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Abstract
Fuel cells are devices for conversion of chemical into electric energy. Because of their high

theoretical e�ciency and low impact on environment, they are likely to have a major role dur-

ing the current transition towards renewable energy sources. In order to design high-quality

device that is reliable during its life-span, advances in fuel cell technology and materials are

needed. Synergy of new numerical models and experimental data is therefore crucial.

Processes occurring in fuel cells are complex combination of �uid �ow, heat transfer,

species’ transport and electrochemical reactions. Numerical models for fuel cells need to

include all of these processes with a satisfactory precision on both the porous electrodes’

micro-scale and the global scale of cell and complex geometry of supply channels.

Before model development, considerable understanding of physical processes is needed,

especially for thermodynamics of electrochemical reactions for energy conversion.

OpenFuelCell is the open-source addition for OpenFOAM library that is developed for

fuel cell modeling, focusing on solid oxide fuel cells (SOFC). Additional model for OpenFu-

elCell that includes more detailed potential �eld description is developed. For it, new mesh

decomposition is needed, as well as signi�cant modi�cations of source-code and governing

equations.

Results of the new two potential model are given, although comparison with existing mod-

els is cumbersome due to underlying di�erences in model. Along with results, validity assess-

ment of new model is also given.

Key words: CFD, OpenFOAM, SOFC, fuel cell, openFuelCell, solid oxide, electrochemistry, poten-

tial �eld.
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Sažetak
Gorivni članci su uredaji za pretvorbu kemijske energije goriva u električnu energiju. Zbog

teoretski visoke e�kasnosti i niskog štetnog utjecaja na okoliš, imaju priliku postati jedna

od važnih tehnologija tijekom tranzicije prema obnovljivim energetskim izvorima. Kako bi

gorivni članci bili kvalitetno konstruirani i pouzdani tijekom radnog vijeka, potreban je brži

napredak tehnologije i materijala koji uključuje spoj novih računalnih modela i eksperimen-

talnih podataka.

Procesi koji se odvijaju u gorivnim članvima su kompleksan spoj toka �uida, provodenja

topline, transporta specija i elektrokemijskih reakcija. Računalni modeli gorivnih članaka

moraju sa zadovoljavajućom točnošću obuhvatiti ove procese na mikroskopskoj razini u poroznim

elektrodama, kao i u složenim geometrijama dobavnih kanala.

Prije razvijanja računalnog modela za gorivne članke, potrebno je izuzetno razumijevanje

�zikalnih procesa, posebice termodinamike elektrokemijskih reakcija koje su temelj pretvorbe

kemijske u električnu energiju.

OpenFuelCell je nadogradnja na open-source so�verski paket OpenFOAM i služi za

modeliranje gorivnih članaka s naglaskom na gorivne članke s krutim oksidima. Razvija se

nadogradnja postojećeg modela koja uključje detaljniji opis polja potencijala unutar aktivnih

dijelova članka. Za novi model dvaju potencijala potrebna je značajnija prilagodba računalnog

koda, dekompozicije proračunskih mreža i jednadžbi modela.

Zbog novog pristupa otežana je validacija s postojećim rezultatima i standardnim Open-

FuelCell kodom. Daje se prikaz i analiza rezultata dobivenih novim modelom te ocjena

primjenjivosti modela.

Ključne riječi: CFD, OpenFOAM, SOFC, gorivni članci, openFuelCell, kruta elektroda, elektrokemija,

polje potencijala.
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Prošireni sažetak

Gorivni članci
Napredak ljudskog društva i moderne civilizacije tijesno je bio vezan uz povećanje po-

trošnje energije. Velika većina potrebe za energijom tradicionalno je bila zadovoljena izga-

ranjem fosilnih goriva, a tradicionalne elektrane uzrokovale su zagadenje okoliša, ozbiljan

utjecaj na klimu i ljudsku populaciju. Kako bi se razdvojilo ljudski napredak i povećanje ener-

getskih potreba, kao rješenje su se pojavila dva smjera—smanjenje energetske intenzivnosti

(energetska učinkovitost) i razvijanje novih tehnologija za pretvorbu energije. Tako su i go-

rivni članci jedna od rastućih tehnologija koja se pokušava nametnuti kao sve važnija opcija

u trendu tranzicije s konvencionalnih na obnovljive energetske izvore.

Gorivni članci su elektrokemijski uredaji koji pretvaraju kemijsku energiju goriva direk-

tno u električnu energiju, uz toplinu kao nusprodukt. Za razliku od izgaranja goriva u njima

je �zički razdvojena reakcija izmedu vodika i kisika, tako da razlika izmedu elektrokemijskih

potencijala reaktanata uzrokuje postojani tok iona i elektrona umjesto burne reakcije s na-

glim oslobadanjem topline. Izbjegavanje izgaranja pritom znači i izbjegavanje štetnih emisija.

Jednadžba (1) prikazuje reakciju izgaranja s najjednostavnijim gorivom-vodikom rastavljenu

na dvije polureakcije karakteristične za SOFC gorivne članke.

H2 +
1
2O2 −−⇀↽−− H2O+ energy

H2 +O2− −−→ H2O++2e−

1
2O2 +2e− −−→ O2−

(1)

Svi gorivni članci sastoje se od elektroda—anode i katode koje su razdvojene elektrolitom.

Na anodu se dovodi gorivo, najčešće vodik, a na katodu zrak, odnosno kisik. Na anodi se odvija

oksidacija vodika, a na katodi redukcija kisika. Elektrolit koji sprečava dodir provodan je

samo za ione a elektroni nastali oksidacijom putuju vanjskim električnim krugom od anode do

katode, gdje ih je moguće iskoristiti za vršenje rada. Ove komponente i princip rada zajednički

su svim gorivnim člancima, dok se tip elektrolita, geometrija i načini dobave plinova razlikuju

izmedu pojedinih vrsta. Slika 1 prikazuje shemu gorivnog članka (SOFC tip) s razdvojenim

reakcijama i ucrtanim tokovima iona i elektrona.
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Anode

Cathode

Hydrogen fuel

Oxygen, usually from the air

Electrons flow round
the external circuit

4e−2H2O +→

→

2H2 + 2O=

2O=O2 + 4e−

Product water as steam,
available for steam
reformation of fuel

= Load

Slika 1: Shema reakcije u SOFC gorivnom članku.

Medu gorivnim člancima najčešće se javljaju sljedeći tipovi: alkalni gorivni članak (AFC-

Alkaline fuel cell), gorivni članak s protonski izmjenjivom membranom (PEMFC–Polymer Exc-

hange Membrane Fuel Cell) i gorivni članak s krutim oksidima (SOFC – Solid Oxide Fuel Cell).

U ovom radu fokus je bio usmjeren na SOFC tip.

Gorivni članak s krutim oksidima ističe se po tome što se kao elektrolit koristi kruta

keramika—najčešće itrijem stabiliziran cirkonij (Y�ria-stabilized zirconia), koja je provodna

za ione kisika. SOFC gorivni članci rade na visokim temperaturama, 500◦C− 1000◦C, što

sa sobom veže nedostatke kao što su potreba za kvalitetnijim materijalima otpornim na više

temperature i toplinska naprezanja te duže vrijeme pokretanja. Dobre strane rada pri vi-

sokim temperaturama su mogućnost za dodatno povećanje energetske učinkovitosti u obliku

kogeneracije, izbjegavanje potrebe za katalizatorima te mogućnost korištenja raznih vrsta go-

riva koja se mogu reformirati pri visokoj temperaturi. Ove gorivne članke takoder karakteri-

zira visoka energetska učinkovitost (trenutno do 60 %), pouzdanost u radu (kao i kod ostalih,

nema pokretnih dijelova osim opreme za dobavu reaktanata), �eksibilnost pogonskih uvjeta

i mogućnost skaliranja od malih do velikih primjena (100 W - 2 MW).

Termodinamika gorivnih članaka
U gorivnim člancima javlja se niz složenih pojava koje je potrebno opisati modelima, od

mikroskopske razine do razine članka. Tok �uida i njihova difuzija kroz porozne materijale,

xi



toplinski fenomeni kondukcije i konvekcije te zračenja u kanalima, elektrokemijske reakcije u

krutim i poroznim elektrodama i elektrolitu te postojanje elektronskog i ionskog polja samo

su neke od njih. U modelima je potrebno s odgovarajućom točnošću opisati ove pojave i

procijeniti koje se od njih mogu zanemariti. Takoder, pojave svojstvene za gorivne članke

u stvarnosti uzrokuju smanjenje e�kasnosti i utječu na rad aparata. Tako je na primjer po-

trebno na odgovarajući način pristupiti difuziji reaktanata i njihovoj potrošnji duž dovodnih

kanala, preklapanju ionskog i elektronskog polja, prenaponima—aktivacijskim, difuzijskim i

otporničkim (omskim) nepovratnostima koje smanjuju učinkovitost.
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Slika 2: i-V krivulja za gorivne članke s dodanom krivuljom snage (P = iV ).

Slika 2 prikazuje karakterističnu i−V krivulju gorivnog članka. Razabrati se mogu tri

regije: pri visokim naponima brzi pad performansi zbog aktivacijskog prenapona. To je

gubitak u odnosu na idealni napon članka koji je ”žrtvovan” kako bi se prešla aktivacijska

barijera reakcije pokrenula ju u željenom smjeru. Linearna regija u sredinidio je gdje su naj-

značajniji otpornički prenaponi. Ovdje se gubitak povećava na račun povećane gustoće

izlazne struje, a to izaziva veće otpore provodenja. Na kraju, difuzijski prenapon je gubitak

pri izrazito aktivnim reakcijama i visokim gustoćama struje. U tom je režimu rada potrebna

dobava velike količine reaktanata, koja zbog geometrije ili preslabe difuzije kroz porozni medij

ne može biti osigurana.

U analizi termodinamike gorivnih članaka i kinetike reakcija na elektrodama, neizostavno
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se uvodi pojam Gibbsove slobodne energije, koja je de�nirana prema jednadžbi (2):

dG = dH−T dS−SdT. (2)

Gibbsova energija predstavlja maksimalni ne-ekspanzijski radni potencijal koji neki sustav

posjeduje. Kad bi u idealnom slučaju sva ta energija bila iskorištena kao električna energija,

dobio bi se reverzibilni potencijal članka E0:

E0 =−∆ĝ0
rxn

nF
. (3)

Spomenuti prenaponi su gubici koji onemogućuju reverzibilni izlazni napon. Nernstova

jednadžba (4) povezuje idealni napon pod standardnim uvjetima s radnim parametrima koje

nalazimo u gorivnom članku:

E = E0− RT
nF

ln
∏ pνi

products

∏ pνi
reactants

. (4)

Još jedna važna jednadžba za termodinamiku gorivnih članaka je Butler-Volmerova jed-

nadžba, koja povezuje izlaznu gustoću struje i prenapon članka (na taj način sprežući napon

i gustoću struje za numeričko modeliranje):

i = i0
(

eαnFη/(RT )− e(1−α)nFη/(RT )
)
. (5)

Aproksimacija koja vrijedi kod visokih prenapona i visokih gustoća struje te se često ko-

risti opisana je Tafelovom jednadžbom (6), a vrijedi za eksponenecijalnu regiju na slici 3, koja

prikazuje krivulju prema Butler-Volmerovoj jednadžbi.

i = i0eαnFηact/(RT ) (6)

openFuelCell model
openFuelCell je open-source računalni model namijenjen prvenstveno za simulaciju go-

rivnih članaka SOFC tipa. Obuhvaća široki raspon pojava u gorivnim člancima na mikro-

skopskim razinama i na razini cijelog članka. Izrazite razlike izmedu dijelova gorivnog članka

otežavaju dekompoziciju računalne mreže. Na primjer, provodenje topline odvija se u cijelom

članku, tok �uida u kanalima i poroznim elektrodama, dok je usvojena pretpostavka da se
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Slika 3: Butler-Volmerova krivulja. Prikazuje vezu izmedu gustoće struje i prenaponeη . Eks-

ponencijalna regija na desnom rubu je dio gdje se može primijeniti Tafelova jednadžba

elektrokemijske pojave odvijaju samo u elektrolitu. Stoga se implementirana dekompozicija

računalne mreže sastoji od globalne mreže ca cijeli članak te od regionalnih mreža koje obu-

hvaćaju zone u kojima se odvijaju slični procesi. Na slici 4 vidljivo je preklapanje korištenih

regionalnih mreža s globalnom.

global mesh interconnects
air mesh

electrolyte
mesh

fuel mesh

Slika 4: Dekompozicija računalne mreže u openFuelCell modelu

Jednadžbe za proračun elektrokemijskih procesa (za koje se pretpostavlja da su površinski

fenomen na granici elektroda-elektrolit) već su predstavljene, a spregnute momentna i jed-

nadžba kontinuiteta služe za proračun hidrodinamičkih pojava:
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div(ρu) = 0, (7)

div(ρuu) =−grad p+div(µ grad u− µu
κD

). (8)

Transport specija modeliran je sljedećom jednadžbom:

div(ρuyi) = div(ρDe f f
i gradyi), (9)

gdje su yi specije u �uidu, s time da je u svrhu očuvanja količine specija jedna postavljena kao

pasivna i računa se oduzimanjem ostalih od 1.

Maseni izvori i ponori zbog reakcija na površini elektrolita modelirani su kao:

ṁ′′ =± iM
nF

. (10)

Energetska jednadžba rješava se za čitavi volumen i uzima u obzir provodenje u krutini,

kao i konvekciju u �uidima:

ρcpu ·gradT = div(k gradT )+ q̇′′′. (11)

Toplinski izvori zbog odvijanja egzotermne reakcije i zagrijavanje zbog Jouleove topline

modeliraju se kao:

q̇′′′ =
(
− 1

2F
∆H (T )−V

)
i

δhE
. (12)

openFuelCell model je validiran u prijašnjim studijama i daje dobre rezultate za većinu

radnih parametara SOFC gorivnih članaka. Medutim, uz ostala pojednostavljenje, zanemarena

su polja potencijala u električno vodljivim elektrodama i potpornim elementima.

Model dvaju potencijala

Ovaj rad predstavlja nadogradnju na postojeći openFuelCell model koja je implemen-

tirana. Model dvaju potencijala implementira mogućnost odvojenog rješavanja električnih

polja na odgovarajućim vodljivim krutinama. Stoga je implementirana nova dekompozicija

mreže (prikazana na slici 5) koja uvodi dvije nove regije za proračun distibucije potencijala.

Umjesto dva električna i jednog ionskog polja, uvedeno je pojednostavljenje kojim je ka-

toda ”pasivizirana”, tj. pretpostavilo se da se reakcija na njoj odvija, ali da nema utjecaj na
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Slika 5: Nova dekompozicija računalne mreže za model dvaju potencijala

povećanje gubitaka. Ova pretpostavka dovodi do nove raspodjele potencijala u članku, s jed-

nim skokom koji odvovara granici aktivne anode s elektrolitom (slika 6)

ϕ [V]

top mesh bottom mesh

E0V

0

Δϕ

η

Δϕ

Slika 6: Distribucija potencijala u predstavljenom modelu. Puna linija označava potencijal u

ravnotežnom stanju, a iscrtkana linija je potencijal kad je spojen krug i kad se crpi električna

energija. Nagibi predstavljaju omske gubitke.

Razlika u odnosu na standardni openFuelCell model je i u tome što se koristi Tafe-

lova umjesto Butler-Volmerove jednadžbe. ”Skok potencijala” na granici računa se kao razlika
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izmedu ćelija susjednih mreža, a gustoća struje i zadaje gradijent kao rubni uvjet za potencijal:

∂Φ

∂n
=− i

σ
. (13)

Nadalje, s de�niranim rubnim uvjetima, distribucija potencijala Φ računa se pomoću La-

placeove jednadžbe, sa električnom provodnosti σ :

∇ · (σ ∇Φ) = 0. (14)

Rezultati

Model dvaju potencijala pokazuje rezultate koji su djelomično usporedivi s postojećim mo-

delima i rezultatima iz literature. Medutim, pokazalo se da je osjetljiv na promjene ulazne tem-

perature i općenito daje rezultate gustoće struje koji nisu u potpunosti sukladni s prijašnjim

rezultatima.

Slika 7 prikazuje orijentaciju kanala u simuliranim slučajevima—korištene kon�guracije

su istosmjerno strujanje, protusmjerno te unakrsno.

Slika 7: Orijentacija kanala u korištenim računalnim mrežama, prikladno za istosmjerni, pro-

tusmjerni te unakrsni slučaj.

Na slici 8 prikazani su ulazne temperature i naponi za simuliranu kon�gurciju, kao i

gustoće struje kao rezultat.
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Slika 8: Varijacije ulaznih temperature i napona za rasličite kon�guracije.

Pokazano je da je model izuzetno osjetljiv na visoke ulazne temperature te dolazi do

rušenja simulacije ukoliko je zadana temperatura previsoka za zadani napon. To se može

uočiti na slici 9
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Slika 9: Granične temperature za napon iznad kojih dolazi do rušenja simulacije.

Slika 10 pokazuje rezultate simulacija za konstantnu temperaturu i raspon napona. Ka-

rakterističan oblik lijevog dijela i−V krivulje je primjetan, što pokazuje u smjeru da model
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dvaju potencijala dobro opisuje ovisnost gustoće struje i napona, barem pri radnim uvjetima

s visokim naponom.
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Slika 10: i-V krivulja za model dvaju potencijala.

Slijede prikazani rezultati za modelirani gorivni članak pri 860 K i 1.0Vi sve geometrijske

kon�guracije. Slike pokazuju dobru podudardnost kvalitativnu podudarnost s rezultatima iz

literature i postojećeg modela. Slika 11 prikazuje temperaturu na površini anode. Vidljivo

je kako su temperature u kanalima više (zbog veće koncentracije reaktanata) te se takoder

povećavaju duž smjer toka �uida. Poprečni presjek na slici 12 pokazuje najvišu i najravno-

mjerniju raspodjelu kod protusmjernog toka, dok je unaksni najlošiji što se tiče gradijenata

temperature.

Drugi važni pokazatelj je koncentracija kisika i vodika, na slikama 13 i 14 primjećuje se po-

trošnja reaktanata duž kanale, a poprečno postoje znatne oscilacije koje su posljedica kanala,

geometrije i otežane difuzije specija.

Koncentracije reaktanata direktno utječu na gustoću struje, koja je veća čim je više re-

aktivnih specija. Tako se na slici 15 primjećuje da je u protusmjernoj kon�guraciji i smjeru

duž kanala gustoća struje izuzetno ovisna o koncentraciji vodika, dok u poprečnom smjeru

koncentracija kisika ima znatno veći utjecaj.

Polja potencijala simulirana modelom dvaju potencijala vide se na slikama 16 i 17 u tlocrtu

i presjeku. Uočljivo je da je gustoća znatno veća u predjelu kanala gdje su i reakcije burnije.
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a) b)

c)

Slika 11: Raspodjela temperature na površini anode za a) istosmjerni, b) protusmjerni i c)

unakrsni tok. Pune strelice pokazuju smjer strujanja goriva, prazne označavaju zrak.
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Slika 12: Temperaturna raspodjela u članku.

xx



0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.01 0.02 0.03 0.04 0.05

M
a
s
s
 f
ra

c
ti
o
n

x distance (m)

Streamwise direction

a)

YH2 co
YH2 cross

YH2 counter
0.48

0.49

0.5

0.51

0.52

0.53

0.54

0 0.01 0.02 0.03 0.04 0.05

M
a
s
s
 f
ra

c
ti
o
n

y distance (m)

Spanwise direction

b)

YH2 co
YH2 cross

YH2 counter

Slika 13: Maseni udjeli vodika u članku.
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Slika 14: Maseni udjeli kisika u članku.

Difuzija potencijala kroz krutinu pokazuje eventualna mjesta koncentracije strujnica i ukazuje

na lošu geometriju gorivnog članka.

Kranji cilj modeliranja gorivnih članaka je razvijanje pouzdanih i dobro konstruiranih

uredaja za rastuće tržište tehnologija obnovljivih izvora energije, a za to su potrebni modeli

koji variraju od detaljnih—koji u obzir uzimaju sve �zikalne pojave do jednostavnih koji služe

za vodenje rada. Predvidanje životnog vijeka, pouzdanosti i iskoristivosti uredaja potrebni su

kako bi se stvorili konkurentni i kvalitetni uredaji. Nadogradnja modela u obliku uvodenja

mogućnosti za odabir pojednostavljenog rješavanja polja potencijala omogućuje korisniku
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Slika 15: Prikaz gustoće struje i masenih koncentracija reaktanata u protusmjernoj kon�gu-

raciji.

a) b)

c)

Slika 16: Distribucija polja potencijala za a) istosmjerni, b) protusmjerni i c) unakrsni tok.

Pune strelice pokazuju smjer strujanja goriva, prazne označavaju zrak.
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a)

b)

c)

d)

e)

f)

Slika 17: Potencijal u presjecima katodnog (lijevo) i anodnog (desno) dijela krutine. a), d)

istosmjerni; b), d) protusmjerni; c), e) unakrsni tok.

željenu razinu detaljnosti simulacije modela. Model dvaju potencijala trenutno predstavlja

jednostavnu bazu na koju je moguće nadogradivati kompleksnije i detaljnije modele za go-

rivne članke.
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Chapter 1

Introduction

1.1 �esis Outline

Present chapter provides introduction in fuel cell technology and types, gives fuel cell ad-

vantages and disadvantages, and explains the overall physical processes. Geometries are de-

scribed, as well as fuel cell losses.

Chapter 2 provides a deeper inspection of electrochemical phenomena in fuel cell reac-

tions. Electrode kinetics, mass and charge transfers are described, and thermodynamical foun-

dations are derived. Connection between the chemistry of fuel reactions and the macroscopic

phenomena is established. Crucial equations for modeling fuel cells are derived and detailed

analysis of ireversibilities is given.

In Chapter 3 existing model for solid oxide fuel simulations is described, along with its

assumptions, approach to mesh decomposition and governing equations.

Chapter 4 proposes new model for SOFC simulations. Two potential model focuses more

on potential distribution in electrodes and electrolyte, and takes into account electric conduc-

tivity of solids. Mesh decomposition that is suitable for new approach is provided, along with

new governing equations of the two potential model.

Finally, Chapter 5 provides result analysis, as well as the comparison with existing data.

1



Tibor Bešenić Master’s �esis

1.2 Fuel Cells

Fuel cells are devices that convert chemical energy stored in fuel into useful electrical energy,

with heat released as by-product. While there is a continuous supply of fuel, electricity will be

produced. �is is a key di�erence between fuel cells and ba�eries (which are energy storage

devices and are consumed when discharged), and at the same time a similarity fuel cells share

with combustion engines[1]. Both fuel cells and combustion engines are based on the chemical

transformation during oxidation of fuel. Equation (1.2.1) represents the simplest example,

combustion of hydrogen:

H2 +
1
2O2 −−⇀↽−− H2O+ energy. (1.2.1)

On the molecular level, in reactions between hydrogen and oxygen, hydrogen molecules

are oxidized and produce water and release heat. In a time frame of picoseconds, molecular

bonds are broken and new ones are formed by electron transfer. Produced water’s bond energy

is lower than the initial con�guration, and the di�erence is released as heat[2]. Energy of the

exothermic reaction of combustion can be utilized only as heat, because electron transfer is

occurring at subatomic scales and in extremely short time spans.

Fuel cells employ another way of harnessing electron transfer from high-energy reactant

bonds to low-energy product bonds: spatially separating oxygen and hydrogen reactions, thus

forcing electrons to travel over a greater length scale. �is way electrons can be directly used

to do useful work while closing the circuit and completing reaction, which is more e�cient

than converting thermal to electric energy in case of combustion.

Equations (1.2.2) and (1.2.3) show the hydrogen combustion split into two half reactions:

H2 −−⇀↽−− 2H++2e−, (1.2.2)

1
2O2 +2H++2e− −−⇀↽−− H2O. (1.2.3)

�ese reactions occur at the electrodes which are spatially separated but connected by an

external circuit for electron conduction. Oxidation of hydrogen is taking place at the anode,

while reduction of oxygen is occurring at the cathode. Electrodes are separated by the elec-

trolyte, which is impermeable for electrons, but allows transfer of ions. Figure 1.2.1 shows
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Tibor Bešenić Master’s �esis

schematics of a general fuel cell, with reactant, product, ion and electron �ows. Just as elec-

trons pass through external circuit, ions travel through the electrolyte from one electrode to

the other to complete the reaction. Depending on the electrolyte used (i.e. type of fuel cell),

ions can be positive or negative so the direction of travel can be di�erent.
Load

2e-

Fuel In Oxidant  In

Posit ive Ion
or

Negative Ion

Depleted Oxidant and
Product Gases Out

Depleted Fuel and
Product Gases Out

Anode Cathode
Electrolyte

(Ion Conductor)

H2

H2O

H2O

½O2

Figure 1.2.1: General scheme of single fuel cell.

Hydrogen is the most widely used fuel for powering fuel cells, although it is possible to use

simple hydrocarbons as well. Using fuels that contain carbon can cause electrode poisoning

due to carbon monoxide (CO) which is created during reactions, and which passivates the

surface. Furthermore, more complex fuels lead to sluggish reactions. Both of the mentioned

obstacles can be avoided in high-temperature fuel cells, where reaction kinetics are faster and

internal reforming of the fuel can be utilized. Some types of fuel cells can even use CO as fuel

and thus circumvent the problem with poisoning.

1.2.1 Advantages of Fuel Cell Technology

While currently not competitive with conventional technologies, di�erent types of fuel cells

have several advantages that position them as interesting and potentially important technol-

ogy in future:

• E�ciency. Fuel cells’ main advantage is the direct conversion of chemical into electri-
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cal energy. When compared with combustion engines, fuel cells generally have higher

e�ciency because they do not subject to the Carnot e�ciency limit[3]. Figure 1.2.2

compares maximum H2 fuel cell e�ciency with the Carnot limit and it can be seen that

e�ciencies are temperature-dependent. It is important to notice that fuel cells do not

always more e�cient, and even though ideal e�ciency is greater for lower tempera-

tures, due to higher irreversibility and valuable high-temperature waste heat, fuel cells

usually do have greater e�ciency at higher temperatures[3].

Maximum efficiency of a H2/O2 fuel cell

Carnot efficiency

h

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

200 400 600 800 1000 1200 1400
T [K]

Figure 1.2.2: Comparison between maximum e�ciency for fuel cell and Carnot cycle e�-

ciency.

• Scalability. Unlike ba�eries, fuel cells are fully scalable between power and capacity.

Ba�eries scale poorly at large sizes, have signi�cantly shorter life span and need to be

recharged, while fuel cells scale well from 1W , small mobile applications to megawa�

range for power plants.

• Simplicity. �e core components of fuel cells have few (if any) moving parts and allow

for the solid state device. �is way systems are long-lasting and highly reliable. Another

advantage of being stationary is silence, even for those fuel cells with equipment for fuel

processing[3].

• Low emissions. When hydrogen is used as fuel, the only by-product of reaction is

water. �us fuel cells reduce pollutant emissions in both stationary and mobile appli-

cations. However, fuel production is currently still not fully pollutant-free.
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1.2.2 Disadvantages of Fuel Cell Technology

Currently, the main disadvantage of fuel cells is their price. Because of their prohibitive costs,

fuel cell technology is currently competitive only in niche applications, such as space explo-

ration.

Using hydrogen as a preferred energy vector is problematic as well. Currently there is no

developed infrastructure for its consumer-grade supply, and hydrogen storage has its own de-

�ciencies. Using in-situ hydrogen production by solar powered water electrolyzer could prove

as a completely clean energy cycle but at present such technology is not yet cost-e�ective.

Another major limit is the power density. It expresses how big is the energy output per unit

volume or unit mass. When compared with combustion engines and ba�eries, on volumetric

basis fuel cells are outperformed, and the situation is more favorable when seen on gravimetric

terms, as seen in Figure 1.2.3.
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Figure 1.2.3: Power density comparison.

Additional limitations are temperature compatibility issues, liability to poisoning and fuel

purity for some fuel cell types and durability under intermi�ent operation. �ese disadvan-

tages pose a problem for wide adoption of fuel cells, and their technical solutions will decide

the future of fuel cells.
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Table 1.3.1: Fuel cell types.

PEMFC AFC PAFC MCFC SOFC

Electrolyte Polymer

Membrane

Immobilized

Liquid KOH

Immobilized

H3PO4

Molten

Carbonate

Perovskites (Ce-

ramics)

Electrodes Carbon Carbon Transition

metals

Nickel

Oxide

Perovskite

Catalyst Platinum Platinum Platinum Platinum None (electrode

material)

Temperature 40◦C−80◦C 65◦C−220◦C 200◦C 650◦C 500◦C−1000◦C

Charge car-

rier

H+ OH– H+ CO3
2– O2–

Fuel H2,

methanol

H2 H2 H2, CH4 H2, CH4, CO

1.3 Fuel Cell Types

�e main distinguishing feature between fuel cell types is the type of electrolyte. While all

fuel cells rely on the same electrochemical principles, electrolyte dictates the operating tem-

perature range, just as type of ions that pass through it. Further, the operating temperatures

set requirements onto physiochemical and thermomechanical properties of materials. Tem-

peratures also play an important role in deciding on suitable fuel: in low-temperature fuel

cells fuel needs to be converted to hydrogen before entering and they are susceptible to CO

poisoning. In high-temperature devices, CO and even CH4 can be converted into hydrogen

(internal reforming) or can be even directly oxidized in reaction.

�e most common types of fuel cells are polymer electrolyte fuel cells (PEFC), alkaline fuel

cells (AFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), and solid

oxide fuel cell (SOFC). Table 1.3.1 provides overview of the key features of the each type[1].

In this study, especially in later chapters, work is focused on solid oxide fuel cells, and their

kinetics and particularities will be described in more detail. However, most of the underlying

principles are valid for all fuel cell types. SOFCs are high-temperature devices that can use

wider range of fuels, or even reform some of the more complex hydrocarbon fuels into H2
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and CO. �ey employ a thin solid ceramic layer as electrolyte that is conductible for oxygen

anions (O2–) and thus di�er from proton conducting fuel cell types. Hence, equation (1.2.1)

for hydrogen as fuel is rearranged to di�erent half-reactions:

H2 +O2− −−→ H2O++2e−, (1.3.1)

1
2O2 +2e− −−→ O2−. (1.3.2)

�e most common material for SOFC electrolyte is a oxide material called y�ria-stabilized

zirconia (YSZ)[4]. Solid oxide fuel cells operate at higher temperatures > 600◦C, which is

advantageous in terms of higher e�ciency, just as in ability to utilize waste heat via some of

the available technologies (Organic Rankine cycle, combined heat and power technologies…).

Anode

Cathode

Hydrogen fuel

Oxygen, usually from the air

Electrons flow round
the external circuit

4e−2H2O +→

→

2H2 + 2O=

2O=O2 + 4e−

Product water as steam,
available for steam
reformation of fuel

= Load

Figure 1.3.1: Separated reactions for SOFC with hydrogen as fuel.

1.4 Fuel Cell Operation

As mentioned in section 3.1, current is produced by forcing electron �ow through the external

circuit. One of the parameters electricity depends on is the reaction area of electrolyte and

electrode where reactants meet. �is is the reason why fuel cells are generally made in form

of a thin, planar structures with high surface-to-volume ratio. Because it is critical to ensure
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so called triple phase boundary between fuel (gas), electrode (solid) and electrolyte (solid or

liquid), and also have high surface area, electrodes are made highly porous. �is yields gener-

ally scalable power output to high levels - when more reactants can enter reaction on bigger

area, larger is the current of electrons produced.

Figure 1.4.1: A three-cell stack showing geometry of fuel cells with channels, electrodes,

electrolyte and bipolar plates.

Fuel cell operation depends on several major steps. First of them is equal distribution of

reactant gases over the cell. To produce electricity, fuel and oxidant must be continually sup-

plied. If that is not the case, the device can ”starve”, and that is problematic especially when we

consider that demand for reactants can be extensive at high current densities. To uniformly

deliver gases, combination of �ow �eld plates and porous electrodes is used. When consider-

ing the more common, planar type of fuel cells, plates have many grooves or channels that

distribute gases evenly to the surface, and their geometry greatly a�ect the performance. To

further diminish the e�ect of the concentrated channels, electrodes are produced as porous

structures, causing uniform �uid di�usion over electrolyte surface. Just as supplying the re-

actants to the reaction occurring spots, it is equally important to assure fast enough removal

of reaction products to the bulk gas phase. Otherwise, products will build up and cause bot-

tleneck, preventing more products to react and slowing the reaction. Managing reactants is

usually a minor issue compared to the fuel distribution, and is dealt with in the same way as

the supply. However, some fuel cell types are more susceptible to it, e.g. with PEMFC product
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water can ”�ood” the cell and cause major e�ciency downfall.

Generated current is in a direct relation with the speed of electrochemical reaction, thus, it

is favorable to ensure energetic reaction rates. Catalysts are usually used to lower the reaction

activation energy and increase its speed. Platinum is mostly used as catalyst for fuel cells and

its cost was a big limiting factor during the development of fuel cells. Lately, however, quantity

of platinum used was decreased signi�cantly and led to further lowering of fuel cell prices.

On the other hand, high-temperature fuel cells such as SOFC do not require catalyst because

temperatures are high enough to ensure high reaction rates on their own.

As seen in equations (1.3.1) and (1.3.2), electrochemical reactions that occur in fuel cells

produce or consume ions or electrons. To maintain charge balance, charged particles must be

transported from the location they are produced to the location they are consumed. Managing

electron �ow is quite straightforward - electrodes are electrically conductive and they create

a path via external circuit for electrons to travel through and do useful work. Ion conduction

is a bigger issue since ions are bigger so their transport through defects in crystal structure

is less e�cient. Electrolyte must have high ion conductivity, but also prevent electrons to

di�use through it and ”short-circuit” the electrodes. Since ion transfer is ine�cient, it causes

resistance loss and reduces cell performance. �is is circumvented by using very thin ceramic

electrodes to shorten the path ions need to travel.

H2O
H2O

H2O

YSZ Electrolyte

2e−

O2−

O2−

O2−

2e−

-YSZ

-Ni

2e− H2
H2H2

Figure 1.4.2: Schematics of a triple phase boundary of Ni-YSZ based anode operating with

H2 fuel.
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As mentioned earlier, electrode-electrolyte assembly is a three-phase system with porous

materials: electrically conductive electrode and ionically conductive electrolyte and the pores

themselves. On this triple phase boundary, where gases, ions and electrons meet is the location

where reaction occurres. Figure 1.4.2 shows schematic of Ni-based anode operating with H2

fuel.

1.5 Fuel Cell Performance

Since the basic overview of processes in a fuel cell has been presented, it is appropriate to ex-

plain fuel cell performance and introduce losses associated with steps involved in aforemen-

tioned fuel cell operation. �e most useful graph when discussing fuel cell performance is the

current-voltage (i−V ) curve, showing voltage output for a given current. For easier compari-

son between di�erently sized cells, the current is normalized by area, yielding current density.

Ideal fuel cell would produce any amount of current proportional to the fuel supplied and also

maintain constant and maximum voltage output. However, due to real world irreversibilities

this is not the case and the Figure 1.5.1 represent typical i−V curve. �ree separate regions

can be distinguished. First is the rapid initial fall in voltage at low current density, followed

by gradual and linear decline in the mid-high current densities. �e last stage is again a steep

fall of voltage at high currents. Another performance indicator is the power output of a cell,

calculated as a product of current and voltage:

P = iV. (1.5.1)

Since the current is proportional to the amount of the fuel provided, voltage corresponding

to the current density can be viewed as a main measure of e�ciency. It is critical to achieve

high voltages, especially under high current densities. However, because of the irreversibili-

ties it is impossible to maintain ideal, thermodynamically calculated voltage levels and because

of that power density curve rises due to increased current, peaks, and then plummets at the

far end of graph, just as the i−V curve does (Figure 1.5.1).

Since fuel cells are an interdisciplinary technology, various �elds of studies have used

di�erent names for losses causing voltage drops. Most common term is overpotential, but

polarization, losses, voltage drop and irreversibility are used as well[3].
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Figure 1.5.1: i-V curve for fuel cell combined with power density curve.

Losses below correspond to steps mentioned in section 1.4 in fuel cell operation and can

be correlated to characteristic regions of the i−V diagram.

• Activation losses are caused by slow reaction speed on the electrode surface. A highly

non-linear fragment of voltage is lost in driving the electrochemical reaction and over-

coming the activation energy. �ey are dominant in the low current density region,

especially with low temperatures and are the main reason why catalysts are used.

• Ohmic losses are linear irreversibilities due to resistance to electron and (to a lesser ex-

tent) ion conduction through electrodes, electrolyte and interconnections. �ese losses

are directly proportional to current density.

• Mass transport losses (concentration overpotential) result from the changes in con-

centration of reactants on the electrodes, their distribution and poor removal of the

reaction products.

• Additional losses are fuel crossover and internal currents. Because electrolytes are

not ideal, fuel can di�use through it and pass to the other side without participating

in reaction. Furthermore, since electrolytes are not ideal electrical insulators, small

amount of electron conduction will happen. E�ects of these losses are negligible com-

pared to the previous three.
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In fuel cell terminology overpotentials are usually denoted by Greek le�er η . If losses

mentioned above cause di�erence from ideal case, cell voltage output can be wri�en as:

V =Videal−ηact−ηohmic−ηconc, (1.5.2)

where subscripts denote corresponding overpotentials to their physical causes.

Basics of fuel cell technology presented in this chapter, their types, performance and

overview of the phenomena occurring during operation serve as introduction to more de-

tailed thermodynamic description of fuel cell background in following chapter.
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Chapter 2

�ermodynamics and Fuel Cell Kinetics

2.1 Introduction

Previous chapter gave the introduction into physical processes occurring in fuel cell operation,

and identi�ed main causes of discrepancies between ideal case and real world application. In

this chapter thermodynamics of reactions in fuel cells will be given, as well as more detailed

analysis of reaction kinetics and charge and mass transfer[5].

2.2 �ermodynamic Fundamentals and Gibbs energy

Fuel cells are devices that convert chemical energy of the fuel into electricity for doing work.

However, implication of term ’chemical energy’ and what portion of energy is converted is

not quite obvious. �erefore, to explain and derive important terms for considering fuel cell

thermodynamics, we start with a well known expression for internal energy:

dU = dQ−dW. (2.2.1)

If we for now assume that only mechanical work pdV is being done, and if we combine

the 2nd law of thermodynamics (entropy production), we get another familiar equation for

internal energy, which is based on independent variables.

dU = T dS− pdV (2.2.2)

13
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Enthalpy is a system state function that includes its internal energy and the amount of

energy required to make room for it by displacing its environment and establishing its volume

and pressure:

H =U + pV. (2.2.3)

Just as enthalpy is conveniently de�ned variable, such is the Gibbs energy (Gibbs free

energy) regularly introduced for describing electrochemical systems. Compared to enthalpy,

it is the energy needed to create a system (its internal energy), displace environment to make

room for it, while neglecting energy that can be exchanged with system due to heat transfer.

G =U + pV −T S (2.2.4)

Now, when we substitute in the expression for enthalpy, we get the usual equation for

Gibbs energy:

G = H−T S. (2.2.5)

Similarly as with enthalpy and entropy, we are actually interested in change of Gibbs

energy, ∆G, which then represents maximum non-expansion work that may be performed

by a thermodynamic system at a constant temperature and pressure. One of the motivations

behind Gibbs energy formulation is the need to de�ne system with variables that are easily

measured, unlike S and V in equation (2.2.2). If we di�erentiate equation (2.2.4), we obtain:

dG = dU + pdV +V d p−T dS−SdT, (2.2.6)

and bearing in mind that dU = T dS− pdV , the variation of G equals

dG =V d p−SdT. (2.2.7)

�is shows that Gibbs energy is nothing more than a thermodynamic description of a

system that depends on T and p instead of S and V .

Usually, it is more useful to calculate energy changes on a per-mole basis, so we have

∆ĝ, ∆ŝand ∆ĥ. Furthermore, just as with de�ning entropy and enthalpy, it is convenient to

reference all values to a set of standard-state conditions, which are labeled by superscript zero.
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As the change during thermodynamical reaction is of interest, e.g. if we consider a standard

H2−O2 reaction in fuel cell, for one mole of H2

H2 +
1
2O2 −−→ H2O, (2.2.8)

we obtain

∆ĝ = ĝproducts− ĝreactants, (2.2.9)

and speci�cally,

∆ĝrxn = ĝH2O− ĝH2
− ĝH2

=−237.2kJ/mol H2. (2.2.10)

�is is the value for the reaction at 25◦C, read from available tables. Just as molar en-

thalpies and entropies, Gibbs energies are not constant and are temperature-dependent. It

is important to note that the value of Gibbs energy for hydrogen reaction is negative. �at

means that the energy is released, and if process could be reversible, all of the Gibbs energy

would be available to harness. Equations where reversibility is presumed apply to equilibrium

conditions, where there is no net current �ow in the fuel cell. As soon as the current is drawn,

equilibrium is lost. In order to distinguish between reversible and non-reversible voltages,

symbols E and V are used, respectively.

Another connection that is useful to make is a relation between Gibbs energy and spon-

taneity of a reaction. If ∆G of reaction is zero, then no work can be extracted from it. ∆G < 0

means that reaction is favorable (spontaneous) and that energy can be gained. On the other

hand, if ∆G > 0 then reaction can not occur by itself in that direction, and for it to proceed,

work has to be input into the system.

2.3 Gibbs Energy and Work

Gibbs free energy represents maximum work potential of the system, so it is our goal to be

able to calculate its value. If we look at equation (2.2.5) and di�erentiate it, we obtain

dG = dH−T dS−SdT. (2.3.1)
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If we assume isothermal process and se�ing the constant temperature, dT = 0, we can

still calculate dG for other temperatures and the only limitation is that temperature does not

vary during the process. When we write the equation in molar terms, we have

∆ĝ = ∆ĥ−T ∆ĝ. (2.3.2)

Here, we must also take into account standard-state values as references, check for tabular

values of enthalpies and entropies for both products and reactants in considered reaction, and

calculate the result.

Since electrical work is of interest, its relation with Gibbs energy is derived. First, we

expand equation (2.2.2) to include electrical work as well:

dU = T dS− (pdV +dWelec). (2.3.3)

�en, equation (2.2.6) is included in equation (2.3.3) and we obtain

dG = T dS− (pdV +dWelec)+ pdV +V d p−T dS−SdT, (2.3.4)

when canceled out, with constant pressure and temperature applied (dT = 0, d p = 0), equa-

tion (2.3.4) reduces to

dG =−dWelec, (2.3.5)

and for molar values we write

Welec =−∆grxn. (2.3.6)

For a reaction under constant pressure and temperature, the maximum amount of electri-

cal work is given by a negative value of Gibbs energy.

2.4 Reversible Voltage

Measure of the system’s ability to do work is the voltage (electrical potential). �at work is

done by moving charge Q through the electrical potential �eld E :
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Welec = EQ. (2.4.1)

In our case charge carriers are electrons, while the charge is de�ned as

Q = nF, (2.4.2)

where n is the number of moles of electrons that travel through the external circuit, and F is

Faraday’s constant, F = 96485C/mol. In case of hydrogen reaction it can be seen from equa-

tions (1.3.1) and (1.3.2) that for every molecule of H2, two electrons are transferred, therefore

n = 2. When equation (2.3.6), equation (2.4.1) and equation (2.4.2) yields:

∆ĝ =−nFE, (2.4.3)

or, in a more common form for E :

E =− ∆ĝ
nFE

. (2.4.4)

We can see that Gibbs’ energy magnitude determines reversible voltage E for the cell.

Again, when we consider hydrogen reacting in fuel cell, with ∆g0
rxn previously calculated as

−237.2 kJ/mol, we get:

E0 =−∆ĝ0
rxn

nF
(2.4.5)

=− −237.2kJ/mol
(2mol e)(96485C/mol) = 1.23V. (2.4.6)

In equation (2.4.6) E0 represents standard-state reversible voltage, which is the highest re-

versibly and thermodynamically achievable voltage for this chemical reaction. For real world

applications, 1.23 V is too low a value. Choosing di�erent reaction instead of hydrogen would

change reversible cell voltage, but voltages for feasible cell reactions range about 0.8–1.5 V.

To obtain desired voltage outputs, fuel cells are usually stacked and combined into serial and

parallel circuits.

�e transition from thermodynamic to electrochemistry by using the quantity nF is the

very cornerstone of electrochemistry, and combines the idea of moles of reacting species with
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quantized electron transfer. As mentioned above, value of n depends on the reaction (in case

of hydrogen reaction it is 2). Feasibility of fuel cells lies here as well: because Faraday’s

constant is a high number (F = 96485C/mol), it means that charge produced per mole is very

high (equation (2.4.2)) and this way a small amount of electrochemical reaction results in a

signi�cant amount of transferred charge.

2.5 �ermodynamic E�ciency

E�ciency of a fuel cell was brie�y considered in Section 1.2.1, but now that the thermody-

namic background is laid out, it can be quanti�ed more formally. In a reversible process, all of

the Gibbs free energy is converted into electricity, and e�ciency is 100 %. �us, it is not really

practical to de�ne e�ciency this way because its theoretical limit would always be 100 % (it

is worth remembering that Gibbs energy is temperature-dependent and can change). A more

useful way is to compare electrical energy to heat that would be produced by burning the fuel,

since it usually is used for burning in order to release the energy. �is way, enthalpy-based

e�ciency also serves as comparison parameter between fuel cells and combustion engines.

Usually when discussing fuel cells η is reserved for overpotentials, so some textbooks[2]

use ε instead:

ε =
∆ĝ
∆ĥ

. (2.5.1)

For equation with hydrogen, as used in the example above, where at standard state condi-

tions ∆ĝ0 = −273.17kJ/mol and ∆ĥ0
HHV = −285.83kJ/mol (for exothermic reaction like this

one change of enthalpy is negative), our reversible e�ciency is ε = 83%. As an example, a

Carnot cycle that operates between 400◦C and 50◦C (that corresponds to steam turbine with

the water exhaust through condenser), has the reversible e�ciency of 52%.

Another way of looking at e�ciency is to consider how much fuel is actually consumed in

the reaction. Some of the fuel that enters the fuel cell might �ow through it without reacting

at all or participate in reaction that does not produce wanted electric current. �us, fuel uti-

lization e�ciency is the ratio of fuel used to generate electric energy versus total fuel supplied

to the cell.
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ε =
fuel reacted
fuel supplied . (2.5.2)

2.6 Nernst Equation

When deriving Gibbs energy, a system that is a function of p and T was described: G =

G(p,T ). However, temperature and pressure are not the only variables that Gibbs energy

depend on and e�ects of concentration need to be taken into account. �is will lead to one

of the main electrochemistry equations, the Nernst equation. Concept of chemical potential

is therefore introduced. Chemical potential µ is somewhat vaguely described as measure of

change of the system’s Gibbs energy when chemistry of system changes[1]. If a system is

in a thermal equilibrium, there is no exchange of energy; if pressure is constant, there is no

net change of volume. Similarly, in a chemical equilibrium there is no �ow of particles. �is

physical concept plays an important role in chemistry, especially when some kind of phase

change is occurring.1 If system is more accurately de�ned as G = G(p,T,µi), with µi being

chemical potential of species i, then partial derivative with respect to chemical potential, with

temperature and pressure constant is

µi =

(
∂G
∂ni

)
T,p,n j 6=i

(2.6.1)

�is formulation represents chemical potential of a species in a mixture as the slope of the

free energy with respect to a change in the number of moles of only that species. �erefore,

the amount of species is linked to the Gibbs free energy. Finally, the concentration is linked to

the chemical potential via another chemical concept - activity a. Activity is a measure of the

e�ective concentration of species under non-ideal (concentrated) conditions and it determines

the real chemical potential for a real solution rather than an ideal one:

µi = µ
0
i +RT lnai. (2.6.2)

�e activity of a species depends on its chemical nature and phase and it di�ers for ideal

or non-ideal gases, diluted solution, electrons in metals etc. For ideal gases, which fuels in
1Water has lower chemical potential in ice phase below 0 ◦C, but above lower potential in liquid phase, thus

phase transition).
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fuel cells at temperatures up to 1000◦C can be considered as, activity is de�ned as ai = pi/p0,

with pi being partial pressure of species in the mixture, and p0 is the standard pressure at

1atm.

Equations equations (2.6.1) and (2.6.2) are now combined and changes in the Gibbs energy

for a system of i chemical species are:

dG = ∑
i

µidni = ∑
i
(µ0

i +RT lnai)dni. (2.6.3)

For a hypothetical equation aA+bB−−→ cC+d D, molar di�erence in Gibbs energy can

be wri�en with consideration for products and reactants

∆ĝ = (mµ
0
M +nµ

0
N)− (aµ

0
A +bµ

0
B)+RT ln

am
Man

N

aa
Aab

B
. (2.6.4)

First two terms in Equation (2.6.4) above are equal to ∆ĝ0, and from equation (2.4.3) we

have ∆ĝ =−nFE . Combining them we obtain:

−nFE = ∆ĝ+RT ln
am

Man
N

aa
Aab

B
. (2.6.5)

A�er rearranging and using equation (2.4.5):

E = E0− RT
nF

ln
am

Man
N

aa
Aab

B
. (2.6.6)

Finally, when fraction is wri�en as a product of equation products and reactants, with νi

as stoichiometric coe�cient, we obtain Nernst equation, which shows how reversible voltage

of a fuel cell vary with species parameters.

E = E0− RT
nF

ln
∏aνi

products

∏aνi
reactants

. (2.6.7)

Additionally, if activity is wri�en for ideal gas, a most common form of equation is ob-

tained:

E = E0− RT
nF

ln
∏ pνi

products

∏ pνi
reactants

. (2.6.8)

When calculated for ranges of temperatures and pressures, it looks like increase of vari-

ables does not contribute signi�cantly to raise of voltage[1]. So it would seem that operating
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at higher parameters is simply not worth the e�ort. However, it will be shown that higher

temperature and pressure are more important due to reaction kinetics and mass transfer.

2.7 Reaction Kinetics

So far fuel cell thermodynamics were considered as a reversible process. Now the details

behind some of the processes occurring will be explained and their connection to e�ciency

will be presented.

2.7.1 Activation Overpotential

Reaction kinetics describe how the reaction practically occurres, contrary to ideal reversible

scenario. Basically, kinetics refer to electrochemical reaction, thermodynamically favorable

(∆ĝ < 0) electron transfer. For example, hydrogen oxidation reaction (HOR), characteristic for

PEM fuel cells:

H2 −−⇀↽−− 2H++2e−, (2.7.1)

is a reaction that takes place at the interface between anode and electrolyte. Just as every re-

action, it actually consists of a series of steps that, when taken together make overall reaction.

Basic steps for HOR might be transport of H2 to the electrode, its absorption to surface, sepa-

ration of H2 into two hydrogen atoms bound to the surface, transfer of electrons from bound

atoms to anode while releasing H+ to bulk electrolyte and so on. Every reaction is limited

by its slowest step, called rate limiting step, and since it is of interest to accelerate the overall

reaction, the slowest step needs to be stimulated. If we take the last step as an example—even

if it is energetically favorable, atoms need to have certain amount of chemical free energy

to overcome the initial barrier. �at barrier is called the activation potential. As can be seen

in Figure 2.7.1.a, transition from one state to the another is more likely to happen, since the

energy barrier is lower. �at does not mean that reverse reaction is not occurring, just that

its rate is less probable and that its rate is lower. �is is the case until reaction balance shi�s

and new equilibrium is found. In the aforementioned case that would mean that concentra-

tion buildup of e− electrons in metal and H+ ions in electrolyte would shi� the reaction into
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Figure 2.7.1: Equilibrium for a step of HOR reaction. a) Chemical free energy distribution

across a single electrode interface. It is balanced by electrical potential di�erence due to elec-

tron buildup b). �ese potentials combined result in a zero net reaction rate c).

Reaction rates are here in direct relation to currents, which are of interest when studying

fuel cells. Usually, for comparison between di�erently sized electrodes, area-normalized cur-

rent densities i are used instead of currents. So in the electrode there are continuous forward

and backward reactions which result in forward and backward current densities. When the

system is in equilibrium, these are equal:

i1 = i2 = i0 (2.7.2)

and the i0 is called the exchange current density. Although net reaction is zero, both forward

and reverse reactions exist. In Figure 2.7.1.b it can be seen that the force keeping balance is the
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electrical potential di�erence across interface. When both chemical free energy and electrical

potential are super-imposed, result is overall zero current density (Figure 2.7.1.c).

�e free energy is dependent on voltage. By changing the cell voltage the free energy

of the charged species taking part in a reaction changes, and therefore lowers the activation

barrier. By sacri�cing fraction of a reversible voltage, potentials at the anode and cathode are

lowered, and net current can be produced. Figure 2.7.2.b the do�ed line represents voltage

lowered by an amount η . �is overpotential is called activation overpotential ηact . Further, by

decreasing the the potential for η , Figure 2.7.2.c shows how the activation energy for forward

reaction (∆G‡) is lowered, but asymmetrically due to the asymmetrical factor α (see below).

�is way, the activation energy for backward reaction is increased and reaction proceeds in

the forward direction.
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Figure 2.7.2: Electric potential ∆Φ is lowered by a factor nFη due to sacri�ced voltage ηact .

Balance is upset and the result is the lowered forward activation barrier ∆G‡
1 < ∆G‡, and

increased backward activation barrier ∆G‡
2 < ∆G‡ compared to the equilibrium state.
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Finally, Butler-Volmer equation is introduced to quantify the terms. It combines current

densities away from equilibrium (when net current exists) with activation overpotential—part

of reversible voltage sacri�ced to lower the energy barrier for forward reaction to take place.

It is a di�erence between forward and backward current densities:

i1 = i0 eαnFη/(RT ), (2.7.3)

i2 = i0 e(1−α)nFη/(RT ), (2.7.4)

where α is the transfer coe�cient and shows how asymmetric is the change in electric poten-

tial across the interface. Value of α depends on the reaction and the electrode material, but

is always in range between 0-1. Usually, its value for the cathode is about 0.5, and ranges a

bit more for anode, but as will be seen, neither α nor temperature are the most signi�cant

terms[3]. Subtracted, these equations form the Butler-Volmer equation for net current, with

the �rst term in bracket representing forward reaction, and second accounting for backward

reaction:

i = i0
(

eαnFη/(RT )− e(1−α)nFη/(RT )
)

(2.7.5)

Butler-Volmer equation, although derived for simple, single-electron transfer reactions

with one rate-determining step, is used as good approximation for complex multi-step reac-

tions, such as ones in fuel cells. Figure 2.7.3 shows plot of a relation between η and i, with

contributions of forward and backward reactions. �ere are the two regions in the plot, one

linear at current densities around zero and the second, exponential, at higher current densities.

In these regions simpli�cations for Butler-Volmer equation can be made.

ηact is the sacri�ced voltage used to shi� reaction out of balance and provide useful current

density. �us, graph in Figure 2.7.4 represents thermodynamical voltage with ηact subtracted

from it. Hence, activation overpotential is a necessary loss that lowers fuel cell voltage output.

Overpotential depends on reaction kinetics, but the most important parameter in the Butler-

Volmer equation is the exchange current density, as can be seen in Figure 2.7.4. It is then

crucial to keep i0 as high as possible, in order to have high current density output.

Exchange current density can vary by orders of magnitude, suggesting a strong catalytic

e�ect, which can be seen in table 2.7.1 for several electrodes. Furthermore, in case of a hydro-
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Figure 2.7.3: Plot of forward and backward current densities with the Butler-Volmer curve

as their sum. Linear region in the middle and exponential regions at the ends can be clearly

distinguished.
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Figure 2.7.4: Range of current densities and activation overpotentials they cause. Bene�ts of

high exchange current density is crucial and evident.
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Table 2.7.1: i0 for the hydrogen electrode for various metals[3].

Metal i0(Acm−2)

Pb 2.5e−13

Zn 3e−11

Ag 4e−7

Ni 6e−6

Pt 5e−4

Pd 4e−3

gen fuel cell, oxygen electrode (cathode) has much smaller i0 than the one for anode, so much

so that it is negligible when relatively compared. Exchange current density, a crucial factor

in improving performance can be increased in several ways:

• By increasing the temperature, the initial drop in cell voltage at low current density is

signi�cantly reduced (Figure 2.7.5).

• Increasing the the roughness of electrode creates much more potential reaction spots,

and increases area of electrode.

• Bene�ts of using catalysts are shown in Table 2.7.1. Exchange current density varies

by orders of magnitude just by using di�erent material for catalyst layer.

• Increasing concentration and pressure. Although in section 2.6 it was stated that rise

of gas pressure and species concentration has minimal e�ect on rise of ideal, Nernst po-

tential, it is highly bene�cial for increase of exchange current density. �is way reaction

sites are more likely to be occupied by reactants

2.7.2 Tafel Equation

Two characteristic regions in i0-η plot can be used for simplifying Butler-Volmer equation,

which can sometimes be unwieldy (due to two exponential terms with η , especially for nu-

merical calculations). �ese approximations are valid only if activation overpotential is either

small or large:
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Figure 2.7.5: i-V curve of fuel cell; regions represent three major losses, their in�uence on

the curve and di�enrence from ideal voltage.

• When ηact is very small, or when i << i0 exponential terms can be expanded via Taylor

series, and linear relation of current and overpotential can be obtained. �is is valid for

small deviations from equilibrium and is not dependent on the transfer coe�cient α .

i = i0
nFηact

RT
(2.7.6)

• When ηact is very large, or when i >> i0 the second exponential term in Butler-Volmer

equation (one relating to backward reaction) becomes small enough that its in�uence is

negligible. In Figure 2.7.3 it can be seen that this is the exponential region where forward

reaction is dominant and signi�es completely irreversible process. �is is known as Tafel

equation, and it can be used to simpli�cation when said conditions are met.

i = i0eαnFηact/(RT ) (2.7.7)
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2.8 Ohmic and Concentration Overpotential

Apart from the activation overpotential, there are two other main losses related to reaction

in fuel cells. �e �rst of them are losses related to transfer of charges through solids, and the

second cover transport of gaseous species to the reaction sites on electrolyte.

2.8.1 Charge Transfer

�ere are two types of charged particles that move in response to forces in fuel cells. On

the cathode of SOFCs (equations (1.3.1) and (1.3.2)) oxygen reduction is occurring, and it con-

sumes electrons. �is creates a voltage gradient, a driving force for electrons to travel through

the external circuit from anode to cathode. On the other hand, oxygen O2− anions are driven

through the electrolyte by both concentration and electric potential gradient, with la�er be-

ing predominant. �is process of charge transport is much simpler for electrons, which are

smaller and in free-electron model can freely travel through metal. On the other hand, ions

are larger and jump from one crystal defect to the other, which makes their transfer more

challenging. Because of these physical constraints, charge conductivity is not ideal and the

macroscopic property describing it is conductivity, separate for ionic and electric particles.

Usually, it is more common to talk in terms or resistance R of a conductor. �is way losses

due to charge transfer can be related to voltage via Ohm’s law:

V = iR. (2.8.1)

Because voltage is in it linearly dependent on current density, its pro�le is linear. Again,

speaking in terms of losses in fuel cells, term ohmic overpotential combines electric and ionic

contributions to resistance, and since overpotential is voltage drop, they can be lumped to-

gether as:

ηohm = iRohm = i(Relec +Rionic). (2.8.2)

In the curve that depicts overpotential-current density dependence, Figure 2.7.5, ηohm is

the cause of the linear region in the middle, and its magnitude rises with the increase of current

density. Ohmic overpotential can be thought of as a loss, sacri�ce of voltage that ensures �ow

of charged particles.
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Electron transfer in the external circuit is e�ortless compared to ion transfer across the

electrolyte. �is is why electrolytes are made as thin as possible, while external circuit length

does not ma�er as much. �inner electrolyte means less distance for ions to travel, and lower

ionic losses, but raises the possibility of electrons passing through it, causing ”shorting” and

internal currents, as well as fuel crossover without participating in reaction.

In solid oxide fuel cells, which are of particular interest in this thesis, electrolyte mate-

rials are solid crystalline oxide materials that can conduct ions. Most o�en used material is

y�ria-stabilized zirconia (YTS), which is compound made out of zirconium oxide (ZrO2) and

y�ria is oxide of y�rium (Y2O3). �is mixture has cubic crystal structure and has high con-

centration of vacancies in it that are favorable for oxygen ions. Doping the zirconia with

y�rium increases vacancy concentration, but only to around 8% of y�rium, a�er which ion

conductivity starts to decline.

2.8.2 Mass Transfer

Mass transfer in fuel cells relates to the delivery of reactants to the location of reaction they

participate in, just as removal of products out of fuel cell. Both of them are divided in two

major parts, distinguished by their characteristic length scale. First one is transfer of gases in

fuel cell �ow structures, which are generally on millimeter to centimeter length scale. �ese

geometrically well-de�ned structures are formed to direct and evenly distribute gas �ow to or

from electrodes, and transport is dominated by convection. �e second one is di�usive �ow

on micrometer and nanometer scale within highly porous electrodes whose internal geometry

is not well de�ned.

Reactions taking place on electrodes consume and produce species, whose concentrations

thus rise or decline. �is concentration gradient creates driving force for mass transfer. As

was mentioned in section 1.4, electrodes are three-phase systems, with triple-phase boundary

where electrode, electrolyte and gas meet. Concentration on electrode interstitial surface

where reaction occurres is crucial, and rises or falls (depending which electrode and which

specie) through porous electrode to equalize with bulk concentration values.

Since electrochemical reaction leads to reactant depletion and product accumulation near

electrode surfaces, intent is to design fuel cell as to have maximal supply and removal of
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species. However, if due to vigorous reaction reactant concentration in electrode drops to

zero, the reaction stops - there is a current density limit above which fuel cell cannot sustain

a chemical reaction. Current density that limits reaction by depleting reactants is called the

limiting current density, iL. It can be calculated with the equation below, where De f f is e�ective

di�usivity, c0
R is bulk reactant concentration (in channel), and δ is electrode (di�usion layer)

thickness.

iL = nFDe f f c0
R

δ
(2.8.3)

It is clear that optimizing electrode structure and operating parameters (high concentra-

tion c0
R in channels, large di�usivity De f f and low electrode thickness) leads to rising restric-

tions of limiting current density.

�erefore, concentration has an impact on current density as seen above and, if we recall

the discussion of Nernst equation, concentration levels also a�ects reversible voltage of fuel

cell.

Providing accurate analytic equation that accounts for mass transfer losses is hard, since

geometries di�er signi�cantly. However, speaking in terms of voltage overpotentials, concen-

tration losses can be approximated as ηconc:

ηconc = c ln
iL

il− i
, (2.8.4)

with c being a constant dependent on the geometry and mass transport properties of the fuel

cell and is sometimes obtained empirically, although some approximations exist.

However, due to the inconsistency with experimental data, di�erent equation for deter-

mining concentration overpotential has been proposed, with B being the driving force for

mass transfer[1]

ηconc =
RT

αnF
ln
(

1+ rB
1+B

)
. (2.8.5)

Concentration losses are most important in high current density regime, �g. 2.7.5 because

at lower densities enough fuel can be supplied to the electrodes. In SOFC fuel cells, this is

the most important loss type, since they operate at high temperature, which lowers activation

overpotential, and ohmic losses are relatively small due to good conduction in solid electrolyte.
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From the steep drop on the right side of the Figure 2.7.5 it can be seen that limiting current

decreases current rapidly, when critical species supply is reached. �us, a good mass transfer

design is imperative for high e�ciencies and high current outputs.

Unlike the complex microscopic geometry of di�use layers, channels that supply gases

from the outside of cell are well de�ned and larger, so the main mass transfer process in them

is convection. Design of these channels vary signi�cantly, but the main task is to evenly

distribute gases to electrode di�use layers and provide more contact points across the surface

of the electrode. Interactions with walls, and to some extent internal viscosity of fuel are the

main causes of pressure drop along the channels. Fluid �ow is usually laminar and due to

variety of geometries and dimensions, generally numerical simulations are used to determine

validity of channel design. Channel design can vary, but most common pa�erns are spirals

and snake-like shapes that convey fuel across �ow �eld plate. Some of them are depicted in

Figure 2.8.1.
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(c) Parallel serpentine (d) Grid

Figure 2.8.1: i-V curve for fuel cell combined with power density curve.

Another thing to consider is the fact that fuel cells, if used for commercial purposes, come

in stacks for achieving higher voltages. �us, fuel �ow must be equally distributed among

cells.
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2.9 Closure

In this chapter basics of fuel cell thermodynamics and kinetics were presented, as well as ef-

�ciency and operational losses. Insight in complex physics behind reactions and transfer of

charges and mass was presented, along with derivation of Nernst, Butler-Volmer and Tafel

equations, while focusing mainly on solid oxide fuel cells. In next chapter numerical model-

ing of fuel cells will be discussed, and openFuelCell package for simulating fuel cells will be

presented.
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Chapter 3

openFuelCell model

3.1 Background

Previous chapters gave an insight into physical processes, electrochemistry and some of the

most important equations for dealing with fuel cells. Fuel cells are not a new technology

- since their �rst demonstration by William Grove in 1839,[3] throughout the 20th century

and �rst commercial applications, electrochemical fundamentals and underlying physics were

very well studied. However, technology was not perfected enough and made available to that

extent to achieve wide adoption. To compete in today’s market and gain bigger share among

renewable technologies, fuel cells need to be exceptionally well designed, with performance,

working conditions and life cycle optimized to be presentable as e�cient and reliable technol-

ogy of the future. Numerical simulations can accelerate design and development, especially

since experimental prototypes and data for high-temperature cells are scarce and o�er limited

measurements on detailed performance parameters such as temperature and mass fraction

distributions, current density and similar[6].

Numerical simulations of fuel cells began as in-house codes made by researchers and con-

tinued through commercial so�ware packages such as PHOENICS, Fluent, Star-CD, COMSOL

and others[6]. In recent years, a program to develop fuel cells and stacks models in open-

source enviroment OpenFOAM has begun and is ongoing. Limitations of proprietary so�-

ware are users’ inability to signi�cantly alter the source code and its ”black-box” nature[7].

When developing new technologies that rely on signi�cant code modi�cation, it is bene�cial

to have full access to all of the program’s features. Furthermore, OpenFOAM’s open-source
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environment provides wider framework for scientists and users to research and develop fuel

cell technology, which is harder to achieve with licensed so�ware[7].

Result of this program is openFuelCell, object-oriented open-source C++ library that

integrates in OpenFOAM. Class hierarchy and run-time selection mechanism of OpenFOAM

allow for high modularity when implementing new or selectable model features. OpenFu-

elCell is a multi-physics and multi-scale calculation tool developed for modeling of SOFC,

but can be applied to the PEMFC type as well. It is a 3D model that describes complex micro-

scale electrochemistry and mass and charge transfer outlined in previous chapters, just as

conjugated heat transfer and �ow through geometry on a cell or a cell stack-scale.

3.2 Model overview

3.2.1 Mesh

Physical phenomena in fuel cells occur throughout the whole cell body and are not restricted

to single region: fuel �ows through channels and enters the micro-porous electrode while op-

posite stands for reactants; heat is released by electrochemical reaction in electrode-electrolyte

assembly, but is transfered to channels and supporting structures; potential �elds are present

in solids, but not in insulating channels, etc. Choice of regions included in model depends

on the idea behind it, as well as on what phenomena wants to be simulated or ignored, but

generally includes air and channels, anode and cathode, electrolyte and some kind of support

structure which serves for electricity conduction and heat dissipation. �is problem with re-

gion decomposition in numerical modeling of fuel cells, which are multi-physics, multi-scale

devices, can be approached in several ways[7]:

• Single global mesh can be made for whole fuel cell, with solving governing equa-

tions for whole domain and disabling appropriate �elds in parts where needed. �is

approach is perhaps simpler because of only one mesh, but is rather computationally

ine�cient due to all equations being unnecessarily solved on the whole mesh. Further-

more, OpenFOAM code does not permit internal boundary conditions on single mesh,

which creates problem with this approach.

• Coupled meshes can be tessellated individually and correlate to appropriate fuel cell
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region. Equations are solved on each mesh separately, with coupled boundaries when

needed. So, for example, boundary between air channels and cathode would be coupled

for mass transport because air �ows into it, but not the boundary between channels

and solid support because there is no �ow between them. Similarly, for heat transfer all

boundaries would be coupled to provide global temperature solution. �is approach is

not well suitable for parallelization and when coupling dominates.

• Integrated cell concept is approach where single global mesh is created and then

separated in several ”child” meshes. Energy equation is solved for on the global mesh,

while the rest of �elds are enabled on child meshes as needed. Mapping from global

to component meshes and vice versa is possible, and boundaries are incorporated as

internal surfaces between meshes.

global mesh interconnects
air mesh

electrolyte
mesh

fuel mesh

Figure 3.2.1: openFuelCell mesh for co-�ow case decomposed in region meshes. Bo�om

to top: interconnect, air, electrolyte, fuel, interconnect.

�e third solution is applied in openFuelCell code, although the coupled mesh has

been considered as well[7]. Its main drawbacks were being unsuitable with overlapping sub-

regions and ine�ciency when dealing with large stacks due to increased data transfer for

many coupled regions. �is way fuel cell model in openFuelCell consists out of global

mesh for entire fuel cell with subregions for air, fuel, electrolyte and interconnects. Fuel and

air meshes are further divided into zones to enable distinction between, e.g. air channels and

porous cathode inside air mesh. �is is used only for de�ning properties such as di�usivity,

but the equations are solved over the whole child mesh. So, computational approach was to

have a multiple-region model that solves for region-speci�c �elds for every distinct region.
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Figure 3.2.2: Regional and zonal decomposition of a mesh. It can be seen that regions (child

meshes) from Figure 3.2.1 are further divided into zones of uniform physical properties. How-

ever, equations are solved on the mesh levels.

OpenFOAM provides modern automatic meshing techniques with unstructured polyhe-

dral mesh support for capturing the complex geometry of SOFC. Depending on the model

and the phenomena wanted to be captured, computational grid can be �ner or coarser, as well

as structured or unstructured. Mesh can be concentrated in the near of boundary regions of

�uid channels to capture details of di�usion terms, as shown in Figure 4.2.1.a. On the other

hand, rate-equations can be used, and with it coarser body-��ed mesh in Figure 4.2.1.b or lo-

cally volume-averaged mesh in Figure 4.2.1.c. When having more complex geometries with

a lot of channels, the �rst approach can be unfeasible, and with volume averaging storage

must be allocated for more than one phase of a computetional cell, and there is no distinction

between di�erent materials in fuel cell. Disadvantage of the second approach, which is used

in the openFuelCell model, is that material properties and inter-phase coe�cients must

me stored. When boundary-��ed rate-based formulation (Figure 4.2.1.b) is used, mesh is not

tessellated �nely enough to capture di�usive components, and rate-equations are used. �ey

replace the local gradient of some �eld Φ with its bulk-to-wall di�erence, ∆Φ, with g denoting
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general conductance[8]:

−Γ
∂Φ

∂y

∣∣∣∣
w
= g∆Φ (3.2.1)

.

Figure 3.2.3: Computational grid approaches used to discretize planar SOFC. a) Detailed

boundary-��ed, b) boundary-��ed rate-based approach, c) volume-averaged.[8]

3.2.2 Governing Equations

�e set of governing equations is solved for on volumetric �elds using second order accu-

rate �nite-volume methods which are included in OpenFOAM. �e approach is highly mod-

ular, with ability to replace or implement new parts of the cell model (e.g. electrochemistry

or thermodynamics) without violating overall structure of the solver. As mentioned earlier,

physics behind fuel cells is rather complex and includes transport phenomena, �uid �ow in

both channels and porous media, multi-species transport, multi-region thermal analysis and

electrochemical e�ects. �ese are modeled by by sets of equations presented below.

Continuity and Momentum

Hydrodynamic phenomena are governed by the coupled continuity and momentum equations

with presumed steady-state conditions:
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div(ρu) = 0, (3.2.2)

div(ρuu) =−grad p+div(µ grad u− µu
κD

), (3.2.3)

where u is the local velocity, p is the pressure, κD is the permeability for zones inside air and

fuel regions that act as distributed resistance and pressure loss. µ is the mixture viscosity and

ρ is the mixture density:

ρ =
p

RT ∑xiMi =
p

RT
/∑

yi

M j
. (3.2.4)

Mi is the molecular weight of a species i, while molar and mass fractions are denoted by

xi and yi, respectively. Working with both mass and molar fractions is unfortunate but usual

with fuel cell modeling, since there is a transition from molar-based electrochemistry domain

to mass-based units for fuels[8].

div(ρuyi) = div(ρDe f f
i gradyi) (3.2.5)

Species are solved for by partial di�erential equation for all of them except for the inert

one (nitrogen), which is obtained by subtracting the sum of other species’ mass from unity

to ensure conservation, yn = 1−∑
n−1
i−1 yi. For e�ective di�usivity calculation, De f f

i , there are

several of run-time selectable options. Just one of them is the approach by Wilke[7], where for

multi-component mixture, species’ di�usivity can be estimated from individual di�usivities

of one species in all others (binary coe�cient of di�usivity):

Di = (1− xi)

(
∑
j 6=i

x j

De f f
i j

)−1

. (3.2.6)

At the boundaries of sub-regions, namely between electrolyte and electrodes, mass �ux

rate-equations are prescribed as a result of reactants or products of reaction moving (resulting

in positive or negative �ux). �ese boundaries are treated as �at surfaces and the mass �ux is

just the sum of individual species’ �uxes:

ṁ′′ = ∑
i

ṁ′′i , (3.2.7)
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where species’ �uxes are computed by Faraday’s law of electrolysis, which is a modi�ed ver-

sion of equation (2.4.2), with n being the charge number and i representing current density,

and serves as connection between current density (rate of reaction) and mass �ux of consumed

and produced species:

ṁ′′ =± iM
nF

. (3.2.8)

For individual species di�usion equations boundary values following relation connects

normal mass �ux and species mass fraction:

ṁ′′− ∂

∂n
(ρDe f f

i yi) = ṁ′′i . (3.2.9)

Electrochemistry

In reality, as presented in previous chapters, electrochemical reactions take place at triple

phase boundary, the interface between electrolyte and electrodes which is three-dimensional

and extends over porous zones in electrodes. However, to simplify the model, in the open-

FuelCell code electrochemical reactions are treated as surface phenomena and are pre-

sumed to occur on boundaries between electrolyte and electrodes[6]. Reversible or open cir-

cuit voltage is given by the Nernst equation (equation (2.6.8)), which for the generic reaction

∑aiRi −−→ ∑b jPj becomes:

E = E0− RT
nF

lnQ, (3.2.10)

while

Q =
∑Pb

j

∑Ra
i

(3.2.11)

and P and R are molar concentrations of reactants and products. Only active species are

included in this equation, while others, such as nitrogen, are marked as inert.

Ideal open circuit voltage is reduced by anode and cathode overpotentials as well as by

voltage loss due to the local ohmic loss:

V = E−ηa−ηc− iR. (3.2.12)
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�is equation is obtained by combining the Kircho�’s second law with Ohm’s law, and

is called ”Kircho�-Ohm relationship”[7], and relates fuel cell voltage with current density.

Overpotentials ηa and ηc are caclulated from a Butler-Volmer equation, which is explained

in section 2.7. For temperature-dependant ohmic resistance R there are several run-time se-

lectable models available.

Overpotentials for equation (3.2.12) are obtained out of Butler-Volmer equation equa-

tion (3.2.13) for each of the electrodes. Since overpotential terms are in the exponent, Ridder’s

method of root �nding is used. Another simpli�cation that can be implemented in code is

to use Tafel equation instead, which has an analytical solution and the need for root-�nding

methods is avoided.

i = i0
(

eαnFη/(RT )− e(1−α)nFη/(RT )
)

(3.2.13)

�is is the Butler-Volmer equation that is solved for both anode and cathode overpoten-

tials, ηa and ηc on the surfaces of the electrodes.

As shown during derivation of Nernst equation in section 2.2, electrochemical reaction in

fuel cell releases heat. In ell releases heat that heat is modeled as volumetric heat source in

the whole electrolyte:

q̇′′′ =
(
− 1

2F
∆H (T )−V

)
i

δhE
. (3.2.14)

∆H is the enthalpy of formation, and it is calculated (as well as enthalpies and entropies

for Nernst equation) with polynomial functions of temperature. �ere is as well the voltage V

term that takes into account heat source due to the Joule heating, and since source is presumed

to be volumetric, it is multiplied by current density (A/m2) and divded by electrolyte density

δ .

Assuming surface occurring electrochemistry seems to be popular choice for simplifying

fuel cell model, since it provides satisfactory results while avoiding volume-occurring reac-

tions. �is way, potential, current density and overpotentials are calculated locally on the

boundary of electrolyte and are ”smeared” over the volume.
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Heat Transfer

Heat transfer is being solved for on the whole mesh, with equation wri�en for temperature

and not for enthalpy or internal energy. Gases �ow into channels with set boundary temper-

ature, and heat sources due to electrochemical and Joule heating from electrolyte are mapped

to cell level mesh. With q̇′′′ being aforementioned source, k being thermal conductivity, and

cp standing for speci�c heat, temperature equation for solids and �uids becomes:

ρcpu ·gradT = div(k gradT )+ q̇′′′. (3.2.15)

Radiation heat transfer present in fuel and air channels was not yet implemented in ell

releases heat model[7].

3.2.3 Boundary Conditions and Numerical Implementation

Fuel cells are devices that are usually run under higher-than-ambient pressure because of the

e�ciency bene�ts discussed in section 2.6. In order to keep pressurized conditions, complex

sealing system are o�en used. In the openFuelCell model all pressure boundary conditions

are set to zero gradient, except for outlets. Similarly for temperature �eld, external walls were

presumed adiabatic, except for the fuel and air inlets.

In addition to the mass transfer equation in previous section, due to low Reynolds num-

ber in channels, turbulence models were not invoked[9] and �ow was assumed to be laminar,

with gases behaving like ideal mixtures. Furthermore, channel walls have no-slip boundary

conditions applied to them, with prescribed inlet velocity of fuel and air. For air, a binary

mixture of oxygen and nitrogen was presumed on the cathode side, while fuel consists out of

hydrogen and water vapor, which is in accordance with real hydrogen fuel. Boundary con-

ditions for velocity and species’ mass fractions on internal boundaries between electrodes

and electrolyte are given by the rate-equations and rate of electrochemical reaction. Species’

boundary conditions are governed by equation (3.2.9), but is wri�en in code as a Neumann

condition, so algebraic equation system introduces some additional sti�ness into model when

compared to linear formulation[6][10]. PISO algorithm is used to solve pressure and momen-

tum equations in fuel and air regions, with porous zones acting as distributed resistivity as a

volumetric source term. For more entails, reader is re�ered to[11].
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Simulation can be run in galvanostatic or in potentiostatic mode. When in potentiostatic

mode, voltage V is prescribed and kept constant, while when galvanostatic mode is chosen,

overall current density is constant, which is more appropriate when simulating stacks to en-

sure charge conservation from cell-to-cell within it. Voltage values are then adjusted until

correct values are achieved.

An iterative procedure was employed for solving a system of matrix equations: symmetric

linear equations were solved using an incomplete Cholesky pre-conditioning scheme (ICCG),

while asymmetric systems were solved with a bi-conjugate gradient solver Bi-CGStab[12].

3.2.4 Solution Algorithm

With the governing equations, mesh decomposition and boundary conditions described, com-

putational algorithm is presented below. Depending on the choice of simulation mode (gal-

vanostatic or potentiostatic), solution algorithm di�ers slightly, but not in a momentous way.

1. Initialize global and region meshes, constants and model parameters. Set the initial

�elds and boundary conditions, physical properties, cell voltage or average current den-

sity (depending on a mode). Create methods for inter-mesh mapping.

2. Map the temperature �eld from global to region meshes.

3. Compute temperature-dependent properties: air and fuel density, viscosity and conduc-

tivity. Solve equations (3.2.2) and (3.2.3) for pressure and momentum according to the

PISO algorithm.

4. Calculate mass di�usivity according to selected model and solve equation (3.2.5) for

species mass fraction in fuel and air regions.

5. Calculate Nernst potential, equation (3.2.10), calculate local current density on anode-

electrolyte interface from equation (3.2.12). From equation (3.2.13) get ηa and ηc for

both electrodes with iterative root-�nding method.

6. Smear surface values across the electrolyte volume. Calculate heat sources within the

electrolyte volume according to equation (3.2.14).
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7. Calculate electrochemical mass �uxes due to reaction on boundaries adjacent to elec-

trolyte and set the boundary conditions for species’ mass fractions and momentum.

8. Map region �elds to global mesh.

9. Solve global temperature equation equation (3.2.15)

10. Loop from step 2. until convergence is obtained. For potentiostatic mode voltage is

�xed, while for galvanostatic it needs to be corrected with relaxation constant until

current density i is identical to the set value.

3.3 Summary

OpenFuelCell model was developed to enable advances in fuel cell design that are needed

for creating durable, high quality devices. It can be used for simulation of fuel cell work-

ing conditions and studying parameters such as e�ciency, current output, temperature dis-

tribution, pressure drop, etc. all of which are crucial for optimizing geometry and optimal

operation points. When compared to the previous models and data, openFuelCell model

provides results that are overall in good agreement, with some di�erences due to discrepancies

in input parameters[12][7][11].

�is model is believed to be the �rst fully comprehensive code developed for solid oxide

fuel cells[7], and the authors’ wish is to develop it further and create a wider base of users,

both within the scienti�c community and industry, that would contribute to it. Code is open-

source and can be downloaded from openfuelcell.sourceforge.net. Development

of openFuelCell model will go in direction of minimizing the assumptions included, as

well as in adding new model options and features. For example, radiation phenomena in

channels is neglected or, as was discussed in section 2.8.1, across the electrode-electrolyte

assembly there are two �elds that take place—ionic and electric. In current model that fact

is not taken into consideration, and voltage is solved for just in the electrolyte. In the next

chapter modi�cations to code will be presented, that expand model to account for potential

distribution across the fuel cell.
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Chapter 4

Two Potential Model

4.1 Introduction

In the previous chapter it was mentioned that the openFuelCell model, although quite

comprehensive and suitable for simulating solid oxide fuel cells with a satisfying level of ac-

curacy, does not take into account all of the physical phenomena occurring in fuel cells, and

also introduces approximations that are unavoidable when developing consumer-grade mod-

els for simulations with limited time or computational resources. Moreover, openFuelCell

code is made publicly available and modi�cations to it are welcomed and encouraged.

In this chapter a new approach for solving electrochemistry in solid oxide fuel cells is

presented, with detailed description of equations, meshes, algorithm and assumptions used.

4.2 Potentials in Fuel Cells

As was described in chapter 2 and especially in section 2.8.1, fuel cells are electrochemical

devices in which internal energy of fuel is converted into electricity. In reactions between the

fuel and the air electrons are released and form a useful current that can be used for doing

work via external circuit. On the opposite side, inside the electron-insulating electrolyte, ion

transfer is taking place. In case of SOFC type, ions are negatively charged O2− anions.

Due to electrochemical reactions, electrons released on the anode have a tendency to �ow

to the cathode, and means of collecting and delivering the current from and to the electrodes

must be used. Planar fuel cells usually have current collection plates which have several
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purposes: they keep the structural integrity of a fuel cell and serve as a frame for electrode-

electrolyte assembly; they are used to spread the energy released during fuel conversion away

from electrolyte and anodes; they collect electrical current from the anode and the cathode.

�ese current collection plates (interconnects in openFuelCell model, Figure 3.2.2) are

usually made out of metal, to distribute heat by conduction more uniformly than ceramic

ones, and to be able to conduct electricity.

It can be noted that across the single cell there is an alternation of electric and ionic �elds:

electricity �ows through the interconnects and the electrodes, while ions are present in elec-

trolyte and in the parts of electrode volumes where reactions occur—the triple phase bound-

ary. �is creates three potential �elds in the cell that are partially overlapping, as in Fig-

ure 4.2.1.
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Figure 4.2.1: Schematics of the overlapping potential �elds over electrode-electrolyte assem-

bly.

Handling the potentials in the openFuelCell model was limited to the calculation of

output voltage on boundary between electrolyte and fuel regions, and then smearing it over

the electrolyte volume. �is is valid if the only information of interest is the value of volt-

age, however, knowledge of detailed potential distribution can be of great importance when

designing the fuel cell geometry.
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When discussion about electrode reaction kinetics (Section 2.7) is applied to whole as-

sembly, potential distribution over it can be drawn. In section 2.7, potential distribution on

electrode—electrolyte interface has been described. It is worth mentioning that Figure 4.2.2a.

shows potential distribution and activation energy on a very small, molecular scale, and that

when our scope is widened from microscopic phenomena to cell level, that curve is translated

into a one-dimensional jump that takes place on the interface, Figure 4.2.2a.

distance from interface

 [V]

 

a)
distance from interface

 [V] electrode electrolyte

 

b)

Figure 4.2.2: Potential distribution across electrode-electrolyte interface. a) Capturing atomic

level distribution and activation energy. b) Macro-level distibution.

Furthermore, such curve exists for both electrodes adjacent to electrolyte. When they

are drawn on the scheme of electrode-electrolyte assembly, hypothetical1distribution such as

Figure 4.2.3 is obtained. Potential distribution here represents combined ionic and electric

potentials, which can be superimposed. It can be seen that the cathode potential is higher and

it decreases towards anode by jumps on the interfaces of electrolyte. Conveniently, anode

potential is set to be zero, since only the relative di�erence is of interest.

Instead of analyzing reaction steps on each electrode, as was done in section 2.7 for PEMFC

anode, more practical way to understand charge transfer is to consider motion of particles in

presence of potential �elds. Electrons are negatively charged particles, and as such they have

a tendency to move opposite of a electric �eld in e.g. copper wire that forms external circuit.
1Distribution is hypothetical because the potential di�erence (Galvani potential ∆Φ) between two phases,

cannot be directly measured. What can be measured is the overall potential di�erence between two

electrodes[13].
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Tibor Bešenić Master’s �esis

ϕ [V]
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Δ ϕanode

Δ ϕcathode

Figure 4.2.3: Potential distribution over electrode-electrolyte assembly of a fuel cell for equi-

librium conditions (no current drawn).

�ey move from the anode with lower potential to the cathode with higher potential2, and

have the ability to perform work. �is is the driving force behind electrons in their comple-

tion of the electrochemical half-reactions. Di�erent situation is with anions—they should also

have a tendency to move from anode to cathode, but work is being done on them, on account

of decrease of Gibbs free energy, and so they can move from high potential to a lower one.

So, unlike PEMFC type, SOFC’s charge circulation consists entirely out of transfer of nega-

tively charged particles, with reaction reactants converted into products with lower chemical

potentials. Figure 4.2.4 shows these transfers schematically.

4.3 Two Potential Model Overview

An addition to the openFuelCell model presented in this thesis tackles the issue of mod-

eling potential �elds in solid oxide fuel cells. To account for potentials present in a fuel cell,

electrochemical model had to be adjusted, just as additional mesh decomposition had to be

added.
2Test charge (or a positive charged particle) would have a tendency to move from higher to lower poten-

tial, thus being in accordance with more intuitive behavior of mass in gravitational potential di�erence. Also,

conventional electrical current is described this way, although the electron is physical charge carrier.
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ϕ
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e- transfer (can do work) 

O2- transfer (work done on it) 

Figure 4.2.4: Charge transfer in electrode-electrolyte assembly of a SOFC.

4.3.1 Model Assumptions

An assumption that is used in stock openFuelCell code, as well as in other models[9][14],

is to presume thin electrodes. �is is valid for the model presented here as well. Basically,

electrochemistry is treated as a surface phenomena, and triple phase boundary is reduced

to planar geometry. �is is bene�cial since there is no need to have allocated memory for

both ionic and electric potential �elds in the overlapping volume. Furthermore, this kind

of se�ing circumvents the need to implement volumetric current sources, characteristic for

thick electrode formulation with overlapping potential �elds, and instead prescribes sources as

boundary conditions.

�e next simpli�cation is presuming only one electrode is ”active”. �is is a major sim-

pli�cation that leads to a model being the two potential model. Making one of the electrodes

”passive” does not eliminate the idea of reactions occurring on it, nor does it turn o� one of

the half-reactions and stop ion or electron creation and transport. �is simply means that the

losses associated with this electrode will be neglected, and the overpotential for this electrode

will be disregarded. Choice of electrode that should be passive is di�erent for fuel cell types.

For PEMFCs, activation losses associated with anode are smaller when compared to cathode
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losses. �is was partially discussed in Section 2.7, and it happens because oxygen reduction

on cathode is the most sluggish process, which cannot be ignored. So if anode is made pas-

sive, model will be appropriate for PEM-fuel cells. On the other hand, in the SOFCs anode loss

is more signi�cant than the cathode one, due to mass transport constraints for hydrogen in

anode-supported SOFC[1]. In this model, where solid oxide fuel cells are simulated, the cath-

ode is ”turned o�” and anode losses impact potential distribution across the cell. �is way

model includes two potential �elds with one jump between them: one that covers intercon-

nect and the anode, and the other one which spreads over electrolyte, cathode and adjacent

interconnect, Figure 4.3.1.

ϕ [V]

top mesh bottom mesh

E0V

0

Δϕ

η

Δϕ

Figure 4.3.1: Potential distribution in two potential model. Solid line represents equilibrium

state when voltage equals to reversible potential E0. Do�ed line shows operating condition,

with drop representing loss at the electrode, and slopes representing ohmic losses in conduct-

ing solids.

Another model simpli�cation is the usage of a more convenient version of Butler-Volmer

equation, the Tafel equation. It serves as a connection between anode overpotential and cur-

rent density, but as was stated in section 2.7.2, it is only valid at high overpotentials and high

current densities, where backward current density is negligible. For SOFCs operating at high

temperature this was presumed to be valid as well.
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With these simpli�cations taken into consideration, new mesh and equations are pre-

sented below.

4.3.2 Two Potential Model Mesh Decomposition

New �elds for potentials in fuel cell need to be solved on appropriate regions, when choice

of active electrode is taken into account. �ere are two potential �elds but they span over

multiple sub-regions each. In section Section 3.2.1 several approaches for mesh decomposi-

tion were presented, and reasons for choice of integrated cell concept were stated. Following

this approach, the potential �eld that covers two or more regions cannot be solved on those

separated and uncoupled meshes. �us, new regional meshes are introduced (top and bot-

tom), one for each potential �eld to be calculated. Unlike other regions in the openFuel-

Cell model, these new meshes overlap with existing regions. �e ability to compute with

overlapping regions is the advantage of the chosen integrated cell concept, and because of

the OpenFOAM’s modi�able mapping features, �elds can be transferred between meshes and

used in new electrochemical model. Figure 4.3.3 shows the schematics of new mesh decom-

position in two potential model and it can be noted that top and bo�om mesh together cover

the whole volume of fuel cell, except for the air and fuel channels, since they are insulators

and potential �elds do not exist in them.

Figure 4.3.2: New mesh decomposition for two potential model.
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Figure 4.3.3: Front view of the mesh decomposition

4.3.3 Electrochemistry Calculation for the Two Potential Model

Electrochemistry model and equations are changed compared to openFuelCell, in order

to take into account potential distributions. Since only anode is the active electrode, there is

a discontinuity in the potential �eld on its surface. As stated, this jump coincides with the

boundary between two new region meshes. Two potential model is posed as potentiostatic

problem, with potential on the anode side (top) set to zero, while on the bo�om a prescribed

voltage V is aplied. Hence, voltage drop on the anode boundary can be calculated as a dif-

ference between surfaces of electrolyte and anode. Or, if described in terms of two potential

model decomposition—voltage drop is the di�erence between adjacent cell faces on top and

bo�om mesh. �is way the equation for potential jump ∆Φ simply becomes:

∆Φ = Φbottom−Φtop. (4.3.1)

Ideal potential is obtained from the same equation as in the regular openFuelCell,

equation (3.2.10), and the anode overpotential is calculated as folllows[15]:

η = E−∆Φ. (4.3.2)

Since thin electrode assumption was used, these parameters are de�ned as localized, surface

values on the interface between top and bo�om region mesh.

�e equation above is valid for a case with only one jump across the fuel cell. It is a mod-
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i�ed version of a Kircho�-Ohm relation and when rearranged shows that ideal cell voltage

is equal to all potential di�erences in the cell: E = ∆Φ+η . �is can be seen in Figure 4.3.1

where the solid line represents open circuit voltage with no current drawn and no overpoten-

tial. When the circuit is closed, current is drawn and losses in solids become present (they

cause slopes in the graph—they are ohmic losses due to conducting charge, see section 4.3.4

below), just as overpotential η further reduces output voltage when compared to the ideal

case.

Another simpli�cation, the use of the Tafel equation (equation (2.7.7)), provides current

density values that are function of exchange current density and overpotential. �is equation

is valid for high current densities and high overpotential values, which has been taken as an

acceptable assumption[16] for SOFCs:

i = i0eαnFηa/(RT ). (4.3.3)

�is equation calculates current density on the boundary between anode and electrolyte,

and is a simpli�cation when compared to the openFuelCell model. �ese boundary values

are used in the same way as was before to set the mass and species boundary conditions.

�e di�erence is that in this model mapping from bo�om/top region to the air/fuel is needed.

Furthermore, current density is used for se�ing boundary conditions on top and bo�om region

potential �elds. Neumann boundary conditions (�xed gradient) are de�ned on the boundary

corresponding to the anode-electrolyte interface as:

∂Φ

∂n
=− i

σ
. (4.3.4)

In this equation σ is the region’s electrical conductivity. It is calculated for both regions

as function of temperature according to[17] :

Anode σ =(2.98e−5 exp−1392/T )−1

Cathode σ =(8.11e−5 exp600/T )−1
(4.3.5)

Region that contains electrolyte within it (in present case that is the bo�om) causes another

discrepancy with reality because equations for σ used for conductivity calculation are ob-

tained for anode and cathode materials. �ey do not represent conductivity in electrolyte
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accurately (Figure 4.3.4). However, due to the thinness of electrolyte when compared to elec-

trode sizes, this was presumed to be a valid assumption. �is is also true for metallic inter-

connects.

Figure 4.3.4: Electrical conductivity for SOFC anode, cathode and electrolyte (σ =

(2.94e−5 exp10350/T )−1). Although the di�erence is substantial, electrolyte thickness is sig-

ni�cantly smaller than one of the electrodes.

Finally, with top and bo�om mesh having �xed values prescribed on one side (set at the

beginning of a calculation) and having prescribed gradient (function of current density) on

the side corresponding to anode-electrolyte interface, potential �elds can be solved for. Since

there are no volumetric source terms for potential �elds in top and bo�om region, just as there

are no potential jumps or discontinuities, distribution can be calculated by solving Laplace

equations for each �eld.

∇ · (σ ∇Φ) = 0. (4.3.6)

Laplace equation solutions for potential �elds provide the distributions across two new

meshes, and calculate values on boundaries that are needed for determining jump values on

the interface. Conductivity σ shows how well does the material conduct charged particles

(it is the inverse of resistivity, Ω). When potential distribution is calculated this way, it sub-

stitutes the ohmic overpotential ηohm or the usage of term Ri in the Kircho�-Ohm relation,

equation (3.2.12).
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4.3.4 Solution Algorithm

Algorithm for solving equations is mostly the same as in the openFuelCell model, except

for the electrochemistry solution. Creating meshes, reading properties and initialization is

identical, with the addition of two new meshes. Di�erences for electrochemistry calculations

are listed below.

1. Temperature is mapped from global level to top and bo�om mesh is used for conduc-

tivity calculation.

2. Potential jump ∆Φ, equation (4.3.1) is calculated on zhe boundary between two meshes.

Overpotential ηa is obtained with equation (4.3.2).

3. From Tafel equation (4.3.3), current density is obtained on the active electrode boundary.

4. Current density serves for se�ing the boundary conditions for mass and species �ux, as

well as for se�ing the gradient for potential �elds.

5. Solving Laplace equation for �eld distributions on top and bo�om meshes.

6. Repeat until current density converges.

Boundary conditions for the two potential model are the as used in the openFuelCell

code, with the addition of boundary conditions for potential �elds. It was mentioned earlier

that the mode is potentiostatic, so overall cell voltage is prescribed. �at means that the

top and bo�om surfaces of a fuel cell have prescribed Dirichlet boundary conditions—anode

boundary potential equals to 0, while �xed value on the cathode is V , the operating voltage

of a fuel cell. On the outer boundaries, the fuel cell walls, zero gradient boundary conditions

are prescribed, and on the adjacent surfaces of top and bo�om mesh, Neumann boundary

conditions are set.

Finally, the rest of the electrochemical parameters and constants for electrochemistry cal-

culation (α , experimental values for calculating exchange current density i0, activation en-

ergy…) are based on experimental data from Leonide et al.[18]
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4.4 Summary

In this chapter two potential model, an addition to the openFuelCell model, has been pre-

sented. It is an a�empt for expanding the existing model with the ability to simulate potential

distribution in fuel cells, which can be important when designing the geometry. Although

some approximations were assumed, presented model can serve as a base for further research.

In the following chapter results obtained with the two potential model will be presented.
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Chapter 5

Model Validation and Results

5.1 Introduction

In the previous chapter the two potential model was introduced together with simpli�cations

and modi�cations that were added to existing openFuelCell model with it.

In this chapter, results for several fuel cell con�gurations will be presented, along the com-

parison with simulations obtained with the existing model and results from previous studies.

Furthermore, results will be put in physical context of SOFCs, and causes for discrepancies

between the existing and the new model data will be explained.

5.2 Cases Set Up

Before the analysis of the results, di�erent con�gurations of the used meshes will be described,

along with the numerical schemes and boundary conditions.

5.2.1 Meshes

In the openFuelCell repository several cases with varying geometry or boundary condi-

tions can be found. Four of them were re-purposed for the new model and the new mesh

decomposition. �ey are all structured, three-dimensional, boundary-��ed meshes compris-

ing of hexahedral cells.

�e simplest one, quickTest, is a co-�ow con�guration that has sets of three channels, for
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air and fuel each (Figure 4.3.3). It is a mesh with 49920 cells, mostly used during model

development and comparison. �e three remaining meshes are larger, with 281216 cells in

total (not counting for the overlapping sub-meshes) and 13 channels for �uids on each side.

�ey are divided in three con�gurations: co-�ow, counter �ow, and cross �ow and it will be

shown that di�erent channel orientations (Figure 5.2.1) and �uid inlet orientations have a

major impact on fuel cell performance.

Figure 5.2.1: Orientation of channels in larger cases, suitable for co-, counter- and cross-�ow.

5.2.2 Boundary Condition and Numerical Schemes

Since the two potential model is an addition to openFuelCell code, existing initial and

boundary values were used here as well, and their values are presented below, with inlet and

outlet orientations depending on the fuel cell con�guration.

Boundary and initial conditions

• Inlet

– Velocity: uniform fixedValue with values of 1 m/s and orientation that varies

depending on con�guration,

– Pressure: zeroGradient,

– Density: for air is fixedValue 0.3516 and fuel is fixedValue 0.0305,
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– �ermal conductivity: for both air and fuel is set to fixedValue 1e-15 to

disallow outward di�usion,

– Species mass fractions: for air oxygen and nitrogen mimic atmospheric conditions

— uniform fixedValue equal to 0.233 and 0.767, respecively. In fuel,

values for hydrogen and water vapor are uniformValue 0.782 for H2 and

uniformValue 0.218 for water,

– Temperature: temperatures are set to be uniform but depend on the case, as will

be shown below.

• Outlet

– Pressure: it is set equal to standard conditions with fixedValue 101325 ,

– Remainder : other �elds are set to zeroGradient at the outlet of air and fuel

channels.

• Outer boundaries

– Pressure: it is set to zeroGradient, mimicking fuel cell walls that keep it pres-

surized,

– Temperature: losses through walls are not taken into consideration and boundary

conditions are set to zeroGradient,

– Remainder : other �elds are set to zeroGradient.

• Electrode-electrolyte boundaries (Explained more thoroughly in Section 4.3.3)

– Velocity: velocity between air/fuel and electrolyte is set to fixedValue

0 but during simulation sources/sinks change,

– Mass fractions: boundary condition set to be fixedGradient 0 but changes

during simulation,

– Remainder : Rest of the �elds have zeroGradient conditions.

• New decomposition for potential �elds
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– Bo�om: upper boundary has a fixedGradient 0 boundary condition, while

lower boundary is set to fixedValue V, where V is the value for voltage in our

case; zeroGradient conditions for conductivity sigma,

– Top: upper boundary isfixedValue 0, while lower boundary is set to befixed-

Gradient 0. Conductivity has all zeroGradient conditions,

Table 5.2.1 below lists numerical schemes used in two potential model.

5.3 Results

Results presented below are obtained by running the openFuelCell package with the new

two potential model included on three meshes for di�erent con�gurations.

5.3.1 Heat and Mass Transfer Results

When designing fuel cells there are several signi�cant parameters that should be optimized

for maximum e�ciency and best performance, with temperature and current density distribu-

tions being the most important ones. Inlet temperature of air and fuel was set to Tinlet = 860K

the and since this is a potentiostatic mode, prescribed voltage was Vbottom = 1.0V. Other

parameter combinations for all mesh con�gurations were simulated as well (shown in Fig-

ure 5.3.1) and presented ones proved to be a good representation for �eld distributions at

higher voltages and intermediate temperatures.

�ree con�gurations provided similar results, with expected di�erences characteristic for

their geometries. Temperature is just one of the parameters which is strongly a�ected by the

�ow con�guration, as can be seen in Figure 5.3.2. It can be seen that there is a more even

distribution for counter-�ow, with cross-�ow yielding greatest temperature gradients. Fur-

ther, cross-�ow exhibits highest temperature at the outlet corner. Although more uniform,

counter-�ow temperatures are slightly higher when compared with others, which is more

clear in Figure 5.3.3. �is temperature distribution due to �ow orientation is in accordance

with the results reported in studies[7][12]. Highest temperatures are observed in central re-

gions, due to heat generation, while lower temperatures due to gases acting as coolants are

near the inlets. Further, it can be seen that temperatures increase along channels because of

Faculty of Mechanical Engineering and Naval Architecture 59



Tibor Bešenić Master’s �esis

Table 5.2.1: Two potential model numerical schemes

Time schemes

default steadyState

Gradient schemes

default Gauss linear

grad(p) Gauss linear

Divergence schemes

default none

div(rhoCpPhi,T) Gauss upwind

div(phi,U) Gauss GammaV 0.2

div(phi,y) Gauss upwind

Laplacian schemes

default none

laplacian(k,T) Gauss harmonic corrected

laplacian(k,U) Gauss GammaV 0.2

laplacian((rho | A(U)),p) Gauss linear corrected

laplacian(diff,y) Gauss harmonic corrected

laplacian(gamma,y) Gauss harmonic corrected

laplacian(sigma,potBottom) Gauss harmonic corrected

Interpolation schemes

default - cell linear

default - regions harmonic

interpolate(T) harmonic

interpolate(k) harmonic

interpolate(rho) harmonic

Surface normal gradient schemes

default corrected
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Figure 5.3.1: Variation of temperature and voltage for di�erent cases con�gurations.

the exothermic reactions that are more intense where reactants are more abundant. More

uniform distribution is crucial, since materials are sensitive to high gradients at high temper-

atures. �erefore it is bene�cial that the spanwise gradients are rather small when compared

to the streamwise di�erences.

Nernst potential, the theoretical maximum thermodynamic potential that can be obtained

is temperature-dependent, but is even more is a�ected by reactant concentrations. It can

be seen that performance degrades from gas inlets towards outlets, Figure 5.3.4, as fuel and

oxygen are depleted and water is created. In case of cross-�ow orientation, the corner nearest

to inlets has the highest potential, due to abundance of reactants.

Knowing the local current density is of great interest when analyzing fuel cell geometry

or designing a new one. Values on electrolyte surface can be seen in Figure 5.3.5. Local

variations of current density associated with the presence of the channels and ribs can be

observed and explained as the coupled e�ect of charge, heat, and mass transfer. Since the

Butler-Volmer equation depends on temperature and indirectly on mass fractions, their joint

e�ect in�uences current density distribution.

In Figure 5.3.6 local current density values for the electrolyte cross sections can be seen.

�ey decrease with a steady slope from inlet towards outlet in streamwise direction (note that
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a) b)

c)

Figure 5.3.2: Temperature distributions on anode surface for a) co-�ow, b) counter-�ow and

c) cross-Flow. Solid arrows show the direction of fuel, while hollow arrows show the direction

of air �ow.

for counter-�ow fuel inlet is on the opposite side), with great in�uence of perpendicular chan-

nels (see checkered pa�ern in 5.3.5.b) in case of cross-�ow, causing oscillations. �e co-�ow

case has somewhat higher current density, which is in agreement with achieved higher tem-

peratures. In spanwise cross section, signi�cant oscillations can be seen for co- and counter-

�ow con�gurations as well, with cross-�ow oscillations being slightly smaller.

Reactant mass fractions have a major impact on reaction kinetics. First, we can consider

the channels and pressure in them. Clearly, pressure is highest at the inlets and decreases

towards outlets. Figure 5.3.7 shows fuel pressure distribution on anode. �e pressure mostly

changes along the streamwise direction (co- and counter-�ows), but in case of the cross-�ow,

changes in spanwise direction are also visible. �ey are present due to changes in the gas

composition, mixture densities and temperature changes.
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Figure 5.3.3: Temperature distributions across the cell

Mass fractions themselves indicate useful information about processes in fuel cell. As

expected, Figure 5.3.8 show that mass fractions generally decrease going from inlet towards

outlet. Cross sections o�er more informations: Figure 5.3.10.a shows streamwise hydrogen

mass fractions declining in a near-linear fashion, and Figure 5.3.10.b show spanwise oscilla-

tions due to channels. Spanwise oscillations are relatively small in comparison to the overall

reduction from inlet to outlet, with counter-�ow values slightly lower due to higher utilization

and be�er performances (thus higher temperature as well). Hydrogen is depleted in reaction

and its mass fraction decreases along the channel. In case of high current densities and fuel

utilization, if geometry is not optimized mass fractions can drop to zero and lead to fuel cell

starvation.

On the other side, oxygen levels also drop along the channels, and although overall de-

cline is not as big as with the hydrogen, relative oscillations here are considerably bigger.

Peaks in concentrations match the cathode volume above channels, where reaction rates are

higher and oxygen can permeate more easily. Troughs correspond to the volume not directly

adjacent to channels, yielding high oxygen concentration area. Hence, oscillations are caused

by geometry of electrodes, in particular by their thickness. Anode is thicker and in it hy-

drogen can di�use more easily and distribute more evenly, thus lowering the �uctuations (in

Figure 5.3.15 thicknesses of top and bo�om meshes can be compared). �inner cathode does

not allow enough oxygen to permeate to smooth the oscillations. However, thicker cathode
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a) b)

c)

Figure 5.3.4: Nernst potential on electrolyte surface for a) co-�ow, b) counter-�ow and c)

cross-�ow.Solid arrows show the direction of fuel, while hollow arrows show the direction of

air �ow.

in this anode-supported system can lead to overall e�ciency decline, overall deterioration of

mass transport and higher thermal stresses[12].

Combined plot of current density and mass fractions in counter-�ow con�guration is

shown in Figure 5.3.12. In the spanwise direction, the impact of previously described oxy-

gen distribution can be seen: hydrogen mass fractions are nearly linear, but oxygen mass

fractions vary. �is variation (mass transfer limitation) causes lowering and oscillation of the

current density, and subsequently temperature. Another reason for the oscillations are the

heat transfer e�ects—heat sources above the channels (where reactions are more fervent) are

more intense when compared to the volume of the ribs. �is can be seen in Figure 5.3.3.b,

with higher temperatures under channels and lower under ribs.
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a) b)

c)

Figure 5.3.5: Current density on electrolyte surface for a) co-�ow, b) counter-�ow and c)

cross-�ow
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Figure 5.3.6: Current density plots across electrolyte in streamwise and spanwise direction

for co-�ow counter-�ow and cross-�ow.
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a) b)

c)

Figure 5.3.7: Fuel mesh pressures for a) co-�ow, b) counter-�ow and c) cross-�ow. Solid

arrows show the direction of fuel, while hollow arrows show the direction of air �ow.

5.3.2 Potentials

Potential �elds were solved on two region meshes, top and bo�om. Conductivity distribution

is a function of temperature, and potential depends on it. Because of di�erent materials and

their properties for anode and cathode (top and bo�om respectively), di�erent formulas were

used (see Section 4.3.3, Figure 4.3.4). �e bo�om conductivity is inversely proportional to

temperatures, and has the highest values where temperatures are the lowest. Opposite is

valid for the top mesh, where conductivity is directly proportional to temperature.

Potential �elds on these two ”child meshes” are shown in Figures 5.3.13 and 5.3.14. It

can be seen that changes in potential �elds are caused by reactions occurring more intensely

under the channels, with moderate in�uence of zeroGradient boundary conditions on

outer boundaries. Extremes in potential �elds are of opposite sign (direction) for bo�om and

top mesh. On bo�om mesh potential rises above nominal value (in present cases 1V) and on

top it drops below 0V which is set on the boundary. �is is due to the implemented model
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a) b)

c)

Figure 5.3.8: Hydrogen mass fractions on fuel mesh for all three con�gurations. Solid arrows

show the direction of fuel, while hollow arrows show the direction of air �ow.

with potentials calculated based on the ”Kircho�-Ohm equation” and the greater the values

of local current densities are, bigger the potential drop between adjacent points on meshes is.

Figure 5.3.15 shows cross sections of top and bo�om meshes with potential distributions.

It can be seen that solving the Laplace equation results in smooth transitions from prescribed

�xed boundary values to �xed gradients due to calculated current densities. In regions above

and below channels, where reactions are more vivid and current densities are high, potential

gradients are higher. �is also corresponds with volume between non-conducting channels,

so iso-potential surfaces are more dense here. �is is important when analyzing existing or

designing new geometries, since bad channel layout can, except for mass transfer problems,

cause undesirable potential gradients, which in turn lead to high current densities in ribs

and accompanying heat sources because of Joule heating. In the presented model these heat

sources were not modeled, but nonetheless potential distributions can serve as a guide for
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Tibor Bešenić Master’s �esis

Figure 5.3.9: Oxygen mass fractions on fuel mesh for all three con�gurations. Solid arrows

show the direction of fuel, while hollow arrows show the direction of air �ow.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.01 0.02 0.03 0.04 0.05

M
a
s
s
 f
ra

c
ti
o
n

x distance (m)

Streamwise direction

a)

YH2 co
YH2 cross

YH2 counter
0.48

0.49

0.5

0.51

0.52

0.53

0.54

0 0.01 0.02 0.03 0.04 0.05

M
a
s
s
 f
ra

c
ti
o
n

y distance (m)

Spanwise direction

b)

YH2 co
YH2 cross

YH2 counter

Figure 5.3.10: Hydrogen mass fractions across fuel mesh.
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Figure 5.3.11: Oxygen mass fractions across fuel mesh.
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Figure 5.3.12: Combined current density and mass fractions across counter-�ow mesh

geometry quality assessment.

Experimental data for SOFC potential �elds are scarce, and existing models for SOFC do

not include potential distributions in whole cell, making direct comparison di�cult. Data

provided by Meng and Wang[19], although being for PEM fuel cells, can serve for a rough

comparison, since the two potential model for SOFCs at present has several assumptions.

In Figure 5.3.16 a section of proton exchange membrane fuel cell can be seen. Electronic

potential �eld distribution is presented on anode and cathode solids that relate to top and
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a) b)

c)

Figure 5.3.13: Potential distribution on top mesh, bo�om view, for a) co-�ow, b) counter-�ow

and c) cross-�ow

bo�om regions in two potential model. When compared with Figure 5.3.15, it can be seen

that distributions are analogous, albeit with di�erent magnitudes. Orientations of potential

rise and decline through the solid are the same, but changes for the PEMFC model are bigger

by an order of magnitude. �is is probably because of disparate formulas for the conductivity

calculation, although some of it might be due to assumption in the two potential model that

neglects e�ect of electroyte and interconnect conductances.

5.4 Validation

While two potential model was being developed, several assumptions were made, most signif-

icant among them being the use of Tafel equation and presuming a passive cathode (see Sec-

tion 4.3.1). Simplifying the model this way led to di�culties with validation: current models

for solid oxide fuel cells do not have both of these assumptions, and the present two potential
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a) b)

c)

Figure 5.3.14: Potential distribution on bo�om mesh, top view, for a) co-�ow, b) counter-�ow

and c) cross-�ow

model is not directly comparable with them.

Furthermore, when running simulations with ranges of input parameters such as inlet

temperature and boundary potential, the model has sometimes shown some instability and

diverged under lower potentials and high temperatures. Figure 5.4.1 shows maximum inlet

temperatures for used potentials. Simulations for work-points with high potentials and high

temperatures (that correspond to real SOFCs at ideal working conditions) converged suc-

cessfully, but when decreasing the potential, maximum temperatures that simulations con-

verged dropped below range that SOFCs can operate in. However, for high-temperature,

high-potential ranges, i−V curve derived from results provides characteristic shape, Fig-

ure 5.4.2. �is suggests that the model behaves in accordance with predictions in presence of

high voltages—simulating high activation overpotential region. Linear region represents in-

creasing losses due to higher ohmic losses (calculating potential �elds). Unfortunately, at low

voltages and high current densities characteristic mass transfer losses could not have been
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a)

b)

c)

d)

e)

f)

Figure 5.3.15: Potential distributions across top (right) and bo�om (le�) mesh, for a), d) co-

�ow; b), d) counter-�ow; c), e) cross-�ow. Figures are clipped do not show side boundaries.

Figure 5.3.16: Potential distributions on anode and cathode of a PEMFC mesh[19]

simulated, because when lowering voltages at constant temperatures, model started diverg-

ing (presented in Figure 5.4.1). Lowering temperatures even further, to achieve convergences

as low voltages as well, would decrease working parameters below ones stated for SOFC.

In order to obtain the results that could be used for the two potential model validation, reg-

ular openFuelCell model was modi�ed to match the two potential model (denoted 2pot):
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Figure 5.4.2: i-V curve for the two potential model

cathode has been made passive, and simple kinetics with Tafel equation were implemented.

�ird model used for comparison was regular openFuelCell model. Figure 5.4.3 shows

resulting current densities for several voltage and temperature values. Modifying the open-

FuelCell code (denoted oFCm) caused instability with respect to inlet temperatures. With

limitations set to both oFCm and 2pot models, appropriate comparison proved hard to acieve.

However, all models displayed plausible and physically correct distributions similar to ones
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in Section 5.3.1, but for similar output currents displayed in Figure 5.4.3, input temperatures

had to vary signi�cantly. It can be seen that the two potential model had to be run gener-

ally at lower temperatures, which is in accordance with declining maximum temperatures in

Figure 5.4.1.
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Figure 5.4.3: Comparison of three models: openFuelCell (oFC), modi�ed openFuel-

Cell (oFCm) and two potential model (2pot). Inlet temperature and voltage are input param-

eters, with current density as result

Overall, resulting current densities varied too much to draw any concise conclusion as to

whether and in which conditions the new two potential model is valid.

5.5 Closure

In this chapter results obtained with the newly-developed two potential model were pre-

sented. Despite the assumed simpli�cations, it was shown that results for mass and heat

transfer are analogous to results from previous studies,[7][6][12][11] and that results can be

described by the same physical phenomena occuring in fuel cells. Furthermore, potential dis-

tributions match those reported by Meng and Wang[19], with magnitudes of potential �eld

changes lower, probably due to di�erent calculation parameters such as conductivity.
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Although being similar and showing the same gradients and shapes as the existing mod-

els, absolute values generated by the two potential model vary signi�cantly and cannot be

considered as accurate. Currently, it is unclear whether the cause is in model assumptions

or there errors in the code, with former being more likely since results showed a similar-

ity with existing data. It has been proposed that model should be modi�ed for simulation

of low-temperature SOFCs or repurposed for simulating high-temperature PEMFCs. First of

these propositions goes along the current model instabilities at high temperatures, and both

of them require further modi�cations of the model.

Presented model, although introduces some approximations, nonetheless takes into ac-

count some of the phenomena that was ignored by previous studies and provides an option to

activate detailed simulation of potential �eld. Further analysis and comparison is still needed,

to fully evaluate this models applicability. �e proposed change of modeled fuel cell type is

probable, since a�er this study doubts in validity of presented approach with Tafel equation

and passive cathode for SOFCs are raised. However, the two potential model can still be used

for examining potential �elds for new geometries and assessment of possible heat sources,

along with the previously available insight in mass and heat transfer phenomena.

Additional improvements for model are still needed, and in this stage the two potential

model could serve as basis for further model developments.
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