Uvođenje postupka za analizu mjernog sustava u proizvodni proces

Razumić, Andrej

Undergraduate thesis / Završni rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:005963

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-13

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU

FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Andrej Razumić

Zagreb, 2016.

SVEUČILIŠTE U ZAGREBU

FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentorica:

prof. dr. sc. Biserka Runje

Student:

Andrej Razumić

Zagreb, 2016.

Izjavljujem da sam ovaj rad izradio samostalno koristeći stečena znanja tijekom studija i navedenu literatu.

Zahvaljujem se svojoj mentorici prof. dr. sc. Biserki Runje na razumijevanju, podršci i korisnim savjetima pruženim za vrijeme izrade ovog rada.

SVEUČILIŠTE U ZAGREBU

FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne ispite studija strojarstva za smjerove:

proizvodno inženjerstvo, računalno inženjerstvo, industrijsko inženjerstvo i menadžment, inženjerstvo

materijala i mehatronika i robotika

Sveuč	ilište u Zagrebu		
Fakultet stro	ojarstva i brodogradnje		
Datum Prilog			
Klasa:			
Ur.broj:			

ZAVRŠNI ZADATAK

Student:

ANDREJ RAZUMIĆ

Mat. br.: 0035190452

Naslov rada na
hrvatskom jeziku:UVOĐENJE POSTUPKA ZA ANALIZU MJERNOG SUSTAVA U
PROIZVODNI PROCESNaslov rada na
engleskom jeziku:IMPLEMENTATION OF THE MEASUREMENT ANALYSIS
SYSTEM IN THE MANUFACTURING PROCESSOpis zadatka:Opis zadatka:

Potrebe za analizom mjernog sustava javljaju se u kontroli proizvodnog procesa, kod usporedbe mjernih karakteristika različitih mjernih sredstava, pri preuzimanju nove mjerne opreme, kod usporedbe mjernih karakteristika prije i poslije popravka mjerne opreme te kod određivanja sastavnica za izračunavanje varijacija procesa mjerenja.

U radu je potrebno razraditi metode za procjenu kvalitete mjernog sustava u serijskoj i pojedinačnoj proizvodnji. U tom cilju potrebno je teorijski i eksperimentalno kvantificirati izvore varijabilnosti u odabranim mjernim sustavima te odrediti sposobnosti istih.

Zadatak zadan:

25. studenog 2015.

Zadatak zadao:

Prof. dr. sc. Biserka Runje

Rok predaje rada:

rok: 25. veljače 2016.
 rok (izvanredni): 20. lipnja 2016.
 rok: 17. rujna 2016.

Predviđeni datumi obrane: **1. rok:** 29.2., 02. i 03.03. 2016. **2. rok (izvanredni):** 30. 06. 2016. **3. rok:** 19., 20. i 21. 09. 2016.

Predsjednik Povjerenstva:

Prof. dr. sc. Zoran Kunica

SADRŽAJ

SADRŽAJ
POPIS SLIKA
POPIS TABLICA
SAŽETAK9
SUMMARY10
1. UVOD11
2. PROCJENA MJERNOG SUSTAVA S JEDNIM PREDMETOM MJERENJA I JEDNIM
MJERITELJEM
2.1. Matematički izračun pojedinih komponenti12
2.2. Provedba koraka u Minitabu14
3. PROCJENA MJERNOG SUSTAVA S JEDNIM PREDMETOM MJERENJA I VIŠE MJERITELJA 18
3.1. Matematički izračun pojedinih komponenti19
3.2. Provedba koraka u Minitabu23
4. PROCJENA MJERNOG SUSTAVA S VIŠE PREDMETA MJERENJA I VIŠE MJERITELJA
4.1. Matematički izračun pojedinih komponenti
4.2. Provedba koraka u Minitabu34
4.2.1. Gage R&R Study Crossed – Metoda aritmetičkih sredina i raspona
4.2.1. Gage R&R Study Crossed – ANOVA metoda41
5. ANALIZA MJERNOG SUSTAVA NA PRIMJERU IZ PRIVREDE
6. ZAKLJUČAK
7. LITERATURA
8. PRILOG

POPIS SLIKA

Slika 1. Rezultati mjerenja uneseni u Minitab14
Slika 2. Odabir: Type 1 Gage Study15
Slika 3. Type 1 Gage Study16
Slika 4. Type 1 Gage study for measurement16
Slika 5. Rezultati mjerenja uneseni u Minitab23
Slika 6. Odabir: Fit General Liner Model23
Slika 7. General Linear Model24
Slika 8. General Linear Model: Random/Nest24
Slika 9. Procjene rezultata25
Slika 10. Odabir: Individual Value Plot25
Slika 11. Interval plots26
Slika 12. Interval Plot: Multiple Y's, With Groups26
Slika 13. Interval Plot: Labels27
Slika 14. Interval Plot: Data View28
Slika 15. Rezultati mjerenja u dijagramu28
Slika 16. Odabir: Create Gage R&R Study Worksheet34
Slika 17. Create Gage R&R Study Workseet35
Slika 18. Create Gage R&R Study Worksheet: Options35
Slika 19. Gage R&R Study Worksheet
Slika 20 Gage R&R Study Worksheet: uneseni podaci
Slika 21. Odabir: Gage R&R Study (Crossed)38
Slika 22. Gage R&R Study (Crossed)
Slika 23. Gage R&R Study (Crossed): Xbar and R Options39
Slika 24. Gage R&R Report for Measurement40
Slika 25. Procjene rezultata40

Slika 26. Gage R&R Study (Crossed)	41
Slika 27. Gage R&R Study (Crossed): ANOVA Options	42
Slika 28. Gage R&R Report for Measurement	43
Slika 29. Procjene rezultata	43
Slika 30. Gage R&R Report for Measurement	46
Slika 31. Procjene rezultata	46

POPIS TABLICA

Tablica 1. Type 1: rezultati mjerenja	12
Tablica 2. Rezultati mjerenja jednog predmeta mjerenja, ponovljivost i obnovljivost	19
Tablica 3. Doprinos pojedinih komponenti u ukupnoj varijaciji	20
Tablica 4. Standardna devijacija	21
Tablica 5. Tolerancija	22
Tablica 6. Usporedba Crossed i Nested gage R&R study	29
Tablica 7. Gage R&R Crossed: rezultati mjerenja	30
Tablica 8. Usporedba zadovoljavajućeg i korištenog mjernog sustava	47
Tablica 9. Vrijednost faktora d ₂ [1]	50
Tablica 10. Konstante A_2 , D_3 i D_4 za kontrolne karte [1]	50

SAŽETAK

Tema završnog rada je "Uvođenje postupka za analizu mjernog sustava u proizvodni proces". Radi boljeg kontroliranja, ali i poboljšavanja proizvodnih procesa, potreban je kvalitetan mjerni sustavi koji mjeri značajke procesa. U ovom su radu opisani postupci za analizu mjernog sustava u proizvodnome procesu te je navedena matematička podloga provedenih koraka. Analiza mjernog sustava razlikuje se od slučaja do slučaja, odnosno ovisi o broju mjeritelja, broju predmeta mjerenja i broju ponavljanja mjerenja. U svrhu lakše analize mjernog sustava upotrebaljvaju se različiti računalni programi. Pri izradi ovog rada korišten je jedan takav program – Minitab 17 (probna verzija).

SUMMARY

The topic of this dissertation is "Implementation of the measurement system analysis in the manufacturing process". For better control, and improvement of production processes, quality measurement system is needed to measure the characteristics of the process. This paper describes the procedures for the measurement system analysis in the manufacturing process and mathematical backgroud of implemented steps. Analysis of the measurement system is different from case to case, and depends on the number of operators, the number of measured parts and number of measurement repetitions. In order to facilitate analysis of the measurement system, various computer programs are used. Also, in preparation of this study, one such program was used – Minitab 17 (trial).

1. UVOD

Kvalitetan mjerni sustav samo je jedan u nizu čimbenika proizvodnog procesa o kojem ovisi konačan izgled, ali i funkcionalnost proizvedenog proizvoda. Za svaki mjerni sustav potrebano je poznavati sve njegove mogućnosti s naglaskom na pouzdanost. Svi elementi mjernog sustava (mjerni instrument, mjeritelji, računalni programi, mjerne strategije) mogu uzrokovati rasipanja rezultata mjerenja i mjernu nesigurnost.

Gledajući kroz povijest, izuzetno su značajni trenuci kad je čovjek počeo mjeriti. Prva mjerenja bila su na tržnicama pri razmjeni dobara i usluga, a potom i mjerenja izmjera zemljišta te mjerenje vremena. Mjerila se ponajprije duljina, ploština, masa i vrijeme.

Proizvodna mjerenja zastupljena su kako u proizvodnji običnih svakodnevnih proizvoda široke potrošnje, tako i u proizvodnji proizvoda visokog nivoa obrade, pojedinačno napraljvnih za specijalne namjene, proizvoda koji su rezultat dugotrajnog razvoja i primjene visokih tehnologija. U suvremenoj proizvodnji raste kopleksnost proizvoda, stoga se razvijaju i novi mjerni instrumenti, mjerne metode i računalni programi za kvalitetnu provedbu i analizu mjerenja, neizbježni za uspješnu kontrolu procesa.

Pod pojmom proizvodna mjerenja podrazumijevamo skup aktivnosti koje povezuju dijelove procesa putem mjerenja, ispitivanja i kontrole.

- Ispitivanje je eksperimentalno provjeravanje bez opreme ili uz korištenje mjerne ili kontrolne opreme, a može biti subjektivno ili objektivno.
- > Mjerenje je proces dobivanja brojčanog podatka u odnosu na jedinicu mjere.
- Kontrola, za razliku od mjerenja, ne daje brojčane vrijednosti kontroliranih veličina, već samo informaciju je li neka dimenzija mjernog objekta u granicama postavljenih dimenzija i njihovih tolerancija.

2. PROCJENA MJERNOG SUSTAVA S JEDNIM PREDMETOM MJERENJA I JEDNIM MJERITELJEM

Ovim modelom pokazuje se utjecaj mjernog instrumenta (mjerila) u mjernom sustavu. U Minitabu taj se model naziva Type 1 Gage Study. Type 1 koristi se na početku analize mjernih sustava, kako bi se usredotočili samo na mjerni instrument, a ne na neki drugi izvor varijacije.

2.1. Matematički izračun pojedinih komponenti

Rezultati mjerenja jednog predmeta mjerenja koja je mjerio jedan mjeritelj iznosi kako prikazuje tablica 1.

Mierenie	Rezultat mierenia	Mierenie	Rezultat mierenia
wijerenje	Rezultat hijerenja	wjerenje	Rezultat injerenja
1	22,7500	14	22,8750
2	22,6875	15	22,6875
3	22,9375	16	22,8750
4	22,7500	17	22,8125
5	22,8125	18	22,6875
6	22,6875	19	22,8125
7	22,7500	20	22,7500
8	22,7500	21	23,0000
9	22,8125	22	22,8750
10	22,6875	23	22,8125
11	22,7500	24	22,7500
12	22,9375	25	22,8750
13	22,8750		

Tablica 1. Type 1: rezultati mjerenja

Sposobnost procesa pokazuju indeks potencijelane sposobnosti procesa *Cg* (ponovljivost rezultata mjerenja) te indeks sposobnosti *Cgk* (sustavni pomak). Računamo ih prema sljedećim formualama:

$$Cg = \frac{K/100 \cdot T}{L \cdot s}$$
; $Cg = \frac{0.2 \cdot T}{6 \cdot s}$

$$Cgk = \frac{K/200 \cdot T - \left|\bar{x}_{g} - x_{m}\right|}{L/2 \cdot s}; \ Cgk = \frac{0.1 \cdot T - \left|\bar{x}_{g} - x_{m}\right|}{3 \cdot s}$$

gdje su:

K – postotak tolerancijskog polja (uobičajeno 20%)

T – tolerancijsko polje

s – procijenjeno standardno odstupanje rezultata mjerenja

L – broj standardnih odstupanja koji predstavlja željenu širinu procesa (uobičajeno 6 ili 4)

 \overline{x}_g - aritmetička sredina rezultata mjerenja

$$x_m$$
 - referentna vrijednost

L – broj standardnih odstupanja koji predstavlja pola željene širine procesa (uobičajeno 3 ili
2)

Zadani kriteriji

- 1. Varijacija uslijed mjerenja treba pasti u područje od 20 % (± 10 %) tolerancijskog polja oko referentne vrijednosti.
- **2**. $Cg \ge 1,33$; $Cgk \ge 1,33$
- 3. $\frac{\text{Rezolucija mjerila}}{T} \cdot 100 \leq 5\%$

Na primjeru provedenom u Minitabu:

$$\bar{x}_{g} = 22,800$$
; s = 0,0884

$$Cg = \frac{K/100 \cdot T}{L \cdot s}$$
; $Cg = \frac{0.2 \cdot T}{6 \cdot s} = \frac{0.2 \cdot 4.5}{6 \cdot 0.0884} = 1,70$

$$Cgk = \frac{K/200 \cdot T - \left|\bar{x}_g - x_m\right|}{L/2 \cdot s} ; \ Cgk = \frac{0.1 \cdot T - \left|\bar{x}_g - x_m\right|}{3 \cdot s} = \frac{0.1 \cdot 4.5 - \left|22,800 - 23,000\right|}{3 \cdot 0,0884} = 0.94$$

% Rasipanja (Ponovljivost) = $\frac{K}{Cg} = \frac{20}{1,70} = 11,79\%$ ili $\frac{6 \cdot s}{T} = \frac{6 \cdot 0,0884}{4,5} \cdot 100\% = 11,79\%$

% Rasipanja (Ponovljivost i sustavni pomak) = $\frac{K}{Cgk} = \frac{20}{0.94} = 21,21\%$

Gore provedeni proračun primjenjuje se kada su poznate obje granice tolerancije.

2.2. Provedba koraka u Minitabu

Minitab zahtijeva minimalno 10 rezultata mjerenja za ovu analizu. Međutim, predloženo je koristiti, radi bolje procjene, barem 25 rezultata mjerenja.

Dobivene rezultate mjerenja unosimo u stupac, kao na slici 1.

Worksheet 1 ***				
÷	C1	C2	C	
	Measurement			
1	22.7500			
2	22.6875			
3	22.9375			
4	22.7500			
5	22.8125			
6	22.6875			
7	22.7500			
8	22.7500			
9	22.8125			
10	22.6875			
11	22.7500			
12	22.9375			
13	22.8750			
14	22.8750			
15	22.6875			
16	22.8750			
17	22.8125			
18	22.6875			
19	22.8125			
20	22.7500			
21	23.0000			
22	22.8750			
23	22.8125			
24	22.7500			
25	22.8750			

Slika 1. Rezultati mjerenja uneseni u Minitab

Zatim idemo na Stat > Quality Tools > Gage Study > Type 1 Gage Study (slika 2.).

d	/ Minit	ab - Untitled							
1	<u>F</u> ile	<u>E</u> dit D <u>a</u> ta <u>C</u> alc	<u>S</u> ta	t <u>G</u> raph E <u>d</u> itor	r <u>T</u> ools	W	<u>V</u> indow <u>H</u> elp Assista <u>n</u> t		
	<u> </u>	≛1 £ ⊜ } ⊻		Basic Statistics Regression	> >	≙	■		■ : : : : : : : : : : : : : : : :
ſ	Ses:	sion		DOE	•				
				Control Charts	•			_	
		07/02		Quality Tools	•	74	<u>R</u> un Chart		
	Welco	ome to Minitab,		Reliability/Surviv <u>M</u> ultivariate Time <u>S</u> eries <u>T</u> ables <u>N</u> onparametrics <u>E</u> quivalence Test <u>P</u> ower and Samp	val ► ► Es ► Dle Size ►	≦ ≫ ◆	Pareto Chart Cause-and-Effect Individual Distribution Identification Johnson Transformation Capability Analysis Capability Sixpack Tolerance Intervals	• •	
							Gage Study	•	Type 1 Gage Study
	<	rksheet 1 ***				14 14 15 15	Create Attribute Agreement Analysis Worksheet Attrib <u>u</u> te Agreement Analysis Acceptance Sampling by A <u>t</u> tributes		Create Gage R&R Study Worksheet Gage Run Chart Gage Linearity and Bias Study Gage R&R Study (Crossed)
	÷	Cl	с	2 C3	C4	1	Acceptance sampling by valiables	-	Gage R&R Study (Nested) C1
	1	Measurement 22.7500				: 1	<u>M</u> ulti-Vari Chart Symmetry Plot		Gage R&R Study (Expanded)
	2	22.6875							

Slika 2. Odabir: Type 1 Gage Study

Otvorio se prozor Type 1 Gage Study, slika 3. U polje **Measurement data** odabiremo stupac *Measurement*, a u polje **Reference** unosimo *referentnu vrijednost* (u našem slučaju 23). U dio **Tolerance** unosimo toleranciju predmeta mjerenja ili zadane specifikacije. Dakle, u polje **Upper spec – lower spec** upišemo zadanu toleranciju predmeta (zadano: 4,5). I stisnemo **OK**.

Type 1 Gage Study		×
C1 Measurement	Measurement data: Measurement Reference: 23	<u>G</u> age Info O <u>p</u> tions
	Tolerance • Upper spec - lower spec: • Lower spec only: • Upper spec only:	
Select Help		<u>O</u> K Cancel

Slika 3. Type 1 Gage Study

Nakon što smo obavili prethodne korake, izlazi nam prozor Type 1 Gage Study for Measurement (slika 4).

Slika 4. Type 1 Gage study for measurement

Prikazan je graf rezultata mjerenja ovisno o broju mjerenja. Također, ispisane su osnovne statističke vrijednosti: referentna vrijednost (23), aritmetička sredina (22,800), standardna devijacija (0,0884), tolerancija (4,5). Vidimo i indekse sposobnosti procesa: *C*g – ponovljivost rezultata mjerenja (1,70), *C*gk – ponovljivost i sustavni pomak (0,94). % Rasipanja (Ponovljivost) iznosi 11,79%, a % Rasipanja (Ponovljivost i sustavni pomak) iznosi 21,21%.

3. PROCJENA MJERNOG SUSTAVA S JEDNIM PREDMETOM MJERENJA I VIŠE MJERITELJA

ANOVA je postupak usporedbe više uzoraka pri čemu svaki uzorak predstavlja osnovni skup. Procjena komponenti varijance koristeći ANOVA metodu za mjerni sustav sa samo jednim predmetom mjerenja i nije osobito korisna. Međutim, ako kombiniramo ono što znamo o varijancama ponovljivosti i obnovljivosti s nekim dodatnim informacijama, možemo dobiti znatnu količinu informacija o našem sustavu mjerenja. Također, morat ćemo napraviti neke jednostavne ručne izračune.

Dobivanje smislene informacije o mjernom sustavu

Nakon što izračunamo ponovljivost i obnovljivosti te ako imamo procjenu standardne devijacije varijacije dijelova (*Part-to-Part*), možemo dobiti procjenu ukupne varijacije i postotak doprinosa. Odavde možemo ručno računati većinu informacija koje su nam potrebne za procjenu mjernog sustava. Također, ako koristimo proces tolerancije, možemo dobiti neke korisne informacije o mjernom sustavu. Koristeći tolerancije, možemo dobiti procjenu postotka tolerancije za ukupni mjerni instrument.

Način za nastaviti s procjenama standardnih devijacija ili tolerancija najbolje je objasniti na primjerima. Pretpostavimo da smo proveli analizu mjernog sustava s jednim predmetom mjerenja i tri mjeritelja.

3.1. MatematičkI izračun pojedinih komponenti

Za analizu mjernog sustava prvo je potrebno izračunati varijance ponovljivosti i obnovljivosti. U tablici 2. dani su rezultati mjerenja jednog predmeta mjerenja te formule i postupak za izračun ponovljivosti i obnovljivosti.

Mierenie broi (<i>n</i>)	Mjeritelj				
Mjerenje broj (<i>n</i>)	А	В	С		
1	0,29	0,08	0,04		
2	0,41	0,25	-0,11		
3	0,64	0,07	-0,15		
$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$	0,446667	0,133333	-0,073333		
$s_{r,A-C}^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$	0,031633	0,010233	0,010033		
$s_r = \sqrt{\frac{s_{r,A}^2 + s_{r,B}^2 + s_{r,C}^2}{3}}$	$\sqrt{\frac{0,031633 + 0,010233 + 0,010033}{3}} = 0,131529$				
Varijancu ponovljivosti dobijemo kvadriranjem dobivene vrijednosti: $0,131529^2 = 0,0173$.					
\overline{x}	0,446667 + 0,1	$\frac{33333 - 0,073333}{3} = 0$	0,168889		
$s_{L,A-C}^2 = (\bar{x} - \bar{\bar{x}})^2$	0,077160	0,001264	0,058672		
$s_{L} = \sqrt{\frac{s_{L,A}^{2} + s_{L,B}^{2} + s_{L,C}^{2}}{3}}$	$\sqrt{\frac{0,077160 + 0,001264 + 0,058672}{3}} = 0,213773$				
$s_R = \sqrt{s_r^2 + s_L^2}$	$\sqrt{0,131529^2 + 0,213773^2} = 0,250996$				
Varijanca obnovljlivosti dol	bije se kvadriranjem dol	bivene vrijednosti, dak	le: $0,250996^2 =$		
0,06278.					

Tablica 2. Rezultati mjerenja jednog predmeta mjerenja, ponovljivost i obnovljivost

Nakon što imamo poznatu vrijednost varijanci ponovljivosti i obnovljivosti, možemo izračunati varijaciju mjernog sustava R&R i to na sljedeći način:

Varijacija mjernog sustava R&R = Ponovljivost + Obnovljivost

(Total Gage R&R = Repeatability + Reproducibility)

Varijacija mjernog sustava R & R = 0,06278 + 0,01730 = 0,08008.

Korištenje poznate standardne devijacije dijelova

Pretpostavimo da imamo već otprije poznatu standardnu devijaciju dijelova (*Historical Part-to-Part Standard deviation*) i ona iznosi 1,0853. Prvi nam je korak kvadrirati standardnu devijaciju dijelova da izračunamo varijancu dijelova: $1,08530^2 = 1,17788$.

Ukupna varijabilnost ovisi o varijaciji mjernog sustava R&R i o varijanci dijelova. Ukupna varijacija = Varijacija mjernog sustava R&R + Varijanca dijelova (Total Variation = Total Gage R&R + Part-to-Part variation) Ukupna varijacija = 0,08008 + 1,17788 = 1,25796.

Sad kad imamo procjenu ukupne varijance, možemo procijeniti doprinos svake komponente dijeleći pojedinačnu kompopnentu s ukupnom i množeći sa 100%.

Izvor	Varijanca	Doprinos		
Source	VarComp	%Contribution (of VarComp)		
Varijacija mjernog sustava R&R	0.09009	$\frac{0,08008}{0} = 6.3706$		
Total Gage R&R	0,08008	$\frac{1}{1,25796} = 0,37\%$		
Ponovljivost	0.01730	$\frac{0,01730}{-1,3806}$		
Repeatability	0,01750	$\frac{1}{1,25796} = 1,38\%$		
Obnovljivost	0.06278	$\frac{0,06278}{-4,0006}$		
Reproducibility	0,00278	1,25796 - 4,9970		
Varijacija dijelova	1 17788	$\frac{1,17788}{-93.63\%}$		
Part-to-Part	1,17788	1,25796 - 93,03%		
Ukupna varijacija	1 25796	100%		
Total	1,23750	10070		

Tablica 3. Doprinos pojedinih komponenti u ukupnoj varijaciji

Kriterij za ocjenu kvalitete mjernog sustava R&R za postotak doprinosa je sljedeći:

- ako je doprinos manji od 1%, mjerni sustav je zadovoljavajuć,
- ako je doprinos između 1 i 9%, mjerni sustav je graničan i
- ako je doprinos veći od 9%, mjerni sustav je neprihvatljiv.

Koristeći iste informacije, možemo procijeniti *Study Variation* i udio (%) *Study Variaton*. Za to nam treba varijanca komponenti.

lzvor	Varijanca	Standardna devijacija			
Source	Variance	StDev (SD)	StudyVar	%StudyVar	
		\sqrt{Var}	$6 \cdot SD$	%SV	
Ponovljivost	0.01720	$\sqrt{0.01720} - 0.12$	6 · 0,13	0,78 _ 0.070/	
Repeatability	0,01730	$\sqrt{0,01/30} = 0,13$	= 0,78	8,7918 = 8,87%	
Obnovljivost	0.06270	$\sqrt{0.06279} - 0.25$	6.025 - 15	1,5 - 17.0606	
Reproducibility	0,00278	$\sqrt{0,06278} = 0,25$	0.0,25 - 1,5	8,7918 - 17,00%	
Varijanca dijelova	1 1 7 7 0 0		6 · 1,0853	6,5118 _ 74.070/	
Part-to-Part	1,17788	$\sqrt{1,1788} = 1,0853$	= 6,5118	$\frac{1}{8,7918} = 74,07\%$	
Ukupno		1 4652	0 7010	10004	
Total		1,4033	0,7918	100%	

Tablica 4. Standardna devijacija

Dodatno, možemo izračunati broj različitih kategorija. Broj različitih kategorija računa sam Minitab na sljedeći način:

Standardna devijacija dijelova Standardna devijacija mjernog sustava [.] 1,41

Na našem primjeru, standardna devijacija dijelova iznosi 1,0853 i standardna devijacija mjernog sustava (ponovljivost + obnovljivost) iznosi $\sqrt{0,0173 + 0,06278} = 0,282984$, pa imamo:

$$\frac{1,0853}{0,282984} \cdot 1,41 = 5,4.$$

Da bi mjerni sustav bio prihvatljiv, broj različitih katerogija treba biti pet ili veći.

Korištenje procesa tolerancije

Ako nemamo poznatu standardnu devijaciju dijelova, još uvijek možemo dobiti korisne informacije koristeći proces tolerancije. Možemo izračunati postotak tolerancije za ukupni mjerni instrument dijeleći *StudyVar* s tolerancijom. Na primjer, postavimo da tolerancija iznosi *8*:

lzvor		
Source	StudyVar	%Tolerance
	$6 \cdot SD$	StudyVar/Tolerance
Ponovljivost	0.79	$\frac{0.78}{0.78}$ · 100% - 9.75%
Repeatability	0,78	8
Obnovljivost	15	$\frac{1,5}{1,00\%} - 1875\%$
Reproducibility	1,5	8
Ukupno	2.28	$\frac{2,28}{2,28}$ · 100% = 285%
Total	2,20	8

Tablica 5. Tolerancija

3.2. Provedba koraka u Minitabu

Dobivene rezultate rasporedimo u tablicu kao na slici 5. Ime mjeritelja unosimo u prvi stupac, a rezultate mjerenja u drugi.

Worksheet 1 ***										
÷	C1-T	C2	C3							
	Operator	Measurement								
1	Α	0.29								
2	Α	0.41								
3	Α	0.64								
4	В	0.08								
5	В	0.25								
6	В	0.07								
7	С	0.04								
8	С	-0.11								
9	С	-0.15								
10										
11										
42										

Slika 5. Rezultati mjerenja uneseni u Minitab

Zatim idemo na Stat > Anova > General Linear Model > Fit General Linear Model (slika 6.).

Slika 6. Odabir: Fit General Liner Model

Nakon što se otvorio prozor General Linear Model, u polje **Responses** odaberemo stupac *Measurement*, a u polje **Factor** unosimo stupac *Operator*, slika 7.

Gene	ral Linear Model				×
C1 C2	Operator Measurement	R <u>e</u> sponses: Measurement			~
					~
		Eactors: Operator			^
					~
		<u>C</u> ovariates:			^
					~
		R <u>a</u> ndom/Nest	odel	Optio <u>n</u> s	Co <u>d</u> ing
	Select	Stepwise Gra	aphs	<u>R</u> esults	S <u>t</u> orage
	Help			<u>О</u> К	Cancel

Slika 7. General Linear Model

Zatim kliknemo na **Random/Nest**. Otvorio nam se prozor Feneral Linear Model: Random/Nest (slika 8). Kod odabira Factor type za *Operator* odabiremo **Random**.

General Linear Model: Ra	ndom/Nest			×
	Nesting:			
	Factor/Covariate	Nested in s	pecified factors	
	Operator			
	Eactor type: Factor Operator	Type Random 💌		
Select				
Help			<u>O</u> K	Cancel

Kad smo to odabrali, kliknemo **OK** na sve otvorene prozore.

U Minitabu u prozoru Sesion prikazuju se procjene rezultata (slika 9.). Obnovljivost je 0,06278 (komponenta *Operator*), a ponovljivost iznosi 0,01730 (komponenta *Error*).

Variance	Components,	using Adjusted SS						
Source	Variance	<pre>% of Total</pre>	StDev	<pre>% of Total</pre>				
Operator	0.0627815	78.40%	0.250562	88.54%				
Error	0.0173	21.60%	0.131529	46.48%				
Total	0.0800815		0.282987					

Slika 9. Procjene rezultata

Ako bismo željeli vidjeti vizualni prikaz kako je svaki mjeritelj mjerio isti dio, možemo napraviti pojedinačni dijagram sa skupinama koje predstavalju svakog od mjeritelja.

Idemo na Graph > Individual Value Plot (slika 10.).

al Mini	tab - Untitle	d														
<u>F</u> ile	<u>E</u> dit D <u>a</u> t	a <u>C</u> alc	Stat	<u>G</u> ra	ph E <u>d</u> itor <u>T</u> o	ools <u>W</u> indow	He	elp Assist	a <u>n</u> t							
🗃 🖥			5 87		<u>S</u> catterplot <u>M</u> atrix Plot Bubble Plot				⊡ () × ⊂ [i	<mark>010</mark> 10 ⊳т□		미딦[: <i>)</i> 년년]	* +	4612	<i>I</i> , <i>Q</i>	
🔄 Ses	sion			70	Margi <u>n</u> al Plot											
Erro	r Terms f	or Tests	s, us		<u>H</u> istogram <u>D</u> otplot											
5 1 0	ource perator	Error DF 6.00	F E1	1137 1137 1137	Stem-and-Lea Probability Plo Empirical CDF.	<u>f</u> ot										
Vari	ance Comp	onents,	usir	Λ	Pr <u>o</u> bability Dis	stribution Plot										
Sour Oper	ce Va ator 0.0	riance 627815	€ of	¢¢¢ ≢ <u>∓∓</u>	Bo <u>x</u> plot <u>I</u> nterval Plot											
Erro Tota	r 1 0.0	0.0173 800815	[Indi <u>v</u> idual Valu Line Plot	ue Plot										
					– Ba <u>r</u> Chart <u>P</u> ie Chart											
U Wa	orksheet 1 **	×		<u>M</u>	<u>T</u> ime Series Plo <u>A</u> rea Graph	ot										
÷	C1-T	C	2		Contour Plot			C6	C7	C8	C9	C10	C11	C12	C13	C14
	Operato	r Measu	reme	ø	<u>3</u> D Scatterplot.											
1	Α		0.	8	3D S <u>u</u> rface Plo	ot										
2	Α		0.4	1				1								
3	Α		0.6	i4												
4	B		0.0	8												

Slika 10. Odabir: Individual Value Plot

Otvorio se prozor Interval Plots. Odaberemo polje **Multiple Y's**, **With Groups** i stinesmo **OK** (slika 11.).

Interval Plots				\times
One Y Simple	With Groups With Groups I I I I I I I I			
Multiple Y's Simple	With Groups			
Help		<u>о</u> к	Cancel	

U polje **Graph variables** unosimo stupac *Measurement*, a u **Categorical variables for grouping** stavljamo stupac *Operator* (slika 12.).

Interva	l Plot: Multiple Y's, Wi	th Groups			\times
C1 C2	Operator Measurement	<u>G</u> raph variables: Measurement		^	
		Categorical variables	for grouping (1-3, outerm	ost first):	
		Scale Level for Graph V	Variables played outermost on scale	~	
	Select	Grap <u>n</u> variables dis	Labels	Data View	
	Help	<u>M</u> ultiple Graphs	D <u>a</u> ta Options <u>O</u> K	Cancel	

Slika 12. Interval Plot: Multiple Y's, With Groups

U istom prozoru stisnemo na gumb **Labels...** Otvara se prozor Interval Plot: Labels. U polje **Title** unosimo željeni naziv dijagrama (**Measurement by Operator**) i kliknemo **OK**, slika 13.

Interval Plot: Labels	\times
Titles/Footnotes Data Labels	
_Title:	_
Measurement by Operator	
Subtitle 1:	
Subtitle 2:	
Footnote 1:	_
Footnote 2:	_
J	- 1
Help <u>O</u> K Cancel	

Onda stisnemo na **Data View** (slika 12.). Otvorio nam se prozor Interval Plot: Data View. Potrebno je staviti kvačice ispred naziva **Individual symbols, Mean symbol** i **Mean connect line** kao na slici 14. Zatim pritisnuti **OK**. I još jednom **OK**.

Interval Plot: Data View	×
Data Display	
	Data Display Interval bar Bar Individual symbols Mean symbol Median symbol Median connect line Median connect line Categorical variables for attribute assignment:
Select	~
Help	QK Cancel

Slika 14. Interval Plot: Data View

Nakon što smo obavili prethodne korake, prikazao nam se traženi graf *Measurement by Operator*. Vidimo kako je mjerio pojedini mjeritelj, a aritmetičke sredine rezultata mjerenja spojene su dužinama (slika 15.).

4. PROCJENA MJERNOG SUSTAVA S VIŠE PREDMETA MJERENJA I VIŠE MJERITELJA

Za procjenu mjernog sustava s više predmeta mjerenja i više mjeritelja Minitab sadrži Gage R&R studije, a to su: Crossed, Nested i Expanded. Načelno Gage R&R govori nam možemo li i koliko vjerovati rezultatima mjerenja mjernog sustava.

Crossed gage R&R study

Koristimo Crossed gage R&R study kada svaki mjeritelj mjeri svaki dio. Takvu studiju zovemo crossed (ukršten) jer je svaki mjeritelj mjerio svaki dio više puta.

Nested gage R&R study

Studija u kojoj samo jedan mjeritelj mjeri svaki dio. Koristimo kada nije moguće ostvariti da svaki mjeritelj mjeri svaki dio. Razlog tomu je taj što mjerenje uništi predmet mjerenja ili je veličina serije premala za veći broj ispitivanja od strane svakog mjeritelja.

Tablica 6. Usporedba Crossed i Nested gage R&R study

Expanded gage R&R study

Studija koja zadovoljava jedan ili više sljedećih uvjeta:

- više od dva čimbenika mjerenja: mjeritelj, mjerni instrument i predmet mjerenja,
- fiskni ili slučajni čimbenici,
- oba spadaju u crossed i nested čimbenike ili
- neuravnotežen izgled.

4.1. Matematički izračun pojedinih komponenti

Slučajnim izborom odabrano je šest dijelova iz proizvodnog procesa. Mjerenja su izvršila dva mjeritelja (mjeritelj A i mjeritelj B). Svaki dio mjeren je četiri puta od strane svakog pojedinog mjeritelja. Rezultati mjerenja prikazani su u tablici 7.

		Mjeritelj									
			А					В			
		Mjerer	nje broj				Mjerenje broj				
Dio	1	2	3	4	R	1	2	3	4	R	$ar{x}_p$
1	48,12	48,13	48,10	48,15	0,05	48,21	48,18	48,18	48,17	0,04	48,1550
2	48,25	48,28	48,29	48,27	0,04	48,30	48,27	48,27	48,28	0,03	48,2763
3	48,01	47,99	48,00	48,00	0,02	48,05	48,10	48,04	48,03	0,07	48,0275
4	48,50	48,53	48,52	48,51	0,03	48,50	48,55	48,55	48,54	0,05	48,5250
5	48,27	48,28	48,27	48,25	0,03	48,29	48,30	48,33	48,29	0,04	48,2850
6	48,35	48,35	48,32	48,31	0,04	48,37	48,39	48,40	48,36	0,04	48,3563
\bar{x}		48,2	2521				48,2	2896			

Tablica 7. Gage R&R Crossed: rezultati mjerenja

Kontrolne granice za kretanje raspona uzoraka

Gornja kontrolna granica (Uper Control Limit) UCL

 $UCL = \overline{R} \cdot D_4$

$$UCL = 0.04 \cdot 3.267 = 0.0913$$

Donja kontrolna granica (Lower Control Limit) LCL

$$UCL = \overline{R} \cdot D_3$$

$$UCL = 0,04 \cdot 0 = 0$$

Faktore D_3 i D_4 očitavamo iz tablice 10 iz Priloga.

Ponovljivost EV

$$EV = 5,15 \cdot \frac{\overline{R}}{d_2}; \ \overline{R} = \frac{\sum R}{g}$$

n – broj dijelova

b – broj mjeritelja

R- raspon

 d_2 – empirijski faktor koji povezuje procjenjeno standardno odstupanje i raspon mjerenja. U funkciji je broja ponovljenih mjerenja *m* i broja raspona *g*. Očitati iz tablice 9 iz Priloga.

$$g = n \cdot b$$
 – broj raspona

m - broj ponovljenih mjerenja

$$g = n \cdot b = 2 \cdot 6 = 12, m = 4 \Rightarrow d_2 = 2,07$$
$$\bar{R} = \frac{\sum R}{g} = \frac{0,48}{12} = 0,04$$
$$EV = 5,15 \cdot \frac{\bar{R}}{d_2} = 5,15 \cdot \frac{0,04}{2,07} = 0,099$$

Obnovljivost AV

$$AV = \sqrt{(5,15 \cdot \frac{R_0}{\dot{d}_2})^2 - (5,15 \cdot \frac{\overline{R}}{d_2})^2 \cdot \frac{1}{n \cdot r}}; \ R_0 = \bar{x}_{max} - \bar{x}_{min}$$

R₀ – razlika najveće i namjanje aritmetičke sredine svih rezultata mjerenja

n – broj dijelova

r-broj ponovljenih mjerenja

 \dot{d}_2 – faktor u funkciji broja mjeritelja *m* i broja raspona *g*. U ovom slučaju broj raspona *g* jednak je 1. Očitati iz tablice 9.

m – broj mjeritelja

 $m = 2, g = 1 \rightarrow \dot{d}_2 = 1,41$

$$R_0 = \bar{x}_{max} - \bar{x}_{min} = 48,28958 - 48,25208 = 0,0375$$

$$AV = \sqrt{(5,15 \cdot \frac{R_0}{\dot{d}_2})^2 - \frac{EV^2}{n \cdot r}} = \sqrt{(5,15 \cdot \frac{0,0375}{1,41})^2 - (5,15 \cdot \frac{0,04}{2,07})^2 \cdot \frac{1}{6 \cdot 4}} = 0,135$$

Ponovljivost i obnovljivost (Total Gage R&R)

$$R\&R = \sqrt{EV^2 + AV^2}$$
$$R\&R = \sqrt{0.099^2 + 0.135^2} = 0.167$$

Kontrolne granice za kretanje aritmetičkih sredina uzoraka

$$UCL_{\bar{x}} = \bar{x} + A_2 \cdot \bar{R}; \ \bar{x} = \frac{\bar{x}_1 + \bar{x}_2}{2}$$
$$\bar{x} = \frac{48,2501 + 48,2896}{2} = 48,2708$$
$$UCL_{\bar{x}} = 48,2708 + 0,729 \cdot 0,04 = 48,3000$$
$$LCL_{\bar{x}} = \bar{x} - A_2 \cdot \bar{R}$$

$$LCL_{\bar{x}} = 48,2708 - 0,729 \cdot 0,04 = 48,2417$$

Varijacija dijelova PV

$$PV = 5,15 \cdot \frac{\bar{R}_p}{d_2^*}$$
$$\bar{R}_p = \bar{x}_{p,max} - \bar{x}_{p,min}$$

 \overline{R}_p – raspon prosječnih sredina

 d_2^* – faktor u funkciji broja dijelova *m* i broja raspona *g*. Broj raspona *g* u ovom slučaju jednak je 1. Očitati iz tablice 9.

m – broj dijelova

$$m = 6, g = 1 \rightarrow d_2^* = 2,67$$

$$\bar{R}_p = \bar{x}_{p,max} - \bar{x}_{p,min} = 48,5250 - 48,0275 = 0,4975$$

$$PV = 5,15 \cdot \frac{\bar{R}_p}{d_2^*} = 5,15 \cdot \frac{0,4975}{2,67} = 0,96$$

<u>Ukupna (totalna) varijacija TV</u>

$$TV = \sqrt{(R\&R)^2 + PV^2}$$

$$TV = \sqrt{0.167^2 + 0.96^2} = 0.974$$

Sposobnost mjernog sustava (%Study Var) SMS

$$SMS = \frac{R\&R}{TV} \cdot 100\%$$
$$SMS = \frac{0,167}{0,974} \cdot 100\% = 17,2\%$$

Udio R&R u ukupnoj varijaciji TV, odnosno sposobnost mjernog sustava SMS (%Study Var) može se svrstati u tri kategorije:

- ako je SMS manji od 10%, mjerni sustav je zadovoljavajuć,
- ako je SMS unutar vrijednosti 10 i 30%, mjerni sustav je načelno prihvatljiv (ovisno o primjeni, cijeni mjernog uređaja, troškovima popravka i sl.) i
- ako je SMS veći od 30&, mjerni sustav je neprihvatljiv.

4.2. Provedba koraka u Minitabu

Za procjenu mjernog sustava s više mjeritelja i više predmeta mjerenja koristit ćemo Crossed Gage R&R Study. Prvi korak za provedbu procjene mjernog sustava u softverskom programu Minitab je napraviti Gage R&R Study Worksheet. Idemo na **Stat > Quality Tools > Gage Study > Create Gage R&R Study Wokrsheet**, slika 16.

Slika 16. Odabir: Create Gage R&R Study Worksheet

Otvorio nam se prozor kao na slici 17. U polju **Number of part** unosimo *broj dijelova koja su mjerena*, u našem slučaju 6. Pod **Number of operators** unosimo *broj mjeritelja* (2), a u polje **Number of replicates** unosimo *broj mjerenja svakog dijela od strane svakog mjeritelja* (4).

Andrej Razumić

Create G	age R&R Study Workshee	t				\times
<u>N</u> umber	of parts: 6		N <u>u</u> mber of oper	ators:	2 .	Options
Part	Part Name		Operator	0	perator Name	
1	1		1	1		
2	2		2	2		
3	3					
4	4					
5	5					
0	0					
Nu <u>m</u> ber (of replicates: 4	•				
						ок
	1					
He	p					Cancel

Slika 17. Create Gage R&R Study Workseet

Zatim stisnemo na gumb **Options...** i odaberemo opciju **Do not randomize**, slika 18. Stinesmo **OK** i još jednom **OK**.

Create Gage R&R Study Worksheet: Options		\times
Do not randomize		
C Randomize all runs		
C Randomize runs within operators		
Store standard run order in worksheet		
Help	<u>о</u> к	Cancel

Slika 18. Create Gage R&R Study Worksheet: Options

U Minitabu se prikazao Worksheet kao na slici 19. U prvi slobodan stupac (C4) unosimo izmjerene podatke, pazeći na redoslijed mjerenja (slika 20.).

🛄 Wo	rksheet 1 ***				
+	C1	C2-T	C3-T	C4	
	RunOrder	Parts	Operators		
1	1	1	1		
2	2	1	2		
3	3	2	1		
4	4	2	2		
5	5	3	1		
6	6	3	2		
7	7	4	1		
8	8	4	2		
9	9	5	1		
10	10	5	2		
11	11	6	1		
12	12	6	2		
<					

Slika 19. Gage R&R Study Workshee	Slika	19.	Gage	R&R	Study	Works	heet
-----------------------------------	-------	-----	------	-----	-------	-------	------

🛄 Wo	rksheet 1 ***				
+	C1	C2-T	C3-T	C4	C5
	RunOrder	Parts	Operators	Measurement	
1	1	1	1	48.12	
2	2	1	2	48.21	
3	3	2	1	48.25	
4	4	2	2	48.30	
5	5	3	1	48.01	
6	6	3	2	48.05	
7	7	4	1	48.50	
8	8	4	2	48.50	
9	9	5	1	48.27	
10	10	5	2	48.29	
11	11	6	1	48.35	
12	12	6	2	48.37	
<					

Slika 20 Gage R&R Study Worksheet: uneseni podaci

Izračun pojedinih komponenti može se računati na dva načina:

- prema metodi aritmetičkih sredina i raspona te
- prema ANOVA metodi.

Razlika između metode aritmetičkih sredina i raspona i ANOVA metode je ta što ANOVA razlaže obnovljivost na dva dijela: na mjeritelja (Operator) te na interakciju dijela i mjeritelja (Operator by Part). Zbog toga je metoda ANOVA preciznija u odnosu na metodu aritemtičkih sredina i raspona, ali u proračunu mnogo kompliciranija.

4.2.1. Gage R&R Study Crossed – Metoda aritmetičkih sredina i raspona

Zatim idemo na Stat > Quality Tools > Gage Study > Create Gage R&R Study (Crossed), slika 21.

.1 Minitab - Untitled		
<u>File Edit Data Calc Stat Graph Editor Tools</u>	s <u>W</u> indow <u>H</u> elp Assista <u>n</u> t	
Basic Statistics	\$ \$	
Session DOE Control Charts		
O8/02 Quality Tools Welcome to Minitab, Multivariate	⊮ Bun Chart Image: Large Chart ≫ Cause-and-Effect	
Gage R&R Study V Farts: 6 C Replicates: 4 1 Equivalence Tests Equivalence Tests Equivalence Tests Equivalence Tests Equivalence Tests	Individual Distribution Identification Johnson Transformation Capability Analysis Capability Sixpack 次 Tolerance Intervals	
<	Gage Study ray Type 1 Gage Study Create Attribute Agreement Analysis Worksheet Create Gage R&R Study Worksheet Attribute Agreement Analysis Create Gage Run Chart	
Worksheet 1 ***	Image: Comparison of the second se	
+ C1 C2-T C3-T C4 RunOrder Parts Operators Measurer 1 1 1 4	Image: Multi-Vari Chart Image: Gage R&R Study (Nested) Image: Gage R&R Study (Nested) Image: Multi-Vari Chart Image: Gage R&R Study (Expanded) Image: Gage R&R Study (Expanded) Image: Multi-Vari Chart Image: Gage R&R Study (Expanded) Image: Gage R&R Study (Analytic Method)	C14
2 2 1 2 4 2 2 2 1 2 4	8.21	

Slika 21. Odabir: Gage R&R Study (Crossed)

Otvorio se prozor Gage R&R Study (Crossed), slika 22. U polje **Part numbers** unosimo stupac *Parts*, u polje **Operators** unosimo *Operators*, dok u **Measurement data** unosimo stupac *Measurement*. Pod **Method of Analysis** odabiremo *Xbar and R*. Kliknemo na gumb **Options...**

Gage R&R Study (Cros	sed)		×
	Part numbers:	Parts	Gage Info
	Operators:	Operators	Options
	Measurement data:	Measurement	Conf Int
			Storage
Select	Method of Analysis C ANOVA O Xbar and R		
			ОК
Help			Cancel

Slika 22. Gage R&R Study (Crossed)

Otvara se prozor Gage R&R Study (Crossed): Xbar and R Options, slika 23. U polje **Study Variation** upišemo broj *5,15*. U dijelu **Process tolerance** unosimo zadane podatke: gornju i/ili donju granicu specifikacije ili toleranciju (pr. *8*). Pritisnemo **OK**. I još jednom **OK**.

Gage R&R Study (Crossed): Xbar and R Options				
Study variation: 5.15	(number of standard deviations)			
Process tolerance				
C Enter at least one specificati	on limit			
Lower spec:				
Upper spec:				
• Upper spec - Lower spec:	8			
Historical standard deviation:				
Do not display percent contribut	ion			
🔲 Do not display percent study va	riation			
Draw graphs on separate graph	s, one graph per page			
Title:				
Help	OK Cancel			

Slika 23. Gage R&R Study (Crossed): Xbar and R Options

Nakon provedbe opisanih koraka otvara se novi prozor Gage R&R Report for Measurement (slika 24.) koji sadrži kontrolne karte i različite dijagrame koju služe za vizualni prikaz statistički obrađenih unesenih rezultata mjerenja. U prozoru Sesion (slika 25.) vidimo izračunate pojedine komponente.

Slika 24. Gage R&R Report for Measurement

Gage R&R Study Worksheet

Parts:	6	Operators:	2
Replicates:	4	Total runs:	48

Gage R&R Study - XBar/R Method

		<pre>%Contribution</pre>
Source	VarComp	(of VarComp)
Total Gage R&R	0.0010595	2.97
Repeatability	0.0003718	1.04
Reproducibility	0.0006876	1.93
Part-To-Part	0.0346530	97.03
Total Variation	0.0357125	100.00

Process tolerance = 8

		Study Var	<pre>%Study Var</pre>	<pre>%Tolerance</pre>
Source	StdDev (SD)	(5.15 × SD)	(%SV)	(SV/Toler)
Total Gage R&R	0.032550	0.167630	17.22	2.10
Repeatability	0.019283	0.099308	10.20	1.24
Reproducibility	0.026223	0.135047	13.88	1.69
Part-To-Part	0.186153	0.958689	98.51	11.98
Total Variation	0.188977	0.973234	100.00	12.17

Number of Distinct Categories = 8

Slika 25. Procjene rezultata

4.2.1. Gage R&R Study Crossed – ANOVA metoda

Ukoliko želimo proračun provesti po ANOVA metodi, postupak je sljedeći: **Stat** > **Quality Tools** > **Gage Study** > **Create Gage R&R Study (Crossed)**, slika 21. Otvorio se prozor Gage R&R Study (Crossed). U polje **Part numbers** unosimo stupac *Parts*, u polje **Operators** unosimo *Operators*, dok u **Measurement data** unosimo stupac *Measurement*. Pod **Method of Analysis** odabiremo *ANOVA*, slika 26. Kliknemo na gumb **Options...**

Gage R&R Study (Cros	ised)		\times
	Part numbers:	Parts	Gage Info
	Operators:	Operators	Options
	Measurement data:	Measurement	Conf Int
			Storage
Select	Method of Analysis ANOVA ANOVA Analysis		
	C Abdi anu K		ОК
Help			Cancel

Slika 26. Gage R&R Study (Crossed)

Otvara se prozor Gage R&R Study (Crossed): ANOVA Options, slika 27. U polje **Study Variation** upišemo broj *5,15*. U dijelu **Process tolerance** unosimo zadane podatke: gornju i/ili donju granicu specifikacije ili toleranciju (pr. *8*). Pritisnemo **OK**. I još jednom **OK**.

Gage R&R Study (Crossed): ANOVA Options	×					
Study variation: 5.15 (number of standard deviations)						
Process tolerance						
C Enter at least one specification limit						
Lower spec:						
Upper spec:						
Upper spec - Lower spec: 8						
Historical standard deviation:						
Alpha to remove interaction term: 0.05						
Display probabilities of misclassification						
 Do not display percent contribution Do not display percent study variation Draw graphs on separate graphs, one graph per page 						
Title:						
Help OK Cancel						

Slika 27. Gage R&R Study (Crossed): ANOVA Options

Nakon provedbe opisanih koraka otvara se novi prozor Gage R&R Report for Measurement (slika 24.) koji sadrži kontrolne karte i različite dijagrame koju služe za vizualni prikaz statistički obrađenih unesenih rezultata mjerenja. U prozoru Sesion (slika 25.) vidimo izračunate pojedine komponente.

Slika 28. Gage R&R Report for Measurement

Gage R&R Study - ANOVA Method

Two-Way ANOVA Table With Interaction

Source	DF	SS	MS	F	Р
Parts	5	1.15804	0.231608	272.480	0.000
Operators	1	0.01687	0.016875	19.853	0.007
Parts * Operators	5	0.00425	0.000850	2.391	0.057
Repeatability	36	0.01280	0.000356		
Total	47	1.19197			

 α to remove interaction term = 0.05

Two-Way ANOVA Table Without Interaction

Source	DF	SS	MS	F	Р
Parts	5	1.15804	0.231608	556.947	0.000
Operators	1	0.01687	0.016875	40.579	0.000
Repeatability	41	0.01705	0.000416		
Total	47	1.19197			

Gage R&R

		<pre>%Contribution</pre>
Source	VarComp	(of VarComp)
Total Gage R≨R	0.0011017	3.67
Repeatability	0.0004159	1.39
Reproducibility	0.0006858	2.29
Operators	0.0006858	2.29
Part-To-Part	0.0288991	96.33
Total Variation	0.0300007	100.00

Slika 29. Procjene rezultata

5. ANALIZA MJERNOG SUSTAVA NA PRIMJERU IZ PRIVREDE

Potrebno je provesti analizu mjernog sustava, komentirati dobivene rezultate te napisati način za poboljšanje mjernog sustava.

ALSTOM Croatia Itd Karlovac TMQ- 101215	Analiza mjernog sustava / MSA/ Procjena sposobnosti mjernog sustava: Ponovljivost i obnovljivost / R & R / Repeatabilyty /EV/ & Reproducibility /AV/								R&R P= 99.73	. ≤ 30 % S= ± 3	
Predmet mjerenja	Naziv: Throttle plug			Nacrt br.: HTCT 321192P0001			Objekt: GT 26- EGH Pembroke 21			IMR: RN: 403814	042222 76
Broj operacije: 0050	Code: 131601		Stroj: Brus	ilica za okruglo	vanjsko i unuta	arnje brušenje	Alat: mikro	metar 25-50mm,	br. 108686	Radnik: Kresojev	νić M.
Mjerna značajka: Ø30 -	Mjerno sreds 030 -0.02/ -0.05 mm			mikromet	mikrometar 25-50 Mjerna rezolucija: 0.01 Toleranc			Tolerancijsk	icijsko polje T: -0.03		
Datum mjerenja: 20	2014-10-21. Vrijeme:			11-12 sati	11-12 sati Temperatura: 23°C Vlažnos			Vlažnost:	st:		
Mjeritelj	Broj					ι	Jzorak broj				
/Ime i prezime/	mjerenja	1 (P1-1)	2 (P1-3)	3 (P1-7)	4 (P1-8)	5 (P1-10)	6 (P1-11)	7 (P1-13)	8 (P1-14)	9 (P1-17)	10 (P1-18)
	1	29,951	29,957	29,952	29,957	29,955	29,952	29,951	29,959	29,951	29,952
	2	29,951	29,956	29,951	29,956	29,956	29,952	29,951	29,959	29,951	29,952
	3	29,952	29,957	29,952	29,956	29,956	29,951	29,950	29,959	29,951	29,953
A: Alen Gajski	4	29,951	29,957	29,952	29,957	29,956	29,952	29,951	29,958	29,951	29,951
	5	29,952	29,957	29,951	29,958	29,955	29,951	29,951	29,959	29,950	29,952
	X A=29,9536	29,9514	29,9568	29,9516	29,9568	29,9556	29,9516	29,9508	29,9588	29,9508	29,9520
	R	0,001	0,001	0,001	0,002	0,001	0,001	0,001	0,001	0,001	0,002

	1	29,951	29,952	29,951	29,952	29,953	29,951	29,950	29,956	29,951	29,950
	2	29,951	29,953	29,952	29,953	29,953	29,950	29,950	29,955	29,951	29,950
	3	29,951	29,953	29,951	29,953	29,952	29,950	29,951	29,956	29,951	29,951
B: Draženko Tomac	4	29,952	29,953	29,951	29,954	29,952	29,950	29,951	29,955	29,951	29,950
	5	29,951	29,953	29,952	29,953	29,952	29,950	29,950	29,955	29,951	29,951
	X B=29,9518	29,9513	29,9530	29,9515	29,9533	29,9523	29,9500	29,9505	29,9553	29,9510	29,9505
	R	0,001	0,001	0,001	0,002	0,001	0,001	0,001	0,001	0,000	0,001
	1	29,953	29,957	29,954	29,955	29,955	29,955	29,951	29,955	29,950	29,953
	2	29,952	29,958	29,953	29,954	29,955	29,954	29,951	29,957	29,951	29,952
	3	29,953	29,957	29,954	29,955	29,956	29,954	29,950	29,956	29,951	29,952
C: Momir Kresojević	4	29,953	29,957	29,955	29,955	29,956	29,955	29,951	29,957	29,951	29,953
	5	29,952	29,956	29,954	29,954	29,956	29,955	29,951	29,957	29,950	29,953
	X C=29,9542	29,9526	29,9570	29,9540	29,9546	29,9556	29,9546	29,9508	29,9564	29,9506	29,9526
	R	0,001	0,001	0,002	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Za jedinični proizvod :	Хp	29,9518	29,9556	29,9524	29,9549	29,9545	29,9521	29,9507	29,9568	29,9508	29,9517

Slika 30. Gage R&R Report for Measurement

Gage R&R Study - XBar/R Method

		<pre>%Contribution</pre>		
Source	VarComp	(of VarComp)		
Total Gage R&R	0.0000014	27.02		
Repeatability	0.000003	4.83		
Reproducibility	0.0000012	22.19		
Part-To-Part	0.000038	72.98		
Total Variation	0.0000052	100.00		
Process tolerance	= 0.03			
		Study Var	<pre>%Study Var</pre>	%Tolerance
Source	StdDev (SD)	(5.15 × SD)	(%SV)	(SV/Toler)
Total Gage R&R	0.0011866	0.0061108	51.98	20.37
Repeatability	0.0005016	0.0025832	21.97	8.61
Reproducibility	0.0010753	0.0055379	47.10	18.46
Part-To-Part	0.0019503	0.0100439	85.43	33.48
Total Variation	0.0022829	0.0117567	100.00	39.19

Number of Distinct Categories = 2

Slika 31. Procjene rezultata

Prikazom dobivenih procjena rezultata vidimo na mjerni sustav nije zadovoljavajuć, i to iz više razloga, a oni su prikazani u tablici 8.

Kategorija	Zadovoljavajuć mjerni sustav	Korišten mjerni sustav		
Broj različitih kategorija		2		
Number of Distinct Categories	20	2		
Udio R&R	< 10% pribuatijuo i do 20%	E1 0.99/		
%StudyVar za Total Gage R&R	< 10%, prinvatijivo i do 30%	51,98%		
Doprinos Total Gage R&R		27.02%		
%Contribution (of VarComp)	< 1%, prinvatijivo i do 9%	27,02%		

Tablica 8. Uspor	redba zadovolia	vajućeg i korište	nog miernog sustava
1 4 9 1 9 9 9 9 9 9	caba Laaoroija		nog nijernog sustaru

Načelno, ako je mjerni sustav nezadovoljavajuć, izvore nesigurnosti i rasipanja treba potražiti u svim elementima mjernog sustava, od dijelova i mjeritelja do mjernih instrumenata i računalnih programa.

Budući da iste vrijednosti dobijemo računanjem "pješice", računlani program kao razlog nezadovoljavajućeg mjernog sustava možemo odbaciti.

Prikazom procjena rezultata vidimo da broj različitih kategorija (*Numer of Distinct Categories*) nije dovoljno visok. Trebao bi iznositi barem 5, a procjenjen je na 2. Broj različitih kategorija računa se kao $\frac{Standardna devijacija dijelova}{Standardna devijacija mjernog sustava}$ · 1,41, stoga trebamo povećati standardnu devijaciju dijelova i/ili smanjiti iznos standardne devijacije mjernog sustava (ponovljivost i obnovljivost). Također, da bismo smanjili udio R&R standardne devijacije (%StudyVar za Total Gage R&R) u ukupnoj te smanjili doprinos R&R (%Contribution), potrebno je učiniti isto.

Ideja je prvo provjeriti provjeriti utjecaj mjerila (mjernog instrumenta) u mjernom sustavu (Minitab: Type 1 Gage Study). Međutim, potreban broj mjerenja jednog predmeta od strane jednog mjeritelja je 10 (preporučeno barem 25), a u ovom je slučaj jedan mjeritelj mjerio jedan dio samo pet puta.

6. ZAKLJUČAK

Mjeriteljstvo je danas neizostavan dio znanosti, tehnike, proizvodnog procesa pa i svakodnevnog života. Poznavanje karakteristika i specifičnosti mjernog sustava od krucijalnog su značaja za inženjere. Ovim završnim radom prikazani su postupci za procjenu kvalitete mjernogu sustava pomoću izmjerenih podataka. Koraci za analizu provedeni su u Minitabu i navedene su statističke formule za izračun pojedinih komponenti značajnih za analizu mjernog sustava.

Kod procjene kvalitete mjernog sustava s više predmeta mjerenja i više mjeritelja dobiva se informacija o varijabilnosti mjernog sustava koju uzrokuju predmeti mjerenja (sami po sebi), mjeritelji ili mjerni instrumenti. Tom se metodom može prikazati doprinos svakog od tih područja, odnosno utvrditi jesu li rezultati mjerenja točni i precizni, ponovljivi ili obnovljivi.

Važna metoda u procjeni kvalitete mjernog sustava je Type 1 metoda (jedan mjeritelj i jedan predmet mjerenja). Često se koristi na početku analize mjernog sustava jer se tom metodom pokazuje utjecaj mjernog instrumenta, tj. mjerni instrument predstavlja izvor varijacije mjernog sustava.

Analizom mjernog sustava s jednim predmetom mjerenja, a više mjeritelja moguće je dobiti podatke o ponovljivosti i obnovljivosti rezultata mjerenja. Uz poznatu standardnu devijaciju dijelova može se procijeniti kvaliteta mjernog sustava, prema koracima provdenim u ovom radu.

Na kraju vrijedi primijetiti kako je kvalitetan i pouzdan mjerni sustav također jedan od elemenata neophodnih za funkcioniranje kakvoće u mnogim aktivnostima i postupcima u industriji, ali i u svakodnevnom životu.

7. LITERATURA

[1] Biserka Runje: Predavanja iz kolegija TEORIJA I TEHNIKA MJERENJA, Zagreb 2014.

[2] <u>http://blog.minitab.com/blog/marilyn-wheatleys-blog/evaluating-a-gage-study-with-one-part-v2</u>

[3] <u>http://support.minitab.com/en-us/minitab/17/topic-library/quality-tools/measurement-</u> system-analysis/gage-r-r-analyses/perform-gage-r-r-with-multiple-operators-and-one-part/

[4] <u>http://blog.minitab.com/blog/marilyn-wheatleys-blog/crossed-gage-rr%3A-how-are-the-</u> variance-components-calculated

[5] <u>http://blog.minitab.com/blog/statistics-and-quality-improvement/gummi-bear-</u> <u>measurement-systems-analysis-type-1-gage-study</u>

[6] <u>http://support.minitab.com/en-us/minitab/17/topic-library/quality-tools/measurement-</u> system-analysis/other-gage-studies-and-measures/type-1-gage-study

[7] <u>http://support.minitab.com/en-us/minitab/17/topic-library/quality-tools/measurement-</u> system-analysis/gage-r-r-analyses/what-is-a-gage-r-r-study/

[8] http://www.qualitymag.com/articles/86819-understand-gage-r-r

8. PRILOG

	-													
							m							
	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1,41	1,91	2,24	2,48	2,67	2,83	2,96	3,08	3,18	3,27	3,35	3,42	3,49	3,55
2	1,28	1,81	2,15	2,40	2,60	2,77	2,91	3,02	3,13	3,22	3,30	3,38	3,45	3,51
3	1,23	1,77	2,12	2,38	2,58	2,75	2,89	3,01	3,11	3,21	3,29	3,37	3,43	3,50
4	1,21	1,75	2,11	2,37	2,57	2,74	2,88	3,00	3,10	3,20	3,28	3,36	3,43	3,49
5	1,19	1,74	2,10	2,36	2,56	2,73	2,87	2,99	3,10	3,19	3,28	3,35	3,42	3,49
6	1,18	1,73	2,09	2,35	2,56	2,73	2,87	2,99	3,10	3,19	3,27	3,35	3,42	3,49
7	1,17	1,73	2,09	2,35	2,55	2,72	2,87	2,99	3,10	3,19	3,27	3,35	3,42	3,48
g 8	1,17	1,72	2,08	2,35	2,55	2,72	2,87	2,98	3,09	3,19	3,27	3,35	3,42	3,48
9	1,16	1,72	2,08	2,34	2,55	2,72	2,86	2,98	3,09	3,18	3,27	3,35	3,42	3,48
10	1,16	1,72	2,08	2,34	2,55	2,72	2,86	2,98	3,09	3,18	3,27	3,34	3,42	3,48
11	1,16	1,71	2,08	2,34	2,55	2,72	2,86	2,98	3,09	3,18	3,27	3,34	3,41	3,48
12	1,15	1,71	2,07	2,34	2,55	2,72	2,85	2,98	3,09	3,18	3,27	3,34	3,41	3,48
13	1,15	1,71	2,07	2,34	2,55	2,71	2,85	2,98	3,09	3,18	3,27	3,34	3,41	3,48
14	1,15	1,71	2,07	2,34	2,54	2,71	2,85	2,98	3,08	3,18	3,27	3,34	3,41	3,48
15	1,15	1,71	2,07	2,34	2,54	2,71	2,85	2,98	3,08	3,18	3,26	3,34	3,41	3,48
>15	1,128		2,059		2,534		2,847		3,078		3,258		3,407	
	-	1,693	-	2,326	-	2,704		2,970	-	3,173	-	3,336		3,472

Tablica 9. Vrijednost faktora d₂ [1]

Tablica 10. Konstante A_2 , D_3 i D_4 za kontrolne karte [1]

Broi popovljenih mjerenja	Δ.	De	D.
Droj ponovijenim mjerenja	A2	D3	<i>D</i> ₄
2	1,880	0	3,267
3	1,023	0	2,575
4	0,729	0	2,282
5	0,577	0	2,115
6	0,483	0	2,004
7	0,419	0,078	1,924
8	0,373	0,136	1,864
9	0,337	0,184	1,816
10	0,308	0,223	1,777
11	0,285	0,256	1,744
12	0,266	0,284	1,716
13	0,249	0,308	1,692
14	0,235	0,329	1,671
15	0,223	0,348	1,652