Analitička usporedba Euler-Bernoullijeve i Timošenkove teorije savijanja grede

Kubik, Kristijan

Undergraduate thesis / Završni rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:482271

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-27

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Kristijan Kubik

Zagreb, 2017.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentor:

Doc. dr. sc. Ivica Skozrit, dipl. ing.

Student:

Kristijan Kubik

Zagreb, 2017.

Izjavljujem da sam ovaj rad izradio samostalno, koristeći stečena znanja tijekom preddiplomskog studija na Fakultetu strojarstva i brodogradnje Sveučilišta u Zagrebu te navedenu literaturu.

Zahvaljujem se svom mentoru, doc. dr. sc. Ivici Skozritu na podršci, vođenju, ukazanom povjerenju, uloženom vremenu te stručnim savjetima i sugestijama tijekom izrade ovoga rada.

Osobitu zahvalnost dugujem asistentu Damjanu Čakmaku, mag. ing. mech. na poticaju za izradu rada, dragocjenim prijedlozima, pomoći i brojnim korisnim savjetima, bez kojih rad ne bi bilo moguće napraviti.

Posebno i od srca veliko hvala mojoj majci, Jadranki, na velikoj moralnoj podršci i pomoći te vjeri u moje sposobnosti tijekom mojega obrazovanja.

Kristijan Kubik Zagreb, 2017.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

659

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveuč Fakultet stro	ilište u Zagrebu ojarstva i brodogradnje
Datum	Prilog
Klasa:	
Ur.broj:	

ZAVRŠNI ZADATAK

Student:

Naslov rada na

Naslov rada na

Opis zadatka:

hrvatskom jeziku:

engleskom jeziku:

Kristijan Kubik

Mat. br.: 0035194932

Analitička usporedba Euler-Bernoullijeve i Timošenkove teorije savijanja grede Analytical Comparison of Euler-Bernoulli and Timoshenko Beam Theory

Poznato je da su za proračun savijanja grede u primijeni Euler-Bernoullijeva i Timošenkova teorija. Primjena pojedine teorije definirana je u ovisnosti o omjeru visine i duljine grede, a vrijednosti se razlikuju ovisno o literaturi.

Primarni cilj je pokazati za koji omjer visine i duljine grede se može koristiti jednostavnija Euler-Bernoullijeva teorija i uz koju grešku. Potrebno je opisati povijesni razvoj teorije savijanja grede. Također je potrebno prikazati tj. izvesti Euler-Bernoullijevu i Timošenkovu teoriju savijanja grede. Usporedbu navedenih teorija savijanja grede provesti analitički na nekoliko jednostavnih primjera, npr. konzola opterećena silom na kraju, konzola opterećena konstantnim kontinuiranim opterećenjem i silom na kraju, greda na dva oslonca opterećena koncentriranom silom u sredini. Usporedbe je potrebno provesti za dva karakteristična poprečna presjeka grede, a to su kružni i pravokutni poprečni presjek grede. Sve usporedbe potrebno je prikazati u bezdimenzijskom obliku.

U radu treba navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

30. studenog 2016.

Zadatak zadao:

Shorif Inia

Doc. dr. sc. Ivica Skozrit

Rok predaje rada:
1. rok: 24. veljače 2017.
2. rok (izvanredni): 28. lipnja 2017.
3. rok: 22. rujna 2017.

Predviđeni datumi obrane: 1. rok: 27.2. - 03.03. 2017. 2. rok (izvanredni): 30. 06. 2017. 3. rok: 25.9. - 29. 09. 2017.

Predsjednik Povjerenstva:

Prof. dr. sc. Igor Balen

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA	II
POPIS TABLICA	IV
POPIS OZNAKA	. V
SAŽETAK	VII
SUMMARY	ΊΠ
1. UVOD	1
1.1. Uvod u razmatranje problema savijanja grede	1
1.2. Povijesni razvoj teorije savijanja grede	1
2. TEORIJE SAVIJANJA GREDE	10
2.1. Generalizacija problema savijanja	10
2.2. Euler-Bernoullijeva teorija savijanja	10
2.3. Timošenkova teorija savijanja	23
2.3.1. Korekcijski faktor smicanja	34
3. USPOREDBA EULER-BERNOULLIJEVE I TIMOŠENKOVE TEORIJE SAVIJANJA	A
GREDE	39
3.1. Primjer 1	40
3.1.1. Rješenje po Euler-Bernoullijevoj teoriji	40
3.1.2. Rješenje po Timošenkovoj teoriji	43
3.1.3. Usporedba dobivenih rješenja	46
3.2. Primjer 2	58
3.2.1. Rješenje po Euler-Bernoullijevoj teoriji	58
3.2.2. Rješenje po Timošenkovoj teoriji	61
3.2.3. Usporedba dobivenih rješenja	63
3.3. Primjer 3	74
3.3.Primjer 33.3.1.Rješenje po Euler-Bernoullijevoj teoriji	74 74
 3.3. Primjer 3 3.3.1. Rješenje po Euler-Bernoullijevoj teoriji 3.3.2. Rješenje po Timošenkovoj teoriji 	74 74 79
 3.3. Primjer 3 3.3.1. Rješenje po Euler-Bernoullijevoj teoriji 3.3.2. Rješenje po Timošenkovoj teoriji 3.3.3. Usporedba dobivenih rješenja 	74 74 79 84
 3.3. Primjer 3 3.3.1. Rješenje po Euler-Bernoullijevoj teoriji 3.3.2. Rješenje po Timošenkovoj teoriji 3.3.3. Usporedba dobivenih rješenja 3.4. Granične vrijednosti omjera <i>h/L</i>, odnosno <i>d/L</i> 	74 74 79 84 94
 3.3. Primjer 3 3.3.1. Rješenje po Euler-Bernoullijevoj teoriji 3.3.2. Rješenje po Timošenkovoj teoriji 3.3.3. Usporedba dobivenih rješenja 3.4. Granične vrijednosti omjera <i>h/L</i>, odnosno <i>d/L</i> 4. ZAKLJUČAK 	74 79 84 94 95
 3.3. Primjer 3 3.3.1. Rješenje po Euler-Bernoullijevoj teoriji 3.3.2. Rješenje po Timošenkovoj teoriji 3.3.3. Usporedba dobivenih rješenja 3.4. Granične vrijednosti omjera <i>h/L</i>, odnosno <i>d/L</i> 4. ZAKLJUČAK LITERATURA 	74 74 79 84 94 95 97

POPIS SLIKA

Slika 1. "The Codex Madrid", 84. stranica sa opisom raspodjele deformacija [3]2
Slika 2. Galilejeva greda [3]
Slika 3. Galilejeva raspodjela naprezanja po visini presjeka AB [1]4
Slika 4. Mariotteova raspodjela naprezanja po visini presjeka AB [1]5
Slika 5. Columbova raspodjela naprezanja po visini presjeka AB [1]6
Slika 6. Prikaz deformiranog oblika grede kod Euler-Bernoullijeve teorije savijanja12
Slika 7. Infinitenzimalni gredni element opterećen na savijanje u ravnini Oxz12
Slika 8. Deformirani oblik grede opterećene na čisto savijanje u xz ravnini
Slika 9. Diferencijalni element deformiranog oblika grede u xz ravnini 17
Slika 10. Poprečni presjek grednog elementa opterećenog na čisto savijanje 19
Slika 11. Definicija pozitivnog i negativnog nagiba tangente na elastičnu liniju u koordinatnom sustavu <i>Oxz</i>
Slika 12. Diferencijalni element deformiranog oblika grede s negativnim nagibom
Slika 13. Prikaz deformiranog oblika grede kod Timošenkove teorije savijanja23
Slika 14. Prikaz deformacije infinitenzimalnog grednog elementa uslijed čistog smika 24
Slika 15. Definicija pozitivne i negativne kutne deformacije u koordinatnom sustavu Oxz26
Slika 16. Poprečni presjek grednog elementa opterećenog na poprečno savijanje 27
Slika 17. Prikaz položaja poprečnog presjeka na deformiranom obliku Timošenkove grede 29
Slika 18. Usporedba izraza za korekcijski faktor smicanja pravokutnog presjeka [7]
Slika 19. Usporedba izraza za korekcijski faktor smicanja kružnog presjeka [7] 38
Slika 20. Konzola opterećena silom na kraju 40
Slika 21. Konzola opterećena silom na kraju oslobođena veza
Slika 22. Presjek grede na udaljenosti x od ishodišta koordinatnog sustava
Slika 23. Bezdimenzijski progib na kraju grede za pravokutni poprečni presjek u ovisnosti o omjeru h/L (Primjer 1.)
Slika 24. Dijagramski prikaz greške Euler-Bernoulijeve teorije u odnosu na Timošenkovu teoriju savijanja za pravokutni poprečni presjek grede (Primjer 1.)
Slika 25. Bezdimenzijski progib na kraju grede za kružni poprečni presjek u ovisnosti o omjeru d/L (Primjer 1.)
Slika 26. Dijagramski prikaz greške Euler-Bernoulijeve teorije u odnosu na Timošenkovu teoriji savijanja za kružni poprečni presjek grede (Primjer 1.)
Slika 27. Usporedba analitičkih rješenja progiba po dužini grede pravokutnog presjeka (Primjer 1.)
Slika 28. Prikaz apsolutne greške između analitičkih rješenja (Primjer 1.)

Kristijan K	ubik Završni rad
Slika 29.	Usporedba analitičkih rješenja progiba po dužini grede kružnog presjeka (Primjer 1.)
Slika 30.	Prikaz apsolutne greške između analitičkih rješenja (Primjer 1.)
Slika 31.	Konzola opterećena konstantnim kontinuiranim opterećenjem i silom na kraju 58
Slika 32.	Konzola opterećena konstantnim kontinuiranim opterećenjem i silom na kraju oslobođena veza
Slika 33.	Presjek grede na udaljenosti x od ishodišta koordinatnog sustava
Slika 34.	Bezdimenzijski progib na kraju grede za pravokutni poprečni presjek u ovisnosti o omjeru h/L (Primjer 2.)
Slika 35.	Dijagramski prikaz greške Euler-Bernoullijeve teorije u odnosu na Timošenkovu teoriju savijanja za pravokutni poprečni presjek (Primjer 2.)
Slika 36.	Bezdimenzijski progib na kraju grede za kružni poprečni presjek u ovisnosti o omjeru <i>d/L</i> (Primjer 2.)67
Slika 37.	Dijagramski prikaz greške Euler-Bernoullijeve teorije u odnosu na Timošenkovu teoriju savijanja za kružni poprečni presjek (Primjer 2.)
Slika 38.	Usporedba analitičkih rješenja progiba po dužini grede pravokutnog presjeka (Primjer 2.)
Slika 39.	Prikaz apsolutne greške između analitičkih rješenja (Primjer 2.)71
Slika 40.	Usporedba analitičkih rješenja progiba po dužini grede kružnog presjeka (Primjer 2.)
Slika 41.	Prikaz apsolutne greške između analitičkih rješenja (Primjer 2.)73
Slika 42.	Greda na dva oslonca opterećena koncentriranom silom u sredini74
Slika 43.	Greda na dva oslonca opterećena koncentriranom silom u sredini oslobođena veza
Slika 44.	Presjek grede na udaljenosti x od ishodišta lijevo od koncentrirane sile F76
Slika 45.	Presjek grede na udaljenosti x od ishodišta desno od koncentrirane sile F
Slika 46.	Bezdimenzijski progib u sredini grede za pravokutni poprečni presjek u ovisnosti o omjeru h/L (Primjer 3.)85
Slika 47.	Dijagramski prikaz greške Euler-Bernoullijeve teorije u odnosu na Timošenkovu teoriju savijanja za pravokutni poprečni presjek (Primjer 3.)
Slika 48.	Bezdimenzijski progib u sredini grede za kružni poprečni presjek u ovisnosti o omjeru <i>d/L</i> (Primjer 3.)
Slika 49.	Dijagramski prikaz greške Euler-Bernoullijeve teorije u odnosu na Timošenkovu teoriju savijanja za kružni poprečni presjek (Primjer 3.)
Slika 50.	Usporedba analitičkih rješenja progiba po dužini grede pravokutnog presjeka (Primjer 3.)
Slika 51.	Prikaz apsolutne greške između analitičkih rješenja (Primjer 3.)91
Slika 52.	Usporedba analitičkih rješenja progiba po dužini grede kružnog presjeka (Primjer 3.)
Slika 53.	Prikaz apsolutne greške između analitičkih rješenja (Primjer 3.)

POPIS TABLICA

Tablica 1.	Aksijalni momenti tromosti oko y i z osi [5]20)
Tablica 2.	Izrazi za korekcijski faktor smicanja [5,7,8]	7
Tablica 3.	Greška za različite omjere h/L pravokutnog poprečnog presjeka (Primjer 1.) 49)
Tablica 4.	Greška za različite omjere d/L kružnog poprečnog presjeka (Primjer 1.)	2
Tablica 5.	Greška za različite omjere h/L pravokutnog poprečnog presjeka (Primjer 2.) 66	5
Tablica 6.	Greška za različite omjere d/L kružnog poprečnog presjeka (Primjer 2.)68	3
Tablica 7.	Greška za različite omjere h/L pravokutnog poprečnog presjeka (Primjer 3.) 86	5
Tablica 8.	Greška za različite omjere d/L kružnog poprečnog presjeka (Primjer 3.))
Tablica 9.	Granične vrijednosti omjera između visine i duljine grede94	1

POPIS OZNAKA

Oznaka	Jedinica	Opis
A	m^2	površina poprečnog presjeka
A_{s}	m^2	ekvivalentna smična površina poprečnog presjeka
AG	Ν	smična krutost grede
b	m	širina poprečnog presjeka
С	Nm^2	ekvivalentna krutost grede
C_1, C_2, C_3, C_4	Nm^2 , Nm^3	konstante integracije
d	m	promjer grede kružnog poprečnog presjeka
E	N/m ²	Youngov modul elastičnosti
EI_{y}	Nm ²	fleksijska krutost grede
f	m	progib na kraju grede
F	Ν	koncentrirana sila
F_1	Ν	rezultantna sila vlačnih naprezanja
F_2	Ν	rezultantna sila tlačnih naprezanja
F_A	Ν	reakcijska sila u uklještenju
F_A, F_C	Ν	reakcijske sile u osloncima
G	N/m^2	modul smicanja
h	m	visina poprečnog presjeka
I_y, I_z	m^4	aksijalni momenti tromosti poprečnog presjeka
k	-	korekcijski faktor smicanja
L,l	m	dužina grede
l_0	m	početna duljina diferencijalnog elementa
m	Nm/m	kontinuirani moment
M	Nm	koncentrirani moment
M_y , M_{yi}	Nm	unutrašnji moment savijanja oko osi y
M_{A}	Nm	reakcijski moment u uklještenju
p	m	koordinata središta kružnice na osi x
q	m	koortinata središta kružnice na osi z
q	N/m	kontinuirano opterećenje
q_z	N/m	kontinuirano opterećenje u smjeru osi z
q_0	N/m	konstantno kontinuirano opterećenje
Q_z, Q_{zi}	Ν	unutrašnja poprečna sila u smjeru osi z
R	m	polumjer kružnice
и	m	komponenta pomaka u smjeru osi x
<i>w</i> , <i>w</i> _{<i>i</i>}	m	progib grede, komponenta pomaka u smjeru osi z

$\left(w_{\max}\right)_{\rm EB}$	m	maksimalni progib po Euler-Bernoullijevoj teoriji	
$(w_{\rm max})_{\rm T}$	m	maksimalni progib po Timošenkovoj teoriji	
w_1^*	-	bezdimenzijski progib po Euler-Bernoullijevoj teoriji	
w2 [*]	-	bezdimenzijski progib po Timošenkovoj teoriji	
<i>x</i> , <i>y</i> , <i>z</i>	-	osi pravokutnog koordinatnog sustava	
<i>x</i> , <i>z</i>	m	koordinate položaja	
x_0	m	koordinata središta kružnice na osi x	
<i>y</i> , <i>z</i>	m	koordinate točke u poprečnom presjeku grede	
z_0	m	koortinata središta kružnice na osi z	
α	rad	nagib tangente na elastičnu liniju	
α, β	rad	kutevi definicije kutne deformacije	
$(\alpha_{\max})_{\rm EB}$	rad	maksimalni nagib po Euler-Bernoullijevoj teoriji	
γ, γ_{xz}	rad	kutna deformacija	
Δl	m	produljenje diferencijalnog elementa	
\mathcal{E}_{x}	m/m	duljinska deformacija u smjeru osi x	
К	m^{-1}	zakrivljenost elastične linije	
λ	m^3	harmonijska funkcija	
ν	-	Poissonov faktor	
ρ	m	polumjer zakrivljenosti elastične linije	
$\sigma_{_{x}}$	N/m ²	normalno naprezanje u smjeru osi x	
$\sigma_{\scriptscriptstyle m max}$	N/m ²	maksimalno naprezanje	
$ au_{_{XZ}}$	N/m ²	smično naprezanje	
$\widetilde{ au}$	N/m ²	prosječno smično naprezanje	
ϕ, ϕ_i	rad	nagib poprečnog presjeka nakon deformiranja	
$(\phi_{\max})_{\mathrm{T}}$	rad	maksimalni nagib po Timošenkovoj teoriji	
Ψ	rad	kut deformiranog oblika grednog elementa	

SAŽETAK

Tema ovog rada analitička je usporedba Euler-Bernoullijeve i Timošenkove teorije savijanja grede. Kroz povijesni pregled razvoja teorije savijanja grede, upoznajemo se sa temeljnim problemima i pretpostavkama koje se moraju uvesti kako bi se formulacija teorije savijanja mogla na razumljiv i smislen način protumačiti te kako bi pronašla mjesto u inženjerskoj praksi.

Prikazani su detaljni izvodi Euler-Bernoullijeve i Timošenkove teorije savijanja grede, kao i međusobna usporedba izraza za diferencijalne jednadžbe elastične linije. Dan je kratak osvrt na važnost i razvoj korekcijskog faktora smicanja koji se pojavljuje kao ulazni parametar u Timošenkovoj teoriji. Napravljena je analitička usporedba dviju spomenutih teorija savijanja na primjerima poprečnog savijanja grede kako bi se istaknula njihova međusobna razlika te kako bi se pokazalo do kada se može koristiti Euler-Bernoullijeva teorija, odnosno nakon koje granične vrijednosti omjera između visine poprečnog presjeka grede i njezine duljine moramo upotrijebiti Timošenkovu teoriju savijanja.

Ključne riječi: greda, savijanje, Euler-Bernoulli, Timošenko, omjer između visine poprečnog presjeka grede i njezine duljine.

SUMMARY

This paper deals with analytical comparison of Euler-Bernoulli and Timoshenko beam theories. In historical overview of development of beam theory, we learn about fundamental problems and assumptions which have to be used in order to formulate beam theory in a way logically interpretable and applicable in engineering.

Detailed derivations of Euler-Bernoulli and Timoshenko beam theories are shown, as well as comparison between differential equations of the bending line. In order to show the importance and development of shear coefficient, which represents an input parameter in the Timoshenko beam theory, a brief review is given. Analytical comparison of the two mentioned theories of beam bending is made, showed through examples of shear beam bending in order to point out their differences and to indicate until which point can we use the Euler-Bernoulli beam theory, i.e. where is the limit of slenderness ratio, after which we are required to apply the Timoshenko beam theory.

Key words: beam, bending, Euler-Bernoulli, Timoshenko, slenderness ratio.

1. UVOD

1.1. Uvod u razmatranje problema savijanja grede

Greda ili gredni nosač definira se kao tijelo kojem su poprečne dimenzije malene u odnosu na njegovu uzdužnu dimenziju te služi za prenošenje vertikalnih opterećenja na oslonce. Pritom greda može biti ravna ili zakrivljena, konstantnog ili promijenjivog poprečnog presjeka, ovisno o njezinoj namjeni [1]. Kroz povijest, inženjere je zanimao odgovor na pitanje kolike moraju biti dimenzije grede kako bih ona na sebe mogla preuzeti željeni teret, odnosno opterećenje, a da pritom ne dođe do velikih deformacija grede ili u konačnici do njezinog puknuća? Odgovor na ovo pitanje, veći dio naše povijesti, davao se pomoću iskustva bez proračunavanja deformacija ili naprezanja koja se pojavljuju u gredi. Ipak, već u ranijim vremenima, postojala su neka znanstvena rješenja koja su davala odgovor na ovo pitanje savijanja grede, no ta rješenja bila su ili netočna ili su imala nepotrebne i komplicirane izvode te nisu uspjela zadovoljiti potrebe u praksi. Razvoj građevinske industrije sve je više isticao važnost pozvananja točnog rješenja savijanja grede. Metode i pretpostavke za rješavanje ovog problema, koje danas uzimamo zdravo za gotovo, jednostavno nisu bile dostupne znanstvenicima u to vrijeme. Najčešće korišteni građevinski materijali u 17. i 18. stoljeću bili su drvo i kamen. Željezo je bilo dostupno, no međutim nije bio uobičajeni građevinski materijal sve do rane polovice 19. stoljeća. Prema tome, za većinu naših prethodnika, greda je uvijek morala imati pravokutni poprečni presjek, kao što to i većina drvenih greda ima danas. Konstantnost poprečnog presjeka grede uvelike je olakšala proračune deformacija koje nastaju prilikom opterećivanja grede. Ukoliko se kamena greda preoptereti, ona će puknuti na onom mjestu gdje je bila uklještena uza zid te uzrok pojave loma možda neće biti toliko očit. Ponašanje drvene grede pri djelovanju opterećenja, puno je jednostavnije za opisivanje zato što drvo nije krhki materijal te se ono deformira kako unutrašnja naprezanja rastu. No razumijevanje savijanja i deformacija koje ono nosi sa sobom, različito su poimali mnogi znanstvenici i istraživači koji su se bavili ovim problemom i razvojem teorije savijanja grede [2].

1.2. Povijesni razvoj teorije savijanja grede

Teorija savijanja grede danas je pripisana Euleru i Bernoulliju, no njezin razvoj trajao je preko gotovo 400 godina prije nego što se došlo do konačnih izraza po kojima se opisuje savijanje grede [3]. Najstarija poznata zapisana ideja o razradi savijanja grede datira još iz 13. stoljeća.

Jordanus de Nemore (1197.-1237.) u svome je djelu "De ratione ponderis" uočio povezanost između izvana narinutog opterećenja i deformacija koje nastaju kao njegova posljedica prilikom savijanja grede. Zaključio je kako veličina deformacije grede ovisi o udaljenosti sile od mjesta na kojem je spriječen pomak grede, odnosno o momentu. Također je primjetio kako se i ostatak grede ponaša po određenoj zakonitosti. Ponašanje grede pri savijanju kao što danas znamo, osim o opterećenju, ovisi i o karakteristikama materijala i dimenzijama poprečnog presjeka grede. Leonardo da Vinci (1452.-1519.), veliki izumitelj i znanstvenik, vjerovatno je prva osoba koja je ilustrirala problem savijanja grede. Do nedavno se smatralo kako je prva osoba koja je objavila znanstveni rad u području razvoja teorije savijanja grede bio Galileo, no međutim 1967. godine pronađeni su da Vincijevi rukopisi u Španjolskoj nacionalnoj knjižnici poznati pod nazivom "The Codex Madrid" (Slika 1) koji su bili objavljeni 1493. godine i potječu dakle iz razdoblja koje gotovo cijelo stoljeće prethodi Galileu. Leonardo je čak, za razliku od Galilea, točno opisao raspodjelu onoga što danas zovemo deformacijama i naprezanjima po visini poprečnog presjeka grede pri savijanju, čije su vrijednosti nula u neutralnoj liniji, a za slučaj pravokutnog poprečnog presjeka neutralna linija nalazi se na polovici visine presjeka. Unatoč svojim zapažanjima, Leonardo nije zaslužan za razvoj izraza pomoću kojih bi povezali karakteristike grede i opterećenja [3].

Slika 1. "The Codex Madrid", 84. stranica sa opisom raspodjele deformacija [3]

Galileo Galilei (1564.-1642.) prvi je analitički pristupio i u potpunosti formulirao problem savijanja grede u svom djelu "I due nuovi scienze fisiche...", objavljenom 1638. godine [1]. Galilejev rad koji se bavi formulacijom problema savijanja grede, nastao je na temelju razgovora između njega, profesora Sagreda i još dvojice studenata, Salviatia i Simplicia. U svom razmatranju, Galileo je pošao od grede uklještene na jednom kraju za koju je na drugom kraju ovješen teret (Slika 2). Greda je bila napravljena od drva, budući da se na njegovoj skici mogu raspoznati drvena vlakna, a poprečni presjek grede je bio pravokutni [2].

Slika 2. Galilejeva greda [3]

Galileo je prilikom ispitivanja uočio da lom počinje u točki *A* i širi se prema točki *B*. Pri tome se odlomljena konzola zakreće oko točke *B*. Dok ne dođe do loma grede, moment unutrašnjih sila po presjeku *AB* drži ravnotežu momentu sile kojom teret djeluje na kraju grede. Galileo je zapravo pretpostavio da sila u točki *C*, kao posljedica djelovanja tereta, razvija moment koji se odnosi prema momentu otpora u mjestu uklještenja *AB* prema zakonu poluge, pri čemu je točka *B* hvatište poluge. Galileo je pri svom razmatranju uveo krivu pretpostavku da u gredi postoje samo vlačna naprazanja i da su ta naprezanja po visini poprečnog presjeka, koja se opiru momentu sile u točki *C* koja uzrokuje savijanje, jednoliko raspodijeljena (Slika 3). U tom slučaju rezultanta unutrašnjih sila prolazi kroz središte presjeka i iznosi $F_1 = \sigma_{max}bh$. Krak te sile oko točke *B* iznosi *h*/2, pa ravnoteža momenata oko točke *B* glasi:

$$\sigma_{\max}bh\frac{h}{2} = Fl, \qquad (1)$$

pri čemu *b* i *h* označuju dimenzije poprečnog presjeka grede, σ_{max} označuje maksimalno naprezanje, *F* označuje silu tereta u točki *C*, a *l* je duljina grede [1].

Slika 3. Galilejeva raspodjela naprezanja po visini presjeka AB [1]

Iz relacije (1), maksimalno naprezanje po Galijejevoj pretpostavci iznosilo bi:

$$\sigma_{\max} = 2 \frac{Fl}{bh^2}.$$
 (2)

Ovo rješenje je neispravno budući da u Galilejevoj formulaciji nije bio usvojen koncept neutralne linije. Ipak, Galilejev rad veoma je važan jer uvodi pojam momenta te shvaća da se unutar grede javlja isti moment opiranja, što je imalo veliki značaj za daljnji razvoj teorije savijanja. Robert Hooke (1635.-1703.) bio je eksperimentalni znanstvenik koji je došao do nekoliko važnih zaključaka u području teorije savijanja. Bavio se elastičnim područjem i linearnom vezom između naprezanja i deformacija, koja je također poznata pod nazivom Hookeov zakon. Primijenio je svoju teoriju kako bi demonstrirao da se unutar grede, opterećene na savijanje, pojavljuju vlačna i tlačna naprezanja na suprotnim površinama te da su deformacije izravna posljedica djelovanja ovih naprezanja. Također je potvrdio postojanje neutralne linije, u kojoj je naprezanje nula, no nije uspio doći do zaključka u kojem položaju se ona nalazi za pravokutni poprečni presjek [2]. Oko pedeset godina nakon Galileja, nastavljajući se na njegov rad, Mariotte je popravio Galilejevo rješenje, no nažalost ne u potpunosti. Edme Mariotte (1620.-1684.) primijenio je Galilejev pristup u analizi problema savijanja grede zadrživši Galilejevu pretpostavku da se pri savijanju javljaju samo vlačne sile te da se pri deformiranju poprečni presjek zakreće oko točke B. Mariotte je uočio da se vlakna to više rastežu što su dalje od okretišta B, pa tako i unutarnje sile rastu linearno od nule u točki B pa sve do maksimalne vrijednosti u točki A. Na temelju toga, predložio je da su naprezanja po visini poprečnog presjeka raspodijeljena po zakonu trokuta (Slika 4) [1].

Slika 4. Mariotteova raspodjela naprezanja po visini presjeka AB [1]

Prema Mariotteovom razmatranju, rezultanta unutrašnjih sila iznosi $F_1 = \sigma_{\text{max}}bh/2$ i djeluje na kraku 2h/3. Ravnoteža momenata oko točke *B* glasi:

$$\sigma_{\max} \frac{bh}{2} \frac{2h}{3} = Fl, \qquad (3)$$

$$\sigma_{\max} = 3 \frac{Fl}{bh^2}.$$
 (4)

Kao što možemo vidjeti, ovo rješenje razlikuje se od rješenja koje je dobio Galileo (2), no tim rješenjem Mariotte se samo približio točnom rješenju više nego Galileo. Iako je Mariotte upotrijebio koncept neutralne linije predloživši njezin položaj za pravokutni poprečni presjek na polovici visine presjeka, kao i Leonardo da Vinci, te na taj način dao naznaku kako postoje vlačna i tlačna naprezanja unutar grede, tijekom analize napravio je pogrešku koja ga je navela na pogrešan zaključak kako rješenje ne ovisi o položaju neutralne linije te je nastavio koristiti pretpostavku, kako je već prije navedeno, da se pri deformiranju poprečni presjek zakreće oko točke B. Galilejevo i Mariotteovo rješenje prihvatili su mnogi suvremenici pa je tako u praksi dugi niz godina rješenje koje je dobio Galileo bilo korišteno za kamene grede, dok je rješenje koje je dobio Mariotte bilo korišteno za drvene grede [2]. Gottfried Leibniz (1646.-1716.) koristio se novom matematičkom podlogom kako bi riješio problem savijanja grede. Leibniz je također zadržao Galilejevu pretpostavku da se pri deformiranju poprečni presjek zakreće oko točke B, međutim svojim računom došao je do pogrešnog rješenja, ostavivši tako još uvijek neriješen problem savijanja grede [2]. Antoine Parent (1666.-1716.) također se bavio problemom savijanja grede. Parent je prvi dao točno rješenje problema savijanja grede u svojem radu objavljenom 1713. godine. Njegova analiza problema savijanja započeta je sa osnovnim pretpostavkama koje je postavio Galileo, imajući na umu kako su Hooke i Marriote u svojim radovima davali naznake da u gredi prilikom savijanja postoje vlačna i tlačna naprezanja istodobno. Parent je proveo proračun koji se bazirao na uvjetima

Fakultet strojarstva i brodogradnje

ravnoteže kako bih došao do odgovora gdje se nalazi neutralna linija, no provedeni proračun nije mu dao odgovor na to pitanje nego mu je samo potvrdio kako unutar grede stvarno postoje vlačna i tlačna naprezanja. Parent je zatim, isto kao i Marriote, primijenio je Galilejev pristup u analizi problema savijanja grede, no on je, za razliku od Galilea, pravilno pretpostavio linearnu raspodjelu naprezanja po visini poprečnog presjeka, pri čemu se maksimalno vlačno naprezanje nalazi na gornjoj površini, a maksimalno tlačno na donjoj površini. Također je preuzeo Marrioteovu pretpostavku da je neutralna linija za pravokutni poprečni presjek smještena na polovici visine presjeka. Uz navedene pretpostavke, analiza koju je proveo dovela ga je do točnog rješenja problema savijanja grede. No nažalost, Parent je imao poteškoća pri opravdavanju svojeg rješenja pomoću eksperimenta i zbog toga njegovo rješenje nije bilo prihvaćeno od suvremenika, tako da su se u praksi nastavila koristiti rješenja koja su dobili Galileo i Mariotte [2]. Charles-Augustin Coulomb (1736.-1806.) je, neovisno o Parentu, u potpunosti formulirao i dao točno rješenje problema savijanja grede u svojem radu objavljenom 1773. godine. Columb je zapravo, na neki način, rekonstruirao teorije koje su postavili njegovi prethodnici (Slika 5). Metoda koju je koristio pri svojoj analizi uključuje, danas vrlo poznatu, metodu presjeka koja se temelji na uvjetima ravnoteže dijela grede koji se deformira nakon rotacije uzrokovane naprezanjima pri savijanju [2]. Columb je ispravno uočio, kao što je to napravio i Parent, da se prilikom savijanja u gredi pojavljuju vlačna i tlačna naprezanja, čija je raspodjela po visini poprečnog presjeka linearna. Također je na pravilan način odredio položaj neutralne linije pravokutnog poprečnog presjeka [1].

Slika 5. Columbova raspodjela naprezanja po visini presjeka AB [1]

Ono što je Columb u svojoj analizi tvrdio jest da rezultantna sila vlačnih naprezanja mora biti jednaka rezultantnoj sili tlačnih naprezanja, odnosno:

$$F_{1} = F_{2} = \frac{1}{2}\sigma_{\max}b\frac{h}{2} = \frac{1}{4}\sigma_{\max}bh.$$
 (5)

$$F_1 \frac{2}{3}h = \frac{1}{4}\sigma_{\max}bh\frac{2}{3}h = Fl, \qquad (6)$$

$$\sigma_{\max} = 6 \frac{Fl}{bh^2}.$$
(7)

Coulombovo rješenje problema savijanja grede, iako je bilo točno, nije ostvarilo veću pozornost među inženjerima, koji su opisali njegovu analizu kao pretešku, zamornu i od premalo koristi. Njegov rad, kao što je to bilo i u slučaju Parenta, vrlo je brzo ostao zaboravljen tako da se praksa opet orijentirala prema ranijim radovima Galilea i Mariottea [2]. Kao osvrt na rješenja koja su proizašla iz radova Galilea, Mariottea i Columba, Jacques Heyman u svojem djelu "The science of structural engineering" napisao je sljedeće: "... tada je novi način proračuna savijanja grede, od strane Columba, dao faktor 1/6 umjesto 1/2 kod Galilea ili 1/3 kod Mariottea. Po prvi puta, logičan i pravilan matematički pristup bio je predstavljen za opisivanje mjesta gdje bi greda pri savijanju mogla puknuti, no zapravo nijedno od ta tri rješenja nije se savršeno poklapalo sa eksperimentalnim rezultatima. Faktor 1/2 možda je najbolji za kamen, a faktor 1/3 za drvo, dok se matematički gledano točna vrijednost faktora 1/6 čini beskorisnom da bi se pomoću nje moglo predvidjeti gdje će nastati lom." [3]. Kako je već prije napomenuto, teorija savijanja grede pripisana je Leonardu Euleru i obitelji Bernoulli, poglavito Danielu Bernoulliju, čiji su dugogodišnji radovi u ovom području bili uvelike zanemareni od strane inženjera u praksi sve do druge polovice 19. stoljeća. Jacob Bernoulli (1654.-1705.) bavio se proučavanjem progiba i nagiba koji nastaju pri savijanju grede, više nego njezinom čvrstoćom, kao vježba u primjeni infinitenzimalnog računa čije je osnove za ovaj problem postavio Leibniz u svojem radu. Znanstveni članak, u kojem je iznio svoja razmatranja vezana uz ovaj problem, objavio je 1694. godine, a njegovu konačnu verziju u godini svoje smrti, 1705. Pri svojoj analizi, preuzeo je Mariotteovu pretpostavku o položaju neutralne osi za pravokutni poprečni presjek te je uveo nekoliko poznatih pretpostavki koje su danas temelj teorije savijanja grede. Jedna od njh je da poprečni presjeci nakon deformiranja ostaju ravni pri čemu je mogao izjednačiti vanjski moment s ukupnim unutarnjim momentom i dobiti sljedeću relaciju:

$$C\kappa = Fl. \tag{8}$$

gdje je C ekvivalnentna krutost grede, a κ zakrivljenost progibne tj. elastične linije. Uz pomoć ove relacije, došao je do vrlo važnog zaključka koji glasi da je zakrivljenost elastične

linije grede proporcionalna momentu savijanja koji tu deformaciju uzrokuje. U svojem je radu, također, tvrdio kako se provedena analiza može primijeniti samo dok se materijal nalazi u elastičnom području opterećenja, implicirajući na upotrebu Hookeova zakona. Nažalost, kriva pretpostavka koju je preuzeo od Mariottea, dovela ga je do porgrešnog rješenja [3]. Rad Jacoba Bernoullija nastavili su njegov nećak Daniel Bernoulli (1700.-1782.) i Danielov dobar prijateli Leonard Euler (1707.-1783.) koji su se zajedno udružili kako bi pronašli rješenje progiba grede pri savijanju. Daniel Bernoulli je 1742. godine tražio pomoć od Eulera obrazloživši mu da bi trebao primjeniti varijacijski račun pri izvodu jednadžbe elastične linije u pismu u kojem je napisao: "... želio bih izraziti potencijalnu energiju zakrivljenog elastičnog vlakna kroz $\int \frac{ds}{\rho^2}$ pretpostavljajući da je diferencijalni element ds konstantan i s ρ označujući polumjer zakrivljenosti. Kako nema nikog savršenijeg od tebe tko je takav majstor u primjeni izoparametarske metode, tebi će biti jednostavno riješiti problem minmiziranja navedenog izraza." [3]. Nakon što je to Euler napravio, Daniel Bernouli, uz pomoć Eulerovog varijacijskog računa, prvi je izveo diferencijalnu jednadžbu elastične linije objedinivši tako pretpostavke koje je njegov ujak postavio u svojem radu. Principi prema kojima je Euler došao do rješenja zapisani su u njegovom djelu "Methodus inveniendi lineas curvas maximi minive proprietate gaudentes" objavljenom 1744. godine u kojemu je, prema savjetu Daniela Bernoullija, problem riješio pomoću varijacijskog računa. Euler je smatrao da problemu treba pristupiti sa dva različita aspekta, pri čemu je uveo pojam konačnih uzroka, pa je tako razvio istovremeno metodu koja se bazira na uvjetima ravnoteže i energetsku metodu za rješavanje problema. Euler je zatim integrirao diferencijalnu jednadžbu do koje je došao Daniel Bernoulli kako bi dobio točan izraz za progib na kraju grede koji glasi:

$$f = \frac{Fl^3}{3C}.$$
(9)

Euler je konstantu *C* nazvao apsolutnom krutošću grede i tvrdio je kako ona ovisi o elastičnim svojstvima materijala od kojeg je greda napravljena. U početku, Euler je predložio vrijednost za ovu konstantu koja dimenzijski nije bila točna, no treba imati na umu kako u to vrijeme nije bila razvijena dimenzijska analiza. Godine 1750. Euler je ispravio dimenziju ove konstante koristeći dimenskijsku analizu, pri čemu je to bilo prva uspješna primjena dimenzijske analize. Do polovice 18. stoljeća, Euler je izveo jednadžbe koje, ne samo da su mogle predvidjeti koliki će biti progib grede pri djelovanju opterećenja, nego su se njegovi izrazi mogli iskoristiti i za izračunavanje naprezanja pri savijanju. Na taj je način riješio

Fakultet strojarstva i brodogradnje

problem kojemu su, uglavnom bezuspješno, pristupali mnogi njegovi prethodnici [3]. No ipak, Euler-Bernoullijeva teorija savijanja, kao prva sveobuhvatna teorija savijanja grede, imala je mali utjecaj na metode koje su u to vrijeme inženjeri koristili u praksi te će proći period od gotovo 100 godina prije nego što će se ova teorija početi koristiti za proračune u praksi. Moglo bi se reći da je teorija razvijena u pogrešno vrijeme kako bi bila u potpunosti prihvaćena od suvremenika. Razlozi koji bi obrazložili zašto je do toga došlo nisu u potpunosti jasni, no mogućnosti uključuju to da je reputacija Galilea i Mariottea bila toliko velika da se njihove metode uopće nije željelo preispitivati te također u vrijeme kada je nastala teorija, predviđanja na koji način će se deformirati greda i kada će izgubiti svoju stabilnost, nisu bila od velike važnosti. Tek sa sve većom pojavom uporabe čelika kao konstrukcijskog materijala, ova teorija zauzela je ponosno prvo mjesto u inženjerskoj praksi te se uspješno nastavila koristiti dugi niz godina. U prvoj polovici 20. stoljeća došlo je do daljnjeg proširenja Euler-Bernoullijeve teorije savijanja grede iz razloga što, kao glavni nedostatak, ova teorija nije uzimala u obzir utjecaj smika pa tako u slučajevima kada se smik nije mogao zanemariti, pretpostavke koje je uveo Jacob Bernoulli u svojem radu više nisu bile u potpunosti ispunjene. Stjepan Timošenko (1878.-1972.) u svojem radu objavljenom 1921. godine, izveo je jednadžbe koje opisuju problem savijanja grede unutar kojih je uključio utjecaj smika prilikom savijanja. Njegova se teorija, kao proširenje Euler-Bernoullijeve teorije, nazvala Timošenkovom teorijom savijanja grede. Zanimljiva činjenica jest da kada se Timošenko počeo baviti ovim problemom, osnovna namjera mu je bila opisati ponašanje grede u smislu vibracijskog režima kojemu bi greda bila podvrgnuta te izvesti jednadžbe gibanja koje bi opisale takav sustav. U konačnici, zanemarivanjem određenih članova u njegovim jednadžbama, problem se mogao svesti na najobičniji problem statičkog opterećenja grede pri savijanju, koji je do tog trenutka bio opisan samo Euler-Bernoullijevom teorijom savijanja [4].

2. TEORIJE SAVIJANJA GREDE

2.1. Generalizacija problema savijanja

Savijanje je pojava kod koje uzdužna os štapa mijenja svoj oblik. To se događa kada na štap djeluju vanjska opterećenja oko ili u smjeru koordinatnih osi koje opisuju ravninu u kojoj leži poprečni presjek štapa. Takav štap na koji može djelovati opisano opterećenje, kako je već prije spomenuto, nazivamo gredom. Pod vanjskim opterećenjima podrazumijevamo koncentriranu silu F, koncentrirani moment M, kontinuirano opterećenje q i kontinuirani moment *m*, iako se opterećenje kontinuiranim momentom jako rijetko pojavljuje u praksi. Sva ova opterećenja imaju, za problem savijanja, zajedničko to što je njihov smjer djelovanja ortogonalan na uzdužnu os štapa, odnosno grede [5]. Pri savijanju se ravne grede zakrivljuju, a zakrivljene grede mijenjaju svoju zakrivljenost. Ako se vanjsko opterećenje u nekom presjeku reducira samo na spreg, kažemo da je greda opterećena na čisto savijanje tj. savijanje spregovima, a ako se u poprečnom presjeku javljaju i poprečne sile, tada govorimo o poprečnom savijanju ili savijanju silama. U slučaju da moment savijanja djeluje oko jedne od glavnih osi tromosti poprečnog presjeka grede, imamo obično savijanje, a ako moment savijanja ne djeluje ni oko jedne od glavnih osi tromosti, tada imamo koso savijanje [1]. Međutim, mi ćemo se, prilikom izlaganja teorija savijanja, baviti samo običnim savijanjem. U izvodima teorija savijanja grede, koji slijede, postoji nekoliko ograničenja odnosno pojednostavljenja kako bi se na što jednostavniji način moglo pristupiti problemu, a to su:

- promatranje ravnih greda,
- zanemaruju se pomaci u smjeru uzdužne osi grede,
- deformacije su ravninske,
- jednostavni poprečni presjeci grede s jednom osi simetrije.

Kod klasičnih teorija savijanja razlikujemo Euler-Bernoullijevu i Timošenkovu teoriju savijanja grede.

2.2. Euler-Bernoullijeva teorija savijanja

Euler-Bernoullijeva teorija savijanja je prva sveobuhvatna teorija savijanja grede. U ovoj teoriji zanemaruju se deformacije poprečnog presjeka uslijed djelovanja smičnog naprezanja pri savijanju silama, odnosno poprečnog savijanja [5]. Radi jednostavnosti izvod, kojime će se doći do relacija pomoću kojih je opisana ova teorija, temeljiti će se na promatrajnu čistog

savijanja, odnosno savijanja spregovima grede čiji poprečni presjek ima jednu os simetrije. Savijanje se izvodi u ravnini koja sadrži uzdužnu os grede x i os simetrije z. Nakon opterećenja, greda se deformira, a uzdužna os prelazi u zakrivljenu crtu koja se naziva elastična ili progibna linija, ali to je zapravo neutralna linija. Pri analizi čistog savijanja uvest ćemo ove pretpostavke o deformiranju grede, odnosno raspodjeli naprezanja te ograničenju pomaka:

- poprečni presjeci, koji su prije deformiranja bili okomiti na uzdužnu os, nakon deformiranja ostaju ravni i okomiti na elastičnu liniju,
- sve komponente naprezanja, osim σ_x , jednake su nuli,
- visina grede *h* malena je u usporedbi s njezinim rasponom *l*,
- maksimalni nagib tangente na elastičnu liniju α_{max} je malen.

Egzaktna analiza ovog problema u teoriji elastičnosti pokazuje da su ove pretpostavke u cjelosti ispunjene i opravdane, osim, eventualno, u neposrednoj blizini mjesta gdje djeluju spregovi, ali se taj poremećaj po Saint-Venantovu principu vrlo brzo gubi [1]. Prema ovom principu, dva različita opterećenja, čije je djelovanje ograničeno na mali dio konture, izazivaju jednaka naprezanja u točkama dovoljno udaljenim od mjesta opterećenja pod uvjetom da su opterećenja statički ekvivalentna. Pod statički ekvivalentnim opterećenjima podrazumijeva se podudarnost u rezultantnoj sili i rezultantnom momentu [6]. Ove pretpostavke, između ostaloga, omogućuju nam da umjesto nelinearne dobijemo linearnu diferencijalnu jednadžbu elastične linije. Euler-Bernoullijeva teorija, zbog zanemarivanja utjecaja smičnog naprezanja, koristi se pri proračunima u kojima je omjer između visine poprečnog presjeka i duljine grede h/l mali, odnosno za grede kojima je duljina puno veća od visine njezinog poprečnog presjeka. U slučaju čistog savijanja, poprečni presjeci ostaju ravni i ortogonalni na uzdužnu os grede, odnosno jednostavno dolazi do njihove rotacije (Slika 6), dok u slučaju poprečnog savijanja, odnosno pojave kutnih deformacija uslijed smičnih naprezanja, mora doći do iskrivljenja poprečnih presjeka [1]. Ako je raspon grede mnogo veći od visine njezinog poprečnog presjeka, pomaci zbog iskrivljenja zanemarivo su maleni u usporedbi s pomacima koji nastaju zbog rotacije poprečnog presjeka, koja bi nastala pri čistom savijanju. U tom slučaju može se zadržati pretpostavka da poprečni presjeci ostaju ravni nakon deformacije i okomiti na elastičnu liniju tako da će svi izvedeni izrazi vrijediti približno i za poprečno savijanje. Pogreška je to manja što je manji omjer h/l. U [1] se predlaže da maksimalna vrijednost tog omjera bude između 1/5 i 1/4, dok se u [5] predlaže da se taj omjer nalazi između 1/20 i 1/10. Osnova za izvod jednadžbi kojima se opisuje Euler-Bernoullijeva teorija savijanja grede preuzeta je iz [1] i [5].

Slika 6. Prikaz deformiranog oblika grede kod Euler-Bernoullijeve teorije savijanja

Za početak trebaju nam diferencijalne jednadžbe ravnoteže elementa grede. Radi lakše analize uvodimo pravokutni koordinatni sustav Oxyz. Os x, kako smo već napomenuli, biramo tako da se podudara s uzdužnom osi grede, dok su ostale dvije osi y i z okomite na os grede. Savijanje se izvodi u ravnini Oxz. Diferencijalne jednadžbe ravnoteže izvesti ćemo promatrajući infinitenzimalni gredni element duljine dx koji je opterećen sa konstantnim kontinuiranim opterećenjem q_z (Slika 7). Komponente unutrašnjih sila nacrtane su na mjestu x, negativni presjek, i na mjestu x+dx, pozitivni presjek, grednog elementa te su one funkcije koordinate x.

Slika 7. Infinitenzimalni gredni element opterećen na savijanje u ravnini Oxz

Za ovaj slučaj opterećenja, jedine komponente unutrašnjih sila koje su različite od nule jesu moment savijanja M_y i poprečna sila Q_z . Prema konvenciji, na lijevom, negativnom, presjeku komponente unutrašnjih sila gledaju u negativnom smjeru koordinatnih osi, dok na desnom, pozitivnom, presjeku komponente gledaju u pozitivnom smjeru koordinatnih osi, pri čemu se na ovom presjeku komponente razlikuju za priraste dM_y i dQ_z koji mogu biti pozitivni ili negativni. Od šest uvjeta ravnoteže, koji u statici moraju biti zadovoljeni, četiri su automatski zadovoljena. Prvu diferencijalnu jednadžbu ravnoteže dobit ćemo razmatranjem uvjeta ravnoteže sila u smjeru osi z koji glasi:

$$\sum F_z = 0, \qquad (10)$$

$$-Q_{z} + q_{z}dx + Q_{z} + dQ_{z} = 0.$$
(11)

Nakon sređivanja relacije (11), dobijemo prvu diferencijalnu jednadžbu ravnoteže koja povezuje unutrašnju komponentu poprečne sile Q_z sa kontinuiranim opterećenjem q_z i koja glasi:

$$q_z = -\frac{\mathrm{d}Q_z}{\mathrm{d}x}\,.\tag{12}$$

Drugu diferencijalnu jednadžbu ravnoteže dobit ćemo razmatranjem uvjeta ravnoteže momenata u smjeru osi *y* postavljajući sumu momenata oko točke *A* pa dobijemo:

$$\sum M_{y,A} = 0, \tag{13}$$

$$-M_{y} - q_{z} dx \frac{dx}{2} - (Q_{z} + dQ_{z}) dx + (M_{y} + dM_{y}) = 0, \qquad (14)$$

$$-\frac{1}{2}q_{z}dx^{2} - Q_{z}dx - (-q_{z}dx)dx + dM_{y} = 0, \qquad (15)$$

$$q_z \frac{dx^2}{2} - Q_z dx + dM_y = 0.$$
 (16)

Ako u relaciji (16) uzmemo u obzir da je prvi član infinitenzimalno male veličine višeg reda u odnosu na ostale članove, onda ga možemo zanemariti te konačno dobijemo:

$$Q_z = \frac{\mathrm{d}M_y}{\mathrm{d}x}.$$
 (17)

Relacija (17) predstavlja drugu diferencijalnu jednadžbu ravnoteže koja povezuje komponentu unutrašnje poprečne sile Q_z sa unutrašnjom komponentom momenta savijanja M_y i koja kaže da se raspodjela poprečne sile po duljini grede dobije derivacijom raspodjele momenta savijanja. Kombinacijom relacija (12) i (17) možemo dovesti u vezu unutrašnju komponentu

momenta savijanja M_y sa kontinuiranim opterećenjem q_z koja glasi:

$$q_z = -\frac{\mathrm{d}^2 M_y}{\mathrm{d}x^2} \,. \tag{18}$$

Kako bismo pronašli kinematsku relaciju koja povezuje polumjer zakrivljenosti elastične linije ρ sa progibom grede *w*, promatrat ćemo radi jednostavnosti, kako je već ranije napomenuto, čisto savijanje, odnosno savijanje spregovima M_{γ} (Slika 8).

Slika 8. Deformirani oblik grede opterećene na čisto savijanje u xz ravnini

Pod pojmom progib grede podrazumijevamo pomak točaka na neutralnoj liniji u smjeru osi z i označavat ćemo ga sa malim slovom w. Progib je općenito funkcija koordinate x, odnosno w = w(x), gdje se ova funkcija naziva elastična linija. Kako promatramo čisto savijanje, uzdužna os grede prelazi u elastičnu liniju tj. kružnicu sa polumjerom zakrivljenosti ρ . Da objasnimo zašto je elastična linija kružnica. Zamislimo da smo gredu presjekli u niz manjih dijelova. Svaki od tih dijelova je geometrijski identičan, ima ista elastična svojstva i jednako je opterećen, pa će očito i zakrivljenost svakog djela biti jednaka. Prema tome, elastična linija je krivulja koja ima konstantnu zakrivljenost, a jedina krivulja koja se ponaša na taj način je kružnica. Općeniti oblik jednadžbe kružnice sa središtem u točki (p,q) i polumjerom R glasi:

$$(x-p)^{2} + (z-q)^{2} = R^{2}.$$
(19)

Ako u relaciju (19) uvrstimo supstitucije da je $p = x_0$, $q = -z_0$, z = w(x) i $R = \rho$, dobijemo:

$$(x - x_0)^2 + (w(x) + z_0)^2 = \rho^2.$$
⁽²⁰⁾

Svrsishodno je ovdje napomenuti da je u stvarnosti polumjer zakrivljenosti elastične linije puno veći od duljine grede, odnosno $\rho >> l$ tako da je na slici mjerilo za progibe mnogo veće od mjerila za dužine kako bi se zornije mogao prikazati deformirani oblik. Ako relaciju (20) deriviramo po koordinati *x*, dobijemo:

$$2(x - x_0) \cdot 1 + 2(w(x) + z_0) \frac{dw}{dx} = 0.$$
 (21)

Novim deriviranjem relacije (21) po x te sređivanjem dobijemo:

$$2 + 2\frac{dw}{dx}\frac{dw}{dx} + 2w(x)\frac{d^2w}{dx^2} + 2z_0\frac{d^2w}{dx^2} = 0,$$
(22)

$$1 + \left(\frac{dw}{dx}\right)^2 + w(x)\frac{d^2w}{dx^2} + z_0\frac{d^2w}{dx^2} = 0,$$
(23)

$$\left[w(x) + z_0\right] = -\frac{1 + \left(\frac{\mathrm{d}w}{\mathrm{d}x}\right)^2}{\frac{\mathrm{d}^2 w}{\mathrm{d}x^2}}.$$
(24)

Relacija (24) daje nam vertikalnu udaljenost između proizvoljnog progiba na elastičnoj liniji i točke središta kružnice na osi *z*, odnosno $w(x) + z_0$. Ako želimo dobiti horizontalnu udaljenost između proizvoljne točke na elastičnoj liniji i točke središta kružnice na osi *x*, odnosno $x - x_0$, to možemo dobiti iz relacije (21) pa slijedi, uz primjenu (24):

$$[x - x_0] = -[w(x) + z_0] \frac{dw}{dx},$$
(25)

$$\left[x - x_0\right] = \frac{\mathrm{d}w}{\mathrm{d}x} \frac{1 + \left(\frac{\mathrm{d}w}{\mathrm{d}x}\right)^2}{\frac{\mathrm{d}^2 w}{\mathrm{d}x^2}}.$$
(26)

Uvrštavanjem relacija (26) i (24) u (20) dobijemo:

$$\rho^{2} = \left(\frac{dw}{dx}\right)^{2} \frac{\left(1 + \left(\frac{dw}{dx}\right)^{2}\right)^{2}}{\left(\frac{d^{2}w}{dx^{2}}\right)^{2}} + \frac{\left(1 + \left(\frac{dw}{dx}\right)^{2}\right)^{2}}{\left(\frac{d^{2}w}{dx^{2}}\right)^{2}},$$

$$\rho^{2} = \frac{\left(1 + \left(\frac{dw}{dx}\right)^{2}\right)^{2}}{\left(\frac{d^{2}w}{dx^{2}}\right)^{2}} \left[\left(\frac{dw}{dx}\right)^{2} + 1\right] = \frac{\left(1 + \left(\frac{dw}{dx}\right)^{2}\right)^{3}}{\left(\frac{d^{2}w}{dx^{2}}\right)^{2}}.$$
(27)
$$(27)$$

Korijenovanjem relacije (28) dobijemo izraz za polumjer zakrivljenosti elastične linije:

$$\rho = \pm \frac{\left(1 + \left(\frac{\mathrm{d}w}{\mathrm{d}x}\right)^2\right)^{\frac{3}{2}}}{\frac{\mathrm{d}^2 w}{\mathrm{d}x^2}}.$$
(29)

Često se u literaturi koristi pojam zakrivljenosti koja se definira kao recipročna vrijednost polumjera zakrivljenosti i označuje se s κ pa imamo:

$$\kappa = \frac{1}{\rho} = \pm \frac{\frac{\mathrm{d}^2 w}{\mathrm{d}x^2}}{\left(1 + \left(\frac{\mathrm{d}w}{\mathrm{d}x}\right)^2\right)^{\frac{3}{2}}}.$$
(30)

Kako smo rekli da se bavimo malim pomacima, veličina $\frac{dw}{dx}$ u relaciji (30) je zanemarivo mala u odnosu na broj jedan, tako da taj član možemo zanemariti te na taj način dobijemo pojednostavljni oblik izraza za zakrivljenost elastične linije koji glasi:

$$\kappa = \pm \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} \,. \tag{31}$$

Pošto za naš koordinatni sustav deformirani oblik grede ima, pazeći na predznak, konveksan oblik, konačni izraz koji povezuje zakrivljenost elastične linije sa progibom grede glasi:

$$\kappa = -\frac{\mathrm{d}^2 w}{\mathrm{d}x^2} \,. \tag{32}$$

Integriranjem relacije (32) mogli bismo dobiti opći oblik funkcije elastične linije prema Euler-Bernoullijevoj teoriji savijanja, no ipak još uvijek ne znamo o čemu ovisi zakrivljenost elastične linije, a odgovor na to pitanje dobiti ćemo definiranjem deformacija i naprezanja koja nastaju unutar grede pri opterećivanju savijanjem. Početi ćemo sa definiranjem izraza za deformaciju. U tu svrhu, uzmimo diferencijalni element deformiranog oblika grede (Slika 9).

Slika 9. Diferencijalni element deformiranog oblika grede u xz ravnini

Već smo rekli da, budući da promatramo čisto savijanje, elastična linija nakon deformiranja je kružnica, iz čega vidimo da se pri deformiranju uzdužna vlakna na gornjoj strani grednog elementa skraćuju dok se na donjoj strani produljuju. Negdje u sredini grede postoje vlakna koja ne mijanjaju duljinu, odnosno niti se produljuju niti skraćuju. Ta vlakna tvore neutralnu liniju, a ishodište koordinatnog sustava *xz* upravo je postavljeno u tu neutralnu liniju. Kako bismo definirali za koliko su se ta vlakna produljila, tj. skratila, krenut ćemo od osnonve definicije duljinske deformacije u smjeru osi *x* koja glasi:

$$\varepsilon_x = \frac{\Delta l}{l_0},\tag{33}$$

pri čemu Δl označuje produljenje, tj. skraćenje, a l_0 označuje početnu duljinu. Sa slike možemo vidjeti da veličina dx označuje duljinu vlakna u neutralnoj liniji, odnosno početnu duljinu, a ds označuje duljinu vlakna koje se za određeni iznos produljilo pa ako primjenimo relaciju (33) dobijemo:

$$\mathcal{E}_x = \frac{\mathrm{d}s - \mathrm{d}x}{\mathrm{d}x} \,. \tag{34}$$

Duljine lukova ds i dx možemo izraziti pomoću odgovarajućih polumjera na kojima se nalaze te kuta d α pa dobijemo:

$$dx = \rho d\alpha , \qquad (35)$$

$$ds = (\rho + z)d\alpha = \rho d\alpha + zd\alpha .$$
(36)

Ako relacije (35) i (36) uvrstimo u (34) dobijemo konačan izraz za duljinsku deformaciju:

$$\varepsilon_x = \frac{\rho d\alpha + z d\alpha - \rho d\alpha}{\rho d\alpha}, \qquad (37)$$

$$\varepsilon_x = \frac{z}{\rho} = z\kappa.$$
(38)

Relacija (38) daje nam vezu između duljinske deformacije i zakrivljenosti elastične linije, a ukoliko u relaciju (38) uvrstimo relaciju (32), dobijemo izraz pomoću kojega smo povezali duljinsku deformaciju sa progibom grede i on glasi:

$$\varepsilon_x = -z \frac{\mathrm{d}^2 w}{\mathrm{d}x^2}.$$
(39)

U pretpostavkama koje smo uveli, rečeno je da se pri čistom savijanju unutar grede pojavljuje samo normalno naprezanje σ_x , dok su ostala naprezanja jednaka nuli. Kako bismo povezali duljinsku deformaciju ε_x sa normalnim naprezanjem σ_x , koristimo se konstituivnom relacijom, tj. Hookeovim zakonon za jednoosno stanje neprezanja koje glasi:

$$\sigma_x = E\varepsilon_x,\tag{40}$$

pri čemu veličina *E* označuje Youngov modul elastičnosti, odnosno elastičnu karakteristiku materijala. Ako povežemo relaciju (40) sa relacijom (39), naprezanje možemo izraziti kao:

$$\sigma_x = -E \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} z \,. \tag{41}$$

Iz relacije (41) možemo vidjeti da je raspodjela neprezanja po visini poprečnog presjeka linearna, pošto je $\frac{d^2w}{dx^2}$ = konst. Normalna naprezanja koja se javljaju u gredi pri čistom

Fakultet strojarstva i brodogradnje

savijanju, uzrokuju pojavu unutrašnjeg momenta savijanja M_y . Vezu između unutrašnje komponente momenta savijanja i normalnog naprezanja dobiti ćemo razmatranjem ravnoteže na poprečnom presjeku grede opterećene na čisto savijanje (Slika 10).

Slika 10. Poprečni presjek grednog elementa opterećenog na čisto savijanje

Uočimo na poprečnom presjeku diferencijalnu površinu d*A* po kojoj djeluje vlačno naprezanje σ_x te kojoj je središte udaljeno za iznos *z* od osi *y*. Normalno naprezanje σ_x uzrokuje moment savijanja oko osi *y*. Element momenta d M_y oko osi *y* iznosi:

$$dM_{y} = \sigma_{x} dA z, \qquad (42)$$

gdje je $\sigma_x dA$ elementarna sila, a *z* njen krak oko osi *y*. Ako želimo dobiti ukupni unutrašnji moment savijanja, to ćemo dobiti integriranjem relacije (42) po cijeloj površini pa imamo:

$$M_{y} = \int_{A} \sigma_{x} z \, \mathrm{d}A \,. \tag{43}$$

Povezivanjem relacija (43) i (41) dobijemo, uz E = konst.:

$$M_{y} = -\int_{A} E \frac{\mathrm{d}^{2} w}{\mathrm{d} x^{2}} z \mathrm{d} A z , \qquad (44)$$

$$M_{y} = -E \frac{\mathrm{d}^{2} w}{\mathrm{d} x^{2}} \int_{A} z^{2} \mathrm{d} A \,. \tag{45}$$

Izraz $\int_{A} z^2 dA$ označuje aksijalni moment tromosti oko osi y koji se označuje sa I_y . Aksijalni moment tromosti I_y ovisi samo o geometriji poprečnog presjeka grede i uzimamo da se ne mijena po uzdužnoj osi grede te također služi kao svojevrsna mjera krutosti poprečnog

presjeka protiv savijanja, pa u relaciji (45) imamo:

$$M_{y} = -E \frac{\mathrm{d}^{2} w}{\mathrm{d} x^{2}} I_{y}, \qquad (46)$$

$$EI_{y} \frac{\mathrm{d}^{2} w}{\mathrm{d} x^{2}} = -M_{y}. \tag{47}$$

Izraz (47) predstavlja konačan izraz za diferencijalnu jednadžbu elastične linije po Euler-Bernoullijevoj teoriji savijanja. Veličina EI_y u literaturi se naziva fleksijska krutost. Vrijednosti aksijalnih momenata tromosti oko osi koje leže u ravnini poprečnog presjeka grede za jednostavnije oblike, koje ćemo kasnije koristiti, dane su u tablici 1.

Poprečni presjek	Iy	Iz
	$I_y = \frac{bh^3}{12}$	$I_z = \frac{b^3 h}{12}$
y z	$I_y = \frac{d^4\pi}{64}$	$I_z = \frac{d^4 \pi}{64}$

Tablica 1. Aksijalni momenti tromosti oko y i z osi [5]

Uz pomoć diferencijalnih jednadžbi ravnoteže, koji su opisani relacijama (12) i (17), diferencijalnu jednadžbu elastične linije možemo izraziti na više načina. Ako relaciju (47) deriviramo po *x* i primjenimo relaciju (17), uz EI_y = konst., dobijemo:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(EI_{y}\frac{\mathrm{d}^{2}w}{\mathrm{d}x^{2}}\right) = -\frac{\mathrm{d}M_{y}}{\mathrm{d}x},\tag{48}$$

$$EI_{y} \frac{d^{3} w}{dx^{3}} = -Q_{z} . ag{49}$$

Ako sada relaciju (49) ponovno deriviramo po x i primjenimo relaciju (12) dobijemo:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(EI_{y}\frac{\mathrm{d}^{3}w}{\mathrm{d}x^{3}}\right) = -\frac{\mathrm{d}Q_{z}}{\mathrm{d}x},$$
(50)

$$EI_{y} \frac{\mathrm{d}^{4} w}{\mathrm{d}x^{4}} = q_{z}.$$
(51)

Relecija (51) predstavlja klasični oblik diferencijalne jednadžbe savijanja po Euler-Bernoullijevoj teoriji savijanja grede. Rješenje diferencijalne jednadžbe (51) dobiva se njezinim integriranjem, a kao rješenje dobijemo rapsodjelu progiba w(x) po dužini grede. To rješenje diferencijalne jednadžbe ovisi o rubnim uvjetima, odnosno o načinu na koji je greda oslonjena ili pričvršćena za okolinu u kojoj se odvija savijanje. Definiranjem diferencijalne jednadžbe elastične linije, također smo dali odgovor na to o čemu ovisi zakrivljenost elastične linije, pa kombinacijom relacija (47) i (32) dobijemo:

$$\kappa = \frac{M_y}{EI_y}.$$
(52)

Iz relacije (52) možemo vidjeti da zakrivljensot elastične linije ovisi o raspodjeli unutrašnjeg momenta savijanja i vrijednosti fleksijske krutosti, odnosno o opterećenju i karakteristikama grede. Kada se radi proračun savijanja, vrlo je važno, uz progibe, definirati i koliki su nagibi tangente na elastičnu liniju, za koje smo uveli pretpostavku da ne smiju biti veliki. Prvo moramo definirati smjer pozitivnog i negativnog nagiba (Slika 11).

Slika 11. Definicija pozitivnog i negativnog nagiba tangente na elastičnu liniju u koordinatnom sustavu *Oxz*

Pozitivni smisao kuta definiran je prema pravilu desnog vijka. Za koordinatni sustav Oxz pozitivni smjer kuta α suprotan je od smjera gibanja kazaljke na satu. Vezu između nagiba tangente na elastičnu lijinu i progiba grede, dobiti ćemo promatranjem diferencijalnog dijela deformirane grede sa negativnim nagibom (Slika 12).

Slika 12. Diferencijalni element deformiranog oblika grede s negativnim nagibom

Kako sa slike možemo vidjeti, iscrtkana linija predstavlja deformirani oblik grede na diferencijalnoj duljini dx, pri čemu je dw diferencijal progiba grede na na toj duljini. Budući da promatramo infinitenzimalno mali dio te grede, zakrivljena linija može prijeći u ravnu liniju koja nam omogućuje da kut nagiba α definiramo kao:

$$tg(-\alpha) = -tg(\alpha) = \frac{dw}{dx}.$$
(53)

Budući da se bavimo malim nagibima, približno vrijedi da je $-tg(\alpha) \approx -\alpha$ pa relacija (53) prelazi u izraz:

$$\alpha = -\frac{\mathrm{d}w}{\mathrm{d}x}.$$
(54)

Pomoću relacije (54) definirali smo nagib tangente na elastičnu liniju čiju raspodjelu možemo dobiti kao prvu derivaciju raspodjele progiba po x. Euler-Bernoullijeva teorija savijanja grede smatra se jednom od pretpostavki druge industrijske revolucije. I zaista, ova je teorija gotovo 100 godina ostala relativno nepoznata. Tek od druge polovice 19. stoljeća, kada dolazi do sve veće uporabe čelika, ova teorija počela se primjenjivati u inženjerskoj praksi. Jedna od pvih značajnijih upotrebi Euler-Bernoullijeve teorije bila je tijekom projektiranja Eiffelovog tornja u Parizu koji je izgrađen 1889. godine. Sve širom upotrebom ove teorije, prepoznali su se i njezini nedostaci. Glavni nedostatak je u tome što se u ovoj teoriji savijanja zanemario utjecaj smičnog naprezanja pri savijanju poprečnim silama, što za veće omjere h/l ne vrijedi.

Fakultet strojarstva i brodogradnje

2.3. Timošenkova teorija savijanja

Kako bi se riješio problem nedostatka Euler-Bernoullijeve teorije savijanja, u kojoj se zanemaruje utjecaj smičnog naprezanja pri poprečnom savijanju, Stjepan Timošenko je u prvoj polovici 20. stoljeća izveo je jednadžbe koje opisuju problem savijanja grede unutar kojih je uključio utjecaj smika prilikom savijanja. Timošenkova teorija savijanja nastala je, dakle, kao proširenje Euler-Bernoullijeve teorije savijanja za proračune greda kojima je omjer između karakteristične dimenzije poprečnog presjeka i duljine grede h/l veći, tj. gdje je duljina grede neznatno veća od dimenzija njezinog poprečnog presjeka, pri čemu se utjecaj smika na iskrivljenje poprečnog presjeka više nije mogao zanemariti. Timošenkova teorija savijanja je višeg reda, u odnosu na Euler-Bernoullijevu teoriju, te zna biti puno uspješnija u predviđanju ponašanja grede pod djelovanjem opterećenja. Kod Timošenkove teorije savijanja grede poprečni presjeci, koji su prije deformiranja bili okomiti na uzdužnu os, rotiraju se oko točaka na neutralnoj liniji i ostaju ravni, ali nakon deformiranja više nisu okomiti na elastičnu liniju, upravo zbog toga što je u ovu teoriju uključena kutna deformacija koja nastaje zbog djelovanja smičnog naprezanja pri poprečnom savijanju. Pod djelovanjem smičnog naprezanja došlo je do deplanacije poprečng presjeka te je zbog utjecaja smika presjek još dodatno zaokrenut za neki kut u odnosu na pravi kut (Slika 13) [5].

Slika 13. Prikaz deformiranog oblika grede kod Timošenkove teorije savijanja

Taj kut definira kutnu deformaciju uslijed djelovanja smika. Dakle, u Timošenkovoj teoriji savijanja grede naprezanja koja se javljaju unutar grede jesu normalno naprezanje σ_x i smično naprezanje τ_x , dok su sve ostale komponente naprezanja jednake nuli. Za razliku od Euler-Bernoullijeve teorije savijanja, gdje smo u obzir uzeli razmatranje čistog savijanja te
relacije koje smo dobili za taj oblik savijanja samo smo preuzeli za poprečno savijanje zanemarujući smik, ovdje ćemo odmah razmatrati slučaj poprečnog savijanja, pošto su za slučaj čistog savijanja sve pretpostavke Euler-Bernoullijeve teorije savijanja ispunjene. Problem savijanja promatramo u istom *Oxz* koordinatnom sustavu, kao i prije. Osnova za izvod jednadžbi kojima se opisuje Timošenkova teorija savijanja grede preuzeta je iz [5]. Za početak, da bismo definirali Timošenkovu diferencijalnu jednadžbu elastične linije, moramo pronaći vezu između deformacija i pomaka, odnosno definirati kutne deformacije. Da bismo pronašli deformacije koje nastaju uslijed smičnog naprezanja, razmatrat ćemo infinitenzimalno mali pravokutni element *ABCD* u ravnini *xz* koji se deformira pod djelovanjem čistog smičnog naprezanja (Slika 14).

Prilikom deformacije dolazi do promjene duljine stranica elementa te također do promjene pravih kuteva elementa. Pomak u smjeru osi x označen je malim slovom u, dok je pomak u smjeru osi z označen malim slovom w. Deformacija točke A može se opisati pomoću funkcija pomaka u(x, z) i w(x, z). Ove dvije funkcije koje ovise o dvije varijable, mogu se razviti u Taylorov red oko točke A kako bi se približno mogle opisati deformacije točaka B i D pa za točku B imamo:

$$u_{B} = u(x + dx, z) = u(x, z) + \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial z} dz, \qquad (55)$$

$$w_{B} = w(x + dx, z) = w(x, z) + \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial z} dz.$$
 (56)

Za točku D imamo:

$$u_D = u(x, z + dz) = u(x, z) + \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial z} dz, \qquad (57)$$

$$w_D = w(x, z + dz) = w(x, z) + \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial z} dz.$$
 (58)

Uzimajući u obzir da za točku *B* vrijedi $\frac{\partial}{\partial z} = 0$, a za točku *D* vrijedi $\frac{\partial}{\partial x} = 0$, dobijemo:

$$u_B = u + \frac{\partial u}{\partial x} \mathrm{d}x\,,\tag{59}$$

$$w_B = w + \frac{\partial w}{\partial x} \mathrm{d}x\,,\tag{60}$$

$$u_D = u + \frac{\partial u}{\partial z} \,\mathrm{d}z\,,\tag{61}$$

$$w_D = w + \frac{\partial w}{\partial z} \,\mathrm{d}z\,. \tag{62}$$

Relacije (59), (60), (61) i (62) jesu upravo one veličine koje su kotirane na slici 14. Kutna deformacija γ_{xz} deformairanog elementa *A'B'C'D'* prema slici iznosi:

$$\gamma_{xz} = \frac{\pi}{2} - \psi \,, \tag{63}$$

$$\gamma_{xz} = \alpha + \beta \,. \tag{64}$$

Za male promjene kuteva vrijedi približno:

$$\alpha \approx tg(\alpha), \tag{65}$$

$$\beta \approx \operatorname{tg}(\beta) \,. \tag{66}$$

Izraz za kutnu deformaciju sada možemo pisati u obliku:

$$\gamma_{xz} = tg(\alpha) + tg(\beta).$$
(67)

$$\gamma_{xz} = \frac{w + \frac{\partial w}{\partial x} dx - w}{dx + \frac{\partial u}{\partial x} dx} + \frac{u + \frac{\partial u}{\partial z} dz - u}{dz + \frac{\partial w}{\partial z} dz},$$
(68)

$$\gamma_{xz} = \frac{\frac{\partial w}{\partial x} dx}{dx \left(1 + \frac{\partial u}{\partial x}\right)} + \frac{\frac{\partial u}{\partial z} dz}{dz \left(1 + \frac{\partial w}{\partial z}\right)}.$$
(69)

Uzmemo li u obzir da je $\frac{\partial u}{\partial x} \ll 1$ i $\frac{\partial w}{\partial z} \ll 1$, tada te članove možemo zanemariti u odnosu na jedinicu pa dobijemo konačan izraz za kutnu deformaciju koji glasi:

$$\gamma_{xz} \approx \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \,. \tag{70}$$

Također, ovdje bi bilo važno definirati pozitivnu i negativnu vrijednost kutne deformacije (Slika 15).

Promatrani slučaj odnosi se na deformaciju gdje djelovanje jedne poprečne sile Q_z uzrokuje pojavu smičnog naprezanja τ_{xz} koje djeluje paralelno sa z osi na presjeku kojemu normala gleda u pozitivnom smjeru osi x, tj. pozitivnom presjeku. Ako na tom presjeku smično naprezanje djeluje u pozitivnom smjeru osi z, tada će ono uzrokovati pozitivnu kutnu deformaciju, a ukoliko smično naprezanje djeluje u negativnom smjeru osi z, tada će ono uzrokovati negativnu kutnu deformaciju. Izraz za duljinsku deformaciju elementa *ABCD* u smjeru osi *x*, koji će nam kasnije trebati, možemo definirati kao:

$$\varepsilon_x = \frac{\mathrm{d}x' - \mathrm{d}x}{\mathrm{d}x}.$$
(71)

Pomoću slike 14. veličinu dx' možemo definirati kao:

$$dx' = \frac{\partial u}{\partial x} dx + dx, \qquad (72)$$

pa uvrštavanjem relacije (72) u (71) dobijemo:

$$\varepsilon_x = \frac{\frac{\partial u}{\partial x} dx + dx - dx}{dx},$$
(73)

$$\mathcal{E}_x = \frac{\partial u}{\partial x}.\tag{74}$$

Kako smo već napomenuli, zbog djelovanja poprečnih sila Q_z , unutar grede se javljaju smična naprezanja τ_{xz} . Vezu između unutrašnje komponente poprečne sile i smičnog naprezanja dobiti ćemo razmatranjem ravnoteže na poprečnom presjeku grede opretećene na poprečno savijanje (Slika16).

Slika 16. Poprečni presjek grednog elementa opterećenog na poprečno savijanje

Naravno, pri poprečnom savijanju također se javlja i normalno naprezanje σ_x koje na ovoj slici nije prikazano, no to naprezanje već je definirano relacijom (43) koja povezuje unutrašnji moment savijanja sa normalnim naprezanjem. Uočimo na poprečnom presjeku diferencijalnu površinu dA po kojoj djeluje smično naprezanje τ_{xz} . Element poprečne sile d Q_z na površini dA iznosi:

$$\mathrm{d}Q_{z} = \tau_{xz} \mathrm{d}A\,,\tag{75}$$

gdje je τ_{xz} dA elementarna sila. Ukupnu poprečnu silu dobiti ćemo integriranjem relacije (75) po cijeloj površini pa imamo:

$$Q_z = \int_A \tau_{xz} \mathrm{d}A \,. \tag{76}$$

U Timošenkovoj teoriji savijanja grede, kako bi se pojednostavio problem, pretpostavlja se da je raspodjela smičnog naprezanja po visini poprečnog presjeka konstantna, tj. τ_{xz} = konst. Ovo konstantno smično naprezanje uzrokovano je poprečnom silom koja djeluje na tzv. ekvivalentnoj smičnoj površini poprečnog presjeka koju označujemo sa A_s pa uz pretpostavku konstantnog smičnog naprezanja dobijemo:

$$Q_z = \tau_{xz} A_s, \tag{77}$$

$$\tau_{xz} = \frac{Q_z}{A_s} \,. \tag{78}$$

Vezu između ekvivalentne smične površine poprečnog presjeka A_s i stvarne površine poprečnog presjeka A daje korekcijski faktor smicanja k koji je definiran izrazom:

$$k = \frac{A_s}{A} \,. \tag{79}$$

Korekcijski faktor smicanja ovisi, dakle, o geometrijskom obliku poprečnog presjeka grede i služi kako bi, na neki način, nadomijestio činjenicu kako smično naprezanje nije konstantno raspodijeljeno po visini poprečnog presjeka. Različite pretpostavke mogu se uzimati u obzir prilikom izračunavanja korekcijskog faktora smicanja za različite oblike poprečnog presjeka. Glavni nedostatak Timošenkove teorije upravo i jest u tome što se kao ulazni parametar, da bi se problem mogao riješiti, mora odrediti korekcijski faktor smicanja *k*, što ćemo kasnije malo detaljnije prikazati. Konstantno smično naprezanje pretpostavili smo po visini poprečnog

presjeka, no to ne znači da se ono ne može mijenjati duž uzdužne osi x grede, u slučaju da dolazi do promjene poprečne sile duž grede. Znači da je, u općem slučaju, smično naprezanje funkcija uzdužne koordinatne osi grede, odnosno $\tau_{xz} = \tau_{xz}(x)$. Kao što smo već prije rekli, razlika Timošenkove teorije u odnosu na Euler-Bernoullijevu teoriju savijanja jest u tome što poprečni presjeci nakon deformiranja više nisu okomiti na elatičnu liniju, kao što je to bilo pretpostavljeno, nego su sada još dodatno zaokrenuti za kut γ_{xz} u odnosu na pravi kut koji predstavlja kutnu deformaciju, pri čemu poprečni presjeci sada stoje pod kutem ϕ (Slika17).

Slika 17. Prikaz položaja poprečnog presjeka na deformiranom obliku Timošenkove grede Prisjetimo se relacije za duljinsku deformaciju ε_x kod Euler-Bernoullijeve teorije savijanja koja je opisana relacijom (39) i glasi:

$$\varepsilon_x = -z \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} \,. \tag{80}$$

Izjednačimo li relaciju (80) sa relacijom (74) te uz primjenu (54) dobijemo:

$$-z\frac{\mathrm{d}^2 w}{\mathrm{d}x^2} = \frac{\partial u}{\partial x} = \frac{\mathrm{d}u}{\mathrm{d}x}\,,\tag{81}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(-z\frac{\mathrm{d}w}{\mathrm{d}x}\right) = \frac{\mathrm{d}u}{\mathrm{d}x},\tag{82}$$

$$-z\frac{\mathrm{d}w}{\mathrm{d}x} = u\,,\tag{83}$$

$$z\alpha = u. (84)$$

Ako sada kut α iz Euler-Bernoullijeve teorije savijanja zamijenimo sa kutom ϕ pod kojim se nalazi poprečni presjek nakon uzimanja utjecaja smičnog naprezanja u Timošenkovoj teoriji, dobijemo:

$$z\phi = u . \tag{85}$$

Deriviramo li relaciju (85) po x te uvrstimo li je potom u relaciju (74) dobijemo:

$$z\frac{\mathrm{d}\phi}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} = \mathcal{E}_x.$$
(86)

Kut ϕ možemo izraziti relacijom koja slijedi sa slike, vodeći računa o predznaku, pa imamo, uz primjenu relacije (54):

$$\phi = \alpha + \gamma_{xz} = -\frac{\mathrm{d}w}{\mathrm{d}x} + \gamma_{xz} \,. \tag{87}$$

Vidimo da kut ϕ više ne definira nagib tangente na elastičnu liniju. U slučajevima kada možemo zanemariti kutnu deformaciju, tj. kada vrijedi da je $\gamma_{xx} \approx 0$, iz relacije (87) slijedi:

$$\phi = \alpha . \tag{88}$$

Dolazimo do jedne vrlo zanimljive činjenice, a to je da je zapravo Euler-Bernoullijeva teorija savijanja samo poseban slučaj Timošenkove teorije savijanja grede. Diferencijalne jednadžbe ravnoteže kod Timošenkove teorije identične su onima koje smo izveli za Euler-Bernoullijevu teoriju, a opisane su relacijama (12) i (17). Već je spomenuto kako se u Timošenkovoj teoriji savijanja unutar grede javljaju normalno naprezanje σ_x i smično naprezanje τ_{xz} . Kako bismo povezali ta napezanja unutar grede sa deformacijama koje nastaju, koristimo se Hookeovim zakonom za jednoosno stanje naprezanja koji glasi:

$$\sigma_x = E\varepsilon_x = E\frac{\mathrm{d}\phi}{\mathrm{d}x}z\,. \tag{89}$$

$$\tau_{xz} = G\gamma_{xz} = G\left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}\right).$$
(90)

Veličina G u relaciji (90) predstavlja modul smicanja, odnosno smičnu karakteristiku materijala koju možemo izračunati poznavajući još dvije karakteristike materijala, a to su

Youngov modul elastičnosti E i Poissonov faktor v. Relacija koje povezuje ove tri karakteristike materijala glasi:

$$G = \frac{E}{2(1+\nu)}.$$
(91)

Normalno naprezanje σ_x potječe od momenta savijanja M_y , a njihova veza dana je relacijom (43) koja je, također, koegzistentna za Timošenkovu teoriju i glasi:

$$M_{y} = \int_{A} \sigma_{x} z \, \mathrm{d}A \,. \tag{92}$$

Uvrštavanjem relacije (89) u (92) dobijemo:

$$M_{y} = \int_{A} E \frac{\mathrm{d}\phi}{\mathrm{d}x} z \, z \, \mathrm{d}A, \qquad (93)$$

$$M_{y} = E \frac{\mathrm{d}\phi}{\mathrm{d}x} \int_{A} z^{2} \mathrm{d}A, \qquad (94)$$

$$M_{y} = EI_{y} \frac{\mathrm{d}\phi}{\mathrm{d}x} \,. \tag{95}$$

Smično naprezanje τ_{xz} potječe od poprečne sile Q_z , a njihova veza dana je relacijom (77) koja uz primjenu relacije (79) glasi:

$$Q_z = \tau_{xz} kA.$$
(96)

Uvrštavanjem relacije (90) u (96) dobijemo:

$$Q_z = kAG\gamma_{xz} \,. \tag{97}$$

Ako relaciju (95) deriviramo po *x* dobijemo:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(EI_{y}\frac{\mathrm{d}\phi}{\mathrm{d}x}\right) = \frac{\mathrm{d}M_{y}}{\mathrm{d}x}.$$
(98)

Uvrštavajući relacije (17) i (97) u relaciju (98) dobijemo:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(EI_{y}\frac{\mathrm{d}\phi}{\mathrm{d}x}\right) = Q_{z} = kAG\gamma_{xz}.$$
(99)

Uz pomoć relacije (87) kutnu deformaciju γ_{xz} možemo izraziti kao:

$$\gamma_{xz} = -\alpha + \phi = \frac{\mathrm{d}w}{\mathrm{d}x} + \phi.$$
(100)

Ako sada relaciju (100) uvrstimo u relaciju (99) dobijemo:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(EI_{y}\frac{\mathrm{d}\phi}{\mathrm{d}x}\right) = kAG\left(-\alpha + \phi\right),\tag{101}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(EI_{y}\frac{\mathrm{d}\phi}{\mathrm{d}x}\right) - kAG\left(\frac{\mathrm{d}w}{\mathrm{d}x} + \phi\right) = 0.$$
(102)

Relacija (102) predstavlja prvu diferencijalnu jednadžbu Timošenkove teorije savijanja grede. Drugu diferencijalnu jednadžbu dobijemo kombinacijom diferencijalne jednadžbe ravnoteže (17), relacije (97) te relacije (100) pa slijedi:

$$Q_z = \frac{\mathrm{d}M_y}{\mathrm{d}x} = kAG\gamma_{xz}, \qquad (103)$$

$$\frac{\mathrm{d}M_{y}}{\mathrm{d}x} = kAG\left(\frac{\mathrm{d}w}{\mathrm{d}x} + \phi\right). \tag{104}$$

Ako sada relaciju (104) deriviramo po x dobijemo:

$$\frac{\mathrm{d}^2 M_y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left[kAG \left(\frac{\mathrm{d}w}{\mathrm{d}x} + \phi \right) \right]. \tag{105}$$

Primjenom diferencijalne jednadžbe ravnoteže (18) u relaciji (105) dobijemo drugu diferencijalnu jednadžbu Timošenkove teorije savijanja koja glasi:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[kAG \left(\frac{\mathrm{d}w}{\mathrm{d}x} + \phi \right) \right] + q_z = 0.$$
(106)

Sustav diferencijalnih jednadžbi drugog reda koji je opisan relacijama (102) i (106) sadrži dvije nepoznate funkcije, a to su progib w(x) i nagib $\phi(x)$. Kako bismo mogli riješiti ovaj sustav diferencijalnih jednadžbi, moramo imati zadane rubne uvjete za specifični problem koji promatramo. Jedinstvenu diferencijalnu jednadžbu Timošenkove teorije savijanja grede možemo izvesti uz pretpostavku konstantnih materijalnih i geometrijskih karakteristika grede (E, G, I_y, k, A) .

Uz navedene pretpostavke, relacija (106) prelazi u:

$$kAG\left(\frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + \frac{\mathrm{d}\phi}{\mathrm{d}x}\right) = -q_z, \qquad (107)$$

$$\frac{\mathrm{d}\phi}{\mathrm{d}x} = -\frac{\mathrm{d}^2 w}{\mathrm{d}x^2} - \frac{q_z}{kAG}.$$
(108)

Ako relaciju (108) dva puta deriviramo po *x* dobijemo:

$$\frac{d^{3}\phi}{dx^{3}} = -\frac{d^{4}w}{dx^{4}} - \frac{1}{kAG}\frac{d^{2}q_{z}}{dx^{2}}.$$
(109)

Uz navedene pretpostavke, relacija (102) prelazi u:

$$EI_{y} \frac{\mathrm{d}^{2}\phi}{\mathrm{d}x^{2}} = kAG \left(\frac{\mathrm{d}w}{\mathrm{d}x} + \phi\right). \tag{110}$$

Ako relaciju (110) jednom deriviramo po x dobijemo:

$$EI_{y} \frac{\mathrm{d}^{3}\phi}{\mathrm{d}x^{3}} = kAG\left(\frac{\mathrm{d}^{2}w}{\mathrm{d}x^{2}} + \frac{\mathrm{d}\phi}{\mathrm{d}x}\right).$$
(111)

Uvrštavajući relacije (108) i (109) u (111) dobijemo:

$$EI_{y}\left(-\frac{\mathrm{d}^{4}w}{\mathrm{d}x^{4}}-\frac{1}{kAG}\frac{\mathrm{d}^{2}q_{z}}{\mathrm{d}x^{2}}\right)=kAG\frac{\mathrm{d}^{2}w}{\mathrm{d}x^{2}}+kAG\left(-\frac{\mathrm{d}^{2}w}{\mathrm{d}x^{2}}-\frac{q_{z}}{kAG}\right),$$
(112)

$$-EI_{y}\frac{d^{4}w}{dx^{4}} - \frac{EI_{y}}{kAG}\frac{d^{2}q_{z}}{dx^{2}} = kAG\frac{d^{2}w}{dx^{2}} - kAG\frac{d^{2}w}{dx^{2}} - q_{z},$$
(113)

$$EI_{y}\frac{\mathrm{d}^{4}w}{\mathrm{d}x^{4}} = q_{z} - \frac{EI_{y}}{kAG}\frac{\mathrm{d}^{2}q_{z}}{\mathrm{d}x^{2}}.$$
(114)

Relacija (114) predstavlja klasični oblik diferencijalne jednadžbe savijanja po Timošenkovoj teoriji savijanja grede. Ukoliko relaciju (114) integriramo dva puta, dobijemo diferencijalnu jednadžbu elastične linije po Timošenkovoj teoriji savijanja koja se koristi za kratke i debele grede te ona glasi:

$$EI_{y} \frac{d^{2}w}{dx^{2}} = -M_{y} - \frac{EI_{y}}{kAG}q_{z}.$$
 (115)

Fakultet strojarstva i brodogradnje

Ako usporedimo diferencijalne jednadžbe elastične linije po Euler-Bernoullijevoj teoriji i po Timošenkovoj teoriji, odnosno relacije (47) i (115), vidimo da se one razlikuju samo u jednom članu i to upravo u onom članu koji u sebi sadrži korekcijski faktor smicanja, odnosno onom članu koji se pojavio kao dodatak kada se u razmatranje uzima u obzir utjecaj smičnog naprezanja i pojave kutne deformacije. U slučajevima kada možemo zanemariti kutnu deformaciju, tj. kada vrijedi da je $\gamma_{xz} \approx 0$, tada vrijedi da je $kAG = \infty$ pa ako to uvrstimo u relaciju (115), dobiti ćemo diferencijalnu jednadžbu elastične linije po Euler-Bernoullijevoj teoriji savijanja, što opet dovodi do činjenice da je Euler-Bernoullijeva teorija savijanja samo poseban slučaj Timošenkove teorije savijanja grede.

2.3.1. Korekcijski faktor smicanja

Korekcijski faktor smicanja k definirali smo relacijom (79) prilikom izvoda diferencijalne jednadžbe elastične linije po Timošenkovoj teoriji savijanja i on je zapravo zadužen kako bi se na neki način "ispravila" pogreška u proračunu u kojem se, radi jednostavnosti, uvela pretpostavka da je smično naprezanje konstantno raspodijeljeno po visini poprečnog presjeka na ekvivalentnoj smičnoj površini, kada to zapravo nije tako [5]. Timošenko je svoju teoriju počeo razvijati u svrhu opisivanja elastičnih vibracija grednih nosača, iz čega je i proizašla ideja, odnosno potreba za korekcijskim faktorom kako bi se utjecaj smika mogao opisati na što jednostavniji način. Već su gotovo jedno stoljeće brojnim pokušajima mnogi znanstvenici, pa i sam Timošenko, pokušavali odrediti korekcijski faktor smicanja za različite geometrijske oblike poprečnih presjeka, bilo teorijski ili eksperimentalno, no čini se da ne postoji općeniti dogovor oko odabira njegove vrijednosti [7]. Kako smo već prije napomenuli, faktor k je bezdimenzijska veličina i ovisi o obliku poprečnog presjeka te prilikom njegova izračuna u obzir se mogu uzimati različite pretpostavke. Prema opće prihvaćenoj definiciji, korekcijski faktor smicanja je omjer između prosječne i stvarne raspodjele smičnog naprezanja te se on može izraziti kao:

$$k = \frac{\tilde{\tau}}{\gamma G},\tag{116}$$

pri čemu $\tilde{\tau}$ označuje prosječno smično naprezanje, a γ označuje stvarnu kutnu deformaciju [8]. No ipak, mnogi znanstvenici nisu se složili sa ovom definicijom korekcijskog faktora smicanja, ali u svakom slučaju, nisu je odbacili nego su tvrdili kako bi se za svaki poseban slučaj problema morao utvrditi poseban k kako bi se dobili što bolji rezultati. Prema [7],

najznačajniji utjacaj na utvrđivanje izraza po kojemu bi se mogao izračunati korekcijski faktor smicanja imali su Timošenko, Mindlin i Cowper, čiji su se radovi doticali ove teme u rasponu od čak 40 godina [7]. Timošenko je 1921. godine kada je objavio svoj prvi rad vezan uz savijanje grede pri utjecaju smika za vrijednost korekcijskog faktora smicanja *k* pravkokutnog poprečnog presjeka koristio vrijednost 2/3. U izvodu ove vrijednosti, upotrijebio je izraz koji je definiran relacijom (116). U 1922. godini Timošenko je promijenio vrijednost korekcijskog faktora *k* pravokutnog poprečnog presjeka na 8/9 kako bi svoju teoriju grede, izvedenu pri jednodimenzijskoj analizi, što više približio sa teorijom grede baziranom na dvodimenzijskoj analizi koja se bavi pretpostavkama ravninskih naprezanja [7]. Izraz pomoću kojega je Timošenko došao do ove vrijednosti *k* proizašao je iz usporedbe diferencijalne jednadžbe savijanja grede bazirane na dvodimenzijskoj analizi sa onom baziranom na jednodimenzijskoj analizi pa se za pravokutni poprečni presjek došlo do izraza:

$$k = \frac{5 + 5\nu}{6 + 5\nu},\tag{117}$$

pri čemu možemo vidjeti da faktor *k* ovisi o Poissonovom faktoru v. Poissonov faktor kod realnih izotropnih materijala u linearnom području ovisnosti naprezanja i deformacija može ležati unutar granice 0 i 1/2. Kada je v = 0, materijal će imati maksimalnu promjenu volumena, dok materijal kod kojeg vrijedi da je v = 1/2 je uslijed opterećenja prešao u potpuno plastično stanje [6]. Timošenko je, također, te godine u svojem radu došao i do izraza za *k* kružnog poprečnog presjeka uspoređujući teoriju savijanja grede baziranu na jednodimenzijskoj analizi sa Pochammerovom teorijim baziranom na trodimenzijskoj analizi i dobio je izraz:

$$k = \frac{6 + 12\nu + 6\nu^2}{7 + 12\nu + 4\nu^2}.$$
(118)

Mnogi znanstvenici, kako su godine prolazile, pokušavali su definirati druge načine na koje bi se mogao definirati korekcijski faktor smicanja. Mindlin je 1951. godine u svojem radu riješio trodimenzijske jednadžbe elastičnosti i došao do izraza za *k* pravokutnog poprečnog presjeka koji glasi:

$$16(1 - \alpha k)(1 - k) = (2 - k)^4, \qquad (119)$$

$$\alpha = \frac{1 - 2\nu}{2 - 2\nu}.\tag{120}$$

Kao što možemo vijdjeti, Mindlinovo rješenje dano je u implicitnom obliku te se rješenja za k dobivaju uvrštavanjem različitih vrijednosti Poissonovog faktora v. Mindlin nije dao rješenje korekcijskog faktora smicanja za kružni poprečni presjek [7]. Cowper je 1966. godine pomoću novog pristupa pri izvođenju diferencijalne jednadžbe Timošenkove teorije grede došao do novog izraza pomoću kojega se može izračunati korekcijski faktor smicanja. On je integracijom trodimenzijskih jednadžbi teorije elastičnosti došao do općenitog izraza za korekcijski faktor smicanja k koji glasi:

$$k = \frac{2(1+\nu)I_{y}}{\frac{\nu(I_{z} - I_{y})}{2} - \frac{A}{I} \iint z(\lambda + zy^{2}) dy dz},$$
(121)

pri čemu je ν Poissonov faktor, I_y aksijalni moment tromosti oko osi y, I_z aksijalni moment tromosti oko osi z, A površina poprečnog presjeka grede i λ harmonijska funkcija [8]. Ako relaciju (121) primjenimo za pravokutni i kružni poprečni presjek, dobijemo za pravokutni poprečni presjek:

$$k = \frac{10 + 10\nu}{12 + 11\nu},\tag{122}$$

te za kružni poprečni presjek:

$$k = \frac{6+6\nu}{7+6\nu} \,. \tag{123}$$

Cowper je, dakle, jedina osoba koja je dobila generalni i općeniti izraz (121) pomoću kojega se mogao odrediti korekcijski faktor smicanja k bilo kojeg oblika poprečnog presjeka. Godine 1968. Cowper je išao provjeriti točnost Timošenkove teorije grede uspoređujući je sa dvodimenzijskom teorijom baziranom na pretpostavci ravninskih naprezanja, pri čemu je u razmatranje uzeta greda pravokutnog poprečnog presjeka. Uočio je da je sa izrazom za k koji je dobio pomoću svoje analize dobio dobra poklapanja rezultata između ove dvije teorije te da je k dobiven pomoću izraza (122) puno bolji od onoga koji je dobio Timošenko 1921. godine [7]. Daljnom analizom po kriteriju čvrstoće i frekvencijskoj analizi te usporedbom izaza koje su dobili Timošenko, Mindlin i Cowper sa eksperimentalno dobivenim rezultatima, prema [7] zaključilo se kako je najbolji izraz za k za kružni poprečni presjek izraz (118), a za pravokutni poprečni presjek (117), odnosno izrazi koje je Timošenko izveo u svojem znanstvenom radu 1922. godine. Svi izrazi za k spomenutih autora objedinjeni su u tablici 2.

Fakultet strojarstva i brodogradnje

Poprečni presjek	Timošenko 1922.	Mindlin 1951.	Cowper 1966.
	$k = \frac{5+5\nu}{6+5\nu}$	$16(1 - \alpha k)(1 - k) = (2 - k)^4$ $\alpha = \frac{1 - 2v}{2 - 2v}$	$k = \frac{10 + 10\nu}{12 + 11\nu}$
y y z	$k = \frac{6 + 12\nu + 6\nu^2}{7 + 12\nu + 4\nu^2}$	/	$k = \frac{6+6\nu}{7+6\nu}$

Tablica 2. Izrazi za korekcijski faktor smicanja [5,7,8]

Dijagramskim prikazom napravljena je međusobna usporedba izraza za korekcijski faktor smicanja k pravokutnog i kružnog poprečnog presjeka prema tablici 2. u ovisnosti o Poissonovom faktoru ν (Slika 18/Slika 19).

Slika 18. Usporedba izraza za korekcijski faktor smicanja pravokutnog presjeka [7]

Slika 19. Usporedba izraza za korekcijski faktor smicanja kružnog presjeka [7]

Važno je napomenuti, a što se i vidi iz dijagrama (Slika 18 i Slika 19), kako zapravo svi izrazi za korekcijski faktor smicanja k koji su prikazani u tablici 2. zadovoljavaju potrebe proračuna statičkih problema savijanja grede za vrijednosti Poissonovog faktora koje se kreću oko vrijednosti 0,3, pritom ne dovodeći do većih odstupanja u usporedbi sa eksperimentalnim rezultatima. U kasnijim proračunima, korekcijski faktor smicanja k biti će izračunat prema Timošenkovoj formulaciji izraza, odnosno prema relacijama (117) i (118).

3. USPOREDBA EULER-BERNOULLIJEVE I TIMOŠENKOVE TEORIJE SAVIJANJA GREDE

U ovom poglavlju na nekoliko različitih primjera načina na koji je greda opterećena i učvršćena u okolini, biti će prikazan detaljan način rješavanja i usporedba između rješenja koje dobijemo Euler-Bernoullijevm teorijom i rješenja koje dobijemo Timošenkovom teorijom savijanja grede za dva različita poprečna presjeka grede, pravokutni i kružni. Primjeri oprerećenja grede preuzeti su iz [1], [5] i [9]. Već smo rekli da se Euler-Bernoullijeva teorija savijanja pretežno koristi za slučajeve gdje se utjecaj smičnog naprezanje može zanemariti, odnosno u kojima je omjer visine poprečnog presjeka grede i njezine duljine h/l mali, dok se Timošenkova teorija savijanja koristi za slučajeve u kojima je omjer h/l veći, zbog sve većeg utjecaja smičnog naprezanja pri savijanju, koje više nije zanemarivo. Zaključak, do kojega nas je doveo izvod Timošenkove teorije savijanja, jest kako je Euler-Bernoullijeva teorija savijanja samo poseban slučaj Timošenkove teorije savijanja grede tako da će glavni cilj ove usporedbe biti prikazati kolika je ta razliku između analitičkih rješenja progiba i nagiba, koja ove dvije teorije daju. Upravo iz tog razloga, svi primjeri biti će slučajevi poprečnog savijanja grede. Dijagrami koji će prikazivati elastičnu liniju grede imati će mjerilo za progibe mnogo veće od mjerila za dužine kako bi se zorno mogla pokazati razlika ovih dviju teorija savijanja. Nagib tangente na elastičnu liniju odnositi će se na kut α definiran prema Euler-Bernoullijevoj teoriji savijanja, dok će se nagib odnositi na kut ϕ prema Timošenkovoj teoriji savijanja. Materijalne i geometrijske karakteristike grede biti će opisane konstantnim vrijednostima. Također će se pokazati za koje vrijednosti omjera h/l se može koristiti jedna, odnosno druga teorija savijanja grede, uspoređujući pritom interval u kojem se, po prijedlogu iz [1] i [5], treba nalaziti maksimalna vrijednost tog omjera, a da greška ne bude prevelika. U Timošenkovoj teoriji savijanja, prilikom izračuna korekcijskog faktora smicanja k, biti će usvojena Timošenkova formulacija izraza dotične veličine.

3.1. Primjer 1.

Za gredu zadanu i opterećenu prema slici 20. potrebno je, koristeći Euler-Bernoullijevu i Timošenkovu teoriju savijanja grede, pronaći analitičke izraze za raspodjelu progiba i nagiba tangente na elastičnu liniju po cijeloj dužini grede te ih međusobno usporediti analitički i dijagramski. Također napraviti usporedbu iznosa maksimalnih progiba i nagiba tangente na elastičnu liniju dobivenih pomoću ove dvije teorije savijanja. Zadano: F, L, EI_y = konst. , AG = konst. , k = konst.

Slika 20. Konzola opterećena silom na kraju

3.1.1. Rješenje po Euler-Bernoullijevoj teoriji

Diferencijalna jednadžba elastične linije po Euler-Bernoullijevoj teoriji savijanja grede definirana je izrazom:

$$EI_{y} \frac{\mathrm{d}^{2} w}{\mathrm{d} x^{2}} = -M_{y}. \tag{124}$$

Za početak, raspodjelu unutrašnjeg momenta savijanja M_y po dužini grede koja nam je potrebna u relaciji (124), izračunati ćemo oslobađanjem grede veza te zadovoljavanjem uvjeta ravnoteže koji glase:

$$\sum F_x = 0, \qquad (125)$$

$$\sum F_z = 0, \qquad (126)$$

$$\sum M_A = 0. \tag{127}$$

Kao što možemo vidjeti (Slika 21), uklještenje u točki A zamijenili smo odgovarajućim reakcijama koje se javljaju prilikom djelovanja koncentrirane sile F na kraju grede, a to su koncentirana sila F_A i koncentrirani moment M_A .

Slika 21. Konzola opterećena silom na kraju oslobođena veza

Aktivne sile u smjeru uzdužne osi grede nema tako da nema ni reakcije u tom smjeru što znači da je uvjet ravnoteže (125) automatski zadovoljen. Ako napišemo uvjet ravnoteže (126), dobijemo nepoznatu reakcijsku silu u uklještenju:

$$\sum F_z = -F_A + F = 0, (128)$$

$$F_A = F . (129)$$

Ako napišemo uvjet ravnoteže (127), dobijemo nepoznati reakcijski moment u uklještenju:

$$\sum M_{A} = M_{A} - FL = 0, \qquad (130)$$

$$M_A = FL. \tag{131}$$

Sada kada smo odredili nepoznate reakcije u uklještenju, da bismo dobili raspodjelu unutrašnjeg momenta savijanja, koristimo se metodom presjeka (Slika 22).

Slika 22. Presjek grede na udaljenosti x od ishodišta koordinatnog sustava

Fakultet strojarstva i brodogradnje

Kod metode presjeka, gredu zamišljeno presječemo na nekoj udaljenosti x od ishodišta koordinatnog sustava te na tom presjeku ucrtamo odgovarajuće unutrašnje komponente sila, pri čemu su to unutrašnja poprečna sila Q_z i unutrašnji moment savijanja M_y . Ako napravimo sumu momenata oko presjeka na udaljenosti x, dobijemo:

$$\sum M_{y} = M_{y} + M_{A} - F_{A}x = 0, \qquad (132)$$

$$M_{y} = F_{A}x - M_{A}, \qquad (133)$$

$$M_{y} = F(x - L). \tag{134}$$

Uvrštavanjem relacije (134) u (124) dobijemo:

$$EI_{y} \frac{d^{2}w}{dx^{2}} = -F(x-L).$$
(135)

Dvostrukim integriranjem relacije (135) dobijemo:

$$EI_{y} \frac{dw}{dx} = -\frac{1}{2}Fx^{2} + FLx + C_{1}, \qquad (136)$$

$$EI_{y}w(x) = -\frac{1}{6}Fx^{3} + \frac{1}{2}FLx^{2} + C_{1}x + C_{2}.$$
(137)

Konstante integracije C_1 i C_2 odretiti ćemo iz rubnih uvjeta koji glase:

$$w(0) = 0$$
, (138)

$$\left. \frac{\mathrm{d}w}{\mathrm{d}x} \right|_{x=0} = 0.$$
 (139)

Ako uvrstimo rubne uvjete (138) i (139) u relacije (136) i (137), dobijemo:

$$C_1 = 0,$$
 (140)

$$C_2 = 0.$$
 (141)

Uvrštavanjem (140) i (141) u relaciju (137) dobijemo analitičko rješenje za elastičnu liniju, odnosno raspodjelu progiba prema Euler-Bernoullijevoj teoriji savijanja koje glasi:

$$w(x) = \frac{1}{EI_{y}} \left(-\frac{1}{6} Fx^{3} + \frac{1}{2} FLx^{2} \right).$$
(142)

Nagib tangente na elastičnu liniju α , prema Euler-Bernoullijevoj teoriji savijanja, definiran je relacijom (54) koja glasi:

$$\alpha = -\frac{\mathrm{d}w}{\mathrm{d}x}.\tag{143}$$

Deriviranjem relacije (142) po x i sređivanjem, dobijemo:

$$\alpha(x) = \frac{1}{EI_{y}} \left(\frac{1}{2} Fx^{2} - FLx \right).$$
(144)

Relacije (142) i (144) predstavljaju, dakle, analitička rješenja progiba i nagiba po Euler-Bernoullijevoj teoriji savijanja. Maksimalni progib i nagib grede nalaze se na slobodnom kraju grede, tj. kada je x = L, pa ako to uvrstimo u relacije (142) i (144) dobijemo:

$$(w_{\max})_{\rm EB} = \frac{1}{3} \frac{FL^3}{EI_y},$$
 (145)

$$(\alpha_{\max})_{\rm EB} = -\frac{1}{2} \frac{FL^2}{EI_{\rm y}}.$$
 (146)

3.1.2. Rješenje po Timošenkovoj teoriji

Jedinstvena diferencijalna jednadžba elastične linije po Timošenkovoj teoriji savijanja grede definirana je izrazom:

$$EI_{y} \frac{d^{2}w}{dx^{2}} = -M_{y} - \frac{EI_{y}}{kAG}q_{z}.$$
 (147)

Vidimo iz relacije (147) da, u odnosu na relaciju (124), imamo dodatnu komponentu koja u sebi sadrži članove pomoću kojih je opisan utjecaj kutne deformacije uslijed smičnog naprezanja pri savijanju. Budući da za ovaj slučaj opterećenja grede nemamo kontinuirano opterećenje q_z , moramo relaciju (147) jednom integrirati pa dobijemo:

$$EI_{y} \frac{\mathrm{d}w}{\mathrm{d}x} = -\int_{x} M_{y} \mathrm{d}x - \frac{EI_{y}}{kAG} \int_{x} q_{z} \mathrm{d}x + C_{1}.$$
(148)

Ako sada primjenimo diferencijalnu jednadžbu ravnoteže (12) i jednom je integriramo, slijedi:

$$\int_{x} q_z dx = -Q_z. \tag{149}$$

Kako smo već prije rekli, uvjeti ravnoteže kod Timošenkove teorije savijanja identični su onima kao kod Euler-Bernoullijeve teorije savijanja, iz čega slijedi da je i raspodjela unutrašnjeg momenta savijanja M_{y} identična te nakon integracije glasi:

$$\int_{x} M_{y} dx = \frac{1}{2} F x^{2} - F L x \,. \tag{150}$$

Uvrštavanjem relacija (149) i (150) u (148) dobijemo:

$$EI_{y} \frac{dw}{dx} = -\frac{1}{2}Fx^{2} + FLx + \frac{EI_{y}}{kAG}Q_{z} + C_{1}.$$
 (151)

Iz relacije (151) vidimo da nam je potrebna raspodjela unutrašnje poprečne sile Q_z po dužini grede koju možemo dobiti metodom presjeka (Slika 22). Postavljanjem sume sila u smjeru osi z na presjeku grede dobijemo:

$$\sum Q_z = Q_z - F_A = 0, (152)$$

$$Q_z = F = \text{konst.}$$
(153)

Ako sada uvrstimo relaciju (153) u (151) i integriramo, slijedi:

$$EI_{y} \frac{dw}{dx} = -\frac{1}{2}Fx^{2} + FLx + \frac{EI_{y}}{kAG}F + C_{1}, \qquad (154)$$

$$EI_{y}w(x) = -\frac{1}{6}Fx^{3} + \frac{1}{2}FLx^{2} + \frac{EI_{y}}{kAG}Fx + C_{1}x + C_{2}.$$
 (155)

Primjenom rubnog uvjeta (138), dobijemo:

$$C_2 = 0.$$
 (156)

Za razliku od Euler-Bernoullijeve teorije, kod Timošenkove teorije savijanja poprečni presjeci nakon deformiranja više nisu okomiti na elastičnu liniju nego su zbog kutne deformacije još dodatno zaokrenuti u odnosu na pravi kut i sada se nalaze pod kutem ϕ . To znači da relacija (143) u ovom slučaju više ne vrijedi i rubni uvjet nagiba sada glasi:

$$\phi(0) = 0. \tag{157}$$

Kako bismo mogli pronaći konstantu integracije C_1 , moramo pronaći vezu između kuta ϕ i kuta α , a ta veza dana je relacijom (87) i ona glasi:

$$\phi = -\frac{\mathrm{d}w}{\mathrm{d}x} + \gamma_{xz} \,. \tag{158}$$

Ako pomoću relacije (97) kutnu deformaciju izrazimo kao:

$$\gamma_{xz} = \frac{Q_z}{kAG}.$$
(159)

i vratimo u relaciju (158), dobijemo jednadžbu koja glasi:

$$\phi = -\frac{\mathrm{d}w}{\mathrm{d}x} + \frac{Q_z}{kAG}.$$
(160)

Primjenom relacija (151) i (153), dobijemo:

$$\phi(x) = -\frac{1}{EI_{y}} \left(-\frac{1}{2} Fx^{2} + FLx + \frac{EI_{y}}{kAG} F + C_{1} \right) + \frac{F}{kAG}.$$
(161)

Sada možemo primjeniti rubni uvjet (157) i odrediti vrijednost konstante integracije C_1 pa slijedi:

$$0 = 0 + 0 - \frac{F}{kAG} - \frac{C_1}{EI_y} + \frac{F}{kAG},$$
(162)

$$C_1 = 0.$$
 (163)

Uvrštavanjem (156) i (163) u relaciju (155) dobijemo analitičko rješenje za elastičnu liniju, odnosno raspodjelu progiba prema Timošenkovoj teoriji savijanja koje glasi:

$$w(x) = \frac{1}{EI_{y}} \left(-\frac{1}{6} Fx^{3} + \frac{1}{2} FLx^{2} + \frac{EI_{y}}{kAG} Fx \right).$$
(164)

Također, uvrštavanjem konstanti integracije C_1 i C_2 u relaciju (161) dobijemo:

$$\phi(x) = \frac{1}{EI_{y}} \left(\frac{1}{2} Fx^{2} - FLx \right).$$
(165)

Relacije (164) i (165) predstavljaju, dakle, analitička rješenja progiba i nagiba po Timošenkovoj teoriji savijanja. Zanimljivo je uočiti da su funkcije nagiba koje su opisane

relacijama (144) i (165) identične što dovodi do važnog zaključka da se kod Timošenkove teorije savijanja poprečni presjeci nakon deformiranja nalaze pod takvim kutem ϕ koji je jednak upravo nagibu tangente na onu prijašnju elastičnu liniju definiranu prema Euler-Bernoullijevoj teoriji savijanja. Maksimalni progib i nagib grede nalaze se na slobodnom kraju grede, tj. kada je x = L, pa ako to uvrstimo u relacije (164) i (165) dobijemo:

$$(w_{\max})_{\rm T} = \frac{1}{3} \frac{FL^3}{EI_{\rm v}} + \frac{FL}{kAG},$$
 (166)

$$(\phi_{\max})_{\rm T} = (\alpha_{\max})_{EB} = -\frac{1}{2} \frac{FL^2}{EI_{\rm y}}.$$
 (167)

Iz analitičkih rješenja za maksimalni progib na kraju grede koja su opisana relacijama (145) i (166), vidljivo je kako je progib po Timošenkovoj teoriji savijanja sastavljen od zbroja klasičnog rješenja koje dobijemo po Euler-Bernoullijevoj teoriji savijanja i dodatnog člana koji se pojavio zbog deformacije uzrokovane utjecajem smika, odnosno:

$$\left(w_{\max}\right)_{\rm T} = \left(w_{\max}\right)_{\rm EB} + \frac{FL}{kAG}.$$
(168)

Usporedba dobivenih rješenja 3.1.3.

Za početak, ograničimo se prvo na usporedbu rješenja lokalno u području u kojem imamo maksimalni progib. Ukoliko relacije (145) i (166), koje definiraju rješenja za maksimalne progibe na kraju grede, pretvorimo u bezdimenzijski oblik, tada možemo pomoću dijagramskog prikaza pokazati usporedbu između rješenja koje daje Euler-Bernoullijeva teorija i rješenja koje daje Timošenkova teorija savijanja u ovisnosti o općem omjeru h/l koji je definiran geometrijskim karakteristikama grede pa imamo:

$$w_1^* = \frac{(w_{\text{max}})_{\text{EB}}}{\frac{FL^3}{EI_y}} = \frac{1}{3},$$
 (169)

$$w_{2}^{*} = \frac{\left(w_{\max}\right)_{T}}{\frac{FL^{3}}{EI_{y}}} = \frac{1}{3} + \frac{EI_{y}}{kAGL^{2}}.$$
(170)

Ova usporedba bezdimenzijskih progiba na kraju grede dati će nam, na lokalnoj poziciji grede, uvid u to koliki je zapravo taj utjecaj smika pri savijanju koji se u Euler-Bernoullijevoj Fakultet strojarstva i brodogradnje 46

teoriji zanemario. Zanimljivo je ovdje uočiti kako rješenje dobiveno pomoću Euler-Bernoullijeve teorije savijanja u bezdimenzijskom obliku ne ovisi o omjeru h/l, kao ni o geometriji poprečnog presjeka, što zapravo znači da za bilo kakav omjer između visine poprečnog presjeka grede i njezine duljine, ova teorija za zadano opterećenje i rubne uvjete daje uvijek isto bezdimenzijsko rješenje. Potrebno je još definirati materijalne karakteristike grede. U tu svrhu uzmimo sljedeće konstantne vrijednosti dotičnih veličina:

$$E = 200000 \text{MPa},$$
 (171)

$$v = 0,3,$$
 (172)

$$G = 76923,077$$
MPa. (173)

Usporedbu ćemo napraviti za dva različita poprečna presjeka grede, pravokutni i kružni. Poprečni presjeci biti će, naravno, konstantni po dužini grede. Korekcijski faktor smicanja k izračunati ćemo pomoću Timošenkove formulacije koja opisana relacijama (117) i (118) pa uz definirani v za pravokutni poprečni presjek slijedi:

$$k = \frac{5+5\nu}{6+5\nu} = 0,8667. \tag{174}$$

dok za kružni poprečni presjek slijedi:

$$k = \frac{6+12\nu+6\nu^2}{7+12\nu+4\nu^2} = 0,9252.$$
(175)

Promotrimo prvo što se događa ako greda ima pravokutni poprečni presjek za slučaj opterećenja prikazan na slici 20. Za pravokutni poprečni presjek aksijalni moment tromosti I_{y} i površina poprečnog presjeka A definirani su izrazima:

$$I_{y} = \frac{bh^{3}}{12},$$
(176)

$$A = bh. (177)$$

Ako relacije (176) i (177) uvrstimo u izraz (170) dobijemo oblik bezdimenzijskog progiba:

$$w_{2}^{*} = \frac{\left(w_{\max}\right)_{T}}{\frac{FL^{3}}{EI_{y}}} = \frac{1}{3} + \frac{1}{12}\frac{E}{kG}\left(\frac{h}{L}\right)^{2}.$$
(178)

Fakultet strojarstva i brodogradnje

Kao što možrmo vidjeti, rješenje dobiveno pomoću Timošenkove teorije savijanja u bezdimenzijskom obliku ovisi o omjeru h/L, kao i o geometriji poprečnog presjeka grede. Dijagram na slici 23. prikazuje usporedbu analitičkih rješenja za bezdimenzijski progib na kraju grede dobivenih po Euler-Bernoullijevoj teoriji i Timošenkovoj teoriji savijanja u ovisnosti o omjeru h/L.

Slika 23. Bezdimenzijski progib na kraju grede za pravokutni poprečni presjek u ovisnosti o omjeru *h/L* (Primjer 1.)

Ono što možemo vidjeti iz dijagrama jest kako se, sa povećanjem omjera h/L, razlika između rješenja koja ove dvije teorije daju povećava, a samim time raste i greška Euler-Bernoullijeve teorije nastale zbog zanemarivanja utjecaja smičnog naprezanja. Dijagram na slici 24. prikazuje postotnu grešku između ovih analitičkih rješenja za progib na kraju grede u ovisnosti o omjeru h/L koja je definirana prema sljedećem kriteriju:

$$\left(1 - \frac{w_1^*}{w_2^*}\right) \cdot 100\% . \tag{179}$$

U početku, kada je omjer između visine poprečnog presjeka grede i njezine duljine h/L jako mali, greška koja nastaje zanemarivanjem utjecaja smičnog naprezanja je neprimjetno mala, tako da se u području malog omjera h/L mogu koristiti i jedna i druga teorija savijanja. Sa povećanjem omjera h/L dolazi do sve veće greške, da bi na kraju kada je omjer h/L jednak jedinici, greška koja je nastala zanemarivanjem utjecaja smika pri savijanju grede pravokutnog poprečnog presjeka narasla na čak 42,86%, što nikako nije zanemarivo. Kada je

omjer h/L jednak jedinici, to znači da je duljina grede ista kao i visina njezinog poprečnog presjeka. Već smo prije napomenuli kako se u [5] predlaže da maksimalna vrijednost omjera h/L nalazi unutar intervala između 1/20 i 1/10, dok se u [1] predlaže da se taj omjer nalazi u intervalu između 1/5 i 1/4.

Slika 24. Dijagramski prikaz greške Euler-Bernoulijeve teorije u odnosu na Timošenkovu teoriju savijanja za pravokutni poprečni presjek grede (Primjer 1.)

Prema [1], ako bi se omjer h/L nalazio u intervalu između 1/5 i 1/4, greška zbog zanemarivanja utjecaja smika trebala bi biti u granicama oko 2%. U tablici 3. izvučene su vrijednosti greške u postotcima sa dijagrama za navedene omjere h/L prema [1] i [5].

h/L	Greška (%)
1/20	0,19
1/10	0,74
1/5	2,91
1/4	4,48
1	42,86

Tablica 3. Greška za različite omjere *h/L* pravokutnog poprečnog presjeka (Primjer 1.)

Možemo vidjeti da je unutar intervala između 1/20 i 1/10 greška jako mala, tako da je zanemarivanje utjecaja smika u tom području opravdano. Unutar intervala između 1/5 i 1/4, greška zbog zanemarivanja smika je ipak veća. Prosječna greška unutar tog intervala iznosi

3,7% što za pravokutni poprečni presjek grede premašuje onih 2% predviđene greške u [1], ali ne za previše što znači da je greška unutar tog intervala još uvijek dovoljno mala da se utjecaj smičnog naprezanja može zanemariti kako bi proračun savijanja bio što jednostavniji. U inženjerskoj praksi za rješavanje problema savijanja, u najčešćem broju slučajeva dopušta se greška od 5%, a toliki iznos greške za ovakav problem savijanja grede i pravokutni poprečni presjek postiže se ako je omjer između visine poprečnog presjeka grede i njezine duljine jednak h/L=1/3,77, što je brojčano malo iznad 1/4. Prema tome, taj iznos omjera h/L, za slučaj pravokutnog poprečnog presjeka, možemo uzeti kao granicu do koje vrijedi Euler-Bernoullijeva teorija savijanja, a nakon što se prijeđe ta vrijednost omjera, greška koja će nastati zbog zanemarivanja utjecaja smika biti će prevelika i u tim slučajevima morat ćemo koristiti Timošenkovu teoriju savijanja. Promotrimo sada što se događa ako greda ima kružni poprečni presjek za slučaj opterećenja prikazan na slici 20. Za kružni poprečni presjek aksijalni moment tromosti I_v i površina poprečnog presjeka A definirani su izrazima:

$$I_{y} = \frac{d^{4}\pi}{64},$$
 (180)

$$A = \frac{d^2 \pi}{4}.$$
 (181)

Ako relacije (180) i (181) uvrstimo u izraz (170) dobijemo oblik bezdimenzijskog progiba:

$$w_{2}^{*} = \frac{\left(w_{\max}\right)_{T}}{\frac{FL^{3}}{EI_{y}}} = \frac{1}{3} + \frac{1}{16}\frac{E}{kG}\left(\frac{d}{L}\right)^{2}.$$
(182)

Dijagram na slici 25. prikazuje usporedbu analitičkih rješenja za bezdimenzijski progib na kraju grede dobivenih po Euler-Bernoullijevoj teoriji i Timošenkovoj teoriji svijanja u ovisnosti o omjeru d/L. Za razliku od prošlog slučaja, visina poprečnog presjeka za kružni oblik opisana je njezinim promjerom d. Također, i ovdje iz dijagrama možemo vidjeti kako se, sa povećanjem omjera d/L, razlika između rješenja koja ove dvije teorije daju povećava, a time raste i greška Euler-Bernoullijeve teorije nastale zbog zanemarivanja utjecaja smičnog naprezanja. No za razliku od pravokutnog poprečnog presjeka, ovdje je greška nešto manja što se može vidjeti ako se pogleda dijagram na slici 26., pri čemu je greška ponovno definirana prema kriteriju (179). Uočavamo da kada je omjer d/L jednak jedinici, greška koja je nastala zanemarivanjem utjecaja smika pri savijanju grede kružnog poprečnog presjeka

Fakultet strojarstva i brodogradnje

iznosi 34,5%, ali to, naravno, opet nije zanemarivo. U tablici 4. izvučene su vrijednosti greške sa dijagrama (Slika 26) za navedene omjere d/L prema [1] i [5].

Slika 25. Bezdimenzijski progib na kraju grede za kružni poprečni presjek u ovisnosti o omjeru d/L (Primjer 1.)

Slika 26. Dijagramski prikaz greške Euler-Bernoulijeve teorije u odnosu na Timošenkovu teoriji savijanja za kružni poprečni presjek grede (Primjer 1.)

d/L	Greška (%)
1/20	0,13
1/10	0,52
1/5	2,06
1/4	3,19
1	34,5

Tablica 4. Greška za različite omjere *d/L* kružnog poprečnog presjeka (Primjer 1.)

Možemo vidjeti da je unutar intervala između 1/20 i 1/10 greška još manja u odnosu na pravokutni poprečni presjek. Unutar intervala između 1/5 i 1/4, greška zbog zanemarivanja smika opet je nešto veća, no prosječna greška unutar tog intervala iznosi 2,6% što se brojčano savršeno poklapa sa onih 2% predviđene greške u [1], što znači da je greška unutar tog intervala dovoljno mala da se utjecaj smičnog naprezanja može zanemariti kako bi proračun savijanja bio što jednostavniji. Iznos greške od 5% za kružni poprečni presjek postiže se ako je omjer između promjera grede i njezine duljine jednak d/L=1/3,15. Prema tome, taj iznos omjera d/L, za slučaj kružnog poprečnog presjeka, možemo uzeti kao granicu do koje vrijedi Euler-Bernoullijeva teorija savijanja, a nakon što se prijeđe ta vrijednost omjera, greška koja će nastati zbog zanemarivanja utjecaja smika biti će prevelika i u tim slučajevima morat ćemo koristiti Timošenkovu teoriju savijanja. Na kraju, napraviti ćemo međusobnu usporedbu analitičkih rješenja progiba dobivenih Euler-Bernoullijevom i Timošenkovom teorijom savijanja po cijeloj dužini grede kako bi se pokazalo kakav utjecaj ima zanemarivanje smika. Usporedbu ćemo ponovno raditi u bezdimenzijskom obliku pa ako relacije (142) i (164) pretvorimo u bezdimenzijski oblik, dobijemo:

$$w_{1}^{*}\left(\frac{x}{L}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{6}\left(\frac{x}{L}\right)^{3} + \frac{1}{2}\left(\frac{x}{L}\right)^{2},$$
(183)

$$w_{2}^{*}\left(\frac{x}{L}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{6}\left(\frac{x}{L}\right)^{3} + \frac{1}{2}\left(\frac{x}{L}\right)^{2} + \frac{EI_{y}}{kAGL^{2}}\left(\frac{x}{L}\right).$$
(184)

Bezdimenzijska dužinska karakteristika grede, odnosno bezdimenzijska duljina, definirana je omjerom x/L. Opet ćemo prvo promatrati pravokutni poprečni presjek, a potom kružni

poprečni presjek. Ako u relaciju (184) uvrstimo geometrijske karakteristike pravokutnog poprečnog presjeka koje su definirane relacijama (176) i (177), dobijemo opći oblik bezdimenzijskog progiba po dužini grede:

$$w_{2}^{*}\left(\frac{x}{L},\frac{h}{L}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{6}\left(\frac{x}{L}\right)^{3} + \frac{1}{2}\left(\frac{x}{L}\right)^{2} + \frac{1}{12}\frac{E}{kG}\left(\frac{h}{L}\right)^{2}\left(\frac{x}{L}\right).$$
(185)

Kao što možemo vidjeti, opće rješenje progiba po dužini grede pravokutnog poprečnog presjeka dobiveno pomoću Timošenkove teorije savijanja u bezdimenzijskom obliku (185) ovisi, osim o bezdimenzijskoj duljini grede, i o omjeru h/L pa ćemo, kako bismo mogli napraviti dijagramsku usporedbu, za omjer h/L usvojiti vrijednost kod koje greška između analitičkih rješenja za progib na kraju grede pravokutnog poprečnog presjeka zbog zanemarivanja utjecaja smika iznosi upravo onih graničnih 5%, odnosno h/L=1/3,77, a dodatno ćemo prikazati usporedbu kada ta greška iznosi otprilike oko 30%, odnosno h/L=1/1,33, kako bi se što bolje mogla vidjeti razlika između Euler-Bernoullijeve i Timošenkove teorije savijanja grede. Relacija (185) uz definirane omjere h/L prelazi u:

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{3,77}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{6}\left(\frac{x}{L}\right)^{3} + \frac{1}{2}\left(\frac{x}{L}\right)^{2} + \frac{58}{9911}\frac{E}{kG}\left(\frac{x}{L}\right),$$
(186)

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{1,33}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{6}\left(\frac{x}{L}\right)^{3} + \frac{1}{2}\left(\frac{x}{L}\right)^{2} + \frac{3}{64}\frac{E}{kG}\left(\frac{x}{L}\right).$$
(187)

Dijagram na slici 27. prikazuje prikazuje raspodjelu bezdimenzijskog progiba u ovisnosti o bezdimenzijskoj duljini grede pravokutnog poprečnog presjeka po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja, dok dijagram na slici 28. prikazuje apsolutnu grešku između analitičkih rješenja po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja. Kako smo već prije napomenuli, progib po Timošenkovoj teoriji savijanja sastavljen je od zbroja klasičnog rješenja koje dobijemo po Euler-Bernoullijevoj teoriji savijanja i dodatnog člana koji opisuje deformaciju uzrokovanu utjecajem smika, što znači da je on uvijek veći i to se lijepo može vidjeti iz dijagrama na slici 27. Za omjer h/L kada greška između analitičkih rješenja progiba na kraju grede iznosi 5%, vidimo da imamo dovoljno mala odstupanja između analitičkih rješenja raspodjele progiba po dužini grede, koja postepeno rastu kako se povećava bezdimenzijska duljina grede, što nas ponovno navodi na zaključak kako je za taj omjer

Fakultet strojarstva i brodogradnje

greška nastala zanemarivanjem utjecaja smika još uvijek dovoljno mala kako bi to zanemarivanje bilo potpuno opravdano te kako se do te granice može koristiti Euler-Bernoullijeva teorija umjesto Timošenkove teorije savijanja.

Slika 27. Usporedba analitičkih rješenja progiba po dužini grede pravokutnog presjeka (Primjer 1.)

Slika 28. Prikaz apsolutne greške između analitičkih rješenja (Primjer 1.)

Za omjer h/L kada greška između analitičkih rješenja progiba na kraju grede iznosi visokih 30%, vidimo da je odstupanje između analitičkih rješenja raspodjele progiba po dužini grede značajno veliko, što znači da se sa ovim omjerom već daleko nalazimo u području gdje je

greška nastala zanemarivanjem utjecaja smika pri savijanju previše izražena tako da bi se u tom slučaju problemu moralo pristupiti upotrebom Timošenkove teorije savijanja. Dijagram na slici 28., kako je već napomenuto, prikazuje apsolutnu grešku između analitičkih rješenja po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja za oba omjera h/L pri čemu ona, za manji omjer, postepeno sporije raste sa povećanjem bezdimenzijske duljine grede, dok za veći omjer raste puno brže. Apsolutna greška definirana je prema kriteriju:

$$\left| w_1^* - w_2^* \right|. \tag{188}$$

Promotrimo sada što se događa sa progibom po dužini grede ukoliko greda ima kružni poprečni presjek. Rješenje po Euler-Bernoullijevoj teoriji savijanja u bezdimenzijskom obliku jednako je kao i za pravokutni poprečni presjek te je opisano relacijom (183). Ako u relaciju (184) uvrstimo geometrijske karakteristike kružnog poprečnog presjeka koje su definirane relacijama (180) i (181), dobijemo opći oblik bezdimenzijskog progiba po dužini grede:

$$w_{2}^{*}\left(\frac{x}{L},\frac{d}{L}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{6}\left(\frac{x}{L}\right)^{3} + \frac{1}{2}\left(\frac{x}{L}\right)^{2} + \frac{1}{16}\frac{E}{kG}\left(\frac{d}{L}\right)^{2}\left(\frac{x}{L}\right).$$
(189)

Kao što možemo vidjeti, opće rješenje progiba po dužini grede kružnog poprečnog presjeka dobiveno pomoću Timošenkove teorije savijanja u bezdimenzijskom obliku (189) kao i kod pravokutnog poprečnog presjeka, osim o bezdimenzijskoj duljini grede, ovisi i o omjeru d/L pa ćemo, kako bismo mogli napraviti dijagramsku usporedbu, za omjer d/L usvojiti vrijednost kod koje greška između analitičkih rješenja za progib na kraju grede kružnog poprečnog presjeka zbog zanemarivanja utjecaja smika iznosi graničnih 5%, odnosno d/L=1/3,15, a dodatno ćemo prikazati usporedbu kada greška između Euler-Bernoullijeve i Timošenkove teorije savijanja grede. Relacija (189) uz definirane omjere d/L prelazi u:

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{3,15}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{6}\left(\frac{x}{L}\right)^{3} + \frac{1}{2}\left(\frac{x}{L}\right)^{2} + \frac{140}{22291kG}\left(\frac{x}{L}\right),$$
(190)

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{1,25}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{6}\left(\frac{x}{L}\right)^{3} + \frac{1}{2}\left(\frac{x}{L}\right)^{2} + \frac{1}{25}\frac{E}{kG}\left(\frac{x}{L}\right).$$
(191)

Fakultet strojarstva i brodogradnje

Iz dijagrama na slici 29. koji prikazuje raspodjelu bezdimenzijskog progiba u ovisnosti o bezdimenzijskoj duljini grede kružnog poprečnog presjeka, ponovno se može vidjeti kako je progib po Timošenkovoj teoriji savijanja je veći u odnosu na progib po Euler-Bernoullijevoj teoriji savijanja.

Za omjer d/L kada greška između analitičkih rješenja progiba na kraju grede iznosi 5%, vidimo da ponovno imamo dovoljno mala odstupanja između analitičkih rješenja raspodjele progiba po dužini grede, koja postepeno rastu kako se povećava bezdimenzijska duljina grede, pa zaključujemo kako je za taj omjer greška nastala zanemarivanjem utjecaja smika još uvijek dovoljno mala kako bi to zanemarivanje bilo opravdano te kako se do te granice može koristiti Euler-Bernoullijeva teorija savijanja. Za omjer d/L kada greška između analitičkih rješenja progiba na kraju grede iznosi visokih 25%, možemo vidjeti da je odstupanje između analitičkih rješenja raspodjele progiba po dužini grede, kao i kod pravokutnog poprečnog presjeka, značajno veliko, što znači da se sa ovim omjerom nalazimo u području gdje je greška nastala zanemarivanjem utjecaja smika pri savijanju ponovno previše izražena tako da bi se u tom slučaju problemu moralo pristupiti upotrebom Timošenkove teorije savijanja kako bismo dobili točno rješenje. No sjetimo se, od prije, a što se može i vidjeti na dijagramima (Slika 24 i Slika 26), kako se za kružni poprečni presjek ista vrijednost postotne greške zbog zanemarivanja smika koja se pojavljivala kod pravokutnog poprečnog presjeka, javila za omjer između visine poprečnog presjeka grede i njezine duljine koji je bio veći, pa je iz tog razloga uzeta greška od 25%, a ne 30% kao za pravokutni poprečni presjek kako bi se na dosljedan način mogla napraviti usporedba analitičkih rješenja za različite poprečne presjeke grede u području u kojem greška itekako nije zanemariva. Dijagram na slici 30. prikazuje apsolutnu grešku između analitičkih rješenja po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja za oba omjera d/L. Apsolutna greška ponovno je definirana prema kriteriju (188).

Slika 30. Prikaz apsolutne greške između analitičkih rješenja (Primjer 1.)

Važno je napomenuti kako su se ovom uspredbom analitičkih rješenja za raspodjelu progiba po cijeloj dužini grede, samo željele potvrditi granične vrijednosti omjera između visine poprečnog presjeka grede i njezine duljine pravokutnog i kružnog presjeka za problem savijanja prikazan na slici 20. koje su već bile utvrđene promatranjem lokalnog područja grede u kojem se postigao maksimalni progib. Na isti način, analiza će biti napravljena i za sljedeće primjere te će se moći vidjeti na koji način različiti načini slučajeva opterećenja grede utječu na granične vrijednosti omjera između visine i duljine grede.

3.2. Primjer 2.

Za gredu zadanu i opterećenu prema slici 31. potrebno je, koristeći Euler-Bernoullijevu i Timošenkovu teoriju savijanja grede, pronaći analitičke izraze za raspodjelu progiba i nagiba tangente na elastičnu liniju po cijeloj dužini grede te ih međusobno usporediti analitički i dijagramski. Također napraviti usporedbu iznosa maksimalnih progiba i nagiba tangente na elastičnu liniju dobivenih pomoću ove dvije teorije savijanja. Zadano: $F = q_0 L$, q_0 , L, $EI_y =$ konst., AG = konst., k = konst.

Slika 31. Konzola opterećena konstantnim kontinuiranim opterećenjem i silom na kraju

3.2.1. Rješenje po Euler-Bernoullijevoj teoriji

Diferencijalna jednadžba elastične linije po Euler-Bernoullijevoj teoriji savijanja grede definirana je relacijom (124). Vidimo da nam je u toj relaciji potrebna raspodjela unutrašnjeg momenta savijanja M_y po dužini grede pa u tu svrhu oslobađamo gredu veza i napišemo uvjete ravnoteže koji su definirani relacijama (125), (126) i (127). Kao što možemo vidjeti (Slika 32), uklještenje u točki A zamijenili smo odgovarajućim reakcijama koje se javljaju prilikom djelovanja konstantnog kontinuiranog opterećenja q_0 i koncentrirane sile F na kraju grede, a to su koncentrirana sila F_A i koncentrirani moment M_A . Djelovanje konstantnog kontinuiranog opterećenja pretvorili smo u ekvivalentnu koncentriranu silu koja ima iznos površine pravokutnika sa stranicama q_0 i L te djeluje u težištu pravokutnika, odnosno na sredini grede. Aktivne sile u smjeru uzdužne osi grede nema tako da nema ni reakcije u tom smjeru što znači da je uvjet ravnoteže (125) automatski zadovoljen. Ako napišemo uvjet ravnoteže (126), dobijemo nepoznatu reakcijsku silu u uklještenju:

$$\sum F_{z} = -F_{A} + F + q_{0}L = 0, \qquad (192)$$

$$F_A = 2q_0 L. (193)$$

Ako napišemo uvjet ravnoteže (127), dobijemo nepoznati reakcijski moment u uklještenju:

$$\sum M_{A} = M_{A} - FL - q_{0}L\frac{L}{2} = 0, \qquad (194)$$

$$M_{A} = \frac{3}{2}q_{0}L^{2}.$$
 (195)

Slika 32. Konzola opterećena konstantnim kontinuiranim opterećenjem i silom na kraju oslobođena veza

Sada kada smo odredili nepoznate reakcije u uklještenju, da bismo dobili raspodjelu unutrašnjeg momenta savijanja, koristimo se metodom presjeka (Slika 33).

Slika 33. Presjek grede na udaljenosti x od ishodišta koordinatnog sustava
Na presjeku grede udaljenom za x od ishodišta koordinatnog sustava, budući da je pozitivan, ucrtamo odgovarajuće pozitivne unutrašnje komponente sila, pri čemu su to unutrašnja poprečna sila Q_z i unutrašnji moment savijanja M_y . Djelovanje konstantnog kontinuiranog opterećenja opisujemo na isti način kao i kod oslobađanja grede veza, s razlikom da sada duljina na kojoj djeluje q_0 nije L nego x. Ako napravimo sumu momenata oko presjeka na udaljenosti x, dobijemo:

$$\sum M_{y} = M_{y} + M_{A} - F_{A}x + q_{0}x\frac{x}{2} = 0, \qquad (196)$$

$$M_{y} = -\frac{1}{2}q_{0}x^{2} + F_{A}x - M_{A}, \qquad (197)$$

$$M_{y} = -\frac{1}{2}q_{0}x^{2} + 2q_{0}Lx - \frac{3}{2}q_{0}L^{2}.$$
 (198)

Uvrštavanjem relacije (198) u (124) dobijemo:

$$EI_{y} \frac{d^{2}w}{dx^{2}} = \frac{1}{2}q_{0}x^{2} - 2q_{0}Lx + \frac{3}{2}q_{0}L^{2}.$$
 (199)

Dvostrukim integriranjem relacije (199) dobijemo:

$$EI_{y} \frac{\mathrm{d}w}{\mathrm{d}x} = \frac{1}{6}q_{0}x^{3} - q_{0}Lx^{2} + \frac{3}{2}q_{0}L^{2}x + C_{1}, \qquad (200)$$

$$EI_{y}w(x) = \frac{1}{24}q_{0}x^{4} - \frac{1}{3}q_{0}Lx^{3} + \frac{3}{4}q_{0}L^{2}x^{2} + C_{1}x + C_{2}.$$
 (201)

Konstante integracije C_1 i C_2 dobiti ćemo uvrštavanjem rubnih uvjeta koji su definirani relacijama (138) i (139) budući da su za ovaj primjer rubni uvjeti identični kao i u prošlom primjeru. Ako rubne uvjete uvrstimo u relacije (200) i (201) dobijemo:

$$C_1 = 0,$$
 (202)

$$C_2 = 0.$$
 (203)

Uvrštavanjem (202) i (203) u relaciju (201) dobijemo analitičko rješenje za elastičnu liniju, odnosno raspodjelu progiba prema Euler-Bernoullijevoj teoriji savijanja koje glasi:

$$w(x) = \frac{1}{EI_{y}} \left(\frac{1}{24} q_{0} x^{4} - \frac{1}{3} q_{0} L x^{3} + \frac{3}{4} q_{0} L^{2} x^{2} \right).$$
(204)

Nagib tangente na elastičnu liniju α , prema Euler-Bernoullijevoj teoriji savijanja, dobiti ćemo prvom derivacijom raspodjele progiba po *x*, pa deriviranjem i sređivanjem dobijemo:

$$\alpha(x) = \frac{1}{EI_{y}} \left(-\frac{1}{6} q_{0} x^{3} + q_{0} L x^{2} - \frac{3}{2} q_{0} L^{2} x \right).$$
(205)

Relacije (204) i (205) predstavljaju, dakle, analitička rješenja progiba i nagiba po Euler-Bernoullijevoj teoriji savijanja grede. Maksimalni progib i nagib grede nalaze se na slobodnom kraju grede, tj. kada je x = L, pa ako to uvrstimo u relacije (204) i (205) dobijemo:

$$\left(w_{\max}\right)_{\rm EB} = \frac{11}{24} \frac{q_0 L^4}{EI_{\rm v}},\tag{206}$$

$$(\alpha_{\max})_{\rm EB} = -\frac{2}{3} \frac{q_0 L^3}{EI_y}.$$
 (207)

3.2.2. Rješenje po Timošenkovoj teoriji

Diferencijalne jednadžbe pomoću kojih ćemo doći do analitičkog rješenja za raspodjelu progiba i nagiba po Timošenkovoj teoriji savijanja definirane su relacijama (147) i (160). Ovoga puta, za razliku od prošlog primjera, imamo djelovanje kontinuiranog opterećenja q_z , no budući da je ono konstantno, kada bismo ga uvrstili u relaciju (147) i integrirali diferencijalnu jednadžbu, dobili bismo krivo rješenje pa je zato potrebno, kao i kod prethodnog primjera, prvo jednom integrirati relaciju (147) pa dobijemo:

$$EI_{y} \frac{\mathrm{d}w}{\mathrm{d}x} = -\int_{x} M_{y} \mathrm{d}x - \frac{EI_{y}}{kAG} \int_{x} q_{z} \mathrm{d}x + C_{1}.$$
(208)

Zbog jednakosti uvjeta ravnoteže kod Euler-Bernoullijeve i Timošenkove teorije savijanja, raspodjela unutrašnjeg momenta savijanja M_y je jednaka pa možemo izračunati prvi član sa desne strane jednakosti u relaciji (208) i dobijemo:

$$\int_{x} M_{y} dx = -\frac{1}{6} q_{0} x^{3} + q_{0} L x^{2} - \frac{3}{2} q_{0} L^{2} x.$$
(209)

Ako sada uvrstimo relaciju (209) u (208) te također primjenimo relaciju (149) slijedi:

$$EI_{y}\frac{\mathrm{d}w}{\mathrm{d}x} = \frac{1}{6}q_{0}x^{3} - q_{0}Lx^{2} + \frac{3}{2}q_{0}L^{2}x + \frac{EI_{y}}{kAG}Q_{z} + C_{1}.$$
 (210)

$$\sum Q_z = Q_z - F_A + q_0 x = 0, \qquad (211)$$

$$Q_z = -q_0 x + 2q_0 L \,. \tag{212}$$

Ako sada uvrstimo relaciju (212) u (210) i integriramo, slijedi:

$$EI_{y}\frac{\mathrm{d}w}{\mathrm{d}x} = \frac{1}{6}q_{0}x^{3} - q_{0}Lx^{2} + \frac{3}{2}q_{0}L^{2}x + \frac{EI_{y}}{kAG}2q_{0}L - \frac{EI_{y}}{kAG}q_{0}x + C_{1},$$
(213)

$$EI_{y}w(x) = \frac{1}{24}q_{0}x^{4} - \frac{1}{3}q_{0}Lx^{3} + \frac{3}{4}q_{0}L^{2}x^{2} + \frac{EI_{y}}{kAG}2q_{0}Lx - \frac{EI_{y}}{2kAG}q_{0}x^{2} + C_{1}x + C_{2}.$$
 (214)

Primjenom rubnog uvjeta (138), dobijemo:

$$C_2 = 0.$$
 (215)

Za razliku od Euler-Bernoullijeve teorije, kod Timošenkove teorije savijanja primjenjujemo rubni uvjet nagiba koji je definiran relacijom (157). Kako bismo mogli pronaći konstantu integracije C_1 , koristimo se relacijom (160) koja glasi:

$$\phi = -\frac{\mathrm{d}w}{\mathrm{d}x} + \frac{Q_z}{kAG}.$$
(216)

Primjenom relacija (212) i (213), dobijemo:

$$\phi(x) = -\frac{1}{EI_{y}} \left(\frac{1}{6} q_{0} x^{3} - q_{0} L x^{2} + \frac{3}{2} q_{0} L^{2} x + \frac{EI_{y}}{kAG} (2q_{0}L - q_{0}x) + C_{1} \right) + \frac{2q_{0}L - q_{0}x}{kAG} .$$
(217)

Sada možemo primjeniti rubni uvjet (157) i odrediti vrijednost konstante integracije C_1 pa slijedi:

$$0 = 0 + 0 + 0 + 0 - \frac{2q_0L}{kAG} - \frac{C_1}{EI_y} + \frac{2q_0L}{kAG},$$
(218)

$$C_1 = 0.$$
 (219)

Uvrštavanjem (215) i (219) u relaciju (214) dobijemo analitičko rješenje za elastičnu liniju, odnosno raspodjelu progiba prema Timošenkovoj teoriji savijanja koje glasi:

$$w(x) = \frac{1}{EI_{y}} \left(\frac{1}{24} q_{0} x^{4} - \frac{1}{3} q_{0} L x^{3} + \frac{3}{4} q_{0} L^{2} x^{2} + 2 \frac{EI_{y}}{kAG} q_{0} L x - \frac{1}{2} \frac{EI_{y}}{kAG} q_{0} x^{2} \right).$$
(220)

Također, uvrštavanjem konstanti integracije C_1 i C_2 u relaciju (217) dobijemo:

$$\phi(x) = \frac{1}{EI_{y}} \left(-\frac{1}{6} q_{0} x^{3} + q_{0} L x^{2} - \frac{3}{2} q_{0} L^{2} x \right).$$
(221)

Relacije (220) i (221) predstavljaju, dakle, analitička rješenja progiba i nagiba po Timošenkovoj teoriji savijanja. Funkcije raspodjele nagiba koje su opisane relacijama (205) i (221) ponovno su jednake što samo potvrđuje činjenicu iz prošlog zadatka kako utjecaj kutne deformacije pozicionira kut pod kojim se nalaze poprečni presjeci tako da on odgovara nagibu prema Euler-Bernoullijevoj teoriji. Maksimalni progib i nagib grede nalaze se na slobodnom kraju grede, tj. kada je x = L, pa ako to uvrstimo u relacije (220) i (221) dobijemo:

$$\left(w_{\max}\right)_{\rm T} = \frac{11}{24} \frac{q_0 L^4}{E I_{\rm y}} + \frac{3}{2} \frac{q_0 L^2}{k A G},\tag{222}$$

$$(\phi_{\max})_{\rm T} = (\alpha_{\max})_{\rm EB} = -\frac{2}{3} \frac{q_0 L^3}{EI_y}.$$
 (223)

Iz analitičkih rješenja za maksimalni progib na kraju grede koja su opisana relacijama (206) i (222), vidljivo je kako je progib po Timošenkovoj teoriji savijanja sastavljen od zbroja klasičnog rješenja koje dobijemo po Euler-Bernoullijevoj teoriji savijanja i dodatnog člana koji se pojavio zbog deformacije uzrokovane utjecajem smika, odnosno:

$$(w_{\max})_{\rm T} = (w_{\max})_{\rm EB} + \frac{3}{2} \frac{q_0 L^2}{kAG}.$$
 (224)

3.2.3. Usporedba dobivenih rješenja

Ako pogledamo malo bolje, slučaj opterećenja prikazan na slici 31. jako je sličan slučaju opterećenja prikazanom na slici 20. iz prošlog primjera te je jedina razlika u tome što u ovom primjeru imamo, uz koncentriranu silu na kraju grede, i djelovanje konstantnog kontinuiranog opterećenja po cijeloj dužini grede. Ponovno ćemo se prvo ograničiti na usporedbu analitičkih rješenja u lokalnom području grede u kojem imamo maksimalni progib. Ukoliko relacije

(206) i (222), koje definiraju rješenja za maksimalne progibe na kraju grede, pretvorimo u bezdimenzijski oblik, tada možemo pomoću dijagramskog prikaza pokazati usporedbu između rješenja koje daje Euler-Bernoullijeva teorija i rješenja koje daje Timošenkova teorija savijanja u ovisnosti o općem omjeru h/l definiranim pomoću geometrijskih karakteristika grede pa slijedi:

$$w_{1}^{*} = \frac{\left(w_{\max}\right)_{\text{EB}}}{\frac{q_{0}L^{4}}{EI_{y}}} = \frac{11}{24},$$
(225)

$$w_{2}^{*} = \frac{\left(w_{\max}\right)_{\mathrm{T}}}{\frac{q_{0}L^{4}}{EI_{y}}} = \frac{11}{24} + \frac{3}{2}\frac{EI_{y}}{kAGL^{2}}.$$
(226)

Svrsishodno je ovdje ponovno skrenuti pozornost na činjenicu kako rješenje dobiveno po Euler-Bernoullijevoj teoriji savijanja u bezdimenzijskom obliku ne ovisi o geometrijskim karakteristikama grede. Materijalne karakteristike grede definirane su konstantnim vrijednostima u relacijama (171), (172) i (173). Usporedbu ćemo ponovno napraviti posebno za pravokutni i kružni poprečni presjek grede. Vrijednosti korekcijskog faktora smicanja *k* pravokutnog i kružnog poprečnog presjeka prema Timošenkovoj formulaciji izraza, definirane su vrijednostima u relacijama (174) i (175). Promotrimo prvo što se događa ako greda ima pravokutni poprečni presjek za slučaj opterećenja prikazan na slici 31. Ako u relaciju (226) uvrstimo geometrijske karakteristike pravokutnog poprečnog presjeka koje su definirane relacijama (176) i (177), dobijemo oblik bezdimenzijskog progiba:

$$w_{2}^{*} = \frac{\left(w_{\max}\right)_{\mathrm{T}}}{\frac{q_{0}L^{4}}{EI_{y}}} = \frac{11}{24} + \frac{1}{8}\frac{E}{kG}\left(\frac{h}{L}\right)^{2}.$$
(227)

Dijagram na slici 34. prikazuje usporedbu analitičkih rješenja za bezdimenzijski progib na kraju grede dobivenih po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja u ovisnosti o omjeru h/L. Iz dijagrama možemo vidjeti kako se sa povećanjem omjera h/L, razlika između analitičkih rješenja koja ove dvije teorije daju povećava, a samim time raste i greška Euler-Bernoullijeve teorije u odnosu na Timošenkovu zbog zanemarivanja utjecaja smika. Dijagram na slici 35. prikazuje postotnu grešku između analitičkih rješenja za progib na kraju grede u ovisnosti o omjeru h/L koja je definirana prema kriteriju (179).

Slika 34. Bezdimenzijski progib na kraju grede za pravokutni poprečni presjek u ovisnosti o omjeru *h/L* (Primjer 2.)

Slika 35. Dijagramski prikaz greške Euler-Bernoullijeve teorije u odnosu na Timošenkovu teoriju savijanja za pravokutni poprečni presjek (Primjer 2.)

Vidimo da je u početku kada je omjer h/L jako mali, greška koja nastaje zanemarivanjem utjecaja smičnog naprezanja je neprimjetno mala te se unutar tog područja omjera između visine poprečnog presjeka grede i njezine duljine mogu koristiti obje teorije savijanja kako bi se dobila rješenja za progib i nagib. Sa povećanjem omjera h/L dolazi do sve veće greške,

kako bi na kraju kada je omjer h/L jednak jedinici, greška koja je nastala zanemarivanjem utjecaja smika pri savijanju grede pravokutnog poprečnog presjeka narasla na 45%. Ako usporedimo kolika je maksimalna greška između analitičkih rješenja za progib na kraju grede pravokutnog poprečnog presjeka bila za prethodni primjer, vidimo da je dodatak djelovanja konstantnog kontinuiranog opterećenja podigao tu grešku za 2,14%. U tablici 5. izvučene su vrijednosti postotne greške između analitičkih rješenja progiba na kraju grede sa dijagrama (Slika 35) za granične vrijednosti omjera h/L prema preporuci iz [1] i [5].

h/L	Greška (%)	
1/20	0,2	
1/10	0,81	
1/5	3,17	
1/4	4,86	
1	45	

Tablica 5. Greška za različite omjere *h/L* pravokutnog poprečnog presjeka (Primjer 2.)

Možemo vidjeti da je unurar intervala između 1/20 i 1/10 greška jako mala, tako da zanemarivanje utjecaja smika u tom području itekako dolazi u obzir. Unutar intervala između 1/5 i 1/4, greška se ipak nešto povećala pri čemu prosječna greška unutar tog intervala iznosi 4%, što je za 2% veće od greške koja je unutar tog intervala predviđena u [1], no to je još uvijek manje od 5% greške koja se dopušta u inženjerskoj praksi, što znači da je greška unutar tog intervala još uvijek tolerantna. Iznos greške od 5% za ovakav problem savijanja grede i pravokutni poprečni presjek postiže se kada je omjer između visine poprečnog presjeka grede i njezine duljine jednak h/L=1/3,93. Prema tome, taj iznos omjera h/L, za slučaj pravokutnog poprečnog presjeka možemo uzeti kao graničnu vrijednost do koje vrijedi Euler-Bernoullijeva teorija savijanja, a nakon što se prijeđe ta vrijednost omjera, greška koja će nastati zbog zanemarivanja utjecaja smika biti će prevelika i tada ćemo morati primijeniti Timošenkovu teoriju savijanja kako bismo dobili točne rezultate. Zanimljivo je uočiti da je konstantno kontinuirano opterećenje djelovalo na taj način da je greška od 5% između analitičkih rješenja progiba na kraju grede nastupila pri nižem omjeru h/L nego što je to, za pravokutni poprečni presjek, bilo u prethodnom primjeru kada kontinuiranog opterećenja nije bilo. To znači da je ovaj slučaj opterećenja još više ograničio graničnu vrijednost omjera h/L do koje možemo ići, a da pritom greška još uvijek bude u dozvoljenim granicama. Promotrimo sada što se događa ako greda ima kružni poprečni presjek za slučaj opterećenja prikazan na slici 31. Ako u relaciju (226) uvrstimo geometrijske karakteristike kružnog poprečnog presjeka koje su definirane relacijama (180) i (181), dobijemo oblik bezdimenzijskog progiba:

$$w_{2}^{*} = \frac{\left(w_{\max}\right)_{\mathrm{T}}}{\frac{q_{0}L^{4}}{EI_{y}}} = \frac{11}{24} + \frac{3}{32}\frac{E}{kG}\left(\frac{d}{L}\right)^{2}.$$
(228)

Dijagram na slici 36. prikazuje usporedbu analitičkih rješenja za bezdimenzijski progib na kraju grede dobivenih po Euler-Bernoullijeovj i Timošenkovoj teoriji savijanja u ovisnosti o, ovoga puta, omjeru d/L.

Slika 36. Bezdimenzijski progib na kraju grede za kružni poprečni presjek u ovisnosti o omjeru d/L (Primjer 2.)

Ponovno se može lijepo vidjeti kako, sa povećanjem omjera d/L, razlika između analitičkih rješenja ovih dviju teorija sve više raste, kao i greška. Ako pogledamo dijagram na slici 37. koji prikazuje postotnu grešku između analitičkih rješenja za progib na kraju grede u ovisnosti o omjeru d/L, možemo vidjeti da je kod kružnog poprečnog presjeka greška malo manja. Kada je omjer d/L jednak jedinici, greška koja je nastala zanemarivanjem utjecaja smika pri savijanju grede iznosi 36,5%, što je manje u odnosu na onih 45% greške kod pravokutnog poprečnog presjeka, no svejedno nije zanemarivo. Ako usporedimo kolika je maksimalna greška između analitičkih rješenja za progib na kraju grede kružnog poprečnog presjeka bila

za prethodni primjer, vidimo da je dodatak djelovanja konstantnog kontinuiranog opterećenja podigao tu grešku za točno 2%.

Slika 37. Dijagramski prikaz greške Euler-Bernoullijeve teorije u odnosu na Timošenkovu teoriju savijanja za kružni poprečni presjek (Primjer 2.)

U tablici 6. izvučene su vrijednosti postotne greške između analitičkih rješenja progiba na kraju grede sa dijagrama (Slika 37) za granične vrijednosti omjera d/L prema preporuci iz [1] i [5]. Možemo vidjeti da je unutar intervala između 1/20 i 1/10 greška jako mala što znači da zanemarivanje utjecaja smika unutar tog intervala ne utječe na točnost rezultata. Unutar intervala između 1/5 i 1/4 greška se malo povisila pri čemu je prosječna greška unutar tog intervala 2,9%, što nam daje poklapanje sa predviđenom greškom unutar tog intervala prema [1]. Iznos greške od dozvoljenih 5% za ovakav problem savijanja grede i kružni poprečni presjek postiže se kada je omjer između promjera grede i njezine duljine d/L = 1/3,304.

d/L	Greška (%)	
1/20	0,14	
1/10	0,57	
1/5	2,25	
1/4	3,47	
1	36,5	

Tablica 6. Greška za različite omjere *d/L* kružnog poprečnog presjeka (Primjer 2.)

Prema tome, taj iznos omjera d/L, za slučaj kružnog poprečnog presjeka možemo uzeti kao graničnu vrijednost do koje možemo koristiti Euler-Bernoullijevu teoriju savijanja, a nakon što prijeđemo tu vrijednost omjera, greška koja će nastati zbog zanemarivanja utjecaja smika tražiti će od nas primjenu Timošenkove teorije savijanja kako bismo dobili točna rješenja. I ovdje je također zanimljivo uočiti da je konstantno kontinuirano opterećenje djelovalo na takav način da je greška od 5% između analitičkih rješenja progiba na kraju grede nastupila pri nižem omjeru d/L nego što je to, za kružni poprečni presjek, bilo u prethodnom primjeru kada je taj omjer bio malo veći. Sada ćemo napraviti međusobnu usporedbu analitičkih rješenja za raspodjelu progiba po cijeloj dužini grede dobivenih pomoću obje teorije savijanja kako bi se pokazao na ovom primjeru utjecaj greške zbog zanemarivanja smičnog naprezanja. Usporedbu ćemo ponovno napraviti u bezdimenzijskom obliku pa ako relacije (204) i (220) pretvorimo u bezdimenzijski oblik, dobijemo:

$$w_{1}^{*}\left(\frac{x}{L}\right) = \frac{w(x)}{\frac{q_{0}L^{4}}{EI_{y}}} = \frac{1}{24}\left(\frac{x}{L}\right)^{4} - \frac{1}{3}\left(\frac{x}{L}\right)^{3} + \frac{3}{4}\left(\frac{x}{L}\right)^{2},$$
(229)

$$w_{2}^{*}\left(\frac{x}{L}\right) = \frac{w(x)}{\frac{q_{0}L^{4}}{EI_{y}}} = w_{1}^{*}\left(\frac{x}{L}\right) + 2\frac{EI_{y}}{kAGL^{2}}\left(\frac{x}{L}\right) - \frac{1}{2}\frac{EI_{y}}{kAGL^{2}}\left(\frac{x}{L}\right)^{2}.$$
(230)

Bezdimenzijska duljina grede, ponovno je definirana omjerom x/L. Opet ćemo prvo promatrati pravokutni poprečni presjek, a potom kružni poprečni presjek. Ako u relaciju (230) uvrstimo geometrijske karakteristike pravokutnog poprečnog presjeka koje su definirane relacijama (176) i (177), dobijemo opći oblik bezdimenzijskog progiba po dužini grede:

$$w_{2}^{*}\left(\frac{x}{L},\frac{h}{L}\right) = \frac{w(x)}{\frac{q_{0}L^{4}}{EI_{y}}} = w_{1}^{*}\left(\frac{x}{L}\right) + \frac{1}{6}\frac{E}{kG}\left(\frac{h}{L}\right)^{2}\left(\frac{x}{L}\right) - \frac{1}{24}\frac{E}{kG}\left(\frac{h}{L}\right)^{2}\left(\frac{x}{L}\right)^{2}.$$
 (231)

Kao što možemo vidjeti, opće rješenje progiba po dužini grede pravokutnog poprečnog presjeka dobiveno po Timošenkovoj teoriji savijanja u bezdimenzijskom obliku ovisi o dvije bezdimenzijske karakteristike, a to su omjeri x/L i h/L. Da bismo mogli napraviti dijagramsku usporedbu, za omjer h/L usvojiti ćemo vrijednost kod koje greška između analitičkih rješenja progiba na kraju grede pravokutnog poprečnog presjeka iznosi dozvoljenih 5%, odnosno h/L=1/3,93, a dodatno ćemo prikazati usporedbu kada ta greška iznosi otprilike oko 30%,

odnsono h/L = 1/1,381, da bismo što bolje vidjeli razliku između ove dvije teorije savijanja. Relacija (231) uz definirane omjere h/L prelazi u:

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{3,93}\right) = \frac{w(x)}{\frac{q_{0}L^{4}}{EI_{v}}} = w_{1}^{*}\left(\frac{x}{L}\right) + \frac{5376}{499969kG}\frac{E}{kG}\left(\frac{x}{L}\right) - \frac{1344}{499969kG}\frac{E}{kG}\left(\frac{x}{L}\right)^{2},$$
(232)

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{1,381}\right) = \frac{w(x)}{\frac{q_{0}L^{4}}{EI_{y}}} = w_{1}^{*}\left(\frac{x}{L}\right) + \frac{159}{1820}\frac{E}{kG}\left(\frac{x}{L}\right) - \frac{159}{7280}\frac{E}{kG}\left(\frac{x}{L}\right)^{2}.$$
(233)

Dijagram na slici 38. prikazuje raspodjelu bezdimenzijskog progiba u ovisnosti o bezdimenzijskoj duljini grede pravokutnog poprečnog presjeka po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja za slučaj opterećenja prikazan na slici 31.

Slika 38. Usporedba analitičkih rješenja progiba po dužini grede pravokutnog presjeka (Primjer 2.)

Za omjer h/L kada greška između analitičkih rješenja progiba na kraju grede iznosi 5%, vidimo da nemamo velika odstupanja između analitičkih rješenja te da ona postepeno rastu kako se približavamo prema kraju grede što znači da se za taj omjer greška zbog zanemarivanja utjecaja smika nalazi unutar toleriranih granica te potvrđuje kako se do te granice još uvijek može korisiti Euler-Bernoullijeva teorija savijanja. Za omjer h/L kada greška između analitičkih rješenja progiba na kraju grede iznosi visokih 30%, vidimo da je odstupanje između analitičkih rješenja po dužini grede veliko, što znači da smo sa ovim

omjerom prešli u područje prevelike greške koja je nastala zanemarivanjem utjecaja smika te ako bismo koristili Euler-Benoullijevou teoriju, dobili bismo informaciju da je greda kruća nego što to stvarno jest. Za taj slučaj morali bismo koristiti Timošenkovu teoriju savijanja kako bismo dobili stvarnu raspodjelu progiba. Dijagram na slici 39. prikazuje apsolutnu grešku između analitičkih rješenja po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja za oba omjera h/L koja je definirana prema kriteriju (188).

Slika 39. Prikaz apsolutne greške između analitičkih rješenja (Primjer 2.)

Uzmimo sada da greda ponovno ima kružni poprečni presjek kako bismo vidjeli što se događa sa raspodjelom progiba po dužini grede. Rješenje po Euler-Bernoullijevoj teoriji savijanja u bezdimenzijskom obliku jednako je kao i kod pravokutnog poprečno presjeka te je opisano relacijom (229). Ako u relaciju (230) uvrstimo geometrijske karakteristike kružnog poprečnog presjeka koje su definirane relacijama (180) i (181), dobijemo opći oblik bezdimenzijskog progiba po dužini grede:

$$w_{2}^{*}\left(\frac{x}{L},\frac{d}{L}\right) = \frac{w(x)}{\frac{q_{0}L^{4}}{EI_{y}}} = w_{1}^{*}\left(\frac{x}{L}\right) + \frac{1}{8}\frac{E}{kG}\left(\frac{d}{L}\right)^{2}\left(\frac{x}{L}\right) - \frac{1}{32}\frac{E}{kG}\left(\frac{d}{L}\right)^{2}\left(\frac{x}{L}\right)^{2}.$$
(234)

Kao što možemo vidjeti, opće rješenje progiba po dužini grede kružnog poprečnog presjeka dobiveno po Timošenkovoj teoriji savijanja u bezdimenzijskom obliku ovisi, kao i kod pravokutnog poprečnog presjeka, o dvije bezdimenzijske karakteristike. Da bismo mogli napraviti dijagramsku usporedbu, za omjer d/L usvojiti ćemo vrijednost kod koje greška

između analitičkih rješenja progiba na kraju grede kružnog poprečnog presjeka iznosi 5%, odnosno d/L=1/3,304, a dodatno ćemo prikazati usporedbu kada ta greška iznosi otprilike oko 25%, odnsono d/L=1/1,313. Relacija (234) uz definirane omjere d/L prelazi u:

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{3,304}\right) = \frac{w(x)}{\frac{q_{0}L^{4}}{EI_{y}}} = w_{1}^{*}\left(\frac{x}{L}\right) + \frac{106}{9261}\frac{E}{kG}\left(\frac{x}{L}\right) - \frac{53}{18522}\frac{E}{kG}\left(\frac{x}{L}\right)^{2},$$
(235)

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{1,313}\right) = \frac{w(x)}{\frac{q_{0}L^{4}}{EI_{y}}} = w_{1}^{*}\left(\frac{x}{L}\right) + \frac{207}{2855}\frac{E}{kG}\left(\frac{x}{L}\right) - \frac{136}{7503}\frac{E}{kG}\left(\frac{x}{L}\right)^{2}.$$
(236)

Dijagram na slici 40. prikazuje raspodjelu bezdimenzijskog progiba u ovisnosti o bezdimenzijskoj duljini grede kružnog poprečnog presjeka. Za omjer *d/L* kada greška između analitičkih rješenja progiba na kraju grede iznosi 5%, odstupanja između analitičkih rješenja nisu previše izražena čime se zapravo potvrđuje da se za taj omjer greška zbog zanemarivanja utjecaja smika još uvijek nalazi unutar dozvoljenih granica te da se do te granice može korisiti Euler-Bernoullijeva teorija savijanja.

Za omjer d/L kada greška između analitičkih rješenja progiba na kraju grede iznosi 25%, možemo primijetiti velika odstupanja između analitičkih rješenja po dužini grede i to nam govori da smo sa ovim omjerom došli u područje velike greške zbog zanemarivanja utjecaja smika te da je tu potrebna primjena Timošenkove teorije savijanja. Dijagram na slici 41. prikazuje apsolutnu grešku između analitičkih rješenja po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja grede za oba omjera d/L.

Slika 41. Prikaz apsolutne greške između analitičkih rješenja (Primjer 2.)

3.3. Primjer 3.

Za gredu zadanu i opterećenu prema slici 42. potrebno je, koristeći Euler-Bernoullijevu i Timošenkovu teoriju savijanja grede, pronaći analitičke izraze za raspodjelu progiba i nagiba tangente na elastičnu liniju po cijeloj dužini grede te ih međusobno usporediti analitički i dijagramski. Također napraviti usporedbu iznosa maksimalnih progiba i nagiba tangente na elastičnu liniju dobivenih pomoću ove dvije teorije savijanja. Zadano: F, L, EI_y = konst., AG = konst., k = konst.

Slika 42. Greda na dva oslonca opterećena koncentriranom silom u sredini

3.3.1. Rješenje po Euler-Bernoullijevoj teoriji

Kao i u prethodnim primjerima, potrebna nam je raspodjela unutrašnjeg momenta savijanja M_y po dužini grede pa u tu svrhu oslobađamo gredu veza i napišemo uvjete ravnoteže koji su definirani relacijama (125), (126) i (127). Pri oslobađanju grede veza, pomični i nepomični oslonac zamijenili smo odgovarajućim reakcijama koje se javljaju pri djelovanju koncentrirane sile F u sredini grede. Kao što možemo vidjeti (Slika 43), lijevi oslonac zamijenili smo nepoznatom koncentriranom silom F_A , a desni oslonac zamijenili smo nepoznatom koncentriranom silom F_C . Aktivne sile u smjeru uzdužne osi grede nema tako da nema ni reakcija u tom smjeru što znači da je uvjet ravnoteže (125) automatski zadovoljen. Ako napišemo uvjet ravnoteže (126), dobijemo relaciju:

$$\sum F_z = -F_A - F_C + F = 0, \qquad (237)$$

$$F_A + F_C = F. (238)$$

Vidimo kako relacija (238) sadrži dvije nepoznanice i to reakcijske sile u osloncima. Da bismo pronašli njihove iznose, moramo napisati uvjet ravnoteže (127), pa slijedi:

$$\sum M_{A} = -F \frac{L}{2} + F_{C}L = 0, \qquad (239)$$

$$F_C = \frac{1}{2}F$$
. (240)

Uvrstimo li relaciju (240) u (238), dobijemo drugu reakcijsku silu u osloncu:

Slika 43. Greda na dva oslonca opterećena koncentriranom silom u sredini oslobođena veza

Sada kada smo odredili reakcijske sile u osloncima, da bismo dobili raspodjelu unutrašnjeg momenta savijanja, koristimo se metodom presjeka. Za razliku prethodnih primjera, u ovome ne možemo dobiti jedinstven izraz za raspodjelu unutrašnjeg momenta savijanja po cijeloj dužini grede. Analitički izraz za unutrašnji moment savijanja ima jedan oblik lijevo od sile *F*, a drugi oblik desno od sile *F*. Promotrimo prvo područje lijevo od sile *F* koje se kreće u rasponu $0 \le x \le L/2$ (Slika 44). Na presjeku grede udaljenom za *x* od ishodišta koordinatnog sustava lijevo od sile *F*, budući da je pozitivan, ucrtamo odgovarajuće pozitivne unutrašnje komponente sila, pri čemu su to unutrašnja poprečna sila Q_{z1} i unutrašnji moment savijanja M_{y1} . Napravimo li sumu momenata oko presjeka na udaljenosti *x*, dobijemo:

$$\sum M_{y} = M_{y1} - F_{A}x = 0, \qquad (242)$$

$$M_{y1} = \frac{1}{2}Fx, \quad 0 \le x \le L/2.$$
 (243)

Kristijan Kubik

Slika 44. Presjek grede na udaljenosti x od ishodišta lijevo od koncentrirane sile F

Promotrimo sada područje desno od sile *F* koje se kreće u rasponu $L/2 \le x \le L$ (Slika 45). Na presjeku grede udaljenom za *x* od ishodišta koordinatnog sustava desno od sile *F*, koji je također pozitivan, ucrtamo odgovarajuće pozitivne unutrašnje komponente sila, pri čemu su to komponente Q_{z2} i M_{y2} .

Slika 45. Presjek grede na udaljenosti *x* od ishodišta desno od koncentrirane sile *F*

Napravimo li sumu momenata oko presjeka na udaljenosti x, dobijemo:

$$\sum M_{y} = M_{y2} - F_{A}x + F\left(x - \frac{L}{2}\right) = 0, \qquad (244)$$

$$M_{y2} = -\frac{1}{2}Fx + \frac{1}{2}FL, \qquad L/2 \le x \le L.$$
 (245)

Budući da nemamo jedinstven izraz za raspodjelu unutrašnjeg momenta savijanja, diferencijalna jednadžba elastične linije također će imati različiti oblik raspodjele za područje lijevo od sile *F* i područje desno od sile *F*.

Uvrštavanjem relacije (243) u (124) dobijemo:

$$EI_{y} \frac{d^{2} w_{1}}{dx^{2}} = -M_{y1} = -\frac{1}{2} Fx.$$
(246)

Dvostrukim integriranjem relacije (246) slijedi:

$$EI_{y} \frac{\mathrm{d}w_{1}}{\mathrm{d}x} = -\frac{1}{4}Fx^{2} + C_{1}, \qquad (247)$$

$$EI_{y}w_{1}(x) = -\frac{1}{12}Fx^{3} + C_{1}x + C_{2}.$$
(248)

Relacija (248) predstavlja opće rješenje diferencijalne jednadžbe elastične linije za područje lijevo od sile *F*. Uvrštavanjem relacije (245) u (124) dobijemo:

$$EI_{y} \frac{d^{2} w_{2}}{dx^{2}} = -M_{y2} = \frac{1}{2} Fx - \frac{1}{2} FL.$$
(249)

Dvostrukim integriranjem relacije (249) slijedi:

$$EI_{y} \frac{\mathrm{d}w_{2}}{\mathrm{d}x} = \frac{1}{4}Fx^{2} - \frac{1}{2}FLx + C_{3}, \qquad (250)$$

$$EI_{y}w_{2}(x) = \frac{1}{12}Fx^{3} - \frac{1}{4}FLx^{2} + C_{3}x + C_{4}.$$
(251)

Relacija (251) predstavlja opće rješenje diferencijalne jednadžbe elastične linije za područje desno od sile *F*. Konstante integracije C_1 , C_2 , C_3 i C_4 odrediti ćemo iz dva rubna uvjeta i dva uvjeta neprekinutosti elastične linije koji glase:

$$w_1(0) = 0$$
, (252)

$$w_2(L) = 0,$$
 (253)

$$w_1\left(\frac{L}{2}\right) = w_2\left(\frac{L}{2}\right),\tag{254}$$

$$\alpha_1\left(\frac{L}{2}\right) = \frac{\mathrm{d}w_1}{\mathrm{d}x}\Big|_{x=\frac{L}{2}} = \alpha_2\left(\frac{L}{2}\right) = \frac{\mathrm{d}w_2}{\mathrm{d}x}\Big|_{x=\frac{L}{2}}.$$
(255)

Uvrštavanjem rubnog uvjeta (252) u (248) dobijemo:

$$C_2 = 0.$$
 (256)

Uvrštavanjem rubnog uvjeta (253) u (251) dobijemo:

$$0 = -\frac{1}{6}FL^3 + C_3L + C_4.$$
(257)

Primjenom uvjeta neprekinutosti (254) dobijemo:

$$-\frac{1}{96}FL^{3} + C_{1}\frac{L}{2} = -\frac{5}{96}FL^{3} + C_{3}\frac{L}{2} + C_{4}.$$
(258)

Primjenom uvjeta neprekinutosti (255) dobijemo:

$$-\frac{1}{16}FL^2 + C_1 = -\frac{3}{16}FL^2 + C_3.$$
(259)

Vidimo da smo zapravo dobili sustav tri jednadžbe sa tri nepoznanice. Nakon opširnijeg rješavanja sustava jednadžbi (257), (258) i (259), slijede konstante integracije:

$$C_1 = \frac{1}{16}FL^2,$$
 (260)

$$C_3 = \frac{3}{16}FL^2,$$
 (261)

$$C_4 = -\frac{1}{48}FL^3.$$
 (262)

Uvrštavanjem dobivenih konstanti integracije u relacije (248) i (251) dobijemo analitička rješenja za raspodjelu progiba prema Euler-Bernoullijevoj teoriji savijanja za područja lijevo i desno od koncentrirane sile *F* kako slijedi:

$$w_1(x) = \frac{1}{EI_y} \left(-\frac{1}{12} F x^3 + \frac{1}{16} F L^2 x \right), \qquad 0 \le x \le L/2,$$
(263)

$$w_{2}(x) = \frac{1}{EI_{y}} \left(\frac{1}{12} Fx^{3} - \frac{1}{4} FLx^{2} + \frac{3}{16} FL^{2}x - \frac{1}{48} FL^{3} \right), \qquad L/2 \le x \le L.$$
(264)

Uvrštavanjem dobivenih konstanti integracije u relacije (247) i (250) dobijemo analitička rješenja za raspodjelu nagiba tangente na elastičnu liniju za područja lijevo i desno od sile *F*:

$$\alpha_{1}(x) = \frac{1}{EI_{y}} \left(\frac{1}{4} Fx^{2} - \frac{1}{16} FL^{2} \right), \qquad 0 \le x \le L/2,$$
(265)

$$\alpha_{2}(x) = \frac{1}{EI_{y}} \left(-\frac{1}{4}Fx^{2} + \frac{1}{2}FLx - \frac{3}{16}FL^{2} \right), \qquad L/2 \le x \le L.$$
(266)

Relacije (263), (264), (265) i (266) predstavljaju analitička rješenja progiba i nagiba po Euler-Bernoullijevoj teoriji savijanja. Mjesto maksimalnog progiba grede dobijemo ako relaciju (265) izjednačimo sa nulom iz čega slijedi da se on nalazi na sredini grede, tj. kada je x = L/2, pa ako to uvrstimo relacije (263) i (264) dobijemo:

$$(w_{1\max})_{\rm EB} = (w_{2\max})_{\rm EB} = \frac{1}{48} \frac{FL^3}{EI_{\rm v}}.$$
 (267)

Mjesto maksimalnog nagiba tangente u području lijevo od sile *F* dobijemo ako relaciju (246) izjednačimo sa nulom iz čega slijedi da se on nalazi na x = 0. Mjesto maksimalnog nagiba tangente u području desno od sile *F* dobijemo ako relaciju (249) izjednačimo sa nulom iz čega slijedi da se on nalazi na x = L. Uvrštavanjem ovih položaja u relacije (265) i (266) dobijemo jednaku apsolutnu vrijednost nagiba tangente u osloncima, odnosno:

$$|(\alpha_{1 \max})_{\rm EB}| = |(\alpha_{2 \max})_{\rm EB}| = \frac{1}{16} \frac{FL^2}{EI_{\rm v}}.$$
(268)

Prema tome, ta nam činjenica govori kako je ovo slučaj simetričnog opterećenja grede. To znači da je raspodjela progiba u prvom dijelu područja grede simetrično zrcaljena oko osi z na mjestu djelovanja koncentrirane sile F, što će nam kasnije biti od koristi.

3.3.2. Rješenje po Timošenkovoj teoriji

Diferencijalne jednadžbe pomoću kojih ćemo doći do analitičkih rješenja za raspodjelu progiba i nagiba po Timošenkovoj teoriji savijanja opisane su relacijama (147) i (160). Kako za slučaj opterećenja grede prikazanom na slici 42. nemamo kontinuirano opterećenje q_z , relaciju (147) jednom integriramo pa uz primjenu diferencijalne jednadžbe ravnoteže (149) i indeksnog zapisa, dobijemo:

$$EI_{y} \frac{\mathrm{d}w_{i}}{\mathrm{d}x} = -\int_{x} M_{yi} \mathrm{d}x + \frac{EI_{y}}{kAG} Q_{zi} + C_{2i-1}, \qquad i = 1, 2.$$
(269)

Relaciju (160) također možemo zapisati u indeksnom zaipisu:

$$\phi_i = -\frac{\mathrm{d}w_i}{\mathrm{d}x} + \frac{Q_{zi}}{kAG}, \qquad i = 1,2.$$
(270)

Indeks *i* odnosi se na to koji dio područja grede promatramo. Ako promatramo područje lijevo od sile *F*, tada će indeks poprimiti vrijednost i = 1, a ako promatramo područje desno od sile *F*, indeks će poprimiti vrijednost i = 2. Zbog jednakosti uvjeta ravnoteže kod Euler-Bernoullijeve i Timošenkove teorije savijanja, raspodjela unutrašnjeg momenta savijanja M_y u područjima lijevo i desno od sile *F* je jednaka i opisana je relacijama (243) i (245). Promotrimo prvo pordučje grede lijevo od sile *F*, pri čemu indeks poprima vrijednost i = 1 pa imamo:

$$EI_{y} \frac{\mathrm{d}w_{1}}{\mathrm{d}x} = -\int_{x} M_{y1} \mathrm{d}x + \frac{EI_{y}}{kAG} Q_{z1} + C_{1}.$$
(271)

Pomoću relacije (243) možemo izračunati prvi član sa desne strane jednakosti u relaciji (271) i dobijemo:

$$\int_{x} M_{y1} dx = \frac{1}{4} F x^{2}.$$
(272)

Iz relacije (271) vidimo da nam je potrebna raspodjela unutrašnje poprečne sile Q_{z1} unutar područja grede lijevo od sile *F* koju ćemo dobiti metodom presjeka (Slika 44). Postavljanjem sume sila u smjeru osi *z* na presjeku grede dobijemo:

$$\sum Q_z = Q_{z1} - F_A = 0, \qquad (273)$$

$$Q_{z1} = \frac{1}{2}F = \text{konst.}, \quad 0 \le x \le L/2.$$
 (274)

Ako uvrstimo relacije (272) i (274) u (271) i integriramo, slijedi:

$$EI_{y} \frac{\mathrm{d}w_{1}}{\mathrm{d}x} = -\frac{1}{4}Fx^{2} + \frac{1}{2}\frac{EI_{y}}{kAG}F + C_{1}, \qquad (275)$$

$$EI_{y}w_{1}(x) = -\frac{1}{12}Fx^{3} + \frac{1}{2}\frac{EI_{y}}{kAG}Fx + C_{1}x + C_{2}.$$
(276)

Relacija (270) u ovom području grede glasi:

$$\phi_1 = -\frac{\mathrm{d}w_1}{\mathrm{d}x} + \frac{Q_{z1}}{kAG}.$$
(277)

Uz primjenu (274) i (275) i sređivanje, relacija (277) prelazi u:

$$\phi_1(x) = -\frac{1}{EI_y} \left(-\frac{1}{4} F x^2 + \frac{1}{2} \frac{EI_y}{kAG} F + C_1 \right) + \frac{1}{2} \frac{F}{kAG}.$$
(278)

Promotrimo sada pordučje grede desno od sile F, pri čemu indeks poprima vrijednost i = 2 pa imamo:

$$EI_{y} \frac{\mathrm{d}w_{2}}{\mathrm{d}x} = -\int_{x} M_{y2} \mathrm{d}x + \frac{EI_{y}}{kAG} Q_{z2} + C_{3}.$$
(279)

Pomoću relacije (245) možemo izračunati prvi član sa desne strane jednakosti u relaciji (279):

$$\int_{x} M_{y2} dx = -\frac{1}{4} F x^{2} + \frac{1}{2} F L x.$$
(280)

Iz relacije (279) vidimo da nam je potrebna raspodjela unutrašnje poprečne sile Q_{z2} unutar područja grede desno od sile *F* koju ćemo dobiti metodom presjeka (Slika 45). Postavljanjem sume sila u smjeru osi *z* na presjeku grede dobijemo:

$$\sum Q_z = Q_{z1} - F_A + F = 0, \qquad (281)$$

$$Q_{z2} = -\frac{1}{2}F = \text{konst.}, \quad L/2 \le x \le L.$$
 (282)

Ako uvrstimo relacije (280) i (282) u (279) i integriramo, slijedi:

$$EI_{y} \frac{\mathrm{d}w_{2}}{\mathrm{d}x} = \frac{1}{4}Fx^{2} - \frac{1}{2}FLx - \frac{1}{2}\frac{EI_{y}}{kAG}F + C_{3}, \qquad (283)$$

$$EI_{y}w_{2}(x) = \frac{1}{12}Fx^{3} - \frac{1}{4}FLx^{2} - \frac{1}{2}\frac{EI_{y}}{kAG}Fx + C_{3}x + C_{4}.$$
 (284)

Releacija (270) u ovom području grede glasi:

$$\phi_2 = -\frac{\mathrm{d}w_2}{\mathrm{d}x} + \frac{Q_{z2}}{kAG}.$$
(285)

Uz primjenu (282) i (283) i sređivanje, relacija (285) prelazi u:

$$\phi_2(x) = -\frac{1}{EI_y} \left(\frac{1}{4} F x^2 - \frac{1}{2} F L x - \frac{1}{2} \frac{EI_y}{kAG} F + C_3 \right) - \frac{1}{2} \frac{F}{kAG}.$$
(286)

Izrazi (276), (278), (284) i (286) definiraju opća rješenja diferencijalne jednadžbe elastične linije po Timošenkovoj teoriji savijanja za čitavo područje grede. Konstante integracije C_1 , C_2 , C_3 i C_4 odrediti ćemo iz dva rubna uvjeta i dva uvjeta neprekinutosti elastične linije. Rubni uvjeti definirani relacijama (252) i (253) te uvjet neprekinutosti elastične linije (254) ostali su nepromijenjeni. Jedino se promijenio uvjet neprekinutosti (255) koji sada glasi:

$$\phi_1\left(\frac{L}{2}\right) = \phi_2\left(\frac{L}{2}\right). \tag{287}$$

Uvrštavanjem rubnog uvjeta (252) u (276) dobijemo:

$$C_2 = 0.$$
 (288)

Uvrštavanjem rubnog uvjeta (253) u (284) dobijemo:

$$0 = -\frac{1}{6}FL^{3} - \frac{1}{2}\frac{EI_{y}}{kAG}FL + C_{3}L + C_{4}.$$
(289)

Primjenom uvjeta neprekinutosti (254) dobijemo:

$$-\frac{1}{96}FL^{3} + \frac{1}{4}\frac{EI_{y}}{kAG}FL + C_{1}\frac{L}{2} = -\frac{5}{96}FL^{3} - \frac{1}{4}\frac{EI_{y}}{kAG}FL + C_{3}\frac{L}{2} + C_{4}.$$
 (290)

Primjenom uvjeta neprekinutosti (287) dobijemo:

$$\frac{1}{EI_{y}}\left(\frac{1}{16}FL^{2} - \frac{1}{2}\frac{EI_{y}}{kAG}F - C_{1}\right) + \frac{1}{2}\frac{F}{kAG} = \frac{1}{EI_{y}}\left(\frac{3}{16}FL^{2} + \frac{1}{2}\frac{EI_{y}}{kAG}F - C_{3}\right) - \frac{1}{2}\frac{F}{kAG}.$$
(291)

Vidimo da smo ponovno dobili sustav tri jednadžbe sa tri nepoznanice. Nakon rješavanja sustava jednadžbi (289), (290) i (291), slijede konstante integracije:

$$C_1 = \frac{1}{16} F L^2, \tag{292}$$

$$C_3 = \frac{3}{16}FL^2,$$
 (293)

$$C_{4} = -\frac{1}{48}FL^{3} + \frac{1}{2}\frac{EI_{y}}{kAG}FL.$$
(294)

Uvrštavanjem dobivenih konstanti integracije u relacije (276) i (284) dobijemo analitička rješenja za raspodjelu progiba prema Timošenkovoj teoriji savijanja za područja lijevo i desno od koncentrirane sile *F* kako slijedi:

$$w_1(x) = \frac{1}{EI_y} \left(-\frac{1}{12} F x^3 + \frac{1}{16} F L^2 x + \frac{1}{2} \frac{EI_y}{kAG} F x \right), \qquad 0 \le x \le L/2,$$
(295)

$$w_{2}(x) = \frac{1}{EI_{y}} \left(\frac{1}{12} Fx^{3} - \frac{1}{4} FLx^{2} + \frac{3}{16} FL^{2}x - \frac{1}{48} FL^{3} + \frac{1}{2} \frac{EI_{y}}{kAG} F(L-x) \right), L/2 \le x \le L.$$
(296)

Uvrštavanjem dobivenih konstanti integracije u relacije (278) i (286) dobijemo analitička rješenja za raspodjelu nagiba za područja lijevo i desno od sile *F*:

$$\phi_1(x) = \frac{1}{EI_y} \left(\frac{1}{4} F x^2 - \frac{1}{16} F L^2 \right), \qquad 0 \le x \le L/2,$$
(297)

$$\phi_2(x) = \frac{1}{EI_y} \left(-\frac{1}{4} F x^2 + \frac{1}{2} F L x - \frac{3}{16} F L^2 \right), \qquad L/2 \le x \le L.$$
(298)

Relacije (295), (296), (297) i (298) predstavljaju analitička rješenja progiba i nagiba po Timošenkovoj teoriji savijanja. Funkcije raspodjele nagiba u području lijevo od sile *F* koje su opisane relacijama (265) i (297) te u području desno od sile *F* koje su opisane relacijama (266) i (298), ponovno su identične tako da su i maksimalni nagibi u osloncima jednaki kao i kod Euler-Bernoullijeve teorije savijanja, pa ih iz tog razloga, nije potrebno ponovno zapisivati. Maksimalni progib grede nalazi se u njezinoj sredini, tj. kada je x = L/2, pa ako to uvrstimo relacije (295) i (296) dobijemo:

$$(w_{1\max})_{\rm T} = (w_{2\max})_{\rm T} = \frac{1}{48} \frac{FL^3}{EI_y} + \frac{1}{4} \frac{FL}{kAG}.$$
 (299)

Iz analitičkih rješenja za maksimalni progib u sredini grede koja su opisana relacijama (267) i (299), ponovno proizlazi da za Timošenkovu teoriju vrijedi:

$$\left(w_{\max}\right)_{\mathrm{T}} = \left(w_{\max}\right)_{\mathrm{EB}} + \frac{1}{4}\frac{FL}{kAG}.$$
(300)

3.3.3. Usporedba dobivenih rješenja

Kako možemo vidjeti, slučaj opterećenja prikazan na slici 42. različit je u odnosu na prethodna dva primjera. Na početku ćemo se prvo ponovno ograničiti na usporedbu analitičkih rješenja u lokalnom području grede u kojem imamo maksimalni progib. Ukoliko relacije (267) i (299), koje definiraju rješenja za maksimalne progibe na sredini grede, pretvorimo u bezdimenzijski oblik, slijedi:

$$w_1^* = \frac{(w_{\text{max}})_{\text{EB}}}{\frac{FL^3}{EI_y}} = \frac{1}{48},$$
(301)

$$w_{2}^{*} = \frac{\left(w_{\max}\right)_{\mathrm{T}}}{\frac{FL^{3}}{EI_{y}}} = \frac{1}{48} + \frac{1}{4}\frac{EI_{y}}{kAGL^{2}}.$$
(302)

Potrebno je napomenuti kako se sada indeksi 1 i 2 u relacijama (301) i (302) ne odnose na promatrano područje grede nego, kao i u prethodnim primjerima, na Euler-Bernoullijevu i Timošenkovu teoriju savijanja u bezdimenzijskom obliku. Materijalne karakteristike grede definirane su u (171), (172) i (173). Usporedbu ćemo ponovno napraviti prvo za pravokutni poprečni presjek, a zatim za kružni poprečni presjek. Iznosi korekcijskog faktora smicanja k definirani su u (174) i (175). Promotrimo prvo situaciju ako greda ima pravokutni poprečni presjek. Ako u relaciju (302) uvrstimo geometrijske karakteristike pravokutnog poprečnog presjeka koje su definirane relacijama (176) i (177), dobijemo oblik bezimenzijskog progiba:

$$w_{2}^{*} = \frac{\left(w_{\max}\right)_{T}}{\frac{FL^{3}}{EI_{y}}} = \frac{1}{48} + \frac{1}{48}\frac{E}{kG}\left(\frac{h}{L}\right)^{2}.$$
(303)

Dijagram na slici 46. prikazuje usporedbu analitičkih rješenja za bezimenzijski progib na sredini grede dobivenih po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja u ovisnosti o omjeru h/L. Dijagram nam pokazuje kako sa povećanjem omjera h/L, razlika između rješenja koja nam ove dvije teorije daju postaje sve više izraženija, a samim time raste i greška zbog zanemarivanja utjecaja smika. Dijagram na slici 47. prikazuje postotnu grešku između analitičkih rješenja progiba na sredini grede u ovisnosti o omjeru h/L koja je definirana prema kriteriju (179) te, s obzirom na prijašnje primjere, možemo uočiti razliku. Kada je omjer h/L

izrazito mali, greška koja nastaje zanemarivanjem utjecaja smičnog naprezanja nije značajno velika.

Slika 46. Bezdimenzijski progib u sredini grede za pravokutni poprečni presjek u ovisnosti o omjeru *h/L* (Primjer 3.)

Slika 47. Dijagramski prikaz greške Euler-Bernoullijeve teorije u odnosu na Timošenkovu teoriju savijanja za pravokutni poprečni presjek (Primjer 3.)

No ono što se u ovom primjeru događa jest kako se lagano pomičemo iz područja jako malih omjera h/L na sve veće, rapidno dolazi do velike greške između analitičkih rješenja progiba na sredini grede da bi na kraju, kada je omjer h/L jednak jedinici, greška narasla na čak 75%.

Ako usporedimo kolike su bile najveće greške između analitičkih rješenja za maksimalni progib grede pravokutnog poprečnog presjeka u prijašnjim primjerima, dolazimo do toga da je slučaj opterećenja prikazan na slici 42. u prosjeku podigao tu grešku za 31%, što je jako puno. Bolji uvid u to, dati će nam tablica 7. u kojoj su sa dijagrama izvučene vrijednosti postotne greške između analitičkih rješenja progiba na sredini grede za granične vrijednosti omjera h/L prema preporuci iz [1] i [5].

h/L	Greška (%)
1/20	0,74
1/10	2,91
1/5	10,71
1/4	15,79
1	75

Možemo vidjeti da je unutar intervala između 1/20 i 1/10, u odnosu na prijašnje primjere opterećenja grede sa pravokutnim poprečnim presjekom, greška veća, no još uvijek se nalazi u dozvoljenim granicama tako da se unutar tog područja omjera može koristiti Euler-Bernoullijeva teorija savijanja kako bi se dobila rješenja za progib i nagib. Već unutar intervala između 1/5 i 1/4 možemo uočiti kako je greška narasla na vrijednosti koje daleko premašuju predviđenu grešku unutar tog intervala u [1], pri čemu prosječna greška unutar tog intervala iznosi 13%, što nam govori kako smo sa omjerima iz tog intervala već daleko ušli u područje kada je greška zbog zanemarivanja utjecaja smika previše izražena i da u tom slučaju moramo koristiti Timošenkovu teoriju savijanja kako bismo dobili točna rješenja. Iznos greške od 5% za ovakav problem savijanja grede i pravokutni poprečni presjek postiže se kada je omjer između visine poprečnog presjeka grede i njezine duljine jednak h/L=1/7,545. Prema tome, taj iznos omjera h/L, za slučaj pravokurnog poprečnog presjeka, možemo uzeti kao graničnu vrijednost do koje vrijedi Euler-Bernoullijeva teorija savijanja, a nakon prelaska tog omjera, greška koja će nastati biti će prevelika i zahtijevati će od nas primjenu Timošenkove teorije savijanja. Zanimljivo je uočiti da je slučaj opterećenja grede prikazan na slici 42. djelovao na takav način da je greška od 5% između analitičkih rješenja za maksimalni progib grede pravokunog poprečnog presjeka nastupila pri gotovo dvostruko nižem omjeru h/L nego što je to bilo u prethodnom primjeru. To znači da je došlo do još većeg ograničenja njegove granične vrijednosti do koje možemo ići uz dovoljno malu grešku koju unosimo sa pretpostavkom da se utjecaj smika zanemaruje. Promotrimo sada što se događa ako greda ima kružni poprečni presjek. Ako u relaciju (302) uvrstimo geometrijske karakterisitke kružnog poprečnog presjeka koje su definirane relacijama (180) i (181), dobijemo oblik bezdimenzijskog progiba:

$$w_2^* = \frac{\left(w_{\max}\right)_{\rm T}}{\frac{FL^3}{EI_{\rm y}}} = \frac{1}{48} + \frac{1}{64} \frac{E}{kG} \left(\frac{d}{L}\right)^2.$$
(304)

Dijagram na slici 48. prikazuje usporedbu analitičkih rješenja za bezdimenzijski progib na sredini grede dobivenih po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja u ovisnosti o omjeru d/L, pri čemu sa povećanjem omjera d/L, dolazi do sve veće razlike između ovih rješenja.

Slika 48. Bezdimenzijski progib u sredini grede za kružni poprečni presjek u ovisnosti o omjeru *d/L* (Primjer 3.)

Pogledamo li dijagram na slici 49. koji prikazuje postotnu grešku između analitičkih rješenja progiba na sredini grede u ovisnosti o omjeru d/L, vidimo da je za slučaj kružnog poprečnog presjeka ta greška nešto manja. Kada je omjer d/L jednak jedinici, greška koja je nastala zanemarivanjem utjecaja smika iznosi 67,82%, što je manje u odnosu na onih 75% kod pravokutnog poprečnog presjeka. Ako usporedimo kolike su bile najveće greške između analitičkih rješenja za maksimalni progib grede kružnog poprečnog presjeka u prijašnjim

primjerima, dolazimo do toga da je slučaj opterećenja prikazan na slici 42. u prosjeku podigao tu grešku za 32%.

Slika 49. Dijagramski prikaz greške Euler-Bernoullijeve teorije u odnosu na Timošenkovu teoriju savijanja za kružni poprečni presjek (Primjer 3.)

U tablici 8. izvučene su vrijednosti postotne greške između analitičkih rješenja progiba na sredini grede za granične vrijednosti omjera d/L prema preporuci iz [1] I [5]. Možemo vidjeti da je unutar intervala između 1/20 i 1/10, u odnosu na prijašnje primjere opterećenja grede sa kružnim poprečnim presjekom, greška ponovno nešto malo veća, no još uvijek dovoljno mala kako zanemarivanje utjecaja smika ne utječe znatno na točnost rezultata. Unutar intervala između 1/5 i 1/4 ponovno imamo situaciju da je greška narasla na vrijednosti koje se nalaze iznad dopuštene granične vrijednosti od 5%, pri čemu prosječna greška unutar tog intervala iznosi 9,7% te kao povratnu informaciju dobijemo da smo sa omjerima iz tog intervala već ušli u područje kada je greška zbog zanemarivanja utjecaja smika previše izražena i da moramo koristiti Timošenkovu teoriju savijanja. Iznos greške od 5% za ovakav problem savijanja grede i kružni poprečni presjek postiže se kada je omjer između promjera grede i njezine duljine jednak d/L=1/6,325. Prema tome, taj iznos omjera d/L, za slučaj kružnog poprečnog presjeka, možemo uzeti kao graničnu vrijednost do koje vrijedi Euler-Bernoullijeva teorija savijanja, a prelaskom tog omjera, greška koja će nastati biti će prevelika i morati ćemo upotrijebiti Timošenkovu teoriju savijanja.

d/L	Greška (%)	
1/20	0,52	
1/10	2,06	
1/5	7,78	
1/4	11,64	
1	67,82	

Tablica 8. Greška za različite omjere *d/L* kružnog poprečnog presjeka (Primjer 3.)

Ovdje također možemo uočiti da je slučaj opterećenja grede prikazan na slici 42. djelovao na takav način da je greška od 5% između analitičkih rješenja za maksimalni progib grede kružnog poprečnog presjeka nastupila pri gotovo dvostruko nižem omjeru d/L, nego što je to bilo u prethodnom primjeru. Za kraj ćemo još napraviti međusobnu usporedbu analitičkih rješenja za raspodjelu progiba po cijeloj dužini grede. Već smo prije došli do zaključka da je slučaj opterećenja grede prikazan na slici 42. simetričan, odnosno da na progib djeluje tako da je njegova raspodjela simetrična oko osi z na mjestu djelovanja koncentrirane sile F, što se lako može provjeriti uvrštavanjem vrijednosti duljine grede u relacije (263) i (264), odnosno (295) i (296). Prema tome, za usporedbu analitičkih rješenja raspodjele progiba po cijeloj dužnini grede, dovoljno će nam biti gledati samo relacije (263) i (295), koje ćemo onda simetrično preslikati. Usporedbu ćemo ponovno napraviti u bezdimenzijskom obliku pa ako navedene relacije pretvorimo u bezdimenzijski oblik, dobijemo:

$$w_{1}^{*}\left(\frac{x}{L}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{12}\left(\frac{x}{L}\right)^{3} + \frac{1}{16}\left(\frac{x}{L}\right),$$
(305)

$$w_{2}^{*}\left(\frac{x}{L}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{12}\left(\frac{x}{L}\right)^{3} + \frac{1}{16}\left(\frac{x}{L}\right) + \frac{1}{2}\frac{EI_{y}}{kAGL^{2}}\left(\frac{x}{L}\right).$$
(306)

Potrebno je ponovno naglasiti kako se u ovoj analizi indeksi 1 i 2 u relacijama (305) i (306) odnose na Euler-Bernoullijevu i Timošenkovu teoriju savijanja u bezdimenzijskom obliku. Usporedbu ćemo prvo napraviti za pravokutni poprečni presjek, a potom za kružni poprečni presjek. Ako u relaciju (306) uvrstimo geometrijske karakteristike pravokutnog poprečnog

presjeka koje su definirane relacijama (176) i (177), dobijemo opći oblik bezdimenzijskog progiba:

$$w_{2}^{*}\left(\frac{x}{L},\frac{h}{L}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{12}\left(\frac{x}{L}\right)^{3} + \frac{1}{16}\left(\frac{x}{L}\right) + \frac{1}{24}\frac{E}{kG}\left(\frac{h}{L}\right)^{2}\left(\frac{x}{L}\right).$$
(307)

Kao što možemo vidjeti, opće rješenje progiba po dužini grede pravokutnog poprečnog presjeka dobiveno po Timošenkovoj teoriji u bezdimenzijskom obliku ovisi o dvije bezdimenzijske karakteristike, omjerima x/L i h/L. Da bismo mogli napraviti dijagramsku usporedbu, za omjer h/L usvojiti ćemo vrijednost kod koje greška između analitičkih rješenja progiba na sredini grede iznosi 5%, odnosno h/L=1/7,545, a dodatno ćemo prikazati usporedbu kada ta greška iznosi otprilike oko 30%, odnosno h/L=1/2,645. Relacija (307) uz definirane omjere h/L prelazi u:

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{7,545}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{12}\left(\frac{x}{L}\right)^{3} + \frac{1}{16}\left(\frac{x}{L}\right) + \frac{29}{39644}\frac{E}{kG}\left(\frac{x}{L}\right),$$
(308)

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{2,645}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{12}\left(\frac{x}{L}\right)^{3} + \frac{1}{16}\left(\frac{x}{L}\right) + \frac{95}{15957}\frac{E}{kG}\left(\frac{x}{L}\right).$$
(309)

Dijagram na slici 50. prikazuje raspodjelu bezdimenzijskog progiba u ovisnosti o bezdimenzijskoj duljini grede pravokutnog poprečnog presjeka po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja. Za omjer h/L kada greška između analitičkih rješenja progiba na sredini grede iznosi 5%, uočavamo da odstupanja između analitičkih rješenja raspodjele progiba po dužini grede nisu prevelika čime se potvrđuje kako se do te granice omjera još uvijek može korisitit Euler-Bernoullijeva teorija savijanja. Za omjer h/L kada greška između analitičkih rješenja progiba na sredini grede iznosi 30%, vidimo da su odstupanja između analitičkih rješenja za raspodjelu progiba po dužini grede velika, što znači da je za taj omjer greška prevelika da bismo i dalje koristili Euler-Benoullijevu teoriju savijanja. Dijagram na slici 51. prikazuje apsolutnu grešku između analitičkih rješenja po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja za oba omjera h/L definiranu prema kriteriju (188), ali samo do polovice grede zato što je u drugoj polovici apsolutna greška simetrično jednaka.

Slika 50. Usporedba analitičkih rješenja progiba po dužini grede pravokutnog presjeka (Primjer 3.)

Slika 51. Prikaz apsolutne greške između analitičkih rješenja (Primjer 3.)

Uzmimo sada ponovno u razmatranje slučaj da greda ima kružni poprečni presjek. Rješenje po Euler-Bernoullijevoj teoriji u bezdimenzijskom obliku jednako je kao i kod pravokutnog poprečnog presjeka te je opisano relacijom (305). Ako u relaciju (306) uvrstimo geometrijske karakteristike kružnog poprečnog presjeka definirane relacijama (180) i (181), dobijemo opći oblik bezdimenzijskog progiba:

$$w_{2}^{*}\left(\frac{x}{L},\frac{d}{L}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{12}\left(\frac{x}{L}\right)^{3} + \frac{1}{16}\left(\frac{x}{L}\right) + \frac{1}{32}\frac{E}{kG}\left(\frac{d}{L}\right)^{2}\left(\frac{x}{L}\right).$$
(310)

Kao što možemo vidjeti, raspodjela progiba po dužini grede kružnog poprečnog presjeka dobivena po Timošenkovoj teoriji u bezdimenzijskom obliku ponovno ovisi o dvije bezdimenzijske karakteristike. Da bismo mogli napraviti dijagramsku usporedbu, za omjer d/L usvojiti ćemo vrijednost kod koje greška između analitičkih rješenja progiba na sredini grede iznosi 5%, odnosno d/L=1/6,325, a dodatno ćemo prikazati usporedbu kada ta greška iznosi otprilike oko 25%, odnosno d/L=1/2,514. Relacija (310) uz definirane omjere d/L prelazi u:

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{6,325}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{12}\left(\frac{x}{L}\right)^{3} + \frac{1}{16}\left(\frac{x}{L}\right) + \frac{29}{39644}\frac{E}{kG}\left(\frac{x}{L}\right),$$
(311)

$$w_{2}^{*}\left(\frac{x}{L},\frac{1}{2,514}\right) = \frac{w(x)}{\frac{FL^{3}}{EI_{y}}} = -\frac{1}{12}\left(\frac{x}{L}\right)^{3} + \frac{1}{16}\left(\frac{x}{L}\right) + \frac{95}{15957}\frac{E}{kG}\left(\frac{x}{L}\right).$$
(312)

Dijagram na slici 52. prikazuje raspodjelu bezdimenzijskog progiba u ovisnosti o bezdimenzijskoj duljini grede kružnog poprečnog presjeka.

Slika 52. Usporedba analitičkih rješenja progiba po dužini grede kružnog presjeka (Primjer 3.)

Za omjer d/L kada greška iznosi 5%, odstupanja između raspodjele progiba još su uvijek tolerantna čime se potvrđuje da se do te vrijednosti graničnog omjera može koristiti Euler-Bernoullijeva teorija savijanja. Za omjer d/L kada greška iznosi 25%, odstupanja su velika te nam daju infomraciju kako problem za taj omjer moramo riještiti Timošenkovom teorijom savijanja. Dijagram na slici 53. prikazuje apsolutnu grešku između analitičkih rješenja progiba do polovice grede za oba omjera d/L.

Slika 53. Prikaz apsolutne greške između analitičkih rješenja (Primjer 3.)

3.4. Granične vrijednosti omjera *h/L*, odnosno *d/L*

Na kraju detaljnih usporedbi analitičkih rješenja dobivenih po Euler-Bernoullijevoj i Timošenkovoj teoriji savijanja za tri različita slučaja opterećenja grede, korisno je objediniti dobivene vrijednosti graničnih omjera između visine i duljine grede.

	Granične vrijednosti	
Primjer	pravokutni poprečni presjek, <i>h/L</i>	kružni poprečni presjek, d/L
F L	1/3,77	1/3,15
	1/3,93	1/3,304
	1/7,545	1/6,325

Tablica 9. Granične vrijednosti omjera između visine i duljine grede

Kao što možemo vidjeti iz tablice 9., u svakom od primjera dobili smo različite granične vrijednosti omjera između visine i duljine grede do kojih se proračun savijanja, sa unosom greške od dozvoljenih 5%, može provoditi po Euler-Bernoullijevoj teoriji savijanja. Isto tako možemo primjetiti da su prirode zadanih načina opterećenja grede u svakom od primjera bile takve da je sa svakim sljedećim primjerom, granična vrijednost tog omjera padala, što bi zapravo značilo da je zadnji primjer imao "najstroži" utjecaj na grešku koja nastaje zanemarivanjem utjecaja smika, odnosno da je najviše ograničio vrijednost tog omjera do koje možemo ići primjenom Euler-Bernoullijeve teorije savijanja. U slučaju da se konstrukcija poračunava pomoću proračuna grede i prijeđe bilo koja od ovih graničnih vrijednosti omjera za svaki primjer posebno, greška koja će nastati premašiti će vrijednost od dozvoljenih 5% te će u tim slučajevim, da bismo mogli dobiti točnu informaciju o tome kako se greda ponaša i koliko se deformirala pod djelovanjem opterećenja, biti potrebno korisitit Timošenkovu teoriju savijanja.

4. ZAKLJUČAK

U radu, dan je povijesni pregled razvoja teorije savijanja, od njezinih najranijih početaka pa sve do formulacija zakona i izraza koji se još dan danas koriste u praksi te podučavaju na tehničkim fakultetima. Kao što smo imali priliku vidjeti, njezin razvoj trajao je dugi niz stoljeća sve dok se nije pojavila teorija čija se formulacija mogla na razumljiv i smislen način protumačiti, kao i usporediti rješenja koja ona daje sa eksperimentalno dobivenim rezultatima. Naravno, prvo je to bila Euler-Bernoullijeva teorija, a kasnije, kao njezino proširenje, Timošenkova teorija savijanja. Prikazani su detaljni izvodi spomenutih teorija savijanja. Kroz izvode, mogu se pratiti načini na koji su uvedene pretpostavke, kao i njihova međusobna razlika za svaku teoriju zasebno, iskorištene kako bi se došlo do konačnih izraza za diferencijalnu jednadžbu elastične linije. Glavni nedostatak Euler-Bernoulijeve teorije savijanja jest činjenica da se unutar njezine formulacije nije uzeo utjecaj smika pri poprečnom savijanju, što je kao posljedicu nakon deformiranja poprečne presjeke ostavilo okomitim na elastičnu liniju. Za razliku kod Timošenkove teorije savijanja, u čiju je formulaciju uzeta u obzir deformacija uslijed djelovanja smika i poprečni presjeci nakon deformiranja više nisu okomiti na elastičnu liniju, glavni nedostatak jest izračun, odnosno bolje rečeno, procjena iznosa korekcijskog faktora smicanja koji se traži kao ulazni parametar u toj teoriji. Također, napravljena je analitička usporedba ovih dviju teorija savijanja na primjerima poprečnog savijanja grede kako bi se vidjelo kolika je razlika i do kada se može korisiti Euler-Bernoullijeva teorija, odnsono nakon koje granice nastupa upotreba Timošenkove teorije savijanja. Generalno gledajući, analiza je potvrdila činjenicu kako se Euler-Bernoullijeva teorija savijanja može koristiti za grede koje su duge i vitke, dok se Timošenkova teorija koristi za grede koje su kraće i deblje. Također smo imali priliku vidjeti, uspoređujući dobivene greške između analitičkih rješenja svakog zadatka posebno za određene vrijednosti omjera između visine poprečnog presjeka grede i njezine duljine, kako granična vrijednost do koje se može koristiti Euler-Bernoullijeva teorija savijanja uvelike ovisi o načinu na koji je greda opterećena i učvršćena te kako nema univerzalne granične vrijednosti za taj omjer. No ipak, ono što se na temelju analize greške koja nastaje zanemarivanjem utjecaja smika na promatranim primjerima može zaključiti, jest kako je pri vrijednosti omjera između visine poprečnog presjeka grede i njezine duljine od 1/10, greška kod svakog primjera bila u dozvoljenim granicama, tako da se, približno, vrijednosti oko i malo iznad tog omjera mogu općenito uzeti kao granica do koje bismo mogli koristiti Euler-Bernoullijevu teoriju savijanja
umjesto Timošenkove, a da pritom greška između analitičkih rješenja bude dovoljno mala za bilo kakav slučaj opterećenja grede. Također, analiza greške između analitičkih rješenja ovih dviju teorija pokazala nam je kako je za veće vrijednosti omjera između visine poprečnog presjeka grede i njezine duljine, puno bolje korisiti kružni poprečni presjek, ako je to moguće, jer takva geometrija pokazala se manje utjecajnom na definiranje granične vrijednosti dotičnog omjera. Vrijednost provedene usporedbe analitičkih rješenja između ovih dviju teorija savijanja i analize greške, upravo je u tome što su se na nekoliko konkretnih primjera opterećenja grede, za dva različito primijenjena oblika poprečnog presjeka, utvrdili točni iznosi graničnih vrijednosti omjera između visine i duljine grede do kojih bi se teorijski mogla koristiti Euler-Bernoullijeva teorija, a nakon što bi vrijednosti tih omjera prešle tu graničnu vrijednost, morali bismo upotrijebiti Timošenkovu teoriju savijanja kako bismo dobili točnu informaciju o tome kako se greda ponaša pri djelovanju opterećenja.

LITERATURA

- [1] Alfirević, I.: Nauka o čvrstoći I, Tehnička knjiga, Zagreb, 1995.
- [2] <u>https://johnwood1946.wordpress.com/2011/07/18/historical-development-of-the-beam-bending-equation-m-equals-fs/</u> (9.10.2016.)
- [3] https://newtonexcelbach.wordpress.com/2008/02/27/the-history-of-the-theory-of-beambending-part-1/ (22.10.2016.)
- [4] Graene, J. K., Jorn, S. H., Joaquim, M.: A Timoshenko beam teory with pressure corrections for layerd orthotropic beams, International Journal of Solids and Structures, Vol. 48, 2011., pp 2373-2382
- [5] Öchsner, A.: Elasto-plasticity of frame structure elements, Modeling and simulation of rods and beams, Springer, 2014.
- [6] Jecić, S., Semenski, D.: Jednadžbe teorije elastičnosti, Fakultet strojarstva i brodogradnje, Zagreb, 2011.
- [7] Kaneko, T.: On Timoshenko's correction for shear in vibrating beams, Journal of Physics D: Applied Physics, Vol. 8, No. 16, 1975., pp 1927-1936
- [8] Cowper, G., R.: The shear coefficient in Timoshenko's beam theory, Journal of Applied Mechanics, Asme, June, 1966.
- [9] Sorić, J.: Metoda konačnih elemenata, Golden marketing Tehnička knjiga, Zagreb, 2004.

PRILOZI

I. CD-R disc