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Abstract

This work presents several treatments of the wall boundary conditions for RANS turbulence

models. The focus is the investigation of wall functions suitable for non-equilibrium conditions

where the standard wall functions derived from the law-of-the-wall are known to fail.

Although the thesis focuses on wall treatments, for deeper understanding of the problem,

knowledge of turbulence modelling is essential. Therefore some key concepts are outlined

through a derivation of the law-of-the-wall. Also, analytical solutions for the k− ε and k−ω

SST model for near-wall regions are given. A property, which defines the treatment of the

wall boundary condition, is the asymptotic consistency of turbulence model which is briefly

discussed. A general methodology for specifying the wall boundary condition is explained and

expressions for each method are presented in detail. Wall treatment for the k−ω SST model

based on pressure sensitised law-of-the-wall [1] is derived in detail and leads to a conclusion

that including the convective terms in expressions could improve accuracy.

The wall treatments are implemented in foam-extend and compared with standard wall func-

tions on two test cases: flow past the NACA4412 aerofoil and the 6:1 prolate spheroid. A

conclusion is reached that certain wall treatments offer an advantage over standard ones imple-

mented in foam-extend, although it is emphasised that further investigation on the effects of

pressure gradient and convective terms should be conducted.

Key words: CFD, foam-extend, turbulence modelling, k− ε wall functions, k−ω SST wall

treatments, NACA4412, prolate spheroid
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Sažetak

Ovaj rad prikazuje implementaciju i rezultate simulacija za zidne funkcije za modele tur-

bulencije s dvije transportne jednadžbe. Fokus je na ispitivanju zidnih funkcija primjerenih u

uvjetima neravnotežnog turbulentnog graničnog sloja za koje standardne zidne funkcije izve-

dene iz zakona zida nisu prikladne.

Iako se rad primarno fokusira na zidne funkcije, za dublje razumijevanje problema nužno je

poznavati principe o modeliranju turbulencije. Iz tog razloga, istaknuti su osnovni koncepti pri

izvodenju zakona zida. Izrazito važno svojstvo, koje definira postupanje s rubnim uvjetima na

zidu, je asimptotska konzistentnost modela turbulencije, koja je ukratko pojašnjena. Generalna

metodologija specificiranja rubnih uvjeta na zidu je objašnjena, te su dani izvodi matematičkih

izraza za svaku metodu. Tretman rubnih uvjeta na zidu za k−ω SST model temeljen na

izrazu za neravnotežni turbulentni granični sloj [1] izveden je detaljno i vodi k zaključku da

uključivanjem konvektivnih članova u izraze može dovesti do poboljšanja u točnosti.

Prikazane zidne funkcije, ugradene su u foam-extend i usporedeni sa standardnim zidnim

funkcijama za dva slučaja: opstrujavanje NACA4412 aeroprofila i opstrujavanje rotacijskog

elipsoida. Zaključeno je da odredeni tretmani rubnih uvjeta na zidu nude prednost nad trenutačno

korištenima u foam-extendu, no i da je potrebna daljnja analiza utjecaja gradijenta tlaka i kon-

vektivnih članova.

Ključne riječi: CFD, foam-extend, modeliranje turbulencije, k− ε zidne funkcije, k−ω

SST tretman rubnih uvjeta na zidu, NACA4412, rotacijski elipsoid.
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Prošireni sažetak

Turbulencija i dan danas predstavlja izazov i jednu od glavnih izazova u analizi strujanja

fluida. Kaotična priroda ovog fizikalnog fenomena otežava znanstvenu analizu stoga i ne čudi

da su svi modeli turbulencije zapravo samo aproksimacije koje kada se koriste u numeričkim si-

mulacijama treba koristiti s oprezom. Sljedeći problem u numeričkoj analizi turbulentnog stru-

janja su područja u blizini zida gdje dominiraju veliki gradijenti pojedinih fizikalnih veličina.

Razrješavanje ovog područja uvelike povećava zahtjeve na računalne resurse, stoga je najčešći

pristup u područjima blizine zida koristiti takozvane zidne funkcije. One povezuju vrijed-

nosti sa zida sa strujanjem podalje od stijenke, time premošćujući područja velikih gradijenata.

Najčešće korištene zidne funkcije temeljene su na zakonu zida koje su izvedene korištenjem

pretpostavki o lokalnoj ravnoteži, tj. da su vrijednosti karakterističnih turbulentnih veličina

ovisne samo o lokalnim parametrima strujanja te da uzstrujni efekti nisu od velike važnosti.

U ovom radu testirane su razne inačice zidnih funkcija od kojih su neke dane i za slučajeve

neravnotežnog turbulentnog graničnog sloja.

Jednadžbe nestlačivog turbulentnog strujanja

Turbulencija je potpuno opisana Navier-Stokesovim jednadžbama, no zbog same komplek-

sne prirode te pojave, rješavanje tih jednadžbi za probleme od industrijskog značaja još uvijek

je van dosega trenutno dostupnih računalnih resursa. Umjesto toga, u široj upotrebi su ta-

kozvani modeli turbulencije koji uz dodatan set jednadžbi modeliraju utjecaj turbulencije na

osrednjene veličine. U ovom radu analizirane su zidne funkcije na Reynoldsovim jednadžbama

za nestlačivo strujanje s uključenom Boussinesqovom hipotezom:

∂u
∂ t

+∇ · (u⊗u) =−∇(p+
2
3

k)+∇ · [(ν +νt)(∇u+∇uT )], (1)
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u kojima se turbulentna viskoznost ν izražava pomoću dodatne dvije turbulentne veličine za

koje se transportne jednadžbe modeliraju. U izrazu (1), u označava osrednjenu brzinu, p osred-

njeno polje tlaka po jedinici gustoće, k turbulentnu kinetičku energiju i ν kinematsku viskoz-

nost. Za definiranje turbulentne viskoznosti korištena su dva modela, k− ε i k−ω SST model

čiji su izrazi izloženi u nastavku.

k− ε model za nestlačivo strujanje

k− ε model opisuje turbulentne pojave sljedećim izrazima:

• Turbulentna viskoznost:

νt =Cµ

k2

ε
. (2)

• Turbulentna kinetička energija:

∂k
∂ t

+∇ · (uk)− k∇ ·u−∇ · (Γk,e f f ∇k) = G− ε. (3)

• Brzina disipacije turbulentne kinetičke energije:

∂ε

∂ t
+∇ · (uε)− ε∇u−∇(Γε,e f f ∇ε) =C1

ε

k
G−C2

ε2

k
. (4)

k−ω SST model za nestlačivo strujanje

Transportne jednadžbe za k−ω SST model dane su u nastavku.

• Turbulentna viskoznost

νt =
a1k

max(a1ω,b1F23S2)
(5)

• Turbulentna kinetička energija

∂k
∂ t

+∇ · (uk)− k∇ ·u−∇ · (Γk,e f f ∇k) = min(G,c1β
∗kω)−β

∗kω (6)
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• Brzina disipacije po jedinici turbulentne kinetičke energije

dω

dt
+∇ · (uω)−ω∇ ·u−∇ · (Γω,e f f ∇ω) =

γ min
[

S2,
c1

a1
β
∗
ω max

(
a1ω,b1F23

√
S2

)]
−βω

2 +(1−F1)CDkω .

(7)

U prethodnim izrazima ε je brzina disipacije turbulentne kinetičke energije, ω brzina disipacije

po jedinici turbulentne kinetičke energije, a član G predstavlja produkciju turbulentne kinetičke

energije.

Izloženi izrazi predstavljaju modele turbulencije implementirane u foam-extend a više detalja

o njima može se naći u [2] i[3] za k− ε models i [4], [5] i [6] za k−ω SST model, kao i u

izvornom kodu foam-extend paketa.

Općeniti pristup zidnih funkcija

Najkonzistentniji pristup u slučaju velikih gradijenata u blizini zida je koristiti dovoljno

sitnu prostornu diskretizaciju da bi se strujanje uspješno razriješilo. Fizikalno gledajući, prvi

volumen na zidu mora biti u viskoznom podsloju, y+ < 0.5, gdje je y+ predstavlja bezdimen-

zijsku mjeru udaljenosti od zida definiranu kao:

y+ =

√
τw
ρ

y

ν
, (8)

pri čemu τw predstavlja predstavlja smično naprezanje na zidu, a y udaljenost prve proračunske

točke profila brzine od zida.

Vrlo često u upotrebi je i drugačija definicija za bezdimenzijsku udaljenost:

y∗ =
Cµ

1/4k1/2y
ν

. (9)

Pristup razriješavanja strujanja u blizini zida uvelike povećava broj kontrolnih volumena u

proračunu, vodeći ka duljim vremenima numeričkih simulacija. Nadalje, ovaj pristup je pri-

mjeren samo sa modelima turbulencije koji se mogu primjenjivati u viskoznom podsloju, kao
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predstavljeni k−ω SST model. U slučaju k− ε modela, potrebno je koristiti zidne funkcije ili

posebno formulirane modele, npr. Launder-Sharma ili Lam-Bremhorst k− ε [7] model turbu-

lencije.

Korištenjem zakona zida, računalni zahtjevi uslijed velikih gradijenata na zidu mogu biti znatno

smanjeni. Općeniti pristup jest usporediti diskretiziranu vrijednost smičnog naprezanja na zidu:

τw/ρ = ν(u/y) sa vrijednošću dobivenom iz zakona zida:

u =

√
τw

ρ

1
κ

ln(Ey+). (10)

U slučaju da razlika u vrijednostima postoji, uveden je dodatan parametar, νt
w koji tu diskreti-

ziranu vrijednost korigira:

τw

ρ
= (ν +νt

w)
u
y
, (11)

pri čemu u predstavlja iznos vektora osrednjene brzine paralelne sa zidom.

Ovim pristupom izbjegava se razrješavanje velikih gradijenata u blizini zida tako da prostorna

diskretizacija u tom dijelu proračuna području ne mora biti fina. No, potrebno je zadovoljiti kri-

terije za koje je zakon zida valjan. Prva proračunska točka uza zid mora se nalaziti u rasponu:

30 < y+ < 300. Takoder se napominje da je standardni zakon zida izveden uz pretpostavku

nultog gradijenta tlaka, tako da se navedeni pristup može koristiti pod uvjetom da je gradijent

tlaka u blizini zida umjereno velik.

U slučaju korištenja zidnih funkcija, jednadžbu za turbulentnu kinetičku energiju u prvom vo-

lumenu uza stijenku potrebno rješavati s modificiranim članom produkcije G koji u sebi sadrži

gradijente brzine. Rubni uvjet na zidu koji se najčešće primjenjuje je n ·∇k = 0, gdje n pred-

stavlja vektor normale na zid. Transportne jednadžbe za ε i ω u prvim volumenima se najčešće

ne rješavaju. Razlog je u tome da modelirana transportna jednadžba za ε nije primjerena za

područja u blizini zida, dok rubni uvjet za ω na zidu ima singularitet, ω→ ∞. Stoga se za obje

jednadžbe vrijednosti u prvim volumenima uza stijenku specificiraju pomoću analitičkih izraza

koji zapravo predstavljaju rješenja transportnih jednadžbi turbulentnih veličina za područje u

blizini zida.
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Izrazi koji povezuju vrijednosti sa zida sa strujanjem podalje od stijenke objedinjeni su pod

nazivom zidne funkcije i u sljedećim sekcijama su specificirani uz svaku pojedinu metodu.

Standardne zidne funkcije za k− ε model turbulencije u foam-extendu

Izrazi izloženi u ovom odjeljku predstavljaju zidne funkcije za k− ε model turbulencije u

foam-extendu.

• Korekcija smičnog naprezanja na zidu:

νt
w =


0 , y∗ ≤ y+lam

ν

(
y∗κ

ln(Ey∗)
−1
)

, y∗ > y+lam

. (12)

• Modificirani član produkcije turbulentne kinetičke energije:

G =

 0 , y∗ ≤ y+lam

Glog , y∗ > y+lam

, (13)

Glog =
[ (ν +νt

w) |∇uw| ]2

κCµ
1/4k1/2y

ili Glog = (ν +νt
w)|∇uw|

Cµ
1/4k1/2

κy
. (14)

• Brzina disipacije turbulentne kinetičke energije:

ε =
Cµ

3/4k3/2

κy
. (15)

Zidne funkcije za neravnotežne turbulentne granične slojeve za k−ε model

turbulencije

Ponekad, režimi strujanja u blizini stijenke razlikuju se od onih za koje je standardni zakon

zida izveden. U slučajevima većih gradijenata tlaka, značajna razlika u odnosu na standardni
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zakon zida može nastupiti. Upravo iz tih razloga ovdje su izložene općenitije zidne funkcije

koje vrijede i za slučaj neravnotežnog turbulentnog graničnog sloja [8].

• Granica viskoznog podsloja yv:

yv =
11.225ν

Cµ
1/4k1/2

. (16)

• Korekcija smičnog naprezanja na zidu:

νt
w =

 0 ,y < yv

ν

(
Ũy∗κ

u ln(Ey∗) −1
)

,y > yv

. (17)

Ũ = u− 1
2

d p
dx

[
yv

κk1/2 ln
(

y
yv

)
+

y− yv

κk1/2 +
yv

2

ν

]
. (18)

• Modificirani član produkcije turbulentne kinetičke energije:

G =


0 ,y < yv

((ν+νt
w)|∇uw|)2 ln( 2y

yv )

2yCµ
1/4k1/2κ

,y > yv.
(19)

• Brzina disipacije:

ε =

{
1
2y

[
2νkp

yv
+

kP
3/2Cµ

3/4

κ
ln
(

2y
yv

)]
,y > yv . (20)

Zidne funkcije za k−ω SST model turbulencije u foam-extendu

Izrazi dani u nastavku predstavljaju zidne funkcije u foam-extendu za k−ω SST model

turbulencije [4].

• Korekcija smičnog naprezanja na zidu:

νt
w =


0 , y∗ ≤ y+lam

ν

(
y∗κ

ln(Ey∗)
−1
)

, y∗ > y+lam

. (21)
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• Modificirani član produkcije turbulentne kinetičke energije:

G =

 0 ,y∗ ≤ y+

Glog , y∗ > y+
, (22)

Glog = (ν +νt
w)|∇uw|

Cµ
1/4k1/2

κy
. (23)

• Brzina disipacije po jedinici turbulentne kinetičke energije:

ω =
√

ω2
vis +ω2

log, (24)

ωvis =
6ν

β1y2 , ωlog =
k1/2

Cµ
1/4

κy
. (25)

Modifikacija zidnih funkcija u foam-extendu za k−ω SST model turbu-

lencije

Predstavljeni izrazi su predložena modifikacija na zidne funkcije u foam-extendu za k−ω

SST model turbulencije. Razlika je u definiciji člana produkcije turbulentne kinetičke energije

koji je ovdje definiran kao kontinuirana funkcija što u konačnici rezultira velikim poboljšanjem

rezultata.

• Korekcija smičnog naprezanja na zidu:

νt
w =


0 , y∗ ≤ y+lam

ν

(
y∗κ

ln(Ey∗)
−1
)

, y∗ > y+lam

. (26)

• Modificirani član produkcije turbulentne kinetičke energije:

Gvis = νt

(
du
dy

)2

=
k

ωvis

(
u
y

)2

. (27)
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Glog = (ν +νt
w)|∇uw|

Cµ
1/4k1/2

κy
(28)

G = GviseΓ +Gloge1/Γ. (29)

• Brzina disipacije po jedinici turbulentne kinetičke energije:

ω =
√

ω2
vis +ω2

log, (30)

ωvis =
6ν

β1y2 , ωlog =
k1/2

Cµ
1/4

κy
. (31)

Automatske zidne funkcije za k−ω SST model turbulencije

Za modele turbulencije koji se mogu primjenjivati u blizini stijenke, metoda zidnih funkcija

može se proširiti. Osnovni princip ove metode je da profinjivanjem mreže, formulacija zakona

zida iz logaritamskog podsloja postepeno prelazi u formulaciju viskoznog podsloja korištenjem

funkcije miješanja. Sličan pristup koristi se i u zidnim funkcijama u foam-extendu, no funk-

cija miješanja tamo se ne primjenjuje na sve članove. Prikazani izrazi su iz [32] sa promijenje-

nim članom produkcije turbulentne kinetičke energije iz [14].

• Korekcija smičnog naprezanja na zidu:

uτ vis =

√
ν

u
y
, uτ log =

uκ

ln(Ey+)
, (32)

u∗ = 4
√

uτ vis
4 +(

√
a1k)4 , uτ =

4
√

uτ vis
4 +uτ log

4, (33)

τw

ρ
= uτu∗ , νt

w =
τw

ρ

y
u
−ν . (34)

• Modificirani član produkcije turbulentne kinetičke energije:

Gvis = νt(
du
dy

)2 =
k

ωvis
(
u
y
)2 , Glog = (ν +νt

w)|∇uw|
u∗

κy
, (35)
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G = GviseΓ +Gloge1/Γ , Γ =−0.01(y+ )4

1+5y+
, (36)

• Brzina disipacije po jedinici turbulentne kinetičke energije:

ωvis =
6ν

β1y2 , ωlog =
u∗2

a1κνy+
, (37)

ω =
√

ωvis2 +ωlog
2. (38)

Poboljšane zidne funkcije za k−ω SST model turbulencije

U ovom odjeljku izložene su zidne funkcije za k−ω SST model turbulencije koje uzimaju

u obzir utjecaj gradijenta tlaka na turbulentni granični sloj. Izrazi za profil brzine u viskoznom

i logaritamskom podsloju temeljeni su na [10] i [1].

• Bezdimenzijski profil brzine u viskoznom podsloju:

u+vis = α
y+

2
+ y+ = y+

(
1+

α

2
y+
)
. (39)

• Bezdimenzijski profil brzine u logaritamskom podsloju:

u+log =


1
κ

[
2
√

1+αy++ ln
∣∣∣√1+αy+−1

∣∣∣− ln
(√

1+αy++1
)]

+u+t1 ,y+ < 60

1
κ

√
1+60α ln(y+)+u+t2 ,y+ ≥ 60

,

(40)

u+t2 =
1
κ

[
2
√

1+60α + ln
∣∣∣√1+60α−1

∣∣∣
− ln

(√
1+60α +1

)
−
√

1+60α ln(60)
]
+u+t1 , (41)

u+t1 =
1
κ

ln(6E)− 1
κ

[
2
√

1+6α + ln
∣∣∣√1+6α−1

∣∣∣− ln
(√

1+6α +1
)]

. (42)
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• Izraz za bezdimenzijski gradijent tlaka:

α =
ν

u∗3
d p
dx

, u∗ =Cµ
1/4k1/2. (43)

• Korekcija smičnog naprezanja na zidu:

uτ vis =
u

u+vis
, uτ log =

u
u+log

, (44)

uτ = uτ vise
Γ +uτ loge1/Γ , (45)

τw

ρ
= uτ

2 , νt
w =

τw

ρ

y
u
−ν . (46)

• Modificirani član produkcije turbulentne kinetičke energije:

(
du
dy

)
vis

=
u
y
,

(
dU
dy

)
log

=

√
(d p

dx +u ·∇u)y+ τw
ρ

κy
, (47)

du
dy

=

(
du
dy

)
vis

eΓ +

(
du
dy

)
log

e1/Γ, (48)

G =
τw

ρ

du
dy

. (49)

• Brzina disipacije po jedinici turbulentne kinetičke energije:

ωvis =
6ν

β1y2 , ωlog =
1

Cµ
1/2

(
du
dy

)
log

, (50)

ω =
√

ω2
vis +ω2

log. (51)
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Modificirane poboljšane zidne funkcije za k−ω SST model turbulencije

Nadalje predstavljeni izrazi su predložena modifikacija na poboljšane zidne funkcije koje

uz utjecaj gradijenta tlaka na profil brzine, uzimaju u obzir i konvektivne članove. Utjecaj

gradijenta tlaka u izrazu za brzinu u viskoznom podsloju je izostavljen jer na finim mrežama

uzrokuje velike oscilacije u rezidualima.

• Bezdimenzijski profil brzine za viskozni podsloj:

u+log = y+. (52)

• Bezdimenzijski profil brzine za logaritamski podsloj:

u+log =
1
κ

[
2
√

1+Ay++ ln
∣∣∣√1+Ay+−1

∣∣∣− ln
(√

1+Ay++1
)]

+u+t , (53)

u+t =
1
κ

ln(6E)− 1
κ

[
2
√

1+6A+ ln
∣∣∣√1+6A−1

∣∣∣− ln
(√

1+6A+1
)]

. (54)

• Bezdimenzijski parametar A uključuje utjecaj gradijenta tlaka i konvektivnih članova:

A =
ν

u∗3
(
d p
dx

+u ·∇u) , u∗ =Cµ
1/4k1/2. (55)

• Korekcija smičnog naprezanja na zidu:

uτ vis =

√
ν

u
y
, uτ log =

u
u+log

, (56)

uτ = uτ vise
Γ +uτ loge1/Γ , (57)

τw

ρ
= uτ

2 , νt
w =

τw

ρ

y
u
−ν . (58)
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• Modificirani član produkcije turbulentne kinetičke energije:

G =
τw

ρ

du
dy

, (59)

du
dy

=

(
du
dy

)
vis

eΓ +

(
du
dy

)
log

e1/Γ, (60)

(
du
dy

)
vis

=
u
y
,

(
dU
dy

)
log

=

√
(d p

dx +u ·∇u)y+ τw
ρ

κy
. (61)

• Brzina disipacije po jedinici turbulentne kinetičke energije:

ωvis =
6ν

β1y2 , ωlog =
1

Cµ
1/2

(
du
dy

)
log

, (62)

ω =
√

ω2
vis +ω2

log. (63)

Validacija zidnih funkcija

Zidne funkcije opisane u prethodnim sekcijama implementirane su software otvorenog koda

foam-extend. Trenutno ugradene zidne funkcije za k− ε i k−ω SST usporedene su s novo-

ugradenima i eksperimentalnim podacima za dva slučaja. Opstrujavanje NACA4412 aeropro-

fila pri napadnom kutu of 15◦ pri Reyoldsovom broju od 3.6 · 105 i opstrujavanje rotacijskog

elipsoida duljine L = 1.37 m, sa 6:1 omjerom velike i male poluosi pri napadnim kutem od 10◦

pri Reynoldsovom broju 4.2 ·106.

Slike 1 - 5 prikazuju usporedbu koeficijenta smičnog naprezanja duž aeroprofila s eksperimen-

talnim podatcima. Kao što je vidljivo, Najbolji rezultati postignuti su sa k− ε modelom, i

podjednaki su za obje testirane zidne funkcije. U slučaju k−ω SST modela dobiveni su nešto

lošiji rezultati, a najbolji se postižu s modificiranim poboljšanim zidnim funkcijama.
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Slika 1: NACA4412: koeficijent smičnog naprezanja za k−ω SST currentWT u usporedbi sa

zidnim funkcijama k− ε modela
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Slika 2: NACA4412: koeficijent smičnog naprezanja za k−ω SST AWT u usporedbi sa zidnim

funkcijama k− ε modela
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Slika 3: NACA4412: koeficijent smičnog naprezanja za k−ω SST EWT u usporedbi sa zidnim

funkcijama k− ε modela
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Slika 5: NACA4412: koeficijent smičnog naprezanja za k−ω SST Gnew u usporedbi sa

zidnim funkcijama k− ε modela

Na slikama 7 i 8 dana je usporedba koeficijenta smičnog naprezanja po obodu rotacijskog elip-

soida na presječnim ravninama x/L = 0.6 i x/L = 0.772. Slika 6 prikazuje koordinatni sustav

u odnosu na koji su rezultati prikazani. Iz prikazanog je vidljivo, kako u odnosu na trenutnu

formulaciju zidnih funkcija u foam-extendu, novo-implementirane metode puno bolje slijede

trend eksperimentalnih podataka.

Slika 6: Koordinatni sustav za poprečne presjeke x/L = konst.
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Slika 7: Rotacijski elipsoid: usporedba koeficijenta smičnog naprezanja sa eksperimentalnim

podacima na presjeku x/L = 0.6.
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Iz priloženih rezultata vidljivo je kako pojedine implementirane zidne funkcije u foam-extend

za k− ε i k−ω SST model, u odnosu na trenutno ugradene, pružaju znatno poboljšanje u

točnosti. Ovdje se posebno ističu modificirane poboljšane zidne funkcije koje uključuju efekte

gradijenta tlaka i konvektivnih članova na profil brzine u blizini zida. Otkriveno je da trenutna

implementacija zidnih funkcija za k−ω SST model podbaci u strujanjima s relativno manjim

gradijentima brzine na grubljim mrežama, što je vidljivo na slučaju rotacijskog elipsoida. U

slučaju k− ε modela poboljšanje u točnosti je jedino uočljivo na testu rotacijskog elipsoida.

Iako su iz izloženih rezultata poboljšanja očita, naglašava se da je potrebno izvršiti daljnja

testiranja kako bi se mogli iznijeti daljnji zaključci.
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) serves as an essential tool in analysing a variety of

flows of engineering interest. Successful CFD use requires a deep understanding of the under-

lying physics and a user should be aware of the modelling assumptions. Since the turbulence

is non-deterministic and that all turbulence models are basically just an approximation, simula-

tion of turbulent flows still remains a challenge. Another problem which arises is the substantial

increase of computing demands due to the near-wall flow where large gradients prevail. The

usual approach is to bypass this region with some other expressions called wall functions [11]

which are constructed specifically to capture the effects of turbulent flow near the wall. The

most often used wall functions ones are based on the law-of-the-wall which assumes equilib-

rium flow conditions. In addition, the performance of all turbulence models is determined in

large measure by the treatment of the boundary conditions at solid walls. Therefore, a need for

a general and economical approach to accurately resolve the near-wall region exists.

1.1 Previous and Related Studies

The first wall functions were proposed by Patankar and Spalding (1967) which employ law-

of-the-wall to bridge the values in the near-wall cells and the corresponding quantities on the

wall. The original wall functions have been further developed, yielding two approaches which

can be distinguished nowadays.
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Chieng and Launder [12] employed two-layer approach by splitting the cell into the viscous

and logarithmic region, approximating distributions of all quantities in each region and averag-

ing values over the cell. Craft [13] further improved this idea by assuming the variation of eddy

viscosity for both viscous and logarithmic region in the first cell which he used to solve the

wall-parallel mean momentum equation, thus obtaining the expression for the mean-velocity

profile. In the derivation, he retained the effects of a pressure gradient and convection.

The second approach derives expressions for the viscous and logarithmic region for flow prop-

erties and employs the blending procedures on for buffer region modelling. Here, the most

common blending procedure are presented by Esch and Menter [4] and Kader [14]. The gen-

erality of this approach depends on the assumptions taken in deriving the expressions for the

viscous and logarithmic region. Popovac and Hanjalic [14], adopted the approach similar to

the one of Craft [13], in which they specified the distribution of eddy viscosity only for the

logarithmic region, which results in a simpler mathematical expressions for mean flow. For the

viscous region, standard viscous-law is used and both relations are blended using Kader blend.

Craft has also developed [15] an efficient numerical method which is used in the wall adjacent

cells. After each iteration step on the global mesh, one-dimensional, parabolised, wall parallel

equations are integrated on a fine subgrid in the first near wall cells. Tests [16] showed that

compared to wall function approach, computational expenses are 60% larger, but still eight

times lower than low-Reynolds approach.

In this thesis, the focus is on the two-layer approach for the k− ε model which takes into

account the pressure gradient effects and blending approaches for k−ω SST model as described

in CFX [9] and Fluent [10] theory manual. Furthermore, a modification for Enhanced wall

treatment from Fluent is proposed and tested.
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1.2 Thesis Outline

The thesis is outlined as follows. Chapter 2 serves as an introduction to the physics of

turbulence and highlights the main aspects and difficulties in this area. Chapter 3 presents the

equations governing the motion of a fluid, explaining the need for a turbulence model and pre-

senting common approaches in that area. The end of the chapter describes two widely used

turbulence models which are the focus of this thesis. In Chapter 4, the topic of turbulence

modelling is continued, but with a focus on the treatment of wall boundary conditions in nu-

merical simulations. Upon presenting the general idea, several methods are shown which are

then tested in Chapters 5 and 6. Finally, Chapter 7 gives an overview of the thesis with a final

conclusion.
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Chapter 2

Nature of Turbulence

Turbulence occurs almost everywhere around us. In boundary layers on vehicles, wakes be-

hind vehicles, flow in pipelines, in a smoke rising from the cigarette [20], etc. Laminar flow

is an exception which can maintain itself only in special cases. Combining Hinze’s [17] and

Cebeci’s [18] definitions, turbulence can be defined as:

”Turbulent fluid motion is an irregular condition of flow in which the various quantities show a

random variation with time and space coordinates so that statistically distinct average values

can be discerned. In addition, turbulence has a wide range of wavelengths...” meaning that

irregular motions appear on a wide range of length and time scales.

Not all irregular flows can be treated as turbulent. To be characterised as turbulent flow, in-

tensive mixing (in the lateral direction of flow) of all fluid properties must be present. This is

the most important property of turbulence: enhanced diffusivity. In the context of momentum

transport, mixing will cause velocity profile to be smoother, but in a near-wall region, it leads

to a large increase of the gradients, Figure 2.1).
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Filip Šutalo Master’s Thesis

Figure 2.1: Laminar and turbulent velocity profile for pipe flow [19].

The experimental parameter, used in fluid flow, as criteria whether the flow is laminar or turbu-

lent is Reynolds number defined as the ratio of the inertial and viscous forces:

Re =
U∞L

ν
. (2.1)

The variables U∞ and ν are freestream velocity and molecular kinematic viscosity and L is the

characteristic length which is associated with the flow domain, e.g. pipe diameter, plate length,

chord length.

Turbulence always occurs at large Reynolds numbers, meaning that turbulence manifests itself

as an excessive amount of kinetic energy of the fluid. For smaller values, viscous effects are

able to damp all the instabilities and laminar flow will maintain itself.

Laminar flow can maintain itself even beyond critical Reynolds number, but only in special-like

laboratory conditions. If only the slightest disturbance is applied to flow, it irreversibly passes

to a turbulent state. The only way to make it laminar again is to slow down the flow to make

viscous effects more dominant over inertial.

Turbulence is a three-dimensional phenomena. Even for the simple flow across the flat plate,

turbulent pulsations will occur in all three dimensions, as if the flow contains additional degrees

of freedom.
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In turbulent flow, vortices are constantly broken up to smaller ones and smaller scales at which

they are transferred to heat by viscous effects. In order to maintain turbulent flow, there must be

a continuous supply of energy to the largest pulsations from the mean flow. This is a common

cascade process associated with turbulence which defines it as a dissipative process.

Non-deterministic nature of turbulence is the main obstacle when it comes to its analysis and it

still remains one of the unresolved problems in classical mechanics.
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Chapter 3

Governing Equations for Turbulent Flow

The previous chapter introduced the basic phenomena occurring in turbulent flow, while

this chapter focuses on its mathematical description. First, basic equations for incompressible

fluid flow are presented. Although this set of equations is valid for both flow regimes: laminar

and turbulent, the need for a turbulence model is further explained. The methods of Reynolds

averaging and Boussinesq assumption are explained and some models based on these methods

are presented.

3.1 Navier-Stokes Equations

Fluid flow motion is governed by a set of Navier-Stokes equations. The continuity equation

represents the conservation of mass and the momentum equation relates the acceleration of

fluid with the pressure, body and viscous forces. Equations are written in spatial coordinates

(Eulerian frame) and for an incompressible fluid, they read:

• Continuity equation:

∇ ·u = 0, (3.1)
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• Momentum equation:

∂u
∂ t

+∇ · (u⊗u) =−∇p+∇ · [ν(∇u+∇uT )], (3.2)

where u and p stand for the velocity field and kinematic pressure respectively, and ν is molec-

ular kinematic viscosity. Body forces are neglected in this work.

The equation for conservation of angular momentum is not solved, but it leads to a condition

of symmetric stress tensor which is enforced in linear momentum equation on the constitutive

relation for viscous forces. Continuum mechanics, which deals with non-symmetric stress

tensor, is called polar (Cosserat) Continuum Mechanics [21] and is not considered in this text.

Due to the nonlinearity of the momentum equation, analytical solutions exist only for few

simplified cases. Another problem is that even the existence of a solution cannot be proven

for Navier-Stokes equations. Overcoming these problems would be of great significance as

Navier-Stokes equations describe the turbulent flow in every detail, and understanding them is

the first step in understanding the turbulence. To further illustrate the complexity of the prob-

lem, we cite [22] one of the seven ”Millennium Prize problems” in mathematics with a 1 000

000 $ reward:

”Prove or give a counter-example of the following statement: In three space dimensions and

time, given an initial velocity field, there exists a vector velocity and a scalar pressure field,

which are both smooth and globally defined, that solve the Navier–Stokes equations”.

Equations (3.1) and (3.2) describe every detail of underlying turbulence physics and solving

them would mean to resolve turbulent velocity field from the largest to the smallest scales.

That is why, when using the numerical methods, the requirements for computer resources are

immense. From an engineering point of view, solving the problems this way is currently out

of reach and it is expected to stay like that for the next few decades. This approach of directly

solving the Navier-Stokes equations for turbulent flows is called Direct Numerical Simulation

(DNS) and today is used for analysing turbulent flows at lower Reynolds numbers [23].
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3.2 Turbulence Modelling

From a practical point of view, the complete history of turbulence phenomena is usually not

of interest. Even if we have data for a completely resolved turbulent flow field, we would

somehow average the results for practical engineering purposes. Instead of solving the Navier-

Stokes equations, the idea is to solve a different set of equations which model the effects of

turbulence on the mean flow. This way, we end up with a larger set of equations, but are avoid

the calculation of every flow detail, yielding with lower computational requirements.

Two main groups of turbulence models are:

• Reynolds Averaged Navier-Stokes equations - RANS,

• Large Eddy Simulation - LES, or filtered Navier-Stokes equations.

Sometimes, DNS is erroneously added to the list as Navier-Stokes equations do not include any

additional assumptions about turbulence.

Each turbulence model has its limitations. When choosing one, the usual choice comes to a

compromise between accuracy and computational cost. If the interest is the attached flow over

an airfoil and skin friction, simple Algebraic models (a sub-class of RANS models), which are

the most simple turbulence models, will suffice. For a highly complex flow field, one would

have to resort to a more advanced one, like LES.

LES can be easily described as a method in which small turbulent structures are being modelled,

while larger ones are resolved. Compared to RANS models, they are much more expensive,

but much more accurate as pulsations at smaller scales are universal and can be modelled

accurately. The disadvantage of this approach is that near the wall, computational resources

can become similar to those of the DNS [24].

To overcome this, hybrid approaches have been developed, Detached Eddy Simulations - DES.

Near the wall, RANS models are used and in the outer flow, LES approach is employed.
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When using a turbulence model, it is important to know its range of application and limitation.

For example, can the model be applied for swirling flows, or how accurately it can describe

curvature effects, high-pressure gradient conditions etc. The best practice is to use ones that

are thoroughly tested and for which limitations are well documented.

3.3 Reynolds Averaged Navier-Stokes Equations - RANS

Instead of resolving the complete turbulent flow field with the Navier-Stokes equations, and

after analysing and averaging the data, Fig 3.1, one could try to immediately solve the averaged

Navier-Stokes equations. The approach Osborne Reynolds took [23] was to decompose each

flow property into mean (¯) and fluctuating part ( ′ ):

u = u+u′, (3.3)

p = p+ p′, (3.4)

and substitute it into Navier-Stokes equations:

∇ · (u+u′) = 0, (3.5)

∂ (u+u′)
∂ t

+∇ · ((u+u′)⊗ (u+u′)) =−∇(p+ p′)+∇ · [ν((∇u+u′)+∇(u+u′)T )]. (3.6)

Next, averaging procedure is employed for each term with the operator which satisfies Reynolds

conditions [25]:

f +g = f +g (3.7)

const · f = const · f (3.8)

∂ f
∂ s

=
∂ f ,
∂ s

,
∂ f
∂x

=
∂ f ,
∂x

(3.9)

f g = f g. (3.10)
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By making an assumption that an average of the mean is the same mean property ¯̄f = f̄ , and

that average of fluctuating property vanishes f ′ = 0, we obtain:

∇ ·u = 0, (3.11)

∂u
∂ t

+∇ · (u⊗u) =−∇p+∇ · [ν(∇u+∇uT )−u′⊗u′]. (3.12)

The resulting form is similar to the original Navier-Stokes equations, with only difference be-

ing that the averaging procedure resulted with an additional term, the Reynolds stress tensor

R=−u′⊗u′. This term results from a convective transport, but historically it has been grouped

with shear stresses. The motivation for this approach is explained in the next section. This term

is symmetric and introduces six new unknowns that have to be modelled which further illus-

trates the problem of turbulence modelling. Modelling these six additional components of

Reynolds stress tensor leads to Reynolds Stress Models - RSM.

Figure 3.1: Intuitive explanation of Reynolds averaging [18].

Reynolds conditions (3.7) - (3.10) cannot be derived, but operator which does not satisfy them,

is not of a much practical use [25]. For the case of stationary turbulence, in which average

values does not vary with time, time-average is an appropriate operator [7]:

f = lim
T→∞

1
T

∫ t+T

t
f (x, t)dt. (3.13)

For the case of non-stationary turbulence, the problem of defining the averaging operator is

more complex. Requirements (3.7) and (3.8) imply that operator is linear, which is easy to
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satisfy, but the other two conditions, (3.9) and (3.10) are questionable. For the other definitions

of averaging, the reader is referred to [7].

(a) (b)

Figure 3.2: (a) stationary and (b) non stationary turbulenc [19].

The question is also, whether the assumption of decomposing the velocity and pressure into

mean and fluctuating part can be justified. For some flows, it is not possible to distinct between

unsteadiness and turbulent pulsations. In those cases the term u⊗u′ in averaging process does

not vanish [7], and instead of RANS, LES models need to be used.

3.4 Boussinesq Hypothesis

The most simple approach of closing the system of Reynolds equations follows the hypothe-

sis of Boussinesq [7]. Using the assumption that there is an analogy between chaotic molecular

motion (manifested as viscous stresses) and turbulent pulsations, the idea arises that turbulent

momentum transport u′⊗u′ can be modelled as an additional stress acting on the fluid, with an

expression which is analogous to Newton’s law:

−u′⊗u′ = νt(∇u+∇uT )− 2
3

Ik, (3.14)

where k = 1
2u′ ·u′ is turbulent kinetic energy and I is an identity tensor. The term 2/3Ik is

added to satisfy the invariant of Reynolds stress tensor tr(R) =−u′ ·u′:

tr(−u′⊗u′) =−2
3

tr(I)k =−2k =−2
1
2

u′ ·u′ =−u′ ·u′. (3.15)
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Boussinesq’s assumption introduces a new parameter, eddy viscosity νt which unlike the ν , is

not a property of the fluid, but of fluid flow.

Including (3.14) into Reynolds momentum equation (3.12), and regrouping the terms leads to:

∂u
∂ t

+∇ · (u⊗u) =−∇(p+
2
3

k)+∇ · [(ν +νt)(∇u+∇uT )]. (3.16)

The Boussinesq hypothesis is a great simplification which postulates that Reynolds stress tensor

is proportional to the strain rate tensor. The first clear deficiency of this assumption is that it

postulates that turbulence can be treated as isotropic, e.g. that velocity pulsations are the same

in all directions in space. Some cases in which Boussinesq assumption also fails are [7]:

• Flows over curved surfaces,

• Flows with rotation,

• Flows with separation,

• Three-dimensional flows,

• Flows with a sudden increase/decrease in strain rate.

Despite these drawbacks, Eddy Viscosity Models - EVM, are the most common turbulence

models today and are a very useful engineering tool.

3.5 Mixing length Model - Law of the Wall

Using the Boussinesq reasoning, Ludwig Prandtl postulated that momentum transfer in tur-

bulent flow can be calculated using the expression from the kinetic theory of gases [19] for

molecular momentum transfer:

−u′v′ ∼ lmvm
du
dy

(3.17)

where lm is analogous to the mean free path in kinetic theory, and vm is the mixing velocity [7].
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Furthermore, analysing the flow in boundary layer, Prandtl proposed the following relations:

vm = a · lm
∣∣∣∣du
dy

∣∣∣∣ , lm = κy. (3.18)

Constant a from vm is absorbed in mixing length lm and (3.17) transforms into:

−u′v′ = κ
2y2
∣∣∣∣du
dy

∣∣∣∣ du
dy

. (3.19)

Next, the mixing-lenght model, expression (3.19), is used to solve turbulent flow over a flat

plate. Reynolds equations simplified for boundary layer region are:

∂u
∂x

+
∂v
∂y

= 0, (3.20)

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

=−∂ p
∂x

+
∂

∂y

(
ν

∂u
∂y
−u′v′

)
. (3.21)

Restricting to steady, fully developed turbulent flow, with negligible pressure gradient, and

including expression (3.19), above equations further reduces to:

d
dy

[(
ν +κ

2y2
∣∣∣∣du
dy

∣∣∣∣) du
dy

]
= 0. (3.22)

The above equation implies that trough the boundary layer, shear stresses are constant. In-

tegrating equation 3.22 and setting the integration constant to be the value on the wall leads

to: (
ν +κ

2y2
∣∣∣∣du
dy

∣∣∣∣) du
dy

=
τw

ρ
. (3.23)

Near the wall, pulsations are damped and turbulent convective transport can be neglected, which

leads to the solution for viscous sublayer velocity profile:

ν
du
dy

=
τw

ρ
, u =

τw

ρν
y. (3.24)

Away from the wall, it is assumed that convective transport is largely due to mixing, implying

that viscous forces can be neglected:

κ
2y2
∣∣∣∣du
dy

∣∣∣∣ du
dy

=
τw

ρ
. (3.25)
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For a flat plate flow, velocity gradient is positive, |du/dy|du/dy = (du/dy)2, further simplify-

ing the expression to:

κ
2y2
(

du
dy

)2

=
τw

ρ
, (3.26)

(
du
dy

)2

=
1

κ2
τw

ρ

1
y2 , (3.27)

du
dy

=
1
κ

√
τw

ρ

1
y
. (3.28)

The solution for a logarithmic (also called inertial) velocity profile is:

u =
1
κ

√
τw

ρ
ln(y)+ c. (3.29)

Expressions 3.24 and 3.29 are usually transformed into a dimensionless form by dividing them

with friction velocity uτ =
√

τw/ρ:

u
uτ

= u+vis = y+, (3.30)

u
uτ

= u+log =
1
κ

ln(Ey+) =
1
κ

ln(y+)+B, (3.31)

with a definition for y+ = uτy/ν . Value of constants are: E = 9.8 or B = 5 and κ = 0.41 are

obtained from experimental data [7].

Equations (3.24) and (3.29) relate the value of the wall shear stress with the velocity near the

wall, which will prove to be useful in Chapter 4.

The following diagram presents the comparison of derived expressions with measured exper-

imental data. Presented theory is in good agreement for regions 0 < y+ < 5 for the viscous

sublayer solution (3.30) and 30 < y+ < 1000 for the logarithmic sublayer solution (3.31). For

buffer layer, 5 < y+ < 30, neither of the profiles is valid, as in that region viscous and mixing

effects are of the same order. Viscous, buffer and logarithmic part of the boundary layer, called

inner part of boundary layer, makes 10-15% of the total thickness of the boundary layer [26].

In the inner part of the turbulent boundary layer, turbulence is mostly dictated by the wall [26]

which explains the existence of viscous and logarithmic profiles on other surfaces besides flat
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Figure 3.3: Validity of the derived velocity profiles [7] .

plate. Expressions (3.24) and (3.29) can be used on moderately curved surfaces with moderate

pressure gradient.

In Chapter 2 the focus was on emphasising the unsteady and three-dimensional nature of turbu-

lence. In this section, we solved it as a two-dimensional steady state problem. This is a direct

consequence of Reynolds averaging and Prandtl’s mixing-length hypothesis.

3.6 Two-Equation Turbulence Models

The most important consequence of Prandtl’s mixing length model is that for effectively

defining the turbulent convective transport, a minimum of two scales needs to be provided [7]:

turbulent length and turbulent velocity scale. The scales can then be further used in defining

the eddy viscosity in the Boussinesq hypothesis. As the turbulent kinetic energy is already

introduced by Boussinesq hypothesis, it is natural and common to use it as a turbulent velocity

scale. The choice for the second scale is not so straightforward and depends on the turbulence
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model. Models which use Boussinesq hypothesis are further classified by the number of addi-

tional transport equations introduced for modelling the parameters by which eddy viscosity is

defined. Some of them are listed below.

1. Zero-equation models are upgraded versions of mixing length models, with the one im-

provement being the redefinition of mixing length valid trough the whole boundary layer.

They do not include any additional transport equations. The examples here are: Cebeci-

Smith and Baldwin-Lomax model [7].

2. One-equation models, like most models, usually use turbulent kinetic energy for veloc-

ity scale. Turbulent length scale can be prescribed with some simple algebraic relation,

like in mixing length model, but these models are still incomplete, as the prescription

for length scale can be made only for isolated flow regions like boundary layers, mixing

planes or jets (planar or round). Exception here is the Spalart-Allmaras turbulence model

[7], in which empirical transport equation for eddy viscosity is given.

3. Two-equation models represent the simplest class of complete models of turbulence as

they provide transport equations for both turbulent velocity scale and turbulent length

scale. The choice of turbulent velocity scale usually falls on turbulent kinetic energy.

For the turbulent length scale, Wilcox notes [7] that it is equivalent to the dissipation of

turbulent kinetic energy. The two most usual choices fall on dissipation rate ε or dissipa-

tion per unit turbulence kinetic energy ω , also termed as specific dissipation rate. Here,

two main families of two-equation models are branching: k−ε models and k−ω models.

For both k and ε exact transport equations can be derived [7], but unfortunately, both of them

include additional new terms. So instead of those, the modelled k and ε equations, obtained by

modelling these unknown terms using dimensional analysis and including additional closure

coefficients (later: model constants), are being used. Equation for ω is completely postulated.
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There are many other models, like three and four equation models. Also non-linear, quadratic

and cubic, eddy viscosity models, which are not covered here. Ones presented here serve as the

base of eddy viscosity models.

3.6.1 k− ε Turbulence Model

This section covers the k− ε turbulence model. The model is implemented according to Jones

and Launder [2], but with retuned constants of Launder and Sharma [3].

Eddy viscosity, obtained with dimensional analysis and with the inclusion of the addition con-

stant Cµ is:

νt =Cµ

k2

ε
. (3.32)

Modelled equation for the turbulent kinetic energy k reads:

∂k
∂ t

+∇ · (uk)− k∇ ·u−∇ · (Γk,e f f ∇k) = G− ε. (3.33)

Modelled equation for the dissipation rate ε reads:

∂ε

∂ t
+∇ · (uε)− ε∇u−∇(Γε,e f f ∇ε) =C1

ε

k
G−C2

ε2

k
. (3.34)

The production term G, represents the rate at which kinetic energy is transferred to turbulent

velocity fluctuations from the mean flow [7]:

G = 2νt

∣∣∣∣12 (∇u+(∇u)T )

∣∣∣∣2 . (3.35)

Additional relations and model constants,Table 3.1, are:

Γk,e f f = ν +νt , Γε,e f f = ν +
νt

σε

. (3.36)
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Table 3.1: k− ε turbulence model constants.

Cµ C1 C2 σε

0.09 1.44 1.92 1.3

The presented set of equations are tuned for free-shear flows [18]. In the near-wall region

different expressions, so-called wall functions need to be used. They are derived using the

assumption of balanced production and dissipation of turbulent kinetic energy for inertial sub-

layer:

G = ε. (3.37)

With an additional assumption that the near-wall flow can be regarded as two-dimensional

and wall parallel ( G = νt(du/dy)2), and if the ε is expressed using eddy viscosity definition

ε =Cµk2/νt , we obtain:

νt

(
du
dy

)2

=Cµ

k2

νt
,

(
νt

du
dy

)2

=Cµk2. (3.38)

Assuming constant wall shear stress from law-of-the-wall 3.23 leads to the final expression for

k in logarithmic sub-layer:

(
τw

ρ

)2

=Cµk2, (3.39)

k =
τw
ρ

Cµ
1/2 =

uτ
2

Cµ
1/2 . (3.40)

The same expression is obtained using Townsed’s observations [7] that in inertial layer follow-

ing ratio is valid : τxy/(ρk)≈ 0.3, and that shear stress is equal to wall shear stress.

Expression for ε is obtained by using the same G = ε balance assumption and the velocity

gradient obtained from law-of-the-wall du/dy = uτ/κy:

ε = νt

(
du
dy

)2

=
τw

ρ

du
dy

, (3.41)

ε =
τw

ρ

uτ

κy
=

uτ
3

κy
. (3.42)
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A more common expression for ε is obtained by substituting the solution for k = uτ/Cµ
1/2 in

(3.42):

ε =
C3/4

µ k3/2

κy
. (3.43)

3.6.2 k−ω SST Turbulence Model

The k−ω model was the first two-equation model proposed by Kolmogorov in 1942 and

later redesigned by many other researches. It can be used in the near-wall region and accurately

predicts mean flow profile and skin friction [27]. The drawback is that, unlike the k− ε model,

this model has sensitivity on imposed freestream boundary conditions on second transported

property, ω .

The approach that Menter [27] took was to combine the preferred characteristics of these two

mentioned models. To achieve k− ε freestream independency and k−ω ability to resolve the

near-wall flow, first ε equation is transformed to ω formulation. According to Wilcox and [28],

relation between them is:

ε = β
∗kω, (3.44)

dε

dt
= β

∗k
dω

dt
+β

∗
ω

dk
dt
→
(

dω

dt

)
k−ε

=
1

β ∗k
dε

dt
− ω

k
dk
dt

. (3.45)

Terms dε/dt and dk/dt present modelled equations of k− ε and k−ω model. For detailed

derivation of above expressions see [28].

Next, transformed ε equation is blended with original ω formulation:

dω

dt
= F1

(
dω

dt

)
k−ω

+(1−F1)

(
dω

dt

)
k−ε

(3.46)

where F1 is a blending function which in viscous and logarithmic sublayer activates the ω

formulation and in the wake region of boundary layer gradually switches to the ε formulation:

F1 = tanh(arg1
4), (3.47)

arg1 = min

{
min

[
max

( √
k

β ∗ωy
,
500ν

y2ω

)
,

4αω2k
CDkω+y2

]
,10

}
, (3.48)
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CDkω+ = max(CDkω ,10−10) , CDkω = 2αω2
∇k ·∇ω

ω
. (3.49)

For the k equation this approach is not necessary as the dissipation term in the k equation is

simply transformed with ε = β ∗kω .

Second modification is related to eddy viscosity definition in k−ω formulation: νt = k/ω .

Menter further emphasises that the main information momentum equation receives about the

turbulence is through eddy viscosity, which in logarithmic portions of turbulent boundary layer

is overestimated and violates important observations of Townsend [27]

τxy/ρ

k
≈ a1 , a1 = 0.31. (3.50)

Here, for the value of the ratio a1 = 0.31 is used instead of Cµ
1/2 = 0.3 introduced with the

k− ε model.

Eddy viscosity which would satisfy these observations is:

τxy = ρνt
du
dy

= a1ρk , νt =
a1k
du
dy

. (3.51)

For general flows, instead of du
dy , a strain rate magnitude is used:

S =
√

S2 , S2 = 2S : S , S =
1
2
(
∇u+∇(u)T) . (3.52)

Expression (3.51) is enforced in the definition of eddy viscosity νt = k/ω by placing a limiter

on the maximum value of νt :

νt = min
(

k
ω
,

a1k
F2
√

S2

)
, (3.53)

where F2 is a function that is constructed to have the value of 1 for boundary-layer flows and 0

for free shear layers:

F2 = tanh(arg2
2), (3.54)

arg2 = min

[
max

(
2
√

k
β ∗ωy

,
500ν

y2ω

)
,100

]
. (3.55)
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The name of the model Shear Stress Transport is due to the enforced mechanism on eddy vis-

cosity at which shear stresses are being transported τxy/(ρk) = const. This modification largely

improved the predictions in cases with an adverse pressure gradient.

Implementation of k−ω SST model in foam-extend is given by description from the source

code:

”Turbulence model is described in [4], with updated coefficients from [5], but with the consis-

tent production terms from the 2001 paper as form in the 2003 paper is a typo, and the addition

of the optional F3 term for rough walls from [6]”.

Eddy viscosity definition reads:

νt =
a1k

max(a1ω,b1F23S2)
(3.56)

Turbulent kinetic energy equation reads:

∂k
∂ t

+∇ · (uk)− k∇ ·u−∇ · (Γk,e f f ∇k) = min(G,c1β
∗kω)−β

∗kω (3.57)

Specific dissipation rate equation reads:

dω

dt
+∇ · (uω)−ω∇ ·u−∇ · (Γω,e f f ∇ω) =

γ min
[

S2,
c1

a1
β
∗
ω max

(
a1ω,b1F23

√
S2

)]
−βω

2 +(1−F1)CDkω .

(3.58)

Additional relations and model constants, Table 3.2 , are:

Γk,e f f = αkνt +ν , Γω,e f f = αωνt +ν , (3.59)

G = νtS2, (3.60)

F3 = 1− tanh(arg3
4) , arg3 = min(

150ν

y2ω
,10), (3.61)
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Filip Šutalo Master’s Thesis

F23 =

F2 default value,

F2 F3 for accounting surface rougness.
(3.62)

Table 3.2: k-omega SST turbulence model constants.¡

αk1 αk2 αω1 αω2 β1 β2 β ∗ γ1 γ2 a1 b1 c1

0.85 1.0 0.5 0.856 0.075 0.0828 0.09 5/9 0.44 0.31 1.0 10.0

Additional model constants: αk, αω , β , γ , collectively noted as ϕ , result as a blending proce-

dure of ω equation:

ϕ = F1(ϕ1−ϕ2)+ϕ2. (3.63)

Similarly to the k− ε model, relations for the logarithmic sublayer are derived from the same

assumption of balanced generation and dissipation of turbulent kinetic energy, here: G= β ∗kω .

Solution for the k equation is unchanged as it is the same equation as in k− ε model:

k =
u2

τ

(β ∗)1/2 =
uτ

2

Cµ
1/2 . (3.64)

Derivation procedure for ω is:

νt
du
dy

du
dy

= β
∗
ωk ,

τw

ρ

du
dy

= β
∗
ωk , ω =

τw/ρ

k
1

β ∗
du
dy

. (3.65)

By using τw/(ρk) = a1 and velocity gradient from the log-law, the final expression for distri-

bution of ω in logarithmic region is:

ω =
a1

β ∗
du
dy

, ω =
uτ

0.3κy
. (3.66)

Value a1/β ∗ = 1/0.29 is replaced either with 1/a1 or 1/(β ∗)1/2 = 1/C1/2
µ , depending on the

choice of the author.
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In the case of k−ω formulation, an additional expression for ω , valid in the viscous region,

can be derived. From the assumption of equality of viscous and dissipation terms [29] in that

region, we obtain the following differential equation:

d2ω

dy2 =
β

ν
ω

2 (3.67)

which has a solution [7]:

ω =
6ν

β1y2 . (3.68)

3.6.3 Low-Reynolds Number Effects

We start this section by analysing the behaviour of turbulent quantities when approaching

the wall. For simplicity, the analysis is performed for flow over a flat plate. Taylor series

expansion of fluctuating velocity components [19] near the wall reads:

u′(y) = u′(0)+
(

∂u′

∂y

)
y=0

y+
(

1
2

∂ 2u′

∂y2

)
y=0

y2 + · · · , (3.69)

v′(y) = v′(0)+
(

∂v′

∂y

)
y=0

y+
(

1
2

∂ 2v′

∂y2

)
y=0

y2 + · · · , (3.70)

w′(y) = w′(0)+
(

∂w′

∂y

)
y=0

y+
(

1
2

∂ 2w′

∂y2

)
y=0

y2 + · · · , (3.71)

in which it is assumnerd that velocity gradients at y = 0 in wall parallel direction are zero.

Continuity equation for the fluctuating velocity components at the wall is:(
∂u′

∂x

)
y=0

+

(
∂v′

∂y

)
y=0

+

(
∂w′

∂ z

)
y=0

= 0 (3.72)

which by including the ∂/∂x = 0 and ∂/∂ z = 0 reduces to:

(
∂v′

∂y

)
y=0

= 0. (3.73)

With the above expressions, and using the no-slip condition, Taylor series can be rewritten as:

u′(y) = Ay+O(y2,) (3.74)

v′(y) = By2 +O(y3), (3.75)

w′(y) =Cy+O(y2). (3.76)
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Distribution of turbulent kinetic energy near the wall is:

k =
1
2

u′ ·u′ = 1
2
[(u′)2 +(v′)2 +(w′)2] (3.77)

=
1
2
(A2 +C2)y2 +O(y3)≈ 1

2
(A2 +C2)y2,

and near-wall distribution of dissipation rate [7] can be rewritten as:

ε = ν∇u′ : ∇u′ = ν

(
∂u
∂y

)2

+

(
∂w
∂y

)2

+ · · · (3.78)

= ν(A2 +C2)+O(y)≈ ν(A2 +C2).

Combining expressions (3.77) and (3.78), a relation is obtained in which finding the value of

constants A and C is avoided:
ε

k
=

2ν

y2 → ε =
2νk
y2 . (3.79)

Using ε = β ∗kω , a relation for near-wall ω can also be found:

ω =
2ν

β ∗y2 . (3.80)

Comparing the ε = ν(A2+C2)+O(y) and k = 0.5(A2+C2)y2+O(y3) another expression can

be deduced:

ε = 2ν

(
∂
√

k
∂y

)2

. (3.81)

Final expression valid for ε in near-wall region follows from k equation and assumption that

near the wall diffusion and dissipation terms are balanced:

ε = ν
dk2

dy2 . (3.82)

Models which are following the derived distribution of turbulent quantities in near-wall region

are said to be asymptotically consistent.

Historically, in modelling the transport equations for turbulence, two approaches can be dis-

cerned. In the first approach, a model is tuned for the regions distanced from the wall, charac-

terised by local High Reynolds Numbers - HRN models. The near-wall region is characterised
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by high gradients, and computational resources at the time of development of these models

were insufficient to deal with them. Instead, when these models are used, near-wall regions

are covered by wall functions. Typically, presented k− ε model is of this class of turbulence

models.

In the second approach, viscous effects of the near-wall region are taken into account by multi-

plying each term of the right-hand side of HRN models with damping functions which are acti-

vated in the near-wall region (value below 1) to damp the high-Reynolds formulation. Damping

functions are constructed to match the DNS distribution and asymptotic consistency of turbu-

lent quantities as accurately as possible and to retrieve the additive constant B of the law-of-the-

wall. To achieve this, a significant number of damping functions has been developed. Models

following this approach are termed as Low-Reynolds Number - LRN models. Wilcox [7] points

that it is misleading to expect that this approach corrects the bad performance of k− ε in the

case of adverse pressure gradient flows [7].

Later, performance of k−ω clarified some uncertainties of two-equation models. It showed

that the problem was not in the damping functions but in the choice of the second transported

variable. This model allows its use in the near wall region, and although it is not asymptotically

consistent (compare (3.80) and (3.68)) it reproduces reasonable mean flow profiles (B = 5.1

[7]).

Finally, Menter in his SST model showed that direct modification to eddy viscosity has a greater

effect than matching the distribution of k and ε with DNS or experimental data. He even

argues that it is unclear why matching turbulence variables with the DNS data should result in

improved eddy viscosity distribution.

Therefore, k−ω and k−ω SST are not real low-Reynolds turbulence models but are often

referred as such. This is a misconception since additional variants of k−ω and k−ω SST with

the damping functions exist.
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3.7 Closure

This chapter covered turbulence modelling from the engineering perspective. The main

emphasis was on RANS modelling of which two models were presented in detail, k− ε and

k−ω SST model. Both of them are based on the Boussinesq hypothesis, but also on the

conclusions of the mixing length model which was derived in detail. The end of the chapter

introduced some limitations of the presented two-equation models. The focus was on the region

near the wall, since later on the wall function will be explained and other methods used as a

part of near-wall treatment.
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Chapter 4

Numerical Modeling of Turbulent Flows

In the previous chapter it was noted that analytical solution to the Navier-Stokes equations

exists only for a few special cases. After the Reynolds averaging and Boussinesq assumption,

the semi-analytical solution exists only for a wall limited flow region. When two additional

transport equations which desribe the eddy viscosity are added to the set, the analytical solution

is impossible to obtain. To find a solution for more complex problems of practical interest,

numerical procedures are often employed. Specifying the domain of interest with boundary

and initial conditions, these methods will provide an approximate solution in the predefined set

of points of the domain.

As a part of numerical solution procedure, boundary conditions for each transported variable

need to be prescribed. The boundary conditions for an incompressible flow are:

• Freestream boundary conditions such as inlet and outlet,

• Periodic boundary conditions,

• Wall boundary conditions - wall treatment,

• Symmetry plane.

A commonly used numerical method in Computational Fluid Dynamics is the Finite Volume

Method and the wall treatment will be explained pertinent to it. The logic which all methods

follow is explained in the first section and each following section gives more detail for each

specific method. More detail on the specified numerical method can be seen in [30] and [31].

28
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4.1 General Approach to Wall Treatment

In Chapter 2 it was pointed out that the main characteristic of turbulence is its enhanced

mixing which in near wall region causes an increase of gradients. From a computational point

of view, most natural way to deal with this would be to use sufficiently fine mesh to com-

pletely resolve the flow. Physically, first computational point must fall in the viscous sublayer,

y+ < 0.5. This approach is called the Low-Reynolds Number approach and requires turbulence

models that can be integrated through viscous sublayer, such as LRN models, or in our case

k−ω SST. This procedure dramatically increases the number of cells leading to a high com-

putational time and large memory requirements. Consequently, resolving high gradients makes

convergence rate much slower. Also, high-Reynolds models cannot be used on such meshes,

such as the introduced k− ε model. Because of these disadvantages a different method needs

to be used.

The first idea would be to use the findings of the standard law-of-the-wall and set the value of

velocity in wall adjacent cells. This way, a problem of high gradients is avoided but it is only

applicable to the case of a flat plate flow. A more general way would be to obtain the value of

wall shear stress from the law-of-the-wall and compare it with the discretised one: νu/y. For

cases where values differ, additional viscosity νt
w is introduced in the discretised form of wall

shear stress for correction:

τw

ρ
= (ν +νt

w)
u
y
. (4.1)

Physically, eddy viscosity at the wall is zero. Still, this notation is adopted as it is used in

foam-extend. The term u stands for the magnitude of velocity vector parallel to the wall and

for the case of a moving wall, magnitude of relative velocity vector parallel to the wall. In the

context of Finite Volume Method, y is the normal distance of first cell centre from the wall. In

order to present the final implementation of wall treatments in foam-extend, in final expres-

sions velocity gradient will be consistently written as u/y = |∇uw|.
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Standard law-of-the-wall is derived using the assumption of negligible convection and pressure

gradient effects, meaning that for complex flows the obtained wall shear stress will at best be

just an approximation. Other expressions, which include effects of pressure gradient and con-

vection exist, and some of them will be shown in the next sections.

The advantage of the wall functions is that the need for a large number of grid nodes points near

the wall is eliminated. In this way, resolving the near wall high gradients is avoided making

the computation more efficient. Furthermore, accounting for the viscous effects in turbulence

models through damping functions is avoided. But, the method is not completely satisfactory.

Numerical solutions are sensitive to the placement of the first node. Strictly speaking, wall

functions are limited by the validity of expression for wall shear stress, e.g. for law-of-the-wall

y+ must be between 30 and 300. The upper limit is not strictly defined, and depends on the

Reynolds number.

Turbulent kinetic energy equation follows a similar procedure. The value for k in first cell

centre can be set using the expression derived for the log-layer:

k =
uτ

2

Cµ
1/2 , (4.2)

or a more general approach would be to solve the transport equation with a modified pro-

duction and destruction term. Both terms have large gradients and need to be modified in order

to achieve an accurate solution on coarse meshes. For turbulent kinetic energy, two boundary

conditions are valid, k = 0 and ∇k|n = 0 (see (3.77)). Using the ∇k|n = 0 sets the diffusion term

to zero and is much more often used than k = 0.

For ε , specifying the boundary condition is not straightforward. Asymptotic analysis implies a

fixed value of ε on the wall:

ε = ν(A2 +C2), (4.3)

but the constants A and C are unspecified. Instead, a definition for dissipation equation is altered

to ε̃ for which the wall-boundary condition: ε̃ = 0 is applied and the relation for dissipation
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term in k equation is given by:

ε̃ = ε− εBC. (4.4)

Where εBC is the expression valid as wall boundary condition, derived from the asymptotic

analysis, with the possibility of being:

εBC =
2νk
y2 or εBC = 2ν

(
∂
√

k
∂y

)2

or εBC = ν
∂ 2k
∂y2 . (4.5)

In their version of the Low-Reynolds k−ε model, Lam and Bremhorst [7] solve ε equation and

impose ν∂ 2k/∂y2 as wall boundary condition.

Note that this procedure is only meaningful for the Low-Reynolds versions of k− ε model. In

the case of our standard k− ε model, ε equation prohibits the use of model near the wall, and

above mentioned methods for specifying the boundary condition cannot be used. Instead, value

is prescribed in wall adjacent cell using derived wall function:

ε =
C3/4

µ k3/2

κy
, (4.6)

or some other expression, which will be covered in next sections.

Wall boundary condition for ω = 6ν

β1y2

∣∣∣
y=0

at the wall has singularity and from a numerical

point of view cannot be used. Instead, value is set in wall adjacent cell centre using the solution

either for viscous or log-layer, depending of the placement of first cell centre. Menter [27]

alters expression for ω in viscous layer (3.68) which can be used as boundary condition:

ω = 10
6ν

β1y2 . (4.7)

The use of above expression is valid for y+ < 3.
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4.2 Wall Functions for k− ε Model

4.2.1 Standard Wall Functions

In this section, wall functions of Launder and Spalding are presented. As they state [11],

they: ”represent the best practice of the Imperial College group” and are given for k− ε tur-

bulence model. Wall shear stress is obtained from law-of-the-wall in which u∗ =Cµ
1/4k1/2 is

used as the velocity scale instead of uτ = τw/ρ:

u =
u∗

κ
ln
(

E
u∗y
ν

)
, u∗ =

uκ

ln(Ey∗)
, u∗ =

uκ

ln(Ey∗)

/
·u∗ , (4.8)

u∗2 =
u∗uκ

ln(Ey∗)
,

τw

ρ
=

Cµ
1/4k1/2uκ

ln(Ey∗)
. (4.9)

New velocity scale u∗ follows from the Townsend observations: τw/ρ = Cµ
1/2k (here Cµ

1/2

is used insted a1) and improves the performance [32] in separation and reattachment points of

the law-of-the-wall. Also, by replacing uτ with u∗, new non-dimensional distance parameter is

introduced, y∗ = u∗y/ν .

Turbulent kinetic energy is calculated from transport equation, setting the diffusion term to

zero. The modified production term is calculated from the original definition, which for a 2D

case reduces to:

G = νt

(
du
dy

)2

= νt

(
du
dy

)(
du
dy

)
=

τw

ρ

(
du
dy

)
=

τw

ρ

τw

κρCµ
1/4k1/2y

. (4.10)

The final expression (4.10) for G follows from the assumption of near-wall constant shear stress

νt(du/dy) = τw/ρ , and velocity gradient derived from law-of-the-wall (4.8) which is redefined

with new velocity scale u∗:

du
dy

=
u∗

κy
,

du
dy

=
u∗

κy
· u
∗

u∗
=

u∗2

κu∗y
=

τw
ρ

κCµ
1/4k1/2y

. (4.11)

High gradients of dissipation term can be taken into account by the averaging procedure. How-

ever, performing the integration:

ε =
1
2y

∫ 2y

0

Cµ
3/4k3/2

κy
dy, (4.12)
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leads to the mathematical singularity at the wall. This happens as the expression ε =Cµ
3/4k3/2/κy

is valid only in logarithmic portion of turbulent boundary layer. Instead, the modified dissipa-

tion term is found from regular production = dissipation balance in the inertial layer. The

averaging is performed up to the first wall-grid point, and not throughout the whole control

volume:

∫ y

0
εdy =

∫ y

0
Gdy =

∫ y

0

τw

ρ

(
du
dy

)
dy. (4.13)

Using the assumption of constant wall shear stresses leads to:∫ y

0
εdy =

τw

ρ

∫ y

0

(
du
dy

)
dy =

τw

ρ
∆u, (4.14)

∆u = u2−u1 =
u∗

κ
ln(Ey∗)−u1. (4.15)

In the expression (4.15), ∆u is obtained using the value from the law-of-the-wall and boundary

condition for velocity. If the wall boundary condition for velocity is zero, and expression (4.15)

is back-substituted to (4.14), after averaging, the final expression is:

1
y

∫ y

0
εdy =

1
y

τw

ρ

u∗

κ
ln(Ey∗) =

1
y

u∗3

κ
ln(Ey∗) =

1
y

Cµ
3/4k3/2

κ
ln(Ey∗). (4.16)

In the original paper [11], for the above expression Cµ is used rather than Cµ
3/4. As it is noted

in [28], it is probably a typographical error.

Finally, transport equation for ε is not solved and instead the value at the wall adjacent cell

centre is prescribed using the expression:

ε =
Cµ

3/4k3/2

κy
. (4.17)

In foam-extend this is the default wall function for k-epsilon model. Expressions in the form

in which they are implemented will be covered in section 4.4. Similar wall functions can be

derived for the k−ω SST model. As this model has additional property that can be used

through viscous sublayer, a more general method can be developed in which wall functions are

just a part of wall treatment. This is presented in section 4.3.
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4.2.2 Non-Equilibrium Wall Functions

Sometimes, near-wall flows are subjected to conditions that differ from the ones for which

standard law-of-the-wall is derived. For favourable pressure gradient, major differences can

occur from the so-called universal inner-law velocity distribution, meaning that standard wall

functions will be less reliable. For this reason, a more general wall functions that account for

those non-equilibrium effects are presented here. The law-of-the-wall, modified for accounting

the pressure gradient [8] is:

ŨCµ
1/4k1/2

τw/ρ
=

1
κ

ln(Ey∗), (4.18)

Ũ = u− 1
2

d p
dx

[
yv

κk1/2 ln
(

y
yv

)
+

y− yv

κk1/2 +
yv

2

ν

]
, (4.19)

in which d p/dx is the wall parallel kinematic pressure gradient. Physical viscous sublayer

thickness yv, denotes the edge of the viscous sublayer y∗v = 11.225 as the intersection of viscous

law u+ = y+ and log-law u+ = 1
κ

ln(Ey+). Different values for y∗v are reported in different

sources. The actual solution of the resulting nolinear equation y+ = 1
κ

ln(Ey+) is y+ = 11.5301.

y∗v =
Cµ

1/4k1/2 yv

ν
, yv =

11.225ν

Cµ
1/4k1/2

. (4.20)

As already pointed out, two distinct regions with different structures near the wall exist, the

viscous and inertial sublayer. However, previous wall functions eliminated the influence of

the viscous sublayer, which may be significant for the solution. For improving the accuracy, a

more complete model of near-wall turbulence is required. Approximated variations of turbulent

quantities across the wall adjacent cell are:

τt =

0 ,y < yv

τw ,y > yv

, k =

( y
yv

2) ,y < yv

kP ,y > yv

, ε =


2νk
y2 ,y < yv

Cµ
3/4k3/2

κy ,y > yv

, (4.21)

where kP denotes the value in the cell centre.
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Artificial wall eddy viscosity νt
w for cells in turbulent region is computed by equating the wall

shear stress by its discretised value:

τw

ρ
=

ŨCµ
1/4k1/2κ

ln(Ey∗)
= (ν +νt

w)
u
y
, (4.22)

νt
w =

y
u

ŨCµ
1/4k1/2κ

ln(Ey∗)
−ν = ν

(
Ũκ

u ln(Ey∗)
Cµ

1/4k1/2y
ν

−1

)
= ν

(
Ũ y∗κ

u ln(Ey∗)
−1
)
. (4.23)

Using the prescribed variation of turbulent shear stresses (4.21), wall eddy viscosity for the

whole near-wall region is defined as:

νt
w =

 0 ,y < yv

ν

(
Ũy∗κ

uln(Ey∗) −1
)

,y > yv

. (4.24)

Here, modified terms for turbulent kinetic energy equation, averaged production and dissipation

terms are including the effects of viscous layer by averaging the assumed variation over first

wall adjacent cell. Given procedure is valid only for quadrilateral and hexahedral cell types:

G =
1
2y

∫ 2y

0

τt

ρ

du
dy

dy =
1
2y

(∫ yv

0
0dy+

∫ 2y

yv

τw

ρ

du
dy

dy
)
=

1
2y

∫ 2y

yv

τw

ρ

τw

κρCµ
1/4kp

1/2y
dy

=
1
2y

(
τw

ρ

)2 1

κCµ
1/4kp

1/2 ln
(

2y
yv

)
=

((ν +νt
w) |∇uw|)2

2y Cµ
1/4k1/2κ

ln
(

2y
yv

)
, (4.25)

ε =
1
2y

∫ 2y

0
ε dy =

1
2y

(∫ yv

0

2νkP

yv2 dy+
∫ 2y

yv

kP
3/2Cµ

3/4

κy
dy

)

=
1
2y

[
2νkP

yv2 yv +
kP

3/2Cµ
3/4

κ
ln
(

2y
yv

)]
=

1
2y

[
2νkp

yv
+

kP
3/2Cµ

3/4

κ
ln
(

2y
yv

)]
. (4.26)

Final form of the averaged terms reads:

G =


0 ,y < yv

((ν+νt
w)|∇uw|)2 ln( 2y

yv )

2yCµ
1/4k1/2κ

,y > yv

, ε =


1
2y

[
2νkp

yv
+

kP
3/2Cµ

3/4

κ
ln
(

2y
yv

)]
2νkP
yv2 ,y > yv

. (4.27)
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Comparing this with the expression derived for velocity gradient, it is evident that in averaged

production term, pressure gradient is only partially included in velocity gradient. Assuming

that d p/dx is constant:

u =
τw

ρ

1

κCµ
1/4k1/2

ln

(
E

Cµ
1/4k1/2y

ν

)
+

1
2

d p
dx

[
yv

κk1/2 ln
(

y
yv

)
+

y− yv

κk1/2 +
yv

2

ν

]
, (4.28)

du
dy

=
τw

ρ

1

κCµ
1/4k1/2

1
y
+

1
2

d p
dx

[
yv

κk1/2
1
y
+

1
κk1/2

]
. (4.29)

As it was the case with the standard wall functions with ε equation, value is prescribed in the

wall adjacent cells, but here using the assumed variation (4.21):

ε =


2νk
y2 ,y < yv

Cµ
3/4k3/2

κy ,y > yv

. (4.30)

4.3 Wall Treatments for k−ω SST Model

4.3.1 Automatic Near-Wall Treatment

For turbulence models that allow integration up to the wall, a more general method of

wall treatment can be applied. If the first cell volume falls in the logarithmic region, a wall

function approach is preferred, effectively avoiding the sharp gradients near the wall. For cells

in the viscous region, it would be reasonable to make use of a relation which is valid there,

expressions 3.30 and 3.68. When refining the near-wall mesh, it would be desirable to have

a function that gradually switches from the wall function expressions to expressions for the

viscous layer, making them appropriate even for the buffer region. Something similar is used

with non-equilibrium wall functions (section 4.2.2 ), although there, with a sharp switching

behaviour at y+ = 11.225.

The method here is presented for the k−ω SST model, but other turbulence models, which

allow integration through viscous sublayer, use the same logic too.
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Esch and Menter’s [4] proposition for wall treatment is presented here.

• Blending for shear stresses τw
ρ
= uτ

2 reads:

uτ =
4
√

uτ vis
4 +uτ log

4, (4.31)

u+ = y+ ,
u

uτ vis
=

uτ visy
ν

, uτ vis
2 = ν

u
y
, (4.32)

u+ =
1
κ

ln(Ey+) ,
u

uτ log
=

1
κ

ln(Ey+) , uτ log =
uκ

ln(Ey+)
, (4.33)

• Blending for the specific dissipation rate ω:

ω =
√

ωvis2 +ωlog
2, (4.34)

ωvis =
6ν

β1y2 , ωlog =
uτ

Cµ
1/2

κy
. (4.35)

For low y values the 1/y2 in ωvis will dominate and for larger y values 1
y from ωlog will prevail.

Similar obseravtions hold for friction velocity blending. For small y, 1/y values prevail over

|1/ln(y)| while the opposite is for larger y.

Also, another very common method is Kader blending [14]:

φ = φviseΓ +φloge1/Γ , Γ =−0.01(y+ )4

1+5y+
, (4.36)

where φ can be any flow property for which a value is required in the wall adjacent cell, e.g. :

G, du
dy , ω , τw...

Wall treatment, that will be tested in the next chapter, is based on Menter’s blend, but with a

more detailed implementation, as given in [32]. Although they refer to [33], formulations are

not the same. Furthermore, similar expressions are given in [9], but without any reference to

the source. Additionally, production term is altered according to [14].

• Wall shear stress with different definition: τw
ρ
= uτu∗, is computed as:

u∗ = 4
√

uτ vis
4 +(

√
a1k)4 ,uτ =

4
√

uτ vis
4 +uτ log

4 (4.37)
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• Specific dissipation rate ω =
√

ωvis2 +ωlog
2 is blended with altered expression for log-

layer. Instead of the usual Cµ
1/2 = 0.3 constant, here a1 = 0.31 is used, and also uτ is

replaced with u∗:

ωvis =
6ν

β1y2 , (4.38)

ωlog =
uτ

a1κy
=

uτ

aκy
uτ

uτ

ν

ν
=

uτ
2

a1κν
uτ y
ν

=
uτ

2

a1κνy+
=

u∗2

a1κνy+
. (4.39)

This wall treatment uses a combination of derived and empirical values. Caution should be

taken in (4.39) as u∗ is now a blended (4.37) value.

Solution procedure stays the same as with the wall functions. For the momentum equation, νt
w

is obtained from equality:

τw

ρ
= uτu∗ = (ν +νt

w)|∇uw| , νt
w =

uτu∗

|∇uw|
−ν . (4.40)

ω is set in wall adjacent cell according to (4.38), and the same value is used when solving the

k equation. The modified production term is prescribed as:

Glog =
τw

ρ

(
du
dy

)
= (ν +νt

w)|∇uw|
u∗

κy
, (4.41)

where for the wall shear stress τw/ρ = uτu∗ = (ν +νt
w)|∇uw| is used, and velocity gradient is

from the log-law du/dy = u∗/κy, but now with u∗ as a blended value.

Although the wall shear stress appearing in (4.41) is blended-value applicable for the whole

near-wall region, due to the velocity gradient du/dy = u∗/κy, the final result should be ap-

plicable only for log-region. It is shown in [14] that the similar expression to (4.41) gives

reasonable representation of G through the whole near-wall region, but for better asymp-

totic consistency in viscous region, Glog should be blended with a definition for viscous layer

Gvis = νt(du/dy)2 = k/ωvis(u/y)2. For that purpose Kader, blending is used:

G = GviseΓ +Gloge1/Γ. (4.42)

In [14] a different turbulence model is used, but we expect to achieve similar behaviour the

with k−ω SST model.
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4.3.2 Enhanced Wall Treatment

In this section, we pursue to improve automatic wall treatment method, in order to make

it more accurate by taking into account the effects of the pressure gradient. Derivation of

the expressions follows the notes from [10], and the original paper [1] upon which the wall

treatment is based.

The starting point is the simplified averaged wall parallel momentum equation:

∂u
∂ t

+u ·∇u =− 1
ρ

∂ p
∂x

+
∂

∂y

(
ν

∂u
∂y
−u′v′

)
. (4.43)

Neglecting the unsteady and convective terms and performing the integration while keeping the

pressure gradient constant results with the following:

(
ν

du
dy
−u′v′

)
=

d p
dx

y+C. (4.44)

The same approach is used in deriving the law-of-the-wall, the only difference being that the

pressure gradient term is retained. At the wall, shear stress is equal to wall shear stresses, which

leads to the value for the integration constant (νdu/dy−u′v′) = τw/ρ =C:

(
ν

du
dy
−u′v′

)
=

d p
dx

y+
τw

ρ
. (4.45)

Near the wall, viscous effects are dominant and turbulent shear stress τt/ρ = −u′v′ can be

neglected:

ν
du
dy

=
d p
dx

y+
τw

ρ
. (4.46)

Equation is further transformed into dimensionless form:

ν
du
dy

=
d p
dx

y+
τw

ρ
:
/

τw

ρ
,

ν

τw/ρ

du
dy

=
1

τw/ρ

d p
dx

y+1, (4.47)

ν

uτ
2

du
dy

=
1

uτ
2

d p
dx

y
uτ

uτ

ν

ν
+1 ,

ν

uτuτ

du
dy

= αy++1, (4.48)

d( u
uτ
)

d(uτ y
ν
)
= αy++1 ,

du+

dy+
= αy++1, (4.49)

with introduced pressure gradient parameter α = ν/uτ
3(d p/dx). Note that the pressure is

divided by the density. Integrating over y+ and setting the integration constant from the no-slip
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condition, leads to the solution for the velocity profile near the wall:

u+vis = α
y+

2
+ y+ = y+

(
1+

α

2
y+
)
. (4.50)

Setting α = 0, expression (4.50) reduces to the standard viscous law-of-the-wall u+ = y+.

Note that Fluent’s definition of α is based on u∗:

α =
ν

u∗3
d p
dx

. (4.51)

Away from the wall, turbulent shear stresses prevail over viscous stresses (4.45), and for mod-

elling them Prandtl’s mixing length model is used: −u′v′ = κ2y2 |du/dy| du/dy:

κ
2y2
∣∣∣∣du
dy

∣∣∣∣ du
dy

=
d p
dx

y+
τw

ρ
. (4.52)

Assuming that the right hand side is non-negative, which puts a lower limit on the value of the

pressure gradient d p/dyy≥−τw, the term |du/dy| du/dy can be replaced with (du/dy)2 :

κ
2y2
(

du
dy

)2

=
d p
dx

y+ τw ,

(
du
dy

)2

=

d p
dx y+ τw

ρ

κ2y2 . (4.53)

Taking the square root:

du
dy

=

√
d p
dx y+ τw

ρ

κy
,

du
dy

=

√
d p
dx y+ τw

ρ

κy

/
·

1
uτ

uτ

ν

, (4.54)

d( u
uτ
)

d(uτ y
ν
)
=

√
1

uτ
2

d p
dx y+ τw

ρ

1
uτ

2

κ
uτ y
ν

=

√
1

uτ
2

d p
dx yuτ

uτ

ν

ν
+1

κy+
, (4.55)

du+

dy+
=

√
1

uτ
2

d p
dx

ν

uτ

uτ y
ν
+1

κy+
=

√
ν

uτ
3

d p
dx y++1

κy+
, (4.56)

du+

dy+
=

√
αy++1
κy+

, (4.57)

Faculty of Mechanical Engineering and Naval Architecture 40
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leads to differential equation which can be solved by the following substitution:

t = αy++1, (4.58)

dt = α dy+, (4.59)

u+ =
∫ √

αy++1
κy+

dy+ =
1
κ

∫ √
t

(t−1)
dt. (4.60)

Making an additional substitution ( t = p2 ,dt = 2pd p ) yields :

u+ =
1
κ

∫ √
p2

p2−1
2pd p =

1
κ

∫ p2p
p2−1

d p =
1
κ

∫ 2p2

p2−1
d p

=
1
κ

[∫ 2p2−2
p2−1

d p+
∫ 2

p2−1
d p
]

=
1
κ

[∫
2d p+

∫ 2
p2−1

d p
]

=
1
κ

[∫
2d p+

∫ ( 1
p−1

− 1
p+1

)
d p
]

=
1
κ

[
2p+

∫ 1
p−1

d p−
∫ 1

p+1
d p
]
+u+t1

=
1
κ
[ 2p+ ln |p−1|− ln |p+1| ]+u+t1 . (4.61)

Back substituting the p=
√

t , t =αy++1 and simplifying the expression with
∣∣∣√1+αy++1

∣∣∣=√
1+αy++1 leads to:

u+ =
1
κ

[
2
√

1+αy++ ln
∣∣∣√1+αy+−1

∣∣∣− ln
(√

1+αy++1
)]

+u+t1 . (4.62)

As the (4.62) is not defined at the wall, y+ = 0, the constant of integration, u+t1 is treated as

a slip velocity. Its value is obtained following the same approach as in [1], by matching the

profile (4.62) with standard law-of-the-wall at the point y+ = 6:

1
κ

ln(6E) =
1
κ

[
2
√

1+6α + ln
∣∣∣√1+6α−1

∣∣∣− ln
(√

1+6α +1
)]

+u+t1 , (4.63)

u+t1 =
1
κ

ln(6E)− 1
κ

[
2
√

1+6α + ln
∣∣∣√1+6α−1

∣∣∣− ln
(√

1+6α +1
)]

. (4.64)
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Analysis of (4.65) shows that for α → 0, enhanced law-of-the-wall reduces to 1/κ ln(Ey+):

u+ =
1
κ

[
2
√

1+αy++ ln
∣∣∣√1+αy+−1

∣∣∣− ln
(√

1+αy++1
)]

+
1
κ

ln(6E)

− 1
κ

[
2
√

1+6α + ln
∣∣∣√1+6α−1

∣∣∣− ln
(√

1+6α +1
)]

, (4.65)

u+ =
1
κ

[
2
√

1+αy++ ln

∣∣∣∣∣
√

1+αy+−1√
1+6α−1

∣∣∣∣∣− ln
(√

1+αy++1
)]

+
1
κ

ln(6E)

− 1
κ

[
2
√

1+6α− ln
(√

1+6α +1
)]

, (4.66)

lim
α→0

u+ =
1
κ

ln
(

lim
α→0

0
0

)
+

1
κ

ln(6E) =
1
κ

ln
(

y+

6

)
+

1
κ

ln(6E) =
1
κ

ln(Ey+). (4.67)

For indeterminate form 0
0 , L’Hospital’s rule is used:

lim
α→0

√
1+αy+−1√
1+6α−1

= lim
α→0

d
dα

(
√

1+αy+−1)
d

dα
(
√

1+6α−1)
= lim

α→0

1
2

y+√
1+αy+

1
2

6√
1+6α

=
y+

6
. (4.68)

For the y+ ≥ 60 region, a modification to the mixing length model is introduced. Influence of

pressure gradient on turbulent shear stresses is limited beyond y+ = 60:

−u′v′ =
d p
dx

y+
τw

ρ
, −u′v′ =

d p
dx

y
uτ

uτ

ν

ν
+

τw

ρ
, (4.69)

−u′v′ =
ν

uτ

d p
dx

y++
τw

ρ
, κ

2y2
∣∣∣∣du
dy

∣∣∣∣ du
dy

=
ν

uτ

d p
dx

60+
τw

ρ
, (4.70)

du
dy

=

√
60 ν

uτ

d p
dx +

τw
ρ

κy

/
· ν

uτ
2 ,

du+

dy+
=

√
60α +1
κy+

, (4.71)

u+ =
1
κ

√
1+60α ln(y+)+u+t2 . (4.72)
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Conducted derivation of turbulent near-wall profiles shows that for y+ < 60 and y+ ≥ 60 dif-

ferent expressions, (4.62) and (4.72), are being used. It is reasonable to expect that for y+ = 60

they give the same value for u+. From this condition, integration constant u+t2 can be found:

1
κ

[
2
√

1+60α + ln
∣∣∣√1+60α−1

∣∣∣− ln
(√

1+60α +1
)]

+u+t1 =
1
κ

√
1+60α ln(60)+u+t2 , (4.73)

u+t2 =
1
κ

[
2
√

1+60α + ln
∣∣∣√1+60α−1

∣∣∣
− ln

(√
1+60α +1

)
−
√

1+60α ln(60)
]
+u+t1 . (4.74)

The same limiting analysis as with the expression (4.62) can be used to show that (4.72) for

α = 0 reduces to standard-law-of-the-wall.

Final expressions for u+ in inertial layer reads:

u+log =


1
κ

[
2
√

1+αy++ ln
∣∣∣√1+αy+−1

∣∣∣− ln
(√

1+αy++1
)]

+u+t1 ,y+ < 60

1
κ

√
1+60α ln(y+)+u+t2 ,y+ ≥ 60

.

(4.75)

In the case of a favorable (negative) pressure gradient, there is a possibility that quantity

1+αy+ could become negative for large y+, giving the negative value under the square root

and making the formula (4.75) unusable. In order to avoid that, lower value for 1+αy+ needs

to be limited to 0 following [1]. The same safety measure is taken for terms
√

1+60α and
√

1+6α .

From the newly derived enhanced-law-of-the-wall, wall shear stress for viscous and turbulent

region is obtained. Switching between them is done using the Kader blending:

uτ = uτ vise
Γ +uτ loge1/Γ ,

τw

ρ
= uτ

2, (4.76)

uτ vis =
u

u+vis
, uτ log =

u
u+log

. (4.77)

Faculty of Mechanical Engineering and Naval Architecture 43
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Menter’s [4] blending method for friction velocity in this case would be inappropriate since u+vis

can become negative, making uτ vis negative, and blend uτ = 4
√

uτ vis
4 +uτ log

4 would alter it to

a positive value.

Modified production of turbulence kinetic energy is computed with the blended velocity gradi-

ent, using the derived formulations for viscous and logarithmic region:

du
dy

=

(
du
dy

)
vis

eΓ +

(
du
dy

)
log

e1/Γ, (4.78)

(
du
dy

)
vis

=
1
ν

(
1
ρ

d p
dx

y+
τw

ρ

)
,

(
du
dy

)
log

=



√
1
ρ

d p
dx y+ τw

ρ

κy
,y+ < 60√

60 ν

uτ

1
ρ

d p
dx +

τw
ρ

κy
,y+ ≥ 60

. (4.79)

In Fluent [10], ω equation is solved in the wall adjacent cells, with the wall boundary condition

ωw defined as the blended value of wall adjacent cell centre:

ω
+
vis =

6
βi(y+)2 , ω

+
log =

1

Cµ
1/2

(
du+

dy+

)
log

, (4.80)

ω
+
w =

√
ω

+
vis

2
+ω

+
log

2
, (4.81)

ωw =
(u∗)2

ν
ω

+
w . (4.82)

In dimensionless forms, expressions for ωvis and ωlog are equivalent to standard ones, but trans-

forming them to dimensioned ones is done using the empirical value u∗ instead of uτ . Also, the

constant β1 = 0.075 is replaced with a new one, βi = 0.072.

In this study, a well-established procedure of prescribing the value for ω in the wall adjacent

cells is instead adopted, for which simpler expressions are used:

ωvis =
6ν

β1y2 , ωlog =
1

Cµ
1/2

(
du
dy

)
log

, ω =
√

ω2
vis +ω2

log. (4.83)
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4.3.3 Modified Enhanced Wall Treatment

In most cases, one part of the pressure gradient is spent on accerelating the flow and the

other part on ballancing the wall shear stress. If in the enhanced wall treatment, α is denoted

as a parameter which excludes the part of flow acceleration, the problems of limiting the value

under the root
√

1+αy+ in cases of large negative pressure gradients can possibly be avoided.

Also, prediction in adverse pressure gradient flows should be improved. In order to test this,

convective terms are included in the momentum balance (4.52):

κ
2y2 du

dy

∣∣∣∣du
dy

∣∣∣∣= (d p
dx

+u ·∇u
)

y+
τw

ρ
. (4.84)

During the integration process, pressure gradient and convection terms were regarded as a

constant. A justification for that assumption is provided in [14] for two non-equlibrium flow

cases. Integration constant is obtained in the same manner, as with enhanced wall treatment,

by matching the expression with the law of the wall u+ = 1/κ ln(Ey+) at y+ = 6.

u+log =
1
κ

[
2
√

1+Ay++ ln
∣∣∣√1+Ay+−1

∣∣∣− ln
(√

1+Ay++1
)]

+u+t , (4.85)

u+t =
1
κ

ln(6E)− 1
κ

[
2
√

1+6A+ ln
∣∣∣√1+6A−1

∣∣∣− ln
(√

1+6A+1
)]

. (4.86)

Dimensionless parameter A = ν/(u∗)3(d p
dx + u ·∇u) includes both the pressure gradient and

convective terms.

By including the convective terms, we hope that the problem of negative value appearing under

the root
√

1+Ay+ is avoided. Still, a limiting procedure
√

max(0,1+Ay+) is kept in order to

ensure convergence and practical use of expression (4.85).

Limiting the influence of pressure gradient on turbulent shear stresses above y+ = 60 in this

wall treatment is not performed. Origin of that procedure is unknown and it is possible that in

the enhanced wall treatment this is a safety measure against the negative value under the square

root.
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For the viscous region standard viscous-law: u+ = y+ is used instead of the expression sensi-

tised with the pressure gradient. This is the main reason that the convergence process compared

to the enhanced wall treatment is significantly improved, which is shown in the next chapter.

Blending procedures for wall shear stress and production terms are adopted from the enhanced

wall treatment. For ω , values are prescribed in the wall adjacent cells and simplified expres-

sions are used.

• Wall shear stress reads:

uτ = uτ vise
Γ +uτ loge1/Γ ,

τw

ρ
= uτ

2, (4.87)

uτ vis =

√
ν

u
y
, uτ log =

u
u+log

. (4.88)

• Modified production reads:

G =
τw

ρ

du
dy

, (4.89)

du
dy

=

(
du
dy

)
vis

eΓ +

(
du
dy

)
log

e1/Γ, (4.90)

(
du
dy

)
vis

=
u
y
,

(
dU
dy

)
log

=

√
(d p

dx +u ·∇u)y+ τw
ρ

κy
. (4.91)

• Specific dissipation rate reads:

ωvis =
6ν

β1y2 , ωlog =
1

Cµ
1/2

(
du
dy

)
log

, (4.92)

ω =
√

ω2
vis +ω2

log. (4.93)
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4.4 Wall Treatments in foam-extend 3.2

In foam-extend 3.2, choice of νt
w is independent of the used eddy viscosity turbulence

model. This value is specified as a separate boundary condition, and if the user does not specify

anything, the default option based on standard wall functions is assumed:

τw

ρ
=

Cµ
1/4k1/2uκ

ln(Ey∗)
, (4.94)

τw

ρ
= (ν +νt

w)
u
y
, νt

w = τw
y
u
−ν =

Cµ
1/4k1/2uκ

ln(Ey∗)u
−ν , (4.95)

νt
w =

Cµ
1/4k1/2yκ

ln(Ey∗)
−ν = ν

(
Cµ

1/4k1/2yκ

ν ln(Ey∗)
−1

)
= ν

(
y∗κ

ln(Ey∗)
−1
)
. (4.96)

Demarcation of viscous-turbulent region, y+lam is computed from the nonlinear equation

y+lam = 1
κ

ln(Ey+lam) already disscused in section 4.2.2. Wall eddy viscosity νt
w for the whole

near wall region is defined as:

νt
w =


0 , y∗ ≤ y+lam

ν

(
y∗κ

ln(Ey∗)
−1
)

, y∗ > y+lam

. (4.97)

Treatment of other transported variables depends on the used turbulence model.

4.4.1 k− ε Model

Wall functions in foam-extend for the k− ε model are based on standard wall functions

[11]. Unlike there, averaged dissipation ε for turbulent kinetic energy is not computed and the

definition of production term is also slightly altered.

• Modified production term reads:

G =

 0 ,y∗ ≤ y+lam

Glog , y∗ > y+lam

, (4.98)
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(Glog)1 =
τw

ρ

(
du
dy

)
log

=
τw

ρ

τw

κρCµ
1/4k1/2y

=
[ (ν +νt

w) |∇uw| ]2

κCµ
1/4k1/2y

. (4.99)

(Glog)2 =
τw

ρ

(
du
dy

)
log

= (ν +νt
w)|∇uw|

u∗

κy
= (ν +νt

w)|∇uw|
Cµ

1/4k1/2

κy
. (4.100)

• Dissipation rate reads:

ε =
Cµ

3/4k3/2

κy
. (4.101)

From the presented derivation it can be seen that both Glog terms are matematically iden-

tical. They are derived from the same expression: τw/ρ(du/dy)log. But from a numerical

view they are different due to the discretisation error. In the foam-extend 3.2, expression

(4.99) is used in the wall functions for the k− ε model.

4.4.2 k−ω SST Model

Automatic wall treatment in the case of k−ω SST model is only partially taken into ac-

count, and only for the ω term.

• Production term reads:

G =

 0 ,y∗ ≤ y+

Glog , y∗ > y+
, (4.102)

Glog = (ν +νt
w)|∇uw|

Cµ
1/4k1/2

κy
. (4.103)

• Specific dissipation rate reads:

ω =
√

ω2
vis +ω2

log, (4.104)

ωvis =
6ν

β1y2 , (4.105)

ωlog =
1

Cµ
1/2

(
du
dy

)
log

=
1

Cµ
1/2

u∗

κy
=

1

Cµ
1/2

Cµ
1/4k1/2

κy
=

k1/2

Cµ
1/4

κy
. (4.106)
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In the next chapter, the presented wall treatments are tested. It is shown that for some regions

on the wall, this wall treatment fails. It is assumed that the cause for that is the sharp switching

behaviour of the production term and significant improvement is achieved using either (4.103)

through whole wall adjacent cell, or a blended expression for generation term defined as:

G = GviseΓ +Gloge1/Γ. (4.107)

For Glog relation (4.103) is used, and Gvis is formulated as:

Gvis = νt

(
du
dy

)2

=
k

ωvis

(
u
y

)2

. (4.108)

This modification on the production term results in a new method, which through the later text

termed as: improved wall treatment. For a production term, a blended value (4.107) is used.
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Validation Studies

Wall treatments described in the previous Chapter are implemented in the open-source code

foam-extend. Currently implemented wall treatments for k− ε and k−ω SST are com-

pared with the newly introduced ones and with experimental data for two test cases, flow over

NACA4412 aerofoil and flow over prolate spheroid. For both test cases, two grids are used: one

grid to test the Low-Reynolds behaviour (all cell volumes in the viscous layer) and the second

one with cell volumes both in the buffer and inertial layer. Wall functions for k− ε model are

not tested in the Low-Reynolds approach.

Both test cases were analysed using a steady state approach with the SIMPLE algorithm. For

convection of velocity, the linear-upwind scheme with a limiter is used, while for the rest of

convective terms, first order upwind scheme is used. Gradients and Laplacian terms are dis-

cretised with Gaussian integration with linear interpolation of cell-centered values to the faces.

Additionally, for the Laplacian term, explicit non-orthogonal correction for the surface normal

gradient is employed. Pressure equation is solved using the algebraic multigrid solver and all

other equations are solved with the BiConjugate Gradient Stabilized method (BiCGStab) with

diagonal incomplete-LU (DILU) preconditioner [34].
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The naming convention of different wall treatments used in diagrams is:

• k− ε standardWF: standard wall functions in foam-extend for k− ε model, section

4.4.1,

• k− ε NonEqWF: non-equilibrium wall functions for k− ε model, section 4.2.2,

• k−ω SST standardWT: current implementation of wall treatment for k−ω SST model

in foam-extend, section 4.4.2,

• k−ω SST AWT: automatic wall treatment, section 4.3.1,

• k−ω SST EWT: enhanced wall treatment, section 4.3.2,

• k−ω SST MEWT: modified enhanced wall treatment, section 4.3.3,

• k−ω SST IWT: improved wall treatment, e.g. current implementation of wall treatment

for k−ω SST model with the new production term, expression 4.107.

5.1 NACA4412 Aerofoil

To validate the methods presented in this work, flow past NACA4412 aerofoil at the an-

gle of attack of 15 degrees is investigated. Freestream velocity is set to U∞ = 18.4 m/s, and

the corresponding Reynolds number, based on the chord length c = 0.25m, is Rec = 3.6 ·105.

Numerical results are compared with the experimental data for C f and Cp from [35]. For

freestream turbulence intensity, value of I = u′/U∞ = 0.086% is taken and for turbulent viscos-

ity, ratio β = νt/ν = 5 is used. These values are used to set the freestream boundary conditions

for turbulent quantities:

k =
1
2

u′ ·u′ = 1
2
(I ·U∞)

2, (5.1)

ε =
0.09k2

βν
, (5.2)

ω =
0.09k
βν

. (5.3)

The given recommendation are taken from [36].
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Two structured grids are used. The first one for HRN approach with the wall adjacent cells in

the buffer and logarithmic region, GRID-A, and the second one with all of the wall adjacent

cells in the viscous region for LRN approach, named GRID-B. The domain is extruded in the

wall-normal direction approximately 50 chord lengths in order to eliminate the influence of the

farfield. The height of the wall adjacent cell is 10−3 m for coarse mesh and 10−5 m for the

Low-Reynolds number mesh. Both meshes have 598 points along the aerofoil surface which

are clustered towards the leading and trailing edges. Table 5.1 shows quality parameters of both

meshes and Figure 5.1 shows the mesh used for the LRN approach.

Table 5.1: NACA4412: mesh quality data for the GRID-A and GRID-B.

GRID-A GRID-B

Number of volumes 53332 94724

Max aspect ratio 92786.7 124588

Max non-orthogonality 43.75 (average: 1.11) 84.28 (average: 2.66)

Max skewness 0.428026 0.393202

(a) (b)

Figure 5.1: GRID-B for LRN approach: (a) complete computational domain for the

NACA4412, (b) zoomed view of the grid near the airfoil surface.
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5.1.1 Results

Figures 5.2 - 5.9 show the qualitative comparison of the skin friction, pressure coefficient,

y+ and y∗ between HRN and LRN approaches from which it can be seen that for LRN ap-

proach methods are in the close agreement, except for the enhanced wall treatment which for

this case has bad performance. A more detailed comparison between methods is given for skin

friction coefficient obtained with HRN approach, Figures 5.10 - 5.14, in which the most ac-

curate results, obtained with the standard wall functions and non-equilibrium wall functions,

are compared with the other methods. Furthermore, Figure 5.15, shows the comparison with

Spalart-Allmaras turbulence model using LRN approach.

It is noted that in foam-extend, yPlusRAS utility actually calculates y∗. In this work, the

proper notation is used.
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Figure 5.2: GRID-A: skin friction coefficient distribution along the NACA4412 aerofoil.
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Figure 5.3: GRID-B: skin friction coefficient distribution along the NACA4412 aerofoil.
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Figure 5.4: GRID-A: pressure coefficient distribution along the NACA4412 aerofoil.
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Figure 5.5: GRID-B: pressure coefficient distribution along the NACA4412 aerofoil.
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Figure 5.6: GRID-A: y+ distribution along the NACA4412 aerofoil.
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Figure 5.7: GRID-B: y+ distribution along the NACA4412 aerofoil.
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Figure 5.8: GRID-A: y∗ distribution along the NACA4412 aerofoil.
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Figure 5.9: GRID-B: y∗ distribution along the NACA4412 aerofoil.

A more detailed comparison of the skin friction coefficient for HRN approach is given in the

following diagrams.
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Figure 5.10: GRID-A: comparison of the current implementation of the wall treatment for

k−ω SST model with the best obtained results for the NACA4412.
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Figure 5.11: GRID-A: comparison of the automatic wall treatment with the best obtained

results for the NACA4412.
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Figure 5.12: GRID-A: comparison of the enhanced wall treatment with the best obtained re-

sults for the NACA4412.
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Figure 5.13: GRID-A: comparison of the modified enhanced wall treatment with the best

obtained results for the NACA4412.
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Figure 5.14: GRID-A: comparison of the improved wall treatment with the best obtained

results for the NACA4412.
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Figure 5.15: GRID-A: comparison of Spalart-Allmaras in LRN approach with the best ob-

tained results for the NACA4412.

Figures 5.16 and 5.17 show the convergence of the drag coefficient defined as: Cd =F/(0.5ρU∞
2c2)

where F is the magnitude of the total force acting on the aerofoil. Lastly, Figures 5.18 to 5.29

show the residual plots of all methods. Due to the slight separation at the tip of the trailing

edge, full steady state solution is not obtained, except in the case of k− ε model. It is noted

that the results along the surface of an aerofoil are not affected by this.

The highly oscillating behaviour of the drag coefficient and residuals of enhanced wall treat-

ment ( Fig. 5.17 and 5.27 ) is present only in the LRN approach and replacing the pressure sen-

sitised formulation for the viscous layer: u+ = y+(1+0.5αy+) with the standard one: u+ = y+

solved this problem. The oscillating behaviour in the residuals in the case of non-equlibrium

wall functions (Fig. 5.19) is something that should be further investigated as in the next test

case, this method performed relatively well.
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Figure 5.16: GRID-A: convergence of the drag coefficients for the NACA4412 aerofoil.
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Figure 5.17: GRID-B: convergence of the drag coefficients for the NACA4412 aerofoil.
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Figure 5.18: GRID-A: residual plot of the standard wall functions for the k− ε model for the

NACA4412.
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Figure 5.19: GRID-A: residual plot of the non-equilibrium wall functions for the k− ε model

for the NACA4412.
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Figure 5.20: GRID-A: residual plot of the current wall treatment for the k−ω SST model for

the NACA4412.
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Figure 5.21: GRID-A: residual plot of the automatic wall treatment for the k−ω SST model

for the NACA4412.
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Figure 5.22: GRID-A: residual plot of the enhanced wall treatment for the k−ω SST model

for the NACA4412.
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Figure 5.23: GRID-A: residual plot of the modified enhanced wall treatment for the k−ω SST

model for the NACA4412.
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Figure 5.24: GRID-A: residual plot of the improved wall treatment for the k−ω SST model

for the NACA4412.
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Figure 5.25: GRID-B: residual plot of the current wall treatment for the k−ω SST model for

the NACA4412.
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Figure 5.26: GRID-B: residual plot of the automatic wall treatment for the k−ω SST model

for the NACA4412.
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Figure 5.27: GRID-B: residual plot of the enhanced wall treatment for the k−ω SST model

for the NACA4412.
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Figure 5.28: GRID-B: residual plot of the modified enhanced wall treatment for the k−ω SST

model for the NACA4412.
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Figure 5.29: GRID-B: residual plot of the improved wall treatment for the k−ω SST model

for the NACA4412.
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From the presented results, it can be concluded that the calculated pressure distribution mainly

depends on the near-wall grid spacing.The skin friction, which also depends on the grid reso-

lution, additionally depends on the turbulence model and the choice of the wall treatment.

Comparing the results of skin friction coefficient from the HRN and LRN approach, it can be

noticed that HRN approach around the leading edge follows the trends of the experimental data

much more accurately that LRN approach. As if the formulation of the near-wall turbulence,

mixing-length formulation, is in much better agreement with the physics than the formulation

of k−ω SST turbulence model itself. Additionally, results for skin friction of the Spalart-

Allmaras turbulence model (Fig. 5.15) are particularly interesting. Spalart-Allmaras is in much

better agreement with the HRN approach than with the LRN formulation of the k−ω SST

model.

The best results for skin friction in HRN approach are obtained by the k− ε model, both with

the standard and non-equilibrium wall functions. However, wall functions of the k− ε model

are not able to predict the sharp peak of the pressure coefficient at the stagnation point, which

in the end results with the lower drag, Figure 5.16.

Of all of the presented wall treatments of k−ω SST model, modified enhanced wall treatment

gives the best results and current implementation the worst.

In [35], much better agreement with the experimental data is presented. Moreover, results

perfectly match the experimental data. But there, different turbulence models are tested, RNG

k− ε , k− ε realisable and RSM model for which the author [35] notes to have a superior

performance for flows with strong streamline curvature. In our results, k−ω SST model fails

exactly in this region, around leading edge of an aerofoil.
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5.2 Prolate Spheroid

Analysis of the flow field around a 6:1 prolate spheroid, L = 1.37 m long, at 10 degrees

angle of attack is performed. Reynolds number based on the long-axis of the prolate spheroid

is set to ReL = 4.2 · 106. Results are compared with the experimental data [37] for skin fric-

tion coefficient given in circumferential direction along prolate spheroid at at cross-sections:

x/L = 0.6 and x/L = 0.772. Experiment was performed by fixing an onset of transition at

x/L = 0.2 which in simulation is modelled by setting the νt
w = 0 up to the trip location. For

lowering the computational demands, symmetry boundary condition is used. This also im-

proves convergence, as the symmetry itself imposes additional averaging on the flow. For the

freestream eddy viscosity ratio a value of β = 5 is taken, and turbulence intensity is set to

I = 0.03 based on experimental data.

In the study, two structured grids are used, First named as GRID-A for HRN approach and

second, GRID-B for LRN approach. Both of them have 157 points along the surface major

axis and in the circumferential direction 71 points. Points are additionally clustered towards

the sampling regions, x/L = 0.6 and x/L = 0.772. The height of the wall adjacent cells for

GRID-A is 10−3 and 5 · 10−5 for GRID-B. The far-field boundary for both grids is distanced

approximately 9 m from the surface of the prolate spheroid. In figure 5.30, the grid used in the

LRN approach is show, and figure 5.31 shows the defined coordinate system at cross-sections

x/L =const. Mesh quality parameters are listed in Table 5.2.

Table 5.2: Prolate spheroid: mesh quality data for the GRID-A and GRID-B.

GRID-A GRID-B

Number of volumes 907920 883820

Max aspect ratio 866.92 3356.36

Max non-orthogonality 5.25 (average: 0.87) 34.86 (average: 1.20)

Max skewness 0.324575 0.393202
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Filip Šutalo Master’s Thesis

(a) (b)

Figure 5.30: GRID-B for LRN approach: (a) Complete computational domain for the prolate

spheroid, (b) close view of the near-wall grid.

Figure 5.31: Coordinate system for cross-sections x/L = const.

5.2.1 Results

Results for the prolate spheroid are presented in the same manner as for NACA4412.

Figures 5.44 to 5.33 show the skin friction coefficient at two cross-sections, x/L = 0.6 and

x/L = 0.772 and corresponding values of y+ and y∗. From presented, it can be seen that on

LRN approach all methods perform relatively the same. For the case of HRN approach, stan-

dard wall function of k− ε model and the current wall treatment of k−ω SST model deviate

significantly from the results of other methods, Fig. 5.33 and 5.39. For the wall treatment of

k−ω SST model, currently implemented in foam-extend, testing showed that the method

fails on coarser grids in cases of lower velocity gradients which in the end are responsible for
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the production of turbulent kinetic energy, expression (3.35). The production term is defined

with a sharp switching behaviour(4.102) and the flow with a lower velocity gradients in the end

result with the similar sharp switching behaviour in results of the skin friction coefficient, y+

and y∗. This can be seen in Fig. 5.33, 5.35 and 5.37. Replacing the expression for production

(4.102) with the blended value (4.107), which results in the improved wall treatment method,

greatly improves results. To further illustrate this, Figure 5.32 shows the distribution of the skin

friction coefficient along the surface of the prolate spheroid obtained with the improved wall

treatment, for both HRN and LRN approaches in comparison to results obtained with the wall

treatment currently in foam-extend on HRN approach.

Figure 5.32: Skin friction distribution for the prolate spheroid: (a) improved wall

treatment-HRN approach, (b) improved wall treatment-LRN approach, (c) wall treatment in

foam-extend-HRN approach.

Sharp switching behaviour in the production term (4.98) in the case of standard wall functions

for k−ε model is not pronounced in this tests. The author believes that the reason for this is the

well-known large non-physical over-production of the turbulent kinetic energy of k− ε model

at the impingement point.

The rest of the results are given in the following diagrams.
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Figure 5.33: GRID-A: skin friction coefficient distribution on the prolate spheroid at x/L =

0.6.
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Figure 5.34: GRID-B: skin friction coefficient distribution on the prolate spheroid at x/L= 0.6.
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Figure 5.35: GRID-A: y+ distribution on the prolate spheroid at x/L = 0.6.
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Figure 5.36: GRID-B: y+ distribution on the prolate spheroid at x/L = 0.6.
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Figure 5.37: GRID-A: y∗ distribution on the prolate spheroid at x/L = 0.6.
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Figure 5.38: GRID-B: y∗ distribution on the prolate spheroid at x/L = 0.6.
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Figure 5.39: GRID-A: skin friction coefficient distribution on the prolate spheroid at x/L =

0.772.
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Figure 5.40: GRID-B: skin friction coefficient distribution on the prolate spheroid at x/L =

0.772.
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Figure 5.41: GRID-A: y+ distribution on the prolate spheroid at x/L = 0.772.
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Figure 5.42: GRID-B: y+ distribution on the prolate spheroid at x/L = 0.772.
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Figure 5.43: GRID-A: y∗ distribution on the prolate spheroid at x/L = 0.772.
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Figure 5.44: GRID-B: y∗ distribution on the prolate spheroid at x/L = 0.772.

For this test case, drag coefficient is defined as Cd = F/0.5ρU∞
2L2 and its convergence rate can

be seen in Figures 5.45 and 5.46. For both the HRN and the LRN approach, results are in a close

agreement, except for the enhanced wall treatment, with an oscillating behaviour in the LRN
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approach. Residual plot of all methods is shown on Figures 5.47 to 5.58. From the presented

results it can be seen that in the case of the prolate spheroid, oscillating behaviour in residuals

of the non-equilibrium wall functions is not present( Fig. 5.48). As already mentioned, this

requires further analysis.
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Figure 5.45: GRID-A: convergence of the drag coefficients for the prolate spheroid.
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Figure 5.46: GRID-B: convergence of the drag coefficients for the prolate spheroid.
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Figure 5.47: GRID-A: residual plot of the standard wall functions for k− ε for the prolate

spheroid.
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Figure 5.48: GRID-A: residual plot of the non-equilibrium wall functions for k− ε model for

the prolate spheroid.
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Figure 5.49: GRID-A: residual plot of the current wall treatment for k−ω SST model for the

prolate spheroid.
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Figure 5.50: GRID-A: residual plot of the automatic wall treatment for k−ω SST model for

the prolate spheroid.
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Figure 5.51: GRID-A: residual plot of enhanced wall treatment for k−ω SST model for the

prolate spheroid.
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Figure 5.52: GRID-A: residual plot of modified enhanced wall treatment for the k−ω SST

model for the prolate spheroid.

Faculty of Mechanical Engineering and Naval Architecture 81
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Figure 5.53: GRID-A: residual plot of the improved wall treatment for k−ω SST model for

the prolate spheroid.
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Figure 5.54: GRID-B: residual plot of the current wall treatment for k−ω SST model for the

prolate spheroid.
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Filip Šutalo Master’s Thesis

0.0000000000010

0.0000000001000

0.0000000100000

0.0000010000000

0.0001000000000

0.0100000000000

1.0000000000000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

In
it
ia

l 
re

s
id

u
a
l

Iteration

k-ω SST AWT
Ux residual
Uy residual
Uz residual

p residual
ω residual
k residual

Figure 5.55: GRID-B: residual plot of the automatic wall treatment for k−ω SST model for

the prolate spheroid.
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Figure 5.56: GRID-B:residual plot of enhanced wall treatment for k−ω SST model for the

prolate spheroid.
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Figure 5.57: GRID-B: residual plot of modified enhanced wall treatment for the k−ω SST

model for the prolate spheroid.
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Figure 5.58: GRID-B: residual plot of the improved wall treatment for k−ω SST model for

the prolate spheroid.
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Flow over prolate spheroid is a particularly challenging task for any turbulence model [24],

especially for RANS. The main goal here is to test how the assumptions of wall-parallel two-

dimensional flow and mixing-length hypothesis hold in a case of a three-dimensional flow.

Additionally, a concern is whether the turbulence model itself (LRN approach) is able to resolve

this flow field. Following diagrams, Fig 5.59 and 5.60, make this comparison of HRN and

LRN approach with experimental data for skin friction for modified enhanced wall treatment.

As it can be seen, in some regions results of HRN approach are in a better agreement with the

experimental data than results of LRN approach.
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Figure 5.59: Comparison of the skin friction coefficient for the modified enhanced wall treat-

ment for HRN and LRN approach with the experimental data at x/L = 0.6.
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Figure 5.60: Comparison of skin friction for k−ω SST MEWT for the HRN and LRN ap-

proach with experimental data at x/L = 0.772.
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Chapter 6

Benchmarking the Wall Functions and

Wall Treatments

The previous chapter tested various methods for wall functions and wall treatments. The

results are given in a context of an accuracy of obtained results when compared to experimental

data and stability of convergence process. This chapter covers the analysis of the performance

of wall functions and wall treatments in terms of a computational time. Tables 6.1 - 6.4 contain

the time of each method needed to perform 500 iteration cycles (SIMPLE loops). This is found

to be sufficient for the relative change in the total force Frel, between two successive iterations

(i−1) and (i), to drop below 0.1% (see Fig. 6.1 - 6.4).

Frel =
|Fi−Fi−1|

Fi−1
. (6.1)

Furthermore, computational times in tables are given relative to the current implementation of

the wall treatment for k−ω SST model. Computational time of enhanced wall treatment is not

taken into account due to already shown high oscillations in forces and residuals of this method.

All simulations are performed on a single-core desktop PC with an Intel Core i7-4820K CPU

@ 3.70GHz with 16 GB of DDR3 memory.

In the case of the NACA4412 aerofoil, almost all methods show an increase in computational

time, Tables 6.1 and 6.2. The highest one is for the modified enhanced wall treatment which in

section 5.1 showed the best agreement with experimental data of all wall treatments for k−ω
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SST turbulence model. Differences in computational time are less pronounced for LRN ap-

proach, with the maximum increase being 5%, again for the modified enhanced wall treatment.

Non-equilibrium wall functions for the k− ε model are the only ones that resulted in lower

computational time.

Table 6.1: GRID-A: computational time for the NACA4412

Computational time Relative computational time

k− ε currentWF 102 s 1.11

k− ε NonEqWF 89 s 0.97

k−ω SST currentWT 92 s 1

k−ω SST AWT 92 s 1

k−ω SST MEWT 103 s 1.12

k−ω SST Gnew 94 s 1.02
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Figure 6.1: GRID-A: relative change in the total force for the NACA4412.
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Filip Šutalo Master’s Thesis

Table 6.2: GRID-B: computational time for the NACA4412

Computational time Relative computational time

k−ω SST currentWT 391 s 1

k−ω SST AWT 398 s 1.02

k−ω SST MEWT 410 s 1.05

k−ω SST Gnew 394 s 1.01
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Figure 6.2: GRID-B: relative change in the total force for the NACA4412.

In the case of the prolate spheroid, different performance to the one obtained for the NACA4412

is achieved. Compared to the current implementation of the wall treatment in foam-extend for

the k−ω SST model, all methods have a much lower computational time, Tables 6.3 and 6.4 ,

especially for HRN approach. The only exception here are the non-equilibrium wall functions

which still performed faster, but only marginally. Once again, it is interesting to point out

the performance of the improved wall treatment. Replacing the sharp switching behaviour

of production term with the blended value, not only improved the predictions of skin friction
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in HRN approach but also resulted in a four-time lower computational time compared to the

previous formulation.

Table 6.3: GRID-A: computational time for the prolate spheroid

Computational time Relative computational time

k− ε currentWF 2147 s 0.23

k− ε NonEqWF 9040 s 0.97

k−ω SST currentWT 9343 s 1

k−ω SST AWT 2044 s 0.22

k−ω SST MEWT 3432 s 0.37

k−ω SST Gnew 2360 s 0.25
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Figure 6.3: GRID-A: relative change in the total force for the prolate spheroid.
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Table 6.4: GRID-B: computational time for the prolate spheroid

Computational time Relative computational time

k−ω SST currentWT 2582 s 1

k−ω SST AWT 1963 s 0.76

k−ω SST MEWT 2275 s 0.88

k−ω SST Gnew 1954 s 0.76
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Figure 6.4: GRID-B: f relative change in the total force for the prolate spheroid.
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Chapter 7

Conclusion

Wall functions and wall treatments for two-equation models, k− ε [10] and k−ω SST [9] [1]

[10], are presented, discussed and implemented in foam-extend. Newly implemented ones are

tested against the current implementation in foam-extend. For the validation, two test cases

are used, flow over NACA4412 and flow over 6:1 prolate spheroid.

Testing showed that the new implementations can serve as a good replacement for the ones

currently in foam-extend. And although the results are not matching available experimental

data perfectly, an improvement over current implementation of wall functions is clear. Addi-

tionally, a conclusion is reached that currently used wall treatment for k−ω SST model in

foam-extend fail in regions of relatively low-velocity gradients when used in HRN approach.

Furthermore, it is emphasised that in order to make a final conclusion, further testing should

be conducted. For the present moment, testing showed that the non-equilibrium wall function

for k− ε models implemented in foam-extend improves accuracy and that they should be

preferred to current ones. But, there is still a need to investigate strange oscillating behaviour in

residuals in the case of flow past the NACA4412 aerofoil. For k−ω SST model, the choice falls

on modified enhanced wall treatment which in the case of NACA4412 resulted in much greater

accuracy compared to other methods and especially compared to the current implementation of

wall treatments in foam-extend.
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