Cerovski, Bruno

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:912761

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-03

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Bruno Cerovski

Zagreb, 2018.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Izv. Prof. dr. sc. Milan Kostelac, dipl. ing.

Student:

Bruno Cerovski

Zagreb, 2018.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

FAKULTET STROJARSTVA I BRODOGRADINJ Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za diplomske ispite studija strojarstva za smjerove: procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveučil	lište u Zagrebu
Fakultet stroj	arstva i brodogradnje
Datum	Prilog
Klasa:	
Ur. broj:	

DIPLOMSKI ZADATAK

Student:

Bruno Cerovski

Mat. br.: 0035191439

Naslov rada na hrvatskom jeziku:

Transportna kolica za manipulaciju teškim teretima

Naslov rada na engleskom jeziku:

Transportation wagon for manipulaton of heavy loads

Opis zadatka:

Način dopreme teških tereta s mjesta iskrcaja do mjesta montaže uvjetovan je često puta uskim i niskim prolazima. Kako uporaba auto dizalice nije uvijek moguća, doprema na mjesto montaže mora se obaviti transportnim kolicima. Osim što se na ista oslanja teret, kolica trebaju omogućiti podizanje tereta uz mogućnost zakretanja. Pored autonomnog pogona transportna kolica trebaju imati mogućnost prihvata rude za vuču / guranje viličarom.

Zadano je:

- 1. Projektno opterećenje transportnih kolica: 100 kN;
- 2. Dimenzije kolica: 1500x3000x1200 mm (širina x duljina x visina);
- 3. Najveća brzina vožnje: 1 m/s;
- 4. Visina podizanja: $\leq 1 \text{ m}$;
- 5. Zakretanje tereta: $\pm 90^{\circ}$;
- 6. Akumulatorski pogonski sustav DC: 48 V;
- 7. Pogonska klasa uređaja prema FEM-u: H3/B4

Rad treba sadržavati:

- 1. Uvod s tehničkim opisom i varijantama izvedbi transportnih kolica;
- 2. Proračun s potrebnim proračunskim i konstrukcijskim skicama i izvorom podataka za:
- nosivu konstrukciju kolica;
- proračun elemenata pogonskog mehanizma za vožnju;
- proračun elemenata pogonskog mehanizma za dizanje i zakretanje tereta hidrauličkog sustava.
- 3. Analizu svih mogućih opasnosti pri radu s transportnim kolicima;
- 4. Dokumentaciju:
- sklopni crtež s potrebnim brojem ortogonalnih projekcija u pogledu i presjeku;
- radioničke crteže u dogovoru s mentorom.
- Svi ostali tehnički podaci mogu se dobiti kod mentora.
- U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

27. rujna 2018.

Zadatak zadao:

Datum predaje rada: 29. studenog 2018.

Predviđeni datum obrane:

5., 6. i 7. prosinca 2018.

Predsjednica Povjerenstva:

Prof. dr. sc. Tanja Jurčević Lulić

Izv. prof. dr.sc. Milan Kostelac

Izjava

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zagreb, Studeni 2018.

Bruno Cerovski

Ovaj rad posvećujem svome ocu Davoru Cerovskom kao znak zahvale za bezuvjetnu podršku, pomoć i razumijevanje tijekom studija.

Također veliko hvala mome mentoru izv. prof. dr. sc. Milanu Kostelcu na pruženoj pomoći i prenesenom znanju te korisnim savjetima.

Želim se još zahvaliti pomajci Veroniki Tutić i baki Kati Cerovski na razumijevanju i podršci za vrijeme studija.

Hvala svim mojim prijateljicama i prijateljima koji su dio ove lijepe uspomene na studentske dane ...

Bruno Cerovski

SADRŽAJ

	SAD	RŽAJ	V
	Saže	tak	VIII
	Sum	mary	IX
	POP	IS SLIKA	X
	POP	IS TABLICA	XII
	Popi	s oznaka	XIII
1.	Uvo	1	1
2.	Pror	ačun čvrstoće nosive strukture	5
	2.1.	Proračun globalne matrice krutosti	7
	2.2.	Proračun opterećenja na globalnoj i lokalnoj razini:	8
		2.2.1. Pomaci u čvorovima	9
	2.3.	Prikaz i usporedba rezultata numerički i grafički	10
	2.4.	Provjera naprezanja u kritičnoj točki	13
	2.5.	Provjera graničnika na izvijanje	14
3.	Pror	ačun pogona	16
	3.1.	Izbor motora za pogon	16
	3.2.	Provjera motora pogona	17
	3.3.	Provjera motora pogona na proklizavanje	19
	3.4.	Provjera kočnice motora za pokretanje	22
	3.5.	Proračun vratila pogona i odabir ležaja	23
		3.5.1. Određivanje reaktivnih sila u osloncima vratila	24
		3.5.2. Dimenzioniranje i provjera sigurnosti kritičnih presjeka vratila	24
		3.5.3. Odabir ležajeva	28
4.	Pror	ačun prednje osovine i sustava spona skretanja vozila	31
	4.1.	Kinematička analiza i odnosi kuteva spone i skretanja vozila	31
5.	Pror	ačun škarastog mehanizma za podizanje	36
	5.1.	Sinteza škarastog mehanizma	36

10.	Zak	ljučak		86
9.	Ana	liza opa	snosti pri radu sa transportnim kolicima	84
	8.1.	Prorač	un kapaciteta baterija	82
8.	Aku	mulato	rski pogonski sustav 48V	82
	7.4.	Simula	cija ploče prihvata okretnog ležaja	79
		7.3.4.	Odabir ležajeva	77
		7.3.3.	Proračun i dimenzioniranje vratila pogona za okretanje	74
		7.3.2.	Provjera naprezanja zuba na Herzov pritisak	72
		7.3.1.	Provjera naprezanja korijena zuba na savijanje	71
	7.3.	Prorač	un zupčanog para s unutarnjim ozubljenjem	68
	7.2.	Odabir	ležaja i proračun unutrašnjeg ozubljenja	66
	7.1.	Definir	anje dinamičkih momenata inercije	64
7.	Pror	ačun m	ehanizma za okretanje	64
		6.1.6.	Dimenzioniranje spremnika	62
		6.1.5.	Projektiranje cjevovoda	59
		6.1.4.	Odabir elektromotora direktnog pogona pumpe	58
		6.1.3.	Proračun potrebnog tlaka u navedenom sustavu	57
		6.1.2.	Proračun potrebnog protoka u navedenom sustavu	56
		6.1.1.	Ulazni podaci	56
	6.1.	Kontro	lni proračun hidrauličkog sustava za podizanje 10 tona	56
6.	Proj	ektiran	je hidrauličkog sustava	56
		5.3.6.	Proračun opterećenja zavara grede prihvata glave hidrauličkog cilindra	54
		5.3.5.	Proracun osovine donjeg kotača	53
		5.3.4.	Proracun osovine donjeg kotača	50
		5.3.3.	Proračun srednje osovine u točki O	50
		5.3.2.	Proračun oslonca L2	48
		5.3.1.	Proračun oslonca L1	47
	5.3.	Dimen	zioniranje i proračun oslonaca mehanizma za podizanje	46
		5.2.2.	Dimenzioniranje i provjera unutarnje noge mehanizma:	44
		5.2.1.	Dimenzioniranje i provjera vanjske noge mehanizma:	41
	5.2.	Određi	vanje reakcija u osloncima i provjera njihove nosivosti	41
		5.1.1.	Odabir hidrauličkog cilindra za podizanje i provjera na izvijanje	39

A.	Programski kod za proračun progiba glavnog nosača nosive strukture	87
B.	Programski kod za proračun sustava spona	96
C.	Prilozi standardnih dokumenata	97

Sažetak

U ovome radu obradilo se konstrukcijsko riješenje transportnih kolica za prijevoz teških tereta i manipulaciju njima. Omogućeni transport može biti autonoman odnosno neovisan o vučnom vozilu koristeći vlastiti izvor energije (trakcijske baterije) ili se može iskoristiti predviđeni prihvat rude i omogućiti transport nekim od raspoloživih vozila u pogonu (viličari, kamioni, itd.).

Prvo se provjerila čvrstoća i krutost glavnih U profila nosive podkonstrukcije koji su konstruirani sa dovoljno velikom krutosti kako bi bila osigurana i ne prednapregnuta pozicija ostalih elemenata u sustavu. Isti je numerički proračun metodom konačnih elemenata validiran i programskim paketom ABAQUS, ali i analitičkim rješenjem iz područja nauke o čvrstoći. Te je dana grafička i tablična usporedba.

Potom je proveden proračun pogona koji uključuje odabir motora, provjeru odabranog motora na pokretanje, proklizavanje, ali i provjera i odabir kočnice motora.

Kako bi se omogućilo skretanje vozila određen je kinematički model spona za skretanje koje omogućuje prihvat hidrauličkog cilindra ili prihvat za rudu nekog od vučnih vozila. Sama transportna kolica još su opremljena škarastim mehanizmom za podizanje i mehanizmom za okretanje. Podizanje je izvedeno škarastim mehanizmom, a okretanje uz pomoć velikog okretnog ležaja sa unutarnjim ozubljenjem. Dan je i proračunski pregled svih krucijalnih elemenata uz prateće skice. Također za pokretanje hidrauličkog sustava škarastog mehanizma odabrani su cilindri te dan proračun istih na izvijanje, ali i proračun te odabir pogonskog motora hidrauličkog sustava.

Iz razloga što bi sustav trebao imati svoj izvor energije, energija za pogon koristi se iz trakcijskih 48V DC baterija za koje je dan spektar upotrebe određenih članova sustava po ciklusu od 1h te je određen njihov kapacitet.

Ključne riječi: transportni uređaji, transportna kolica, teški tereti, hidraulički sustav, transport

Summary

This thesis gives a look at a design of the transportation wagon for manipulation with heavy loads and provides a calculation example of its elements.

The transport can be independent which is provided with its own traction battery set as an energy supply that drives electromotors for driving, hydraulic unit and an electromotor for rotation. In a case of energy loss or just transportation it can be used as a pulling wagon for some other transportation device/vehicle because it is equipped with a special hook for pulling.

Firstly was main U300 beam of main chassis checked on strenght and stiffness. It was really important to get high stiffness level to lower the impact of chassis on other important components in the whole system. The whole process was made through numerical method called: "Finite Elements Method" calculated in MatLAB and afterwards validaed through ABAQUS program package and analitical method. Everything is also well documented with the few graphical comparation diagrams of the final results given for the each method.

It was also necessary to check and choose electromotors for driving and check important variables such as (starting moment at a full load, traction of the empty vehicle and electromotor's brake)

In the other hand the transportation wagon needs to have possibility of steering. The steering system was calculated and the graph of a steering angle was provided in further documentation.

The transportation wagon is also equipped with the lifting scissor mechanism and there is possibility to rotate the load using the platform installed on top of the slewing ring with an internal gearing system

Keywords: transportation devices, transportation wagon, heavy loads, lifting, transport

POPIS SLIKA

1.1	Kolica za transport tereta do 200 t u ljevaonici namjenjena za vožnju po trač-	
	nicama tvrtke HENAN PERFECT HANDLING EQUIPMENT [1]	1
1.2	Radna atmosfera 200 t kolica [1]	2
1.3	Kolica za transport 40t tereta prema [1]	2
1.4	Kolica sa vlastitim izvorom energije (baterija) prema [1]	3
1.5	Rotacijska platforma sa okretnim ležajem izvedenim sa vanjskim ozubljenjem	
	[1]	3
2.1	Proračunski model glavnog nosača pomoću MKE	6
2.2	Model opterećenja u programskom paketu ABAQUS	10
2.3	Raspodjela progiba duž nosača nakon provedene simulacije	11
2.4	Raspodjela unutarnjih momenata i graf duž nosača nakon provedene simulacije	11
2.5	Grafički prikaz progiba UPN 300 glavnog nosača	11
2.6	Grafički prikaz kuta nagiba tangente na elastičnu liniju u karakterističnim toč-	
	kama	12
2.7	Grafički prikaz unutarnjih momenata savijanja u karakterističnim točkama	13
2.8	Proračunski model graničnika na izvijanje	14
3.1	Proračunski model vratila pogona	23
3.2	Odabrani ležaj ležajnog mjesta A	28
3.3	Odabrani ležaj ležajnog mjesta B	29
4.1	Proračunski model sustava spona zakretanja kotača	31
4.2	Prikaz ovisnosti promjene kuta spone i kuta skretanja	33
4.3	Pojednostavljeni prikaz opterećenja grede prednje osovine prema [9]	34
4.4	Kotač tvrtke Elesa [10] RE.F4-300-RBL	35
5.1	Proračunski model/sinteza škarastog mehanizma za podizanje tereta	36
5.2	Prikaz odnosa produljenja cilindra i promjene kuta mehanizma	37
5.3	Prikaz odnosa sile u cilindru i promjene kuta mehanizma	38
5.4	Prikaz svojstava odabranog hidrauličkog cilindra	39
5.5	Odabrani hidraulički cilindar za skretanje	40
5.6	Proračunski model vanjske noge mehanizma za dizanje	41
5.7	Prikaz momenata tromosti, momenata otpora i geometrijskih značajki odabra-	
	nog ISO 12633-2 profila prema [13]	42

5.8	Proračunski model unutarnje noge mehanizma za dizanje	44
5.9	Prikaz oslonaca mehanizma za dizanje	46
5.10	Proračunski presjek oslonca L1 i L2	47
5.11	Proračunski presjek središnjeg svornjaka mehanizma za dizanje	50
5.12	Proračunski presjek donjeg kotača mehanizma za dizanje	51
5.13	Prikaz značajki odabranog kotača mehanizma za dizanje tvrtke Blickle	52
5.14	Proračunski presjek gornjeg kotača mehanizma za dizanje	53
5.15	Prikaz opterećenja zavara na spoju grede hidrauličkog cilindra i unutarnje	
	noge mehanizma	54
6.1	Prikaz odabrane cijevi prema DIN EN 10220 ϕ 13,5 x 2,6	60
6.2	Moodyjev dijagram [18]	62
6.3	Hidraulička pogonska jedinica	63
7.1	Dijagram za odabir okretnih ležajeva sa unutarnjim ozubljenjem prema $[20]$.	67
7.2	Specifikacija podataka izabranog VSI 20 0414 N okretnog ležaja prema [20] .	67
7.3	Skica odabranog okretnog ležaja prema [20]	68
7.4	Skica zahvata unutarnjeg ozubljenja	70
7.5	Slika validacije dimenzija pogonskog zupčanika	70
7.6	Slika validacije dimenzija gonjenog zupčanika	70
7.7	Prikaz sila koje djeluju u zahvatu	72
7.8	Prikaz rezultatnih opterećenja koje djeluju na pogonsko vratilo	73
7.9	Prikaz rezultatnih opterećenja i naprezanja zupčanog para dobivenih program-	
	skim paketom Autodesk Inventor	74
7.10	Odabrani ležaj ležajnog mjesta A	77
7.11	Odabrani ležaj ležajnog mjesta B	78
7.12	Prikaz platforme na koju se veže okretni ležaj	79
7.13	Prikaz proracunskog opterećenja ploče	79
7.14	Prikaz rezultata progiba ploce donje platforme u programskom paketu ABAQUS	80
7.15	Grafički prikaz promjene progiba pod duljini ploće (Dulja os-Y)	80
7.16	Prikaz proracunskog opterećenja ploče okretne platforme	81
7.17	Prikaz rezultata progiba ploce gornje/okretne platforme u programskom pa-	
	ketu ABAQUS	81
7.18	Grafički prikaz promjene progiba pod duljini kriticnog presjeka ploće	81

POPIS TABLICA

2.1	Ulazni podaci za provođenje proračuna glavne grede nosive strukture	5
2.2	Prikaz raspodjele lokalnih pomaka u odnosu na globalne prema slici 2.1	7
2.3	Usporedba rješenja dobivenih numerikom i programskim paketom Abaqus	10
2.4	Tablični prikaz usporedbe unutarnjih momenata savijanja pri ulaznom optere-	
	ćenju	12
3.1	Svojstva odabranog motora za pokretanje tvrtke Watt-Drive	17
6.1	Tehnička svojstva PGF 2X/011 pumpe prema [11]	58
6.2	Specifikacija motora HMA2 132S2-2 tvrtke HOYER	59
7.1	Svojstva odabranog motora za okretanje tvrtke Watt-Drive	65
9.1	Tablica opisa vjerojatnosti opsanosti/rizika prema [24]	84
9.2	Posljedice (veličina posljedica - štetnosti) prema [24]	84
9.3	Matrica procjene rizika prema [24]	84
9.4	Tablica raspodjele rizika na visoki, srednji i mali rizik/opasnost	85

POPIS OZNAKA

Oznaka	Jedinica	Značenje
1	mm	Duljina
F	Ν	(koncentrirana) sila
\mathbf{q}_m	N/mm	Kontinuirano opterećenje
E	MPa	Youngov modul elastičnosti
k		Matrica krutosti
B		Operator rubnih veličina
D		Matrica elastičnosti
K		Globalna matrica krutosti
\mathbf{F}_{s}	Ν	Matrica sile usljed kontinuiranog opterećenja
\mathbf{N}^T		Transponirana matrica funkcije oblika
q(x)	N/mm	Funkcija kontinuiranog opt.
V		Matrica pomaka u čvorovima
\mathbf{V}_{a}		Reducirana matrica pomaka u čvorovima
\mathbf{K}_{aa}		Reducirana matrica krutosti
\mathbf{R}_{a}		Matrica konačnih opterećenja
W_{dop}	mm	Dopušteni progib
W		Progib
Х	mm	Nepoznata duljina duž nosača
\mathbf{M}_y	Nm	Moment savijanja u kritičnom presjeku
\mathbf{M}_{fy}	Nm	Moment savijanja sa svim faktorima pogonskih grupa
ψ		Dinamički faktor pogonske grupe
\mathbf{v}_{diz}	m/min	Brzina dizanja tereta
σ_I	MPa	Prvo proračunsko naprezanje
\mathbf{W}_y	mm^3	Otpor presjeka oko osi y
σ_{dop}	MPa	Dopušteno naprezanje
P_v	W	Snaga ustaljene vožnje
$\mathbf{F}_v, \mathbf{W}_v$	Ν	Sila otpora ustaljene vožnje
\mathbf{m}_{uk}	kg	Ukupna masa
\mathfrak{t}_p	S	Vrijeme pokretanja
a	m/s^2	Ubrzanje
η_{pog}	-	Korisnost pogonskog mehanizma
β	-	Faktor sigurnosti
\mathbf{v}_v	m/s^2	Brzina vožnje

Oznaka	Jedinica	Značenje
F_p	N	Sila potrebna za pokretanje
\mathbf{k}_p	-	Faktor za kavezne motore
z_M	-	Broj motora na jednoj strani
$\mathbf{P}_{n,p}$	W	Nazivna snaga pokretanja
\mathbf{M}_p	Nm	Moment pokretanja
M_{st}	Nm	Statički moment
\mathbf{M}_{din}	Nm	Dinamički moment
ω_{EM}	s^{-1}	Kutna brzina vrtnje elektromotora
\mathbf{I}_R	kgm^2	Rezultantni moment tromosti
I_{rot}		Moment tromosti rotirajućih masa
I_{tran}		Moment tromosti translacijskih masa
\mathbf{I}_{EM}		Moment tromosti elektromotora
\mathbf{M}_n	Nm	Nazivni moment elektromotora
$\mathbf{M}_{n,uk}$	Nm	Ukupni nazivni moment elektromotora
t_{min}	S	Minimalno vrijeme pokretanja sustava
m_{pv}	kg	Masa praznog vozila
\mathbf{W}_{pv}	Ν	Moment otpora voznje praznog vozila
$\mu_{k,p}$		Koeficjent trenja guma-beton
\mathbf{F}_{kot}	Ν	Sila na kotač
Т	Nm	Moment tozije
M_{max}	Nm	Maksimalni moment savijanja
$\sigma_{f,DN}$	MPa	Trajna dinamička črvstoća - čisto naizm. Ciklus
$ au_{t,DI}$	MPa	Trajna dinamička čvrstoća - čisti istosm. Ciklus
\mathbf{R}_m	MPa	Prekidna čvrstoća na vlak
$\sigma_{f.dop}$	MPa	Dopušteno napr. na savijanja
$lpha_0$	-	Faktor čvrstoće materijala vratila
\mathbf{M}_{red}	Nm	Reducirani moment vratila
d_X	mm	Promjer na presjeku X vratila
\mathbf{S}_{post}	-	Postignuta sigurnost na presjeku vratila
b_1	-	Faktor veličine strojnoga dijela
b_2	-	Faktor kvalitete strojne obrade
φ	0	Kut položaja mehanizma
φ	-	Faktor udara
β_{kf}	-	Efektivni faktor zareznog djelovanja kod savijanja okretanjem
η_{kt}	-	Efektivni faktor zareznog djelovanja kod uvijanja

Oznaka	Jedinica	Značenje
σ_{RED}	MPa	Reducirano naprezanje usljed reduciranog momenta
\mathbf{P}_A	Ν	Ekvivalentno dinamičko radijalno opterećenje
C_1	Ν	Dinamička opterećenost ležaja
n _{izl}	min\$^1\$	Brzina vrtnje
L_{0h}	h	Zahtjevani vijek tranja
L_h	h	Stvarni vijek tranja
α_1	0	Kut položaja spone prema Ackermanovoj geometriji
β_1	0	Kut zakretne spone i osi osovine
γ_1	0	90°- α_1
δ_1	0	Teorijski kut između pravca w i vertikale spone
$\mathbf{y}, \mathbf{y}_V, \mathbf{y}_H$	mm	Zakretna spona
$\mathbf{W}, \mathbf{W}_V, \mathbf{W}_H$	mm	Pravac povezivanja osi kotača i osi okretanja rude
$\mathbf{X}, \mathbf{X}_V, \mathbf{X}_H$	mm	Dužina između prihvata spone i osi prihvata rude
z, z_V, z_H	mm	Dužina opisana s osi kotača i prihvata okretne spone
I_{yOS}	mm°	Moment tromosti presjeka oko osi y
c_n	-	faktor pogonske grupe
\mathbf{Q}_{kot}	Ν	Opterećenje glavnog kotaća
\mathbf{Q}_t	Ν	Sila usljed djelovanja maksimalnog tereta
\mathbf{Q}_m	Ν	Priblizno procjenjena težina mehanizma
d	mm	prihvat glave cilindra na škarasti meh.
с	mm	prihvat donjeg dijela cilindra na škarasti mehanizam
\mathbf{X}_{C}	mm	Duljina cilindra
dW	J	Diferencijalni dio obavljenog rada pri podizanju
F_c	Ν	Sila u pojdinačnom cilindru
zA	mm	Vertikalna udaljenost krajnjih oslonaca mehanizma
zO	mm	Vertikalna udaljenost oslonca mehanizma od središta
σ_{hc}	MPa	Tlačno naprezanje u klipnjači cilindra
\mathbf{A}_{kl}	mm^2	Površina poprečnog presjeka klipnjače
λ_i	-	Faktor vitkosti
σ_k	MPa	Naprezanje na izvijanje
\mathbf{S}_{hc}	-	Sigurnost na izvijanje hid. cil.
p_v	MPa	Proračunski pritisak vansjkih uležištenja
$\mathbf{p}_d o p$	MPa	Dopušteni dodirni pritisak
\mathbf{p}_l	MPa	Tlak na limovima platforme
a_L	mm	Debljina lima dosjedanja

Oznaka	Jedinica	Značenje
$ au_{O2}$	MPa	Odrezno naprezanje osovine
$ au_{dop}$	MPa	Dopušteno naprzanje na odrez
\mathbf{F}_R^U	Ν	Rezultantna sila koja opterećuje oslonac L2
\mathbf{F}_{RV}^{V}	Ν	Sila opterećenja oslonca L1
\mathbf{R}_O	Ν	Reaktrivna sila u osloncu O
D_O	Ν	Promjer osovine u osloncu O
τ_{Osr}	MPa	Napreznaje na odrez osovine oslonca O
l_O	mm	duljina kritičnog presjeka osovine kotača mehanizma
\mathbf{F}_{K}^{V}	Ν	Sila koja opterećeuje kotač mehanizma
M_{40}	Nm	Moment savijanja u kritičnom presjeku osovine kotača meh.
A_{oK}	mm°	Površina pop. Presjeka osovine kotača mehanizma
\mathbf{W}_{yzG}	mm^3	Moment otpora zavata grede
$lpha_c$	0	Relativan kut pozicije hid. Cilindara
l_c	mm	Udaljenost djelovanja sile cilindra od ishodišta zavata
σ_{zavG}	MPa	Savojno naprezanje zavara
$ au_{zavG}$	MPa	Naprezanje zavara na odrez
σ_{ekvzG}	MPa	Ekvivalentno naprezanje u zavaru grede
$\sigma_{za.Dop}$	MPa	Dopušteno naprezanje u zavaru
d_{cil}	mm	Promjer klipa hidrauličkog cilindra
\mathbf{v}_{klip}	m/s	Brzina izvlačenja klipa
$\eta_{vol,cil}$	-	Volumetrijska korisnost cilindra
$\eta_{vol,pump}$	-	Volumetrijska korisnost pumpe
$\eta_{meh,pump}$	-	Mehanička korisnost pumpe
$\eta_{uk,pump}$	-	Ukupna korisnost pumpe
$F_{Q/cil.max}$	Ν	Maximalna sila usljed djelovanja opterećenja
Q_{cil}	m ³ /s	Protok po cilindru
\mathbf{p}_c	bar	Ostvareni tlak u cilindru
\mathbf{P}_{pump}	W	Potrebna snaga pumpe
\mathbf{Q}_{pump}^{stv}	l/min	Stvarni protok pumpe
d_c	mm	Nazivni promjer cijevi cjevovoda
d_a	mm	Vanjski promjer cjevovoda
\mathbf{t}_c	mm	Debljina stijenke cijevi
\mathbf{p}_e	bar	Maksimalni tlak koji djeluje u sustavu
$\mathbf{R}_{eH/artheta}$	MPa	Granica tečenja
$ u_N$	-	Faktor zavara bešavne cijevi

Oznaka	Jedinica	Značenje
λ	-	Koeficjent trenja cijevi
\mathbf{v}_{hid}	m/s	Brzina strujanja medija
d_i	mm	unutrašnji promjer cijevi
Re	-	Reynoldsov broj
J_1	kgm^2	Traženi moment inercije tereta
m_p	kg	Pretpostavljena masa paltforme
\mathbf{a}_p	m	Širina platforme
c_t	m	Visina tereta
\mathbf{l}_p	m	Duljina tereta
\mathbf{J}_{uk}	kgm^2	Ukupan dinamički moment tromosti s teretom
ε_1	s^{-1}	Kutno ubrzanje platforme s teretom
a_1	m/s^2	Obodno ubrzanje platforme
i	-	Prijenosni odnos zupčanika unutarnjeg ozubljenja
\mathbf{P}_{an}	W	Stvarna potrebna snaga elektromotora za okretanje
M_{an}	Nm	Moment poteban za orketanje paltforme
D_M	mm	Promjer valjanja valjnih tijela okretnog ležaja
\mathbf{f}_A	-	Faktor primjene za odabrani slučaj transportnih vozila
\mathbf{f}_s	-	Zadani sigurnosni faktor
F_{0a}	Ν	Eksploatacijsko opterećenje
\mathbf{M}_{0k}	Nm	Eksploatacijski moment uslijed ekscentrično postavljenog tereta
ε	-	Parametro ekscentriciteta tereta
\mathbf{f}_{0r}	-	Faktor statičkog opterećenja
F_{0q}	Ν	Aksijalna sila na ležaj
\mathbf{M}_{0q}	Nm	Proračunski moment prevrtanja ležaja
z_2	-	Broj zubi gonjenog zupčanika
z_1	-	Broj zubi pogonskog zupčanika
m	mm	Modul zupčanika
а	mm	Osni razmak zupčanika
d_{a1}	mm	Tjemena kružnica zupčanika (promjer)
d_{f1}	mm	Podnožna kružnica zupčanika (promjer)
d_{w1}	mm	Kinematska kružnica zupčanika (promjer)
d_{b1}	mm	Temeljna kružnica zupčanika (promjer)
F_t	Ν	Tangencijalna sila na zub
σ_F	MPa	Savojno naprezanje u korjenu zuba
\mathbf{Y}_{F1}	-	Faktor oblika

Oznaka	Jedinica	Značenje
Y_{ε}	-	Faktor udjela opterećenja
ε_{lpha}	-	Stupanj prekrivanja profila
$\mathbf{K}_{F\alpha 1}$	-	Faktor raspodjele opterećenja kod provjere korjene zuba
\mathbf{q}_L	-	Korekcijski faktor raspodjele sile
σ_{Flim}	MPa	Dinamička čvrstoća kod naprezanja zuba na savijanje
\mathbf{S}_{Flim}	-	Faktor sigurnosti na savijanje u korjenu zuba
σ_{FP}	MPa	Dopušteno naprezanje na savijanje u korjenu zuba
σ_H	MPa	Proračunsko/Stvarno naprezanje na Herzov pritisak
σ_{HP}	MPa	Dopušteno naprezanje na Herzov pritisak
\mathbf{Z}_M	$\sqrt{N/mm^2}$	Faktor utjeaja materijala na proračun opterećenja bokova
\mathbf{Z}_{H}	-	Faktor oblika boka
$\mathrm{Z}_{arepsilon}$	-	Faktor utjecaja stupnja prekrivanja
\mathbf{K}_{Hlpha}	-	Faktor raspodjele opterećenja kod proračuna bokova
\mathbf{S}_{Hlim}	-	Daktor sigurnosti na Herzov pritisak
F_{r1}	Ν	Radijalna sila na vratilo
\mathbf{F}_{Rz}	Ν	Rezultantna sila na pogonsko vratilo
\mathbf{F}_{rA}	Ν	Sila u ležajnom mjestu A pogonskog vratila
\mathbf{F}_{rB}	Ν	Sila u ležajnom mjestu B pogonskog vratila
X _c	mm	Udaljenost sile i ležajnog mjesta B
\mathbf{X}_{AB}	mm	Udaljenost ležajnih mjesta A i B
$Q_{c.sus}$	kWh	Utrošena energija kroz ciklus po potrošaću
$Q_{c.uk}$	kWh	Ukupna energija kroz jedan ciklus
C_1	Ah	Kapacitet baterije po jednom ciklusu 1h
U	V	Napon baterija
t _c	h	Vrijeme trajanja ciklusa u satima

1. Uvod

Transport tereta je ovisan o raspoloživom prostoru koji ponekad nije dovoljan da bi se teret transportirao auto dizalicom ili nekim drugim glomaznijim transportnim uređajem. Iz toga razloga potrebno je osigurati transport tereta posebnim prilagođenim vozilom/kolicima koja imaju dodatne mogućnosti. Takve mogućnosti poput podizanja tereta ili njegove rotacije osiguravaju bolje uvjete manipulacije teretom i pokrivaju širi spektar načina utovara/istovara.

U takve svrhe moderni pogoni koriste različite vrste kolica koja mogu biti pogonjena zasebnom pogonskom jedinicom (elektromotor, motor s unutrašnjim izgaranjem, hidrualički motor) ili jednostavno se njihov transport može oslanjati na vuču viličarom ili drugim transportnim sredstvom sa vlastitim pogonom.

Dimenzije takvih vozila mogu biti kompaktne kao što je verzija obrađena u ovome radu ili mogu biti glomazne kao prikazana kolica na slici niže koja svojim dimenzijama i nosivošću zaista nadmašuju standarde.

Slika 1.1: Kolica za transport tereta do 200 t u ljevaonici namjenjena za vožnju po tračnicama tvrtke HENAN PERFECT HANDLING EQUIPMENT [1]

Slika 1.2: Radna atmosfera 200 t kolica [1]

Također postoje i kolica koja kako je i navedeno imaju rudu i vuku se zasebnim transportnim sredstvom koje posjeduje svoju pogonsku jedinicu.

Slika 1.3: Kolica za transport 40t tereta prema [1]

Ili jednostavno čitav sustav sa elektromotorima i baterijama ukomponiran unutar kolica kako bi se osigurala njihova neovisnost o vanjkom izvoru energije pogotovo ako na određenim mjestima dopreme nie moguće osigurati vanjski izvor energije.

Slika 1.4: Kolica sa vlastitim izvorom energije (baterija) prema [1]

Također ovakva kolica radi lakšeg utovara ili istovara mogu imati rotacijsku platformu:

Slika 1.5: Rotacijska platforma sa okretnim ležajem izvedenim sa vanjskim ozubljenjem [1]

Ovakvim kolicima omogućen je lakši transport različitih poluproizvoda, posuda pod pritiskom, teških glomaznih tereta i manipulacija njima. Česta je izvedba gibanja prisilnim vođenjem (tračnice), ali ako se poseže za izvedbom koja se giba bez tračnica najčešće su kotači čelični sa bandažom izvedenom iz tvrdih polimera. Ako se poseže za izvedbom sa vlastitim izvorom energije to su najčešće motori sa unutarnjim izgaranjem ili elektromotori koji su opskrbljeni setom trakcijskih baterija sa dubokim pražnjenjem i velikim brojem ciklusa punjenja. Također takva kolica koja se isporučuju kupcima koji stavljaju visoke zahtjeve za konstantu uporabu istih mogu se isporučiti sa više setova izmjenjivih baterija kako bi bila uvijek u funkciji.

2. Proračun čvrstoće nosive strukture

U ovome poglavlju proračunati će se progib i pomaci glavnog nosača nosive konstrukcije podvozja. Proračun će se provesti prateći literaturu i dani slijed iz [2], a korištena metoda za dobivanje progiba i pomaka u točkama te nagiba tangente na elastičnu liniju biti će "Metoda konačnih elemenata".

Metoda konačnih elemenata uzeta je jer može prikazati vrlo jednostavno i brzo sve potrebne informacije u odabranim točkama/čvorovima, a kako sami nosač prati momentni dijagram radi se o modelu grede sa više krutosti na velikom rasponu.

Opis	Varijabla	Jedinica	Iznos
1.i 6. član	$l_1 = l_6$	mm	200
	I_{y1}	mm^4	78800000
2. i 5. član	$l_2 = l_5$	mm	450
	I_{y2}	mm^4	118200000
3. i 4. član	$l_3=l_4$	mm	600
	\mathbf{I}_y	mm^4	157600000
Koncentrirana sila	F	Ν	58860
Kontinuirano opt mase	\mathbf{q}_m	N/mm	0,410
Youngov modul el.	E	MPa	210000

Tablica 2.1: Ulazni podaci za provođenje proračuna glavne grede nosive strukture

Slika 2.1: Proračunski model glavnog nosača pomoću MKE

GLOBALNO	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Lok. EL1	1	2	3	4	-	-	-	-	-	-	-	-	-	-
Lok. EL2	-	-	1	2	3	4	-	-	-	-	-	-	-	-
Lok. EL3	-	-	-	-	1	2	3	4	-	-	-	-	-	-
Lok. EL4	-	-	-	-	-	-	1	2	3	4	-	-	-	-
Lok. EL5	-	-	-	-	-	-	-	-	1	2	3	4	-	-
Lok. EL6	-	-	-	-	-	-	-	-	-	-	1	2	3	4

Tablica 2.2: Prikaz raspodjele lokalnih pomaka u odnosu na globalne prema slici 2.1

2.1. Proračun globalne matrice krutosti

Prema [2] potrebno je provesti proračun. Prvo je potrebno definirati matricu krutosti za jednodimenzijske lokalne elemente:

$$\mathbf{k} = \int_0^l \mathbf{B}^T \mathbf{D} \mathbf{B} dx \tag{2.1}$$

Gdje su:

B - operator rubnih veličina (pomaci i deformacije)

D - matrica elastičnosti

$$\mathbf{B} = \begin{bmatrix} \frac{6}{l^2} - \frac{12x}{l^3} & \frac{6x}{l^2} - \frac{4}{l} & \frac{12x}{l^3} - \frac{6}{l^2} & \frac{6x}{l^2} - \frac{2}{l} \end{bmatrix}$$
(2.2)

$$\mathbf{D} = [E \cdot I_y] \tag{2.3}$$

Prema [2] uvrštavanjem operatora rubnih veličina za gredni element u izraz iznad kao i matrice elastičnosti slijedi koačan izraz koji će se koristiti u proračunskom prilogu pri izradi krajnjeg matematičkog modela:

$$\mathbf{k} = E \cdot I_{y} \begin{bmatrix} \frac{12}{l^{3}} & -\frac{6}{l^{2}} & -\frac{12}{l^{3}} & -\frac{6}{l^{2}} \\ -\frac{6}{l^{2}} & \frac{4}{l} & \frac{6}{l^{2}} & \frac{2}{l} \\ -\frac{12}{l^{3}} & \frac{6}{l^{2}} & \frac{12}{l^{3}} & \frac{6}{l^{2}} \\ -\frac{6}{l^{2}} & \frac{2}{l} & \frac{6}{l^{2}} & \frac{4}{l} \end{bmatrix}$$
(2.4)

Nakon uvrštavanja varijabli l_1 , l_2 , l_3 , l_4 , l_5 , l_6 te integriranja i dobivanja lokalnih matrica krutosti potrebno je popuniti globalne matrice krutosti po modelu prikazanom u tablici 2.2. Ili kako se vidi na primjeru ispod za prvi element prikazan u globalnoj matrici krutosti veličine

14 x 14:

$$\mathbf{K}_{1} = E \cdot I_{y1} \begin{bmatrix} \frac{12}{l_{1}^{3}} & -\frac{6}{l_{1}^{2}} & -\frac{12}{l_{1}^{3}} & -\frac{6}{l_{1}^{2}} & \dots & \ddots & 0 \\ -\frac{6}{l_{1}^{2}} & \frac{4}{l_{1}} & \frac{6}{l_{1}^{2}} & \frac{2}{l_{1}} & \dots & \ddots & 0 \\ -\frac{12}{l_{1}^{3}} & \frac{6}{l_{1}^{2}} & \frac{12}{l_{1}^{3}} & \frac{6}{l_{1}^{2}} & \dots & \ddots & 0 \\ -\frac{6}{l_{1}^{2}} & \frac{2}{l_{1}} & \frac{6}{l_{1}^{2}} & \frac{4}{l_{1}} & \dots & \ddots & 0 \\ 0 & 0 & 0 & 0 & \dots & \ddots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & 0 & \vdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & 0 & \vdots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(2.5)

Nakon što se isti postupak proveo za sve elemente dobiva se zbrajanjem konačna globalna matrica krutosti:

$$\mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2 + \mathbf{K}_3 + \mathbf{K}_4 + \mathbf{K}_5 + \mathbf{K}_6$$
(2.6)

Sa kojom se ide u daljnji proračun.

2.2. Proračun opterećenja na globalnoj i lokalnoj razini:

-

Matrica funkcije oblika u kombinaciji sa pripadnim kontinuiranim opterećenjem od vlastite mase omogućuje pridruživanje i prikaz sile u matričnom obliku za pojedine lokalne elemente:

$$F_{s} = \int_{l} N^{T} q(x) dx = \int_{l} \begin{bmatrix} \frac{2x^{3}}{l^{3}} - \frac{3x^{2}}{l^{2}} + 1\\ \frac{2x^{2}}{l} - x - \frac{x^{3}}{l^{2}}\\ \frac{3x^{2}}{l^{2}} - \frac{2x^{3}}{l^{3}}\\ \frac{x^{2}}{l} - \frac{x^{3}}{l^{2}} \end{bmatrix} q(x) dx$$
(2.7)

Gdje su:

 \mathbf{F}_s - sila uslijed djelovanja kontinuiranog opterećenja

 \mathbf{N}^T - transponirana matrica funkcija oblika

q(x) - funkcija kontinuiranog opterećenja duž nosača

Također ne smije se zaboraviti u globalnom čvoru 3 dodati koncentrirana sila F_{max} u matricu lokalnih, a kasnije i globalnih sila, zajedno pridružujući i opterećenje uslijed vlastite mase nosača.

Pa slijedi za pripadni slučaj:

$$\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3 + \mathbf{R}_4 + \mathbf{R}_5 + \mathbf{R}_6 \tag{2.8}$$

	\mathbf{F}_1^s		0		0		0		0		0	
	0		0		0		0		0		0	
	0		\mathbf{F}_2^s		0		0		0		0	
-	0		0		0		0		0		0	
	0		0		$\mathbf{F}_3^s + \mathbf{F}_3$		0		0		0	
R =	0	+	0	+	0	+	0	+	0	+	0	(2.9)
	0		0		0		$\mathbf{F}_4^s + \mathbf{F}_4$		0		0	
	0		0		0		0		0		0	
	0		0		0		0		\mathbf{F}_5^s		0	
	0		0		0		0		0		0	
	0		0		0		0		0		\mathbf{F}_6^s	

U čvorovima 1 i 2 postoje određena ograničenja (rubni uvjeti). Odnosno spriječeni su pomaci V_1 i V_{13} te se isti redovi i stupci iz matrica K i R moraju ukloniti kako bi se sustav jednadžbi mogao riješiti. Kao rezultat dobivaju se konačne matrice krutosti \mathbf{K}_{aa} i opterećenja \mathbf{R}_a koje će se koristiti kako bi se odredili konačni pomaci \mathbf{V}_a u čvorovima:

$$\mathbf{V}_a = \mathbf{K}_{aa}^{-1} \cdot \mathbf{R}_a \tag{2.10}$$

2.2.1. Pomaci u čvorovima

Rješavanjem navedenog sustava jednadžbi konačno se dobiva:

$$\mathbf{V}_{a} = \begin{bmatrix} \alpha_{1} = -0,0018\\ w_{2} = 0,3527\\ \alpha_{2} = -0,0017\\ w_{3} = 1,0518\\ \alpha_{3} = -0,0013\\ w_{4} = 1,4821\\ \alpha_{4} = 0,0000\\ w_{5} = 1,0518\\ \alpha_{5} = 0,0013\\ w_{6} = 0,3527\\ \alpha_{6} = 0,0017\\ \alpha_{7} = 0,0018 \end{bmatrix}$$
(2.11)

Kao što se vidi iz rezultata kutovi nagiba tangente na progibnu liniju nosača kao i progibi su simetrični i može se zaključiti da je proračunski model ispravan. Na slici 2.2 se vidi dijagram progibne linije i dopuštenog progiba koji slijedi iz:

$$w_{dop} = \frac{L}{600} = \frac{2500}{600} = 4,16 \text{ mm}$$
 (2.12)

2.3. Prikaz i usporedba rezultata numerički i grafički

	Ν	AKE-MatLAB]	MKE-Abaqus				
Duljina	Progib	Kut nagiba tangente	Progib	Kut nagiba tangente				
0	0,0000	-0,001800000000	0	-0,00179				
200	-0,3527	-0,001700000000	-0,3885	-0,0017222				
650	-1,0518	-0,001300000000	-1,036	-0,001327				
1250	-1,4821	0,0000000000000	-1,554	0				
1850	-1,0518	0,001300000000	-1,036	0,001327				
2300	-0,3527	0,0017000000000	-0,3885	0,0017222				
2500	0,0000	0,001800000000	0	0,00179				

 Tablica 2.3: Usporedba rješenja dobivenih numerikom i programskim paketom Abaqus

 MKE Motl AP

Kako se vidi iz priložene tablice proračun progiba proveo se MKE metodom prema [2] i izvršila se provjera u programskom paketu ABAQUS. Također na slici 2.2 se može vidjeti prikaz zadanog proračunskog modela u ABAQUSu:

Slika 2.2: Model opterećenja u programskom paketu ABAQUS

Nakon provođenja simulacije na takvome modelu dobiva se izlazni deformirani oblik koji prikazuje progib, kutove zakreta, ali i unutarnje sile uzduž samog nosača kako se vidi iz slika 2.3 i 2.4

Bruno Cerovski

Slika 2.3: Raspodjela progiba duž nosača nakon provedene simulacije

Slika 2.4: Raspodjela unutarnjih momenata i graf duž nosača nakon provedene simulacije

Nakon što se to eksportira u vanjsku datoteku da se napraviti usporedba progiba (slika 2.5), kuta nagiba tangente na progibnu liniju (slika 2.6) i usporedba nutarnjih momenata za sva tri slučaja analize (numerički MKE, analitički i ABAQUS) - (slika 2.7)

Slika 2.5: Grafički prikaz progiba UPN 300 glavnog nosača

Slika 2.6: Grafički prikaz kuta nagiba tangente na elastičnu liniju u karakterističnim točkama

Tablica 2.4: Tablični prikaz usporedbe unutarnjih momenata savijanja pri ulaznom opterećenju

Duljina, m	MatLAB, Nm	Abaqus, Nm	Analiticki, Nm
0,00	0,00	0,00	0,00
0,20	2959,46	5677,72	-
0,65	27982,09	28346,90	-
1,25	66357,59	62194,00	66803,13
1,85	27982,09	28346,90	-
2,30	2959,46	5677,72	-
2,50	0,00	0,00	0,00

Unutarnji momenti savijanja

Slika 2.7: Grafički prikaz unutarnjih momenata savijanja u karakterističnim točkama

2.4. Provjera naprezanja u kritičnoj točki

Potrebno je u točki najvećeg momenta (x=1,25m) provjeriti naprezanje i usporediti ga sa dopuštenim.

Za pogonsku grupu H3/B4 prema FEM-u određuju se faktori c_n i ψ Te zato proračunski moment koji opterećuje gredu iznosi:

$$M_{yf} = c_n \cdot \psi \cdot M_y = 1, 1 \cdot 1, 31 \cdot 37333 = 53796, 853Nm$$
(2.13)

Gdje su: $c_n = 1, 1$ - faktor pogonske grupe, za pogonsku grupu H3, prema [3] str. 149 $\psi = 1, 31$ - Dinamički faktor za H3 prema [DIN 15018] iz [4] 233. str za brzinu dizanja $v_{diz} = 2, 4$ m/min

 $M_y = 37333$ Nm - Moment savijanja uslijed djelovanja tereta i mase konstrukcije

Naprezanje u točki (x=1,25m) računa se prema formuli za čisto savijanje:

$$\sigma_I = \frac{M_y}{W_y} \le \sigma_{dop} \tag{2.14}$$

Gdje su:

 M_{yf} =53796,85·10³ Nmm - Proračunski moment savijanja W_y =5,35·10⁵ mm³ - Moment otpora UPN 300 profila u točki x=1,25 m $\sigma^{S355J0}_{dop}=150~{\rm N/mm^2}$ - Dopušteno naprezanje prema [5], str. 700, Tablica 1. za čelik S355J0

Pa uvrštavanjem navedenoga u izraz iznad slijedi:

$$\sigma_I = \frac{53796,853 \cdot 10^3}{5,35 \cdot 10^5} = 100,55 \text{ N/mm}^2 \le \sigma_{dop} = 150 \text{ N/mm}^2$$
(2.15)

Što dovodi do zaključka da **UPN 300** profil **zadovoljava** i može se nastaviti proračun i konstrukcija s njim dalje.

2.5. Provjera graničnika na izvijanje

Slika 2.8: Proračunski model graničnika na izvijanje

Za ovaj slučaj vrijedi slobodna duljina izvijanja prema [5] $l_0 = 2l$ Uzevši to u obzir prvo je potrebno izračunati tlačno naprezanje u gredi **DIN 59 410** 100x100x6,3:

$$\sigma_{gr} = \frac{0,25 \cdot Q_t}{A_{gr}} = \frac{25 \cdot 10^3}{2330} = 10,73 \text{ N/mm}^2$$
(2.16)

$$i_t = \sqrt{\frac{I_{min}}{A_j}} = \sqrt{\frac{3,39 \cdot 10^6}{2330}} = 38,14 \text{ mm}$$
 (2.17)

A potom slijedi i vitkost izražena preko slobodne duljine izvijanja l_0 i polumjera tromosti i_t :

$$\lambda_g = \frac{l_0}{i} = \frac{2 \cdot 579}{38, 14} = 30,362 \tag{2.18}$$

Što zapravo daje izvijanje po proračunskom modelu TETMAJER za čelik S235J0 kako slijedi iz [12]:

$$\lambda_g = 30,362 \le \lambda_0 = 89 \tag{2.19}$$

Pa prema [12] se naprezanje na izvijanje računa prema sljedećem izrazu:

$$\sigma_k = 335 - 0,62 \cdot \lambda_g = 335 - 0,62 \cdot 30,362 = 316,175 \text{ MPa}$$
(2.20)

Pa se sada lako izračuna sigurnost na izvijanje:

$$S_{gr} = \frac{\sigma_k}{\sigma_{qr}} = \frac{316,175}{10,73} = 29,5 \tag{2.21}$$

I može se zaključiti da je graničnik u području velike sigurnosti te da u slučaju kolabiranja konstrukcije ili jednostavno naslanjanja kompletno opterećene konstrukcije sa teretom na graničnike neće doći do urušavanja.

3. Proračun pogona

U ovome poglavlju će se obraditi proračun pogonskih motora i kotača (pogonskih i gonjenih) kako bi se utvrdile sve potrebne dimenzije elemenata te njihovih dijelova. Također provesti će se i potreban proračun vratila/osovina kotača i utvrditi načini prijenosa pomoću pera.

3.1. Izbor motora za pogon

Snaga potrebna za ustaljenu vožnju računa se prema:

$$P_v = \frac{F_v \cdot v_v}{\eta_{pog}} \tag{3.1}$$

Gdje je potrebno uvrstiti vrijednosti:

 $F_v=W_v=510 \text{ N} \longrightarrow za \text{ ukupnu masu s teretom } m_{uk}=12\ 000 \text{ kg prema [3], Slika 5.1, str. 68}$ $v_v=1 \text{ m/s} \longrightarrow zadano$ $t_p=6 \text{ s} \longrightarrow \text{prema [3], Tablica 4.2, 65. str}$ $a=0,1 \text{ m/s}^2 \longmapsto \text{prema [3], Tablica 4.4, 65. str}$ $\eta_{pog} = 0, 93 \longmapsto \text{korisnost pogonskog mehanizma}$

Uvrštavanjem slijedi:

$$P_v = \frac{510 \cdot 1}{0,93} = 548,38 \text{ W}$$
(3.2)

Sila potrebna za pokretanje dobiva se iz izraza:

$$F_p = F_v + \beta \cdot m_{uk} \cdot \frac{v_v}{t_p} \tag{3.3}$$

Gdje su nepoznanice:

 $\beta = 1, 2$ - faktor sigurnosti 20 % $F_v = W_v = 510 \text{ N} \longrightarrow \text{za}$ ukupnu masu m_{uk}=12 000 kg prema [3], Slika 5.1, str. 68 $v_v = 1 \text{ m/s} \longrightarrow \text{zadano}$ $t_p = 6 \text{ s} \longmapsto \text{prema [3]}$, Tablica 4.2, 65. str

Uvrštavanjem u prethodni izraz dobiva se:

$$F_p = 510 + 1, 2 \cdot 12000 \cdot \frac{1}{6} = 2910 \text{ N}$$
 (3.4)
Potom slijedi nominalna snaga motora za pojedini pogon iz [4] Tablica 5.1, str. 228

$$P_{n,p} = \frac{F_p \cdot v_v}{k_p \cdot z_m \cdot \eta} \cdot \frac{1}{2}$$
(3.5)

Gdje su poznate veličine:

 $F_p=2190$ N - Sila pokretanja $k_p=1,7$ - za kavezne motore $z_M=1$ - broj motora na jednoj strani $\eta_{pog} = 0,93$ - korisnost mehanizma za pogon

Pa se dobije:

$$P_{n,p} = \frac{2190 \cdot 1}{1,7 \cdot 1 \cdot 0,93} \cdot \frac{1}{2} = 692,6 \text{ W}$$
(3.6)

Odabire se motor za daljnji proračun:

Svojstvo	Vrijednost	Jedinica
Motor	SUA 455A 3C 90S/L-06E-TH-TF	-
Snaga	0,75	kW
Brzina vrtnje motora	940	\min^{-1}
Izlazna brzina iz reduktora	28	\min^{-1}
Moment na izlazu	215	Nm
Moment inercije	0,0066	kgm^2
Masa motora	22	kg

Tablica 3.1:	Svojstva	odabranog motora	za pokretanje tvrtke	Watt-Drive
--------------	----------	------------------	----------------------	------------

3.2. Provjera motora pogona

Motor se provjerava na pokretanje na sljedeći način:

$$M_p = M_{st} + M_{din} \tag{3.7}$$

Gdje je statički moment:

$$M_{st} = \frac{F_v \cdot v_v}{\eta_{pog} \cdot \omega_{EM}} \tag{3.8}$$

Gdje je potrebno uvrstiti vrijednosti:

 $F_v = W_v = 850 \text{ N} \longrightarrow za ukupnu masu m_{uk} = 12 000 \text{ kg prema [3], Slika 5.1, str. 68}$

 $v_v=1 \text{ m/s} \longmapsto$ - zadano zadatkom $\eta_{poq} = 0, 93 \longmapsto$ korisnost pogonskog mehanizma

Dok je kutnu brzinu potrebno izraziti na sljedeći način:

$$\omega_{EM} = \frac{2\pi \cdot n_{EM}}{60} = \frac{2\pi \cdot 940}{60} = 98,44 \,\mathrm{s}^{-1} \tag{3.9}$$

Potom vraćanjem očitanih i dobivenih vrijednosti u izraz za statički moment dobije se:

$$M_{st} = \frac{850 \cdot 0,35}{0,93 \cdot 98,44} = 5,57 \text{ Nm}$$
(3.10)

Zatim je potrebno izračunati dinamički moment:

$$M_{din} = I_R \cdot \frac{\omega_{EM}}{t} \tag{3.11}$$

Gdje su od prije poznate vrijednosti:

 t_p = 6 s → prema [3], Tablica 4.2, 65. str $ω_{EM} = 98, 44 \text{ s}^{-1}$

A I_R se dijeli na moment tromosti rotirajućih masa i translacije kako slijedi:

$$I_R = I_{rot} + I_{tran} \tag{3.12}$$

za moment tromosti rotirajućih masa:

$$I_{rot} = I_{EM} \cdot \beta \tag{3.13}$$

Gdje su iz tablice odabira motora i [4] vidljive sljedeće vrijednosti:

I_{EM}=0,0066 kgm² $\beta = 1, 2$ - faktor sigurnosti 20 %

Pa slijedi:

$$I_{rot} = 0,0066 \cdot 1, 2 = 0,00792 \,\mathrm{kgm}^2 \tag{3.14}$$

Moment svih masa translacije dobiva se iz sljedećeg izraza:

$$I_{tran} = \frac{m_{uk}}{\eta} \cdot \left(\frac{v_v}{\omega_{EM}}\right)^2 = \frac{12000}{0,93} \cdot \left(\frac{1}{98,44}\right)^2 = 1,33 \text{ kgm}^2$$
(3.15)

Za poznate veličine:

 m_{uk} =12 000 kg - ukupna translacijska masa $\omega_{EM} = 98,44 \text{ s}^{-1}$ - kutna brzina elektromotora $\eta_{pog} = 0,93 \longmapsto$ korisnost pogonskog mehanizma v_v =1 m/s \longmapsto Zadano zadatkom

Sada kad su poznate varijable I_{rot} i I_{tran} može ih se uvrstiti u konačnu jednadžbu za I_R pa slijedi:

$$I_R = 0,00792 + 1,33 = 1,3395 \text{ kgm}^2$$
(3.16)

Potom se lako dobiva dinamički moment:

$$M_{din} = 1,3395 \cdot \frac{98,44}{6} = 21,97 \text{ Nm}$$
(3.17)

Sada kad su M_{st} i M_{din} proračunati može se dobiti M_p :

$$M_p = 5,57 + 21,97 = 27,55 \text{ Nm}$$
(3.18)

Uvjet koji motor za pokretanje mora zadovoljiti glasi:

$$\frac{M_p}{M_{n.uk}} < 1,7..2 \tag{3.19}$$

A nazivni moment motora M_n slijedi iz tablice odabranog motora:

$$M_n = \frac{P}{\omega_{EM}} = \frac{750}{98,44} = 7,619 \text{ Nm}$$
(3.20)

Uzimajući u obzir da se radi o dva motora, te se čitav proračun provjere motora radio sa ukupnom translacijskom masom, potrebno je M_n pomnožiti sa 2:

$$M_{n,uk} = 2 \cdot M_n = 15,238 \text{ Nm} \tag{3.21}$$

Pa iz toga slijedi uvrštavanjem u zadani uvjet:

$$\frac{M_p}{M_{n,uk}} = \frac{27,55}{15,238} = 1,81 < 1,7..2$$
(3.22)

Te se može zaključiti da motor zadovoljava!

3.3. Provjera motora pogona na proklizavanje

Minimalno vrijeme pokretanja sustava:

$$t_{min} = 1, 2 \cdot \frac{\beta_v \cdot m_{pv} \cdot v_v}{(\mu_{k,p} \cdot G_a - W_{pv})}$$
(3.23)

U izrazu iznad vrijednosti redom glase:

 m_{pv} =2000 kg - masa praznog vozila v_v =1 m/s → Zadano zadatkom W_{pv} =100 N - prema [3], str 68. Slika 5.1 $\mu_{k,p} = 0, 5$ - Trenje guma-beton, prema [5], str. 169. Veličina G_a izračunava se kao:

$$G_a = G \cdot \frac{n_p}{n_k} \tag{3.24}$$

Dok se n_p izračunava preko:

$$n_p \ge n_k \cdot \left(\frac{F_p}{\mu_{k,p} \cdot m_{pv} \cdot g}\right) \tag{3.25}$$

Gdje su:

n_k=4 - broj kotača vozila $F_p=2910 \text{ N}$ - sila pokretanja $\mu_{k,p} = 0, 5$ - Trenje guma-beton, prema [5], str. 169. $m_{pv}=2000 \text{ kg}$ masa praznog vozila

Uvrštavanjem u jednadžbu slijedi:

$$n_p \ge 4 \cdot \left(\frac{3490}{0, 5 \cdot 2000 \cdot 9, 81}\right) = 1,18$$
 (3.26)

Pa se tako broj pogonskih kotača zaokružuje na n $_p$ =2.

Sada se vraćaju varijable $n_k=4$ i $n_p=2$ u izraz za G_a i slijedi:

$$G_a = 2000 \cdot 9,81 \cdot \frac{2}{4} = 9810 \text{ N}$$
(3.27)

Dok se faktor β_v određuje iz formule:

$$\beta_v = 1 + \frac{\beta \cdot I_{EM}}{m_{p,v}} \cdot \left(\frac{\omega_{EM}}{v_v}\right)^2 \cdot \eta_{pog}$$
(3.28)

U izrazu iznad vrijednosti redom glase:

eta=1,2 - faktor sigurnosti 20 % $\eta_{pog}=0,93\longmapsto$ korisnost pogonskog mehanizma I $_{EM}$ =0,0066 kgm² m_{pv} =2000 kg - masa praznog vozila v_v =1 m/s → prema [3], Tablica 4.2, 65. str $ω_{EM} = 98, 44 \text{ s}^{-1}$ - kutna brzina elektromotora

Nakon uvrštavanja:

$$\beta_v = 1 + \frac{1, 2 \cdot 0,0066}{2000} \cdot \left(\frac{98,44}{1}\right)^2 \cdot 0,93 = 1,36$$
(3.29)

Sada se može izračunati minimalno vrijeme pokretanja čitavog neopterećenog sustava:

$$t_{min} = 1, 2 \cdot \frac{1, 36 \cdot 2000 \cdot 1}{(0, 5 \cdot 9810 - 100)} = 0,67$$
s (3.30)

Kako bi se ostvarilo minimalno vrijeme pokretanja izraz za moment pokretanja glasi:

$$M_{pok} = I_R \cdot \frac{\omega_{EM}}{t_{min}} + M_{st,o} \tag{3.31}$$

Pa poznate varijable glase:

I_R=1,3395 kgm² $\eta_{pog} = 0, 93 \mapsto$ korisnost pogonskog mehanizma t_{min}=0,67 s - minimalno vrijeme pokretanja

Dok se $M_{st,o}$ dobiva iz jednadžbe:

$$M_{st,o} = \frac{W_{p,v}}{\eta_{pog}} \cdot \frac{v_v}{\omega_{EM}}$$
(3.32)

u kojoj su poznati članovi:

 W_{pv} =100 N - prema [3], str 68. Slika 5.1 v_v =1 m/s → prema [3], Tablica 4.2, 65. str $\eta_{pog} = 0, 93$ → korisnost pogonskog mehanizma $ω_{EM} = 98, 44 \text{ s}^{-1}$ - kutna brzina elektromotora

Uvrstimo li to u jednadžbu iznad:

$$M_{st,o} = \frac{100}{0,93} \cdot \frac{0,35}{147,65} = 1,0923 \text{ Nm}$$
(3.33)

Te vratimo li sve u početni izraz za M_{pok} slijedi:

$$M_{pok} = 1,3395 \cdot \frac{98,44}{0,67} + 1,0923 = 197,89 \text{ Nm}$$
(3.34)

Srednji moment izabranog motora dobije se iz izraza:

$$M_{p,sr} = 1, 5 \cdot M_n \tag{3.35}$$

Gdje je izračunati izlazni moment motora za nazivnu snagu i brzinu vrtnje:

M_n=7,619 Nm

Pa se nakon uvrštavanja dobije:

$$M_{p,sr} = 1, 5 \cdot 7, 619 = 11, 428 \text{ Nm}$$
(3.36)

Uvjet postavljen na motor jest:

$$M_{pok} = 197,89 \text{ Nm} > M_{p,sr} = 11,428 \text{ Nm}$$
(3.37)

3.4. Provjera kočnice motora za pokretanje

Kočni moment motora određen je jednadžbom:

$$M_k = \eta_k \cdot Q_{uk} \cdot \frac{v_v}{\omega_{EM}} \cdot \left(\frac{\beta_v \cdot v_v}{g \cdot t_z} - \frac{w}{1000}\right) < M_{k,m} = 10 \text{ Nm}$$
(3.38)

 $v_v=1 \text{ m/s} \longmapsto Zadano zadatkom$

 $\omega_{EM}=98,44~{\rm s}^{-1}$ - kutna brzina elektromotora

 $\beta_v = 1,36$

w = 8 N/kN= 0,008 N/N - Pri D=300 specifičan otpor vožnje prema [3] Slika 3.4, str. 59.

, a član stupnja korisnosti u kočnome stanju računa se po izrazu:

$$\eta_k = \left(2 - \frac{1}{\eta_{pog}}\right) = \left(2 - \frac{1}{0,93}\right) = 0,92$$
(3.39)

Dok član Q_{uk} predstavlja sumu sila uslijed mase vozila i maksimalnog tereta te iznosi:

$$Q = m_{uk} \cdot g = 12000 \cdot 9, 81 = 117720 \text{ N}$$
(3.40)

, a varijabla t_z predstavlja potrebno vrijeme zaustavljanja i računa se ovako:

$$t_z \le 5 \cdot \beta_v \cdot v_v = 5 \cdot 1,36 \cdot 1 = 5,04 \,\mathrm{s} \tag{3.41}$$

Konačno kad su sve veličine poznate može se uvrstiti sve u uvjet momenta kočenja motora:

$$M_k = 0,92 \cdot 117720 \cdot \frac{1}{98,44} \cdot \left(\frac{1,36 \cdot 1}{9,81 \cdot 5} - \frac{8}{1000}\right) = 21,7 \text{ Nm} < M_{k,m} = 25 \text{ Nm} \quad (3.42)$$

Te se može zaključiti da odabrana kočnica BBR-25 proizvođača Watt-Drive kočnog momenta 10 Nm zadovoljava!

3.5. Proračun vratila pogona i odabir ležaja

Slika 3.1: Proračunski model vratila pogona

3.5.1. Određivanje reaktivnih sila u osloncima vratila

Poznate su sljedeće varijable:

 $F_{kot} = 29430N$ - Sila koja djeluje na kotač T = 220Nm - Moment torzije uslijed pokretanja vozila

Kako bi se dobile reaktivne sile u osloncima (ležajevima) A i B radi se suma momenata oko ležajnog mjesta A i zbroj svih sila po vertikali "z-osi". Odnosno $\sum M_A = 0$ i $\sum F_V = 0$. Iz čega slijedi:

$$F_{kot} \cdot 96, 5 + F_B \cdot 151, 5 = 0 \tag{3.43}$$

Dobiva se reaktivna sila u osloncu B:

$$F_B = 18745, 84 \,\mathrm{N} \tag{3.44}$$

Potom slijedi zbroj svih vertikalnih sila sa nepoznanicom sile F_A :

$$F_{kot} - F_A + F_B = 0 (3.45)$$

Te proizlazi reaktivna sila u osloncu A:

$$F_A = 48175, 84 \text{ N} \tag{3.46}$$

Tako se maksimalan moment javlja u području vratila oslonca A i iznosi:

$$M_{max} = 2840 \text{ Nm}$$
 (3.47)

3.5.2. Dimenzioniranje i provjera sigurnosti kritičnih presjeka vratila

Kako bi se proveo proračun čvrstoće i sigurnosti rukavaca vratila potrebno je preddefinirati neke parametre poput varijabli ovisnih o materijalu i sl. Pa je tako odabrani materijal vratila s obzirom na tešku pogonsku grupu konstrukcije **18CrNi6** za koji vrijedi prema [6]

 $\sigma_{fDN} = 640 \text{ MPa}$ - trajna dinamička čvrstoća kod savijanja čistim naizmjeničnim ciklusom $\tau_{tDI} = 510 \text{ MPa}$ - trajna dinamička čvrstoća kod uvijanja čistim istosmjernim ciklusom $R_m = 1200 \text{ MPa}$ - Prekidna čvrstoća na vlak $\sigma_{f.dop} = 160 \text{ MPa}$ - Dopušteno napreznaje na savijanje $\alpha_0 = \frac{\sigma_{fDN}}{\sqrt{3} \cdot \tau_{tDI}} = \frac{640}{\sqrt{3} \cdot 510} = 0,7245$ - Faktor čvrstoće materijala vratila prema [7]

Presjek I-I

Prvo je potrebno odrediti moment u danom presjeku, a on iznosi:

$$M_{f(I)} = F_{kot} \cdot 66, 5 = 29430 \cdot 66, 5 = 1957095 \text{ Nmm}$$
(3.48)

Reducirani moment u istom tom presjeku funkcija je više varijabli koje uključuju α_0 kao faktor čvrstoće materijala, moment uvijanja T i prije izračunati moment savijanja u danom presjeku.

$$M_{red}^{I-I} = \sqrt{M_{f(I)}^2 + 0.75 \cdot (\alpha_0 \cdot T)^2}$$
(3.49)

Što uvrštavanjem daje:

$$M_{red}^{I-I} = \sqrt{1957095^2 + 0,75 \cdot (0,7245 \cdot 220 \cdot 10^3)^2} = 1961956,86 \text{ Nmm}$$
(3.50)

Potom se lako izračunava potreban promjer rukavca vratila:

$$d_I \ge \sqrt[3]{\frac{10 \cdot M_{red}^{I-I}}{\sigma_{f.dop}}} = \sqrt[3]{\frac{10 \cdot 1961956, 86}{160}} = 49, 68 \text{ mm}$$
(3.51)

Te se odabire promjer rukavca $d_I = 50 \text{ mm}$

Kontrola presjeka I-I - dinamička sigurnost

Ovdje se uspoređuje postignuta sigurnost S_{post} na odabranom presjeku sa onom koja je potrebna S_{pot} . Pa tako izraz za izračunavanje postignute sigurnosti glasi [7]:

$$S_{post} = \frac{b_1 \cdot b_2 \cdot \sigma_{fDN}}{\varphi \cdot \sigma_f} \tag{3.52}$$

Gdje redom za zadani presjek očitano iz [7] slijedi:

 $b_1 = 0, 81$ - Faktor veličine strojnog dijela za d=50 mm $b_2 = 0, 89$ - Faktor kvalitete strojne obrade za $R_m = 800$ MPa i $R_{max} = 6, 3 \ \mu m$ $\sigma_{fDN} = 640$ MPa - trajna dinamička čvrstoća kod savijanja čistim naizmjeničnim ciklusom za 18CrNi6

 $\varphi = 1, 2$ - Faktor udara (srednje jaki)

Potrebno je također izračunati efektivne faktore zareznog djelovanja pri savijanju kod okretanja β_{kf} i uvijanja β_{kt} .

Efektivni faktor zareznog djelovanja kod savijanja okretanjem iznosi:

$$\beta_{kf} = 1 + c_1 \cdot (\beta_{kf2} - 1) \tag{3.53}$$

Gdje se očitavaju, a potom i uvrštavaju u izraz sljedeće veličine iz [7]:

$$c_1 = f(\frac{D}{d} = 1, 6) = 0,87$$

 $\beta k f 2 = f(\frac{\rho}{D} = 0,08) = 1,52$

Pa uvrštavanjem slijedi β_{kf}

$$\beta_{kf} = 1 + 0,87 \cdot (1,52 - 1) = 1,416 \tag{3.54}$$

Na isti način dolazi se do efektivnog faktora zareznog djelovanja kod uvijanja:

$$\beta_{kt} = 1 + c_2 \cdot (\beta_{kt1,4} - 1) \tag{3.55}$$

Gdje su:

 $\beta_{kt1,4} = 1,35$ $c_2 = 1$

Te uvrštavanjem u početni izraz dobije se: $\beta_{kt} = 1,35$

Sada kada su svi ključni faktori izračunati uvrštava se sve u izraz:

$$M_{red1} = \sqrt{(M_{red}^{I-I} \cdot \beta_{kf})^2 + 0.75 \cdot (\alpha_0 \cdot T \cdot \beta_{kt})^2}$$
(3.56)

 $M_{red1} = \sqrt{(1961956, 86 \cdot 1, 416)^2 + 0,75 \cdot (0,7245 \cdot 220 \cdot 10^3 \cdot 1,35)^2} = 2784373,73 \text{ Nmm}$ (3.57)

Potom kako bi se odredilo stvarno reducirano naprezanje u presjeku potrebno je izračunati moment otpora presjeka:

$$W_I = 0, 1 \cdot d_I^3 = 0, 1 \cdot 50^3 = 12500 \text{ mm}^3$$
 (3.58)

Nakon čega slijedi σ_{red1} :

$$\sigma_{red1} = \frac{M_{red1}}{W_I} = 222,75 \text{ MPa}$$
(3.59)

Te se može provjeriti sigurnost izrazom sa početka (4.52):

$$S_{post} = \frac{0,81 \cdot 0,89 \cdot 640}{1,2 \cdot 222,75} = 1,73$$
(3.60)

Pa je tako:

$$S_{post} = 1,73 \ge S_{pot} = 1,5 \tag{3.61}$$

Ili jednostavnije drugim načinom:

$$S_{post} = \frac{\sigma_{fDN}}{\sigma_{red1}} = 2,66 \ge S_{pot} = 1,5$$
 (3.62)

Presjek II-II

 $M_{f(II)} = 2839995$ Nmm - Moment u presjeku II-II $M_{red}^{II-II} = 2840832, 36$ Nmm - Reducirani moment u presjeku II-II $d_I \ge 56, 2$ mm - Proračunski minimalni promjer rukavca u presjeku II-II

Te se odabire promjer rukavca $d_{II} = 80$ mm.

Kontrola presjeka II-II - dinamička sigurnost

 $b_1 = 0,77$ - Faktor veličine strojnog dijela za d=80 mm $b_2 = 0,89$ - Faktor kvalitete strojne obrade za $R_m = 800$ MPa i $R_{max} = 6,3 \ \mu$ m $\sigma_{fDN} = 640$ MPa - trajna dinamička čvrstoća kod savijanja čistim naizmjeničnim ciklusom za 18CrNi6 $\varphi = 1, 2$ - Faktor udara (srednje jaki)

Potrebno je također izračunati efektivne faktore zareznog djelovanja pri savijanju kod okretanja β_{kf} i uvijanja β_{kt} .

Efektivni faktor zareznog djelovanja kod savijanja okretanjem iznosi:

$$\beta_{kf} = 1 + c_1 \cdot (\beta_{kf2} - 1) \tag{3.63}$$

Gdje se očitavaju, a potom i uvrštavaju u izraz sljedeće veličine:

 $c_1 = f(\frac{D}{d} = 1, 06) = 0,001$ - zanemarivo $\beta k f 2 = f(\frac{\rho}{D} = 0,025) = 1,7$

Pa uvrštavanjem slijedi β_{kf}

$$\beta_{kf} = 1 + 0 \cdot (1, 52 - 1) = 1 \tag{3.64}$$

Na isti način dolazi se do efektivnog faktora zareznog djelovanja kod uvijanja:

$$\beta_{kt} = 1 + c_2 \cdot (\beta_{kt1,4} - 1) \tag{3.65}$$

Gdje su:

 $\beta_{kt1,4} = 1,5$ $c_2 = 1$

Te uvrštavanjem u početni izraz dobije se: $\beta_{kt}=1,5$

Sada kada su svi ključni faktori izračunati uvrštava se sve u izraz:

$$M_{red2} = \sqrt{(M_{red}^{II-II} \cdot \beta_{kf})^2 + 0.75 \cdot (\alpha_0 \cdot T \cdot \beta_{kt})^2}$$
(3.66)

$$M_{red2} = \sqrt{(2839995 \cdot 1)^2 + 0.75 \cdot (0.7245 \cdot 220 \cdot 10^3 \cdot 1.5)^2} = 2847532,7 \text{ Nmm} \quad (3.67)$$

Potom kako bi se odredilo stvarno reducirano naprezanje u presjeku potrebno je izračunati moment otpora presjeka:

$$W_{II} = 0, 1 \cdot d_I^3 = 0, 1 \cdot 80^3 = 51200 \text{ mm}^3$$
(3.68)

Nakon čega slijedi σ_{red1} :

$$\sigma_{red2} = \frac{M_{red2}}{W_{II}} = 55,5 \text{ MPa}$$
(3.69)

Te se može provjeriti sigurnost izrazom sa početka (4.52):

$$S_{post} = \frac{0,77 \cdot 0,89 \cdot 640}{1,2 \cdot 55,5} = 6,58 \tag{3.70}$$

Pa je tako:

$$S_{post} = 6,58 \ge S_{pot} = 1,5 \tag{3.71}$$

3.5.3. Odabir ležajeva

Ležajno mjesto A

Za ležajno mjesto A odabran je ležaj SKF 22216 E prema [8]

Slika 3.2: Odabrani ležaj ležajnog mjesta A

$$P_A = X_A \cdot F_{Ar} + Y_A \cdot F_{Aa} = 48175, 84 \text{ N}$$
(3.72)

$$C_{1A} = P_A \cdot \left(\frac{60 \cdot n_{izl} \cdot L_{10h}}{10^6}\right)^{1/\epsilon}$$
(3.73)

Gdje su veličine:

 $\varepsilon=10/3$ - za teorijski dodir u liniji $n_{izl}=22~{\rm min^{-1}}$ - izlazna brzina iz motor reduktora za pokretanje $L_{10h}=5000~{\rm h}$ - transportna vozila

Potom slijedi

$$C_{1A} = 48175, 84 \cdot \left(\frac{60 \cdot 22 \cdot 5000}{10^6}\right)^{3/10} = 84, 8 \text{ kN}$$
 (3.74)

Pa se usporedi sa 3.2 i dobije se:

$$C_{1A} = 84, 8 \text{ kN} \le C = 243 \text{ kN} \tag{3.75}$$

Što znači da ležaj zadovoljava, potrebno je još proračunati njegov vijek trajanja:

$$L_{h,A} = \frac{10^6}{60 \cdot n_{izl}} \cdot \left(\frac{C_A}{P_A}\right)^{\varepsilon}$$
(3.76)

Iz čega se uvrštavanjem dobije:

$$L_{h,A} = 4988,91 \text{ h} \tag{3.77}$$

Isti ovaj postupak ponovi se za ležajno mjesto B

Ležajno mjesto B

Za ležajno mjesto B odabran je ležaj NU 310 ECP prema [8]

Slika 3.3: Odabrani ležaj ležajnog mjesta B

$$P_A = X_A \cdot F_{Ar} + Y_A \cdot F_{Aa} = 18745, 84 \text{ N}$$
(3.78)

$$C_{1B} = P_B \cdot \left(\frac{60 \cdot n_{izl} \cdot L_{10h}}{10^6}\right)^{1/\varepsilon}$$
(3.79)

Gdje su veličine:

 $\varepsilon=10/3$ - za teorijski dodir u liniji $n_{izl}=22~{\rm min^{-1}}$ - izlazna brzina iz motor reduktora za pokretanje $L_{10h}=5000~{\rm h}$ - transportna vozila

Potom slijedi

$$C_{1B} = 18745, 84 \cdot \left(\frac{60 \cdot 22 \cdot 5000}{10^6}\right)^{3/10} = 33,02 \text{ kN}$$
 (3.80)

Pa se usporedi sa 3.3 i dobije se:

$$C_{1B} = 33,02 \text{ kN} \le C = 127 \text{ kN} \tag{3.81}$$

Što znači da ležaj zadovoljava, potrebno je još proračunati njegov vijek trajanja:

$$L_{h,A} = \frac{10^6}{60 \cdot n_{izl}} \cdot \left(\frac{C_B}{P_B}\right)^{\varepsilon}$$
(3.82)

Iz čega se uvrštavanjem dobije:

$$L_{h,B} = 5031, 14 \text{ h} \tag{3.83}$$

4. Proračun prednje osovine i sustava spona skretanja vozila

U ovome poglavlju razmatrati će se konstrukcijska izvedba prednje osovine i sustava spona zakretanja kotača. Odnosno ispitati će se čvrstoća glavnog profila osovine, te odnosi ključnih kutova zakretanja kotača.

4.1. Kinematička analiza i odnosi kuteva spone i skretanja vozila

Prilikom konstrukcije glavne osovine i njenih pripadnih spona za zakretanje poštivali su se zakoni Ackermanove geometrije. Odnosno kut α koji zatvara mala spona sa centralnom osi vozila je takav da centralno siječe stražnju os kotača. Sve veličine u početnom (nultom) položaju lako se očitavaju iz slike 4.1, a nose indeks 1, iz čega slijedi. Također sve duljinske izmjere u horizontalnom smjeru nose indeks H, a u vertikalnom smjeru indeks V:

 $\alpha_1 = 13^\circ$ - Kut određen iz Ackermanove geometrije

 $\beta_1 = 34^{\circ}$

 $\gamma_1 = 77^\circ$ - Kut manje spone vezane na kotač

 $\delta_1 = 65^\circ$ - Kut između dvije osi rotacije, konstantna varijabla

 $y_H = 526, 30 \text{ mm}, y_V = 349, 74 \text{ mm}, x_H = 45, 70 \text{ mm}, x_V = 200 \text{ mm}, w_H = 549 \text{ mm},$ $w_V = 250, 38 \text{ mm}, z_H = 23 \text{ mm}, z_V = 100, 64 \text{ mm}$

Slika 4.1: Proračunski model sustava spona zakretanja kotača

Kako bi se dobio odnos ovisnosti kuta γ kao funkcija o kutu α postavljaju se jednadžbe odnosa kuteva iz 4.1. Znajući da su spone upisane unutar pravokutnika lako se zaključuje

da horizontalne stranice moraju biti paralelne i jednake. Isto pravilo vrijedi i za vertikalne stranice pravokutnika. Pa slijedi:

Zbroj horizontala

$$y_H + x_H = w_H + z_H (4.1)$$

Zbroj vertikala

$$y_V + z_V = x_V + w_V \tag{4.2}$$

Poštivajući trigonometrijski identitet:

$$\sin^2(\beta) + \cos^2(\beta) = 1 \tag{4.3}$$

Služeći se trigonometrijom lako se dolazi do raspisivanja navedenih izraza kako bi se moglo izraziti tražene kutove:

$$y_H = y \cdot \sin(\beta_1) \tag{4.4}$$

$$y_V = y \cdot \cos(\beta_1) \tag{4.5}$$

$$x_H = x \cdot \sin(\alpha + \alpha_1) \tag{4.6}$$

$$x_V = x \cdot \cos(\alpha + \alpha_1) \tag{4.7}$$

$$z_H = z \cdot \cos(\gamma) \tag{4.8}$$

$$z_V = z \cdot \sin(\gamma) \tag{4.9}$$

$$w_H = w \cdot \sin(\delta_1) \tag{4.10}$$

$$w_V = w \cdot \cos(\delta_1) \tag{4.11}$$

Potom se raspišu jednadžbe iz izraza (5.1) i (5.2)

$$\cdot \sin(\beta_1) = \frac{1}{y} \cdot \left(w \cdot \sin(\delta) + z \cdot \cos(\gamma) - x \cdot \sin(\alpha + \alpha_1) \right)$$
(4.12)

$$\cos(\beta_1) = \frac{1}{y} \cdot \left(x \cdot \cos(\alpha + \alpha_1) + w \cdot \cos(\delta) - z \cdot \sin(\gamma) \right)$$
(4.13)

Koristeći trigonometrijske identitete iz izraza (5.3) odnosno zbrajanjem kvadriranih izraza (5.12) i (5.13) dolazi se do:

$$1 = \left[\frac{1}{y} \cdot \left(w \cdot \sin(\delta) + z \cdot \cos(\gamma) - x \cdot (\sin(\alpha) \cdot \cos(\alpha_1) + \cos(\alpha) \cdot \sin(\alpha_1))\right)\right]^2 + \frac{1}{y} \cdot \left(x \cdot (\cos(\alpha) \cdot \cos(\alpha_1) - \sin(\alpha) \cdot \sin(\alpha_1)) + \left[w \cdot \cos(\delta) - z \cdot \sin(\gamma)\right)\right]^2$$

$$(4.14)$$

Rješavanjem ove jednadžbe programskim kodom iz "Dodatka B" dobiva se kut γ kao funkcija u odnosu na promjenu kuta skretanja vozila α . Te se dobiva i dijagram takvog odnosa na slici 4.2:

Slika 4.2: Prikaz ovisnosti promjene kuta spone i kuta skretanja

Također je potrebno provjeriti čvrstoću i krutost profila koji veže dva kraja osovine, pa prema slici 4.3 slijedi za pojednostavljen oblik grede sa centriranom silom gdje za profil ISO 12633-2 (pravokutna cijev) prema [5] vrijedi:

$$\begin{split} I_{yOS} &= 2,6 \cdot 10^7 \text{ mm}^4 \text{ - Moment tromosti presjeka po osi savijanja (y-os)} \\ W_{yOS} &= 266 \cdot 10^3 \text{ mm}^3 \text{ - Moment otpora presjeka po osi savijanja (y-os)} \\ I_{OS} &= 1500 \text{ mm} \text{ - duljina osovine} \\ a_{OS} &= 750 \text{ mm} \text{ - centar djelovanja opterećenja} \\ F_{OS} &= 50 \text{ kN} \text{ - polovica ukupnog opterećenja prenosi se na osovinu} \end{split}$$

Iz čega se konačno mogu izračunati progib i naprezanja u samoj gredi:

$$w_{yOS} = \frac{F_{OS} \cdot a_{OS}^4}{3 \cdot E \cdot I_{yOS} \cdot l_{OS}} = \frac{50 \cdot 10^3 \cdot 750^4}{3 \cdot 210 \cdot 10^3 \cdot 2, 6 \cdot 10^7 \cdot 1500} = 0,64 \text{ mm}$$
(4.15)

Dok je dopušteni progib:

$$w_{dop} = \frac{l_{OS}}{600} = \frac{1500}{600} = 2,5 \text{ mm}$$
 (4.16)

Pa se može zaključiti da je ostvarena dovoljna krutost osovine pri punom opterećenju kolica.

Slika 4.3: Pojednostavljeni prikaz opterećenja grede prednje osovine prema [9]

Potom slijedi naprezanje u kritičnom presjeku osovine $a_{OS} = 750$ mm po sljedećem proračunu:

$$M_{OS} = c_n \cdot \psi \cdot M_y = 1, 1 \cdot 1, 31 \cdot 18750 = 27018, 75Nm$$
(4.17)

Gdje su: $c_n = 1, 1$ - faktor pogonske grupe, za pogonsku grupu H3, prema [3] str. 149 $\psi = 1, 31$ - Dinamički faktor za H3 prema [DIN 15018] iz [4] 233. str za brzinu dizanja $v_{diz} = 2, 4$ m/min

 $M_{OS} = 18750 \text{ Nm}$ - Moment savijanja uslijed djelovanja tereta i mase konstrukcije

Naprezanje u točki ($a_{OS} = 750$) računa se prema formuli za čisto savijanje:

$$\sigma_I = \frac{M_y}{W_y} \le \sigma_{dop} \tag{4.18}$$

Gdje su:

 $\sigma_{dop}^{S355J0} = 150 \text{ N/mm}^2$ - Dopušteno naprezanje prema [5], str. 700, Tablica 1. za čelik S355J0

Pa uvrštavanjem navedenoga u izraz iznad slijedi:

$$\sigma_I = \frac{18750 \cdot 10^3}{266 \cdot 10^3} = 70,488 \text{ N/mm}^2 \le \sigma_{dop} = 150 \text{ N/mm}^2$$
(4.19)

Prema zadanom opterećenju koje iznosi Q_t = 100 kN, moguće je odmah i odabrati kotače pogona i prednje osovine, kotači se biraju po principu pojedinačnog opterećenja, a ono je ako se pribroji još Q_{kol} =20 kN za broj kotača kolica $n_{k.kol}$ = 4:

$$Q_{kot} = \frac{Q_t + Q_{kol}}{n_{k.kol}} = \frac{120}{4} = 30 \text{ kN}$$
(4.20)

Kotači u domeni nosivosti iznad 3,5 tone zadovoljiti će ovakva opterećenja! Odabranje sljedeći kotač tvrtke Elesa [10] nosivosti 42000 N odnosno \approx 4,3 tone kojem unutarnji promjer d₃ može biti oblikovan po potrebi do promjera 80 mm sa ili bez utora za pero.

* Max diameter permissible for hole to ensure the static load values reported.

Slika 4.4: Kotač tvrtke Elesa [10] RE.F4-300-RBL

5. Proračun škarastog mehanizma za podizanje

U ovome poglavlju proračunati će se škarasti mehanizam za podizanje. Sami mehanizam izveden je u obliku škara koje svojim skupljanjem (smanjenjem osnog razmaka) podižu teret na određenu visinu. Samo "skupljanje" škarastog mehanizma izvedeno je pomoću dva hidraulička cilindra uz poštivanje dobivenih graničnih vrijednosti proračunom kako slijedi.

5.1. Sinteza škarastog mehanizma

Slika 5.1: Proračunski model/sinteza škarastog mehanizma za podizanje tereta

Poznate varijable koje se očitavaju iz konstrukcijske izvedbe su:

 $Q_t = 98100 \text{ N}$ - Sila uslijed djelovanja ukupne mase tereta $Q_m = 4000 \text{ N}$ - Približno procijenjena sila uslijed djelovanja mase mehanizma $\varphi_{min} = 15^{\circ}$ - minimalni/početni kut mehanizma $\varphi_{max} = 45^{\circ}$ - maksimalni/krajnji kut mehanizma d = 150 mm - prihvat glave cilindra na škarasti mehanizam c = 230 mm - prihvat donjeg dijela cilindra na škarasti mehanizam

(5.2)

 $2\cdot l=1806~\mathrm{mm}$ - duljina noge škarastog mehanizma

 $a=1508~{\rm mm}$ - dO-cudaljenost maksimalnog osnog razmaka umanjena za razmak prihvata cilindra i kotača.

Potrebno je izraziti odnos promjene duljine cilindra u ovisnosti o promjeni varijable kuta škarastog mehanizma, odnosno izvesti sintezu mehanizma i njegovog gibanja.

 $x_c = \sqrt{(l+d)^2 + a^2 - 2 \cdot (l+d) \cdot a \cdot \cos(\varphi)}$

Iz skice na slici 5.1 se jasno da iščitati da duljina cilindra glasi iz kosinusog poučka:

$$x_{c}^{2} = (l+d)^{2} + a^{2} - 2 \cdot (l+d) \cdot a \cdot \cos(\varphi)$$
(5.1)

Iz čega slijedi:

Slika 5.2: Prikaz odnosa produljenja cilindra i promjene kuta mehanizma

Kako bi se odredile sile u cilindrima potrebno je napravit sumu radova koji će biti u ravnoteži

$$\prod_{i=1}^{n} dW = F_c \cdot dx_c - Qt \cdot dz_A - Q_m \cdot dz_O = 0$$
(5.3)

Iz čega slijedi:

$$F_c = \frac{Q_t \cdot dz_A + Q_m \cdot dz_O}{dx_c} \tag{5.4}$$

Potrebno je odrediti dz_A , dz_O i dx_C

Pa tako navedene varijacije iznose redom iz jednadžbe 5.1:

$$2 \cdot x_c \cdot dx_c = 2 \cdot (l+d) \cdot a \cdot \sin(\varphi))d\varphi \tag{5.5}$$

Pa sređivanjem izraza dolazimo do konačnog izraza za dx_c :

$$dx_c = \frac{(l+d) \cdot a \cdot \sin(\varphi))}{x_c} d\varphi$$
(5.6)

Iz slike 5.1 se jasno vide veličine y_A i y_O koje glase:

$$z_A = 2 \cdot l \cdot \sin(\varphi) \tag{5.7}$$

$$z_O = l \cdot \sin(\varphi) \tag{5.8}$$

A njihove variajcije su redom:

$$dz_A = 2 \cdot l \cdot \cos(2\varphi) \tag{5.9}$$

$$dz_O = l \cdot \cos(2\varphi) \tag{5.10}$$

Potom se uvrštavanjem jednadžbi (5.6), (5.9) i (5.10) te poznatih nam veličina u izraz (5.4) može dobiti konačan izraz za veličinu promjene sile u cilindrima ovisno o kutu mehanizma:

$$F_c = \frac{(2Q_t + Q_m) \cdot l \cdot \cos(\varphi)}{a \cdot (l+d) \cdot \sin(\varphi)}$$
(5.11)

Iz čega se dobiva dijagram na slici 5.3 za uvrštene kutove

$$15^{\circ} \le \varphi \le 45^{\circ} \tag{5.12}$$

Slika 5.3: Prikaz odnosa sile u cilindru i promjene kuta mehanizma

5.1.1. Odabir hidrauličkog cilindra za podizanje i provjera na izvijanje

Kako se iz slike 5.3 vidi najveca sila u cilindru iznosi oko 120kN odabire se hidraulički cilindar tvrtke Bosch Rexroth iz serije CDL2 sa 4 različite vrste pričvršćivanja/prihvata. Odabran je cilindar iz serije višeg tlaka (250 bar) te su njegove specifikacije prema [11] sljedeće:

Klip	Klipnjača mm		Omjer površina o	Površine		Tlačna sila <i>F</i> 1 kN		Vlačna sila F ₃ kN	
ØAL	ØAL bei Nenndruck	ndruck	A1/A3	Kolben A1	Ring A3	bei Nenndruck		bei Nenndruck	
mm	160 bar	250 bar		cm ²	cm ²	160 bar	250 bar	160 bar	250 bar
80	45	-	1,46	50,24	34,34	80,38	-	54,95	-
	-	50	1,64		30,62	-	125,60	-	76,54

Slika 5.4: Prikaz svojstava odabranog hidrauličkog cilindra

Kod proračuna na izvijanje uzima se promjer klipnjače u krajnjoj odnosno gornjoj točki dok je cilindar potpuno otvoren. To znači dok je škarasti mehanizam u položaju na 45° očitava se Δx_c koji opisuje duljinu izvučene klipnjače. Ta duljina u ovom slučaju iznosi:

$$\Delta x_c = x_c(@45^\circ) - x_c(@15^\circ) \approx 502 \text{ mm}$$
(5.13)

Iz toga je odabran cilindar koji se izvlači do Δx_c =520 mm. Ta duljina se usvaja kao i forma izvijanja l₀=l te se s njom ulazi se u proračun izvijanja hidrauličkog cilindra.

Izvijanje

Cilindar je opterećen tlačno pa slijedi tlačno naprezanje u klipnjači:

$$\sigma_{hc} = \frac{F}{A_{kl}} = \frac{120 \cdot 10^3 \cdot 4}{50^2 \cdot \pi} = 61,11 \text{ MPa}$$
(5.14)

Kako je to jedino naprezanje u cilindru usvaja se kao konačno. Da bi se odredila sigurnsot na izvijanje mora se izračunati faktor vitkosti λ_i kako slijedi:

$$\lambda_i = \frac{4 \cdot \Delta x_c}{d_{kl}} = 41,6\tag{5.15}$$

Što zadovoljava slučaj izvijanja po TETMAJER-u za čelik S235JR kako slijedi iz [12]:

$$\lambda_i = 41, 6 \le \lambda_0 = 89 \tag{5.16}$$

Pa se naprezanje na izvijanje σ_k računa prema izrazu:

$$\sigma_k = 335 - 0,62 \cdot \lambda_i = 335 - 0,62 \cdot 41,6 = 309,208 \text{ MPa}$$
(5.17)

Te sada kad su sve veličine poznate sigurnost se naziva omjerom naprezanja na izvijanje i usvojenog ekivalentnog naprezanja u hidrauličkom cilindru:

$$S_{hc} = \frac{\sigma_k}{\sigma_{red}} = \frac{309,208}{61,11} = 5,05$$
(5.18)

Što spada u zadovoljavajući razred sigurnosti! Može se zaključiti da je hidraulički cilindar zadovoljio sigurnost na izvijanje

Odabir hidrauličkog cilindra za skretanje

Kako je potrebno upravljati i skretanjem vozila dok je isto u pogonu, isto se vrlo jednostavno može obaviti manjim hidrauličkim cilindrom za skretanje. Kako se za vrijeme gibanja vozila ne podiže teret, sva snaga elektromotora hidrauličkog mehanizma raspoloživa je za skretanje, što je i više nego dovoljno.

Kako nije potrebna sila i tlak kao kod podizanja odabran je sljedeći hidraulički cilindar:

Klip	Klipnjača mm		Omjer površina φ	Površine		Tlačna sila <i>F</i> 1 kN bei Nenndruck		Vlačna sila F ₃ kN	
ØAL bei Nenndruck		A ₁ / A ₃	Kolben A ₁	Ring A ₃	bei Nenndruck				
mm	160 bar	250 bar		cm ²	cm ²	160 bar	250 bar	160 bar	250 bar
25	14	-	1,46	4,91	3,37	7,85	-	5,39	-

Slika 5.5: Odabrani hidraulički cilindar za skretanje

5.2. Određivanje reakcija u osloncima i provjera njihove nosivosti

Potrebno je provjeriti čvrstoću obje noge mehanizma za podizanje uz zadane vrijednosti: $Q_t/4 = 25000$ N kao sila ukupnog tereta podijeljena na 4 noge škarastog mehanizma te opterećenje uslijed same mase konstrukcije škarastog mehanizma koje je procijenjeno na $Q_{meh} = 2500$ N, odnosno $Q_{meh}/4 = 625$ N. Sa navedenim vrijednostima ulazi se u proračun:

V F^V_{RV} Qt/2 Qt/2 Qt/2 Qt/2 Ro F^V_K F^V_K

5.2.1. Dimenzioniranje i provjera vanjske noge mehanizma:

Slika 5.6: Proračunski model vanjske noge mehanizma za dizanje

Odredi se suma sila po vertikalnoj "z-osi" $\sum F_V = 0$:

$$-F_{RV}^{V} + R_{O} - Q_{meh}/4 + F_{K}^{V} = 0$$
(5.19)

Gdje vrijedi da je $F_{RV}^V = Q_t/4 = 25000 \text{ N}$, pa iz toga slijedi momentna jednadžba $\sum M_O = 0$ gdje se dobiva vrijednost F_K^V odnosno opterećenje kotača:

$$F_{RV}^V \cdot \cos(\varphi) \cdot l = -F_K^V \cdot \cos(\varphi) \cdot l$$
(5.20)

Pa je:

$$F_{RV}^V = -F_K^V = -25 \cdot 10^3 \,\mathrm{N} \tag{5.21}$$

Kada se zna sila na Kotaču F_K^V tafa se izraz vrati u jednadžbu (6.13) i dobiva se:

$$-25 \cdot 10^3 + R_O - 625 - 25 \cdot 10^3 = 0 \to R_O = 50625 \text{ N}$$
(5.22)

Kritičan presjek nalazi se u točki O odnosno prolazi kroz sredinu noge škarastog mehanizma te se određuje moment savijanja u toj ravnini pri minimalnom kutu $\varphi_{min} = 15^{\circ}$ jer je tada prema slici 5.3 sila u konstrukciji najveća.

$$M_y^O = F_{RV}^V \cdot \cos(\varphi) \cdot l = 25000 \cdot \cos(15^\circ) \cdot 903$$
 (5.23)

Te se dobiva najveći moment savijanja u točki O:

$$M_u^O = 21,8 \text{ kNm}$$
 (5.24)

Kako bi provjerili naprezanje u toj ravnini potrebno je za odabranu pravokutnu cijev **ISO 12633-2** očitati moment otpora za savijanje po osi djelovanja momenta:

Slika 5.7: Prikaz momenata tromosti, momenata otpora i geometrijskih značajki odabranog ISO 12633-2 profila prema [13]

Iz čega slijedi:

$$W_{yMeh} = 1,98 \cdot 10^5 \text{ mm}^3 \tag{5.25}$$

$$N = F_{RV}^{V} \cdot \sin(\varphi) = 6470, 47 \,\mathrm{N}$$
(5.26)

$$A_V = 5460 \text{ mm}^2 \tag{5.27}$$

Potom se sve skupa uvrštava u sljedeći izraz:

$$\sigma_{ekv}^{V} = \frac{c_n \cdot \psi \cdot M_y^O}{W_{yMeh}} + \frac{N_V}{A_V}$$
(5.28)

Što daje:

$$\sigma_{ekv}^{V} = \frac{1, 1 \cdot 1, 3 \cdot 21, 8 \cdot 10^{6}}{1, 98 \cdot 10^{5}} + \frac{6470, 47}{5460} = 158, 63 \text{ MPa}$$
(5.29)

Za odabrani materijal St
52-3 (S355J0) granica plastičnosti odnosno dogovorna granica tečenja iznos
i $R_e=355$ MPa što uz sigurnostS=1,5 daje dopušteno naprezanj
e σ_{dop}^{St52-3} :

$$\sigma_{dop}^{St52-3} = \frac{R_e}{S} = \frac{355}{1,5} = 236, 6 \text{ MPa} \ge \sigma_{ekv}^V = 158, 63 \text{ MPa}$$
(5.30)

Tako se zaključuje da se greda sa aktualnim opterećenjem nalazi u dopuštenim granicama sigurnosti jer je postavljen faktor sigurnosti na samu granicu plastičnosti materijala, ali i moment u kritičnom presjeku pomnožen je sa koeficjentima $c_n = 1, 1$ kao faktorom pogonske grupe i $\psi = 1, 3$ kao dinamičkim faktorom za H3 prema DIN 15018.

5.2.2. Dimenzioniranje i provjera unutarnje noge mehanizma:

Slika 5.8: Proračunski model unutarnje noge mehanizma za dizanje

Kako se vidi prema 5.8 postavljen je lokalni koordinatni sustav V-H prema kojem se postavljaju jednadžbe u vertikanom (V) i horizontalnom (H) smjeru dok su poznate veličine:

 $R_O = 50625$ N - Reaktivna sila u srednjem osloncu $Q_m/4 = 625$ N - Sila uslijed djelovanja mase četvrtine konstrukcije za podizanje $F_c = 122 \cdot 10^3$ N - Sila ostvarena u jednom cilindru za podizanje $F_K^U = 25 \cdot 10^3$ - Sila u kotaču $\varphi = 15^\circ$ - Minimalni iznos kuta mehanizma prema 5.3 $\alpha = 34^\circ$ - Trenutni kut hidrauličkog cilindra očitan iz konstrukcijske izvedbe

Reakcije u osloncima unutarnje noge mehanizma

Kako su poznate sve veličine slijedi $\sum F_V = 0$ i $\sum F_V = 0$ pa se postavljaju jednadžbe:

$$\sum F_V = 0 \rightarrow F_{RV}^U \cdot \cos(\varphi) - F_{RH}^U \cdot \sin(\varphi) - R_O \cdot \cos(\varphi) - (Q_m/4) \cdot \cos(\varphi) + F_c \cdot \cos(\alpha) - F_K^U \cdot \cos(\varphi) = 0$$
(5.31)

$$\sum F_{H} = 0 \rightarrow F_{RH}^{U} \cdot \cos(\varphi) + F_{RV}^{U} \cdot \sin(\varphi) - R_{O} \cdot \sin(\varphi) - (Q_{m}/4) \cdot \sin(\varphi) - F_{c} \cdot \sin(\alpha) - F_{K}^{U} \cdot \sin(\varphi) = 0$$
(5.32)

Iz jednadžbe (6.25) pojednostavljivanjem izražava se nepoznanica F_{RV}^U kao:

$$F_{RV}^{U} = F_{RH}^{U} \cdot tg(\varphi) - F_c \cdot \frac{\cos(\alpha)}{\cos(\varphi)} + R_O + (Q_m/4) + F_K^{U}$$
(5.33)

Iz čega uvrštavanjem navedenih poznatih veličina slijedi:

$$F_{RV}^U = 0,2979 \cdot F_{RH}^U - 28426 \tag{5.34}$$

Potom se iz jednadžbe (6.26) izlučuje iduća nepoznanica:

$$F_{RH}^{U} = \left(\frac{-F_{RV}^{U} \cdot \sin(\varphi) + R_{O} \cdot \sin(\varphi) + (Q_{M}/4) \cdot \sin(\varphi) + F_{c} \sin(\alpha) + F_{K}^{U} \cdot (\varphi)}{\cos(\varphi)}\right)$$
(5.35)

Iz čega uvrštavanjem navedenih poznatih veličina slijedi:

$$F_{RH}^U = -0,2679 \cdot F_{RV}^U + 91059,13 \tag{5.36}$$

Potom se iz jednadžbe (6.28) uvrsti nepoznanica F_{RV}^U u jednadžbu (6.30) i dolazi se do rezultata:

$$F_{RH}^U = 106330, 23 \text{ N}$$
(5.37)

Reverzibilnim postupkom vračanja rješenja u izraz (6.28) dolazi se konačno i do:

$$F_{RV} = 59,86 \text{ N}$$
 (5.38)

Naprezanja u kritičnom presjeku unutarnje noge mehanizma

Potrebno je kao i u prethodnom proračunu vanjske noge mehanizma utvrditi naprezanja u kritičnom presjeku gdje se pojavljuje najveći moment. Zato slijedi rezultanta vertikalne sile (L.K.) u nepomičnom osloncu unutarnje škare mehanizma prema:

$$F_{MU} = F_{RV}^U \cdot \cos(\varphi) - F_{RH}^U \cdot \sin(\varphi)$$
(5.39)

Iz izraza (6.32) i (6.31) uvrštavanjem dobiva se:

$$F_{MU} = 27,46 \text{ kN}$$
 (5.40)

Iz čega se lako odredi moment u kritičnom presjeku:

$$M_{fU} = F_M^U \cdot l = 27,46 \cdot 1033 \cdot 903 = 24,8 \text{ kNm}$$
(5.41)

U samoj unutarnjoj nozi mehanizma javlja se i normalno naprezanje koje slijedi kao suma sila u horizontalnom smjeru (L.K):

$$N_{U} = F_{RH}^{U} \cdot \cos(\varphi) + F_{RV}^{U} \cdot \sin(\varphi) - R_{O} \cdot \sin(\varphi) - (Q_{m}/4) \cdot \sin(\varphi) - F_{c} \cdot \cos(\alpha) - F_{K}^{U} \cdot \sin(\varphi)$$
(5.42)

Pa slijedi normalna sila:

$$N = -34,855 \text{ kN} \tag{5.43}$$

Opterećeni presjek, kao i odabrani profil isti je kao i u prethodnom slučaju kako pokazuje slika 5.7 i također izrađen od istoga materijala, pa slijedi:

$$\sigma_{ekv} = \frac{c_n \cdot \psi \cdot M_{fU}}{W_{yMeh}} + \frac{N_U}{A_U}$$
(5.44)

$$\sigma_{ekv} = 185, 5 \text{ MPa} \le \sigma_{dop}^{St52-3} = 236, 6 \text{ MPa}$$
(5.45)

5.3. Dimenzioniranje i proračun oslonaca mehanizma za podizanje

U ovome podpoglavlju važno je provjeriti zadovoljavaju li osovine ležajnih mjesta L1, L2, O i C uvjete čvrstoće, odnosno jesu li dimenzionirane ispravno. Potrebno je takve osovine oslonaca ispitati na opterećenje na odrez i na bočni tlak koji djeluje na projekciji ravnine površine obodnog plašta oslonca.

5.3.1. Proračun oslonca L1

Na slici 5.10 se vidi proračunski model osovine oslonaca L1 i L2 prema kojemu će se provjeriti zadovoljava li njena geometrija odrezno opterećenje kao i opterećenje tlaka na projekciju ravnine djelovanja.

Slika 5.10: Proračunski presjek oslonca L1 i L2

Tlak vanjskih uležištenja

$$p_v = \frac{F_{RV}^V}{2 \cdot a \cdot D_O} = \frac{25 \cdot 10^3}{2 \cdot 40 \cdot 55} = 5,7 \text{ MPa} \le p_{dop} = 28 \text{ MPa}$$
(5.46)

Za zadanu preddefiniranu geometriju:

 $D_O = 55 \text{ mm} - \text{Promjer osovine}$ $F_{RV}^V = 25 \cdot 10^3 \text{ N}$

 $p_{dop} = 0, 7 \cdot 40 = 28$ MPa - prema Tablica TB 9-1 [14] za teška opterećenja na dodiru materijala Cu-Sn-Pb i čelika

a = 40 mm - Za odabranu čahuru prema DIN 1850-1 dimenzija 55x60x40 d_i x D_v x L

Tlak na limovima platforme

$$p_l = \frac{F_{RV}^V}{2 \cdot a_L \cdot D_O} = \frac{25 \cdot 10^3}{2 \cdot 10 \cdot 55} = 22,72 \text{ MPa} \le p_{dop} = 105 \text{ MPa}$$
(5.47)

Za zadanu preddefiniranu geometriju:

$$\begin{split} D_O &= 55 \text{ mm} \text{ - Promjer osovine} \\ F_{RV}^V &= 25 \cdot 10^3 \text{ N} \\ p_{dop}^{St52-3} &= 98 \text{ MPa} \text{ - prema Tablici 2.22 [5]} \\ a_L &= 10 \text{ mm} \text{ - Debljina lima na koji se osovina oslanja} \end{split}$$

Odrez - u dva presjeka

$$\tau_{O2} = \frac{F_{RV}^V}{2 \cdot A} = \frac{25 \cdot 10^3 \cdot 4}{2 \cdot D_O^2 \cdot \pi} = 5,26 \text{ MPa} \le \tau_{dop}^{St52-3} = 163,3 \text{ MPa}$$
(5.48)

Gdje se dopušteno naprezanje na smik računa

$$\tau_{DOP}^{St52-3} = 0,69 \cdot \sigma_{DOP}^{St52-3} = 0,69 \cdot 236,6 = 163,3 \text{ MPa}$$
(5.49)

5.3.2. Proračun oslonca L2

Prvo je potrebno naći rezultantu sila F_{RV}^U (vertikalne) i F_{RH}^U (horizontalne) kako bi se znalo ukupno opterećenje oslonca:

$$F_R^U = \sqrt{(F_{RV}^U)^2 + (F_{RH}^U)^2} = 106 \text{ kN}$$
(5.50)

Tlak vanjskih uležištenja

$$p_v = \frac{F_R^U}{2 \cdot a \cdot D_O} = \frac{106 \cdot 10^3}{2 \cdot 50 \cdot 55} = 19,27 \text{ MPa} \le p_{dop} = 28 \text{ MPa}$$
(5.51)

Za zadanu preddefiniranu geometriju:

 $D_O = 55 \text{ mm}$ - Promjer osovine $F_R^U = 106 \cdot 10^3 \text{ N}$

 $p_{dop} = 0, 7 \cdot 40 = 28$ MPa - prema Tablica TB 9-1 [14] za teška opterećenja na dodiru materijala Cu-Sn-Pb i čelika

a = 50 mm - Za odabranu čahuru prema DIN 1850-1 dimenzija 55x60x50 d_i x D_v x L

Tlak na limovima platforme

$$p_L = \frac{F_R^U}{2 \cdot a_L \cdot D_O} = \frac{106 \cdot 10^3}{2 \cdot 12, 5 \cdot 55} = 77, 1 \text{ MPa} \le p_{dop}^{St52-3} = 105 \text{ MPa}$$
(5.52)

Za zadanu preddefiniranu geometriju:

 $D_O = 55 \text{ mm}$ - Promjer osovine $F_R^U = 106 \cdot 10^3 \text{ N}$ $p_{dop}^{St52-3} = 98 \text{ MPa}$ - prema Tablici 13.1 [15] $a_L = 12, 5 \text{ mm}$ - Debljina lima na koji se osovina oslanja

Odrez - u dva presjeka

$$\tau_{O2} = \frac{F_R^U}{2 \cdot A} = \frac{106 \cdot 10^3 \cdot 4}{2 \cdot D_O^2 \cdot \pi} = 22,3 \text{ MPa} \le \tau_{dop}^{St52-3} = 163,3 \text{ MPa}$$
(5.53)

Gdje se dopušteno naprezanje na smik računa

$$\tau_{DOP}^{St52-3} = 0,69 \cdot \sigma_{DOP}^{St52-3} = 0,69 \cdot 236,6 = 163,3 \text{ MPa}$$
(5.54)

5.3.3. Proračun srednje osovine u točki O

Ova osovina povezuje vanjsku i unutarnju nogu mehanizma te je opterećena samo na odrez na presjeku A-A odnosno na sredini kako se to vidi na slici ispod 5.11

Slika 5.11: Proračunski presjek središnjeg svornjaka mehanizma za dizanje

Poznate veličine sa slike su:

 $D_O = 55 \text{ mm}$ - Promjer osovine

 $\mathbf{R}_O=50625$ N - Proračunata reaktivna sila u tom osloncu koja djeluje na jednu nogu mehanizma

Pa slijedi:

$$\tau_{Osr} = \frac{R_O \cdot 4}{D_O^2 \cdot \pi} = 21,31 \text{ MPa} \le \tau_{DOP}^{St52-3} = 163,3 \text{ MPa}$$
(5.55)

Te se može zaključiti da je osovina zadovoljila svojom geometrijom provjeru čvrstoće na smik.

5.3.4. Proracun osovine donjeg kotača

U ovome podpoglavlju provesti će se pojednostavljeni proračun čvrstoće osovine u kritičnom presjeku "l_O = 40" i odabir kotača prema zadanoj sili $F_K^V = 25 \cdot 10^3$ N. Pa slijedi:

Slika 5.12: Proračunski presjek donjeg kotača mehanizma za dizanje

Odakle se dobiva sljedeća jednadžba za moment u traženom presjeku:

$$M_{40} = F_K^V \cdot l_O = 25 \cdot 10^3 \cdot 40 = 1 \cdot 10^6 \text{ Nmm} = 1000 \text{ Nm}$$
(5.56)

Dok je moment otpora presjeka za promjer osovine 45 mm:

$$W_{yoK} = 0, 1 \cdot d^3 = 0, 1 \cdot 45^3 = 9112, 5 \text{ mm}^3$$
(5.57)

A površina takvog presjeka je:

$$A_{oK} = \frac{d^2 \cdot \pi}{4} = \frac{45^2 \cdot \pi}{4} = 1590, 43 \text{ mm}^2$$
(5.58)

Dobivenim rezultatima moguće je opisati savojno i smično naprezanje u datom presjeku:

$$\sigma_{f_oK} = \frac{M_{40}}{WyoK} = 109,73 \text{ MPa} \le \sigma_{dop}^{St52-3} = 236,6 \text{ MPa}$$
(5.59)

$$\tau_{oK} = \frac{F_K^V}{A_{oK}} = \frac{25 \cdot 10^3}{1590, 43} = 15,72 \text{ MPa} \le \tau_{DOP}^{St52-3} = 163,3 \text{ MPa}$$
(5.60)

Odabran je kotač tvrtke Blickle nosivosti 4 t odnosno prvi koji je zadovoljio, a također se nalazi u domeni sigurnosti ukoliko se konstrukcija nešto više preoptereti. Uležišten je na dva kuglična ležaja dimenzija prema slici 5.13.

Slika 5.13: Prikaz značajki odabranog kotača mehanizma za dizanje tvrtke Blickle

Kako je opterećenje na gornjem, ali i donjem kotaču po iznosu jednako $F_K^U = F_K^V$ i za gornji kotač uzima se isti sa slike 5.13.
5.3.5. Proracun osovine donjeg kotača

U ovome podpoglavlju provesti će se pojednostavljeni proračun čvrstoće osovine gornjeg kotača u kritičnom presjeku i odabir kotača prema zadanoj sili $F_K^U = 25 \cdot 10^3$ N. Pa slijedi:

Slika 5.14: Proračunski presjek gornjeg kotača mehanizma za dizanje

Osovina kotača je prema slici 5.14 opterećena na smik na dvije površine te na dodirni tlak dosjedanja na površine nosača.

Dodirni tlak osovina-limovi

$$p_{oL} = \frac{F_K^U}{2 \cdot a_{oL} \cdot D_{oU}} = \frac{25 \cdot 10^3}{2 \cdot 12, 5 \cdot 50} = 20 \text{ MPa} \le p_{dop}^{St52-3} = 98 \text{ MPa}$$
(5.61)
$$p_{dop}^{St52-3} = 98 \text{ MPa - prema Tablici 13.1 [15]}$$

A na manjem promjeru $D_{oU} = 45$ mm tlak je $p_{oL} = 22, 2$ MPa što također zadovoljava!

Odrezno opterećenje u dva presjeka

$$\tau_{oU} = \frac{F_K^U \cdot 4}{2 \cdot D_{oU}^2 \cdot \pi} = \frac{25 \cdot 10^3 \cdot 4}{2 \cdot 50^2 \cdot \pi} = 6,36 \text{ MPa} \le \tau_{DOP}^{St52-3} = 163,3 \text{ MPa}$$
(5.62)

5.3.6. Proračun opterećenja zavara grede prihvata glave hidrauličkog cilindra

Slika 5.15: Prikaz opterećenja zavara na spoju grede hidrauličkog cilindra i unutarnje noge mehanizma

Gdje su poznate varijable:

 $W_{yzG} = 101, 23 \cdot 10^3 \text{ mm}^3$ - moment otpora zavara oko osi y $F_c = 122 \cdot 10^3$ - Najveća sila u cilindru ($\varphi = 15^\circ$) $\alpha_c = 34, 5-^\circ$ - kut pozicije hidrauličkog cilindra $l_c = 103$ - udaljenost djelovanja sile cilindra od ishodišta zavara Iz čega slijedi:

$$\sigma_{zavG} = \frac{F_c \cdot \cos(\alpha_c) \cdot l_c}{W_{yzG}} = \frac{122 \cdot 10^3 \cdot \cos(34, 5^\circ) \cdot 103}{101, 23 \cdot 10^3} = 102, 3 \text{ MPa}$$
(5.63)

A potom i opterećenje zavara na odrez:

$$\tau_{zavG} = \frac{F_c \cdot \cos(\alpha_c)}{A_{zavG}} = \frac{122 \cdot 10^3 \cdot \cos(34, 5^\circ)}{1776} = 56, 6 \text{ MPa}$$
(5.64)

Što daje ekvivalentno naprezanje u prikazanom zavaru:

$$\sigma_{ekvzG} = \sqrt{\sigma_{zavG}^2 + 3 \cdot \tau_{zavG}^2} = \sqrt{102, 3^2 + 3 \cdot 56, 6^2} = 141,68 \text{ MPa}$$
(5.65)

Stoga je potrebno dobiveno ekvivalentno naprezanje u zavaru usporediti sa dopuštenim naprezanjem prema Tablici 5.2 [15]:

 $\sigma^{S52-3}_{za.Dop}=150$ MPa - Dopušteno naprezanje u zavarima za pogonsku grupu B4

Usvaja se da je zavar zadovoljio.

6. Projektiranje hidrauličkog sustava

U ovom poglavlju razradit će se svi hidraulički elementi potrebni za funkcioniranje sustava te provesti potreban proračun i prikazati funkcionalna skica samog sustava za podizanje i upravljanje ovjesom istoga. Potrebno je podignuti masu m = 10 t uz pomoć dva hidraulička cilindra. Cilindri se moraju podizati simultano, istom brzinom na duljinu $\Delta X_c = 520$ mm.

6.1. Kontrolni proračun hidrauličkog sustava za podizanje 10 tona

U ovome poglavlju provest će se kontrolni proračun hidrauličkog sustava koji se sastoji od 2 paralelno spojena cilindra i cilindra za skretanje.

6.1.1. Ulazni podaci

 $d_{cil} = 0,08 \text{ m}$ - promjer klipa hidrauličkog cilindra $v_{klip} = 0,02 \text{ m/s}$ - brzina translacijskog gibanja cilindra $\eta_{vol,cil} = 0,95$ - korisnost cilindra $\eta_{vol,pump} = 0,95$ - volumetrijska korisnost pumpe $\eta_{meh,pump} = 0,95$ - mehanička korisnost pumpe $\eta_{uk,pump} = \eta_{meh,pump} \cdot \eta_{vol,pump} = 0,9025$ - ukupna korisnost pumpe $F_{Q/cil.max} = 122 \text{ kN}$ - Maksimalna sila tereta po cilindru

6.1.2. Proračun potrebnog protoka u navedenom sustavu

Prvo je potrebno odrediti protok za opskrbu jednog hidrauličkog cilindra

$$Q_{cil} = v_{klip} \cdot A_{klip} = v_{klip} \cdot \frac{d_{cil}^2 \cdot \pi}{4} = 0,02 \cdot \frac{0,08^2 \cdot \pi}{4} = 1 \cdot 10^{-4} \text{ m}^3/\text{s}$$
(6.1)

Što pretvoreno u l/min radi lakšeg proračuna i odabira pumpe iznosi:

 $Q_{cil} = 6,03$ l/min po cilindru

Kako bi se došlo do gubitaka u sustavu potrebno je provjeriti razliku teorijskog i stvarnog protoka uzimajući u obzir volumetrijsku korisnost samog cilindra:

$$\Delta Q_{cil} = \frac{Q_{cil}}{\eta_{vol}} - Q_{cil} = \frac{6,03}{0,95} - 6,03 = 0,317\,\text{l/min}$$
(6.2)

Potom se lako dobije ukupni protok koji pumpa mora osigurati kako bi opskrbila sva četiri hidraulička cilindra:

$$Q_{pump} = \frac{2 \cdot (Q_{cil} + \Delta Q_{cil})}{\eta_{uk,pump}} = \frac{2 \cdot (6,03+0,317)}{0,9025} = 14 \,\text{l/min}$$
(6.3)

6.1.3. Proračun potrebnog tlaka u navedenom sustavu

Tlak u pojedinačnom cilindru iznosi:

$$p_c = \frac{F_{Q/cil}}{A_{klipa}} = \frac{122 \cdot 10^3 \cdot 4}{0,08^2 \cdot \pi} = 243 \cdot 10^5 \text{ Pa} = 243 \text{ bar}$$
(6.4)

Što se usvaja kao maksimalan tlak koji je potrebno ostvariti u sustavu.

Sada kada je izračunat ukupan tlak na izlazu pumpe i protok koji ista mora dati, slijedi:

$$P_{pump} = Q_{pump} \cdot p_{pump} = \frac{14,06}{60000} \cdot 243 \cdot 10^5 = 5,7 \text{ kW}$$
(6.5)

Pumpa se traži u domeni PGF 2X-3X pumpi proizvođača Bosch Rexroth GmbH sa unutarnjim ozubljenjem. Odabrana pumpa je: PGF 2X/11, a njene tehničke specifikacije su:

Svojstvo	Dodatno	Mjerna je-	Iznos	
		dinica		
Veličina	-	-	11	
Masa	m	kg	2,4	
	n _{min}		600	
Raspon brzina vrtnje	n _{max}	min ⁻¹	3600	
Radni volumen	V	cm ³	11	
Maksimalni radni tlak, p _{max}	p _{max}	bar	250	
Protok	Q	l/min	16	
Moment inercije pumpe	J	kgm ²	0,00012	
	Pogonska tempe-	°C	-20 do +100	
Radna temperatura medija, theta	ratura			
	Okolna	°C	-20 do +50	
Spektar viskoznosti, ν	v @(3000 min ⁻¹)	mm ² /s	10 do 300	
Maksimalni stupanj zagađenosti rad-	-	-	Klasa 20/18/15	
nog medija			ISO4406 ©	

Tablica 6.1:	Tehnička	svojstva	PGF 2X/011	pumpe	prema	[11]
						-	_

Prema preporučenom proračunu proizvođaća [16] slijedi kontrolni proračun pumpe i određivanje snage direktnog pogona iste elektromotorom:

$$Q_{pump}^{stv} = \frac{V \cdot n_{max} \cdot \eta_{vol}}{1000} = \frac{11 \cdot 1450 \cdot 0, 9}{1000} = 14,355 \,\text{l/min}$$
(6.6)

Iz čega slijedi zadovoljavajuća nejednakost

$$Q_{pump}^{stv} = 14,355 \,\mathrm{l/min} \ge Q_{pump} = 14 \,\mathrm{l/min}$$
 (6.7)

Kako je stvarni protok odabrane pumpe veći, da se zaključiti da se pumpa nalazi na strani sigurnosti i da će se ostvariti zadani eksploatacijski zahtjevi.

6.1.4. Odabir elektromotora direktnog pogona pumpe

Iz izraza (2.7) vidi se da je motor snage $P_{an} = 5,7kW$ ili veće dovoljan da zadovolji potrebe sustava.

Tablica 6.2: Specifikacija motora HMA2 132S2-2 tvrtke HOYER					
Svojstvo	Dodatno	Mjerna je-	Iznos		
		dinica			
Sanaga elektromotora	Pan	kW	7,5		
Brzina vrtnje	n _{max}	\min^{-1}	2920		
Korisnost pri max. opt.	η	-	0,88		
Maksimalni okretni moment	Т	Nm	24,6		
Veličina okvira	-	-	132		
Priključak prirubnice	-	-	B3		

Odabire se motor tvrtke HOYER HMA2 132S2-2 sa sljedećim specifikacijama:

6.1.5. Projektiranje cjevovoda

Prema [14] TB 18-5 brzina protoka za hidrauličke sustave pod tlakom iznosi:

v_{hid}=3...6 m/s

Iz čega se lako odredi nazivni promjer cijevi od razdjelnika do cilindra:

$$d_c = \sqrt{\frac{Q_{cil} \cdot 4}{v_{hid} \cdot \pi}} = \sqrt{\frac{1 \cdot 10^{-4} \cdot 4}{4 \cdot \pi}} = 5,64 \text{ mm}$$
(6.8)

Prema [14] TB 1-13 i TB 18-1 određuje se materijal i promjer cijevi hidrauličkog cjevovoda. Nazivni (vanjski) promjer cijevi normiran prema DIN EN 10220 i TB1-13 odabran je:

 $d_a=13,5$ mm - vanjski promjer

 $t_c=2,6$ mm - debljina stijenke

Što daje unutarnji promjer koji je veći od proračunskog i zadovoljava uvijete:

$$d_i = d_a - 2 \cdot (t_c) = 13, 5 - 2 \cdot 2, 6 = 8, 3 \text{ mm} > d_c = 5, 64 \text{ mm}$$
(6.9)

Materijal cijevi odabran je u skladu parametara visokog tlaka i srednje visokog raspona radnih temperatura: P235GH Prikaz presjeka cijevi vidi se na slici 6.1 ispod:

Slika 6.1: Prikaz odabrane cijevi prema DIN EN 10220 $\phi13,5$ x 2,6

Provjera odabrane debljine stjenke tankostjene cijevi na statičko opterećenje uslijed djelovanja radnog tlaka

$$t_v = \frac{p_e \cdot d_a}{2 \cdot \sigma_{dop}^{100^\circ C} \cdot \nu_N + p_e} \tag{6.10}$$

Gdje su:

t_v - minimalna debljina stjenke p_e - maksimalni tlak koji djeluje u sustavu d_a - vanjski promjer cijevi $R_{eH/\theta}$ = 198 N/mm² - granica tečenja

 ν_N - faktor zavara - iznosi 1 za bešavne cijevi

Prvo je potrebno dobiti dopušteno naprezanje pri radnoj temperaturi od približno $100^\circ C$ odnosno $\sigma_{dop}^{100^\circ C}$

$$\sigma_{dop}^{100^{\circ}C} = min\left\{\frac{R_{eH/\theta}}{1,5}\right\} = \left\{\frac{198}{1,5}\right\} = 132 \text{ MPa}$$
(6.11)

Uvrštavanjem navedenog u formulu vrijedi:

$$t_v = \frac{243 \cdot 0, 1 \cdot 13, 5}{2 \cdot 132 \cdot 1 + 243 \cdot 0, 1} = 1, 1 \text{ mm}$$
(6.12)

Odabrana debljina stjenke 2,6 mm zadovoljava, a odabrana je nešto veća iz razloga što je na istu potrebno narezati colni navoj u svrhu spajanja cijevi i hidrauličkih komponenata.

Teorijski proračun pada tlaka do ulaska u cilindar uslijed duljine cjevovoda

Hagen-Poiseuilleova jednadžba [16] daje pad tlaka kao izlazni rezultat, a glasi:

$$\Delta p = \lambda \cdot \frac{l \cdot \rho \cdot v^2 \cdot 10}{d \cdot 2} \tag{6.13}$$

Gdje su: Δp - pad tlaka direktno spojenih cijevi na cilindar, bar

 ρ - Gustoća radnog medija, kg/dm^3

 λ - Koeficijent trenja cijevi

v_{hid} - brzina strujanja medija, m/s

d_i - unutrašnji promjer cijevi, mm

Potrebno je izračunati koeficijent trenja cijevi λ pod pretpostavkom da je strujanje laminarno, pa slijedi:

$$\lambda = \frac{64}{Re} \tag{6.14}$$

U gornjem izrazu nalazi se nepoznanica Re, odnosno potrebno je izračunati Re za laminarno strujanje pomoću izraza:

$$Re = \frac{v \cdot d_i}{\nu} \cdot 10^3 \tag{6.15}$$

Gdje je: ν - kinematička viskoznost, mm²/s Pa za odabrani radni medij $\nu = 45 \text{ mm}^2$ /s slijedi:

$$Re = \frac{4 \cdot 8, 3}{45} \cdot 10^3 = 737, 7 \tag{6.16}$$

Konačno se može dobiti koeficijent trenja unutar cijevi:

$$\lambda = \frac{64}{737,7} = 0,08675 \tag{6.17}$$

Također se i prema dijagramu 6.2 vidi da se sustav nalazi u laminarnom području

Slika 6.2: Moodyjev dijagram [18]

Potom uvrštavanjem tog izraza u Hagen-Poiseuilleovu jednadžbu slijedi:

$$\Delta p = 0,08675 \cdot \frac{l \cdot 0,89 \cdot 4^2 \cdot 10}{8,3 \cdot 2} \tag{6.18}$$

Dobiva se linearna jednadžba u ovisnosti o duljini cijevi pa tako slijedi uvrštavanjem pretpostavljene duljine cjevovoda po cilindru l=2 m

$$\Delta p = 0,08675 \cdot \frac{2 \cdot 0,89 \cdot 4^2 \cdot 10}{8,3 \cdot 2} = 1,48 \text{ bar}$$
(6.19)

Iz čega se lako zaključuje da tlak pada sa porastom duljine cjevovoda linearno u ovisnosti o njenoj duljini.

6.1.6. Dimenzioniranje spremnika

Potrebno je dimenzionirati hidraulički spremnik za ulje koji može opskrbiti sustav pod punim opterećenjem (svi cilindri otvoreni i aktivni). Zato se prvo izračunava najveća volumenska zapremnina članova hidrauličkog sustava, a to su: Volumen u jednom cilindru za dizanje

$$V_{p1} = \frac{80^2 \cdot \pi}{4} \cdot 520 = 2613805 \text{ mm}^3 \tag{6.20}$$

Volumen u cilindru za skretanje

$$V_s = \frac{25^2 \cdot \pi}{4} \cdot 240 = 117809, 7 \text{ mm}^3$$
(6.21)

Te ukupni volumen sustava:

$$V_{uk} = 2 \cdot V_{p1} + V_s = 5345419, 9 = 5, 3 \text{ L}$$
(6.22)

Općenito vrijedi činjenica da što je veći spremnik to je hidraulički sustav "bolji". Odnosno teži se većoj volumenskoj zapremnini kako bi se izbjeglo pretjerano zagrijavanje radne tekućine.

Prema projektnim dimenzijama spremnika volumen istoga iznosi

$$V_{spr} = 350 \cdot 486 \cdot 250 = 42,5 \,\mathrm{L} \tag{6.23}$$

Time je spremnik višestruko zadovoljio kriterije, ali i dovoljno je velik za smještanje pumpe unutar radne tvari te prihvat prirubnice motora na sami spremnik. Konačno konstrukcijsko riješenje hidrauličke jedinice izgleda ovako

Slika 6.3: Hidraulička pogonska jedinica

7. Proračun mehanizma za okretanje7.1. Definiranje dinamičkih momenata inercije

Kako bi se mogao odabrati motor za okretanje nadkonstrukcije (platforme) potrebno je uzeti u obzir dinamički moment inercije platforme pod punim opterećenjem uslijed djelovanja pravilno oslonjenog tereta na nju.

Zato se određuje dinamički moment inercije prazne platforme za koji se uzima formula kao za ploču jer je sama visina profila platforme $b_p = 220$ mm puno manja od njegove duljine $l_p = 3000$ mm. Pa prema [19]:

$$J_1 = \frac{m_p \cdot a_p^2}{12} = \frac{100 \cdot 1, 5^2}{12} = 18,75 \text{ kgm}^2$$
(7.1)

Gdje su:

J₁ - traženi dinamički moment inercije $m_p = 100 \text{ kg}$ - pretpostavljena masa platforme $a_p = 1, 5 \text{ m}$ - širina platforme

Potom se stavljaju ograničenja visine tereta koji se prevozi, a isto glasi da se ne preporuča transport tereta višljeg od jedne visine transportnih kolica, pa je varijabla $l_p \leq 3$ m zapravo duljina tereta, a $c_t = 1, 2$ m visina tereta. Pa za transport kvadra takvih dimenzija prema [19] slijedi izraz:

$$J_2 = \frac{m_t}{12} \cdot (l_p^2 + c_t^2) = \frac{10000}{2} \cdot (1, 2^2 + 3^2) = 8700 \text{ kgm}^2$$
(7.2)

Kada se ti dinamički momenti tromosti sumiraju dobiva se ukupan dinamički moment tromosti koji je potreban da bi se platforma pokrenula:

$$J_{uk} = J_1 + J_2 = 18,75 + 8700 = 8718,75 \text{ kgm}^2$$
(7.3)

Iz dobivenog ukupnog dinamičkog momenta tromosti platforme lako se dobiva teorijski moment za pokretanje, no prvo je potrebno izračunati kutno ubrzanje ograničeno maksimalnim ubrzanjem oboda platforme:

$$\varepsilon_1 = \frac{a_1}{r} = \frac{0.5}{1.5} = 0.3 \,\mathrm{s}^{-2}$$
 (7.4)

gdje se varijabla a_1 nalazi u rasponu $0, 1 < a_1 \le a_{max} = 0, 6 \text{ m/s}^2$, a odabrano je:

 $a_1 = 0, 5 \text{ m/s}^2$

r=1,5 m - odnosno pola duljine l_p

Iz čega slijedi teorijski moment za pokretanje:

$$M_{pok} = \varepsilon_1 \cdot \frac{J_{uk}}{i^2} = 0, 3 \cdot \frac{8718, 75}{3,526^2} = 210, 38 \text{ Nm}$$
(7.5)

Prijenosni odnos ozubljenog unutarnjeg zupčanog para je i= 3,526 o čijem odabiru više u nastavku u za to predviđenom poglavlju odabira NULTOG zupčanićkog para i standardnog osnog razmaka.

Potrebno je također izračunati ulaznu brzinu vrtnje iz motor-reduktora koja će dati direktno teorijsku snagu motora pa slijedi za odabrani prijenosni omjer zupčanika i= 3,526 i odabranu brzinu vrtnje platforme $n_2 = 2 \text{ min}^{-2}$:

$$i = \frac{n_1}{n_2} \to n_1 = i \cdot n_2 = 2 \cdot 3,526 = 7,052 \text{ min}^{-1}$$
 (7.6)

Pa kada su poznati teorijski moment pokretanja i ulazna brzina vrtnje lako se dolazi do teorijske snage elektromotora:

$$P_n = M_{pok} \cdot \frac{2 \cdot \pi \cdot n_1}{60} = 186 \text{ W}$$
 (7.7)

Znajući da iskoristivost motor-reduktora iznosi cca. $\eta_{EM} = 0,86$ izračunava se stvarna potrebna snaga elektromotora:

$$P_{an} = \frac{P_n}{\eta_{EM}} = 216 \text{ W}$$

$$(7.8)$$

Što rezultira momentom na pogonskom vratilu:

$$M_{an} = 292,5 \text{ Nm}$$
 (7.9)

Svojstvo	Vrijednost	Jedinica
Motor	KH043-11N-71-06F-TH-TF	-
Snaga	0,25	kW
Brzina vrtnje motora	900	\min^{-1}
Izlazna brzina iz reduktora	7,9	\min^{-1}
Moment na izlazu	302	Nm
Moment inercije	0,0093	kgm^2
Masa motora	19,9	kg

Tablica 7.1: Svojstva odabranog motora za okretanje tvrtke Watt-Drive

7.2. Odabir ležaja i proračun unutrašnjeg ozubljenja

Potrebno je instalirati okretni ležaj sa unutrašnjim ozubljenjem kako bi se omogućilo zakretanje tereta. Zato prema [20] potrebno je izračunati statičku silu i moment koji djeluju na ležaj.

Kako bi se krenulo u proračun ovih ležajeva potrebno je odrediti faktore statičkog opterećenja za odabrani ležaj (u ovom slučaju **VSI 20 0414 N**) gdje su prema [20] očitane sljedeće vrijednosti:

 $D_M = 414 \text{ mm}$ - promjer valjanja, valjnih tijela $f_A = 1,25$ - faktor primjene za odabrani slučaj transportnih vozila f_s =1 - zadani sigurnosni faktor prema katalogu $F_{0a} = 100 \text{ kN}$ - eksploatacijsko opterećenje $M_{0k} = 20 \text{ kNm}$ - eksploatacijski moment uslijed ekscentrično postavljenog tereta

Prvo je potrebno odrediti parametar ekscentriciteta tereta prema izrazu:

$$\varepsilon = \frac{2000 \cdot M_{0k}}{F_{0a} \cdot D_M} = \frac{2000 \cdot 20}{100 \cdot 414} = 0,966 \tag{7.10}$$

Pa se iz tablice 1 za dobiveni parametar $\varepsilon = 0,966$ očitava faktor statičkog opterećenja.

f_{0r}=1,05 - faktor statičkog opterećenja

Tako se nabrojane faktore, parametre i opterećenja povezuje zajedno u konačne izraze momenta prevrtanja i aksijalne sile na ležaj kako slijedi:

$$F_{0q} = F_{0a} \cdot f_A \cdot f_s \cdot f_{0r} = 100 \cdot 1,25 \cdot 1 \cdot 1,05 = 131,25 \text{ kN}$$
(7.11)

$$M_{0q} = M_{0k} \cdot f_A \cdot f_s \cdot f_{0r} = 20 \cdot 1,25 \cdot 1 \cdot 1,05 = 26,25 \text{ kNm}$$
(7.12)

Ako se iznosi iz izraza (7.8) i (7.7) usporede sa danim dijagramom odabira ležaja zaključuje se prema slici 7.1 da ležaj zadovoljava

Slika 7.1: Dijagram za odabir okretnih ležajeva sa unutarnjim ozubljenjem prema [20]

Dimension table · Dimensions in mm																		
no. ¹⁾	Mas	s	Dimensions				sions							Fixing holes				
			Da		D _{aZT} ²⁾	di	Di		d _a	d _{aZT} ²⁾	La	na ³⁾	Li	n _i 3)				
	≈kg	,			–IT8					-IT8								
1	31		486 _{-0,}	5	484	325	4	15,5 ^{+0,5}	412,5 _{-0,5}	411	460	24	375	24				
crews		Gea	ar teeth			_		Tooth force	e	Basic lo	ad ratin	gs						
	n	d ₀		m		z		F _{z norm}	F _{z max}	axial			radial					
locking)"	*)									dyn. C _a	st C	at. Da	dyn. C _r		stat. C _{0r}			
								kN	kN	kN	ki	١	kN		kN			
		33	35	5		67		17,7	26,2	169		560	111		248			
	Dimensic no. ¹⁾ (1) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Dimensions in no. ¹⁾ Mas ≈kg ① 31 Crews	Dimensions in mm no. ¹⁾ Mass ≈kg ① 31 crews Gea locking) ⁴⁾ do	Dimensions in mm no. ¹⁾ Mass Dimensi ≈kg ① 31 4860, crews Gear teeth locking) ⁴⁾ d ₀ 335	Dimensions in mm Dimensions no. ¹) Mass Dimensions ~kg Da (1) 31 486_0.5 crews Gear teeth locking) ⁴) d0 m 335 5	Dimensions in mm Dimensions no. ¹) Mass Dimensions ~kg Da DaZT ²) ~kg -IT8 ① 31 486_0,5 484 crews Gear teeth -IT8 locking) ⁴) d₀ m -IT8 335 5 -IT8 -IT8	Dimensions in mm Dimensions no. ¹) Mass Dimensions □a □a □aZT ²) di □ 31 486_0,5 484 325 crews Gear teeth Image: Compare teeth Image: Compare teeth Image: Compare teeth locking) ⁴ 335 5 67	Dimensions in mm Dimensions Dimensions no. ¹) Mass Dimensions DaZT ²) di Dimensions ~kg -IT8 -IT8 Dimensions -IT8 Dimensions Dimensions (1) 31 486_0,5 484 325 4 Crews Gear teeth -IT8 -IT8 -IT8 -IT8 locking) ⁴ d0 m z -IT8 -IT8 -IT8 locking) ⁴ 335 5 67 -IT8 -IT8	Dimensions in mm Dimensions Dimensions no. ¹) Mass Dimensions DazT ²) di Di ~Kg Da DaZT ²) di Di Dimensions (1) 31 486_0,5 484 325 415,5 ^{+0,5} crews Gear teeth Tooth force Iooching) ⁴ Tooth force KN locking) ⁴ 335 5 67 17,7	$\begin{array}{c c c c c c c } \hline \text{Dimensions in mm} \\ \hline \text{no.}^{1)} & Mass & \hline Dimensions \\ \hline D_a & D_{aZT}^{2)} & d_i & D_i & d_a \\ \hline & & & & & & & & & \\ \hline & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c } \hline \text{Dimensions in mm} \\ \hline \text{no.}^{1)} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c } \hline \mbox{Dimensions in mm} \\ \hline \mbox{no.}^{1)} & $ Mass \\ \hline \mbox{no.}^{1)} & $ Mass \\ \hline \mbox{no.}^{1)} & $ Dimensions \\ \hline \mbox{no.}^{1)} & $ DazT^{2}$ \\ \hline \mbox{no.}^{2} & $ DazT^{2} & $ DazT^{2}$ \\ \hline \mbox{no.}^{2} & $ DazT^{2}$ \\ \hline \mbox{no.}$	$\begin{array}{c c c c c c c } \hline \mbox{Dimensions in mm} \\ \hline \mbox{no.}^{1)} & $ \mbox{Mass} & $ \mbox{Dimensions in mm} \\ \hline \mbox{no.}^{1)} & $ \mbox{Mass} & $ \mbox{Dimensions in mm} \\ \hline \mbox{no.}^{1)} & $ \mbox{Mass} & $ \mbox{Dimensions in mm} \\ \hline \mbox{Da} & $ \mbox{Dimensions in mm} \\ \hline \mbox{Dimensions in mm} \\ $			

Slika 7.2: Specifikacija podataka izabranog VSI 20 0414 N okretnog ležaja prema [20]

Slika 7.3: Skica odabranog okretnog ležaja prema [20]

Iz slike 7.2 vidi se da odabrani ležaj ima unutarnje ozubljenje sa 67 zubi $z_2 = 67$ izrađenih prema modulu m= 5. Prema tome je potrebno dimenzionirati pogonski zupčanik koji će uz odgovarajući prijenosni omjer, osni razmak i broj zubi prenjeti dovoljan moment za pokretanje okretne platforme.

7.3. Proračun zupčanog para s unutarnjim ozubljenjem

Kako je već navedeno poznate su veličine:

 $z_2 = 67$ - broj zubi gonjenog zupčanika (ležaja) m= 5 - modul $d_2 = 335$ mm prema 7.2 - diobena/kinematska kružnica

Odabire se:

 z_1 =19 - broj zubi pogonskog zupčanika, a iz toga za zadani modul proizlazi i diobena, ali i kinematska kružnica kao i osni razmak NULTOG para zupčanika te prijenosni odnos:

$$d_1 = m \cdot z_1 = 5 \cdot 19 = 95 \text{ mm} \tag{7.13}$$

$$i = \frac{d_2}{d_1} = \frac{335}{95} = 3,526 \tag{7.14}$$

$$a = \frac{d_2 - d_1}{2} = 120 \text{ mm}$$
(7.15)

Pa slijede karakteristični promjeri redom:

$$d_{a1} = d_1 + 2m = 105 \text{ mm}$$
 - tjemeni promjer (7.16)

$$d_{f1} = d_1 - 2m - 2 \cdot 0, 25m = 82, 5 \text{ mm}$$
 - podnožni promjer (7.17)

$$d_{w1} = d_1 = 95 \text{ mm} - \text{kinematski promjer}$$
(7.18)

$$d_{b1} = d_{w1} \cdot \cos(\alpha_w) = 89,27 \text{ mm - osnovni/temeljni promjer}$$
(7.19)

Iz zadanog i izračunatog proizlazi sljedeći model zahvata:

Slika 7.4: Skica zahvata unutarnjeg ozubljenja

Slika 7.5: Slika validacije dimenzija pogonskog zupčanika

Slika 7.6: Slika validacije dimenzija gonjenog zupčanika

7.3.1. Provjera naprezanja korijena zuba na savijanje

Tangencijalna sila koja djeluje na zub računa se prema [6]

$$F_t = \frac{2 \cdot M_{an}}{d_{w1}} = \frac{2 \cdot 292, 5}{95} = 6,158 \text{ kN}$$
(7.20)

Savojno naprezanje u korjenu zuba računa se iz izraza:

$$\sigma_F = \frac{F_t}{b \cdot m} \cdot Y_{F1} \cdot Y_{\varepsilon} \cdot K_{F\alpha 1} \le \sigma_{FP1}$$
(7.21)

Gdje su redom prema [6]

$$\begin{split} \mathbf{Y}_{F1} &= f(z_1 = 19; x_1 = 0, \beta = 0) = 2,93 \text{ - faktor oblika} \\ \mathbf{Y}_{\varepsilon} &= \frac{1}{\varepsilon_{\alpha}} = \frac{1}{1,87} = 0,534 \text{ - Faktor udjela opterećenja} \\ \varepsilon_{\alpha} &= \frac{\sqrt{r_{a1}^2 - r_{b1}^2}}{\pi \cdot m \cdot \cos(20^\circ)} = 1,87 \text{ - Stupanj prekrivanja profila} \\ \mathbf{K}_{F\alpha 1} &= q_L \cdot \varepsilon_{\alpha} = 1 \cdot 1,87 = 1,87 \text{ - Faktor raspodjele opterećenja kod proračuna opterećenja korjena zuba} \\ \mathbf{q}_L &= f(d_{w2} = d_2 = 335; m = 5; kvaliteta12, \frac{F_t}{b} = 152 \text{ N/mm}) = 1 \text{ - Korekcijski faktor} \end{split}$$

raspodjele sile Vraćanjem navedenih varijabli u izraz (7.21) i odabirom čelika Ck50 sa dinamičkom čvr-

stoćom kod naprezanja na savijanje korjena zuba $\sigma_{Flim} = 200$ MPa i faktorom sigurnosti $S_{Flim} = 2$ dobiva se:

$$\sigma_F = \frac{6,15 \cdot 10^3}{40 \cdot 5} \cdot 2,93 \cdot 0,534 \cdot 1,87 = 89,97 \text{ MPa} \le \sigma_{FP1} = \frac{220}{2} = 110 \text{ MPa}$$
(7.22)

Što znaći da materijal na savojno opterećenje korjena zuba zadovoljava!

7.3.2. Provjera naprezanja zuba na Herzov pritisak

Kako navodi [6] provjera na Herzov pritisak odnosno bočni tlak na zubu provesti će se sljedećim izrazom:

$$\sigma_H = Z_M \cdot Z_H \cdot Z_{\varepsilon} \cdot \sqrt{\frac{i+1}{i} \cdot \frac{F_t}{b \cdot d_1} \cdot K_{H\alpha}} \le \sigma_{HP}$$
(7.23)

Gdje su varijable potrebne za proračun prema [6]:

 $\mathbf{Z}_M=f(Ck45-materijal)=189, 5\sqrt{N/mm^2}$ - Faktor utjecaja materijala na proračun opterećenja bokova

 $f Z_H = f(rac{x_1+x_2}{z1+z_2}=0; eta=0) = 2, 5$ - Faktor oblika boka $f Z_arepsilon = \sqrt{rac{4-\epsilon_lpha}{3}} = 0,843$ - Faktor utjecaja stupnja prekrivanja za proračun opt. bokova $f K_{Hlpha} = f(Z_arepsilon) = 1,4$ - Faktor raspodjele opt. kod proračuna bokova

Uvrštavanjem navedenog u izraz (7.23) i odabirom čelika Ck45 sa dinamičkom čvrstoćom kontaktnog pritiska $\sigma_{Hlim} = 1140$ MPa i faktorom sigurnosti $S_{Hlim} = 1, 3$ slijedi:

$$\sigma_{H} = 189, 5 \cdot 2, 5 \cdot 0, 843 \cdot \sqrt{\frac{3, 526 + 1}{3, 526}} \cdot \frac{6, 158 \cdot 10^{3}}{40 \cdot 95} \cdot 1, 4 = 681, 5 \text{ MPa} \le \sigma_{HP} = 876, 92 \text{ MPa}$$
(7.24)

Tako slijedi i prikaz sila u zahvatu kako bi se mogla izračunati i radijalna komponenta na pogonsko vratilo:

Slika 7.7: Prikaz sila koje djeluju u zahvatu

Pa se može izraziti radijalna sila na vratilo:

$$F_{r1} = F_t \cdot tg(\alpha) = 6,15 \cdot 10^3 \cdot tg(20^\circ) = 2238,41 \text{ N}$$
(7.25)

Zatim se određuje rezultantna sila F_{Rz} sa kojom se ulazi u proračun vratila:

$$F_{Rz} = \sqrt{F_{r1}^2 + F_t^2} = \sqrt{2238, 41^2 + 6158^2} = 6552, 2 \text{ N}$$
(7.26)

Slika 7.8: Prikaz rezultatnih opterećenja koje djeluju na pogonsko vratilo

Za ovaj slučaj opterećenja [22] navodi sljedeće izraze za sile u osloncima A i B:

$$F_{rA} = F_{Rz} \cdot \frac{x_c}{x_{AB}} = 6552, 2 \cdot \frac{101, 5}{32, 5} = 20463 \,\mathrm{N}$$
 (7.27)

$$F_{rB} = F_{Rz} \cdot \frac{x_c x_{AB}}{x_{AB}} = 6552, 2 \cdot \frac{101, 5 - 32, 5}{32, 5} = 13910, 82 \text{ N}$$
(7.28)

Gdje su:

 ${
m F}_{rA}=20463~{
m N}$ - Sila u ležajnom mjestu A ${
m F}_{rB}=13910,82~{
m N}$ - Sila u ležajnom mjestu B

 $x_c = 101, 5 \text{ mm}$ - udaljenost sile na zupčanik i ležajnog mjesta B $x_{AB} = 32, 5 \text{ mm}$ - udaljenost ležajnih mjesta A i B

Validirane su još tangencijalna F_t sila i radijalna F_{r1} sila na zupčanik/vratilo preko programa Autodesk Inventor kao i naprezanja zuba na savijanje te se može prema slici 7.9 da je proračun zupčanog para uspješno validiran i podudara se sa "simulacijskim" rješenjem.

	5	Stirnräder-G	ener	ator				
${}_{\!$							💕 🛃 😭	
Methode der Festigkeitsberechnung						Ergebnisse		*
ISO 6336:1996					~	Ft	6157,710 N	
Palastungen						Fr	2241,223 N	
belastungen		Zahnrad 1		Zahnrad 2		Fa	0,000 N	
Leistung	Р	0,216kW	>	0,212 kW		Fn	6552,898 N	
Drehzahl	n	7,052 rpm	>	2,00 rpm		v	0,035 mps	
Drehmoment	т	292,491 N m	>	1010,788 N m		Tahnrad 1	14147,152 rpm	
Wirkungsgrad		η 0,9	80 oE	>		S _H	2,362 oE	
Materialworte						SF	3,253 oE	
						S _{Hst}	1,860 oE	
	50					S _{Fst}	7,331 oE	
Zahnrad 2 Benutze	erdef. Material					Zahnrad 2		
Dauerfestigkeit bei Biegebeanspr.	σ _{Flim}	390,0 MPa	>	352,0 MPa	>	SH	2,679 oE	
Dauerfestigkeit bei Kontaktbeanspr.	σ _{Hlim}	1140,0 MPa	>	1140,0 MPa	>	SF	2,862 oE	
Elastizitätsmodul	E	206000 MPa	>	206000 MPa	>	S _{Hst}	1,621 OE	
Poissonsche Konstante	μ	0,300 oE	>	0,300 oE	>	SEst	3,7910L	
Vergütung		2 oE	>	2 oE	>			
Erforderliche Gebrauchsdauer		Lb 100	00 h		>			
		-11			_			
		Koeffiziente	en	Genauigkei	t			«
*								⇒
2				Berechr	nen	OK	Abbrechen	>>
			_					

Slika 7.9: Prikaz rezultatnih opterećenja i naprezanja zupčanog para dobivenih programskim paketom Autodesk Inventor

7.3.3. Proračun i dimenzioniranje vratila pogona za okretanje

Kako bi se proveo proračun čvrstoće i sigurnosti rukavaca vratila potrebno je preddefinirati neke parametre poput varijabli ovisnih o materijalu i sl. Pa je tako odabrani materijal vratila s obzirom na tešku pogonsku grupu konstrukcije **Ck45** za koji vrijedi:

 $\sigma_{fDN} = 335 \text{ MPa}$ - trajna dinamička čvrstoća kod savijanja čistim naizmjeničnim ciklusom $\tau_{tDI} = 270 \text{ MPa}$ - trajna dinamička čvrstoća kod uvijanja čistim istosmjernim ciklusom $R_m = 820 \text{ MPa}$ - Prekidna čvrstoća na vlak

 $\sigma_{f.dop} = 84 \text{ MPa}$ - Dopušteno napreznaje na savijanje $\alpha_0 = \frac{\sigma_{fDN}}{\sqrt{3} \cdot \tau_{tDI}} = \frac{335}{\sqrt{3} \cdot 270} = 0,716$ - Faktor čvrstoće materijala vratila

Presjek ležajno mjesto B

Prvo je potrebno odrediti moment savijanja u kritičnom presjeku kod ležajnog mjesta B:

$$M_{f(B)} = F_{rZ} \cdot x_c = 6552, 2 \cdot 101, 5 = 665048, 3 \text{ Nmm}$$
(7.29)

$$M_{redB} = \sqrt{M_{f(B)}^2 + 0.75 \cdot (\alpha_0 \cdot T_z)^2} = 689255,08 \text{ Nmm}$$
(7.30)

 $M_{f(B)} = 665048, 3$ Nmm - Moment na ležajnom mjestu B $M_{redB} = 689255, 08$ Nmm - Reducirani moment na ležajnom mjestu B $d_B \ge 40$ mm - Promjer rukavca u presjeku B

Kontrola presjeka B - dinamička sigurnost

 $b_1 = 0,85$ - Faktor veličine strojnog dijela za d=40 mm $b_2 = 0,89$ - Faktor kvalitete strojne obrade za $R_m = 800$ MPa i $R_{max} = 6,3 \ \mu m$ $\sigma_{fDN} = 335$ MPa - trajna dinamička čvrstoća kod savijanja čistim naizmjeničnim ciklusom za 18CrNi6

 $\varphi=1,2$ - Faktor udara (srednje jaki)

Potrebno je također izračunati efektivne faktore zareznog djelovanja pri savijanju kod okretanja β_{kf} i uvijanja β_{kt} .

Efektivni faktor zareznog djelovanja kod savijanja okretanjem iznosi:

$$\beta_{kf} = 1 + c_1 \cdot (\beta_{kf2} - 1) \tag{7.31}$$

Gdje se očitavaju, a potom i uvrštavaju u izraz sljedeće veličine:

 $c_1 = f(\frac{D}{d} = 1, 125) = 0, 32$ - zanemarivo $\beta k f 2 = f(\frac{\rho}{D} = 0, 025) = 1, 7$

Pa uvrštavanjem slijedi β_{kf}

$$\beta_{kf} = 1 + 0,32 \cdot (1,52 - 1) = 1,1664 \tag{7.32}$$

Na isti način dolazi se do efektivnog faktora zareznog djelovanja kod uvijanja:

$$\beta_{kt} = 1 + c_2 \cdot \left(\beta_{kt1,4} - 1\right) \tag{7.33}$$

Gdje su:

 $\beta_{kt1,4} = 1,67$ $c_2 = 0,62$

Te uvrštavanjem u početni izraz dobije se: $\beta_{kt}=1,4154$

Sada kada su svi ključni faktori izračunati uvrštava se sve u izraz:

$$M_{red-B} = \sqrt{(M_{redB}^{II-II} \cdot \beta_{kf})^2 + 0.75 \cdot (\alpha_0 \cdot T_z \cdot \beta_{kt})^2}$$
(7.34)

$$M_{red-B} = \sqrt{(689255, 08 \cdot 1, 16)^2 + 0.75 \cdot (0.716 \cdot 292, 5 \cdot 10^3 \cdot 1, 4154)^2} = 839737, 7 \text{ Nmm}$$
(7.35)

Potom kako bi se odredilo stvarno reducirano naprezanje u presjeku potrebno je izračunati moment otpora presjeka:

$$W_B = 0, 1 \cdot d_I^3 = 0, 1 \cdot 40^3 = 6400 \text{ mm}^3$$
(7.36)

Nakon čega slijedi σ_{red1} :

$$\sigma_{red-B} = \frac{M_{red-B}}{W_B} = 131, 2 \text{ MPa}$$
(7.37)

Te se može provjeriti sigurnost izrazom sa početka (4.52):

$$S_{post} = \frac{0,85 \cdot 0,89 \cdot 335}{1,2 \cdot 187,43} = 1,6 \tag{7.38}$$

Pa je tako:

$$S_{post} = 1, 6 \ge S_{pot} = 1, 5 \tag{7.39}$$

7.3.4. Odabir ležajeva

Ležajno mjesto A

Za ležajno mjesto A odabran je ležaj SKF 22207 E

Slika 7.10: Odabrani ležaj ležajnog mjesta A

$$P_A = X_A \cdot F_{Ar} + Y_A \cdot F_{Aa} = 20463 \text{ N}$$
(7.40)

$$C_{1A} = P_A \cdot \left(\frac{60 \cdot n_{izl} \cdot L_{10h}}{10^6}\right)^{1/\varepsilon}$$
(7.41)

Gdje su veličine:

 $\varepsilon=10/3$ - za teorijski dodir u liniji $n_{izl}=7,052~{\rm min^{-1}}$ - izlazna brzina iz motor reduktora za pokretanje $L_{10h}=5000~{\rm h}$ - transportna vozila

Potom slijedi

$$C_{1A} = 20463 \cdot \left(\frac{60 \cdot 7,052 \cdot 5000}{10^6}\right)^{3/10} = 25,6 \text{ kN}$$
(7.42)

Pa se usporedi sa 3.2 i dobije se:

$$C_{1A} = 25,6 \text{ kN} \le C = 88,8 \text{ kN} \tag{7.43}$$

Što znači da ležaj zadovoljava, potrebno je još proračunati njegov vijek trajanja:

$$L_{h,A} = \frac{10^6}{60 \cdot n_{izl}} \cdot \left(\frac{C_A}{P_A}\right)^{\varepsilon}$$
(7.44)

Iz čega se uvrštavanjem dobije:

$$L_{h,A} = 149318 \text{ h} \tag{7.45}$$

Ležajno mjesto B

Za ležajno mjesto B odabran je ležaj SKF 6208-2RZ

Slika 7.11: Odabrani ležaj ležajnog mjesta B

Iz toga slijedi jednadžba:

$$P_B = X_B \cdot F_{Br} + Y_B \cdot F_{Ba} = 13910, 82 \,\mathrm{N} \tag{7.46}$$

Kako je aksijalna sila uzrokovana samo zbrojem mase vratila i zupčanika iznimno mala sobzirom na komponentu radijalne sile uzima se slučaj $X_B=1$ i $Y_B=0$

$$C_{1B} = P_B \cdot \left(\frac{60 \cdot n_{izl} \cdot L_{10h}}{10^6}\right)^{1/\varepsilon}$$
(7.47)

Gdje su veličine:

 $\varepsilon=3$ - za teorijski dodir u točki
 $n_{izl}=7,052~{\rm min^{-1}}$ - izlazna brzina iz motor reduktora za pokretanje
 $L_{10h}=5000~{\rm h}$ - transportna vozila

Pa slijedi:

$$C_{1B} = P_B \cdot \left(\frac{60 \cdot n_{izl} \cdot L_{10h}}{10^6}\right)^{1/\varepsilon} = 13910, 82 \cdot \left(\frac{60 \cdot 7,052 \cdot 5000}{10^6}\right)^{1/3} = 17857, 9 \text{ N} \quad (7.48)$$

$$C_{1B} = 17,856 \text{ kN} \le C = 32,5 \text{ kN}$$
(7.49)

Što znači da ležaj zadovoljava, potrebno je još proračunati njegov vijek trajanja:

$$L_{h,B} = \frac{10^6}{60 \cdot n_{izl}} \cdot \left(\frac{C_1 B}{P_B}\right)^{\varepsilon} = \frac{10^6}{60 \cdot 7,052} \cdot \left(\frac{17856}{13910,82}\right)^3 = 4998,39 \text{ h}$$
(7.50)

7.4. Simulacija ploče prihvata okretnog ležaja

U programskom paketu ABAQUS provest će se simulacija opterećenja ploče na koju se hvata okretni ležaj nadplatforme a koja je još dodatno orebrena sa T profilima (DIN1024-T80) i kružnim prstenom kako se vidi na slici 7.12

Slika 7.12: Prikaz platforme na koju se veže okretni ležaj

Slika 7.13: Prikaz proracunskog opterećenja ploče

Slika 7.13 prikazuje proračunsko opterećenje gdje su zapravo postavljeni rubni uvjeti na rubove ploče koji onemogućuju kut zakreta, pomak i progib u sve 3 osi, odnosno uklještenja. Također postavljen je uvjet pomaka i kuta zakreta na mjesto rebara (T-Profila) kako bi se

opisala krutost na tim dijagonalama. Opterećenje je podjeljeno u više točaka te se takvom analizom dobiva sljedeći rezultat 7.14:

Slika 7.14: Prikaz rezultata progiba ploce donje platforme u programskom paketu ABAQUS

Slika 7.15: Grafički prikaz promjene progiba pod duljini ploće (Dulja os-Y)

Također provesti će se i simulacija ploče okretne platforme koja se veže na okretni ležaj.

Slika 7.16: Prikaz proracunskog opterećenja ploče okretne platforme

Slika 7.17: Prikaz rezultata progiba ploce gornje/okretne platforme u programskom paketu ABAQUS

Slika 7.18: Grafički prikaz promjene progiba pod duljini kriticnog presjeka ploće

8. Akumulatorski pogonski sustav 48V

U ovome poglavlju dat će se kratak opis akumulatorskog pogonskog sustava DC 48V kojeg čine trakcijske baterije za viličare. Te su baterije iz grupe dubokog ciklusa (deep cycle) jer su u mogućnosti prazniti se do 80% svog kapaciteta.

Dakle te baterije su unutar grupe "deep cycle" prepoznate kao baterije posebne namjene. Dok "starter" baterije odnosno akumulatori dolaze kao jedinice koje služe za pokretanje (najčešće motora sa unutrašnjim izgaranjem), osvjetljenje i sl. trakcijske baterije se koriste kao pogonske baterije raznih vozila na električni pogon i tamo su našle najširu primjenu.

Najčešće se koriste prema [23] kao dijelovi pogonskog sustava viličara, električnih transportnih kolica, motocikala, mopeda, automobila, dizalica i sl.

Karakterizira ih također i dugi vijek trajanja. Pune se u ciklusima nakon dubinskog pražnjenja svaka 24 sata, a okviran vijek trajanja im je prema [23] 1500 do 2000 ciklusa.

Neke od prednosti su:

▷ Upotreba u prostorima gdje je zabranjena upotreba motora s unutarnjim izgaranjem zbog rizika od požara

Prednost niže cijene električne energije

⊳ Manja razina buke

8.1. Proračun kapaciteta baterija

Kako postoje tri sustava na transportnim kolicima koja je potrebno pogoniti, potrebno je pretpostaviti zastupljenost njihove uporabe unutar zadanog ciklusa (u ovom slučaju 1h). Te izračunati ukupnu snagu koju vozilo treba za opskrbu svih članova unutar tog ciklusa.

Tako se pretpostavlja da ukupno utrošena energija kroz ciklus iznosi po članovima i računa se iz izraza

$$Q_{c.sus} = P_{sus} \cdot t_c \, \mathrm{kWh} \tag{8.1}$$

Gdje su:

 Q_c - ukupna energija po ciklusu rada sustava, kWh

 P_{sus} - snaga sustava, kW

 \mathbf{t}_c - vremensko trajanje ciklusa, h

 $Q_{c.diz} = 0, 2 \cdot P_{pump} \cdot t_c = 0, 2 \cdot 5, 5 \cdot 1 = 1, 1$ kWh - energija potrebna za dizanje unutar ciklusa 1h (20 % zastupljenosti u ciklusu)

 $Q_{c.vo} = 0, 6 \cdot P_{n,p} \cdot n \cdot t_c = 0, 6 \cdot 0, 75 \cdot 2 \cdot 1 = 0, 9$ kWh - energija potrebna za vožnju unutar ciklusa 1h (60 % zastupljenosti u ciklusu)

 $Q_{c.okr} = 0, 2 \cdot P_{an} \cdot t_c = 0, 2 \cdot 0, 25 \cdot 1 = 0, 05$ kWh - energija potrebna za okretanje platforme unutar ciklusa 1h (20 % zastupljenosti)

Potom se lako dobiva ukupno utrošena energija kroz jedan ciklus:

$$Q_{c.uk} = \sum Q_{c.sus} = Q_{c.diz} + Q_{c.vo} + Q_{c.okr} = 1, 1 + 0, 9 + 0, 05 = 2, 05 \text{ kWh}$$
(8.2)

Iz čega direktnom vezom slijedi kapacitet baterije po jednom ciklusu:

$$C_1 = \frac{Q_{c.uk}}{U} = \frac{2,05 \cdot 10^3}{48} = 42,7 \text{ Ah}$$
(8.3)

Gdje su:

C1 - traženi kapacitet baterije za jedan ciklus, Ah

U=48 V - napon zadan zadatkom

Odabrane su trakcijske baterije kapaciteta 75 Ah kako bi se ostalo na strani sigurnosti da će iste zadovoljiti i trajati ukupan proračunski ciklus.

9. Analiza opasnosti pri radu sa transportnim kolicima

Ova analiza opasnosti podlježe i izrađena je prema [24] te propisuje minimalne zahtjeve koje je potrebno ispuniti kod procjenjivanja rizika i opasnosti.

Kako navodi [24] procjenjivanje rizika provodi se u skladu s Matricom procjene rizika prema općim kriterijima razine rizika (vjerojatnost/posljedica) iz Priloga I Pravilnika [24]. Navedena matrica ima podjelu rizika odnosno opasnosti na:

⊳ mali rizik

⊳ srednji rizik

⊳ veliki rizik

|--|

1.	Malo vjerojatno	Ne bi se trebalo dogoditi tijekom cijele profesionalne karijere radnika
2.	Vjerojatno	Može se dogoditi samo nekoliko puta tijekom profesionalne ka- rijere radnika
3.	Vrlo vjerojatno	Može se ponavljati tijekom profesionalne karijere radnika

 Tablica 9.2: Posljedice (veličina posljedica - štetnosti) prema [24]

1.	Malo štetno	Ozljede i bolesti koje ne uzrokuju produženu bol (npr. Male ogrebotine, iritacija oka, glavobolja)
2.	Srednje štetno	Ozljede i bolesti koje uzrokuju umjerenu, ali produženu bol ili
		bol koja se povremeno ponavlja (npr. Rane, manji prijelomi,
		opekotine drugog stupnja, dermatološke alergije itd.)
3.	Izrazito štetno	Ozljede i bolesti koje uzrokuju tešku i stalnu bol i/ili smrt (npr.
		Amputacije, komplicirani prijelomi, rak, opekotine drugog ili
		trećeg stupnja na velikom dijelu tijela itd.)

Kombinacijom tablice 9.1 i 9.2 dolazi se do matrice procjene rizika/opasnosti:

T 7• • , , ,	Veličina posljedice							
Vjerojatnost	Malo štetno	Srednje štetno	Izrazito štetno					
Malo vjerojatno	Mali rizik	Mali rizik	Srednji rizik					
Vjerojatno	Mali rizik	Srednji rizik	Veliki rizik					
Vrlo vjerojatno	Srednji rizik	Veliki rizik	Veliki rizik					

Tablica 9.3: Matrica procjene rizika prema [24] Veličina posljedice

Mehaničke opasnosti				
Sredstva za horizontalni prijenos	Trasa gibanja transportnih kolica mora biti čista i bez prepreka. Zabranjeno zadržavanje radnika na trasi			
Rukovanje predmetima	Upravljanje kontrolerima vozila vršiti bez zaštit- nih rukavica u svrhu boljeg osjećaja za poziciju komandi			
Ostale meh. Opasnosti	Nositi zaštitne cipele sa metalnom kapicom i za- štitnu kacigu			
(Dpasnost od padova			
Pad radnika i drugih osoba	Zabranjeno penjanje ili zadržavanje na trans- portnim kolicima			
Na istoj razini	Osloboditi trasu kretanja radnika od prepreka i predmeta			
Pad predmeta	Osigurati teret od pada i pravilno ga pozicioni- rati			
	Električna struja			
Otvoreni električni krug	Osigurati da su svi elementi električnog kruga adekvatno izolirani, spojeni, pozicionirani i pu- šteni u pogon.			
Ostale el. Opasnosti	Sigurnosne sklopke za prekid rada stroja na vid- ljivom i lako dostupnom mjestu			
	Kemijske štetnosti			
Kiseline	Osigurati pozicioniranje i prihvat akumulator- skog sklopa od ispadanja i prevrtanja			
	Fizikalne štetnosti			
Buka	korištenje kotača sa kompozitnom bandažom, kao i gumenih odbojnika			
St	atodinamički napori			
Pognut položaj tijela	Pognut položaj tjela prilikom pričvršćivanja te- reta i njegovog pozicioniranja			

Tablica 9.4: Tablica raspodjele rizika na visoki, srednji i mali rizik/opasnost

10. Zaključak

Ovaj rad obuhvatio je široko područje strojarstva protežući se od proračuna nosivih konstrukcija, analize i validacije proračuna čvrstoće različitim metodama, sinteze i teorije mehanizama kao i proračun jednostavnijih hidrauličkih komponenti i njihovu implementaciju u sustav.

Krucijalni elementi poput glavnih nosača struktura, ali i zupčaničkih parova provjereni su numeričkim i analitičkim proračunom te validirani u različitim programskim paketima. Kinematika škarastog mehanizma kao i kinematika spona skretanja proračunata je osnovnim trigonometrijskim identitetima i dobivene su potrebne izlazne varijable (sile u hidrauličkim cilindrima, kut skretanja i sl.) sa kojima se moglo ući u nastavak proračuna te provjeriti ostale komponente u nizu sustava mehanizama.

Također se odabralo konstrukcijsko riješenje glavnih kotača sa gumenom bandažom čime je omogućeno dobro prijanjanje na podlogu bez pretjerane buke pri kretanju.

Kako se išlo na kompaktniju izvedbu, škarasti mehanizam je trebao biti spušten što niže φ_{min} te u tom položaju trpi najveće opterećenje dok se ne postignu veći kutovi pozicije istoga. Iz tog razloga najviše opterećene komponente škarastog mehanizma (noge (škare), osovine, poprečna greda) izrađene su iz nešto kvalitetnijeg materijala S355J0 kako bi zadovoljili sva pripisana opterećenja, ali i težu pogonsku grupu H3/B4.

Krucijalna varijabla visine h=1200 mm zadovoljena je kao i širina vozila koja zbog dodatnih alki za vezivanje prelazi nešto više od 1500mm ali i dalje zadovoljava kompaktnost vozila pri prolazu kroz uske i niske prolaze za koje je i namjenjeno. Vozilo može prevoziti terete do opterećenja Q=100 kN najvećom brzinom 1 m/s te ih podizati na visinu h=800 mm što je i više nego dovoljno za ukrcaj, iskrcaj i manipulaciju njima. Teret se može zakretati za 360° i time je ispunjen zahtjev iz zadatka.

Kako bi se postigla neovisnost vozila o vanjskom izvoru energije i električnoj instalaciji unutar pogona, vozilo je opremljeno setom trakcijskih baterija kapaciteta 75 Ah po ciklusu od 1h.

```
1 syms x s1 s2 s3 s4 s5 s6 a1 a2 a3 a4 a5 a6;
_{2} 11=200;
_{3} 12 = 450;
_{4} 13=600;
<sup>5</sup> 14=13;
6 15 = 12;
7 16 = 11;
8 E=210000; % Youngov modul elasticnosti
<sup>9</sup> F=(107910+0.410*2500); %kontinuirano opterecenje uslijed
     vlastite mase sadrzano u koncentriranoj sili
10 Iy=62634000; %Prosjecna krutost grede uzimajuci u obzir
     zastupljenost razlicitih krutosti duz nje
11 Iy 1 = Iy;
I_{12} Iy2=Iy;
_{13} qm=0.410;
14 %Lokalna matrica krutosti 1.clana
 k1 = E * Iy1 * [
15
      12/((11)^3), -6/((11)^2), -12/((11)^3), -6/((11)^2);
16
      -6/((11)^2), 4/11, 6/((11)^2), 2/11;
17
      -12/((11)^3), 6/((11)^2), 12/((11)^3), 6/((11)^2);
18
      -6/((11)^2), 2/11, 6/((11)^2), 4/11;
19
      1;
20
 %Globalna matrica krutosti 1.clana
21
 K1=E*Iy1*[
22
      12/((11)^3), -6/((11)^2), -12/((11)^3), -6/((11)^2)
23
         ,0,0,0,0,0,0,0,0,0,0;
      -6/((11)^{2}), 4/11, 6/((11)^{2}), 2/11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
24
      -12/((11)^3), 6/((11)^2), 12/((11)^3), 6/((11)^2)
25
         ,0,0,0,0,0,0,0,0,0,0;
      26
      27
      28
      29
      30
```

A. Programski kod za proračun progiba glavnog nosača nosive strukture

1; %Lokalna matrica krutosti 2.clana k2 = E * Iy2 * [$12/((12)^3)$, $-6/((12)^2)$, $-12/((12)^3)$, $-6/((12)^2)$; $-6/((12)^2)$, 4/12, $6/((12)^2)$, 2/12; $-12/((12)^3)$, $6/((12)^2)$, $12/((12)^3)$, $6/((12)^2)$; $-6/((12)^2)$, 2/12, $6/((12)^2)$, 4/12;]; %Globalna matrica krutosti 2.clana K2 = E * I y 2 * [$0, 0, 12/((12)^3), -6/((12)^2), -12/((12)^3), -6/((12)^2)$,0,0,0,0,0,0,0,0; $0,0,-6/((12)^2), 4/12, 6/((12)^2), 2/12,0,0,0,0,0,0,0,0;$ $0, 0, -12/((12)^3), 6/((12)^2), 12/((12)^3), 6/((12)^2)$,0,0,0,0,0,0,0,0,0; $0,0,-6/((12)^2), 2/12, 6/((12)^2), 4/12,0,0,0,0,0,0,0,0;$ 0,0,0,0,0,0,0,0,0,0,0,0,0,0; 1; %Lokalna matrica krutosti 3.clana k3 = E * Iy * [
```
12/((13)^3), -6/((13)^2), -12/((13)^3), -6/((13)^2);
65
    -6/((13)^2), 4/13, 6/((13)^2), 2/13;
66
    -12/((13)^3), 6/((13)^2), 12/((13)^3), 6/((13)^2);
67
    -6/((13)^2), 2/13, 6/((13)^2), 4/13;
68
    1;
69
 %Globalna matrica krutosti 3.clana
70
 K3=E*Iy*[
71
    72
    73
    74
    75
    0, 0, 0, 0, 12/((13)^3), -6/((13)^2), -12/((13)^3), -6/((13)^2)
76
      ^2),0,0,0,0,0,0;
    0, 0, 0, 0, -6/((13)^2), 4/13, 6/((13)^2), 2/13, 0, 0, 0, 0, 0;
77
    0, 0, 0, 0, -\frac{12}{(13)^3}, 6/((13)^2), \frac{12}{(13)^3}, 6/((13)^2)
78
      ,0,0,0,0,0,0;
    0, 0, 0, 0, -6/((13)^2), 2/13, 6/((13)^2), 4/13, 0, 0, 0, 0, 0;
79
    80
    81
    82
    83
    84
    85
    1;
86
87
 %Lokalna matrica krutosti 4.clana
88
 k4 = k3;
89
 %Globalna matrica krutosti 4.clana
90
 K4=E*Iy*[
91
    92
    93
    94
    95
    96
    97
```

98	$0, 0, 0, 0, 0, 0, 12/((13)^3), -6/((13)^2), -12/((13)^3), -6/(($
	13)^2),0,0,0,0;
99	$0, 0, 0, 0, 0, 0, -6/((13)^2), 4/13, 6/((13)^2), 2/13, 0, 0, 0, 0;$
100	$0, 0, 0, 0, 0, 0, -12/((13)^3), 6/((13)^2), 12/((13)^3), 6/((13)^3)$
	^2),0,0,0,0;
101	$0, 0, 0, 0, 0, 0, -6/((13)^2), 2/13, 6/((13)^2), 4/13, 0, 0, 0, 0;$
102	0,0,0,0,0,0,0,0,0,0,0,0,0;
103	0,0,0,0,0,0,0,0,0,0,0,0,0;
104	0,0,0,0,0,0,0,0,0,0,0,0,0;
105	0,0,0,0,0,0,0,0,0,0,0,0,0;
106];
107	%Lokalna matrica krutosti 5.clana
108	k5=k2;
109	%Globalna matrica krutosti 5.clana
110	K5=E*Iy2*[
111	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
112	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
113	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
114	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
115	0,0,0,0,0,0,0,0,0,0,0,0,0;
116	0,0,0,0,0,0,0,0,0,0,0,0,0;
117	0,0,0,0,0,0,0,0,0,0,0,0,0;
118	0,0,0,0,0,0,0,0,0,0,0,0,0;
119	$0, 0, 0, 0, 0, 0, 0, 0, 0, 12/((12)^3), -6/((12)^2), -12/((12)^3),$
	$-6/((12)^2), 0, 0;$
120	$0, 0, 0, 0, 0, 0, 0, 0, 0, -6/((12)^2), 4/12, 6/((12)^2), 2/12, 0, 0;$
121	$0, 0, 0, 0, 0, 0, 0, 0, -12/((12)^3), 6/((12)^2), 12/((12)^3),$
	$6/((12)^2), 0, 0;$
122	$0, 0, 0, 0, 0, 0, 0, 0, 0, -6/((12)^2), 2/12, 6/((12)^2), 4/12, 0, 0;$
123	0,0,0,0,0,0,0,0,0,0,0,0;
124	0,0,0,0,0,0,0,0,0,0,0,0,0;
125];
126	
127	%Lokaina matrica krutosti 6.clana
128	K0=K1;
129	%Globalna matrica krutosti 6. clana

130	K6=E*Iy1*[
131	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
132	0,0,0,0,0,0,0,0,0,0,0,0,0;
133	0,0,0,0,0,0,0,0,0,0,0,0,0;
134	0,0,0,0,0,0,0,0,0,0,0,0,0;
135	0,0,0,0,0,0,0,0,0,0,0,0,0;
136	0,0,0,0,0,0,0,0,0,0,0,0,0;
137	0,0,0,0,0,0,0,0,0,0,0,0,0;
138	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
139	0,0,0,0,0,0,0,0,0,0,0,0,0;
140	0,0,0,0,0,0,0,0,0,0,0,0,0;
141	$0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12/((11)^3), -6/((11)^2), -12/((11)^3)$
	$, -6/((11)^2);$
142	$0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6/((11)^2), 4/11, 6/((11)^2), 2/11;$
143	$0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12/((11)^3), 6/((11)^2), 12/((11)^3),$
	6/((11)^2);
144	$0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6/((11)^2), 2/11, 6/((11)^2), 4/11;$
145];
146	%Globalna matrica krutosti grede
147	K=K1+K2+K3+K4+K5+K6;
148	
149	%1.Element sile LOK
150	NT1s=[
151	$1 - (3*(s1^2))/11^2+2*s1^3/11^3;$
152	$-s1+2*s1^2/11-s1^3/11^2;$
153	3*s1^2/11^2-2*s1^3/11^3;
154	s1^2/11-s1^3/11^2;
155]*qm;
156	Fs1=int(NT1s, 0, 11);
157	
158	%1.Element sile GLOB
159	R1 = [Fs1;0;0;0;0;0;0;0;0;0;0;0;0;0]
160	
161	%2.Element sile LOK
162	NT2s=[
163	$1 - (3 * s2^2) / 12^2 + 2 * s2^3 / 12^3;$

```
-s2+2*s2^{2}/12-s2^{3}/12^{2};
164
        3*s2^2/12^2-2*s2^3/12^3;
165
        s2^2/12-s2^3/12^2;
166
        ]*qm;
167
   Fs2=int(NT2s, 0, 12);
168
169
  %2. Element sile GLOB
170
   R2 = [0;0;Fs2;0;0;0;0;0;0;0;0;0;0;]
171
172
173
  %3. Element sile LOK
174
   NT3s = [
175
        1 - (3 * s3^{2}) / 13^{2} + 2 * s3^{3} / 13^{3};
176
        -s3+2*s3^{2}/13-s3^{3}/13^{2};
177
        3*s3^2/13^2-2*s3^3/13^3;
178
        s3^2/13-s3^3/13^2;
179
        ]*qm;
180
   Fs3=int(NT3s, 0, 13);
181
  F3 = [0;0;F;0;];
182
  %3. Element sile GLOB
183
  Fs3G = [0;0;0;0;Fs3;0;0;0;0;0;0;0;];
184
  F3G = [0;0;0;0;F3;0;0;0;0;0;0;0;];
185
   R3=Fs3G+F3G
186
187
  %4. Element sile LOK
188
   NT4s = [
189
        1 - (3 * s4^{2}) / 14^{2} + 2 * s4^{3} / 14^{3};
190
        -s4+2*s4^{2}/14-s4^{3}/14^{2};
191
        3*s4^2/14^2-2*s4^3/14^3;
192
        s4^2/14-s4^3/14^2;
193
        ]*qm;
194
   Fs4=int(NT4s, 0, 14);
195
  F4 = [F; 0; 0; 0; ];
196
  %4. Element sile GLOB
197
  Fs4G = [0;0;0;0;0;0;Fs4;0;0;0;0;];
198
  F4G = [0;0;0;0;0;0;F4;0;0;0;0;];
199
```

```
R4=Fs4G+F4G
200
201
202
   %5. Element sile LOK
203
   NT5s = [
204
        1 - (3 * s5^{2}) / 15^{2} + 2 * s5^{3} / 15^{3};
205
        -s5+2*s5^{2}/15-s5^{3}/15^{2};
206
        3*s5^{2}/15^{2}-2*s5^{3}/15^{3};
207
        s5^{2}/15-s5^{3}/15^{2};
208
        ]*qm;
209
   Fs5=int(NT5s, 0, 15);
210
211
   %5. Element sile GLOB
212
   R5 = [0;0;0;0;0;0;0;0;0;Fs5;0;0;]
213
214
   %6. Element sile LOK
215
   NT6s = [
216
        1 - (3 \times 6^{2}) / 16^{2} + 2 \times 6^{3} / 16^{3};
217
        -s6+2*s6^{2}/16-s6^{3}/16^{2};
218
        3 * s6^{2}/16^{2}-2 * s6^{3}/16^{3};
219
        s6^2/16-s6^3/16^2;
220
        ]*qm;
221
   Fs6=int(NT6s, 0, 16);
222
223
   %6. Element sile GLOB
224
   R6 = [0;0;0;0;0;0;0;0;0;0;0;Fs6;]
225
226
   %Ukupni zbroj sila GLOBALNO
227
   %R=R1+R2+R3+R4+R5+R6
228
   229
230
231
   %Uvrstavanjem rubnih uvjeta V1=0 i V13=0 dobiju se matrice:
232
   Kaa=K([2,3,4,5,6,7,8,9,10,11,12,14],:);
233
   Kaa = Kaa(:, [2,3,4,5,6,7,8,9,10,11,12,14]);
234
   Ra=R([2,3,4,5,6,7,8,9,10,11,12,14],:);
235
```

```
Va=linsolve (Kaa.', Ra);
236
   double (Va)
237
238
   v1 = [0; -0.0032; 0.6415; -0.0032;];
239
   v2 = [0.6415; -0.0032; 1.9133; -0.0024;];
240
   v3 = [1.9133; -0.0024; 2.696; 0.00;];
241
   v4 = [2.696; 0.00; 1.9133; 0.0024; ];
242
   v5 = [1.9133; 0.0024; 0.6415; 0.0032;];
243
   v6 = [0.6415; 0.0032; 0.00; 0.0032;];
244
245
  D1=E*Iy1;
246
247 D2=E * Iy2;
  D3=E*Iy;
248
  D6=D1;
249
  D5=D2;
250
  D4=D3;
251
252
253
   B1=[
254
        (6/(11^2)) - (12*a1/(11^3)), (-4/11) + (6*a1/(11^2)), (-6/(11^2))
255
           ^{2}) + (12*a1/(11^{3})), (-2/11) + (6*a1/11^{2})
   ];
256
257
258
   B2=[
259
        (6/(12^2)) - (12*a2/(12^3)), (-4/12) + (6*a2/12^2), (-6/(12^2))
260
           (12*a2/(12^3)), (-2/12)+(6*a2/12^2)
   ];
261
262
  B3=[
263
        (6/(13^{2})) - (12*a3/(13^{3})), (-4/13) + (6*a3/13^{2}), (-6/(13^{2}))
264
           (12*a3/(13^{3})), (-2/13)+(6*a3/13^{2})
   ];
265
266
267 B4=[
```

```
(6/(14^{2})) - (12*a4/(14^{3})), (-4/14) + (6*a4/14^{2}), (-6/(14^{2}))
268
            (12*a4/(14^{3})), ((-2/14)+(6*a4/14^{2}))
   ];
269
270
   B5=[
271
        (6/(15^{2})) - (12*a5/(15^{3})), (-4/15) + (6*a5/15^{2}), (-6/(15^{2}))
272
            )+(12*a5/(15^3)), (-2/15)+(6*a5/15^2)
   ];
273
274
   B6=[
275
        (6/(16^{2})) - (12*a6/(16^{3})), (-4/16) + (6*a6/16^{2}), (-6/(16^{2}))
276
            ) + (12 * a6 / (16^3)), (-2/16) + (6 * a6 / 16^2)
   ];
277
278
   %Pripadajuci unutarnji momenti duz grede racunaju se:
279
280
   sig1 = D1 * B1 * v1
281
   %My1=int(sig1, 0, 11)
282
283
   sig2 = D2 * B2 * v2
284
   %My2=int(sig2, 0, 12)
285
286
   sig3 = D3 * B3 * v3
287
   %My3=int(sig3, 0, 13)
288
289
   sig4 = D4 * B4 * v4
290
   %My4=int(sig4, 0, 14)
291
292
   sig5 = D5 * B5 * v5
293
   %My5=int(sig5, 0, 15)
294
295
   sig6=D6*B6*v6
296
   %My6=int(sig6, 0, 16)
297
```

B. Programski kod za proračun sustava spona

```
1 syms af gam;
_{2} af1=13*(pi/180);
del = 66 * (pi / 180);
_{4} y=631,91;
s x = 205, 15;
s = 103, 23;
<sup>7</sup> w=603,4;
_{8} Rje = [];
9 i = [];
  for af = -0.52359:0.17:0.52359
10
       eqn = ((1/y) * (w * sin (del) + z * cos (gam) - x * (sin (af) * cos (af) + sin))
11
           (af1)*\cos(af1)))^2+((1/y)*(x*(\cos(af)*\cos(af)-\sin(af1))))^2+((1/y)*(x*(\cos(af))+\cos(af)))^2)
           *\sin(af1))+w*\cos(de1)-z*\sin(gam)))^2 == 1;
       RjGL=solve(eqn, gam);
12
       Rje = [Rje, RjGL];
13
       Plt = double (Rje (2, :) * (180/pi));
14
       i= [i, (af *(180/pi))];
15
  end
16
  figure (3)
17
       plot(i,Plt,'k', 'linewidth', 3);
18
       xlabel('Kut skretanja vozila \alpha, ^{\circ}','fontsize'
19
           ,18);
       ylabel('Kut zakreta spone \gamma(\alpha), ^{\circ}','
20
           fontsize ',18);
       title ('Dijagram prikaza ovisnosti kuta spone o kutu
21
           skretanja vozila');
       line([0 0], [0 120], 'color', 'k')
22
       hold on
23
```

C. Prilozi standardnih dokumenata

- [1] Pogonski motor SUA 507A 3C 90S/L-06E-TH-TF
- [2] Elektromotor za okretanje FH043-11N-71-06F-TH-TF
- [3] Elektromotor za hidrauliku HMA2 132S2-2
- [4] Hidraulička pumpa PGF-2x
- [5] Hidraulička shema sustava

. 10. 2018.	Data Sheet	
Gear series : Type :	Helical worm geared motor SUA 507A 3C 90S/L-06E-TH-TF	
Operation data :		
Ambient temperature :	+20	°C
Type of operation :	S1	
Notor data :		
Series :	WEG Modular System Motor (EUSAS)	
Housing material ·	Aluminium	
Efficiency class n :	1E3-79.0%	
Type ·	3CWA	
Noter power:	0.75	[1/1/]
Notor power .	0.75	[KVV]
Rated Speed :	940	[rpm]
Rated torque :	7.6	[Nm]
/oltage :	230/400	[V]
requency :	50	[Hz]
Connection :	D/Y	
Rated current :	3.4 / 1.9	[A]
Starting to rated current :	5.2	
cos ø':	0.71	
Protection class :	IP 55	
Mounting position of the terminal box	side 2 cable entry I	
nsulation class .	F	
Mass moment of inertia :	6.6x10 ⁻³	[kam ²]
		1
Further motor executions :	a off wantilated	
ran:	self ventilated	
Temperature controller :	Bimetal switch NCC (TH) and PTC thermistor (TF)	
	for switch off	
Sall bearing :	Standard	
Gear data :		
Max, perm, thermal power limit at +20 °C and S1 operation :	3.8	[kW]
Dutput speed :	22	ÎromÎ
Dutput torque :	278	[Nm]
Service factor :	1.80	[]
Pear stages :	2	
Deal Slages .	2 42 67	
Nalio . Dorm input torque et fD1 :	42.07	[Nim]
	13.4	
viax. perm. input speed :	5000	[rpm]
Mounting position :	H30	
Hollow shaft :	Ø 45 H7	[mm]
Keyway :	DIN6885.1	
Painting :	LC1 - Indoor installationneutral atmosphere NDFT	
	60 μm (C1 - DIN EN ISO 12944-5)	
Color :	RAL 9007 (Grev aluminium)	
Total weight :	46	[ka]
	-	1.91
nput side :	Direct mounting	
Type :	Direct mounting	
nput shatt :	Ø 24 j6 x 18,5 mm	
nput flange :	square according to IEC Ø160 mm	
Further executions gear unit :		
_ubricant :	Synthetic oil - CLP PG ISO VG 460	
	-	

https://cat4cad.wattdrive.com/cat4cad1/

. 11. 2010.		
Gear series : Type :	Parallel shaft geared motor FH043-11N-71-06F-TH-TF	
Operation data :		
Ambient temperature :	+20	°C
Type of operation :	S1	Ũ
Motor data :		
Series :	WEG Modular System Motor (EUSAS)	
Housing material :	Aluminium	
Efficiency class η :	IE1-64.0%	
Туре :	11N	
Motor power :	0.25	[kW]
Rated speed :	900	[rpm]
Rated torque :	2.6	[Nm]
Voltage :	230/400	ĪV]
Frequency :	50	[Hz]
Connection :	D/Y	
Rated current :	1.9/1.1	[A]
Starting to rated current	3.5	6.0
	0.57	
Protection class ·	IP 55	
Mounting position of the terminal box :	side 1 cable entry I	
Inculation class :	F	
Mass moment of inertia :	0.93x10 ⁻³	[kam ²]
Further motor executions :		
Fan :	self ventilated	
Temperature controller :	Bimetal switch NCC (TH) and PTC thermistor (TF) for switch off	
Ball bearing :	Standard	
Gear data :		
Max perm thermal power limit at +20 °C and S1 operation ·	54	[kW]
Output sneed :	7.8	[rnm]
Output torque :	307	[Nm]
Service factor	1.30	[]
Gear states :	3	
Ratio	115 60	
Circum ferential backlash (min-max)	5' - 25'	
Derm input torque at fR1 ·	3.5	[Nim]
May perm input enced:	3000	[mm]
Max. perm. Input speed.	5000 M4	[ihii]
wounting position :		[mama]
	りつう H/ DIN0005 4	[mm]
keyway :		
∼ainting :	60 μm (C1 - DIN EN ISO 12944-5)	
Color :	RAL 7011 (Iron grey)	
Total weight :	17.5	[kg]
Input side :		
Туре :	Direct mounting	
Input shaft :	Ø 19 j6 x 26 mm	
input flange :	FC120	
Further executions gear unit :		
Lubricant :	Mineral oil - CLP ISO VG 220	

https://cat4cad.wattdrive.com/cat4cad2/

Data Sheet Itemnumber....: 3221321109 TL тв 000 T AD Ľ ΗB EB PH (\bigcirc) B = ۰ ا . AC 7 EG AH I ALLIGHT ď í Ind С E в к AA 1 BB A LB AB A = 216 AA = 50 AB = 256 AC = 258 AD = 187 B = 140 BB = 180 C = 89 D = 38 DB = M12 E = 80 EB = 70 EG = 30 F = 10 G = 33 GD = 8 H = 132 HA = 16,50 L = 467 LB = 387 TB = 120 180 M12 HB = 165 HD = 319 K = 12 TL = 120Version Type..... HMA2 13252-2 Design..... Induction mot Standard series.... IEC 60034 Phase / Voltage range..... 3- / Low Bearing DE Bearing...... 6308-ZZ/C3 NDE Bearing...... 6308-ZZ/C3 Fixed bearing...... DE: 132 tor B3 No IP55 ..: IP55 ..: IC411/TEFC ..: Yes ..: Yes ..: Aluminium ..: None ..: IEC Standard Electrical design Key....: Closed key Balancing....: Half key balancing Vibration class....: Grade-A Weight (kg)....: 51,0 Test values Environment condition Ambient temp. min. (°C)..: -20 Ambient temp. max. (°C)..: 45 Altitude (mtr up to)....: 1000 Explosion protection According to..... None Rated power (kW) : Frequency (Hz) : Voltage (V) : Connection : Full load current (A) : 7,50 50 400 690 D Y 13,6 7,85 9,00 60 480 830 D Y 13,6 7,85 7,30 50 380 660 D Y 14,0 8,10 8,75 60 440 D 14,0 3520 0,86 87,5/88,1/87,3 7,35 23,8 1,90 2,60 S1 45 14,0 8,10 2920 0,92 88,1/88,7/87,9 7,05 23,8 2,04 2,80 Speed (rpm) Power factor cos(phi) .. Efficiency, 100/75/50 (%) 2920 3520 2920 0,91 88,1/88,7/87,9 8,00 24,6 2,20 3,00 3520 0,91 88,1/88,7/87,9 8,00 24,6 2,20 3,00 Duty: Ambient temp. (°C): S1 40 S1 45 S1 40 29/11-17 www.hoyermotors.com HOYER

Data are not binding. Hoyer reserves the right to implement changes without notice. The extent of data are not equivalent to nameplate on the motors.

Innenzahnradpumpe | **PGF Serie 2X und 3X** Technische Daten 5

Technische Daten

Baugröße			BG	1	1	1		1		1	1
Nenngröße			NG	1.7	2.2	2.8		3.2		4.1	5.0
Verdrängung	svolumen, geometrisch	Vg	cm ³	1.7	2.2	2.8		3.2		4.1	5.0
Antriebsdreh	zahl	n_{\min}	min ⁻¹	600	600	600	600 600			600	600
		n _{max}	min ⁻¹	4500 3600		4000		3600		3600	3600
Betriebsdruck absolut											
Eingang		p	bar	0.6 bis 3	0.6 bis 3	0.6 bi	s 3	0.6 b	is 3	0.6 bis 3	0.6 bis 3
Ausgang	kontinuierlich	$p_{\rm N}$	bar	180	210	210		210		210	180
	intermittierend ¹⁾	p_{\max}	bar	210	250	250		250		250	210
Volumenstron $p = 10$ bar, v	m (bei <i>n</i> = 1450 min ⁻¹ , = 30 mm²/s)	$q_{ m V}$	l/min	2.4	3.2	4.1		4.6		6.0	7.2
Leistungsauf	nahme										
minimal eı Antriebsle	forderliche istung (bei p ≈ 1 bar)	₱ _{zu}	kW	0.75	0.75	0.75		0.75		0.75	0.75
Massenträgh (um Antriebs	eitsmoment achse)	J	kgm²	0.000012	0.000013	0.000	015	0.00	0017	0.000021	0.000026
Gewicht ²⁾		m	kg	0.8	0.9	1.0		1.0		1.1	1.3
Wellenbelast	ung			Radiale und	d axiale Kräft	e (z. B. Rier	nensche	ibe) n	ur nach F	Rücksprache	
Befestigungs	art			Flanschbef	estigung						
Baugröße			BG	2	2	2	2		2	2	2
Nenngröße			NG	6.3	8	11	13		16	19	22
Verdrängung	svolumen, geometrisch	V_{g}	cm ³	6.5	8.2	11	13.3		16	18.9	22
Antriebsdreh	zahl	n_{\min}	min ⁻¹	600	600	600	600		600	600	600
		n_{\max}	min ⁻¹	3600	3600	3600	3600		3600	3600	3000
Betriebsdruc	k absolut										
Eingang		þ	bar	0.6 bis 3	0.6 bis 3	0.6 bis 3	0.6 b	is 3	0.6 bis	3 0.6 bis 3	0.6 bis 3
Ausgang	kontinuierlich	p_{N}	bar	210	210	210	210		210	210	180
	intermittierend ¹⁾	p_{\max}	bar	250	250	250	250		250	250	210
Volumenstron $p = 10$ bar, v	m (bei <i>n</i> = 1450 min ⁻¹ , = 30 mm²/s)	$q_{ m V}$	l/min	9.4	11.9	16	19.3		23.3	27.4	31.9
Leistungsauf	nahme										
minimal eı Antriebsle	forderliche istung (bei p ≈ 1 bar)	p _{zu}	kW	0.75	0.75	0.75	0.75		0.75	1.1	1.1
Massenträgh (um Antriebs	eitsmoment achse)	J	kgm²	0.000074	0.000090	0.00012	0.000	14	0.00016	6 0.00019	0.00022
Gewicht ²⁾		m	kg	2.1	2.2	2.4	2.6		2.7	2.9	3.1
Wellenbelast	ung			Radiale und	d axiale Kräft	e (z. B. Rier	nensche	ibe) n	ur nach F	Rücksprache	
	art			Flanschbef	estigung						

Maximal 6 s, höchstens 15 % der Einschaltdauer maximal 2 × 10⁶ Lastwechsel
 Für Pumpen mit 2-Lochbefestigung als Flanschversion
 Baugröße 2 ca. 0.9 kg schwerer
 Baugröße 3 ca. 1.0 kg schwerer

RD 10213/05.2015, Bosch Rexroth AG

Bosch Rexroth Scheme Editor

Literatura

- [1] HENAN PERFECT HANDLING EQUIPMENT (https://www.chinatransfercar.com), zadnji pristup 27.11.2018.
- [2] Jurica Sorić *Metoda konačnih elemenata*, Golden Marketing Tehnička knjiga, Zagreb 2004.
- [3] Prof. dr. Dragutin Ščap PRENOSILA I DIZALA Podloga za konstrukciju i proračun, Drugo izdanje, FSB Zagreb 1990.
- [4] Prof. dr. Dragutin Ščap TRANSPORTNI UREĐAJI (PRENOSILA I DIZALA) Podloge uz predavanja, Drugo izdanje, FSB Zagreb 2004.
- [5] Bojan Kraut KRAUTOV STROJARSKI PRIRUČNIK, 11. izdanje, Sajema d.o.o., Zagreb 2009.
- [6] Milan OPALIĆ, Petar RAKAMARIĆ *REDUKTOR-Proračun i konstrukcija jednostu*panjskog zupčanog prijenosnika, FSB Zagreb, studeni 2001.
- [7] Prof. dr. sc. Zvonko Herold VRATILO-Proračun, FSB Zagreb
- [8] izv. prof. dr. sc. Krešimir Vučković *Predložak Vratilo Izbor i proračun valjnih ležajeva* prema normi ISO 281:2007, FSB Zagreb
- [9] Free beam calculator Web stranica *https://skyciv.com/free-beam-calculator/* zadnji pristup 27.11.2018.
- [10] ELESA S.p.A. Web stranica https://www.elesa.com/ zadnji pristup 27.11.2018.
- [11] Bosch Rexroth GmbH Web stranica *https://www.boschrexroth.com* zadnji pristup 27.11.2018.
- [12] Herold-Žeželj Vijčana preša, FSB Zagreb, Katedra za elemente strojeva i konstrukcija
- [13] Static Tools Web stranica http://www.staticstools.eu/en zadnji pristup 27.11.2018.
- [14] Herbert Wittel, Dieter Muhs, Dieter Jannasch, Joachim Voßiek Roloff/Matek Maschinenelemente - Normung, Berechnung, Gestaltung, 22., überarbeitete und erweiterte Auflage, Springer Vieweg
- [15] Karl-Heinz Decker Maschinenelemente, 18., aktualisierte Auflage, 2011 Carl Hanser Verlag Muenchen

- [16] Houman Hatami, Hydraulic formulary, Bosch Rexroth GmbH, 10.01.2013.
- [17] Hoyer Motors Web stranica *https://hoyermotors.com/products/motors/hoyer-ie2-marine-motors/* zadnji pristup 27.11.2018.
- [18] Joško Petrić, *HIDRAULIKA*, Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu, 2012.
- [19] Prof. dr. Stjepan Jecić *Mehanika II (KINEMATIKA I DINAMIKA)*, Rujan 1989., Tehnička knjiga Zagreb
- [20] Schaeffler Technologies AG und Co. KG *Catalogue 404 INA*, Herzogenaurach (Germany)
- [21] Autodesk Inventor Professional 2018. for Students
- [22] Schaeffler Technologies AG und Co. KG *Technisches Taschenbuch*, 1. Auflage, April 2013.
- [23] Friš d.o.o (http://www.fris.hr), zadnji pristup 27.11.2018.
- [24] Ministarstvo rada i mirovinskog sustava *Pravilnik o izradi procjene rizika*, NN 112/2014 (24.9.2014.)

Poz.	Naziv				Kol.		Crt.br./No	огта		Ma	isa	Mater	rijal/Proiz.
1	1 Sklop podvozja						TK-001-00-BC			1088,231 kg			-
2	Sklop šł	karastog me	ehanizma		1	TK-(004-00-BC			675,92	.7 kg		
3	Platforn	าล			1	TK-(06-00-BC			713,00	6 kg		
4	Hidraulio	ki cilindar:			2	CDL2	2MT4_80_5	0_52	0	8,870	kg	Bosch R	exroth GmbH
5	Svornjak	c hid. cil.			2	TK-(000-01-BC			1,604	kg	S355J0	
6	Uskočnił	x 50			2	DIN	471 - 50x2			0,010	kg	Vijci Kra	njec
7	Podloška	a M 12			24	DIN	125 – A 13			0,006	kg	Vijci Kra	njec
8	Vijak M1	2			24	DIN	933 – M12	x 35	5	0,048	kg	Vijci Kra	njec
	Broj naziva - code Projektirao 29.11.20 Razradio 29.11.20 Crtao 29.11.20 Pregledao 29.11.20 Pregledao 29.11.20 Mentor 29.11.20 Mentor 29.11.20 Mentor 29.11.20 Mentor 29.11.20 Mentor 29.11.20 Napomena:					וח יעחס יעחס יעחס ע. פרמ ע. פרמ	Ime i prezime Potpis uno Cerovski uno Cerovski uno Cerovski <u>v. prof. dr. sc. Milan Kostelac</u> <u>v. prof. dr. sc. Milan Kostelac</u> Objekt broj: R. N. broj: Smjer: Konstrukcijs			FSB tudij str	Zagreb ojarstva Kopija		
			Materijal:				Masa:2497	kg	DIF	PLOM	SKI	RAD	
Ø50JS13/h6 -0,195 -0,195 -0,195 1.10 -0,195 -0,195 -0,195 -0,195 -0,195 -0,195 -0,195 -0,195 -0,195 -0,195 -0,195 -0,211 -0,195 -0,211 -0,195 -0,211 -0,211 -0,211 -0,211 -0,211 -0,211 -0,211 -0,211 -0,211 -0,215 -0,20							tna koli דו מסמ	ica	10† 			Pozicija:	Format: A1 Listova: 1
<u>50</u> ر	Π <i>†</i> /Πδ	-0,000	1.10			10j: 	20	-00- 30	-DL 40	50	60	70	LIST: I 80 90

 \triangleleft

				Ţ			Ę.			
V										
\bigvee										
						h l				
1		21,50		418,0	00					
				180,0			-			
			-4		┍┝╺═╵					
		p								
-										
			•							
		t	8	-	2			9777		
		-	- ++		+					
' 										
					1					
F	⁰ 0Z.	Naziv	1/ 0	Kol.	Crt.	.br./Norma	Materijal	65,420		Masa
-	1	Srednji nonrečni nro	fil	4	UN 102	33-2-12.5	S235J0 S355J0	160×80)0x140)x1300	52.1 kg
-	3	Ver. ploca sr. nosac	:a	1	TK-001	-15-BC	S235J0	140x80)0x10	8,5 kg
	4	Hor. ploca sr. nosac	а	1	TK-001	-14-BC	S235J0	90x350	0x10	2,5 kg
	5	Vanjski nosac hidrau	ılickog cilindra	2	TK-001	-01-BC	S355J0	95x120)5x160	32,2 kg
_	6	Staza kotaca mehan	iizma	2	TK-001	-11-BC	S235J0	90x922	2x10	6,4 kg
-	<i>t</i> 8	Granicnik staze		4	TK-001-	-09-ВС 001–13-ВС	S235J0 S235J0	10x930	x20	0.9 kg
_	9	Rebro staze		12	TK-001	-07-BC	S255J0	10x180	x50	1,2 kg
	10	Nastavak nosivog pi	rofila	2	TK-001	-10-BC	S235J0	10x311	,5x80	1,9 kg
_	11	Gornja staza kot. m	eh.	2	TK-001	-12-BC	S235J0	87x990	0x10	6,8 kg
_	12 13	Nosac hidraulickog p	одопа родопа	1	ISO 126	33-2 - 4 33-2 - 4	S235J0 S235J0	100x50)x120)x120	7.8 kg
	14	Rebro grede hidraul	ičkog pogona	4	TK-001	-03-BC	S255J0	80x80	×10	0,3 kg
	15	Oslonac noge skaras	stog meh.	2	TK-001	-02-BC	S355J0	300x30	65x160	16,6 kg
-	16 17	Matica nosaca TK_001_05_BC		8	IK-001	-06-BL	5235J0	37x14() 00v10	0,9 kg
-	18	Prednja podnica		1	TK-001	-04	S255J0	205x13	300x10	20,9 kg
	19	Granicnik sa odbojni	kom straznji	2	TK-001	-22-BC	S355J0	579x3	35x285	23,5 kg
	20	Granicnik sa odbojni	kom	2	TK-001	-21-BC	S355J0	579x33	35x285	24,1 kg
	21 22	Podloska M14 Vijak M14		32 16	125 אוט רדים אוס	- A 15	Vijci Kranje Vijci Kranje	c r		0.0 kg
_	23	Matica M14		16	DIN 934	+ - M14	Vijci Kranje	c		0,0 kg
	31	Podloška M12		32	DIN 125	– A 13	Vijci Kranje	c		0,0 kg
_	32	Vijak M12		16	DIN 933	8 - M12 x 40	Vijci Kranje	c		0,1 kg
	33 Br	Matica M12 ni naziva – code		16 Datum	DIN 934	⊢ – M12 Ime i prezime	Vijci Kranje Potnis			0,0 kg
	ы	0) 112/04 - 2002	Projektirao 2	9.11.2018	B. Bruno	Cerovski				7
			Razradio 2 Crtao 2	9.11.2018 9.11.2018	s. Bruno 3. Bruno	Lerovski Cerovski			F2R	∠agreb
			Pregledao 2 Montes	9.11.2018	l. Izv. pr	of. dr. sc. Milan K	ostelac	S	tudij str	ojarstva
		ISO – tolerancije	Objekt:	. ə. i i.2018	o. ∣ızv. pr	or. ur. sc. Milan K	Ohiekt h	гоі:		
			· · · · ·				R. N. br	oj:		
			Napomena: N	e nazi	načeni za	avari	Smjer:	-	Li	Kopija
			iz Material	vode	se kao ł	kutni zavar a6				
				KJ	i	masa: 731,6 k		UNISKI	RAU	
			$\square \bigcirc \bigcirc \bigcirc$	Naz	iv: Rad	lionički crtež			rozicija:	Format: A1
	_		Mjerilo origina	la	NOS	ive strukture				Listova: 1
			1:10	רי	tež broi:	TK_001_0)1-BC		1	List: 1
					-j.					

		\wedge			
7	8	9	10	11	12

Poz. Naziv

	1	Vratilo pogona		1	TK-002-07-	BC		D85x495	10,293 kg	18CrNi6
	2	Valjni ležaj		1	SKF 22216 I	Ξ			0,565 lb	SKF
	3	Semering 1		1	ISO 6194/1	-Тур б		80x110x10	0,014 kg	Set-Bjelovar
	4	Semering 2		1	ISO 6194/1	– Тур	6	50x68x8	0,004 kg	Set-Bjelovar
	5	Poklopac strana ko	taca	1	TK-002-10-	BC		D185x25	0,323 kg	S235J0
	6	Poklopac strana mo	tora	1	TK-002-11-1	BC		D185x23	0,306 kg	S235J0
	7	Sklop nosaca pogon	а	1	TK-002-01-	BC		272,5x404,5x29) 34,365 kg	S355JR
	8	Odstojnik motora		1	TK-002-12-	BC		D50x7	0,005 kg	S235J0
	9	Kotač pogona		1	TK-002-22-	BC (RE	E.F4-RBL)	D300x100	16,000 kg	Elesa S.p.A
	10	Pero elektromotora		1	ISO 2491 -	A		12 x 6 x 100	0,054 kg	Vijci Kranjec
	11	Odstojnik kotaca		1	TK-002-13-	BC		D62x10	0,013 kg	S235J0
	12	Sigurnosna podloška	a SKF	1	DIN 5406 -	MB9			0,014 kg	SKF
	13	SKF Matica		1	DIN 981 - K	M 9			0,130 kg	SKF
	14	Elektromotor pogon	а	1	SUA_455A_	_3C90	S_L-06E		46,000 kg	Watt-Drive
	15	Pero kotača		1	ISO 2491 -	A		14 x 6 x 80	0,050 kg	Vijci Kranjec
	16 Uskočnik 40			1	DIN 471 - 4	0 x 1,	75		0,008 kg	Vijci Kranjec
	17	Podloška M10		4	DIN 125 – A	10,5			0,004 kg	Vijci Kranjec
	18	Vijak M10		4	DIN 933 - M	110 x	16		0,022 kg	Vijci Kranjec
	19	lmbus vijak		12	DIN 912 - M	10 x 2	5		0,028 kg	Vijci Kranjec
	20	Valjni ležaj NU310		1	SKF NU310				0,1 kg	SKF
naziva – code	Bi	roj naziva – code			Datum		ne i prezime	Potpis		
			Ргојек	din	29.11.2018.	Bruno	Lerovski Cerovski		F	SR 7agrah
			Crtao		29.11.2018.	Bruno	Cerovski			
			Pregle	edao	29.11.2018.	lzv. pr	of. dr. sc. Mil	an Kostelac		
		1 <u>50 ''</u>			29.11.2018.	lzv. pr	of. dr. sc. Mi	an Kostelac		
SU – folerancije		<u>ISU – folerancije</u> +0.023	Objekt	:				Objekt broj:		
	- Ø4	0 H7/k6 -0,018	-					R. N. broj:		
	ø5	0 H7/k6 +0,023	Nароп	iena:						Коріја
		-0,018								
	Ø8	0 H7/k6 -0,028	Mater	ijal:			Masa: 110 kg			
	ø1	10 H7/k6 +0,044 -0,013		+	Naziv:	Sklo	בחטמטם חו		Pozici	^{ija:} Format: A2
	Ø1	40 H7/k6 +0,051 -0.014	Mjerilo	о огіс	ginala	Sinto	P Pogona		ב	Listova: 1
H7/k6 +0,065 -0,000	Ø1	10 H7/h6 +0,057 -0.000	1 :	2	Crtež	ьгој:	TK-002	-00-BC	l	List: 1
					[1 1	0 20 30) 40 50	60 70	80 90 10

Crt.br./Norm

Kol.

 \triangleleft

Masa Materijal/Proizv.

Dimenzije

							ŗ			
										33
										17
			Ĩ	2243		Ţ				<
						-		100,00		
/	Poz.	Naziv		Kol.	Crt.br./Norm.	Dimen	ziie	Masa	Materi	ial/Proizv.
	1	Nosivi profil osc	vine	1	TK-003-20	82,5x230	0x130	43,330 kg	S355J0	
	2	Valjni ležaj 5110	6	4	51106			0,063 kg	SKF	
	3	Okretna vilica ko	otaca	2	TK-003-02-BC	204x88x	(100	4,910 kg	S355J0	
	4	Valjni ležaj 6180	6	8	61806-2RZ	D 40 F 77		0,025 kg	SKF	
	5	Spona skretanja		2	TK-003-26-BL	D18x5 <i>f f</i>		1,083 kg	S235J0	
	D 7	SKE sigurni prst	anji	4	DIN 54.06 MB6	U34X3			273210	
	8	SKE Matica	en	4	DIN 981 - KM 6			0,000 kg 0.047 kn	SKE	
	9	Osovinica prihva	ta vilice kotača	4	TK-003-13-BC	D50x64		0,406 kg	S355J0	
	10	Podloska spone		4	DIN 125-A			,000 kg	Vijci Kranj	ec
	11	Krunska matica	M12	4	DIN 979 - M12			0,010 kg	Vijci Kranj	ec
	12	Okretni zglob pr	ihvata rude	1	TK-003-08-BC	250x155	x200	3,122 kg	S235J0	
	13	Aksijalni valjni l	ežaj 51106	1	SKF 51106			0,057 kg	SKF	
	14	Valjni ležaj 6180	6	1	SKF 61806-2RZ			0,024 kg	SKF	
	15	Prsten prihvata	rude	1	TK-003-34-BC	D35x73		0,019 kg	S235J0	
	16	Prihvat rude		1	TK-003-07-BL	300x430)x90	6,691 kg	S235J0	
	17	Skretni bid cil		2 1	CDI 2MT/. 25 1/.	U42X5		0,002 kg	Bosch Rev	roth GmbH
	19	Nosač bid cil		2	CUEZITI4_25_14			0.029 kg	Bosch Rex	roth GmbH
	20	Odstojnik hid. cil		1	TK-003-35-BC	D14x12		0,001 kg	S235J0	
	21	Uskočnik 10		1	DIN 471 - 10×1			0,000 kg	Vijci Kranj	ec
	22	Nosac cilindra		2	TK-003-09-BC	63x100x	15	0,615 kg	S235J0	
	23	Uskočnik 40		2	DIN 471	40x1,75		0,006 kg	Vijci Kranj	ec
	24	Osovinica prihva	ta rude	2	TK-003-23-BC	D47x72		0,733 kg	S235J0	
	25	Profil 180		2	DIN 1025	1 80-33	35	1,968 kg	S355J0	
	26	Rebro prihvata (osovine	2	TK-003-14-BC	115x120x	(10	0,091 kg	S235J0	
	21	Konichi vijak	to bid cil	4	TK-003-22-BL			0,043 Kg	5235JU	
	20	Prsten ovjesa k			TK-003-24-BL	D20X59		0,060 ky 0.001 ka	523510	
	30	Okretna nlavina	SDONE	4	PHS12			0.117 kn	The Strue	ning Bearings
	31	lmbus vijak M8	ı -	4	ISO 4762	M8 x 4	.0	0,023 ka	Vijci Krani	ec
	32	Sigurnosna podl	oška SKF	2	DIN 5406 - MB8			0,012 kg	SKF	
	33	Sigurnosna mati	a SKF	2	DIN 981 – KM 8			0,094 kg	SKF	
	34	Kotac prednji		2	TK-003-25-BC	D300x10	0	21,697 kg	Elesa S.p.	4
a – code	Br	oj naziva – code	Proiektirao	29.1	1.2018. Bruno Cerovs	ki	POT		\bigcirc	
			Razradio	29.1	1.2018. Bruno Cerovs	ki			FSE	3 Zagreb
		ISO - tolerancije	<u>Crtao</u> Prenledao	29.1	1.2018. Bruno Cerovs 1.2018. Izv. prof. dr	ki sr Milan	Knstal	ar	Studii ata	
	Ø٣	5H7/k6 +0,023	Mentor	29.1	1.2018. Izv. prof. dr.	sc. Milan	Kostel	ac	Studij STI	Jaisivd
olerancije		-0,018	Objekt:				Objekt	ь рој:		
-0,000	Ø12	JS13/h6 _0,135					R. N.	Ьгој:		
+0,037	Ø30	0H7/k6 +0,019	Napomena:				Smjer	: Konstruit-	iicki	Kopija
-0,012 -0.011		-0,015				40.55				
0,011	Ø42	2H7/j6 _0,011	Materijal:		Masa: 1	12,37 kg	UIP	LUMSK	IRAD	
-0,060		+0,039	-+	$\rightarrow \square$	Naziv:				Pozicija:	Format: A1
-0,060	Ø30		$1 \sim 1 \vee \Psi$		Sklon Acov	/INP			1 2	
-0,060 +0,029 +0,005 +0,119	Ø30	+0,005	Mierilo origi	د اد ח	Shiph OSON					
-0,060 +0,029 +0,005 +0,119 -0,11	Ø30 Ø55	5H7/r6 +0,005 -0,060	Mjerilo origi	nala					Z	Listova: 1
-0,060 +0,029 +0,005 +0,119 -0,11 +0,021	Ø30 Ø5 <u>5</u> Ø40	5H7/r6 +0,005 5H7/r6 +0,011 -0,060 0H11/a11 +0,63	Mjerilo origi	nala	Crtež broj: TK-0	03-00-	–BC		Z	Listova: 1 List: 1

Presjek B-B M(1:2) D Detalj J-J M(1:2) 34 acceptos Ø45 H7/k6 32 **_**

17

18

	Poz.	Naz	ziv	Kol.	Crt.br./Norm.	C)imenzije	Masa	Materijal/Proizv
	1	Unutarnja noga n	nehanizma	4	TK-004-02-BC	1916 x	150x100	74,707 kg	S355J0
	2	Klizni ležaj		8	DIN 1850 – U	40 x	50 x 30	0,218 kg	P.CuSn14
	3	Klizni ležaj		4	DIN 1850 – U	55 x	60 x 40	0,170 kg	P.CuSn14
	4	Vratilo mehanizm	ia za okrtanje	1	TK-004-25-BC	D44x	369,5	3,003 kg	Ck45
	5	Mazalica		2	DIN 71412 - AM8 x 1	Form	Α	0,006 kg	Schaeffler
	6	Kotač škarastog	meh.	4	SVS_150_45K	D150>	(60	16,000 kg	Blickle GmbH
	7	Plocica osovine u	ınutar. kotaca	4	TK-004-06-BC	20x60	Jx8	0,009 kg	S355J0
	8	Podloška M6		8	DIN 125 – A 6,4			0,001 kg	Viici Kraniec
	9	Odstoinik kotača	unutarnie noge	2	TK-004-05-BC	D52x ⁻	7.5	0.004 kg	\$35510
	10	Mazalica		4	DIN 71412_CM 8 x 1	Form	<u>,-</u> a [0.013 kn	Schaeffler
	11	Ploča središnje r	sovine meh	2	TK_004_11_BC	120 x 8	<u>10</u> 10 10	0.073 kg	\$235.10
	12	Klizpi Ložoj		 		55 v	60 × 50		
	12			4		× רר			Viici Kaapiec
	10	VIJAK MO Manalian		0	DIN 955 - MO X 14	Г	•	0,006 kg	VIJCI Kranjec
	14			1	DIN f 1412 - AM 6		<u>A</u>	0,004 Kg	Schaeffler
	15	Zahvafna plocica	sr. zgloba	2	TK-004-12-BL	120x3	0x8	0,027 kg	832270
	16	Podloška M10		10	DIN 125 - A 10,5	<u> </u>		0,004 kg	Vijci Kranjec
	17	Vijak M10		4	DIN 933 - M10 x 16			0,022 kg	Vijci Kranjec
	18	Vanjski odstojnik	kotaca	2	TK-004-15-BC	D60x5	5	0,006 kg	S355J0
	19	Uskočnik 45		2	DIN 471 – 45 x 1,75			0,010 kg	Vijci Kranjec
	20	Odstojnik vanjsko	og kotača meh.	2	TK-004-09-BC	D60x'	16	0,140 kg	S355J0
	21	Platforma škara:	stog meh.	1	TK-004-40-BC	1890x	(1175x190	256,959 kg	S355J0
	22	Poprečni profil p	rihvata hid.cil.	1	ISO 12633-2	90x5()x8 - 680	10,004 kg	S355J0
	23	Rebro arede cilin	Idara	2	TK-004-07-BC	92x55	5x15	0,053 ka	S355J0
	24	Uška prihvata nl	ave cilindra	4	TK-004-13-BC			1,607 ka	S355J0
	25	Zunčanik okr. lež	aia	1				2 181 kg	Schaeffler
	26	Zupčanik okrotov	- <u></u> n ležaia	1				13 499 km	Schaeffler
	20	Vapiski pretop o	krotnog lozaja	1	Schoofflog Pipg	D/ 86	<u></u>	16,499 kg	Schaeffler
	27	Valijski prsteli u Dadlažba M1/	kreinog lezaja	1		D400.	X44,J	14,021 Ky	
	20	Podloska M14		40	DIN 125 - A 15			0,009 kg	Vijci Kranjec
	29	Vijak M14		24	DIN 933 - M14 x 80			0,124 kg	Vijci Kranjec
	30	Matica M14		24	DIN 934 - M14			0,026 kg	Vijci kranjec
	31	Motor okretnog	meh	1	FH043_11N_71_06F	L		17,500 kg	Watt-Drive
	32	Ploca prihvata m	otora	1	TK-004-41-BC	200x8	335×10	12,741 kg	S235J0
	33	Poklopac glavine		1	TK-004-16-BC	D120x	(14	0,089 kg	S235J0
	34	Valjni ležaj 2220	7 E	1	22207 E			0,450 kg	SKF
	35	Valjni ležaj 6208	–2RZ	1	6208-2RZ			0,378 kg	SKF
	36	Semering 1		1	IS0 6194/1	40x62	2х8-Тур 2	0,004 kg	Set-Bjelovar
	37	Semering 2		1	IS0 6194/1	35x5	5x8-Typ 2	0,004 kg	Set-Bjelovar
	38	Prsten zupcanika)	1	TK-004-17-BC	D50x1	6.5	0.051 ka	S235J0
	39	Prsten EM okret	ania	1	TK-004-18-BC	D45x	6	0.029 kg	S235J0
	40	SKE_sigurna_nod	loška	1	DIN 5406 - MB7	Туп	MB/MBI	0.010 kg	SKE
	40	SKF_Matica		1	DIN 981 - KM 7	178		0.070 kg	SKE
	41			1				0,070 kg	Viici Kraniec
	42			6	100×100			0,005 kg	
	45	VIJAK MIU Dana 1		0	$DIN 912 = 1110 \times 100$	10	<u> </u>	0,075 Kg	
	44	Pero I			ISU 2491 - A	10 X		0,050 kg	VIJCI Kranjec
	45	Рего 2		1	ISU 2491 - A	10 X	6 x 36	0,016 kg	Vijci Kranjec
	46	Usovina kotača u	inutarnje noge	2	1K-004-04-BL	D62X	120	1,605 kg	015510
	47	Zglobna osovina	meh. donja	2	IK-004-03-BC	D65x′	165	3,087 kg	\$355J0
	48	Osovina srednjeg	zgloba meh.	2	TK-004-10-BC	D50x2	263	2,623 kg	S355J0
	49	Osovina vanjskog	kotača meh.	2	TK-004-08-BC	D55x´	195,5	2,756 kg	S355J0
	50	Zglobna osovina	mehanizma	2	TK-004-22-BC	D60x	165	3,089 kg	S355J0
	51	Glavina vratila m	ieh. okretanja	1	TK-004-30-BC	D120>	(67	3,611 kg	S235J0
	52	Sigurnosna podlo	iška M10	6	DIN 128 - A10			0,002 kg	Vijci Kranjec
	53	Vijak M10		6	DIN 933 - M10 x 35			0,033 kg	Vijci Kranjec
	54	Matica M10		6	DIN 934 - M10			0,012 ka	Vijci Kraniec
a – code	Br	oj naziva – code		Da	tum Imeiprezin	ne	Potpis		
		,	Projektirao	29.11	.2018 Bruno Cerovski] (()_	
			Razradio	29.11	1.2018. Bruno Cerovski			_ T	SB Zagreb
			Lrtao Procladae	29.11	1.2018 Bruno Lerovski	Milaa	Kostolac	C1	
			Mentor	29.1	1.2010,120, prof. ur. SC. 2018 Izv. nrof. dr. sc.	Milan	Kostelar	- Studij	strojarstva
<u> </u>		ISO – tolerancije	Ohiekt	[∠ / ,]			Ohjekt broj	1	
olerancije	ØSS	F8/h8 +0,122							
+0,023	Q55 F8/h8						к. N. Бгој:		12 11
olerancije +0,023 -0,018		0.023 Ø60 H7/s8 -0.023 Napomena:					Smjer: Konst	rukciiski	коріја *********
olerancije +0,023 -0,018 +0,023 -0.018	Ø60	-0.044							
olerancije +0,023 -0,018 +0,023 -0,018 +0 103	Ø60	+0.019			Masa: 675,	אל kg	UIPLOP	iski rae	J 🗮
-0,018 +0,023 -0,018 +0,023 -0,018 +0,103 +0,025	Ø60 Ø60	H7/m6 +0,019 -0.03	— Materijal:						XXXXXXXXXXXXXXXX
+0,023 -0,018 +0,023 -0,018 +0,103 +0,025 +0,023	Ø60 Ø60 Ø70	H7/m6 +0,019 -0,03 +0,019 -0,03	Materijal:		laziv:			Pozic	ija: Earmat Ar
+0,023 -0,018 +0,023 -0,018 +0,023 -0,018 +0,103 +0,025 +0,023 -0,018	Ø60 Ø60 Ø70	0 H7/m6 +0,019 -0,03 +0,019 +0,019 -0,03 -0,03 -0,03	Materijal:		Naziv:		دستنامط	Pozic	^{:ija:} Format: A1
-0,018 +0,023 -0,018 +0,023 -0,018 +0,025 +0,025 +0,023 -0,018 +0,041	Ø60 Ø60 Ø70 Ø72	H7/m6 H7/m6 H7/m6 H7/j6 H7/j6 H7/j6 H7/j6 H7/j6 H7/j6 H7/j6	Materijal:)- nala	Naziv: Sklop škarasto	n pc	ehanizma	Pozia 2	ija: Format: A1 Listova: 1
•0.023 -0,018 +0,023 -0,018 +0,023 -0,018 +0,025 +0,023 -0,018 +0,024 -0,018 +0,041 -0,041 -0,018	- Ø60 - Ø60 - Ø70 - Ø72	H7/m6 +0,019 -0,03 +0,019 -0,03 +0,019 -0,03 H7/j6 +0,037 -0,012 +0,037	Materijal: Mjerilo origin 1.10)- N nala	Naziv: Sklop škarasto	og m	ehanizma	Pozic 2	:ija: Format: A1 Listova: 1

Poz.	Naziv		Kol.	Crt.br./Norm.	Dimenzije	Masa	Materijal/Proizv.		
1	Glavni nosivi profil		2	DIN 1026-2 - UPE 220	U220x2850	72,092 kg	S355J0		
2	Nosiva ploca		1	TK-006-01-BC	1330x600x15	77,999 kg	S355J0		
3	Poprecni nosaci plo	ce	2	DIN 1026-2 - UPE 200	U200x1330	30,283 kg	S355J0		
4	T-profil – ukruta		4	DIN 1024 - T100-730	T100x730	8,613 kg	S355J0		
5	Uzduzni nosac 1		2	TK-006-02-BC	U200 x 989	17,741 kg	S355J0		
6	Uzduzni nosac 2		2	TK-006-04-BC	U200x989	17,685 kg	S355J0		
7	Ploca gornje prirub	nice	1	TK-006-12-BC	D415,5x10	2,908 kg	S355J0		
8	Cijev gornje prirubn	ice	1	TK-006-11-BC	D415,5x195	13,751 kg	S355J0		
9	Alka		10	07720-500090		0,193 kg	Norelem GmbH		
10	Ploca donja		4	TK-006-10-BC	220x190	0,407 kg	S235J0		
11	Prihvatni lim alke		4	TK-006-03-BC	140×100×10	1,099 kg	S235J0		
12	Lim alke – veci		6	TK-006-06-BC	100x220x10	1,727 kg	S235J0		
13	Pokrovna ploca		1	TK-006-07-BC	1330x10x1125	116,969 kg	S235J0		
14	Pokrovna ploca		1	TK-006-07-BC	1330×10×1125	116,717 kg	S235J0		
15	Podloška M10		22	DIN 125 – A 10,5		0,004 kg	Vijci Kranjec		
16	Vijak M10		22	DIN 933 - M10 x 22		0,025 kg	Vijci Kranjec		
Br	oj naziva – code		Datum	Ime i prezime	Potpis				
		Projektirao Z Pazradio 2	9.11.20 11.201	18.Bruno Lerovski 18.Bruno Corovski			SB Zagrob		
		Crtao 2	9.11.20	18.Bruno Cerovski					
		Pregledao 2	9.11.201	18.1zv. prof. dr. sc. Milar	n Kostelac	Studij	strojarstva		
		Mentor 2	9.11.201	18.Izv. prof. dr. sc. Milar	n Kostelac				
	<u>ISU – tolerancije</u>	Objekt:			Objekt broj:				
		1			R. N. broj:				
		Napomena:			Smjer:		Kopija		
					Konst	rukcijski			
		Materijal: S235	JO i S	355J0 Masa: 713,01 kg	DIPLOM	ISKI RAE			
		$\Box \oplus$	Nazi	v :		Pozic	^{:ija:} Format: A1		
		Mjerilo original	Rac	lonicki crtez okre	etne platf	orme 🏹	1		
		1 10							
			Crt	ež broj: TK-006-00)-BC		List: 1		

0 10 20 30 40 50 60 70 80 90 100