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… 

At this point they came in sight of thirty or forty windmills that there are on that plain, and as 

soon as Don Quixote saw them he said to his squire, “Fortune is arranging matters for us better 

than we could have shaped our desires ourselves, for look there, friend Sancho Panza, where 

thirty or more monstrous giants present themselves, all of whom I mean to engage in battle and 

slay, and with whose spoils we shall begin to make our fortunes; for this is righteous warfare, 

and it is God’s good service to sweep so evil a breed from off the face of the earth.” 

“What giants?” said Sancho Panza.  

“Those thou seest there,” answered his master, “with the long arms, and some have them nearly 

two leagues long.” 

“Look, your worship,” said Sancho; “what we see there are not giants but windmills, and what 

seem to be their arms are the sails that turned by the wind make the millstone go.” 

… 

Miguel de Cervantes: Don Quixote, Part I 
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SAŽETAK 
Jedan je od glavnih izvora buke i vibracija u vozilima je motor s unutrašnjim izgaranjem koji 

je s karoserijom vozila povezan s nosačima motora. Dinamička krutost nosača motora,  

kao pokazatelj odziva na dinamičku uzbudu, ovisna je o frekvenciji i amplitudi uzbude te 

temperaturi okoline. 

U okviru ovoga rada detaljno su opisani elastomerni i hidraulički nosači motora s unutrašnjim 

izgaranjem s posebnim naglaskom na izradu matematičkog modela kojim je moguće opisati 

nelinarnu ovisnost dinamičke krutosti nosača motora o frekvenciji uzbude. Proučeno je deset 

različitih matematičkih modela i za daljnje proučavanje odabran je model oscilatora s tri mase 

koji posjeduje četiri stupnja slobode gibanja. Dinamičku krutost odabranog modela moguće je 

opisati s 15 različitih linearnih koeficijenata. Proučavana dinamička krutost je dinamička 

krutost definirana silom prenesenom u oslonce (engl. cross point dynamic stiffness). 

Za matematičke modele definiran je proces optimiranja njhovih parametara. Također, 

napravljena je verifikacija svojstva frekvencijske ovisnosti odabranog matematičkog modela u 

programskim paketima koji se često upotrebljavaju u svrhu simuliranja dinamike krutih ili 

fleksibilnih tijela koji su međusobno vezani u kinematičke lance (engl. multibody dynamics).  

Nakon utvrđivanja da je s odabranim matematičkim modelom moguće opisati frekvencijsku 

nelinearnost dinamičke krutosti, matematički model implementiran je u cjeloviti simulacijski 

model motora s unutrašnjim izgaranjem u programskom paketu AVL Excite Power Unit.  

Za simulirani motor s unutrašnjim izgaranjem dostupna su mjerenja odziva nosača motora koja 

su uspoređena s dobivenim rezultatom simulacija. Rezultati i mjerenja odziva nosača motora 

prikazani su u obliku brzina. 

Ključne riječi: izolacija vibracija motora s unutrašnjim izgaranjem, nosači motora s 

unutrašnjim izgaranjem, frekvencijski ovisna dinamička krutost, matematički model dinamičke 

krutosti, optimiranje parametara
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SUMMARY 
One of the main sources of noise and vibrations in the passenger car is internal combustion 

engine which is coupled with the car chassis by using elastomeric or hydraulic engine mounts. 

To describe dynamic response of the engine mounts, the dynamic stiffness is used. Engine 

mount dynamic stiffness behavior is frequency, amplitude and temperature dependent.   

Emphasis of this study is on mathematical modeling of the dependency on frequency of the 

engine mount cross point dynamic stiffness. During this study 10 different mathematical models 

were considered and for further investigation triple mass oscillator was chosen based on 

optimization results. Triple mass oscillator is described with 15 different linear variables. 

For all mathematical models the optimization procedure for finding the mathematical model 

parameter values is defined. Verification of chosen mathematical model is made in the 

commercial programs that are usually used for flexible multibody dynamics simulation. 

After mathematical model verification process, the chosen mathematical model was 

implemented in the internal combustion engine simulation model prepared in AVL Excite Power 

Unit environment. For simulated IC engine, measurements of engine mounts responses are 

available and simulation results are compared with the available measurements in form of 

engine mounts velocities.  

Key words: IC engine vibration isolation, engine mounts, dynamic stiffness frequency 

dependency, dynamic stiffness mathematical model, parameter optimization
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PROŠIRENI SAŽETAK 
Ovaj diplomski rad izrađen je u suradnji s tvrtkama AVL - AST d.o.o. iz Zagreba i AVL List 

GmbH iz Graza. Cilj diplomskog rada je doprijeniti razvoju matematičkog modela koji opisuje 

frekvencijski ovisnu dinamičku krutost nosača motora i implementirati odabrani matematički 

model u simulacijski model motora s unutrašnjim izgaranjem u programskom paketu  

AVL Excite Power Unit [1]. 

U proizvodnji modernih konvencionalnih automobila povećanje udobnosti i smanjenje emisija 

buke glavni su konstrukcijski ciljevi uz smanjenje potrošnje goriva za koju je izravno vezana 

emisija CO2. Glavni izvori buke i vibracija u putničkom prostoru vozila, a prikazani su na  

slici 1.  

 

Slika 1. Izvori buke i vibracija na putničkom vozilu. 

Motor s unutrašnjim izgaranjem sa svojim pomoćnim sustavima (visokotlačna pumpa za 

gorivo, električni generator, itd.) jedni su od glavnih izvora buke i vibracija u vozilu. 

Za kontrolu razine prenesenih vibracija u putnički prostor vozila bitno je pravilno projektirati 

oslonce odnosno nosače motora s unutrašnjim izgaranjem. Nosači motora trebaju imati 

dovoljno veliku krutost da sprječavaju velike pomake motora u odnosu na karoseriju, a s druge 
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strane trebaju imati svojstvo unutarnjeg prigušenja kako bi prijenos vibracija i buke u putnički 

prostor bio sveden na minimum. 

Bitniji konstrukcijski ciljevi za projektiranje nosača motora su [6]: 

1. Spriječiti zamorni lom kućišta motora i mjenjača na mjestima prihvata na karoseriju 

automobila koji bi se dogodio kada bi motor i mjenjač bili kruto vezani na karoseriju. 

2. Svojstvo unutarnjeg prigušenja kako bi se smanjila amplituda prenesenih vibracija i 

buke u putnički prostor vozila. 

3. Smanjenje efekta pojačavanja buke koji se javlja u slučaju prijenosa buke preko 

karoserije (nosive konstrukcije) vozila (engl. structure-borne noise). 

4. Sprječavanje prijenosa sile uslijed naglog (udarnog) opterećenja kotača sa karoserije 

vozila na motor. 

5. Sprječavanje velikih relativnih pomaka između karoserije vozila i motora uslijed 

reakcije na izlazni moment motora na strani mjenjača. 

6. Ograničavanje pomaka motora uslijed sila inercije u situacijama naglog ubrzavanja i 

naglog zaustavljanja vozila. 

U motornim vozilima uglavnom se koriste hidraulički i elastomerni nosači motora. Hidraulički 

nosači motora su učinkovitiji u izolaciji vibracija motora, ali i složenije konstrukcije u odnosu 

na elastomerne nosače motora. 

Na temelju iskustva i predznanja na području vibracija moguće je definirati idealizirani nosač 

motora koji ima veliki iznos krutosti i veliki iznos viskoznog prigušenja kada je frekvencija 

uzbude manja od 50 Hz, a amplituda pomaka motora veća od 0,3 mm. Za uspješno izoliranje 

visokih frekvencija uzbude (većih od 50 Hz) koji uzrokuju amplitude pomaka motora manje od 

0,3 mm poželjno je svojstvo niže krutosti i nižeg iznosa viskoznog prigušenja. 

Također, na temelju definiranih konstrukcijskih zahtjeva može se zaključiti da je nepohodno da 

dinamička krutost nosača motora bude ovisna o frekvenciji uzbude i amplitudi pomaka. 

U okviru ovoga rada promatrana je samo ovisnost dinamičke krutosti o frekvenciji uzbude. 

U numeričkim simulacijama koje su postale standardni dio procesa razvoja u automobilskoj 

industriji, potrebno je definirati matematičke modele za opisivanje ponašanja stvarnih sustava. 

Stoga, za implementaciju svojstva frekvencijske ovisnosti dinamičke krutosti nosača motora 

u numeričke simulacije potrebno je definirati matematički model kojim je moguće opisati 

frekvencijsku ovisnost. 
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Promatrana frekvencijski ovisna dinamička krutost je dinamička krutost definirana silom 

prenesenom u oslonce (engl. cross point dynamic stiffness), a prikazana na slici 2.   

Definirana je kao omjer sile prenesene u oslonce FT i pomaka x1 mase me koja u ovome slučaju 

predstavlja masu motora s unutrašnjim izgaranjem. 

 

Slika 2. Dinamička krutost definirana sa silom prenesenom u oslonce 
(engl. cross point dynamic stiffness). 

U okviru rada postavljeno je deset različitih matematičkih modela, a za daljnje proučavanje 

odabran je model oscilatora s tri mase koji posjeduje četiri stupnja slobode gibanja (4 SSG). 

Odabrani matematički model prikazan je na slici 3. Za definiranje matematičkog modela 

potrebno je optimirati 15 različitih varijabli (c1, d1, c2, d2, m1, c3, d3, c4, d4, m2, c5, d5, m3, c6, d6). 

 

Slika 3. Matematički model oscilatora s tri mase (4 SSG). 
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Pored predstavljanja različitih matematičkih modela u okviru rada definiran je i postupak 
optmiranja parametara matematičkih modela.  

Funkcija cilja definirana je kao norma razlike teoretski izračunate prenesene sile u oslonce i 

stvarne prenesene sile u oslonce. 

Korišteni optimizacijski algoritam je Sequential Quadratic Programming (SQP) uz funkciju 

‘fmincon’ u programskom paketu MATLAB®. Rezultati procesa optimiranja prikazani su u 

poglavlju 2.3., a reprezentativni primjer hidrauličkog nosača čija je nelinearna dinamička 

krutost opisana matematičkim modelom oscilatora sa tri mase prikazan je na slici 4. 

Realni dio kompleksne vrijednosti dinamičke krutosti predstavlja krutost nosača, a imaginarni 

dio predstavlja svojstvo unutarnjeg prigušenja nosača. 

 
Oscilator s tri mase (4 SSG) 

fobj = 128,8 N 

c1 = 54,18 N/mm 

d1 = 0,1 Ns/mm 

c2 = 0 N/mm 

d2 = 2,087 Ns/mm 

m1 = 200 kg 

c3 = 1545,4 N/mm 

d3 = 13,82 Ns/mm 

c4 = 28838 N/mm 

d4 = 7,18 Ns/mm 

m2 = 7,23 kg 

c5 = 217,1 N/mm 

d5 = 0,0209 Ns/mm 

m3 = 0,01 kg 

c4 = 99,51 N/mm 

d4 = 1,815 Ns/mm 

 
Slika 4. Dinamička krutost hidrauličkog nosača motora. 
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Za odabrani matematički model napravljena je i verifikacija kako bi se vidjela mogućnost 

korištenja matematičkog modela u programskim paketima koji se često upotrebljavaju u svrhu 

simuliranja dinamike krutih ili fleksibilnih tijela koji su međusobno vezani u kinematičke lance 

(engl. multibody dynamics). Verifikacija je napravljena u programskim paketima MSC Adams, 

MSC Nastran i AVL Excite Power Unit. Rezultati verifikacije prikazani su na slici 5.

 

Slika 5. Rezultati verifikacije dinamičke krutosti oscilatora s tri mase. 

Nakon uspješne verifikacije i zaključka da je odabrani matematički model moguće koristiti u 

svrhu opisivanja ovisnosti dinamičke krutosti o frekvenciji, matematički model implementiran 

je u programski paket AVL Excite Power Unit u cjeloviti simulacijski model Otto motora.  

Svrha simulacijskog modela je proučavanje utjecaja vibracija na pojedine komponente motora 

kao npr. koljenastog vratila ili glavne i leteće ležajeve. Također, svrha simulacijskog modela je 

vidjeti ukupni iznos prenesenih vibracija preko nosača motora na nosivu konstrukciju odnosno 

karoseriju vozila. Topologija simulacijskog modela prikazana je na slici 6. 
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Slika 6. Topologija simulacijskog modela. 

Simulacijski model se sastoji od dva hidraulička nosača motora i jednog elastomernog nosača 

koji je postavljen na mjenjačkoj kutiji. Detalji simulacijskog modela nisu prikazani zbog 

ugovora o povjerljivosti korištenih informacija. 

Nakon postavljanja simulacijskog modela i provedenih simulacija dobiveni rezultati simulacija 

uspoređeni su s rezultatima mjerenja, a usporedba rezultata prikazana je u poglavlju 4.4. 

U rezultatima se uspoređuju brzine na mjestima mjerenja odziva nosača motora. 
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Prikazane su usporedbe ukupne sume svih redova brzine odziva, 2. reda brzine odziva i 4. reda 

brzine odziva nosača motora. 

Nakon usporedbe rezultata zaključak na kraju rada je da je moguće pomoću oscilatora s tri mase 

uspješno opisati frekvencijski ovisnu dinamičku krutost motora, te da su rezultati odziva 

simulacijskog modela u usporebi s mjerenjima prihvatljivi. Prema tome, koristeći oscilator s tri 

mase u simulacijskom modelu motora s unutrašnjim izgaranjem moguće je dobiti upotrebljive 

rezultate odziva nosača motora na uzbudu u obliku tlaka plinova u svakome cilindru.  

Na kraju rada izneseni su neki prijedlozi za daljnja istraživanja i unapređenja modela nosača 

motora. Implementacija drugog važnog svojstva nosača motora bila bi korisna za unapređenje 

matematičkog modela, a to je definiranje ovisnosti dinamičke krutosti o amplitudi pomaka mase 

koja predstavlja masu motora.
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1. Introduction 
This thesis is done in cooperation with AVL-AST d.o.o. from Zagreb and AVL List GmbH 

from Graz in purpose of understanding and applying frequency dependency of engine mounts 

in powertrain simulation procedure. 

1.1 Background 
In modern vehicle design it is necessary to achieve appropriate NVH (Noise – Vibration – 

Harshness) to fulfill noise level regulation restrictions.  Vibration has always been an important 

issue closely related to reliability and quality, while noise is of increasing importance to vehicle 

users and environmentalists. Harshness, which is related to the quality and transient nature of 

vibration and noise, is also strongly linked to vehicle refinement. Controlling vibration and 

noise in vehicles presents a severe challenge to designers because unlike on many other machine 

systems, motor vehicles have several sources of vibration and noise which are interrelated and 

speed dependent [1]. 

Using traditional physical prototyping and testing is time consumable and expensive so it is 

gradually being replaced by virtual prototyping and simulations. The main advantage of virtual 

prototyping and simulation is the possibility to develop couple of different design models and 

to compare their behavior without producing physical prototype. Also, once the virtual 

prototype is developed the additional cost of further analysis is usually very low compared to 

building a new physical prototype. 

Internal combustion engine is usually coupled with the chassis by using hydraulic or 

elastomeric engine mounts. Vibration response of engine mounts is frequency, amplitude and 

temperature dependent. To make a simulation of the NVH behavior of the internal combustion 

engine it is necessary to know engine mount dynamic stiffness. For more detailed analysis, 

chassis compliance should be involved in simulation model. Involving chassis compliance is 

not in the scope of this thesis. 

Engine mounting systems have been successfully used to isolate the driver and passenger from 

both noise and vibration generated by the engine. However, there is still need for further 

improvements of the performance of engine mounting stiffness following two reasons. One 

reason is the requirement of vibration and noise level isolation in passenger cars. Second reason 

is that the modern car designs have a trend for lighter car bodies and more power-intensive 

engines [3].  
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1.2 Noise and vibration study in vehicles 
Energy that influences on driver comfort in passenger car is transmitted through two different 

types of paths: structure-borne and noise-borne paths. Energy due to vibration is transmitted 

through structural paths and can be transformed to noise. One of the major source of structural-

borne path in passenger car is internal combustion engine. Studying structure-borne and noise-

borne paths is beyond the scope of this thesis, but it is important to emphasize that engine and 

transmission mounts on which engine is supported have a big influence on transmitted engine 

originating vibration into the vehicle interior. 

In figure 1 major vehicle components and structure-borne paths that influence on vehicle 

comfort are shown. 

 

Figure 1. Main vibration and noise sources in vehicle 

Vibration sources are characterized by their time and frequency domain characteristics. In 

automotive engineering, most vibration sources produce continuous disturbances as distinct 

from shocks and short duration transients encountered in some machine systems. They can 

therefore be categorized principally as either periodic or random disturbances. The former are 

the easiest to define and originate from the engine or transmission, while random disturbances 

arise from terrain inputs to wheels.  
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1.3 Engine vibration source 
Vibrations of internal combustion engine is caused by cyclic acceleration of reciprocating 

components and the rapidly changing gas pressure which occurs throughout each cycle of 

operation. Both sources of vibrations in internal combustion engine generate three kinds of 

vibrations which are transferred to the engine mounting: 

1. Vertical and/or horizontal shaking 

2. Fluctuating torque reaction 

3. Torsional oscillation (vibration) of crankshaft 

 

Figure 2. Engine vibration caused by cyclic accelaration of reciprocating componets and gas 
pressure in each cycle [4] 

Most of vibrations are transmitted to the engine mounts whose main task is to damp vibrations 

to prevent transmitting latter to chassis and to prevent engine large displacements, which means 

the mounts should be stiff enough. 

For the multi-cylinder engine, the components of the engine unbalanced forces depend on the 

number and arrangement of the engine cylinders.  

It is possible to consider internal combustion engine as a body with six DOF (degrees of 

freedom). Disturbances originating from internal combustion engine will excite the engine in 

various modes as shown in figure 3. For example, the torque caused by the firing pulse will 

cause engine pitch vibration. The frequency of the unbalanced disturbances are correlated to 

engine speed and depends on the number of cylinders in the engine, cycle stroke number and 

the engine speed. In inline four cylinder, four stroke engine, the frequencies of the fundamental 

disturbances are of the second order of the engine speed. This means that for speed range from 

900 – 6000 rpm corresponded frequency range is 30 - 200 Hz. 



Borna Kovarik  Introduction 

4 
 

 

Figure 3. Engine vibration modes [5] 

1.4 Design demands of the engine mounts 
Besides the primary function of engine mounts to support the weight of the engine, in [6] other 

design requirements for the engine mounts are defined as follows: 

1. To prevent fatigue failure of the engine gearbox support points which would occur if 

they were rigidly attached to the chassis or body structure. 

2. To reduce the amplitude of any engine vibration which is being transmitted to the body 

structure. 

3. To reduce noise amplification which would occur if engine vibrations were allowed to 

be transferred directly to the body structure. 

4. To reduce human discomfort and fatigue by partially isolating the engine vibrations 

from the body by means of an elastic media. 

5. To accommodate engine block misalignment and to reduce residual stresses imposed on 

the engine block and mounting brackets due to chassis or body frame distortion. 

6. To prevent road wheel shocks when driving over rough ground imparting excessive 

rebound movement to the engine. 

7. To prevent large engine to body relative movement due to torque reaction, particularly 

in low gear, which would cause excessive misalignment and strain on components such 

as the exhaust pipe and silencer system. 
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8. To restrict engine movement in fore and aft direction of the vehicle due to the inertia of 

the engine acting in opposition to the accelerating and braking forces. 

For fulfilling mentioned targets engineers have developed hydraulic and elastomeric engine 

mounts. 

According to [6] main focus in the design of the engine mounts is to provide large stiffness and 

large damping for low frequency and large amplitude excitations. Large amplitude excitations 

are considered excitations with amplitudes larger than 0,3 mm in a frequency range of 1 – 50  

Hz. Usually these excitations originate from engine idle, entire drivetrain response in driving 

condition and engine acceleration. At the same time, the engine mounts should low stiffness 

and low damping values to provide properly isolation of high frequency and small amplitude 

excitations. 

In figure 4 which shows force transmissibility through typical Voigt mode, the reason for high 

stiffness and high damping on low engine speeds requirement is shown. Force transmissibility 

is lower for high damping at low frequencies and for low damping at high frequencies. 

Frequency ratio r is defined as a ratio of the input load frequency and natural frequency of the 

mechanical system, and ordinate FT/F is defined as a ratio of the amplitude value of the 

transmitted force FT and input force FI. 

 

Figure 4. Transmissibility function 
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According to [7] and [8] ideal dynamic engine mount stiffness is represented in figure 5 and 

shows that engine mount stiffness should be frequency dependent. 

Since lower frequencies usually lead to a larger amplitude of displacement and higher 

frequencies lead to a smaller amplitude of displacement, the mounting system with an 

amplitude-dependent characteristic can also meet this requirement. The development of engine 

mounting systems has mostly concentrated on improvement in such frequency and amplitude 

dependent properties. 

 

Figure 5. Representation of ideal engine mount 

Lightly damped structures can produce high levels of vibration from low level sources if 

frequency components in the disturbance are close to one of the system’s natural frequencies. 

This means that well designed and manufactured sub-systems, which produce low level 

disturbing forces, can still create problems when assembled on a vehicle. In order to avoid 

these problems at the design stage it is necessary to model the system accurately and analyze 

its response to anticipated disturbances [1]. 

The general approach to vibration analysis as mentioned in [1] is to: 

a) develop a mathematical model of the system and formulate the equations of motion 

b) analyze the free vibration characteristics (natural frequencies and modes) 

c) analyze the forced vibration response to prescribed disturbances and 

d) investigate methods for controlling undesirable vibration levels if they arise. 
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1.5 Engine mounting system implementation – example 
A practical implementation of an engine mounting system for a four-cylinder diesel engine is 

shown in figure 6. It comprises two mass carrying mounts and two torque reacting tie bars – tie 

rods. Hydramount is passive hydraulic mount and hydrabush is elastomeric engine mount which 

is also passive. The hydramount is linked to the power unit by an aluminum bridge bracket and 

hydrabush is mounted on the gearbox side.  

Both tie bars have a small bush at the power unit, two torque unit ends and a large bush at the 

body end. The lower tie bar has its power unit end carried by a bracket attached to the sump 

and its body end attached to a subframe which also carries the vehicle suspension. The vertical 

stiffnesses of the mass carriers have very little effect on the torque performance of the system 

and can therefore be tuned for ride. The function of the hydramounts is of course to improve 

the ride. The tie bar fore and aft rates do not affect ride and can be tuned for the torque loading. 

 

Figure 6. Engine mounting system (courtesy of Rover Group Ltd) [1] 
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1.5.1 Elastomeric Engine Mounts 

Main advantages of elastomeric engine mounts are that they are compact, cost effective, 

maintenance free and designed to provide vibration isolation in three directions.  

In engine mount modeling and simulation for elastomeric engine mount usually the Voigt 

model is used as shown in figure 7a. Also, elastomer behavior can be described with Maxwell 

model as shown in figure 7b.  

 

Figure 7. a) Kelvin – Voigt model and b) Maxwell model which are usually used for 
describing elastomeric engine mount behavior 

Main limitations of elastomeric engine mounts is actual behavior of elastomeric mount which 

gives higher stiffness and higher damping values on higher frequencies which is opposite of 

earlier defined design target. It is designer’s job to make trade – off between low and high 

frequency behavior of elastomeric engine mount.  

 

Figure 8. Schematic representation of elastomeric engine mount [6] 
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1.5.2 Hydraulic engine mount 

According to [10] hydraulic engine mounts are divided into passive, semi-active or adaptive 

and active mounts. 

The passive engine mount consists of two chambers filled with fluid which is typically a mixture 

of ethylene glycol and water. Between two chambers are decoupler and inertia track. Schematic 

representation of a hydraulic engine mount is shown in figure 9.  

Upper chamber is bound with elastomeric structure and on the bottom by a steel plate on which 

the inertia track and decoupler are fixed. Elastomeric structure carries engine weight and acts 

as the main load carrying component, and an actuator of the fluid motion within the engine 

mount.  

Decoupler plate oscillates in a small intervals. Hydraulic mount limits the volume of fluids that 

can pass with low resistance between upper and lower chamber. When the decoupler plate 

touches the lower bottom in the cage, the fluid is restricted to pass through the inertia track 

which is the path with higher resistance. 

During small amplitude excitations the fluid passes through the decoupler, giving the mount 

low damping and stiffness characteristics which is good for high frequency excitations. For 

large amplitude excitations, the resistance and mass of the fluid passing through the inertia track 

increases the mount’s stiffness and damping characteristics which is good for low frequency 

excitations. In general the decoupler causes the mount to have the desired amplitude 

dependency. 
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a) 

 

b) 

Figure 9. a) Schematic representation of hydraulic engine mount  
b) Decoupler mechanism  

Semi active or adaptive engine mounts control hydraulic engine mount properties by using 

electromechanical devices. Changing properties such as the chamber compliance and inertia 

track length alter the dynamic characteristics of the mount [10]. 

Active hydraulic engine mount create counteracting dynamic force to suppress transmission of 

the system disturbance forces. A typical active mount consists of a passive mount (elastomer 

or hydraulic), force generating actuator, a structural vibration sensor and an electronic 

controller. Passive mounts are used to support the engine in the event of an actuator failure [10]. 
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1.6 Frequency response functions 
Frequency response function (FRF) is a mathematical representation of the relationship 

between the input and the output of a system and it is used to characterize dynamic behavior of 

the mechanical system. In the vibration and acoustic analysis different kind of frequency 

response functions are used as shown in table 2.  

For example, to measure response of engine mounting system dynamic stiffness is usually used 

and for performing modal analysis of some mechanical system accelerance frequency response 

function is usually used.  

Table 1. FRF commonly used in vibration and acoustic analysis 

Quantity Input quantities Relation 

Dynamic flexibility or Receptance 
H (ω) 

Displacement x (ω) 
Force F (ω) 

( ) ( )
( )

x
H

F
ω

ω
ω

=  

Mobility or mechanical admittance 
Y(ω) 

Velocity v (ω) 
Force F (ω) 

( ) ( )
( )

v
Y

F
ω

ω
ω

=  

Accelerance A (ω) Acceleration a (ω) 
Force F (ω) 

( ) ( )
( )

a
A

F
ω

ω
ω

=  

Dynamic stiffness K (ω) 
Displacement x (ω) 
Force F (ω) 

( ) ( )
( )

F
K

x
ω

ω
ω

=  

Mechanical impedance Z (ω) Velocity v (ω) 
Force F (ω) 

( ) ( )
( )

F
Z

v
ω

ω
ω

=  

Acoustic impedance Z (ω) Acoustic volume flow rate Q (ω) 
Acoustic pressure p (ω) 

( ) ( )
( )

p
Z

Q
ω

ω
ω

=  

Specific impedance Z (ω) Acoustic particle velocity u (ω) 
Acoustic pressure p (ω) 

( ) ( )
( )

p
Z

u
ω

ω
ω

=  

 

Frequency response function used in this study is dynamic stiffness described in section 1.7.  
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1.7 Dynamic stiffness 
Two types of dynamic stiffness are used in measurements and they are shown in figure 10: 

 

 

 

 

 

 

 

   

 

 

Main differences between cross point and input point dynamic stiffness is position where the 

force is measured. For determining cross point dynamic stiffness transmitted force is measured 

at ground which represents car chassis and for determining input point dynamic stiffness input 

force is measured. This results with major difference that input point dynamic stiffness is a 

function of an engine mass.  

Equation to calculate cross point dynamic stiffness: 

Equation to calculate input point dynamic stiffness: 

Transmitted force for cross point stiffness is written in equation (10) and input force for input 

point stiffness is equal to: 

Engine mass dependency of input dynamic stiffness is shown in equation (3). 

T
CP

1
ˆ

FK
X

=
 

 

I
IP

1
ˆ
FK
X

=   

( ) ( )I e 1 1 1 2 1 2 1 1 2 1 2F m x d x d x x c x c x x= ⋅ + ⋅ + ⋅ − + ⋅ + ⋅ −      

me 

c1 d1 
c2 

c3 

d2 

d3 

x1 

m1 

FT 

me 

c1 d1 
c2 

c3 

d2 

d3 

x1 

FI 

m1 

Figure 10. a) Cross point and b) input point dynamic stiffness 
a) b) 
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All calculated dynamic stiffness of the mathematical models and dynamic stiffness obtained 

from measurements data is cross point dynamic stiffness. 

1.8 Engine mount measurement procedure 
Dynamic stiffness properties of engine mounts in frequency domain can be determined by using 

servo controlled hydraulic rate machine [11], as shown in figure 11. 

 

Figure 11. Measurement procedure of dynamic stiffness [13] 

 

Figure 12. Illustration of MTS 1000-Hz rate machine that can be used to measure cross point 
dynamic stiffness [13] 
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Before starting of dynamic testing procedure, a static preload, or mean force, is applied to 

represent the static mass of the engine. During the testing procedure engine mount is excited 

with displacement excitation which is defined as sine wave at a predetermined amplitude and 

frequency. The transmitted force at the mount base is measured using a force transducer. After 

digital data processing, collected and processed data is used to determine amplitude of cross 

point dynamic stiffness K* and phase ϕ. In figure 13 collected and processed data in a complex 

plane is shown. 

 

Figure 13. Measurement data shown in complex plane 

It is possible to calculate real and imaginary part of measured cross point dynamic stiffness. 

In figure 14 the measurement data of cross point dynamic stiffness is shown.  Measured 

dynamic stiffness is amplitude and frequency dependent. Measurement data is provided by 

engine mount manufacturer.  

force

excitation

* AK
A

=  
 

force excitationφ φ φ= −   

real * cos( )K K φ= ⋅   

imag * sin( )K K φ= ⋅   
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a) 

 

b) 

Figure 14. Cross point dynamic stiffness measurement (frequency and amplitude dependency) 
a) real part and b) imaginary part 

1.9 Idle speed vibration problem definition 
In this study low frequency vibration response is also analyzed. This is important because idle 

speeds for four cylinder engines are in the range of 8–20 Hz producing dominant frequency 

components in the range of 16–40 Hz (2nd order). Since the primary bending mode of the 

passenger car can be less than 20 Hz it is obvious that it is easy to excite car body resonance at 

idle if engine mounts are not carefully designed and analyzed.  
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1.10 Thesis outcome 
Main objective of this thesis is the contribution to the better understanding of hydraulic and 

elastomeric engine mount behavior and modeling. One of the main target of the thesis is to 

describe hydraulic and elastomeric engine mounts dynamic stiffness with the same 

mathematical model on low and high frequencies. For that purpose different mathematical 

models that are able to describe frequency dependency of the engine mount dynamic stiffness 

are considered. Amplitude and temperature dependency of dynamic stiffness were not 

considered in this study. For the mathematical modeling purposes the optimization procedure 

is also developed. Optimization procedure is based on the minimization of the norm of 

differences between transmitted load calculated from the mathematical model and measured 

transmitted load. 

After studying different mathematical models, one mathematical model is chosen based on 

optimization results. 

Chosen mathematical model is used to implement measurements data from frequency domain 

into time domain in AVL Excite Power Unit [1] and to make a numerical simulation of a gasoline 

internal combustion engine. Engine mounts vibration response measurements data of simulated 

engine are available and simulation results are compared with the measurements. Also, one of 

the targets is to set workflow for hydraulic and elastomeric engine mount usage in the internal 

combustion engine simulation.
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2. Engine mounts mathematical model 
The first step in vibration analysis is to develop mathematical model. Developing of 

mathematical model provide the basis of all vibration studies at the design stage. The general 

aim of the mathematical model is to represent the dynamics of a system by one or more 

differential equations. In this study the aim is to represent the behavior of elastomeric and 

hydraulic engine mounts. 

2.1 Modeling frequency dependency of the engine mount dynamic stiffness 
As mentioned earlier, hydraulic and rubber engine mounts are frequency, amplitude and 

temperature dependent. Describing frequency dependency can be achieved by using simple 

mass, spring and damper model as shown in figure 15.  

 
Figure 15. Single mass oscillator 

The first step is to define the equations of motion for the single mass oscillator dynamic 

system shown in figure 15. 

The equations (5) and (6) can be converted to frequency domain using equations: 

 

  

( ) ( )e 1 1 1 2 1 2 1 1 2 1 2 0m x d x d x x c x c x x⋅ + ⋅ + ⋅ − + ⋅ + ⋅ − =      

( ) ( )1 2 3 2 2 1 2 3 2 2 1 2 0m x d x d x x c x c x x⋅ + ⋅ − ⋅ − + ⋅ − ⋅ − =      

ˆ( ) i tx t X e ω= ⋅   

ˆ( ) i tx t i X e ωω= ⋅ ⋅   
2 ˆ( ) ,i tx t X e ωω= − ⋅ ⋅   



Borna Kovarik  Engine mounts mathematical model 

18 
 

where ω is the angular frequency and is equal to: 

Transmitted force FT to ground is equal to: 

X1 can be expressed as a function of X2: 

Cross point dynamic stiffness now is equal to: 

During the study 10 different mathematical models with different number of variables were 

considered as described in table 2. 

Table 2. Considered mathematical models during study 

 

Standard linear solid (SLS) joint 

 

3 variables 

 

Single mass oscillator 

 

7 variables 

2 fω π= ⋅ ⋅   

T 1 1 1 1 3 2 3 2
ˆ ˆ ˆ ˆF c X i d X c X i d Xω ω= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅   

T 1 1 1 1 3 2 3 2
ˆ ˆ ˆ ˆF c X i d X c X i d Xω ω= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅   

T

1
ˆ

FK
X

=   
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Dual mass oscillator 

 

10 variables 

 

Triple mass oscillator – series connection 

 

13 variables 

 

Triple mass oscillator – parallel 

connection 

 

15 variables 

 

Quad mass oscillator 

 

18 variables 
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Penta mass oscillator 

 

23 variables 

 

Single mass oscillator – additional mass 

and damping 

 

12 variables 

 

Dual mass oscillator –additional mass and 

damping 

 

16 variables 
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Triple mass oscillator – additional mass 

and damping 

 

20 variables 

2.2 Parameter identification 
For all mentioned mathematical models in table 2 it is necessary to determine parameters of 

mathematical models (c1, d1, c2, d2, m1, c3, d3, c4, d4…). 

Optimization procedure to determine parameter values in each presented mathematical model 

is established.  Optimization procedure involves finding the difference between the transmitted 

force computed by the theoretical models and the measured force [11]. 

Objective function is written as: 

where Ftheory is the time history of the transmitted force to the calculated from the theoretical 

model and Fmeasure the time history of the measured force for a specified input. The Euclidian 

norm of the difference between the time history of the two forces is minimized, which results 

in finding the relevant parameters of the corresponding models [11]. 

Force is equal to: 

If we assume that displacement x is 1 mm, then equation (17) can be written as: 

where kt is the theoretical calculated stiffness and km is measured stiffness. 

theory measure ,F F−   

F k x= ⋅   

t m ,k k−   
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Only constraints in optimization process is that mathematical model parameters cannot have 

negative value. 

 The Sequential Quadratic Programming (SQP) algorithm is used to the optimization problem. 

The ‘fmincon’ function in MATLAB® is used to minimize the function in equation (19). 

2.3 Results of the mathematical model parameter optimization 
During this study all mentioned mathematical models for describing hydraulic and elastomeric 

engine mounts were considered. Because of the large number of the mathematical models with 

which measured engine mount dynamic stiffness can be described, only some of the results are 

shown.  

SLS joint, single and dual mass oscillators are shown in results for describing low frequency 

behavior of elastomeric engine mounts because with more complicated models it is not possible 

to obtain better results. High frequency behavior of elastomeric engine mounts can be 

successfully described with triple mass oscillator.  

Single, dual and triple mass oscillators are shown for describing low frequency behavior of 

hydraulic engine mounts. For high frequency behavior more complicated models were used and 

shown in results. 

Low frequency behavior is up to 50 Hz, depends on available measurements data and high 

frequency behavior is with frequencies larger than 50 Hz. Usually, measurements for high 

frequency response are up to 400 Hz, but during this study some high frequency measurements 

are up to 700 Hz. 

2.3.1 Measurement data 

All measurement data available for elastomeric and hydraulic engine mounts shown in this 

section are provided by engine mounts manufacturer. 

7 different measurements sets for 2 different engines are available – 4 measurements sets  

(2 low frequency and 2 high frequency) for elastomeric engine mounts and 3 measurements 

sets (2 low frequency and 1 high frequency) for hydraulic engine mount. Measurement set for 

gasoline engine that is studied in this thesis is detailed described in section 4. Results shown in 

this section are measurements set for gasoline engine that is not studied in this thesis. Also, to 

present results of describing high frequency behavior of hydraulic engine mounts, some results 

that are presented later in section 4 are included in this section. In figure 16 hydraulic and 
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elastomeric engine mount coordinate system is defined. All results shown in this section are 

results in axial direction Z. 

   

a)        b) 

Figure 16. Schematic representation of a) hydraulic and b) elastomeric engine mount and 
definition of engine mount coordinate system  

 

2.3.2 Elastomeric engine mount – Low frequency behavior optimization 

 

Standard Linear Solid (SLS) joint 

fobj = 39,7 N 

 
Figure 17. Describing low frequency behavior of elastomeric 

engine mount dynamic stiffness by using SLS joint 
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Single mass oscillator 

fobj = 21,68 N 

c1 = 104,5 N/mm 

d1 = 0 Ns/mm 

c2 = 66 N/mm 

d2 = 0,061 Ns/mm 

m1 = 3,2 kg 

c3 = 118 N/mm 

d3 = 3,56 Ns/mm 

 
Figure 18. Describing low frequency behavior of elastomeric 

engine mount dynamic stiffness by using single mass oscillator 
 

Dual mass oscillator 

fobj = 11,2 N 

c1 = 0 N/mm 

d1 = 0,1565 Ns/mm 

c2 = 0 N/mm 

d2 = 272,54 Ns/mm 

m1 = 394 kg 

c3 = 154,9 N/mm 

d3 = 0,393 Ns/mm 

m2 = 149,7 kg 

c4 = 3842 N/mm 

d4 = 109,16 Ns/mm 
 

Figure 19. Describing low frequency behavior of elastomeric engine 
mount dynamic stiffness by using dual mass oscillator 
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To describe low frequency behavior of elastomeric engine mount by using SLS joint with  
single degree of freedom which is usually used in this purposes generate satisfying results as 
shown in figure 17.  
For more accurate description of elastomeric mount low frequency behavior it is 
recommended to use single or dual mass oscillator which low frequency behavior is shown in 
figures 18 and 19.  

Optimization of single or dual mass oscillator is robust, so it is possible to use them without 
any difficulties. 

 

2.3.3 Hydraulic engine mounts – Low frequency behavior optimization 

 

Standard Linear Solid (SLS) joint 

fobj = 39,7 N 

 
Figure 20. Describing low frequency behavior of hydraulic engine 

mount dynamic stiffness by using SLS joint 
 

  

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40

D
yn

am
ic

 S
tif

fn
es

s, 
N

/m
m

Frequency, Hz

c2= 193,05 N
mm

 

c1= 750,92  N
mm

  d1= 3,54  Ns
mm

 



Borna Kovarik  Engine mounts mathematical model 

26 
 

 
  

Single mass oscillator 

fobj = 166,6 N 

c1 = 269,07 N/mm 

d1 = 0 Ns/mm 

c2 = 216,64 N/mm 

d2 = 0,212 Ns/mm 

m1 = 43,7 kg 

c3 = 0 N/mm 

d3 = 2,077 Ns/mm 

 
Figure 21. Describing low frequency behavior of hydraulic engine 

mount dynamic stiffness by using single mass oscillator 
 

Dual mass oscillator 

fobj = 207 N 

c1 = 244 N/mm 

d1 = 0,705 Ns/mm 

c2 = 5521,3 N/mm 

d2 = 13 Ns/mm 

m1 = 58,6 kg 

c3 = 0 N/mm 

d3 = 2,8 Ns/mm 

m2 = 200 kg 

c4 = 1370,6 N/mm 

d4 = 11,81 Ns/mm  
Figure 22. Describing low frequency behavior of hydraulic engine 

mount dynamic stiffness by using dual mass oscillator 

0
50

100
150
200
250
300
350
400
450
500
550
600

0 5 10 15 20 25 30 35 40 45 50

D
yn

am
ic

 S
tif

fn
es

s, 
N

/m
m

Frequency, Hz

0
50

100
150
200
250
300
350
400
450
500
550
600

0 5 10 15 20 25 30 35 40 45 50

D
yn

am
ic

 S
tif

fn
es

s, 
N

/m
m

Frequency, Hz



Borna Kovarik  Engine mounts mathematical model 

27 
 

 
  

Triple mass oscillator – parallel connection 

fobj = 185,1 N 

c1 = 224,3 N/mm 

d1 = 0,871 Ns/mm 

c2 = 46,2 N/mm 

d2 = 0 Ns/mm 

m1 = 3,02 kg 

c3 = 360,2 N/mm 

d3 = 0,273 Ns/mm 

c4 = 12,06 N/mm 

d4 = 0,8 Ns/mm 

m2 = 2,2 kg 

c5 = 154,3 N/mm 

d5 = 0,952 Ns/mm 

m3 = 36,6 kg 

c6 = 137,35 N/mm 

d6 = 8,97 Ns/mm 

 
Figure 23. Describing low frequency behavior of hydraulic engine 

mount dynamic stiffness by using triple mass oscillator 
 

 

To describe low frequency behavior it is not enough to use SLS joint with single degree of 

freedom as shown in figure 20. When low frequency response of engine mount is studied it is 

necessary to accurately describe damping. Damping values on each frequency is contained in 

imaginary part of dynamic stiffness.  As mentioned, idle speeds for four cylinder engines are in 

the range of 8 – 20 Hz producing dominant frequency components in the range of 16 – 40 Hz 

(2nd order excitation) and car body bending mode is often under 20 Hz, so it is necessary to 

describe low frequency damping as accurately as possible to predict behavior of entire vehicle 

structure for optimum vehicle design. Low frequency dynamic stiffness of engine mount can 

be described by using single mass oscillator 21. Using more complicated models with more 

variables does not obtain better results as shown in figures 22 and 23 for dual and triple mass 

oscillators. 
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2.3.4 Elastomeric engine mounts – High frequency behavior optimization 

 

Dual mass oscillator 

fobj = 236,7 N 

c1 = 74,77 N/mm 

d1 = 0,0766 Ns/mm 

c2 = 134,56 N/mm 

d2 = 0 Ns/mm 

m1 = 1 kg 

c3 = 2109,2 N/mm 

d3 = 0,1606 Ns/mm 

m2 = 1,8 kg 

c4 = 650,81 N/mm 

d4 = 7,92 Ns/mm 

 
Figure 24. Describing high frequency behavior of elastomeric engine 

mount dynamic stiffness by using dual mass oscillator 
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Triple mass oscillator – parallel connection 

fobj = 128,8 N 

c1 = 38,4 N/mm 

d1 = 0,071 Ns/mm 

c2 = 127,9 N/mm 

d2 = 0,0467 Ns/mm 

m1 = 0,208 kg 

c3 = 297,41 N/mm 

d3 = 0,0075 Ns/mm 

c4 = 457,86 N/mm 

d4 = 2,375 Ns/mm 

m2 = 3,2 kg 

c5 = 594,9 N/mm 

d5 = 0,0129 Ns/mm 

m3 = 0,468 kg 

c4 = 71,76 N/mm 

d4 = 0,0327 Ns/mm 

 
Figure 25. Describing high frequency behavior of elastomeric engine 

mount dynamic stiffness by using triple mass oscillator 
 

 

To describe high frequency behavior of elastomeric engine mount it is recommended to use 

triple mass oscillator as shown in figure 25.  

Main difference between dual mass oscillator and triple mass oscillator mathematical model for 

describing high frequency behavior of elastomeric engine mounts is that with triple mass 

oscillator it is possible to describe more resonant peaks that occur on some frequencies due to 

engine mount excitation. 
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2.3.5 Hydraulic engine mount – High frequency behavior 

 
Dual mass oscillator 

fobj = 444,6 N 

c1 = 104,5 N/mm 

d1 = 0,145 Ns/mm 

c2 = 340,84 N/mm 

d2 = 0,129 Ns/mm 

m1 = 1 kg 

c3 = 3983,5 N/mm 

d3 = 0,5567 Ns/mm 

m2 = 1 kg 

c4 = 0 N/mm 

d4 = 5,12 Ns/mm 
 

Figure 26. Describing high frequency behavior of hydraulic engine 
mount dynamic stiffness by using dual mass oscillator 
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Triple mass oscillator – parallel connection 

fobj = 128,8 N 

c1 = 54,18 N/mm 

d1 = 0,1 Ns/mm 

c2 = 0 N/mm 

d2 = 2,087 Ns/mm 

m1 = 200 kg 

c3 = 1545,4 N/mm 

d3 = 13,82 Ns/mm 

c4 = 28838 N/mm 

d4 = 7,18 Ns/mm 

m2 = 7,23 kg 

c5 = 217,1 N/mm 

d5 = 0,0209 Ns/mm 

m3 = 0,01 kg 

c4 = 99,51 N/mm 

d4 = 1,815 Ns/mm 

 
Figure 27. Describing high frequency behavior of hydraulic engine 
mount dynamic stiffness up to 400 Hz by using triple mass oscillator 
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Triple mass oscillator – parallel connection 

fobj = 128,8 N 

c1 = 54,18 N/mm 

d1 = 0,1 Ns/mm 

c2 = 0 N/mm 

d2 = 2,087 Ns/mm 

m1 = 200 kg 

c3 = 1545,4 N/mm 

d3 = 13,82 Ns/mm 

c4 = 28838 N/mm 

d4 = 7,18 Ns/mm 

m2 = 7,23 kg 

c5 = 217,1 N/mm 

d5 = 0,0209 Ns/mm 

m3 = 0,01 kg 

c4 = 99,51 N/mm 

d4 = 1,815 Ns/mm 

 
Figure 28. Describing high frequency behavior of hydraulic engine 
mount dynamic stiffness up to 700 Hz by using triple mass oscillator 
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Penta mass oscillator 

fobj = 287,4 N 

c1 = 200,2 N/mm 

d1 = 0 Ns/mm 

c2 = 519,45 N/mm 

d2 = 0 Ns/mm 

m1 = 0,05 kg 

c3 = 17,2 N/mm 

d3 = 0,2 Ns/mm 

c4 = 47,93 N/mm 

d4 = 0,005 Ns/mm 

m2 = 0,015 kg 

c5 = 0 N/mm 

d5 = 0,0104Ns/mm 

c6 = 26,11 N/mm 

d6 = 0,0016 Ns/mm 

m3 = 13,1 kg 

m4 = 0,01 kg 

c7 = 71,97 N/mm 

d7 = 8,582 Ns/mm 

c8 = 126,55 N/mm 

d8 = 0,0069Ns/mm 

m5= 0,01 kg 

c9 = 22,97 N/mm 

d9 = 1,51 Ns/mm 

 
Figure 29. Describing high frequency behavior of hydraulic engine 

mount dynamic stiffness by using penta mass oscillator 
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To describe low and high frequency behavior for vibration analysis with only single set of 

mathematical model variables, it is recommended to use triple mass oscillator model because it 

is possible to successfully describe dynamic stiffness up to 400 Hz as shown 27.  

Penta mass oscillator can successfully describe dynamic stiffness on low and high frequencies 

with single set of mathematical model parameters if the highest considered frequency is 700 Hz 

as shown in figure 29.  

Optimization of penta mass oscillator mathematical model parameters is not robust and it is 

sensitive on boundary condition, so it is not easy to optimize these mathematical models and to 

implement them. 

2.3.6 Conclusion 

Based on the work done in this section triple mass oscillator with parallel mass connection is 

chosen for further investigation and implementation in AVL Excite environment because by 

using triple mass oscillator it is possible to describe frequency dependency of the engine mount 

dynamic stiffness on low and high frequencies. 

Mathematical models with additional damping dg that are presented in table 2 are also giving 

satisfying results with relatively small number of variables but since these are already 

implemented in AVL Excite as EMO1 joint they are not taken in further consideration.
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3. Mathematical model verification 
After choosing mathematical model it is necessary to make verification of the mathematical 

model by using available computer software that are used for numerical simulations: AVL 

Excite, MSC Adams and MSC Nastran (SOL 108).  

First step is to formulate equations of motion and to calculate cross point dynamic stiffness 

analytically. Then next step is to make models in mentioned software with optimized parameter 

values and compare results with analytical solution. 

Verification process diagram is shown in figure 30. 

  

Analytical 
equations of 

mathematical 
model

Optimization 
procedure

Cross point 
dynamic stiffness 
of mathematical 

model

Implementation 
in AVL Excite, 

MSC Adams and 
MSC Nastran

Simulation results

Cross point 
dynamic 

stiffness based 
on simulation 

results

Measurements 
data 

𝐹𝐹T
𝑥𝑥1

 
Dynamic stiffness 
results verification 

 

Figure 30. Mathematical model verification process 
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3.1 Triple mass oscillator mathematical model equations of motion (EOM) 
The first step in the formulation of the equations of motion is to assign a set of generalized 

coordinates (a minimum set of independent coordinates) to the model which describes the 

general motion. For three mass oscillator shown in figure 31 the equations of motion can be 

determined from a set of free-body diagrams (FBDs) of the masses. The equation of motion can 

then be determined by applying Newton’s second law to each free-body [1]. 

 

 

 

 

 

 

 

 

EOM for 4 DOF dynamic system shown in figure 31: 

Transmitted force to ground is equal to: 

Transform equations (20) to (23)  into frequency domain using equations (8), (9) and (10). 

  

( ) ( ) ( ) ( )e 1 1 1 2 1 2 4 1 3 1 1 2 1 2 4 1 3 0m x d x d x x d x x c x c x x c x x⋅ + ⋅ + ⋅ − + ⋅ − + ⋅ + ⋅ − + ⋅ − =     
  

( ) ( )1 2 2 1 2 3 2 2 1 2 3 2 0m x d x x d x c x x c x⋅ − ⋅ − + ⋅ − ⋅ − + ⋅ =      

( ) ( ) ( ) ( )2 3 4 1 3 5 3 4 4 1 3 5 3 4 0m x d x x d x x c x x c x x⋅ − ⋅ − + ⋅ − − ⋅ − + ⋅ − =       

( ) ( )3 4 5 3 4 6 4 5 3 4 6 4 0m x d x x d x c x x c x⋅ − ⋅ − + ⋅ − ⋅ − + ⋅ =      

T 1 1 1 1 3 2 3 2 6 4 6 4F c x d x c x d x c x d x= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅     

Figure 31. Triple mass oscillator with masses 
connected in parallel 
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Equations of motion in frequency domain: 

To describe cross point stiffness it is neccessary to express all mass displacement with engine 

mass displacement x1. 

Transfer function y1 is equal to: 

Expressing x4 with x3: 

Transfer function y2 is equal to: 

Expressing x3 with x1: 

 

  

( ) ( )
( ) ( )

2
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m X i d X i d X X i d X X c X

c X X c X X
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Transfer function y3 is equal to: 

Displacement express: 

Transmitted force to ground is equal to: 

Cross point stiffness is equal to: 

Equation (39) is used for optimization procedure. 

 

 

 

  

[ ]
4 4

3 2
2 4 5 2 4 5 2(1 ) (1 )

i d cy
m i d d y c c y

ω
ω ω

⋅ +
=

− ⋅ + ⋅ + ⋅ − + + ⋅ −
  

2 1 1
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3.2 Triple mass oscillator verification 
Analytical equation (39) for cross point dynamic stiffness is used for an optimization procedure 

in MatLab® as described in paragraph 2.2. 

Hydraulic engine mount dynamic stiffness on low frequencies was considered in verification 

process. Cross point dynamic stiffness is shown in figure 32. 

 

Figure 32. Cross point dynamic stiffness used for verification process 

After determining parameter values, triple mass oscillator is analyzed in AVL Excite, MSC 

Adams and MSC Nastran. Aim of verification procedure is to confirm frequency behavior of 

triple mass oscillator in simulation software and to confirm that it can be used in powertrain 

simulation. 

Simulation load input is sinusoidal force with 100 N amplitude. Mass, stiffness and damping 

values of mathematical model shown in figure 31 values are defined in figure 3234. 
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Figure 33. Triple mass oscillator model in AVL Excite 

In AVL Excite vibration analysis is made in time domain and results were processed into 

frequency domain using FFT. Simulation model is shown in figure 33.  

In MSC Nastran direct frequency response analysis (SOL 108) is used and code is shown in 

Appendix A. 

In MSC Adams vibration toolbox is used to make analysis in frequency domain. 

Table 3. Calculated engine mass displacement x1 

f  
[Hz] 

Analytical MSC Nastran AVL Excite MSC Adams 
Displacement [mm] Displacement [mm] Displacement [mm] Displacement [mm] 
Real Imaginary Real Imaginary Real Imaginary Real Imaginary 

5 -0.3644 -0.6746 -0.3653 -0.6750 -0.3644 -0.6746 -0.3656 -0.6753 
10 -0.0787 -0.034 -0.0787 -0.0340 -0.0787 -0.0340 -0.0787 -0.0340 
12 -0.0492 -0.0243 -0.0492 -0.0243 -0.0492 -0.0243 -0.0492 -0.0243 
15 -0.0284 -0.019 -0.0285 -0.0190 -0.0284 -0.0190 -0.0285 -0.0190 
17 -0.0215 -0.0173 -0.0216 -0.0173 -0.0215 -0.0173 -0.0215 -0.0173 
20 -0.0158 -0.0155 -0.0158 -0.0155 -0.0158 -0.0155 -0.0158 -0.0155 
25 -0.0114 -0.013 -0.0114 -0.0130 -0.0114 -0.0130 -0.0114 -0.0130 
30 -0.0094 -0.0107 -0.0094 -0.0107 -0.0094 -0.0107 -0.0094 -0.0107 
40 -0.0073 -0.0071 -0.0073 -0.0071 -0.0073 -0.0071 -0.0073 -0.0071 
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Table 4. Calculated transmitted force FT to ground (chassis) node 

f  
[Hz] 

Analytical MSC Nastran AVL Excite MSC Adams 
Transmitted force 

[N] 
Transmitted force 

[N] 
Transmitted force 

[N] 
Transmitted force 

[N] 
Real Imaginary Real Imaginary Real Imaginary Real Imaginary 

5 -16.5 -210.1 -16.7 -210.3 -16.5 -210.1 -16.9 -210.3 
10 -18.3 -34.1 -18.4 -34.1 -18.3 -34.1 -18.3 -34.1 
12 -17.0 -26.2 -17.1 -26.2 -17.0 -26.2 -17.0 -26.1 
15 -12.9 -15.2 -13.0 -15.1 -12.9 -15.2 -12.9 -15.1 
17 -9.7 -12.1 -9.7 -12.0 -9.7 -12.1 -9.7 -12.1 
20 -6.9 -9.9 -7.0 -9.8 -6.9 -9.9 -6.9 -9.9 
25 -5.0 -7.7 -5.1 -7.7 -5.0 -7.7 -5.0 -7.7 
30 -4.2 -6.2 -4.2 -6.2 -4.2 -6.2 -4.2 -6.2 
40 -3.3 -4.0 -3.3 -4.0 -3.3 -4.0 -3.3 -4.0 
 

From results in table (3) and (4) it is possible to calculate cross point dynamic stiffness. 

Table 5. Calculated cross point dynamic stiffness KCP 

f  
[Hz] 

Analytical MSC Nastran AVL Excite MSC Adams 

Cross point dynamic 
stiffness [N/mm] 

Cross point dynamic 
stiffness [N/mm] 

Cross point dynamic 
stiffness [N/mm] 

Cross point dynamic 
stiffness [N/mm] 

Real Imaginary Real Imaginary Real Imaginary Real Imaginary 
5 251.3 111.4 251.4 111.1 251.3 111.4 251.3 111.1 
10 354.4 280.7 354.6 280.2 354.4 280.6 354.1 279.8 
12 490.0 290.7 490.1 289.8 489.5 290.3 488.8 289.7 
15 560.8 158.4 560.1 157.5 561.3 157.9 559.0 158.5 
17 546.3 121.4 545.3 120.7 547.2 121.1 546.4 121.3 
20 536.8 98.1 535.5 97.5 535.8 98.4 534.8 98.7 
25 528.3 74.9 527.3 73.2 527.8 74.4 527.4 74.8 
30 518.5 63.7 520.0 62.4 520.0 63.4 520.0 63.4 
40 503.2 61.6 503.4 58.4 504.7 59.8 504.0 59.1 
 

 

T
CP

1

FK
x

=   
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3.3 Verification procedure results 

 

Figure 34. Cross point dynamic stiffness verification results 

Based on cross point dynamic stiffness verification results shown in figure 34 conclusion can 

be made that frequency dependency of engine mounts can be described by triple mass oscillator. 

More important, this behavior is also possible to achieve in numerical simulations software that 

are used to make dynamic models for vibration analysis of IC engine.
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4. Gasoline IC engine simulation 
In this section verified triple mass oscillator with masses in parallel mathematical model is 

implemented in powertrain simulation model in AVL Excite Power Unit [1]. For the simulated 

IC engine measurements of the engine mounts velocities are available and obtain simulation 

results are compared with measurements data. Simulation model is made for vibration and 

acoustic analysis purposes. In scope of this study only vibration analysis is done. 

4.1 IC engine data 
Simulated IC engine data is turbocharged 1,8 dm3, 4 cylinder inline gasoline engine with direct 

gasoline injection. Engine emission certificate is EU6. 

More engine information cannot be provided due to confidentiality agreement. 

Powertrain mounting system consists of 2 hydraulic engine mounts and 1 elastomeric gearbox 

mount as shown in figure 35. Also, engine coordinate system is defined. Origin of the engine 

coordinate system is in the center of the third main bearing. 

 

 

Figure 35. Simulated longitudinal IC engine defined coordinate system and mounting brackets 
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In figure 36 car coordinate system is shown. Layout of the simulated engine is longitudinal  

(north – south) and Z axis is coincident with vehicle Z axis. Engines X and Y axes are opposite 

direction compared with vehicle coordinate system. Engine mount coordinate system is defined 

in figure 16. 

 

Figure 36. Vehicle coordinate system as defined by ISO 8855 / DIN 70000 [14] 
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4.2 Mounting system dynamic stiffness optimization 
Engine and gearbox mounts dynamic stiffness measurements are avilable from the engine 
mount manufacturer. Cross point dynamic stiffness is described with triple mass oscillator 
explained in section 3.1. 

For hydraulic engine mounts measurements for X and Y directions are available up to 200 Hz 
and for Z direction is up to 400 Hz. 

For elastomeric gearbox mounts for X and Y directions are avilable up to 250 Hz and for Z 
direction up to 400 Hz. 

Amplitude of engine mount diplacement during the measurements is 0,1 mm. 

4.2.1 Hydraulic engine mount dynamic stiffness 

 
 

c1 = 0 N/mm 

d1 = 0 Ns/mm 

c2 = 194,1 N/mm 

d2 = 2,087 Ns/mm 

m1 = 200 kg 

c3 = 1545,4 N/mm 

d3 = 13,82 Ns/mm 

c4 = 28838 N/mm 

d4 = 7,18 Ns/mm 

m2 = 7,23 kg 

c5 = 217,1 N/mm 

d5 = 0,0209 Ns/mm 

m3 = 0,01 kg 

c4 = 99,51 N/mm 

d4 = 1,815 Ns/mm 
 

Figure 37. Engine mount dynamic stiffness – X direction 
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c1 = 0 N/mm 

d1 = 0 Ns/mm 

c2 = 127,9 N/mm 

d2 = 0,053 Ns/mm 

m1 = 0,67 kg 

c3 = 980,56 N/mm 

d3 = 0 Ns/mm 

c4 = 76,06 N/mm 

d4 = 0 Ns/mm 

m2 = 0,712 kg 

c5 = 1151,3 N/mm 

d5 = 0,31 Ns/mm 

m3 = 3,96 kg 

c4 = 1188,8 N/mm 

d4 = 21,85 Ns/mm 
 

Figure 38. Engine mount dynamic stiffness – Y direction 

 

c1 = 54,18 N/mm 

d1 = 0,1 Ns/mm 

c2 = 0 N/mm 

d2 = 2,087 Ns/mm 

m1 = 200 kg 

c3 = 1545,4 N/mm 

d3 = 13,82 Ns/mm 

c4 = 28838 N/mm 

d4 = 7,18 Ns/mm 

m2 = 7,23 kg 

c5 = 217,1 N/mm 

d5 = 0,0209 Ns/mm 

m3 = 0,01 kg 

c4 = 99,51 N/mm 

d4 = 1,815 Ns/mm 
 

Figure 39. Engine mount dynamic stiffness – Z direction 
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4.2.2 Elastomeric gearbox mount stiffness 

 
c1 = 54,18 N/mm 

d1 = 0,1 Ns/mm 

c2 = 0 N/mm 

d2 = 2,087 Ns/mm 

m1 = 200 kg 

c3 = 1545,4 N/mm 

d3 = 13,82 Ns/mm 

c4 = 28838 N/mm 

d4 = 7,18 Ns/mm 

m2 = 7,23 kg 

c5 = 217,1 N/mm 

d5 = 0,0209 Ns/mm 

m3 = 0,01 kg 

c4 = 99,51 N/mm 

d4 = 1,815 Ns/mm 

 
Figure 40. Gearbox mount dynamic stiffness – X direction 

 
c1 = 0 N/mm 

d1 = 0,068 Ns/mm 

c2 = 54113,6 N/mm 

d2 = 33,06 Ns/mm 

m1 = 20 kg 

c3 = 90,4 N/mm 

d3 = 0 Ns/mm 

c4 = 34,84 N/mm 

d4 = 0 Ns/mm 

m2 = 0,824 kg 

c5 = 185,1 N/mm 

d5 = 0,664 Ns/mm 

m3 = 0,698 kg 

c4 = 30,67 N/mm 

d4 = 3,28 Ns/mm 

 
Figure 41. Gearbox mount dynamic stiffness – Y direction 
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c1 = 0 N/mm 

d1 = 0 Ns/mm 

c2 = 73,66 N/mm 

d2 = 0 Ns/mm 

m1 = 0,157 kg 

c3 = 0,132 N/mm 

d3 = 15,35 Ns/mm 

c4 = 624 N/mm 

d4 = 0,42 Ns/mm 

m2 = 0,00758 kg 

c5 = 790,6 N/mm 

d5 = 7,67 Ns/mm 

m3 = 0,00637 kg 

c4 = 403,4 N/mm 

d4 = 0 Ns/mm 
 

Figure 42. Gearbox mount dynamic stiffness – Z direction 
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4.3 Simulation model 
Due to confidentiality agreement it is not allowed to show AVL Excite simulation model details, 
but some model setup can be shown. Whole model is described with 4 064 429 nodes and  
2 572 854 elements. Each body, except chassis, has some internal Rayleigh damping value 
defined. Geometry and properties of the crankshaft, connecting rods, pistons, balancing shafts 
are defined. Some geometry and property information are from the CAD model and some 
information are based on the AVL assumptions. Also, as mentioned each engine mount is 
described with triple mass oscillator mathematical model.  

In AVL Excite powetrain model is separated in several bodies as shown in figure 43 and in 
figure 44 simulation model in AVL Excite Power Unit is shown. In figure 44 is also shown that 
each mount dyanmic stiffness is defined seppartely in each direction. For 3 different mounts 
9 triple mass oscillators were used to define dynamic stiffness in each direction for each mount. 

 

Figure 43. Simplified simulation model topology
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Figure 44. Powertrain simulation model topology in AVL Excite Power Unit
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4.4 Simulation results 
Measurement data is processed up to frequency value of 800 Hz. All measurement and 

simulation results of the engine mounts response are shown in form of the velocities. 

For comparison only 2nd and 4th order are shown because they have the biggest influence on 

transmitted vibration value. Also, sum of all orders (synthesis) is shown up to 8 order. 

All results are considered as RMS (root mean square). 

Engine mount response is measured in the transient state during the engine run-up process from  

0 rpm to 6300 rpm. Results are processed from 1000 rpm to 6000 rpm.  

Simulation is run with 500 rpm step from 1000 rpm to 6000 rpm. 

Load boundary conditions are in form of gas pressure for each cylinder. Simulation is run in 

6 cycles and last 2 cycles were processed and used for results comparison. In first 4 cycle steady 

state is reached for each examined engine speed. 

Measurement and simulation results are shown in the engine coordinate system defined in  

figure 35. 

4.4.1 Left engine mount – X direction 

 

Figure 45. Left engine mount - X direction - synthesis 
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Figure 46. Left engine mount - X direction – 2nd order 

 

Figure 47. Left engine mount - X direction - 4th order 

As shown in figure 45 sum value of all analyzed orders (synthesis) is higher than synthesis 

value obtain from measurement results. On simulation results influence of higher frequencies 

is larger and this is shown in figure 46 and figure 47 where simulation results curve is following 

measurement curve. From that it can be concluded that simulation model is more influenced by 

high frequency vibration. 

  

0
1
2
3
4
5
6
7
8
9

10

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Ve
lo

ci
ty

, m
m

/s

Engine speed, rpm

Measurement Simulation

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Ve
lo

ci
ty

, m
m

/s

Engine speed, rpm

Measurement Simulation



Borna Kovarik  Gasoline IC engine simulation 

53 
 

4.4.2 Left engine mount – Y direction 

 

Figure 48. Left engine mount - Y direction – synthesis 

 

Figure 49. Left engine mount - Y direction – 2nd order 
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Figure 50. Left engine mount - Y direction – 4th order 

In Y direction, on engine speed below 3000 rpm and above 5000 rpm, 2nd order has higher value 

in simulation than in measurements as shown in figure 49. This influences on synthesis values 

which have higher values on entire engine speed range as shown in figure 48. 

4.4.3 Left engine mount – Z direction 

 

Figure 51. Left engine mount - Z direction – synthesis 
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Figure 52. Left engine mount - Z direction – 2nd order 

 

Figure 53. Left engine mount - Z direction – 4th order 

In figure 51 satisfying results are above 2000 rpm. For 2nd order results satisfying results are 

between 2000 rpm and 5000 rpm as shown in figure 52. 4th order results vary and because of 

smaller values of velocities it is hard to simulate exact measurement response. 
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4.4.4 Right engine mount – X direction 

 

Figure 54. Right engine mount – X direction – synthesis 

 

Figure 55. Right engine mount – X direction – 2nd order 
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Figure 56. Right engine mount – X direction – 4th order 

Right engine mount simulation synthesis values are satisfying close to the measurement values 

as shown in figure 54. This also refers to 2nd order values as shown in figure 55 and  

4th order velocity results varies. 

4.4.5 Right engine mount – Y direction 

 

Figure 57. Right engine mount – Y direction – synthesis 
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Figure 58. Right engine mount – Y direction – 2nd order 

 

Figure 59. Right engine mount – Y direction – 4th order 

Right engine mount Y direction simulation values are not satisfying for synthesis, 2nd order and 

4th order. Only satisfying results for 2nd order are for engine speed 1000 rpm, 3500 rpm, 4000 

rpm and 4500 rpm. For all other engine speed velocities obtain from simulation are 

overestimated compared with measurements results. It is worth to mention that for 1000 rpm, 

which is close to engine idle engine speed, all results matches with measurement data.  
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4.4.6 Right engine mount – Z direction 

 

Figure 60. Right engine mount – Z direction – synthesis 

 

Figure 61. Right engine mount – Z direction – 2nd order 

0
5

10
15
20
25
30
35
40

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Ve
lo

ci
ty

, m
m

/s

Engine speed, rpm

Measurement Simulation

0
5

10
15
20
25
30
35
40

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Ve
lo

ci
ty

, m
m

/s

Engine speed, rpm

Measurement Simulation



Borna Kovarik  Gasoline IC engine simulation 

60 
 

  

Figure 62. Right engine mount – Z direction – 4th order 

As for left engine mount, simulation results are satisfying in middle range engine speed where 

velocity values are very close to measurement data. 

4.4.7 Gearbox mount – X direction 

 

Figure 63. Gearbox mount – X direction – synthesis 
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Figure 64. Gearbox mount – X direction – 2nd order 

 

Figure 65. Gearbox mount – X direction – 4th order 

Elastomeric gearbox mount synthesis values of all considered orders are lower than synthesis 

obtain from measurement for higher engine speeds as shown in figure 63. This means that for 

gearbox mount X direction in simulation higher frequencies vibration does not appear as during 

the measurement. In figure 65 is shown that 4th order simulation results curve follows 

measurement curve trend. 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Ve
lo

ci
ty

, m
m

/s

Engine speed, rpm

Measurement Simulation

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Ve
lo

ci
ty

, m
m

/s

Engine speed, rpm

Measurement Simulation



Borna Kovarik  Gasoline IC engine simulation 

62 
 

4.4.8 Gearbox mount – Y direction 

 

Figure 66. Gearbox mount – Y direction – synthesis 

 

Figure 67. Gearbox mount – Y direction – 2nd order 
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Figure 68. Gearbox mount – Y direction – 4th order 

In Y direction for gearbox mount influence of higher frequency vibration could not be calculated 

in simulation model as can be seen in figure 66 where from 3000 rpm to 6000 rpm simulation 

synthesis values are lower than in measurement. 2nd order for mentioned speed range is 

satisfying so it can be concluded that higher order have influence on synthesis results.  

In figure 68 it can be seen that 4th order is under estimated on middle speed range. 

4.4.9 Gearbox mount – Z direction 

 

Figure 69. Gearbox mount – Z direction – synthesis 
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Figure 70. Gearbox mount – Z direction – 2nd order 

 

Figure 71. Gearbox mount – Z direction – 4th order 

Gearbox mount in Z direction is underestimated on synthesis values and in 4th order values as 

shown in figures 69 and 71. As for Y direction, in simulation model higher frequency vibration 

influence could not be calculated which results in lower synthesis values. 2nd order from 3000 

rpm has relatively satisfying results with exception of describing peaks at 3500 rpm and 5500 

rpm as shown in figure 70. 
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4.5 Conclusion 
Measurement of the engine mount dynamic stiffness can be successfully described using triple 

mass oscillator as shown in section 4.2. Implementation of triple mass oscillator in AVL Excite 

can be done using FTAB joint in which linear mass, stiffness and damping values can be 

defined. This is shown in figure 33. 

After preparing and defining entire engine model, simulation is run and response of engine 

mounts measurement points were examined. 

Conclusion after comparing simulation results with measurements is that simulation model with 

engine mounts described as triple mass oscillators can successfully simulate IC engine response 

at measurement points. Some deviations between results do exist with an emphasis on engine 

mount Y direction and gearbox mount Z direction.  

Some results deviations can be explained in the way that chassis is considered as rigid, but in 

reality chassis has some compliance which influences on measurement results because 

measurements of the engine mount response were conducted on the vehicle. 
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5. Conclusions and Recommendations 
The main goal of this thesis was to develop mathematical model that can describe frequency 

dependency of the passive hydraulic and elastomeric engine mount cross point dynamic 

stiffness. Also, method of mathematical model parameter optimization is developed.  

Suggested mathematical model was implemented in the IC engine simulation and engine mount 

response results were compared with the measurements results in terms of engine mount 

velocities. The work done in this thesis is based on published articles and PhD thesis that are 

listed in the literature section. 

5.1 Conclusions 
Based on the examined literature and results of this thesis some conclusions can be made: 

• The ideal engine mounts should isolate engine vibration caused by engine disturbances 

in the engine working speed range and prevent engine bounce from shock excitation 

like for example road load input or abrupt vehicle acceleration and braking. This implies 

that the dynamic stiffness and damping of the engine mount should be frequency and 

amplitude dependent.  

• Passive hydraulic mounts can provide better performance than elastomeric mounts, 

especially in the low frequency range, but the advantage of the elastomeric mounts lies 

in its properties, e.g. compactness, cost-effectiveness, and low maintenance 

requirement. 

• By using mass, spring and damper mathematical model it is possible to get nonlinear 

behavior in frequency domain with linear coefficients. 

• By using 4 DOF triple mass oscillator with 15 variables described in section 3.1 it is 

possible to describe low and high frequency behavior of the elastomeric and passive 

hydraulic engine mount. 

• It is possible to use triple mass oscillator in numerical simulation software to 

successfully describe frequency dependency of the engine mount dynamic stiffness.  

• In AVL Excite environment FTAB joint coupled with SLS joint is sufficient to describe 

elastomeric mount behavior. FTAB joint can describe static stiffness nonlinearity and 

SLS joint can describe dynamic stiffness nonlinearity.  
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• In AVL Excite environment FTAB joint coupled with triple mass oscillator is sufficient 

to describe passive hydraulic mount behavior. FTAB joint can describe static stiffness 

nonlinearity and triple mass oscillator can describe dynamic stiffness nonlinearity.  

5.2 Recommendations and future work 
Some recommendations for future work in this field: 

• Main limitation of this thesis was that amplitude dependency of the engine mount 

dynamic stiffness was neglected. Further step in this field could be to include amplitude 

dependency. It is possible to implement amplitude and frequency dependency as a table 

in numerical simulation software and during simulation run solver chooses stiffness 

value based on load frequency and engine displacement amplitude in current simulation 

step.  

• For further investigation it is recommended to study article [15] where some empirical 

parameters for amplitude dependency were established. 

• In simulation model chassis was considered as a rigid body although engine mount 

measurements were conducted on vehicle and this includes chassis compliance. To 

further develop IC engine simulation model that presented in this study the chassis 

compliance should be considered.  

• All considered mathematical models were described with Kelvin - Voigt model which 

can easily be implemented in the numerical simulation software by using linear spring 

and damper connection. For some future work Bouc - Wen model could be considered. 

Bouc - Wen model is used and explained in [12]. 

• Elastomeric engine mount can be examined as finite element model and in that form 

can be implemented in numerical simulation software. For that kind of investigation 

CAD model of elastomeric engine mount should be available. Elastomeric material can 

be described by using Mooney-Rivlin material model. This approach is more 

complicated approach and therefore more computer resources is needed. 
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APPENDIX A 
MSC Nastran – Triple mass oscillator verification 

SOL 108 
CEND 
TITLE = Triple mass oscillator verification 
SUBTITLE = Analysis (SOL 108)  
$ 
SPC = 996 
$ 
DLOAD = 999 
$ 
FREQ = 888 
$ 
SUBCASE 1 
$ 
SET 99 = 1 
SET 98 = 5 
DISPLACEMENT(SORT2,PRINT,PUNCH,REAL)=99 
VELOCITY(SORT2,PRINT,PUNCH,REAL)=99 
ACCELERATION(SORT2,PRINT,PUNCH,REAL)=99 
SPCFORCES(SORT2,PRINT,PUNCH,REAL)=ALL 
OUTPUT(XYPLOT) 
XYPUNCH,DISP/ 1(T2RM,T2IP) 
XYPUNCH,VELO/ 1(T2RM,T2IP) 
$ 
BEGIN BULK 
$ 
RLOAD1,999,997,,,901 
DAREA,997,1,2,100.0 
TABLED1,901,,,,,,,,+TAB901 
+TAB901,0.0,1.0,50.0,1.0,ENDT 
$ 
$FREQUENCY RANGE 1-40 Hz 
FREQ1,888,1.,0.5,79 
$ 
GRID,1,,0.,200.,0. 
GRID,2,,0.,70.,0. 
GRID,3,,0.,80.,0. 
GRID,4,,0.,60.,0. 
GRID,5,,0.,0.,0. 
$ 
GRDSET,,,,,,,13456 
SPC,996,5,2 
$ 
CONM2,1,1,,100e-3 
CONM2,2,2,,200e-3 
CONM2,3,3,,200e-3 



Borna Kovarik  APPENDIX A 

70 
 

CONM2,4,4,,0.01e-3 
$ 
CBUSH,100,12,1,5,,,,0 
CBUSH,101,13,1,2,,,,0 
CBUSH,102,14,2,5,,,,0 
CBUSH,103,15,1,3,,,,0 
CBUSH,104,16,3,4,,,,0 
CBUSH,105,17,4,5,,,,0 
$ 
PBUSH,12,K,,245.,,,,,+1 
+1,,B,,0.21 
PBUSH,13,K,,0.,,,,,+4 
+4,,B,,1.41 
PBUSH,14,K,,1281.9,,,,,+6 
+6,,B,,6.9 
PBUSH,15,K,,2172.32,,,,,+8 
+8,,B,,23.3 
PBUSH,16,K,,0.,,,,,+9 
+9,,B,,1.63 
PBUSH,17,K,,0.00001,,,,,+10 
+10,,B,,41.1 
$ 
ENDDATA 



Borna Kovarik  APPENDIX B 

71 
 

APPENDIX B 
I. CD – R disc 
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