Proračun poniranja i posrtanja na harmonijskom valu

Cvetko, Ivančica

Undergraduate thesis / Završni rad

2009

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:506696

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-13

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

Sveučilište u Zagrebu

Fakultet strojarstva i brodogradnje

ZAVRŠNI RAD

Ivančica Cvetko

Zagreb, 2009.

Sveučilište u Zagrebu

Fakultet strojarstva i brodogradnje

ZAVRŠNI RAD

Voditelj rada :

Dr. sc. Većeslav Čorić

Ivančica Cvetko

Zagreb, 2009.

SADRŽAJ

SAŽETAK	.1
ODREĐIVANJE HIDRODINAMIČKIH ZNAČAJKI TRUPA	.2
PRIJENOSNA KRIVULJA PONIRANJA I POSRTANJA NA HARMONIJSKOM	Λ
VALU	5
UZBUDA NA HARMONIJSKOM DUGAČKOM VALU	13
PRORAČUN PONIRANJA I POSRTANJA POMOĆU PROGRAMA	
WAVESHIP	.17
ZAKLJUČAK	.26
LITERATURA	28
	SAŽETAK ODREĐIVANJE HIDRODINAMIČKIH ZNAČAJKI TRUPA PRIJENOSNA KRIVULJA PONIRANJA I POSRTANJA NA HARMONIJSKON VALU UZBUDA NA HARMONIJSKOM DUGAČKOM VALU PRORAČUN PONIRANJA I POSRTANJA POMOĆU PROGRAMA WAVESHIP ZAKLJUČAK LITERATURA.

POPIS SLIKA

- Sl.2.1 Forma određena iz jednadžbe i duljine broda
- SI 2.2 Raspored masa po duljini
- Sl. 4.1 Prijenosne krivulje poniranja i posrtanja
- Sl. 5.1 Projekcija forme u x-z ravnini
- Sl. 5.2 Projekcija forme u x-y ravnini
- Sl. 5.3 Projekcija forme u y-z ravnini
- Sl.5.4 Prijenosna krivulja poniranja
- Sl.5.5Prijenosna krivulja posrtanja
- Sl. 5.6 Prijenosne krivulje poniranja za različite susretne kuteve
- Sl. 5.7 Prijenosne krivulje posrtanja za različite susretne kuteve
- Sl.6.1 Zajednčki dijagram poniranja
- Sl. 6.2 Zajednički dijagram posrtanja

POPIS TABLICA

- Tablica 2.1 Forma broda
- Tablica2.2 Raspored masa po duljini
- Tablica 3.1 Bezdimenzionalni hidrodinamički koeficijenti (ω = 0,15 s⁻¹)
- Tablica 3.2 Dimenzionalni koeficijenti (ω = 0,15 s⁻¹)
- Tablica 3.3 Integracija po duljini i ukupna vrijednost koeficijenata i sila za poniranje (ω = 0,15 s⁻¹)
- Tablica 3.4 Dimenzionalni koeficijenti spregnutog poniranja i posrtanja (ω = 0.15 s⁻¹)
- Tablica 3.5 Integracija po duljini i ukupna vrijednost koeficijenata i sila za spregnuto poniranje i posrtanje (ω = 0,15 s⁻¹)
- Tablica 3.6 Dimenzionalni koeficijenti za posrtanje (ω = 0,15 s⁻¹)

Tablica 3.7 Integracija po duljini i ukupna vrjednost koeficijenata za posrtanje

 $(\omega = 0, 15 \text{ s}^{-1})$

Tablica 3.8

Tablica 4.1 Sile

Tabilca 4.2 Podaci za crtanje prijenosne krivulje

Tablica 5.1 Podaci za crtanje prijenosne krivulje poniranja

Tablica 5.2 Podaci za crtanje prijenosne krivulje posrtanja

POPIS OZNAKA

- a(x)- poluširina vodne linije, m
- a₀ poluširina vodne linije na sredini volumena, m
- a_{33} bezdimenzijski koef. dodane mase
- $b_0(x)$ poluširina trupa (polumjer), m
- b₃₃ –bezdimenzijski koef. prigušenja
- d ₀ (*x*) gaz, m
- f_{3FK} , f_{3D} bezdimenzionalni koeficijenti Froude-Krilovljve i difrakcijske

komponente sile

- g gravitacija, m/s²
- k –valni broj,m⁻¹
- m masa, kg
- m_{0x} moment tromosti oko osi x, m⁴
- m_{oz} moment tromosti oko osi z, m⁴
- n prigušenje

z_B – težište istisnine, m

- x_B težište istisnine, m
- x₀ udaljenost presjeka od težišta istisnine, m
- A (x) površina presjeka, m^2
- $[A_{ik}]$ matrica pridruženih masa
- A_{VL} površina vodne linije, m²
- B širina, m
- $[C_{ik}]$ m atrica krutosti
- C_A (x) koeficijent punoće presjeka
- F(t) sila, N
- I_{ij} moment tromosti mase
- L duljina vodne linije, m

M_Q – moment, tm

 $[M_{_{jk}}]$ - matrica masa

- α , β zadani parametri forme
- δ pomak
- ε_{j} fazni pomak j-tog gibanja
- ρ gustoća, t/m³
- $\eta_{_{j}}$ j-ti oblik gibanja broda
- ω frekvencija, s⁻¹
- ζ_a amplituda vala, m

Izjavljujem da sam završni rad izradila samostalno.

1 SAŽETAK

Prvi dio zadatka napravljen je u sklopu kolegija Osnovne teorije pomorstvenosti: proračun prijenosne krivulje po strip metodi korištenjem koeficijenata hidrodinamičkih reakcija i uzbuda za polukružne forme. Zadatak završnog rada je provjeriti dobivene rezultate koristeći WAVESHIPjedan od programa koji dolazi u sklopu programskog paketa SESAM, razvijenog u Det Norske Veritasu.

2 ODREĐIVANJE HIDRODINAMIČKIH ZNAČAJKI TRUPA

Za zadanu formu treba odrediti hidrodinamičke značajke trupa za poniranje i posrtanje za valove u pramac (β =180°), brod miruje (v = 0 m/s) i jediničnu valnu amplitudu (ζ_a = 1m), trup je podijeljen na 10 elemenata duljine 10,8 m. Jednadžba forme glasi :

$$a(x) = a_0 \left[1 - \left(\frac{x}{l}\right)^2 \right]^\alpha \left[1 - \beta \left(\frac{x}{l}\right) \right].$$

Gdje su : a_0 – poluširina vodne linije na sredini volumena, a_0 = 10,8 m

L – duljina vodne linije, 2l = L = 108,0 m

 α , β – zadani parametri forme : α = 0,45

β = 0,25.

Sl.2.1 Forma određena iz jednadžbe i duljine broda

Ostale karakteristike : B = 21,6 m

T = 10,8 m .

Hidrostatički podaci: V = 13577,7 m³ volumen

 A_{VL} = 1868,6 m² površina vodne linije

$$m_{0x} = -76374,3 \text{ m}^4$$
$$m_{0z} = -57096 \text{ m}^4$$
$$x_B = -5,625 \text{ m}$$
$$z_B = -4,205 \text{ m}$$
$$g = 9,81 \text{ m/s}^2$$
$$\rho = 1,0 \text{ t/m}^3.$$

Prvo je potrebno odrediti geometrijski opis trupa i raspored masa broda, u Tablici 2.1 opisana je forma : x - udaljenost presjeka od sredine broda

> x _o - udaljenost presjeka od težišta istisnine b _o(x) - poluširina trupa (polumjer) B _o(x) - širina trupa d _o (x) - gaz A (x) - površina presjeka $C_A(x) - koeficijent punoće presjeka$

n	X	x1	b ₀ (x)	d ₀ (x)	B(x)	A(x)	C _A (x)	h
								$\sqrt{\frac{\nu_0}{g}}$
	т	т	т	т	т	m²		- 18 -
0	-54,000	-48,375	0,000	0,000	0,000	0,000	0,00	0,00
1	-40,500	-34,875	8,841	8,841	17,682	122,776	0,785	0,949
2	-27,000	-21,375	10,675	10,675	21,349	178,990	0,785	1,043
3	-13,500	-7,875	11,147	11,147	22,293	195,164	0,785	1,066
4	0,000	5,625	10,800	10,800	21,600	183,218	0,785	1,049
5	13,500	19,125	9,835	9,835	19,670	151,944	0,785	1,001
6	27,000	32,625	8,303	8,303	16,605	108,278	0,785	0,920
7	40,500	46,125	6,049	6,049	12,098	57,477	0,785	0,785
8	54,000	59,625	0,000	0,000	0,000	0,000	0,00	0,00

Tablica 2.1 Forma broda

Iz zadanih podataka broda mogli smo izračunati silu i moment kojom tekućina djeluje na brod u valu uslijed djelovanja tlakova (zbog linearne teorije se zanemaruje kvadratni član Bernoullijeve jednadžbe) na oplakanu površinu. U Excelu smo koristili *solver*, alat koji nalazi optimalnu vrijednost više međusobno povezanih varijabli čiji je račun složen. U ovom slučaju tražili smo duljine krmenog (I_1)i pramčanog (I_2)kraja i veličinu kontinuiranog opterećenja uz uvjet da sila i moment ostanu nepromijenjeni i da zbroj krmenog i pramčanog kraja bude manji od ukupne duljine broda. S I_1 i I_2 dalje nalazimo moment tromost I_{55} i polumjer tromosti r_{55} . [1]

	Tablica2.2	Raspored	masa	ро	duljini
--	------------	----------	------	----	---------

I ₁ =	18,956 m	x(m)	s (m)	q(x) (t/m)
l ₂ =	45,138 m	0,00	0,00	0,0
q =	178,764 tm ⁻¹	18,96	18,96	178,8
Q =	13577,7 t	62,86	81,82	178,8
M _Q =	-76374,6 tm	108,00	108,00	0,0

SI 2.2 Raspored masa po duljini

3 PRIJENOSNA KRIVULJA PONIRANJA I POSRTANJA NA HARMONIJSKOM VALU

Dinamička jednadžba ravnoteže kod harmonijske sile uzbude glasi

 $m\ddot{x} + n\dot{x} + kx = F(t)$

a za brod na harmonijskom valu u matričnom obliku

$$\underbrace{\left(\begin{bmatrix} M_{jk} \end{bmatrix} + \begin{bmatrix} A_{jk} \end{bmatrix} \right) \left\{ \ddot{\mathcal{S}}_{j} \right\}}_{\substack{inercijske \\ sile}} + \underbrace{\left[B_{jk} \end{bmatrix} \left\{ \dot{\mathcal{S}}_{j} \right\}}_{prigšne} + \underbrace{\left[C_{jk} \end{bmatrix} \left\{ \mathcal{S}_{j} \right\}}_{povratne} = \underbrace{\zeta_{a} \left(\operatorname{Re} \left\{ F_{j} \right\} e^{-i\omega r} \right)}_{\substack{uzbudna \\ sila}}.$$

- [M] matrica masa i momenata tromosti masa broda
- [A] matrica pridruženik masa
- ^[B] koef. hidrodinamičkog prigušenja
- ^[C] koef. krutosti povratnih sila

Jednadžba prelazi u oblik

 $\left(\left[C_{jk}\right]-\omega^{2}\left(\left[M_{jk}\right]+\left[A_{jk}\right]\right)-i\omega\left[B_{jk}\right]\right)\left(\eta_{j}\right)=\zeta_{a}\left\{F_{j}\right\}.$

Brod ima 6 stupnjeva slobode gibanja i indeks *j* obilježava gibanje o kojem se radi, j=1,2,3 su translacijska, j=4,5,6 rotacijska gibanja

- η_1 zalijetanje
- η₂ zanošenje
- η₃ poniranje

- η_4 ljuljanje
- η₅ posrtanje
- η_6 zaošijanje.

Morski val se definira izrazom

 $\zeta = \zeta_{a} \cos(\omega t + kx) ,$

 ζ_a je amplituda vala.

Brodski trup ima izraženu dimenziju duljine u odnosu na širinu i gaz i ako trup presječemo nizom presjeka konačne duljine (vrpci)i svaki presjek promatramo kao beskonačno dugačak cilindar, strujanje u smjeru x osi možemo zanemariti (brzina v_x mora biti što manja za točnije rezulate) [2].

Pretpostavljamo da je promjena forme monotona, brzina napredovanja mala u odnosu na frekvenciju njihanja i zanemarujemo utjecaj krajeva. Opisana metoda se zbog *vrpci* kojima je zamijenjen trup naziva vrpčasta metoda.

$$\begin{pmatrix} -\omega^{2} \left(\begin{bmatrix} m & 0 \\ 0 & I_{55} \end{bmatrix} + \begin{bmatrix} A_{33}^{0}(\omega) & A_{35}^{0}(\omega) \\ A_{53}^{0}(\omega) & A_{55}^{0}(\omega) \end{bmatrix} \right) - i\omega \begin{bmatrix} B_{33}^{0}(\omega) & B_{35}^{0}(\omega) \\ B_{53}^{0}(\omega) & B_{55}^{0}(\omega) \end{bmatrix} + \begin{bmatrix} C_{33} & C_{35} \\ C_{53} & C_{55} \end{bmatrix} \left| \begin{cases} \eta_{3} \\ \eta_{5} \end{cases} \right|_{5}^{2} = \zeta_{a} \begin{cases} F_{3}(\omega) \\ F_{5}(\omega) \end{cases}$$

$$a_{33}(kd_{0}) = \alpha(kd_{0})\rho A(x) \quad \alpha(kd_{0}) - \text{bezdimenzijski koef. dodane mase}$$

$$b_{33}(kd_{0}) = \beta(kd_{0})\rho A(x) \sqrt{\frac{g}{b_{0}}}$$

$$A_{33}^{0} = \int_{L} a_{33} dx \qquad B_{33}^{0} = \int_{L} b_{33} dx \qquad C_{33} = \rho g \int_{L} B(x) dx$$

$$A_{35}^{0} = A_{53}^{0} = -\int_{L} xa_{33} dx \qquad B_{35}^{0} = B_{53}^{0} = -\int_{L} xb_{33} dx \qquad C_{35} = C_{53} = -\rho g \int_{L} B(x) dx$$

$$A_{55}^{0} = \int_{L} x^{2} a_{33} dx$$
 $B_{55}^{0} = \int_{L} x^{2} b_{33} dx$ $C_{55} = \rho g \int_{L} x^{2} B(x) dx$

 A_{33} , B_{33} , C_{33} – koef. pridružene mase, prigušenja i krutosti za poniranje A_{35} , B_{35} , C_{35} – koef. za spregnuto poniranje i posrtanje A_{55} , B_{55} , C_{55} – koef. za posrtanje

$$F_{3} = \int_{L} (f_{3FK} + f_{3D}) dx \qquad \qquad F_{5} = \int_{L} x(f_{3FK} + f_{3D}) dx$$

 $f_{\mbox{\tiny 3FK}}, f_{\mbox{\tiny 3D}}$ – bezdimenzionalni koeficijenti Froude-Krilovljve i difrakcijske komponente sile

Integracijom gornjih izraza dobiveni su ukupni iznosi sila i koeficijenata (u proračunu je korištena Simpsonova metoda određivanja površine) pomoću kojih možemo izračunati amplitude poniranja i posrtanja, η_{a3} i $\eta_{a5.}$ i konačno vrijednost prijenosne funkcije.

Prikazan je slijed računanja za ω = 0,15 s⁻¹.

	Hidrodim.	reakcija	Hidrodina	mička uzbu	ıda			
$k_e d_0$	$\alpha_{33}(k_ed_0)$	$eta_{33}(k_ed_0)$	$arphi_{ m 3C}({f k}_{ m e}{f d}_0)$	$arphi_{3S}(k_{e}d_{0})$	$\delta_{3C}(k_ed_0)$	$\delta_{3S}(k_ed_0)$	$\cos(k_e\xi)$	$\sin(k_e\xi)$
	-	-	-		-		-	-
0,000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,9939	0,1107
0,019	2,5618	0,1869	0,9922	0,0000	-0,0256	0,0187	0,9963	0,0861
0,023	2,5618	0,1869	0,9922	0,0000	-0,0256	0,0187	0,9981	0,0614
0,025	2,5618	0,1869	0,9922	0,0000	-0,0256	0,0187	0,9993	0,0366
0,026	2,5618	0,1869	0,9922	0,0000	-0,0256	0,0187	0,9999	0,0119
0,025	2,5618	0,1869	0,9922	0,0000	-0,0256	0,0187	0,9999	-0,0129
0,023	2,5618	0,1869	0,9922	0,0000	-0,0256	0,0187	0,9993	-0,0377
0,021	2,5618	0,1869	0,9922	0,0000	-0,0256	0,0187	0,9981	-0,0624
0,017	2,5618	0,1869	0,9922	0,0000	-0,0256	0,0187	0,9962	-0,0871
0,013	2,5618	0,1869	0,9922	0,0000	-0,0256	0,0187	0,9937	-0,1118
0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Tablica 3.1 Bezdimenzionalni hidrodinamički koeficijenti (ω = 0,15 s ⁻¹	ablica 3.1 Bezdimenzionalni hidro	odinamički koeficijent	i (ω = 0,15 s ⁻¹
--	-----------------------------------	------------------------	-------------------------------------

								1
		Hidrodim	. reakcija			Hidrodinam	ička uzbuda	
n	$\Delta \mathbf{x}_{n-1, n}$	a ₃₃ (k _e d ₀)	b ₃₃ (k _e d ₀)	C ₃₃	$f_{3C}(k_e d_0)$	$f_{3S}(k_e d_0)$	$d_{3C}(k_ed_0)$	$d_{3S}(k_ed_0)$
					∗ cos(k _e ξ)	∗ sin(k _e ξ)	∗ cos(k _e ξ)	∗ sin(k _e ξ)
		t m⁻¹	kN s m⁻²	kN m⁻²	kN m⁻¹	kN m⁻¹	kN m⁻¹	kN m⁻¹
0	10,80	0	0	0	0	0	0	0
1	10,80	269,5	21,5	160,6	158,7	0,0	-4,1	0,3
2	10,80	415,4	29,8	199,3	197,4	0,0	-5,1	0,2
3	10,80	485,5	33,5	215,5	213,7	0,0	-5,5	0,1
4	10,80	498,8	34,2	218,4	216,7	0,0	-5,6	0,0
5	10,80	469,4	32,6	211,9	210,2	0,0	-5,4	-0,1
6	10,80	408,3	29,4	197,6	196,0	0,0	-5,1	-0,1
7	10,80	325,0	24,8	176,3	174,6	0,0	-4,5	-0,2
8	10,80	226,9	18,9	147,3	145,6	0,0	-3,8	-0,2
9	10,80	119,8	11,7	107,0	105,5	0,0	-2,7	-0,2
10	10,80	0,0	0,0	0,0	0,0	0,0	0,0	0,0

Tablica 3.2 Dimenzionalni koeficijenti (ω = 0,15 s⁻¹)

Tablica 3.3 Integracija po duljini i ukupna vrijednost koeficijenata i sila za poniranje (ω = 0,15 s⁻¹)

n	koef. x ->	$a_{33}(k_e d_0)$	$b_{33}(k_e d_0)$	C ₃₃	$f_{3C}(k_e d_0)$	$f_{3S}(k_e d_0)$	$d_{3C}(k_ed_0)$	$d_{3S}(k_ed_0)$
		t m ⁻¹	kN s m ⁻²	kN m⁻²	kN m⁻¹	kN m⁻¹	<i>k</i> N <i>m</i> ⁻¹	kN m⁻¹
0	3,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0
1	14,4	3880,8	310,0	2312,1	2285,5	0,0	-59,0	3,7
2	7,2	2991,0	214,4	1435,3	1421,4	0,0	-36,7	1,6
3	14,4	6990,7	482,0	3103,2	3076,9	0,0	-79,4	2,1
4	7,2	3591,5	246,0	1572,8	1560,4	0,0	-40,3	0,3
5	14,4	6759,0	470,0	3051,3	3027,3	0,0	-78,1	-0,7
6	7,2	2940,0	211,7	1423,0	1410,9	0,0	-36,4	-1,0
7	14,4	4679,7	356,7	2538,9	2514,2	0,0	-64,9	-3,0
8	7,2	1634,0	136,3	1060,9	1048,6	0,0	-27,1	-1,7
9	14,4	1724,8	168,7	1541,4	1519,8	0,0	-39,2	-3,2
10	3,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0

	Α ₃₃ (ω _e)	B ₃₃ (ω _e)	C ₃₃	$\mathbf{F}^{FK}_{3C}(\omega_{e})$	${\sf F}^{\sf FK}_{3\sf S}(\omega_{\sf e})$	$F^{D}_{3C}(\omega_{e})$	$F^{D}_{3S}(\omega_{e})$
	t	kN s m⁻¹	kN m⁻¹	kN	kN	kN	kN
Sume	35.191,3	2.595,9	18.038,8	17.864,9	0,0	-460,9	-1,8

Oznaka FK označava Froude–Krilovljevu komponentu sile, D označava difrakcijsku komponentu, C -kosinusni član, S –sinusni član kompleksnog zapisa.

		- x		x		X	
n	- x a ₃₃ (k _e d ₀)	b ₃₃ (k _e d ₀)	- X C ₃₃	$f_{3C}(k_ed_0)$	x f _{3S} (k _e d ₀)	$d_{3C}(k_ed_0)$	x d _{3S} (k _e d ₀)
	tm m⁻¹	kNm s m⁻²	kNm m⁻²				
0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
1	10126,4	808,9	6033,1	-5963,8	0,0	153,9	-9,7
2	11122,6	797,4	5337,4	-5285,8	0,0	136,4	-6,1
3	7755,3	534,8	3442,6	-3413,4	0,0	88,1	-2,4
4	2581,4	176,8	1130,4	-1121,5	0,0	28,9	-0,3
5	-2640,2	-183,6	-1191,9	1182,5	0,0	-30,5	-0,3
6	-6706,8	-482,9	-3246,2	3218,6	0,0	-83,0	-2,3
7	-8847,6	-674,5	-4800,2	4753,5	0,0	-122,6	-5,6
8	-8629,6	-719,6	-5602,6	5537,8	0,0	-142,9	-9,1
9	-5848,1	-572,2	-5226,3	5153,0	0,0	-133,0	-10,9
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0

Tablica 3.4 Dimenzionalni koeficijenti spregnutog poniranja i posrtanja (ω = 0,15 s⁻¹)

Tablica 3.5 Integracija po duljini i ukupna vrijednost koeficijenata i sila za

spregnuto poniranje i posrtanje (ω = 0,15 s⁻¹)

n	koef. x ->	xa ₃₃ (k _e d ₀)	xb ₃₃ (k _e d ₀)	X C ₃₃	$xf_{3C}(k_ed_0)$	x f _{3S} (k _e d ₀)	$xd_{3C}(k_ed_0)$	xd _{3S} (k _e d ₀)
		t m⁻¹	kN s m ⁻²	kN m⁻²				
0	3,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0
1	14,4	145819,5	11648,7	86876,4	-85878,8	0,0	2215,8	-139,8
2	7,2	80082,8	5741,4	38429,4	-38057,8	0,0	981,9	-44,1
3	14,4	111675,9	7700,6	49572,9	-49153,2	0,0	1268,2	-34,0
4	7,2	18586,0	1272,9	8139,1	-8075,1	0,0	208,3	-1,8
5	14,4	-38019,3	-2643,8	-17163,6	17028,3	0,0	-439,4	-4,1
6	7,2	-48289,0	-3476,9	-23372,6	23173,8	0,0	-597,9	-16,5
7	14,4	-127404,9	-9712,3	-69122,8	68450,0	0,0	-1766,1	-80,7
8	7,2	-62132,8	-5181,3	-40338,9	39872,2	0,0	-1028,8	-65,7
9	14,4	-84212,5	-8239,2	-75258,2	74203,4	0,0	-1914,5	-157,3
10	3,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0

	Α 35(ω _e)	Β 35(ω _e)	C ₃₅	$\mathbf{F}_{35C}^{FK}(\omega_{e})$	F^{FK}35S(ω _e)	F^D 35C(ω _e)	F^D 355(ω _e)
Sume	-3.894,4	-2.890,0	-42.238,2	41.562,8	0,0	-1.072,4	-543,9

n	$x^2 a_{33}(k_e d_0)$	$x^2 b_{33}(k_e d_0)$	x ² c ₃₃
	tm m⁻¹	kNm s m ⁻²	kNm m ⁻²
0	0,0	0,0	0,0
1	380497,8	30395,9	226693,0
2	297807,8	21351,0	142909,3
3	123890,5	8542,8	54995,0
4	13358,7	914,9	5850,0
5	14851,3	1032,7	6704,5
6	110159,4	7931,8	53318,7
7	240874,9	18362,4	130685,3
8	328138,9	27364,0	213040,0
9	285532,9	27936,0	255172,2
10	0,0	0,0	0,0

Tablica 3.6 Dimenzionalni koeficijenti za posrtanje (ω = 0,15 s⁻¹)

Tablica 3.7 Integracija po duljini i ukupna vrjednost koeficijenata za posrtanje (ω = 0,15 s⁻¹)

n	koef. x ->	$x^2 a_{33}(k_e d_0)$	$x^2 b_{33}(k_e d_0)$	x ² c ₃₃
		t m ⁻¹	kN s m ⁻²	kN m ⁻²
0	3,6	0,0	0,0	0,0
1	14,4	5479167,8	437701,1	3264379,2
2	7,2	2144215,9	153727,2	1028947,1
3	14,4	1784022,6	123016,4	791927,4
4	7,2	96182,3	6587,4	42119,9
5	14,4	213858,7	14871,3	96545,1
6	7,2	793147,5	57108,8	383894,3
7	14,4	3468598,5	264418,4	1881868,3
8	7,2	2362599,8	197020,7	1533887,9
9	14,4	4111673,4	402278,9	3674479,8
10	3,6	0,0	0,0	0,0

	Α ₅₅₍ ω _e)	$\mathbf{B}_{55(}\omega_{\mathbf{e}})$	C ₅₅
Sume	20.453.466,5	1.656.730,3	12.698.048,9

Sume koeficijenata i sila se uvrštavaju u matričnu jednadžbu dinamičke ravnoteže iz koje se tada dobiva amplitudu odziva. Amplituda odziva računa se za raspon frekvencija od 0,15 s⁻¹ do 3 s⁻¹. Prijenosna krivulja se računa po formuli

$$|H(i\omega)|=\frac{\eta_{aj}}{\zeta_a},$$

ζa= 1 m (zadano). Za translacijska gibanja , prijenosna krivulja je
bezdimenzionalna veličina, dok se za rotacijska treba podijelit s valnim brojem k
da bi se postigla bezdimenzionalnost.

U tablici 3.8 nalaze se odzivne amplitude poniranja, posrtanja i fazni pomaci za frekvencije od 0,15 s⁻¹ do 3 s⁻¹.

ω _e	$\eta_{{}_{ m 3X}}$	$\eta_{_{3\Sigma}}$	η_{5C}	η_{5S}	k	η _{зA}	ε ₃	η _{5A}	ε ₅	η _{5Α} /(kζ _a)
0,150	1,027	0,024	0,000	0,000	0,002	1,028	0,023	0,000	0,612	0,133
0,200	1,035	0,035	0,000	0,000	0,004	1,035	0,034	0,000	1,436	0,078
0,250	1,077	0,049	0,001	0,001	0,006	1,078	0,045	0,001	0,954	0,137
0,300	1,099	0,068	0,001	0,001	0,009	1,101	0,062	0,002	0,984	0,190
0,350	0,994	0,139	0,001	0,003	0,012	1,004	0,139	0,003	1,260	0,252
0,400	0,930	0,183	0,002	0,004	0,016	0,948	0,194	0,005	1,227	0,280
0,450	0,863	0,221	0,001	0,008	0,021	0,891	0,251	0,008	1,445	0,369
0,500	0,748	0,250	0,000	0,011	0,025	0,789	0,323	0,011	-1,552	0,432
0,550	0,657	0,277	0,000	0,017	0,031	0,713	0,398	0,017	-1,549	0,548
0,600	0,455	0,295	-0,008	0,024	0,037	0,542	0,575	0,025	-1,247	0,677
0,650	0,290	0,262	-0,017	0,027	0,043	0,391	0,735	0,031	-1,019	0,731
0,700	0,058	0,118	-0,033	0,017	0,050	0,132	1,113	0,037	-0,462	0,741
0,750	-0,007	-0,012	-0,031	0,002	0,057	0,014	1,075	0,031	-0,051	0,549
0,800	-0,105	-0,131	-0,020	-0,006	0,065	0,168	0,894	0,021	0,271	0,320
0,850	-0,095	-0,146	-0,009	-0,007	0,074	0,174	0,995	0,011	0,628	0,151
0,900	-0,149	-0,249	-0,004	-0,003	0,083	0,290	1,031	0,005	0,577	0,060
0,950	-0,092	-0,234	0,000	-0,001	0,092	0,251	1,198	0,001	-1,035	0,007
1,000	-0,015	-0,180	0,001	0,001	0,102	0,181	1,486	0,002	1,024	0,015
1,050	0,014	-0,068	0,002	0,002	0,112	0,069	-1,374	0,002	0,760	0,022
1,250	-0,017	0,039	0,000	0,000	0,159	0,042	-1,154	0,000	0,543	0,000
1,500	0,000	-0,013	0,000	0,000	0,229	0,013	1,551	0,000	-0,587	0,001
1,750	0,002	0,007	0,000	0,000	0,312	0,007	1,255	0,000	-0,412	0,000
2,000	-0,003	0,003	0,000	0,000	0,408	0,004	-0,723	0,000	1,084	0,000
2,500	0,004	0,001	0,000	0,000	0,637	0,004	0,339	0,000	0,962	0,000
2,750	0,001	0,000	0,000	0,000	0,771	0,001	0,112	0,000	1,208	0,000
3,000	0,000	-0,001	0,000	0,000	0,917	0,001	-0,870	0,000	0,967	0,000

Tablica 3.8

Treba napomenuti da vektori pomaka i sile imaju realni i imaginarni član te se nakon izjednačavanja imaginarnih i realnih dijelova jednadžbe dobiva sustav od četiri jednadžbe s četiri nepoznanice η_{3c} , η_{3s} , η_{5c} i η_{5s} .

$$k = \frac{\omega^{2}}{g} - \text{valni broj}$$

$$\eta_{jA} = \sqrt{\eta_{jC}^{2} + \eta_{jS}^{2}} - \text{amplituda poniranja}$$

$$\varepsilon_{j} = \operatorname{arctg} \frac{\eta_{jS}}{\eta_{jC}} - \text{fazni pomak}$$

Iz dijagrama možemo vidjeti kako su vrijednosti prijenosne krivulje posrtanja puno manje od vrijednosti prijenosne krivulje poniranja jer brod miruje što će se odraziti na visinu odziva vala posrtanja.

Sl. 3.1 Prijenosne krivulje poniranja i posrtanja

4 UZBUDA NA HARMONIJSKOM DUGAČKOM VALU

Strip metoda ne daje dobre rezultate za posrtanje broda jer promatrano tijelo ne napreduje. Zato, da bi dobili bolji uvid u odziv broda kod posrtanja, izvršiti ćemo određivanje odziva broda na harmonijskom dugačkom valu.

Brod koji napreduje, često ima različiti valni broj i frekvenciju njihanja od valnih i zato se određuje efektivna frekvencija sustava (ovisi o susretnom kutu β i brzini napredovanja) i efektivni valni broj (β). Zadan je brod s kutem β =180 °, tj. valovima u pramac i v=0.

Pretpostavljamo da je brod uzak(B<<1) pa zapis vala izgleda

 $\zeta(\mathbf{x},\mathbf{z};t) = \zeta_{a} e^{kz} \cos(kx - \omega t)$

$$\mathsf{T}(\mathsf{x}) = -\frac{\mathsf{A}(\mathsf{x})}{2\mathsf{d}_0(\mathsf{x})}$$

gdje je z=z(x)=T(x) gaz

A(X) je površina presjeka, $d_0(x)$ poluširina presjeka.

Uzbudna sila poniranja se može izraziti

$$dF_{3} = \rho g2d_{0}(x)dx \cdot \zeta(x,z;t) = 2\rho g\zeta_{a} \cdot e^{-kz} \cos(kx - \omega t)d_{0}(x)dx$$

Integriranjem gornjeg izraza dobiva se

$$\begin{split} F_{3}(t) &= 2\rho g \zeta_{a} \Biggl[\int_{L} d_{0}(x) \cdot e^{-kT(x)} \cdot \cos kx \cdot dx \cdot \cos \omega t + \int_{L} d_{0}(x) \cdot e^{-kT(x)} \cdot \sin kx dx \cdot \sin \omega t \Biggr] \\ F_{3}(t) &= 2\rho g \zeta_{a} \Bigl[f_{3}^{C} \cos \omega t + f_{3}^{S} \sin \omega t \Bigr] \quad f_{3}^{C}, f_{3}^{S} \quad \text{su kosinusni i sinusni član uzbude poniranja:} \end{split}$$

$$f_{3}^{C} = \int_{L} d_{0}(x) \cdot e^{-kT(x)} \cos kx \cdot dx$$

$$f_{3}^{S} = \int_{L} d_{0}(x) \cdot e^{-kT(x)} \sin kx \cdot dx$$

Uzbudna sila posrtanja izražava se

$$dF_{_{5}} = \rho g2d_{_{0}}(x) \cdot x \cdot dx \cdot \zeta(x,z;t) = 2\rho g\zeta_{a} \cdot e^{-kz} \cos(kx - \omega t)d_{_{0}}(x) \cdot x \cdot dx$$

Nakon integracije i sređivanja dobiva se

$$F_{5}(t) = 2\rho g \zeta_{a} \left[f_{5}^{C} \cos \omega t + f_{5}^{S} \sin \omega t \right]_{.}$$

a kosinusni i sinusni član uzbude posrtanja

$$\begin{split} & f_5^{\,\text{C}} = \int\limits_L x \cdot d_0(x) \cdot e^{-kT(x)} \cos kx \cdot dx \\ & f_5^{\,\text{S}} = \int\limits_L x \cdot d_0(x) \cdot e^{-kT(x)} \sin kx \cdot dx \end{split}$$

Dalje se uz poznate uzbudne sile i od prije poznate koeficijente pridružene mase i koeficijente prigušenja dobiva po već opisanom postupku amplituda odziva poniranja i posrtanja uvrštavanjem poznatih podataka u matričnu jednadžbu dinamiče ravnoteže i rješavanja sustava dobivenih jednadžbi. U tablicama 4.1 i 4.2 nalaze podaci o iznosima sila za različite valne brojeve i pripadne frekvencije i o amplitudama odziva.

ωe	k	f3C	f3S	f5C	f5S	F3C	F3S	F5C	F5S
0,15	0,00	902,10	-6,72	-2922,41	1471,88	17699,26	-131,82	-57337,72	28878,38
0,20	0,00	886,57	-11,65	-2834,90	2580,12	17394,43	-228,53	-55620,77	50622,04
0,25	0,01	864,06	-17,58	-2707,81	3950,72	16952,87	-344,89	-53127,22	77513,19
0,30	0,01	832,95	-24,17	-2532,78	5531,91	16342,41	-474,31	-49693,06	108535,98
0,35	0,01	791,55	-31,00	-2302,58	7250,05	15530,12	-608,22	-45176,63	142245,90
0,40	0,02	738,37	-37,53	-2013,00	9006,47	14486,91	-736,28	-39494,96	176707,01
0,45	0,02	672,45	-43,15	-1664,82	10676,72	13193,42	-846,69	-32663,80	209477,25
0,50	0,03	593,61	-47,25	-1265,84	12113,84	11646,70	-927,12	-24835,73	237673,51
0,55	0,03	502,91	-49,24	-832,21	13157,36	9867,08	-966,03	-16328,02	258147,50
0,60	0,04	402,86	-48,64	-388,86	13649,06	7904,06	-954,38	-7629,48	267794,58
0,65	0,04	297,62	-45,24	31,84	13455,50	5839,39	-887,67	624,61	263996,97
0,70	0,05	192,95	-39,13	393,36	12495,84	3785,65	-767,78	7717,74	245168,48
0,75	0,06	95,74	-30,79	660,46	10770,76	1878,40	-604,15	12958,32	211322,34
0,80	0,07	13,30	-21,09	806,12	8386,09	260,88	-413,80	15816,00	164535,00
0,85	0,07	-47,82	-11,19	818,68	5562,77	-938,19	-219,60	16062,55	109141,47
0,90	0,08	-83,13	-2,38	707,38	2624,56	-1630,99	-46,69	13878,85	51493,88
0,95	0,09	-91,53	4,21	503,76	-42,46	-1795,85	82,50	9883,83	-833,14
1,00	0,10	-76,15	7,84	257,41	-2058,41	-1493,97	153,75	5050,45	-40386,01
1,05	0,11	-44,33	8,42	25,54	-3136,41	-869,77	165,13	501,19	-61536,38
1,25	0,16	41,68	-1,97	-128,18	688,04	817,80	-38,71	-2514,83	13499,33
1,50	0,23	-23,57	-2,10	-51,97	-1218,50	-462,41	-41,29	-1019,65	-23906,88
1,75	0,31	33,15	3,58	121,92	1163,04	650,36	70,25	2392,11	22818,76
2,00	0,41	7,07	-2,68	78,55	-661,24	138,66	-52,67	1541,08	-12973,57
2,50	0,64	-3,45	3,78	-97,80	309,94	-67,67	74,11	-1918,87	6081,00
2,75	0,77	-0,78	1,66	-19,12	138,13	-15,25	32,63	-375,14	2710,18
3,00	0,92	-0,55	1,05	-17,94	70,19	-10,89	20,63	-351,89	1377,20

ωe	η _{зс}	η _{3S}	η_{5C}	ŋ₅s	k	η_{3A}	£ 3	η_{5A}	£ 5	η _{5A} /(kζa)
0,15	1,041	0,022	-0,001	0,003	0,002	1,041	0,022	0,003	-1,136	1,223
0,20	1,077	0,033	-0,001	0,005	0,004	1,078	0,031	0,005	-1,354	1,186
0,25	1,126	0,048	-0,001	0,008	0,006	1,127	0,043	0,008	-1,464	1,242
0,30	1,191	0,072	-0,001	0,012	0,009	1,193	0,060	0,012	-1,524	1,354
0,35	1,076	0,152	-0,002	0,018	0,012	1,087	0,140	0,018	-1,468	1,434
0,40	1,039	0,217	-0,002	0,024	0,016	1,061	0,206	0,024	-1,471	1,451
0,45	0,949	0,253	-0,006	0,030	0,021	0,982	0,261	0,031	-1,364	1,501
0,50	0,847	0,295	-0,012	0,039	0,025	0,897	0,335	0,041	-1,277	1,611
0,55	0,675	0,339	-0,020	0,048	0,031	0,756	0,465	0,052	-1,171	1,699
0,60	0,459	0,340	-0,039	0,056	0,037	0,571	0,638	0,069	-0,962	1,870
0,65	0,204	0,218	-0,061	0,050	0,043	0,298	0,819	0,079	-0,682	1,828
0,70	0,035	-0,042	-0,079	0,016	0,050	0,054	-0,879	0,081	-0,203	1,620
0,75	0,044	-0,221	-0,061	-0,014	0,057	0,225	-1,374	0,062	0,231	1,089
0,80	0,061	-0,268	-0,030	-0,020	0,065	0,275	-1,348	0,036	0,581	0,554
0,85	-0,016	-0,276	-0,012	-0,012	0,074	0,277	1,512	0,017	0,779	0,230
0,90	-0,077	-0,342	-0,004	-0,003	0,083	0,351	1,349	0,005	0,746	0,062
0,95	-0,029	-0,400	-0,001	0,002	0,092	0,401	1,497	0,002	-1,319	0,027
1,00	0,064	-0,310	0,000	0,005	0,102	0,317	-1,366	0,005	1,502	0,046
1,05	0,059	-0,149	0,001	0,005	0,112	0,160	-1,193	0,005	1,412	0,043
1,25	-0,053	0,018	0,000	-0,001	0,159	0,056	-0,319	0,001	-1,342	0,004
1,50	0,015	-0,001	0,000	0,001	0,229	0,015	-0,039	0,001	1,498	0,002
1,75	-0,013	-0,001	0,000	0,000	0,312	0,013	0,055	0,000	1,457	0,001
2,00	-0,002	0,001	0,000	0,000	0,408	0,002	-0,353	0,000	-1,470	0,000
2,50	0,001	-0,001	0,000	0,000	0,637	0,001	-0,831	0,000	-1,272	0,000
2,75	0,000	0,000	0,000	0,000	0,771	0,000	-1,134	0,000	-1,437	0,000
3,00	0,000	0,000	0,000	0,000	0,917	0,000	-1,086	0,000	-1,324	0,000

Tabilca 4.2 Podaci za crtanje prijenosne krivulje

5 PRORAČUN PONIRANJA I POSRTANJA POMOĆU PROGRAMA WAVESHIP

WAVESHIP je program koji služi hidrodinamčkoj analizi kod proračuna valnog opterećenja i odziva broda ili drugih pomorskih objeka fine forme na pravilnom valu. Program koristi strip metodu (2-dimenzionalno strujanje) kako bi se dobili koeficijenti dodane mase i prigušenja ovisni o frekvenciji.

Kod strip teorije se pretpostavlja da je susretna frekvencija veća od brzina napredovanja, da je duljina broda izražena u odnosu na gaz i širinu, monotona promjena poprečnog presjeka u uzdužnom smjeru i zanemaruju se rubovi. Zbog pretpostavke visokih frekvencija rezultati kod niskih frekvencija nisu dovoljno točni. Program nudi tri analize ovisno o složenosti i izlaznim podacima koji nas zanimaju. Za računanje prijenosnih krivulja poniranja i posrtanja koje se najčešće traže, koristi se druga "Global Response". Odziv se računa po strip teoriji Salvesena, Tucka i Faltisena, gdje se Haskindova relacija upotrebljava za direktno dobivanje sila uzbude iz potencijala radijacije.

 A_{jk} i B_{jk} za poniranje, zanošenje i ljuljanje se računa kao prisilno vibriranje u mirnoj vodi za svaki strip tako što se pretpostavi beskonačno dugačak cilindar oko kojeg je strujanje dvodimenzionalno[3].

Forma je podijeljena na 9 elemenata. Idući od pramčane okomice, strip 1 i 2 su duljine 6,75 m , a stripovi 3 do 9 duljine 13,5 m. Na polovici raspona svakog stripa zadane su y i z koordinate i opisana forma ima oblik prikazan slijedećim slikama.

- Sl. 5.1 Projekcija forme u x-z ravnini
- Sl. 5.2 Projekcija forme u x-y ravnini
- Sl. 5.3 Projekcija forme u y-z ravnini

	Z Y	XVIEW
DATE TIME SCALE	20-FEB-2009 10:45:06 0.0136	SESAM Presel 7.4-02

Izlazni podaci dani su u bezdimenzijskom obliku.

wl/l	wl	k	ω (s ⁻¹)	abs(x3)
0,23	24,84	0,25	1,58	0,0054
0,3	32,4	0,19	1,38	0,0134
0,38	41,04	0,15	1,23	0,032
0,49	52,92	0,12	1,08	0,0796
0,64	69,12	0,09	0,94	0,1757
0,82	88,56	0,07	0,83	0,2333
1,06	114,48	0,05	0,73	0,2317
1,37	147,96	0,04	0,65	0,4567
1,76	190,08	0,03	0,57	0,6535
2,28	246,24	0,03	0,50	0,7884
2,94	317,52	0,02	0,44	0,8738
3,79	409,32	0,02	0,39	0,9262
4,89	528,12	0,01	0,34	0,9572
6,31	681,48	0,01	0,30	0,9753
8,14	879,12	0,01	0,26	0,9859
10,49	1132,92	0,01	0,23	0,9919
13,54	1462,32	0,00	0,21	0,9954
17,47	1886,76	0,00	0,18	0,9974
22,53	2433,24	0,00	0,16	0,9985
29,07	3139,56	0,00	0,14	0,9992

Tablica 5.1 Podaci za crtanje prijenosne krivulje poniranja

Tablica 5.2 Podaci za crtanje prijenosne krivulje posrtanja

	abs(x5)	abs(x5)
wl/l	bezdim.	dim.
0,040258	0,0094	0,0004
0,030864	0,0089	0,0003
0,024366	0,1232	0,0030
0,018896	0,4791	0,0091
0,014468	0,8991	0,0130
0,011292	2,5892	0,0292
0,008735	3,9337	0,0344
0,006759	4,8787	0,0330
0,005261	5,4974	0,0289
0,004061	5,8836	0,0239
0,003149	6,1188	0,0193
0,002443	6,2577	0,0153
0,001894	6,3384	0,0120
0,001467	6,3851	0,0094
0,001138	6,4114	0,0073
0,000883	6,4262	0,0057
0,000684	6,4343	0,0044
0,00053	6,4385	0,0034
0,000411	6,4406	0,0026

wl- valna duljina (λ)

l - duljina broda (108 m)

k – valni broj

abs (x3) - odziv, poniranje

abs (x5) - odziv, posrtanje

SI.5.4 Prijenosna krivulja poniranja

Sl.5.5 Prijenosna krivulja posrtanja

Sl. 5.6 Prijenosne krivulje poniranja za različite susretne kuteve

Sl. 5.7 Prijenosne krivulje posrtanja za različite susretne kuteve

6 ZAKLJUČAK

Na zajedničkom dijagramu poniranja, najviše odstupa prijenosna krivulja dobivena metodom broda na dugačkom harmonijskom valu. Krivulja dobivena korištenjem koeficijenata za polukružne presjeke ne odstupa toliko od krivulje dobivene WAVESHIP-om. Na frekvencijama iznad 1,2 s⁻¹ krivulje se dovoljno poklapaju. Treba uzeti u obzir da forma ovog broda nije standardna, što bitno utječe na rezultate.

Sl.6.1 Zajednčki dijagram poniranja

Sve krivulje posrtanja teže *0* na rubovima, s time da krivulja dobivena korištenjem koeficijenata za polukružne forme manje odstupa od

prijenosne krivulje dobivene pomoću programa WAVESHIP, dok drugi dio bolje prati metoda broda na dugačkom harmonijskom valu.

Sl. 6.2 Zajednički dijagram posrtanja

7 LITERATURA

- [1] Cvetko, I. : Programski zadatak iz kolegija Osnovne teorije Pomorstvenosti; FSB, 2008.
- [2] Prpić-Oršić, J., Čorić, V. : Pomorstvenost plovnih objekata; Zigo, Rijeka, 2006.
- [3] WAVESHIP, SESAM , Users Manual; DnV, 1993.