Đurasević, Sanijo

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:939980

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-01

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje

DIPLOMSKI RAD

Sanijo Đurasević

Zagreb, 2018.

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje

DIPLOMSKI RAD

OBLIKOVANJE RADNOG KOLA AKSIJALNE PUMPE

Mentor:

izv. prof. dr. sc. Željko Tuković

Student: Sanijo Đurasević

Zagreb, 2018.

Želim se zahvaliti profesoru Željku Tukoviću na pruženoj prilici da surađujem s njim. Isto tako zahvaljujem mu se na korisnim savjetima koji su mi uvelike olakšali izradu ovog rada te ujedno proširili znanje u području računalne dinamike fluida.

Hvala prijateljima i kolegama koji su mi bili bezuvjetna podrška i s kojima sam proveo lijepe i nezaboravne trenutke tijekom studija.

Iskreno se zahvaljujem svojoj djevojci Marti i roditeljima na podršci, razumijevanju i riječima ohrabrenja u trenucima kad je to bilo najpotrebnije.

Naposljetku se zahvaljujem svima onima koje nisam spomenuo, a bili su mi potpora tijekom studija.

Izjava

Izjavljujem da sam ovaj rad radio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za diplomske ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveučilište u Zagrebu	
Fakultet strojarstv	va i brodogradnje
Datum	Prilog
Klasa:	
Ur. broj:	

DIPLOMSKI ZADATAK

Student:	Sanijo Đurasević	Mat. br.: 0036465072
Naslov rada na hrvatskom jeziku:	Oblikovanje radnog kola aksijalne pumpe	
Naslov rada na engleskom jeziku:	Design of Axial Flow Pump Impeller	
Opis zadatka:		

Za oblikovanje rotorskih lopatica aksijalne pumpe najčešće se koristi metoda uzgonskih sila koja se temelji na primjeni aerodinamičkih karakteristika izoliranih krilnih profila izmjerenih u zračnom tunelu. Iako se u literaturi navodi kako ova metoda daje pouzdane rezultate kada je relativni korak rotorske rešetke veći od jedan, iskustvo pokazuje da jedino poznavanje aerodinamičkih karakteristika prave profilne rešetke omogućava pouzdano oblikovanje rotora aksijalne pumpe bez suvišnih korekcija. Na žalost primjena metode koja se temelji na upotrebi aerodinamičkih karakteristika pravih profilnih rešetki ograničena je zbog neraspoloživosti odgovarajućih experimentalnih podataka.

U sklopu diplomskog rada potrebno je usporediti gore nevedene metode za oblikovanje rotora aksijalne pumpe na način da se aerodinamičke karakteristike izoliranog krilnog profila i prave profilne rešetke odrede primjenom numeričke simulacije strujanja. Hidrodinamičke karakteristike tako dobivene dvije varijante aksijalne pumpe istih projektnih parametara treba odrediti numeričkom simulacijom strujanja, te na temelju usporedbe rezultata ocijeniti kvalitetu primijenjenih metoda za oblikovanje radnog kola aksijalne pumpe.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan: 3. svibnja 2018.

Zadatak zadao:

Izv. prof. dr. sc. Željko Tuković

Datum predaje rada:

5. srpnja 2018.

Predviđeni datum obrane: 11., 12. i 13. srpnja 2018. Predsjednica Povjerenstva:

Prof. dr. sc. Tanja Jurčević Lulić

Sadržaj

	Sad	ržaj	v
	Pop	bis slika	viii
	Pop	ois tablica	xi
	Pop	ois oznaka	xii
	Saž	etak	xiv
	Sun	nmary	xv
1.	Uvo	od	1
	1.1.	Turbostrojevi	1
	1.2.	Pumpe	2
	1.3.	Specifična brzina	5
	1.4.	Opis i klasifikacija aksijalnih pumpi	6
2.	Kin	ematika strujanja	8
	2.1.	Strujanje u aksijalnoj pumpi	8
	2.2.	Karakteristične veličine profilne rešetke,	
		trokuti brzina, osnovna jednadžba aksijalne	
		pumpe	11
	2.3.	Međudjelovanje sila između ravne profilne	
		rešetke i struje fluida \ldots	16
	2.4.	Hidraulički stupanj korisnosti i koeficijent	
		opterećenja profilne rešetke	24

	~
CAL	<u>ה א ל ס</u> ח
SAL	JR / A I
<i>U</i> / 11	2112/13

	2.5.	Gubici	i energije kod aksijalnih pumpi	25
3.	Pro	račun	radnog kola aksijalne pumpe	27
	3.1.	Osnov	ni konstrukcijski parametri radnog kola	27
	3.2.	Osnov	na svojstva krilnog profila	32
	3.3.	Oblike	wanje radnog kola aksijalne pumpe po	
		metod	i uzgonskih sila	38
	3.4.	Oblike	wanje radnog kola aksijalne pumpe	
		pomoć	u hidrodinamičkih karakteristika	
		ravne	profilne rešetke	43
4.	Nur	nerički	i model	45
	4.1.	Metod	a kontrolnih volumena	45
		4.1.1.	Opća skalarna transportna jednadžba	46
		4.1.2.	Diskretizacija opće skalarne transportne jednadž be $\ .\ .\ .\ .$.	47
		4.1.3.	Rješavanje sustava jednadžbi	48
	4.2.	Matem	natički model	49
		4.2.1.	Modeliranje turbulencije	49
		4.2.2.	$k - \omega SST$ model turbulencije	51
		4.2.3.	Metoda pokretnog koordinatnog sustava	
			(eng. Moving Reference Frame-MRF)	52
		4.2.4.	Rubni uvjeti	52
		4.2.5.	Modeliranje graničnog sloja	53
5.	Nur	nerički	i proračun	54
	5.1.	Geome	etrija radnog kola aksijalne pumpe	
		oblikov	vana metodom uzgonskih sila	55
	5.2.	Geome	etrija radnog kola aksijalne pumpe	
		oblikov	vana pomoću karakteristika ravne	
		profiln	e rešetke	65
	5.3.	Numer	rički proračun i usporedba rezultata	72
		5.3.1.	Prostorna diskretizacija i rubni uvjeti	73
		5.3.2.	Rješenja numeričkih simulacija	77

SAD	RŽAJ	vii
6. 2	Zaključak	85
]	Literatura	86

Popis slika

1.1	Trokut brzina	3
1.2	Aksijalna pumpa[7]	7
2.1	Profilna rešetka	9
2.2	Komponente apsolutne brzine	11
2.3	Trokuti brzina u profilnoj rešetki	12
2.4	Trokuti brzina u profilnoj rešetki-zajedno	13
2.5	Cirkulacija brzine	15
2.6	Sile na usamljeni profil	16
2.7	Dijagram ovisnosti koeficijenta uzgona o napadnom kutu $\ .\ .\ .\ .$.	18
2.8	Dijagram ovisnosti koeficijenta otpora o napadnom kutu $\ \ldots\ \ldots\ \ldots$	19
2.9	Dijagram ovisnosti koeficijenta uzgona o koeficijentu otpora $\ \ldots \ \ldots \ \ldots$	19
2.10	Dijagram ovisnosti omjera koeficijenta uzgona i koeficijenta otpora o na-	
	padnom kutu	20
2.11	Skica profilne rešetke za određivanje sila koje djeluju na profil ${\bf u}$ rešetki $% {\bf v}$.	21
3.1	Bezdimenzijski koeficijenti aksijalne $\operatorname{pumpe}[2]$ \hdots	30
3.2	Strujanje oko krilnog profila[2]	32
3.3	Relativni korak t/l na pojedinom presjeku $\ .\ .\ .\ .\ .\ .\ .\ .$	34
3.4	Duljina tetive l na pojedinom presjeku $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	35
3.5	Maksimalna debljina profila δ na pojedinom presjeku $\ .\ .\ .\ .\ .\ .$	35
3.6	Korak t na pojedinom presjeku $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	36
3.7	Smještanje profila u prostoru (tlocrt)	36
3.8	Smještanje profila u prostoru (nacrt)	37
3.9	Smještanje profila u prostoru (izometrija)	37

3.10	Grafičko određivanje napadnog kuta α_∞ u ovisnosti o kvaliteti profila $\ .$	39
3.11	Promjena relativne debljine lopatice δ_{max}/l	40
3.12	Dijagram toka oblikovanja lopatice radnog kola metodom uzgonskih sila .	42
3.13	Dijagram toka oblikovanja lopatice radnog kola metodom poznavanja ka-	
	rakteristika ravne profilne rešetke	44
4.1	Kontrolni volumen	46
4.2	Energetska kaskada	50
4.3	Turbulentni granični sloj	53
5.1	Kutevi β_1,β_2 i β_∞ u ovisnosti o polumjeru r	55
5.2	Relativne brzine w_1, w_2 i w_∞ u ovisnosti o polumjeru r	56
5.3	Diskretizirana domena oko krilnog profila (metoda uzgonskih sila) $\ .\ .$.	57
5.4	Detalji diskretizacije domene oko napadnog i izlaznog brida profila (me-	
	toda uzgonskih sila)	58
5.5	Diskretizirana domena oko krilnog profila (metoda uzgonskih sila) $\ .\ .$.	58
5.6	Raspodjela brzine i koeficijenta tlaka oko krilnog profila za presjek kod	
	glavčine (metoda uzgonskih sila)	59
5.7	Ovisnost promjene napadnog kuta α_∞ i kuta postave β_p o polumjeru r	61
5.8	Kvaliteta profila $\tan \varepsilon = F_D/F_L$	61
5.9	Promjena relativne debljine profila δ/l	62
5.10	w_2/w_1 u ovisnosti o polumjeru r	62
5.11	c_m/c_{2u} u ovisnosti o polumjeru r	63
5.12	Geometrija lopatice oblikovana metodom uzgonskih sila (NACRT) 	64
5.13	Geometrija lopatice oblikovana metodom uzgonskih sila (TLOCRT) $~.~.~$	64
5.14	Diskretizirana domena oko krilnog profila (profilna rešetka)	66
5.15	Detalji diskretizacije domene oko napadnog i izlaznog brida profila (pro-	
	filna rešetka)	66
5.16	Diskretizirana domena oko krilnog profila (profilna rešetka)	67
5.17	Konture brzine oko profila uz glavčinu (profilna rešetka)	68
5.18	Konture koeficijenta tlaka ${\cal C}_p$ oko profila uz glavčinu (profilna rešetka)	68
5.19	Kut postave profila dobiven metodom uzgonskih sila i pomoću ravne pro-	
	filne rešetke	70
5.20	Relativna razlika kuteva postave profila	70

5.21	Geometrija lopatice (profilna rešetka)(NACRT)	71
5.22	Geometrija lopatice (profilna rešetka) (TLOCRT) $\ . \ . \ . \ . \ . \ .$	71
5.23	Prikaz proračunske domene (IZOMETRIJA)	72
5.24	Prikaz proračunske domene (NACRT)	72
5.25	Diskretizirana proračunska domena	74
5.26	Diskretizirana proračunska domena-detalj	74
5.27	Konformnost mreže na dodiru dvije zone	75
5.28	Q-Hkrivulje radnih kola	79
5.29	Q-Pkrivulje radnih kola	79
5.30	$Q-\eta$ krivulje radnih kola \hdots	80
5.31	Relativna razlika visina dobave radnih kola	80
5.32	Konture apsolutne brzine i totalnog tlaka (metoda uzgonskih sila) $\ .\ .$.	81
5.33	Konture apsolutne brzine i totalnog tlaka (profilna rešetka)	82
5.34	Konture statičkog tlaka na lopatici-metoda uzgonskih sila (lijevo) i pro-	
	filna rešetka (desno)	82
5.35	Vektori relativne brine na presjeku uz glavčinu (metoda uzgonskih sila) $% \left({{\left({{{\left({{{{\left({{{{}}}}}} \right)}}}}\right.$	83
5.36	Vektori relativne brine na presjeku kod vrha lopatice (metoda uzgonskih	
	sila)	83
5.37	Vektori relativne brine na presjeku uz glavčinu (profilna rešetka)	84
5.38	Vektori relativne brine na presjeku kod vrha lopatice (profilna rešetka) .	84

Popis tablica

1.1	Tri najčešće korištene definicije specifične brzine
1.2	Podjela pumpi prema brzohodnosti [1] 5
3.1	Broj lopatica radnog kola aksijalne pumpe[2]
5.1	Karakteristike pumpe
5.2	Podaci za ulazne i izlazne trokute brzina
5.3	Rubni uvjeti za p i u (metoda uzgonskih sila) $\ldots \ldots \ldots \ldots \ldots \ldots 59$
5.4	Rubni uvjeti za k, ω i nut (metoda uzgonskih sila)
5.5	Iznosi koeficijenta uzgona c_L
5.6	Iznosi kuteva α_{∞} i β_p
5.7	Rubni uvjeti za p i u (profilna rešetka)
5.8	Rubni uvjeti za k, ω i nut (profilna rešetka)
5.9	Iznosi kuteva β_{pr} i β_{pu}
5.10	Rubni uvjeti za p i u (3D proračun)
5.11	Rubni uvjeti za k, ω i nut (3D proračun)
5.12	Rješenja numeričkih simulacija (metoda uzgonskih sila)
5.13	Rješenja numeričkih simulacija (profilna rešetka)

Popis oznaka

F_D	Sila otpora
F_L	Sila uzgona
Н	Visina dobave pumpe
H_t	Teoretska visina dobave pumpe
Y	Specifična energija dobave pumpe \hdots
Y_t	Specifična teoretska energija dobave pumpe
с	Apsolutna brzina
c_D	Koeficijent sile otpora
c_L	Koeficijent sile uzgona
c_{Lr}	Koeficijent uzgona rešetke
c_M	Koeficijent momenta
c_m	Meridionalna brzina strujanja
c_u	Obodna komponenta apsolutne brzine
d_1	Promjer korijena radnog kola
d_2	Promjer vrha radnog kola
l	Duljina tetive profila
n_q	Specifična brzina $\ldots \ldots 5$
u	Obodna brzina
p_{tot}	Totalni tlak
\mathbf{W}	Relativna brzina
t	${\rm Korak} \ {\rm re \check{s}etke} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
\overline{t}	Relativni korak rešetke
\overline{t}	Relativni korak
z_k	Broj lopatica radnog kola
α	Kut apsolutne brzine

POPIS OZNAKA

β	Kut relativne brzine
β_l	Kut profila
β_p	Kut postave profila
η_h	Hidraulička iskoristivost
η_m	Mehanička iskoristivost
η_t	Ukupna iskoristivost
η_v	Volumenska iskoristivost
φ	Koeficijent toka
Γ_k	Cirkulacija brzine oko svih profila u rešetki
Γ_l	Cirkulacija brzine oko jednog profila
ν	Omjer promjera vrha i korijena radnog kola
ω	Kutna brzina
ψ	Koeficijent visine dobave
au	Gustoća rešetke
Inde	ksi

2	Izlazni brid lopatice rotora	3
1	Ulazni brid lopatice rotora	3

Kratice

BEP	Best Efficiency Point			 5
SIMP	PLE Semi Implicit Method for Pressure Linked Equations	•		43

Sažetak

U ovom radu su opisane i primijenjene dvije metode hidrauličkog proračuna radnog kola aksijalne pumpe: metoda uzgonskih sila i metoda ravne profilne rešetke. Za provedbu proračuna su korišteni programski paketi *Python, gmsh* i **OpenFOAM**. Hidrodinamičke karakteristike krilnih profila za oblikovanje lopatica radnog kola određene su numeričkim simulacijama strujanja fluida u **OpenFOAM**u, a proračunska mreža je napravljena u programskom paketu *gmsh*. Konačni oblik lopatice je definiran u programskom paketu *Python*. Cijeli postupak proračuna je automatiziran. Kako bi se provjerila točnost proračuna, provedene su numeričke simulacije strujanja fluida kroz pumpu. Korišten je proračun strujanja fluida pomoću metode pokretnog koordinatnog sustava. Rezultati numeričkog proračuna pokazuju da metoda ravne profilne rešetke daje točnije rezultate u odnosu na metodu uzgonskih sila. Rezultati simulacija također pokazuju da oba radna kola aksijalne pumpe dobivena provedenim hidrauličkim proračunom postižu veću visinu dobave od zadane.

Ključne riječi: aksijalna pumpa, proračun aksijalne pumpe, OpenFOAM, gmsh, Python

Summary

Two procedures for the hydrodynamic calculation of the rotor of axial flow pump has been described and applied in this thesis: buoyancy forces method and cascade method. Calculations were performed using *Python*, *gmsh* and **OpenFOAM** program packages. The required characteristics for shaping the rotor blades are determined by numerical fluid flow simulations in **OpenFoam**, and the mesh is made in the gmsh program package *gmsh*. The final shape of the blade is defined in *Python*. The entire calculation process is automated. In order to check the accuracy of the calculation, a simulation of fluid flow through the pump was carried out. Fluid flow calculation was performed using the Multiple Reference Frame approach. The results of the numerical calculation show that the cascade method gives more accurate results than the buoyancy forces method. The results of the numerical calculation show that the required hydraulic cha- racteristics for both of the axial pump rotors have been met.

Keywords: axial pump, calculation of axial pump, OpenFOAM, *gmsh*, *Python*

Poglavlje 1.

Uvod

U prvom poglavlju ukratko su opisani su osnovni pojmovi koje je nužno poznavati za razumijevanje navedene teme. Prvo potpoglavlje bazira se na općenitom opisu turbostrojeva. Drugo potpoglavlje bazira se na kratkom opisu pumpi i osnovnih principa rada pumpi. U trećem potpoglavlju objašnjen je pojam brzohodnosti i prikazana je podjela pumpi prema brzohodnosti.

1.1. Turbostrojevi

Turbostrojevi su rotacijski strojevi koji energiju fluida, koji struji iz područja višeg tlaka u područje nižeg tlaka, pretvaraju u mehanički rad rotora odnosno, obrnuto mehanički rad doveden na rotor turbostroja pretvaraju u strujanje fluida iz prostora s nižim u prostor s višim tlakom. Turbostrojevi koji predaju energiju fluidu nazivju se radni strojevi, a oni koji energiju fluida pretvaraju u mehanički rad nazivaju se pogonski strojevi. U pogonske strojeve se svrstavaju:

- vodne turbine
- plinske turbine
- parne turbine
- vjetroturbine

Poglavlje 1. Uvod

U radne strojeve se svrstavaju:

- pumpe
- ventilatore
- kompresore

Ovisno o vrsti fluida te razlikama tlakova koji se javljaju u turbostroju razlikuju se stlačivo i nestlačivo strujanje. Nestlačivo strujanje javlja se kod strojeva koji rade s kapljevitim fluidima poput vodenih turbina i pumpi te kod turbostrojeva kod kojih se gustoća radnog fluida ne mijenja značajno ($\rho = konst$). Stlačivo strujanje javlja se kod strojeva s plinovitim radnim fluidom kao što su parne i plinske turbine, kompresori te mlazni motori.

Ovisno o smjeru strujanja radnog fluida može se razlikovati dva osnovna tipa turbostrojeva:

- radijalni turbostrojevi
- aksijalni turbostrojevi
- poluaksijalni turbostrojevi

1.2. Pumpe

Pumpe su hidraulički strojevi u kojima se energija predaje radnom fluidu putem pokretnih dijelova koji su sastavni dio pumpe. Prema načinu kako predaju energiju fluidu pumpe se mogu podijeliti na volumetričke i dinamičke. Volumetričke pumpe rade na volumetričkom principu koji karakterizira periodičko strujanje fluida kroz pumpu. Dinamičke pumpe rade po osnovnim principima koji vrijede za turbostrojeve. Najčešće dinamičke pumpe su turbopumpe i one rade prema zakonu očuvanja količine gibanja. U takvim pumpama dolazi do pojave uzajamnog djelovanja između lopatica radnog kola i fluida koji kroz njih struji. Radno kolo vrši rotacijsko kretanje s određenom kutnom brzinom te predaje energiju fluidu koji kroz njega struji i kontinuirano ga premješta od ulaza do izlaza. Svrha pumpi je povećanje brzine i tlaka, odnosno samo tlaka ili brzine fluida na način da pretvaraju mehanički rad u energiju tlaka i kinetičku energiju. Pumpe nalaze brojne primjene te su danas na drugom mjestu po zastupljenosti od svih strojeva.

Strujanje u pumpi opisuje se pomoću relativnog i apsolutnog koordinatnog sustava. Brzina unutar apsolutnog koordinatnog sustava nasiva se apsolutna brzina i označava se slovom **c**. Brzina unutar relativnog koordinatnog sustava označava se slovom **w**. Relativni koordinatni sustav rotira kutnom brzinom ω u odnosu na apsolutni koordinatni sustav. Brzina rotacije relativnog koordinatnog sustava opisuje se pomoću obodne brzine **u**. Obodna brzina može se izraziti relacijom $\mathbf{u} = \boldsymbol{\omega} \times \mathbf{r}$. Navedene brzine se najčešće prikazuju pomoću trokuta brzina prikazanog na slici 1.1. Kod pumpi uvode se dodatni indeksi pomoću kojih se zna pripada li trokut brzina ulazu ili izlazu iz rotora. Indeksi 1 i 2 označavaju ulaz i izlaz iz rotora. Kutevi α i β predstavljaju kuteve apsolutne i relativne brzine u odnosu na obodnu brzinu **u**.

Slika 1.1: Trokut brzina

Radne krivulje pumpi su obično Q - H, $Q - \eta$ i Q - P, gdje je H visina dobave pumpe, η efikasnost i P snaga dovedena pumpi. Prema dimenzijskoj analizi krivulje Q - H i $Q - \eta$ se mogu dobro aproksimirati parabolom.

Iz jednadžbe momenta količine gibanja (Eulerova jednadžba) može se dobiti Eulerova jednadžba za turbostrojeve:

$$P = M\omega = \rho Q(u_2 c_{2u} - u_1 c_{1u})$$
(1.1)

Jedan od bitnih parametara je i specifična energija dobave pumpe. Ovaj parametar pokazuje koliko je povećanje mehaničke specifične energije fluida od ulaza do izlaza iz pumpe ili radnog kola. Specifična energija dobave pumpe se izražava kao:

$$Y = \frac{p_{2tot} - p_{1tot}}{\rho} = gH \tag{1.2}$$

Visina dobave slijedi iz prethodne jednadžbe:

$$H = \frac{Y}{g} = \frac{p_{2tot} - p_{1tot}}{\rho g} \tag{1.3}$$

Kad je strujanje neviskozno specifična energija dobave pumpe računa se prema:

$$Y_t = \frac{P}{\rho Q} = u_2 c_{2u} - u_1 c_{1u} \tag{1.4}$$

Ako se jednadžba 1.4 podijeli s gravitacijskom konstantom, dobije se teorijska visina dobave:

$$H_t = \frac{Y_t}{g} = \frac{1}{g} (u_2 c_{2u} - u_1 c_{1u}) \tag{1.5}$$

U slučaju aksijalnog ulaza toka u rotor, obodna komponenta aposultne brzine c_{1u} jednaka je nuli pa jednadžba 1.5 poprima sljedeći oblik:

$$H_t = \frac{u_2 c_{2u}}{g} \tag{1.6}$$

Teoretska visina dobave u stvarnosti nije ostvariva pošto se dio energije gubi zbog viskoznosti fluida i pojave sekundarnih tokova u međulopatičnim kanalima. Razlika teoretske i realne visine dobave su hidraulički gubici, a definirani su preko hidrauličke iskoristivosti:

$$\eta_h = \frac{H}{H_t} \tag{1.7}$$

Uz hidrauličke javljaju se volumenski i mehanički gubici. Zbog cirkulacije dijela protoka kroz procjepe i brtve radnog kola protok na izlazu iz pumpe nešto je manji od onoga koji je u radnom kolu. Ovaj efekt opisuje se volumenskom iskoristivošću η_v . U mehaničkim gubicima η_m uzima se u obzir razlika snage na izlazu iz motora i rotora, a uglavnom su uzrokovani trenjem. Ukupna iskoristivost η_t je omjer između uložene snage i snage koja je predana fluidu, a definira se kao:

$$\eta_t = \eta_h \eta_v \eta_m \tag{1.8}$$

Hidraulički gubici rastu kvadratno s porastom protoka, a volumenski gubici najmanji su za optimalnu radnu točku. Hidraulički gubici se obično određuju procjenom hidrauličke iskoristivosti.

1.3. Specifična brzina

Projektni protok, projektna visina dobave i broj okretaja su veličine koje se zadaju u optimalnoj radnoj točki (eng. BEP Best Efficiency Point). Ovi parametri su povezani preko specifične brzine n_q . Ovaj parametar ima važnu ulogu u odabiru i konstrukciji pumpe. Definicija specifične brzine izvedena je iz teorije sličnosti. Specifična brzina predstavlja broj okretaja turbostroja koji daje jediničnu visinu dobave (1 m) pri jediničnom protoku (1 m³/s). U tablici 1.1 prikazane su definicije tri izraza za specifičnu brzinu [2].

Specifična brzina	Definicija	Veličina	Jedinica		
		n	okr/min		
Europska definicija	$n_q = n \frac{\sqrt{Q_{opt}/J_q}}{H^{0.75}}$	Q_{opt}	m^3/s		
	m_{opt}	H_{opt}	m		
	$\sqrt{\rho}$	n	okr/min		
Američka definicija	$N_s = n \frac{\sqrt{Q_{opt}/J_q}}{H^{0.75}} = 51.6n_q$	$N_s = n \frac{\sqrt{Q_{opt}/J_q}}{H^{0.75}} = 51.6n_q$	Q_{opt}	gpm	
	m_{opt}	H_{opt}	ft		
	$\omega_s = \frac{\omega \sqrt{Q_{opt}/f_q}}{g H_{opt}^{0.75}} = \frac{n_q}{52.9}$	n	1/s		
Bezdimenzijska definicija		$\omega_s = \frac{\omega \sqrt{Q_{opt}/f_q}}{qH^{0.75}} = \frac{n_q}{52.0}$	menzijska definicija $\omega_s = \frac{\omega \sqrt{Q_{opt}/J_q}}{aH^{0.75}} = \frac{n_q}{52.0}$	Q_{opt}	m^3/s
		Hont	m		

Tablica 1.1: Tri najčešće korištene definicije specifične brzine

Koeficijent f_q u tablici 1.1 predstavlja način dovođenja fluida u rotor. $f_q = 1$ za jednostrano dovođenje, a $f_q = 2$ za dvostrano dovođenje. U tablici 1.2 prikazana je podjela pumpi prema brzohodnosti.

Tablica 1.2: Podjela pumpi prema brzohodnosti [1]

Tip pumpe	Brzohodnost n_q
Sporohodna radijalna pumpa	11-22
Srednjehodna radijalna pumpa	22-41
Brzohodna radijalna pumpa	41-82
Poluaksijalna pumpa	82-165
Aksijalna pumpa	165-490

1.4. Opis i klasifikacija aksijalnih pumpi

Aksijalne pumpe (slika 1.2) obično se koriste za područje rada gdje je specifična brzina u granicama $n_q = 165 - 490$. Često nalaze primjenu i u području $n_q < 165$, kao i za $n_q > 490$ (do 550). Karakteristično svojstvo aksijalnih pumpi je da strujanje u meridionalnoj ravnini u području radnog kola i statora ima aksijalni smjer tj. da je radijalna komponenta apsolutne brzine $c_r = 0$, dok je meridionalna komponenta brzine strujanja $c_m = c_z$ tj. da se strujanje odvija po cilindrima čija je os istovremeno i os rotacije radnog kola. Zbog ovakvog strujanja porast potencijalne energije u području radnog kola se vrši na račun pretvorbe kinetičke energije u tlačnu energiju, tj. na račun usporavanja relativne struje. Ovdje nema utjecaja centrifugalne sile, jer dio fluida ulazi i izlazi na istom promjeru $D_1 = D_2$. Ovaj član kod centrifugalnih pumpi ima velik utjecaj. Zbog njega centrifugalne pumpe istih dimenzija kao i aksijalne pumpe mogu ostvariti veću visinu dobave.

U difuzor fluid ulazi nakon radnog kola i u njemu se kontinuirano smanjuje obodna komponenta apsolutne brzine c_{2u} do konačne vrijednosti na izlazu iz pumpe $c_u = 0$. Zbog ovakvog strujanja u području radnog kola i statora kinetička energija se kontinuirano mijenja. Dodatni porast tlačne energije može se dobiti daljnjim širenjem kučišta, tj. difuzorskom izvedbom. Difuzorska izvedba kučišta može početi odmah nakon radnog kola. Difuzorni karakter strujanja može kod aksijalnih pumpi dovesti do odlijepljivanja graničnog sloja od čvrstih strujnih površina (lopatica radnog kola i statorskih lopatica) te formiranja vrtloga. Zbog toga, da bi aksijalna pumpa imala visok stupanj iskoristivosti η_h treba joj pri projektiranju i konstrukciji posvetiti dosta pažnje.

Klasifikacija aksijalnih pumpi može se izvršiti na osnovu sljedećih karakteristika:

- 1. Prema broju radnih kola: jednostupanjska i vrlo rijetko kao dvostupanjska kada se na vratilu nalaze dva radna kola.
- 2. Prema konstrukciji radnog kola: sa nepokretnim lopaticama i sa regulirajućim lopaticama tj. sa pokretnim lopaticama. U prvom slučaju lopatice su čvrsto nasađene na glavčinu radnog kola. U drugom slučaju lopatice se mogu zakretati oko svoje osi kada pumpa ne radi ili ako je vratilo šuplje i u njemu je ugrađen regulacijski uređaj tada se mogu zakretati i u toku rada. U ovom drugom slučaju kada je regulacijski uređaj ugrađen u šuplje vratilo, pumpe se nazivaju Kaplan

pumpe po analogiji s Kaplanovim turbinama.

- Po položaju vratila: vertikalne, horizontalne i kose. Najčešće su vertikalne izvedbe, tj. s vertikalnim položajem vratila.
- 4. S obzirom na fluid koji struji kroz aksijalnu pumpu mogu biti: za čistu ili zagađenu vodu, za kemijske, agresivne ili abrazivne fluide i dr.

Slika 1.2: Aksijalna pumpa^[7]

Poglavlje 2.

Kinematika strujanja

U ovom poglavlju pobliže su opisane osnovne jednadžbe strujanja fluida u aksijalnoj pumpi. Također su prikazane karakteristične veličine ravne profilne rešetke i trokuti brzina na ulazu i izlazu iz radnog kola. Opisano je i međudjelovanje sila između ravne profilne rešetke i struje fluida. Na kraju poglavlja je objašnjeno kako se računa hidraulički stupanj korisnosti i koeficijent opterećenja ravne profilne rešetke te koji se gubici energije pojavljuju kod aksijalnih pumpi.

2.1. Strujanje u aksijalnoj pumpi

Pri razmatranju kinematike strujanja u radnim elementima aksijalnih pumpi uvode se sljedeće pretpostavke:

1. Uzima se da je strujanje kroz pumpu ustaljeno - apsolutno u elementima ispred i iza radnog kola i relativno u radnom kolu. Apsolutno strujanje u području radnog kola nije ustaljeno zbog razlike tlaka na pretlačnoj i potlačnoj strani lopatice. Ako se radno kolo presječe s jednim koaksijalnim cilindrom (valjkom) na proizvoljnom radijusu r, a zatim se taj cilindar razvije u ravninu, dobije se beskonačan broj jednakih profila raspoređenih na istom razmaku, tj. koraku t i dobiva se tzv. profilna ravninska rešetka (sl. 2.1). Ovdje je tlak na pretlačnoj strani (1) veći nego na potlačnoj strani (2) lopatice, a tlak uzduž strujnog dijela između dva susjedna profila mijenja se kako je prikazano na sl. 2.1. Relativna brzina strujanja \mathbf{w} na pretlačnoj strani profila je veća nego na potlačnoj strani, zbog čega je apsolutna brzina strujanja u području radnog kola neravnomjerna.

2. Pretpostavlja se da se strujanje u radnom kolu i statoru odvija uz odsutstvo radijalne komponente apsolutne brzine, tj. $c_r = 0$. U takvom slučaju strujanje fluida u jednom sloju nema utjecaj na strujanje u drugom sloju.

U stvarnosti, u većini slučajeva ovaj uvjet nije opravdan, zbog toga što je glavčina na kojoj su smještene lopatice radnog kola okruglog presjeka, zatim eventualne specifične pojave u području vanjskog brida lopatice (do kućišta), difuzornost meridijalnog presjeka statora i dr.

3. Uzima se da je apsolutno strujanje ispred i iza radnog kola osnosimetrično i bezvrtložno, tj. potencijalno.

Slika 2.1: Profilna rešetka

Neka se strujanje promatra u cilindričnom koordinatnom sustavu, čija se os z poklapa s osi rotacije radnog kola (sl. 2.1). Položaj svakog infinitezimalnog dijela fluida određuje se kutem φ , radijusom r i ordinatom z. U općem slučaju apsolutna brzina c je u vektorskom obliku $\vec{c} = \vec{c_u} + \vec{c_r} + \vec{c_z}$, a pošto je $c_r = 0$ to je $\vec{c} = \vec{c_u} + \vec{c_z}$.

Ako je strujanje osnosimetrično, brzine na zadanom radijusu r ne ovise o kutu φ , pa je [3]

$$\frac{\partial c_r}{\partial \varphi} = \frac{\partial c_u}{\partial \varphi} = \frac{\partial c_z}{\partial \varphi} = 0.$$
(2.1)

S druge strane, ako je strujanje vrtložno, komponente vektora vrtložnosti ω u cilindričnom koordinatnom sustavu su

$$\omega_u = \frac{1}{2} \left(\frac{\partial c_r}{\partial z} - \frac{\partial c_z}{\partial r} \right), \qquad (2.2)$$

$$\omega_r = \frac{1}{2} \left(\frac{\partial c_z}{\partial \varphi} - \frac{\partial (rc_u)}{\partial z} \right), \qquad (2.3)$$

$$\omega_z = \frac{1}{2r} \left(\frac{\partial (rc_u)}{\partial r} - \frac{\partial c_r}{\varphi} \right). \tag{2.4}$$

U slučaju da je strujanje potencijalno i ako je $c_r = 0$, iz jednadžbi (2.1 i 2.2) slijedi da je

$$\frac{\partial c_z}{\partial r} = 0 \quad \text{ili} \quad c_z = konst, \tag{2.5}$$

tj. u slučaju potencijalnog strujanja $c_m=c_z.$

Uz uvjet da je strujanje osnosimetrično u općem slučaju vrijedi $\frac{\partial c_z}{\partial \varphi} = \frac{\partial c_r}{\partial \varphi} = 0$, te zbog toga, iz jednadžbi (2.3 i 2.4) slijedi

$$\frac{\partial(rc_u)}{\partial z} = \frac{\partial(rc_u)}{\partial r} = 0$$
(2.6)

ili $rc_u = konst$ tj. ispred i iza radnog kola pri uvedenim pretpostavkama, strujanje se odvija prema zakonu potencijalnog vrtložnog strujanja.

Slika 2.2: Komponente apsolutne brzine

S uvedenim pretpostavkama u području radnog kola strujanje je potencijalno u meridionalnoj ravnini (što znači da vrijedi $c_z = konst$ i $\omega_u = 0$). U općem slučaju u području radnog kola apsolutno strujanje nije potencijalno tj. $rc_u \neq konst$, pošto je $\omega \neq 0$ (zbog $\partial(rc_u)/\partial z \neq 0$), a tada je i $\omega_z \neq 0$ ($\partial(rc_u)/\partial r \neq 0$).

U slučaju da strujanje u aksijalnoj pumpi nije potencijalno za koje vrijedi $c_r \neq 0$, strujnice u meridionalnoj ravnini se ne podudaraju potpuno, tj. nije ispunjen uvjet za potencijalno strujanje, ali je ta razlika zanemarivo mala.

2.2. Karakteristične veličine profilne rešetke, trokuti brzina, osnovna jednadžba aksijalne pumpe

Ravninska rešetka se dobije presjecanjem radnog kola cilindričnim plohama te njihovim razvijanjem u ravninu. Karakterizira se sljedećim parametrima (sl. 2.3):

Slika 2.3: Trokuti brzina u profilnoj rešetki

- korak rešetke $t = 2r\pi/z_k$, tj. udaljenost između dva susjedna profila, mjereno po osi rešetke,
- z_k broj lopatica radnog kola,
- skeletnica ili srednja linija profila u rešetki je geometrijsko mjesto centara kružnica upisanih u profil,
- tetiva profila je pravac koji spaja ulazni i izlazni brid profila tj. početak i kraj skeletnice, l je dužina tetive profila,
- relativni korak rešetke je $\overline{t}=t/l$ i
- gustoća rešetke je recipročna vrijednost relativnog koraka rešetke, tj. $\tau = l/t,$
- obodna brzina \boldsymbol{u} se ne mijenja s radijusom r

- os rešetke je pravac, čiji se smjer poklapa sa pravcem obodne brzine u,
- kut tetive profila
 β_p je kut između tetive profila i osi rešetke,
- kut rešetke β_R je kut između normale na tetivu profila i osi rešetke i jednak je $\beta_R + \beta_p = 90^{\circ}$.

Obodne brzine rotorskih lopatica ispred i iza radnog kola su jednake, jer infinitezimalni dijelovi fluida ulaze i izlaze na istom radijusu r, dakle $u_1 = u_2 = u = \omega r$. Iz jednadžbe kontinuiteta slijedi da su jednake i aksijalne (meridionalne) brzine, tj. $c_{1z} = c_{2z} = c_z = c_m$.

Ako je apsolutna brzina strujanja ispred profilne rešetke c_1 i ako se od nje vektorski oduzme obodna brzina strujanja u na ulazu u rešetku, dobije se

 $\vec{w_1} = \vec{c_1} - \vec{u}$ (sl. 2.3). Brzina w_1 na ulazu u rešetku nalazi se pod kutem strujanja β_1 u odnosu na os rešetke. Brzine c_1 i w_1 formiraju ulazni trokut brzine ispred rešetke.

Ako je w_2 relativna brzina strujanja iza profilne rešetke i njoj se vektorski doda obodna brzina u dobije se apsolutna brzina strujanja c_2 iza rešetke i s njom se formira izlazni trokut brzine iza profilne rešetke.

Pošto je $u_1 = u_2 = u$ i $c_{1z} = c_{2z} = c_z$, trokuti brzina na ulazu i izlazu se mogu zajedno nacrtati, kao što je prikazano na sl. 2.4.

Slika 2.4: Trokuti brzina u profilnoj rešetki-zajedno

Vektorski poluzbroj brzina strujanja na ulazu i izlazu iz radnog kola $w_{\infty} = w_1 + w_2/2$, u teoriji ravne profilne rešetke kod turbostrojeva naziva se beskonačna relativna brzina koja u aerodinamici vrijedi za opstrujavanje usamljenog profila. Iz (sl. 2.4) vidi se da je

kutan (sl. 2.3), a jednadžbe (2.7) i (2.8) prelaze u oblik

$$w_{\infty} = \sqrt{c_z^2 + \left(u - \frac{c_{1u} + c_{2u}}{2}\right)^2} \tag{2.7}$$

i

$$\tan \beta_{\infty} = \frac{c_z}{u - \frac{c_{1u} + c_{2u}}{2}} \tag{2.8}$$

gdje je β_{∞} kut koji zatvara pravac beskonačne brzine s tetivom profila u rešetki. Ako je strujanje ispred radnog kola s brzinom $c_{1u} = 0$, trokut brzine na ulazu je pravo-

$$w_{\infty} = \sqrt{c_z^2 + \left(u - \frac{c_{2u}}{2}\right)^2}$$
(2.9)

i

$$\tan \beta_{\infty} = \frac{c_z}{u - \frac{c_{2u}}{2}}.$$
(2.10)

Teoretska visina dobave radnog kola aksijalne pumpe na radijusu r, određuje se tako da se u jednadžbu za visinu dobave uvede da je $u_1 = u_2 = u$, tj.

$$H_t = \frac{u}{g}(c_{2u} - c_{1u}) = \frac{u\Delta c_u}{g}$$
(2.11)

i ako je $c_{1u} = 0$, tada

$$H_t = \frac{uc_{2u}}{g}.\tag{2.12}$$

Kako je kod aksijalnih pumpi (sl. 2.5) $c_{2u} - c_{1u} = w_{1u} - w_{2u} = \Delta c_u = \Delta w_u$ može se napisati

$$H_t = \frac{u\Delta c_u}{g} = \frac{u\Delta w_u}{g}.$$

Jednadžbe (2.11) i (2.12) predstavljaju jedan od oblika osnovne jednadžbe za aksijalne turbostrojeve. Teoretska visina dobave H_t može se prikazati i preko cirkulacije brzine oko lopatice Γ_l (sl. 2.5). Za takav prikaz formira se zatvorena kontura oko profila u rešetki koju formiraju dvije strujne linije 1-2 i 1'-2', koje se nalaze na koraku $t = 2\pi r/z_k$ rešetke i dvije linije 2'-2 i 1'-1 koje su paralelne s osi rešetke. Za smjer cirkulacije brzine uzima se smjer kazaljke na satu. Cirkulacija brzine duž strujne linije 1-2 jednaka je cirkulaciji brzine na dijelu 2'-1', ali suprotnog smjera, te se međusobno poništavaju. Zbog ovog je cirkulacija brzine po linijama 2-2' i 1'-1:

Slika 2.5: Cirkulacija brzine

Ako se jednadžba (2.13) pomnoži i podijeli sa kutnom brzinom ω i uvede da je $u = \omega r$, dobije se

$$\Gamma_l = \frac{2\pi u}{z_k \omega} (c_{2u} - c_{1u}).$$

Cirkulacija brzine Γ_k oko svih profila u profilnoj rešetki je

$$\Gamma_k = z_k \Gamma_l = \frac{2\pi}{\omega} u(c_{2u} - c_{1u}).$$
(2.14)

Pošto je iz jednadžbe (2.11) $gH_t = u(c_{2u} - c_{1u})$ i ako se to uvrsti u jednadžbu (2.14) dobije se

$$\Gamma_k = \frac{2\pi}{\omega} g H_t = \frac{2\pi Y_t}{\omega},$$

pošto je $Y_t = gH_t$ ili

$$H_t = \frac{\omega}{2\pi g} \Gamma_k = \frac{\omega}{2\pi g} z_k \Gamma_l, \qquad (2.15)$$
$$Y_t = \frac{\omega}{2\pi} z_k \Gamma_l.$$

odnosno

Pri opstrujavanju beskonačno dugog krilnog profila s idealnim fluidom sa brzinom w_{∞} daleko ispred krila gdje je strujanje neporemećeno, kao rezultat razlike tlaka na pretlačnoj i potlačnoj strani profila pojavit će se tzv. teorijska sila uzgona F_t koja je okomita na pravac beskonačne brzine w_{∞} (sl. 2.6). Veličina te sile po jedinici dužine profila određuje se prema

Slika 2.6: Sile na usamljeni profil

gdje je: ρ -gustoća fluida i $\Gamma_l = \oint \vec{w} \cdot \vec{ds}$ -cirkulacija brzine oko profila.

Veličina sile uzgona F_t ovisi o napadnom kutu α_{∞} između pravca beskonačne brzine i tetive profila. Pri opstrujavanju usamljenog profila viskoznim fluidom na njega djeluje hidrodinamička sila R koja je u odnosu na silu F_t neviskoznog fluida nalazi pod kutem ε . Projekcija realne sile R u pravcu sile F_t predstavlja realnu silu uzgona F_L , a projekcija u pravcu beskonačne brzine silu otpora F_D . Sila otpora javlja se kao rezultat opstrujavanja profila viskoznim fluidom.

Veličina sile uzgona F_L i sile otpora F_D određuje se eksperimentalno u zračnim tunelima i drugim uređajima za ispitivanje. Ove sile ovise o obliku profila kao i o napadnom kutu strujanja α_{∞} . U eksperimentalnoj aerodinamici sile F_D , F_L i moment M prikazuju se pomoću sljedećih jednadžbi:

$$F_L = c_L \frac{\rho}{2} w_{\infty}^2 l$$
 ili $c_L = \frac{F_L}{\frac{\rho}{2} w_{\infty}^2 l},$ (2.17)

$$F_D = c_D \frac{\rho}{2} w_{\infty}^2 l$$
 ili $c_D = \frac{F_D}{\frac{\rho}{2} w_{\infty}^2 l},$ (2.18)

$$M = c_M \frac{\rho}{2} w_{\infty}^2 l \quad \text{ili} \quad c_M = \frac{M}{\frac{\rho}{2} w_{\infty}^2 l},$$
(2.19)

gdje je

 c_L -koeficijent sile uzgona

 c_D -koeficijent sile otpora

 c_M -koeficijent momenta.

Sila R u odnosu na točku A, tj. početak profila uzrokuje moment M = Rs (sl. 2.6). Kroz eksperimentalno određivanje sila F_D , F_L i momenta M za dati profil mogu se odrediti i odgovarajući koeficijenti c_L , c_D , i c_M . Odnos

$$\frac{F_L}{F_D} = \frac{c_L}{c_D} = \cot \varepsilon \approx \varepsilon \tag{2.20}$$

se naziva kvaliteta profila, a njegova recipročna vrijednost

$$\frac{F_D}{F_L} = \frac{c_D}{c_L} = \tan \varepsilon = \frac{1}{\mu} \tag{2.21}$$

se naziva finoća profila. Krivulje koje daju ovisnost c_L i c_D za zadani profil o napadnom kutu α_{∞} prikazuju aerodinamičke karakteristike profila (sl. 2.7 i 2.8). Koeficijent uzgona c_L mijenja se proporcionalno s porastom napadnog kuta α_{∞} do neke granice gdje dostiže maksimalnu vrijednost (oko $\alpha_{\infty} = 16^{\circ}$). Pri daljnjem povećanju napadnog kuta α_{∞} koeficijent uzgona naglo opada. Ovo se objašnjava time da rastu otpori strujanju zbog zadebljanja graničnog sloja, odnosno dolazi do odlijepljenja struje od čvrste površine profila sa potlačne strane i stvaranja vrtloga te u tom slučaju više ne vrijede pretpostavke za potencijalno strujanje oko profila. U tom slučaju koeficijent otpora profila c_D naglo raste.

Slika 2.7: Dijagram ovisnosti koeficijenta uzgona o napadnom kutu

Slika 2.8: Dijagram ovisnosti koeficijenta otpora o napadnom kutu

Slika 2.9: Dijagram ovisnosti koeficijenta uzgona o koeficijentu otpora

Slika 2.10: Dijagram ovisnosti omjera koeficijenta uzgona i koeficijenta otpora o napadnom kutu

Za praktično računanje aerodinamičke karakteristike profila koristi se krivulja kao na slici 2.9. Na krivulji se mogu nalaziti i odgovarajuće vrijednosti napadnog kuta za svaku točku te odgovarajuće vrijednosti koeficijenata c_D i c_L koji se očitavaju na odgovarajućim osima koordinatnog sustava. Može se dokazati da pri opstrujavanju profilne rešetke nestlačivim fluidom vrijedi teorem Žukovskog. U tom slučaju pretpostavlja se da beskonačna brzina treba biti jednaka vektorskom poluzbroju brzine strujanja ispred i iza rešetke, dakle $\vec{w_{\infty}} = \vec{w_1} + \vec{w_2}/2$ i određuje se pomoću trokuta brzine.

Promatra se ravna profilna rešetka, kroz koju struji neviskozan fluid (sl. 2.11). Uzima se pravokutni koordinatni sustav čija se apscisa poklapa s osi rešetke i kreće se u pozitivnom smjeru. Ordinatna os z je normala na os u i usmjerena je prema gore. Za određivanje sila, s kojima fluid djeluje na jedan profil u rešetki promatra se strujanje u jednom koraku t, a profil se nalazi u sredini. Strujanje oko profila ograničeno je strujnicama 1-2 i 3-4 na koraku t i linijama 1-4 i 2-3 na ulazu i izlazu. Zatim se promatra strujanje po visini profila, tj. strujanje u smjeru okomitom na ravninu crteža, visine b = 1.

Slika 2.11: Skica profilne rešetke za određivanje sila koje djeluju na profil u rešetki

Polazi se od zakona količine gibanja, kada se uzme u obzir da na ulazu u rešetku djeluje tlak p_1 dok je na izlazu iz rešetke tlak p_2 , a kao vanjska sila djeluje samo težina. Za određivanje sila u rešetki mjerodavna je relativna brzina strujanja fluida. Na slici 2.11 su ponovno prikazani trokuti brzina na ulazu i izlazu iz rešetke i komponente odgovarajućih brzina u pravcu osi koordinatnog sustava. Zakon očuvanja količine gibanja postavlja se za određivanje sila F'_z i F'_u koje djeluju na profil.

Projekcija sile F'_u u pravcu osi rešetke, odnosno osi u određuje se pomoću komponenata relativne brzine w_{1u} i w_{2u} koje su projekcije u smjeru osi u, dakle

$$F'_{u} = \rho \Delta q \left[-w_{1u} - (-w_{2u}) \right] = -\rho w_{z\infty} t (w_{1u} - w_{2u}) = -\rho w_{z\infty} \Gamma_{l}, \qquad (2.22)$$

a pošto je cirkulacija brzine oko profila (sl. 2.11) $\Gamma_l = t(w_{1u} - w_{2u})$, maseni protok za promatrano strujanje oko profila u rešetki (b=1) je

$$\Delta q = \rho w_{z\infty} t.$$

Projekcija F_z^\prime u pravcu osi z rešetke određuje se prema jednadžbi

$$F'_{z} = \Delta q(w_{1z} - w_{2z}) + (p_{1} - p_{2})t - \rho gt(z_{2} - z_{1}) = -\rho gt\left(\frac{p_{2} - p_{1}}{\rho g} + z_{2} - z_{1}\right), \quad (2.23)$$

i ovdje je $w_{1z} = w_{2z}$.

Pošto se promatra neviskozno strujanje fluida, može se napisati i Bernoullijeva jednadžba za ulaz i izlaz iz rešetke u obliku:

$$\frac{p_1}{\rho g} + z_1 + \frac{w_1^2}{2g} = \frac{p_2}{\rho g} + z_2 + \frac{w_2^2}{2g},$$

ili

$$\frac{p_2 - p_1}{\rho g} + z_2 - z_1 = \frac{w_2^2 - w_1^2}{2g} = \frac{w_{1u}^2 - w_{2u}^2 + w_{1z}^2 - w_{2z}^2}{2g} = \frac{w_{1u}^2 - w_{2u}^2}{2g} = \frac{(w_{1u} - w_{2u})(w_{1u} + w_{2u})}{2g} = \frac{\Gamma_l}{t} \frac{w_{\infty u}}{g}$$
(2.24)

i ovdje je $w_{1z} = w_{2z}$, $w_{1u} = w_{2u} = \frac{\Gamma_l}{t}$ i $\frac{w_{1u} + w_{2u}}{2} = w_{\infty u}$. Ako se sada jednadžba (2.24) uvrsti u (2.23) dobije se

$$F'_z = -\rho w_{\infty u} \Gamma_l. \tag{2.25}$$

Znak minus u jednadžbi (2.22) i (2.23) pokazuje da sile F'_u i F'_z djeluju u suprotnom smjeru u odnosu na odabrane osi u i z.

Veličina rezultantne sile F_t je

$$F_{t} = \sqrt{F'_{u} + F'_{z}} = \rho \Gamma_{l} \sqrt{w_{\infty u}^{2} + w_{\infty z}^{2}} = \rho w_{\infty} \Gamma_{l}.$$
 (2.26)

Smjer rezultantne sile ${\cal F}_t$ određuje se kutem između sile ${\cal F}_t$ i osiz

$$\tan \angle (F_t, z) = \frac{F'_u}{F'_z} = \frac{w_{\infty z}}{w_{\infty u}} = \tan \beta_{\infty}, \qquad (2.27)$$

što znači da je $F_t \perp w_{\infty}$.

Na temelju dosadašnjeg razmatranja slijedi da je pri opstrujavanju profila u profilnoj rešetki sa neviskoznim fluidom, pri određivanju sila koje djeluju na profil, mjerodavna po teoriji Žukovskog samo beskonačna brzina, definirana kao vektorski poluzbroj relativnih brzina na ulazu i izlazu iz rešetke, dakle $\vec{w_{\infty}} = \frac{\vec{w_1} + \vec{w_2}}{2}$.

Ako kroz profilnu rešetku struji viskozan fluid, kinematika strujanja na ulazu i izlazu, odnosno trokuti brzina su isti kao i kod strujanja neviskoznog fluida. Projekcija sile F_u realne sile F jednaka je kao i kod neviskoznog fluida, dakle

$$F_u = F'_u = -\rho w_{\infty z} \Gamma_l. \tag{2.28}$$

Za strujanje realnog viskoznog fluida kroz profilnu rešetku jednadžba (2.24) prevedena u energetsku jednadžbu dobiva oblik

$$\frac{p_2 - p_1}{2} + z_2 - z_1 = \frac{w_1^2 - w_2^2}{2g} - \Delta H_{gr} = \frac{\Gamma_l}{t} \frac{w_{\infty u}}{g} - \Delta H_{gr}, \qquad (2.29)$$

gdje su ΔH_{gr} gubici rada u pokretnoj rešetki (radnog kola). Ako se ovo uvrsti u jednadžbu (2.25) dobije se sljedeći izraz za određivanje sile F_z kao komponente stvarne sile F

$$F_z = -\rho w_{\infty u} \Gamma_l + \rho g t \Delta H_{gr} \tag{2.30}$$

tj. komponenta F_z je manja od sile neviskoznog fluida F_z' za član $\rho gt \Delta H_{gr}.$ Iznos realne rezultantne sile Fkoja djeluje na profil je

$$F = \sqrt{F_u^2 + F_z^2},$$
 (2.31)

pri tome je stvarna rezultantna sila viskoznog fluda F naspram sile neviskoznog fluida F_t postavljena pod kutem ε (sl. 2.11).

Projekcija sile F_L u odnosu na silu F_t predstavlja realnu silu uzgona koja djeluje na profil, a projekcija F_D u smjeru beskonačne brzine je sila otpora.

Iz slike 2.11 slijede sljedeće ovisnosti pojedinih sila:

$$F_L = F \cos \varepsilon$$
 odnosno $F = \frac{F_L}{\cos \varepsilon}$, (2.32)

$$F_D = F\sin\varepsilon$$
 odnosno $F = \frac{F_D}{\sin\varepsilon}$, (2.33)

$$F_u = F\sin(\beta_\infty + \varepsilon) = F_L \frac{\sin(\beta_\infty + \varepsilon)}{\cos\varepsilon}, \qquad (2.34)$$

$$F_z = F\cos(\beta_\infty + \varepsilon) = F_L \frac{\cos(\beta_\infty + \varepsilon)}{\cos \varepsilon}.$$
 (2.35)

2.4. Hidraulički stupanj korisnosti i koeficijent opterećenja profilne rešetke

Hidraulički stupanj korisnosti profilne rešetke predstavlja gubitak energije strujanja unutar rešetke i određuje se prema jednadžbi:

$$\eta_{Hr} = \frac{H_t - \Delta H_{gr}}{H_t} = 1 - \frac{\Delta H_{gr}}{H_k}, \qquad (2.36)$$

gdje je H_t teorijska visina dobave profilne rešetke.

Gubici energije strujanja u rešetki ΔH_{gr} mogu se odrediti kao omjer snage utrošene na savladavanje otpora strujanju, tj. $F_D w_{\infty}$ i masenog protoka $\rho gt w_{\infty z}$

$$\Delta H_{gr} = \frac{F_D w_\infty}{\rho g t w_{\infty z}} = \frac{w_\infty F \sin \varepsilon}{\rho g t w_{\infty z}}.$$
(2.37)

Teoretski rad koji rešetka može ostvariti određuje se kao odnos snaga sile F_u i masenog protoka $\rho gtw_{\infty z}$ dakle

$$H_t = \frac{F_u u}{\rho g t w_{\infty z}} = \frac{u F \sin(\beta_\infty + \varepsilon)}{\rho g t w_{\infty z}}.$$
(2.38)

Kada se jednadžbe za ΔH_{gr} i H_t (2.37) i(2.38) uvrste u jednadžbu za stupanj korisnosti rešetke (2.36) dobije se

$$\eta_{Hr} = 1 - \frac{w_{\infty}}{u} = \frac{\sin\varepsilon}{\sin(\beta_{\infty} + \varepsilon)}.$$
(2.39)

Ako se u jednadžbu (2.17) uvede $F = F_L / \cos \varepsilon$, a stvarna uzgonska sila F_L po analogiji sa (2.17) prikaže u obliku $F_L = c_{Lr} \rho l \frac{w_{\infty}^2}{2}$ i u nju se uvrsti da je $w_{z\infty} = c_z$ (2.38) dobiva sljedeći oblik

$$H_{k\infty} = c_{Lr} \frac{l}{t} \frac{w_{\infty}^2}{2g} \frac{u}{c_z} \frac{\sin(\beta_{\infty} + \varepsilon)}{\cos\varepsilon}, \qquad (2.40)$$

ili

$$c_{Lr}\frac{l}{t} = \frac{2gH_t}{w_{\infty}^2}\frac{c_z}{u}\frac{\cos\varepsilon}{\sin(\beta_{\infty}+\varepsilon)}.$$
(2.41)

Izraz (2.41) predstavlja umnožak koeficijenta uzgona rešetke c_{Lr} i gustoće rešetke $\frac{l}{t}$ i naziva se opterećenje profila rešetke. Ako se uvrsti da je $c_u = c_{2u} - c_{1u}$, tada je

$$H_t = \frac{u}{g}(c_{2u} - c_{1u}) = \frac{u\Delta c_u}{g}.$$

Također vrijedi i sljedeći izraz (sl. 2.11)

$$w_{\infty} = \frac{c_z}{\sin \beta_{\infty}}$$

i kada se ovo uvrsti u jednadžbu (2.41) dobije se

$$c_{Lr}\frac{l}{t} = \frac{2\Delta c_u \sin^2 \beta_\infty \cos \varepsilon}{c_z \sin(\beta_\infty + \varepsilon)}.$$
(2.42)

Pošto je tan $\varepsilon = F_D/F_L = \mu$ izraz (2.41) se može prikazati u sljedećem obliku:

$$c_{Lr}\frac{l}{t} = \frac{2\sin\beta_{\infty}}{1+\mu\cot\beta_{\infty}}\frac{\Delta c_u}{c_z}.$$
(2.43)

2.5. Gubici energije kod aksijalnih pumpi

Gubici energije kod aksijalnih pumpi su različiti, ali se uglavnom mogu podijeliti na: hidrauličke, volumne i mehaničke.

Najveći utjecaj na ukupni stupanj korisnosti aksijalne pumpe ima hidraulički stupanj korisnosi, odnosno hidraulički gubici energije ΔH . Ovi gubici mogu se prikazati kao zbroj hidrauličkih gubitaka u usisnom grlu ΔH_s , radnom kolu ΔH_k , u statorskom dijelu ΔH_{zk} i u odvodnoj cijevi ΔH_{diff} tj.

$$\Delta H = \Delta H_s + \Delta H_k + \Delta H_{zl} + \Delta H_{diff}.$$
(2.44)

Hidraulički stupanj korisnosti aksijalne pumpe prema tome je

$$\eta_{H} = \frac{H}{H_{t}} = \frac{H_{t} - \Delta H}{H_{t}} = 1 - \frac{\Delta H}{H_{t}}.$$
(2.45)

Ovaj stupanj korisnosti može se izraziti kao umnožak hidrauličkih stupnjeva korisnosti pojedinih elemenata pumpe tj.

$$\eta_H = \eta_{Hs} \eta_{Hk} \eta_{Hzk} \eta_{Hdiff}.$$
 (2.46)

Hidraulički gubici u usisnom grlu su zanemarivi, pa se zbog toga uzima $\eta_{Hs} \approx 1$. Hidraulički gubici u odvodnom dijelu i statoru uglavnom se odnose na gubitke trenja na kućištu pumpe i međulopatičnim kanalima statora i koljena odvodne cijevi. Hidraulički gubici nastaju zbog trenja i disipacije vrtloga:

- a) Gubici uzrokovani trenjem nastaju kao posljedica posmičnog naprezanja u graničnom sloju. Trenje koje ovisi o Reynoldsovom broju i površinskoj hrapavosti je važno u tankim graničnim slojevima i tokovima koji ubrzavaju. Ovi gubici uglavnom ovise o hrapavosti lopatice i uvjetima za pojavu vrtloga u struji fluida.
- b) Usporavanje struje toka uzrokuje stvaranje debelog graničnog sloja koji stvara nejednoliku raspodjelu brzine. Kod takvih tokova povećana je izmjena momenta između različitih strujnica zbog vrtloga različitih dimenzija. Veliki vrtlozi se raspadaju na manje koji se kasnije pretvaraju u toplinsku energiju što uzrokuje zagrijavanja fluida.

Hidraulički gubici na elementima iza radnog kola analogni su s gubicima u radnom kolu s iznimkom da se krajnji gubici kod ovih elemenata ne pojavljuju.

Složeni karakter hidrauličkih gubitaka u aksijalnim pumpama i njihova uzajamna povezanost otežava njihovo određivanje računskim putem. Zbog toga se hidraulički stupanj korisnosti najčešće određuje eksperimentalnim putem ili po empirijskim izrazima koji su jednostavni, ali dovoljno točni. Pri proračunu pumpe neophodno je da se s dovoljnom točnošću odredi pretpostavljeni stupanj korisnosti η_H za optimalnu radnu točku. Za aksijalne pumpe mogu se koristiti sljedeći statistički izrazi[2]

$$\eta_H = 1 - 0.0.055 \left(\frac{Q_{Ref}}{Q}\right)^m - 0.09 \left(\log\frac{n_q}{45}\right)^{2.5}$$
(2.47)

gdje je

$$m = 0.1a \left(\frac{Q_{Ref}}{Q}\right)^{0.15} \left(\frac{45}{n_q}\right)^{0.06}, \quad a = 1 \text{ za } Q \le 1 \text{ m}^3/\text{s } a = 0.5 \text{ za } Q > 1 \text{ m}^3/\text{s}$$
i $Q_{Ref} = 1 \text{ m}^3/\text{s za } Q \ge 0.005 \text{ m}^3/\text{s}.$

Poglavlje 3.

Proračun radnog kola aksijalne pumpe

U ovom je poglavlju opisan proračun radnog kola aksijalne pumpe. Prvo su definirane osnovne pretpostavke te su navedene jednadžbe za proračun osnovnih konstrukcijskih parametara. Nakon toga dan je kratki pregled osnovnih svojstava krilnih profila. U potpoglavlju 3.3. prikazana je metoda oblikovanja radnog kola aksijalne pumpe po metodi uzgonskih sila, a u potpoglavlju 3.4. je opisano kako se može oblikovati radno kolo aksijalne pumpe pomoću karakteristika ravne profilne rešetke.

3.1. Osnovni konstrukcijski parametri radnog kola

Za proračun aksijalne pumpe zadaje se protok Q u m³/s, visina dobave H u metrima i broj okretaja pumpe n u s⁻¹. Zadavanjem broja okretaja n određuje se dozvoljena usisna visina pumpe. Često se zadaje obratno, željena usisna visina koju pumpa treba ostvariti, a iz tog uvjeta se izračunava potreban broj okretaja. Pošto je visina dobave kod aksijalnih pumpi vrlo mala, gubici na ulazu, cijevima, izlaznom koljenu i ventilima mogu značajno utjecati na iznos visine dobave, tako da je potrebno te gubitke uzeti u obzir pri odabiru projektne visine dobave. Prije svega potrebno je odrediti osnovne parametre koji karakteriziraju geometriju radnog kola pumpe, nakon čega se pristupa detaljnom proračunu i konstrukciji lopatica. Prvi zadatak je odrediti vanjski promjer radnog kola d_2 , omjer promjera vrha i korijena radnog kola $\nu = d_1/d_2$, specifičnu brzinu n_q , koeficijent visine dobave ψ i koeficijent toka φ . Kao osnovne pretpostavke modela uzimaju se sljedeće:

- 1. aksijalni smjer apsolutne brzine na ulazu $\alpha_1 = 90^{\circ}$
- 2. konstantan moment količine gibanja $c_u r = konst.$

Na početku je potrebno pretpostaviti hidrauličku iskoristivost η_h za inicijalni proračun koju je kasnije potrebno provjeriti. Za to se može iskoristiti jednadžba (2.47). Nakon što je izračunata inicijalna hidraulička iskoristivost, potrebno je odrediti specifičnu brzinu. Prema tablici 1.1 može se koristiti sljedeća jednadžba:

$$n_q = n \frac{\sqrt{Q_{opt}/f_q}}{H_{opt}^{0.75}}.$$

Nakon što se odredi specifična brzina, moguće je izračunati koeficijent visine dobave ψ (sl. 3.1). Za to se može poslužiti jednadžbom:

$$\psi = 0.29 f_{\psi} \left(\frac{n_{q,ref}}{n_q}\right)^{1.44}, \ n_{q,ref} = 180.$$
(3.1)

Jednadžba (3.1) daje maksimalni iznos koeficijenata visine dobave koji se uzimaju u praksi. Uz $f_{\psi} = 1$ dobiva se maksimalna vrijednost. U teoriji se mogu postići još veće vrijednosti, ali Q-H krivulja tada postaje nestabilna te bi se dobila pumpa koja se ne bi mogla upotrijebiti u velikom broju primjena. Da bi se izbjegla pojava kavitacije potrebno je projektirati radno kolo s većim promjerom; u tom slučaju se uzima $f_{\psi} < 1$. Vanjski promjer radnog kola određuje se prema sljedećoj jednadžbi:

$$d_2 = \frac{60}{\pi n} \sqrt{\frac{2gH}{\psi}}.$$
(3.2)

Da bi se mogao odrediti omjer promjera vrha i korijena radnog kola prvo je potrebno izračunati koeficijent toka φ (sl. 3.1). Koeficijent toka se računa prema:

$$\varphi = \frac{a}{2} + \sqrt{\frac{a^2}{4} + \left(\frac{\psi}{2\eta_h}\right)^2},\tag{3.3}$$

gdje je

$$a = \left(\frac{n_q}{158}\right)^2 \psi^{1.5}.$$

Sada je moguće izračunati omjer promjera vrha i korijena radnog kola ν (sl. 3.1):

$$\nu = \frac{\psi}{2\eta_h \varphi}.\tag{3.4}$$

Ovaj parametar se smatra jednim od najvažnijih pri projektiranju radnog kola aksijalne pumpe. On ima utjecaj na iskoristivost i na zakret lopatica radnog kola. Postoje razni kriteriji s kojima se može utjecati na zakret lopatice. Jedan od njih je uvjet da izlazni kut lopatice β_{2l} treba biti manji od 90°. Drugi je uvjet da omjer iznosa relativnih brzina w_2/w_1 na presjeku kod glavčine treba biti ≥ 0.6 .

Sada još preostaje odrediti iznos unutarnjeg promjera radnog kola prema

$$\nu = \frac{d_1}{d_2} \Rightarrow d_1 = \nu d_2. \tag{3.5}$$

Još jedan bitan parametar kod konstruiranja radnog kola aksijalne pumpe je broj lopatica. Optimalni broj lopatica radnog kola z_k se smanjuje s porastom specifične brzine kao što je to prikazano u tablici 3.1. Optimalni broj lopatica je također određen s opterećenjem koje djeluje na lopaticu, tako da je je u konačnoj verziji potrebno izvršiti provjeru lopatice na opterećenje.

Tablica 3.1: Broj lopatica radnog kola aksijalne pumpe^[2]

n_q	140-170	160-230	220-290	>290
z_k	7-5	4	3	2

U nekim slučajevima iz konstrukcijskih razloga se može odstupiti od gornjih preporuka za izbor ν i z_k , kao na primjer, kada se predviđa ugradnja mehanizma za zakretanje lopatica radnog kola u glavčini radnog kola. Preporučuje se određivanje maksimalne debljine presjeka lopatica kod glavčine prema izrazu

$$\delta_{max} = (0,012 - 0,015) d_2 \sqrt{H_{max}} \tag{3.6}$$

gdje je $H_{max} = 1, 5H$. Debljina lopatice na vanjskom promjeru uzima se manjom od izračunate na glavčini. Promjena debljine od glavčine prema kućištu treba se blago mijenjati.

Slika 3.1: Bezdimenzijski koeficijenti aksijalne pumpe^[2]

Pri proračunu neophodnih parametara profila za pojedine presjeke uzima se da svaki presjek treba osigurati jednaku visinu dobave H, tj. H(r) = konst. Zbog toga je potrebno izračunati teoretsku visinu dobave H_t koja se određuje za orijentacijski usvojenu vrijednost η_H (2.47), odakle slijedi da je

$$H_t = \frac{H}{\eta_H}.$$
(3.7)

Iz izraza (2.11) slijedi da je

$$c_{2u} = \frac{gH_t}{u} + c_{1u},$$

gdje je $u = \omega r$.

Brzina na ulazu c_{1u} ovisi o načinu dovođenja fluida do radnog kola. U slučaju kada fluid dolazi do radnog kola u aksijalnom smjeru, $c_{1u} = 0$, pa slijedi da je

$$c_{2u} = \frac{gH_t}{u}.\tag{3.8}$$

Iz izraza (2.9) određuje se beskonačna aksijalna brzina strujanja w_{∞} , a po (3.10) se zatim određuje kut beskonačne brzine β_{∞} .

Iz trokuta brzina (sl. 2.3) određuju se kutevi strujanja β_1 i β_2 na ulazu i izlazu iz radnog kola po jednadžbama:

$$\tan \beta_1 = \frac{c_z}{u - c_{1u}} \tag{3.9}$$

i

$$\tan \beta_2 = \frac{c_z}{u - c_{2u}}.$$
 (3.10)

Pošto su izračunati kutevi strujanja, određuje se odgovarajuće strujno skretanje koje radno kolo može ostvariti:

$$\Delta\beta = \beta_2 - \beta_1.$$

U pogledu skretanja struje i odljepljivanja struje fluida od profila, najugroženiji je presjek kod glavčine. Zbog toga je potrebno posvetiti pažnju pri određivanju relativnog koraka $\bar{t} = t/l = f(\Delta\beta, \beta_2)$ na ovom presjeku. Za ostale presjeke ova opasnost je puno manja, što opet ovisi o radnom režimu.

Presjek na vanjskom promjeru radnog kola je najnepovoljniji s obzirom na pojavu kavitacije, jer je tu brzina opstrujavanja fluida najveća.

Nakon određivanja relativnog koraka \bar{t} kod glavčine i koraka $t = 2r\pi/z_k$, može se odrediti dužina tetive profila l.

Za ostale presjeke, uključujući i posljednji presjek postupak se ponavlja na način da za svaki korak $t = 2r\pi/z_k$ relativni korak $\bar{t} = t/l$ ostaje konstantan. Vrijednost stvarnog koeficijenta sile uzgona c_{Lr} profilne rešetke određuje se pomoću izraza

$$c_{Lr} = \frac{t}{l} \frac{2gH_t}{w_{\infty}^2} \frac{c_z}{u} \frac{\cos\varepsilon}{\sin(\beta_{\infty} + \varepsilon)}.$$
(3.11)

U posljednjem izrazu (3.11) obično se uzima da je $\varepsilon = 1 - 2^{\circ}$. Da bi pumpa mogla sa sigurnošću ostvariti zahtjevane parametre, pored određivanja osnovnih geometrijskih parametara radnog kola i broja lopatica, potrebno je odrediti koeficijente sile uzgona c_{Lr} u pojedinim presjecima.

3.2. Osnovna svojstva krilnog profila

Kao što je ranije spomenuto, lopatice radnog kola se izvode korištenjem krilnih profila. Krilni profil se može zamisliti kao krivulja na koju je nadodana debljina prema specificiranoj raspodjeli. Ako je krilni profil izložen nekom strujanju dolazne brzine w_{∞} koja se u odnosu na tetivu profila nalazi pod napadnim kutem α_{∞} , blizu ulaznog brida formirat će se zaustavna točka. Blizu vrha krilnog profila formira se laminarni granični sloj, ali nakon određene duljine prelazi u turbulentni. Ovaj prijelaz ovisi o Reynoldsovom broju, turbulentnosti nadolazećeg toka te o površinskoj hrapavosti. Kada granični sloj postane prevelike debljine, dolazi do pojave odvajanja strujanja te se formira vrtložni trag iza profila.

Slika 3.2: Strujanje oko krilnog profila^[2]

Strujanje fluida rezultira pojavom sile R koja je prikazana na slici 2.6. Ova sila se sastoji od dvije komponente: sile uzgona F_L koja je okomita na smjer strujanja fluida i sile otpora F_D čiji je smjer jednak smjeru strujanja. Kut između sile uzgona i rezultantne sile R se naziva kvaliteta profila. Omjer sile otpora u odnosu na silu uzgona se kreće između 0.01 do 0.04, ovisno o napadnom kutu.

U ovom radu korišteni su četveroznamenkasti asimetrični NACA krilni profili. Cetiri znamenke u nazivu profila definiraju profil. Naprimjer profil NACA4412 ima maksimalnu asimetričnost od 4% koja se nalazi na 40% duljine tetive mjereno od ulaznog brida, maksimalne debljine iznosa 12% duljine tetive. Jednadžba za oblikovanje profila ovog tipa glasi:

$$y_t = 5t \left[0.2969\sqrt{x} - 0.1260x - 0.3516x^2 + 0.2843x^3 - 0.1015x^4 \right], \qquad (3.12)$$

gdje je

x-pozicija uzduž tetive čiji se iznos mijenja od 0 do 1 (0-100%)

 y_t -polovica debljine na udaljenosti x

t-maksimalna debljina u postocima ukupne duljine tetive

Jednadžba srednje linije profila je:

$$y_c = \begin{cases} \frac{m}{p^2} \left(2p \left(\frac{x}{c}\right) - \left(\frac{x}{c}\right)^2 \right), & 0 \le x \le pc \\ \frac{m}{(1-p)^2} \left((1-2p) + 2p \left(\frac{x}{c}\right) - \left(\frac{x}{c}\right)^2 \right), & pc \le x \le c \end{cases}$$
(3.13)

gdje je

m-maksimalna asimetričnost

p-lokacija maksimalne asimetričnosti

Maksimalna asimetričnost m se računa tako da je zakret skeletnice profila $\Delta\beta_l$ jednak dvostrukom zakretu relativnog toka $\Delta\beta$ tj. $\Delta\beta_l = 2\Delta\beta$. Lokacija maksimalne asimetričnosti profila p održavana je na konstantnoj vrijednosti od 50% tj. maksimalna asimetričnost se kod svakog presjeka nalazi na pola duljine tetive profila.

Koordinate gornje i donje plohe krilnog profila se računaju prema jednadžbama:

$$x_U = x - y_t \sin \theta, \qquad \qquad y_U = y_c + y_t \cos \theta, \qquad (3.14)$$

$$x_L = x + y_t \sin \theta, \qquad \qquad y_L = y_c - y_t \cos \theta, \qquad (3.15)$$

gdje je

Poglavlje 3. Proračun radnog kola aksijalne pumpe

$$\theta = \arctan\left(\frac{dy_c}{dx}\right) \tag{3.16}$$

i

$$\frac{dy_c}{dx} = \begin{cases} \frac{2m}{p^2} \left(p - \frac{x}{c} \right), & 0 \le x \le pc \\ \frac{2m}{(1-p)^2} \left(p - \frac{x}{c} \right), & pc \le x \le c \end{cases}$$
(3.17)

Opisana matematička definicija implementirana je u programskom jeziku *Python* preko klase koja je korištena za dobivanje geometrije krilnih profila. Kod oblikovanja lopatice relativni korak je održavan konstantim, dok su se duljina tetive, maksimalna debljina profila i korak lopatice mijenjali linearno kao što je prikazano na slikama 3.3, 3.4, 3.5 i 3.6.

~

Slika 3.3: Relativni korak t/l na pojedinom presjeku

Slika 3.4: Duljina tetive l na pojedinom presjeku

Slika 3.5: Maksimalna debljina profila δ na pojedinom presjeku

Slika 3.6: Koraktna pojedinom presjeku

Profili su u prostoru smještani oko ishodišta koordinatnog sustava kao što je prikazano na slikama 3.7, 3.8 i 3.9.

Slika 3.7: Smještanje profila u prostoru (tlocrt)

Slika 3.8: Smještanje profila u prostoru (nacrt)

0

Slika 3.9: Smještanje profila u prostoru (izometrija)

3.3. Oblikovanje radnog kola aksijalne pumpe po metodi uzgonskih sila

Metoga uzgonskih sila se može primjeniti za proračun radnog kola i statora aksijalnih pumpi, pod uvjetom da je rešetka profila radnog kola dovoljno rijetka tj. da je relativni korak $\bar{t} = t/l > 1$ ili da je $\tau = l/t < 1$. Kada rešetka zadovoljava navedene uvjete, tada kinematika strujanja na izlazu iz radnog kola ovisi o karakteru strujanja na ulazu u radno kolo. Osim toga, prema literaturi [1] i [2], korekcija koja je potrebna zbog utjecaja jednog profila na drugi u rešetci se može zanemariti.

Svrha metode uzgonskih sila je u tome, što se za računanje koeficijenata uzgonskih sila c_{Lr} po jednadžbi (3.11) uzima usamljeni profil, čije su karakteristike određene u zračnom tunelu ili na neki drugi načino. Koeficijent uzgonske sile c_L za ovako izoliran profil, razlikuje se od onog koji bi se dobio na profilu ugrađenom u hidrodinamičku rešetku zbog uzajamnog djelovanja jednog profila na drugi koji su razmaknuti na koraku t. Koeficijent sile uzgona usamljenog profila određuje se prema izrazu

$$c_L = \frac{c_{Lr}}{L} \tag{3.18}$$

gdje je L-koeficijent koji uzima u obzir utjecaj uzajamnog djelovanja profila u rešetki. Na osnovu teorijskih i eksperimentalnih istraživanja utvrđeno je da koeficijent L ovisi o relativnom koraku rešetke \bar{t} i položaju profila u rešetki β_p , dakle $L = f(\bar{t}, \beta_p)$. Postoje grafički prikazi ovisnosti koeficijenta L o relativnom koraku \bar{t} i kutu postave β_p , koji su dobiveni teorijski. Ova ovisnost može se iskoristiti za približno određivanje utjecaja na profile različitog oblika i debljine. Premda postoje takvi dijagrami, teško su dostupni te ne pokrivaju dovoljan broj krilnih profila. U praksi se ovaj koeficijent najčešće zanemaruje ukoliko je ispunjen uvjet $\bar{t} = t/l > 1$, što je također napravljeno i u ovom radu. Pošto je kut $\beta_p = \beta_{\infty} + \alpha_{\infty}$ (sl. 2.11), a kut β_{∞} je već određen, kao nepoznanica ostaje kut α_{∞} . Sa sigurnošću se može reći da je očekivana vrijednost α_{∞} u optimalnom režimu rada jednaka $\alpha_{\infty} = 1 - 6^{\circ}$. Veće vrijednosti napadnog kuta α_{∞} imaju profili kod glavčine radnog kola. Pošto je određivanje koeficijenata uzgonske sile c_L prema jednadžbi (3.11) za usamljeni profil završeno, vrši se izbor odgovarajućeg profila za svaki presjek lopatice radnog kola. Izbor profila treba se izvršiti tako da on ima najveću moguću kvalitetu $\varepsilon = c_L/c_D$. Očigledno je da će taj uvjet biti zadovoljen kada je polarna krivulja profila takva da pravac povučen iz ishodišta koordinatnog sustava (c_L, c_D) dodiruje polarnu krivulju u točki koja odgovara potrebnom koeficijentu uzgonske sile. Ako je poznata grafička ovisnost $c_L = f(\alpha_{\infty})$, onda se može odrediti i odgovarajući napadni kut α_{∞} kako je to prikazano na slici 3.10.

Slika 3.10: Grafičko određivanje napadnog kut
a α_∞ u ovisnosti o kvaliteti profila

Da bi se napadni kut α_{∞} moglo određivati na ovaj način, potrebno je poznavati polarne krivulje profila s kojima se konstruira lopatica. Uz potrebne krivulje često se zadaju i izrazi za izračun koeficijenta sile uzgona c_L . Pomoću takvih izraza se može izračunati koeficijent sile uzgona za pojedine profile pri eventualnom podebljanju ili stanjenju osnovnog profila. Neophodno je da izabrani profil osigura blagu i kontinuiranu promjenu oblika lopatice, kako u meridionalnoj, tako i u ortogonalnoj projekciji lopatice radnog kola. Isto tako, potrebno je osigurati blagu promjenu relativne debljine lopatice δ_{max}/l od glavčine prema vanjskom promjeru. Ovisnost (δ_{max}/l) po polumjeru r treba biti otprilike linearna (sl. 3.11), ali je najčešće $(\delta_{max}/l)_2 = (0 - 0, 4)(\delta_{max}/l)_1$.

Pri izboru krilnih profila za izradu lopatice radnog kola poželjno je da se uzimaju slični profili po obliku skeletnice. Često se radi jednostavnosti lopatica radi samo od jednog ili dva profila sa odgovarajućim zadebljanjima ili stanjenjem osnovnog profila.

Slika 3.11: Promjena relativne debljine lopatice δ_{max}/l

Nakon određivanja kuta postave profila β_p potrebno je za svaki presjek izračunati hidrauličku iskoristivost rešetke prema

$$\eta_{hr} = 1 - \frac{w_{\infty} \tan \varepsilon}{u \sin(\beta_{\infty} + \varepsilon)}.$$
(3.19)

Premda je navedena mogućnost grafičkog određivanja napadnog kuta α_{∞} , u ovom radu ta metoda nije korištena. Za određivanje koordinata profila i nepoznatog napadnog kuta α_{∞} korišteni su programski paketi Python, gmsh i OpenFOAM. Za proračun potrebnih veličina u programskom paketu Python implementiran je opisani matematički model. Pomoću implementiranog programa izračunate su vrijednosti osnovnih konstrukcijskih parametara te su izračunati trokuti brzina za pojedini presjek lopatice. Unutar programa napravljena je klasa kojom su dobiveni potrebni profili za svaki presjek. Nakon određivanja osnovnih parametara, napravljena je i diskretizirana prostorna domena oko krilnog profila. Za ovaj postupak korišten je programski paket *gmsh*. Pošto je domena diskretizirana, numeričkim simulacijama strujanja u OpenFOAMu izračunati su koeficijenti uzgona te je prema ranije izračunatom koeficijentu uzgona iz (3.11) određen potrebni napadni kut α_{∞} . Da bi se ubrzao proračun, iskorišten je uvjet linearne ovisnosti koeficijenta uzgona c_L o napadnom kutu α_∞ u području u kojem se potrebni α_∞ uglavnom nalazi. Zbog ovog uvjeta, da bi se odredio potrebni napadni kut, dovoljno je numeričkim simulacijama strujanja odrediti koeficijent uzgona i napadni kut u dvije točke, a potrebni napadni kut α_{∞} se tada može odrediti linearnom interpolacijom. Da bi to bilo moguće, potrebno je da jedna simulacija bude postavljena za napadni kut koji

je manji od potrebnog napadnog kuta, a druga da bude postavljena za veći napadni kut od onog koji se traži. Radi provjere, za svaki profil je postavljena još jedna simulacija u kojoj je zadani napadni kut onaj koji je prethodno dobiven linearnom interpolacijom, te se na kraju simulacije za taj napadni kut vršila usporedba dobivenog koeficijenta uzgona sa onim koji je dobiven linearnom interpolacijom. Ukoliko je uvjet zadovoljen, izvršeno je spremanje izračunatog α_{∞} . Opisani postupak napravljen je za svaki presjek. Pošto su izračunate sve potrebne veličine, prema jednadžbi (3.19) izračunata je hidraulička iskoristivost rešetke za svaki presjek. Prosječna vrijednost svih izračunatih iskoristivosti predstavlja hidrauličku iskoristivost radnog kola. Ukoliko se ta vrijednost razlikuje od vrijednosti izračunate prema (2.47) s kojom se ušlo u proračun, potrebno je korigirati pretpostavljenu vrijednost hidrauličke iskoristivosti te ponoviti proračun. Kada je izračunata hidraulička iskoristivost približno jednaka pretpostavljenoj, proračun je završen. Nakon što su se izračunale vrijednosti napadnog kuta za svaki presjek, te je samim time poznat kut postave lopatice β_p , uz poznavanje ostalih potrebnih veličina izvršeno je postavljanje profila u prostoru pod kutem β_p i njihovo mapiranje na cilindričnu plohu, čime je proces konstruiranja lopatice metodom uzgonskih sila završen. Dijagram toka oblikovanja rotorske lopatice metodom uzgonskih sila prikazan je na slici 3.12.

Slika 3.12: Dijagram toka oblikovanja lopatice radnog kola metodom uzgonskih sila

3.4. Oblikovanje radnog kola aksijalne pumpe pomoću hidrodinamičkih karakteristika ravne profilne rešetke

Radno kolo aksijalne pumpe moguće je oblikovati poznavanjem hidrodinamičkih karakteristika ravne profilne rešetke. Iskustvo pokazuje da jedino poznavanje svojstava profilne rešetke omogućuje pouzdano oblikovanje rotora bez suvišnih korekcija. Nažalost primjena metode koja se temelji na upotrebi aerodinamičkih karakteristika profilnih rešetaka ograničena je zbog neraspoloživosti odgovarajućih eksperimentalnih podataka. Zbog razvoja numeričkih metoda, moguće je dovoljno točno sa inženjerskog stajališta odrediti karakteristike ravne profilne rešetke numeričkim putem.

Određivanje osnovnih konstrukcijskih parametara u principu je isto kao i kod prethodno opisane metode. Nakon što se izračunaju osnovni parametri koji karakteriziraju geometriju radnog kola aksijalne pumpe, pristupa se proračunu lopatica. Pošto je postupak određivanja osnovnih konstrukcijskih parametara, te ulaznog i izlaznog trokuta brzina opisan u 3.1. on se ovdje neće ponovno opisivati.

Kod numeričke metode određivanja kuta postave nije potrebno poznavati koeficijent uzgona rešetke c_{Lr} . Pošto su poznati kutevi relativnog toka β_1 i β_2 , te njima odgovarajuće relativne brzine w_1 i w_2 , moguće je numeričkim simulacjama strujanja odrediti kut postave profila β_p . U ovoj situaciji veličina koja se prati je izlazni kut relativnog toka β_2 . Veličina koja se mijenja je kut postave β_p . Postupak je iterativan te se kut postave mijenja sve dok se ne zadovolji određeni kriterij po pitanju razlike analitički izračunatog i numerički dobivenog kuta relativnog toka na izlazu β_2 . Kada je kriterij zadovoljen, sprema se vrijednost kuta postave β_p iz posljednje iteracije. Postupak se ponavlja za proizvoljno odabran broj presjeka. I u ovom slučaju za određivanje potrebnih veličina korišteni su programski paketi Python, gmsh i OpenFOAM. Za proračun potrebnih veličina u programskom paketu Python implementiran je opisani matematički model. Pomoću implementiranog programa izračunate su vrijednosti osnovnih konstrukcijskih parametara te iznosi komponenata trokuta brzina za pojedini presjek lopatice. Potrebni profili za svaki presjek dobiveni su prethodno spomenutom klasom koja je ugrađena u program. Nakon određivanja osnovnih parametara, i dobivanja geometrije profila, napravljena je i diskretizirana prostorna domena oko krilnog profila. Za ovaj postupak korišten je programski paket gmsh. Radi olakšanja procesa izrade mreže za veći broj presjeka i ulaznih parametara, on je automatiziran na način da je napisana skripta u programskom jeziku Python koja je određenim slijedom naredbi izvršavala izradu mreže u programskom paketu gmsh. Pošto je domena diskretizirana, numeričkim simulacijama strujanja u OpenFOAMu izračunati su iznosi napadnog kuta β_p za svaki presjek lopatice. Nakon što su se izračunale vrijednosti kuta postave β_p za svaki presjek, te uz poznavanje ostalih potrebnih veličina, izvršeno je postavljanje profila u prostoru i njihovo mapiranje na cilindričnu plohu, čime je proces konstruiranja lopatice metodom uzgonskih sila završen. Dijagram toka oblikovanja rotorske lopatice metodom uzgonskih sila prikazan je na slici 3.13.

Slika 3.13: Dijagram toka oblikovanja lopatice radnog kola metodom poznavanja karakteristika ravne profilne rešetke

Poglavlje 4.

Numerički model

Zbog turbulentnog karaktera strujanja, koriste se osrednjene Navier-Stokesove jednadžbe. Korišteni model turbulencije za 2-D i 3-D modele je $k - \omega$ SST. Za 3-D model korišten je pristup numeričkog rješavanja strujanja pomoću rotirajućeg koordinatnog sustava. Pristup pomoću rotirajućeg koordinatnog sustava je vremenski manje zahtjevan od ostalih pristupa zato što se mreža kontrolnih volumena ne pomiče, a utjecaj rotacije opisuje se preko matematičkog modela. Pristup pomoću rotirajućeg koordinatnog sustava može se koristiti kao dobra aproksimacija strujanja oko optimalne radne točke kada je strujanje stacionarnog karaktera. Ukoliko bi se željelo postići bolje opisivanje interakcije rotora i statora te ukoliko bi bilo potrebno poznavati ponašanje pumpe u vanprojektnim režimima rada, preporučuje se korištenje metode rotirajuće mreže kontrolnih volumena. U nastavku je ukratko opisana metoda kontrolnih volumena i korišteni model.

4.1. Metoda kontrolnih volumena

Diskretizacija prostorne domene rezultira proračunskom mrežom koja se sastoji od konačnog skupa kontrolnih volumena koji potpuno ispunjavaju domenu, a da se pritom međusobno ne preklapaju. Kontrolni volumen je konveksnog poliedarskog oblika, a ograničen je proizvoljnim brojem konveksnih poligonih stranica. Mreža sastavljena od ovako definiranih kontrolnih volumena naziva se proizvoljnom nestrukturiranom mrežom [9]. Diskretizaciju je potrebno provesti kako bi se sustav parcijalnih diferencijalnih jednadžbi mogao riješiti. Kontrolni volumen prikazan je na slici 4.1, gdje su P i N težište razmatranog i susjednog volumena,
afje težište stranice kontrolnog volumena
 $S_f.$

Slika 4.1: Kontrolni volumen

Diskretizacija vremenske domene predstavlja podjelu ukupnog vremena rješavanja na konačan broj vremenskih koraka. Proračunski čvor svake ćelije nalazi se u težištu volumena, čime se egzaktno opisuje linearna raspodjela varijable te se osigurava drugi red točnosti metode.

4.1.1. Opća skalarna transportna jednadžba

Opisani model moguće je prikazati u obliku opće skalarne transportne jednadžbe. Opća skalarna transportna jednadžba izražena u diferencijalnom obliku [10]:

$$\frac{\partial \phi}{\partial t} + \nabla \bullet (\mathbf{u}\phi) - \nabla \bullet (\gamma \nabla \phi) = q_v, \qquad (4.1)$$

gjde je ϕ skalarna transportna varijabla, a γ koeficijent difuzije. Član $\frac{\partial \phi}{\partial t}$ predstavlja vremenski član koji opisuje inerciju sustava. $\nabla \cdot (\mathbf{u}\phi)$ predstavlja konvektivni član koji opisuje konvektivni transport varijable ϕ zbog polja brzine. Transport veličine ϕ zbog

postojanja gradijenta opisan je difuzijskim članom $\nabla \cdot (\gamma \nabla \phi)$. Varijablom q_v opisan je izvor i ponor transportne varijable. Korištenjem Gaussovog teorema dobiva se:

$$\int_{V_P} \frac{\partial \phi}{\partial t} \, \mathrm{dV} + \oint_{\partial V_P} \phi(\mathbf{n} \cdot \mathbf{u}) \, \mathrm{dS} - \oint_{\partial V_P} \gamma(\mathbf{n} \cdot \nabla \phi) \, \mathrm{dS} = \int_{V_P} q_v \, \mathrm{dV}. \tag{4.2}$$

4.1.2. Diskretizacija opće skalarne transportne jednadžbe

Pošto su u ovom radu korištene numeričke simulacije stacionarnog strujanja fluida, vremenski član nije potrebno diskretizirati. Budući da je kontrolni volumen ograničen stranicama, površinski integral po granici kontrolnog volumena ∂V_P može se zapisati kao suma površinskih integrala po stranicama:

$$\oint_{\partial V_p} \phi(r) \,\mathrm{dS} = \sum_f \int_{S_f} \phi(r) \,\mathrm{dS}. \tag{4.3}$$

Uz pretpostavku linearne raspodjele varijable ϕ integral $\int_{S_f} \phi(r) \, dS$ prelazi u umnožak $\phi_f S_f$ gdje je S_f površina granice, a ϕ_f vrijednost varijable ϕ u težištu stranice f. Površinski integral nad konvektivnim članom prelazi u:

$$\oint_{\partial V_p} \phi(\mathbf{n} \cdot \mathbf{u}) \, \mathrm{dS} = \sum_f \phi_f(\mathbf{S}_f \cdot \mathbf{u}_f) = \sum_f \phi_f F. \tag{4.4}$$

Vrijednost varijable ϕ_f na stranici f računa se pomoću vrijednosti u težištima susjednih vlumena primjenom shema diskretizacije konvektivnog člana. Diskretizacija difuzijskog člana provodi se na sličan način:

$$\oint_{\partial V_p} \gamma(\mathbf{n} \bullet \nabla \phi) \, \mathrm{dS} = \sum_f \int_{Sf} \gamma(\mathbf{n} \bullet \nabla \phi) \, \mathrm{dS} = \sum_f \gamma_f S_f \mathbf{n}_f \bullet (\nabla \phi)_f. \tag{4.5}$$

Član $\mathbf{n}_f \cdot (\nabla \phi)_f$ je normalni gradijent varijable ϕ na granici f. Kada se vektor \mathbf{d}_f i vektor normale na stranicu \mathbf{n}_f poklapaju, taj član se može računati kao $(\phi_N - \phi_P)/|\mathbf{d}_f|$. Takvo računanje gradijenta je drugog reda točnosti. Budući da je često nemoguće provesti diskretizaciju da se ostvari takvo poklapanje vektora, uvodi se neortogonalna korekcija pomoću koje se zadržava drugi red točnosti. Izvorski član se diskretizira na sljedeći način:

$$\int_{V_P} q_v \,\mathrm{dV} = q_v V_P. \tag{4.6}$$

Izvorski član sadrži sve što nije obuhvaćeno ostalim članovima. Nelinearna je funkcija ovisna o varijabli ϕ pa ga se često prije diskretizacije linearizira.

4.1.3. Rješavanje sustava jednadžbi

Za svaki kontrolni volumen može se zapisati jednadžba u obliku:

$$a_p \phi_P^n + \sum_N a_N \phi_N^n = r_P, \qquad (4.7)$$

gdje je a_P dijagonalni koeficijent, a_N susjedni koeficijent, a r_P desna strana jednadžbe koja sadrži rubne uvjete i poznate koeficijente. Za cijelu domenu dobije se sustav linearnih algebarskih jednadžbi u obliku **Ax=b**. Matrica **A** je rijetka kvadratna matrica dimenzija $N \times N$, gdje je N broj kontrolnih volumena. Zbog velikih dimenzija matrice, sustav jednadžbi je potrebno rješavati iterativnim postupkom. Budući da se varijabla tlaka pojavljuje samo u jednadžbi količine gibanja, potrebno je izvesti jednadžbu za tlak. Jednadžba za tlak dobiva se divergencijom jednadžbe količine gibanja. Diskretizacijom jednadžbe količine gibanja dobiva se jednadžba:

$$a_p^n \mathbf{u}_P + \sum_N a_N^n \mathbf{u}_N = r_P - \nabla p.$$
(4.8)

Uvođenjem operatora $\mathbf{H}(\mathbf{u}) = r - \sum a_N^n \mathbf{u}_N$, jednadžba (4.8) se može zapisati u obliku:

$$\mathbf{u}_P = (a_P^n)^{-1} (\mathbf{H}(\mathbf{u}) - \nabla p).$$
(4.9)

Uvrštavanjem jednadžbe (4.9) u jednadžbu očuvanja mase dobija se jednadžba za tlak:

$$\nabla \bullet [(a_P^n)^{-1} \nabla p] = \nabla \bullet ((a_P^n) \mathbf{H}(\mathbf{u})).$$
(4.10)

Konačni sustav jednadžbi rješava se odvojenim postupkom gdje je povezanost između brzine i tlaka ostvarena pomoću SIMPLE (*Semi Implicit Method for Pressure Linked Equations*) algoritma. Kako konvergencija iterativnog postupka ovisi o dijagonalnoj dominantnosti matrice, matrice s manje izraženom dijagonalnom dominatnosti teže se iterativno rješavaju. Budući da stacionarne simulacije, kao i tranzijentne simulacije sa velikim vremenskim korakom, imaju malu dijagonalnu dominatnost, potrebno je koristiti faktore podrelaksacije kako bi se osigurala konvergencija rješenja.

4.2. Matematički model

Matematički model korišten u ovom radu opisuje nestlačivo, turbulentno, izotermno strujanje fluida bez utjecaja gravitacije. Takvo se strujanje opisuje pomoću zakona očuvanja mase i zakona očuvanja količine gibanja.

Jednadžba očuvanja mase za nestlačivo strujanje:

$$\nabla \bullet \mathbf{u} = 0. \tag{4.11}$$

Jednadžba očuvanja količine gibanja za nestlačivo strujanje:

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \bullet (\mathbf{u}\mathbf{u}) - \nabla \bullet (\nu \nabla \mathbf{u}) = -\nabla p, \qquad (4.12)$$

gdje je **u** vektor brzine, p iznos tlaka, a ν kinematička viskoznost fluida. Jednadžbe (4.11) i (4.12) su poznate pod nazivom Navier-Stokesove jednadžbe.

4.2.1. Modeliranje turbulencije

Turbulentno strujanje može se opisati kao vrtložno kaotično gibanje čestica fluida gdje vrijednosti svih relevantnih fizikalnih veličina osciliraju. Ovakav tip strujanja nestacionaran je i za stacionarne rubne uvjete te dobivanje cjelovitog analitičkog rješenje nije moguće [4]. Budući da je teško obuhvatiti pojave nasumičnih promjena svih fizikalnih veličina u prostornim i vremenskim kordinatama, pribjegava se modeliranju turbulencije tako da se ipak dobiju vrijednosti koje su s inženjerskog stajališta korisne. Takav pristup statistički osrednjava sve fizikalne veličine te korak prostorne i vremenske diskretizacije ne mora biti jako mali, što postupak numeričkog proračuna čini vremenski učinkovitijim. Turbulencija se obično prikazuje u obliku dinamike vrtloga, gdje je energija raspoređena prema veličinama vrtloga kao što je prikazano na slici 4.2.

Slika 4.2: Energetska kaskada

Reynoldsovo osrednjavanje

Osrednjavanje Navier-Stokesovih jednadžbi temelji se na tome da se fizikalna veličina rastavi na vremenski osrednjenu vrijednost i pulsirajući dio:

$$p = \overline{p} + p', \quad \mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}'.$$
 (4.13)

Osrednjavanjem (4.11) i (4.12) dobije se [5]:

$$\nabla \bullet \overline{\mathbf{u}} = 0, \tag{4.14}$$

i

$$\frac{\partial \overline{\mathbf{u}}}{\partial t} + \nabla \bullet (\overline{\mathbf{u}} \ \overline{\mathbf{u}}) - \nabla \bullet (\nu \nabla \overline{\mathbf{u}}) = -\nabla \overline{p} + \nabla \bullet (\overline{\mathbf{u'u'}}).$$
(4.15)

Član $\mathbf{u'u'}$ naziva se Reynoldsov tenzor naprezanja. On opisuje transport količine gibanja turbulentnim fluktuacijama. Reynoldsov tenzor naprezanja ima 6 nepoznatih veličina koje je potrebno modelirati. Korištenjem hipoteze Boussinesqa šest komponenti tenzora naprezanja modelirano je jednim nepoznatim poljem turbulentne viskoznosti. Boussinesqova hipoteza glasi:

$$\overline{\mathbf{u}'\mathbf{u}'} = \nu_t [\nabla \mathbf{u} + (\nabla \mathbf{u})^T] + \frac{2}{3}k\mathbf{I}$$
(4.16)

gdje je ν_t turbulentna viskoznost, **I** jedinični tenzor i k turbulentna kinetička energija.

4.2.2. $k - \omega$ SST model turbulencije

Svrha modela turbulencije je izjednačavanje nepoznanica i jednadžbi s određenim korelacijama što osigurava jednostavnost, ekonomičnost i univerzalnost pri korištenju. Postoje različiti modeli turbulencije, a dijele se na broj dodatnih skalarnih transportnih jednadžbi. Razlikujemo algebarske modele turbulencije te modele s jednom ili više dodatnih skalarnih transportnih jednadžbi. $k - \omega SST$ model turbulencije se sastoji od dvije dodatne transportne jednadžbe. Dodatne transportne jednadžbe opisuju transport kinetičke energije turbulencije k i specifičnu brzinu disipacije turbulencije ω . Ovaj model je jedan od najpopulanijih modela turbulencije. Model dobro opisuje negativne gradijente tlaka u strujanju, a baziran je na pretpostavci da je smično naprezanje proporcionalno turbulentnoj kinetičkoj energiji. Ideja modela je da se strujanje podalje od stijenke modelira $k - \varepsilon$ modelom, a da se u blizini stijenke zadrži $k - \omega$ model. $k - \varepsilon$ model se koristi zbog niže osjetljivosti na rubne uvjete. Iako je $k - \omega$ SST kombinacija dvaju modela trubulencije, računalno nije znantno zahtjevniji. Komunikacija dva modela turbulencije ostvarena je preformuliranjem jednadžbi $k - \varepsilon$ modela u jednadžbe $k-\omega$ modela te uz pomoć funkcije koja aktivira $k-\omega$ model u blizini stijenke, odnosno $k - \varepsilon$ model podalje od stijenke. Jednadžbe modela turbulencije su:

$$\frac{\partial k}{\partial t} + \nabla \bullet (\overline{\mathbf{u}}k) = \nabla \bullet (\nu_{eff} \nabla k) + Q_k, \qquad (4.17)$$

i

$$\frac{\partial\omega}{\partial t} + \nabla \bullet (\overline{\mathbf{u}}\omega) = \nabla \bullet (\nu_{eff}\nabla\omega) + Q_{\omega}.$$
(4.18)

 Q_k i Q_{ω} predstavljaju generaciju i disipaciju turbulentne kinetičke energije k i specifične brzine disipacije turbulencije ω .

4.2.3. Metoda pokretnog koordinatnog sustava (eng. Moving Reference Frame-MRF)

Metoda pokretnog koordinatnog sustava omogućuje korištenje apsolutne ili relativne formulacije jednadžbi strujanja. U ovom radu korištena je apsolutna formulacija. Matematički model apsolutne formulacije je jednostavniji. Proračunska domena podjeljena je na mirujuće i rotirajuće zone. Rotirajuća zona kao i mirujuća miruje, ali ima modificirani matematički model koji omogućuje opisivanje rotacije i translacije. Relativna i apsolutna brzina povezane su preko jednadžbe:

$$\mathbf{u}_{\mathrm{I}} = \mathbf{u}_{\mathrm{R}} + \boldsymbol{\omega} \times \mathbf{r}.\tag{4.19}$$

Indeks I odnosi se na apsolutni koordinatni sustav, a indeks R na relativni. Jednadžbe strujanja za ovaj matematički model glase [6]:

$$\nabla \bullet \mathbf{u}_{\mathrm{I}} = 0, \tag{4.20}$$

i

$$\frac{\partial \mathbf{u}_{\mathrm{I}}}{\partial t} + \nabla \bullet (\mathbf{u}_{\mathrm{R}} \mathbf{u}_{\mathrm{I}}) + \omega \times \mathbf{u}_{\mathrm{I}} = -\nabla p + \nabla \bullet (\nu \nabla \mathbf{u}_{\mathrm{I}}).$$
(4.21)

Ova metoda daje prihvatljive rezultate za stacionarna strujanja sa slabom interakcijom rotora i statora.

4.2.4. Rubni uvjeti

Kako bi sustav parcijalnih diferencijalnih jednadžbi bio rješiv, potrebno je zadati rubne uvjete. Za pravilno određivanje rubnih uvjeta, potrebno je poznavati prirodu problema koji se rješava. Također je potrebno definirati rubne uvjete za sve varijable koje se rješavaju. Razlikuju se tri osnovna tipa rubnih uvjeta: Dirichletov, Neummanov i miješani ili Robinov rubni uvjet. Dirichletov rubni uvjet koristi se pri zadavanju varijable na granici domene. Neummanov rubni uvjet se koristi za zadavanje derivacije varijable u smjeru normalne na granicu. Kako su jednadžbe kontinuiteta i količine gibanja spregnute po veličinama brzine i tlaka, zadavanje tih veličina mora odgovarati sprezi za nestlačivo strujanje.

4.2.5. Modeliranje graničnog sloja

Ponašanje turbulentnog strujanja u blizini stjenke znatno se razlikuje u odnosu na strujanje podalje od stijenke. Granični sloj često se prikazuje u bezdimenzijskom obliku kako je prikazano na slici 4.3. Veličine u^+ i y^+ su bezdimenzijska brzina i bezdimenzijska udaljenost od stijenke. Granični sloj se dijeli na vanjski i unutarnji (a-viskozni, b-prijelazni i c-inercijalni podsloj). U prijelaznom podsloju dogada se prijelaz iz linearnog laminarnog profila brzina u turbulentni. Granični sloj je područje s visokim gradijentima svih fizikalnih veličina. Kao takav, predstavlja zahtjevan zadatak za prostornu diskretizaciju i model turbulencije. Iz tog razloga postoje dva pristupa u rješavanju graničnog sloja. Najčešće korišteni pristup je opisivanje viskoznog i inercijalnog podsloja pomoću zidnih funkcija tako da centar prve ćelije pada u inercijalni podsloj. Drugi pristup je korištenje modela turbulencije koji vrijedi pri asimptotskom približavanju stijenci. Korištenje takvih modela zahtijeva finu prostornu diskretizaciju što poskupljuje numerički proračun. U ovom radu koristi se model turbulencije koji koristi zidne funkcije.

Slika 4.3: Turbulentni granični sloj

Poglavlje 5.

Numerički proračun

U poglavlju 3. opisana su oba postupka za oblikovanje radnog kola aksijalne pumpe. Ovo poglavlje daje prikaz rezultata i geometrija dobivenih proračunom pomoću dvije opisane metode. Prikazana je i usporedba dobivenih rezultata. Karakteristike radnog kola, koje su nužne radi usporedbe ove dvije metode, dobivene su numeričkim simulacijama. U prvom potpoglavlju prikazan je postupak oblikovanja radnog kola metodom uzgonskih sila, a u drugom potpoglavlju je prikazan proračun oblikovanja radnog kola pomoću poznavanja karakteristika ravne profilne rešetke. Treće potpoglavlje prikazuje numeričke proračune strujanja u radnim kolima te usporedbu dobivenih rezultata. Kako bi se ove dvije metode mogle usporediti, proračun s obje metode je izvršen sa istim ulaznim parametrima. Također, kod obje metode osnovni geometrijski parametri poput vanjskog i unutarnjeg promjera radnog kola su jednaki. Ulazni parametri su dani u tablici 5.1.

Tablica 5.1: Karakteristike pumpe

H_{opt}	Q_{opt}	n	n_q	η_h
m	m^3/s	\min^{-1}	-	%
3	0.0714	1450	170	89.8

5.1. Geometrija radnog kola aksijalne pumpe oblikovana metodom uzgonskih sila

Iz jednadžbe (3.1) se dobije koeficijent visine dobave $\psi = 0.205$, te se iz jednadžbe (3.2) može izračunati vanjski promjer $d_2 = 221.7$ mm. Usvojeni vanjski promjer iznosi $d_2=222$ mm. Da bi se mogao odrediti omjer vanjskog i unutarnjeg promjera $\nu,$ prvo je potrebno prema jednadžbi (3.3) izračunati koeficijent toka. Koeficijent toka prema (3.3) iznosi $\varphi = 0.18$. Sada je moguće izračunati omjer promjera prema jednadžbi (3.4)i on iznosi $\nu = 0.6340$. Kad su izračunate sve potrebne veličine, moguće je prema (3.5) odrediti promjer korjena radnog kola, $d_1 = 139.48$ mm. Usvojeni promjer iznosi $d_1 = 140$ mm. Iz tablice 3.1 se prema specifičnoj brzini n_q odabire broj lopatica radnog kola $z_k = 5$. Prema jednadžbi (3.6) određena je maksimalna debljina presjeka lopatice kod glavčine $\delta_{max} = 7$ mm, a usvojena vrijednost za debljinu profila kod glavčine je $\delta_{max} = 6$ mm. Pomoću jednadžbe (3.7) izračunata je teoretska visina dobave $H_t = 3.34$ m. Lopatica je podijeljena na 9 segmenata. Za svaki od segmenata potrebno je, između ostalog, odrediti iznos beskonačne brzine w_{∞} prema (2.9) i kut beskonačne brzine β_{∞} prema (3.10). Isto tako izračunava se i koeficijent sile uzgona prema jednadžbi (3.11)koji je potreban pri određivanju napadnog kuta α_{∞} . Dijagram koji slijedi je dobiven iz rezultata proračuna:

Slika 5.1: Kutevi β_1 , β_2 i β_∞ u ovisnosti o polumjeru r
Na slici 5.1 prikazana je ovisnost kuteva relativnog toka β_1 i β_2 o polumjeru r. Prema [2] kut β_1 nebi trebao puno prelaziti preko vrijednosti od 16° ukoliko se žele ostvariti dobre karakteristike vezane uz kavitaciju. Iz dijagrama je vidljivo da je taj uvjet ostvaren. Isto tako može se vidjeti da je vrijednost kuta β_{∞} između vrijednosti kuteva β_1 i β_2 , kako je i prikazano na slici 2.11.

Slika 5.2: Relativne brzine w_1, w_2 i w_∞ u ovisnosti o polumjeru r

Na slici 5.2 prikazani su iznosi relativnih brzina u ovisnosti o polumjeru r.

r (mm)	u (m/s)	$w_1 (m/s)$	$w_2 (m/s)$	β_1 (°)	β_2 (°)	$w_{\infty} (\mathrm{m/s})$	β_{∞} (°)
70	10.63	11.09	8.18	16.54	22.71	9.62	19.16
75	11.39	11.82	9.08	15.49	20.36	10.44	17.61
80	12.15	12.55	9.96	14.57	18.48	11.25	16.30
85	12.91	13.29	10.84	13.75	16.94	12.06	15.18
90	13.67	14.03	11.70	13.01	15.66	12.86	14.21
95	14.43	14.77	12.56	12.35	14.56	13.36	13.37
100	15.18	15.51	13.40	11.75	13.63	14.45	12.62
105	15.94	16.25	14.24	11.20	12.81	15.22	11.95
110	16.70	17.00	15.08	10.71	12.09	16.04	11.36

Tablica 5.2: Podaci za ulazne i izlazne trokute brzina

U tablici 5.2 dani su izračunati podaci za ulazne i izlazne trokute brzina na pojedinom presjeku. U daljnjem tijeku proračuna potrebno je odrediti kut postave profila $\beta_p = \alpha_{\infty} + \beta_{\infty}$. Pošto je kut β_{∞} već poznat, preostaje još samo odrediti kut α_{∞} . Njega se u ovom radu kako je to već opisano u potpoglavlju 3.4. određuje numeričkom simulacijom strujanja u 2-D domeni. Pošto je potreban koeficijent uzgona poznat iz jednadžne (3.11), u numeričkoj simulaciji se varira napadni kut α_{∞} dok se ne postigne potrebni koeficijent uzgona za određeni presjek. Kada se on odredi, izračunati kut α_{∞} se sprema.

Prije numeričke simulacije potrebno je provesti diskretizaciju proračunske domene. U tu svrhu korišten je programski paket *gmsh* koji se pokazao prikladnim zbog mogućnosti automatizacije procesa izrade mreže, a isto tako i zbog toga što je program otvorenog koda te ga je samim time moguće koristiti bez posjedovanja licence. Diskretizirana domena prikazana je na slikama 5.3 i 5.4.

Slika 5.3: Diskretizirana domena oko krilnog profila (metoda uzgonskih sila)

Slika 5.4: Detalji diskretizacije domene oko napadnog i izlaznog brida profila (metoda uzgonskih sila)

Na slici 5.5 prikazane su rubne plohe proračunske domene. Da bi se riješio skup diferencijalnih jednadžbi, potrebno je zadati rubne uvjete za svaku fizikalnu varijablu koja se rješava. U tablicama 5.3 i 5.4 su opisani rubni uvjeti za varijable koje se rješavaju. Na ulazu i izlazu iz domene zadan je rubni uvjet **freestream** koji provjerava maseni protok na svakoj rubnoj plohi. Ako je tok usmjeren prema van, lokalno će na granici vrijediti uvjet **zeroGradient**, a ako je tok usmjeren prema unutra vrijedit će rubni uvjet **fixedValue**. **freestreamPressure** rubni uvjet koji se zadaje za tlak je zapravo **zeroGradient**, ali korigira tok na granici prema izrazu $\rho \cdot S_f \cdot freestreamValue$. Na profilu je zadan rubni uvjet **fixedValue** čime je profil definiran kao nepomičan.

Slika 5.5: Diskretizirana domena oko krilnog profila (metoda uzgonskih sila)

Rubna ploha frontAndBack definirana je rubnim uvjetom empty. Rubni uvjet korišten za turbulentnu kinetičku energiju k je kqRWallFunction, dok je za specifičnu energiju disipacije ω zadan rubni uvjet omegaWallFunction. Za turbulentnu viskoznost na granici airfoil zadan je rubni uvjet nutUSpaldingWallFunction.

Rubna ploha	u	p
inlet	freestream	freestreamPressure
outlet	freestream	freestreamPressure
airfoil	fixedValue	zeroGradient
frontAndBack	empty	empty

Tablica 5.3: Rubni uvjeti za pi \boldsymbol{u} (metoda uzgonskih sila)

Tablica 5.4: Rubni uvjeti za k, ω i *nut* (metoda uzgonskih sila)

Rubna ploha	k	ω	nut
inlet	fixedValue	fixedValue	calculated
outlet	inletOutlet	inletOutlet	calculated
airfoil	kqRWallFunction	omegaWallFunction	nutUSpaldingWallFunction
frontAndBack	empty	empty	empty

Simulacije za svaki presjek su izvršene korištenjem stacionarnog rješavača simpleFoam. Na slici 5.6 prikazane su konture brzine i koeficijenta tlaka oko krilnog profila uz glavčinu.

Slika 5.6: Raspodjela brzine i koeficijenta tlaka oko krilnog profila za presjek kod glavčine (metoda uzgonskih sila)

U tablici 5.5 su radi usporedbe prikazani iznosi potrebnog koeficijenta uzgona za svaki presjek izračunati analitičkim izrazom, i oni dobiveni numeričkim simulacijama. Iz tablice je vidljivo da je relativna pogreška između koeficijenata uzgona izračunata na ova dva načina, ispod 1%, te je samim time opravdana pretpostavka linearne ovisnosti koeficijenta uzgona o napadnom kutu α_{∞} .

$c_{Lanalitički}$	c_{L numerički	relativna pogreška
0.7153	0.7153	0.0000%
0.6121	0.6127	0.0979%
0.5296	0.5297	0.0189%
0.4627	0.4629	0.0432%
0.4075	0.4079	0.0981%
0.3616	0.3614	0.0553%
0.3229	0.3230	0.0310%
0.2900	0.2902	0.0689%
0.2618	0.2619	0.0382%

Tablica 5.5: Iznosi koeficijenta uzgona c_L

U tablici 5.6 dani su iznosi izračunatog kuta α_{∞} i kuta postave β_p , a na slici 5.7 prikazana je grafička ovisnost promjene napadnog kuta i kuta postave o polumjeru r.

α_{∞} (°)	β_p (°)
3.7623	22.9233
3.3832	20.9910
3.0580	19.3576
2.7711	17.9523
2.5155	16.7286
2.2977	15.6638
2.1017	14.7201
1.9273	13.8801
1.7737	13.1301

Slika 5.7: Ovisnost promjene napadnog kuta α_∞ i kuta postave β_p o polumjeru r

Jedan od važnih parametara pri projektiranju aksijalne pumpe je kvaliteta profila tan $\varepsilon = F_D/F_L$ koja opisuje hidrauličku kvalitetu profila. Vrijednost parametra trebala bi prema [2] biti između 0.01 i 0.04. Taj uvjet je pri projektiranju ovog radnog kola također zadovoljen, što se može vidjeti na slici 5.8.

Slika 5.8: Kvaliteta profila $\tan\varepsilon=F_D/F_L$

Slika 5.9 prikazuje promjenu relativne debljine lopatice δ/l porastom polumjera r. Vidljiva je sličnost s dijagramom na slici 3.11 uz koju je objašnjeno da je ovisnost otprilike $(\delta_{max}/l)_2 = (0 - 0.4)(\delta_{max}/l)_1.$

Slika 5.9: Promjena relativne debljine profila δ/l

U [2] spominju se još dva uvjeta koja bi trebalo zadovoljiti da bi se postigla zadovoljavajuća iskoristivost. Prvi uvjet je da omjer iznosa relativne brzine na izlazu i ulazu mora biti veći ili jednak 0.6 ($w_2/w_1 \ge 0.6$). Drugi uvjet je da omjer meridionalne i obodne komponente apsolutne brzine treba biti veći ili jednak 1 ($c_m/c_{2u} \ge 1$). Na slikama 5.10 i 5.11 vidljivo je da je da su ta dva uvjeta zadovoljena.

Slika 5.10: w_2/w_1 u ovisnosti o polumjeru r

Slika 5.11: c_m/c_{2u} u ovisnosti o polumjeru \boldsymbol{r}

Nakon što su numeričkim simulacijama određene vrijednosti napadnog kuta α_{∞} i kuta postave β_p za svaki presjek, i kada je postignut uvjet $|\eta_h^* - \eta_h| \approx 0$ profili se smještaju u prostoru pod kutem postave β_p te se mapiraju na cilindričnu plohu, čime je oblikovanje radnog kola metodom uzgonskih sila završeno. Preostaje još provjeriti stvarnu visinu dobave, koja će se u ovom radu također napraviti primjenom numeričke simulacije strujanja. Na slikama 5.12 i 5.13 prikazana je dobivena geometrija lopatice izrađena u programskom paketu *Solidworks*.

Slika 5.12: Geometrija lopatice oblikovana metodom uzgonskih sila (NA-CRT)

Slika 5.13: Geometrija lopatice oblikovana metodom uzgonskih sila (TLO-CRT)

5.2. Geometrija radnog kola aksijalne pumpe oblikovana pomoću karakteristika ravne profilne rešetke

Osnovne dimenzije radnog kola aksijalne pumpe su jednake kao i u prethodno opisanoj metodi. Ovdje će se samo ukratko ponoviti postupak. Iz jednadžbe (3.1) dobije se koeficijent visine dobave $\psi = 0.205$, te se iz jednadžbe (3.2) izračuna vanjski promjer d_2 . Da bi se mogao odrediti omjer vanjskog i unutarnjeg promjera ν , potrebno je prema jednadžbi (3.3) izračunati koeficijent toka. Nakon toga, prema jednadžbi (3.4) se izračuna omjer promjera ν . Kad su izračunate sve potrebne veličine, moguće je prema (3.5) odrediti promjer korjena radnog kola, d_1 . Iz tablice 3.1 se prema specifičnoj brzini n_q odabire broj lopatica radnog kola z_k . Prema jednadžbi (3.6) određena je maksimalna debljina presjeka lopatice kod glavčine δ_{max} . Pomoću jednadžbe (3.7) izračunata je teoretska visina dobave H_t . Lopatica je podijeljena na 9 segmenata. Nakon što su određeni osnovni parametri, preostaje odrediti kut postave lopatice β_p . Kut postave određuje se pomoću numeričke simulacije strujanja u 2-D domeni. Nakon što su izračunati iznosi kuteva β_1
i β_2 moguće je postavljanjem profila u rešetku odrediti potreban kut postave $\beta_p.$ Strujanjem fluida kroz profilnu rešetku dolazi do zakreta struje fluida. Praćena veličina u numeričkoj simulaciji je kut relativnog toka na izlazu β_2 . Na ulazu u domenu zadaje se iznos relativne brzine w_1 pod kutem β_1 . Kut postave profila β_p se varira dok se ne postigne zadovoljavajuće rješenje. Rješenje je postignuto kad je očitana vrijednost kuta relativne brzine na izlazu β_2 približno jednaka vrijednosti dobivenoj analitičkim proračunom. Kad je taj uvjet zadovoljen, sprema se vrijednost kuta postave β_p . Proračun se iterativno ponavlja za svaki presjek. I u ovom slučaju prije numeričke simulacije potrebno je provesti diskretizaciju proračunske domene. U tu svrhu korišten je programski paket qmsh. Diskretizirana proračunska domena za presjek u korjenu lopatice prikazana je na slikama 5.14 i 5.15.

Slika 5.14: Diskretizirana domena oko krilnog profila (profilna rešetka)

Slika 5.15: Detalji diskretizacije domene oko napadnog i izlaznog brida profila (profilna rešetka)

Na slici 5.16 prikazane su rubne plohe diskretizirane domene. Da bi se riješio skup diferencijalnih jednadžbi, potrebno je zadati rubne uvjete za svaku fizikalnu varijablu koja se rješava. U tablicama 5.7 i 5.8 su opisani rubni uvjeti za varijable koje se rješavaju. Novi rubni uvjet koji nije korišten kod prethodne metode je cyclicAMI. Ovaj rubni uvjet omogućuje korištenje periodičnosti i kod nekonformnih mreža. U ovom slučaju korišten je translacijski uvjet kod kojega je potrebno definirati translacijski vektor.

Slika 5.16: Diskretizirana domena oko krilnog profila (profilna rešetka)

Rubna ploha	u	p
inlet	freestream	freestreamPressure
outlet	freestream	freestreamPressure
airfoil	fixedValue	zeroGradient
frontAndBack	empty	empty
periodicAA	cyclicAMI	cyclicAMI
periodicBB	cyclicAMI	cyclicAMI

Tablica 5.7: Rubni uvjeti za p i u (profilna rešetka)

Tablica 5.8: Rubni uvjeti za k, ω i nut (profilna rešetka)

Rubna ploha	k	ω	nut
inlet	fixedValue	fixedValue	calculated
outlet	inletOutlet	inletOutlet	calculated
airfoil	kqRWallFunction	omegaWallFunction	nutUSpaldingWallFunction
${\it frontAndBack}$	empty	empty	empty
periodicAA	cyclicAMI	cyclicAMI	cyclicAMI
periodicBB	cyclicAMI	cyclicAMI	cyclicAMI

 $Simulacije za svaki presjek su napravljene korištenjem stacionarnog rješavača \verb"simpleFoam".$

Na slici 5.17 prikazane su konture brzine za presjek kod glavčine, a na slici 5.18 su prikazane konture koeficijenta tlaka C_p za isti taj presjek.

Slika 5.17: Konture brzine oko profila uz glavčinu (profilna rešetka)

Slika 5.18: Konture koeficijenta tlaka C_p oko profila uz glavčinu (profilna rešetka)

U tablici 5.10 prikazani su iznosi kuta postave β_p dobiveni simulacijama strujanja u profilnoj rešetki, a radi usporedbe dani su i iznosi kuta postave dobiveni metodom uzgonskih sila.

β_{pr} (°)	β_{pu} (°)
23.23	22.92
20.94	20.99
19.07	19.35
17.55	17.95
16.24	16.72
15.13	15.66
14.13	14.72
13.28	13.88
12.53	13.13

Tablica 5.9: Iznosi kuteva β_{pr}
i β_{pu}

Iz tablice 5.10 vidi se da postoji određena razlika u brojčanom iznosu kuta postave koja se također može vidjeti na slici 5.19 gdje su grafički prikazani iznosi ovih kuteva u ovisnosti o polumjeru r, te na slici 5.21 gdje je su prikazani iznosi relativne razlike u postocima.

Slika 5.19: Kut postave profila dobiven metodom uzgonskih sila i pomoću ravne profilne rešetke

Slika 5.20: Relativna razlika kuteva postave profila

Nakon što su numeričkim simulacijama određene vrijednosti kuta postave β_p za svaki presjek profili se smještaju u prostoru pod kutem postave β_p te se mapiraju na cilindričnu plohu, čime je završeno oblikovanje radnog kola. Kao i u prethodnom slučaju, preostaje još provjeriti stvarnu visinu dobave primjenom numeričke simulacije strujanja. Na slikama 5.21 i 5.22 prikazana je dobivena geometrija lopatice.

Slika 5.21: Geometrija lopatice (profilna rešetka)(NACRT)

Slika 5.22: Geometrija lopatice (profilna rešetka) (TLOCRT)

5.3. Numerički proračun i usporedba rezultata

Da bi se znala stvarna visina dobave pumpe potrebno ju je odrediti eksperimentalnim ispitivanjem ili numeričkom simulacijom. Premda eksperimentalno ispitivanje daje točnije rezultate, u ovom radu visina dobave pumpe određena je primjenom numeričke simulacije strujanja. Pošto su korištene dvije metode za oblikovanje radnog kola, da bi se one mogle usporediti, potrebno je odrediti visinu dobave H za oba radna kola. Numerički proračun proveden je u programskom paketu **OpenFOAM**. Model koji je korišten za proračun prikazan je na slikama 5.23 i 5.24. Zbog vrlo male razlike u geometriji radnog kola na slikama je prikazana samo jedna geometrija. Model se sastoji od dvije mirujuće i jedne rotirajuće zone. Zadana brzina rotacije iznosi $\omega = 151.84$ rad/s. Pošto se pumpa sastoji od pet lopatica, za proračun je korištena jedna petina od cijele domene kako bi se uštedjelo na vremenu i računalnim resursima.

Slika 5.23: Prikaz proračunske domene (IZOMETRIJA)

Slika 5.24: Prikaz proračunske domene (NACRT)

Korišten je stacionarni proračun s metodom pokretnog koordinatnog sustava. Numerički proračuni provedeni su sa vodom gustoće 998.2 kg/m³ i viskoznosti $\mu = 1.003 \cdot 10^{-3}$

Pas. Na ulazu u domenu zadan je iznos brzine $v = 4Q/[(d_2^2 - d_1^2)\pi]$. Pošto se polje tlaka u jednadžbama nestlačivog strujanja pojavljuje u obliku gradijenta određeno je na konstantu koja se mora zadati po nekom rubu ili ćeliji, a iznos za provedene analize nije od značaja. Visina dobave pumpe definirana je razlikom totalnih tlakova na ulazu u pumpu i izlazu iz spiralnog kućišta prema jednadžbi:

$$H = \frac{p_{tot1} - p_{tot2}}{\rho g}.$$
(5.1)

Srednja vrijednost totalnog tlaka se računa prema jednadžbi:

$$\overline{\phi} = \frac{\sum_{f} \phi_{f} |\mathbf{u}_{f} \cdot \mathbf{S}_{f}|}{\sum_{f} |\mathbf{u}_{f} \cdot \mathbf{S}_{f}|},$$
(5.2)

gdje je $\overline{\phi}$ osrednjena vrijednost, ϕ_f vrijednost veličine na pojedinoj stranici, a umnožak $|\mathbf{u}_f \cdot \mathbf{S}_f|$ je apsolutna vrijednost protoka na pojedinoj stranici volumena. Veličina ϕ je u ovom slučaju totalni tlak koji je zbroj statičkog i dinamičkog tlaka. Hidraulička iskoristivost radnog kola računa se prema jednadžbi:

$$\eta = \frac{\rho g H Q}{P} = \frac{\rho g H Q}{M \omega}.$$
(5.3)

Potrebna veličina momenta računa se integriranjem raspodjele tlaka i viskoznih sila po stjenci radnog kola.

5.3.1. Prostorna diskretizacija i rubni uvjeti

Za diskretizaciju proračunske domene korištena je nestrukturirana poliedarska mreža. Korištenjem nestrukturirane mreže proces diskretizacije se znatno ubrzava, samim time je ubrzan i proces dobivanja potrebnih rješenja što predstavlja prednost kod proračuna gdje se provodi optimizacija geometrije promatranog objekta. Primjena nestrukturirane mreže omogućuje dobivanje točnijih rezultata pogotovo u slučaju kada se može pretpostaviti, ili se zna smjer strujanja fluida. Pošto je strujanje u radnom kolu aksijalne pumpe vrtložnog karaktera, primjena poliedarske mreže pruža određene prednosti. Svaki kontrolni volumen poliedarske mreže ima velik broj susjednih volumena. Zbog toga je moguće točnije računati gradijente fizikalnih veličina. Veći broj stranica kontrolnog volumena, zahtjeva i veće resurse računalne memorije, no prednost leži u tome što je potreban znatno manji broj kontrolnih volumena u odnosu kada se domena diskretizira nekim drugim tipom volumena kao npr. tetraedrima [8]. Granični sloj je diskretiziran na način da se omogući korištenje zidnih funkcija. Prosječna vrijednost bezdimenzijske udaljenosti od zida u tom slučaju iznosi $y^+ > 30$. Diskretizirana domena korištena za proračun prikazana je na slikama 5.25 i 5.26.

Slika 5.25: Diskretizirana proračunska domena

Slika 5.26: Diskretizirana proračunska domena-detalj

Da bi se izbjeglo postavljanje cyclicAMI rubnog uvjeta na mjestima kontakta rotirajuće i mirujućih zona, mreža je izrađena tako da na tim mjestima bude konformna. U tom slučaju taj dodatni uvjet nije potreban, ako se koristi metoda pokretnog koordinatnog sustava. Na slici 5.27 se može vidjeti da se mreže na dodiru zona podudaraju.

Slika 5.27: Konformnost mreže na dodiru dvije zone

U tablicama 5.10 i 5.11 navedeni su rubni uvjeti koji su zadani na granicama proračunske domene. Može se vidjeti da je na svim zidovima osim na zidu lopatica zadan rubni uvjet slip tj. zidovi su glatki (na njima nema trenja). To je zbog toga da se omogući vjerodostojnija upsporedba između rezultata numeričke simulacije i analitičkog proračuna kod kojeg se ne uzima u obzir razvijanje graničnog sloja na donjoj i gornjoj cilindričnoj površini. Na ulazu je zadan iznos aksijalne brzine, koju se može odrediti iz protoka. Na izlazu iz domene propisano je uniformno polje statičkog tlaka čiji je iznos 0 Pa. Pošto se polje tlaka u jednadžbama nestlačivog strujanja pojavljuje u obliku gradijenta određeno je na konstantu koja se mora zadati, a iznos za provedene analize nije od značaja. Rubni uvjet slip spada u klasu predložaka (eng. *template class*) te kao takav može baratati s vektorskim i skalarnim poljima. Ukoliko je polje skalarno kao npr. tlak rubni uvjet slip postaje zeroGradient.

Patch	u	p	
inlet	fixedValue	zeroGradient	
outlet	zeroGradient	fixedValue	
$shroud_ulaz$	slip	slip	
shroud_rotor	slip	slip	
shroud_izlaz	slip	slip	
hub_ulaz	slip	slip	
hub_rotor	slip	slip	
hub_izlaz	slip	slip	
lopatica	fixedValue	zeroGradient	
AA	cyclic	cyclic	
aa	cyclic	cyclic	
BB	cyclic	cyclic	
bb	cyclic	cyclic	
CC	cyclic	cyclic	
сс	cyclic	cyclic	
DD	cyclic	cyclic	
dd	cyclic	cyclic	

Tablica 5.10: Rubni uvjeti za pi $u~({\rm 3D~proračun})$

Patch	k	ω	nut
inlet	fixedValue	fixedValue	calculated
outlet	zeroGradient	inletOutlet	zeroGradient
shroud_ulaz	slip	slip	calculated
shroud_rotor	slip	slip	calculated
shroud_izlaz	slip	slip	calculated
hub_ulaz	slip	slip	calculated
hub_rotor	slip	slip	calculated
hub_izlaz	slip	slip	calculated
lopatica	kqRWallFunction	omegaWallFunction	nutUSpaldingWallFunction
AA	cyclic	cyclic	cyclic
aa	cyclic	cyclic	cyclic
BB	cyclic	cyclic	cyclic
bb	cyclic	cyclic	cyclic
CC	cyclic	cyclic	cyclic
сс	cyclic	cyclic	cyclic
DD	cyclic	cyclic	cyclic
dd	cyclic	cyclic	cyclic

Tablica 5.11: Rubni uvjeti za k, ω i *nut* (3D proračun)

5.3.2. Rješenja numeričkih simulacija

Da bi se mogla usporediti kvaliteta promatranih metoda, potrebno je izračunati visinu dobave i provjeriti ponašanje pumpe u projektnom režimu rada. Uz određivanje visine dobave za projektni režim, također je ispitano ponašanje pumpe u vanprojektnim režimima rada. Simulacije su provedene pri protocima $0.7 \cdot Q_{opt}$, $0.8 \cdot Q_{opt}$, $0.9 \cdot Q_{opt}$, Q_{opt} , $1.1 \cdot Q_{opt}$ i $1.2 \cdot Q_{opt}$. Konvergencija rezultata stacionarnih simulacija praćena je preko iznosa visine dobave i momenta te je proračun zaustavljen kada su se navedene vrijednosti ustalile. Za polje brzine korištene su sheme diskretizacije drugog reda točnosti dok su za veličine modela turbulencije korištene uzvodne konvekcijske sheme prvog reda točnosti. U tablicama 5.12 i 5.13 prikazana su rješenja dobivena numeričkim simulacijama. Crvenom bojom označene su vrijednosti dobivene za projektni protok.

$Q (m^3/s)$	M (Nm)	$P(\mathbf{W})$	H (m)	η (-)
0.0500	23.99	3643.93	6.25	0.8402
0.0571	23.15	3538.41	5.55	0.8779
0.0643	20.94	3179.55	4.53	0.8979
0.0714	17.67	2683.41	3.42	0.8917
0.0786	13.44	2041.51	2.28	0.8607
0.0857	8.31	1261.72	1.15	0.7650

Tablica 5.12: Rješenja numeričkih simulacija (metoda uzgonskih sila)

Tablica 5.13: Rješenja numeričkih simulacija (profilna rešetka)

$Q (m^3/s)$	M (Nm)	$P(\mathbf{W})$	H (m)	η (-)
0.0500	22.84	3467.82	6.09	0.8592
0.0571	21.82	3312.56	5.27	0.8841
0.0643	19.50	2960.74	4.22	0.8968
0.0714	16.06	2438.00	3.07	0.8833
0.0786	11.60	1761.44	1.92	0.8371
0.0857	6.18	937.99	0.75	0.6731

Optimalna visina dobave H_{opt} s kojom se ušlo u proračun iznosi 3 m (tablica 5.1). Radno kolo oblikovano metodom uzgonskih sila daje značajno odstupanje u visini dobave u optimalnoj radnoj točki. Za ovo radno kolo ona iznosi $H_{opt} = 3.47$ m, što je 14% više od visine dobave zadane u proračunu.

Kod radnog kola oblikovanog pomoću ravne profilne rešetke ova razlika je značajno manja. Vrijednost visine dobave ovog radnog kola u optimalnoj radnoj točki iznosi $H_{opt} = 3.07$ m, što je 2.3% više od visine dobave zadane u proračunu. Iz toga se može zaključiti da je međudjelovanje profila u rešetki ipak značajno te ga je potrebno uzeti u obzir u slučaju kada se želi dobiti točnije rješenje. Na slikama 5.28, 5.29 i 5.30 prikazane su Q-H, Q-P i $Q-\eta$ krivulje radnih kola, dobivene iz rezultata numeričkih simulacija. Nakon toga su na slikama 5.31, 5.32 i 5.33 prikazane konture totalnog tlaka i apsolutne brzine u proračunskoj domeni, te konture statičkog tlaka na lopatici.

Slika 5.28:Q-Hkrivulje radnih kola

Slika 5.29:Q-Pkrivulje radnih kola

Slika 5.30: $Q-\eta$ krivulje radnih kola

Slika 5.31: Relativna razlika visina dobave radnih kola

Na slici 5.31 grafički je prikazana razlika između izračunatih visina dobave. Jasno se može vidjeti da ta razlika raste s povećanjem protoka. Na dijagramu se err računa prema izrazu:

$$\operatorname{err} = \frac{H_{\text{uzgon}} - H_{\text{rešetka}}}{H_{\text{uzgon}}} \cdot 100\%$$

Slike 5.32 i 5.33 prikazuju konture apsolutne brzine i totalnog tlaka u proračunskoj domeni za oba radna kola. Nakon toga, na slici 5.34 mogu se vidjeti konture statičkog tlaka na lopatici radnog kola. Na kraju, slike 5.35, 5.36, 5.37 i 5.38 prikazuju vektore relativne brzine na presjecima uz glavčinu i na vrhu lopatice radnih kola.

Slika 5.32: Konture apsolutne brzine i totalnog tlaka (metoda uzgonskih sila)

Slika 5.33: Konture apsolutne brzine i totalnog tlaka (profilna rešetka)

Slika 5.34: Konture statičkog tlaka na lopatici-metoda uzgonskih sila (lijevo) i profilna rešetka (desno)

Slika 5.35: Vektori relativne brine na presjeku uz glavčinu (metoda uzgonskih sila)

Slika 5.36: Vektori relativne brine na presjeku kod vrha lopatice (metoda uzgonskih sila)

Slika 5.37: Vektori relativne brine na presjeku uz glavčinu (profilna rešetka)

Slika 5.38: Vektori relativne brine na presjeku kod vrha lopatice (profilna rešetka)

Poglavlje 6.

Zaključak

U radu su analizirane dvije različite metode za oblikovanje radnog kola aksijalne pumpe: metoda uzgonskih sila i metoda ravne profilne rešetka. Metode su uspoređene na primjeru aksijalne pumpe čiji su osnovni projektni parametri zadani u tablici 5.1. U izvedbi proračuna korišteni su programski paketi *gmsh*, *Python* i **OpenFOAM**. U oba proračuna su za određivanje potrebnih hidrodinamičkih karakteristika krilnih profila korištene metode računalne dinamike fluida. Radi pojednostavljenja i smanjenja mogućnosti ljudske pogreške postupak proračuna je automatiziran. Nakon hidrauličkog proračuna provedena je provjera i određivanje karakteristika radnih kola u programskom paketu **OpenFOAM**. Korištena je metoda pokretnog koordinatnog sustava. Numeričkim proračunima pokazano je da u oba slučaja dobivene geometrije pumpe ostvaruju tražene zahtjeve. Isto tako pokazano je i da se pomoću metode uzgonskih sila dobije značajno veća visina dobave H_{opt} u projektnoj radnoj točki od one koja je zadana u proračunu. Kod metode koja za određivanje hidrodinamičkih karakteristika koristi ravnu profilnu rešetku, ta razlika je značajno manja. Mogući razlog takve razlike je što se kod proračuna pomoću metode uzgonskih sila ne uzima u obzir međuutjecaj profila u rešetki.

U daljnjem radu moguće je provjeru hidrauličkog proračuna provesti metodom rotirajuće mreže kontrolnih volumena. Također je moguće posvetiti veću pažnju oblikovanju radnog kola s obzirom na pojavu kavitacije.

Literatura

- [1] Bogdan Ristić. PUMPE I VENTILATORI. FM, Moskva edition, 1962.
- [2] Johann Friedrich Gulich. Centrifugal Pumps. Springer, second edition, 2010.
- [3] G. Ju. Stepanov. *Girodinamika rešetok turbomašin*. Naučna knjiga, drugo izdanje edition, 1990.
- [4] I. Džijan Z. Virag. Računalna dinamika fluida. Nastavni materijali, Fakultet strojarstva i brodogradnje, 2014.
- [5] Hrvoje Jasak. *Turbulence Modelling for CFD*. Nastavni materijali, Fakultet strojarstva i brodogradnje, 2017.
- [6] Sig Turbomachinery MRF Library. https://openfoamwiki.net/index.php/Sig Turbomachinery MRF Library
- [7] http://www.cpem.com.tw
- [8] S. Ferguson M. Perić. *The advantage of polyhedral meshes*. CD-adapco, www.cd-adapco.com
- [9] Zeljko Tuković. Metoda kontrolnih volumena na domenama promjenjivog oblika. PhD, Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu, 2005.
- [10] Hrvoje Jasak. Scalar Transport Equation. Nastavni materijali, Fakultet strojarstva i brodogradnje, 2017.