Analiza stabiliteta i opterećenja tankera u oštećenom stanju

Grubišić, Vjekoslav

Master's thesis / Diplomski rad

2014

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:791667

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-29

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Vjekoslav Grubišić

Zagreb, 2014. godina.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Student:

Doc. dr. sc. Vedran Slapničar, dipl. ing.

Vjekoslav Grubišić

Zagreb, 2014.godina.

Izjavljujem da sam ovaj rad izradio samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem se svojoj obitelji, posebno roditeljima Tomislavu i Drenki koji su mi pružali bezuvjetnu ljubav i potporu tijekom studiranja.

Zahvaljujem se docentu Vedranu Slapničaru i višem predavaču Ivanu Muniću koji su me vodili kroz ovaj diplomski rad te svim kolegama, profesorima i asistentima koji su me pratili na putu studiranja.

Vjekoslav Grubišić

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne i diplomske ispite studija brodogradnje

1	Sveučilište u Zagrebu
Faku	ltet strojarstva i brodogradnje
Datum	2 7 -11- 2014Prilog
Klasa:	602-04/14-612
Ur.bro	1:15-1703-11-600

DIPLOMSKI ZADATAK

Student:

Vjekoslav Grubišić

Mat. br.: 0035171768

Naslov rada na hrvatskom jeziku: Naslov rada na

ANALIZA STABILITETA I OPTEREĆENJA TANKERA U OŠTEĆENOM STANJU ANALYSIS OF STABILITY AND LOADS OF THE TANKER IN DAMAGED CONDITION

engleskom jeziku:

Opis zadatka:

- 1. Proučiti pravila primjenjiva za stabilitet tankera u oštećenom stanju kao i kriterije operativnosti ovih
- 2. U prikladnom programskom sklopu izraditi model broda za proračun stabiliteta oštećenog tankera.
- Odrediti standardna i nestandardna stanja krcanja potrebna za proračun.
- 4. Odrediti standardne i nestandardne slučajeve oštećenja.
- 5. Izraditi matricu koja će opisivati lokacije i dimenzije oštećenja, stabilitet u oštećenom stanju te vertikalne sile i momente za ova oštećenja.
- 6. Odabrati najnepovoljnija oštećenja te preporuke za postupke posade.
- 7. Napraviti algoritam kojim će se opisati cijeli postupak.

Literatura: Dokumentacija postojećeg tankera

Zadatak zadan: 25. rujna 2014.

Zadatak zadao:

Rok predaje rada: 27. studenog 2014.

Predviđeni datumi obrane;

3., 4. i 5. prosinca 2014.

Predsjednica Povjerenstva:

2.840

Doc. dr. sc. Vedran Slapničar-

Nertie Deside Prof. dr. sc. Nastia Degiuli

SADRŽAJ

SADRŽ	ZAJ	I
POPIS S	SLIKA	III
POPIS 7	TABLICA	V
POPIS (OZNAKA	VII
SAŽET	AK	VIII
SUMM	ARY	IX
1. UV	OD	
2. Opi	s projekta "Structural reliability of damaged oil tanker in the Adriatic sea"	2
3. Pro	dor vode uslijed oštećenja	
3.1.	Općenito	
3.2.	Naplavljivost (permeabilitet)	6
3.3.	Stabilitet broda kod prodora vode	7
4. Prav	vila Klasifikacijskog društva Bureau Veritas za stabilitet u oštećenom stanju	
4.1.	Općenito	
4.2.	Dokumenti proračuna stabiliteta u oštećenom stanju	
4.3.	Propisana stanja krcanja tankera za prijevoz nafte u neoštećenom stanju i velič	ine
	oštećenja	9
4.4.	Kriteriji stabiliteta u oštećenom stanju	11
5. Opi	s proračuna i programski sklop GHS	12
6. Pro	računa stabiliteta i uzdužne čvrstoće	18
6.1.	Tanker u neoštećenom stanju	20
6.2.	Oštećena stanja – primjer stanja 1	25
6.3.	Kritična stanja	34
7. Zak	ljučak	35
8. Lite	ratura	36
PRILOZ	ZI	37
i.	Oštećeno stanje 2	37
ii.	Oštećeno stanje 3	41
iii.	Oštećeno stanje 4	45
iv.	Oštećeno stanje 5	49
v.	Oštećeno stanje 6	53
vi.	Oštećeno stanje 7	57
vii	. Oštećeno stanje 8	61
vii	i. Oštećeno stanje 9	65
iX.	Osteceno stanje 10	69
X	Osteceno stanje 11	
X1.	Osteceno stanje 12	/ /
X11.		

xiii.	Oštećeno stanje 14	
xiv.	Oštećeno stanje 15	
XV.	Oštećeno stanje 16	
xvi.	Oštećeno stanje 17	
xvii.	Oštećeno stanje 18	
xviii.	Oštećeno stanje 19	
xix.	Oštećeno stanje 20	
XX.	Oštećeno stanje 21	
	5	

POPIS SLIKA

Slika 1.	Sudar dva broda uz izlijevanje nafte [2]	2
Slika 2.	Trajekt Marko Polo nasukan na otok Sit [3]	3
Slika 3.	Stablo događaja nakon pomorske nesreće [4]	5
Slika 4.	Dijagram toka proračuna	12
Slika 5.	Hijerarhija geometrijskog modela	13
Slika 6.	Geometrijski model tankera u programu GHS	14
Slika 7.	Isječak iz bibliotečne (library) datoteke	16
Slika 8.	Isječak iz izvršne (run) datoteke	17
Slika 9.	Generalni plan tankera [9]	18
Slika 10.	Tanker u neoštećenom stanju	20
Slika 11.	Krivulje stabiliteta za neoštećeno stanje	23
Slika 12.	Karakteristike uzdužne čvrstoće za neoštećeno stanje	24
Slika 13.	Naplavljeni tankovi u Oštećenom stanju 1	25
Slika 14.	Krivulje stabiliteta za Oštećeno stanje 1	27
Slika 15.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 1	28
Slika 16.	Najveći moment savijanja za pojedino stanje oštećenja	32
Slika 17.	Odstupanje najvećih momenta savijanja u odnosu na neoštećeno stanje	32
Slika 18.	Položaj najvećeg momenta savijanja po duljini broda	33
Slika 19.	Naplavljeni tankovi u Oštećenom stanju 2	37
Slika 20.	Karakteristike stabiliteta za oštećeno stanje 2	39
Slika 21.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 2	40
Slika 22.	Naplavljeni tankovi u Oštećenom stanju 3	41
Slika 23.	Krivulje stabiliteta za Oštećeno stanje 3	43
Slika 24.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 3	44
Slika 25.	Naplavljeni tankovi u Oštećenom stanju 4	45
Slika 26.	Krivulje stabiliteta za Oštećeno stanje 4	47
Slika 27.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 4	48
Slika 28.	Naplavljeni tankovi u Oštećenom stanju 5	49
Slika 29.	Krivulje stabiliteta za Oštećeno stanje 5	51
Slika 30.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 5	52
Slika 31.	Naplavljeni tankovi u Oštećenom stanju 6	53
Slika 32.	Krivulje stabiliteta za Oštećeno stanje 6	55
Slika 33.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 6	56
Slika 34.	Naplavljeni tankovi u Oštećenom stanju 7	57
Slika 35.	Krivulje stabiliteta za Oštećeno stanje 7	59
Slika 36.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 7	60
Slika 37.	Naplavljeni tankovi u Oštećenom stanju 8	61
Slika 38.	Krivulje stabiliteta za Oštećeno stanje 8	63
Slika 39.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 8	64
Slika 40.	Naplavljeni tankovi u Oštećenom stanju 9	65
Slika 41.	Krivulje stabiliteta za oštećeno stanje 9	67
Slika 42.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 9	68
Slika 43.	Naplavljeni tankovi u Oštećenom stanju 10	69
Slika 44.	Krivulje stabiliteta za Oštećeno stanje 10	71
Slika 45.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 10	72

Slika 46.	Naplavljeni tankovi u Oštećenom stanju 11	73
Slika 47.	Krivulje stabiliteta za Oštećeno stanje 11	75
Slika 48.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 11	76
Slika 49.	Naplavljeni tankovi u Oštećenom stanju 12	77
Slika 50.	Krivulje stabiliteta za Oštećeno stanje 12	79
Slika 51.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 12	80
Slika 52.	Naplavljeni tankovi u Oštećenom stanju 13	81
Slika 53.	Krivulje stabiliteta za Oštećeno stanje 13	83
Slika 54.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 13	84
Slika 55.	Naplavljeni tankovi u Oštećenom stanju 14	85
Slika 56.	Krivulje stabiliteta za Oštećeno stanje 14	87
Slika 57.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 14	88
Slika 58.	Naplavljeni tankovi u Oštećenom stanju 15	89
Slika 59.	Krivulje stabiliteta za Oštećeno stanje 15	91
Slika 60.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 15	92
Slika 61.	Naplavljeni tankovi u Oštećenom stanju 16	93
Slika 62.	Krivulje stabiliteta za Oštećeno stanje 16	95
Slika 63.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 16	96
Slika 64.	Naplavljeni tankovi u Oštećenom stanju 17	97
Slika 65.	Krivulje stabiliteta za Oštećeno stanje 17	99
Slika 66.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 171	00
Slika 67.	Naplavljeni tankovi u Oštećenom stanju 181	01
Slika 68.	Krivulje stabiliteta za Oštećeno stanje 18 1	03
Slika 69.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 181	04
Slika 70.	Naplavljeni tankovi u Oštećenom stanju 191	05
Slika 71.	Krivulje stabiliteta za Oštećeno stanje 191	07
Slika 72.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 191	08
Slika 73.	Naplavljeni tankovi u Oštećenom stanju 201	09
Slika 74.	Krivulje stabiliteta za Oštećeno stanje 20 1	11
Slika 75.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 20 1	12
Slika 76.	Naplavljeni tankovi u Oštećenom stanju 211	13
Slika 77.	Krivulje stabiliteta za Oštećeno stanje 21 1	16
Slika 78.	Karakteristike uzdužne čvrstoće za Oštećeno stanje 211	17

POPIS TABLICA

Tablica 1. Opseg oštećenja	10
Tablica 2. Standard oštećivanja	10
Tablica 3. Opseg oštećenja dna	10
Tablica 4. Propisani faktori naplavljivosti određenih prostora na brodu	11
Tablica 5. Osnovne dimenzije broda	18
Tablica 6. Centracija broda u neoštećenom stanju	21
Tablica 7. Hidrostatske značajke broda u neoštećenom stanju	22
Tablica 8. Poluge statičkog stabiliteta broda u neoštećenom stanju	22
Tablica 9. Iznos i položaj najvećeg momenta savijanja i smične sile za neoštećeno stanje	24
Tablica 10. Naplavljeni tankovi i kritične točke za Oštećeno stanje 1	26
Tablica 11. Hidrostatske karakteristike za Oštećeno stanje 1	26
Tablica 12. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 1	28
Tablica 13. Rezultati proračuna stabiliteta i uzdužne čvrstoće (Oštećena stanja 1 – 8)	29
Tablica 14. Balastiranje u kritičnim stanjima	34
Tablica 15. Naplavljeni tankovi i kritične točke za Oštećeno stanje 2	38
Tablica 16. Hidrostatske karakteristike za Oštećeno stanje 2	38
Tablica 17. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 2	40
Tablica 18. Naplavljeni tankovi i kritične točke za Oštećeno stanje 3	42
Tablica 19. Hidrostatske značajke za Oštećeno stanje 3	42
Tablica 20. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 3	44
Tablica 21. Naplavljeni tankovi i kritične točke za Oštećeno stanje 4	46
Tablica 22. Hidrostatske karakteristike za Oštećeno stanje 4	46
Tablica 23. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 4	48
Tablica 24. Naplavljeni tankovi i kritične točke za Oštećeno stanje 5	50
Tablica 25. Hidrostatske karakteristike za Oštećeno stanje 5	50
Tablica 26. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 5	52
Tablica 27. Naplavljeni tankovi i kritične točke za Oštećeno stanje 6	54
Tablica 28. Hidrostatske karakteristike za Oštećeno stanje 6	54
Tablica 29. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 6	56
Tablica 30. Naplavljeni tankovi i kritične točke za Oštećeno stanje 7	58
Tablica 31. Hidrostatske karakteristike za Oštećeno stanje 7	58
Tablica 32. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 7	60
Tablica 33. Naplavljeni tankovi i kritične točke za Oštećeno stanje 8	62
Tablica 34. Hidrostatske karakteristike za Oštećeno stanje 8	62
Tablica 35. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 8	64
Tablica 36. Naplavljeni tankovi i kritične točke za Oštećeno stanje 9	66
Tablica 37. Hidrostatske karakteristike za Oštećeno stanje 9	66
Tablica 38. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 9	68
Tablica 39. Naplavljeni tankovi i kritične točke za Oštećeno stanje 10	70
Tablica 40. Hidrostatske karakteristike za Oštećeno stanje 10	70
Tablica 41. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 10	72
Tablica 42. Naplavljeni tankovi i kritične točke za Oštećeno stanje 11	74
Tablica 43. Hidrostatske karakteristike za Oštećeno stanje 11	74
Tablica 44. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 11	76
Tablica 45. Naplavljeni tankovi i kritične točke za Oštećeno stanje 12	78

Tablica 46. Hidrostatske karakteristike za Oštećeno stanje 12	78
Tablica 47. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 1	12 80
Tablica 48. Naplavljeni tankovi i kritične točke za Oštećeno stanje 13	82
Tablica 49. Hidrostatske karakteristike za Oštećeno stanje 13	82
Tablica 50. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje i	13 84
Tablica 51. Naplavljeni tankovi i kritične točke za Oštećeno stanje 14	86
Tablica 52. Hidrostatske karakteristike za Oštećeno stanje 14	86
Tablica 53. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje i	14 88
Tablica 54. Naplavljeni tankovi i kritične točke za Oštećeno stanje 15	90
Tablica 55. Hidrostatske karakteristike za Oštećeno stanje 15	90
Tablica 56. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje	15 92
Tablica 57. Naplavljeni tankovi i kritične točke za Oštećeno stanje 16	94
Tablica 58. Hidrostatske karakteristike za Oštećeno stanje 16	94
Tablica 59. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje i	16 96
Tablica 60. Naplavljeni tankovi i kritične točke za Oštećeno stanje 17	98
Tablica 61. Hidrostatske karakteristike za Oštećeno stanje 17	98
Tablica 62. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje i	17
	100
Tablica 63. Naplavljeni tankovi i kritične točke za Oštećeno stanje 18	102
Tablica 64. Hidrostatske karakteristike za Oštećeno stanje 18	102
Tablica 65. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje	18
	104
Tablica 66. Naplavljeni tankovi i kritične točke za Oštećeno stanje 19	106
Tablica 67. Hidrostatske karakteristike za Oštećeno stanje 19	106
Tablica 68. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje i	19
	108
Tablica 69. Naplavljeni tankovi i kritične točke za Oštećeno stanje 20	110
Tablica 70. Hidrostatske karakteristike za Oštećeno stanje 20	110
Tablica 71. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 2	20
	112
Tablica 72. Naplavljeni tankovi i kritične točke za Oštećeno stanje 21	114
Tablica 73. Hidrostatske karakteristike za Oštećeno stanje 21	115
Tablica 74. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 2	21
	117

POPIS OZNAKA

Oznaka	Jedinica	Opis
L _{LL}	m	Udaljenost na vodnoj liniji, na 85% najmanje visine D od vrha kobilice, mjerena od pramca do osi struka kormila, ne manja od 96% Loa na toj vodnoj liniji
В	m	Širina broda
I _B	m^4	Moment tromosti površine vodne linije s obzirom na uzdužnu os
\mathbf{V}_0	m^3	Volumen istisnine neoštećenog broda
M_0 F	m	Metacentarski radijus oštećenog broda
KF	m	Udaljenost težišta istisnine od kobilice
KG	m	Udaljenost težišta broda od kobilice
GM	m	Oznaka za poprečnu metacentarsku visinu u pravilima Klasifikacijskog društva Bureau Veritas
GZ	m	Poluga statičkog stabiliteta
FP		Pramčana okomica
AP		Krmena okomica
lc	m	Uzdužna duljina oštećenja boka
tc	m	Poprečna duljina oštećenja boka
vc	m	Vertikalna duljina oštećenja boka
ls	m	Uzdužna duljina oštećenja dna
ts	m	Poprečna duljina oštećenja dna
VS	m	Vertikalna duljina oštećenja dna
LCG	m	Položaj težišta po duljini
TCG	m	Položaj težišta po širini
VCG	m	Položaj težišta po visini
FSM	t-m	Moment slobodne površine
LCF	m	Položaj težišta vodne linije po duljini
LCB	m	Položaj težišta istisnine po duljini
VCB	m	Položaj težišta istisnine po širini
GML	m	Oznaka za poprečnu metacentarsku visinu u programu GHS
GMT	m	Uzdužna metacentarska visina
CG	m	Oznaka za težište
f		Oznaka za smjer prema pramcu
Stbd		Oznaka za desnu stranu broda gledano sa krme prema pramcu
LCP	т	Položaj kritične točke po duljini
TCP	т	Položaj kritične točke po širini
VCP	m	Položaj kritične točke po visini

Fakultet strojarstva i brodogradnje

SAŽETAK

Povećanjem broja tankera koji plove Jadranom, povećava se i opasnost od pomorskih nesreća. Izlijevanje nafte u Jadranu uzrokovalo bi nepopravljivu štetu za okoliš, turizam i gospodarstvo. Zbog toga je pokrenut projekt Structural reliability of damaged oil tanker in Adriatic Sea koji za cilj ima predložiti metodologiju procjene sigurnosti strukture oštećenog tankera za prijevoz nafte u Jadranskom moru i postaviti proceduru za racionalno donošenje odluka za brod u situacijama koje traže hitne reakcije. U ovom radu je pomoću programa GHS izvršen proračun stabiliteta i uzdužne čvrstoće za tanker u oštećenom stanju, u skladu s posebnim pravilima koja propisuju klasifikacijska društva. Za homogeno, potpuno natovaren tanker modelirano je 21 stanje oštećenja. Za svako stanje oštećenja dan je prikaz prostora i karakterističnih krivulja stabiliteta i uzdužne čvrstoće. Dobiveni rezultati uspoređeni su sa propisima i rezultatima proračuna za neoštećeno stanje. Pokazalo se da tanker u svim stanjima oštećenja zadovoljava kriterije stabiliteta, i to uz veliku rezervu. Najveći momenti savijanja variraju od smanjenja za 68.3% do povećanja od 52.47% u odnosu na neoštećeno stanje. Nedostatak podataka za moment otpora u oštećenom stanju onemogućuje stvaran uvid u opasnost povećanja opterećenja uslijed naplave. Balastiranjem se može pokušati smanjiti opterećenja, ali se to nije pokazalo uvijek kao učinkovito i sigurno rješenje.

Ključne riječi: tanker, pomorske nesreće, stabilitet u neoštećenom stanju, uzdužna čvrstoća

SUMMARY

By increasing the number of tankers in the Adriatic Sea, the hazard of maritime accidents increases as well. Oil spillage in the Adriatic Sea would cause unrecoverable damage to the environment, tourism and economy. Hence the project Structural reliability of damaged oil tanker in the Adriatic Sea was initiated, with the aim to propose methodology of structural safety assessment of a damaged oil tanker in the Adriatic Sea and to set up a procedure for rational decision making for a ship in the situations requiring emergency response actions. Calculations of damage stability and longitudinal strength were made within this paper. Classification societies provide special rules for damage stability. 21 damage cases were modeled for a homogenous, fully loaded tanker. For each one of them a compartment plan and characteristic stability and longitudinal length curves were shown. The obtained results were compared to classification society rules and results for the undamaged tanker. It was shown that the tanker meets all the stability requirements, with a great margin. Maximum bending moments vary from a decrease by 68.3% to an increase by 52.47%, compared to the value in undamaged condition. Lack of information about section modulus in damaged conditions makes it impossible to get the real insight in the danger of load increase due to flooding. One way of attempting to decrease load is ballasting, but it has not always proven to be an efficient and safe solution.

Key words: tanker, maritime accidents, damage stability, longitudinal strength

1. UVOD

Ovaj diplomski rad obrađuje temu stabiliteta i čvrstoće tankera u oštećenom stanju koja se nameće kao vrlo važna budući da bi Jadransko more moglo postati mjestom frekventnog prometa velikih tankera, ukoliko dođe realizacije projekata kao što je bio projekt Družba Adria, kojom je luka Omišalj na Krku trebala postati luka za izvoz ruske nafte. Budući da je Jadransko more zatvorenog tipa s malom aktivnošću morskih struja i valova, havarija tanker uz izlijevanje nafte, prouzročila bi nepopravljivu štetu za okoliš, gospodarstvo i turizam. Ideja za ovaj diplomski rad nastala je na temelju projekta "Structural reliability of damaged oil tanker in the Adriatic Sea". [1] Cilj ovog projekta je predložiti metodologiju procjene sigurnosti strukture oštećenog tankera za prijevoz nafte u Jadranskom moru i postaviti proceduru za racionalno donošenje odluka za brod u situacijama koje traže hitne reakcije. Ovo se također može iskoristiti za razvoj racionalnijih pravila i propisa koja se tiču prometa velikih brodova u Jadranskom moru. Cilj projekta je i istražiti mogućnosti poboljšanja u projektiranju konstrukcije po pitanju najopasnijih tipova nesreća. Dva slučaja koja izazivaju najviše zabrinutosti su sudar dva broda i nasukavanje na morsko dno. U sklopu ovog rada definiran je 21 slučaj oštećenog tankera u kojeg je prodrla voda te je za svaki od tih slučajeva napravljen proračun stabiliteta i uzdužne čvrstoće. Uspoređena su najveća opterećenja za oštećena stanja s onima u neoštećenom te su prikazana mjesta gdje se ona javljaju.

2. Opis projekta "Structural reliability of damaged oil tanker in the Adriatic sea"

Kako bi bili u mogućnosti procijeniti strukturnu pouzdanost broda, neophodno je vrednovati opterećenje i čvrstoću broda i definirati probabilističke modele koji mogu odrediti odstupanja, očekivana u procjenama čvrstoće i opterećenja. Uzimajući to u obzir, uzdužna čvrstoća broda kao grede je uvijek bila glavna briga jer oštećeni brod može puknuti ako nema dovoljnu uzdužnu čvrstoću. Zato je prirodno da se analiza strukturne pouzdanosti bavi samo uzdužnom čvrstoćom.

U oštećenom stanju, brod ne bi trebao voziti velikom brzinom, a valovima će biti izložen relativno kratko vrijeme. Zato, s tim povezana globalna valna opterećenja mogu biti manja nego ona u normalnom ekstremnom stanju. S druge strane, oštećenje trupa može uzrokovati ulazak vode i istjecanje tekućih tereta što će rezultirati promjenom stanja opterećenja i momenta na mirnoj vodi. [1]

Slika 1. Sudar dva broda uz izlijevanje nafte [2]

Slika 2. Trajekt Marko Polo nasukan na otok Sit [3]

Iz perspektive brodogradnje projekt je multidisciplinaran budući da zahtjeva znanja iz statistike valova, stabiliteta i opterećenja oštećenog broda, brodske hidrodinamike, nelinearne FEM analize, granične čvrstoće, propagacije pukotina, procjene strukturne pouzdanosti i rizika. Općenito, otpornost na sudare označava bolju sposobnost sustava da izdrži udarna opterećenja, a za sudar dva broda ili nasukavanje označava povećanu sposobnost udarenog broda da apsorbira kinetičku energiju prije proboja trupa. Razvit će se pojednostavljene metode proračuna, koje su korisne u konceptualnim studijama brodske sigurnosti ili za reagiranje u hitnim situacijama, dajući vjerodostojne, precizne i brze procjene veličine oštećenja s obzirom na osnovne parametre sudara. Hidrostatički kompjuterski model broda skupa sa odjeljcima bit će izrađen u software-u za računanje brodskog stabiliteta. Veličina i mjesta oštećenja bit će određena na temelju:

- IMO zahtjeva(SOLAS, MARPOL, ICLL)
- Rezultata simulacija

Za različite slučajeve oštećenja odredit će se statička ravnoteža broda kao i distribucija globalnih hidrostatičkih opterećenja, naročito vertikalnih momenata savijanja. Posebna pozornost će se posvetiti slučajevima kada tankeri nisu natovareni u skladu sa Stability information booklet(SIB) budući da preliminarni rezultati iz Paris MoU Concentrated Inspection Campaign on tanker damaged stability izneseni između 1. i 30.11.2010. pokazuju

da 16.2 % tankera nije natovareno u skladu sa IMO zahtjevima. Odredit će se korelacija između pozicije najvećeg opterećenja broda kao grede i mjesta oštećenja. Razvit će se također i metode predviđanja i modeliranja okolišnih uvjeta u vrijeme nesreće, koristeći dostupne numeričke modele i postojeće podatke u stvarnom vremenu, dostupne na internetu. Statistički podaci o valovima i ranije definirana stanja oštećenja koristit će se u analizi pomorstvenosti oštećenih brodova. Specijalizirani 3D radijacijsko/difrakcijski software koristit će se i utjecaj tegljenja oštećenog broda na globalna dinamička opterećenja broda kao grede. Bolje razumijevanje propulzijskih karakteristika oštećenog broda je važno za predviđanje snage za pogon tog broda. Statistička analiza pomorskih nesreća provest će se korištenjem dostupnih podataka kako bi se odredila vjerojatnost različitih scenarija sudara i nasukavanja. Provest će se procjena:

- a) vjerojatnosti oštećenja za očekivane nesreće u Jadranskom moru (sudari, nasukavanja)
- b) strukturalna pouzdanost oštećenog tankera u pogledu kolapsa trupa
- c) troškovi kao posljedica oštećivanja za određenu vrstu nesreće

Alternativne strukturalne konfiguracije testirat će se kako bi se vidjelo postoje li mogućnosti strukturalnih modifikacija s ciljem bolje iskoristivosti novčanih sredstava. Prethodno razvijene različite metodologije, računalni alati i modeli za procjenu sigurnosti konstrukcije bit će ugrađeni u donošenje odluka racionalnim sustavom odlučivanja (Decision support), kako bi ispunili ciljeve:

- Predložiti procedure reagiranja u hitnim situacijama
- Razviti smjernice za unaprjeđenje postojećeg načina projektiranja konstrukcije u pogledu nesreća. [1]

Slika 3. Stablo događaja nakon pomorske nesreće [4]

3. Prodor vode uslijed oštećenja

3.1. Općenito

Zbog prodora vode u brod gubi se dio istisnine boda, jer je voda unutar brodskih prostora u vezi s vanjskom vodom u kojoj brod plovi. Ta izgubljena istisnina treba se nadoknaditi dubljim uranjanjem broda, tako da novi uronjeni volumen neoštećenog dijela broda bude jednak prijašnjem volumenu broda, prije prodora vode. Budući da se mase nisu promijenile, mora i uzgon, dakle djelotvorni volumen broda, ostati isti.

Prodrlu vodu možemo smatrati i kao ukrcani teret. Sada se masa broda povećala, uslijed ukrcanog tereta, pa se mora i istisnina povećati, tj. brod mora zagaziti dublje, a redovno će dobiti i neki trim. Na novoj vodnoj liniji mora ukupna masa broda i prodrle vode biti jednaka cjelokupnoj istisnini broda. Oba gledišta vode do istog rezultata.

Da se ograniči prodor vode tako da ne postane sudbonosan za brod, unutrašnjost broda je podijeljena sustavom poprečnih, a katkad i uzdužnih pregrada u više nepropusnih odjeljenja. Nova vodna linija, koju treba izračunati za prodor vode u bilo koji prostor, ne smije prelaziti preko palube do koje sežu nepropusne pregrade, kutovi nagiba broda, kod nesimetričnog prodora, ne smiju biti toliki da pod vodu dolaze otvori, koji se ne daju nepropusno zatvoriti, a osim toga metacentarska visina i stabilitet za veće nagibe moraju biti dovoljni da se brod ne prevrne uslijed djelovanja vjetra i valova. [4]

3.2. Naplavljivost (permeabilitet)

Volumen prodrle vode je manji od volumena prostora u koji je ušla voda, ako se taj prostor računa kao što je obično, do vanjskog brida rebara. Uslijed volumena konstruktivnih elemenata, od kojih je izgrađen trup broda, kao i uslijed predmeta, koji se nalaze u oštećenom prostoru, prodrla voda ga ne može sama ispuniti.

Da dobijemo dakle volumen prodrle vode, treba volumen oštećenog prostora, do odgovarajuće vodne linije, pomnožiti s jednim faktorom, koji je manji od jedan. Taj faktor naziva se faktor naplavljenosti, a njegova veličina zavisit će o namjeni dotičnog prostora, kao i o količini tereta, goriva, ili drugih predmeta smještenih u tom prostoru.

Pod naplavljenošću općenito smatramo omjer između volumena prodrle vode i volumena prostora u koji je voda prodrla (mjerenog do razine vode u tom prostoru).

I površina vodne linije oštećenog prostora neće biti jednaka površini presjeka oštećenog prostora, nego će biti smanjena zbog površine predmeta, koji se nalaze u dotičnom prostoru u području vodne linije. To smanjenje površine vodne linije oštećenog prostora uzimamo u obzir površinskim faktorom naplavljivosti kojeg definiramo analogno volumenskom faktoru naplavljivosti. Površinski faktor naplavljivosti uzima se da je obično jednak naplavljivosti onog prostora kroz koji prolazi vodna linija. [4]

3.3. Stabilitet broda kod prodora vode

Za sigurnost broda kod prodora vode nije dovoljno promatrati samo uzdužni nagib, dakle trim broda, nego treba proračunati i nagibe u poprečnom smjeru, dakle nakretanje broda, kao i poluge statičkog stabiliteta, kako bi bili sigurni da otvori, koji nisu nepropusno zatvoreni, neće doći ispod razine vode, kao i da brod ima dovoljan statički i dinamički stabilitet, da se u oštećenom stanju može oduprijeti djelovanju vjetra i valova.

Do naginjanja broda može doći ili uslijed nesimetrične naplave vode u poprečnom smjeru, ili i kod simetrične naplave, ako je metacentarska visina nakon prodora negativna. U slučaju simetrične naplave s obzirom na uzdužnu os, uslijed prodora vode smanjuje se efektivna površina vodne linije, dakle i njezini momenti tromosti I_B. Kako ukupna istisnina V₀ ostaje ista, jer se izgubljena istisnina nadoknađuje dubljim uranjanjem i trimom broda, to se smanjuje i metacentarski radijus Mo'F. Budući da se težište istisnine oštećenog broda podiže, zbog dubljeg uranjanja broda, povećava se udaljenost KF'. Budući da metacentarsku visinu nakon prodora vode dobivamo po formuli:

$$Mo'G = Mo'F + KF - KG, \qquad (1)$$

a položaj težišta sistema G se ne mijenja (prodrlu vodu gledamo kao izgubljenu istisninu), vidimo da se metacentarska visina nakon prodora vode može smanjiti ili povećati, već prema tome je li veće smanjenje metacentarskog radijusa ili povišenje položaja težišta istisnine. [4]

4. Pravila Klasifikacijskog društva Bureau Veritas za stabilitet u oštećenom stanju

4.1. Općenito

Metacentarske visine (GM), poluge stabiliteta (GZ) i položaji težišta računaju se prema metodi konstantne istisnine. U determinističkom pristupu izrađuje se skupina slučajeva oštećenja (damage cases), čiji broj, kao i broj odjeljaka uključenih u svaki od slučajeva, ovisi o dimenzijama broda i unutrašnjem rasporedu. Za svako stanje krcanja razmatra se svaki slučaj oštećenja. Probabilistički pristup uzima vjerojatnost preživljavanja nakon sudara kao mjeru sigurnosti broda u oštećenom stanju (subdivision index A). Proračuni se vrše pri određenim gazovima i vrijednostima GM kako bi se dobila najmanja GM krivulja pri kojoj postignuti indeks A udovoljava minimalnoj razini sigurnosti R. [6]

4.2. Dokumenti proračuna stabiliteta u oštećenom stanju

U sklopu proračuna stabiliteta u oštećenom stanju potrebno je predočiti sljedeće dokumente:

- popis karakteristika (volumen, težište, faktor naplavljivosti) svakog odjeljka koji može biti oštećen
- tablicu otvora u pregradama, palubama i bokovima
- popis slučajeva oštećenja (damage cases)
- detaljni rezultati proračuna stabiliteta u oštećenom stanju
- granična GM/KG krivulja ako je predviđeno
- opći plan
- uređaji za odvod (putnički brodovi)
- raspored vodonepropusnih vrata i vrata nepropusnih za atmosferilije, proračun tlakova
- cijevi i oštećeno područje kad pucanje tih cijevi izaziva progresivnu naplavu

Progresivno naplavljivanje je dodatno naplavljivanje prostora koji se nisu smatrali oštećenima (kroz otvore i cijevi). [6]

4.3. Propisana stanja krcanja tankera za prijevoz nafte u neoštećenom stanju i veličine oštećenja

Za tankere za prijevoz nafte potrebno je provesti proračune pri sljedećim stanjima krcanja:

- potpuno nakrcan brod na ljetnoj vodnoj liniji, sa punim kapacitetom goriva i zaliha
- potpuno nakrcan brod na ljetnoj vodnoj liniji, sa 10% kapaciteta goriva i zaliha
- potpuno nakrcan brod na ljetnoj vodnoj liniji, sa punim kapacitetom goriva i zaliha, ali na gazu manjem nego na ljetnoj vodnoj liniji
- potpuno nakrcan brod na ljetnoj vodnoj liniji, sa 10% kapaciteta goriva i zaliha, ali na gazu manjem nego na ljetnoj vodnoj liniji
- brod na ljetnoj vodnoj liniji, s tankovima tereta koji nisu do kraja puni i sa punim kapacitetom goriva i zaliha
- brod na ljetnoj vodnoj liniji, s tankovima tereta koji nisu do kraja puni i sa 10% kapaciteta goriva i zaliha
- dva stanja krcanja sa različitim segregacijama tereta kako bi se pojavili slack tankovi, s punim kapacitetom goriva i zaliha
- dva stanja krcanja sa različitim segregacijama tereta kako bi se pojavili slack tankovi, s 10% kapaciteta goriva i zaliha
- za tankere koji imaju segregirane balastne tankove provjerava se i stanje lakog broda sa segregiranim balastom

Standardna stanja opterećenja u knjizi trima i stabiliteta:

- laki brod (ovdje se ne provjerava)
- brod u balastu, bez tereta, sa punim kapacitetom zaliha i goriva
- brod u balastu, bez tereta, sa 10% kapaciteta goriva i zaliha [6]

Veličine oštećenja

Poprečno oštećenje mjeri se od unutrašnje strane oplate boka do simetrale pod pravi kutom, na ljetnoj vodnoj liniji. Vertikalno oštećenje mjeri se od unutrašnje strane oplate dna na simetrali.

Mjesto oštećenja	Uzdužna duljina oštećenja	Poprečna duljina oštećenja	Vertikalna duljina oštećenja
Bok	lc = 1/3 L _{LL} ^{2/3} ili 14,5 m (1)	tc = B/5 ili 11,5 m (1)	vc = NO LIMIT
Dno - za 0.3 L _{LL} od FP	ls = 1/3 L _{LL} ^{2/3} ili 14,5 m (1)	ts = B/6 ili 10 m (1)	vs = B/15 ili 6 m (1)
Dno - bilo koji drugi dio	ls = 1/3 L _{LL} ^{2/3} ili 5 m (1)	ts = B/6 ili 5 m (1)	vs = B/15 ili 6 m (1)

Tablica 1. Opseg oštećenja

(1) manja vrijednost

Tablica 2. Standard oštećivanja

Duljina broda (m)	Oštećenje bilo gdje	Oštećenje između	Naplavljena strojarnica
	po duljini broda	poprečnih pregrada	
$L_{LL} \leq 100$	NE	DA (1) (2)	NE
$100 \leq L_{LL} \leq 150$	NE	DA (1)	NE
$150 \leq L_{LL} \leq 225$	DA	NE	DA, jedino strojarnica
L _{LL} ≥ 225	DA	NE	DA

(1) strojarnica nije naplavljena

(2) izuzeća nekih zahtjeva mogu biti prihvaćena od klasifikacijskog društva u pojedinim slučajevima

Tablica 3. Opseg oštećenja dna

Nosivost	Uzdužna duljina oštećenja	Poprečna duljina oštećenja	Vertikalna duljina oštećenja
< 75000 t	$0,4 L_{LL}(1)$	B/3	(2)
≥ 75000 t	0,6 L _{LL} (1)	B/3	(2)

(1) Mjereno od pramčane okomice

(2) Proboj vanjske oplate

Odjeljak	Naplavljivost
Zalihe	0,60
Smještaj	0,95
Strojevi	0,85
Prazno	0,95
Potrošne tekućine	0-0,95 (1)
Ostale tekućine	0-0,95 (1)

Tablica 4. Propisani faktori naplavljivosti određenih prostora na brodu

(1) u slučaju djelomično popunjenih odjeljaka – u skladu s količinom tekućine u odjeljku

4.4. Kriteriji stabiliteta u oštećenom stanju

Pri proračunu stabiliteta u oštećenom stanju brod mora zadovoljiti sljedeće kriterije:

- krajnja vodna linija mora biti ispod donjeg ruba otvora kroz koje može doći do progresivnog naplavljivanja
- kut nagiba uslijed nesimetrične naplave ne smije preći 25°, eventualno do 30° ako paluba ne uranja
- stabilitet se može smatrati dovoljnim, ako krivulja poluga statičkog stabiliteta ima minimalno 20° rezerve iznad stanja ravnoteže, ako je u tom rasponu maksimalna preostala metacentarska visina GM bar 0.1 m, a površina ispod krivulje u tom rasponu 0.0175 m-rad [6]

Slika 4. Dijagram toka proračuna

Programski sklop GHS

Za proračune stabiliteta i uzdužne čvrstoće korišten je programski paket GHS (General Hydrostatics) [7]. GHS koristi geometrijski model broda koji uključuje sve tankove i prostore kao i sve elemente nadgrađa izložene vjetru. Geometrijski model je pohranjen u datoteci koja se naziva geometrijska datoteka (Geometry File) i ima ekstenziju GF. Budući da se svi proračuni zasnivaju na geometriji, prvi korak svakog projekta je izrada geometrijskog modela.

Part
name
class
description
Reference Point
Tanks only:
side
substance
sounding-tube definition (optional)
Component
name
Side
effectiveness or permeability factor (adding vs. deducting)
translation Vector
margins (optional)
Shape
name
shell thicknesses
Section
longitudinal coordinate
Point
transverse coordinate
vertical coordinate
longitudinal line code (optional)

Slika 5. Hijerarhija geometrijskog modela

Slika 6. Geometrijski model tankera u programu GHS

Geometrijska datoteka sadrži podatke o masama i težištima tekućina u tankovima, ali ne i masu strukture i podatke ostalim (netekućim) opterećenjima. Mase se dijele na konstantne ("Fixed" weights) i mase tereta u tankovima ("Tank" weights). Konstantne mase , uključujući masu lakog broda i njegovo težište definirane su u naredbama ("Commands") koje se nalaze u izvršnim datotekama ("Run Files"). GHS je program zasnovan na naredbama. Sve informacije koje nisu u geometrijskoj datoteci zadaju se naredbama. Naredbama se također definira što se želi učiniti s modelom. Naredbe se izvršavaju sekvencijalno, jedna za drugom pa je bitan redoslijed zadavanja naredbi. [8]

Osnovni GHS moduli za izdradu modela su:

- Section Editor (SE) služi za dodavanje, brisanje ili pomicanje dijelova i točaka
- Model Converter (MC) služi za importiranje, a nekada i za eksportiranje datoteka
- Part Maker (PM) najčešće se koristi za izradu tankova, privjesaka i nadgrađa u geometrijskoj datoteci koja sadrži definiran trup (hull part)

sa osnovnim proračunima i izvještajima, uključujući proračune stabiliteta u oštećenom i neoštećenom stanju.

Neki od dodatnih modula su:

- Conditional Graphics (CG) grafički prikazuje opterećenja na ekranu i u izvještajima
- Load Editor (LE) i Load Editor with windows (LEw) za interaktivno upravljanje operećenjima
- Longitudinal Strength (LS) proračunava krivulje smičnih sila, momenata savijanja i progiba

U bibliotečnoj (library) datoteci definirane su macro naredbe u kojima se nalaze kriteriji stabiliteta za oštećeno stanje, stanja krcanja, popis naplavljenih tankova i kritične točke za svaki pojedini slučaj oštećenja, te neke naredbe koje se javljaju u svim stanjima. Na slici 7. prikazan je isječak iz bibliotečne datoteke. "MACRO DAMLIM" je naredba kojom su definirani kriteriji stabiliteta u oštećenom stanju, "MACRO CRTPTS1" je naredba kojom se definirane kritične točke koje ne smiju doći ispod vodne linije, a naredba "MACRO FLOOD1" je naredba kojom se za Oštećeno stanje 1 definira vrsta tereta, popunjenost teretnih tankova te oštećeni tankovi u koje je prodrla voda.

```
MACRO DAMLIM
limit off
limit title Damage Stability
limit absolute angle at equil < 25
limit angle from equil to ra0 > 20
limit ra at max > 0.1
limit area from equil to ra0 > 0.0175
MACRO CRTPTS1
echo on
crtpt(1) "Air pipe WB2.s" -224.37,21.5,23.86
crtpt(2) "Air pipe WB2.p" -224.37,-21.5,23.86
crtpt(3) "Air pipe CT2.s" -224.37,1.2,24.76
crtpt(4) "Air pipe CT2.p" -224.37,-1.2,24.76
crtpt(5) "Air pipe After-peak.aft" 4.8,10.0,23.9
crtpt(6) "Accommodation" -32.6,14.0,23.8
MACRO FLOOD1
contents (Ctank-No2*) cargo 0.8905305
contents (Ctank-No3*) cargo 0.8905305
contents (Ctank-No4*) cargo 0.8905305
contents (Ctank-No5*) cargo 0.8905305
contents (Ctank-No6*) cargo 0.8905305
contents (Slop*) cargo 0.8905305
LOAD(Ctank-No2*) 98%
LOAD(Ctank-No3*) 98%
LOAD(Ctank-No4*) 98%
LOAD(Ctank-No5*) 98%
LOAD(Ctank-No6*) 98%
LOAD(Slop*) 98%
type (DWbtank-No1*) flooded
type (DCtank-No1*) flooded
type (DVoid.c) flooded
type (DBsstore.c) flooded
type (DChain-Lock.s) flooded
type (DFore-peak.c) flooded
```

Slika 7. Isječak iz bibliotečne (library) datoteke

U izvršnoj (run) datoteci definirani su algoritmi za proračuni stabiliteta i uzdužne čvrstoće svakog pojedinog slučaja. Naredbama "load (*) 0" i "delete all weight" osigurava se da nema zadanih opterećenja ili dodanih masa jer su sva opterećenja i mase definirana u macro naredbama STOR100 (zalihe i gorivo) i FLOOD1. Naredbom "damcon" pokreće se proračun hidrostatskih karakteristika i stabiliteta u oštećenom stanju, a naredbom "ls" proračun uzdužne čvrstoće. Za sva stanja oštećenja izrađena je jedna zajednička izvršna datoteka pri čemu se naredbom "type (*) intact" osigurava neoštećeno stanje prije svakog novog proračuna.

```
SUBTITLE
 DAMAGE CONDITION 1.: HOMOGENOUS LOADED, T=17.1 m, 100% STORES
                       FLOODED: FOREPEAK , BOSUN'S STORE, CHAIN-LOCK,
                                 VOID, CT1, WB1
load (*) 0
delete all weights
.STOR100
.FLOOD1
.damcon
DISPLAY (*) STATUS PROFILE: OUTBOARD, PROFILE, PLAN
13
type (*) intact
SUBTITLE
 DAMAGE CONDITION 2.: HOMOGENOUS LOADED, T=17.1 m, 100% STORES
                       FLOODED: FOREPEAK , BOSUN'S STORE, CHAIN-LOCK,
                                 VOID, CT1.s ,WB1.s
load (*) 0
delete all weights
.STOR100
.FLOOD2
.damcon
DISPLAY (*) STATUS PROFILE: OUTBOARD, PROFILE, PLAN
ls
type (*) intact
```

Slika 8. Isječak iz izvršne (run) datoteke

6. Proračun stabiliteta i uzdužne čvrstoće

Stabilitet i uzdužna čvrstoća razmatrani su za tanker sljedećih dimenzija:

Duljina preko svega	281.20 m
Duljina između okomica	270.00 m
Širina	48.20 m
Visina	23.00 m
Projektni gaz	16.00 m
Najveći gaz	17.10 m
Nosivost pri najvećem gazu	166 447 t

Tablica 5. Osnovne dimenzije broda

Slika 9. Generalni plan tankera [9]

Proračuni su provedeni za brod na najvećem dopuštenom gazu u neoštećenom stanju te za 21 različiti slučaj oštećenja. Svako stanje prikazano je iz tri različita pogleda: pogled sa strane izvana, pogled sa strane uz prikaz tankova te pogled odozgo. Tankovi tereta u kojima je nafta prikazani su crvenom bojom, a naplavljeni tankovi su zelenkasto-plave boje, kao i okolno more. U prvom stanju oštećenja naplavljen je pramčani dio broda uključujući oba teretna tanka CTANK-NO1 kao i balastne tankove WBTANK-NO1 na oba boka. Oštećeno stanje 2 također uključuje oštećenje pramca, uz oštećivanje tankova samo na jednom boku; tanka tereta CTANK-NO1-S. i WBTANK-NO1.-S. U stanjima oštećenja 3-7 oštećena su dva uzastopna tanka tereta i balasta na jednom boku, pomičući se od pramca prema krmi, kao npr. u slučaju 3 gdje su oštećeni tankovi tereta CTANK-NO1.S i CTANK-NO2.S te balastni tankovi WBTANK-NO1.S i WBTANK-NO2.S. Stanja 8 i 9 kao i 17, 18 i 19 odnose se na krmeni dio broda pri čemu je uzeto u obzir oštećivanje slop tankova, strojarnice te pumpne stanice. 10. i 11. stanje oštećenja daju uvid u još dva moguća slučaja oštećenja pramčanog dijela. Od 13. do 16. stanja razmatrano je oštećivanje po dva uzastopna tanka tereta i balasta na oba boka, kao npr. u stanju 13. gdje su naplavljena oba tanka CTANK-NO1 i CTANK-NO2 te oba balastna tanka WBTANK-NO1 i WBTANK-NO2. Zadnja 2 stanja oštećenja, 20 i 21, prikazuju oštećivanje dna pri čemu su naplavljeni balastni tankovi WBTANK-NO1-WBTANK-NO5 na jednom, a zatim na oba boka. Rezultati proračuna stabiliteta uspoređeni su sa kriterijima za stabilitet u oštećenom stanju klasifikacijskog društva Bureau Veritas. Određene su i kritične točke koje ne smiju doći ispod razine vodne linije kako bi se spriječilo naplavljivanje. Izrađeni su karakteristični dijagrami stabiliteta i uzdužne čvrstoće. Dijagramima su prikazane najveće vrijednosti momenata savijanja za pojedina stanja, njihovi položaji po duljini broda te odstupanja od vrijednosti najvećeg momenta za tanker u neoštećenom stanju. Odabrana su i tri kritična stanja za koja se balastiranjem pokušalo smanjiti iznos najvećeg momenta savijanja. U ovom poglavlju prikazani su rezultati proračuna za tanker u neoštećenom stanju te za Oštećeno stanje 1 dok su rezultati proračuna za ostala stanja oštećenja dana u prilogu.

6.1. Tanker u neoštećenom stanju

CONDITION: HOMOGENEOUS LOADED SHIP & 100% STORES

Slika 10. Tanker u neoštećenom stanju

Tablica 6. Centracija broda u neoštećenom stanju

WEIGHT STATUS

Baseline draft: 16.623 @ Origin

Trim: Fwd 1.01/270.00, Heel: zero

Part			Weigh	t(MT)	LCG	TCG	-VCG	
LIGHT SHIP)		23,64	9.86 123.	509f 0.	000 13.	. 800	
CREW & EFFECTS		10	0.00 20.	000f 0.	000 19.	. 0 0 0		
MISCHELLAN	MISCHELLANEOUS		3	0.00 80.	000f 0.	000 19.	.000	
Total Fix	ed	>	23,779	.86 123.0	19f 0.0	00 13.8	328	
	Load	SpGr	Weight(MT))LCG	TCG	VCG-	FSM	
CTANK-NO1.S	0.980	0.891	9,563.79	240.370f	7.923s	13.401	11082.2	
CTANK-NO1.P	0.980	0.891	9,563.79	240.370f	7.923p	13.401	11082.2	
CTANK-NO2.S	0.980	0.891	13,761.92	207.624f	10.642s	13.033	20175.1	
CTANK-NO2.P	0.980	0.891	13,761.92	207.624f	10.642p	13.033	20175.1	
CTANK-NO3.S	0.980	0.891	13,875.93	172.467f	10.726s	13.019	20399.1	
CTANK-NO3.P	0.980	0.891	13,875.93	172.467f	10.726p	13.019	20399.1	
CTANK-NO4.S	0.980	0.891	13,875.93	137.187f	10.726s	13.019	20400.1	
CTANK-NO4.P	0.980	0.891	13,875.93	137.187f	10.726p	13.019	20400.1	
CTANK-N05.S	0.980	0.891	13,875.93	101.907f	10.726s	13.019	20409.6	
CTANK-NO5.P	0.980	0.891	13,875.93	101.907f	10.726p	13.019	20409.4	
CTANK-NO6.S	0.980	0.891	13,180.81	67.121f	10.346s	13.391	19098.4	
CTANK-NO6.P	0.980	0.891	13,180.81	67.121f	10.346p	13.391	19098.4	
SLOP.S	0.980	0.891	2,792.88	44.631f	9.387s	14.448	3864.4	
SLOP.P	0.980	0.891	2,792.88	44.631f	9.387p	14.448	3864.4	
DO-SER.P	0.980	0.900	15.32	27.400f	12.900p	14.940	0.6	
DO-STOR.P	0.980	0.900	118.74	28.840f	15.327p	14.940	54.6	
HFO-SETT.P	0.980	0.991	84.34	37.176f	13.760p	14.940	14.1	
HFO-SER1.P	0.980	0.991	42.17	31.863f	13.760p	14.940	7.1	
HFO-SER2.P	0.980	0.991	42.16	33.988f	13.760p	14.940	7.1	
HFO-STOR1.P	0.980	0.991	1,632.45	33.492f	17.755p	16.272	1049.3	
HFO-STOR1.S	0.980	0.991	1,948.47	33.260f	17.195s	16.037	1382.9	
AELO-STOR.P	0.980	0.900	3.95	11.600f	12.770p	19.519	0.2	
MELO-STOR.P	0.980	0.900	28.17	10.859f	14.880p	19.519	18.2	
MECYLLO-STOR.P	0.980	0.900	36.32	8.501f	14.620p	19.519	26.5	
MELO-CIRC.C	0.980	0.900	25.55	23.170f	0.000	1.351	18.1	
FRESH-WATER.S	1.000	1.000	231.47	9.710f	16.411s	20.777	0.0	
FEED-WATER.S	1.000	1.000	132.30	13.386f	16.841s	20.749	0.0	
Total Tanks-	>		166,195.75	143.729f	0.031s	13.261	233436.4	
Total Weight> 189,975.62 141.137f 0.027s 13.332								
Distances in METERSMoments in m						m.		

-MT.

Tablica 7. Hidrostatske značajke broda u neoštećenom stanju

HYDROSTATIC PROPERTIES

Trim: Fwd 1.01/270.00, No Heel, VCG = 13.332 LCF Displacement Buoyancy-Ctr. Weight/ Moment/ Draft----Weight(MT)----LCB-----VCB-----Cm---LCF---cm trim----GML-----GMT 17.103 189,976.97 141.152f 8.953 123.65 128.728f 2403.66 341.61 5.881 Distances in METERS.-----Specific Gravity = 1.025.-----Moment in m.-MT. Trim is per 270.00m. Draft is from Baseline. True Free Surface included

Tablica 8. Poluge statičkog stabiliteta broda u neoštećenom stanju

RIGHTING ARMS vs HEEL ANGLE

Tota	al CG: LO	CG =141.3	137f TCG = (0.027s VCG	= 13.332		
Free Surface Adjustment: 1.229							
Adjus	ted CG:	LCG =141	.141f TCG =	0.027s VC	G = 14.50	51	
Origi	in Degr	rees of	Displacemer	nt Righti	ng Arms		
Deptl	hTrim-	Heel	Weight(MT)	in Trim-	-in Heel	> Area	
16.62	0.21f	0.00	189,976.91	0.003a	-0.027	0.0000	
16.62	0.21f	0.27s	189,975.52	0.003a	0.000	-0.0001	
16.58	6 0.22f	3.00s	189,975.23	0.002f	0.281	0.0066	
16.48	9 0.23f	6.00s	189,975.72	0.000	0.593	0.0295	
16.32	7 0.24f	9.00s	189,975.62	0.000	0.912	0.0689	
16.10	3 0.26f	12.00s	189,975.64	0.000	1.241	0.1252	
15.81	5 0.28f	15.00s	189,977.05	0.000	1.574	0.1989	
15.51	5 0.32f	18.00s	189,978.44	0.000	1.824	0.2883	
15.23	9 0.36f	21.00s	189,978.58	0.000	1.984	0.3883	
14.982	2 0.41f	24.00s	189,975.72	0.000	2.077	0.4950	
14.73	9 0.45f	27.00s	189,975.84	0.000	2.119	0.6048	
14.60	6 0.47f	28.69s	189,975.22	0.002a	2.124	0.6675	
14.50	2 0.49f	30.00s	189,976.27	0.000	2.121	0.7160	
14.26	5 0.54f	33.00s	189,975.83	0.000	2.093	0.8264	
14.01	9 0.59f	36.00s	189,975.91	0.000	2.037	0.9347	
13.75	7 0.65f	39.00s	189,975.78	0.000	1.954	1.0392	
13.66	4 0.67f	40.00s	189,976.02	0.000	1.920	1.0730	
13.47	1 0.71f	42.00s	189,977.14	0.000	1.841	1.1387	
13.15	5 0.77f	45.00s	189,978.27	0.000	1.696	1.2314	
12.80	4 0.83f	48.00s	189,977.83	0.000	1.521	1.3158	
12.41	8 0.89f	51.00s	189,977.63	0.000	1.320	1.3902	
11.99	7 0.95f	54.00s	189,977.20	0.000	1.097	1.4535	
11.54	4 1.01f	57.00s	189,977.09	0.000	0.856	1.5047	
11.05	9 1.07f	60.00s	189,976.91	0.000	0.601	1.5430	

Distances in METERS.---Specific Gravity = 1.025.---Area in m.-Rad.

Slika 11. Krivulje stabiliteta za neoštećeno stanje

Largest Shear:	-4,123.1 MT	at 40.150f
Largest Bending Moment:	-205,604 MT-m	at 120.030f (Sagging)

Tablica 9. Iznos i položaj najvećeg momenta savijanja i smične sile za neoštećeno stanje

Slika 12. Karakteristike uzdužne čvrstoće za neoštećeno stanje

6.2. Oštećena stanja – primjer stanja 1

Oštećeno stanje 1

DAMAGE CONDITION 1.: HOMOGENOUS LOADED, T=17.1 m,100% STORES

FLOODED: FOREPEAK , BOSUN'S STORE, CHAIN-LOCK,

Slika 13. Naplavljeni tankovi u Oštećenom stanju 1

Tablica 10. Naplavljeni tankovi i kritične točke za Oštećeno stanje 1

Baseline draft: 15.254 @ Origin Trim: Fwd 5.22/270.00, Heel: Stbd 0.28 deg. Displ(MT) ----LCB-----TCB-----VCB HULL 198,057.64 145.877f 0.054s 9.360 1.025 DCTANK-NO1.S Flooded 1.025 -9,108.36 240.427f 7.849s 11.682 DCTANK-NO1.P Flooded 1.025 -9,063.09 240.437f 7.831p 11.641 DWBTANK-NO1.S Flooded 1.025 -3,170.71 242.293f 12.552s 6.708 DWBTANK-NO1.P Flooded 1.025 -3,154.43 242.293f 12.527p 6.640 -2,115.39 266.007f 0.000 8.303 DFORE-PEAK.C Flooded 1.025 DCHAIN-LOCK.S Flooded 1.025 -70.34 263.353f 2.566s 17.181 Flooded 1.025 -661.95 265.413f 0.003s 16.902 DVOID.C DBSSTORE.C Flooded 1.025 -5.74 266.690f 1.382s 20.361 Total Displacement--> 1.025 170,707.64 130.235f 0.056s 9.194 _____ 0.000 0.000s Righting Arms: Distances in METERS.-----Moments in m.-MT. Critical Points-----Height (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860 4.158 (2) Air pipe WB2.p FLOOD 224.370f 21.500p 23.860 4.370 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 5.158 (4) Air pipe CT2.p FLOOD 224.370f 1.200p 24.760 5.170 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 8.688 (6) Accommodation FLOOD 32.600f 14.000s 23.800 7.844 Distances in METERS.-----

Tablica 11. Hidrostatske karakteristike za Oštećeno stanje 1

HYDROSTATIC PROPERTIES with FLOODINGTrim: Fwd 5.22/270.00, Heel: Stbd 0.28 deg., VCG = 13.320LCF Displacement Buoyancy-Ctr. Weight/Moment/Draft----Weight(MT)----LCB-----VCB-----cm---LCF---cm trim----GML-----GMT17.505170,707.64 130.235f9.194108.84 116.335f1630.58257.906.378Distances in METERS.-----Specific Gravity = 1.025.-----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.True Free Surface included.

Critical Point-----VCP (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860

Slika 14. Krivulje stabiliteta za Oštećeno stanje 1

Largest Shear:	-2,544.0 MT	at 224.870f
Largest Bending Moment:	102,383 MT-m	at 188.800f (Hogging)

Tablica 12. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 1

Slika 15. Karakteristike uzdužne čvrstoće za Oštećeno stanje 1

STANJE	NAPLAVLJENI TANKOVI	KRITERIJI STABILITETA	POSTIGNUTO	NAJVEĆI MOMENT SAVIJANJA (t-m)	
		Kriteriji stabiliteta u neoštećenom stanj	u		
,		(1) Početna metacentrska visina	> 0.15 m	5.88	
NEOSTECENO STANJE,		(2) Površina ispod krivulie do 30°	> 0.055 m-rad	0.7161	
HOMOGENO	-	(3) Površina ispod krivulje do 40°	> 0.09 m-rad	0.1073	-205604
NATOVAREN BROD SA		(4) Površina ispod krivulje od 30° do 40°	> 0.03 m-rad	0.357	
100% ZALIHA		(5) Poulga stabiliteta pri 30°	>0.2 m	2.12	
		(6) Najveća poluga satbiliteta pri kutu	> 25°	28.69	
	DCTANK-NO1.S	Kriteriji stabiliteta u oštećenom stanju	-		
	DCTANK-NO1.P	(1) Kut ravnoteže	< 25°	0°	
STANJE OŠTEĆENJA 1,	DWBTANK-NO1.S	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	64°	
HOMOGENO	DWBTANK-NO1.P	(3) GM u tom rasponu kuteva mora biti	> 0.1 m	1.97	
NATOVAREN BROD SA	DFORE-PEAK.C	(4) Površina ispod krivulje od kuta ravnoteže do $GZ = 0$	> 0.0175 m-rad	1.398	102383
100% ZALIHA	DCHAIN-LOCK.S				
	DVOID.C				
	DBSSTORE.C				
	DCTANK-NO1.S	Kriteriji stabiliteta u oštećenom stanju			-
STANJE OŠTEĆENJA 2.	DWBTANK-NO1.S	(1) Kut ravnoteže	< 25°	2°	
HOMOGENO	DFORE-PEAK.C	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	62°	
NATOVAREN BROD SA	DCHAIN-LOCK S	(3) GM u tom rasponu kuteva mora biti	>0.1 m	1.76	-91226
100% ZALIHA		(4) Površina ispod krivulje od kuta ravnoteže do $G7 = 0$	> 0.0175 m-rad	1 2318	
			2 0.0175 m Tau	1.2510	
	DCTANK-NO1 S	Kriteriji stabiliteta u oštećenom stanju			
STANJE OŠTEĆENJA 3, HOMOGENO	DCTANK-NO2 S	(1) Kut ravnoteže	< 25°	٨°	
	DWBTANK-NO1 S	(2) Raspon kuteva od stanja ravnoteže do $G7 = 0$	> 20°		-137991
NATOVAREN BROD SA	DWBTANK-NO2 S	(2) Raspon kuteva od stanja ravnoteže do dž = 0	>0.1m	1 54	137331
100% ZALIHA	DWDIANK NO2.5	(4) Površina ispod krivulje od kuta ravnoteže do $GZ = 0$	> 0.1175 m-rad	1.0714	
		Kriteriji stabiliteta u oštećenom stanju	, 0.01/5 m luu	1.0714	
STANJE OŠTEĆENJA 4,	DCTANK-NO2.3	(1) Kut ravnataža	< 25°	1°	
HOMOGENO		(1) Rut ravioteze (2) Raspon kuteva od stanja ravnoteže do $67 - 0$	< 2J	4 62°	-226782
NATOVAREN BROD SA	DWBTANK-NO2.5	(2) GM μ tom rasponu kuteva mora biti	>0.1 m	1.54	220702
100% ZALIHA	DWBTAIIR-NO3.3	(4) Površina ispod krivulje od kuta ravnoteže do $G7 = 0$	> 0.111	1.04	
		Kriteriji stabiliteta u oštećenom stanju	> 0.0175 m rad	1.0540	
STANJE OŠTEĆENJA 5,	DCTANK-NO3.5		< ٦ ٢ °	49	
HOMOGENO	DUTANK-NU4.5	(1) Kul ravnoleze	< 25 > 20°	4 62°	-285573
NATOVAREN BROD SA	DWBTAINK-INUS.S	(2) CM u tem recenenu kuteva mera hiti	>20	1.60	200070
100% ZALIHA	DWBTAINK-INU4.3	(3) Givi u com rasponu kuteva mora biti (4) Povrčina ispod krivulje od kuta ravnotože do GZ = 0	>0.1111	1 1200	
		(4) Povišina ispod krivulje od kuta ravnoteze do 62 – 0 Kritariji stabilitata u oštaćanom stanju	20.017511-1au	1.1300	
STANJE OŠTEĆENJA 6,	DCTANK-NO4.S		. 25%	49	
HOMOGENO	DCTANK-NO5.S	(1) Kut ravnoteze	< 25*	4*	200240
NATOVAREN BROD SA	DWBTANK-NO4.S	(2) Raspon kuteva od stanja ravnoteže do $GZ = 0$	> 20"	62	-290540
100% ZALIHA	DWBIANK-NO5.5	 (3) GM u tom rasponu kuteva mora biti (4) Pouršina izvad urivulia ad luta ravnastaža da CZ - 0 	> 0.1 m	1.62	
		(4) Povrsina ispod krivulje od kuta ravnoteže do $GZ = 0$	> 0.0175 m-rad	1.4310	
STANJE OŠTEĆENJA 7,	DCTANK-NO5.S	Kriteriji stabiliteta u ostecenom stanju			
HOMOGENO	DCTANK-NO6.S	(1) Kut ravnoteže	< 25°	4°	2500.40
NATOVAREN BROD SA	DWBTANK-NO5.S	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	63°	-250849
100% ZALIHA	DWBTANK-NO6.S	(3) GZ u tom rasponu kuteva mora biti	>0.1 m	1.58	
		(4) Povrsina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	1.5120	
STANJE OŠTEĆENJA 8.	DCTANK-NO6.S	Kriteriji stabiliteta u oštećenom stanju	I		
HOMOGENO	DSLOP.S	(1) Kut ravnoteže	< 25°	2°	
NATOVAREN BROD SA	DWBTANK-NO6.S	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	64°	-208500
100% ZALIHA		(3) GM u tom rasponu kuteva mora biti	>0.1 m	1.85	
1	1	(4) Površina ispod krivulje od kuta ravnoteže do $G7 = 0$	> 0.0175 m-rad	1.3302	

Tablica 13. Rezultati proračuna stabiliteta i uzdužne čvrstoće (Oštećena stanja 1 – 8)

STANJE	NAPLAVLJENI TANKOVI	KRITERIJI STABILITETA		POSTIGNUTO	NAJVEĆI MOMENT SAVIJANJA (t-m)
	DCTANK-NO6.S	Kriteriji stabiliteta u oštećenom stanju			
STANJE OŠTEĆENJA 9,	DSLOP.S	(1) Kut ravnoteže	< 25°	6°	
HOMOGENO	DWBTANK-NO6.S	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	55°	70044
NATOVAREN BROD SA	DHFO-STOR1.S	(3) GM u tom rasponu kuteva mora biti	>0.1 m	1.03	78841
100% ZALIHA	DPUMPROOM.C	(4) Površina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	0.6510	
	DENGINE-ROOM.C	.,		•	
STANIE OČTEĆENIA 10	DCTANK-NO1.S	Kriteriji stabiliteta u oštećenom stanju			
STANJE USTECENJA IU,	DWBTANK-NO1.S	(1) Kut ravnoteže	< 25°	2°	
	DFORE-PEAK.C	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	63°	-105864
100% ZALULA		(3) GM u tom rasponu kuteva mora biti	>0.1 m	1.82	
100% ZALINA		(4) Površina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	1.2997	
CTANUE OČTEĆENUA 44	DCTANK-NO1.S	Kriteriji stabiliteta u oštećenom stanju	I		
STANJE OSTECENJA 11,	DCTANK-NO1.P	(1) Kut ravnoteže	< 25°	0°	
	DWBTANK-NO1.S	(2) Raspon kuteva od stanja ravnoteže do $GZ = 0$	> 20°	65°	-69162
NATOVAREN BROD SA	DWBTANK-NO1.P	(3) GM u tom rasponu kuteva mora biti	> 0.1 m	2.05	
100% ZALIHA	DFORE-PEAK.C	(4) Površina ispod krivulje od kuta ravnoteže do $GZ = 0$	> 0.0175 m-rad	1.4812	
		Kriteriji stabiliteta u oštećenom stanju			
	DCTANK-NO1.5		< 25°	0°	
STANJE OŠTEĆENJA 12 , HOMOGENO NATOVAREN BROD SA	DCTANK-NOLP	(1) Kul raviloleze	< 25 > 20°	0 65°	
	DCTANK-NO2.5	(2) CZ u tom responsibility kutova mora biti	> 20	2.04	
		(3) GZ u tom rasponu kuteva mora biti (4) Povrčina ispod krivulje od kuta ravnotože do $GZ = 0$	> 0.1111	2.04	-65171
100% ZALIHA			>0.017511-1au	1.4027	
	DWBTANK-NO1.P				
	DWBTANK-NO2.P				
	DCTANK-NO2.S	Kriteriji stabiliteta u oštećenom stanju			
	DCTANK-NO2.P	(1) Kut ravnoteže	< 25°	0°	
STANJE OŠTEĆENJA 13,	DCTANK-NO3.S	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	67°	
HOMOGENO	DCTANK-NO3.P	(3) GM u tom rasponu kuteva mora biti	>0.1 m	2.08	247404
NATOVAREN BROD SA	DWBTANK-NO2.S	(4) Površina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	1.5489	-24/184
100% ZALIHA	DWBTANK-NO2.P		•		
	DWBTANK-NO3.S				
	DWBTANK-NO3.P				
	DCTANK-NO3.S	Kriteriji stabiliteta u oštećenom stanju	l		
	DCTANK-NO3.P	(1) Kut ravnoteže	< 25°	0°	
STANJE OŠTEĆENJA 14,	DCTANK-NO4.S	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	66°	
HOMOGENO	DCTANK-NO4.P	(3) GZ u tom rasponu kuteva mora biti	>0.1 m	2.05	-313377
NATOVAREN BROD SA	DWBTANK-NO3.S	(4) Površina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	1.5248	515577
100% ZALIHA	DWBTANK-NO3.P				
	DWBTANK-NO4.S				
	DWBTANK-NO4.P				
	DCTANK-NO4.S	Kriteriji stabiliteta u oštećenom stanju			
	DCTANK-NO4.P	(1) Kut ravnoteže	< 25°	0°	
STANJE OŠTEĆENJA 15,	DCTANK-NO5.S	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	66°	
HOMOGENO	DCTANK-NO5.P	(3) GM u tom rasponu kuteva mora biti	>0.1 m	2.05	212406
NATOVAREN BROD SA	DWBTANK-NO4.S	(4) Površina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	1.5192	-313480
100% ZALIHA	DWBTANK-NO4.P				
	DWBTANK-NO5.S	1			
	DWBTANK-NO5.P	1			

Tablica 14. Rezultati proračuna stabiliteta i uzdužne čvrstoće (Oštećena stanja 9 – 15)

STANJE	NAPLAVLJENI TANKOVI	KRITERIJI STABILITETA		POSTIGNUTO	NAJVEĆI MOMENT SAVIJANJA (t-m)
	DCTANK-NO5.S	Kriteriji stabiliteta u oštećenom stanju			
	DCTANK-NO5.P	(1) Kut ravnoteže	< 25°	0°	
STANJE OŠTEĆENJA 16,	DCTANK-NO6.S	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	66°	
HOMOGENO	DCTANK-NO6.P	(3) GM u tom rasponu kuteva mora biti	>0.1 m	1.98	265742
NATOVAREN BROD SA	DWBTANK-NO5.S	(4) Površina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	1.4816	-205745
100% ZALIHA	DWBTANK-NO5.P		-		
	DWBTANK-NO6.S				
	DWBTANK-NO6.P				
	DCTANK-NO6.S	Kriteriji stabiliteta u oštećenom stanju	I		
STANJE OŠTEĆENJA 17,	DCTANK-NO6.P	(1) Kut ravnoteže	< 25°	0°	
HOMOGENO	DSLOP.S	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	66°	-200036
NATOVAREN BROD SA	DSLOP.P	(3) GM u tom rasponu kuteva mora biti	>0.1 m	2.03	-209030
100% ZALIHA	DWBTANK-NO6.S	(4) Površina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	1.5244	
	DWBTANK-NO6.P		-		
CTANIE OČTEĆENIA 40	DSLOP.S	Kriteriji stabiliteta u oštećenom stanju			
STANJE USTECENJA 18,	DSLOP.P	(1) Kut ravnoteže	< 25°	0°	
	DPUMPROOM.C	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	66°	-203802
100% ZALULA		(3) GM u tom rasponu kuteva mora biti	>0.1 m	2.12	
100% ZALIHA		(4) Površina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	1.5748	
	DPUMPROOM.C	Kriteriji stabiliteta u oštećenom stanju			
STANJE OSTECENJA 19,	DENGINE-ROOM.C	(1) Kut ravnoteže	< 25°	0°	
HOMOGENO		(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	62°	-72331
NATOVAREN BROD SA		(3) GM u tom rasponu kuteva mora biti	>0.1 m	1.72	
100% ZALIHA		(4) Površina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	1.1877	
	DWBTANK-NO1.S	Kriteriji stabiliteta u oštećenom stanju			
STANJE OŠTEĆENJA 20,	DWBTANK-NO2.S	(1) Kut ravnoteže	< 25°	13°	
HOMOGENO	DWBTANK-NO3.S	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	63°	255022
NATOVAREN BROD SA	DWBTANK-NO4.S	(3) GM u tom rasponu kuteva mora biti	>0.1 m	0.86	-233622
100% ZALIHA	DWBTANK-NO5.S	(4) Površina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	0.6386	
	DFORE-PEAK.C				
	DWBTANK-NO1.S	Kriteriji stabiliteta u oštećenom stanju			
	DWBTANK-NO1.P	(1) Kut ravnoteže	< 25°	0°	
	DWBTANK-NO2.S	(2) Raspon kuteva od stanja ravnoteže do GZ = 0	> 20°	42°	
	DWBTANK-NO2.P	(3) GM u tom rasponu kuteva mora biti	>0.1 m	1.12	
	DWBTANK-NO3.S	(4) Površina ispod krivulje od kuta ravnoteže do GZ = 0	> 0.0175 m-rad	0.7753	
STANJE OŠTEĆENJA 21,	DWBTANK-NO3.P			•	
HOMOGENO	DWBTANK-NO4.S				296105
NATOVAREN BROD SA	DWBTANK-NO4.P				-200105
100% ZALIHA	DWBTANK-NO5.S				
	DWBTANK-NO5.P				
	DFORE-PEAK.C				
	DCHAIN-LOCK.S				
	DCHAIN-LOCK.P				
	DBSSTORE.				

Tablica 15. Rezultati proračuna stabiliteta i uzdužne čvrstoće (Oštećena stanja 16 – 21)

Slika 16. Najveći moment savijanja za pojedino stanje oštećenja

Slika 17. Odstupanje najvećih momenta savijanja u odnosu na neoštećeno stanje

Slika 18. Položaj najvećeg momenta savijanja po duljini broda

6.3. Kritična stanja

U slučaju nesreće vrlo je bitno da posada ima smjernice kako reagirati. U pogledu stabiliteta brod zadovoljava sve kriterije u svim slučajevima oštećenja, i to sa velikom rezervom. Kao kriterij uzdužne čvrstoće uzima se moment otpora poprečnog presjeka, koji se u oštećenom stanju ne smije smanjiti više od 10%. Podaci o momentu otpora u oštećenom stanju nisu dostupni. Ovdje je kao proizvoljni kriterij uzeto povećanje momenta savijanja od 10% u odnosu na neoštećeni brod što iznosi -226 165 t. Razmatrana su stanja oštećenja 6, 15 i 21. Stanje 6 je uzeto u razmatranje jer se u tom stanju javlja najveći moment savijanja za slučaj kad su oštećena 2 uzastopna tanka na jednom boku. U Oštećenom stanju 15 javlja se najveći moment savijanja od svih stanja, a u Oštećenom stanju 21 naplavljeni su balastni tankovi duž oba boka. Balastiranjem se pokušalo smanjiti moment savijanja do određene granice.

STANJE	BALASTIRANI	DOZVOLJENI	MOMENT PRIJE	MOMENT
OŠTEĆENJA	TANKOVI	MOMENT (t)	BALASTIRANJA	NAKON
			(t)	BALASTIRANJA
				(t)
6	DWbtank-No1.p 70%	-226 165	-290 340	-209 340
	DWbtank-No2.p 40%			
15	DWbtank-No1.p 98%	-226 165	-313 486	-257 331
	DWbtank-No1.s 98%			
21	DWbtank-No6.p 98%	-226 165	-286 105	-286 141
	DWbtank-No6.s 98%			

Tablica	14.	Balastiranje	u	kritičnim	stanjima
---------	-----	--------------	---	-----------	----------

Vidljivo je da je jedino u slučaju oštećenja 6 zadovoljena granice dozvoljenog momenta. U slučaju 15 kod kojeg se javlja najveći moment savijanja od -313 486 t, balastiranjem se uspjelo smanjiti moment za 18%. Balastiranje u slučaju 21 nije donijelo nikakvih pomaka te moment i dalje značajno premašuje određenu granicu. Ako bi ovu granicu smatrali relevantnom, u slučajevima 15 i 21 posada bi trebala napustiti brod.

7. Zaključak

Ovim radom ispitane su karakteristike stabiliteta i uzdužne čvrstoće tankera u oštećenom stanju, kako bi se dobio uvid u ponašanje broda u slučaju nesreće, te moguće posljedice za okoliš. Odabran je potpuno, homogeno natovaren brod, te je za njega modelirano 21 stanje oštećenja. Nakon provedenih proračuna i usporedbe sa rezultatima za neoštećeno stanje može se zaključiti da:

- brod u svim stanjima oštećenja zadovoljava sve kriterije stabiliteta, uz veliku rezervu
- kut bočnog nagiba ne prelazi 6°, osim u slučaju oštećenja 20 gdje iznosi 13°
- najmanja poluga statičkog stabiliteta iznosi 0.86 m, u stanju oštećenja 20
- kriterij uzdužne čvrstoće za oštećeno stanje je najveće dopušteno smanjenje momenta otpora od 10%
- nije moguća procjena dozvoljenih momenata savijanja zbog nepoznavanja momenta otpora poprečnog presjeka u oštećenom stanju
- u 12 od 21 oštećenog stanja, moment savijanja se povećava, dok se u 9 slučajeva smanjuje
- najveći moment savijanja javlja se u stanju oštećenja 15 i iznosi -313 486 MT, što je povećanja od 52.47% u odnosu na moment u neoštećenom stanju
- najveći moment savijanja nastupa na 124 m ispred krmene okomice
- u slučaju oštećenja 12 moment savijanja se smanjuje za čak 68.3%
- balastiranjem se ne može uvijek postići smanjenje momenata savijanja

U slučaju ovog broda puno je veća opasnost od loma strukture nego od njegovog prevrtanja te je potrebno pažnju posvetiti proračunu i izvedbi konstruktivnih elemenata, redovitom održavanju i nadzoru broda. Neoprezno balastiranje s ciljem ispravljanja broda može također imati velikog utjecaja na opterećenja broda te može dovesti do pucanja i gubitka broda što kao posljedicu ima nepopravljivu štetu za okoliš.

8. Literatura

- [1] Projekt: Structural reliability of oil damaged tanker in the Adriatic Sea, voditelj Parunov, J., Fakultet strojarstva i brodogradnje, 2014.
- [2] <u>http://www.marineinsight.com/</u>, 20.11.2014.
- [3] <u>http://www.jutarnji.hr/</u>, 20.11.2014.
- [4] Prezentacija: Pouzdanost konstrukcije oštećenog naftnog tankera u Jadranskom moru HRZZ istraživački projekt, Parunov, J., 2014.
- [5] Uršić, J.: Stabilitet broda, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zagreb, 2005.
- [6] Bureau Veritas, Classification rules, Pt. B, Ch. 3, Sec. 3; Pt. D, Ch. 7, Sec. 3, 2014.
- [7] Programski paket GHS, verzija 11.00
- [8] GHS Training Book, Standard Course 11/12
- [9] <u>http://www.brodosplit.hr/</u>, 15.11.2014.

PRILOZI

- I. CD-R disc
- II. Rezultati proračuna za Oštećena stanja 2 21

i. Oštećeno stanje 2

DAMAGE CONDITION 2.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: FOREPEAK ,BOSUN'S STORE, CHAIN-LOCK, VOID, CT1.s ,WB1.s

Slika 19. Naplavljeni tankovi u Oštećenom stanju 2

Tablica 15. Naplavljeni tankovi i kritične točke za Oštećeno stanje 2

```
Baseline draft: 15.722 @ Origin
        Trim: Fwd 3.72/270.00, Heel: Stbd 1.81 deg.
                              Displ(MT)----LCB----TCB----VCB
   HULL
                      1.025 194,902.89 144.251f 0.352s 9.200
                              -8,744.89 240.362f 7.885s 11.352
   DCTANK-NO1.S Flooded 1.025
                             -3,125.93 242.216f 12.513s 6.520
   DWBTANK-NO1.S Flooded 1.025
   DFORE-PEAK.C Flooded 1.025
                             -2,115.40 266.007f 0.000 8.303
   DCHAIN-LOCK.S Flooded 1.025
                                -60.05 263.352f 2.571s 16.716
   DVOID.C
                                -565.28 265.552f 0.128s 16.404
              Flooded 1.025
             DBSSTORE.C Flooded 1.025
                                           0.00
    Total Displacement--> 1.025 180,291.34 136.042f 0.220p 9.127
      -----
            Righting Arms:
                                     0.003a 0.000s
Distances in METERS.-----Moments in m.-MT
    Critical Points-----Height
  (1) Air pipe WB2.s
                         FLOOD 224.370f 21.500s 23.860
                                                     4.364
  (2) Air pipe WB2.p
                         FLOOD 224.370f 21.500p 23.860
                                                     5.723
  (3) Air pipe CT2.s
                         FLOOD 224.370f 1.200s 24.760
                                                     5.905
  (4) Air pipe CT2.p
                         FLOOD 224.370f 1.200p 24.760
                                                     5.981
  (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900
                                                     7.923
  (6) Accommodation
                         FLOOD 32.600f 14.000s 23.800
                                                      7.181
  Distances in METERS.-----
```

Tablica 16. Hidrostatske karakteristike za Oštećeno stanje 2

HYDROSTATIC PROPERTIES with FLOODINGTrim: Fwd 3.72/270.00, Heel: Stbd 1.81 deg., VCG = 13.326LCF Displacement Buoyancy-Ctr. Weight/ Moment/Draft----Weight(MT)----LCB----VCB-----CMT17.407 180,291.34 136.042f 9.127 115.54 122.294f 1981.87 296.80 6.201Distances in METERS.-----Specific Gravity = 1.025.-----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.True Free Surface included.Critical Point------UCP(1) Air pipe WB2.sFLOOD 224.370f 21.500s 23.860

Slika 20. Karakteristike stabiliteta za oštećeno stanje 2

Largest Shear:	-2,999.4 MT	at	40.150f
Largest Bending Moment:	-91,226 MT-m	at	82.600f (Sagging)

Tablica 17. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 2

Slika 21. Karakteristike uzdužne čvrstoće za Oštećeno stanje 2

ii. Oštećeno stanje 3

DAMAGE CONDITION 3.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: CT1.s ,WB1.s, CT2.s, WB2.s

Slika 22. Naplavljeni tankovi u Oštećenom stanju 3

Tablica 18. Naplavljeni tankovi i kritične točke za Oštećeno stanje 3

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS

		Baseline d	lraft:	16.05	8 @ Origi	n		
	Trim:	Fwd 2.95/27	0.00,	Heel	: Stbd 3.	84 deg.		
					Displ(MT)	LCB-	TCB	VCB
HU	JLL		1.025	1	94,573.20	143.296	f 0.751s	9.193
DC	CTANK-NO1.S	Flooded	1.025		-8,716.22	240.306	f 7.948s	11.328
DC	CTANK-NO2.S	Flooded	1.025	-	12,594.48	207.666	f 10.760s	10.949
D₩	WBTANK-NO1.	S Flooded	1.025		-3,148.95	242.182	f 12.561s	6.617
D₩	WBTANK-NO2.	S Flooded	1.025		-3,597.77	207.259	f 16.136s	5.121
Г	Fotal Displ	acement>	1.025	16	6,515.81	130.097f	0.938p	9.086
	Ri	ghting Arms	3:		0.	002a (.000s	
Distanc	Ri ces in METE	ghting Arms	s: 		0.	.002a (.000s Moment	ts in mMT.
Distanc	Ri ces in METE ritical Poi	ghting Arms RS nts	5: 		0. LCP	.002a ().000s Moment VCP	ts in mMT. Height
Distanc C (1)	Ri ces in METE ritical Poi Air pipe W	.ghting Arms RS .nts IB2.s	5: -	 FLOOD	0. LCP 224.370f	.002a ().000s Moment VCP 23.860	ts in mMT. Height 3.892
Distanc C (1) (2)	Ri ces in METE ritical Poi Air pipe W Air pipe W	.ghting Arms RS Ints IB2.s IB2.p	5: E E	FLOOD	0. LCP 224.370f 224.370f	.002a (TCP 21.500s 21.500p	0.000s Moment VCP 23.860 23.860	ts in mMT. Height 3.892 6.774
Distano C (1) (2) (3)	Ri ces in METE ritical Poi Air pipe W Air pipe W Air pipe C	.ghting Arms RS Ints NB2.s NB2.p XT2.s	5: F F F	FLOOD FLOOD FLOOD	0. LCP 224.370f 224.370f 224.370f	.002a 0 TCP 21.500s 21.500p 1.200s	0.000s Moment 23.860 23.860 24.760	ts in mMT. Height 3.892 6.774 6.150
Distanc C (1) (2) (3) (4)	Ri ritical Poi Air pipe W Air pipe C Air pipe C Air pipe C	.ghting Arms RS Ints IB2.s IB2.p XT2.s XT2.p	5: F F F	FLOOD FLOOD FLOOD FLOOD	0. LCP 224.370f 224.370f 224.370f 224.370f	002a 0 	.000s Moment 23.860 23.860 24.760 24.760	ts in mMT. Height 3.892 6.774 6.150 6.311
Distanc C (1) (2) (3) (4) (5)	Ri ritical Poi Air pipe W Air pipe W Air pipe C Air pipe C Air pipe Z	ghting Arms RS Ints NB2.s NB2.p CT2.s CT2.p After-peak.a	s: 	FLOOD FLOOD FLOOD FLOOD FLOOD	0. LCP 224.370f 224.370f 224.370f 224.370f 4.800a	.002a 0 TCP 21.500s 21.500p 1.200s 1.200p 10.000s	Moment VCP 23.860 23.860 24.760 24.760 23.900	ts in mMT. Height 3.892 6.774 6.150 6.311 7.206
Distanc (1) (2) (3) (4) (5) (6)	Ri ces in METE ritical Poi Air pipe W Air pipe C Air pipe C Air pipe Z Air pipe Z	ghting Arms RS Ints IB2.s IB2.p CT2.s CT2.p After-peak.a Sion	s: 	FLOOD FLOOD FLOOD FLOOD FLOOD FLOOD	0. LCP 224.370f 224.370f 224.370f 224.370f 4.800a 32.600f	.002a 0 TCP 21.500s 21.500p 1.200s 1.200p 10.000s 14.000s	Moment 	ts in mMT. Height 3.892 6.774 6.150 6.311 7.206 6.430

Tablica 19. Hidrostatske značajke za Oštećeno stanje 3

HYDROSTATIC PROPERTIES with FLOODING Trim: Fwd 2.95/270.00, Heel: Stbd 3.84 deg., VCG = 13.351 LCF Displacement Buoyancy-Ctr. Weight/ Moment/ Draft----Weight(MT)----LCB-----VCB-----cm---LCF---cm trim----GML-----GMT 17.334 166,515.81 130.097f 9.086 108.44 116.541f 1833.86 297.35 6.310 Distances in METERS.-----Specific Gravity = 1.025.-----Moment in m.-MT. Trim is per 270.00m. Draft is from Baseline. True Free Surface included. Critical Point-----VCP

> (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860

Slika 23. Krivulje stabiliteta za Oštećeno stanje 3

Largest Shear:	-3,528.8 MT	at 40.150f
Largest Bending Moment:	-137,991 MT-m	at 107.800f (Sagging)

Slika 24. Karakteristike uzdužne čvrstoće za Oštećeno stanje 3

iii. Oštećeno stanje 4

DAMAGE CONDITION 4.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: CT2.s, WB2.s, CT3.s, WB3.s

Slika 25. Naplavljeni tankovi u Oštećenom stanju 4

Tablica 21. Naplavljeni tankovi i kritične točke za Oštećeno stanje 4

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 16.378 @ Origin Trim: Fwd 2.27/270.00, Heel: Stbd 4.42 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 194,521.34 142.431f 0.866s 9.191 DCTANK-NO2.S -12,520.36 207.650f 10.784s 10.903 Flooded 1.025 DCTANK-NO3.S Flooded 1.025 -12,403.21 172.505f 10.873s 10.746 DWBTANK-NO2.S Flooded 1.025 -3,599.73 207.252f 16.140s 5.129 DWBTANK-NO3.S Flooded 1.025 -3,797.43 172.468f 16.574s 5.090 Total Displacement--> 1.025 162,200.61 132.955f 1.372p 9.126 _____ 0.001 0.000s Righting Arms: Distances in METERS.-----Moments in m.-MT. Critical Points-----Height

(1) Air pipe WB2.s	FLOOD 224.370f 21	1.500s 23.860	3.919
(2) Air pipe WB2.p	FLOOD 224.370f 21	1.500p 23.860	7.229
(3) Air pipe CT2.s	FLOOD 224.370f 1	1.200s 24.760	6.379
(4) Air pipe CT2.p	FLOOD 224.370f 1	1.200p 24.760	6.564
(5) Air pipe After-peak.aft	FLOOD 4.800a 10	0.000s 23.900	6.770
(6) Accommodation	FLOOD 32.600f 14	4.000s 23.800	6.048
Distances in METERS			

Tablica 22. Hidrostatske karakteristike za Oštećeno stanje 4

HYDROSTATIC PROPERTIES with FLOODINGTrim: Fwd 2.27/270.00, Heel: Stbd 4.42 deg., VCG = 13.383LCF Displacement Buoyancy-Ctr. Weight/ Moment/Draft----Weight(MT)----LCB----VCB-----CMT----GMT17.384162,200.61132.955f9.126106.6019.332f2116.83352.376.190Distances in METERS.----Specific Gravity = 1.025.-----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.True Free Surface included.Critical Point------LCP-----VCP(1) Air pipe WB2.sFLOOD 224.370f 21.500s 23.860

Slika 26. Krivulje stabiliteta za Oštećeno stanje 4

Largest Shear:	-4,024.0 MT	at 40.150f
Largest Bending Moment:	-226,782 MT-m	at 156.400f (Sagging)

Slika 27. Karakteristike uzdužne čvrstoće za Oštećeno stanje 4

iv. Oštećeno stanje 5

DAMAGE CONDITION 5.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: CT3.s, WB3.s, CT4.s, WB4.s

Slika 28. Naplavljeni tankovi u Oštećenom stanju 5

Tablica 24. Naplavljeni tankovi i kritične točke za Oštećeno stanje 5

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 16.682 @ Origin Trim: Fwd 1.54/270.00, Heel: Stbd 4.21 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 193,957.37 141.548f 0.829s 9.158 DCTANK-NO3.S Flooded 1.025 -12,244.44 172.488f 10.864s 10.644 DCTANK-NO4.S Flooded 1.025 -12,086.13 137.209f 10.863s 10.543 DWBTANK-NO3.S Flooded 1.025 -3,777.13 172.462f 16.539s 5.012 DWBTANK-NO4.S Flooded 1.025 -3,760.06 137.184f 16.510s 4.950 Total Displacement→ 1.025 162,089.61 138.915f 1.407p 9.136 _____ 0.003f 0.000s Righting Arms: Distances in METERS.-----Moments in m.-MT. Critical Points-----Height FLOOD 224.370f 21.500s 23.860 (1) Air pipe WB2.s 4.301 FLOOD 224.370f 21.500p 23.860 7.455 (2) Air pipe WB2.p (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 6.688 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 6.864 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 6.492 (6) Accommodation FLOOD 32.600f 14.000s 23.800 5.886 Distances in METERS.-----

Tablica 25. Hidrostatske karakteristike za Oštećeno stanje 5

HYDROSTATIC PROPERTIES with FLOODINGTrim: Fwd 1.54/270.00, Heel: Stbd 4.21 deg., VCG = 13.384LCF Displacement Buoyancy-Ctr. Weight/ Moment/Draft----Weight(MT)----LCB----VCB-----CM-----GML-----GML17.395 162,089.61 138.915f 9.136 106.64 124.636f 2348.75 391.24 6.145Distances in METERS.-----Specific Gravity = 1.025.-----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.True Free Surface included.Critical Point------UCP(1) Air pipe WB2.sFLOOD 224.370f 21.500s 23.860

Slika 29. Krivulje stabiliteta za Oštećeno stanje 5

Largest Shear:	-4,466.0 MT	at 40.150f
Largest Bending Moment:	-285,573 MT-m	at 140.200f (Sagging)

Tablica 26. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 5

Slika 30. Karakteristike uzdužne čvrstoće za Oštećeno stanje 5

v. Oštećeno stanje 6

FLOODED: CT4.s, WB4.s, CT5.s, WB5.s Outboard Profile View Profile View 1 36 1.8 ÷ŝ. Plan View 37.36 27 A A A A A 38 43 88 м

DAMAGE CONDITION 6.: HOMOGENOUS LOADED, T=17.1 m,100% STORES

Slika 31. Naplavljeni tankovi u Oštećenom stanju 6

Critical Points

cpl Air pipe WD2.s cp2 Air pipe WD2.p cp3 Air pipe CT2.s cp4 Air pipe CT2.p cp5 Air pipe After-p cp6 Accommodation

ak.

Tanks

1 CTANK-MO1.5....98 2 CTANK-MO1.7....88 3 CTANK-MO2.5...88 4 CTANK-MO2.7...88 5 CTANK-MO3.7...88 6 CTANK-MO3.7...88 8 CTANK-MO3.7...88 10 CTANK-MO5.7...88 11 CTANK-MO5.5....88

Tablica 27. Naplavljeni tankovi i kritične točke za Oštećeno stanje 6

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 16.923 @ Origin Trim: Fwd 0.95/270.00, Heel: Stbd 3.91 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 193,439.80 140.832f 0.774s 9.128 DCTANK-NO4.S Flooded 1.025 -11,995.22 137.194f 10.850s 10.484 DCTANK-NO5.S Flooded 1.025 -11,897.51 101.914f 10.849s 10.421 DWBTANK-NO4.S Flooded 1.025 -3,745.38 137.179f 16.485s 4.895 DWBTANK-NO5.S Flooded 1.025 -3,714.94 101.965f 16.433s 4.877 Total Displacement--> 1.025 162,086.75 144.933f 1.433p 9.128 _____ 0.001a 0.000s Righting Arms: Distances in METERS.-----Moments in m.-MT. Critical Points------Height FLOOD 224.370f 21.500s 23.860 (1) Air pipe WB2.s 4.664 (2) Air pipe WB2.p FLOOD 224.370f 21.500p 23.860 7.597 FLOOD 224.370f 1.200s 24.760 (3) Air pipe CT2.s 6.946 FLOOD 224.370f 1.200p 24.760 7.110 (4) Air pipe CT2.p (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 6.295 (6) Accommodation FLOOD 32.600f 14.000s 23.800 5.791 Distances in METERS.-----

Tablica 28. Hidrostatske karakteristike za Oštećeno stanje 6

HYDROSTATIC PROPERTIES with FLOODINGTrim: Fwd 0.95/270.00, Heel: Stbd 3.91 deg., VCG = 13.383LCF Displacement Buoyancy-Ctr. Weight/Moment/Draft----Weight (MT) ----LCB----VCB-----cm---LCF---cm trim----GML-----GMT17.383162,086.75 144.933f9.128106.75 130.127f2399.19399.656.061Distances in METERS.----Specific Gravity = 1.025.-----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.True Free Surface included.Critical Point------LCP-----TCP-----VCP(1) Air pipe WE2.sFLOOD 224.370f 21.500s 23.860

Slika 32. Krivulje stabiliteta za Oštećeno stanje 6

Largest Shear:	-4,816.0 MT	at 40.150f
Largest Bending Moment:	-290,340 MT-m	at 120.030f (Sagging)

Slika 33. Karakteristike uzdužne čvrstoće za Oštećeno stanje 6

vi. Oštećeno stanje 7

DAMAGE CONDITION 7.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: CT5.s, WB5.s, CT6.s, WB6.s

Slika 34. Naplavljeni tankovi u Oštećenom stanju 7

Tablica 30. Naplavljeni tankovi i kritične točke za Oštećeno stanje 7

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 17.393 @ Origin Trim: Fwd 0.13/270.00, Heel: Stbd 4.33 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 194,397.42 139.710f 0.857s 9.173 DCTANK-NO5.S Flooded 1.025 -12,084.20 101.893f 10.869s 10.542 DCTANK-NO6.S Flooded 1.025 -11,276.38 67.259f 10.388s 10.859 DWBTANK-NO5.S Flooded 1.025 -3,741.84 101.958f 16.479s 4.978 DWBTANK-NO6.S Flooded 1.025 -4,511.11 62.140f 15.576s 6.092 Total Displacement--> 1.025 162,783.89 150.554f 1.314p 9.136 _____ 0.003f 0.000s Righting Arms: Distances in METERS.-----Moments in m.-MT. Critical Points------Height FLOOD 224.370f 21.500s 23.860 (1) Air pipe WB2.s 4.720 (2) Air pipe WB2.p FLOOD 224.370f 21.500p 23.860 7.968 FLOOD 224.370f 1.200s 24.760 (3) Air pipe CT2.s 7.151 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 7.332 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 5.735 (6) Accommodation FLOOD 32.600f 14.000s 23.800 5.316 Distances in METERS.-----

Tablica 31. Hidrostatske karakteristike za Oštećeno stanje 7

HYDROSTATIC PROPERTIES with FLOODINGTrim: Fwd 0.13/270.00, Heel: Stbd 4.33 deg., VCG = 13.352LCF Displacement Buoyancy-Ctr. Weight/ Moment/Draft----Weight(MT)----LCB----VCB-----CM-----GML-----GML17.456 162,783.89 150.554f 9.136 106.82 135.725f 2268.51 376.26 6.157Distances in METERS.-----Specific Gravity = 1.025.-----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.True Free Surface included.Critical Point------LCP-----TCP-----VCP(1) Air pipe WE2.sFLOOD 224.370f 21.500s 23.860

Slika 35. Krivulje stabiliteta za Oštećeno stanje 7

Largest Shear:	-5,580.6 MT	at 40.150f
Largest Bending Moment:	-250,849 MT-m	at 107.800f (Sagging)

Tablica 32. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 7

Slika 36. Karakteristike uzdužne čvrstoće za Oštećeno stanje 7

vii. Oštećeno stanje 8

DAMAGE CONDITION 8.: HOMOGENOUS LOADED, T=17.1 m,100% STORES

Slika 37. Naplavljeni tankovi u Oštećenom stanju 8

6.513

Tablica 33. Naplavljeni tankovi i kritične točke za Oštećeno stanje 8

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 16.787 @ Origin Trim: Fwd 0.80/270.00, Heel: Stbd 1.64 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 190,814.80 140.828f 0.328s 8.993 DCTANK-NO6.S Flooded 1.025 -10,536.71 67.317f 10.221s 10.367 DSLOP.S Flooded 1.025 -2,062.16 44.667f 8.793s 11.200 DWBTANK-NO6.S Flooded 1.025 -4,340.20 62.179f 15.289s 5.607 Total Displacement--> 1.025 173,875.72 148.386f 0.746p 8.968 _____ Righting Arms: 0.003a 0.000s Distances in METERS.-----Moments in m.-MT. Critical Points-----Height (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860 5.789 (2) Air pipe WB2.p FLOOD 224.370f 21.500p 23.860 7.018 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 7.269 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 7.337 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 6.838

Tablica 34. Hidrostatske karakteristike za Oštećeno stanje 8

(6) Accommodation

HYDROSTATIC PROPERTIES with FLOODING Trim: Fwd 0.80/270.00, Heel: Stbd 1.64 deg., VCG = 13.306 LCF Displacement Buoyancy-Ctr. Weight/ Moment/ Draft----Weight(MT)----LCB-----VCB------CF---cm trim----GML-----GMT 17.188 173,875.72 148.386f 8.968 113.01 134.965f 2217.20 344.29 5.795 Distances in METERS.-----Specific Gravity = 1.025.------Moment in m.-MT. Trim is per 270.00m. Draft is from Baseline. True Free Surface included. Critical Point------LCP-----TCP-----VCP (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860

Distances in METERS.-----

FLOOD 32.600f 14.000s 23.800

Slika 38. Krivulje stabiliteta za Oštećeno stanje 8

Largest Shear:	-4,504.1 MT	at 40.150f
Largest Bending Moment:	-208,500 MT-m	at 119.530f (Sagging)

Tablica 35. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 8

Slika 39. Karakteristike uzdužne čvrstoće za Oštećeno stanje 8

viii. Oštećeno stanje 9

DAMAGE CONDITION 9.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: CT6.s, WB6.s, SLOP.s, PUMP ROOM, ENGINE-ROOM, HF01.s

Slika 40. Naplavljeni tankovi u Oštećenom stanju 9

Tablica 36. Naplavljeni tankovi i kritične točke za Oštećeno stanje 9

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 21.659 @ Origin Trim: Aft 6.26/270.00, Heel: Stbd 5.73 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 209,790.61 131.046f 1.074s 9.940 DCTANK-NO6.S Flooded 1.025 -13,573.25 67.020f 10.517s 12.365 DSLOP.S Flooded 1.025 -2,908.82 44.627f 9.510s 13.615 DWBTANK-NO6.S Flooded 1.025 -4,890.48 61.984f 16.138s 7.237 DHFO-STOR1.S Flooded 1.025 -1,956.50 33.245f 17.255s 15.836 DPUMPROOM.C Flooded 1.025 -1,834.68 38.177f 0.547s 10.524 DENGINE-ROOM.C Flooded 1.025 -10,753.87 22.888f 1.267s 14.648 Total Displacement--> 1.025 173,873.02 148.203f 0.416p 9.402 _____ Righting Arms: 0.007a -0.000s Distances in METERS.-----Moments in m.-MT. Critical Points-----Height FLOOD 224.370f 21.500s 23.860 (1) Air pipe WB2.s 5.244 (2) Air pipe WB2.p FLOOD 224.370f 21.500p 23.860 9.538 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 8.167 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 8.406 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 1.119 (6) Accommodation FLOOD 32.600f 14.000s 23.800 1.487 Distances in METERS. -----

Tablica 37. Hidrostatske karakteristike za Oštećeno stanje 9

HYDROSTATIC PROPERTIES with FLOODINGTrim: Aft 6.26/270.00, Heel: Stbd 5.73 deg., VCG = 13.310LCFDisplacementBuoyancy-Ctr. Weight/Moment/Draft----Weight (MT)----LCB----VCB-----CMMoment/Moment/18.234173,873.02148.203f9.402103.20146.973f1730.95268.795.986Distances in METERS.----Specific Gravity = 1.025.-----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.True Free Surface included.Critical Points------LCP-----TCP-----VCP(5) Air pipe After-peak.aftFLOOD4.800a 10.000s 23.900(6) AccommodationFLOOD32.600f 14.000s 23.800

Slika 41. Krivulje stabiliteta za oštećeno stanje 9

Largest Shear:	2,475.2 MT	at 84.750f
Largest Bending Moment:	78,841 MT-m	at 115.900f (Hogging)

TIP 10 T	1	• •	4	•• •	• • • •	• 1	OY	
Tablica X Iznos i	nn10791	naiveced	t momenta	cavilania	1 smicne	SILE 79	listeceno	stanie 4
Labita 50. ILitos I	poioza	majvece	momenta	savijanja	1 Shirthe	SHC La	Osteeno	stanje /

Slika 42. Karakteristike uzdužne čvrstoće za Oštećeno stanje 9

ix. Oštećeno stanje 10

DAMAGE CONDITION 10.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: FORE PEAK, CT1.s, WB1.s

Slika 43. Naplavljeni tankovi u Oštećenom stanju 10

Tablica 39. Naplavljeni tankovi i kritične točke za Oštećeno stanje 10

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 15.865 @ Origin Trim: Fwd 3.29/270.00, Heel: Stbd 1.72 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 194,102.94 143.770f 0.337s 9.158 DCTANK-NO1.S Flooded 1.025 -8,602.86 240.352f 7.878s 11.222 DWBTANK-NO1.S Flooded 1.025 -3,099.52 242.195f 12.480s 6.409 DFORE-PEAK.C Flooded 1.025 -2,115.39 266.007f 0.000 8.303 Total Displacement--> 1.025 180,285.17 136.035f 0.228p 9.117 _____ Righting Arms: 0.002f 0.000s Distances in METERS.-----Moments in m.-MT. Critical Points-----Height (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860 4.613 (2) Air pipe WB2.p FLOOD 224.370f 21.500p 23.860 5.907 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 6.123 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 6.195 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 7.788 (6) Accommodation FLOOD 32.600f 14.000s 23.800 7.113 Distances in METERS.-----

Tablica 40. Hidrostatske karakteristike za Oštećeno stanje 10

HYDROSTATIC PROPERTIES with FLOODINGTrim: Fwd 3.29/270.00, Heel: Stbd 1.72 deg., VCG = 13.325LCF Displacement Buoyancy-Ctr. Weight/ Moment/Draft----Weight(MT)----LCB----VCB-----CM-----GML-----GML17.368 180,285.17 136.035f 9.117 116.73 123.416f 2066.82 309.53 6.212Distances in METERS.----Specific Gravity = 1.025.-----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.True Free Surface included.Critical Point-----UCP(1) Air pipe WB2.sFLOOD 224.370f 21.500s 23.860

Slika 44. Krivulje stabiliteta za Oštećeno stanje 10

Largest Shear:	-3,189.3 MT	at	40.150f
Largest Bending Moment:	-105,864 MT-m	at	84.250f (Sagging)

Slika 45. Karakteristike uzdužne čvrstoće za Oštećeno stanje 10

x. Oštećeno stanje 11

DAMAGE CONDITION 11.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: FORE PEAK, CT1, WB1

Slika 46. Naplavljeni tankovi u Oštećenom stanju 11

Tablica 42. Naplavljeni tankovi i kritične točke za Oštećeno stanje 11

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 15.464 @ Origin Trim: Fwd 4.59/270.00, Heel: Stbd 0.27 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 196,846.89 145.187f 0.052s 9.294 DCTANK-NO1.S Flooded 1.025 -8,907.52 240.412f 7.843s 11.499 DCTANK-NO1.P Flooded 1.025 -8,864.04 240.421f 7.825p 11.460 DWBTANK-NO1.S Flooded 1.025 -3,133.83 242.261f 12.508s 6.553 DWBTANK-NO1.P Flooded 1.025 -3,118.59 242.261f 12.484p 6.490 DFORE-PEAK.C Flooded 1.025 -2,115.39 266.007f 0.000 8.303 Total Displacement→ 1.025 170,707.52 130.220f 0.055s 9.180 _____ Righting Arms: 0.002f 0.000s Distances in METERS.-----Moments in m.-MT. Critical Points-----Height FLOOD 224.370f 21.500s 23.860 (1) Air pipe WB2.s 4.483 FLOOD 224.370f 21.500p 23.860 (2) Air pipe WB2.p 4.686 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 5.478 (4) Air pipe CT2.p FLOOD 224.370f 1.200p 24.760 5.490 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 8.469 FLOOD 32.600f 14.000s 23.800 (6) Accommodation 7.715 Distances in METERS.-----

Tablica 43. Hidrostatske karakteristike za Oštećeno stanje 11

HYDROSTATIC PROPERTIES with FLOODINGTrim: Fwd 4.59/270.00, Heel: Stbd 0.27 deg., VCG = 13.320LCF Displacement Buoyancy-Ctr. Weight/Moment/Draft----Weight (MT) ----LCB----VCB-----CMT----GMLGML-----GML17.453170,707.52130.220f9.180109.89Distances in METERS.-----Specific Gravity = 1.025.-----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.True Free Surface included.Critical Point------LCP-----TCP-----VCP(1) Air pipe WE2.sFLOOD 224.370f 21.500s 23.860

Slika 47. Krivulje stabiliteta za Oštećeno stanje 11

Largest Shear:	-2,658.8 MT	at 40.150f
Largest Bending Moment:	-69,162 MT-m	at 72.895f (Sagging)

Slika 48. Karakteristike uzdužne čvrstoće za Oštećeno stanje 11

xi. Oštećeno stanje 12

DAMAGE CONDITION 12.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: CT1, WB1, CT2, WB2

Slika 49. Naplavljeni tankovi u Oštećenom stanju 12

Tablica 45. Naplavljeni tankovi i kritične točke za Oštećeno stanje 12

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 15.259 @ Origin Trim: Fwd 5.86/270.00, Heel: Stbd 0.33 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 201,922.39 146.356f 0.061s 9.540 DCTANK-NO1.S -9,432.01 240.442f 7.862s 11.976 Flooded 1.025 DCTANK-NO1.P Flooded 1.025 -9,379.42 240.453f 7.841p 11.928 DCTANK-NO2.S Flooded 1.025 -13,194.31 207.734f 10.620s 11.332 DCTANK-NO2.P Flooded 1.025 -13,097.95 207.735f 10.592p 11.269 DWBTANK-NO1.S Flooded 1.025 -3,232.27 242.342f 12.625s 6.969 DWBTANK-NO1.P Flooded 1.025 -3,212.47 242.342f 12.596p 6.885 DWBTANK-NO2.S Flooded 1.025 -3,600.41 207.287f 16.140s 5.132 DWBTANK-NO2.P Flooded 1.025 -3,580.04 207.287f 16.102p 5.049 Total Displacement--> 1.025 143,193.52 115.349f 0.067s 9.240 _____ Righting Arms: 0.000 0.000s Distances in METERS.-----Moments in m.-MT. Critical Points-----Height FLOOD 224.370f 21.500s 23.860 (1) Air pipe WB2.s 3.606 (2) Air pipe WB2.p FLOOD 224.370f 21.500p 23.860 3.851 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 4.622 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 4.635 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 8.685 (6) Accommodation FLOOD 32.600f 14.000s 23.800 7.751 Distances in METERS.-----

Tablica 46. Hidrostatske karakteristike za Oštećeno stanje 12

HYDROSTATIC PROPERTIES with FLOODING

 Trim: Fwd 5.86/270.00, Heel: Stbd 0.33 deg., VCG = 13.376

 LCF Displacement Buoyancy-Ctr. Weight/
 Moment/

 Draft----Weight(MT)----LCB----VCB-----CM
 Trim---GML-----GML

 17.453
 143,193.52
 115.349f
 9.240
 92.73
 101.030f
 1106.01
 208.54
 6.438

 Distances in METERS.-----Specific Gravity = 1.025.-----Moment in m.-MT.
 Trim is per 270.00m.

 Draft is from Baseline.
 True Free Surface included.

 Critical Point------LCP-----TCP-----VCP
 (1) Air pipe WB2.s
 FLOOD 224.370f
 21.500s
 23.860

Slika 50. Krivulje stabiliteta za Oštećeno stanje 12

Largest Shear:	-2,481.5 MT	at 40.150f
Largest Bending Moment:	-65,171 MT-m	at 220.800f (Sagging)

Tablica 47. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 12

Slika 51. Karakteristike uzdužne čvrstoće za Oštećeno stanje 12

xii. Oštećeno stanje 13

DAMAGE CONDITION 13.: HOMOGENOUS LOADED, T=17.1 m,100% STORES

FLOODED: CT2, WB2, CT3, WB3

Slika 52. Naplavljeni tankovi u Oštećenom stanju 13

Tablica 48. Naplavljeni tankovi i kritične točke za Oštećeno stanje 13 WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 16.282 @ Origin Trim: Fwd 2.98/270.00, Heel: Stbd 0.36 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 197,384.20 143.149f 0.070s 9.289 DCTANK-NO2.S -12,267.54 207.672f 10.607s 10.733 Flooded 1.025 DCTANK-NO2.P Flooded 1.025 -12,160.11 207.673f 10.573p 10.664 DCTANK-NO3.S Flooded 1.025 -12,072.87 172.524f 10.690s 10.528 DCTANK-NO3.P Flooded 1.025 -11,963.95 172.525f 10.655p 10.458 DWBTANK-NO2.S Flooded 1.025 -3,508.63 207.262f 15.968s 4.761 DWBTANK-NO2.P Flooded 1.025 -3,486.25 207.263f 15.924p 4.672 DWBTANK-NO3.S Flooded 1.025 -3,692.48 172.475f 16.392s 4.695 DWBTANK-NO3.P Flooded 1.025 -3,668.41 172.475f 16.349p 4.607 Total Displacement--> 1.025 134,563.98 121.252f 0.072s 9.309 _____ Righting Arms: 0.000 0.000s Distances in METERS.-----Moments in m.-MT. Critical Points-----Height FLOOD 224.370f 21.500s 23.860 (1) Air pipe WB2.s 4.968 (2) Air pipe WB2.p FLOOD 224.370f 21.500p 23.860 5.242 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 5.997 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 6.013 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 7.607 (6) Accommodation FLOOD 32.600f 14.000s 23.800 7.069

Tablica 49. Hidrostatske karakteristike za Oštećeno stanje 13

HYDROSTATIC PROPERTIES with FLOODING

Distances in METERS.-----

Trim: Fwd 2.98/270.00, Heel: Stbd 0.36 deg., VCG = 13.452 Displacement Buoyancy-Ctr. Weight/ LCF Moment/ Draft----Weight(MT)----LCB-----VCB-----cm----LCF---cm trim----GML-----GMT 17.448 134,563.98 121.252f 9.309 89.22 105.826f 1721.89 345.49 6.030 Distances in METERS.-----Specific Gravity = 1.025.----Moment in m.-MT. Trim is per 270.00m. Draft is from Baseline. True Free Surface included. Critical Point-----VCP (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860

Slika 53. Krivulje stabiliteta za Oštećeno stanje 13

Largest Shear:	4,464.4 MT	at 225.870f
Largest Bending Moment:	-247,184 MT-m	at 172.600f (Sagging)

Tablica 50.	Iznos i p	ooložaj n	ajvećeg	momenta s	savijanja i	i smične s	ile za	Oštećeno	stanje	13

Slika 54. Karakteristike uzdužne čvrstoće za Oštećeno stanje 13

xiii. Oštećeno stanje 14

DAMAGE CONDITION 14.: HOMOGENOUS LOADED, T=17.1 m,100% STORES

Slika 55. Naplavljeni tankovi u Oštećenom stanju 14

Tablica 51. Naplavljeni tankovi i kritične točke za Oštećeno stanje 14

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS

	Basel	ine draft	: 16.741 @ Origin
Tri	m: Fwd 1.	70/270.0	0, Heel: Stbd 0.37 deg.
			Displ(MT)LCBTCBVCB
HULL		1.025	195,511.25 141.672f 0.072s 9.195
DCTANK-NO3.S	Flooded	1.025	-11,793.06 172.493f 10.686s 10.349
DCTANK-NO3.P	Flooded	1.025	-11,683.47 172.494f 10.649p 10.278
DCTANK-NO4.S	Flooded	1.025	-11,619.05 137.214f 10.682s 10.237
DCTANK-NO4.P	Flooded	1.025	-11,509.47 137.215f 10.646p 10.167
DWBTANK-NO3.S	Flooded	1.025	-3,663.15 172.464f 16.339s 4.588
DWBTANK-NO3.P	Flooded	1.025	-3,638.93 172.464f 16.295p 4.499
DWBTANK-NO4.S	Flooded	1.025	-3,644.43 137.185f 16.305s 4.521
DWBTANK-NO4.P	Flooded	1.025	-3,620.21 137.186f 16.261p 4.434
Total Displ	acement \rightarrow	1.025	134,339.47 135.622f 0.072s 9.334

0.002f 0.000s Righting Arms: Distances in METERS.-----Moments in m.-MT Critical Points-----Height FLOOD 224.370f 21.500s 23.860 (1) Air pipe WB2.s 5.570 FLOOD 224.370f 21.500p 23.860 (2) Air pipe WB2.p 5.846 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 6.600 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 6.616 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 7.125 (6) Accommodation FLOOD 32.600f 14.000s 23.800 6.764 Distances in METERS.-----

Tablica 52. Hidrostatske karakteristike za Oštećeno stanje 14

HYDROSTATIC PROPERTIES with FLOODING

Slika 56. Krivulje stabiliteta za Oštećeno stanje 14

Largest Shear:	-4,530.9 MT	at 40.150f
Largest Bending Moment:	-313,377 MT-m	at 140.200f (Sagging)

Tablica 53. Iznos i	položaj najveće	g momenta savijanja	i smične sile za	Oštećeno stanje 14

Slika 57. Karakteristike uzdužne čvrstoće za Oštećeno stanje 14

xiv. Oštećeno stanje 15

DAMAGE CONDITION 15.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: CT4, WB4, CT5, WB5

Slika 58. Naplavljeni tankovi u Oštećenom stanju 15

Tablica 54. Naplavljeni tankovi i kritične točke za Oštećeno stanje 15

- ·

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS 1 5 17 040 0 0 1

Baseline drait: 17.040 @ Origin								
	Tri	m: Fwd 0.	90/270.00	, Heel: Stbd 0.37 deg.				
				Displ(MT)LCBTCBVCB				
	HULL		1.025	194,518.48 140.725f 0.072s 9.148				
	DCTANK-NO4.S	Flooded	1.025	-11,536.04 137.194f 10.681s 10.184				
	DCTANK-NO4.P	Flooded	1.025	-11,426.97 137.194f 10.644p 10.114				
	DCTANK-NO5.S	Flooded	1.025	-11,443.68 101.914f 10.679s 10.125				
	DCTANK-NO5.P	Flooded	1.025	-11,334.61 101.914f 10.642p 10.055				
	DWBTANK-NO4.S	Flooded	1.025	-3,635.69 137.178f 16.289s 4.490				
	DWBTANK-NO4.P	Flooded	1.025	-3,611.58 137.179f 16.245p 4.403				
	DWBTANK-NO5.S	Flooded	1.025	-3,605.81 101.967f 16.235s 4.474				
	DWBTANK-NO5.P	Flooded	1.025	-3,581.70 101.968f 16.189p 4.387				
	Total Displa	$acement \rightarrow$	1.025	134,342.42 150.174f 0.072s 9.323				
					_			

0.000 0.000s Righting Arms: Distances in METERS.-----Moments in m.-MT. Critical Points-----Height FLOOD 224.370f 21.500s 23.860 (1) Air pipe WB2.s 5.934 FLOOD 224.370f 21.500p 23.860 (2) Air pipe WB2.p 6.208 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 6.963 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 6.979 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 6.812 (6) Accommodation FLOOD 32.600f 14.000s 23.800 6.562 Distances in METERS.-----

Tablica 55. Hidrostatske karakteristike za Oštećeno stanje 15

HYDROSTATIC PROPERTIES with FLOODING

Trim: Fwd 0.90/270.00, Heel: Stbd 0.37 deg., VCG = 13.456 Displacement Buoyancy-Ctr. Weight/ LCF Moment/ Draft----Weight(MT)----LCB-----VCB-----cm----LCF---cm trim----GML-----GMT 17.480 134,342.42 150.174f 9.323 89.35 131.880f 2375.22 477.37 6.053 Distances in METERS.-----Specific Gravity = 1.025.----Moment in m.-MT. Trim is per 270.00m. Draft is from Baseline. True Free Surface included. Critical Point-----VCP (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860

Slika 59. Krivulje stabiliteta za Oštećeno stanje 15

Largest Shear:	-4,972.1 MT	at 40.150f
Largest Bending Moment:	-313,486 MT-m	at 124.000f (Sagging)

Tablica 56. Iznos i 1	položai na	ivećeg m	omenta s	saviiania i	i smične	sile za	Oštećeno	stanie 15
	poro2	J		· · · · · · · · · · · · · · · · · · ·		5110 200	0.50000000	seeinge re

Slika 60. Karakteristike uzdužne čvrstoće za Oštećeno stanje 15

xv. Oštećeno stanje 16

DAMAGE CONDITION 16.: HOMOGENOUS LOADED, T=17.1 m,100% STORES

FLOODED: CT5, WB5, CT6, WB6

Slika 61. Naplavljeni tankovi u Oštećenom stanju 16

Tablica 57. Naplavljeni tankovi i kritične točke za Oštećeno stanje 16

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS

Baseline draft: 17.853 @ Origin								
Tri	m: Aft 0.	44/270.00	, Heel: St	od 0.37 de	∋g.			
			Displ(MT))LCB	TCB	VCB		
HULL		1.025	196,712.20	138.886f	0.072s	9.240		
DCTANK-NO5.S	Flooded	1.025	-11,684.68	101.879f	10.684s	10.279		
DCTANK-NO5.P	Flooded	1.025	-11,575.33	101.879f	10.647p	10.209		
DCTANK-NO6.S	Flooded	1.025	-10,940.87	67.258f	10.182s	10.631		
DCTANK-NO6.P	Flooded	1.025	-10,832.97	67.263f	10.139p	10.560		
DWBTANK-NO5.S	Flooded	1.025	-3,631.12	101.955f	16.281s	4.566		
DWBTANK-NO5.P	Flooded	1.025	-3,606.95	101.956f	16.237p	4.478		
DWBTANK-NO6.S	Flooded	1.025	-4,371.07	62.154f	15.342s	5.693		
DWBTANK-NO6.P	Flooded	1.025	-4,338.52	62.159f	15.286p	5.603		
Total Displa	acement \rightarrow	1.025	135,730.67	163.611f	0.071s	9.333		

Righting Arms: 0.002f 0.000s Distances in METERS.-----Moments in m.-MT. Critical Points-----Height (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860 6.234 FLOOD 224.370f 21.500p 23.860 (2) Air pipe WB2.p 6.509 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 7.264 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 7.280 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 5.975 (6) Accommodation FLOOD 32.600f 14.000s 23.800 5.910 Distances in METERS.-----

Tablica 58. Hidrostatske karakteristike za Oštećeno stanje 16

HYDROSTATIC PROPERTIES with FLOODING

 Trim: Aft 0.44/270.00, Heel: Stbd 0.37 deg., VCG = 13.379

 LCF Displacement Buoyancy-Ctr. Weight/
 Moment/

 Draft----Weight(MT)----LCB----VCB-----CM-----GMT

 17.616
 135,730.67

 135,730.67
 163.611f
 9.333

 89.31
 145.348f
 2055.71

 408.93
 5.956

 Distances in METERS.----Specific Gravity = 1.025.-----Moment in m.-MT.

 Trim is per 270.00m.

 Draft is from Baseline.

 Critical Points------UCP

 (1) Air pipe WB2.s
 FLOOD 224.370f

 (6) Accommodation
 FLOOD 32.600f

Slika 62. Krivulje stabiliteta za Oštećeno stanje 16

Largest Shear:	-6,309.7 MT	at 40.150f
Largest Bending Moment:	-265,743 MT-m	at 102.760f (Sagging)

Slika 63. Karakteristike uzdužne čvrstoće za Oštećeno stanje 16

xvi. Oštećeno stanje 17

DAMAGE CONDITION 17.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: CT6, WB6, SLOP

Slika 64. Naplavljeni tankovi u Oštećenom stanju 17

Tablica 60. Naplavljeni tankovi i kritične točke za Oštećeno stanje 17

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 16.855 @ Origin Trim: Fwd 0.72/270.00, Heel: Stbd 0.33 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 191,133.69 140.702f 0.066s 9.002 DCTANK-NO6.S Flooded 1.025 -10,379.97 67.323f 10.145s 10.262 DCTANK-NO6.P Flooded 1.025 -10,283.12 67.328f 10.105p 10.199 DSLOP.S Flooded 1.025 -2,026.12 44.669f 8.680s 11.093 -2,002.94 44.670f 8.616p 11.025 DSLOP.P Flooded 1.025 DWBTANK-NO6.S Flooded 1.025 -4,287.58 62.186f 15.197s 5.463 DWBTANK-NO6.P Flooded 1.025 -4,258.55 62.190f 15.145p 5.384 Total Displacement→ 1.025 157,895.39 157.005f 0.064s 8.982 _____ 0.001f 0.000s Righting Arms: Distances in METERS.-----Moments in m.-MT. Critical Points-----Height FLOOD 224.370f 21.500s 23.860 (1) Air pipe WB2.s 6.286 (2) Air pipe WB2.p FLOOD 224.370f 21.500p 23.860 6.533 FLOOD 224.370f 1.200s 24.760 (3) Air pipe CT2.s 7.303 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 7.317 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 7.001 (6) Accommodation FLOOD 32.600f 14.000s 23.800 6.778 Distances in METERS.-----

Tablica 61. Hidrostatske karakteristike za Oštećeno stanje 17

HYDROSTATIC PROPERTIES with FLOODINGTrim: Fwd 0.72/270.00, Heel: Stbd 0.33 deg., VCG = 13.278LCFDisplacementBuoyancy-Ctr. Weight/Moment/Draft----Weight (MT)----LCB----VCB-----CMLCF---cm trim---GML-----GMT17.233157,895.39157.005f8.982102.25142.537f1985.78339.575.719Distances in METERS.----Specific Gravity = 1.025.----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.True Free Surface includedCritical Point-----LCP-----TCP-----VCP(1) Air pipe WB2.sFLOOD 224.370f 21.500s 23.860

Slika 65. Krivulje stabiliteta za Oštećeno stanje 17

Largest Shear:	-4,606.2 MT	at 40.150f
Largest Bending Moment:	-209,036 MT-m	at 119.530f (Sagging)

Tablica 62. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 17

Slika 66. Karakteristike uzdužne čvrstoće za Oštećeno stanje 17

xvii. Oštećeno stanje 18

DAMAGE CONDITION 18.: HOMOGENOUS LOADED, T=17.1 m,100% STORES

FLOODED: SLOP, PUMP ROOM

Slika 67. Naplavljeni tankovi u Oštećenom stanju 18

Tablica 63. Naplavljeni tankovi i kritične točke za Oštećeno stanje 18

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 16.572 @ Origin Trim: Fwd 1.07/270.00, Heel: Stbd 0.28 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 189,699.61 141.249f 0.056s 8.942 DSLOP.S Flooded 1.025 -1,981.62 44.672f 8.632s 10.962 DSLOP.P Flooded 1.025 -1,962.09 44.673f 8.577p 10.904 DPUMPROOM.C Flooded 1.025 -1,500.89 37.977f 0.031s 8.663 Total Displacement→ 1.025 184,255.00 144.158f 0.056s 8.902 _____ 0.001 0.000s Righting Arms: Distances in METERS.-----Moments in m.-MT. Critical Points-----Height (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860 6.297 FLOOD 224.370f 21.500p 23.860 (2) Air pipe WB2.p 6.505 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 7.295 (4) Air pipe CT2.p FLOOD 224.370f 1.200p 24.760 7.307 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 7.299 FLOOD 32.600f 14.000s 23.800 (6) Accommodation 7.032 Distances in METERS.-----

Tablica 64. Hidrostatske karakteristike za Oštećeno stanje 18

HYDROSTATIC	C PROPERTIE	S with FLOOD:	ING		
Trim: Fwd 1.07/2	270.00, Hee	l: Stbd 0.28	deg., VCG	= 13.294	
LCF Displacement Buoyancy	-Ctr. Weig	ght/	Moment/		
DraftWeight(MT)LCB	VCB	cmLCF-	cm trim-	GML	GMT
17.094 184,255.00 144.158f	8.902 118	3.99 132.078f	2273.02	333.08	5.840
Distances in METERSSpeci	fic Gravity	/ = 1.025	Мс	oment in n	ıMT.
		Trim is per	270.00m.		
Draft is from Baseline.		True	e Free Sur	face incl	uded.
Critical Poin	t		LCPTC	CPVCE	þ
(1) Air pipe WB2.	S	FLOOD 224.	370f 21.50	0s 23.860)

Slika 68. Krivulje stabiliteta za Oštećeno stanje 18

Largest Shear:	-3,569.6 MT	at 48.470f
Largest Bending Moment:	-203,802 MT-m	at 124.000f (Sagging)

Tablica 65. Iznos i položaj najvećeg momenta savijanja i smične sile za Oštećeno stanje 18

Slika 69. Karakteristike uzdužne čvrstoće za Oštećeno stanje 18

xviii. Oštećeno stanje 19

DAMAGE CONDITION 19.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: PUMP ROOM, ENGINE ROOM

Slika 70. Naplavljeni tankovi u Oštećenom stanju 19

Tablica 66. Naplavljeni tankovi i kritične točke za Oštećeno stanje 19

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 19.520 @ Origin Trim: Aft 3.34/270.00, Heel: Stbd 0.27 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 200,405.45 135.021f 0.053s 9.423 DPUMPROOM.C -1,692.30 38.101f 0.028s 9.706 Flooded 1.025 DENGINE-ROOM.C Flooded 1.025 -8,873.11 23.447f 0.070s 13.388 Total Displacement→ 1.025 189,840.05 141.100f 0.052s 9.236 _____ 0.001f 0.000s Righting Arms: Distances in METERS.-----Moments in m.-MT. Critical Points-----Height (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860 7.012 FLOOD 224.370f 21.500p 23.860 (2) Air pipe WB2.p 7.216 (3) Air pipe CT2.s FLOOD 224.370f 1.200s 24.760 8.009 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 8.020 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 4.272 (6) Accommodation FLOOD 32.600f 14.000s 23.800 4.616 Distances in METERS.-----

Tablica 67. Hidrostatske karakteristike za Oštećeno stanje 19

HYDROSTATIC PROPERTIES with FLOODING Trim: Aft 3.34/270.00, Heel: Stbd 0.27 deg., VCG = 13.328 Displacement Buoyancy-Ctr. Weight/ Moment/ LCF Draft----Weight(MT)----LCB-----VCB-----Cm----LCF---cm trim----GML-----GMT 17.822 189,840.05 141.100f 9.236 114.78 137.283f 2024.14 287.88 5.721 Distances in METERS.----Specific Gravity = 1.025.----Moment in m.-MT. Trim is per 270.00m. Draft is from Baseline. True Free Surface included. Critical Points-----VCP (1) Air pipe WB2.s FLOOD 224.370f 21.500s 23.860 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 FLOOD 32.600f 14.000s 23.800 (6) Accommodation

Slika 71. Krivulje stabiliteta za Oštećeno stanje 19

Largest Shear:	1,830.2 MT	at 248.800f
Largest Bending Moment:	-72,331 MT-m	at 208.800f (Sagging)

Slika 72. Karakteristike uzdužne čvrstoće za Oštećeno stanje 19

xix. Oštećeno stanje 20

DAMAGE CONDITION 20.: HOMOGENOUS LOADED, T=17.1 m,100% STORES

FLOODED: WB1,2,3,4,5.s, FORE-PEAK

Slika 73. Naplavljeni tankovi u Oštećenom stanju 20

Tablica 69. Naplavljeni tankovi i kritične točke za Oštećeno stanje 20

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS Baseline draft: 15.941 @ Origin Trim: Fwd 6.07/270.00, Heel: Stbd 12.99 deg. Displ(MT)----LCB-----TCB-----VCB HULL 1.025 211,587.44 145.222f 2.219s 10.182 DWBTANK-NO1.S Flooded 1.025 -3,557.39 242.581f 12.987s 8.350 DWBTANK-NO2.S Flooded 1.025 -3,853.95 207.257f 16.576s 6.208 DWBTANK-NO3.S Flooded 1.025 -4,082.08 172.449f 17.017s 6.222 DWBTANK-NO4.S Flooded 1.025 -4,081.62 137.171f 17.016s 6.223 DWBTANK-NO5.S Flooded 1.025 -4,061.20 101.953f 16.987s 6.248 DFORE-PEAK.C Flooded 1.025 -2,115.39 266.007f 0.000 8.303 Total Displacement→ 1.025 189,835.84 141.305f 0.798s 10.573 _____ 0.003a 0.000s Righting Arms: Distances in METERS.-----Moments in m.-MT. Critical Points-----Height FLOOD 224.370f 21.500s 23.860 (1) Air pipe WB2.s -2.160 (2) Air pipe WB2.p FLOOD 224.370f 21.500p 23.860 7.506 FLOOD 224.370f 1.200s 24.760 (3) Air pipe CT2.s 3.280 FLOOD 224.370f 1.200p 24.760 (4) Air pipe CT2.p 3.820 (5) Air pipe After-peak.aft FLOOD 4.800a 10.000s 23.900 5.613 (6) Accommodation FLOOD 32.600f 14.000s 23.800 3.776 Distances in METERS.-----

Tablica 70. Hidrostatske karakteristike za Oštećeno stanje 20

HYDROSTATIC PROPERTIES with FLOODINGTrim: Fwd 6.07/270.00, Heel: Stbd 12.99 deg., VCG = 13.338LCF Displacement Buoyancy-Ctr. Weight/ Moment/Draft----Weight(MT)----LCB----VCB-----CMT18.794189,835.84141.305f 10.573112.12123.667f2183.88310.616.169Distances in METERS.----Specific Gravity = 1.025.----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.True Free Surface included.Critical Point-----UCP(1) Air pipe WB2.sFLOOD 224.370f 21.500s 23.860

Slika 74. Krivulje stabiliteta za Oštećeno stanje 20

Largest Shear:	-4,320.1 MT	at 40.150f
Largest Bending Moment:	-255,822 MT-m	at 119.030f (Sagging)

Tablica 71. I	znos i položaj	najvećeg	g momenta savi	janja i	smične sile za	Oštećeno stan	ije 20
			,				

Slika 75. Karakteristike uzdužne čvrstoće za Oštećeno stanje 20

xx. Oštećeno stanje 21

DAMAGE CONDITION 21.: HOMOGENOUS LOADED, T=17.1 m,100% STORES FLOODED: WB1,2,3,4,5, FORE-PEAK, CHAIN-LOCK BSSTORE

Slika 76. Naplavljeni tankovi u Oštećenom stanju 21

Tablica 72. Naplavljeni tankovi i kritične točke za Oštećeno stanje 21

WEIGHT and DISPLACEMENT and CRITICAL POINT STATUS

Baseline draft: 15 901 @ Origin				
$\frac{1}{2}$				
	in. iwa 5.50,270.	Displ (MT) I.CB TCB VCB		
HIIT.T.	1 025	230 636 67 147 794f 0 039s 10 843		
DWBTANK-NO1 S	Flooded 1 025	-3 557 43 242 581f 12 987c 8 351		
DWDTANK NOI.5	Flooded 1.025	-3 557 43 242 5011 12 0075 0 351		
DWBTANK-NO2 S	Flooded 1.025	-3 849 55 207 273f 16 569c 6 189		
DWBIANK-NO2.3	Flooded 1.025	-3,049.33,207.2731,10.3098,0.109		
DWBIANK-NO2.P	Flooded 1.025			
DWBTANK-NO3.5	Flooded 1.025	-4,001.19 1/2.5251 10.8988 5.895		
DWBTANK-NO3.P	Flooded 1.025	-3,983.17 172.5251 16.870p 5.820		
DWBTANK-NO4.S	Flooded 1.025	-3,898.53 13/.2481 16.7388 5.486		
DWBTANK-NO4.P	Flooded 1.025	-3,880.51 13/.2481 16.709p 5.415		
DWBTANK-NO5.S	Flooded 1.025	-3,776.15 102.036f 16.538s 5.111		
DWBTANK-NO5.P	Flooded 1.025	-3,758.13 102.037f 16.507p 5.042		
DFORE-PEAK.C	Flooded 1.025	-2,115.39 266.007f 0.000 8.303		
DCHAIN-LOCK.S	Flooded 1.025	-110.57 263.350f 2.565s 19.000		
DCHAIN-LOCK.P	Flooded 1.025	-110.57 263.350f 2.565p 19.000		
DBSSTORE.C	Flooded 1.025	-346.13 265.459f 0.000 22.312		
Total Displ	acement→ 1.025	189,849.22 141.374f 0.040s 11.783		
	Righting Ar	ms: 0.001 0.000s		
Distances in METERS	·	Moments in mMT.		
Critical	Points	VCPHeight		
(1) Air pipe	WB2.s	FLOOD 224.370f 21.500s 23.860 -0.038		
(2) Air pipe	WB2.p	FLOOD 224.370f 21.500p 23.860 0.167		
(3) Air pipe	CT2.s	FLOOD 224.370f 1.200s 24.760 0.958		
(4) Air pipe	CT2.p	FLOOD 224.370f 1.200p 24.760 0.970		
(5) Air pipe	After-peak.aft	FLOOD 4.800a 10.000s 23.900 8.115		
(6) Accommoda	tion	FLOOD 32.600f 14.000s 23.800 6.681		
Distances in	METERS			

Tablica 73. Hidrostatske karakteristike za Oštećeno stanje 21

HYDROSTATIC PROPERTIES with FLOODINGTrim: Fwd 9.50/270.00, Heel: Stbd 0.27 deg., VCG = 13.331LCF Displacement Buoyancy-Ctr. Weight/ Moment/Draft----Weight (MT) ----LCB-----VCB------CMT-----GML-----GML19.763189,849.22 141.374f 11.783100.55109.771f 1468.29208.82Distances in METERS.-----Specific Gravity = 1.025.-----Moment in m.-MT.Trim is per 270.00m.Draft is from Baseline.Critical Point------LCP-----TCP-----VCP(1) Air pipe WB2.sFLOOD 224.370f 21.500s 23.860

Slika 77. Krivulje stabiliteta za Oštećeno stanje 21

Largest Shear:	-4,185.3 MT	at 83.750f
Largest Bending Moment:	-286,105 MT-m	at 119.030f (Sagging)

Slika 78. Karakteristike uzdužne čvrstoće za Oštećeno stanje 21