# Utjecaj plinova na svojstva zavarenog spoja pri MAG zavarivanju konstrukcijskih čelika

Bilić, Livio

# Undergraduate thesis / Završni rad

2009

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:047476

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-11

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb





Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje

# ZAVRŠNI RAD

Voditelj rada: Doc. dr. sc. Branko Bauer

Livio Bilić

ZAGREB, 2009.

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje

# ZAVRŠNI RAD

Livio Bilić

ZAGREB, 2009.

Zagreb, 13.02. 2008.

Izjavljujem da sam ovaj završni rad izradio samostalno koristeći se znanjem stečenim na fakultetu, kao i navedenom literaturom.

Livio Bilić

#### Zahvala

Srdačno se zahvaljujem mentoru doc. dr. sc. Branku Baueru i asistentici Tanji Kovačević na savjetima i podršci pruženim tijekom izrade ovog rada.

Također se zahvaljujem voditelju i tehničkom osoblju Laboratorija za zavarene konstrukcije, kao i djelatnicima Laboratorija za zaštitu materijala, jer su mi omogućili izvođenje eksperimentalnog dijela rada.

# Sadržaj

| SA | ŽETA  | AK F | RADA                                                                      | I    |
|----|-------|------|---------------------------------------------------------------------------|------|
| PO | PIS ( | DZN  | AKA                                                                       | II   |
| PO | PIS S | SLIK | A                                                                         | IV   |
| PO | PIS 7 | ſABI | LICA                                                                      | .VII |
| 1. | UV    | OD   |                                                                           | 1    |
| 2. | ZA    | ŠTIT | 'NI PLINOVI KOD ZVARIVANJA                                                | 5    |
| 2  | .1.   | Fizi | kalna svojstva                                                            | 5    |
| 2  | .2.   | Vrst | e zaštitnih plinova                                                       | 10   |
| 2  | .3.   | Zašt | itne plinske mješavine kod MIG/MAG zavarivanja                            | 14   |
|    | 2.3.  | 1.   | Dvokomponentne plinske mješavine                                          | 14   |
|    | 2.3.  | 2.   | Trokomponentne plinske mješavine                                          | 21   |
|    | 2.3.  | 3.   | Četverokomponentne plinske mješavine                                      | 23   |
| 2  | .4.   | Utje | caj zaštitnih plinova na fizikalno-električna svojstva luka i oblik spoja | 25   |
| 3. | MA    | G PO | OSTUPAK ZVARIVANJA                                                        | 34   |
| 3  | .1.   | Osn  | ove postupka                                                              | 34   |
| 3  | .2.   | Met  | ode prijenosa metala                                                      | 37   |
|    | 3.2.  | 1.   | Prijenos metala kratkim spojevima                                         | 37   |
|    | 3.2.  | 2.   | Prijenos metala mješovitim lukom                                          | 38   |
|    | 3.2.  | 3.   | Prijenos metala štrcajućim lukom                                          | 39   |
|    | 3.2.4 | 4.   | Prijenos metala impulsnim strujama                                        | 40   |
|    | 3.2.  | 5.   | Prijenos metala velikom gustoćom struje                                   | 41   |
| 3  | .3.   | Met  | alurške reakcije kod zavarivanja nelegiranih konstrukcijskih čelika       | 42   |
| 4. | EK    | SPEF | RIMENTALNI RAD                                                            | 45   |
| 4  | .1.   | Plan | ı pokusa                                                                  | 45   |
|    | 4.1.  | 1.   | Plan zavarivanja uzoraka kutnog spoja                                     | 48   |
|    | 4.1.  | 2.   | Plan mjerenja prijelazne jakosti struje i napona                          | 50   |
|    | 4.1.  | 3.   | Plan zavarivanja kutnih uzoraka pri prijelaznoj jakosti struje i naponu   | 52   |
|    | 4.1.4 | 4.   | Plan navarivanja uzoraka                                                  | 53   |

| 4  | .2.        | Zav                                               | arivanje uzoraka kutnog spoja                                   | 54   |  |  |  |  |
|----|------------|---------------------------------------------------|-----------------------------------------------------------------|------|--|--|--|--|
| 4  | .3.        | 3. Mjerenje prijelazne jakosti struje i napona 60 |                                                                 |      |  |  |  |  |
| 4  | .4.        | Zav                                               | arivanje kutnih uzoraka pri prijelaznoj jakosti struje i naponu | 61   |  |  |  |  |
| 4  | .5.        | Nav                                               | arivanje uzoraka za ispitivanje geometrije                      | 62   |  |  |  |  |
| 4  | .6.        | Prip                                              | orema i ispitivanja makroizbrusaka                              | 63   |  |  |  |  |
|    | 4.6.       | 1.                                                | Vizualna kontrola                                               | 64   |  |  |  |  |
|    | 4.6.2      | 2.                                                | Ispitivanje tvrdoća                                             | 67   |  |  |  |  |
|    | 4.6.       | 3.                                                | Ispitivanje geometrije                                          | 69   |  |  |  |  |
| 4  | .7.        | Eva                                               | luacija rezultata                                               | 72   |  |  |  |  |
|    | 4.7.       | 1.                                                | Rezultati ispitivanja tvrdoća                                   | 72   |  |  |  |  |
|    | 4.7.2      | 2.                                                | Rezultati ispitivanja geometrije                                | 85   |  |  |  |  |
| 5. | EK         | ONC                                               | OMSKI OSVRT NA EKSPERIMENTALNE PLINSKE MJEŠAVINE                | . 92 |  |  |  |  |
| 6. | ZA         | КLЛ                                               | UČAK                                                            | . 95 |  |  |  |  |
| 7. | LITERATURA |                                                   |                                                                 |      |  |  |  |  |

## SAŽETAK RADA

U ovom radu obrađen je utjecaj zaštitnih plinova na svojstva zavarenog spoja pri MAG zavarivanju nelegiranog konstrukcijskog čelika.

U uvodnom dijelu navedeni su motivi za rad, opisana svojstva zaštitnih plinova i plinskih mješavina, istaknuto je kada se i gdje načešće koriste, objašnjen je MAG postupak zavarivanja, navedene su i opisane metode prijenosa dodatnog metala te su predočene metalurške reakcije kod MAG zavarivanja nelegiranih konstrukcijskih čelika.

Eksperimentalni dio rada izveden je u Laboratoriju za zavarene konstrukcije. Zaštitne plinske mješavine primjenjene u eksperimentu jesu: M21 (82%Ar + 18%CO<sub>2</sub>), C1 (100% CO<sub>2</sub>) i M23 (90%Ar + 5%CO<sub>2</sub> + 5%O<sub>2</sub>).

Sa zaštitnim plinom kao promjenjivom varijablom, zavarena su tri uzorka kutnog spoja T - profila uz prijenos metala kratkim spojevima. Navarivanjem na ploču, izmjerene su vrijednosti prijelazne jakosti struje i napona s prijenosa metala kratkim spojevima na prijenos metala štrcajućim lukom, pa su potom, s prijelaznim vrijednostima, zavarena dva kutna spoja T – profila. U posljednjoj fazi izvedena su tri uzorka navara uz prijenos metala kratkim spojevima. Od dobivenih uzoraka izrađeni su makroizbrusci koji su potom podvrgnuti vizualnoj kontroli, ispItivanju tvrdoća i ispitivanju geometrije. Provedena ispitivanja dokazala su sljedeće hipoteze:

- 1. Sastav zaštitne plinske mješavine utječe na svojstvo tvrdoće kutnog, zavarenog spoja.
- 2. Sastav zaštitne plinske mješavine utječe na geometriju kutnog, zavarenog spoja.
- Sastav zaštitne plinske mješavine utječe na prijelaznu jakost struje i prijelaznu vrijednost napona.
- 4. Sastav zaštitne plinske mješavine utječe na svojstvo tvrdoće navara.
- 5. Sastav zaštine plinske mješavine utječe na geometriju navara.

Na kraju rada predstavljen je i ekonomski osvrt na eksperimentalne plinske mješavine s obzirom na približne, trenutne cijene na tržištu.

# POPIS OZNAKA

# Simboli

| Oznaka               | opis                                        | jedinica          |
|----------------------|---------------------------------------------|-------------------|
| $F_{ m g}$           | sila teža                                   | Ν                 |
| $F_{ m em}$          | elektromagnetna sila                        | Ν                 |
| $F_{ m pn}$          | sila površinske napetosti                   | Ν                 |
| $F_{ m pl}$          | sila strujanja i pritiska plazme            | Ν                 |
| $F_{\rm e}$          | sila eksplozije u kapljicama metala         | Ν                 |
| $F_{\rm r}$          | sila reaktivnog djelovanja                  | Ν                 |
| $R_{\rm m}$          | rastezna čvrstoća                           | N/mm <sup>2</sup> |
| $R_{ m eH}$          | najniža granica razvlačenja                 | N/mm <sup>2</sup> |
| $A_5$                | istezljivost, izmjerena na kratkoj epruveti | %                 |
| $K_{ m v}$           | udarna radnja loma                          | J                 |
| t                    | debljina uzoraka                            | mm                |
| Vz                   | brzina zavarivanja                          | cm/min            |
| Ι                    | jakost struje                               | А                 |
| arphi                | promjer žice dodatnog materijala            | mm                |
| Q                    | protok plina                                | l/min             |
| $l_{ m sk\check{z}}$ | duljina slobodnog kraja žice                | mm                |
| U                    | napon                                       | V                 |
| Vž                   | brzina dobave žice                          | m/min             |
| E                    | unos topline po centimetru zavara           | kJ/cm             |
| η                    | faktor unosa topline                        |                   |
| X                    | udio plina u zaštitnoj mješavini            | %                 |
| а                    | visina zavara                               | mm                |
| b                    | proračunska debljina ili širina zavara      | mm                |
| С                    | duljina provara                             | mm                |
| d                    | duljina nadvišenja lica zavara              | mm                |
| e                    | realna debljina ili širina zavara           | mm                |

# Popis kratica

| MAG   | Zavarivanje taljivom elektrodom u zaštiti aktivnog plina               |
|-------|------------------------------------------------------------------------|
| MIG   | Zavarivanje taljivom elektrodom u zaštiti inertnog plina               |
| LASER | Light Amplification of Stimulated Emission of Radiation                |
| TIG   | Zavarivanje netaljivom volframovom elektrodom u zaštiti inertnog plina |
| GMAW  | Gas Metal Arc Welding                                                  |
| MAGC  | Zavarivanje taljivom elektrodom u zaštiti ugljičnog dioksida           |
|       |                                                                        |

| MAGM | Zavarivanje taljivom elektrodom u zaštiti aktivne plinske mješavine |
|------|---------------------------------------------------------------------|
| DC   | Istosmjerna struja                                                  |
| AC   | Izmjenična struja                                                   |
| ESAB | Elektriska Svetsnings – Aktiebolaget                                |
| NASA | National Aeronautics and Space Administration                       |
| ZUT  | Zona utjecaja topline                                               |

# POPIS SLIKA

|            | Opis slike                                                                                                                                                                                                  | Strana |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Slika 1.1  | Uloga zaštitnih plinova kod MIG/MAG postupaka zavarivanja [2]                                                                                                                                               | 2      |
| Slika 2.1  | Toplinska vodljivost plinova u ovisnosti o temperaturi [6]                                                                                                                                                  | 7      |
| Slika 2.2  | Shematski prikaz disocijacije i ionizacije [2]                                                                                                                                                              | 8      |
| Slika 2.3  | Moguće kemijske reakcije kod MAG zavarivanja u zaštitnoj<br>atmosferi ugljičnog dioksida [7]                                                                                                                | 9      |
| Slika 2.4  | Utjecaj Ar, Ar – He i He - Ar mješavina na izgled zavarenog spoja prema "ESAB" [8]                                                                                                                          | 15     |
| Slika 2.5  | Utjecaj dodavanja CO <sub>2</sub> argonu na izgled zavara, prema<br>"ESAB"[8]                                                                                                                               | 17     |
| Slika 2.6  | Usporedba utjecaja toplinske vodljivosti argona i helija na<br>električni luk i penetracijski profil zavara [6]                                                                                             | 26     |
| Slika 2.7  | Svojstveni oblici električnog luka i penetracijskog oblika u zaštitnoj atmosferi argona i ugljičnog djoksida [10]                                                                                           | 26     |
| Slika 2.8  | Utjecaj sastava zaštitne plinske mješavine na oblik i izgled<br>površine zavara kod MAG zavarivanja kontinuiranog kutnog spoja<br>T-profila, prema "Linde Gas" [6]                                          | 29     |
| Slika 2.9  | Utjecaj sastava zaštitne plinske mješavine na oblik zavara kod<br>kutnog spoja T-profila, prema "Lincoln Electric"[5]                                                                                       | 29     |
| Slika 2.10 | Penetracijski profil navara i količina prskanja u ovisnosti o sastavu<br>zaštitne plinske mješavine kod MIG/MAG postupaka, prema<br>"Lincoln Electric" [5]                                                  | 29     |
| Slika 2.11 | Izbrazdanost zavara dobivenih MAG postupkom<br>(mješavina plinova $Ar + CO_2$ ) kod nelegiranih čelika:<br>a) horizontalni – vertikalni položaj (štrcajući luk), b) vertikalni<br>položaj (kratki luk) [11] | 31     |
| Slika 2.12 | Broj kapljica u ovisnosti o jakosti struje kod različitih žičanih<br>elektroda (materijal, promjer) i zaštitnih plinova [11]                                                                                | 32     |
| Slika 2.13 | Djelovanje vrste zaštitne atmosfere na tok struje i širinu<br>električnog luka kod MAG zavarivanja: a) mješavina plinova<br>$(Ar + CO_2)$ , b) ugljični dioksid [11]                                        | 32     |
| Slika 3.1  | Presjek pištolja u radu kod MIG/MAG postupaka zavarivanja [5]                                                                                                                                               | 34     |
| Slika 3.2  | Automatski MIG/MAG sustav za zavarivanje [5]                                                                                                                                                                | 35     |
| Slika 3.3  | Djelovanje sila na kapljicu metala u električnom luku [4]                                                                                                                                                   | 36     |
| Slika 3.4  | Prijenos dodatnog metala kratkim spojevima: a) realni prikaz, b)<br>shematski prikaz [6],[12]                                                                                                               | 38     |
| Slika 3.5  | Prijenos dodatnog metala mješovitim lukom: a) realni prikaz, b)<br>shematski prikaz [6],[12]                                                                                                                | 39     |

| Slika 3.6  | Prijenos metala štrcajućim lukom: a) realni prikaz, b) shematski prikaz [6] [12]                                                                                               | 40 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Slika 3.7  | Prijenos dodatnog metala impulsnim strujama: a) realni prikaz,                                                                                                                 | 41 |
| Slika 3.8  | <ul> <li>b) shematski prikaz [6],[12]</li> <li>Rotacijski prijenos dodatnog metala velikom gustoćom struje:</li> <li>a) realni prikaz, b) shematski prikaz [6],[13]</li> </ul> | 42 |
| Slika 4.1  | "Fronius TransPulse Synergic" uređaj za zavarivanje                                                                                                                            | 47 |
| Slika 4.2  | "BUG – O Systems" automat za pomicanje pištolja                                                                                                                                | 47 |
| Slika 4.3  | Debljina uzoraka za izvedbu pokusa                                                                                                                                             | 48 |
| Slika 4.4  | Slobodni kraj žice                                                                                                                                                             | 49 |
| Slika 4.5  | Nagib pištolja kod izvođenja kutnog zavara                                                                                                                                     | 49 |
| Slika 4.6  | Neutralni kut između pištolja i okomice na pravac vođenja                                                                                                                      | 50 |
| Slika 4.7  | Kut od 15 do 20° između pištolja i okomice na pravac vođenja                                                                                                                   | 54 |
| Slika 4.8  | 3D skica i dimenzije pripremaka od općeg konstrukcijskog čelika za kutno zavarivanje                                                                                           | 54 |
| Slika 4.9  | Zavarivanje kutnih uzoraka uz prijenos metala kratkim spojevima                                                                                                                | 55 |
| Slika 4.10 | Uzorak 1, kutni spoj zavaren u zaštitnoj atmosferi 82 % Ar + 18 % $CO_2$                                                                                                       | 56 |
| Slika 4.11 | Uzorak 2., kutni spoj zavaren u zaštitnoj atmosferi $\mathrm{CO}_2$                                                                                                            | 57 |
| Slika 4.12 | Uzorak 3., kutni spoj zavaren u zaštitnoj atmosferi<br>90% Ar + 5% $CO_2$ + 5% $O_2$                                                                                           | 58 |
| Slika 4.13 | Kutni spojevi dobiveni zavarivanjem pri prijelaznim<br>vrijednostima: uzorak 4. (lijevo) i uzorak 5. (desno)                                                                   | 61 |
| Slika 4.14 | Uzorci navareni u zastiti eksperimentalnih mjesavina                                                                                                                           | 62 |
| Slika 4.15 | Rezanje ploče s navarima plinskim postupkom na automatskoj rezačici "Uljanik"                                                                                                  | 63 |
| Slika 4.16 | Makroizbrusci uzoraka kutnih spojeva                                                                                                                                           | 65 |
| Slika 4.17 | Makroizbrusak uzoraka navara                                                                                                                                                   | 66 |
| Slika 4.18 | Ispitivanje tvrdoće na Vickers tvrdomjeru modela $HV_{10}$                                                                                                                     | 67 |
| Slika 4.20 | Linije mjerenja tvrdoće kod uzoraka kutnog spoja                                                                                                                               | 68 |
| Slika 4.21 | Linije mjerenja tvrdoća kod uzoraka navara                                                                                                                                     | 68 |
| Slika 4.22 | Mjerenje geometrije ispitnih uzoraka pomoću programa "Image J"                                                                                                                 | 69 |
| Slika 4.23 | Dimenzije kutnog spoja: a – visina zavara, b – proračunska<br>debljina zavara, c – duljina provara, d – duljina nadvišenja lica                                                | 70 |
| Slika 4.24 | Zavara, e – reama deoljina zavara<br>Dimenzije navara: b – širina navara, c – penetracija navara,<br>d – duljina nadvišenja lica navara                                        | 71 |

| Slika 4.25 | Graf vrijednosti izmjerenih tvrdoća kutnog uzorka 1 po linijama 1<br>i 2. definiranim na slici 4.20                                                                                                       | 72 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Slika 4.26 | Graf vrijednosti izmjerenih tvrdoća kutnog uzorka 2 po linijama 1                                                                                                                                         | 73 |
| Slika 4.27 | Graf vrijednosti izmjerenih tvrdoća kutnog uzorka 3 po linijama 1<br>i 2, definiranim na slici 4.20                                                                                                       | 74 |
| Slika 4.28 | Usporedba srednjih vrijednosti tvrdoća uzoraka 1, 2 i 3. Linija 1 i<br>linija 2 su linije mjerenja definirane na slici 4.20                                                                               | 75 |
| Slika 4.29 | Graf izmjerenih vrijednosti tvrdoće kutnog uzorka 4 po linijama 1<br>i 2, definiranim na slici 4.20                                                                                                       | 77 |
| Slika 4.30 | Graf izmjerenih vrijednosti tvrdoće kutnog uzorka 5 po linijama 1<br>i 2, definiranim na slici 4.20                                                                                                       | 78 |
| Slika 4.31 | Usporedba srednjih vrijednosti tvrdoće uzoraka 4 i 5. Linija 1 i<br>linija 2 su linije mjerenja definirane na slici 4.20                                                                                  | 79 |
| Slika 4.32 | Graf izmjerenih vrijednosti tvrdoće navara 1 po linijama 1 i 2, definiranim na slici 4.21                                                                                                                 | 80 |
| Slika 4.33 | Graf izmjerenih vrijednosti tvrdoća navara 2 po linijama 1 i 2,<br>definiranim na slici 4.21                                                                                                              | 81 |
| Slika 4.34 | Graf izmjerenih vrijednosti tvrdoće navara 3 po linijama 1 i 2,<br>definiranim na slici 4.21                                                                                                              | 82 |
| Slika 4.35 | Usporedba srednjih vrijednosti tvrdoće navara 1, 2 i 3. Linija 1 i<br>linija 2 su linije mjerenja definirane na slici 4.21                                                                                | 83 |
| Slika 4.36 | Odvođenja topline kod kutnog spoja i navara                                                                                                                                                               | 84 |
| Slika 4.37 | Usporedba dimenzija uzoraka 1 ( $82\%$ Ar + $18\%$ CO <sub>2</sub> ),<br>2 ( $100\%$ CO <sub>2</sub> ), 3 ( $90\%$ Ar + $5\%$ CO <sub>2</sub> + $5\%$ O <sub>2</sub> )                                    | 85 |
| Slika 4.38 | Usporedba površina zavara, provara i ZUT-a kutnih uzoraka 1<br>( $82\%$ Ar + $18\%$ CO <sub>2</sub> ), 2 ( $100\%$ CO <sub>2</sub> ) i<br>3 ( $90\%$ Ar + $5\%$ CO <sub>2</sub> + $5\%$ O <sub>2</sub> )  | 86 |
| Slika 4.39 | Usporedba dimenzija zavara kutnih uzoraka<br>$4 (82\% \text{Ar} + 18\% \text{CO}_2) \text{ i } 5 (90\% \text{Ar} + 5\% \text{CO}_2 + 5\% \text{O}_2)$ , zavarenih<br>uz prijenos metala, štrcajućim lukom | 87 |
| Slika 4.40 | Usporedba vrijednosti površina kod kutnih uzoraka<br>$4 (82\% \text{Ar} + 18\% \text{CO}_2)$ i $5 (90\% \text{Ar} + 5\% \text{CO}_2 + 5\% \text{O}_2)$ ,<br>zavarenih uz prijenos metala šrcajućim lukom  | 88 |
| Slika 4.41 | Usporedba dimenzija uzoraka navara<br>(1 - $82\%$ Ar + $18\%$ CO <sub>2</sub> , 2 - $100\%$ CO <sub>2</sub> ,<br>3 - $90\%$ Ar + $5\%$ CO + $5\%$ O )                                                     | 89 |
| Slika 4.42 | Usporedba veličina površina uzoraka navara<br>(1 - 82% Ar + 18% CO <sub>2</sub> , 2 - 100% CO <sub>2</sub> ,<br>3 - 90% Ar + 5% CO <sub>2</sub> + 5% O <sub>2</sub> )                                     | 90 |

# POPIS TABLICA

|              | <b>Opis tablice</b>                                                                                             | Strana |
|--------------|-----------------------------------------------------------------------------------------------------------------|--------|
| Tablica 1.1  | Sažeti prikaz primjene zaštitnih plinova i osnovnih plinskih<br>mješavina za zavarivanje u prošlom stoljeću [1] | 1      |
| Tablica 2.1  | Energija disociranja i ionizacijski potencijali plinova za zavarivanje [1]                                      | 6      |
| Tablica 2.2  | Neka od fizikalnih svojstava plinova [1]                                                                        | 10     |
| Tablica 2.3  | Zaštitni plinovi i plinske mješavine proizvođača "Messer<br>Griesheim" [9]                                      | 24     |
| Tablica 2.4  | Utjecaj vrste zaštitnog plina na neke od tehnoloških parametara procesa [10]                                    | 28     |
| Tablica 4.1  | Točke faza pokusa s obzirom na vrstu zaštitne plinske<br>mješavine                                              | 45     |
| Tablica 4.2  | Sastav i mehanička svojsta dodatnog materijala [14]                                                             | 46     |
| Tablica 4.3  | Orijentacijski podatci za osnovne metode prijenosa metala [11]                                                  | 51     |
| Tablica 4.4  | Izmjerene prijelazne jakosti struje i naponi za mješavinu M21                                                   | 60     |
| Tablica 4.5  | Izmjerene prijelazne jakosti struje i naponi za mješavinu M23                                                   | 60     |
| Tablica 4.6  | Srednje aritmetičke vrijednosti izmjerenih tvrdoća kutnog uzorka 1                                              | 73     |
| Tablica 4.7  | Srednje aritmetičke vrijednosti izmjerenih tvrdoća kutnog uzorka 2                                              | 74     |
| Tablica 4.8  | Srednje aritmetičke vrijednosti izmjerenih tvrdoća kutnog<br>uzorka 3                                           | 75     |
| Tablica 4.9  | Srednje aritmetičke vrijednosti izmjerenih tvrdoća kutnog uzorka 4                                              | 77     |
| Tablica 4.10 | Srednje aritmetičke vrijednosti izmjerenih tvrdoća kutnog uzorka 5                                              | 78     |
| Tablica 4.11 | Srednje aritmetičke vrijednosti izmjerenih tvrdoća navara 1                                                     | 81     |
| Tablica 4.12 | Srednje aritmetičke vrijednosti izmjerenih tvrdoća navara 2                                                     | 82     |
| Tablica 4.13 | Srednje aritmetičke vrijednosti izmjerenih tvrdoća navara 3                                                     | 82     |
| Tablica 5.1  | Približne, trenutačne tržišne cijene zaštitnih plinova                                                          | 92     |
| Tablica 5.2  | Troškovi vezani uz cijenu zaštitnog plina kod zavarivanja prvih<br>triju kutnih uzoraka (kratki spojevi)        | 93     |
| Tablica 5.3  | Troškovi vezani uz cijenu zaštitnog plina kod zavarivanja<br>kutnih uzoraka 4 i 5 (štrcajući luk)               | 94     |
| Tablica 5.4  | Troškovi vezani uz cijenu zaštitnog plina kod izvođenja<br>uzoraka navara (kratki spojevi)                      | 94     |

#### 1. UVOD

Tijekom elektrolučnog, plazma i LASER (Light Amplification of Stimulated Emission of Radiation) zavarivanja dolazi do reakcije atmosferskih plinova sa rastaljenim metalom što negativno utječe na svojstva i izgled zavara. Iz tog razloga potrebno je primijeniti određenu vrstu zaštite, pa tako kod ručnog elektrolučnog zavarivanja koristimo obložene elektrode kod kojih je uloga obloge višestruka, ali jedna od njih je i stvaranje troske prilikom taljenja upravo sa svrhom zaštite taline od utjecaja atmosferskih plinova i nečistoća. Kod elektrolučnog postupka pod zaštitom praška, kao što sam naziv govori, prašak štiti rastaljeni metal od djelovanja okolne atmosfere, sprječava naglo hlađenje zavara i oblikuje zavar. U primjeni elektrolučnog zavarivanja netaljivom volframovom elektrodom, plazma i LASER zavarivanja te kod elektrolučnog postupka taljivom žicom, talina se štiti uz pomoć zaštitnih plinova ili plinskih mješavina. U tablici 1.1 predstavljena su značajnija razdoblja povijesti primjene zaštitnih plinova kod postupka zavarivanja.

| Tablica  | 1.1  | Sažeti  | prikaz   | primjene | zaštitnih | plinova | i | osnovnih | plinskih | mješavina | z,a |
|----------|------|---------|----------|----------|-----------|---------|---|----------|----------|-----------|-----|
| zavariva | inje | u prošl | om stolj | ieću [1] |           |         |   |          |          |           |     |

| 10/1                                                                         | razvijen TIG (Tunsten Inert Gas) nostunak, zaštitni nlinovi: Ar i He              |  |  |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| 1941.                                                                        | lazvijen 110 (Tulisten mert Oas) postupak, zastiti pinovi. Al Tre                 |  |  |
| 1948. razvijen MIG (Metal Inert Gas) postupak, zaštitni plinovi: A           |                                                                                   |  |  |
| 1951.                                                                        | razvijen MAG (Metal Active Gas) postupak, zaštitni plin - CO <sub>2</sub>         |  |  |
| 1950te pojava plazma zavarivanja, zaštitni plinovi: Ar i He                  |                                                                                   |  |  |
| 1960te                                                                       | pojava LASER zavarivanja, zaštitni plinovi: Ar i He                               |  |  |
| 1960te uvođenje mješavina Ar - CO <sub>2</sub> za MAG zavarivanje nelegirani |                                                                                   |  |  |
|                                                                              | mikrolegiranih čelika                                                             |  |  |
| sredina                                                                      | uvođenje mješavina Ar- $O_2$ za MAG zavarivanje korozijski postojanih čelika      |  |  |
| 1970ih                                                                       |                                                                                   |  |  |
| kraj                                                                         | uvođenje mješavina Ar- $CO_2$ - $O_2$ za MAG zavarivanje nelegiranih, nisko i     |  |  |
| 1970ih                                                                       | mikrolegiranih čelika                                                             |  |  |
| 1980. te                                                                     | uvođenje mješavine Ar- $\mathrm{N_2}$ za MAG zavarivanje bakra i bakrenih legura  |  |  |
| 1980 te                                                                      | automatizacija i robotizacija MIG/MAG postupaka, povećana primjena                |  |  |
| i                                                                            | trokomponetnih (Ar - He - $CO_2$ , Ar - He - $O_2$ ) i razvoj četverokomponentnih |  |  |
| 1990 te                                                                      | mješavina $(Ar - He - CO_2 - O_2)$                                                |  |  |

Zaštitni plinovi imaju bitan utjecaj na učinkovitost MIG/MAG postupaka zavarivanja. Pored osnovne uloge da štite rastaljenu kupku i kapljice dodatnog materijala, doprinose uspostavljanju i održavanju električnog luka te zajedno s parametrima procesa uvjetuju prijenos metala. Na ovaj način, vrsta plina utječe na cjelokupni proces zavarivanja i kavlitetetu izvedenog zavara. Svojim fizikalnim svojstvima imaju učinak na količinu rastaljenog metala, oblik i dubinu penetracije, izgled površine kao i na mehanička svojstva zavara. Igraju važnu ulogu u kemijskim reakcijama u području električnog luka i taline utječući na nastajanje oksida i karbida, smanjenje rezidualnog kisika, vodika i dušika u zavaru, formiranje troske i oslobađanje otpadnih plinova. Reagiranjem s dodatnim materijalom sudjeluju u strukturnim promjenama metala zavara što ima utjecaj na svojstva poput čvrstoće, žilavosti i korozijske postojanosti spoja. Između žice i radnog komada, gdje se uspostavlja luk, plin prelazi u ionizirano stanje plazme i postaje električni vodič.



*Slika 1.1* Uloga zaštitnih plinova kod MIG/MAG postupaka zavarivanja [2]

Razumijevanje fizikalnih i kemijskih svojstava plinova i plinskih mješavina je presudno da bi se proces zavarivanja optimirao za specifičnu primjenu i postizanje traženih učinaka. U sljedećim redovima navedena su neka od najnovijih istraživanja vezanih za utjecaj zaštitnih plinova kod MAG zavarivanja.

**L. Quintino, I. Pires, 1996. i 1998. [3]** istraživali su utjecaj zaštitnih plinskih mješavina na prijelaznu struju, način prijenosa metala i stabilnost procesa te utjecaj štetnih dimova na okoliš i zdravlje zavarivača. Korišteno je sedam mješavina i dobiveno je da mješavine Ar -  $O_2$  imaju niže prijelazne jakosti struje od mješavina Ar -  $CO_2$ . Također je utvrđeno da količina dimova raste porastom temperature luka, nestabilnosti luka, toplinske vodljivosti mješavine, aktivnih komponenti mješavine i volumena kapljice metala.

**K. Grubić, 1998. [4]** istraživao je utjecaj zaštitnog plina kod MAG zavarivanja na stabilnost procesa, poglavice uzimajući u obzir sile koje utječu na prijenos metala. Korištene mješavine bile su: Ar + 25% CO<sub>2</sub>, Ar + 18% CO<sub>2</sub>, Ar + 5% CO<sub>2</sub> i Ar +5% O<sub>2</sub>. Utvrđene se jakosti prijelaznih struja i područja stabilnih parametara prijenosa metala štrcajućim lukom.

**V. Panić, 2001.** [1] istraživao je, kod MAG zavarivanja nelegiranih i niskolegiranih čelika, utjecaj zaštitnih plinova na geometriju zavara, gubitke legirnih elemenata iz dodatnog materijala i mehanička svojstva zavara (vlačna čvrstoća, kovencionalna granica razvlačenja, udarna radnja loma te tvrdoća). Korišteno je, ukupno, šesnaest plinskih mješavina iz područja Ar -  $CO_2$ , Ar -  $O_2$  i Ar -  $CO_2$  -  $O_2$ . Istraživanjem je zaključeno da sastav zaštitne plinske mješavine utječe na penetraciju, širinu, nadvišenje i poglavice na površinu navara. U potpunosti su dokazani i utjecaji na gubitak C, Si i Mn iz dodatnog materijala za vrijeme zavarivanja te na sva ispitivana mehanička svojstva zavara.

U proteklim desetljećima korišteni su različiti zaštitni plinovi i razvijene su brojne plinske mješavine. To je za sobom povuklo i povećanu primjenu MIG/MAG postupaka zavarivanja, a u novije vrijeme, usporedo s tehničkim napretkom, predstavlja i dodatan

poticaj za svestranije korištenje plazma, LASER i hibridnih postupaka zavarivanja. Neke kombinacije plinova ne ispunjavaju uvjete pouzdanosti i kvalitete zavara, a time i ekonomičnosti postupaka. Iz tog razloga nameću se potrebe za daljnjim istraživanjima na području zaštitnih plinova s ciljem pozitivnog utjecaja na učinkovitost postojećih ili razvoja novih plinskih mješavina.

Svrha ovog rada je doprinos daljnjoj "izgradnji prisutne perspektive" o ulozi, utjecaju i učinkovitosti zaštitnih plinova kod MAG zavarivanja, u ovom slučaju nelegiranih konstrukcijskih čelika, kroz ispitivanje geometrije i tvrdoće zavarenog spoja, u okviru primjene triju različitih plinskih mješavina.

# 2. ZAŠTITNI PLINOVI KOD ZAVARIVANJA

## 2.1. Fizikalna svojstva

Kao što je već istaknuto, odabir adekvatnog zaštitnog plina kod procesa zavarivanja bitan je za kvalitetu i izgled zavara. Pri izboru se uglavnom osvrćemo na sljedeće kriterije [5]:

- ➢ materijal elektrode,
- željena mehanička svojstva zavara,
- debljinu osnovnog materijala i oblik spoja
- stanje materijala prisutnost oksida, korozije, prljavštine, otpornih prevlaka, ulja,
- metodu prijenosa metala,
- položaj zavarivanja,
- ➢ kvalitetu pripreme,
- željeni profil penetracije,
- željeni izgled zavara,
- ➢ cijenu.

Da bi mogli razumjeti ponašanje i utjecaj zaštitnih plinova prilikom zavarivanja definitivno je nužno poznavati njihova fizikalna svojstva poput ionizacijskog potencijala, toplinske vodljivosti, disocijacije i rekombinacije, kemijske reaktivnosti, gustoće te čistoće plina.

## Ionizacijski potencijal

Ionizacijski potencijal je energija, izražena u elektronvoltima, potrebna da se atomu plina "oduzme" jedan elektron, a rezultat je električki nabijeni atom odnosno ion plina. Pri zadržavanju ostalih čimbenika konstantnima, ionizacijski potencijal je manji što je veća

molekulska odnosno atomska masa plina. Argon, koji ima osamnaest elektrona u elektronskom omotaču, veće je atomske mase od helija koji ima dva elektrona u elektronskom omotaču. Privlačna sila koja zadržava vanjske elektrone u orbiti obrnuto je proporcionalna kvadratu njihove udaljenosti od jezgre pa je energija potrebna da argon otpusti elektron znatno manja nego u slučaju helija te iznosi 15,7 eV, a kod He 24,5 eV. Pri spomenutim energetskim razinama za ova dva plina, dolazi do ionizacije u prostoru električnog luka i nastaje plazma, koju stoga sačinjavaju ionizirani plin ili mješavina te metalne pare. Iako i drugi čimbenici utječu na uspostavljanje i održavanje plazme, kritične razine energije svejedno trebaju biti zadovoljene. U primjeni helija i helijem obogaćenih mješavina, za jednake duljine električnog luka, jakosti struje i naponi veći su nego kad se rabi argon i mješavine s većinskim udjelom argona. S obzirom da toplinu u luku, grubo rečeno, možemo izraziti kao produkt jakosti struje i napona, uporaba helija također rezultira mnogo većom raspoloživom toplinom. Uspostavljanje i održavanje električnog luka uvelike ovisi o ionizacijskom potencijalu. Zaštitni plinovi s relativno nižim vrijednostima ionizacijskog potencijala lakše oslobađaju elektrone i time se, u njihovoj primjeni, olakšava uspostavljanje električnog luka i održavanje u stabilnom radu. U tablici 2.1 vidljive su vrijednosti ionizacijskog potencijala, ali i energije disociranja pojedinih plinova.

|          | ENERGIJA     | IONIZACIJSKI |
|----------|--------------|--------------|
| PLIN     | DISOCIJACIJE | POTENCIJAL   |
|          | (eV)         | (eV)         |
| VODIK    | 4,5          | 12,6         |
| KISIK    | 5,1          | 12,6         |
| DUŠIK    | 9,7          | 14,5         |
| UGLJIČNI | 5.2          | 144          |
| DIOKSID  | 5,5          | 14,4         |
| HELIJ    |              | 26,4         |
| ARGON    |              | 15,8         |

Tablica 2.1 Energija disociranja i ionizacijski potencijali plinova za zavarivanje[1]

#### Toplinska vodljivost

Toplinska vodljivost, svojstvo je plina vezano uz njegovu sposobnost da provodi toplinu. Utječe na širenje odnosno gubitak topline od sredine električnog luka prema periferiji. Na primjer, čisti argon, primijenjen kao zaštitni plin, ima slabu toplinsku vodljivost te utječe na uspostavljanje električnog luka koji čine dvije zone: uska, vruća jezgra i primjetno hladnija vanjska zona. Rezultat ovoga je penetracijski profil zavara sa uskim, prstolikim korijenom i širim vrhom. Plinovi s većom toplinskom vodljivošću provode više topline u vanjsku zonu pa imamo širi električni luk s ravnomjernijom raspodjelom temperature. Ovakva se vodljivost topline javlja kod helija, mješavina argon/vodik i argon/ugljični dioksid te daje širi penetracijski profil na mjestu spajanja.



Slika 2.1 Toplinska vodljivost plinova u ovisnosti o temperaturi [6]

#### Disocijacija i rekombinacija

Kemijskim vezanjem dvaju ili više atoma formira se molekula. Plinovi poput ugljičnog dioksida, kisika i vodika, primjerice, građeni su od molekula pa tako molekulu ugljičnog dioksida sačinjavaju jedan atom ugljika i dva atoma kisika. Pri visokim temperaturama,

prisutnima u plazmi električnog luka (do 10000 K), dolazi do razlaganja odnosno disociranja navedenih plinova na atome koji se potom, barem djelomično, ioniziraju dajući elektrone, što poboljšava strujni tok. Kada disocirani plin dođe u kontakt sa površinom radnog komada, koja je relativno hladnija, atomi ulaze u rekombinaciju ponovno stvarajući molekule pri čemu se oslobađaju velike količine energije u obliku topline što utječe na intenzivnije taljenje osnovnog metala. Ipak, ovakav rasplet zbivanja ne nastupa u slučaju argona i helija kao zaštitnih plinova jer se sastoje od atoma pa ne mogu disocirati. Dakle, za istu temperaturu električnog luka, toplina generirana na radnoj površini je veća kod primjene plinova poput ugljičnog dioksida, kisika i vodika nego što je to slučaj za argon i helij. Na slici 2.2 nalazi se shematski prikaz disocijacije i ionizacije aktivnih plinova.



Slika 2.2 Shematski prikaz disocijacije i ionizacije [2]

#### Kemijska reaktivnost

Kemijska reaktivnost, u kontekstu zaštitnih plinova, odnosi se na sklonost pojedinog plina da, pri temperaturama električnog luka, reagira sa elementima prisutnima u talini. Argon i helij su, primjerice, potpuno neaktivni odnosno inertni plinovi i prema tome nemaju nikakav kemijski utjecaj na zavar. Dušik je pri sobnim temperaturama također inertan, no u temperaturnim uvjetima zavarivanja postaje reaktivan i može imati nepoželjan utjecaj na kemijski sastav metala zavara. Ugljični dioksid i kisik spadaju u kategoriju reaktivnih plinova poznatu kao oksidansi. Ovi plinovi reagiraju sa rastaljenim metalom u luku i u kupki stvarajući, pri tome, okside, a nerijetka posljedica reakcija su otpadni plinovi. Vodik je također reaktivan, ali je po svojoj prirodi reducens što znači da reagira s oksidacijskim sredstvima te na taj način sprječava nastajanje oksida u talini. Vodik u većim količinama postaje izuzetno štetan jer može uzrokovati pojavu hladnih pukotina, poroznosti i drugih grešaka zavarenog spoja. Na slici 2.3, kao primjer, prikazane su moguće kemijske reakcije kod MAG zavarivanja u zaštinoj atmosferi ugljičnog dioksida.



Slika 2.3 Moguće kemijske reakcije kod MAG zavarivanja u zaštitnoj atmosferi ugljičnog dioksida [7]

#### Gustoća plina

Gustoća plina je njegova masa po jedinici obujma i jedno je od važnijih svojstava koja utječu na učinkovitost zaštitnih plinova. Ukratko, plinovi veće gustoće od zraka

zahtijevaju manji dotok od plinova koji su manje gustoće od zraka da bi postigli jednaku zaštitu taline zavar.

# Čistoća plina

Ovisno o vrsti metala koji se zavaruje i postupku zavarivanja, ponekad i vrlo malo nečistoća u zaštitnim plinovima može imati nepovoljan učinak na brzinu zavarivanja, potpunost spajanja, izgled i oblik zavara te količinu poroznosti, stoga je za svaki zaštitni plin potrebno paziti da zadovaljava, normama određenu, minimalnu čistoću. U tablici 2.2. predočena su neka od fizikalnih svojstava plinova uključujući i čistoću plina.

| Tablica 2.2 Neka od fizikalnih svojstava plinova [1] |  |
|------------------------------------------------------|--|
|------------------------------------------------------|--|

| Vrsta plina      | Specifična<br>toplina<br>(J/Km³) | Gustoća<br>(kg/m³) | Čistoća<br>(vol. %) | Temperatura<br>rosišta<br>kod 1 bar<br>(°C) |
|------------------|----------------------------------|--------------------|---------------------|---------------------------------------------|
| Argon            | 936                              | 1,784              | 99,99               | -50                                         |
| Helij            | 936                              | 0,179              | 99,99               | -50                                         |
| Ugljični dioksid | 1659                             | 1,977              | 99,99               | -35                                         |
| Kisik            | 1315                             | 1,429              | 99,5                | -                                           |
| Dušik            | 1302                             | 1,251              | 99,5                | -50                                         |
| Zrak             | 1302                             | 1.293              | -                   | -                                           |

#### 2.2. Vrste zaštitnih plinova

Zaštitnu atmosferu kod zavarivanja mogu činiti pojedinačni plinovi ili dvokomponentne, trokomponentne te, čak, četverokomponentne zaštitne plinske mješavine koje u svome sastavu mogu imati komponente poput argona, helija, ugljičnog dioksida, kisika, vodika i dušika. Kao samostalni zaštitni plinovi mogu se koristiti samo argon, helij i ugljični dioksid dok se kisik, vodik i dušik koriste strogo u plinskim mješavinama i to u malim postotcima volumena jer bi u protivnom njihova prisutnost donijela više štete nego koristi. U ovom poglavlju opisana su glavna svojstva svakog od spomenutih plinova.

**Argon** je jednoatomni kemijski inertni plin bez boje, mirisa i okusa, nije otrovan, nije zapaljiv i nije topiv u talini. Manje od 1 % zemljine atmosfere sačinjeno je od argona, otprilike je 1,4 puta gušći nego zrak, a dobiva se procesom ukapljivanja i destilacije zraka. Svojstvo inertnosti i velika gustoća čine ga izrazito povoljnim za zaštitu od atmosferske kontaminacije, pa se intenzivno koristi kao zaštitni plin u zavarivanju željeznih i neželjeznih metala. Može se koristiti samostalno ili u kombinaciji s drugim plinovima radi postizanja veće stabilnosti električnog luka. Praktički svi elektrolučni procesi zavarivanja dozvoljavaju primjenu argona ili njegovih mješavina kao zaštitne atmosfere ne bi li se postigao kvalitetan zavar sa traženim mehaničkim svojstvima. Od neželjeznih metala, koristi se za zavarivanje aluminija, nikla, bakra, magnezijskih legura te cirkonija i titana. Zahvaljujući niskoj energiji ionizacije doprinosi uspostavljanju i stabilnosti električnog luka uz veliku gustoću struje odnosno energija luka fokusirana je na malom središnjem području kupke zavara. Plinske mješavine s visokim udjelima argona podržavaju sve konvencionalne načine prijenose metala i viskoučinsko zavarivanje. Na koncu valja istaknuti da je argon, u današnjici, najčešće uporabljivani inertni plin.

Helij je, također, jednoatomni inertni plin, ali male atomske mase i gustoće, iznosa, otprilike, 14 % gustoće zraka. Cijena mu je mnogo veća nego što je to slučaj kod argona, pa se u Europi gotovo i ne koristi. Zbog malog volumnog postotoka u atmosferi dobiva se separacijom iz prirodnog plina u kojem se smatra nečistoćom. Koristi se u zavarivanju, prije svega, gdje je potreban veliki unos topline čime omogućava veću žitkost taline, dubinu provara i brzinu zavarivanja. Također mu je svojstvena i veća toplinska vodljivost od argonove i širi stup električnog luka. Izrazito je koristan kod zavarivanja aluminija i magnezija koji su "netolerantni" na uključke oksida, primjenjuje se i u plinskim mješavinama pri zavarivanju korozijski postojanih čelika. Izrazitom stabilnošću električnog luka najviše doprinosi količini depozita kod zavarivanja visokim gustoćama struje.

**Ugljik** – **dioksid** je reaktivan plin koji se sastoji od dva kemijska elementa: ugljika i kisika. Iako pri sobnoj temperaturi njegova kemijska reaktivnost ne dolazi do izražaja, u

uvjetima zavarivanja, primjerice kod MAG postupka, potaknuta velikom energijom plazme, molekula CO<sub>2</sub> se, u anodnom području luka, raspada na ugljikov monoksid i kisik. Slobodni elementi nastali disocijacijom miješaju se s talinom ili, pak, u hladnijem, katodnom području rekombiniraju kako bi ponovno nastao CO2, što biva popraćeno velikim oslabađanjem energije, a posljedica je formiranje dubljeg i šireg zavara. Slobodni kisik, nastao disocijacijom, također može reagirati s kemijskim elementima koji putuju lukom tvoreći okside. To se može spriječiti dodavanjem dezoksidanata poput silicija, mangana i titana u žicu dodatnog materijala. Bit je da navedeni elementi vežu kisik na sebe i potom se izlučuju na vrh taline u obliku troske. Veće količine ugljičnog dioksida ujedno znače i veći oksidacijski potencijal, a time i više troske na površini zavara. U suprotnom slučaju imat ćemo veći stupanj legiranosti zavara silicijem, manganom i sličnim elementima. CO<sub>2</sub> je posebice pogodan za MAG zavarivanje kratkim spojevima, lako je nabavljiv i ima nisku cijenu po jedinci volumena. Ipak, to nam ne garantira ekonomsku isplativost jer treba uzeti u obzir i manju učinkovitost deponiranja metala, otpadne plinove i prskanje te uklanjanje tragova prskanja kao čimbenike koji, u konačnici, povećavaju cijenu zavara.

**Kisik** je plin koji, u volumnim postotcima, zauzima 50% zemljine kore i 21% atmosfere. Dobiva se ukapljivanjem iz zraka, reagira sa gotovo svim elementima izuzev rijetkih i inertnih plinova, bez boje je i mirisa, neotrovan i nezapaljiv, ali izrazito podržava gorenje. Zahvaljujući navedenim svojstvima, idealan je plin za povećanje temperatura plamena kod plinskog zavarivanja i rezanja. Primjena kisika kod zavarivanja povećava stabilnost električnog luka, smanjuje povšinsku napetost i povećava žitkost taline. Dodavanjem od 1 do 5%  $O_2$  smanjuje se promjer kapljica dodanog metala i ubrzava njihovo stvaranje, poboljšava se spajanje na rubovima, a površina zavara je ravnija. Često se dodaje argonu kod MAG postupaka u svrhu povećanja stabilnosti luka i radi doprinosa kvašenju te obliku šava pri zavarivanju niskougljičnih i korozijski postojanih čelika. Također se upotrebljava za povećanje brzina kod rezanja plazmom i laserom. Najvažnije je istaknuti da se kisik koristi samo u plinskim mješavinama i to u malim postotcima.

**Vodik** je kemijski aktivan, te sa 7% težine zraka, najlakši postojeći plin. Iznimno je zapaljiv, temperatura zapaljenja iznosi 560°C te je pri određenim koncentracijama vodika pomiješanih s kisikom, zrakom ili drugim oksidacijskim sredstvima moguće dobiti eksploziv. Vodik se u plinskim zaštitnim mješavinama koristi u vrlo malim udjelima, otprilike 1 do 5 %. Naime, njegova visoka toplinska vodljivost omogućava nastajanje žitke taline što je dobro za kvašenje rubova i veće brzine zavarivanja. Nerijetko se dodaje argonu u svrhu zaštite pri zavarivanju korozijski postojanih čelika i niklovih legura. Pored toga, u malim količinama primjenjiv je i kao zaštita kod plazma rezanja i nekih aplikacija zavarivanja.

**Dušik** je atmosferski plin bez boje mirisa i okusa kojeg u zraku ima do 78 %. Dobiva se kao proizvod procesa ukapljivanja zraka, ne izgara, ne podržava gorenje i nešto je lakši od zraka. Kemijski nije aktivan, ali pri temperaturama električnog luka reagira s metalima poput aluminija, magnezija i titana. Zaštitni plinovi koji sadrže dušik preporučuju se za zavarivanje ugljičnih čelika. Često se primjenjuje za zaštitu korijena zavara od onečišćenja iz atmosfere. Kod primjena za korozijski postojane čelike, zahtijeva se opreznost jer dušik može reducirati količinu ferita, što je nepovoljno. Do 3% N<sub>2</sub> dodaje se argonu kod MIG i TIG postupka za zavarivanje dupleks korozijski postojanih čelika. Dušik se široko primjenjuje kod rezanja plazmom i laserom.

#### 2.3. Zaštitne plinske mješavine kod MIG/MAG zavarivanja

#### 2.3.1. Dvokomponentne plinske mješavine

#### Argon - Helij

Mješavine argon – helij posebice su korisne za zavarivanje aluminija kada je potrebno postići široke provare i prijenos metala slobodnim letom kapljica. Za deblje osnovne metale nužno je povećati udio helija radi većeg unosa topline. Porastom količine helija u mješavini reducira se prstoliki penetracijski profil svojstven čistiom argonu, veće su brzine zavarivanja, postižu se dublji zavari i opada poroznost.

75% Ar + 25% He - dvokomponentna mješavina, služi za postizanje veće penetracije kod rada s aluminijem, bakrom i niklom. Talina je veće žitkosti nego u slučaju 100%-og argona.

#### Helij – Argon

Ove plinske mješavine se poglavice primjenjuju kod zavarivanja aluminija, bakra, nikla, magnezija i njihovih legura te kod nekih ugljičnih čelika. Osnovni cilj im je zavarivanje debljih radnih komada. Uloga dodavanja argona, heliju kao osnovnom plinu, leži u smanjivanju unosa topline, boljem uspostavljanju električnog luka, smanjenju napona luka i reduciranju nepotrebnog prskanja. Najčešće se koristi oko 20% Ar u mješavini čime se postiže stabilan električni luk.

75% He + 25% Ar – visokim udjelom helija postiže se dobra toplinska vodljivost i izrazita žitkost taline. Penetracijski profil je širok te je prisutna dobra bočna penetracija i spajanje. Ipak, ova mješavina se rijetko upotrebljava, a može se zateći kod automatiziranog zavarivanja aluminija.



Slika 2.4 Utjecaj Ar, Ar – He i He - Ar mješavina na izgled zavarenog spoja prema "ESAB" (" Elektriska Svetsnings – Aktiebolaget") [8]

#### Argon – Ugljični dioksid

Ar -  $CO_2$  najčešće su primjenjivane dvokomponentne plinske mješavine. Podržavaju sve četiri tradicionalne metode prijenosa metala. Disociranjem  $CO_2$  u električnom luku oslobađa se kisik koji daje talini dodatnu žitkost i doprinosi stabilizaciji luka. Svojom toplinskim vodljivošću,  $CO_2$  također utječe i na veću širinu provara. Štrcajući prijenos metala zahtijeva da količina ugljičnog dioksida bude manja od 18 %. Porastom njegova udjela raste unos topline, a time i opasnost od progaranja. Ar / $CO_2$  mješavine do 18 %  $CO_2$  podržavaju također i impulsni način prijenosa metala. Prijenos metala kratkim spojevima je metoda prijenosa metala s niskim unosom topline te se za nju koriste mješavine s udjelom ugljičnog dioksida jednakim ili većim od 20 %. Kod primjene kratkih spojeva zahtijeva se opreznost ukoliko se upotrebljavaju veće količine argona.

98% Ar + 2%  $CO_2$  - najviše se koristi za štrcajući prijenos i prijenos metala impulsnim strujama kod nelegiranih i korozijski postojanih čelika. Služi i kod zavarivanja tankih limova velikim brzinama. Glavne karakteristike ove kombinacije jesu dobra žitkost taline i velike brzine zavarivanja.

95% Ar + 5%  $CO_2$  - uporabljuje se za impulsni prijenos metala. Dodatak od 5%  $CO_2$  utječe na bolje kvašenje taline. Više se primjenjuje kod debljih radnih komada nego prethodna mješavina.

92% Ar + 8%  $CO_2$  - koristi se i kod prijenosa metala štrcajućim lukom i impulsnim strujama. Veća toplinska vodljivost povećava žitkost rastaljenog metala.

90% Ar + 10%  $CO_2$  - također se koristi i za štrcajući luk i za impulsni prijenos. Penetracija u osnovni materijal je šira, smanjuje se dubina prstolikog profila.

85% Ar + 15 %  $CO_2$  - viši udio  $CO_2$  poboljšava spajanje na rubovima zavara kod tankostijenih materijala.

82% Ar +18%  $CO_2$  - uglavnom predstavlja gornju granicu kad je riječ o primjeni metode prijenosa metala štrcajućim lukom. Ova mješavina se mnogo koristi u Europi za materijale različitih debljina stijenki. Široki električni luk rezultira kvalitetnijim penetracijskim profilom na mjestu spoja. Primjenjuje se i kod zavarivanja kratkim spojevima i kod STT (Surface Tension Transfer) metode.

80% Ar + 20% CO<sub>2</sub> - mješavina koja se široko rabi, dodatno reducira prskanje i doprinosi kvalitetnijem izgledu zavara. Ponajviše se koristi kod prijenosa metala kratkim spojevima.

Općenito, za mješavine argona s 11 do 20 % ugljičnog dioksida se može reći da je osnovna ideja, kod njihove primjene, postizanje maksimalne produktivnosti pri zavarivanju tankostijenih osnovnih materijala, dakle minimiziranje vjerojatnosti progaranja te postizanje visoke stope nataljenog materijala i velike brzine zavarivanja. Niži postotci  $CO_2$ , u okviru ovih mješavina, mogu povećati učinkovitost deponiranog materijala smanjivanjem nepotrebnog prskanja.

75 % Ar + 25%  $CO_2$  - ublažava prskanje i utječe na kvalitetniji izgled zavara kod ugljičnih čelika. Koristi se kod metode prijenosa metala kratkim spojevima.

50 % Ar + 50 %  $CO_2$  - primjenjuje se kod zahtjeva za visokim unosom topline i dubokom penetracijom. Preporučuju se radni komadi debljina većih od 3 mm, i moguće je zavarivanje u prisilnim položajima. Vrlo dobro kvašenje i žitkost taline te dobar izgled šava temeljne su prednosti ove mješavine pa se koristi kod zavarivanja cjevovoda. Pri zavarivanju tankostijenih materijala postoji opasnost od progaranja što umanjuje mnogostranost primjene. Kada se postupak zavarivanja vrši uz velike jakosti struje, tada prijenos metala više nalikuje na onaj uz primjenu 100 %  $CO_2$  nego prethodnih mješavina no, unatoč tome, prisutnošću argona donekle je smanjena količina prskanja.

25 % Ar + 75 %  $CO_2$  - ovdje argon igra ulogu dodatka, a ugljični dioksid je dominantan. Mješavina se koristi kod zavarivanja cjevovoda debljih stijenki i optimalna je za postizanje dobrog rubnog spajanja i dubokog provara. Argonska komponenta sudjeluje u stabiliziranju električnog luka i smanjivanju prskanja.



Slika 2.5 Utjecaj dodavanja CO<sub>2</sub> argonu na izgled zavara, prema "ESAB"[8]

#### Argon – kisik

Dodavanje kisika argonu, prije svega, poboljšava karakteristike električnog luka te povećava žitkost taline zahvaljujući smanjenju površinske napetosti. Nadalje, kisik pojačava plazmu luka, povećava unos topline, brzinu zavarivanja, stabilizira električni luk, kapljice pri prijenosu metala štrcajućim lukom su manje, ali brže se stvaraju, kisik također smanjuje prijelaznu jakost struje kod prijenosa metala slobodnim letom kapljica i utječe na oblik zavara. Uporaba ovih mješavina pokazala se izuzetno korisnom pri brzom zavarivanju tankostijenih materijala. Ove mješavine se najčešće koriste kod zavarivanja ugljičnih i korozijskih postojanih čelika.

99% Ar + 1%  $O_2$  - primjenjuje se, uglavnom, kod zavarivanja korozijski postojanih čelika. Dodavanje kisika stabilizira električni luk i poboljšava prijenos kapljica slobodnim letom, održava žitkost taline te doprinosi spajanju i izgledu zavara. Vrijedi spomenuti, također, da su "NASA"-ina ("National Aeronautics and Space Administration") is traživanja pokazala da 1%  $O_2$  doprinosi stabilizaciji električnog luka pri zavarivanju čistih aluminijskih limova.[8]

98% Ar + 2%  $O_2$  - koristi se kao zaštitna mješavina kod zavarivanja ugljičnih, niskolegiranih i korozijski postojanih čelika. U prošlosti, prve primjene argon/kisik zaštitne atmosfere kod štrcajućeg prijenosa metala sadržavale su upravo 2% kisika. Obično se upotrebljava za zavarivanje tankih komada velikim brzinama. Uz štrcajuću, podržava i impulsnu metodu prijenosa metala. Ova mješavina se često primjenjuje kad se zahtijevaju pouzdana mehanička svojstva pri uporabi elektroda od niskolegiranih ugljičnih čelika.

95% Ar + 5%  $O_2$  - najčešće upotrebljivana zaštitna mješavina za ugljične čelike opće namjene. Podržava prijenos metala štrcajućim lukom i impulsnim strujama. U odnosu na prethodne dvije smjese dodatno povećava žitkost taline i omogućava lakšu kontrolu. Pri uporabi ove mješavine, obično se od osnovnog materijala zahtijeva da ne sadrži uključke i da ima što manje nečistoća.

Ar + 8 do 12 %  $O_2$  - mješavine su se originalno počele koristiti u Njemačkoj, a od nedavno raste njihova primjena i u SAD-u. Glavna uloga im je kod zavarivanja s jednim prolazom, iako su zabilježeni i slučajevi višeprolaznog zavarivanja u zaštitnoj atmosferi ovih mješavina. Kod odabira dodatnog materijala potrebno je uzeti u obzir visoki oksidacijski potencijal smjesa te se, iz tog razloga, nerijetko koriste žice s dodanim dezoksidantima. Veća žitkost taline i niža prijelazna jakost struje u područje štrcajućeg luka mogu biti od velike koristi za određene primjene.

Ar + 12 do 25 %  $O_2$  - ove su mješavine vrlo ograničene uporabe. Glavna značajka visokog sadržaja kisika je izrazito velika žitkost taline. Pri zavarivanju možemo očekivati i nastajanje popriličnog sloja teško odstranjive troske. Ipak, i s mješavinom od 25 %  $O_2$  moguće je postići pouzdani zavar s malo ili bez poroznosti. Preporučljivo je odstraniti trosku prije svakog narednog prolaza kako bi se postiglo što je moguće kvalitenije spajanje odnosno integritet zavara.

#### Argon – Vodik

Ove mješavine proizvode reducirajuću atmosferu, najčešće u omjerima:

Ar + 1%  $H_2$ , Ar + 2%  $H_2$ , Ar + 5%  $H_2$ . Pretežito se koriste kod MAG i TIG zavarivanja nikla i njegovih legura, austenitnih Cr/Ni korozijski postojanih čelika i kod plazma zavarivanja niskolegiranih čelika. Zahvaljujući njegovoj visokoj toplinskoj vodljivosti, dodatak vodika povećava unos topline što omogućava veće brzine zavarivanja, bolju žitkost, dublji provar i širi profil zavara. Osim toga, dodavanje vodika argonu ostvaruje reducirajuću atmosferu koja otklanja kisik i okside iz zone zavara.

#### Argon – Dušik

Dušik se može dodati mješavini Ar – 1 %  $O_2$  ne bi li se postigla potpuna austenitna mikrostruktura kod primjene određenih korozijski postojanih čelika kao dodatnog materijala. Problem je što koncentracija dušika već od 2 % uzrokuje poroznost kod zavarivanja mikrolegiranih čelika i to pri jednom prolazu, a koncentracije čak i manje od 0,5 % uzrokoju poroznost kod višeslojnog zavarivanja nelegiranih čelika. Također, mješavine obogaćene dušikom pokazale su se lošima za zavarivanje bakra i njegovih legura zbog izrazito velike količine prskanja.

#### **Argon - Klor**

Plin klora se ponekad upuhuje u rastaljeni aluminij s ciljem odstranjivanja vodika iz odljevaka. Klor se može upotrijebiti za istu svrhu i kod zavarivanja aluminija. Istraživanja su pokazala da Ar  $-Cl_2$  mješavine, u načelu, smanjuju poroznost metala zavara kod MIG/MAG zavarivanja, no takav zaključak nije utvrđen zbog nedovoljne dosljednosti rezultata. Osim toga, uzme li se u obzir činjenica da klor u respiratornom sustavu čovjeka stvara klornu kiselinu, zavarivanje u ovakvoj zaštitnoj atmosferi opasno je za zavarivače i ljude u blizini, stoga ove mješavine nisu preporučljive izuzev u rijetkim, specifičnim slučajevima kada su, ujedno, implementirane i sve potrebne mjere zaštite.[8]

#### Dušik – Vodik

Ove mješavine koriste se za zaštitu korijena kod zavarivanja Cr/Ni čelika s time da se preporučuje omjer  $N_2 + 5\% H_2$  kako bi se izbjeglo smanjenje udjela ferita u mikrostrukturi čelika.

#### 2.3.2. Trokomponentne plinske mješavine

Trokomponentne plinske mješavine široko se rabe kod zavarivanja ugljičnih (nelegiranih) i korozijski postojanih čelika, a u rijetkim slučajevima i za niklove legure. Primjerice 40 % helija dodano u mješavinu argona i  $CO_2$  kod primjene kratkih spojeva na nelegiranim čelicima dovest će do šireg penetracijskog profila. Helij, pored toga, pruža i veću toplinsku vodljivost u spomenutim slučajevima. Veće širine zavara te kvalitenije bočno i rubno spajanje umanjuju mogućnost pojave greške naljepljivanja.

Kod korozijski postojanih čelika, primjena trokomponentnih mješavina je svakodnevna pojava. Udjeli helija od 55 do 90 % i 2,5 % ugljičnog dioksida dodaju se argonu za prijenos metala kratkim spojevima. Prednost ovih mješavina su: smanjeno prskanje, poboljšana žitkost taline te ravniji i položeniji izgled zavara.

**Mješavine**  $He - Ar - CO_2 i Ar - He - CO_2$ 

90 % He + 7,5 % Ar + 2,5 % CO<sub>2</sub> - vjerojatno je najviše primjenjivana zaštitna plinska mješavina za MAG postupak zavarivanja korozijski postojanih čelika kratkim spojevima. Zahavaljujući visokoj toplinskoj vodljivosti helija javlja se ravniji šav i dobro spajanje. Mješavina se također koristi i kod impulsnog prijenosa metala, ali je uporaba ograničena na radne komade od korozijski postojanih čelika i niklovih legura, debljina većih od 1,5 mm. Isto tako, omogućuje i velike brzine zavarivanja kod primjene na korozijski postojanim čelicima.

55 % He + 42,5 % Ar + 2,5 %  $CO_2$  - premda nije rasprostranjena u primjeni koliko i prethodna, ova mješavina, zahvaljujući znatno manjem udjelu helija, omogućava električni luk s manje topline kod impulsne metode prijenosa metala. Dakako, koristi se s vrlo dobrim učinkom i kod zavarivanja kratkim spojevima korozijski postojanih čelika i

niklovih legura. Manje koncentracije helija dozvoljavaju i primjenu metode prijenosa metala štrcajućim lukom.

65 % Ar + 38 % He + 7 %  $CO_2$  - ova mješavina se poglavice rabi pri MAG zavarivanju kratkim spojevima niskougljičnih nelegiranih i niskolegiranih čelika. Također se koristi za zavarivanje otvorenih korijena kod cjevovoda. Visoka toplinska vodljivost utječe na širenje penetracijskog profila i smanjuje tendenciju k nastajanju grešaka naljepljivanja.

### Mješavine Ar - $CO_2$ - $O_2$

Ar + 5 do 10 %  $CO_2$ + 1 do 6 %  $O_2$  - glavna značajka im je da služe za zavarivanje ugljičnih, niskolegiranih čelika različitih debljina i pri tome podržavaju sve vrste prijenosa metala. Primjenjuju se kad se traže dobra mehanička svojstva zavara spomenutih materijala. Na tankostijenim radnim komadima udio kisika, poboljšava stabilnost luka i smanjuje potrebnu jakost struje na 30 – 60 A, što omogućuje kratki i lako upravljivi luk i doprinosi smanjenju prekomjernog protaljivanja i izobličenja zbog smanjenog unosa topline u područje zavara. Trokomponentne Ar -  $CO_2$  -  $O_2$  mješavine podržavaju prijenose metala kratkim spojevima, štrcajućim lukom i impulsnim strujama za primjene na nelegiranim i niskolegiranim čelicima.

#### Mješavine Ar – He - $O_2$

Bitno obilježje ovih plinskih mješavina jest činjenica da dodatak helija i kisika argonu povećava energiju električnog luka kod MAG zavarivanja željeznih metala. Rabe se za prijenos metala štrcajućim lukom, koriste se kod niskolegiranih i korozijski postojanih čelika s ciljem povećanja žitkosti taline što, naposljetku, rezultira pravilnim oblikom zavara i smanjenjem poroziteta.
## 2.3.3. Četverokomponentne plinske mješavine

**Mješavine** Ar – He -  $CO_2$  -  $O_2$ 

Ove mješavine plinova koriste se za veliko taloženje taline pri visokim gustoćama struje. Zavari izvedeni u njihovoj zaštiti imaju dobra mehanička svojstva. Ponajviše se primjenjuju kod zavarivanja niskolegiranih i visokočvrstih čeličnih materijala, a kod nelegiranih čelika koriste se pri visokoproduktivnom MAG postupku..

U tablici 2.3 predstavljeni su zaštitni plinovi i plinske mješavine proizvođača "Messer Giesheim".

| Naziv proizvoda                  | Grupa<br>po<br>HRN EN | Δr      | Но     | Volumi | ni sastav [% | ы)<br>Н  | N     | Postupak po<br>DIN 1910 |
|----------------------------------|-----------------------|---------|--------|--------|--------------|----------|-------|-------------------------|
| Argon 4.6                        | 439                   | 100     | THC .  | 02     | 002          | 112      | 112   | TICIMIC                 |
| Argon special 4.8                | 11                    | 100     |        |        |              |          |       |                         |
| Holii 4.6                        | 12                    | 100     | 100    |        |              |          |       | TIC/MIC                 |
| Alumix Ho90                      | 12                    | 10      | 00     |        |              |          |       |                         |
| Alumix Ho70                      | 13                    | 20      | 90     |        |              |          |       |                         |
| Alumix HeF0                      | 10                    | 50      | 50     |        |              |          |       |                         |
| Alumix He20                      | 10                    | 50      | 20     |        |              |          |       |                         |
| Alumix Neso                      | 13<br>C 11            | 70      | 30     |        |              |          | 0.045 | TIG/MIG                 |
| Alumix N                         | 511                   | ostatak | a (*** |        |              |          | 0,015 | TIG/MIG                 |
| Alumix He 15 N                   | 513                   | ostatak | 15     |        |              |          | 0,015 | TIG/MIG                 |
| Alumix He30 N                    | 513                   | ostatak | 30     |        |              |          | 0,015 | TIG/MIG                 |
| Alumix He50 N                    | 513                   | ostatak | 50     |        |              |          | 0,015 | TIG/MilG                |
| Inoxmix H2                       | RI                    | 98      |        |        |              | 2        |       | HG                      |
| Inoxmix H5                       | R1                    | 95      |        |        |              | 5        |       | TIG                     |
| Inoxmix H7                       | R1                    | 92,5    |        |        |              | 7,5      |       | TIG                     |
| Inoxmix N1                       | SI1                   | 98,75   |        |        |              |          | 1,25  | TIG                     |
| Inoxmix N2                       | SI1                   | 97,5    |        |        |              |          | 2,5   | TIG                     |
| Inoxmix He15 N1                  | SI3                   | 83,75   | 15     |        |              | 10 FC 10 | 1,25  | TIG                     |
| Inoxmix He3 H1                   | R1                    | 95,5    | 3      | 0      |              | 1,5      |       | TIG                     |
|                                  | IVI 13                | 98      |        | 2      |              |          |       | MAG M                   |
| Inoxmix C2                       | M12                   | 97,5    |        |        | 2,5          |          |       | MAG M                   |
| Inoxmix He15 C2                  | M12(1)                | 83      | 15     |        | 2            |          |       | MAG M                   |
| Inoxmix He30 H2 C                | M11(1)                | ostatak | 30     |        | 0,12         | 2        |       | MAG M                   |
| Ferromix C8                      | M21                   | 92      |        |        | 8            |          |       | MAG M                   |
| Ferromix C18                     | M21                   | 82      |        |        | 18           |          |       | MAG M                   |
| Ferromix C25                     | M21                   | 75      |        |        | 25           |          |       | MAG                     |
| Ferromix X4                      | M22                   | 96      |        | 4      |              |          |       | MAG M                   |
| Ferromix X8                      | M22                   | 92      |        | 8      |              |          |       | MAG M                   |
| Ferromix C5 X5                   | M23                   | 90      |        | 5      | 5            |          |       | MAG M                   |
| Ferromix C15 X5                  | M24                   | 80      |        | 5      | 15           |          |       | MAG M                   |
| Ferromix He20 C8                 | M21(1)                | 72      | 20     |        | 8            |          |       | MAG M                   |
| Ugljični dioksid tehnički        | C1                    |         |        |        | 100          |          |       | MAG C                   |
| Formir plin<br>(N₂-H₂-mješavine) | F2                    |         |        |        |              | 5-25     | 95-75 | zaštita korjena         |

# Tablica 2.3 Zaštitni plinovi i plinske mješavine proizvođača "Messer Griesheim"[9]

### 2.4. Utjecaj zaštitnih plinova na fizikalno-električna svojstva luka i oblik spoja

Da bi se moglo govoriti o efikasnosti zaštite područja zavarivanja, ponajprije treba razmotriti i razumjeti utjecaj pojedinih fizikalnih svojstava plinova, a time i plinskih mješavina na proces zavarivanja.

Specifična gustoća plina ima veliki utjecaj na zaštitu zavara od okolne atmosfere. Argon, koji je najgušći od inertnih plinova, približno deset puta gušći od helija, te ugljični dioksid, koji je za 1/3 gušći od argona oblikuju dobar zaštitni omotač. Zbog manje gustoće dušik, helij i vodik skloni su turbulentnom strujanju na izlazu iz sapnice. To se može "sanirati" povećanim protokom plina, posebice kod helija, no iz istog razloga, on je izrazito prikladan kod zavarivanja u nadglavnom položaju.

Osnovno svojstvo na koje utječe toplinska vodljivost plina prilikom zavarivanja jest radijalni gubitak topline što utječe na oblik električnog luka i njegovu geometriju. Argon, zbog niske toplinske vodljivosti, daje usku zonu jezgre luka za razliku od helija i ugljičnog dioksida koji imaju veću toplinsku vodljivost, pa stoga ispoljavaju i širu jezgru luka što direktno utječe i na oblik penetracije u osnovnom materijalu, kako je predočeno na slikama 2.6 i 2.7.



Slika 2.6 Usporedba utjecaja toplinske vodljivosti argona i helija na električni luk i penetracijski profil zavara [6]



Slika 2.7 Svojstveni oblici električnog luka i penetracijskog oblika u zaštitnoj atmosferi argona i ugljičnog dioksida [10]

Procesi ionizacije, disocijacije i rekombinacije u zaštitnoj atmosferi plinova također utječu na svojstva električnog luka. Za razliku od TIG postupka, kod MIG/MAG zavarivanj, ionizirani plinovi se kontaminiraju metalnim parama što ovisi o temperaturi ključanja i latentnoj toplini taljenja dotičnih metala koji se lako ioniziraju i u takvom raspletu postaju osnovni nosioci naboja, a to bitno mijenja prirodu električnog luka. Dvoatomni plinovi zahtijevaju više dovedene energije za ionizaciju kako bi postali provodljivi za električnu struju. Međutim, u okviru rekombinacije ovih plinova, kada ionizirani oblik dođe u dodir s hladnijim osnovnim metalom, dolazi do oslobađanja apsorbirane energije te zagrijavanje radnog komada postaje uvelike učinkovitije nego u slučaju s inertnim plinovima. Djelovanje zaštitne plinske atmosfere na rastaljeni metal, u smislu reakcija, ovisi o volumnim udjelima plinova koji se nalaze u mješavini, a ono može biti neutralno, reducirajuće ili oksidirajuće.

Vrsta zaštitne plinske smjese utječe i na tehnološke parametre procesa. Argon, kao primjer, ima strujno prigušujuće djelovanje, postižu se električni lukovi koji u odnosu na ugljični dioksid imaju blizu 3 V niži napon zavarivanja. Kod primjene  $CO_2$ , zbog velike učestalosti kratkih spojeva, postavljaju se povećani zahtjevi na izvore struje po pitanju njihove dinamičke karakteristike. Iz tog razloga se uređaji pretežito izvode s prigušivanjem, kako bi se prigušile visoke vršne vrijednosti jakosti struje. Isto tako, neke vrste zaštite će svojim fizikalno – toplinskim svojstvima utjecati na veću ili manju penetraciju, veću ili manju širinu zavara, veće brzine zavarivanja ili će utjecati na potrebu predgrijavanja mjesta zavarivanja. U tablici 2.4 naveden je utjecaj vrste zaštitnog plina odnosno plinske mješavine na neke od tehnoloških značajki procesa zavarivanja.

| Vrsta                           | Reakcija<br>plina s                                               | Penetracija                         | Značajke električnog luka |                    |                                                                   |  |
|---------------------------------|-------------------------------------------------------------------|-------------------------------------|---------------------------|--------------------|-------------------------------------------------------------------|--|
| zaštitnog plina                 | metalom                                                           | - ••                                | Napon                     | Stabilnost         | Prijenos metala                                                   |  |
| Ar                              | inertna                                                           | uska,<br>duboka                     | niski                     | dobra              | zadovoljavajući<br>(za MIG)                                       |  |
| $Ar + O_2$                      | oksidirajuća                                                      | uska,<br>duboka                     | niski                     | dobra              | dobar                                                             |  |
| Ar + CO <sub>2</sub>            | malo<br>oksidirajuća<br>do<br>oksidirajuća                        | lećasta<br>(široka),<br>vrlo duboka | niski<br>do<br>srednji    | dobra              | dobar                                                             |  |
| $Ar+CO_2+O_2$                   | oksidirajuća                                                      | lećasta<br>(široka),<br>vrlo duboka | srednji                   | dobar              | dobra                                                             |  |
| $Ar+H_2$                        | reducirajuća                                                      | vrlo duboka                         | srednji                   | dobra              | -                                                                 |  |
| Ar+N <sub>2</sub>               | kod čelika<br>se stvaraju<br>nitridi i<br>dolazi do<br>poroznosti | lećasta<br>(široka),<br>plitka      | visoki                    | srednja<br>do loša | zadovoljavsjući<br>do loši                                        |  |
| Ar+He                           | inertna                                                           | lećasta<br>(široka),<br>vrlo duboka | srednji                   | vrlo<br>dobra      | vrlo dobar                                                        |  |
| Не                              | inertna                                                           | lećasta<br>(široka)                 | visoki                    | dobra              | zadovoljavajući                                                   |  |
| $He+Ar+CO_2+H_2$                | inertna                                                           | lećasta<br>(široka)                 | srednji                   | dobra              | dobar                                                             |  |
| CO <sub>2</sub>                 | ponekad<br>oksidirajuća                                           | lećasta<br>(široka),<br>vrlo duboka | srednji                   | dobra              | dobar, ponekad<br>pojačano štrcanje                               |  |
| CO <sub>2</sub> +O <sub>2</sub> | oksidirajuća                                                      | lećasta<br>(široka),<br>vrlo duboka | visoki                    | srednja<br>do loša | zadovoljavajući                                                   |  |
| N <sub>2</sub>                  | kod čelika<br>se stvaraju<br>nitridi i<br>dolazi do<br>poroznosti | lećasta,<br>široka                  | visoki                    | vrlo loša          | vrlo loš                                                          |  |
| N <sub>2</sub> +H <sub>2</sub>  | reducirajuća                                                      | -                                   | -                         | _                  | koristi se za<br>zaštitu korijena<br>kod zavarivanja<br>cjevovoda |  |

*Tablica 2.4* Utjecaj vrste zaštitnog plina na neke od tehnoloških parametara procesa[10]

Na slikama 2.8, 2.9 i 2.10 mogu se vidjeti penetracijski oblici za pojedine plinske mješavine prema iskustvima iz "Linde Gas" i "Lincoln Electric".



Slika 2.8 Utjecaj sastava zaštitne plinske mješavine na oblik i izgled površine zavara kod MAG zavarivanja kontinuiranog kutnog spoja T-profila, prema "Linde Gas" [6]



Slika 2.9 Utjecaj sastava zaštitne plinske mješavine na oblik zavara kod kutnog spoja Tprofila, prema "Lincoln Electric"[5]



*Slika 2.10* Penetracijski profil navara i količina prskanja u ovisnosti o sastavu zaštitne plinske mješavine kod MIG/MAG postupaka, prema "Lincoln Electric" [5]

Argon, kao glavnu komponentu plinske smjese, posebice obilježava laka ionizacija i stvaranje stabilnog električnog luka. Uz odgovarajuće strujno opterećenje dodatnog materijala, potiče "fino" kapljičast prijenos metala tj. relativno brzo se stvaraju kapljice promjera manjeg od debljine žice dodatnog metala. Pri zavarivanju "osjetljivijih" materijala poput, primjerice, legure AlMg, ne bi li se izbjegle neželjene pojave kao što su turbulencije, pore i štrcanje, koriste se primjese helija u argonu koje poboljšavaju zavarivanje, ili se primjenjuje impulsni prijenos metala radi većeg zagrijavanja kapljica.

Problem kod zavarivanja čelika u inertnoj atmosferi argona, ponajviše su grubo izbrazdani i jako nadvišeni zavari male širine. S ciljem smanjivanja površinske napetosti rastaljene kupke, argonu se može dodati kisik. Primjera radi, krom-nikal čelici zavaruju se mješavinom argona uz dodatak 1 do 5 %  $O_2$ . Dvokomponentne tj. trokomponentne plinske mješavine, koje sadrže ugljični dioksid, dozvoljene su samo kod dovoljno stabiliziranih krom-nikal čelika sa sadržajem ugljika od 0,10% i više, u slučajevima gdje ne postoji opasnost od korozije ili u primjeni na tankim limovima ( jakost struje manja od 200 A). Na taj način se izbjegava neželjeno pougljičenje.

Kod zavarivanja nelegiranih i niskolegiranih čelika prednost dobivaju plinske mješavine Ar i  $CO_2$ . Naravno, koriste se i trokomponentne mješavine. Uloga ugljičnog dioksida je doprinos širenju zavara i penetraciji. Kod udjela  $CO_2$  od nekih 20 – 25 % , ugljično - dioksidne značajke zavarivanja lakše dolaze do izražaja predstavljajući svoj "grubo" kapljičasti prijenos materijala i nestabilni električni luk, pa je to ujedno i razlog zbog kojeg najčešće argonom bogate smjese sadrže ispod 20 %  $CO_2$ . Kisik, s druge strane, kao eventualna treća komponenta plinske mješavine, snizuje površinsku napetost rastaljene kupke i potiče "fino" kapljičasti prijenos metala. Također, snizuje i izbrazdanost površine zavara i povisuje temperaturu rastaljene kupke.



Slika 2.11 Izbrazdanost zavara dobivenih MAG postupkom (mješavina plinova Ar + CO<sub>2</sub>) kod nelegiranih čelika: a) horizontalni – vertikalni položaj (štrcajući luk), b) vertikalni položaj (kratki luk) [11]

Za čisti ugljični dioksid je svojstven "grubo" kapljičasti prijenos materijala odnosno kapljice metala su većeg promjera nego u slučaju mješavina.. Broj kapi je pri tome znatno manji negu u slučaju argona odnosno plinskih mješavina bogatih argonom. Na slici 2.12 moguće je vidjeti dijagram ovisnosti broja kapljica o jakosti struje za različite zaštitne plinove i žičane elektrode. Kod mješavina, također, energija električnog luka leži pretežno u smjeru osi žice dok se kod povišenih struja električnog luka u ugljičnom dioksidu često stvara bočna kap materijala, koja otklanja strujni tok i nastaju rotirajuće, od predmeta prema gore usmjerene sile. Posljedice mogu biti: nepravilno strujanje tekućeg materijala žice, snažno kretanje kupke i intenzivno štrcanje. Na slici 2.13. predočen je utjecaj vrste zaštitne plinske atmosfere na tok struje i širinu električnog luka kod MAG zavarivanja u zaštiti  $CO_2$  i  $Ar+CO_2+O_2$ .



*Slika 2.12* Broj kapljica u ovisnosti o jakosti struje kod različitih žičanih elektroda (materijal, promjer) i zaštitnih plinova [11]



*Slika 2.13* Djelovanje vrste zaštitne atmosfere na tok struje i širinu električnog luka kod MAG zavarivanja: a) mješavina plinova  $(Ar + CO_2)$ , b) ugljični dioksid [11]

Ono što je još jednom bitno istaknuti jest da argon ima, u pravilu, "prstasti" oblik penetracije, dok penetracija ugljičnog dioksida više podsjeća na oblik trokuta. U plinskim mješavinama navedenih dvaju plinova ispoljava se penetracija u obliku "jezika" sa "širećim" oblikom penetracije  $CO_2$  tako da se, nasuprot čistom MAGC (Metal Active Gas Carbon) zavarivanju, dobiva izričito ravnomjerna geometrija, korisna za "I" zavar i kutni zavar. Utjecaj ugljičnog dioksida na penetracijski profil značajnije dolazi do izražaja pri njegovu udjelu u smjesi većem od 10%. Kod mješavina s volumnim udjelima kisika uočava se posebno upadljiva koncentracija energije u jezgri električnog luka što vodi povećanju relativne dubine penetracije odnosno dubina penetracije raste s porastom sadržaja kisika. Kod trokomponentnih mješavina utjecaj kisika, po ovom pitanju, je zaista snažan, tako da se određena svojstva ne razlikuju značajno od onih kod smjese argon / kisik.

#### 3. MAG POSTUPAK ZVARIVANJA

#### **3.1.** Osnove postupka

MAG ili Metal Active Gas i MIG ili Metal Inert Gas postupci zavarivanja ubrajaju se u GMAW odnosno Gas Metal Arc Welding postupke kod kojih do taljenja metala dolazi djelovanjem topline električnog luka uspostavljenog između kosnstantno dobavljane žice kao dodatnog materijala i radnog komada. Procesi se vrše u zaštitnoj atmosferi aktivnih ili inertnih plinova odnosno plinskih mješavina koje pod tlakom izlaze kroz sapnicu. U okviru MAG zavarivanja razlikuju se MAGC (Metal Active Gas Carbon) i MAGM (Metal Active Gas Mixture) postupci. Kod MAGC, kao zaštitni plin, koristi se čisti CO<sub>2</sub>, a kod MAGM, plinske mješavine sa značajnim udjelom aktivnog plina. Na slici 3.1 prikazana je skica procesa zavarivanja s presjekom pištolja.



Slika 3.1 Presjek pištolja u radu kod MIG/MAG postupaka zavarivanja [5]

Osnovnu opremu industrijskog, automatskog MAG sustava čine (slika 3.2):

- ➢ izvor struje,
- oprema za dovod žice (bubanj za namatanje, permanentni magnetni motor i specijalni pogonski valjci),
- > plinska boca s pokazateljem tlaka i regulatorom protoka zaštitnog plina,
- spremnik sredstva za hlađenje pištolja,
- izolirani polikabel (žica dodatnog materijala, bakreni vodič za struju, crijevo za zaštitni plin, crijevo za rashladno sredstvo),
- ➢ pištolj za zavarivanje,
- sustav za automatsko pomjeranje pištolja
- zaštitna oprema za djelatnike.



Slika 3.2 Automatski MIG/MAG sustav za zavarivanje [5]

Na prijenos metala kod MAG postupka zavarivanja djeluju sljedeće sile [4]:

- > sila gravitacije  $F_{g}$
- $\succ$  elektromagnetska sila  $F_{em}$
- > sila površinske napetosti  $F_{pn}$
- > sila strujanja i pritiska plazme luka  $F_{pl}$
- $\succ$  sila eksplozije u kapljicama metala  $F_{e}$
- > sila reaktivnog djelovanja  $F_r$



Slika 3.3 Djelovanje sila na kapljicu metala u električnom luku [4]

Neke od gornjih sila djeluju na način da pomažu prijenosu metala dok se neke opiru prijelazu kapljice u kupku taline, prema izrazu (3.1) [4]:

$$F = F_{g} + F_{pn} + F_{em} + F_{r} + F_{pl} + F_{e}$$
(3.1)

#### 3.2. Metode prijenosa metala

Metode prijenosa metala ovise o brojnim čimbenicima poput jakosti struje, napona električnog luka, vrste dodatnog materijala i promjera žice, vrste zaštitnog plina ili plinske mješavine i drugima, a dijelimo ih na:

- prijenos kratkim spojevima,
- prijenos mješovitim lukom,
- prijenos štrcajućim lukom,
- prijenos impulsnim strujama,
- prijenos velikom gustoćom struje.

### 3.2.1. Prijenos metala kratkim spojevima

Ovim načinom prijenosa metala dolazi do depozicije kontinuirano dobavljane žice pomoću električnih kratkih spojeva koji se periodički ponavljaju. Glavne značajke su mali unos topline i činjenica da se sav prijenos dodatnog metala vrši pri fizikalnom kontaktu elektrode i osnovnog materijala odnosno taline. Period pri kojem se odvaja jedna kapljica metala dijeli se na fazu kratkog spajanja i fazu električnog luka. Do odvajanja kapljice dolazi u ovoj prvoj fazi u kojoj se vrh elektrode nalazi u fizikalnom kontaktu sa rastaljenim metalom pri čemu raste jakost struje što dovodi do povećanja magnetske sile, koja se javlja na koncu elektrode zbog djelovanja elektromagnetskog polja, i steže kapljicu taline vrška žice (slika 3.4). Ova pojava je još poznata i kao "pinch effect". Kapljica metala kod kratkih spojeva većeg je promjera od žice kojom se zavaruje. Broj kratkih spojeva u sekundi se kreće od 50 do 250.



Slika 3.4 Prijenos dodatnog metala kratkim spojevima: a) realni prikaz, b) shematski prikaz [6],[12]

Ovaj prijenos metala u luku daje talinu malog volumena koja se brzo hladi pa je pogodan za zavarivanje tankih limova i korijena zavara kod debljih komada, a najčešće se vrši u zaštiti ugljičnog dioksida i njegovih mješavina.

## 3.2.2. Prijenos metala mješovitim lukom

Prijenos metala mješovitim lukom odvija se stvaranjem krupne kapljice metala na vrhu žice elektrode koja se, zatim, pod djelovanjem sila u električnom luku odvaja i pada u talinu bez kratkog spoja. Pojedine kapljice, ovisno o duljini električnog luka, gustoći i jakosti struje te naponu luka, mogu toliko narasti da u određenom trenutku dodirnu talinu čime nastupa kratki spoj (slika 3.5). Mješoviti luk se javlja u području jakosti struja i napona između vrijednosti prijenosa kratkim spojevima i štrcajućim lukom.



Slika 3.5 Prijenos dodatnog metala mješovitim lukom: a) realni prikaz, b) shematski prikaz [6],[12]

Promjer kapljice metala veći je od promjera žice kojom se zavaruje. Proces zavarivanja s prijenosom metala mješovitim lukom teško se kontrolira, javlja se intenzivno prskanje, slabije je kvašenje taline, što uzrokuje nepotpuno spajanje materijala i nastajanje pukotina, a "gusjenica" zavara je izbrazdana i nepravilna. Ovaj prijenos metala posebno je izražajan kod zavarivanja u zaštiti čistog ugljičnog dioksida ili mješavina s njegovim snažnim utjecajem.

### 3.2.3. Prijenos metala štrcajućim lukom

Kod prijenosa metala štrcajućim lukom, kontinuirano dovođena žica elektrode se rastaljuje u području većeg napona i veće jakosti struje zavarivanja pri čemu se stvara mlaz malih kapi taline koje aksijalno "putuju" kroz električni luk te velikim brzinama i snagom uranjaju u rastaljeni osnovni materijal (slika 3.6). Broj kapljica metala otkinutih u sekundi može se popeti na nekoliko stotina.



Slika 3.6 Prijenos metala štrcajućim lukom: a) realni prikaz, b) shematski prikaz [6], [12]

Promjer kapljice je manji od promjera žice kojom se zavaruje. Veliki unos topline i velika količina nataljenog materijala svojstveni su ovom prijenosu pa se primjenjuje kod zavarivanja debljih dijelova u vodoravnom položaju. Nije pogodan za zavarivanje u prisilnim položajima. Zaštitne plinske mješavine koje posebno podržavaju ovaj način prijenosa jesu one s pretežnim udjelom argona.

### 3.2.4. Prijenos metala impulsnim strujama

Prijenos dodatnog metala impulsnom strujom je kontrolirana varijanta prijenosa štrcajućim lukom gdje se periodički izmjenjuju dvije jakosti struje. Dodatnim se uređajem, u određenom trenutku, uključi povećana odnosno maksimalna jakost struje pri kojoj dolazi do kidanja kapljice, a potom nastupa opadanje na minimalnu, osnovnu jakost struje koja održava električni luk stabilnim i omogućuje konstantno dovođenja topline na mjesto zavarivanja. U jednoj sekundi izvrši se nekoliko stotina impulsnih ciklusa, a pri svakom se, u idealnom slučaju, oslobodi jedna kapljica dodatnog metala (slika19.). Frekvencija impulsa, a time i broj kapljica, su podesivi.



Slika 3.7 Prijenos dodatnog metala impulsnim strujama: a) realni prikaz, b) shematski prikaz [6],[12]

Prosječna jakost struje je manja od prijelazne iz kratkog u štrcajući luk te se tako izbjegava nepravilan i neprihvatljiv prijenos grubim kapima. Impulsna metoda primjenjiva je za sve položaje zavarivanja, a postiže se uglavnom u zaštiti argona i argonom bogatih mješavina.

## 3.2.5. Prijenos metala velikom gustoćom struje

Ovaj prijenos metala postiže se posebnom kombinacijom jakosti struje, brzine dovođenja elektrode, napona luka, slobodnog kraja žice i sastava zaštitne plinske mješavine. Mogu se postići velike količine deponiranog metala, otprilike u intervalu od 5 do 25 kg/h, s praktičnom primjenom do 18 kg/h, dok je štrcajući luk, primjerice, ograničen na 3,5 do 5,5 kg/h. Prema značajkama električnog luka, prijenos metala velikom gustoćom struje dijeli se na rotacijski i nerotacijski prijenos.

**Rotacijski prijenos** se postiže kombinacijom velike brzine dovođenja žice, dugog slobodnog kraja žice i zaštitne plinske mješavine koja sadržava argon, ugljični dioksid i kisik. Veliki slobodni kraj žice povećava električnu otpornost i zagrijavanje što dovodi do taljenja vrha elektrode. Elektromehaničke sile koje nastaju protjecanjem struje uzrokuju

krivudanje rastaljenog kraja žice po spiralnoj putanji pri čemu se kapljice metala odvajaju velikim brzinama. (slika 3.8).



Slika 3.8. Rotacijski prijenos dodatnog metala velikom gustoćom struje: a) realni prikaz, b) shematski prikaz [6],[13]

**Nerotacijski prijenos** velikom gustoćom struje postiže se izostankom vrtnje vrha žičane elektrode. Vrtnja se sprječava primjenom zaštitnih plinskih atmosfera veće toplinske vodljivosti koje omogućuju izraženiju površinsku napetost rastaljenog kraja žice. Brzina odvajanja kapljica je manja nego kod rotacijskog prijenosa pa se količina nataljenog materijala kreće u intervalu od 4,5 do 13,5 kg/h. Plinske mješavine s većim udjelima ugljičnog dioksida ili helija utječu na povećanje prijelazne jakosti struje iz nerotacijskog u rotacijski prijenos i susprežu okretanje električnog luka koji je, u odnosu na luk kod štrcajućeg načina prijenosa, dulji i širi. Strujanje plazme je aksijalno i vidno uže nego kod rotacijskog tipa te se, zbog veće mjestimične koncentracije topline, postiže i dublja penetracija pri istoj jaksoti struje.

### 3.3. Metalurške reakcije kod zavarivanja nelegiranih konstrukcijskih čelika

Kod MAG zavarivanja nelegiranih čelika, aktivne komponente plinskih mješavina ( $CO_2$ i  $O_2$ ) sudjeluju u metalurškim reakcijama oksidacije i redukcije, odnosno dezoksidacije. Pri visokim temparaturama električnog luka javlja se disocijacija ugljičnog dioksida prema kemijskoj reakciji (3.2) [1]:

$$2CO_2 \leftrightarrow 2CO + O_2$$
 (3.2)

Kod nižih temperatura, u donjem dijelu električnog luka, uz hladnija mjesta radnog komada doći će do kemijske reakcije suprotnog smjera tj. rekombinacije pri čemu se oslobađa velika količina topline.  $O_2$  se u području električnog luka može pojaviti kao komponenta zaštitne mješavine, kao produkt disocijacije  $CO_2$  ili kao atmsferski plin, a u okolini visokih tempratura disocira reakcijom (3.3) [1]:

$$O_2 \leftrightarrow O$$
 (3.3)

Oksidacija rastaljenog metala nastupa u zoni električnog luka, gdje se oslobađaju kapljice dodatnog metala, i na površini taline, s tim da je oksidacija kapljica intenzivnija zbog viših temperatura u stupu luka. Kemijski elementi, u sastavu konstrukcijkih čelika, reagiraju sa  $CO_2$  i  $O_2$  sljedećim reakcijama [1]:

- $Fe + CO_2 \rightarrow FeO + CO$  (3.4)
- $Mn + CO_2 \rightarrow MnO + CO$  (3.5)
- $Si + 2CO_2 \rightarrow SiO_2 + 2CO \tag{3.6}$  (3.6) (3.7)
- $C + CO_2 \rightarrow 2CO \tag{3.8}$
- $2Fe + O_2 \rightarrow 2FeO \tag{3.9}$
- $2Mn + O_2 \rightarrow 2MnO \tag{3.10}$
- $\operatorname{Si} + \operatorname{O}_2 \to \operatorname{SiO}_2$  (3.11)

$$2C + O_2 \rightarrow 2CO \tag{3.12}$$

Oksidacijski procesi mogu uzrokovati neželjene promjene u metalu zavara. Primjerice, oksidi, poput FeO, u zavarenom spoju čine metalnu vezu slabijom i imaju loša mehanička svojstva. Pojava razugljičenja odnosno smanjenja sadržaja ugljika u čeliku ,zbog oksidacijskih reakcija, također rezultira slabljenjem mehaničkih svojstava. Plinovi, kao

što su ugljični monoksid i vodik, produkti oksidacije, utječu na stvaranje pora u zavaru. Nastajanje silicijevih i manganovih oksida koji potom isplivaju na površinu u obliku troske, smanjuje udio ovih elemenata u čeliku, što je nepovoljno. To se, ipak, može nadoknaditi povćavanjem njihova udjela u dodatnom materijalu pa će oni, zbog većeg afiniteta prema kisiku od Fe, sudjelovati u procesima dezoksidacije stvarajući spomenutu trosku [1]:

$$FeO + Mn \rightarrow MnO + Fe$$
 (3.13)

$$2\text{FeO} + \text{Si} \rightarrow \text{SiO}_2 + 2\text{Fe} \tag{3.14}$$

Indirektno utječu i na smanjenje poroznosti jer su intenzivniji dezoksidanti od ugljika uslijed čega usporavaju kemijsku reakciju C i FeO koja bi u protivnom dovela do burnog izdvajanja CO iz taline i poroznijeg metala zavara. Dodatni materijal treba biti optimalno odabran, po pitanju količine Mn i Si u sastavu, jer inače neće doći do odgovarajućeg legiranja metala zavara pa će i mehanička svojstva zavarenog spoja biti slabija.

Sve navedene metalurške reakcije vrlo su vjerojatne u područjima gdje vrijednosti tlakova i temperatura nisu velike kao u središtu stupa eketričnog luka i gdje je trajanje reakcija dovoljno dugo. U suprotnom, zbivanja se mogu teško objasniti zbog izričito velikih brzina kojima se kemijske reakcije odvijaju.

## 4. EKSPERIMENTALNI RAD

### 4.1. Plan pokusa

Eksperimentalnim radom, cilj je dokazati sljedeće hipoteze:

- 1. Sastav zaštitne plinske mješavine utječe na svojstvo tvrdoće kutnog, zavarenog spoja.
- 2. Sastav zaštitne plinske mješavine utječe na geometriju kutnog, zavarenog spoja.
- Sastav zaštitne plinske mješavine utječe na prijelaznu jakost struje i prijelaznu vrijednost napona kod prijelaza s metode prijenosa metala kratkim spojevima na metodu prijenosa metala štrcajućim lukom.
- 4. Sastav zaštitne plinske mješavine utječe na svojstvo tvrdoće navara.
- 5. Sastav zaštine plinske mješavine utječe na geometriju navara.

Eksperimentalno zavarivanje sastoji se od četiri faze, a svaka faza podijeljena je na tri točke prema glavnoj, promjenjivoj varijabli, vrsti zaštitne plinske mješavine.

| TOČKE<br>FAZA<br>POKUSA | OZNAKE<br>PO HRN 439 | <b>UDIO (%)</b><br>$x_1(Ar)$ | UDIO (%)<br>$x_2(CO_2)$ | UDIO (%)<br>$x_3(O_2)$ |
|-------------------------|----------------------|------------------------------|-------------------------|------------------------|
| 1.                      | M21                  | 82                           | 18                      | 0                      |
| 2.                      | C1                   | 0                            | 100                     | 0                      |
| 3.                      | M23                  | 90                           | 5                       | 5                      |

 Tablica 4.1 Točke faza pokusa s obzirom na vrstu zaštitne plinske mješavine

Za provedbu pokusa, korišen je opći konstrukcijski čelik oznake S235JRG2 prema europskoj normi (stara oznaka HRN: Č361).

Kao dodatni materijal, primjenjena je elektroda G3Si1 prema normi HRN EN440, pobakrena žica široke primjene za zavarivanje u  $CO_2$ , Ar/ $CO_2$  i Ar/ $CO_2/O_2$  zaštitnim mješavinama za čelike čvrstoće do 590 N/mm<sup>2</sup>.

| Oznaka            | Sastav %           |              |       |        |                 |  |
|-------------------|--------------------|--------------|-------|--------|-----------------|--|
| HRN EN 440:       | С                  | Mn           |       | Si     |                 |  |
| G3S11,            | 0,06-0,13%         | 1,3-1,6%     |       | 0,7-1% |                 |  |
| AWC CEA 5 10.     | Mehanička svojstva |              |       |        |                 |  |
| ~ER 70 S-6,       | $R_{ m m}$         | $R_{\rm eH}$ | $A_5$ |        | $K_v$ (- 20 °C) |  |
| ,                 | $N/mm^2$           | $N/mm^2$     | %     |        | J               |  |
| DIN 8559:<br>SG-2 | 510 - 590          | > 430        | > 22  |        | 80              |  |

Tablica 4.2 Sastav i mehanička svojsta dodatnog materijala [14]

Sve faze pokusa vrše se automatskim MAG postupkom uz pomoć "Fronius TransPulse Synergic" uređaja za zavarivanje, primjenom opcije "synergic" i "BUG – O Systems" automata za pomjeranje pištolja.

Tehnički podatci za "Fronius TransPulse Synergic" (slika 4.1):

- model: TransPulse Synergic 3200
- struja: DC ("direct current") i AC ("alternate current"),
- ➤ max. jakost struje: 320 A,
- ➢ max. napon: 30 V,
- podržava impulsni prijenos metala,
- > zahtjev za napajanje:  $3 \sim , 50 60$  Hz,
- ➢ intermitencija: 320A, 30V − 40%; 250A, 27V − 60%; 220A, 25V 100%
- hlađenje vodom



Slika 4.1 "Fronius TransPulse Synergic" uređaj za zavarivanje

Tehnički podatci za "BUG – O Systems" (slika 4.2):

- gibanje pištolja: pravocrtno ili uz njihanje
- ➢ raspon brzina gibanja: 1 − 84 cm/min
- zahtjevi napajanja: AC / 50-60Hz /



Slika 4.2 "BUG – O Systems" automat za pomicanje pištolja

### 4.1.1. Plan zavarivanja uzoraka kutnog spoja

Na temelju proučene literature o svojstvima zavara pri MAG zavarivanju nelegiranih konstrukcijskih čelika, odabrani su sljedeći uvjeti i parametri rada:

Konstantne varijable:

- ▶ vrsta spoja: kontinuirani kutni zavar T-profila s jednim prolazom
- $\blacktriangleright$  debljina uzoraka: t = 10 mm



Slika 4.3 Debljina uzoraka za izvedbu pokusa

- > postupak zavarivanja: MAG zavarivanje kratkim spojevima
- ➢ brzina zavarivanja:

$$v_z = 30 \text{ cm} / \text{min}$$

jakost struje zavarivanja:

$$I = 200 \text{ A},$$

▶ promjer dodatnog materijala –  $\varphi$  1,2 mm,

protok zaštitnog plina:

$$Q = 16 \, \text{l/min},$$

duljina slobodnog kraja žice:

$$l_{\rm skž} = 12 \, \rm mm$$
,



Slika 4.4 Slobodni kraj žice

> tehnike rada - nagib pištolja u odnosu na horizontalnu ploču kutnog spoja:



Slika 4.5 Nagib pištolja kod izvođenja kutnog zavara

- kut između pištolja i okomice na pravac vođenja: neutralni - 0 °



Slika 4.6 Neutralni kut između pištolja i okomice na pravac vođenja

Promjenjiva varijabla je vrsta zaštitne plinske mješavine prema kojoj su formirane točke faze pokusa (tablica 4.1).

#### 4.1.2. Plan mjerenja prijelazne jakosti struje i napona

Prijelazna jakost struje odnosi se na jakost struje kod koje se postiže potpuni prijenos metala štrcajućim lukom bez povremenih kratkih spojeva. U ovoj fazi pokusa, pored vrste zaštitne plinske mješavine, promjenjive varijable čine jakost struje i napon. Kod MAG zavarivanja u zaštitnoj atmosferi ugljičnog dioksida, štrcajući luk se javlja tek kod izrazito velikih jakosti struje ( oko 400 A) i takva kombinacija nema praktičnu primjenu (tablica 4.3). Iz toga razloga, u pokusu će se koristiti samo mješavine M21 i M23, uz polaznu jakost struje od 200 A.

| Postupci zavarivanja                            | Vrste luka i glavne primjene                         |                                         |                                                      |                          |  |  |  |
|-------------------------------------------------|------------------------------------------------------|-----------------------------------------|------------------------------------------------------|--------------------------|--|--|--|
| pod zaštitom plina                              | kratki luk                                           | miješani luk                            | štrcajući luk                                        | impulsni luk             |  |  |  |
| Inertni plin<br>(MIG-postupak)                  |                                                      | aluminij                                | aluminij, bakar                                      | aluminij, bakar          |  |  |  |
| Aktivni plin<br>(MAG-postupak)                  | čelik                                                | čelik                                   | čelik                                                | čelik                    |  |  |  |
| Mješavina plina<br>(MAGM-postupak)              | nelegirani,<br>srednje i<br>visokolegirani<br>čelici | nelegirani i<br>niskolegirani<br>čelici | nelegirani,<br>srednje i<br>visokolegirani<br>čelici | visokolegirani<br>čelici |  |  |  |
| CO <sub>2</sub> -zavarivanje<br>(MAGC-postupak) | nelegirani i<br>niskolegirani<br>čelici              | nelegirani i<br>niskolegirani<br>čelici |                                                      |                          |  |  |  |

# Tablica 4.3 Orijentacijski podatci za osnovne metode prijenosa metala [11]

Promijenjeni parametri rada:

> protok plina:

$$Q = 20 \, \text{l/min}$$

duljina slobodnog kraja žice:

$$l_{\rm skž} = 20 \,\rm mm$$

# 4.1.3. Plan zavarivanja kutnih uzoraka pri prijelaznoj jakosti struje i naponu

Parametri rada:

debljina uzoraka:

t = 10 mm,

brzina zavarivanja:

 $v_z = 30 \text{ cm/min},$ 

jakost struje zavarivanja:

I – ovisi o plinskoj mješavini, prijelazna jakost struje u štrcajući luk

- > promjer dodatnog materijala  $\varphi$  1,2 mm,
- protok zaštitnog plina:

$$Q = 20 \, \text{l/min}$$
,

duljina slobodnog kraja žice:

$$I_{\rm skž} = 18 \,\rm mm$$
 ,

> tehnike rada: kut između pištolja i okomice na pravac vođenja =  $0^{\circ}$ .

## 4.1.4. Plan navarivanja uzoraka

Parametri rada:

➢ debljina uzoraka:

t = 10 mm,

- prijenos metala: prijenos kratkim spojevima
- ➢ brzina zavarivanja:

 $v_z = 30 \text{ cm/min}$ 

jakost struje zavarivanja:

$$I = 200 \text{ A}$$

- > promjer dodatnog materijala  $\varphi$  1,2 mm,
- protok zaštitnog plina:

 $Q = 16 \, \text{l/min}$ 

duljina slobodnog kraja žice:

$$I_{skž} = 12 \text{ mm}$$

➤ tehnike rada – kut između pištolja i okomice na pravac vođenja: 15 – 20°



Slika 4.7 Kut od 15 do 20° između pištolja i okomice na pravac vođenja

## 4.2. Zavarivanje uzoraka kutnog spoja

Kutni spojevi T – profila kontinuirano su izvedeni na pločama od navedenog, općeg konstrukcijskog čelika, dimenzija prikazanih na donjoj slici. Nije vršena nikakva posebna priprema.



Slika 4.8 3D skica i dimenzije pripremaka od općeg konstrukcijskog čelika za kutno zavarivanje



Slika 4.9 Zavarivanje kutnih uzoraka uz prijenos metala kratkim spojevima

Na slikama 4.10, 4.11, i 4.12. predočeni su dobiveni zavari na kutnim uzorcima s redoslijedom:

- ➤ uzorak 1. zaštitna plinska mješavina M21 (82 % Ar + 18 % CO<sub>2</sub>),
- ➤ uzorak 2. zaštitna plinska mješavina C1 (100% CO<sub>2</sub>),
- > uzorak 3. zaštitna plinska mješavina M23 (90 % Ar + 5 %  $CO_2$  + 5 %  $O_2$ ).

## Uzorak 1

Korištenjem "synergic mode" opcije na uređaju za zavarivanje, uz ručno namješteni parametar jakosti struje od 200A, dobivene su vrijednosti napona i brzine dobave žice:

- → U = 19,8 V
- $\succ$   $v_{z} = 5,1 \text{ m/min}$



Slika 4.10. Uzorak 1, kutni spoj zavaren u zaštitnoj atmosferi 82 % Ar + 18 % CO<sub>2</sub>

Količina toplinske energije unesena zavarivanjem po centimetru zavara [12]:

$$E = \frac{U \cdot I \cdot \eta \cdot 60}{v_x \cdot 1000} = \frac{19,8 \cdot 200 \cdot 0,7 \cdot 60}{30 \cdot 1000} = 5,544 \text{ kJ/cm}, \qquad (4.1)$$

E – unos topline po centimetru zavara [kJ/cm],

I – jakost struje [A],

U – napon [V],

 $v_z$  - brzina zavarivanja, [cm/min]

 $\eta$  – faktor unosa topline za MAG postupak zavarivanja.

Oksidacijski potencijal zaštitne plinske mješavine [2]:

$$\frac{x(\text{CO}_2)}{2} + x(\text{O}_2) = \frac{18\%}{2} + 0\% = 9\%,$$
(4.2)

*x* – udio plina u mješavini.

## Uzorak 2

Vrijednosti napona i brzine žice za uzorak 2. iznose:

- ➤ U = 21,4 V
- $\triangleright$  v<sub>ž</sub> = 5,5 m/min



Slike 4.11 Uzorak 2., kutni spoj zavaren u zaštitnoj atmosferi  $CO_2$ 

Količina toplinske energije unesene zavarivanjem po centimetru zavara [12]:

$$E = \frac{U \cdot I \cdot \eta \cdot 60}{v_z \cdot 1000} = \frac{21,4 \cdot 200 \cdot 0,7 \cdot 60}{30 \cdot 1000} = 5,992 \text{ kJ/cm}.$$
 (4.3)

Oksidacijski potencijal zaštitnog plina [2]:

$$\frac{x(\text{CO}_2)}{2} + x(\text{O}_2) = \frac{100\%}{2} + 0\% = 50\%$$
(4.4)

## Uzorak 3

Vrijednosti napona i brzine žice za uzorak 3. iznose:

- $\succ$  U = 18,5 V
- $\triangleright$   $v_{\tilde{z}} = 5,1 \,\mathrm{m/min}$



Slika 4.12 Uzorak 3, kutni spoj zavaren u zaštitnoj atmosferi  $90\% Ar + 5\% CO_2 + 5\% O_2$ 

Količina toplinske energije unesene zavarivanjem po centimetru zavara [12]:

$$E = \frac{U \cdot I \cdot \eta \cdot 60}{v_{\tau} \cdot 1000} = \frac{18,5 \cdot 200 \cdot 0,7 \cdot 60}{30 \cdot 1000} = 5,180 \text{ kJ/cm}$$
(4.5)

Oksidacijski potencijal zaštitne plinske mješavine [2]:

$$\frac{x(\text{CO}_2)}{2} + x(\text{O}_2) = \frac{5\%}{2} + 5\% = 7,5\%$$
(4.6)
Između kutnih zavara uzoraka 1 i 3 nema značajne razlike u izgledu površine zavara što je posljedica sličnosti učinka primjenjenih plinskih mješavina. CO2 dodan argonu, uz postotak manji od 20 %, dobrom toplinskom vodljivošću i većim unosom topline zbog rekombinacije, doprinosi kontroliranom gibanju i kvalitetnom nalijeganju taline, s druge strane O2, smanjenem površinske napetosti i većom žitkošćuti taline, u kombinaciji s 10 % CO<sub>2</sub>, postiže sličan rezultat: pravilnu i lijepu površinu zavara. U slučaju uzorka 2., očigledna je manje pravilna povšina zavara i veća izbrazdanost, a skrutnute kapljice metala podalje od mjesta zavarivanja sugeriraju i na mjestimičnu pojavu štrcanja. Razlog tome je priroda prijenosa metala u zaštiti ugljičnog dioksida. Kapljice pri kratkim spojevima su veće nego u slučaju mješavina, električni luk nestabilniji i naginje štrcanju, a zbog snažnijeg gibanja taline javlja se i navedena izbrazdanost. Naravno, na količinu štrcanja utječe i jakost struje čijim povećanjem ono postaje intenzivnije. Da je za parametar rada bila izabrana jakost struje niža od 200 A i pojava raštrcanih kapi metala u okolini zavara bi bila manja. Kod zavarivanja nelegiranih čelika, onečišćenje kapljicama metala se smatra estetskom pogreškom. Očigledno, uporaba plinskih mješavina smanjuje rasprskavanje metala kod približno istih parametara zavarivanja.

Smeđe i zelenkaste prevlake na površini zavara su oksidi mangana i silicija koji su, za vrijeme zavarivanja zbog manje gustoće, isplivali na površinu taline u obliku troske. Kod uzorka 2 očituje se veća pojava troske čemu u prilog ide i izračunati oksidacijski potencijal ugljičnog dioksida, izrazito veći od oksidacijskog potencijala plinskih mješavina uzorka 1 i uzorka 3. To ukazuje i na činjenicu da je kod zavarivanja u zaštiti  $CO_2$  prisutna veća opasnost za nastajanjem željeznih oksida koji imaju negativan utjecaj na mehanička svojstva zavara. U praksi, prije naknadne obrade, trosku je potrebno odstraniti.

### 4.3. Mjerenje prijelazne jakosti struje i napona

Mjerenje prijelaznih vrijednosti vršeno je uz navarivanje na ravnu ploču s polaznom jakošću struje od 200 A. Provedena su tri mjerenja za obije plinske mješavine i izračunate su srednje matematičke veličine što je prikazano u narednim tablicama.

| M21 (82 % Ar + 18 % CO <sub>2</sub> ) |                                            |  |  |
|---------------------------------------|--------------------------------------------|--|--|
| I <sub>1</sub> = 255 A                | $U_1 = 27 V$                               |  |  |
| $I_2 = 260 \text{ A}$                 | $U_2 = 29 V$                               |  |  |
| $I_3 = 255 A$                         | $U_{3} = 27,8 V$                           |  |  |
| $\bar{I} = 256,67 \text{ A}$          | $\overline{\mathrm{U}} = 27,94 \mathrm{V}$ |  |  |

Tablica 4.4 Izmjerene prijelazne jakosti struje i naponi za mješavinu M21

 Tablica 4.5 Izmjerene prijelazne jakosti struje i naponi za mješavinu M23

| M23 (90 % Ar + 5 % $CO_2$ + 5 % $O_2$ ) |                                           |  |  |
|-----------------------------------------|-------------------------------------------|--|--|
| $I_1 = 236 A$                           | $U_1 = 25,5 V$                            |  |  |
| $I_2 = 241  A$                          | $U_2 = 25,8 V$                            |  |  |
| $I_3 = 239 \text{ A}$                   | $U_3 = 25,8 V$                            |  |  |
| Ī = 238,67 A                            | $\overline{\mathrm{U}} = 25,7 \mathrm{V}$ |  |  |

Eksperimentalnim mjerenjem je utvrđeno da se zavarivanjem u zaštitnoj atmosferi plinske mješavine 90% Ar + 5%CO<sub>2</sub> + 5%O<sub>2</sub> postižu niže prosječne, prijelazne vrijednosti jakosti struje i napona, a razlog tome je prisutnost kisika u mješavini koji smanjivanjem površinske napetosti utječe na stvaranje "finijih" kapljica odnosno kapljica manjeg promjera te povećava brzinu njihova nastajanja i otkinuća u električnom luku, stoga je i područje jakosti struja i napona mješovitog luka manje.

### 4.4. Zavarivanje kutnih uzoraka pri prijelaznoj jakosti struje i naponu

Zavarivanje kutnih spojeva sa srednjim vrijednostima prijelazne jakosti struje i napona izvedeno je na istom pripremku, najprije je zavaren uzorak u zaštitnoj atmosferi 82 % Ar + 18 %  $CO_2$ , a 30 minuta poslije, nakon dovoljnog hlađenja, uzorak u zaštiti 90 % Ar + 5 %  $CO_2$  + 5 %  $O_2$ . Prvi se vodi pod rednim brojem 4, a potonji pod rednim brojem 5.



Slika 4.13 Kutni spojevi dobiveni zavarivanjem pri prijelaznim vrijednostima: uzorak 4. (lijevo) i uzorak 5. (desno)

Između uzoraka 4 i 5 nema značajne razlike u izgledu površine zavara.

Količina toplinske energije unesena zavarivanjem po centimetru zavara kod uzorka 4 [12]:

$$E = \frac{U \cdot I \cdot \eta \cdot 60}{v_{z} \cdot 1000} = \frac{27,94 \cdot 257 \cdot 0,7 \cdot 60}{30 \cdot 1000} = 10,0528 \,\text{kJ/cm}$$
(4.7)

Količina toplinske energije unesena kod zavarivanja uzorka 5.:

$$E = \frac{U \cdot I \cdot \eta \cdot 60}{v_z \cdot 1000} = \frac{25,7 \cdot 239 \cdot 0,7 \cdot 60}{30 \cdot 1000} = 8,5992 \,\text{kJ/cm}$$
(4.8)

### 4.5. Navarivanje uzoraka za ispitivanje geometrije

U sklopu ove faze, izvedena su tri paralelna navara na ploči dimenzija 300x160mm:

- ➤ navar 1. zaštitna plinska mješavina M21 (82 % Ar + 18 % CO<sub>2</sub>),
- $\blacktriangleright$  navar 2. zaštitni plin C1 (100% CO<sub>2</sub>),
- → navar 3. zaštitna plinska mješavina M23 (90 % Ar + 5 %  $CO_2$  + 5 %  $O_2$ ).

Između navarivanja održavane su stanke da bi se izvedeni navar dovoljno ohladio jer bi u protivnom unesena toplina imala utjecaj na naredno navarivanje odnosno svojstva i geometriju navara.



Slika 4.14 Uzorci navareni u zaštiti eksperimentalnih mješavina

Kod uzoraka navara bolje se vidi narebrenost i nepravilna površina "gusjenice" dobivene u zaštiti  $CO_2$ , zbog nestabilnijeg električnog luka i snažnijeg gibanja taline. Međutim, radi se o estetskoj pogrešci koja je vezana uz svojstva zaštite ugljičnim dioksida i ne znači da takav zavar ima lošija mehanička svojstva. Utjecaja zavarivača nema jer je ekesperimentalno zavarivanje izvršeno mehaniziranim postupkom, ali poveremeo jačanje i slabljenje struje i napona, koje se javljalo prilikom zavarivanja doprinose pojavi ove greške, poglavice u slučaju  $CO_2$ . Navari 1 i 3. očekivano pokazuju finiju zaobljenost i ravniju površinu uz manje intenzivnu prisutnost oksida troske.

### 4.6. Priprema i ispitivanja makroizbrusaka

Pet uzoraka kutnih spojeva izrezano je na strojnoj pili i potom su poprečni presjeci izbrušeni brusnim papirima, postupno od grublje prema finijoj obradi uz posljednju gradaciju P 400. Dobiveni izbrusci su zatim nagrizeni u nitalu, nital je rastvor dušične kiseline u alkoholu i to u omjeru 1 cm<sup>3</sup> dušične kiseline i 100 cm<sup>3</sup> etilnog alkohola. Nakon što se pojavila jasno iražena struktura, uslijedilo je ispiranje mlazom vruće vode da se zaustavi kemijska reakcija te čišćenje alkoholom i sušenje. Pripremljeni i osušeni makroizbrusci podvrgnuti su vizualnoj kontroli i ispitivanjima tvrdoće i geometrije.

Iz ploče s navarima izrezan je jedan uzorak na kojem se nalaze sva tri navara radi mogućnosti lakše vizualne usporedbe zona navarivanja. Postupak je izvršen plinskim rezanjem na automatskoj plinskoj rezačici "Uljanik" uz brzinu rezanja od 380 mm/min.



*Slika 4.15 Rezanje ploče s navarima plinskim postupkom na automatskoj rezačici* "*Uljanik"* 

Presjek izrezanog uzorka obrađen je na blanjalici i izbrušen brusnim papirima, uz posljednju gradaciju P500. Nakon toga, uslijedilo je nagrizanje u nitalu kojem je dodana kapljica klorne kiseline kako bi zone navara bilo što izraženije. Uzorak je potom ispran mlazom vruće vode da se zaustavi kemijska reakcija, očišćen alkoholom i osušen. Dobiveni makroizbrusak namijenjen je vizualnoj kontroli te ispitivanju tvrdoće i geometrije.

#### 4.6.1. Vizualna kontrola

Iz poprečnih presjeka pripremljenih makroizbrusaka (slika 4.16), vidljivo je da su kutni zavari 1, 3 i 4 izvedeni simetrično, dok je kod uzoraka 2 i 5 zavar položen malo više prema donjoj ploči. Na mjestima gdje su uzorci izrezani, ne nailazi se na greške poroznosti, pukotina, naljepljivanja, čvrstih uključaka i ugorina uz zavar. Oblik zavara je zadovoljavajuć, uz dobar provar, iako je, kod uzoraka zavarenih uz prijenos metala kratkim spojevima, prisutno ispupčenje. Ono se može smanjiti povećanjem brzine zavarivanja. Smanjenju ispupčenja doprinose i veća jakost struje i napon što je vidljivo kod uzoraka 4 i 5 zavarenih prijenosom metala štrcajućim lukom kod kojeg je unos topline veći. Na zavaru uzorka 2 prisutno je i blago uleknuće, radi se o grešci slijeganja rastaljenog dodatnog materijala pod djelovanjem sile teže, a može se javiti kod nestabilnijeg električnog luka, pa je i logično da će se prije pojaviti u zaštiti čistog ugljičnog dioksida.



Slika 4.16 Makroizbrusci uzoraka kutnih spojeva

Na smanjenje uleknuća može se utjecati i primjenom veće brzine zavarivanja čime se na jednom mjestu nakuplja manje taline, pa ne dolazi do njezina slijeganja. Na izgled, zavarivanjem u zaštiti mješavina (uzorci 1 i 3) postignuti su viši i finije zaobljeni penetracijski oblici, ali bez numeričkih podataka, to nije dovoljan pokazatelj. Geometrija zavara ispitana je i detljnije analizirana kasnije. Površine zavara i ZUT-a kod uzoraka 4 i 5 su veće jer su oni zavarivani prijenosom metala štrcajućim lukom, s većim jakostima struje i napona, pa su i unosi topline bili veći. Kod uzorka 5, oku se nameće i djelomično "prstoliki" profil penetracije što sugerira da se, u tom slučaju, manifestirao utjecaj argona 90% Ar + 5% CO + 5% O<sub>2</sub>. dominantne komponente plinske mješavine kao Zanimljivo je, da u slučaju uzorka 4 (82%Ar+18%CO<sub>2</sub>), utjecaj argona nije toliko snažan, stoga je i postignuti penetracijski profil kvalitetniji.

Iz presjeka navara (slika 4.17), jasno se vidi da se najšira i najdublja penetracija u osnovni materijal postiže zavarivanjem u zaštiti ugljičnog dioksida, međutim, vizualni dojam također ukazuje da je odnos širine i visine ujednačeniji u slučaju mješavina, što je bolje.



Slika 4.17 Makroizbrusak uzorka navara

Sa slike 4.17 također se može uočiti da, kod uzorka 1,  $CO_2$ , i kod uzorka 3,  $CO_2$  i  $O_2$ , svojom toplinskom vodljivošću utječu na širenje, inače uskog, penetracijskog profila pod zaštitom 100% Ar. Osim toga, povećavaju i dubinu penetracije jer rekombiniranjem ostvaruju dodatan unos topline, poglavice kod prijenosa metala kratkim spojevima. Pri zavarivanja u zaštiti 100%  $CO_2$ , ovisno o debljini radnog komada, treba paziti da ne dođe do protaljivanja uzrokovanog većim unosom topline, svojstvenog ugljičnom

dioksidu zbog dobre toplinske vodljivosti i rekombinacije. Detaljno gledajući, može se uočiti da je simetričnost navara 1 "savršenija" u odnosu na navar 3, što može biti i posljedica slučaja. Adekvatno široko lice uz postepeno suženje prema korijenu je prepoznatljiva značajka u oba slučaja, a utjecaj argona nije toliko izražen kod mješavine  $90\% \text{ Ar} + 5\% \text{ CO}_2 + 5\% \text{ O}_2$  kao u uvjetima kutnog spoja zavarenog štrcajućim lukom, ali je ipak izraženiji nego u slučaju navara 1. Ugljični dioksid "ne daje" tako istančan prijelaz, već je i korijen navara relativno širok. Na presjecima nema vidljivih grešaka. Kod uzorka 2 uočava se blagi nagib navara na jednu stranu to je posljedica "burnijeg" gibanja taline kod zavarivanja u zaštiti  $\text{CO}_2$ .

### 4.6.2. Ispitivanje tvrdoća

Ispitivanje tvrdoća uzoraka kutnih spojeva i navara obavljeno je na Vickers tvrdomjeru, modela  $HV_{10}$  (F = 98,04 N  $\cong$  10 kp), prema standardu ISO 6507 - 1 (slika 4.18). Tvrdoća se ispitiva okomito na metal zavara, zonu utjecaja topline i osnovni materijal.



Slika 4.19 Ispitivanje tvrdoće na Vickers tvrdomjeru modela  $HV_{10}$ 

Mjerenje tvrdoće uzoraka kutnih spojeva i navara izvedeno je u dvije linije, a u sklopu obiju linija izvršeno je osam mjerenja prema slici 4.20 i 4.21



Slika 4.20 Linije mjerenja tvrdoće kod uzoraka kutnog spoja



Slika 4.21 Linije mjerenja tvrdoće kod navara

# 4.6.3. Ispitivanje geometrije

Ispitivanje geometrije je provedeno uz pomoć programskog software-a "Image J" čiji se rad bazira na pretvaranju izmjerenih pixela, dijela slike, u mjerne jedinice, primjerice milimetre, na način da se prethodno definira odnos milimetra i pixela pomoću mjernog sredstva koje mora biti uslikano zajedno s ispitnim uzorkom.



Slika 4.22 Mjerenje geometrije ispitnih uzoraka pomoću programa "Image J"

Kod uzoraka kutnih spojeva, izmjerene su sljedeće dimenzije (slika 4.23):

- 1. visina zavara a,
- 2. proračunska debljina zavara b,
- 3. duljina provara c,
- 4. duljina nadvišenja lica zavara d,
- 5. površina zavara,
- 6. površina provara,
- 7. površina zone utjecaja topline.



Slika 4.23 Dimenzije kutnog spoja: a – visina zavara, b – proračunska debljina zavara, c – duljina provara, d – duljina nadvišenja lica zavara, e – realna debljina zavara

Kod uzoraka navara, izmjerene su sljedeće dimenzije (slika 4.24):

- 1. širina navara b,
- 2. penetracija navara c,
- 3. duljina nadvišenja lica navara d,
- 4. površina navara,
- 5. površina provara,
- 6. površina zone utjecaja topline.



*Slika 4.24* Dimenzije navara: b – širina navara, c – penetracija navara, d – duljina nadvišenja lica navara

Svako od mjerenja izvršeno je pet puta, uz računanje srednje matematičke vrijednosti izmjerenih dimenzija, radi veće dosljednosti rezultata.

## 4.7. Evaluacija rezultata

### 4.7.1. Rezultati ispitivanja tvrdoća



Slika 4.25 Graf vrijednosti izmjerenih tvrdoća kutnog uzorka 1 po linijama 1 i 2, definiranim na slici 4.20

| Srednja vrijednost<br>tvrdoća linije 1, | Srednja vrijednost<br>tvrdoća linije 2, | Srednja vrijednost<br>tvrdoća metala | Srednja vrijednost<br>tvrdoća ZUT-a, |
|-----------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|
| HV <sub>10</sub>                        | HV <sub>10</sub>                        | zavara, $HV_{10}$                    | $HV_{10}$                            |
| 194,95                                  | 216,125                                 | 234,25                               | 209,125                              |

Tablica 4.6 Srednje aritmetičke vrijednosti izmjerenih tvrdoća kutnog uzorka 1



Slika 4.26 Graf vrijednosti izmjerenih tvrdoća kutnog uzorka 2 po linijama 1 i 2, definiranim na slici 4.20

| Srednja vrijednost<br>tvrdoća linije 1, | Srednja vrijednost<br>tvrdoća linije 2, | Srednja vrijednost<br>tvrdoća metala | Srednja vrijednost<br>tvrdoća ZUT-a, |
|-----------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|
| HV <sub>10</sub>                        | $HV_{10}$                               | zavara, $HV_{10}$                    | $HV_{10}$                            |
| 182,12                                  | 202,75                                  | 233,50                               | 194,00                               |

 Tablica 4.7 Srednje aritmetičke vrijednosti izmjerenih tvrdoća kutnog uzorka 2



Slika 4.27 Graf izmjerenih vrijednosti tvrdoća kutnog uzorka 3 po linijama 1 i 2, definiranim na slici 4.20

| Srednja vrijednost<br>tvrdoća linije 1 | Srednja vrijednost<br>tvrdoća linije 2 | Srednja vrijednost<br>tvrdoća metala | Srednja vrijednost<br>tvrdoća ZUT-a. |
|----------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|
| $HV_{10}$                              | $HV_{10}$                              | zavara, HV <sub>10</sub>             | $HV_{10}$                            |
| 189,41                                 | 194,62                                 | 231,25                               | 194,50                               |

 Tablica 4.8 Srednje aritmetičke vrijednosti izmjerenih tvrdoća kutnog uzorka 3



Slika 4.28 Usporedba srednjih vrijednosti tvrdoća uzoraka 1, 2 i 3. Linija 1 i linija 2 su linije mjerenja definirane na slici 4.20

Ispitivanje tvrdoća uzoraka kutnih spojeva, zavarenih MAG postupkom uz prijenos metala kratkim spojevima, pokazalo je da je u sva tri slučaja prosječna izmjerena tvrdoća linije 2 veća od tvrdoće linije 1, i da je prosječna izmjerena tvrdoća metala zavara veća

od tvrdoće ZUT-a. Najveće vrijednosti tvrdoće, kod sva tri uzorka, izmjerene su upravo u metalu zavara. Najviša izmjerena vrijednost iznosi 272 HV<sub>10</sub> i zabilježena je kod uzorka zavarenog u zaštiti CO<sub>2</sub> (slika 4.26), na metalu zavara u sklopu linije 2, odnosno u korijenu zavara. Najveći "skok" vrijednosti opažen je kod uzorka 2 u sklopu linije 2, na prijelazu iz zone osnovnog materijala u zonu utjecaja topline, a iznosi 68 HV<sub>10</sub>. Uzorak koji se ističe najvećim izmjerenim prosječnim vrijednostima tvrdoće u sve četiri kategorije je uzorak 1, zavaren u zaštiti plinske mješavine 82% Ar +18%CO<sub>2</sub>. Najmanje razlike zabilježene su kod metala zavara gdje se izračunate prosječne vrijednosti za sva tri plina nalaze u intervalu 231 – 235 HV<sub>10</sub>. Na ostalim razinama promatranja (linija 1, linija 2, i ZUT), uzorak 1 primjetno "odskače", dok razlike između uzoraka 2 i 3 nisu značajne.



Slika 4.29 Graf izmjerenih vrijednosti tvrdoće kutnog uzorka 4 po linijama 1 i 2, definiranim na slici 4.20

Tablica 4.9 Srednje aritmetičke vrijednosti izmjerenih tvrdoća kutnog uzorka 4

| Srednja vrijednost | Srednja vrijednost | Srednja vrijednost       | Srednja vrijednost |
|--------------------|--------------------|--------------------------|--------------------|
| tvrdoća linije 1,  | tvrdoća linije 2,  | tvrdoća metala           | tvrdoća ZUT-a,     |
| $HV_{10}$          | $HV_{10}$          | zavara, HV <sub>10</sub> | $HV_{10}$          |
| 219,52             | 231,75             | 227,75                   | 228,62             |



Slika 4.30 Graf izmjerenih vrijednosti tvrdoće kutnog uzorka 5 po linijama 1 i 2, definiranim na slici 4.20

Tablica 4.10 Srednje aritmetičke vrijednosti izmjerenih tvrdoća kutnog uzorka 5

| Srednja vrijednost<br>tvrdoća linije 1, | Srednja vrijednost<br>tvrdoća linije 2, | Srednja vrijednost<br>tvrdoća metala | Srednja vrijednost<br>tvrdoća ZUT-a, |
|-----------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|
| $HV_{10}$                               | $HV_{10}$                               | zavara, $HV_{10}$                    | $HV_{10}$                            |
| 223,05                                  | 238,87                                  | 231,50                               | 229,87                               |



Slika 4.31 Usporedba srednjih vrijednosti tvrdoće uzoraka 4 i 5. Linija 1 i linija 2 su linije mjerenja definirane na slici 4.20.

Prvo što se može primijetiti kod rezultata ispitivanja tvrdoće uzoraka kutnih spojeva, zavarenih pri prijelaznim vrijednostima jakosti struje i napona u zaštiti plinskih mješavina 82% Ar + 18%CO<sub>2</sub> i 90% Ar + 5%CO<sub>2</sub> + 5%O<sub>2</sub>, jest pojava da vrijednosti tvrdoće, općenito, opadaju u smjeru mjerenja, linijama 1 i 2. Razlog tome je što opći konstrukcijski čelik nema zajamčena svojstva te su, očigledno, vrijednosti tvrdoće osnovnog materijala vertikalne ploče bile znatno veće što je direktno utjecalo na više postignute prosječne tvrdoće linija 1 i 2, nakon zavarivanja. Najveća prosječna vrijednost tvrdoće oba uzorka zabilježena je kod linije 2. Iako razlika nije velika, na grafičkom prikazu, potkrijepljenom izmjerenim vrijednostima, može se zamijetiti da su sve prosječne tvrdoće uzorka zavarenog spoja u zaštiti mješavine s dodatkom kisika veće nego u slučaju uzorka 4. Točka najveće izmjerene tvrdoće kod uzorka 5 iznos je, čak, 345 HV<sub>10</sub>, a dotična točka se također nalazi na osnovnom materijalu, u okviru linije mjerenja 2.

Najveći pad vrijednosti tvrdoće u smjeru mjerenja zabilježen je kod uzorka 5, na liniji 1, pri prijelazu iz ZUT-a u zonu osnovnog materijala, a iznosi 75  $HV_{10}$ . Ispitivanje uzoraka 4 i 5 pokazalo je da je tvrdoća zavarenog spoja dobivenog u zaštinoj plinskoj mješavini s manjim udjelom aktivnih komponenti veća. Uz posljednju tvrdnju treba navesti činjenicu da su na manje tvrdoće uzorka 4 utjecaja imale i više vrijednosti prijelaznih parametara s kojima je postignut veći unos topline.

Uspoređujući uzorke zaverene prijenosom metala kratkim spojevima i štrcajućim lukom, za iste mješavine, primjećuje se da nema vidljivih razlika u izmjerenim tvrdoćama metala zavara dok su prosječne tvrdoće u ZUT-u veće kod uzoraka zavarenih štrcajućim lukom. U načelu, većim unosom topline postiže se sporije hlađenje pa bi i vrijednosti tvrdoće u slučaju štrcajućeg luka trebale biti niže što bi i bio ishod uz ujednačenija svojstva ploča komada na kojem su zavareni uzorci 4 i 5.



Slika 4.32 Graf izmjerenih vrijednosti tvrdoće navara 1 po linijama 1 i 2, definiranim na slici 4.21

| Srednja vrijednost | Srednja vrijednost | Srednja vrijednost       | Srednja vrijednost |
|--------------------|--------------------|--------------------------|--------------------|
| tvrdoća linije 1,  | tvrdoća linije 2,  | tvrdoća metala           | tvrdoća ZUT-a,     |
| $HV_{10}$          | $HV_{10}$          | navara, HV <sub>10</sub> | $HV_{10}$          |
| 150,95             | 151,44             | 185,75                   | 145,96             |

 Tablica 4.11
 Srednje aritmetičke vrijednosti izmjerenih tvrdoća navara 1



Slika 4.33 Graf izmjerenih vrijednosti tvrdoća navara 2 po linijama 1 i 2, definiranim na slici 4.21

| Srednja vrijednost | Srednja vrijednost | Srednja vrijednost | Srednja vrijednost |
|--------------------|--------------------|--------------------|--------------------|
| $HV_{10}$          | $HV_{10}$          | navara, $HV_{10}$  | $HV_{10}$          |
| 144,25             | 150,95             | 170,50             | 140,86             |

 Tablica 4.12 Srednje aritmetičkih vrijednosti izmjrenih tvrdoća navara 2



Slika 4.34 Graf izmjerenih vrijednosti tvrdoće navara 3 po linijama 1 i 2, definiranim na slici 4.21

| Tablica 4.13 | Srednje | aritmetičke | vrijednosti                           | izmjerenih | tvrdoća navara 3 |
|--------------|---------|-------------|---------------------------------------|------------|------------------|
|              |         |             | · · · · · · · · · · · · · · · · · · · |            |                  |

| Srednja vrijednost<br>tvrdoća linije 1, | Srednja vrijednost<br>tvrdoća linije 2, | Srednja vrijednost<br>tvrdoća metala | Srednja vrijednost<br>tvrdoća ZUT-a, |
|-----------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|
| $HV_{10}$                               | $HV_{10}$                               | navara, $HV_{10}$                    | $HV_{10}$                            |
| 164,96                                  | 168,69                                  | 199,75                               | 161,25                               |



Slika 4.35 Usporedba srednjih vrijednosti tvrdoće navara 1, 2 i 3. Linija 1 i linija 2 su linije mjerenja definirane na slici 4.21

Iz rezultata ispitivanja tvrdoća navara, može se zamijetiti da su najveće vrijednosti za sva 3 uzorka izmjerene u metalu navara i to na liniji 2, dakle u korijenu navara. Kod uzorka 2 zabilježen je i najveći porast tvrdoće od 38 HV<sub>10</sub>, upravo između točke u metalu navara i ZUT-u, kod linije 2. Prosječna vrijednost tvrdoća mjerenih na liniji 2 veća je nego na liniji 1 u sva tri slučaja. Iz dobivenih rezultata, jasno se uočava da su kod navara 3 postignute najveće srednje vrijednosti tvrdoće u sva četiri područja promatranja, a najmanje vrijednosti su zabilježene kod uzorka 2, zavarenog u zaštiti čistog CO<sub>2</sub>, što je, uz optimalnu dezoksidaciju, i realno, jer CO<sub>2</sub> omogućuje veći i ravnomjerniji unos topline. Razlike u tvrdoći između navara 3 i navara 1 znatnije su nego razlike između navara 1 i 2. Rezultati ove faze eksperimenta pokazuju da smanjivanjem udjela aktivnih komponenata u zaštitnoj mješavini raste tvrdoća navara.

Uzorci kutnih spojeva i navara, dobivenih MAG postupkom kratkim spojevima, ne pokazuju slično "ponašanje" tvrdoća spoja pri variranju zaštitnih plinova, premda su primjenjivani isti parametri zavarivanja. Činjenica je da su sva tri navara izvedena na istoj ploči, a svaki od kutnih zavara izveden je na drugom pripremku. Ovo je ostavilo bitan trag na reprezentativnost rezultata tvrdoće kod kutnih spojeva, početne razlike u tvrdoći triju pripremaka imaju velik utjecaj pored kojeg je teško izdvojiti učinak plinskih mješavina.

Također, sve promatrane prosječne tvrdoće, za svaki od zaštitnih plinova, vidno su manje kod navara nego u slučaju kutnih spojeva. Objašnjenje leži u složenijem odvođenju topline kutnih uzoraka što za posljedicu ima intenzivnije hlađenje mjesta spoja, a brže hlađenje doprinosi većoj tvrdoći.



Slika 4.36 Odvođenja topline kod kutnog spoja i navara

### 4.7.2. Rezultati ispitivanja geometrije

Nakon pet mjerenja svake od navedenih dimenzija i površina kutnih spojeva zavarenih kratkim spojevima, kutnih spojeva zavarenih štrcajućim lukom i navarenih uzoraka, izračunate su srednje vrijednosti i priložene uz donje dijagrame.



Slika 4.37 Usporedba dimenzija uzoraka 1 (82% Ar + 18% CO<sub>2</sub>), 2 (100% CO<sub>2</sub>),

 $3(90\% Ar + 5\% CO_2 + 5\% O_2.$ 

Gornji rezultati predočuju da sastav mješavine ne utječe znatno na proračunsku debljinu i nadvišenje zavara, s druge strane visina zavara u slučaju  $CO_2$  je osjetno manja nego

kod ostala dva uzorka. Međutim, blaga asimetričnost i uleknuće kod uzorka 2, definitivno su ostavili negativan utjecaj na visinu zavara kod prve faze zavarivanja, pa se ne može govoriti o smanjenju visine primjenom ugljičnog dioksida. Mjerenje provara pokazuje ulogu većeg unosa topline kod CO<sub>2</sub> kao zaštitnog plina jer dobiveni rezultat je dvostruko veći nego u slučaju mješavina. Može se zaključiti da zavarivanje u zaštiti ugljičnog oksida daje približno jednake iznose nadvišenja i proračunske debljine u odnosu na mješavine, a provar je znatno veći, što je dobro za kvalitetu spoja, ovisno o debljini radnog komada.



Slika 4.38 Usporedba površina zavara, provara i ZUT-a kutnih uzoraka 1 (82% Ar +18%CO<sub>2</sub>), 2 (100%CO<sub>2</sub>) i 3 (90% Ar +5%CO<sub>2</sub> +5%O<sub>2</sub>)

Uzorak 2 je, prema prikazanim rezultatima, "dominantan" u sve tri izmjerene površine. Izrazito veća površina provara glavni je doprinos i , ukupno većoj, površini zavara koju bilježimo kod uzorka s  $CO_2$ , tako da je u zaštiti ovog plina postignut najveći omjer površine provara i zavara. Usporedbom uzoraka 1 i 3 primjećuju se veće vrijedosti veličina površina kod uzorka 1, osim u području ZUT-a, gdje razlike nisu značajne. Očigledno povećavanjem udjela aktivnih komponenti, poglavice ugljičnog dioksida, rastu i veličine izmjerenih površina.





Primjetnoj razlici u visini zavara kod ispitivanja uzoraka 4 i 5 jednim dijelom je doprinijela i lagana asimetičnost zavara 5 koja je, najvjerojatnije, posljedica odstupanja u nagibu pištolja prilikom zavarivanja, zbog većeg nagiba više je topline uneseno u donju ploču što je direktno utjecalo na visinu izvedenog zavara. Izmjere proračunske debljine, provara i nadvišenja zavara također su veće kod uzorka 4, ali razlika je manje izraženna. Dobiveni rezultati, ipak, upućuju da je utjecaj većeg udjela aktivnih komponenti, naročito ugljičnog dioksida, u slučaju mješavine uzorka 4, kod zavarivanja uz prijenos metala štrcajućim lukom, doprinio nastajanju zavarenog spoja većih dimenzija, iako se ne smije zanemariti da su uzorci zavarivani s prijelaznim vrijednostima jakosti struje napona, pa je tako prijelazna jakost struje kod mješavine 82%Ar+18CO<sub>2</sub> veća za, čak, 18 A, što predstavlja dodatan unos topline na mjesto zavarivanja i tako direktno utječe na dimenzije i površine zavarenog spoja.



Slika 4.40 Usporedba vrijednosti površina kod kutnih uzoraka 4 (82% Ar +18% CO<sub>2</sub>) i 5 (90% Ar + 5% CO<sub>2</sub> + 5% O<sub>2</sub>), zavarenih uz prijenos metala šrcajućim lukom

Izmjereni iznosi pokazuju da je sastav plinske mješavine, ali i veća jakost struje, kod uzorka 4, utjecao na porast ispitivanih površina u usporedbi s uzorkom 5, što je posebice izraženo kod ukupne površine zavara. 90% Ar kod uzorka 5 izazvalo je vidljivu "prstolikost" penetracijskog oblika, na što se ne nailazi kod uzorka 4, ali je, s druge strane, u zaštiti mješavine 90% Ar + 5%  $CO_2$  + 5%  $O_2$  postignut bolji odnosno veći omjer površine provara i zavara.



Slika 4.41 Usporedba dimenzija uzoraka navara (1 - 82% Ar + 18% CO<sub>2</sub>, 2 - 100% CO<sub>2</sub>, 3 - 90% Ar + 5% CO<sub>2</sub> + 5% O<sub>2</sub>) Pri ispitivanju geometrije navara, najveća širina je izmjerena kod navara 2, dok je kod navara 3 evidentno postignut najmanji provar. Uzorak 3 ističe se i najvećim nadvišenjem premda razlika nije pretjerano velika. Najmanji odnos između širine i provara postignut je kod uzorka 1, navarenog u zaštiti 82% Ar + 18% CO<sub>2</sub>, koji pored toga ima i najmanje nadvišenje što rezultira kvalitetnijim penetracijskim oblikom u odnosu na oblike navara 2 i 3.



*Slika 4.42* Usporedba veličina površina kod uzoraka navara (1 - 82% Ar + 18% CO<sub>2</sub>, 2 - 100% CO<sub>2</sub>, 3 - 90% Ar + 5% CO<sub>2</sub> + 5% O<sub>2</sub>)

Najveće površine dobivene su kod primjene ugljičnog dioksida, što se posebno odnosi na površinu navara, iako je i provar primjetno veći. Uzorak 3 ima najmanje površine, s tim da posebno "zaostaje" u pogledu provara. Površine ZUT-a navara 1 i 3 su približno jednake. Rezultati ukazuju da su se povećanjem aktivnih komponeneta zaštitne mješavine povećali i iznosi površina kod uzoraka navara.

# 5. EKONOMSKI OSVRT NA EKSPERIMENTALNE PLINSKE MJEŠAVINE

U mnogim stručnim člancima nalaze se podatci prema kojima razlike u cijenama zaštitnih plinova i plinskih mješavina nemaju veliku u ulogu u ukupnim troškovima i dohotcima zavarivačkog pogona. Većina troškova otpada na cijenu materijala i obrade. Također, kada se uzimaju u obzir grana proizvodnje, vremena zastoja uređaja za zavarivanje, snabdijevanje rezervnim dijelovima i popravci, rezultat je da cijene plinova imaju minimalni ili zanemarivi udio u ukupnim troškovima, pa tako, prema nekim istraživanjima, udio se kreće od 3 do 8%, a u nekim litreturama moguće je naići i na podatke koji svjedoče o udjelima nižim od 3%. Međutim, jako cijena zaštitnog plina nije toliko bitna, neadekvatno odabrani plin ili mješavina za određenu primjenu, zbog pojave povećanog štrcanja i drugih vezanih grešaka, zahtijevaju intenzivno čišćenje i naknadnu obradu čime uvelike povećavaju troškove rada koji mogu rezultirati osjetnim gubitcima u godišnjem proračunu pogona. Da bi se spriječili takvi troškovi potrebno je izabrati zaštitnu plinsku mješavinu koja će uz odgovarajuće parametre zavarivanja biti optimalan izbor za traženu primjenu i maksimalno smanjiti potrebu za naknadnim čišćenjem i brušenjem mjesta zavarivanja. Ugljični dioksid, kao zaštitni plin, prilično je jeftiniji od čistog argona te mješavina Ar - CO<sub>2</sub>, Ar - O<sub>2</sub> i Ar - CO<sub>2</sub> - O<sub>2</sub>. U tablici 5.1 mogu se vidjeti približne, trenutačne tržišne cijene plinskih mješavina, u kunama po litri, korištenih u eksperimentalnom dijelu rada uz dodatak čistog argona.

| Zaštitni<br>plinovi<br>prema<br>HRN 439 | I1,<br>Argon<br>specijal<br>4.8 | C1,<br>100%CO <sub>2</sub> | M21,<br>82% Ar + 18% CO <sub>2</sub> | M23,<br>90% Ar + 5% $CO_2$ + 5% $O_2$ |
|-----------------------------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------------|
| Cijene<br>(HRK/l)                       | 16,82                           | 5,25                       | 15,27                                | 16,25                                 |

Tablica 5.1 Približne, trenutačne tržišne cijene zaštitnih plinova

Tehnički ugljični dioksid je najjeftiniji zaštitni plin za zavarivanje, ali je isto tako i najviše sklon povećanom štrcanju, posebice pri većim parametrima. Zbog većeg gubitka

toplinu u širinu, može uzrokovati ugorine kod kutnog spoja, teže upravljivo gibanje taline može dovesti do veće izbrazdanosti zavara i eventualne nesimetričnosti zavara i greške uleknuća kod vodoravnog zavarivanja. U ovakvim uvjetima bolje je koristiti plinske mješavine Ar - CO<sub>2</sub> s ciljem da se smanje negativni utjecaji CO<sub>2</sub>, a iskoriste prednosti, ili Ar - CO<sub>2</sub> – O<sub>2</sub>, gdje bi kisik smanjio površinsku napetost i olakašao kontroliranje gibanja taline čime bi se postigli simetrični zavari s manjim nadvišenjem i ravnijom površinom. Nasuprot tome, kod zavarivanja odozgo prema dolje, adekvatniji odabir bi bio upravo CO<sub>2</sub> jer bi dobrim radijalnim širenjem topline omogućio kvalitenije spajanje na rubovima, a viskoznija talina, u zaštiti ovog plina, odupirala bi se sili teži, pa bi greške neprotaljenog osnovnog materijala i naljepljivanja bile rjeđe nego u slučaju mješavina. Tvrtke koje proizvode zaštitne plinove za zavarivanje, poput "Messer Griesheim", "Linde Gas" i "Airco Gases" , svojim klijentima preporučuju korištenje plinskih mješavina, štoviše, trokomponentnih mješavina jer su fleksibilnije i šire im je područje primjene te unatoč višim cijenama nabave, uz usklađene parametra zavarivanja, mogu osigurati manje ukupne troškove nego pojedinačni zaštitin plinovi.

U sljedećim redovima proveden je proračun troškova vezanih samo uz cijenu zaštitinih plinova, u kunama po metru, kod zavarivanja uzoraka u eksperimentalnom dijelu rada, prema jednadžbi (5.1) [8]:

$$\frac{\text{protok plina (l/min) \times cijena plina (HRK/l)}}{\text{brzina zav. (cm/min) \times } \frac{1000(l/m^3)}{100(cm/m)}} (HRK/m).$$
(5.1)

**Tablica 5.2** Troškovi vezani uz cijenu zaštitnog plina kod zavarivanja prvih triju kutnih uzoraka (kratki spojevi)

| Ispitni uzorci    | Uzorak 1                              | Uzorak 2               | Uzorak 3                                              |
|-------------------|---------------------------------------|------------------------|-------------------------------------------------------|
|                   | $(82\% \text{Ar} + 18\% \text{CO}_2)$ | (100%CO <sub>2</sub> ) | $(90\% \text{Ar} + 5\% \text{CO}_2 + 5\% \text{O}_2)$ |
| Trošak<br>(HRK/m) | 0,8144                                | 0,2800                 | 0,8667                                                |

*Tablica* 5.3 *Troškovi vezani uz cijenu zaštitnog plina kod zavarivanja kutnih uzoraka* 4 i 5 (štrcajući luk)

| T              | Uzorak 4                              | Uzorak 5                                              |  |
|----------------|---------------------------------------|-------------------------------------------------------|--|
| Ispitni uzorci | $(82\% \text{Ar} + 18\% \text{CO}_2)$ | $(90\% \text{Ar} + 5\% \text{CO}_2 + 5\% \text{O}_2)$ |  |
| Trošak (HRK/m) | 1,0180                                | 1,0834                                                |  |

**Tablica 5.4** Troškovi vezani uz cijenu zaštitnog plina kod izvođenja uzoraka navara (kratki spojevi)

| Ispitni uzorci    | Navar 1                               | Navar 2                | Navar 3                                               |
|-------------------|---------------------------------------|------------------------|-------------------------------------------------------|
|                   | $(82\% \text{Ar} + 18\% \text{CO}_2)$ | (100%CO <sub>2</sub> ) | $(90\% \text{Ar} + 5\% \text{CO}_2 + 5\% \text{O}_2)$ |
| Trošak<br>(HRK/m) | 0,8144                                | 0,2800                 | 0,8667                                                |

Kod prve tablice se može primjetiti da je cijena plina jedini faktor koji utječe na razliku, budući da su korišteni isti protoci plina, pa je trošak u slučaju uzorka 2 očekivano najmanji, a kod uzorka 3 najveći. Navari su izvedeni s istim protokom plina kao i prva tri kutna uzorka pa su i izračunati troškovi jednaki. Troškovi su kod kutnih uzoraka 4 i 5 nešto viši jer je primijenjen veći protok plina, budući da je zavarivanje izvedeno uz prijenos metala štrcajućim lukom.
### 6. ZAKLJUČAK

U ekperimentalnom radu primjenjene su tri ispitne, zaštitne plinske mješavine kao glavne varijable kod eksperimetalnog MAG zavarivanja nelegiranog konstrukcijskog čelika:

- 1. M21 82% Ar + 18% CO<sub>2</sub>,
- 2.  $C1 100\% CO_2$ ,
- 3. M23 90% Ar + 5% CO<sub>2</sub> + 5% O<sub>2</sub>.

U zaštitnoj atmosferi ispitnih plinova, MAG postupkom su provedena zavarivanja sljedećih uzoraka:

- uzorci 1, 2 i 3; uzorci kutnog spoja T profila, uz prijenos metala kratkim spojevima,
- navarivanje s ciljem mjerenja prijelaznih vrijednosti jakosti struje i napona iz prijenosa metala kratkim spojevima u prijnos štrcajućim lukom,
- uzorci 4 i 5; uzorci kutnog spoja T profila, s prijelaznim vrijednostima jakosti struje i napona,
- > navari 1, 2 i 3; uzorci navara, uz prijenos metala kratkim spojevima.

Kod izvođenja kutnih spojeva i navara, uz prijenos metala kratkim spojevima, primjenjeni su jednaki parametri zavarivanja. Nakon što je zavarivanje završeno, od svakog ispitnog uzorka, napravljeni su makroizbrusci koji su potom podvrgnuti vizualnoj kontroli, ispitivanju tvrdoće i ispitivanju geometrije. Dobiveni rezultati potvrdili su sve navedene hipoteze.

## 1. Sastav zaštitne plinske mješavine utječe na svojstvo tvrdoće kutnog, zavarenog spoja.

Rezultati ispitivanja tvrdoće kutnog spoja uzoraka 4 i 5, koji su izvedeni na istom pripremku, pokazale su da su tvrdoće u točkama mjerenja, u prosjeku, porasle primjenom zaštitne mješavine 90% Ar + 5%CO<sub>2</sub> + 5%O<sub>2</sub>, čiji je sadržaj aktivnh komponenenata manji u odnosu na mješavinu uzorka 4, 82% Ar + 18%CO<sub>2</sub>.

Rezultati mjerenja tvrdoća spoja uzoraka 1, 2 i 3 koji su zavarivani na odvojenim pripremcima, bili su pod utjecajem nejednakih tvrdoća osnovnog materijala zbog nezajamčenih svojstava opčeg konstrukcijskog čelika, pa nisu konkretno prezentiralii utjecaj plinova. Ipak, većim prosječnim tvrdoćama u svim područjima mjerenja istaknuo se uzorak 1, zavaren u zaštiti mješavine 82% Ar + 18%CO<sub>2</sub>

# 2. Sastav zaštitne plinske mješavine utječe na geometriju kutnog, zavarenog spoja.

Ispitivanja geometrije kutnih spojeva jasno su pokazala su da se zavarivanjem u zaštiti  $100\% \text{ CO}_2$  postižu najveće površine zavara i provara te dubina provara odnosno penetracije, ali i površina ZUT-a, kod prijenosa metala kratkim spojevima. Također je s  $100\% \text{ CO}_2$  postignut i najvći omjer površina provara i ukupne površine što ja važan kriterij za određivanje pouzdanosti nekog zavarenog spoja. Što se tiče odnosa utjecaja mješavina, treba napomenuti da je uzorak s mješavinom  $82\% \text{ Ar} + 18\% \text{ CO}_2$ , "demonstrirao" donekle veće površine zavara i provara te iznose visine i penetracije, za oba slučaja prijenosa metala, iako vrijedi istaknuti da je, u uvjetima štrcajućeg luka, druga mješavina postigla poprilično veći omjer površine penetracije i površine ukupnog zavara, što je važnije.

3. Sastav zaštitne plinske mješavine utječe na prijelaznu jakost struje i prijelaznu vrijednost napona kod prijelaza s metode prijenosa metala kratkim spojevima na metodu prijenosa metala štrcajućim lukom.

Ovim ispitivanjem je utvrđeno da se zavarivanjem u zaštiti plinske mješavine  $90\% \text{ Ar} + 5\% \text{CO}_2 + 5\% \text{O}_2$ , postiže niža prijelazna jakost struje za, otprilike, 18A i niži napon za 2,24V nego su slučaju mješavine  $82\% \text{ Ar} + 18\% \text{CO}_2$ .

#### 4. Sastav zaštitne plinske mješavine utječe na svojstvo tvrdoće navara.

Ispitivanjem tvrdoće navarenog spoja došlo se do zaključka da tvrdoća raste primjenom mješavina s manjim udjelom aktivnih komponenti. Dakle, uzorak u zaštiti mješavine  $90\% \text{ Ar} + 5\% \text{CO}_2 + 5\% \text{O}_2$  postigao je osjetno veće prosječne izmjerene tvrdoće u svim područjima ispitivanja, a najmanji iznosi su zabilježeni kod uzorka sa 100% CO<sub>2</sub>.

#### 5. Sastav zaštitne plinske mješavine utječe na geometriju navara

Vizualnim promatranjem već se uočilo da je najbolji penetracijski oblik navara postignut u zaštiti mješavine 82% Ar + 18% CO<sub>2</sub>. Rezultati ispitivanja geometrije išli su tome u prilog jer je kod navara 1 izmjeren najmanji omjer iznosa provara i širine i najmanje nadvišenje, omjer površina provara i ukupnog navara ravan je onome u slučaju 100% CO<sub>2</sub>, čak i veći za 1%. Navar mješavine 90% Ar + 5% CO<sub>2</sub> + 5%O<sub>2</sub> postigao je "najslabije" rezultate čemu svjedoče vidno manja penetracija, najmanja površina penetracije i najveće nadvišenje.

U nekim nadolazećim istraživanjima vrijedilo bi za materijal u eksperimentu odabrati čelik sa zajamčenim svojstvima i sastavom kako odstupanja pripremaka ne bi bila većeg maha. Posebice bi od koristi bilo ispitavanje izbora optimalne mješavine za različite položaje zavarivanja: vodoravni, zidni – horizontalni, zidni – vertikalni (odozgo prema dolje) i nadglavni položaj. Naravno, takvo bi istraživanje bilo većeg obima jer bi uz

plinove kao promjenjivu varijablu trebalo mijenjati i druge parametre zavarivanja, a javio bi se i utjecaj zavarivača jer nije moguće u svakom položaju primijentiti automatsko zavarivanje. Doprinos kavalitetnijim rezultatima jednog takvog istraživanja donio bi i veći broj ispitanih mješavina, pa bi se, primjerice, u ispitni asortiman mogli dodati čisti Ar, mješavine iz grupacije  $Ar + O_2$ , kao i alternativne kombinacije mješavina  $Ar + CO_2$ i  $Ar + CO_2 + O_2$ .

### 7. LITERATURA

- [1] V. Panić; Utjecaj plinova pri zavarivanju na svojstva zavara; Magistarski rad, Fakultet strojarstva i brodogradnje, Zagreb, 2001.
- [2] M. Suban, J. Tušek; Osnovne zanačilnosti zaščitnih plinov in njihovih mešanic za MIG/MAG varjenje, 1.del, Varilna tehnika, (1997) 1, pp 11-17
- [3] L. Quintino, I. Pires; Analysis of the influence of shielding gas mixtures on features of MIG/MAG welding, EUROJOIN 3, 819-830, Bern, 30.03-01.04.2000.
- [4] K. Grubić; Physical relationship between the shielding gas and process stability at MAG welding, EUROJOIN 3, 759-767, Bern, 30.03-01.04.2000.
- [5] .....; "Lincoln Electric",
  <u>http://content.lincolnelectric.com/pdfs/products/literature/c4200.pdf</u>, 05.12.2008.
- [6] .....; "LindeGas", <u>http://www.lindegas.de/International/web/lg/de/like351gde.nsf/repositorybyalias/schw</u> eißschutzgaseprospekt/\$file/Schutzgasschweissen\_0805.pdf, 07.12.2008.
- [7] M. Suban, J Tušek; Vpliv zaščitnih plinov in njihovih mešanic za MIG/MAG varjenje na metalurške in mehanske lastnosti, 3. del, Varilna tehnika, (1997) 3, pp 75-79
- [8] .....; "ESAB",
  <u>http://www.esabna.com/EUWeb/MIG\_handbook/592mig4\_10.htm</u>, 10. 12. 2008.,
  http://www.esabna.com/EUWeb/MIG\_handbook/592mig4\_11.htm, 10. 12. 2008.
- [9] .....; Prospektni materijal tvrtke "Messer Griesheom", Messer Griesheim GmbH, Krefeld
- [10] Š. Andrić, S. Kralj; Primjena plinskih mješavina pri automatiziranom i robotiziranom zavarivanju, Zavarivanje, 30 (1987) 5, pp 271-278
- [11] P. H. Ranke; Izbor zaštitnih plinova za zavarivanje taljivom elektrodom, Zavarivanje, 24 (1981) 3, pp 153-158
- [12] I. Juraga, K. Ljubić, M. Živčić; Pogreške u zavarenim spojevima, treće izdanje, Hrvatsko društvo za tehniku zavarivanja, Zagreb, 2007.

- [13] .....; "Tooling University",<u>http://www.toolingu.com</u>, 13. 01. 2009.
- [14] .....; "Praxair",
  <u>http://www.praxair.com/praxair.nsf/0/c56dbfa8e80d0dbd85256ab300140b28/\$FILE/</u>
  <u>P-8126.pdf</u>, 15. 01. 2009.
- [15] .....; "Elektroda Zagreb",
  <u>http://www.elektroda-zagreb.hr/dodatni\_materijali6.htm</u>, 21. 01. 2009.
- [16] S. Kralj, Š. Andrić; Osnove zavarivačkih i srodnih postupaka, Fakultet strojarstva i brodogradnje, Zagreb, 1992.
- [17] M. Živčić; MIG/MAG Zavarivanje, Društvo za tehniku zavarivanja Hrvatske, Zagreb, 1986.
- [18] I. Hrivniak; Zavarljivost čelika, Građevinska knjiga, Beograd, 1982.
- [19] Z. Lukačević; Zavarivanje, Strojarski fakultet u Slavonskom Brodu, Slavonski Brod, 1998.
- [20] Y- S. Kim, T. W. Edgar; Analysis of the metal transfer in gas metal arc welding, Welding Journal, 72 (1993) 6, pp 269 – 270
- [21] D. Hilton; Shielding gases for gas metal arc welding, Welding metal and fabrication, 58 (1990) 7, pp 332 – 333
- [22] B. Irving; Trying to make some sense out of shielding gases, Welding journal, 73 (1994) 4, pp 65 69
- [23] K. A. Lyttle; W. F. G. Stapon; Select the best shielding gas blend for the aplication, Welding Journal, 69 (1990) 11, pp 21 – 27