatno poboljšati precipitacijskim očvrsnućem. Najčešći legirni elementi su: bakar (Cu), magnezij (Mg), silicij (Si), cink (Zn) i mangan (Mn). Uz navedene legirne elemente kompleksne aluminijske legure mogu sadržati i različite druge dodatke. Neke najosnovnije aluminijske legure prikazane su u tablici 2.

Tablica 2. Prikaz aluminijskih legura [13]		
Al-legure za gnječenje		Al-legure za lijevanje
toplinski neočvrstljive	Al-Mg	Al-Si
	Al-Mn	Al-Mg
	Al-Mg-Mn	
toplinski očvrstljive	Al-Mg-Si	Al-Si-Mg
	Al-Cu-Mg	Al-Si-Cu
	Al-Zn-Mg	Al-Cu

Aluminij i Al-legure zbog povoljnog omjera čvrstoće i gustoće (specifična čvrstoća), korozijske postojanosti, visoke električne i toplinske vodljivosti izrazito su zastupljeni u svakodnenoj primjeni. Koriste se u proizvodnji ambalaže, avionskoj industriji, astronautici, graditeljstvu, automobilskoj industriji itd. Od aluminija se izrađuju različiti aparati, posude, spremnici u kemijskoj i prehrambenoj industriji, kuhinjsko posuđe, metalni proizvodi široke namjene, električni vodiči (gdje ne smeta veći volumen i gdje se ne traži dobra lemljivost), tlačne posude, cijevovodi, izmjenjivači topline, kalupi, namještaj i oprema za kampiranje, optički elementi, vijaci, zakovice itd.

Zanimljiva je upotreba aluminija u prehrambenoj industriji gdje se koristi kao aditiv koji namirnicama daje postojanu boju [10].
6. EKSPERIMENTALNI DIO

U eksperimentalnom dijelu rada provedeno je statičko vlačno ispitivanje aluminijskih epruveta uz različite brzine prirasta opterećenja. Brzina opterećenja kretala se u rasponu od 2 $N/mm^2 \cdot s^{-1}$ do 100 $N/mm^2 \cdot s^{-1}$.

Ispitivanja su provedena na hidrauličnoj kidalici EU 40mod (sl. 22). Karakteristike kidalice navedene su u tablici 3.

Proizvođač	WPM, Njemačka
Tip	Hidraulična
Vrsta	EU 40mod
Mjerno područje	0 – 400 kN
Smjer opterećenja	Vlak, tlak
Nazivna sila	400 kN
Mjerni sustav	Pretvornik tlaka; digitalni
	pokazivač

Tablica 3. Značajke kidalice EU 40mod

Slika 22. Kidalica EU40mod: 1-mehanizam za stezanje epruvete, 2-hidraulični cilindar, 3-upravljačka konzola, 4-računalo i pisač, 5- traverza, 6-vodeći stupovi, 7-pogon

Ispitivanje je provedeno na dugim epruvetama okruglog poprečnog presjeka, početne mjerne duljine (L_0) 100 mm i početnog promjera (d_0) 10 mm.

Budući da su za ispitivanje korištene aluminijske epruvete od kojih su neke već plastično deformirane u cilju određivanja konvencionalne granice razvlačenja i time naravno očvrsnute, sve su epruvete prije ispitivanja podvrgnute rekristalizacijskom žarenju kako bi se ujednačila njihova mehanička svojstva.

Rekristalizacijsko žarenje spada u postupke žarenja I. vrste, a provelo se u svrhu postignuća ponovnih poligonalnih kristalnih zrna i povrata duktilnosti koje se smanjila prilikom hladnog deformiranja [14]. Žarenje epruveta izvršeno je u jamskoj peći bez zaštitne atmosfere, pri temperaturi 420^oC, nakon čega su epruvete hlađene na zraku.

Nakon rekristalizacijskog žarenja epruvete su podijeljene u sedam ispitnih grupa od kojih svaka sadrži dvije ili tri epruvete. Svaka grupa je ispitana pri različitoj brzini prirasta opterećenja. Brzine opterećivanja jesu takve da prirast naprezanja u epruveti redom iznosi: 2, 5, 10, 20, 30, 50 i 100 $N/mm^2 \cdot s^{-1}$. Prije ispitivanja na svakoj epruveti zacrtane su točke razmaknute 10 mm tako da razmak između krajnjih mjernih točaka odgovara početnoj mjernoj duljini $L_0 = 100 \ mm$. Pomičnim mjerilom izmjeren je početni promjer epruvete (d_0), a površina poprečnog presjeka (S_0) izračunata je temeljem jednadžbe:

$$S_0 = \frac{d_0^2 \cdot \pi}{4}, mm^2$$

Slika 23. Prikaz aluminijske epruvete i načina određivanja L_0 i d_0

Za potrebe ispitivanja na kidalici je montiran odgovarajući prihvat koji je namjenjen ispitivanju epruveta s ramenim glavama (sl. 24).

Slika 24. Hvataljike za prihvat epruvete

Za odeđivanje konvencionalne granice razvlačenja korišten je električni ekstenzimetar u svrhu preciznog mjerenja deformacije epruvete (sl. 25). Ekstenzimetar se postavlja na epruvetu kod predopterećenja 1000 N kako bi svi slojevi materijala bili napregnuti istim naprezanjem.

Slika 25. Električni ekstezimetar na prednapregnutoj aluminijskoj epruveti

Podaci o ekstenzimetru dani su u tablici 4:

Tip	električni
Vrsta	MFA 2
Električni otpor	350Ωm
Maksimalna vrijednost	2mV/V
izlaznog signala	
Maksimalna deformacija	± 2 mm

Tablica 4. Karakteristike ekstenzimetra

Trajna deformacija epruvete koja upućuje na konvencionalnu granicu razvlačenja $R_{p0,2}$ iznosi 0,2 mm, te je stoga ekstezimetar skidan s epruvete pri vrijednosti deformacije 0,4 mm kako se ne bi oštetio prilikom pucanja epruvete.

Nakon toga ispitivanje se nastavlja kontinuiranim opterećivanjem sve do kidanja. Po završetku ispitivanja potrebno je spojiti dva dijela epruvete kako bi se izmjerio razmak između krajnjih mjernih točaka i time odredila konačna mjerna duljina L_u (sl. 26). Također je potrebno izmjeriti i konačni promjer epruvete d_u koji predstavlja najuži promjer epruvete na mjestu loma.

Slika 26. Aluminijska epruveta nakon kidanja

Vrijednosti koje se određuju statičkim vlačnim ispitivanjem jesu sljedeće: sila razvlačenja ili tečenja (F_e), maksimalna sila (F_m), konačna sila (F_k), konačno produljenje epruvete (ΔL_u), konvencionalna granica razvlačenja ($R_{p0,2}$), vlačna čvrstoća (R_m), konačno naprezanje (R_k), konačno produljenje (ε_u) i istezljivost ($A_{11,3}$).

Na temelju rezultata ispitivanja i dobivenih dijagrama kidanja konstruirani su odgovarajući inženjerski σ - ε dijagrami i uspoređene karakteristične mehaničke značajke u cilju utvrđivanja promjene mehaničkih svojstava uslijed variranja brzine prirasta opterećenja.

6.1. REZULTATI ISPITIVANJA

Rezultati ispitivanja prikazani su po ispitnim grupama. Za prvu ispitnu grupu rezultati su dani u poglavlju koje sljedi, a za ostale ispitne grupe izneseni su u privitcima 1 do 6.

6.1.1. PRVA ISPITNA GRUPA

Epruvete prve ispitne grupe opterećivane su brzinom od 2 $N/mm^2 \cdot s^{-1}$. Pri ovoj brzini ispitane su tri epruvete. Oznake epruveta jesu sljedeće: Al 1, Al 2 i Al 3.

Tablica 5 sadrži podatke o epruvetama iz prve skupine.

oznaka	d_{0}	S_{θ}	L_{0}	v
epruvete	mm	mm^2	mm	$N/mm^2 \cdot s^{-1}$
Al 1	10,0	78,5	100	2
Al 2	10,0	78,5	100	2
Al 3	10,1	80,1	100	2

Tablica 5. Podaci o epruvetama prve skupine

Početna površina poprečnog presjeka epruvete (S_0) izračunata je preko izraza:

$$S_0 = \frac{d_0^2 \cdot \pi}{4}, \, [\text{mm}^2]$$

Nakon izvršenog ispitivanja, uz mjerenje konačne mjerne duljine epruvete (L_u) i računanja konačnog produljenja epruvete (ΔL_u) , dobivene su sljedeće vrijednosti prikazane u tablici 6.

Tablica 6. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnog produljenja

oznaka epruvete	$F_{p0,2} \over N$	F_m	$F_k onumber N$	L _u mm	ΔL_u mm
Al 1	2617	6074	<i>4940</i>	138,5	38,5
Al 2	2546	6061	4450	139,2	39,2
Al 3	3314	6565	4940	132,0	32,0

epruveta prve ispitne grupe

Konačno produljenje epruvete determinirano je izrazom:

$$\Delta L_u = L_u - L_o , [mm]$$

Dijagrami kidanja epruveta Al 1, Al 2 i Al 3 prikazani su na slikama 27 do 29.

Slika 29. Dijagram kidanja epruvete Al 3

U tablici 7 navedene su vrijednosti konvencionalne granice razvlačenja ($R_{p0,2}$), vlačne čvrstoće (R_m), konačnog naprezanja (R_k) i konačnog istezanja (ε_u).

Tablica 7. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta prve ispitne grupe

oznaka epruvete	$egin{array}{c} R_{p0,2} \ N/mm^2 \end{array}$	R_m N/mm ²	R_k N/mm^2	ε _u mm/mm
Al 1	33,34	77,38	62,93	0,385
Al 2	32,43	77,21	56,69	0,392
Al 3	41,37	81,96	61,67	0,320

Konvencionalna granica razvlačenja $(R_{p0,2})$, vlačna čvrstoća (R_m) i konačno naprezanje (R_k) izračunati su korištenjem sljedećih izraza:

$$R_{p0,2} = \frac{F_{p0,2}}{S_0}$$
, [N/mm²]; $R_m = \frac{F_m}{S_0}$, [N/mm²]; $R_k = \frac{F_k}{S_0}$, [N/mm²]

Konačno relativno produljenje (ε_u) izračunato je temeljem jednadžbe:

$$\varepsilon_u = \frac{\Delta L_u}{L_0}$$
, [mm/mm]

Inženjerski σ - ϵ dijagrami za epruvete prve ispitne grupe prikazani su na slikama 30, 31 i 32.

Slika 30. Inženjerski σ - ε dijagram epruvete Al 1

Slika 31. Inženjerski σ - ε dijagram epruvete Al 2

Slika 32. Inženjerski σ - ε dijagram epruvete Al 3

Srednje vrijednosti naprezanja $R_{p0,2}$, R_m i R_k te konačnog istezanja prikazane su u tablici 8.

	$R_{p0,2sr}$	R _{msr}	R_{ksr}	E _{usr}
	N/mm ²	N/mm ²	N/mm^2	mm/mm
srednje vrijednosti	35,71	78,85	60,43	0,366

Tablica 8. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za epruvete prve skupine

Vrijednosti istezljivost $A_{11,3}$ za epruvete prve ispitne grupe dane su u tablici 9.

a ca 9. Vrijeanosti i	isiezijivosii epruv	eia prve ispline g
oznaka	$A_{11,3}$	A _{11,3 sr.}
epruvete	%	%
Al 1	38,5	
Al 2	39,2	36,57
Al 3	32,0	

Tablica 9. Vrijednosti istezljivosti epruveta prve ispitne grupe

Istezljivost $A_{11,3}$ izračunata je korištenjem izraza:

$$A = \frac{L_u - L_0}{L_0} \cdot 100 \; , \; \% \; ;$$

Slika 33 prikazuje dijagram sila-vrijeme kod kojeg je očita linearna ovisnost popraćena konstantnim prirastom sile sve do maksimalne vrijednosti (F_m), nakon čega sila naglo opada zbog intezivnog smanjenja površine presjeka epruvete (formiranje vrata).

Slika 33. Dijagram F-t epruvete Al 3

Na slici 34 predočena je ovisnost između sile i brzine deformacije. Evidentno je da se brzina deformacije konstantno povećava sve do točke kidanja.

•

Slika 34. Dijagram F-v epruvete Al 3

6.1.2. DRUGA ISPITNA GRUPA

Epruvete druge ispitne grupe opterećivane su brzinom prirasta naprezanja od 5 $N/mm^2 \cdot s^{-1}$. Pri ovoj brzini ispitane su dvije epruvete oznaka Al 4 i Al 5. Rezultati ovih ispitivanja nalaze se u privitku 1 ovog rada.

Tablica P.1.1. sadrži podatke o epruvetama.

U tablici P.1.2. navedeni su rezultati ispitivanja u vidu karakterističnih sila i produljenja epruveta.

Na slikama P.1.1. i P.1.2. prikazani su F-ΔL dijagrami za epruvete druge skupine

Vrijednosti karakterističnih naprezanja i konačnog istezanja navedene su u tablici P.1.3.

Dijagrami naprezanje-istezanje za epruv te Al 4 i Al 5 pred čen i su slikama P.1.3. i P.1.4.

Srednje vrijednosti karakterističnih naprezanja te konačnog istezanja prikazane su u tablici P.1.4.

Vrijednosti istezljivost ($A_{11,3}$) epruveta Al 4 i Al 5 dane su u tablici P.1.5.

6.1.3. TREĆA ISPITNA GRUPA

Treća ispitna grupa epruveta oznaka Al 6, Al 7 i Al 8 opterećivana je brzinom prirasta opterećenja od 10 $N/mm^2 \cdot s^{-1}$. U privitku 2 nalaze se dijagrami i tablice za epruvete ove skupine.

Tablica P.2.1. sadrži vrijednosti početnog promjera, početne površine i početne mjerne duljine.

Kidanjem epruveta određene su vrijednosti sile tečenja, maksimalne sile i konačne sile, te konačnog produljenja, tablica P.2.2.

Na slikama P.2.1., P.2.2. i P.2.3. prikazani su dijagrami kidanja epruveta treće ispitne grupe.

Tablica P.2.3. sadrži vrijednosti karakterističnih naprezanja i konačnog istezanja.

Slike P.2.4., P.2.5., i P.2.6. opisuju odgovarajuće inženjerske σ - ε dijagrame epruveta Al 6, Al 7 i Al 8.

Srednje vrijednosti naprezanja $R_{p0,2}$, R_m i R_k te konačnog istezanja dane su u tablici P.2.4. Vrijednosti istezljivosti ($A_{11,3}$) nalaze se u tablici P.2.5.

Slika P.2.7. prikazuje dijagram sila-vrijeme dobiven ispitivanjem epruvete Al 8 kod kojeg linearni dio krivulje ide do vrijednosti $F_{p0,2}$ nakon čega se prirast sile usporava sve do vrijednosti F_{m} .

Dijagram sila-brzina deformacije na slici P.2.8. predočava linearnu ovisnost između brzine i opterećenja do sile $F_{p0,2}$, nakon čega se daljnjim prirastom sile brzina deformacije konstantno povećava sve do loma.

6.1.4. ČETVRTA ISPITNA GRUPA

Epruvete četvrte ispitne grupe opterećivane su brzinom od 20 $N/mm^2 \cdot s^{-1}$. Pri ovoj brzini ispitane su dvije epruvete (Al 9 i Al 10). U privitku 3 nalaze se tablične vrijednosti i dijagrami ispitivanja.

Tablica P.3.1. sadrži podatke o epruvetama iz četvrte skupine.

Vrijednosti karakterističnih sila i konačnog produljenja utvrđene kidanjem epruveta Al 9 i Al 10 sažete su u tablici P.3.2.

Na slikama P.3.1. i P.3.2. prikazani su dijagrami kidanja epruveta ove skupine.

U tablici P.3.3. navedene su vrijednosti naprezanja $R_{p0,2}$, R_m i R_k te konačnog istezanja.

Inženjerski σ-ε dijagrami prikazani su na slikama P.3.3. i P.3.4.

Srednje vrijednosti naprezanja $R_{p0,2}$, R_m i R_k te konačnog istezanja navedene su u tablici P.3.4.

Vrijednosti istezljivosti ($A_{11,3}$) za četvrtu ispitnu grupu epruveta nalaze se u tablici P.3.5.

6.1.5. PETA ISPITNA GRUPA

Kod pete ispitne grupe epruveta brzina prirasta opterećenja iznosi 30 $N/mm^2 \cdot s^{-1}$. Ispitane su dvije epruvete oznaka Al 11 i Al 12. Sve vrijednosti ispitivanja za ovu ispitnu grupu nalaze se u privitku 4.

U tablici P.4.1. prikazane su dimenzije ispitnih uzoraka prije kidanja.

Nakon ispitivanja epruveta pete skupine i određivanja konačne mjerne duljine (L_u) odnosno konačnog produljenja (ΔL_u) , rezultati ispitivanja sažeti su u tablici P.4.2.

Dijagrami kidanja epruveta Al 11 i Al 12 prikazani su slikama P.4.1. i P.4.2.

U tablici P.4.3. navedena su mehanička svojstva za epruvete ove skupine.

Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za epruvete Al 11 i Al 12 dane su u tablici P.4.4.

Slike P.4.3. i P.4.4. prikazuju odgovarajuće σ - ϵ dijagrame ovih epruveta.

Tablica P.4.5. sadrži vrijednosti istezljivosti epruveta pete ispitne grupe.

6.1.6. ŠESTA ISPITNA GRUPA

Epruvete šeste ispitne grupe opterećivane su brzinom od 50 $N/mm^2 \cdot s^{-1}$. Pri ovoj brzini ispitane su dvije epruvete Al 13 i Al 14.

Rezultati ispitivanja ovih epruveta nalaze se u privitku 5.

Tablica P.5.1. sadrži vrijednosti d_0 , S_0 i L_0 za epruvete šeste skupine.

Kidanjem epruveta određene su vrijednosti sila i konačnog produljenja kako je navedeno u tablici P.5.2.

Na slikama P.5.1. i P.5.2. nalaze se odgovarajući dijagrami kidanja za epruvete ove ispitne grupe.

Tablica P.5.3. sadrži podatke o karakterističnim naprezanjima i konačnom istezanju.

U tablici P.5.4. prikazane su srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za epruvete šeste skupine.

Slike P.5.3. i slika P.5.4. prikazuju σ - ϵ dijagrame dobivene razvlačenjem epruveta Al 13 i Al 14.

Vrijednosti istezljivosti ($A_{11,3}$) ovih epruveta dane su u tablici P.5.5.

6.7. SEDMA ISPITNA GRUPA

Sedma ispitna grupa epruveta oznaka Al 15 i Al 16 opterećivana je brzinom od 100 $N/mm^2 \cdot s^{-1}$. U privitku 6 nalaze se dijagrami i tablice s rezultatima ispitivanja.

Tablica P.6.1. prikazuje dimenzije epruveta prije ispitivanja.

Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnog produljenja, navedene se u tablici P.6.2.

Na slikama P.6.1. i P.6.2. prikazani su dijagrami kidanja epruveta ove skupine.

Tablica P.6.3. sadrži pojedinačne vrijednosti karakterističnih naprezanja i konačnog istezanja za svaku epruvetu, a tablica P.6.4. prikazuje srednje vrijednosti izmjerenih značajki.

Inženjerski σ-ε dijagrami epruveta Al 15 i Al 16 prikazani su slikama P.6.3. i P.6.4.

Vrijednosti istezljivosti za epruvete sedme skupine nalaze se u tablici P.6.5.

Slika P.6.5. prikazuje dijagram F-t za epruvetu Al 16. Do konvencionalne sile razvlačenja $(F_{p0,2})$ prisutna je linearna ovisnost između između sile (F) i vremena (t). Nakon toga se prirast sile postupno smanjuje jer dolazi do lokaliziranog deformiranja epruvete na jednom mjestu. Nakon dostignute vrijednosti vlačne čvrstoće sila naglo opada zbog formiranja vrata na epruveti i naglog sužavanja poprečnog presjeka.

Dijagram F-v na slici P.6.6. predočava brzine deformacije tijekom razvlačenja epruvete. Evidentno je da se prirastom sile brzina deformacije neprekidno povećava sve do maksimalne sile $F_{\rm m}$ pa čak i dalje kada dolazi do postepenog opadanja sile, ali i smanjenja ploštine presjeka epruvete.

7. ANALIZA DOBIVENIH REZULTATA

Međusobnom usporedbom mehaničkih svojstava utvrđenih različitim brzinama ispitivanja određena je zakonitost promjene specifičnih mehaničkih značajki materijala.

Uspoređivane su sljedeće mehaničke osobine: konvencionalna granica razvlačenja ($R_{p0.2}$), vlačna čvrstoća (R_m), konačno naprezanje (R_k) i istezljivost materijala (A).

Ostale veličine utvrđene ispitivanjem: sila razvlačenja (F_e), maksimalna sila (F_m), konačna sila (F_k) i konačno produljenje epruvete (ΔL_u), korištene su u svrhu izračuna predhodno navedenih veličina, a same nisu pogodne za usporedbu jer je početni promjer epruveta varirao od 9,7 mm do 10,1 mm.

7.1. MEHANIČKA SVOJSTVA ALUMINIJA

U tablici 10 prikazane su vrijednosti konvencionalne granice razvlačenja, vlačne čvrstoće i konačnog naprezanja, za sve epruvete ispitivane brzinama opterećivanja od 2 do $100 N / mm^2 \cdot s^{-1}$. Navedene su i srednje vrijednosti za svaku ispitnu grupu.

ispitna	oznaka	R _{p0,2}	R _{p0,2sr}	R _m	R _{msr}	R _k	R _{ksr}	V
grupa	epruvete	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ² ·s ⁻¹
	Al 1	33,34		77,38		62,93		
1	Al 2	32,43	35,71	77,21	78,85	56,69	60,43	2
	Al 3	41,37		81,96		61,67		
2	A 4	38,53	37.05	81,44	80.68	59,87	62.87	5
2	Al 5	35,56	57,05	79,92	00,00	65,86	02,07	5
	Al 6	41,42		86,45		71,22		
3	Al 7	42,05	38,57	88,64	83,51	70,00	65,82	10
	Al 8	32,23		75,43		56,23		
1	Al 9	38,74	30.00	82,91	83.08	64,97	65.80	20
-	Al 10	41,05	57,70	85,04	03,70	66,62	05,00	20
5	Al 11	42,01	43 17	85,01	84 81	64,03	63 42	30
5	Al 12	44,32	45,17	84,61	04,01	62,80	05,42	50
6	Al 13	44,64	42 50	87,68	85.96	66,88	64 61	50
U	Al 14	40,36	72,50	84,24	00,70	62,33	04,01	50
7	Al 15	44,70	16 37	84,37	85 37	68,88	66 00	100
,	Al 16	48,04	70,37	86,27	03,32	65,10	00,77	100

Tablica 10. Vrijednosti utvrđene statičkim vlačnim ispitivanjem

7.1.1. KONVENCIONALA GRANICA RAZVLAČENJA

Na slici 35 dijagramski je prikazana promjena konvencionalne granice razvlačenja koja nastupa povećanjem brzine prirasta naprezanja u epruveti.

Slika 35. Prikaz promjene konvencionalne granice razvlačenja u ovisnosti o brzini opterećivanja

Očito je da pri većim brzinama opterećivanja dolazi do porasta konvencionalne granice razvlačenja te ovaj prirast iznosi $10,66 N / mm^2$ usporedi li se srednje vrijednosti granice razvlačenja za prvu i sedmu ispitnu grupu.

7.1.2. VLAČNA ČVRSTOĆA

Slika 36 prikazuje ovisnost vlačne čvrstoće i brzine prirasta naprezanja.

Slika 36. Prikaz promjene vlačne čvrstoće u ovisnosti o brzini opterećivanja

Uočljivo je povećanje vrijednosti vlačne čvrstoće pri većim brzinama opterećivanja. Razlike između srednjih vrijednosti vlačne čvrstoće pri brzini ispitivanja $2N/mm^2 \cdot s^{-1}$ odnosno $100 N/mm^2 \cdot s^{-1}$ iznosi 6,47 N/mm^2 .

7.1.3. KONAČNO NAPREZANJE

Slika 37 prikazuje promjenu konačnog naprezanja za svih sedam grupa ispitnih uzoraka.

Slika 37. Prikaz promjene konačnog naprezanja u ovisnosti o brzini opterećivanja

Promjena konačnog naprezanja prouzročena povečanjem brzine opterećivanja, u apsolutnom iznosu gotovo je identična promjeni vlačne čvrstoće. Prirast naprezanja induciran povećanjem brzine u području od $2 N / mm^2 \cdot s^{-1}$ do $100 N / mm^2 \cdot s^{-1}$ iznosi 6,56 N / mm^2 .

Na slici 38 predočena je promjena sva tri karakteristična naprezanja konvencionalne granice razvlačenja, vlačne čvrstoće i konačnog naprezanja unutar ispitivanog područja brzina opterećivanja. Dijagram je konstruiran na temelju srednjih vrijednosti naprezanja za svaku ispitnu skupinu.

Slika 38. Prikaz promjene vrijednosti karakterističnih naprezanja u ovisnosti o brzini opterećivanja

Jasno je vidljiv porast sva tri naprezanja kako se brzina približava gornjoj graničnoj vrijednosti od $100 N / mm^2 \cdot s^{-1}$.

7.1.4. ISTEZLJIVOST

U tablici 11 navedeni su iznosi istezljivosti za sve ispitivane epruvete opterećivane brzinama od 2 do 100 $N/mm^2 \cdot s^{-1}$. Također su navedene i srednje vrijednosti istezljivosti za svaku ispitnu grupu.

ispitna	oznaka	A _{11,3}	A _{11,3sr}	V	
grupa	epruvete	%	%	N/mm ² ·s ⁻¹	
1	Al 1	38,5			
	Al 2	39,2	36,57	2	
	Al 3	32,0			
2	A 4	34,8	33.50	5	
-	Al 5	32,2	00,00	U	
	Al 6	31,7			
3	Al 7	31,2	32,77	10	
	Al 8	35,4			
4	Al 9	32,4	31.50	20	
	Al 10	30,6			
5	Al 11	29,9	29.50	30	
	Al 12	29,1		50	
6	Al 13	27,8	28.60	50	
-	Al 14	29,4			
7	Al 15	25,3	25.90	100	
	Al 16	26,5	-) -		

Tablica 11. Vrijednosti istezljivosti

Slika 39 prikazuje promjenu istezljivosti induciranu povećanjem brzine prirasta naprezanja.

Slika 39. Prikaz promjene istezljivosti u ovisnosti o brzini opterećivanja

Povećanjem brzine opterećivanja i porastom karakterističnih naprezanja duktilnost materijala opada i vrijednosti istezljivosti se smanjuju.

ZAKLJUČAK

Na temelju rezultata ispitivanja, evidentna je promjena mehaničkih svojstava materijala koja nastupa povećanjem brzine prirasta opterećenja. Konvencionalna granica razvlačenja $(R_{p0,2})$, vlačna čvrstoća (R_m) i konačno naprezanje (R_k) s porastom brzine opterećivanja bilježe sve veće vrijednosti.

Usporedbom srednjih vrijednosti granice razvlačenja, utvrđen je porast u apsolutnom iznosu od 10,66 N/mm², što je povećanje od 29,85 % u odnosu na vrijednost zabilježenu pri najmanjoj brzini opterećivanja $2 N / mm^2 \cdot s^{-1}$.

Nešto manje povećanje zabilježeno je kod vlačne čvrstoće i konačnog naprezanja. Vlačna čvrstoća, pri brzini ispitivanja od 100 $N/mm^2 \cdot s^{-1}$, porasla je za 6,47 N/mm² ili 8,2% dok je konačno naprezanje poraslo sa 60,43 N/mm² (v=2 $N/mm^2 \cdot s^{-1}$) na 66,99 N/mm² (v=100 $N/mm^2 \cdot s^{-1}$) što je povećanje od 6,56 N/mm² ili izraženo u postocima 10,85%.

Shodno povećanju karakterističnih naprezanja duktilnost materijala iskazana kroz istezljivost opada pri većim brzinama prirasta naprezanja. Razlika između vrijednosti istezljivosti pri brzini opterećivanja 2 $N/mm^2 \cdot s^{-1}$ i 100 $N/mm^2 \cdot s^{-1}$ iznosi 29,17% što otprilike odgovara porastu konvencionalne granice razvlačenja.

Porast mehaničke otpornosti iskazan povećanjem konvencionalne graice razvlačenja, vlačne čvrstoće i konačnog naprezanja uz istovremeni pad istezljivosti nastupa zbog pojave očvrsnuća aluminija tijekom razvlačenja, a ono je posebice izraženo pri većim brzinama prirasta naprezanja u epruveti. Hladno plastično deformiranje ima za posljedice umnažanje i gomilanje dislokacija na zaprekama tako da je potrebno unijeti dodatnu energiju u vidu vanjskog narinutog naprezanja da bi se dislokacije mogle gibati što se prema vani očituje kao očvrsnuće materijala.

PRIVITAK 1.

oznaka epruvete	d_0 mm	S ₀ mm ²	L ₀ mm	v N/mm ² ·s ⁻¹
Al 4	10,0	78,5	100	5
Al 5	10,0	78,5	100	5

Tablica P.1.1. Podaci o epruvetama druge skupine

Tablica P.1.2. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnogproduljenja epruveta druge ispitne grupe

oznaka	$F_{p0,2}$	F_m	F_k	L_u	ΔL_u
epruvete	N	N	N	mm	mm
Al 4	3025	6393	4700	<i>134</i> ,8	<i>34</i> ,8
Al 5	2792	6274	5170	132,2	32,2

Slika P.1.1. Dijagram kidanja epruvete Al 4

Tablica P.1.3. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta

dru	ge ispitne grupe			
oznaka epruvete	$\frac{R_{p0,2}}{N/mm^2}$	R_m N/mm ²	R_k N/mm ²	E _u mm/mm
Al 4	38,53	81,44	59,87	0,348
Al 5	35,56	79,92	65,86	0,322

Slika P.1.3. Inženjerski σ - ε dijagram epruvete Al 4

Slika P.1.4. Inženjerski σ - ε dijagram epruvete Al 5

Tablica P.1.4. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja zaepruvete druge skupine

	$R_{p0,2sr}$	R _{msr}	R_{ksr}	E _{usr}
	N/mm ²	N/mm ²	N/mm^2	mm/mm
srednje vrijednosti	37,05	80,68	62,87	0,335

oznaka	A _{11,3}	A _{11,3 sr}
epruvete	%	%
Al 4 Al 5	34,8 32,2	33,5

 Tablica P.1.5.
 Vrijednosti istezljivosti epruveta druge ispitne grupe

PRIVITAK 2.

oznaka epruvete	d ₀ mm	S_{θ} mm^{2}	L ₀ mm	v N/mm ² ·s ⁻¹
Al 6	9,8	75,4	100	10
Al 7	9,9	77,0	100	10
Al 8	9,9	77,0	100	10

Tablica P.2.1. Podaci o epruvetama treće skupine

Tablica P.2.2. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnogproduljenja epruveta treće ispitne grupe

oznaka	$F_{p0,2}$	F_m	F_k	L_u	ΔL_u
epruvete	N	N	N	тт	mm
Al 6	3123	6518	5370	131,7	31,7
Al 7	3238	6825	5390	131,2	31,2
Al 8	2482	5808	4330	135,4	35,4

Slika P.2.1. Dijagram kidanja epruvete Al 6

Slika P.2.2. Dijagram kidanja epruvete Al 7

Slika P.2.3. Dijagram kidanja epruvete Al 8

Tablica P.2.3. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta trećeispitne grupe

oznaka epruvete	$egin{array}{c} R_{p0,2} \ N/mm^2 \end{array}$	$R_m N/mm^2$	R_k N/mm ²	ε _u mm/mm
Al 6	41,42	86,45	71,22	0,317
Al 7	42,05	88,65	70,00	0,312
Al 8	32,23	75,43	56,23	0,354

Slika P.2.4. Inženjerski σ - ε dijagram epruvete Al 6

Slika P.2.5. Inženjerski σ - ε dijagram epruvete Al 7

Tablica P.2.4. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za epruvete treće skupine

	$\frac{R_{p0,2sr}}{N/mm^2}$	R _{msr} N/mm ²	R_{ksr} N/mm^2	E _{usr} mm/mm
srednje vrijednosti	38,57	83,51	65,82	0,328

Tablica P.2.5. Vrijednosti istezljivosti pruveta treće ispitne grupe

Slika P.2.7. Dijagram F-t epruvete Al 8

PRIVITAK 3.

oznaka epruvete	d_0 mm	$S_{0} \ mm^{2}$	L_0 mm	v N/mm ² ·s ⁻¹
Al 9	10,0	78,5	100	20
Al 10	10,0	78,5	100	20

Tablica P.3.1. Podaci o epruvetama četvrte skupine

Tablica P.3.2. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnogproduljenja epruveta četvrte ispitne grupe

oznaka	$F_{p0,2}$	F_m	F_k	L_u	ΔL_u
epruvete	N	N	N	mm	тт
Al 9	3041	6508	5100	132,4	32,4
Al 10	3222	6676	5230	130,6	30,6

Slika P.3.1. Dijagram kidanja epruvete Al 9

Slika P.3.2. Dijagram kidanja epruvete Al 10

Tablica P.3.3. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta četvrte

ispitne	e grupe			
oznaka	$R_{p0,2}$	R_m	R_k	E _u
epruvete	N/mm ²	N/mm ²	N/mm ²	mm/mm
Al 9	38,74	82,91	64,97	0,324
Al 10	41,05	85,04	66,62	0,306

Slika P.3.3. Inženjerski σ - ε dijagram epruvete Al 9

Slika P.3.4. Inženjerski σ - ε dijagram epruvete Al 10

Tablica P.3.4. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja zaepruvete četvrte skupine

	$R_{p0,2sr}$	R _{msr}	R _{ksr}	E _{usr}
	N/mm^2	N/ mm ²	N/mm ²	mm/mm
srednje vrijednosti	39,90	83,98	65,80	0,315

 Tablica P.3.5.
 Vrijednosti istezljivosti epruveta četvrte ispitne grupe

oznaka	$A_{11,3}$	A _{11,3 sr}
epruvete	%	%
Al 9	32,4	21.5
Al 10	30,6	51,5

PRIVITAK 4.

oznaka epruvete	d ₀ mm	S_{θ} mm^{2}	L ₀ mm	v N/mm ² ·s ⁻¹
Al 11	9,9	77,0	100	30
Al 12	10,0	78,5	100	30

Tablica P.4.1. Podaci o epruvetama pete skupine

Tablica P.4.2. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnogproduljenja epruveta pete ispitne grupe

oznaka	$F_{p0,2}$	F _m	F_k	L_u	ΔL_u
epruvete	N	N	N	тт	тт
Al 11	3235	6546	<i>4930</i>	129,9	29,9
Al 12	3479	6642	<i>4930</i>	129,1	29,1

Slika P.4.1. Dijagram kidanja epruvete Al 11

Slika P.4.2. Dijagram kidanja epruvete Al 12
Tablica P.4.3. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta pete

ispitr	ne grupe			
oznaka epruvete	$R_{p0,2}$ N/mm ²	R_m N/mm ²	R_k N/mm ²	ε _u mm/mm
Al 11	42,01	85,01	64,03	0,299
Al 12	44,32	84,61	62,80	0,291

Tablica P.4.4. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja zaepruvete pete skupine

	$R_{p0,2sr}$	R _{msr}	R_{ksr}	E _{usr}
	N/mm^2	N/mm ²	N/mm^2	mm/mm
srednje vrijednosti	43,17	84,81	63,42	0,295

oznaka	$A_{11,3}$	A _{11,3 sr}
epruvete	%	%
Al 11	29,9	20.5
Al 12	29,1	29,5

Tablica P.4.5. Vrijednosti istezljivosti epruveta pete ispitne grupe

PRIVITAK 5.

oznaka epruvete	d ₀ mm	S_{0} mm^{2}	L ₀ mm	v N/mm ² ·s ⁻¹
Al 13	9,9	77,0	100	50
Al 14	<i>9</i> ,8	75,4	100	50

Tablica P.5.1. Podaci o epruvetama šeste skupine

Tablica P.5.2. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnogproduljenja epruveta šeste ispitne grupe

oznaka epruvete	$F_{p0,2} \over N$	F_m N	F_k N	L_u mm	ΔL_u mm
Al 13	3437	6751	5150	127,8	27,8
Al 14	3043	6352	4700	129,4	29,4

Slika P.5.1. Dijagram kidanja epruvete Al 13

Slika P.5.2. Dijagram kidanja epruvete Al 14

Tablica P.5.3. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruveta šeste

ispitne	e grupe			
oznaka	$R_{p0,2}$	R_m	R_k	ε _u
epruvete	N/mm ²	N/mm ²	N/mm ²	mm/mm
Al 13	44,64	87,68	66,88	0,278
Al 14	40,36	84,24	62,33	0,294

Tablica P.5.4. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za epruvete šeste skupine

Slika P.5.3. Inženjerski σ - ε dijagram epruvete Al 13

Slika P.5.4. Inženjerski σ - ε dijagram epruvete Al 14

oznaka	$A_{11,3}$	A _{11,3 sr}
epruvete	%	%
Al 13	27,8	28.6
Al 14	29,4	28,0

Tablica P.5.5. Vrijednosti istezljivosti epruveta šeste ispitne grupe

PRIVITAK 6.

oznaka epruvete	d_0 mm	S_{θ} mm^{2}	L ₀ mm	v N/mm ² ·s ⁻¹
Al 15	9,7	73,9	100	100
Al 16	10,0	78,5	100	100

Tablica P.6.1. Podaci o epruvetama sedme skupine

Tablica P.6.2. Vrijednosti karakterističnih sila, konačne mjerne duljine i konačnogproduljenja epruveta sedme ispitne grupe

oznaka epruvete	$\frac{F_{p0,2}}{N}$	F_m N	F_k N	L _u mm	ΔL_u mm
Al 15	3303	6235	5090	125,3	25,3
Al 16	3771	6772	5110	126,5	26,5

Slika P.6.1. Dijagram kidanja epruvete Al 15

Slika P.6.2. Dijagram kidanja epruvete Al 16

Tablica P.6.3. Vrijednosti karakterističnih naprezanja i konačnog istezanja epruvetasedme ispitne grupe

oznaka epruvete	$\frac{R_{p0,2}}{N/mm^2}$	R_m N/mm^2	R_k N/mm ²	ε _u mm/mm
Al 15	44,70	84,37	68,88	0,253
Al 16	48,04	86,27	65,10	0,265

Tablica P.6.4. Srednje vrijednosti karakterističnih naprezanja i konačnog istezanja za epruvete sedme skupine

Slika P.6.3. Inženjerski σ - ε dijagram epruvete Al 15

Slika P.6.4. Inženjerski σ - ε dijagram epruvete Al 16

Tablica P.6.5. Vrijednosti istezljivosti epruveta sedme ispitne grupe

Slika P.6.6. Dijagram F-v epruvete Al 16

LITERATURA

- Lim, J. H., High Speed Tensile Test of Automotive Steel Sheets at the Intermediate Strain Rate, POSCO TECHNICAL REPORT 2007, VOL.10 No. 1
- [2] <u>www.tpub.com</u>
- [3] <u>www.pfri.hr</u>
- [4] <u>www.mfkg.kg.ac.yu</u>
- [5] Hrvatska norma HRN EN 10002-1
- [6] Franz, M., Mehanička svojstva materijala ,Fakultet strojarstva i brodogradnje, Ivana Lučića 5, Zagreb
- [7] www.ptli.com/testlopedia/images/Tensile-Rubber-sample.JPG
- [8] www.sri.com/psd/fracture/images/fig_wf3.gif
- [9] <u>www.substech.com</u>
- [10] www.gradimo.hr/1518.aspx
- [11] Filetin, T., Kovačiček, F. Ibdof, J., Svojstva i primjena materijala, Fakultet strojarstva i brodogradnje, Ivana Lučića 5, Zagreb
- [12] www.sfsb.hr
- [13] Franz, M., Skliznice za kolegij: Materijali u brodogradnji, www.fsb.hr/zavod_za_materijale/html/modules.php?op=modload&name=predavanja &file=index
- [14] Stupnišek, M., Cajner F., Osnove toplinske obradbe metala, Fakultet strojarstva i brodogradnje, Ivana Lučića 5, Zagreb