Usporedba plinskog i uljnog etalonskog tlačnog sustava do 7 MPa

Popović, Ivan

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:473178

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-10-09

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Ivan Popović

Zagreb, 2015.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Student:

Izv. prof. dr. sc. Lovorka Grgec Bermanec, dipl. ing.

Ivan Popović

Zagreb, 2015.

Izjavljujem da sam ovaj rad izradio samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem se prof. dr. sc. Lovorki Grgec Bermanec na stručnoj i nesebičnoj pomoći pri izradi ovog rada, kao i djelatnicima Laboratorija za procesna mjerenja za ukazanu pomoć pri mjerenjima koja su bila potrebna za izradu ovog rada.

Zahvale upućujem svojoj obitelji koja me neizmjerno podržavala tokom cijelog studija.

Ivan Popović

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za diplomske ispite studija strojarstva za smjerove: procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveuč Fakultet stro	ilište u Zagrebu ojarstva i brodogradnje
Datum	Prilog
Klasa:	
Ur.broj:	

DIPLOMSKI ZADATAK

Student:

Mat. br.: 0035177249

Naslov rada na hrvatskom jeziku: Naslov rada na

engleskom jeziku:

Usporedba plinskog i uljnog etalonskog tlačnog sustava do 7 MPa

Comparison of gas and oil standard pressure system up to 7 MPa

Opis zadatka:

Prema zahtjevima međunarodnih normi za osposobljenost ispitnih i umjernih laboratorija, laboratorij mora imati postupke za praćenje kvalitete rezultata svojih ispitivanja i umjeravanja. Kvaliteta rezultata može se pratiti unutrašnjim ili vanjskim mjerama kontrole kvalitete. Unutrašnje mjere kontrole kvalitete između ostalog obuhvaćaju ponovljivost i obnovljivost rezultata dok se vanjske u pravilu odnose na provedbu međulaboratorijskih usporedbi i ispitivanja sposobnosti. U ovom radu potrebno je usporediti dva etalonska tlačna sustava do 7 MPa korištenjem pretvornika tlaka kao prijenosnog etalona te analizirati rezultate dobivene korištenjem različitih tlačnih medija (ulje i plin).

Potrebno je:

- opisati etalonske tlačne sustave koji koriste ulje i plin kao tlačni medij,
- dati pregled statističkih metoda za ocjenu rezultata umjeravanja,
- opisati metode umjeravanja, provedbu mjerenja i procjenu mjerne nesigurnosti,
- provesti umjeravanja koristeći različite tlačne medije (dušik i ulje),
- izraditi proračune efektivnog tlaka i budžete mjernih nesigurnosti,
- analizirati rezultate provedenih umjeravanja.

Ivan Popović

U radu navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan: 7. svibnja 2015.

Zadatak zadao:

Rok predaje rada: 9. srpnja 2015. Predviđeni datumi obrane:

15., 16. i 17. srpnja 2015.

Predsjednica Povjerenstva:

S.

Tj- Juccii Luli Prof. dr. sc. Tanja Jurčević Lulić

Izv. prof. dr. sc. Lovorka Grgec Bermanec

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA	III
POPIS TABLICA	IV
POPIS OZNAKA	. V
SAŽETAK	VI
SUMMARY	VII
1. UVOD	1
2. TLAČNE VAGE	3
 2.1. Tlačne vage kao etaloni tlaka	3 5 7 8 9 10 10
3. METODE PROCJENE MJERNE NESIGURNOSTI	11
 3.1. Definicije i procjena mjerne nesigurnosti	11 11 12 13 13 13 13 14
4. STATISTIČKE METODE ZA OCJENU REZULTATA UMJERAVANJA	15
5. OPIS MJERNIH LINIJA I PROVEDBE UMJERAVANJA	16
 5.1. Plinski etalonski tlačni sustav 5.1.1. Opis i glavne karakteristike mjerne linije 5.1.2. Princip rada mjerne linije 5.1.3. Postupak mjerenja 5.1.4. Proračun efektivnog tlaka 5.2. Uljni etalonski tlačni sustav 5.2.1. Opis i glavne karakteristike mjerne linije 5.2.2. Princip rada mjerne linije 5.2.3. Postupak mjerenja 5.2.4. Proračun efektivnog tlaka 	 16 19 20 21 22 22 24 25 26
6. ANALIZA REZULTATA UMJERAVANJA	27
6.1. Plinski etalonski tlačni sustav6.1.1. Karakteristike korištenih masa	28 28

Ivan Popović		Diplomski rad
6.1.2.	Prikaz korištenih kombinacija utega i efektivnog tlaka	
6.1.3.	Prikaz izračuna efektivnog tlaka	
6.1.4.	Budžeti mjerne nesigurnosti	
6.2. Ulj	ni etalonski tlačni sustav	
6.2.1.	Karakteristike korištenih masa	
6.2.2.	Prikaz korištenih kombinacija utega i efektivnog tlaka	
6.2.3.	Prikaz izračuna efektivnog tlaka	
6.2.4.	Budžeti mjerne nesigurnosti	
6.3. Usp	poredba plinskog i uljnog etalonskog tlačnog sustava	
7. ZAKLJ	UČAK	50

POPIS SLIKA

Slika 1.	Direktne metode mjerenja tlaka [2]	2
Slika 2.	Indirektne metode mjerenja tlaka [2]	2
Slika 3.	Vrste i područja primjene tlačnih vaga [1]	
Slika 4.	Osnovne konfiguracije tlačne vage [1]	5
Slika 5.	Shematski prikaz idealnog sklopa klip/cilindar [2]	5
Slika 6.	Shematski prikaz realnog sklopa klip/cilindar [2]	7
Slika 7.	Prikaz plinske etalonske mjerne linije	
Slika 8.	Plinska etalonska mjerna linija	
Slika 9.	Prikaz uljne etalonske mjerne linije	
Slika 10.	Uljna etalonska mjerna linija	
Slika 11.	Prikaz odstupanja plinskog etalonskog sustava za ispitne točke	
Slika 12.	Prikaz odstupanja uljnog etalonskog sustava za ispitne točke	
Slika 13.	Prikaz odstupanja uljnog i plinskog etalonskog sustava	

POPIS TABLICA

Tablica 1.	Pregled nekih statističkih metoda za ocjenu rezultata umjeravanja [6]	. 15
Tablica 2.	Karakteristike plinske tlačne vage	. 18
Tablica 3.	Karakteristike pretvornika tlaka	. 19
Tablica 4.	Karakteristike pokazivača	. 19
Tablica 5.	Karakteristike uljne tlačne vage	. 23
Tablica 6.	Karakteristike masa kod plinskog etalonskog sustava	. 28
Tablica 7.	Prikaz kombinacija utega kod plinskog etalonskog sustava	. 29
Tablica 8.	Proračun efektivnog tlaka za plinski etalonski sustav	. 30
Tablica 9.	Mjerna nesigurnost po točkama za plinski etalonski sustav	. 31
Tablica 10.	Prikaz mjernih nesigurnosti i odstupanja plinskog etalonskog sustava	. 35
Tablica 11.	Karakteristike masa kod uljnog etalonskog sustava	. 37
Tablica 12.	Proračun efektivnog tlaka za uljni etalonski sustav	. 39
Tablica 13.	Mjerna nesigurnost po točkama za uljni etalonski sustav	.40
Tablica 14.	Prikaz mjernih nesigurnosti i odstupanja uljnog etalonskog sustava	.44
Tablica 15.	Usporedba odstupanja plinskog i uljnog etalonskog sustava	.46
Tablica 16.	Usporedba mjernih nesigurnosti kod plinskog i uljnog etalonskog sustava	.47
Tablica 17.	Ocjena rezultata umjeravanja	. 49

POPIS OZNAKA

Oznaka	Jedinica	Opis
A	m^2	površina
A_0	m^2	efektivna površina sklopa pri nultom tlaku
A_e	m^2	efektivna površina
С	N/m	površinska napetost radnog medija
E_n	-	faktor odstupanja normaliziran u odnosu na iskazanu nesigurnost
F	Ν	sila
f	Ν	masena sila
g	m/s^2	gravitacija
h	m	visina
mi	kg	prava masa i-tog utega postavljenog na sklop
р	Pa	tlak
p _e	Pa	efektivni tlak
p abs	Pa	apsolutni tlak
r	mm	polumjer klipa
r'	mm	polumjer koji pripada neutralnoj površini
t	°C	temperatura
Т	Κ	termodinamička temperatura
tr	°C	referentna temperatura
и	-	standardna nesigurnost
U	-	proširena nesigurnost
Иc	-	sastavljena standardna nesigurnost
V	m ³	volumen za koji se radi korekcija zbog uzgonskog djelovanja fluida
W	kg/m^2s^2	specifična težina
W	Ň	sila trenja
x	-	iznos odstupanja na plinskom etalonskom sustavu
X	-	iznos odstupanja na uljnom etalonskom sustavu
α_K	°C ⁻¹	koeficijent temperaturnog rastezanja klipa
α_c	°C ⁻¹	koeficijent temperaturnog rastezanja cilindra
Г	m	opseg klipa
λ	Pa ⁻¹	koeficijent elastične deformacije
ρ_a	kg/m ³	gustoća zraka okoline
, ρ _{mi}	kg/m^3	gustoća i-tog utega
ρ_f	kg/m^3	gustoća radnog medija
ρ_{N2}	kg/m^3	gustoća dušika
ρ_U	kg/m ³	gustoća ulja

SAŽETAK

U ovom radu napravljena je usporedba plinskog i uljnog etalonskog tlačnog sustava do 7 MPa koristeći pretvornik tlaka kao prijenosni etalon. Usporedba je provedena na sustavima koji se nalaze u sklopu Laboratorija za procesna mjerenja na Fakultetu strojarstva i brodogradnje.

U uvodnim poglavljima prikazan je pregled teorijskih osnova mjerenja tlaka s posebnim osvrtom na tlačne vage kao primarne etalone tlaka.

Nakon teorijskih osnova dani su matematički modeli za proračun efektivnog tlaka za oba etalonska tlačna sustava. Prikazane su metode procjene mjerne nesigurnosti korištene pri analizi rezultata, kao i statističke metode za ocjenu rezultata umjeravanja.

Shematski su prikazane i opisane mjerne linije te su navedene karakteristike korištenih komponenti. Objašnjen je princip rada mjernih linija i sam postupak mjerenja kojim su dobiveni rezultati potrebni za usporedbu navedenih etalonskih tlačnih sustava.

Analiza rezultata, kao glavni dio ovog rada, napravljena je pomoću matematičkih modela i metoda prikazanih u uvodnim poglavljima. Prikazane su karakteristike pripadajućih masa korištenih pri umjeravanju, proračunati efektivni tlakovi za oba sustava i mjerne nesigurnosti za sve točke mjerenja.

Glavni indikator za usporedbu navedenih etalonskih tlačnih sustava je razlika proračunatih odstupanja sustava. Analizom dobivenih odstupanja dobiven je konačni uvid u trenutno stanje etalonskih tlačnih sustava koji se koriste u laboratoriju prema kojem su predloženi daljnji koraci za unaprjeđenje opisanih sustava i ponovno ispitivanje.

Svrha navedenih ispitivanja bila je unutarnja kontrola kvalitete etalona tlaka u Laboratoriju za procesna mjerenja.

Ključne riječi: mjerenje tlaka, etalonski tlačni sustavi, tlačne vage, mjerna nesigurnost, unutarnja kontrola kvalitete laboratorija.

SUMMARY

This paper deals with the comparison of gas and oil standard pressure system up to 7 MPa using pressure calibrator as a portable standard. This comparison was carried out using the systems placed in Laboratory for thermal measurements at Faculty of Mechanical Engineering and Naval Architecture.

Theoretical bases in pressure measurements are shown in the opening chapters, focusing on piston gauges.

After the theoretical bases, mathematical models for effective pressure calculations are given for both gas and oil standard pressure system. Calculation methods for measurement uncertainties and statistical methods for calibration feedback which are used in result analysis are also shown in this chapter.

Measurement facilites have been described and the characteristics of the equipment used for calibration are given. The operating principle and measurement procedure are also explained in this chapter.

The result analysis, as the main part of this thesis, has been conducted using mathematical models and procedures described in the opening chapters. Mass sets characteristics used for calibration are given and effective pressures and measure uncertainties are calculated, for all measure points in both gas and oil standard pressure system.

The main indicator for the comparison of mentioned standard pressure systems is the divergence in system deviation. The analysis of the obtained deviation gave an overview of the current state of standard pressure systems used in a laboratory and, based on those results, further steps for improving the above-described systems are proposed.

The main goal of the described calibration was the internal quality control for pressure standards used in Laboratory for thermal measurements.

Key words: pressure measurement, standard pressure systems, piston gauges, measurement uncertainty, internal quality control.

1. UVOD

Tlak je u osnovi mehanički pojam koji se može u potpunosti opisati u terminima osnovnih SI jedinica duljine, mase i vremena. Za fluid u mirovanju definira se kao normalna sila, F, na jedinicu površine A [1]:

$$p = \frac{dF}{dA} \tag{1}$$

Kao vektorska veličina, sila ima svoju veličinu i smjer, pa općenito postoje tri nezavisne komponente tlaka tj. naprezanja koje djeluju na površinu. Kad se promatraju unutarnje sile u krutom tijelu to može biti od važnosti pa su za opisivanje sila u materijalu općenito potrebni tenzori naprezanja. Budući da se svi etaloni tlaka koriste za mjerenje tlaka u fluidu a ne u krutim tijelima tenzori naprezanja ne moraju biti korišteni [1].

U mehanici fluida tlak je specifična težina, w, prema visini, h:

$$dp = -w \cdot dh \tag{2}$$

Sva osnovna mjerenja tlaka se temelje na te dvije definicije.

Tlak je općenito rezultat djelovanja molekula unutar nekog fluida na stjenke posude. Ako posuda ne sadrži niti jednu molekulu tlak u njoj ima iznos nula (100% vakuum). Tlak mjeren na skali koja koristi apsolutnu nulu kao referentnu vrijednost zove se apsolutni tlak dok se tlak koji koristi tlak okoline kao referentnu vrijednost naziva pretlak [1].

U ovom radu isključivo se mjeri tlak u odnosu na tlak okoline.

Jedinica za mjerenje tlaka spada u grupu izvedenih jedinica SI s posebnim nazivima i znakom. Mjerna jedinica za tlak naziva se Paskal (Pa), a njena veza s drugim jedinicama je kg/ms². Iznimno su dopuštene jedinice za mjerenje tlaka izvan SI sustava, a to su bar (10⁵ Pa) i milimetar stupca žive (133,322 Pa) [1].

Niti jedna definicija tlaka nije upotrebljiva u stvarnosti sve dok nije prevedena u mjerljive karakteristike. Mjerila tlaka u znanosti i industriji razvijaju se gotovo 200 godina i do danas je razvijen velik broj različitih principa mjerenja statičkog tlaka. Klasifikaciju današnjih metoda mjerenja tlaka i vakuuma prikazuju [Slika 1] i [Slika 2]. Mjerenja dinamičkih i parcijalnih tlakova ovdje nisu obuhvaćena [2].

Mjerila tlaka koja rade na tim principima značajno variraju u nesigurnostima koje postižu. Metode na slici označene zvjezdicom temelj su razvoja primarnih etalona tlaka jer dokazano mogu mjeriti tlak s najmanjim nesigurnostima i najboljom ponovljivošću [2].

2. TLAČNE VAGE

2.1. Tlačne vage kao etaloni tlaka

Etaloni tlaka su baza svim mjerenjima tlaka. Ovisno o nesigurnosti sa kojom bilo koje mjerenje tlaka mora biti izvršeno tražena oprema značajno varira u dizajnu i cijeni. Primarni etaloni tlaka u pravilu omogućavaju najmanje nesigurnosti ali su vrlo skupi i nisu nosivi [2].

Najmanje nesigurnosti mjerenja tlaka u području od 10⁻¹ do 10⁵ Pa postižu se korištenjem cijevnih manometara punjenih živom i plinskih tlačnih vaga koji se oboje koriste kao primarni etaloni u tom području. U usporedbi sa živinim manometrima plinske tlačne vage su relativno nove, osobito kao primarni etaloni [2].

U području od 10^5 do 10^9 Pa mjerenja tlaka kao primarni etaloni koriste se plinske i hidraulične tlačne (vodene i uljne) vage raznolikog dizajna. Kako tlak raste iznad 10^6 Pa deformacija klipa i cilindra obično postaje glavni izvor nesigurnosti i mora biti uračunata u modeliranju efektivne površine. Tlačne vage jednostavnijeg dizajna najlakše su za modeliranje, ali na višim tlakovima one postaju neupotrebljive zbog širenja procjepa između klipa i cilindra. U području iznad 2,6·10⁹ Pa tlačne vage kao primarni etaloni tlaka ne postoje, a za proširenje mjerne sposobnosti tlaka koriste se druge tehnike [2].

Jedan od značajnih faktora razvoja tlačnih vaga kao primarnih etalona posljednjih godina je veliko proširenje područja mjerenja tlaka i napredak i u teoretskim osnovama i u problemima njihovog dizajna i tehnika primjere. Današnje tlačne vage konstantno se unaprjeđuju po pitanju materijala i geometrije sklopa, metoda postavljanja utega na klip te točnosti pridruženih mjerenja koja se odnose na mjerenja temperature, pozicije klipa, propadanja rotacije itd [2].

Slika 3. Vrste i područja primjene tlačnih vaga [1]

Pojam tlačna vaga u pravilu podrazumijeva skup sljedećih komponenti: sklop klip/cilindar, utezi, postolje i sustav za regulaciju tlaka. Kada se radi o razvoju etalonskih linija na kojima sklopovi klip/cilindar služe za prijenos površine na druge tlačne vage te se komponente kombiniraju i nadopunjavaju prema potrebi i zato se naziv tlačna vaga ne koristi nego se upotrebljava pojam etalonska mjerna linija [2].

Princip rada temelji se na zakonu promjene hidrostatičkog tlaka. Sklop se sastoji od precizno izrađenog okomitog klipa, izrađenog na mikronske tolerancije koji je umetnut u blisko prilagođeni cilindar [Slika 4], oboje poznatih poprečno presječnih površina. Ta dva elementa određuju površinu koja se zove "efektivna površina". Mase poznate težine se postavljaju na vrh slobodnog klipa koji je također dio opterećenja. Na donji kraj klipa dovodi se fluid pod tlakom, najčešće dušik ili bijelo ulje, sve dok se ne razvije dovoljna sila da podigne klip sa utezima. Kada klip slobodno rotira u cilindru vaga je u ravnoteži sa nepoznatim tlakom u sistemu. Postoji istjecanje fluida iz sistema kroz procjep između klipa i cilindra. Film fluida omogućava neophodno podmazivanje između te dvije površine. Klip rotira da eliminira trenje. Zbog istjecanja fluida tlak u sistemu mora biti kontinuirano dodavan da bi održavao klip sa utezima u plutajućem stanju. To se često postiže upotrebom promjenjivog volumena koji funkcionira na principu Boyle-ovog zakona [1].

Sklop klip-cilindar je glavni dio svake tlačne vage. Glavni zahtjevi na izradu sklopa su [1]:

- materijal koji ima mali koeficijent temperaturne ekspanzije i koji dobro podnosi naprezanja (volfram karbid, čelik, keramika)
- površine izrađene na mikronskom nivou
- mali i konstantni međuprostor između klipa i cilindra (od 0,5 μm do 1 μm, bez trenja između ta dva dijela).

Danas prevladavaju tri osnovne konfiguracije koje su prikazane na [Slika 4] [1]:

- Jednostavna konfiguracija (p_j=0)
- Uvučena (p_j=p)
- Tlakom kontrolirani zazor $(p_j \neq p)$

2.2. Osnove fizike tlačne vage

Teorija sklopa klip/cilindar tlačne vage odnosi se na izravnu primjenu zakona dinamike fluida ovisno o vrsti radnog medija tlačne vage [2].

2.2.1. Idealni sustav

Na idealnom sklopu klip/cilindar, površina savršeno kružnog poprečnog presjeka bila bi izložena konstantom hidrostatski tlačenom fluidu. U idealnom sustavu fluid bi bio nezavisan i djelovao bi samo preko dna klipa [2].

Pretpostavka je da klip radijusa r i cilindar radijusa R imaju savršeno glatke i ravne cilindrične površine, te da su im osi vertikalne. Tlak koji mjerimo p_1 raspoređen je na dnu klipa dok je vrh klipa izložen atmosferskom tlaku [Slika 5]. Izjednačavanjem sila u stanju ravnoteže vrijedi [2]:

$$F = \pi \cdot r^2 \cdot (p_1 - p_2) + W \tag{3}$$

Gdje je *F* vertikalna sila koja djeluje na klip kao posljedica mase i gravitacijskog ubrzanja, a *W* predstavlja silu trenja nastalu na bočnoj stjenci cilindra [2].

Pretpostavljajući normalne zakone viskoznog fluida vertikalna komponenta brzine fluida u međuprostoru je nula na rubnim površinama, ima maksimum na polovici i sila trenja je tu nula, pa radijus r' označava površinu koja se zove neutralna površina [2].

Izjednačavanjem sila koje djeluju na stupac fluida na kružnom presjeku između površine klipa i neutralne površine i označavanjem sile *f* nastale zbog njegove mase dobivamo dopunsku jednakost [2]:

$$f + W = \pi \cdot (r'^2 - r^2) \cdot (p_1 - p_2)$$
(4)

Odatle:

$$p_1 - p_2 = \frac{F + f}{\pi \cdot r'^2} \tag{5}$$

Treba napomenuti da opterećenje uključuje zajedno težinu klipa i težinu stupca fluida koji se nalazi u prostoru između površine klipa i neutralne površine. Zbog malih dimenzija zapora težinu fluida se zanemaruje [2].

Za takav totalno hipotetski laboratorijski sustav, i nepokretan klip, izraz za određivanje tlaka glasi [2]:

$$p_e = \frac{F}{A_e} \tag{6}$$

Gdje p_e označava razliku tlaka koji mjerimo i tlaka okoline i naziva se "efektivni tlak" a veličina kojom primijenjena sila mora biti podijeljena da se izvede primijenjeni tlak tj. površina $(r'^2\pi)$ koja se prepoznaje u jednadžbi (5) zove se "efektivna površina" sklopa klip/cilindar [2]:

$$A_e = \pi \cdot r^{\prime 2} \tag{7}$$

Pojam efektivne površine sklopa je uveden da eliminira nepoznatu silu koja je posljedica viskoznog toka fluida između klipa i cilindra [2].

U gornjim relacijama nigdje nije definirana vrijednost r' i u literaturi se koriste određene aproksimacije za izračun točne vrijednosti. U realnim sustavima postoji ovisnost efektivne površine o tlaku i temperaturi te će one, kao i aproksimacija veličine r', biti uključena u konačnu jednadžbu za efektivni tlak kod realnih sustava [2].

2.2.2. Realni sustav

U realnom laboratorijskom sustavu poznata su brojna odstupanja i klipa i cilindra od idealnog oblika. Razlozi su u nesavršenoj geometriji sklopa, rotirajućem klipu te dinamičkoj ravnoteži. Naime, klip je u ravnoteži ne onda kada se ne miče vertikalno nego kada propada u svom prirodnom omjeru. Pri tome klip rotira da se izbjegne trenje zbog direktnog kontakta sa stjenkama cilindra [2].

Uzimajući u obzir bitne korekcije koje se odnose na [1]:

- a) površinu (utjecaj temperature tj. temperaturno rastezanje klipa i cilindra te pojavu elastične deformacije zbog djelovanja tlaka)
- b) silu (varijacije gravitacijskog ubrzanja, uzgonsko djelovanje zraka i radnog fluida, površinsku napetost radnog fluida, te razliku u visini stupca)
- c) tlak okoline (korekcije ovise o režimu rada koji može biti pretlak ili apsolutni tlak)

jednadžba (6) postavljena za idealni sklop, režim pretlak prema [3] prelazi u puno realniju korelaciju:

Ivan Popović

Diplomski rad

$$p_e = \frac{\left[\sum_i \left[m_i \cdot (1 - \frac{\rho_a}{\rho_{mi}}\right] + (h \cdot A_0 - \nu) \cdot (\rho_f - \rho_a)\right] \cdot g \cdot \cos \theta + \Gamma \cdot c}{A_0 \cdot (1 + \lambda \cdot p_e) \cdot [1 + (\alpha_K + \alpha_c) \cdot (t - 20)]}$$
(8)

gdje je:

- *pe* efektivan iznos tlaka generiran na sklopu
- *mi* prava masa i-tog utega postavljenog na sklop
- g iznos lokalnog gravitacijskog ubrzanja
- ρ_a gustoća zraka okoline
- ρ_{mi} gustoća i-tog utega
- ρ_f gustoća radnog medija
- α_K koeficijent temperaturnog rastezanja klipa
- α_c koeficijent temperaturnog rastezanja cilindra
- *Ao* efektivna površina sklopa pri nultom tlaku
- *t* temperature sklopa za vrijeme ispitivanja
- *tr* referentna temperatura pri kojoj je mjerena A₀
- λ koeficijent elastične deformacije
- θ kut nagiba osi klipa u odnosu na vertikalu
- v volumen za koji se radi korekcija zbog uzgonskog djelovanja fluida
- *h* razlika visina etalonskog i ispitivanog sklopa
- Г opseg klipa
- *c* površinska napetost radnog medija

2.3. Metode umjeravanja tlačnih vaga

Karakterizacija tlačnih vaga kao etalona tlaka je kompleksan postupak i zahtjeva pažljivu procjenu svih slučajnih i sistematskih faktora. Postupak umjeravanja sklopa svodi se na [2]:

- umjeravanje masa utega i klipa
- određivanje efektivne površine sklopa
- određivanje koeficijenta elastične deformacije
- određivanje ostalih karakteristika

Umjeravanje mase utega i plutajućih elemenata povjerava se laboratoriju ovlaštenom za takva mjerenja. Aktualni istraživački problemi odnose se na precizno određivanje efektivne površine i elastične deformacije sklopa klip/cilindar kao funkcije primijenjenog tlaka. Određivanje ostalih karakteristika rutinski je ali nezaobilazan posao [2].

2.3.1. Određivanje efektivne površine

Metode određivanja efektivne površine tlačne vage dijele se u dvije osnovne grupe [2]:

- 1. one u kojima je rezultat dobiven iz primarnih načela, tj. bez povezanosti sa ostalim etalonima
- 2. one u kojima je rezultat dobiven metodama usporedbe sa nekim drugim fundamentalnim etalonima tlaka

Metode iz prve grupe uglavnom su ograničene na razvoj primarnih i nacionalnih etalona i odnose se na izravno određivanje preko osnovnih SI jedinica mase i duljine uz prikladni matematički model, tj. bez povezanosti sa ostalim etalonima tlaka [2].

Metode iz druge grupe su od velike važnosti kod umjeravanja etalona koji se koriste kao sekundarni i radni etaloni [2].

U metode grupe 1. spadaju [2]:

- Direktno određivanje površine iz dimenzionalnih mjerenja (mjerenja klipa i cilindra duž osi, mjerenja odstupanja kružnosti i ravnosti koja doprinose nesigurnosti konačnog rezultata)
- Određivanje površine koristeći efekt elastične deformacije (uzima u obzir druge uzroke dimenzionalnih promjena koje nastaju zbog elastičnih deformacija nastalih zbog djelovanja tlaka kojem je sklop izložen i koje su funkcije narinutog tlaka i koje u pravilu rastu s tlakom)

Metode 2. grupe podrazumijevaju usporedbu sa nekim neovisnim etalonom, tj. u pravilu sa drugom tlačnom vagom ili cijevnim manometrom. Danas prevladavaju metode direktne usporedbe sa etalonskom tlačnom vagom ("cross-floating") dok su mješovite usporedbe prihvaćene u primjenama sa posebnim razlogom [2].

Metode usporedbe dvije tlačne vage ("cross-floating") podrazumijevaju prijenos efektivne površine jednog sklopa na drugi. Princip usporedbe je postavljanje dva sklopa, etalonskog i ispitivanog na zajednički tlačni sustav. Kada se mase obje vage podese tako da oba klipa plivaju u referentnim položajima omjer njihovih ukupnih opterećenja predstavlja omjer njihovih efektivnih površina [2].

Metode izvođenja cross-floatinga dijele se u dvije grupe koje se razlikuju prema tehnikama koje identificiraju stanje ravnoteže [2]:

- Metoda propadanja
- Metoda mjerenja razlike tlaka

Metode proračuna efektivne površine sklopa klip/cilindar [2]:

- p-metoda (izračun efektivne površine vrši se obrtanjem jednadžbe (8))
- Δp-metoda (temelji se na proračunu prirasta tlaka)

2.3.2. Određivanje koeficijenta elastične deformacije

Koeficijent elastične deformacije, λ , koji se pojavljuje u jednadžbi (8) je vrlo važan parametar sklopa pogotovo u radu na visokim tlakovima. Ovisi o dizajnu sklopa i drugim radnim parametrima. Može se određivati teorijski ili eksperimentalno [2].

2.3.2.1. Teorijsko određivanje

Teorijske metode temelje se na traženju λ analitičkim ili numeričkim rješenjem sustava diferencijalnih jednadžbi. Najraširenija je metoda pojednostavljenog proračuna korištenjem Lame-ove jednadžbe koja predstavlja linearnu distribuciju tlaka u procjepu sklopa klip/cilindar [4].

U posljednjih nekoliko godina razvijeni su proračuni korištenjem metoda konačnih elemenata.

2.3.2.2. Eksperimentalno određivanje

Tehnike koje se najčešće koriste za određivanje koeficijenta elastične deformacije efektivne površine sklopa klip/cilindar su [2]:

- Crossfloating
- Metoda sličnosti
- Metode protjecanja

Nedostatci eksperimentalnih metoda se nadopunjuju razvojem nove klase računskih tehnika za predviđanje efekta deformacije. Općenito, λ vrijednosti dobivene usporedbom dva sklopa sličnih efektivnih površina se dobro slažu sa vrijednostima dobivenim iterativnim metodama [2].

3. METODE PROCJENE MJERNE NESIGURNOSTI

3.1. Definicije i procjena mjerne nesigurnosti

Mjerna nesigurnost definira se kao parametar pridružen mjernom rezultatu koji označava rasipanje vrijednosti, što se smije razborito pripisati mjernoj veličini [5]. Mnogi su izvori mjerne nesigurnosti, no prema preporukama sastavnice mjerne nesigurnosti svrstavaju se u dvije osnovne skupine (skupina A i skupina B) [1].

Izvori nesigurnosti u mjerenju [2]:

- nepotpuno određenje mjerne veličine
- nesavršeno ostvarenje određenja mjerne veličine
- nedovoljno poznavanje djelovanja uvjeta okoliša na mjerenje ili nesavršeno mjerenje uvjeta okoliša
- konačno razlučivanje instrumenta ili prag pokretljivosti
- netočne vrijednosti mjernih etalona
- netočne vrijednosti konstanti i drugih parametara dobivenih iz vanjskih izvora i korištenih u proračunu
- približna određenja i pretpostavke uključene u mjernu metodu i postupak
- promjene ponovljenih opažanja mjerene veličine u očigledno istovjetnim uvjetima

3.1.1. Procjena nesigurnosti tipa A

Nesigurnost tipa A određuje se eksperimentalno, ponavljanjem mjerenja i računanjem standardnog odstupanja (σ) rezultata ponovljenih mjerenja [2].

Obrada rezultata temelji se na matematičkoj statistici. Niz od *n* ponovljenih mjerenja smatramo slučajnim uzorkom osnovnog skupa od beskonačno mnogo mogućih rezultata mjerenja iste (vremenski nepromjenjive) mjerne veličine. Aritmetička sredina uzorka (*x*) i standardno odstupanje (σ) slučajne su varijable i razlikuju se od uzorka do uzorka. Aritmetičke sredine uzorka gomilaju se oko aritmetičke sredine osnovnog skupa (μ) prema određenim zakonitostima (npr. normalna razdioba ili Studentova razdioba). Na temelju tih zakona može se izračunati kolika je vjerojatnost da se slučajna varijabla nalazi u nekom rasponu vrijednosti, npr. u intervalu simetrično postavljenom u odnosu na aritmetičku sredinu osnovnog skupa μ . Pod vjerojatnošću nekog događaja podrazumijeva se omjer broja ostvarenja tog događaja i broja svih mogućih drugih događaja koji čine osnovni skup [2]. Zadatak mjeritelja je da na temelju ograničenog broja mjerenja odnosno na temelju parametara uzorka procjeni aritmetičku sredinu osnovnog skupa tj. vrijednost mjerene veličine (uz pretpostavku da su sve sustavne pogreške jednake nuli). Aritmetička sredina uzorka najbolje aproksimira pravu vrijednost mjerene veličine ali općenito nije jednaka (pravoj) vrijednosti mjerene veličine, i ne znamo da li se i koliko od nje razlikuje. Međutim na temelju poznatih parametara uzorka i zakonitosti njihove razdiobe može se procijeniti raspon vrijednosti, tzv. interval pouzdanosti, u kojem očekujemo s unaprijed odabranom pouzdanošću da se nalazi prava vrijednost mjerene veličine [2].

Normalna ili Gaussova razdioba je najvažnija i najčešća razdioba u primjeni matematičke statistike. To je zvonolika simetrična , jednotjemena funkcija kontinuirane slučajne varijable x, jednoznačno određena dvama parametrima (aritmetičkom sredinom osnovnog skupa μ i standardnim odstupanjem σ) [2].

3.1.2. Procjena nesigurnosti tipa B

Generalno, sve komponente nesigurnosti mogli bi odrediti eksperimentalno pa bi sve one bile nesigurnosti tipa A, ali zbog ograničenog vremena i sredstava mjerni rezultat je često proizvod samo jednog mjerenja, pa se nesigurnost procjenjuje na temelju informacije kojom raspolažemo iz drugih izvora [2].

Procjena nesigurnosti tipa B može se temeljiti na [2]:

- specifikacijama mjerne opreme
- podatcima o umjeravanju mjerila
- nesigurnosti korištenih podataka koji su preuzeti iz određenih izvora
- podatcima o ponovljivosti i obnovljivosti
- podatcima o ranije provedenim sličnim mjerenjima
- iskustvu i znanju o svojstvima relevantnih mjerila i mjernih objekata
- raznim drugim informacijama kao što su: zaokruživanje, razlučivost i histereza

3.2. Određivanje sastavljene normalne nesigurnosti

Mjerena veličina Y ovisi o više ulaznih veličina $X_1, X_2, ..., X_n$ prema funkciji f koje mogu biti međusobno neovisne (nekorelirane) ili korelirane [2].

$$Y = f(X_1, X_2, ..., X_n)$$
(9)

3.2.1. Nekorelirane ulazne veličine

U ovom slučaju promjena jedne od veličina ne uzrokuje promjenu niti jedne od preostalih ulaznih veličina. Sastavljena normalna nesigurnost veličine *y* označena kao $u_c(y)$ jednaka je pozitivnoj vrijednosti drugog korijena sastavljene varijance [2]:

$$u_c^2(y) = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 \cdot u^2(x_i)$$
(10)

a $u(x_i)$ su normalne nesigurnosti ulaznih veličina $x_1, x_2, ..., x_n$ koje se procjenjuju i mogu biti tipa A ili tipa B. Jednadžba (10) se temelji na prvom približenju Taylorovog reda. Kada je funkcija *f* značajno nelinearna potrebno je računati i sa višim članovima Taylorovog reda [2].

Parcijalne derivacije u jednadžbi (10) nazivaju se koeficijenti osjetljivosti c_i i određuju se za vrijednosti $X_i=x_i$. Koeficijenti osjetljivosti pokazuju za koliko se promijeni procijenjena veličina *y* kad se pojedina od procijenjenih veličina $x_1, x_2, ..., x_n$ promijeni za mali iznos Δx_i [2].

3.2.2. Korelirane ulazne veličine

Ako ulazne veličine nisu međusobno neovisne, dakle koreliraju sastavljena varijancija računa se prema jednadžbi (11).Ovdje je izdvojen poseban slučaj kada sve ulazne veličine koreliraju sa korelacijskim koeficijentom 1 [2].

$$u_c^2(y) = \left(\sum_{i=1}^n c_i \cdot u(x_i)\right)^2 = \left(\sum_{i=1}^n \frac{\partial f}{\partial x_i} \cdot u(x_i)\right)^2 \tag{11}$$

Sastavljena standardna nesigurnost $u_c(y)$ u tom slučaju je jednostavno jednaka pozitivnom drugom korijenu linearnog zbroja članova koji predstavljaju promjenu procjene izlazne veličine *y* proizvedene standardnom nesigurnošću svake od procjena ulaznih veličina x_i [2].

3.3. Određivanje proširene nesigurnosti

Proširena nesigurnost označava se sa U, a dobiva se množenjem sastavljene normalne nesigurnosti $u_c(y)$ faktorom proširenja k [2]:

$$U = k \cdot u_c(y) \tag{12}$$

Izbor faktora proširenja ovisi o razini pouzdanosti koja se želi dosegnuti. Kada je vjerojatnosna razdioba približno normalna i broj stupnjeva slobode dovoljno velik *k* obično iznosi 2 ili 3 što redom odgovara razini pouzdanosti od 95% odnosno 99%. Razina vjerojatnosti od 95% znači da je vjerojatnost 1:20 da će (prava) vrijednost mjerene veličine biti izvan raspona određenog proširenom nesigurnošću, odnosno 19:20 da će biti unutar tog raspona. Za komponentu proširene nesigurnosti ne vrijedi zakon geometrijskog zbrajanja. Zato pravilan postupak određivanja proširene nesigurnosti zahtjeva da se prvo izračuna ukupna standardna nesigurnost i tek na kraju pomnoži sa odgovarajućim faktorom proširenja [2].

4. STATISTIČKE METODE ZA OCJENU REZULTATA UMJERAVANJA

Rezultati provedenih mjerenja često se moraju pretvoriti u statistički proračun izvedbe radi lakšeg tumačenja i mogućnosti usporedbe sa zadanim ciljevima. Cilj je da se utvrdi odstupanje od dodijeljene vrijednosti na način kako bi se omogućila usporedba s kriterijima izvedbe. U nastavku [Tablica 1] prikazane su neke statističke metode za ocjenu rezultata umjeravanja.

razlika	D	D = (x - X)	x - rezultat sudionika X - dodijeljena vrijednost
postotna razlika	$D_{\%}$	$D_{\%} = \frac{(x-X)}{X} \times 100$	
z vrijednost	z	$z = \frac{(x - X)}{\hat{\sigma}}$	$\hat{\sigma}$ - standardno odstupanje ocjenjivanja sposobnosti
z' vrijednost	z'	$z' = \frac{(x-X)}{\sqrt{\hat{\sigma}^2 + {u_X}^2}}$	$\boldsymbol{u}_{\!X}$ - mjerna nesigurnost dodijeljene vrijednosti
zeta vrijednost	ζ	$\zeta = \frac{(x-X)}{\sqrt{u_x^2 + u_x^2}}$	$u_{\rm x}$ - procjena mjerne nesigurnosti sudionikovog rezultata x
E_n broj	E _n	$E_{n} = \frac{(x - X)}{\sqrt{U_{x}^{2} + U_{x}^{2}}}$	U_x - proširena mjerna nesigurnost dodijeljene vrijednosti X (utvrđena u referentnom laboratoriju) U_x - proširena mjerna nesigurnost sudionikovog rezultata x
<i>E</i> _z vrijednost	E_z	$E_{z-} = \frac{x - (X - U_X)}{U_X}$ $E_{z+} = \frac{x - (X + U_X)}{U_X}$	

 Tablica 1. Pregled nekih statističkih metoda za ocjenu rezultata umjeravanja [6]

Za ocjenu rezultata umjeravanja u ovom radu koristiti će se statistička metoda koja uključuje izračun E_n statističke vrijednosti.

5. OPIS MJERNIH LINIJA I PROVEDBE UMJERAVANJA

U ovom poglavlju opisan je eksperimentalni dio koji je izveden u Laboratoriju za procesna mjerenja na Fakultetu strojarstva i brodogradnje. Opisane su mjerne linije i postupci umjeravanja tlačnih vaga koji koriste ulje i plin kao tlačni medij pomoću prijenosnog etalona, pretvornika tlaka. Također su dani izrazi za proračun efektivnog tlaka, dok su ostale veličine preuzete iz prethodnih umjeravanja tlačnih vaga (npr. koeficijent elastične deformacije).

Rezultati dobiveni mjerenjima na spomenutim mjernim linijama korišteni su u postupku procjene mjerne nesigurnosti i za usporedbu ta dva etalonska tlačna sustava.

Prikaz rezultata mjerenja, rezultati proračuna efektivnog tlaka i rezultati proračuna budžeta mjerne nesigurnosti dani su u šestom poglavlju.

5.1. Plinski etalonski tlačni sustav

5.1.1. Opis i glavne karakteristike mjerne linije

Ovaj etalonski tlačni sustav koristi dušik kao radni medij. Na njemu su provedena mjerenja tlaka i prema jednadžbi danoj u nastavku proračunati efektivni tlakovi. Ova tlačna linija može se koristiti i za umjeravanje ostalih mjerila tlaka u području do 70 bar. Mjerna linija prikazana je na [Slika 7].

Slika 7. Prikaz plinske etalonske mjerne linije

IV

Ε

tE

Р

Izolacijski ventil

Pretvornik tlaka

Pokazivač tlaka

Etalonski sklop klip/cilindar

Termometar etalonskog sklopa

Glavni dijelovi mjerne linije [Slika 7]:

- S Izvor tlaka
- R1 Regulator tlaka
- R2 Precizni regulator
- F Filter
- KM Kontrolni manometar C
- R3 Promjenjivi volumen M Mase (set utega)

Ostali dijelovi linije:

- Postolje za etalonski sklop klip/cilindar s priključcima za ostalu opremu
- Barometar
- Higrometar
- Termometar
- Set malih utega
- Oprema tlačne vage za prikaz položaja klipa i ostalih parametara

Glavni dio mjerne linije je etalonski sklop klip/cilindar.

Tablica 2. Karakteristike plinske tlačne vage

Proizvođač/oznaka t	lačne vage
---------------------	------------

Mjerno područje Materijal klipa

Materijal cilindra

Efektivna površina

Koeficijent toplinskog rastezanja klipa i cilindra

Opseg klipa

Koeficijent distorzije deformacije)

Volumen za korekciju zbog uzgonskog djelovanja dušika

 $0 \ m^3$

DHI/PG-7601

0-7 MPa

Volfram karbid

Čelik

 $4.901892 \cdot 10^{-5} \text{ m}^2$

9·10⁻⁶ °C⁻¹

2.481285·10⁻² m

-2.35.10-7 bar-1

(elastične

Slika 8. Plinska etalonska mjerna linija

5.1.2. Princip rada mjerne linije

Tlak tlačnog medija (dušika) smanjuje se prvo pomoću grubljeg regulatora R1 a zatim se vrlo precizno podešava na željeni nominalni tlak koristeći regulator R2. Iako se koristi dušik iznimno visoke čistoće (99.999%) on prolazi kroz filter, F, prije ulaska u sklop klip/cilindar da bi se zadržale čestice vode, ulja ili prašine.

Tlak u sustavu generira se pomoću sklopa klip/cilindar, dodajući potrebnu masu. Dodatna masa dodaje se pomoću pripadajućeg seta utega.

U sustav je spojen pretvornik tlaka sa pripadajućim pokazivačem [Tablica 4] na kojem se očitava izmjereni tlak na etalonskoj liniji. Spomenuti pretvornik tlaka [Tablica 3] koristi se kao prijenosni etalon za usporedbu opisane etalonske linije sa uljnom etalonskom linijom koja će biti opisana u nastavku.

Proizvođač	Druck
Тір	Solid Type B
Mjerno područje	0 – 135 bar
Razred točnosti	0.025%
	Tablica 4. Karakteristike pokazivača
Proizvođač	Druck
Тір	DPI 615
Podjela skale	0.01 bar

Tablica 3. Karakteristike pretvornika tlaka

5.1.3. Postupak mjerenja

Nakon spajanja mjerne linije prikazane na [Slika 8] napravljena su dva niza mjerenja tlaka u rasponu od 0 do 70 bar u 8 točaka, pravilo raspoređenih u mjernom području.

Za svaku točku stanje ravnoteže postignuto je dodavanjem utega iz pripadajućeg seta na sklop klip/cilindar. Stanje ravnoteže postignuto je kad se klip nađe u traženom položaju, a to se očitalo pomoću pripadajuće opreme priključene na tlačnu vagu.

Za vrijeme mjerenja klip rotira da se izbjegne trenje zbog direktnog kontakta sa stjenkama cilindra. Vrijeme rotacije automatski regulira sam sustav tlačne vage, a rotacija klipa vrši se pomoću ugrađenog elektromotora.

Kada je postignuto stanje ravnoteže za svaku točku se zapisuju kombinacije korištenih utega i očitani tlak na pokazivaču. Temperatura okoliša, tlak okoliša i relativna vlažnost očitani su neposredno prije samog mjerenja.

Nakon izvršenog mjerenja izračunati su efektivni tlakovi za opisani etalonski sklop.

5.1.4. Proračun efektivnog tlaka

Primjenom jednadžbe (8) na plinski etalonski sklop (indeks P) određen je efektivni tlak generiran na etalonskoj vagi koja koristi plin kao radni medij:

$$p_{eP} = \frac{\left[\sum_{Pi} \left[m_{Pi} \cdot (1 - \frac{\rho_a}{\rho_{mPi}} \right] + (h \cdot A_P - v_P) \cdot (\rho_{N_2} - \rho_a) \right] \cdot g \cdot \cos \theta_P}{A_{0P} \cdot [1 + (\alpha_{KP} + \alpha_{CP}) \cdot (t_P - 20)]}$$
(13)

gdje su:

- *p*_{eP} efektivan iznos tlaka generiran na sklopu
- *m_{Pi}* prava masa i-tog utega postavljenog na sklop
- g iznos lokalnog gravitacijskog ubrzanja
- ρ_a gustoća zraka okoline
- ρ_{mi} gustoća i-tog utega
- ρ_{N2} gustoća radnog medija
- α_{KP} koeficijent temperaturnog rastezanja klipa
- α_{cP} koeficijent temperaturnog rastezanja cilindra
- *A*_{0P} efektivna površina sklopa pri nultom tlaku
- *t*_P temperature sklopa za vrijeme ispitivanja
- θ_P kut nagiba osi klipa u odnosu na vertikalu
- *vP* volumen za koji se radi korekcija zbog uzgonskog djelovanja fluida
- *h* razlika visina etalonskog i ispitivanog sklopa

Mase svih utega izmjerene su u Laboratoriju za masu koji je nositelj državnog etalona mase, sljediv prema međunarodnim etalonima. Efektivan površina, korekcijski volumen i koeficijenti toplinskog naprezanja poznati su iz izvješća o umjeravanju etalonskog sklopa. Vrijednost lokalnog gravitacijskog ubrzanja poznata je iz prijašnjih mjerenja.

Gustoća dušika za različite tlakove proračunata je prema:

$$\rho_{N2_{p,t}} = \rho_{N2_{20^{\circ}C,1bar}} \cdot \left[\frac{p_{abs} \cdot (T+20K)}{1 \ bar \cdot (T+t)} \right]$$
(14)

gdje je T=273.15 K, $\rho_{N2,20^\circ\text{C},1bar}$ gustoća dušika pri 20°C i tlaku od 1 bar, p_{abs} je apsolutni tlak u sustavu koji se računa kao zbroj efektivnog tlaka i tlaka okoline.

5.2. Uljni etalonski tlačni sustav

5.2.1. Opis i glavne karakteristike mjerne linije

Ovaj etalonski tlačni sustav koristi ulje kao radni medij. Na njemu su provedena mjerenja tlaka i prema jednadžbi danoj u nastavku proračunati efektivni tlakovi. Ova tlačna linija može se koristiti i za umjeravanje ostalih mjerila tlaka u području do 70 bar.

IV

Glavni dijelovi mjerne linije [Slika 9]:

- S Regulator tlaka
- R Izvor tlaka
- M Mase (set utega)
- P Pretvornik tlaka

E Etalonski sklop klip/cilindar

Izolacijski ventil

- te Termometar etalonskog sklopa
- C Pokazivač tlaka

Ostali dijelovi linije:

- Postolje za etalonski sklop klip/cilindar
- Set malih utega
- Barometar
- Higrometar
- Termometar
- Pomično mjerilo

Glavni dio mjerne linije je etalonski sklop klip/cilindar.

Tablica 5. Karakteristike uljne tlačne vage							
Proizvođač/oznaka tlačne vage	Pressurements/X0013						
Mjerno područje	0-7 MPa						
Materijal klipa	Volfram karbid						
Materijal cilindra	Čelik						
Efektivna površina	$8.07208 \cdot 10^{-5} \text{ m}^2$						
Gustoća ulja	914 kg/m ³						
Površinska napetost ulja	3.12·10 ⁻² N/m						
Koeficijent toplinskog rastezanja klipa i cilindra	1.66·10 ⁻⁵ °C ⁻¹						
Opseg klipa	3.184106·10 ⁻² m						
Koeficijent distorzije (elastične deformacije)	0 bar ⁻¹						
Volumen za korekciju zbog uzgonskog djelovanja dušika	$4 \cdot 10^{-7} \text{ m}^3$						

5.2.2. Princip rada mjerne linije

Princip rada ove mjerne linije sličan je kao i one opisane u prethodnom poglavlju osim što je izvor tlaka ulje kojemu se ručno podiže tlak na samoj tlačnoj vagi. Tlak u sustavu se i u ovom slučaju generira dodavanjem utega na sklop klip/cilindar.

Na ovaj sustav spojen je pretvornik tlaka s pripadajućim pokazivačem koji se koristi kao prijenosni etalon da bi se navedene tlačne vage (plinska i uljna) mogle uspoređivati. Karakteristike pretvornika tlaka i pokazivača dane su u [Tablica 3] i [Tablica 4].

Slika 10. Uljna etalonska mjerna linija

5.2.3. Postupak mjerenja

Postupak mjerenja potpuno je isti kao i za prethodni plinski etalonski sustav.

Korištena uljna tlačna vaga nešto je starija od opisane plinske tlačne vage tako da se rotacija klipa vršila ručno.

Ravnotežni položaj kod ove tlačne vage očitava se bez dodatne opreme već se zna točan položaj klipa u kojem se on nađe kad je u ravnotežnom položaju.

Nakon izvršenog mjerenja izračunati su efektivni tlakovi za opisani etalonski sklop.

5.2.4. Proračun efektivnog tlaka

Primjenom jednadžbe (8) na uljni etalonski sklop (indeks U) određen je efektivni tlak generiran na etalonskoj vagi koja koristi ulje kao radni medij:

$$p_{eU} = \frac{\left[\sum_{Ui} \left[m_{Ui} \cdot (1 - \frac{\rho_a}{\rho_{mUi}} \right] + (h \cdot A_{0U} - \nu_U) \cdot (\rho_U - \rho_a) \right] \cdot g \cdot \cos \theta_U + \Gamma_U \cdot c_U}{A_{0U} \cdot (1 + \lambda_U \cdot p_{eU}) \cdot [1 + (\alpha_{KU} + \alpha_{cU}) \cdot (t_U - 20)]}$$
(15)

gdje su:

- p_{eU} efektivan iznos tlaka generiran na sklopu
- m_{Ui} prava masa i-tog utega postavljenog na sklop
- *g* iznos lokalnog gravitacijskog ubrzanja
- ρ_a gustoća zraka okoline
- ρ_{mi} gustoća i-tog utega
- ρ_U gustoća radnog medija
- α_{KU} koeficijent temperaturnog rastezanja klipa
- α_{cU} koeficijent temperaturnog rastezanja cilindra
- *Aou* efektivna površina sklopa pri nultom tlaku
- t_U temperature sklopa za vrijeme ispitivanja
- λ_U koeficijent elastične deformacije
- θ_U kut nagiba osi klipa u odnosu na vertikalu
- *v*^U volumen za koji se radi korekcija zbog uzgonskog djelovanja fluida
- *h* razlika visina etalonskog i ispitivanog sklopa
- Γ_U opseg klipa
- *cu* površinska napetost radnog medija

6. ANALIZA REZULTATA UMJERAVANJA

U okviru ovog rada ispitivana su dva etalonska tlačna sustava do 7 MPa. Karakteristike komponenti oba etalonska sustava prikazane su u tablicama [Tablica 2], [Tablica 3], [Tablica 4], [Tablica 5]. Prikaz etalonskih tlačnih sustava dan je u prethodnim poglavlju [Slika 7], [Slika 9]. Prijenosni etalon, u ovom slučaju pretvornik tlaka s pripadajućim pokazivačem, sastavni je dio oba etalonska sustava i korišten je za usporedbu dvije tlačne vage, uljne i plinske.

U ovom poglavlju biti će prikazani rezultati umjeravanja navedenih etalonskih sustava i prikazati će se:

- Karakteristike masa korištenih pri umjeravanju
- Efektivni tlakovi za oba sustava
- Budžeti mjernih nesigurnosti
- Usporedba dvaju etalonskih sustava

Za proračune navedenih vrijednosti korišteni su matematički modeli prikazani u trećem i četvrtom poglavlju.

Za procjenu rezultata umjeravanja koristiti će se statistička metoda koja uključuje izračun E_n statističke vrijednosti.

6.1. Plinski etalonski tlačni sustav

6.1.1. Karakteristike korištenih masa

Tablica 6. Karakteristike masa kod plinskog etalonskog sustava

Oznaka	Masa utega	Nesigurnost	Nominalni	Gustoća	Nesigurnost
utega	(g)	mase	tlak (bar)	utega	gustoće (kg/m ³)
		(g)	(Dar)	(Kg/III ⁻)	(Kg/III)
o.u.	200,00350	0,1000	0,400	10080,0	75
dodatak	dodatak 300,00340		0,600	7975,0	75
1	1 100,00110		0,200	7975,0	75
2	199,99820	0,0006	0,400	7975,0	75
3	200,00160	0,0006	0,400	7975,0	75
4	500,0031	0,0015	1,000	7975,0	75
5	1000,013	0,0025	2,001	7975,0	75
6	2000,026	0,0058	4,001	7975,0	75
7	2000,026	0,0046	4,001	7975,0	75
8	4500,024	0,0067	9,002	7975,0	75
9	5000,044	0,0089	10,003	7975,0	75
10	5000,062	0,0086	10,003	7975,0	75
11	5000,011	0,0072	10,003	7975,0	75
12	5000,044	0,0077	10,003	7975,0	75
13	5000,035	0,0090	10,003	7975,0	75

Ivan Popović

Diplomski rad

6.1.2. Prikaz korištenih kombinacija utega i efektivnog tlaka

Broj ispitnih	Tlak (bar)	Oznaka korištenog utega [Tablica 6]									Temperatura sklopa	Efektivni tlak	
юсака												(°C)	(bar)
1	0,00											24,3	0,00
2	10,00	4		6	7							24,3	10,001
3	20,00	4		6	7		9					24,3	20,002
4	30,00	4		6	7		9	10				24,3	30,002
5	40,00	4		6	7		9	10	11			24,3	40,003
6	50,00	4		6	7		9	10	11	12		24,3	50,004
7	60,00	4		6	7		9	10	11	12	13	24,3	60,005
8	70,00		5	6	7	8	9	10	11	12	13	24,3	70,006

6.1.3. Prikaz izračuna efektivnog tlaka

Proračun efektivnog tlaka za plinski etalonski sustav proveden je prema jednadžbi (13). Radi boljeg prikaza rezultata odvojen je proračun sile i efektivne površine.

Gustoća dušika, potrebna za izračun efektivnog tlaka, računa se prema jednadžbi (14) prikazanoj u prethodnom poglavlju.

Broj ispitnih točaka	Gustoća zraka (kg/m ³)	Sila (N)	Efektivna površina (m ²)	Efektivni tlak (bar)
1	1,18	0,00	4,90208·10 ⁻⁵	0,00
2	1,18	49,024	4,90207·10 ⁻⁵	10,001
3	1,18	98,049	4,90206·10 ⁻⁵	20,002
4	1,18	147,073	4,90205·10 ⁻⁵	30,002
5	1,18	196,097	4,90204·10 ⁻⁵	40,003
6	1,18	245,121	4,90202·10 ⁻⁵	50,004
7	1,18	294,145	4,90201.10-5	60,005
8	1,18	343,170	4,90200·10 ⁻⁵	70,006

Tablica 8. Proračun efektivnog tlaka za plinski etalonski sustav

6.1.4. Budžeti mjerne nesigurnosti

Ovdje će se prikazati izračun budžeta mjerne nesigurnosti za sve ispitne točke. Mjerna nesigurnost proračunata je kao proširena mjerna nesigurnost i za proračun je korišten pripadajući matematički model prikazan u trećem poglavlju.

Ispitna točka 2, p=	=10,001 bar							
Utjecajna	Izvor	Vrijednost	Faktor	u^2				
veličina	IZVOI	(bar)	Faktor	(bar^2)				
Etalon	Umjernica	0,00040003	0,5	0,00000004				
Etalon pod								
uvjetima	Mjerenje	0,00022002	0,57737	0,00000002				
ispitivanja								
Razlučivost	Indikacija	0.01	0.2887	0.0000833				
pokazivača	murkacija	0,01	0,2007	0,0000835				
Odstupanje od	Miarania	0.01	0.2887	0.0000823				
nultočke	Mjerenje	0,01	0,2887	0,0000833				
Ponovljivost	Mjerenje	0,00	0,2887	0,00				
Histereza	Mjerenje	0,01	0,2887	0,00000833				
			Suma u ² (bar ²)	0,00002506				
Mjerna nesigurnost (bar) 0,010								

Tablica 9. Mjerna nesigurnost po točkama za plinski etalonski sustav

Nastavak tablice je na idućoj stranici.

Ispitna točka 3, p=	20,002 bar			
Utjecajna veličina	Izvor	Vrijednost (bar)	Faktor	u ² (bar ²)
Etalon	Umjernica	0,00080006	0,5	0,00000016
Etalon pod uvjetima ispitivanja	Mjerenje	0,00044003	0,57737	0,00000006
Razlučivost pokazivača	Indikacija	0,01	0,2887	0,00000833
Odstupanje od nultočke	Mjerenje	0,01	0,2887	0,00000833
Ponovljivost	Mjerenje	0,00	0,2887	0,00
Histereza	Mjerenje	0,00	0,2887	0,00
			Suma u ² (bar ²)	0,00001689
	0,008			
Ispitna točka 4, p=	30,002 bar		I	
Utjecajna veličina	Izvor	Vrijednost (bar)	Faktor	u ² (bar ²)
Etalon	Umjernica	0,0012001	0,5	0,0000036
Etalon pod uvjetima ispitivanja	Mjerenje	0,00066005	0,57737	0,00000015
Razlučivost pokazivača	Indikacija	0,01	0,2887	0,00000833
Odstupanje od nultočke	Mjerenje	0,01	0,2887	0,00000833
Ponovljivost	Mjerenje	0,00	0,2887	0,00
Histereza	Mjerenje	0,00	0,2887	0,00
			Suma u ² (bar ²)	0,00001717
		Mjern	a nesigurnost (bar)	0,008

Ispitna točka 5, p=	=40,003 bar			
Utjecajna	Izvor	Vrijednost	Faktor	u^2
venema		(bar)		(bar ²)
Etalon	Umjernica	0,00160013	0,5	0,0000064
Etalon pod uvjetima ispitivanja	Mjerenje	0,00088007	0,57737	0,00000026
Razlučivost pokazivača	Indikacija	0,01	0,2887	0,00000833
Odstupanje od nultočke	Mjerenje	0,01	0,2887	0,00000833
Ponovljivost	Mjerenje	0,00	0,2887	0,00
Histereza	Mjerenje	0,00	0,2887	0,00
	0,00001715			
	0,008			
Ispitna točka 6, p=	=50,004 bar			
Utjecajna veličina	Izvor	Vrijednost (bar)	Faktor	u ² (bar ²)
Etalon	Umiernica	0.00200016	0,5	0,000001
Etalon pod uvjetima ispitivanja	Mjerenje	0,00110009	0,57737	0,0000004
Razlučivost pokazivača	Indikacija	0,01	0,2887	0,00000833
Odstupanje od nultočke	Mjerenje	0,01	0,2887	0,00000833
Ponovljivost	Mjerenje	0,00	0,2887	0,00
Historaza	Mierenie	0,00	0,2887	0,00
Histereza				
			Suma u ² (bar ²)	0,00001807

Ispitna točka 7, p=	=60,005 bar			
Utjecajna	Immon	Vrijednost	Faktor	u^2
veličina	IZVOF	(bar)	Faktor	(bar^2)
Etalon	Umjernica	0,0024002	0,5	0,00000144
Etalon pod				
uvjetima	Mjerenje	0,00132011	0,57737	0,00000058
ispitivanja				
Razlučivost	Indikacija	0.01	0.2887	0.0000833
pokazivača	пнакастја	0,01	0,2007	0,0000033
Odstupanje od	Mierenie	0.01	0.2887	0.0000833
nultočke	wijerenje	0,01	0,2007	0,00000000
Ponovljivost	Mjerenje	-0,01	0,2887	0,00000833
Histereza	Mjerenje	0,00	0,2887	0,00
	0,00002703			
	0,010			
Ispitna točka 8, p=	=70,006 bar			
Utjecajna	Izuor	Vrijednost	Faltor	u^2
veličina	12001	(bar)	Faktor	(bar^2)
Etalon	Umjernica	0,00280024	0,5	0,00000196
Etalon pod				
uvjetima	Mjerenje	0,00154013	0,57737	0,0000079
ispitivanja				
Razlučivost	Indikacija	0.01	0.2887	0 00000833
pokazivača	пнакастја	0,01	0,2007	0,0000033
Odstupanje od	Mierenie	0.01	0.2887	0.0000833
nultočke	wijerenje	0,01	0,2007	0,00000000
Ponovljivost	Mjerenje	0,01	0,2887	0,00000833
Histereza	Mjerenje	0,00	0,2887	0,00
		•	Suma u ² (bar ²)	0,00002776
		Mjern	a nesigurnost (bar)	0,011

Ivan	Popo	vić
------	------	-----

Diplomski rad

Tablica 10. Prikaz mjernih nesigurnosti i odstupanja plinskog etalonskog sustava

Broj ispitnih	oj Tlak Pokazivanje pokazivača (bar) Srednja nih etalona vrijednost		Srednja vrijednost	Odstupanje	Ponovljivost	Histereza	Nesigurnost umjeravanja		
točaka	(bar)	Uzlazno	Silazno	Uzlazno	(bar)	(bar)	(bar)	(bar)	(bar)
1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,008
2	10,001	9,990	10,000	9,990	9,995	-0,006	0,000	0,010	0,010
3	20,002	19,990	19,990	19,990	19,990	-0,012	0,000	0,000	0,008
4	30,002	30,000	30,000	30,000	30,000	-0,002	0,000	0,000	0,008
5	40,003	40,000	40,000	40,000	40,000	-0,003	0,000	0,000	0,008
6	50,004	50,010	50,010	50,010	50,010	0,006	0,000	0,000	0,009
7	60,005	60,020	60,020	60,010	60,018	0,012	-0,010	0,000	0,010
8	70,006	70,020	70,020	70,030	70,023	0,016	0,010	0,000	0,011

U gornjoj tablici [Tablica 10] dan je cjeloviti prikaz mjernih nesigurnosti za sve ispitne točke. Prikazane su i analizirane vrijednosti dobivene mjerenjem na plinskoj etalonskoj liniji i vidljiva su odstupanja kod svih ispitnih točki.

Slika 11. Prikaz odstupanja plinskog etalonskog sustava za ispitne točke

Iz danog prikaza odstupanja vidljivo je da su odstupanja plinskog etalonskog sustava najveća pri većim tlakovima.

Detaljnija analiza rezultata biti će prikazana na kraju ovog poglavlja kod usporedbe plinskog i uljnog etalonskog tlačnog sustava.

6.2. Uljni etalonski tlačni sustav

6.2.1. Karakteristike korištenih masa

Tablica 11. Karakteristike masa kod uljnog etalonskog sustava

	Nominalni tlak	Gustoća utega		
Masa utega (g)	(bar)	(kg/m ³)		
959,2140	0,12	8280,0		
256,0940	0,34	7900,0		
4112,8128	5,0	7900,0		
4112,5678	5,0	7900,0		
4112,8028	5,0	7900,0		
4112,6378	5,0	7900,0		
4112,7578	5,0	7900,0		
4112,5428	5,0	7900,0		
4112,7428	5,0	7900,0		
4112,7328	5,0	7900,0		
4112,7478	5,0	7900,0		
4112,7428	5,0	7900,0		
4112,7978	5,0	7900,0		
4112,7878	5,0	7900,0		
4112,6178	5,0	7900,0		
2056,3739	2,5	7900,0		
411,2788	0,5	7900,0		
411,2793	0,5	7900,0		
	Masa utega (g) 959,2140 256,0940 4112,8128 4112,5678 4112,6378 4112,7578 4112,7578 4112,7428 4112,7428 4112,7428 4112,7428 4112,7428 4112,7478 4112,7478 4112,7478 4112,7478 4112,7478 4112,7478 4112,7978 4112,7978 4112,7978 4112,7978	Masa utega (g) Nominalni tlak (bar) 959,2140 0,12 256,0940 0,34 4112,8128 5,0 4112,5678 5,0 4112,8028 5,0 4112,6378 5,0 4112,7578 5,0 4112,7578 5,0 4112,7428 5,0 4112,7428 5,0 4112,7428 5,0 4112,7478 5,0 4112,7478 5,0 4112,7478 5,0 4112,7478 5,0 4112,7478 5,0 4112,7478 5,0 4112,7478 5,0 4112,7478 5,0 4112,7478 5,0 4112,7478 5,0 4112,7878 5,0 4112,7878 5,0 4112,6178 5,0 2056,3739 2,5 411,2793 0,5		

Ivan Popović

Diplomski rad

6.2.2. Prikaz korištenih kombinacija utega i efektivnog tlaka

Duciianitnih	Tlak				(Ozn	aka	a ko	rišt	ten	og ut	ega	[Tab	lica	6]			Dodatak	Temperatura	Efektivni
broj isplinin														(g)	sklopa	tlak				
tocaka	(bar)																		(°C)	(bar)
1	0,00																	20,2	24,1	0,00
2	10,00	1													14	15	16	20,2	24,1	10,006
3	20,00	1	2	3											14	15	16	20,2	24,1	19,996
4	30,00	1	2	3	4	5									14	15	16	20,2	24,1	29,986
5	40,00	1	2	3	4	5	6	7							14	15	16	20,2	24,1	39,976
6	50,00	1	2	3	4	5	6	7	8	9					14	15	16	20,2	24,1	49,967
7	60,00	1	2	3	4	5	6	7	8	9	10	11			14	15	16	20,2	24,1	59,957
8	70,00	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	20,2	24,1	69,948

6.2.3. Prikaz izračuna efektivnog tlaka

Proračun efektivnog tlaka za uljni etalonski sustav proveden je prema jednadžbi (15). Radi boljeg prikaza rezultata i u ovom slučaj odvojen je proračun sile i efektivne površine.

Razlika visine između masa i pretvornika iznosi 150 milimetara.

Broj ispitnih točaka	Gustoća zraka (kg/m ³)	Gustoća zrakaSilaEfektivna(kg/m³)(N)(m²)				
1	1,17	0,00	8,072629·10 ⁻⁵	0,00		
2	1,17	80,664	8,072629·10 ⁻⁵	10,006		
3	1,17	161,311	8,072629·10 ⁻⁵	19,996		
4	1,17	241,960	8,072629·10 ⁻⁵	29,986		
5	1,17	322,607	8,072629·10 ⁻⁵	39,976		
6	1,17	403,255	8,072629·10 ⁻⁵	49,967		
7	1,17	483,905	8,072629·10 ⁻⁵	59,957		
8	1,17	564,553	8,072629·10 ⁻⁵	69,948		

Tablica 12.	Proračun	efektivnog	tlaka za	uljni	etalonski	sustav
-------------	----------	------------	----------	-------	-----------	--------

6.2.4. Budžeti mjerne nesigurnosti

Ovdje će se prikazati izračun budžeta mjerne nesigurnosti za sve ispitne točke. Mjerna nesigurnost, kao i kod prethodnog etalonskog sustava, proračunata je kao proširena mjerna nesigurnost i za proračun je korišten pripadajući matematički model prikazan u trećem poglavlju.

Ispitna točka 2, p=10,005 bar					
Utjecajna	Izvor	Vrijednost	Faktor	u ²	
veličina		(bar)	i untor	(bar^2)	
Etalon	Umjernica	0,00060029	0,5	0,00000009	
Etalon pod					
uvjetima	Mjerenje	0,00022011	0,57737	0,0000002	
ispitivanja					
Razlučivost	Indikacija	0.01	0 2887	0,00000833	
pokazivača	muikacija	0,01	0,2007		
Odstupanje od	Mioronio	0.00	0.2887	0.00	
nultočke	wjerenje	0,00	0,2007	0,00	
Ponovljivost	Mjerenje 0,00 0,2887		0,00		
Histereza	Mjerenje 0,00 0,2887		0,00		
	0,00000851				
	0,006				

Tablica 13. Mjerna nesigurnost po točkama za uljni etalonski sus	tav
--	-----

Nastavak tablice je na idućoj stranici.

Ispitna točka 3, p=19,996 bar					
Utjecajna	Iguon	Vrijednost	Falton	u^2	
veličina	12001	(bar)	Faktor	(bar^2)	
Etalon	Umjernica	0,00119973	0,5	0,0000036	
Etalon pod					
uvjetima	Mjerenje	0,0004399	0,57737	0,00000006	
ispitivanja					
Razlučivost	Indikacija	0.01	0.2887	0.00000833	
pokazivača	mankacija	0,01	0,2007	0,000000000	
Odstupanje od	Mierenie	0.00	0.2887	0.00	
nultočke				0,00	
Ponovljivost	Mjerenje	0,00	0,2887	0,00	
Histereza	Histereza Mjerenje 0,00 0,2887		0,2887	0,00	
	0,0000883				
	0,006				
Ispitna točka 4, p=29,986 bar					
Utjecajna	Izuor	Vrijednost	Faltor	u^2	
veličina	12001	(bar)	Faktor	(bar^2)	
Etalon	Umjernica	0,00179918	0,5	0,00000081	
Etalon pod					
uvjetima	Mjerenje	0,0006597	0,57737	0,00000015	
ispitivanja					
Razlučivost	Indikacija	0.01	0.2887	0.0000833	
pokazivača	muikacija	0,01	0,2007	0,00000055	
Odstupanje od	Mierenie	. 0.00	0.2887	0.00	
nultočke	wjerenje	0,00	0,2007	0,00	
Ponovljivost	Mjerenje	0,00	0,2887	0,00	
Histereza	Mjerenje	0,00	0,2887	0,00	
Suma u ² (bar ²) 0,00000936					
	0,006				

Ispitna točka 5, p=	=39,977 bar				
Utjecajna	Izvor	Vrijednost	Faktor	u^2	
veličina	12001	(bar)	Faktor	(bar^2)	
Etalon	Umjernica	0,00239861	0,5	0,00000144	
Etalon pod					
uvjetima	Mjerenje	0,00087949	0,57737	0,0000026	
ispitivanja					
Razlučivost	Indikacija	0.01	0.2887	0.00000833	
pokazivača	mannaoija	0,01	0,2007		
Odstupanje od	Mierenie	0.00	0.2887	0.00	
nultočke	, i joronje		0,2007	0,00	
Ponovljivost	Mjerenje	0,00	0,2887	0,00	
Histereza	Histereza Mjerenje 0,00 0,2887		0,2887	0,00	
	0,00001010				
	0,006				
Ispitna točka 6, p=	=49,968 bar				
Utjecajna	Izvor	Vrijednost	Faktor	u^2	
veličina	12,001	(bar)	Partor	(bar^2)	
Etalon	Umjernica	0,00299806	0,5	0,00000225	
Etalon pod					
uvjetima	Mjerenje	0,00109929	0,57737	0,00000040	
ispitivanja					
Razlučivost	Indikacija	0.01	0.2887	0.0000833	
pokazivača	Indikacija 0,01 0,2887		0,000000000		
Odstupanje od	Mierenie	0.00	0.2887	0.00	
nultočke	wjerenje	0,00	0,2007	0,00	
Ponovljivost	Mjerenje	0,00	0,2887	0,00	
Histereza	Mjerenje	0,00	0,2887	0,00	
	0,00001105				
	0,007				

Ispitna točka 7, p=59,959 bar					
Utjecajna	Iavoa	Vrijednost	Falton	u^2	
veličina	IZVOF	(bar)	Faktor	(bar^2)	
Etalon	Umjernica	0,00359752	0,5	0,00000324	
Etalon pod					
uvjetima	Mjerenje	0,00131909	0,57737	0,00000058	
ispitivanja					
Razlučivost	Indikacija	0.01	0.2887	0.0000833	
pokazivača	mankaeija	0,01	0,2007	0,000000000	
Odstupanje od	Mierenie	0.00	0 2887	0.00	
nultočke	ivijerenje	0,00	0,2007	0,00	
Ponovljivost	Mjerenje	0,00	0,2887	0,00	
Histereza	Histereza Mjerenje 0,00 0,2887		0,2887	0,00	
	0,00001222				
	0,007				
Ispitna točka 8, p=	=69,949 bar				
Utjecajna	Izuor	Vrijednost	Faltor	u^2	
veličina	12,001	(bar)	Partor	(bar^2)	
Etalon	Umjernica	0,00419696	0,5	0,00000440	
Etalon pod					
uvjetima	Mjerenje	0,00153889	0,57737	0,00000079	
ispitivanja					
Razlučivost	Indikacija	0.01	0.2887	0.00000833	
pokazivača	111d1kacıja 0,01 0,2887		0,2007	0,000000000	
Odstupanje od	Mierenie	0.00	0.2887	0.00	
nultočke	wjerenje	0,00	0,2007	0,00	
Ponovljivost	Mjerenje	0,00	0,2887	0,00	
Histereza	Mjerenje	0,00	0,2887	0,00	
	0,00001359				
	0,007				

Ivan Popović

Diplomski rad

Tablica 14. Prikaz mjernih nesigurnosti i odstupanja uljnog etalonskog sustava

Broj ispitnih	Tlak etalona	Pokaziv	anje pokaziva	uča (bar)	Srednja vrijednost	Odstupanje (bar)	Ponovljivost (bar)	Histereza	Nesigurnost umjeravanja
točaka	(bar)	Uzlazno	Silazno	Uzlazno	(bar)			(bar)	(bar)
1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,006
2	10,005	9,990	9,990	9,990	9,990	-0,015	0,000	0,000	0,006
3	19,996	19,980	19,980	19,980	19,980	-0,016	0,000	0,000	0,006
4	29,986	29,970	29,970	29,970	29,970	-0,016	0,000	0,000	0,006
5	39,977	39,960	39,960	39,960	39,960	-0,017	0,000	0,000	0,006
6	49,968	49,950	49,950	49,950	49,950	-0,018	0,000	0,000	0,007
7	59,959	59,950	59,950	59,950	59,950	-0,009	0,000	0,000	0,007
8	69,949	69,940	69,940	69,940	69,940	-0,009	0,000	0,000	0,007

U gornjoj tablici [Tablica 14] dan je cjeloviti prikaz mjernih nesigurnosti za sve ispitne točke. Prikazane su i analizirane vrijednosti dobivene mjerenjem na uljnoj etalonskoj liniji i vidljiva su odstupanja kod svih ispitnih točki.

Prema danom prikazu odstupanja uljnog etalonskog sustava vidljivo je veće odstupanje pri nižim tlakovima koje naglo opada s porastom tlaka.

Detaljnija analiza odstupanja i mjerne nesigurnosti biti će prikazana u narednom poglavlju gdje će se usporediti rezultati oba opisana etalonska sustava.

6.3. Usporedba plinskog i uljnog etalonskog tlačnog sustava

U ovom poglavlju biti će prikazana usporedba rezultata dobivenih na plinskom i uljnom etalonskom sustavu. Glavni indikator prema kojem se vrši usporedba je razlika odstupanja ova dva sustava.

Također će se prikazati kretanje mjerne nesigurnosti za oba sustava i dati će se usporedba pomoću statističke vrijednosti E_n .

Važno je naglasiti da je za umjeravanje etalonskih sustava korišten pretvornik tlaka kao prijenosni etalon sa pripadajućim pokazivačem.

Broj ispitnih	Ispitni tlak	Odstupanje na uljnom etalonskom sustavu	Odstupanje na plinskom etalonskom sustavu
točaka	(bar)	(bar)	(bar)
1	0,00	0,00	0,00
2	10,00	-0,015	-0,006
3	20,00	-0,016	-0,012
4	30,00	-0,016	-0,002
5	40,00	-0,017	-0,003
6	50,00	-0,018	0,006
7	60,00	-0,009	0,012
8	70,00	-0,009	0,016

Tablica 15. Usporedba odstupanja plinskog i uljnog etalonskog sustava

Prema prikazanim rezultatima vidljiva je znatna razlika odstupanja plinskog i uljnog etalonskog tlačnog sustava. Najveća razlika javlja se pri ispitnom tlaku od 70 bar i ta razlika iznosi 0,02588 bar, dok je najmanja razlika pri ispitnom tlaku od 20 bar i iznosi 0,004 bar. Prosječna razlika odstupanja iznosi 0,01588 bar.

Analizom mjernih nesigurnosti vidljivo je da su na plinskom etalonskom sustavu nešto veći iznosi mjerne nesigurnosti za sve točke. U nastavku je prikazana usporedba nesigurnosti za oba navedena sustava.

Broj ispitnih točaka	Ispitni tlak (bar)	Nesigurnost na uljnom etalonskom sustavu (bar)	Nesigurnost na plinskom etalonskom sustavu (bar)
	(bai)	(041)	(bur)
1	0,00	0,006	0,008
2	10,00	0,006	0,010
3	20,00	0,006	0,008
4	30,00	0,006	0,008
5	40,00	0,006	0,008
6	50,00	0,007	0,009
7	60,00	0,007	0,010
8	70,00	0,007	0,011

Tablica 16	Usporedba mierni	h nasigurnasti kad	nlinskog i ulino	a otolonekoa euetovo
Tablica 10.	Usporeuba mjerm	n nesigurnosu kou	philiskog i uljno;	g etaloliskog sustava

Slika 13. Prikaz odstupanja uljnog i plinskog etalonskog sustava

Nakon prikaza odstupanja i mjerne nesigurnosti za oba etalonska sustava ocjena rezultata umjeravanja provedena je pomoću izračuna statističke vrijednosti E_n prema jednadžbi:

$$E_n = \frac{x - X}{\sqrt{U_x^2 + U_x^2}}$$
(16)

gdje su:

x iznos odstupanja na plinskom etalonskom sustavu

X iznos odstupanja na uljnom etalonskom sustavu

Ux proširena mjerna nesigurnost pripadajućeg tlaka na plinskom etalonskom sustavu

Ux proširena mjerna nesigurnost pripadajućeg tlaka na uljnom etalonskom sustavu

Prema jednadžbi (16) u nastavku je dan proračun E_n vrijednosti za sve ispitne točke.

Broj ispitnih	Ispitni tlak	E_n
točaka	(bar)	(bar)
1	0,00	0,00
2	10,00	0,779
3	20,00	0,392
4	30,00	1,346
5	40,00	1,301
6	50,00	2,188
7	60,00	1,684
8	70,00	2,012

Tablica 17. Ocjena rezultata umjeravanja

Prema prikazanim rezultatima u gornjoj tablici [Tablica 17] može se zaključiti da rezultati umjeravanja navedenih etalonskih sustava nisu zadovoljavajući jer za većinu točaka vrijednost statističke veličine E_n iznosi više od jedan, odnosno samo za drugu i treću točku iznosi manje od jedan.

7. ZAKLJUČAK

U radu je dan pregled teorijskih osnova tlačnih vaga kao primarnog etalona tlaka i matematički model za proračun efektivnog tlaka kod plinskih i uljnih tlačnih vaga.

Opisane su mjerne linije i komponente korištene za umjeravanje tlačnih vaga pomoću prijenosnog etalona, kao i sam postupak mjerenja koji je proveden u Laboratoriju za procesna mjerenja na Fakultetu strojarstva i brodogradnje.

Svi proračuni efektivnih tlakova i mjernih nesigurnosti provedeni su prema matematičkim modelima opisanim u početnim poglavljima rada, a sami rezultati su prikazani tablično zbog bolje preglednosti i lakšeg snalaženja.

Nakon provedenih mjerenja na etalonskim tlačnim linijama u Laboratoriju za procesna mjerenja dobiveni su rezultati koji ukazuju da postoje razlike kod plinske i uljne etalonske tlačne linije.

U opisu mjernih linija naglašeno je da je kao prijenosni etalon za obje linije korišten isti pretvornik tlaka s pripadajućim pokazivačem i time se može zaključiti da su rezultati koji su dobiveni opisanim mjerenjima relevantni za usporedbu ova dva sustava.

Prvi korak nakon provedenih mjerenja opisanih u ovom radu je pronalazak problema koji uzrokuje znatne razlike u odstupanju uljne i plinske tlačne vage. Potrebno je napraviti ponovno umjeravanje tlačnih vaga prema procedurama opisanim u početnim poglavljima ovog rada.

Pripadajući pokazivač pretvornika tlaka ima rezoluciju od 0,01 bar što nije dovoljno za preciznije umjeravanje tlačnih vaga pomoću prijenosnog etalona. Nakon otklanjanja problema koji uzrokuje nezadovoljavajuće rezultate umjeravanja, iduće umjeravanje potrebno je provesti s prijenosnim etalonom koji ima bolju rezoluciju.

Ovim mjerenjem je provedena unutarnja kontrola kvalitete etalona tlaka u Laboratoriju za procesna mjerenja koja je pokazala da je potrebno konstantno unaprjeđivati i kontrolirati etalone da bi se u konačnici zadovoljili zahtjevi kod međulaboratorijskih usporedbi i ispitivanja sposobnosti.

LITERATURA

- Grgec Bermanec, L., Zvizdić D., Podloge za vježbe iz kolegija Mjerenja u energetici, Zagreb, 2012.
- [2] Grgec Bermanec, L., Mjerne nesigurnosti rezultata umjeravanja etalona tlaka, Zagreb, 2002.
- [3] Dadson, R.S., Lewis, S.L., Peggs, G.N., The Pressure Balance: Theory and Practice, Ed.1., HMSO, London, 1982.
- [4] OIML, Pressure Balances, International Recommendation, Bureau International des Poids et Mesures, 1993.
- [5] International vocabulary of basic and general terms in metrology, second edition, International Organization for Standardization, 1993.
- [6] Hrvatska akreditacijska agencija, Pravila za međulaboratorijske usporedbe, 4. izdanje, Zagreb, 2012.

PRILOZI

I. CD-R disc