
ROS programski paket za distribuirano upravljanje
mrežama dinamičkih sustava

Rossi, Matija

Master's thesis / Diplomski rad

2014

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu,
Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:281074

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-10

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering
and Naval Architecture University of Zagreb

https://urn.nsk.hr/urn:nbn:hr:235:281074
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fsb.unizg.hr
https://repozitorij.fsb.unizg.hr
https://zir.nsk.hr/islandora/object/fsb:2520
https://repozitorij.unizg.hr/islandora/object/fsb:2520
https://dabar.srce.hr/islandora/object/fsb:2520

UNIVERSITY OF ZAGREB

FACULTY OF MECHANICAL ENGINEERING AND

NAVAL ARCHITECTURE

MASTER’S THESIS

Matija Rossi

Zagreb, 2014

UNIVERSITY OF ZAGREB

FACULTY OF MECHANICAL ENGINEERING AND

NAVAL ARCHITECTURE

MASTER’S THESIS

Supervisor:

Doc. dr. sc. Andrej Jokić

Student:

Matija Rossi

Zagreb, 2014

I declare that I have made this work independently, using the knowledge

acquired during my studies and the cited literature.

I would like to thank my supervisor, Professor Andrej Jokić, for his con-

tinuous help and support, for all the time he dedicated to me, for all the

knowledge I acquired from him, and without whom this work would not

have been possible.

I also wish to thank my family, my girlfriend, and all of my friends for

their support and understanding during my studies.

Matija Rossi

Matija Rossi Master's thesis

Abstract

In the �eld of distributed control of dynamical networks, the scienti�c

community is currently focused on developing a general underlying the-

ory for e�cient control synthesis. However, a universal software frame-

work for development, simulation, testing, and real-life implementation

of control algorithms for such systems is still missing. This thesis ex-

plores the possibilities of developing such a tool, which would minimise

the transition from simulation to implementation. A fully working frame-

work has been developed and is now being presented, explaining in detail

its architecture and usage. Several networks have been implemented in-

side it to prove its e�ciency.

Keywords: dynamical networks; distributed control; decentralised con-

trol; software framework; ROS

University of Zagreb I

Matija Rossi Master's thesis

Pro²ireni saºetak

Prate¢i brzi razvoj komunikacijskih i informacijskih tehnologija, the raz-

voj novih generacija senzora i aktuatora, po£eo se pojavljivati skup novih

sustava, £ije ostvarenje donedavno nije bilo mogu¢e. Rije£ je o mreºama

dinami£kih sustava, koje se javljaju u grupama mobilnih robota koji

sura�uju na ostvarivanju zajedni£kog cilja; kolonama autonomnih vozila

na automatiziranim autocestama; elektri£nim mreºama nove generacije;

adaptivnoj optici; pametnim konstrukcijama, na koje je ugra�en velik

broj senzora i aktuatora, sa ciljem prigu²enja neºeljenih vibracija, ili up-

ravljanja protokom �uida. Zajedni£ka je karakteristika takvih sustava da

se sastoje od relativno velikog broja prostorno distribuiranih dinami£kih

podsustava, koji me�usobno interagiraju �zi£kim vezama i/ili komu-

nikacijskim kanalima. Takvi se sustavi nazivaju mreºama dinami£kih

sustava, ili kra¢e, dinami£kim mreºama.

Glavni je fokus dana²njeg istraºivanja u ovom podru£ju razvoj metoda

sinteze upravlja£kih zakona. Izazov je projektiranje lokalnih upravlja£kih

zakona koji ¢e garantirati ostvarivanje globalnih ciljeva na razini cijele

mreºe. Trenutno, me�utim, jo² uvijek ne postoji univerzalno primjenjiva

teorija koja nudi �eksibino i robusno rije²enje.

Osim teorije, trenutno nedostaje i programski okvir koji bi omogu¢avao

razvoj, simulaciju, testiranje, i prakti£nu implementaciju upravlja£kih

algoritama za takve sustave. U sklopu ovog rada razvijen je i predstavljen

jedan takav programski okvir, koji omogu¢uje modeliranje velikog broja

razli£itih vrsta dinami£kih mreºa u Python programskom jeziku, a koji

se izvr²ava unutar Robot Operating Systema (ROS).

University of Zagreb II

Matija Rossi Master's thesis

Contents

1 Introduction 2

2 Distributed and decentralised control 4

2.1 Classi�cation of dynamical networks 4

2.1.1 Control structures . 4

2.1.2 Subsystem connection typology 6

2.1.3 Subsystem connection topology 6

2.1.4 Subsystem typology . 7

2.1.5 Control laws . 7

2.2 Overview of control synthesis approaches 8

3 Problem de�nition 10

4 The Dinsdale package 12

4.1 Package structure . 13

4.2 System de�nition . 15

4.2.1 Plants . 15

4.2.2 Controllers . 17

4.2.3 Plants interaction topology . 19

4.2.4 Parameters . 20

4.2.5 Tools . 21

4.3 Runtime . 22

4.4 Usage . 25

4.4.1 Executing the simulation . 26

4.4.2 Result analysis . 27

4.4.3 Replacing simulated plants with real systems 28

5 Examples 30

University of Zagreb III

Matija Rossi Master's thesis

5.1 Interconnected inverted pendulums 30

5.1.1 System description and control objectives 30

5.1.2 Mathematical problem formulation 31

5.1.3 Control synthesis . 32

5.1.4 Implementation . 33

5.1.5 Simulation results . 36

5.2 A heterogeneous network of systems 38

5.2.1 System description and control objectives 38

5.2.2 Mathematical problem formulation 38

5.2.3 Control synthesis . 39

5.2.4 Implementation . 39

5.2.5 Simulation results . 42

5.3 Fleet formation fuzzy control with obstacle avoidance 44

5.3.1 System description and control objectives 44

5.3.2 Mathematical problem formulation 44

5.3.3 Control synthesis . 46

5.3.4 Implementation . 47

5.3.5 Simulation results . 53

5.4 Distributed optimisation problem . 54

5.4.1 System description and control objectives 54

5.4.2 Mathematical problem formulation 55

5.4.3 Control synthesis . 55

5.4.4 Implementation . 56

5.4.5 Simulation results . 63

6 Conclusion and future developments 65

References 66

University of Zagreb IV

Matija Rossi Master's thesis

A Robot Operating System 71

B Graph terminology 75

University of Zagreb V

Matija Rossi Master's thesis

List of Figures

2.1 Control structures . 5

4.1 Dinsdale directory tree . 14

4.2 Plant class . 16

4.3 Controller class . 17

4.4 Plants topology classes . 19

4.5 Result analysis class . 21

4.6 Simpli�ed Dinsdale class diagram . 23

4.7 ROS graph for a single subsystem . 24

4.8 ROS graph for a network with 2 subsystems 24

4.9 ROS graph for a network with 3 subsystems 25

4.10 Execution �ow . 26

5.1 Two interconnected pendulums . 31

5.3 System response . 37

5.5 System response . 43

5.6 Degrees of freedom of a boat in 2D 45

5.7 Potential �elds . 46

5.8 Vectors describing the boat's position 48

5.9 Boat trajectories . 53

5.11 System response . 63

A.1 Examples of ROS systems . 73

B.1 Graph representation of nodes with limited interaction range 76

University of Zagreb VI

Matija Rossi Master's thesis

List of Tables

4.1 Plant attributes . 16

4.2 Controller attributes . 18

5.1 Heterogeneous network de�nition . 40

5.2 Optimisation network de�nition . 57

University of Zagreb 1

Matija Rossi Master's thesis

1 Introduction

With the recent advances in communication and information technologies, and the

development of new generations of sensors and actuators, a whole new set of sys-

tems started to emerge, which were unfeasible only years ago [1]. Some examples

of such systems are: the so-called smart structures, composed of large amounts

of sensors and actuators mounted on structural elements with the purpose of vi-

bration dumping [2] or �uid �ow control [3]; adaptive optics [4]; smart electrical

power grids [5]; platoons of vehicles on automated motorways [6]; or large groups of

ground mobile robots, unmanned aerial vehicles, or autonomous underwater vehi-

cles, that collaborate towards a common goal [7],[8],[9]. The common characteristic

of those systems is that they are composed of a relatively large number of spatially

distributed dynamical subsystems, which interact with each other trough physical

interconnections and/or communication links. Such systems are called networks of

dynamical systems, or, shorter, dynamical networks.

The main focus of today's research in this area is the development of methods for

control algorithm synthesis [1]. In most cases the challenge is not the design of

subsystems, which can be very reliable when operating individually, but instead the

design of local control laws, possibly in combination with distributed coordination

schemes, for achieving common objectives at the network level. At the moment

there is still no well understood, mature and widely applicable theory that o�ers

scalable, robust, and reliable solutions to real-life network control problems. The

research is currently still scattered, as problems of this nature are being explored

also in biology, economics, sociology, game industry, etc. [10].

This thesis contributes to the �eld by introducing a software framework that can be

used for development, simulation, and real-life implementation of control algorithm

for networks of dynamical systems. The framework allows modelling networks in

University of Zagreb 2

Matija Rossi Master's thesis

the Python language, while the framework itself runs within the Robot Operating

System (ROS).

To motivate the performed work and to better understand of the problems, the

thesis begins with a categorisation of dynamical networks, which shows that there is

a wide variety of di�erent cases. An overview of recent work and results in control

of dynamical networks is also presented, to give the reader a starting point for

further reading. The remaining sections present the architecture of the developed

framework, its usage, and give several complete examples of networks implemented

inside it.

The framework is available as free software, with the address for downloading it and

licencing details given in section 4.

University of Zagreb 3

Matija Rossi Master's thesis

2 Distributed and decentralised control

This section will present a detailed classi�cation of networks of dynamical systems

by di�erent criteria, and give an overview of some signi�cant achievements in this

area so far.

2.1 Classi�cation of dynamical networks

To have a better understanding of the complexity of the �eld, and therefore to

recognise the potential of the framework presented in this thesis, it is useful to be

familiar with the di�erent types of networks present in control systems today.

2.1.1 Control structures

In the past decade, it has been acknowledged that fully centralised control structures

are not capable to cope with the complexity of large spatially distributed systems. A

centralised control structure is one in which one central control unit collects all the

measurements and sends commands to all actuators, as shown in Figure 2.1a. Such

structures can guarantee globally optimal results of the controlled network, and their

design is a mature �eld with a very well developed underlying theory. It has been

proved that many practical problems with this structure can be formulated in terms

of convex optimisation problems, and therefore e�ciently solved [11]. However, some

of their main limitations are that they are not scalable, not robust to failures, and

are often practically impossible to implement.

The exact opposite of centralised structures are decentralised ones, which are shown

in Figure 2.1b. In this case every subsystem is controlled by a local controller, and

there is absolutely no collaboration between local controllers. Their main advantage

is that no long distance communication is required, which makes them theoretically

University of Zagreb 4

Matija Rossi Master's thesis

(a) Centralised control

(b) Decentralised control

(c) Distribbuted control

Figure 2.1: Control structures

University of Zagreb 5

Matija Rossi Master's thesis

ideal for practical implementation. They also have some signi�cant disadvantages,

like the possibility to o�er only suboptimal solutions which could possibly be far from

the global optimum, resulting in very ine�cient behaviour. Using this structure the

control synthesis is a non-convex problem, and there are no constructive algorithms

for solving it [11].

The structure which has been widely recognised as most suitable for control of such

large systems is the distributed structure, which is represented in Figure 2.1c. In

such structure, each subsystem is controlled by a local controller which, apart from

operating with locally available measurements, cooperates with a usually small set

of neighbouring controllers. The controller communication network topology is in

most cases required to be the same as the plant interaction network topology, but

there could be exceptions.

2.1.2 Subsystem connection typology

The subsystems of a dynamical network can be physically coupled or decoupled.

The former means that they directly a�ect each other's dynamics. Such systems

range from inverted pendulums interconnected with springs, to complex electrical

power grids, or the Internet.

If the systems are not physically coupled, it means that their interaction is through

information exchange or measurements. They are connected by common goals or

constraints, rather than physical links. Some examples are multirobot systems,

vehicles platooning on motorways, and sensor networks.

2.1.3 Subsystem connection topology

Each subsystem has a certain set of neighbours, with which it interacts. This set

can be either constant or change over time. In the former case the network topology

University of Zagreb 6

Matija Rossi Master's thesis

is said to be static, while in the latter dynamic.

An example of subsystems that interact in a dynamic network topology are mo-

bile robots which have a limited interaction range, due to limitations of sensing or

communication equipment. This means that the set of each robot's neighbours is a

function of their relative positions, which change over time.

2.1.4 Subsystem typology

The subsystems connected in a network can be all of the same type, or of di�erent

kinds. If the network is composed of identical systems, it is called homogeneous.

Examples of such systems can be sensor networks or swarms of robots, given that

all agents are of the same type. An interesting subset of such networks are spatially

invariant networked systems, in which not only the subsystems are all equal, but

also the dynamics of the system does not change moving along any spatial axis. An

example are large segmented telescopes [12].

Networks composed of more than one type of subsystems are said to be heteroge-

neous. This is the case in the majority of applications, like electrical power grids,

communication networks, or teams of di�erent autonomous vehicles.

2.1.5 Control laws

The last important classi�cation that is important to describe in this chapter is

the di�erence of how the control laws of subsystems are being computed. The �rst

possibility is that the controllers are prede�ned, which means that the control laws

are computed o�ine, before operation. The second possibility is online solving of

optimisation problems. In this case, each controller is computing its control output

by solving an optimisation problem for every sampling period. This requires the

University of Zagreb 7

Matija Rossi Master's thesis

controllers to iteratively exchange information between them inside one sampling

period.

2.2 Overview of control synthesis approaches

Already in 1968, with the famous Witsenhausen (counter)example [6], it became

clear that straightforward extension of the classical �centralized� control theory to

distributed or decentralized control is not possible and that distributed control has

some truly unique fundamental features, inherent limitations and are characterized

with complex, sometimes counterintuitive, phenomena. The fact that distributed

control problems are di�cult and very challenging has later been supported with

many results, like in [13] where some classes of structured control problems have

shown to be intractable.

Recently, several structured control problems with some speci�c characteristics have

been successfully studied, such as distributed control of linear spatially invariant sys-

tems [14], control of homogeneous systems interconnected over lattices or arbitrary

symmetry groups (e.g. [15],[16]), and control of heterogeneous system intercon-

nected over an arbitrary graph [17]. Other related and recent results include e.g.

[11],[18],[19],[20]. In particular, in [11] the authors delineate the largest known class

of structured control problems which can be formulated as convex optimisation prob-

lems, while in [19] the authors introduce the notion of spatially decaying operators

in the insightful study of structural properties of optimal control problems with

relation to the spatial structure of the problem.

Regarding stability analysis or synthesis of stabilising controllers for interconnected

systems, a traditional and often used approach lies within the framework of dis-

sipative dynamical systems which accounts for �nding appropriately de�ned local

storage functions, corresponding supply functions and the coupling conditions which

University of Zagreb 8

Matija Rossi Master's thesis

together imply stability of the overall network. This approach has also been the un-

derlying theoretical framework in recent results, e.g. [17],[21],[22]. Alternative ap-

proaches include the usage of vector or matrix Lyapunov functions [23]; approaches

based on Youla parameterization of stabilizing controllers [24],[11]; or alternative

approaches based on Nyquist-like �loop gain� conditions, as presented in [25],[26].

Over the past several years, the on-line optimization based control (Model Predic-

tive Control (MPC), also referred to as receding horizon control) has shown its large

potential for distributed control. Distributed MPC strategies have been presented

in [27],[28],[29],[30].

University of Zagreb 9

Matija Rossi Master's thesis

3 Problem de�nition

Control of dynamical networks is a rapidly developing area of research, where most

of the e�ort is put towards the development of a uni�ed underlying theory. However,

a universal software framework for development, simulation, testing, and practical

implementation of such control algorithms is still missing. For this reason the transi-

tion from a general simulation to implementation on real systems requires big e�orts

and time investments. For example, it can be the case that people working on the

theoretical development lack the programming skills required to implement complex

distributed systems on speci�c hardware. Furthermore, even when having excellent

programming skills and knowledge of embedded systems, this transition often re-

quires a signi�cant amount of time, having to reformulate the control algorithms in

a form suitable for the particular system, and having to deal with communication

protocols and limitations.

This has been the main motivation behind the work presented in this thesis. The

goal was to explore the possibilities of creating a software framework that will allow

development of distributed and decentralised control laws for both simulated and real

networks of dynamical systems, minimising or completely removing the transition

from one to the other. The framework should be fully �exible to accommodate all

the possible characteristics of the dynamical network, which have been described in

section 2.

A similar goal has already been achieved in robotics, by the Robot Operating System

(ROS). The problem there was that a lot of robot control algorithms were being

developed, but most of the time they were impossible to reuse across various systems

and to connect with other existing software. Therefore, a lot of e�ort had to be put in

the implementation process, often ending up rewriting existing software due to lack

of portability. This is where ROS have contributed by o�ering a thin middleware

University of Zagreb 10

Matija Rossi Master's thesis

which acts as a universal platform for software development, without being invasive

(the software does not have to be designed speci�cally to work with ROS).

Since ROS already o�ers a standard systems to make di�erent software communi-

cate, and since there already exists a large amount of software packages for it, from

hardware drivers to high level functionality, it has been decided to use it as the base

for developing the dynamical network control framework.

University of Zagreb 11

Matija Rossi Master's thesis

4 The Dinsdale package

This section o�ers an overview of the Dinsdale package for the Robot Operating

System (ROS). The goal of Dinsdale is to o�er a convenient and uni�ed framework

to solve the problems which have been presented in section 3. It gives the possibility

to implement control algorithms which can equally work on both simulated and real

networks of systems, without the need to modify the code. Its �exibility also allows

both the controllers and the plants to be interconnected in any desired way, allowing

implementation of all control structures from section 2.

An additional characteristic is that networks of dynamical systems (controllers and

simulated plants) are fully contained inside Python packages, completely indepen-

dent from both Dinsdale and ROS. This allows separate development and testing,

and encourages reuse of system models for any other purpose. The core of the Dins-

dale framework itself is a ROS wrapper around those Python packages, which takes

care of the execution, coordination, communication, and data logging, and which

gives a standard interface for integration with other ROS software.

Python's popularity within the scienti�c community is increasing very rapidly, often

at the expense of proprietary scienti�c computing software, making it the obvious

choice for the end user side (system modelling). Python is, however, not only be-

ing used for implementation of dynamical networks, but the entire framework has

been written in it. Its beauty and �exibility enabled the development of a power-

ful core functionality, while simultaneously keeping it relatively simple for users to

understand, modify or extend.

ROS has been chosen as the underlying framework because it appears to be on its

way to become the de facto standard in the robotics community for implementing

control structures. This o�ers the possibility to integrate control algorithm de-

veloped in Dinsdale with other ROS packages, e.g. the ones for low-level control,

University of Zagreb 12

Matija Rossi Master's thesis

localisation and mapping, or various virtual reality visualisation software. It is also

possible to use standard ROS tools (e.g. rostopic, rosbag, or rqt) to inspect the

dynamical network, or to store and reproduce data. Because it is important to have

a basic understanding of ROS for further reading, a brief introduction and an expla-

nation of its most important principles is given in Appendix A, along with references

for further learning.

The Dinsdale package is free software, with all of its components released under the

GNU General Public Licence (GPL) version 3, as published by the Free Software

Foundation1. Dinsdale is hosted on GitHub, at https://github.com/mross-22/

dinsdale.

4.1 Package structure

The Dinsdale package is a directory containing all the source code and data �les

required to run dynamical networks inside a ROS computational graph. The minimal

structure of Dinsdale is illustrated in Figure 4.1. All the source �les can be divided

in three categories:

• System description −→ ./src

• Logged data −→ ./bags

• ROS wrapper −→ everything else

The only �les the user has to work with are in the system description category (in-

side ./src). The Python package containing the entire de�nition of the dynamical

network that is being simulated is ./src/dinsdale_system. Inside it, the user de-

�nes the dynamics, control laws, and topology of the network. ./src can contain

more than one system, but only the one in the ./src/dinsdale_system package is

1http://www.gnu.org/licenses/gpl.html

University of Zagreb 13

https://github.com/mross-22/dinsdale
https://github.com/mross-22/dinsdale
http://www.gnu.org/licenses/gpl.html

Matija Rossi Master's thesis

executed. This allows to store multiple systems, and choose the one to use by simply

renaming its directory.

dinsdale

bags

msg

Floats.msg

scripts

node_controller

node_plant

node_simulation_time

node_topology_plants

result_analysis

setup_simulation

src

dinsdale_system

input_parameters

A_controllers.txt

A_plants.txt

controllers_iterative.txt

plants_topology.txt

system_types.txt

T.txt

x0.txt

tools
__init__.py

read_matrix.py

result_analysis.py
__init__.py

controller.py

plant.py

plants_topology.py

CMakeLists.txt

LICENSE

package.xml

README

setup.py

Figure 4.1: Dinsdale directory tree

University of Zagreb 14

Matija Rossi Master's thesis

Each time a simulation is set up, a directory containing the current date and time

in its name is created inside ./bags. In that subdirectory all the data logged during

the simulation will be stored, inside ROS .bag �les. The user does not necessarily

need to access or manipulate those �les, as Dinsdale has a script which allows data

analysis directly in Python.

4.2 System de�nition

It has been mentioned in subsection 4.1 that the dynamical network is de�ned in

a Python package called dinsdale_system, located inside the src directory of the

main Dinsdale package (see Figure 4.1). This subsection will explain in detail how

a network is de�ned. Several examples are presented in section 5. It is necessary

to have some basic knowledge of graph theory terminology, which is given in Ap-

pendix B.

Note that all �les and directories in this subsection will be referenced relatively to

./src/dinsdale_system for the sake of avoiding long path names.

4.2.1 Plants

Each plant in the network is de�ned by a Plant class. This class is located inside

plant.py, and its structure is shown in Figure 4.2. It is necessary to de�ne as many

classes, each in its own �le, as the number of di�erent types of plants in the network.

Example 4.1: A group of ten identical robots will need a single plant.py �le.

Example 4.2: A group composed of two identical autonomous underwater vehicles

(AUVs), one autonomous surface vehicle (ASV), and three identical unmanned aerial

vehicles (UAVs) need to have three plant implementations: plant.py, plant_1.py,

and plant_2.py.

University of Zagreb 15

Matija Rossi Master's thesis

Table 4.1 explains what the attributes of the class are. All, except for n and T, are

of the numpy.matrix type. They need always to have the shape of column vectors,

but their length is not limited.

As shown in Figure 4.2, the Plant class has three methods:

• __init__(n, x0, T) � The initialisation of a Plant instance. It initialises

all the attributes, and executes the initialisation code set by the user. This

method is called only once, at the beginning of the execution.

Plant

x : numpy.matrix
u : numpy.matrix
v : numpy.matrix
w : numpy.matrix
y : numpy.matrix
T : int
n : int

__init__(n : int, x0 : numpy.matrix, T : int)
iterate_state()
update_output()

Figure 4.2: Plant class

Table 4.1: Plant attributes

Plant

x plant states

u input from controller

y output for controller

w input from other plants

v output for other plants

n ordinal number of the node

T sample time

University of Zagreb 16

Matija Rossi Master's thesis

• iterate_state() � The user here sets the equations for the update of the

plant's states x and output for other plants v. This method is executed when

new inputs from the controller are received.

• update_output() � This method is executed when the new set of input from

neighbouring plants w is received, and its purpose is to contain the equation

for updating the output for the controller y.

4.2.2 Controllers

Each controller in the network is de�ned by a Controller class. Following the same

logic applied to plants, the class for a controller is inside a controller.py �le. In

case of multiple di�erent types of controllers, there will be multiple �les, called

controller.py, controller_1.py, controller_2.py, etc.

Table 4.2 explains what the attributes of the Controller class are. Except for n, T,

and finished, the rest are of the numpy.matrix type. They need always to have the

shape of column vectors, but their length is not limited.

Controller

u : numpy.matrix
y : numpy.matrix
p : numpy.matrix
q : numpy.matrix
r : numpy.matrix
s : numpy.matrix
�nished : bool
T : int
n : int

__init__(n : int, T : int)
iterate_state()
iterate_optimisation()

Figure 4.3: Controller class

University of Zagreb 17

Matija Rossi Master's thesis

Table 4.2: Controller attributes

Controller

y input from plant

u output for plant

q input from other controllers

p output for other controllers

s iterative input from other controllers

r iterative output for other controllers

�nished iterative communication �nished

n ordinal number of the node

T sample time

As shown in Figure 4.3, the Controller class has three methods:

• __init__(n, T) � The initialisation of a Controller instance. It initialises

all the attributes, and executes the initialisation code set by the user. This

method is called only once, at the beginning of the execution.

• iterate_state() � The user here sets the equations for the update of the

controller's outputs, both for the plant and for neighbouring controllers (u and

p). This method is executed when new data from the plant (y) is received.

• iterate_optimisation() � This method is executed after iterate_state()

if the controllers communicate iteratively within one simulation step. This

method is usually used when the control law is computed by collaboratively

solving an optimisation problem on-line. If this is the case, the vectors used for

iterative communication are r and s. In each simulation step this method is

called until finished is set to True. In the next iteration it will automatically

be reset to False.

University of Zagreb 18

Matija Rossi Master's thesis

4.2.3 Plants interaction topology

The topology of the plants interaction network can be static or dynamic. When

it is static, nothing has to be done. In case it is dynamic, the user has to de-

termine the law according to which the topology is changing. This is done in the

DynamicPlantsTopology class (shown in Figure 4.4), inside the plants_topology.py

�le (note that there can be only one such �le for a network).

Example 4.3: If the plants are mobile robots with limited interaction range, then

the topology is a function of their relative positions.

The class PlantsTopology initialises:

• A � The adjacency matrix of the plants interaction network (a square (n× n)

matrix, where n is the number of plants).

• nodes � The number of plants.

• w � The output from each plant (a list of n elements, each being a one dimen-

sional numpy.array).

PlantsTopology

A : numpy.matrix
nodes : int
w : [numpy.array]
communication : [[]]

__init__(A : numpy.matrix)
update_topology()

StaticPlantsTopology

__init__(A : numpy.matrix)

DynamicPlantsTopology

update_topology()

Figure 4.4: Plants topology classes

University of Zagreb 19

Matija Rossi Master's thesis

• communication � A list of neighbours of each plant (a list of n lists). At this

point its empty.

The class StaticPlantsTopology inherits from PlantsTopology and extends the ini-

tialisation by populating the communication list. This is done by looping through

the adjacency matrix. Once the neighbours of each plant are found, in each simula-

tion step the plant will receive their outputs.

The class DynamicPlantsTopology also inherits from PlantsTopology, but it imple-

ments the method update_topology(). This method is empty by default, and this

is where the user can de�ne the laws according to which the topology is changing,

in case it is dynamic. The laws could use the data sent by plants, or be functions of

time. Another possible application of the update_topology() method, apart from

having a dynamic topology, is multiplying the values exchanged by plants with some

weights, which can also change over time. Whatever its usage may be, the objective

in this method is to �ll the list communication with lists of neighbours of each plant,

in every time step.

4.2.4 Parameters

Inside ./input_parameters there are seven items to be set:

• A_controllers.txt � The adjacency matrix of the controller communication

network. The �le can be empty if the controllers do not communicate.

• A_plants.txt � The adjacency matrix of the plant communication network.

Even if the plants do not interact, it has to be of size (n× n), where n is the

number of plants, but �lled with zeros.

• controllers_iterative.txt � Determines whether the controllers communi-

cate iteratively inside one time step (1 if they do, 0 or empty otherwise).

University of Zagreb 20

Matija Rossi Master's thesis

• plants_topology.txt � 0 if the plants topology is static, 1 if dynamic.

• system_types.txt � Describes the type of controller and plant for each sub-

system. It is a matrix of size (n × 2), where n is the number of subsystems.

The �rst column corresponds to controllers, the second to plants.

• T.txt � A (3 × 1) vector, the elements of which correspond to the sampling

period (used for discretisation of the system dynamics), the real duration of a

simulation time step, and the �nal time of the simulation, all given in seconds.

• x0.txt � Contains the initial conditions for each plant. It is an (n×m) matrix,

where n is the number of plants and m the number of states of a plant (in case

of heterogeneous systems, the plant with the largest dimension of the state

space determines this number).

4.2.5 Tools

The additional package ./tools contains useful tools which are not part of the

dynamical network. Two modules can be �nd inside it:

• read_matrix.py � This is the function all other modules use for reading ma-

trices from �les. It is placed here to make it available also for the user, in case

he or she wants to load some additional matrices.

• result_analysis.py � This module is where all data from a simulation is

made available to the user for analysis of any kind.

ResultAnalysis

data : {}

__init__(number : int)
analyse()

Figure 4.5: Result analysis class

University of Zagreb 21

Matija Rossi Master's thesis

The result_analysis.py �le contains the ResultAnalysis class, shown in Fig-

ure 4.5. In its initialisation method, the class initialises a dictionary called data.

This dictionary gets �lled by a core Dinsdale class with data stored during a sim-

ulation. The keys of the dictionary correspond to names of controller and plant

attributes. The value of a key is a list of a list of all values of the speci�c attribute

of every node in the network. In the method analyse() the user is free to manipulate

this data in any way, e.g. plotting it.

4.3 Runtime

The dinsdale_system package is a pure Python package, which contains the de-

scription of a dynamic network. To generate as many instances of its classes as

required by the network speci�cation, initialise their values, transform them in ROS

nodes, set up the communication networks, and coordinate the execution, there is a

wrapper around it. This wrapper is the core Dinsdale functionality.

Figure 4.6 shows in a simpli�ed manner the classes inside the Dinsdale package. It

can be seen how each class in dinsdale_system is being use by another one, outside

of dinsdale_system.

At runtime, Dinsdale sets up as many ROS nodes as de�ned by the user, and con-

nects them accordingly in a ROS computational graph. Figure 4.7 shows how the

graph looks like for a single subsystem of a network, composed of a plant and its

controller. The oval shapes represent ROS nodes, the smaller rectangles are ROS

topics, and the big rectangles are called namespaces. Inside each node there is an

instance of the user de�ned Plant or Controller classes.

Figure 4.8 illustrates a minimal graph for the simulation of a network of two sub-

systems. In this example the control laws are decentralised, which means the con-

trollers do not communicate. It is important to observe the central node called

University of Zagreb 22

Matija Rossi Master's thesis

/plants_topology, through which all interaction between plant are passing. As it

has been shown in subsubsection 4.2.3, the topology of plant interactions can be dy-

namic, and the user is free to de�ne its rules. For this reason it is more convenient to

control the topology from a central place, rather than having to modify each plant

node in every iteration. This is possible because the interactions, like the plants

themselves, are simulated. If simulated plants were to be replaced by physical ones,

interactions would also become physical, and would not need to be simulated.

dinsdale

dinsdale system

tools

Controller

u, y, p, q, r, s, T, n

__init__()
iterate_state()
iterate_optimisation()

Plant

x, u, v, w, y, T, n

__init__()
iterate_state()
update_output()

PlantsTopology

A

__init__()
update_topology()

ResultAnalysis

__init__()
analyse()

E

ControllerNode

node_number

__init__()
plant_output_received()
neighbour_data_received()

PlantNode

node_number

__init__()
control_input_received()
neighbour_data_received()

PlantsTopologyNode

nodes

__init__()
plant_data_received()
tack()

BagAnalysis

__init__()
analyse()

Figure 4.6: Simpli�ed Dinsdale class diagram

University of Zagreb 23

Matija Rossi Master's thesis

Figure 4.7: ROS graph for a single subsystem

Figure 4.8: ROS graph for a network with 2 subsystems

In the simulation there is also a simulation_time namespace. It contains a node

that publishes ticks to a topic, which gives the time to the simulation, with the user

de�ned speed.

An example of a simulation of a network with three subsystems can be seen in

Figure 4.9. In this case the controllers are communicating through ~/p topics, and

their communication does not pass through a central node. The drawback of not

having a central node is that the topology of the network of controllers has to be

static.

University of Zagreb 24

Matija Rossi Master's thesis

Figure 4.9: ROS graph for a network with 3 subsystems

After all nodes are set up in a ROS graph and the simulation time is started, Dinsdale

starts simulating the network using the classes de�ned in dinsdale_system. Fig-

ure 4.10 shows the order in which the methods are being called inside one time step,

when simulating a network of two systems. The dashed arrows represent optional

communication between controllers (single and iterative). When the controllers are

not communicating iteratively, the method Controller.iterate_optimisation() is

not called at all. The letters near the arrows represent the name of the attribute

that is being sent.

4.4 Usage

This subsection illustrates how to use Dinsdale once the dinsdale_system package

containing the dynamical network is set up accordingly to subsection 4.1.

If Dinsdale is not already installed, the simplest way to do so is by placing the

package in the local catkin workspace and inside it run:

$ catkin_make

University of Zagreb 25

Matija Rossi Master's thesis

Figure 4.10: Execution �ow

For more details see the references given in Appendix A.

4.4.1 Executing the simulation

Before starting the simulation, it is necessary to run the ROS Master:

$ roscore

Once the Master is up, the simulation can be set up executing (in a new terminal

window):

$ rosrun dinsdale setup_simulation

University of Zagreb 26

Matija Rossi Master's thesis

setup_simulation is a script located in ./scripts, which reads all the data from

./src/dinsdale_system/input_parameters, generates a ROS .launch �le accord-

ingly, and runs it. The generated �le is called simulation.launch, and is located in

the root directory of Dinsale. It can be used in future to run the same simulation,

which can be useful if Dinsdale is used as a part of a bigger software system.

When executed (either automatically or manually), simulation.launch will create

all the necessary ROS nodes for the given system, and connect them in a ROS

graph. The graph can be visualised using the rqt_graph tool, which gives an output

similar to those shown in Figure 4.7, Figure 4.8, and Figure 4.9. At this point

the terminal window is waiting for the user to press Enter to run the simulation.

When Enter is pressed, the /simulation_time node starts publishing ticks to the

/simulation_time/tick topic, which acts as the simulation clock, determining the

frequency of the iterations described in Figure 4.10.

When the simulation ends, the /simulation_time node stops, while the rest remain

active and have to be interrupted manually (Ctrl-C).

While the simulation is running, it is possible to analyse the network (e.g. monitor

the topics in real time) using all the standard ROS tools, like rostopic or rqt_plot.

Each ROS node can be also ran individually, using rosrun on one of the scripts

located inside ./scripts. Some of them require passing certain arguments, but this

can be seen at the beggining of each script.

4.4.2 Result analysis

When a simulation is started, it automatically creates a directory inside ./bags,

called <date>_<time>_dinsdale. Inside it each controller and plant will log the

values published on topics, in the format of ROS .bag �les. Dinsdale provides a

tool for analysis of their content in Python. The user de�nes the analysis to be

University of Zagreb 27

Matija Rossi Master's thesis

done in the ./src/dinsdale_system/tools/result_analysis.py �le, as described

in subsubsection 4.2.5. To execute it, automatically loading the .bag �le from the

last simulation, the user has to run the ./scripts/result_analysis script as:

$ rosrun dinsdale result_analysis

Optionally, if the analysis has to be performed on data from another simulation, the

user has to pass to the script the name of the directory containing the .bag �les:

$ rosrun dinsdale result_analysis <directory>

Storing data in .bag �les is very convenient not only for analysis, but also because

the rosbag tool allows reproducing their content in the same order it was stored.

This means that if some tests have been made using a real system, which could not

be available at all times, it is possible to reproduce the logged data at any time, as

if it the system was connected.

4.4.3 Replacing simulated plants with real systems

One of the main motivations for the development of the Dinsdale package was to

make the transition from simulation to implementation as simple as possible. This

was kept in mind during the entire design process, which can be seen for example

in the structure of controller nodes, which have all their input and output topics set

within their namespaces (visible in Figure 4.7. This makes them agnostic about who

is publishing their inputs and who is using their outputs. Not only this gives the

possibility to replace the simulated plants with real systems, but also to use Dins-

dale together with the big variety of existing ROS packages, e.g. for simultaneous

localisation and mapping, visualisation, image processing, etc.

As ROS is gaining popularity, more and more hardware drivers are available as ROS

packages. At the same time, small single-board ARM computers are rapidly being

adopted as cheap and e�cient control units for a huge variety of systems. Since those

University of Zagreb 28

Matija Rossi Master's thesis

computers are able to run GNU/Linux distributions, and therefore ROS, these facts

makes it very convenient to use Dinsdale generated controllers for control of real

networks of systems.

University of Zagreb 29

Matija Rossi Master's thesis

5 Examples

This section will present several examples of networked dynamical systems from dif-

ferent areas, each speci�cally chosen to demonstrate some of the various possibilities

of the Dinsdale package. The examples are taken from works by various authors,

which can be found in the references. Note that, even where the mathematical mod-

els are given in continuous time, all Dinsdale implementations use the corresponding

discretized models.

The Python packages with the full code for each example can be found inside the

src directory of the Dinsdale package. To run any of them inside Dinsdale, it is

only necessary to rename the desired package to dinsdale_system and start the

simulation.

Note that all �les and directories in this section will be referenced relatively to

./src/dinsdale_system for the sake of avoiding long path names.

5.1 Interconnected inverted pendulums

This example illustrates decentralised control of two physically coupled dynamical

systems � inverted pendulums interconnected with a spring.

5.1.1 System description and control objectives

The system is composed of two identical interconnected inverted pendulums, as

described in [32], and shown in Figure 5.1. The two pendulums are coupled by

a spring that is able to slide up and down the rods, and the position of which

is unknown. In this example the position of the spring can be a discontinuous

function of time and the system state. This is an example commonly used as a

University of Zagreb 30

Matija Rossi Master's thesis

benchmark for decentralised control algorithms. The control objective is to stabilise

both pendulums in their vertical positions.

5.1.2 Mathematical problem formulation

The system can be represented with a time invariant linear part, perturbed by an

additive nonlinearity which depends on both time and the state:

ẋi = Aixi +Biui +Bwi
wi(t, x), i ∈ N, (1)

where N is the number of subsystems, and where the uncertain functions wi are the

interconnections between subsystems. The only information about those intercon-

nection functions is that they must satisfy the quadratic constraint:

wT
i wi ≤ α2

ix
TW T

i Wix, (2)

where αi > 0 is the bounding parameter, and Wi is a constant l× n matrix, with n

being the dimension of x.

Figure 5.1: Two interconnected pendulums [31]

University of Zagreb 31

Matija Rossi Master's thesis

The dynamics of this particular system are described in [31] as:

ẋ1 =

0 1

1 0

x1 +
0
1

u1 + e

 0 0

−1 0

x1 + e

0 0

1 0

x2
ẋ2 =

0 1

1 0

x2 +
0
1

u2 + e

0 0

1 0

x1 + e

 0 0

−1 0

x2,
(3)

where xi =
[
θi θ̇i

]T
, i ∈ {1, 2}. It is assumed that the spring can randomly slide

up and down the two rods, with jumps of an unpredictable size and direction. This

dynamical interconnection is described with the parameter e(t, x) : R5 → [0, 1].

The objective is to compute the decentralised control laws:

u1(x1) = K1x1

u2(x2) = K2x2,
(4)

to robustly stabilise the system for any value of e ∈ [0, 1].

5.1.3 Control synthesis

In [31] a control synthesis approach for robust stabilisation of nonlinear systems

has been presented, within the framework of linear matrix inequalities (LMI). The

system has to be described as an uncertain linear time invariant system (1).

The problem consists in �nding the block diagonal gain matrix K = diag(K1, K2)

and a function V (x) which satis�es the following condition for any state x ∈ Rn of

the closed loop system:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (5)

where αi ∈ K∞ are Hahn's functions (for a detailed de�nition see [33]). The stability

can be then de�ned by negative de�niteness of the derivative:

V̇ (x) = (∇xV (x))T ((A+BK)x+Bww(t, x)) ≤ −α3(‖x‖). (6)

University of Zagreb 32

Matija Rossi Master's thesis

In [31] the authors use a quadratic Lyapunov function:

V (x) = xTPx, (7)

where P is a block diagonal matrix P = diag(P1, P2).

Under this assumption of a block diagonal Lyapunov matrix P , it is shown in [31]

that (5) and (6), when combined with the S-procedure [34], can be transformed into

LMIs, and therefore e�ciently solved.

For this particular example, the resulting solution are the following gain matrices:

K1 =
[
−3.008 −3.0032

]
K2 =

[
−3.008 −3.0032

]
.

(8)

5.1.4 Implementation

The �rst step to implement this example is to write the dynamical model of the

plants. Since both plants are equal, it is enough to de�ne one model, inside plant.py.

It is �rst necessary to initialise the model, placing the corresponding matrices, shown

in Listing 5.1, inside the __init__() method. The equation describing the plant's

dynamics, from Listing 5.2, are then placed in the iterate_state() method. In

this method it is important to set variables self.x and self.v, as they will be the

future plant state and the in�uence to neighbour plants. Note that the intercon-

nection parameters e are random numbers, which change in each iteration. Inside

the update_output() method goes the equation for updating the output value sent

to the controller, self.y, which is shown in Listing 5.3. Variable self.w is the

in�uence from neighbouring plants.

Listing 5.1: Plant initialisation
self.A = np.matrix([[1, T],

[T, 1]])

self.B = np.matrix([[0, T]]).T

University of Zagreb 33

Matija Rossi Master's thesis

self.H_this = np.matrix([[0, 0],

[-T, 0]])

self.H_other = np.matrix([[0, 0],

[T, 0]])

Listing 5.2: Plant state update
e = np.random.rand()

self.x = self.A*self.x + self.B*self.u + self.H_this*self.x +

self.H_other*self.w

self.v = self.x

Listing 5.3: Plant output update
self.y = self.x

The control law has to be de�ned inside controller.py. It is again the case that,

because the controllers are identical, it is enough to de�ne only one. The controller

initialisation consists only of initialising the gains (Listing 5.4), which has to be done

inside the __init()__ method. The control law (Listing 5.5) is then written inside

iterate_state(), to compute self.u.

Listing 5.4: Controller initialisation
self.K = np.matrix(’-3.008 -3.0032’)

Listing 5.5: Controller update
self.u = self.K*self.y

After the system is set up, the last thing to do is to de�ne the parameters inside the

./input_parameters directory.

• A_controllers � This should be empty, as the controllers do not communicate.

• A_plants � The adjacency matrix describing the plant interaction is

0 1

1 0

.
• controllers_iterate � This should also be empty, as the controllers do not

communicate at all.

University of Zagreb 34

Matija Rossi Master's thesis

• system_types � All the systems and the controllers are of the same type (type

0), which is de�ned as

0 0

0 0

.
• T � This simulation uses a sampling period of 0.01 s, and that can be also used

for the real duration of a simulation step2. The �nal time is chosen to be 10 s.

The vector is therefore


0.01

0.01

10

.

• x0 � The initial conditions chosen in this example are

−0.2 2

0.4 1

. This means

that x1(0) =
[
−0.2 2

]T
and x2(0) =

[
0.4 1

]T
.

One additional thing, which is not necessary to run the simulation, and which can

be done afterwards, is to write the code for analysis of the simulation results. To

obtain the same plots as here, for example, the code from Listing 5.6 should be

placed in ./tools/result_analysis.py, inside the analyse() method.

Listing 5.6: Plotting results
t = np.arange(0, 10, .01)

p0 = np.array([x[0:2] for x in self.data[’y’][0]])

p1 = np.array([x[0:2] for x in self.data[’y’][1]])

plt.figure(1)

plt.plot(t, p0[:, 0], label = ’plant 0’)

plt.plot(t, p1[:, 0], label = ’plant 1’)

plt.legend()

plt.xlabel(’t [s]’)

plt.ylabel(’[x_i]_1 [rad]’)

plt.figure(2)

plt.plot(t, p0[:, 1], label = ’plant 0’)

2These values do not have to be the same as here, especially the duration of a simulation step,

which should be set to a much longer time if it is desired to monitor some topics in real time, using

rostopic or rqt_plot.

University of Zagreb 35

Matija Rossi Master's thesis

plt.plot(t, p1[:, 1], label = ’plant 1’)

plt.legend()

plt.xlabel(’t [s]’)

plt.ylabel(’[x_i]_2 [rad/s]’)

plt.show()

5.1.5 Simulation results

Figure 5.3 shows the response of the network. In Figure 5.3a it is possible to see

the response of the �rst state variable of both pendulums, while in Figure 5.3b the

response of the second. It is visible that the decentralised control law successfully

stabilises the network.

The runtime graph of this dynamical network, generated by the Dinsdale package

to simulate it, can be seen in Figure 5.2.

Figure 5.2: Runtime graph

University of Zagreb 36

Matija Rossi Master's thesis

0 2 4 6 8 10

t [s]

−0.2

0.0

0.2

0.4

0.6
[x

i]
1
[r
ad

]
plant 0

plant 1

(a) Angles

0 2 4 6 8 10

t [s]

−0.5

0.0

0.5

1.0

1.5

2.0

[x
i]
2

[rad s

]

plant 0

plant 1

(b) Angular velocities

Figure 5.3: System response

University of Zagreb 37

Matija Rossi Master's thesis

5.2 A heterogeneous network of systems

This example illustrates decentralised control of a heterogeneous network of three

physically coupled systems.

5.2.1 System description and control objectives

The dynamical network in this example is composed of three subsystems, each one

di�erent from the others. The control objective is to achieve stability through de-

centralised control laws. Like the example presented in subsection 5.1, this one also

comes from [31], where more in-depth analysis can be found.

5.2.2 Mathematical problem formulation

The dynamics of the three subsystem are again represented as uncertain linear time

invariant systems, accordingly to (1), with interconnections constrained by (2). For

this example the equations are as follows:

ẋ1 =

0 1

2 3

x1 +
0
1

u1 + e13

1 2

3 4

x3
ẋ2 =

 0 1

−1 −2

x2 +
0
1

u2 + e23

1 0

2 1

x3
ẋ3 =

0 1

3 4

x3 +
0
1

u3 + e31

3 0

2 1

x1 + e32

1 5

4 6

x2.
(9)

The objective is to compute the decentralised control laws:

ui(xi) = Kixi, i ∈ {1, 2, 3}. (10)

University of Zagreb 38

Matija Rossi Master's thesis

5.2.3 Control synthesis

The approach to the synthesis of control laws is the same as described in subsub-

section 5.1.3, with the only di�erence that, due to the restrictive formulation of K

being a block diagonal matrix, it is not possible to a priori set the bounds αi = 1

of the uncertain interconnection functions eij(t, x) because the problem becomes

unfeasible. The αi are instead treated as variables.

Removing the constraints on bounds αi, it is possible to compute the overall block

diagonal gain matrix K = diag(K1, K2, K3), obtaining the following values:

K1 =
[
−5.88 −6.66

]
K2 =

[
−0.67 −1.48

]
K3 =

[
−6.67 −8.82

]
,

(11)

which guarantee robust stability of system (9) for the following bounds of the inter-

connection functions:

|e13| ≤ 0.6481, |e23| ≤ 0.4007,

|e31| ≤ 0.2192, |e32| ≤ 0.2192.
(12)

5.2.4 Implementation

This example deals with a heterogeneous network of three subsystems, and there-

fore there have to be three implementations of the Plant class, and three of the

Controller class. This means that there are going to be three �les for the plants,

and three for the controllers. Their implementations are described in Table 5.1.

Note that it would have been possible to design the network using only a single �le

for the controllers, and a �le for the plants, since each node at runtime knows its

ordinal number. In that case the �les would contain information about the entire

network, and the nodes would select their behaviour at runtime. This has not been

University of Zagreb 39

Matija Rossi Master's thesis

done in order to show an example of implementation of heterogeneous systems, and

to maintain the simplicity of the code.

Table 5.1: Heterogeneous network de�nition

(a) Plants

Plant __init__() iterate_state() update_output()

plant.py Listing 5.7 Listing 5.8 Listing 5.9

plant_1.py Listing 5.10 Listing 5.11 Listing 5.9

plant_2.py Listing 5.12 Listing 5.13 Listing 5.9

(b) Controllers

Controller __init__() iterate_state()

controller.py Listing 5.14 Listing 5.15

controller_1.py Listing 5.16 Listing 5.15

controller_2.py Listing 5.17 Listing 5.15

Listing 5.7: Plant 0 initialisation
self.A = T*np.matrix(’0 1; 2 3’)

self.B = T*np.matrix(’0; 1’)

self.H_13 = T*np.matrix(’1 2; 3 4’)

Listing 5.8: Plant 0 state update
e_13 = .4

self.x = self.A*self.x + self.B*self.u + e_13*self.H_13*self.w + self.x

self.v = self.x

Listing 5.9: Plant 0, 1, and 2 output update
self.y = self.x

Listing 5.10: Plant 1 initialisation
self.A = T*np.matrix(’0 1; -1 -2’)

self.B = T*np.matrix(’0; 1’)

self.H_23 = T*np.matrix(’1 0; 2 1’)

University of Zagreb 40

Matija Rossi Master's thesis

Listing 5.11: Plant 1 state update
e_23 = .33

self.x = self.A*self.x + self.B*self.u + e_23*self.H_23*self.w + self.x

self.v = self.x

Listing 5.12: Plant 2 initialisation
self.A = T*np.matrix(’0 1; 3 4’)

self.B = T*np.matrix(’0; 1’)

self.H_31 = T*np.matrix(’3 0; 2 1’)

self.H_32 = T*np.matrix(’1 5; 4 6’)

Listing 5.13: Plant 2 state update
e_31 = .15

e_32 = .1

self.x = self.A*self.x + self.B*self.u + e_31*self.H_31*self.w[:2, :] +

e_32*self.H_32*self.w[2:, :] + self.x

self.v = self.x

Listing 5.14: Controller 0 initialisation
self.K = np.matrix(’-5.88 -6.66’)

Listing 5.15: Controller 0, 1, and 2 update
self.u = self.K*self.y

Listing 5.16: Controller 1 initialisation
self.K = np.matrix(’-0.67 -1.48’)

Listing 5.17: Controller 2 initialisation
self.K = np.matrix(’-6.67 -8.82’)

The parameters inside the ./input_parameters directory for this simulation are:

• A_controllers � This should be empty, as the controllers do not communicate.

• A_plants � The adjacency matrix of the plant interaction is


0 0 1

0 0 1

1 1 0

.
University of Zagreb 41

Matija Rossi Master's thesis

• controllers_iterate � This should also be empty, as the controllers do not

communicate.

• system_types � There are three types of plants, with a type of controller for

each. This is described as


0 0

1 1

2 2

.
• T � This simulation uses a sampling period of 0.01 s, and that value is also

used for the real duration of a simulation step. The �nal time is chosen to be

10 s. The vector therefore is


0.01

0.01

10

.

• x0 � The initial conditions chosen in this example are


0.5 2

0.4 1

1 −2

.

5.2.5 Simulation results

The response of this network is shown in Figure 5.5, for both state variables of all

three subsystems. It is visible that the decentralised controllers are able to stabilise

this system.

The structure of this network, as generated by Dinsdale, is shown in Figure 5.4.

University of Zagreb 42

Matija Rossi Master's thesis

Figure 5.4: Runtime graph

0 2 4 6 8 10

t [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

[x
i]
1

plant 0

plant 1

plant 2

(a) First state variable

0 2 4 6 8 10

t [s]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

[x
i]
2

plant 0

plant 1

plant 2

(b) Second state variable

Figure 5.5: System response

University of Zagreb 43

Matija Rossi Master's thesis

5.3 Fleet formation fuzzy control with obstacle avoidance

This example will illustrate a network of physically decoupled dynamical systems.

The subnetwork of plants (boats) is homogeneous, while the subnetwork of con-

trollers is heterogeneous.

5.3.1 System description and control objectives

The network consists of a group of boats, controlled by decentralised control laws.

The boats are not physically connected, but rather through measurements of mutual

distance.

The objective in this example is to lead a �eet to a desired destination, while avoid-

ing obstacles and maintaining a linear formation. This means that it is necessary

to design such controllers which are going to be capable of maintaining a constant

distance from the boat in front, while avoiding collision with obstacles. The con-

troller on the �rst boat has to bring the vessel to a �xed target, rather than to follow

another boat. The controllers must be designed in such a way that it will be trivial

to add or remove boats.

This example is taken from [35], where in-depth analysis can be found.

5.3.2 Mathematical problem formulation

Assuming that the boat is moving in two dimensions, its kinematics can be written

as: 
ẋ

ẏ

ψ̇

 =


cos (ψ) − sin (ψ) 0

sin (ψ) cos (ψ) 0

0 0 1



u

v

r

 , (13)

University of Zagreb 44

Matija Rossi Master's thesis

Figure 5.6: Degrees of freedom of a boat in 2D

where (x, y) is the location of the boat's center of mass in the inertial frame, and ψ

is it's orientation. All three together represent the vessel's position.

Under the assumption that environment forces due to winds, currents, and waves can

be neglected, and that the inertia, added mass, and dumping matrices are diagonal,

the dynamics of the vessel can be written as:

u̇ =
m22

m11

vr − d11
m11

u+
1

m11

τ1

v̇ = −m11

m22

ur − d22
m22

v

ṙ =
m11 −m22

m33

uv − d33
m33

r +
1

m33

τ2

, (14)

where mii are given by the vessel's inertia and added mass e�ect, and dii are de�ned

by the hydrodynamic dumping. τ1 and τ2 are the control inputs: the force along the

boat's longitudinal axis and the torque about its vertical axis.

To be able to control each boat, it is necessary to design a path planning algorithm,

and a controller that will be able to keep the vessel on the computed path.

University of Zagreb 45

Matija Rossi Master's thesis

Figure 5.7: Potential �elds

5.3.3 Control synthesis

As described in [35], the reference path of a boat is generated using the potential

�elds method. The principle is to generate a virtual potential function with the

global minimum in the target's locations and maxima where the obstacles are. A

simple example is shown in Figure 5.7. Once the �eld is generated, the path is

calculated running a gradient descent algorithm on it. To avoid getting stuck in

local minima, a rotational �eld around obstacles is also added to the standard at-

tractive/repulsive one. The �elds are computed locally, each controller generates its

own �eld based on its target.

The attractive potential is computed as follows:

Ua =
1

4

(
(x− xa)2 + (y − ya)2 −R2

)2
, (15)

where (xa, ya) is the location of the target, and R is the distance to maintain from

it. In this case the target is either the ship being followed, or, in the case of the �rst

boat, some prede�ned coordinates to reach.

The repulsive potential of obstacles is de�ned as:

Ur = µ

M∑
i=1

exp

(
− 1

2σi

(
(x− xpi)

2 + (y − ypi)
)2)

, (16)

where M is the number of obstacles, σ is a measure of their width, and (xp, yp) are

their coordinates. µ is a measure of strength of the repulsive �eld.

University of Zagreb 46

Matija Rossi Master's thesis

Finally, taking into consideration practical limitations of the boat and thus limiting

its maximum speed, the path is generated as follows:
ẋref = xrefM

tanh

(
−ka

∂Ua

∂x
exp

(
−kra

(
∂Ur

∂x

)2
)
− kr

∂Ur

∂x
+m

∂Ur

∂y

)

ẏref = yrefM tanh

(
−ka

∂Ua

∂y
exp

(
−kra

(
∂Ur

∂y

)2
)
− kr

∂Ur

∂y
+m

∂Ur

∂x

) , (17)

where xrefM
and yrefM are constants used for limiting the speed.

To follow the generated path, an analytical fuzzy controller will be used. The control

laws are designed accordingly to the following rules. The forward force should be

proportional with the distance from the target, but with a certain upper limit. It

should also decrease if the orientation error is signi�cantly big, to prevent steering

at high speeds. The steering torque, on the other hand, should be proportional to

the orientation error, but also limited with an upper bound. From this description

it is possible to formulate the following control laws: τ1 = τ1M · tanh (k11 · no) · exp
(
−k21 · vp2

)
τ2 = τ2M · tanh (k22 · vp)

, (18)

where τ1M and τ2M are the upper bounds of force and torque. Here no = ‖~r‖

represents the distance from the boat to the path to follow, and vp =
~re × ~r
‖~r‖

the

orientation error. The used vectors are shown in Figure 5.8.

5.3.4 Implementation

In this example the plant network is homogeneous � all boats are identical. The

controller network however is heterogeneous, because the controller of the �rst boat

is slightly di�erent from the rest, which was done to show how to implement such

combinations of networks.

The second thing for which this example is speci�c is its distributed control struc-

ture. The controllers exchange information on their position: each one receives the

University of Zagreb 47

Matija Rossi Master's thesis

Figure 5.8: Vectors describing the boat's position

position of the boat it has to follow, from the respective controller. This is imple-

mented in such way to demonstrate how to work with networks with distributed

structures. The more natural and realistic way of implementing this network would

be a decentralised control structure, where sensors to measure distance from other

boats are implemented in the plant, and then the measurements are sent to the

controller. Such implementation would be more suitable for practical applications,

because only relative distances are used, without the need of knowing absolute po-

sitions, and also because it does not require the boats to be able to communicate

with each other.

The input for the __init__(), iterate_state(), and update_output() methods of

the Plant class inside plant.py, which describe the dynamics of a boat, are given

in Listing 5.18, Listing 5.19, and Listing 5.20 respectively.

Listing 5.18: Boat initialisation
self.m = [200, 250, 80]

self.d = [70, 100, 50]

University of Zagreb 48

Matija Rossi Master's thesis

Listing 5.19: Boat state update
(x, y, psi, u, v, r) = np.nditer(self.x)

(u, v, r) = (self.T*(v*r*self.m[1]/self.m[0] - u*self.d[0]/self.m[0] +

self.u[0, 0]/self.m[0]) + u,

self.T*(-u*r*self.m[0]/self.m[1] - v*self.d[1]/self.m[1]) + v,

self.T*(u*v*(self.m[0] - self.m[1])/self.m[2] -

r*self.d[2]/self.m[2] + self.u[1, 0]/self.m[2]) + r)

(x, y, psi) = (self.T*(u*np.cos(psi) - v*np.sin(psi)) + x,

self.T*(u*np.sin(psi) + v*np.cos(psi)) + y,

self.T*r + psi)

self.x = np.matrix([[x, y, psi, u, v, r]]).T

self.v = npm.zeros((2, 1))

Listing 5.20: Boat output update
self.y = self.x[:3, :]

The de�nition of the controller for the boats in the line (controller.py) is given

in Listing 5.21 and Listing 5.22. Here, the list self.o contains information about

obstacles: [x, y, σ] for each obstacle. It is assumed that each boat knows where the

obstacles are, rather than measuring them. The relative distance the boats have to

keep from each other is set by self.R. Vector self.p is the output for neighbours

(in this case the boat behind), while self.q is the input from neighbours (the boat

in front).

The controller on the �rst boat (controller_1.py) is initialised using the same pa-

rameters as the other controllers (Listing 5.21), but it has slightly di�erent equations

in the update part, which are given in Listing 5.23.

Listing 5.21: Controller 0 and 1 initialisation
self.u_max = [200, 100]

self.k = [.5, 3, 10]

self.t = 0

self.k_p = [.2, 20, .5]

self.m = .1

self.ref_M = 1.5

University of Zagreb 49

Matija Rossi Master's thesis

self.R = 5

self.ref = npm.zeros((2, 1))

self.o = [[90, 0, 40],

[35, 5, 50],

[25, -30, 25],

]

Listing 5.22: Controller 0 update
i f not self.t:

self.ref = self.y[:2, :]

self.q = self.ref

self.t = 1

(x, y, psi) = np.nditer(self.y)

(x_ref, y_ref) = np.nditer(self.ref)

(x_q, y_q) = np.nditer(self.q)

r = (x_ref - x_q)**2 + (y_ref - y_q)**2 - self.R**2

F_a = [-r*(x_ref - x_q), -r*(y_ref - y_q)]

temp = [0, 0]

for obs in self.o:

temp[0] -= (x_ref - obs[0])*np.exp(-1/(2*obs[2])*((x_ref - obs[0])**2 +

(y_ref - obs[1])**2))

temp[1] -= (y_ref - obs[1])*np.exp(-1/(2*obs[2])*((x_ref - obs[0])**2 +

(y_ref - obs[1])**2))

F_r = []

F_r.append(self.k_p[1]*temp[0])

F_r.append(self.k_p[1]*temp[1])

(x_ref, y_ref) = (

self.T*self.ref_M*np.tanh(.5*(F_a[0]*np.exp(-self.k_p[2]*F_r[0]**2) -

F_r[0] + self.m*F_r[1])) + x_ref,

self.T*self.ref_M*np.tanh(.5*(F_a[1]*np.exp(-self.k_p[2]*F_r[1]**2) -

F_r[1] - self.m*F_r[0])) + y_ref)

no = np.sqrt((x_ref - x)**2 + (y_ref - y)**2)

vp = (y_ref - y)*np.cos(psi) - (x_ref - x)*np.sin(psi)

i f no:

vp /= no

self.u =

np.matrix([[self.u_max[0]*np.tanh(self.k[0]*no)*np.exp(-self.k[1]*vp**2)],

[self.u_max[1]*np.tanh(self.k[2]*vp)]])

University of Zagreb 50

Matija Rossi Master's thesis

self.p = self.y[:2, :]

self.ref = np.matrix([[x_ref, y_ref]]).T

Listing 5.23: Controller 1 update
i f not self.t:

self.ref = self.y[:2, :]

self.q = self.ref

self.t = 1

(x, y, psi) = np.nditer(self.y)

(x_ref, y_ref) = np.nditer(self.ref)

(x_q, y_q) = 150, 0

F_a = [self.k_p[0]*(x_ref - x_q), self.k_p[0]*(y_ref - y_q)]

temp = [0, 0]

for obs in self.o:

temp[0] -= (x_ref - obs[0])*np.exp(-1/(2*obs[2])*((x_ref - obs[0])**2 +

(y_ref - obs[1])**2))

temp[1] -= (y_ref - obs[1])*np.exp(-1/(2*obs[2])*((x_ref - obs[0])**2 +

(y_ref - obs[1])**2))

F_r = []

F_r.append(self.k_p[1]*temp[0])

F_r.append(self.k_p[1]*temp[1])

(x_ref, y_ref) = (

self.T*self.ref_M*np.tanh(.5*(-F_a[0]*np.exp(-self.k_p[2]*F_r[0]**2) -

F_r[0] + self.m*F_r[1])) + x_ref,

self.T*self.ref_M*np.tanh(.5*(-F_a[1]*np.exp(-self.k_p[2]*F_r[1]**2) -

F_r[1] - self.m*F_r[0])) + y_ref

)

no = np.sqrt((x_ref - x)**2 + (y_ref - y)**2)

vp = (y_ref - y)*np.cos(psi) - (x_ref - x)*np.sin(psi)

i f no:

vp /= no

self.u =

np.matrix([[self.u_max[0]*np.tanh(self.k[0]*no)*np.exp(-self.k[1]*vp**2)],

[self.u_max[1]*np.tanh(self.k[2]*vp)]])

self.p = self.y[:2, :]

self.ref = np.matrix([[x_ref, y_ref]]).T

The parameters from ./input_parameters used in this simulation are:

University of Zagreb 51

Matija Rossi Master's thesis

• A_controllers � Each controller is communicating its position to the one

behind, therefore this adjacency matrix is


0 0 0

1 0 0

0 1 0

.
• A_plants � The boat are not interacting in any way, however, this adjacency

matrix always has to be a quadratic matrix the size of the number of nodes,

which means in this case it will be populated with zeros:


0 0 0

0 0 0

0 0 0

.
• controllers_iterate � Controllers do communicate, but only once within a

sampling period, not iteratively, therefore this is set to 0.

• system_types � All boats are the same, but the �rst one uses a di�erent

controller from the rest. This is described as


1 0

0 0

0 0

.
• T � This simulation uses a sampling period of 0.1 s. The real duration of a

simulation step is set to 0.01 s, to speed up the simulation. The �nal time

is chosen to be 115 s, which is just enough for the boats to reach the chosen

target. This vector therefore is


0.1

0.01

115

.

• x0 � The initial conditions in this example are


0 −30 0 1 0 0

50 60 −1.57 1 0 0

0 20 0.78 0 0 0

.
Accordingly to the requirement set in subsubsection 5.3.1, this system is designed

in a way that it trivial to add or remove subsystems. To do so, it is only necessary

to properly adjust the matrices in ./input_parameters.

University of Zagreb 52

Matija Rossi Master's thesis

5.3.5 Simulation results

Figure 5.9 shows the trajectories of the three boats. The black circles represent

obstacles, while the magenta circle is the target. It can be seen that, while the

goal of the boats is to follow each other at a �xed distance, the priority is given

to obstacle avoidance. This means that the formation can be achieved even in the

middle of an obstacle �eld, like in the given example.

Figure 5.10 displays the graph generated by Dinsdale to simulate this system. It

is interesting to note the topics ~/p, which are used for communication between

controllers, and are connected accordingly to A_controllers.

0 20 40 60 80 100 120 140 160

x [m]

−40

−20

0

20

40

60

y
[m

]

boat 0

boat 1

boat 2

Figure 5.9: Boat trajectories

University of Zagreb 53

Matija Rossi Master's thesis

Figure 5.10: Runtime graph

5.4 Distributed optimisation problem

This example presents a network of two physically coupled dynamical subsystems,

with a distributed control structure. The control law of each controller is not pre-

de�ned, but instead it is computed online, solving an optimisation problem inside

every sampling period, which requires controllers to collaborate.

5.4.1 System description and control objectives

This is an example presented in [36], and it deals with an unstable nonlinear sys-

tem composed of two physically coupled mutually di�erent subsystems, with a dis-

tributed control structure. The objective is to stabilise the entire system in an op-

timal manner. To achieve this, the controllers have to be connected in a distributed

structure, for they need to collaborate in order to periodically solve a global optimi-

sation problem in a distributed way. Not only the controllers have to communicate

with each other, but they have to do it iteratively inside each sampling period.

University of Zagreb 54

Matija Rossi Master's thesis

5.4.2 Mathematical problem formulation

The discrete time dynamics of the interconnected systems are given in [36] as:

x1(k + 1) =

1 0.7

0 1

x1(k) +
sin([x1]2)

0

+

0.245
0.7

u1(k) +
 0

([x2]1)
2


x2(k + 1) =

1 0.5

0 1

x2(k) +
sin([x2]2)

0

+

0.125
0.5

u2(k) +
 0

[x1]1

 ,

(19)

where [·]i stands for the i -th element of a vector.

In order to achieve optimal stabilisation of this system, it is necessary to formulate

a convex optimisation problem [37] that can be solved in a distributed way.

5.4.3 Control synthesis

In [36] the authors use a global linear Lyapunov function V (x) = ‖Px‖∞ which is

chosen using the technique presented in [38] applied to the system linearised around

the origin. Here, the block diagonal matrix P = diag(P1, P2) is computed using the

method presented in [39], which yields:

P1 =

2.5598 0.3345

1.8629 5.0219


P2 =

−0.3898 −0.3836
0.2703 0.9763

 . (20)

The local constraint for each Lyapunov function is:

Vi(xi(k + 1))− Vi(xi(k)) ≤ τi(k)− αi
3(‖xi(k)‖), (21)

while the global constraint, which guarantees stability of the entire network, is:∑
i

τi ≤ 0. (22)

University of Zagreb 55

Matija Rossi Master's thesis

In addition to the global condition (22), each controller has to solve the local opti-

misation problem:

min
ui

Ji(xi(k + 1), ui(k)),

subject to xi(k + 1) = fi(xi(k), wi(k), ui(k)),

Vi(xi(k + 1))− Vi(xi(k)) ≤ τi(k)− αi
3(‖xi(k)‖),

(23)

where Ji is a convex cost function, and wi is the in�uence of other subsystems to

subsystem i, which in this case is the last term of equations (19).

To satisfy condition (22), the controllers must exchange information. One way

would be to have a central coordinator, which is connected to all controllers, and

calculates this function. However, it is possible to show that the condition can be

satis�ed also with the controllers connected in a distributed structure, as long as

the communication graph they form is connected. If this is the case, it follows that

the global optimisation problem
∑
i

Ji will also be solved, which means that it is

possible to obtain globally optimal behaviour.

5.4.4 Implementation

This example consist of a homogeneous network of two subsystems. The plants are

signi�cantly di�erent, but the controllers use identical control laws. However, since

model predictive control is used, it is necessary for the controller to have a model of

the plant it is controlling. Therefore, controllers have to be implemented di�erently

for di�erent plants.

The implementation of the dynamics of the two plants, in plant.py and plant_1.py,

and their respective controllers, are described in Table 5.2. It is extremely important

to note that the convex optimisation solver cvxopt [40] is a requirement for running

the controllers, and it should be imported at the beginning of each controller �le as

shown in Listing 5.29.

University of Zagreb 56

Matija Rossi Master's thesis

Table 5.2: Optimisation network de�nition

(a) Plants

Plant __init__() iterate_state() update_output()

plant.py Listing 5.24 Listing 5.25 Listing 5.26

plant_1.py Listing 5.27 Listing 5.28 Listing 5.26

(b) Controllers

Controller __init__() iterate_state() iterate_optimisation()

controller.py Listing 5.30 Listing 5.31 Listing 5.32

controller_1.py Listing 5.33 Listing 5.34 Listing 5.32

What is speci�c in this example is the use of iterative communication within a sam-

pling period. The code which is executed in every such iteration goes inside the

iterate_optimisation() module of the Controller class. The vector self.r is

used to send data to neighbours, while self.s is where the data from neighbours

is received. When the variable self.finished is set to True, the iterative commu-

nication stops and the normal execution �ow continues. In the next time step, this

variable will automatically be reset to False.

Listing 5.24: Plant 0 initialisation
Ts = .7

self.A = np.matrix([[1, Ts], [0, 1]])

self.B = np.matrix([[Ts**2/2.0], [Ts]])

Listing 5.25: Plant 0 state update
ff = np.matrix([[np.sin(self.x[1,0]), 0]]).T

vv = np.matrix([[0, self.w[0,0]**2]]).T

self.x = self.A*self.x + self.B*self.u + vv + ff

self.v = self.x[0,0]

Listing 5.26: Plant 0 output update
self.y = np.bmat([[self.x], [self.w[0]]])

University of Zagreb 57

Matija Rossi Master's thesis

Listing 5.27: Plant 1 initialisation
Ts = .5

self.A = np.matrix([[1, Ts], [0, 1]])

self.B = np.matrix([[Ts**2/2.0], [Ts]])

Listing 5.28: Plant 1 state update
ff = np.matrix([[np.sin(self.x[1,0]), 0]]).T

vv = np.matrix([[0, self.w[0,0]]]).T

self.x = self.A*self.x + self.B*self.u + vv + ff

self.v = self.x[0,0]

Listing 5.29: Importing cvxopt
from cvxopt import matrix, solvers

Listing 5.30: Controller 0 initialisation
solvers.options[’show_progress’] = False

Ts = .7

self.A = np.matrix([[1, Ts], [0, 1]])

self.B = np.matrix([[Ts**2/2.0], [Ts]])

self.Qx = np.matrix(’.1 0; 0 .1’)

self.Px = np.matrix(’4 0; 0 4’)

self.Ru = .4

self.Q = np.matrix(’.01 0; 0 .01’)

self.P = np.matrix(’2.5598 .3345; 1.8629 5.0219’)

cx = 5

self.bxlow = -cx

self.bxup = cx

self.buup = 20

self.ALPHAconst = 2.0

Listing 5.31: Controller 0 update

University of Zagreb 58

Matija Rossi Master's thesis

self.Iter = 0

self.LAM = .1

self.tau = 1

self.f = np.matrix([[np.sin(self.y[1,0]), 0]]).T

self.v = np.matrix([[0, self.y[2,0]**2]]).T

self.Ju = self.B

self.Jx = self.A*self.y[:2,0] + self.f + self.v

self.Zu = self.Px*self.B

self.Zx = self.Px*self.Jx

self.Ku = self.P*self.B

self.Kx = self.P*self.Jx

self.c1 = npl.norm(self.Qx*self.y[:2,0], np.inf)

self.c2 = npl.norm(self.P*self.y[:2,0], np.inf) -

npl.norm(self.Q*self.y[:2,0], np.inf)

self.u = np.matrix([[0]])

self.p = np.matrix([[0]])

Listing 5.32: Controller 0 and 1 optimisation iteration
i f self.Iter:

self.LAM += self.ALPHA*(self.tau + self.s[0,0])

i f ((abs(self.tau + self.s[0,0]) <= 1E-5 and abs(self.LAM*(self.tau +

self.s[0,0])) < 1E-5) or self.Iter >= 100):

self.finished = True

return

self.Iter += 1

self.ALPHA = self.ALPHAconst/np.sqrt(self.Iter)

fL = np.matrix([[1, 1, 0, self.LAM]]).T

AL1 = np.matrix([[0, 0, 1, 0],

[0, 0, -1, 0],

[-1, 0, 0, 0],

[0, -1, 0, 0],

[0, 0, 0, 1],

[0, 0, 0, -1],

University of Zagreb 59

Matija Rossi Master's thesis

[0, 0, self.Ju[0,0], 0],

[0, 0, -self.Ju[0,0], 0],

[0, 0, self.Ju[1,0], 0],

[0, 0, -self.Ju[1,0], 0],

[0, 0, self.Ku[0,0], -1],

[0, 0, -self.Ku[0,0], -1],

[0, 0, self.Ku[1,0], -1],

[0, 0, -self.Ku[1,0], -1],

[-1, 0, self.Zu[0,0], 0],

[-1, 0, -self.Zu[0,0], 0],

[-1, 0, self.Zu[1,0], 0],

[-1, 0, -self.Zu[1,0], 0],

[0, -1, self.Ru, 0],

[0, -1, -self.Ru, 0]])

bL1 = np.matrix([[self.buup],

[self.buup],

[0],

[0],

[1000],

[1000],

[self.bxup - self.Jx[0,0]],

[self.Jx[0,0] - self.bxlow],

[self.bxup - self.Jx[1,0]],

[self.Jx[1,0] - self.bxlow],

[-self.Kx[0,0] + self.c2],

[self.Kx[0,0] + self.c2],

[-self.Kx[1,0] + self.c2],

[self.Kx[1,0] + self.c2],

[-self.c1 - self.Zx[0,0]],

[-self.c1 + self.Zx[0,0]],

[-self.c1 - self.Zx[1,0]],

[-self.c1 + self.Zx[1,0]],

[0],

[0]])

AL_c = matrix(AL1)

bL_c = matrix(bL1)

fL_c = matrix(fL)

sol = solvers.lp(fL_c, AL_c, bL_c)

Opt = sol[’x’]

self.u = np.matrix([[Opt[2,0]]])

University of Zagreb 60

Matija Rossi Master's thesis

self.tau = Opt[3,0]

self.r = np.matrix([[self.tau]])

Listing 5.33: Controller 1 initialisation
solvers.options[’show_progress’] = False

Ts = .5

self.A = np.matrix([[1, Ts], [0, 1]])

self.B = np.matrix([[Ts**2/2.0], [Ts]])

self.Qx = np.matrix(’.1 0; 0 .1’)

self.Px = np.matrix(’4 0; 0 4’)

self.Ru = .4

self.Q = np.matrix(’.01 0; 0 .01’)

self.P = np.matrix(’-.3898 -.3836; .2703 .9763’)

cx = 5

self.bxlow = -cx

self.bxup = cx

self.buup = 20

self.ALPHAconst = 2.0

Listing 5.34: Controller 1 update
self.Iter = 0

self.LAM = .1

self.tau = 1

self.f = np.matrix([[np.sin(self.y[1,0]), 0]]).T

self.v = np.matrix([[0, self.y[2,0]]]).T

self.Ju = self.B

self.Jx = self.A*self.y[:2,0] + self.f + self.v

self.Zu = self.Px*self.B

self.Zx = self.Px*self.Jx

University of Zagreb 61

Matija Rossi Master's thesis

self.Ku = self.P*self.B

self.Kx = self.P*self.Jx

self.c1 = npl.norm(self.Qx*self.y[:2,0], np.inf)

self.c2 = npl.norm(self.P*self.y[:2,0], np.inf) -

npl.norm(self.Q*self.y[:2,0], np.inf)

self.u = np.matrix([[0]])

self.p = np.matrix([[0]])

The parameters in ./input_parameters used for this simulation are:

• A_controllers � The adjacency matrix of the controllers is

0 1

1 0

.
• A_plants � The plants interaction network has the same topology as the con-

troller communication network, which is

0 1

1 0

.
• controllers_iterate � Controllers communicate iteratively, therefore this is

set to 1.

• system_types � The network is homogeneous:

0 0

1 1

.
• T � This simulation uses an iteration step (sampling period) of size 1. The real

duration of a simulation step is set to 0.5 s, to guarantee enough time for iter-

ative communication and iterative linear program solving. The �nal number

of steps (�nal time) is chosen to be 10, which is enough for the controllers to

stabilise the network. This vector therefore is


1

0.5

10

.

• x0 � The initial conditions chosen in this example are

3 2

2 0.5

.

University of Zagreb 62

Matija Rossi Master's thesis

5.4.5 Simulation results

Figure 5.11 shows the response of the network. The controllers are able to stabilise

the system in 4 to 5 steps. Within each step there is up to a hundred iterations of

optimisation problem solving.

In Figure 5.12 it is possible to see the graph generated by Dinsdale to simulate this

0 1 2 3 4 5 6 7 8 9

k

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[x
i]
1

plant 0

plant 1

(a) First state variable

0 1 2 3 4 5 6 7 8 9

k

−2.5
−2.0
−1.5
−1.0
−0.5
0.0

0.5

1.0

1.5

2.0

[x
i]
2

plant 0

plant 1

(b) Second state variable

Figure 5.11: System response

University of Zagreb 63

Matija Rossi Master's thesis

Figure 5.12: Runtime graph

network. It is interesting to note the ~/r topics within the controller* namespaces.

They are used for iterative communication between controllers, and their connection

topology is the same as that of ~/p topics.

University of Zagreb 64

Matija Rossi Master's thesis

6 Conclusion and future developments

This thesis presented the motivation and explored the possibilities of creating a uni-

versal framework for development of networks of dynamical systems. It introduced

a new framework, which fully satis�es the requirements, derived by the needs of

today's research community. With the testing conducted so far, it has been shown

that the Dinsdale framework o�ers a solid and reliable infrastructure for research

and development of dynamical networks. Although the bene�ts from using such a

framework are theoretically clear, they still have to be proven in practice. Feed-

back from other research groups would be immensely valuable for determining the

direction of the future development of this software.

Generally speaking, the need for such framework exists, and considering its foun-

dations are the increasingly popular ROS and Python, its adoption could be very

convenient. It will certainly remain available and continue being maintained and

developed, at least in the foreseeable future.

University of Zagreb 65

Matija Rossi Master's thesis

References

[1] R. Murray, K. Astrom, S. Boyd, R. Brockett, and G. Stein, �Future directions in

control in an information-rich world,� Control Systems, IEEE, vol. 23, pp. 20�

33, Apr 2003.

[2] A. Preumont, Vibration Control of Active Structures: An Introduction. Solid

Mechanics and Its Applications, Springer, 2011.

[3] P. Koumoutsakos and I. Mezic, Control of Fluid Flow. Lecture Notes in Control

and Information Sciences, Springer, 2006.

[4] R. Du�ner, The Adaptive Optics Revolution: A History. University of New

Mexico Press, 2009.

[5] J. Ekanayake, N. Jenkins, K. Liyanage, J. Wu, and A. Yokoyama, Smart Grid:

Technology and Applications. Wiley, 2012.

[6] H. S. Witsenhausen, �A counterexample in stochastic optimum control,� SIAM

Journal on Control, vol. 6, no. 1, pp. 131�147, 1968.

[7] R. Olfati-Saber, �Flocking for multi-agent dynamic systems: Algorithms and

theory,� IEEE Transactions on Automatic Control, vol. 51, pp. 401�420, 2006.

[8] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Net-

works. Princeton Series in Applied Mathematics, Princeton University Press,

2010.

[9] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Net-

works. Applied Mathematics Series, Princeton University Press, 2009. http:

//coordinationbook.info.

[10] G. Antonelli, �Interconnected dynamic systems: An overview on distributed

control,� Control Systems, IEEE, vol. 33, no. 1, pp. 76�88, 2013.

University of Zagreb 66

http://coordinationbook.info
http://coordinationbook.info

Matija Rossi Master's thesis

[11] M. Rotkowitz and S. Lall, �A characterization of convex problems in decentral-

ized control,� Automatic Control, IEEE Transactions on, vol. 51, pp. 274�286,

Feb 2006.

[12] S. Jiang, P. Voulgaris, L. Holloway, and L. Thompson, �Distributed control of

large segmented telescopes,� in American Control Conference, 2006, pp. 6 pp.�,

June 2006.

[13] V. D. Blondel and J. N. Tsitsiklis, �A survey of computational complexity results

in systems and control,� Automatica, vol. 36, no. 9, pp. 1249 � 1274, 2000.

[14] B. Bamieh, F. Paganini, and M. Dahleh, �Distributed control of spatially in-

variant systems,� Automatic Control, IEEE Transactions on, vol. 47, pp. 1091�

1107, Jul 2002.

[15] R. D'Andrea and G. Dullerud, �Distributed control design for spatially intercon-

nected systems,� Automatic Control, IEEE Transactions on, vol. 48, pp. 1478�

1495, Sept 2003.

[16] B. Recht and R. D'Andrea, �Distributed control of systems over discrete

groups,� Automatic Control, IEEE Transactions on, vol. 49, pp. 1446�1452,

Sept 2004.

[17] C. Langbort, R. Chandra, and R. D'Andrea, �Distributed control design for

systems interconnected over an arbitrary graph,� Automatic Control, IEEE

Transactions on, vol. 49, pp. 1502�1519, Sept 2004.

[18] B. Bamieh and P. G. Voulgaris, �A convex characterization of distributed con-

trol problems in spatially invariant systems with communication constraints,�

Systems & Control Letters, vol. 54, no. 6, pp. 575 � 583, 2005.

[19] N. Motee and A. Jadbabaie, �Optimal control of spatially distributed systems,�

Automatic Control, IEEE Transactions on, vol. 53, pp. 1616�1629, Aug 2008.

University of Zagreb 67

Matija Rossi Master's thesis

[20] J. Rice and M. Verhaegen, �Distributed control: A sequentially semi-separable

approach for spatially heterogeneous linear systems,� Automatic Control, IEEE

Transactions on, vol. 54, pp. 1270�1283, June 2009.

[21] C. Langbort, L. Xiao, R. D'Andrea, and S. Boyd, �A decomposition approach

to distributed analysis of networked systems,� in Decision and Control, 2004.

CDC. 43rd IEEE Conference on, vol. 4, pp. 3980�3985 Vol.4, Dec 2004.

[22] U. Jönsson, C.-Y. Kao, and H. Fujioka, �A popov criterion for networked sys-

tems,� Systems & Control Letters, vol. 56, no. 9-10, pp. 603 � 610, 2007.

[23] S. Nersesov and M. Haddad, �On the stability and control of nonlinear dynam-

ical systems via vector lyapunov functions,� Automatic Control, IEEE Trans-

actions on, vol. 51, pp. 203�215, Feb 2006.

[24] C. W. Scherer, �Structured �nite-dimensional controller design by convex opti-

mization,� Linear Algebra and its Applications, vol. 351�352, no. 0, pp. 639 �

669, 2002. Fourth Special Issue on Linear Systems and Control.

[25] I. Lestas and G. Vinnicombe, �Scalable decentralized robust stability certi�cates

for networks of interconnected heterogeneous dynamical systems,� Automatic

Control, IEEE Transactions on, vol. 51, pp. 1613�1625, Oct 2006.

[26] A. Gattami and R. Murray, �A frequency domain condition for stability of inter-

connected mimo systems,� in American Control Conference, 2004. Proceedings

of the 2004, vol. 4, pp. 3723�3728 vol.4, June 2004.

[27] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, �Distributed model pre-

dictive control,� Control Systems, IEEE, vol. 22, pp. 44�52, Feb 2002.

[28] W. Dunbar, �Distributed receding horizon control of dynamically coupled non-

linear systems,� Automatic Control, IEEE Transactions on, vol. 52, pp. 1249�

1263, July 2007.

University of Zagreb 68

Matija Rossi Master's thesis

[29] B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G. Pannocchia,

�Cooperative distributed model predictive control,� Systems & Control Letters,

vol. 59, no. 8, pp. 460 � 469, 2010.

[30] P. D. Christo�des, R. Scattolini, D. M. de la Peña, and J. Liu, �Distributed

model predictive control: A tutorial review and future research directions,�

Computers & Chemical Engineering, vol. 51, no. 0, pp. 21 � 41, 2013. {CPC}

{VIII}.

[31] D. �iljak and D. Stipanovi¢, �Robust stabilization of nonlinear systems: The

LMI approach.,� Mathematical Problems in Engineering, vol. 6, no. 5, pp. 461�

493, 2000.

[32] D. Siljak, Decentralized Control of Complex Systems. Mathematics in science

and engineering, Academic Press, 1991.

[33] H. Khalil, Nonlinear Systems. Prentice Hall PTR, 2002.

[34] S. Boyd, L. Ghaoul, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities

in System and Control Theory. Studies in Applied Mathematics, Society for

Industrial and Applied Mathematics, 1994.

[35] M. Rossi, �Upravljanje �otom,� tech. rep., University of Zagreb, 2014.

[36] A. Jokic and M. Lazar, �On stabilization of discrete-time nonlinear systems

under arbitrary information constraints,� in 1st IFAC Workshop on Estimation

and Control of Networked Systems, Venice, Italy, September 2009.

[37] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University

Press, 2004.

[38] A. Jokic and M. Lazar, �On decentralized stabilization of discrete-time nonlinear

systems,� in American Control Conference, 2009. ACC '09., pp. 5777�5782,

June 2009.

University of Zagreb 69

Matija Rossi Master's thesis

[39] M. Lazar, W. P. M. H. Heemels, S. Weiland, and A. Bemporad, �Stabilizing

model predictive control of hybrid systems,� Automatic Control, IEEE Trans-

actions on, vol. 51, pp. 1813�1818, Nov 2006.

[40] M. Andersen, J. Dahl, and L. Vandenberghe, �cvxopt.� http://cvxopt.org/.

[41] M. Rossi, �ROS u distribuiranom upravljanju dinami£kim sustavima,� tech.

rep., University of Zagreb, 2014.

[42] ROS, �Documentation.� http://wiki.ros.org/.

[43] J. M. O'Kane, A Gentle Introduction to ROS. Independently published, Oct.

2013. Available at http://www.cse.sc.edu/~jokane/agitr/.

[44] ROS, �About ROS.� http://www.ros.org/about-ros/.

[45] Willow Garage, �About Us.� http://www.willowgarage.com/pages/about-us.

[46] OSRF, �ROS @ OSRF.� http://osrfoundation.org/blog/ros-at-osrf.html.

[47] Robohub, �ROS 101: Intro to the Robot Operating System.� http://robohub.

org/ros-101-intro-to-the-robot-operating-system/.

[48] R. Diestel, Graph Theory, 4th Edition, vol. 173 of Graduate texts in mathemat-

ics. Springer, 2012.

[49] C. Godsil and G. Royle, Algebraic Graph Theory. Graduate Texts in Mathe-

matics, Springer, 2001.

University of Zagreb 70

http://cvxopt.org/
http://wiki.ros.org/
http://www.cse.sc.edu/~jokane/agitr/
http://www.ros.org/about-ros/
http://www.willowgarage.com/pages/about-us
http://osrfoundation.org/blog/ros-at-osrf.html
http://robohub.org/ros-101-intro-to-the-robot-operating-system/
http://robohub.org/ros-101-intro-to-the-robot-operating-system/

Matija Rossi Master's thesis

A Robot Operating System

This is a very brief overview of the main concepts of ROS, required to understand

certain parts of this thesis. A more detailed introduction, with focus on distributed

system development, can be found in [41]. More in-dept information on ROS, as

well as tutorials, can be found online, on the ROS website [42], and in books, like

[43].

ROS is a framework primarily intended for development of robot software. It is a

collection of tools, libraries, and conventions that aim to simplify the task of creating

complex and robust robot behavior across a variety of robotic platforms [44]. ROS

is free software, licensed under the permissive BSD license. It was created, and,

from 2007 to 2013, developed, and maintained mostly by Willow Garage, a research

laboratory and technological incubator which produces hardware and free software

for service robotics [45]. Since 2013 the project has been transfered to the Open

Source Robotics Foundation (OSRF) [46], a non-pro�t organization born as a Willow

Garage spin-o�.

It is important to note that ROS is not a replacement for a computer operating

system, but a middleware between the robot hardware and the control algorithms.

From the robotics point of view however, it o�ers all the services and abstractions

expected from an operating system, which justi�es its name. Some of the key services

are hardware abstraction, low level device control, implementation of commonly used

functions, process management, and package management. It also provides tools and

libraries for obtaining, building, writing and running code across multiple computers

[42]. At the moment, ROS runs on top of UNIX-like operating systems, with the

best support on the Ubuntu GNU/Linux distribution and its derivatives.

Software in ROS is distributed in packages and stacks of packages. A package is

simply a directory with a certain structure, which can contain executables, libraries,

University of Zagreb 71

Matija Rossi Master's thesis

con�guration �les, or anything else.

At runtime, ROS manages the software inside what is called the ROS Computational

Graph, which is basically a network of processes that can communicate with each

other. The main concepts are:

• Nodes

• Master

• Parameter Server

• Messages

• Topics

• Services

• Bags

The programs (processes) that are being executed are called nodes, while the vertices

of the graph are the interactions between them. The topology of the graph can be

dynamical: the graph can be fully modi�ed at runtime.

The main program (server) which allows the interaction between nodes, because it

contains all the names and addresses, is called Master. The Parameter Server is a

part of the Master which serves as a place for storing publicly available data in a

centralised location. It is not very fast, so it is not used for runtime communication,

but rather for storing some universal parameters.

There are two methods for communication between nodes: the asynchronous pub-

lishing of messages to topics, and the synchronous communication through services.

A node can send a message by publishing it to a given topic. The topic is a name

to identify the message. A node that is interested in a certain kind of data will

subscribe to the appropriate topic. There is no limit to the number of publishers

University of Zagreb 72

Matija Rossi Master's thesis

(a) Publishing and subscribing to a topic

(b) Using a service

Figure A.1: Examples of ROS systems [47]

and subscribers for a topic. Services are used in cases when request/reply commu-

nication is required. A node can o�er a service under a speci�c name, to which any

other node can send a request and wait for the reply.

University of Zagreb 73

Matija Rossi Master's thesis

The last fundamental concept that is important to understand are bags. Bags are

�les used for storage and reproduction of logged data. They o�er a convenient way

to store all kind of data during execution, which is very valuable for development

and testing. The data from a bag �le can be reproduced in the order it was collected,

which allows for example testing di�erent algorithms on the same data set.

Figure A.1 illustrates two simple examples of ROS graphs. Figure A.1a shows a

ROS system that runs on two computers: one on the robot and one for the human

interface. The ROS Master, where each node has to register to be visible to others,

is running on the robot. Only three nodes are running: one that acquires images

from the camera, one for image processing, and one to display the acquired images

on the user's machine. In this case the camera node publishes the images on a topic,

to which the other two are subscribed. In Figure A.1b there are only two nodes, and

this time the camera node is o�ering a service. When the image processing node

needs an image, it sends a request to the service and waits for the answer from the

node o�ering the service.

University of Zagreb 74

Matija Rossi Master's thesis

B Graph terminology

Graph theory is useful when it is necessary to model the concepts of proximity and

interactions among agents. For example, if the agents use limited range commu-

nication, like in Figure B.1, a graph could be the most appropriate tool to handle

the concept of connectivity among them. Graph-based abstractions of networked

systems contain virtually no information about what exactly is shared by the agents,

the communication protocol, or what is subsequently done with the shared data. In-

stead of this, the graph-based abstraction is a high-level description of the network

topology, using objects referred to as vertices and edges. This section will present

the most basic concepts, while detailed information can be found in [48] and [49].

A directed graph, or digraph, is a pair G = (V,E), which consists of a set of nodes

(vertices) V = {1, 2, . . . , n}, and a set of edges E ⊆ {(i, j) : i, j ∈ V, j 6= i} (the

graph does not contain self loops). A graph is said to be undirected if (i, j) ∈ E ⇔

(j, i) ∈ E. A weighted graph associates a weight to each edge. When an edge

belongs to E, it means that there is information �ow from the tail node i to the

head node j. The quantities |V | and |E| (number of nodes and edges) are referred

to as graph order and communication complexity respectively.

An appealing feature of graphs is the possibility to describe many of their features

with matrices. Given a graph G, the adjacency matrix A ∈ R|V |×|V | can be de�ned

as

A = [aij], aij =

1, j ∈ Ni

0, otherwise
. (24)

The graph is called weighted whenever the elements of its adjacency matrix are

other than {0, 1}. The set of neighbours of node vi can be de�ned as:

Ni = {j ∈ V : aij 6= 0} = {j ∈ V : (i, j) ∈ E}, (25)

which de�nes the set of all nodes that node vi can take information from. The

University of Zagreb 75

Matija Rossi Master's thesis

Figure B.1: Graph representation of nodes with limited interaction range [8]

number of such nodes |Ni| is called the in-degree of a node. It is possible to de�ne

the diagonal input degree matrix D ∈ R|V |×|V | of the entire graph as

D = [dij], dij =

|Ni|, i = j

0, otherwise
. (26)

The graph Laplacian matrix L ∈ R|V |×|V | is de�ned as

L = D − A = [lij], (27)

which is equivalent to

lij =


−1, j ∈ Ni

|Ni|, i = j

0, otherwise

. (28)

Other important basic graph properties are related to connectivity. A graph is

strongly connected when there exists a directed path connecting every arbitrary

pair of distinct nodes. A graph is connected, or weakly connected, when there exists

an undirected path connecting every arbitrary pair of distinct nodes. For undirected

graphs the two de�nitions coincide.

University of Zagreb 76

	Introduction
	Distributed and decentralised control
	Classification of dynamical networks
	Control structures
	Subsystem connection typology
	Subsystem connection topology
	Subsystem typology
	Control laws

	Overview of control synthesis approaches

	Problem definition
	The Dinsdale package
	Package structure
	System definition
	Plants
	Controllers
	Plants interaction topology
	Parameters
	Tools

	Runtime
	Usage
	Executing the simulation
	Result analysis
	Replacing simulated plants with real systems

	Examples
	Interconnected inverted pendulums
	System description and control objectives
	Mathematical problem formulation
	Control synthesis
	Implementation
	Simulation results

	A heterogeneous network of systems
	System description and control objectives
	Mathematical problem formulation
	Control synthesis
	Implementation
	Simulation results

	Fleet formation fuzzy control with obstacle avoidance
	System description and control objectives
	Mathematical problem formulation
	Control synthesis
	Implementation
	Simulation results

	Distributed optimisation problem
	System description and control objectives
	Mathematical problem formulation
	Control synthesis
	Implementation
	Simulation results

	Conclusion and future developments
	References
	Robot Operating System
	Graph terminology

