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omogućenom školovanju i pruženoj podršci tijekom cijelog studija.
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Bez vas nǐsta od ovoga ne bi bilo moguće.
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Abstract

A Lie group integration method, proposed in [12] and [11], is presented in the thesis and

applied to the case study problem. The way dynamics of multibody system is mathematically

modelled is presented and the governing equations, in the form of a DAE system of index 1

and 3, are given. Manifolds are introduced and applied to the dynamics of MBS. Also, the

mathematical background of manifolds, groups, vector fields and spaces is presented in the

thesis. The special orthogonal group SO (3) is presented in detail and the concept of Lie

groups defined and the group properties described. A Lie group integration method proposed

in [12] and [11] is described and its mathematical framework presented and discussed in

more details. Two different MBS integration algorithms based on Lie group setting, that

include the Lie group Euler and MK method respectively, are described. Also, two mapping

functions, that map elements from the Lie algebra to the Lie group, are presented. The

Lie group integration methods described are demonstrated on the case study problem of a

satellite with a manipulator system on it. Joints between bodies are described and constraint

equations formulated at the displacement, velocity and acceleration level are derived. The

system bodies are identified and inertial and geometrical parameters given. Rheonomic

constraints, giving the imposed motions in the system, are also formulated. Finally, the

system is solved using both Lie group integration methods. The results are compared with

the ADAMS solution. The Lie group methods solutions are obtained from the MATLAB

algorithms implementation. Different motion cases, for different motions and operations of

the satellite and its manipulator, are analysed. The results of the analyses are post-processed,

presented and conclusions given.

Keywords: MBS Mathematical Modelling, Manifolds, DAE System, Lie group, Multy-

body System Dynamics, Lie group Euler Method, Munthe-Kaas Integration Method, Special

Orthogonal Group SO (3), Joints Constraints Formulation, Constraint Violation Stabilisa-

tion
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Extended abstract (Croatian)

Sažetak

Integracijska metoda za integriranje dinamike konstrukcijskih sustava na Lievoj grupi,

predložena u [12] i [11], opisana je i primijenena za rješavanje gibanja satelita s manipu-

latorom. U radu je detaljno opisan matematički aparat koji omogućava primjenu linearnih

integracijskih metoda na nelinearnim prostorima koji posjeduju posebna svojstva. S obzirom

da metoda svoje prednosti pokazuje na prostornim rotacijama tijela, poseban je na na-

glasak stavljen na grupu specijalnih ortogonalnih matrica SO (3), koja je takod̄er detaljno

opisana. Nakon opisa Lie group Euler i Munthe-Kaas integracijskih metoda, iste su prim-

ijenene za rješavanje gibanja satelita i njegovog manipulatora. Analizirana su tri različita

slučaja gibanja satelita i manipulatora: za različite operacije te slučaj kvara manipulatora.

Integracijski algoritmi su implementirani u MATLAB -u, a verifikacija rezultata je provedena

uz pomoć rezultata iz ADAMS -a. Iz dobivenih rezultata izvučeni su zaključci o korǐstenim in-

tegracijskim metodama čija je osnovna prednost da se prilikom integracije sustava ne javljaju

kinematički singulariteti. Singulariteti bi se neizbježno pojavljivali u slučaju velikih domena

rotacijskih gibanja da je dinamika sustava modelirana na vektorskom prostoru primjenom

neke od lokalnih parametrizacija prostornih (3D) rotacija (npr. Eulerovi kutevi).

Ključne riječi: Modeliranje dinamike konstrukcijskih sustava, mnogostrukosti, sus-

tav algebarsko-diferencijalnih jednadžbi, Lieva grupa, dinamika konstrukcijskih sustava, Lie

group Euler metoda, Munthe-Kaas integracijska metoda, specijalna ortogonalna grupa SO (3),

jednadžbe kinematičkih ograničenja, stabilizacija povrede ograničenja

Prošireni sažetak

U prvom poglavlju rada dane su osnove modeliranja mehanike i matematičke osnove di-

namike konstrukcijskih sustava. Opisani su stupnjevi slobode gibanja, kinematička ograničenja
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i način odred̄ivanja broja stupnjeva slobode gibanja. Prije samog uvod̄enja pojma stupnjeva

slobode gibanja, ukratko je opisan prostor i uvedena je metrika prostora. Time su opisane

matematičke osnove za opisivanje gibanja i konfiguracije sustava u prostoru.

Broj stupnjeva slobode gibanja sustava je broj nezvisnih koordinata (parametara, bro-

jeva) koji u potpunosti opisuju trenutnu konfiguraciju (položaj) sustava. Za sustav čestica

u prostoru se broj stupnjeva slobode računa prema izrazu

n = 3N −K,

gdje je N broj čestica u sustavu, a K broj kinematičkih veza med̄u česticama (broj oduzetih

stupnjeva slobode, odnosno broj algebarskih jednadžbi kojim se modeliraju linearno nezav-

isna kinematička ograničenja). Za sustav tijela u prostoru broj stupnjeva slobode se odred̄uje

prema izrazu

n = 6N −K.

Nakon definicije stupnjeva slobode uveden je pojam konfiguracijskog prostora i konfiguraci-

jske mnogostrukosti. Konfiguracijski prostor je linearni vektorski prostor i, u slučaju sustava

tijela bez nametnutih veza med̄u tijelima, se podudara s konfiguracijskom mnogostrukosti.

Kada su u sustavu prisutne kinematičke veze sustav vǐse ne može zauzeti proizvoljni položaj u

konfiguracijskom prostoru, već se njegova rješenja kreću na konfiguracijskoj mnogostrukosti.

Na konfiguracijsku mnogostrukost može se gledati kao na nelinearnu hiperplohu u konfigu-

racijskom prostoru sustava koja je odred̄ena s jednadžbama ograničenja sustava. Za sustav

tijela u prostoru linearni konfiguracijski prostor je Euklidski E6N prostor, a konfiguracijska

mnogostrukost za sustav s ograničenjima je nelinearna hiperploha označena s Q6N−K . Hiper-

ploha je nelinearna jer su u općem slučaju i jednadžbe ograničenja nelinearne. Temeljem

opisa konfiguracijskog prostora i mnogostrukosti definirane su i poopćene koordinate kao

koordinate na mnogostrukosti.

U nastavku poglavlja je pokazano kako jednadžbe dinamike konstrukcijskih sustava (sus-

tava sačinjenog od vǐse med̄usobno povezanih tijela u prostoru) tvore sustav algebarsko-

diferencijalnih jednadžbi. Ovisno o tome jesu li jednadžbe ograničenja izražene na razini

pozicija ili ubrzanja, sustav algebrasko-diferencijalnih jednadžbi može biti indeksa 1 ili in-

deksa 3. Sustav algebarsko-diferencijalnih jednadžbi indeksa 3, koji opisuje dinamiku kon-

strukcijskog sustava, dan je jednadžbom[
M ΦT

x

Φx 0

][
ẍ

λ

]
=

[
Q

ξ

]
,

xiv
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i pogodan je za rješavanje dinamike sustava integracijskim metodama na Lievim grupama

opisanima u nastavku. Metode je moguće primijeniti ukoliko je sustav pravilno konfiguriran

u prostoru stanja, modeliranom kao Lieva grupa.

Pored osnova o konstrukcijskim sustavima, u prvom poglavlju su dane i matematičke

osnove potrebne za razumijevanje mnogostrukosti, vektorskih polja i vektorskih prostora na

mnogostrukostima. Takod̄er su opisane i funkcije i krivulje te komutator kao operacija imed̄u

vektoriskih polja. Na kraju poglavlja, gore navedeni matematički entiteti su primijeneni na

dinamiku konstrukcijskih sustava.

Mnogostrukost se može razumijeti kao n-dimenzionalna nelinearna hiperploha koja je

lokalno definirana kinematičkim ograničenjima u Euklidskom vektorskom prostoru Ep, čija je

dimenzija p ≥ n. Takod̄er, može se reći da je mnogostrukost matematički entitet koji lokalno

sliči Euklidskom vektorskom prostoru, što znači da je lokalna topologija mnogostrukosti

jednaka topologiji vektorskog prostora. Mnogostrukost se lokalno prikazuje u mapi kojom se

ujedno na mnogostrukost lokalno uvodi koordinatni sustav. Kolekcija svih lokalnih mapa na

mnogostrukosti se naziva atlasom.

U drugom poglavlju detaljno se opisuju prostorne rotacije tijela i specijalna ortogonalna

grupa SO (3) zajedno sa svojim svojstvima. Rotacija je opisana kao proces promjene ori-

jentacije tijela, dok je orijentacija stanje tijela. Rotacije se matematički opisuju matricama

rotacije R čija su svojstva navedena u radu. Prije nego je pokazano da matrice rotacije tijela

u prostoru čine grupu specijalnih ortogonalnih matrica, definirane su grupe kao matematički

entitet sa svojim aksiomima i svojstvima. Specijalna ortogonalna grupa je definirana s

SO (3) =
{
R ∈ R3×3 : RRT = I, det (R) = +1

}
.

Tom definicijom, specijalna ortogonalna grupa je definirana kao podgrupa opće linearne grupe

3×3 matrica s ograničenjem ortogonalnosti i determinantom jednakom jedinici. Pokazuje se

kako je upravo tim ograničenjem u općoj linearnoj grupi matrica definirana mnogostrukost.

Kako je SO (3) mnogostrukost sa matematičkom strukturom grupe, može se definirati kao

Lieva grupa, što omogućava primjenu integracijskih metoda na Lievim grupama u slučaju

prostorne rotacije tijela. U poglavlju je objašnjena i Lieva algebra, te je opisana i difer-

encijalna jednadžba na SO (3) grupi čije je rješenje definirano eksponencijalnom mapom.

Time je u radu dan potpuni matematički okvir za opis integracijske metode za dinamiku

konstrukcijskih sustava na Lievoj grupi. Takod̄er, s obzirom da je SO (3) mnogostrukost

koja može biti lokalno prikazana u prikladnom koordinatnom sustavu vektorskog prostora

(npr. parametrizacija Eulerovim kutevima), dan je kratak osvrt na parametrizacije rotacija.
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Upravo su različite lokalne parametrizacije mape na SO (3).

U trećem poglavlju je detaljno opisan postupak parametrizacije i integracije na SO (3)

grupi. Prilikom integracije u svakoj točki SO (3) grupe se uvodi lokalna parametrizacija

uz pomoć inverzne diferencijalne eksponencijalne mape kojom se diferencijalne jednadžbe

sa grupe prenose na Lievu algebru koja je linearan prostor. Na algebri se tada provodi

integracija pomoću linearnih integracijskih metoda (Eulerova i Runge-Kutta metoda), a

rješenje se vraća na grupu pomoću eksponencijalne mape. Na taj način dobiva se nova točka

na SO (3) grupi koja predstavlja orijentaciju tijela u trenutnom integracijskom koraku.

Kako su jednadžbe kinematičkih ograničenja formulirane na razini ubrzanja, prilikom

integracije dolazi do povreda ograničenja na razini brzina i položaja. Prilikom takve povrede

ograničenja rješenje sustava vǐse se ne nalazi na konfiguracijskoj mnogostrukosti već odstupa

(eng. drift) s nje. Povreda ograničenja u kinematičkim vezama može uzrokovati veće greške u

rješenju dinamike sustava, a da bi se to izbjeglo potrebno je rješenje dobiveno integratorom

stabilizirati i povratiti ga na konfiguracijsku mnogostrukost. U radu je opisan postupak

stabilizacije prilikom kojeg se, u svakom integracijskom koraku, rješava problem najmanjih

kvadrata tako da rješenje sustava zadovoljava ograničenja na razini brzina i položaja.

Na kraju trećeg poglavlja dani su i izrazi kojima se računaju različite mape preslikavanja

s Lieve algebre na Lievu grupu. Osim eksponencijalne mape, koja se u slučaju SO (3) grupe

računa pomoću Rodriguesove jednadžbe, u radu se koristi i Cayleyeva mapa kao još jedna

mapa koja povezuje elemente Lieve algebre s elementima Lieve grupe.

U četvrtom poglavlju opisane integracijske metode su korǐstene za dobivanje rješenja

konstrukcijskog sustava. Sustav se sastoji od satelita i manipulatora na njemu koji služi

za održavanje satelita i prihvat eksternih objekata. Satelit s manipulatorom se sastoji od

četiri tijela: glavnog tijela satelita, temeljnog člana manipultora, nosača klizača i klizača na

koji je montiran alat. Kinematičke veze u sustavu se nalaze izmed̄u tijela tako da je tijelo

satelita povezano s temeljnim članom manipulatora putem sfernog zgloba, temeljni član s

nosačem klizača putem rotacijskog zgloba, a nosač klizača i klizač su povezani prizmatičnom

vezom. Još jedna kinematička veza u sustavu definirana je izmed̄u tijela satelita i nepomične

okoline. Tom se vezom propisuje da jedna točka satelita ostaje nepomična u inercijskom

koordinatnom sustavu (koordinatni sustav nepomične okoline).

U radu su, nakon što su tijela opisana i njihova inercijska i geometrijska svojstva odred̄ena,

izvedene jednadžbe kinematičkih ograničenja za svaku vezu u sustavu. Prikazane su jed-

nadžbe na razini položaja, brzine i ubrzanja, a svaka je matematička formulacija potkrije-

pljena objašnjenjem i geometrijskom interpretacijom. Takod̄er, pojedinim vezama i tijelima

xvi



Master thesis Extended abstract (Croatian)

sustava nametnute su reonomne veze, tj. kinematičke veze u čijoj formulaciji je prisutno

vrijeme kao parametar. Takve veze smanjuju broj stupnjeva slobode gibanja time što tijelu

nameću gibanje koje se mora ostvariti. U sklopu analiziranog sustava prisutne su i takve

kinematičke veze. Gibanja su nametnuta na glavno tijelo satelita, na sferni zglob kojim je

ograničeno gibanje temeljnog člana manipulatora te, ovisno o slučaju gibanja, na prizmatičnu

vezu.

U radu su analizirana tri različita slučaja gibanja satelita s manipulatorom. Za svako

gibanje definirana je različita kombinacija nametnutih gibanja i sila koje djeluju na sustav.

Analizirani slučajevi gibanja sustava jesu:

Slučaj 1 Na tijelo satelita nametnuta je rotacija s jednim stupnjem slobode (rotacija oko

jedne osi) s konstantnom kutnom brzinom ΩG,1
1 . Rotacija ΩG,1

2 s jednim stupnjem

slobode je nametnuta i na temeljni član manipulatora. Time je ostvarena relativna

rotacija u sfernom zglobu (koji po definiciji ne prenosi rotacije izmed̄u tijela). Ek-

sterne sile djeluju na klizač i na nosač klizača tako da se moment L3 (t) u nosaču

klizača (uslijed aktuatora u rotacijskom zglobu) suprotstavlja momentu koji nastaje

uslijed sile F1
4 na klizaču. Sustav posjeduje jedan dinamički stupanj slobode: rotaciju

u rotacijskom zglobu koja je dinamički kontrolirana varijabilnim momentom L3 (t) tako

da rezultantno gibanje u zglobu posjeduje konstantnu kutnu akceleraciju. Klizač se po

nosaču giba prema propisanom gibanju.

Slučaj 2 Slučaj je sličan slučaju 1 uz razliku da je sila na klizaču F2
4. U ovom se slučaju

analizira zatajenje pogona klizača (koji nije opterećen punim opterećenjem, već postoji

mala sila koja djeluje u pravcu translacijske osi klizača), tako da na njemu nema

propisanog gibanja s obzirom na nosač klizača. Moment aktuatora rotacijskog zgloba

je konstantan. Ovako definiran sustav posjeduje dva dinamička stupnja slobode gibanja

Slučaj 3 U odnosu na prethodna dva slučaja, slučaj 3 posjeduje velike rotacijske domene i

služi kao pokazni primjer da se formulacijom numeričke integracijske metode na Lievoj

grupi može integrirati dinamika gibanja sustava bez pojave kinamtičkih singulariteta,

koji bi se nužno pojavili u slučaju bilo koje lokalne (vektorske) parametrizacije trodi-

menzijskih velikih rotacija. Sustav je definiran na isti način kao i slučaj 1, ali su kutne

brzine propisanih gibanja definirane s ΩG,2
1 i ΩG,2

2 . Isto kao i slučaj 1, broj dinamičkih

stupnjeva slobode je jedan.

Integracijski algoritmi opisani u radu su implementirani u MATLAB -u zajedno s definici-

jom sustava. Dobivena rješenja su obrad̄ena i uspored̄ena (za slučajeve 1 i 2) s rješenjima
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dobivenim analizom sustava u ADAMS -u. Pokazuje se da rješenja dobivena formuliranim in-

tegracijskim metodama na Lievoj grupi ne odstupaju od referentnih rješenja, a manje razlike,

koje proistječu iz upotrebe različitih integracijskih koraka, su objašnjene u radu. Rješenje

dobivenom ADAMS -om uzeto je kao referentno točno rješenje kojem, smanjivanjem inte-

gracijskog koraka, konvergira rješenje na Lievoj grupi prostora stanja sustava

Peto poglavlje rada je zaključak gdje su sumirani svi parcijalni zaključci rada. U za-

ključku je pokazano kako su za slučaj 3 gibanja izbjegnuti vǐsestruki slučajevi kinematičkih

singulariteta koji bi zahtjevali dodatnu re-parametarizaciju dinamičkog modela u slučaju

da su za opis matematičkog modela korǐstene standardne metode modeliranja i integracije

diferencijalnih jednadžbi na vektorskim prostorima, a ne dinamički model definiran na Lievoj

grupi prostora stanja sustava.
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Chapter 1

Introduction

In this chapter an introduction to the dynamics of mechanical system is presented. The

main problem of dynamics is stated, main theorems given and the procedure of modelling of

such systems is briefly discussed. After the introduction in dynamics of mechanical systems

and their modelling, a mathematical background required for the sequel of this thesis is

presented and explained. More complex topics are also explained in some more details.

1.1 Dynamics of mechanical systems

Dynamics is a branch of classical mechanics that studies the motion of objects. The goal

is to explain the motion of macroscopic objects acted upon by external forces. The starting

point of this study is to specify the location of an arbitrary point, i.e. to find a suitable

way of defining this. This leads to the introduction of metrics in space: the reference frame

which enables us to describe the motion mathematically.

In order to be able to introduce some kind of mathematical description in space, firstly,

the space itself is to be defined and described. In classical mechanics the assumption of

space is that it is a three-dimensional construct (3D) and Euclidean [4], meaning that it

is a flat non-curved space. The Euclidean space is denoted by Rn or En, where n denotes

the dimension of the space. In the case of three-space, the space is denoted with E3. Here

the three-space is defined in short, but in later chapters spaces and metrics are defined and

explained in more detail.

In the E3 space the position of a particle can be defined using three independent param-

eters: as the space dimension is three, three parameters define the position of the particle

completely. Now, the concept of distance can be defined in different ways, also, the definition
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of distance induces metric on the space. For example, if the Cartesian coordinate system,

where three independent orthogonal unit vectors are defined, is used, the position of the

particle is defined using three parameters giving the values of the distances along one unit

vectors directions:

~x = x =
3∑
i=1

xi~ei,

where ~ei, i = {1, 2, 3} are the unit vectors defined earlier. If the particle is moving in time,

then its position vector is a function of time t

~x = ~x (t) =
3∑
i=1

xi (t)~ei.

This vector function, according to the notation above, can be written as three scalar functions

of its components:

xi = xi (t) , i = {1, 2, 3},

and this functions give the trajectory of the particle as functions of one parameter: time t.

Obtaining the trajectory of particles and bodies is one of the main concerns of dynamics.

Returning to the induction of metrics in space, it is seen that the Cartesian coordinate

system is introduced so that the definition of distance is:

xy = d(x, y) =

√√√√ 3∑
i=1

(xi − yi)2,

resulting in orthogonal unit vectors defining directions in E3 space.

Except position, which was the main topic till now, in the description of motion two

additional properties play a crucial role: velocity and acceleration. Velocity is the first

derivative of the position vector of a particle and it’s also a vector quantity:

v (t) =
dx (t)

dt
.

Acceleration is the second derivative of the position vector or the first derivative of the

velocity vector:

a (t) =
d2x (t)

dt2
=

dv (t)

dt
,

and it’s a vector quantity.

Other properties of motion include momentum, angular momentum, kinetic and potential

energy. There are more quantities that describe the motion, but the mentioned are among

the most important ones.
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In the following section degrees of freedom and the concept of generalized coordinates is

explained.

1.1.1 System degrees of freedom and generalized coordinates

As it was described in the previous section, the motion of a particle or body is math-

ematically described using a certain number of parameters. The number of independent

parameters that are required to completely define the position (configuration) of a dynam-

ical system is called the number of degrees of freedom (DOF). For a dynamical system this

independent parameters are time functions. The number of degrees of freedom is a property

of the dynamical system.

For a free particle in three-space the number of parameters required for completely de-

scribing its position is three, n = 3, meaning that a particle in three-space has three DOFs.

The number of DOFs is denoted with n. That implies that for a system with N free (un-

constrained) particles the number of DOFs is equal to

n = 3N.

A free body in three space has n = 6 DOFs: three parameters defining the position of the

body and three parameters that define the orientation of the body. Consequently, for N free

bodies (unconstrained) in three-space the number of DOFs is equal to

n = 6N.

Going one step further, it can be stated that the number of DOFs defines the dimension

of the space in which the motion ”takes place”. This means that the n-dimensional space

contains all the information that is required for describing the motion and configuration of

a dynamical system. All the calculations required for determining the motion are performed

in that space. This n-dimensional space is called the configuration space of the system. Of

course, if one is interested to describe the motion in more details more parameters can be

used, but those new parameters are no longer independent.

The n-dimensional configuration space has for the coordinate basis the DOFs of the

dynamical system, i.e. positions. From classical mechanics it is known that the velocity of a

particle or point of a body is tangent to its trajectory. According to this, it can be concluded

that velocities are vectors tangent to the configuration space at any point of that space. For

specified initial conditions of the system only one trajectory, which is the solution of the
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motion of the system, exists in the configuration space. At any point of that trajectory the

tangent vector is the velocity at that point.

The position and velocity completely define the kinematics of the system, meaning that

for the complete description of the system 2n parameters are required. Although accel-

eration is also present as a property of motion, it is usually known from the solution of

algebraic equations, which originate from the 2nd Newton Law where forces and accelera-

tions are brought in direct correspondence. It is concluded that velocities and positions are

the integration solution of the forward dynamics problem.

In dynamics, differential equations that need to be solved are of second order and they

can be reformulated as a system of first order differential equations. The reformulated

system of equations is the state-space formulation, which is solved for positions and velocities.

Often the complete solution is not required, but just the relationship between velocities and

positions is needed (for example energies in the system depend on positions and velocities).

The plot of the relationship between the position and velocity (the v (x) function) is called

the phase portrait of the dynamical system and the v − x plane is called the velocity phase

plane.

The velocity phase space is formed out of displacements and velocities (related for each

independent coordinate graphically), so that for a system of n DOFs its phase space is of

dimension 2n. Two-dimensional velocity phase portraits can be plotted for DOFs that can

be separated out without involving other coordinates or for very simple single DOF systems.

Generalized coordinates

Each DOF of a dynamical system is mathematically described using one coordinate (num-

ber). Generalized coordinates are the minimal set of independent coordinates, whose number

is equal to the number of DOFs and that completely describe the configuration of the sys-

tem. The choice of coordinates used depends on geometrical properties of the system, shape,

system topology, region of motion and other properties.

Earlier, the term configuration space was introduced and now its definition is extended.

It was mentioned that the choice of generalized coordinates depends also on the region

of motion of the system: the coordinates chosen must be able to describe all or most of

the configurations that the system can achieve during its motion. The dimension of the

configuration space is equal to the number of all the coordinates of the unconstrained system,

i.e. to the sum of all bodies DOFs.

When constraints are imposed, the configuration space, whose dimension is equal to
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the number of the system DOFs, is called configuration manifold (or embedded manifold,

manifolds are explained later in the section 1.2) denoted with Q. The generalized coordinates

qi, i = {1, . . . , n}, lie on Q and

dimQ = n.

On figure 1.1 a manifold is graphically presented as a surface. Curves on that surface

represent lines of constant qi, i.e. this curves form the coordinate grid on the manifold.

Also on the figure vectors tangent to the coordinate lines are depicted. Tangent vectors are

defined and explained in section 1.2.4.

Figure 1.1: Manifold Q with its coordinate grid and tangent vectors [4].

The configuration manifold for a system with N unconstrained particles is the space

of dimension 3N and it is the Euclidean space E3N , whose components are the xi, i =

{1, . . . , N} coordinates of the particles. In the case of unconstrained bodies or particles, the

configuration space and the configuration manifold are coincident.

1.1.2 Constraints

In mechanical systems constraints are common as bodies are interconnected and motions

restricted in different ways (kinematic constraints), also different conserved quantities of a

mechanical system form constraints in the mathematical sense. The introduction of kine-

matic constraints reduces the dimension of the configuration manifold as the constraints

reduce the number of DOFs of the system.

Constraints induce a sub-manifold (embedded manifold) on the unconstrained configura-

tion space. They constraint the system by defining a configuration hypersurface in E3N (for

a system of particles) and this hypersurface is the configuration manifold Q. Also, it is seen

that the system constraints curve the original configuration space which is a linear vector
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space. On this new embedded manifold the motion takes place and this is the configuration

manifold defined in the previous chapter.

A system of particles with K constraints possesses

n = 3N −K,

while a system of N rigid bodies with K constraints has

n = 6N −K

degrees of freedom. On the n-dimensional manifold Q the following coordinates are intro-

duced:

qi = qi (x1, ...,xN , t) , i = {1, . . . , 3N},

xk = xk (q1, ..., q3N , t) , k = {1, . . . , N},

which also define an invertible coordinate transformation valid for a region of Q. The invert-

ibility of the coordinate transformation is mathematically expressed via the Jacobian matrix,

which has to be non-singular, i.e. its determinant J has to be

J = det

(
∂qi
∂xi

)
6= 0,

where J is called the Jacobian.

The choice of generalized coordinates is related to the constraints of the system so that

only the first n coordinates qi are independent functions describing the system motion, while

the last K of them reduce to trivial statements due to imposed constraints:

qn+r 6= qn+r (t) ,

qn+r = R (0, . . . , 0) , r = {1, . . . , K}. (1.1)

This said, it can now be stated that the qn+r, r = {1, . . . , K}, generalized coordinates define

the configuration hypersurface (i.e. they constrain the system to Q on which the motion

takes place and which is the so-called embedded manifold presented in section 3.1) while

qi, i = {1, . . . , n}, represent the coordinates which define the actual position (configuration)

of the system on the hypersurface (i.e. they lie on Q). When generalized coordinates are

referred to it is actually referred only to the qi coordinates. In this way, the minimal form

is defined: the number of coordinates is equal to the number of dynamic degrees of freedom

and the governing (dynamics) equations are the equations of motion.
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For a system of particles the complete point on E3N is defined with both qi and qn+r,

while the system position on Q is defined by coordinates qi only. Instead of finding the

complete solution xk = xk (t) the problem is now reduced to finding the solution qi = qi (t),

which characterises the minimal form formulation.

The constraints are mathematically introduced as a set of algebraic or differential equa-

tions, depending on the type of constraint. Constraints can be holonomic, given in the

implicit form by

fr (x1, ...,xN , t) = 0, r = {1, . . . , K < 3N}, (1.2)

which are integrable constraints. Nonholonomic constraints are non-integrable equations in

the implicit form

fr (x1, ...,xN , ẋ1, . . . , ẋN , t) = 0, r = {1, ..., K < 3N}.

Furthermore, constraints can be divided by their time-dependence: constraints that are time

dependent are called rheonomic while time-independent constraints are scleronomic.

When solving the system governing (dynamics) equations there is the need to simultane-

ously solve the constraint equations which have to be satisfied. This equations can be solved

with the system dynamics equation by inclusion of the constraint forces. As the constraint

forces are unknown, Lagrange multipliers are introduced together with the fact that, for ideal

constraints (no friction), the constraint forces are perpendicular to the constraint surface.

Using the statements above the i-th constraint force can be written as

QC
i = λi∇fi (x, t) , (1.3)

where ∇fi (x, t) (nabla operator, gradient) gives the vector perpendicular to the fi (x, t) con-

straint surface. A Lagrange multiplier is denoted with λi and it describes the i-th constraint

force magnitude. When the system governing equations are solved, the equations for the

Lagrange multipliers are also solved.

In the case of ideal constraints, the constraint forces do no work, except in the case when

the constraint surface moves in time. In the next section the system governing equations are

discussed in more details and the system of equations, that needs to be solved in order to

solve the forward dynamics problem, is established.

1.1.3 Modelling of dynamical systems

The first step in the modelling of dynamical mechanical systems is to set-up the mechan-

ical model of the system, where bodies, particles and their relationships are established in
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an as simple as possible way that still includes all the informations that are relevant and

affect the results. During the mechanical modelling, bodies are simplified and standard con-

straints between them are set-up: the real-world system is discretized and all the important

components are identified; simplifications and assumptions are made.

From the mechanical model the mathematical model is formulated, i.e. the mechanical

model is the input for the establishment of the mathematical model. In classical mechanics

Newton laws enable the formulation of a mathematical model that describes the mechanical

model and its behaviour. By solving the basic set of equations the system motion and

constraint forces are obtained. From [4] the two principle in mechanics are:

1. The inertial reference frame introduces time t as a linear parameter: time is linear with

respect to length along the trajectory and is identical for all particles and bodies in

the reference frame. This is equivalent to the 1st Newton Law.

2. The conservation of momentum and the existence of mass enables the definition of the

3rd Newton Law. The existence of mass enables the definition of force in the sense of

the 2nd Newton Law.

Here, the general form of the equations of motion is not derived and they are given as

granted. The motion of a mechanical system is described using the Newton-Euler equations,

presented here for one rigid body, in matrix form:

ma = F, (1.4)

Jω̇ + ω̃Jω = L. (1.5)

In the preceding equations the symbols involved are:

a Vector of acceleration at the body centre of gravity (CoG);

F Resulting force vector at the CoG;

ω Angular velocity of the body (expressed in the body-fixed reference frame);

ω̇ Time derivative of the angular velocity;

ω̃ Skew-symmetric matrix constructed from the vector of angular velocity;

L Resulting moment on the body (expressed in the body-fixed reference frame);

m Mass of the body;
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J Inertia matrix of the body.

Equations (1.4) and (1.5) include all coordinates that give the position and orientation of

the body, i.e. the time evolution of the position and orientation is obtained by solving this

equations. This is an ODE system, which is rather straightforward to solve, but in the case

of multibody system dynamics (MBS) constraints of the form (1.1) have to be included and

then a different, extended, system of governing equations is obtained.

In the thesis the governing equations are formulated in the descriptor form, meaning

that the number of coordinates (differential equations) is larger than the number of DOFs

[9]. Usually, the number of coordinates in the equations is equal to the number of all the

coordinates of all bodies in the system (6N for a spatial system with N bodies).

The inertia matrix M is defined as

Mi =

[
miI 0

0 Ji

]
,

with the unitary matrix denoted with I. Introducing the vector vi =
[
ẋi ωi

]T
equations

(1.4) and (1.5) are written as a single matrix equation

Miv̇i + Qi (xi,vi, t) + QC
i (xi) = 0, (1.6)

where Qi (xi,vi, t) represents the external and non-linear velocity forces and QC
i (xi) are the

constraint forces of the i-th body. It is important to note that the vector xi is here composed

of translation and rotation coordinates. For obtaining the complete mathematical model it is

necessary to include information about constraint forces (equation (1.3)), system constraint

equations (1.1) and sum the equations for all bodies in the system.

Defining the gradient matrix of the constraint functions as

Φx (x) = ∇Φ (x, t) =
∂Φ

∂x
,

and, after introducing the Lagrange multipliers λ =
[
λ1 . . . λK

]T
, the set of governing

equations of the MBS is obtained in the form [9]

Mv̇ + Q (x,v, t) + ΦT
x (x)λ = 0,

Φ (x) = 0.
(1.7)

The matrix Φ (x) is the collection of all constraint functions: Φ (x) =
[
f1 (x) . . . fK (x)

]T
.
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Solving the set of equations (1.7) the system motion and constraint forces are obtained,

but it is seen that this is not a set of ODEs. This set of equations constitutes a set of

differential algebraic equations (DAEs) of dimension 6N+K. There are 6 unknown functions

per body and further K unknown Lagrange multipliers.

The obtained governing equations form the DAE system of index 3 because the constraint

equations are at the displacement level. If the constraint equations (1.2) are formulated at the

acceleration level, then the system of DAE of index 1 is obtained. The constraint equations

at the acceleration level are, for holonomic systems, simply obtained by differentiating the

set of constraint equations twice with respect to time:

Φ̈ (x) = 0.

The DAEs of index 1 are suitable for solving with the method presented in the thesis. The

constraint equations at the acceleration level can be rewritten in the form

Φxẍ = ξ,

which with the first equation of (1.7) form the DAE index 1 formulation of the governing

equations [
M ΦT

x

Φx 0

][
ẍ

λ

]
=

[
Q

ξ

]
. (1.8)

More details about the formulation of MBS governing equations can be found in the appendix

of [10].

In the sequel of the thesis some more mathematical background is presented, especially in

the part regarding manifolds and the group of rotations. After that, the integration procedure

used for solving the set of equations (1.8) is described and the method demonstrated on a

case study problem.

1.2 Manifolds

In this section manifolds are introduced and explained. Firstly manifolds are explained

and then vector fields, vector spaces, curves and vector fields commutation are shortly de-

scribed. The mathematics and terminology described here enables a better understanding

of the following sections.

10
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1.2.1 Manifold definition and properties

An n-dimensional manifold M is a construct that can be modelled in the real Euclidean

vector space Rp whose dimension is p ≥ n. It can be interpreted that M is a manifold if

every point m ∈ M has an open neighbourhood which has a continuous one-to-one (1-1)

map ”onto” an open set of Rp.

From the statements above it is concluded that a manifold is a construct that locally

resembles (is locally ”like”) the Euclidean flat space Rn, meaning that the local topology of

M is the same as that of Rn. It turns out that a manifold can be represented as a collection

of this local charts defined in the Rn space at every point m ∈M.

The global topology of a manifold can be complex and different charts have to be used

for different parts of the manifold.

More about maps

A map f is a rule that associates the element x ∈M with an element y ∈ N, f : M→ N.

The spaces M and N don’t have to be distinct as the mapping can map within the same

space (e.g. a function that associates one point from R with another point in R).

n
R

f(U)

M

U

P

1 n(x ,..., x )

Figure 1.2: Mapping of an open neighbourhood of M ”onto” Rn [8].

A one-to-one (1-1) map is a map that maps a point from one group (space) to one point

in another group and there exists a unique inverse image of that mapping. If f (x) is a 1-1

map that maps a point x ∈ M to a unique point y ∈ N, then there exists the inverse f−1

which is again a 1-1 map.

11
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If the map f is defined for all elements in M and the mapping has an inverse image (not

necessarily unique) then f maps M ”onto” N.

In the context of manifolds a map f is a rule that associates to a pointm ∈M, dimM = n,

an n-tuple of real numbers (x1 (m) , . . . , xn (m)) from Rn:

f : M→ Rn,

and the numbers x1 (m) , . . . , xn (m) are called the coordinates of m under the map f . This

is graphically shown on figure 1.2.

Charts

A chart is a pair consisting of the neighbourhood of a point m ∈M and its map f . An-

other more formal definition states that a local chart is a map of a connected neighbourhood

U ⊂ M (U subset of M) which maps one point u ∈ U to just one point of Rn. In practice,

the terms chart and coordinate system are equivalent: chart is just the mathematical jargon

for saying coordinate system.

From the definition of a chart it is concluded that it covers only a portion of the manifold.

In order to cover the whole manifold (all of its points) more charts have to be defined, or

to reformulate, generally there is no single Cartesian-like coordinate system that covers

the whole manifold and thus more overlapping n-dimensional Cartesian coordinate systems

(called local charts) have to be used. The collection of all local charts of a manifold is called

the atlas.

M

U

V g(V)

f(U)f

g

n
R

Figure 1.3: Overlapping of two regions U and V in M and their mapping ”onto” Rn [8].

To be able to cover every single point of the manifold an open neighbourhood on the

manifold must have overlaps with other open neighbourhoods in at least one chart. Figure

12
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1.3 shows the overlapping of two neighbourhoods and their mapping ”onto” Rn. It is seen

that the overlapping region is mapped twice.

Coordinate transformations can now be defined for overlapping regions of the manifold.

From figure 1.4 two maps are defined:

f : U ∈M→ Rn,

g : V ∈M→ Rn,

where the coordinates of a point S from the overlap under f are (x1, . . . , xn) while the same

point has coordinates (y1, . . . , yn) under the map g (figure 1.4).

g(V)

f(U)
-1f 

S

V

U

g

1 n(x ,..., x )

1 n(y ,..., y )

Figure 1.4: Mapping of the overlapping region and the coordinate transformation [8].

Using the two mappings defined above a composite map Rn → Rn can be constructed:

by taking the inverse of the map f , a point in the overlap under that map is transferred

back to the overlapping region on the manifold. This way the inverse map f−1 : Rn → M
associates to the coordinates (x1, . . . , xn) a point S ∈M. The map g takes the point S to a

point in Rn with coordinates (y1, . . . , yn). The above mentioned map is obtained:

g ◦ f−1 : Rn → Rn,

(g◦f−1 is the composition of functions, it can be understood as g (f−1)). The obtained func-

tional relationship between the coordinates of the two mappings (charts) is called coordinate

transformation:

y1 = y1 (x1, . . . , xn) ,

...

yn = y1 (x1, . . . , xn) .

13
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If the transformation functions are Ck differentiable functions, then the manifold is called a

Ck differentiable manifold. Consequently, if the transformation functions are differentiable

so are their inverses. In mathematics the notation Ck means that a function is k-times

differentiable. For a differentiable manifold it should be possible to construct a whole system

of charts (an atlas) so that every m ∈ M is in at least one neighbourhood and every chart

has to be Ck related to every other it overlaps with.

From [4] the definition of a manifold in terms of neighbourhoods and coordinate systems

(i.e. local charts) is given:

”A manifold is then a collection of points that is the union of a set of denu-

merable sets UP in Rn, each with its own local coordinate system ΦP :

M = ∪PUP .”

1.2.2 Functions

A function on a manifold M is a rule that assigns a real number (called the value of the

function) to each point of M.

If m is a point on M which under a map g has coordinates (x1, . . . , xn) the function

f (m) can be written as f (x1, . . . , xn). The function is differentiable if it is differentiable in

its arguments x1, . . . , xn.

Functions are related to curves which are explained and detailed in the next section.

1.2.3 Curves

A curve is a differentiable mapping from an open set of R1 ”into” M. This is graphically

presented on figure 1.5, and it is deduced that this is exactly the definition of a parametrically

defined curve.

For a parametrically defined curve there is only one parameter λ, whose space is R1, and

to every λ ∈ R1 the curve associates one point on the manifold M, called the image point of

λ. Mathematically, the curve on a manifold is given with a set of functions

x1 = x1 (λ) ,

...

xn = x1 (λ) ,

14
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( )

a b

a

b

P M

1
R

λ

Figure 1.5: Curve as a map from R1 ”into” M [8].

and if these functions are differentiable with respect to λ, then the mapping (i.e. the curve)

is differentiable.

It is seen that for defining a curve on M there must exist a coordinate system defined in

the neighbourhood of the curve, because the curve is defined as a set of coordinate functions

of the parameter λ. Thus, the mathematical definition of a curve on a manifold is connected

with the chart defined on the manifold.

1.2.4 Vector fields and vector spaces

Here the focus is laid upon vectors tangent to the manifold: vector fields and vector spaces

are defined according to that. A vector tangent to the curve xi = xi (λ), i = {1, . . . , n}, on a

manifold is defined in the following way. If f is a function, which has a value at each point

of a parametric curve xi (λ), there exists a function g such that it gives values of f at the

points defined by the parameter λ:

g (λ) = f (x1 (λ) , . . . , xn (λ)) .

Differentiating g yields:
dg

dλ
=

n∑
i=1

dxi

dλ

∂f

∂xi
,

and that is true for any function g so that the operator d
dλ

is defined as

d

dλ
=

n∑
i=1

dxi

dλ

∂

∂xi
. (1.9)
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In equation (1.9) the terms dxi
dλ

are components of a vector tangent to the curve xi (λ). Those

terms are a set of coordinates whose coordinate basis (vector basis) is defined with ∂
∂xi

which

represents the derivations along the coordinate lines.

According to this, the directional derivatives along curves at a point m ∈ M form a

vector space whose basis are the directional derivatives ∂
∂xi

. In this way the relationship

between tangent vectors and derivatives along curves on manifolds is established. The space

of all tangent vectors at m and the space of derivatives along all curves at m are in 1-

1 correspondence. This implies that at m ∈ M there is only one tangent vector space

containing tangent vectors of all curves through m.

The tangent vector space at the point m of the manifold is denoted with Tm. In gen-

eral, the manifold is not a linear space, it’s rather a curved hypersurface as it was already

mentioned above. A property of a vector space is that vectors belonging to the same vector

space can be added one to another: vectors belonging to Tm can be added one to another.

Let’s denote the tangent vector space at a point p ∈ M with Tp. As m and p are different

points on the same manifold, vectors from Tm and those from Tp cannot be added one to

another because they belong to different tangent vector spaces. By thinking of a manifold

as a curved surface, that fact is easily visualized: tangent vector spaces at different points

are planes that are not generally parallel one to another and, consequently, vectors from

different spaces are in no linear relation. This is a very important fact that should be kept in

mind when thinking of vectors in tangent spaces. This is graphically shown later in section

1.3.1 where the tangent bundle is defined.

Returning to the tangent vector definition, it has to be mentioned that a tangent vector

doesn’t have a unique curve to which it is tangent. One vector in Tm is tangent to an infinite

number of curves:

• There are many curves through m tangent one to another and have the same tangent

vector;

• The same path on the manifold may be reparametrized in such a way that the tangent

at m is retained the same.

A vector field is a rule for defining a vector at each point of M. Moreover, it is a rule

that assigns a tangent vector to each point m ∈M which lies on the tangent space Tm. The

vector field selects one vector from each tangent vector space.

Above it was stated that every curve on M has a tangent vector at every point it passes

through. If a point m ∈ M is known (given by the initial conditions) along with a vector
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field ∆ it is possible to find a curve starting at m and such that its tangent vector at any

point of the curve always belongs to the vector field. The vector field has to be at least

C1 differentiable and the obtained curve is called the integral curve. In the section 1.3 it

is presented that the governing equations of a mechanical system define a vector field and

it follows that integral curves are the solution of the system dynamics. Also, some other

properties and the way of looking on vector fields are presented.

1.2.5 Vector fields commutation

The commutator is an operator defined for two operators X and Y as

[X, Y ] = XY − Y X. (1.10)

If X and Y are operators on a function f , then the commutator can be written as

[X, Y ] (f) = X (Y (f))− Y (X (f)) .

The commutator [ , ], when operated on vector fields, is called the Lie bracket. If ~V and ~W

are two vector fields

~V =
d

dλ
,

~W =
d

dµ
,

then the commutator of these vector fields is[
~V , ~W

]
= ~V ~W − ~W ~V .

The vector fields are said to commute if the Lie bracket equals to zero, i.e.
[
~V , ~W

]
= 0.

If the commutator is
[
~V , ~W

]
6= 0 the two vector fields don’t commute. In general the Lie

bracket of two vector fields is again a vector field and from the discussion above it is seen

that generally two vector fields don’t need to commute. Mathematically, the fact that two

arbitrary vector fields defined above don’t commute can be stated the following way:

d

dλ

d

dµ
6= d

dµ

d

dλ
.

This is graphically shown on figure 1.6: for an arbitrary displacement ε along the curves

of the vector basis it is not the same in which order the displacements are performed. If,

firstly, δλ = ε (displacement along d
dλ

) and then δµ = ε (displacement along d
dµ

) is performed
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P

A

B

R

d/dμ d/dλε

ε
ε

ε

Figure 1.6: Graphical description of vector field commutation [8].

one ends up at A. If the order is changed, firstly, the displacement δµ is performed and then

δλ, the resulting point is B. This shows that the two vector fields don’t commute.

The vector fields generally don’t commute because the derivative d
dλ

is not a derivative

with fixed µ and d
dµ

is not a derivative with fixed λ. This means that an integral curve of the

vector field ~V is not necessarily a curve of constant µ, the same is valid for integral curves

of ~W and λ. This can be understood from the fact that λ and µ are parameters rather than

coordinates.

Coordinate basis ∂
∂x1

and ∂
∂x2

commute because the basis are formed in such a way that

an integral curve x1 is a curve of constant x2 and vice versa. As x1 is constant along x2 (the

inverse is also true) the two basis commute:

∂

∂x1

∂

∂x2
=

∂

∂x2

∂

∂x1
.

It can be shown, and it is deducible from the discussion above, that two vector fields

form a coordinate basis if they commute.

In the following section one step towards the application of the terms and constructs

defined is made. The dynamics of multibody systems is presented in terms of manifolds and

constructs of manifolds.

1.3 Manifolds in multibody system dynamics

In section 1.1.1 and later sections the idea of the configuration manifold was introduced

and generalized coordinates were defined. What is concluded from that discussion is that

the configuration manifold Q is a collection of points where each point represents one con-

figuration (position) of the system. Later it was discussed that the tangents to curves on
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manifolds, where each curve now represents a trajectory of the system with time t as the

parameter, exist in tangent vector spaces (at a point q ∈ Q the tangent space is Tq). More

details about how the configuration manifold (or embedded manifold) is obtained in the

configuration space are given in section 3.1.

1.3.1 The tangent bundle

In dynamics positions and velocities play a very important role and it is seen that they

constitute a manifold and vector space respectively. On the configuration manifold there

exists an infinite number of trajectories of the system: every trajectory (curve on the mani-

fold) represents one possible physical motion of the system and its tangent vectors represent

velocities.

To each point q of the configuration manifold Q the tangent vector space Tq can be

associated. The collection of all the points of the configuration manifold together with the

tangent vector spaces at that points leads to the definition of a larger manifold called the

tangent bundle denoted with TQ. The dimension of this manifold is 2n where n is the

number of the system DOFs (and, therefore, the dimension of the configuration manifold

Q, which is called the base manifold of the tangent bundle). The tangent bundle involves

generalized coordinates qi and generalized velocities q̇i and it is also referred to as the fibre

bundle.

m

T M
m

Figure 1.7: The S2 sphere as a manifold with tangent spaces [4].

The most simple example of a tangent bundle is the velocity phase space of dimension 2:
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the motion of a particle along a curve is a 1-dimensional motion and by adjoining to each

point of the trajectory a vector space (again a 1-dimensional object) a 2-dimensional flat

space is obtained known under the name velocity phase plane. Each point on that tangent

bundle associates exactly one velocity vector to one point of the trajectory.

Figure 1.7 shows the sphere S2 as a manifold with a few tangent spaces. The collection

of all tangent spaces at every point on the sphere with the base sphere manifold constitutes

the sphere tangent bundle TS2. The dimension of the sphere is 2 and the tangent space

is a plane also of dimension 2, so the resulting tangent bundle is of dimension 4 (n = 2,

dimTS2 = 2n = 4). Here, it is seen that the discussion of section 1.2.4 holds and is

graphically shown that two vectors from different tangent spaces cannot be added one to

another.

Now, to formalize the discussion above, the construction of the tangent bundle is formu-

lated:

At each point q ∈ Q there exists a vector space called the tangent space

TqQ containing all possible velocities at q. As velocities q̇ are tangent to the

trajectories at q, so is TqQ tangent to Q at that same point.

The tangent bundle TQ is obtained when all tangent spaces TqQ are adjoined

to the base manifold Q, ∀q ∈ Q:

TQ = ∪TqQ, ∀q ∈ Q.

This way TQ is composed of Q plus all the tangent spaces TqQ of every point

q on the base manifold.

Finally, without going into too many details, the tangent (fibre) bundle TQ is a space for

which it is given:

• The base manifold Q;

• A projection map Π : TQ→ Q;

• A typical fibre F ,

where the typical fibre F is the vector space that gives, i.e. has, the same structure as the

tangent space.
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1.3.2 Properties of tangent bundles

Properties of the tangent bundle are mainly inherited from manifold and vector space

properties. From the discussion of section 1.2.4, it follows that elements belonging to different

tangent spaces (tangent spaces defined at different points of the base manifold) cannot be

added directly. This leads to the conclusion that elements on a single fibre Tq can be added

directly one to another, while elements on different fibres cannot.

Also, as the vector field associates to each point of the base manifold a tangent vector, it

follows that the vector field is a mapping from the base manifold ”into” the tangent bundle.

The tangent bundle is a special kind of manifold since it is decomposable into fibres

(tangent spaces) and there exists a defined projection map which maps any point of the fibre

to the point of the base manifold to which the fibre is adjoined to.

Finally, one important property of the tangent bundle is that it is, like the base manifold,

a differentiable manifold.

1.3.3 Dynamics on tangent bundles

In section 1.2.4, it was mentioned that an integral curve, obtained from a known vector

field and given initial conditions, defining a starting point on the configuration manifold,

presents a solution of the system dynamics.

It can be shown that the equations of motion of the mechanical system are equivalent to

a vector field ∆ on the manifold TQ; the EOMs give the system accelerations as functions

on the manifold. When formulating the system EOMs using the Lagrange equations, it is

also seen that the Lagrangian L defined as

L (q, q̇) = T − V,

where T is the kinetic energy and V is the potential energy, is a function on TQ as both

the potential and kinetic energies are functions of generalized coordinates and generalized

velocities.

From this short discussion it is seen that the dynamics of a system exists on a manifold

and all the functions are functions on that manifold. The usual approach in mechanics is to

use a local chart and solve the problem in the neighbourhood of the point where the problem

is defined. For problems with greater neighbourhoods this is not so simple as singularities in

the charts used arise and some positions (configurations) of the system cannot be described.
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This is a problem often encountered in the description of rigid body rotations, especially

when rotations are greater than the domain of the used parametrization.

In the following chapter rotations and their mathematical description in terms of groups

and manifolds is presented. Until now no formal mathematical mention of the rotations was

made and the dynamics was mostly focused on particles and body translations. After the

detailed presentation of rotations of the following chapter the integration method is presented

and the solver algorithm given.
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Chapter 2

Rotations and the SO (3) group

A rotation is a kind of displacement defined for bodies (objects consisting of more parti-

cles) in which a point (not necessarily belonging to the body) is not displaced and that point

is called the centre of rotation [6].

The terms rotation and orientation have distinct meanings: while rotation is a process,

orientation is a state of the object. A rotation can be seen either as the change in orientation,

or a relation between two orientations of the object.

Rotations can be composed and in general do not commute. It is important to men-

tion that, although infinitesimal rotations are seen as vectors and thus their composition is

pure vector addition, finite rotations are not vector quantities and their composition is not

addition.

2.1 Mathematical description of rotations

The orientation of an object can be determined by providing coordinates of some vectors

attached to the object, so that, for a p-dimensional object in n-dimensional space, the ori-

entation matrix O is of dimension: dim (O) = p× n [6]. This matrix is formed of p vectors

with n elements. As in three-dimensional (3D) space the object considered are bodies of the

same dimension in the sequel it holds p = n.

The matrix O gives the orientation of the body and, by specifying some properties of the

vectors that form the matrix, special properties and groups are defined.

For p = n the matrix O is a square matrix and, if the n vectors in the matrix are mutually

orthogonal, the matrix is an orthogonal matrix which satisfies the orthogonality condition

OOT = I,

23



Master thesis Chapter 2 Rotations and the SO (3) group

where I is the unitary matrix, dim (I) = n× n. If the vectors in the matrix are additionally

of unit magnitude all the matrices O constitute a topological space that form the base of

the so-called Stiefel manifold.

Rotations are composed by simple matrix multiplications corresponding to scalar prod-

ucts of the vectors in the rotation matrices O and O1 that represent two orientations of the

body:

R = O1O
T .

The matrix R determines the rotation of the body from the orientation O to the orientation

O1 and it can be interpreted as the transformation from the zero orientation to the orientation

given with O1. As the orientation matrix O is composed of vectors, the rotation matrix R

can be seen as a transformation on vectors. The composition of consequent rotations is again

simple matrix multiplication:

R1 = O1O
T ,

R2 = O2O
T
1 ,

R = R2R1 = O2O
T ,

O2 = R2R1O,

where the orthogonality condition O1O
T
1 = I is used. The composition of rotations is

associative:

(R3R2) R1 = R3 (R2R1) .

The determinant of the matrix R is

det (R) = det
(
O1O

T
)

= det (O1) det (O) ,

and from the properties of orthogonal matrices it follows that

det (R) = ±1.

It can be shown that, when the determinant of the rotation matrix is det (R) = −1, the

object changes handedness, meaning that its mirrored image is obtained. In mechanics, where

real bodies are regarded, this is an impossible transformation and consequently rotations

are limited to be such that det (R) = +1. This way the orientations are determined by

orthogonal matrices of the same determinant sign.

In the Euclidean three-space (R3) to describe the orientation/rotation of a body three

vectors with three components are required. It follows that dim (O) = 3× 3 and, using the

24



Master thesis Chapter 2 Rotations and the SO (3) group

orthogonality property of those matrices, it can be shown that, for proper rotations in R3,

only three independent parameters are required to give the body orientation. This gives the

opportunity to parametrize the rotation of a body with three parameters. In section 2.2.1

more information about parametrizations of rotations is presented.

2.1.1 Groups

Before explaining why rotations form a group, the mathematical definition and explana-

tion of groups is presented in order to understand and be able to draw conclusions about

the rotations group. The understanding of groups and manifolds is very important for the

later study of Lie groups in section 2.3.2.

A group G is a collection of elements together with a binary operation · if the following

axioms are satisfied [8]:

1. Associativity

x, y, z ∈ G,

x · (y · z) = (x · y) · z;

2. There must exist an identity element

x · e = x;

3. Inverse

x · x−1 = e,

x−1 · x = e;

4. If in addition

x · y = y · x,

the group is commutative (Abelian).

The result of the group binary operation · between two elements of the group is again an

element of the group. This is called closure: x, y ∈ G, then x · y ∈ G.

25



Master thesis Chapter 2 Rotations and the SO (3) group

More group properties

Some other terms used for describing groups and their properties have to be introduced.

Two groups M1 and M2 with their binary operation · and ∗ are homomorphic if there is

a map of M1 ”into” M2 which respects the group operations [8]:

f (x · y) = f (x) ∗ f (y) . (2.1)

Homomorphism is a structure preserving map and it can be a many-to-one (maps many

elements of one group to one element of another) and only ”into” (”into” meaning that the

inverse image is not required to exist as in an ”onto” mapping). If the map is a 1-1 and ”onto”

then the two groups are isomorphic, meaning that the two groups are identical in their group

properties. Isomorphic groups are structurally identical and there is a full correspondence

between the elements and operations of the groups, also, the equation (2.1) has to be satisfied.

It is seen that homomorphism is a wider term than isomorphism. Going into more

detail, if the isomorphism as a map is in addition C∞ differentiable the groups are then

diffeomorphic. In this context mappings follow from groups and map properties are inherited

from the group properties. Here groups and manifolds are closely related.

2.2 Rotations as a group

A subgroup can be formed by grouping some elements of a group with the same binary

operation, which themselves form a group (i.e. satisfy group axioms). The subset of the

group (subgroup) always has the same properties as the larger group.

The set of rotations, with composition as the operation between them, constitutes a

group isomorphic the the group of orthogonal n×n matrices and this group is denoted with

O (n). This group comprises all possible rotations of an object. As only real 3D bodies are

considered the matrices are of dimension 3× 3 (implying n = 3).

The matrices R, with det (R) = +1, are called special orthogonal matrices and form

a group of 3 × 3 matrices isomorphic to the special orthogonal group of matrices denoted

with SO (3) [6]. The characteristic of this group is that the vector scalar product (vector

inner, dot, product) is a preserved quantity and the group is closed under compositions

(matrix multiplication) and taking inverses. This means that the SO (3) group is an invariant

subgroup of O (3) in which the inner product is a conserved quantity:

SO (3) =
{
R ∈ R3×3 : RRT = I, det (R) = +1

}
. (2.2)
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From above, it follows that the SO (3) group is a subgroup of O (3) (SO (3) ≤ O (3),

constrained from O (3) with det (R) = +1). From equation (2.2) it is seen that the O (3)

group is defined by the orthogonality condition as the constraint on the GL (3) group (general

linear group of 3× 3 invertible matrices). As the result of the group operation between two

group elements is again in an element of the group, it is concluded that O (3), and therefore

SO (3), are topological spaces.

Going into more details it can be said that the SO (3) group is formed from the GL (3)

group with the constrains of equation (2.2) which define a hypersurface in GL (3). This,

according to the discussion from sections 1.1.2 and 1.2.1, implies that SO (3) is also a man-

ifold.

The matrices from the special orthogonal group describe proper rotations (rotations with

positive determinants, no mirroring or inversion) and there is a 1-1 correspondence between

special orthogonal matrices and proper rotations.

From the definition of groups (section 2.1.1), it follows that every group must have an

identity element (e), which in the case of rotations is the identity rotation given with the

unitary matrix I. The identity rotation doesn’t change the orientation for any arbitrary R:

IR = RI = R.

Returning to the topology of the rotation group, it should be added that the group of all

rotations O (3), that includes proper and improper rotations, consists of two disjoint open

subsets (two subsets defined with different determinants: det (O) = ±1, O ∈ O (3)). In

contrary, the group of proper rotations SO (3) is a connected group and there is always a

path on the group that connects one orientation to the subsequent one.

2.2.1 Rotation parametrizations

Now a little digression towards the parametric description of rotations is made. Also the

problems that arise with parametrizations are presented.

A parametrization is seen as a mapping from the SO (3) group ”onto” the Euclidean

R3 space. This can be thought of as a coordinate system on the SO (3) manifold (which,

according to the discussion of section 1.2, is not able to cover the whole manifold). Because

there is no single parametrization that is 1-1, continuous and with a continuous inverse on

whole SO (3) different parametrizations are used. Some types of parametrizations are:

• Rodrigues parameters;
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• Euler angles;

• Cayley-Klein parameters;

• Quaternions;

• Rotation vector.

Details regarding the types of parametrization are not presented as they are not important

for the scope of this thesis, but for the calculation of initial rotation matrices in chapter 4 a

parametrization has to be used. For that purpose Euler angles (313 rotation sequence) θ1,

θ2 and θ3 are used as parameters and the rotation matrix is calculated using

R =


c1c3 − c2s1s3 −c1s3 − c2c3s1 s1s2

c3s1 + c1c2s3 c1c2c3 − s1s3 −c1s2
s2s3 c3s2 c2

 , (2.3)

where

s1 = sin θ1, c1 = cos θ1,

s2 = sin θ2, c2 = cos θ2,

s3 = sin θ3, c3 = cos θ3.

It is important to mention that parametrizations differ in the type of information they

use to describe rotations. Different parametrizations have different domains in which the

parametrization is 1-1, continuous and with a continuous inverse.

According to the above mentioned, in every parametrization singularities occur - the map

is not any more 1-1 and there is no inverse. In order to be able to describe rotations that

are greater than the domain of the parametrization used, more than one parametrization

has to be used. The final result is then affected by errors (the rotation matrix is no longer

orthogonal) and the correction of errors is a computationally costly process as it consists of

finding the ”nearest” orthogonal matrix (orthonormalization of a matrix). Also, the change

from one parametrization to another is not convenient and complicates the calculations and

solution procedure.

Here lies the main advantage of a geometric integration procedure directly on the SO (3)

group: for large rotations the need for re-parametrization is avoided, meaning that singular-

ities are avoided (as they arise only on local charts, not on the group itself - the group is

continuous).
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2.2.2 Euler’s and Chasles’s theorems

Before presenting the SO (3) group, the Euler’s and Chasles’s theorems are presented as

they provide means for better understanding of the methods and procedures presented in

the thesis. They give a different point of view on rigid body spatial rotations and general

body displacements.

As three-dimensional rotations can be parametrized with three parameters, one can see

a rotational transformation as a vector quantity. The Euler’s theorem states [1]:

”The most general displacement of a rigid body with one point fixed can be

described as a single rotation about some axis through that fixed point, called

the axis of rotation or principal line.”

It’s important to keep in mind that two consequent rotations represented by Euler rotation

vectors cannot be composed by simple vector addition. In the sequel it’s shown that this

rotation vector exists in the so (3) Lie algebra (section 2.3.3) of the SO (3) Lie group (section

2.3.2) and this is an important property used in the integration method.

For completeness, the Chasles’s theorem, which extends the Euler’s theorem to the general

rigid body spatial displacement, is also given [1]:

”The most general displacement of a rigid body is equivalent to a translation

of some point in the body, plus a rotation about an axis through that point.”

This theorem describes a general body displacement as a screw motion.

Another approach to the integration of MBS motion is by using the Chasles’s theorem,

which leads to modelling and integration of systems on the SE (3) group. This is beyond

the scope of this thesis and it’s just mentioned as another direction of research and methods

formulation.

2.3 The SO (3) group

In this section properties and mathematical constructs of the SO (3) group, which provide

the framework for direct integration on the group, are presented. Firstly the SO (3) group is

described as a differentiable manifold and later Lie groups and the Lie algebra are introduced

along with exponential mapping.
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2.3.1 SO (3) as a differential manifold

The SO (3) group can be seen as a differentiable manifold covered by charts (parametriza-

tions) which are partially overlapping. This is seen from the SO (3) definition of (2.2) where,

firstly, SO (3) is defined as a manifold embedded in GL (3) with the orthogonality constraint.

As it was already mentioned and can be concluded from section 2.2.1, the chart ϕ maps an

open sets of the SO (3) manifold to an open set of R3: ϕ : SO (3)→ R3.

The differentiability of SO (3) enables the definition of tangents to the manifold and,

also, the vector of angular velocity can be seen as a tangent vector on the SO (3) manifold,

but a few additional comments are required to completely understand the angular velocity

on SO (3).

Because infinitesimal angles of rotation are regarded as vector quantities, the angular

velocity (rate of change of the orientation) is also a vector. As the angular velocity is

obtained from the derivation of the rotation matrix with respect to time and the rotation

matrices belong to SO (3), then it is concluded that angular velocity is also a vector on

the SO (3) manifold, i.e. in its tangent vector spaces. At a point m ∈ SO (3) the angular

velocity is a vector on TmSO (3), but its components don’t represent mathematically the

angular velocity (as it’s not a skew-symmetric matrix). The mathematical representation of

the angular velocity is when that vector on the tangent space TmSO (3) is mathematically

transferred back to the unity of the group (where the Lie algebra is defined, more in section

2.3.3)

Additionally, the SO (3) manifold can be regarded as a Riemannian manifold for which

a metric is specified, meaning that a smooth field of the symmetric and positive definite

metric tensor gij is specified. At a point m ∈ SO (3) the metric tensor field sends vectors

~v and ~w from the tangent space TmSO (3) to real numbers. This is a generalization of the

vector inner (scalar) product. From the definition of a Riemannian manifold it is seen that

SO (3) satisfies the requirement: a Riemannian manifold is a real differentiable manifold in

which each tangent vector space is equipped with an inner product gij called a Riemannian

metric which varies smoothly from point to point.

2.3.2 SO (3) as a Lie group

Before going into details what makes the SO (3) group a Lie group, the deinition of a Lie

group is given.

A Lie group G is a group which is also a differentiable manifold of finite dimension and
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whose group operator and inversion are smooth maps. The group operator f is a smooth

mapping from the manifold ”onto” itself: f : G×G→ G. The definition of a Lie group from

[3] is:

”A Lie group is a differential manifold G equipped with a product · : G×G→
G satisfying

p · (q · r) = (p · q) · r ∀ p, q, r ∈ G (associativity),

∃ I ∈ G such that I · p = p · I ∀ p ∈ G (identity element),

∀ p ∈ G ∃ p−1 ∈ G such that p−1 · p = I (inverse),

the maps (p, r) 7→ p · r and p 7→ p−1 are smooth functions (smoothness).”

Additionally, from [8], the definition of a Lie group states that it is a C∞ manifold G of

finite dimension

”... which has the following C∞ maps (diffeomorphisms): any element g of G
maps h 7→ gh (left translation by g) or h 7→ hg (right translation by g).”

Lie groups are named after the Norwegian mathematician Marius Sophus Lie, who largely

created the theory of continuous symmetry and applied it to geometry and differential equa-

tions.

From the definition of a Lie group it is seen that a Lie Group is, firstly, a manifold and

then, secondly, points of the manifold are group elements. SO (3) is such a construct:

1. Firstly, it is a manifold: an entity of complex structure defined with (2.2) that can lo-

cally be represented in a coordinate system (in the case of rotations with a parametriza-

tion).

2. Secondly, the points (elements) of the manifold are rotation matrices that themselves

form a group with matrix multiplication (composition of rotations) as the group oper-

ation.

For defining a Lie group there must exist a manifold, which at the same time possesses

group properties, on which the group theory is then applied. From group axioms and the

group operation the special structure of the manifold tangent vector spaces follows.

The Lie group can be presented on a trivial example: the 3D vector space:

1. It is a manifold because it can be represented in the R3 Euclidean space.
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2. It is a group because it fulfils the group axioms, the group operation is vector addition

(translation in three-space) and the identity element is the zero-vector.

Because of 1 and 2 the 3D vector space is a Lie group, but it’s trivial as it is a linear space.

Its tangent vector spaces coincide with the manifold itself so they have the same properties.

Due to this coincidence, vectors from different tangent spaces of the manifold can be added

one to another.

2.3.3 Lie algebra

On linear Lie groups the tangent space at the origin of the group is a vector space which,

equipped with the matrix commutator (the already mentioned Lie bracket [ , ] from section

1.2.5), constitutes a real Lie algebra and there exists a natural correspondence between group

elements and algebra elements [6].

Before going into more details and a more formal definition of the Lie algebra the defini-

tion of an algebra is presented from [6]:

”An algebra can be constructed from a set of elements of a linear space which

has a product operation, with products of the elements being elements of the

set.”

A real Lie algebra o (n) is the vector space defined at the origin of the group and closed

under the abstract Lie product [ , ], such that for every A, B, C of the space and α ∈ R it

is satisfied:

[A,B] = − [B,A] ,

[αA,B] = α [A,B] ,

[A+B,C] = [A,C] + [B,C] ,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0,

where the last equation is called the Jacobi identity. The first identity denotes the skew-

symmetry, while the third denotes bilinearity. The Lie algebra is also closed under matrix

additions and scalar multiplications.

The closure of the Lie algebra under the Lie bracket means that, if LA and LB are two

linear vector fields, it can be shown [3]

[LA, LB] = LC ,

32



Master thesis Chapter 2 Rotations and the SO (3) group

where C = AB−BA. This shows that the result of the Lie bracket, the commutator, belongs

to the vector space defined at the origin, while the product of two skew-symmetric matrices

doesn’t [6]. This implies that the commutator is the operator between algebra elements,

whose result is again an algebra element.

In the case of SO (3) the group origin is the unitary matrix I, so the so (3) Lie algebra

is defined at unity and consists of skew-symmetric matrices. What should be kept in mind

about the Lie algebra is that it is a linear space. The very linearity of the algebra is what

enables the use of linear numerical integrators for integration of system rotations (additions

and scalar multiplications are valid).

In the section 2.3.4 exponential mapping, which is a natural parametrization of the SO (3)

group, is presented. The exponential mapping, along with the Lie algebra, forms the back-

bone of the numerical integration method presented.

2.3.4 Exponential mapping

A special orthogonal matrix O can be expressed as an infinite series analogous to the

Taylor expansion of the exponential function exp. The matrix ñ is the skew-symmetric

matrix formed out of the unit vector ~n of the rotation axis as

ñ = −εijk~n,

where εijk is the Levi-Civita permutation symbol. The permutation creates, out of the vector

~n =
[
n1 n2 n3

]T
, the skew-symmetric matrix

ñ =


0 −n3 n2

n3 0 −n1

−n2 n1 0

 . (2.4)

If the magnitude of the rotation angle about the axis ~n is denoted with ψ the orientation

matrix can be expressed as

O = exp (ψñ) = exp
(
ψ̃
)
,

and this expression is called exponential mapping. It has to be noted that special orthogonal

matrices and the exp function have the same expansion, but that is where the analogy

ends. For example, as generally matrices do not commute, the commutation property of the

exponential function cannot be used.
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The interpretation of the exponential mapping is rather simple: it can be seen as a

approximation of a finite rotation by a composition of a large number of small rotations [6].

In the follow-up the exponential mapping is explained. If a curve on the Lie group, that

passes through unity, is given with

A = A (t) ,

A (0) = I,

then the tangent vector of the curve at the unity of the group has the form

~ψ =
dA

dt

∣∣∣∣
t=0

.

According to the discussions above, this tangent vector belongs to the tangent vector space

at the unity of the group (manifold).

It can be shown that

A (t) = exp (tX)

is a solution of the initial value problem

dA

dt
= XA, A (0) = I.

From this initial value problem and its solution it follows

dA

dt
=

d

dt
(exp (tX)) = X exp (tX) = XA,

so that it can be stated that

X =
dA

dt

∣∣∣∣
t=0

.

If the discussion above is transferred on the orthogonal rotation matrix, denoted now

with R, it follows that equation (2.5)

R = exp (tω̃) = exp
(
ψ̃
)
, (2.5)

is the solution of the differential equation

Rω̃ =
dR

dt
.

With R (0) = I it follows that ω̃ is a vector (actually a matrix formed out of a vector) at I

defined as

ω̃ =
dR

dt

∣∣∣∣
t=0

.
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From the orthogonality property RRT = I the matrix ω̃ satisfies the relation

dRRT

dt
= ω̃ + ω̃T = 0

which says that ω̃ must be skew-symmetric.

As R is an element of the SO (3) group and ω̃ a vector in the tangent space defined at

the group unity I, which is at the same time a Lie algebra, it follows that the exponential

mapping

R = exp (tω̃) ,

carries vectors tangent to SO (3) at I to elements of SO (3). To put it more precisely, if

the Lie algebra defined at the unity of SO (3) is denoted with so (3), it can be stated: the

exponential map associates elements of the Lie algebra so (3) to elements of the Lie group

SO (3): exp : (3)→ SO (3)

The discussion above was intended for elements of the vector space defined at the group

unity, but for elements that exist in tangent spaces at other points on the manifold a similar

result is obtained. If Q = Q (t) is a curve through Q (0) = R, then a vector tangent at R is

given with

Ṙ =
dQ

dt

∣∣∣∣
t=0

.

The curve P = RTQ (t) satisfies P (0) = I and

dP

dt

∣∣∣∣
t=0

= RT Ṙ = ω̃, (2.6)

which is skew-symmetric.

It turns out that a vector space tangent to SO (3) at R (not necessarily equal to I) is

the space of matrices Ṙ such that the matrix defined in equation (2.6) is skew-symmetric.

The skew-symmetric matrix ω̃ belongs to the Lie algebra defined at unity, while the matrix

Ṙ is not skew-symmetric and belongs to the tangent vector space defined at a point R on

SO (3). If Ṙ is seen as the derivation of the rotation matrix, then ω̃ is the mathematical

representation (in the form of a skew-symmetric matrix) of the angular velocity in the Lie

algebra so (3) explained in the section 2.3.1.

The relation

Rω̃ = Ṙ (2.7)

is invariant under left multiplication by special orthogonal matrices, while the right invariance

is valid for the relation

ω̃′R = Ṙ, (2.8)
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which is obtained when the curve P (t) is defined as P = Q (t) RT .

The ω̃ from equation (2.7) in the context of rigid body dynamics is seen as the angular

velocity in the body-fixed reference frame, while ω̃′ from (2.8) is the angular velocity in the

inertial reference frame. In this way, depending of the mathematical formulation, i.e. by

choosing the left or right invariance, the angular velocity in different frames is obtained.

In the system governing equations (1.8) the Euler equations are of the form (1.5) and are

valid only for angular velocities and angular accelerations given in the body-fixed reference

frame. This way the body inertia matrix J is constant, hence, in the follow-up, the left-

invariant form (2.7) is used.

Finally, for the sake of completeness, it is required to mention that the structure of the

SO (3) Lie group is determined by the structure of the so (3) Lie algebra almost everywhere,

not only close to the group unity I where the Lie algebra is defined.
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Chapter 3

Lie group integration method for

constrained MBS

In this chapter the integration method for constrained multibody systems is presented

and described. In the introductory section, the previously described concepts of manifolds

and Lie groups are more thoroughly described and applied to mechanical systems in a context

suitable for explaining the method.

Then, the concept of local parametrization on the SO (3) manifold and the possibilities

it opens for integration are described. Finally, the integration algorithm is presented.

In this chapter exponential mapping is used and referred to and also other types of

mappings related to the SO (3) manifold are used: they are pointed out and defined when

first mentioned.

3.1 The embedded manifold and parametrizations

It is known that for an unconstrained system the solution space is a k-dimensional linear

vector space where k = 6N . On that vector space all the solutions are allowed and, as that

space is linear, the only error that arises during the system integration is the error due to

the integration time step length. The linear k-dimensional vector space is the Euclidean Rk

space.

When a constraint, or a set of constraints, is imposed on the previously unconstrained

system the solution space of the system changes. The system still evolves on the Rk space,

but the imposed constraints force the system to remain on a hypersurface in Rk that is defined

by the equations. As the constraint equations are generally non-linear, so is the resulting
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hypersurface. This n-dimensional hypersurface is denoted with Qn and it is mathematically

defined as

Mn =
{
q ∈ Rk : Φ (q) = 0

}
, (3.1)

where Φ (q) = 0 is the set of constraints equations. Having in mind the definition of a

manifold it is seen that this hypersurface is a manifold. The hypersurface Mn is of dimension

n and it is a manifold embedded in Rk, k > n. This coincides completely with the definition

of a manifold as an entity of complex geometry that is (or can be) embedded in a space of

dimension higher than the manifold dimension and which is locally representable in a chart.

Returning to the mechanical system, its solution is no longer anywhere in Rk, but it has

to lie on Mn. As Mn is non-linear, the standard linear integrators (solvers) can no longer be

used without corrections. Figure 3.1 shows graphically the embedded non-linear manifold

Mn with a neighbourhood defined on it.

q1

qi

qk

U

n
M 

k>n
R

 

Figure 3.1: The embedded manifold Mn in the linear Rk space with a neighbourhood U on

it.

In order to return back to a linear solution space the system can be re-parametrized in

some neighbourhood U , where the new minimal form is then obtained. The new minimal

form exists in a n-dimensional linear vector space, but is valid only locally, in the neighbour-

hood U . The parametrization is mathematically stated as

Mn = {q = φ (x) : x ∈ U} ,

U ⊂ Rn=k−m,

where the new parameters are denoted with x and m is the number of constraints. From

the mathematical definition above, the manifold Mn is defined as the collection of all the
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neighbourhoods with their local parametrizations.

The original differential equation is substituted by inserting the new parameters resulting

in the minimal form. In this way, linear integrators can be used and the system integrated on

localized parameters in the neighbourhood U . This is the main advantage of the parametriza-

tion: linear integrators with well known properties and behaviour can be used. The drawback

is that the system has to be re-parametrized for every integration step (depending on the

shape of Mn) as it changes locations (travels) on the configuration manifold Mn.

The re-parametrization procedure is described on a simple example of an R2 space with

an M1 embedded manifold. This case is shown on figure 3.2.

q2

q1

q0

q1

q2

q3

x0

x1
^

x2
^

x3
^

x1

x2

x3

1M
 

2R 

Figure 3.2: Example of the embedded manifold M1 in the linear R2 space with local

parametrizations [11].

A local parametrization can be found in the form

q = φ (x) , (3.2)

where x is a single parameter as the dimension of the embedded manifold is equal to one. In

the neighbourhood of a point of the manifold the parametrization results in a linear space

without constraints on it. Using the parametrization (3.2) the original differential equation

is reformulated (translated) in terms of x. As linear integrators can be used, the differential

equation is integrated. The integration result (for one time step) is then obtained in terms

of the new parameter x and is translated back to the manifold using the bijection (3.2).

In the example of figure 3.2 the local linear vector space at the manifold point qi is

the one-dimensional line with xi as the local parameter. The new local position from the

integration is x̂i+1 and, after using the bijection, the point qi+1 on the manifold is obtained.
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Using the same procedure, it is travelled along the manifold from that point to the next

one: the local parametrization is performed first, differential equations are translated and

integrated and the solution returned (transferred back) to the manifold. This way, with the

solution of the differential equations, it is travelled along the manifold and at every point its

local property of linearity is used. The trajectory of the system on the manifold is obtained.

The procedure described is valid generally and the local parameter x (local coordinate)

can be found numerically. This was used on a general manifold, but in the sequel the local

parametrization is given for the SO (3) Lie group possessing special properties.

3.2 Local parametrization of SO (3)

Starting from the mathematical definition (2.2) of the SO (3) manifold it is seen that

it is a subgroup of GL (3), which is non-linear and, additionally, a Lie group. In order to

move from the manifold to a linear space, that allows the application of linear integrators,

a parametrization has to be found and the properties of the linear space known in order to

devise the complete algorithm and the bijection required.

As SO (3) is a Lie group whose elements are 3× 3 matrices denoted with R, so will the

linear vector space be a 3× 3 matrix vector space. The matrix vector space Ṙ is defined at

every point of the manifold. A special tangent vector space was already described in section

2.3.3: the Lie algebra, a linear vector space defined at the group unity (origin) which can be

denoted as Ṙ
∣∣∣
I
. The algebra elements are skew-symmetric matrices.

The exponential map defined in section 2.3.4 carries elements from the Lie algebra to

elements of the Lie group. As the Lie algebra is a linear space, the exponential map can be

seen as a natural, group defined, parametrization of the Lie group in the neighbourhood of

the Lie algebra. The exp parametrization connects a point of the manifold to an algebra

element, but Ṙ defines the tangent vector space at an arbitrary point of the manifold, not

necessarily at unity. Because of that, the relation between the vector space at an arbitrary

point of the manifold and the Lie algebra has been established in section 2.3.4. Also, it

is very convenient to understand relations between vector spaces at two different arbitrary

points of the manifold.
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3.2.1 Correlation between vector spaces at different points on

SO (3)

Before going into the very relation between vector spaces, the operation on the Lie group

is brought back into mind. The operation on the SO (3) Lie group is matrix multiplication

which represents rotations composition, here defined as:

Rnew = RoldR, (3.3)

where R is the rotation matrix that gives the change in orientation of the body between two

orientations Rold and Rnew. It was mentioned in section 2.3.2 that the special structure and

properties of tangent vector spaces of the manifold follow from the group operation. This

implies that the relation between vector spaces involves the group operation, i.e. the relation

is derived from the group operation.

The order of rotations in the compositions is defined with equation (3.3) because of the

way rotation increments are calculated and composed within the integration method.

SO(3)

T SO(3)R2

L’ RR(Ṙ)= Ṙ1

LR(R)=R R1

R
R =R R2 1

Ṙ =R2 1Ṙ

T SO(3)R

Ṙ

L’ RR(ω)= ῶ

ω

T SO(3)≡Lie algebraI

I
exp

Figure 3.3: Relation between two tangent vector spaces and the Lie algebra [11].

Figure 3.3 shows the relation between two vector spaces: as two points on the Lie group

are related with the group operation, while the tangent vector spaces are related with the

left invariant vector field. The Lie group operation (3.3) represents translation on the SO (3)

group. In a similar manner the two tangent vector spaces, at points 1 and 2 of the group,

are related one to another as

Ṙ2 = R1Ṙ.

It is very important to mention that points 1 and 2 are not arbitrary and they must lie on

the same integral curve on the Lie group. An integral curve on the Lie group is associated
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to just one element of the Lie algebra, i.e. one angular velocity ω̃. This is seen when the

differential equation on SO (3) is obtained from the equation above in the form

Ṙ = Rω̃. (3.4)

Mathematical details regarding the formulation of the differential equation on SO (3) are not

presented as they are beyond the scope of this thesis. On figure 3.4 the relationship between

the Lie algebra element ω and a vector in an arbitrary point R tangent vector space is shown.

In the differential equation (3.4) the left invariant vector field is used. This is seen from

the fact that in (3.4) the skew-symmetric matrix of the angular velocity is multiplied with

the rotation matrix from the left.

SO(3)
T SO(3)≡Lie algebraI

T SO(3)R

L’ RῶR(ω)=

L IR(I)=R

e I= R

Ṙ=Rῶ
ω

Figure 3.4: Relation between the Lie algebra and a tangent vector space [11].

3.3 Integration methods

In the discussions above it was concluded that different linear integration methods (in-

tegrators, solvers) can be used. This follows from the fact that the main problem is how to

re-parametrize the SO (3) Lie group in order to transfer the differential equation on a linear

vector space. On that space virtually any linear integrator can be used. The formulation and

description of the multibody system configuration space is presented first and then the algo-

rithm that implements the Euler integration method is presented followed by the complete

Runge-Kutta-MK algorithm.
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3.3.1 MBS configuration space

The multibody system consists of three-dimensional bodies, so its configuration space is

not purely consisting of translational configuration spaces (Euclidean R3 spaces) nor purely

of rotation configuration spaces (SO (3) groups). As every body possesses a position in space

and a specific orientation, a single body i configuration space is composed of translational

and rotational kinematic domains: Gi = R3 × SO (3). Thus, the complete configuration

space is composed of all the bodies configuration spaces:

G = G1 ×G2 × . . .×GN = R3 × SO (3)× R3 × SO (3)× . . .× R3 × SO (3) .

A point in the MBS configuration space is given with p = (x1,R1,x2,R2, . . . ,xN ,RN), and

the Lie group composition operation G×G→ G is introduced by

pcomp = p1 ◦ p2,

xcomp = xp1 + xp2 ,

Rcomp = Rp2Rp1 .

Also, the identity element e is defined so that p◦e = e◦p = p, ∀p ∈ G. The identity element

of the translation is the zero vector ~0 while the identity of rotations is the unitary matrix I.

However, as the integration routines operate simultaneously on position and velocity levels,

the system has to be modelled on the 2n-dimensional Lie group, the system state-space. The

group is then defined as the composition [12]

S = R3 × SO (3)× . . .× R3 × SO (3)× . . .× R3 × so (3)× . . .× R3 × so (3) ,

where an element of the group is given with q = (x1,R1, . . . ,xN ,RN , ẋ1, ω̃1, . . . ẋN , ω̃N).

From the definition of the group element, it is also seen what the group is composed of: the

first 2N elements belong to the Euclidean three-spaces in which the translations live and to

the SO (3) Lie groups of the rotations respectively, i.e. they form the system configuration

space G. The last 2N elements belong again to the Euclidean three-spaces (translational

velocities) and the so (3) Lie algebras where the angular velocities exist.

Finally, the Lie algebra s and its element z ∈ s are presented as

s = R3 × so (3)× . . .× R3 × so (3)× R3 × R3 × . . .× R3 × R3,

z =
(
ẋ1, ω̃1, . . . , ẋN , ω̃N , ẍ1, ˙̃ω1, . . . ẍN , ˙̃ωN

)
.

By comparing the Lie algebra composition and a Lie group element definition, it is seen

that translational velocities and accelerations, along with angular accelerations, are vector

quantities while the angular velocity is a Lie algebra element: a skew-symmetric matrix.
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3.3.2 MBS integration based on the Lie group Euler method

The Euler method or the Euler-Cauchy method is the most basic explicit method for

numerical integration of ordinary differential equations (ODEs). It is a step-by-step method

as for every time step h the same integration formula is used. The Euler method is named

after the Swiss mathematician Leonhard Euler. The Lie group Euler method follows when

the Euler method for linear vector spaces is applied on a Lie group. Also, this is the most

simple Munthe-Kaas method, which, in the case of integration on Lie groups, is presented in

section 3.3.3.

The vector space Euler method is a linear method whose formula follows from the Taylor

series which gives a crude approximation of the ODE solution for a small time step. Also,

this is a first order method whose global solution error is proportional to the time step length.

Besides having a big error, the method also has stability issues and it’s hardly ever used in

practice, but it very nicely explains the methods based on Taylor series. Its simplicity makes

it very suitable for introduction into numerical integration methods and it serves as the basis

for more complicated methods.

If the system state-space formulation is given in general as an initial value problem

ż = f (t, z) ,

z (0) = z0,

then the system solution for the i-th integration step is based on the previous step (i − 1)

solution, the time step length h and the simulation time ti−1 of the previous step:

zi = zi−1 + hf (ti−1, zi−1) . (3.5)

The geometric interpretation of the method is that it is an approximation of the curve of

z (t) by a polygon whose first side is tangent to this curve at t0 [5]. In the sequel the solution

algorithm for integration of MBS governing equations is presented. One integration step is

explained in detail and the results of each operation in the step are presented. In the case

of MBS integration, the Euler method is performed twice as the governing equations are of

second order. The algorithm is as follows:

1. Calculate F (ti−1, zi−1) using the previous step solution or, in the case of the initial

step, from the initial values. The vector is calculated from the governing equation

(1.8) as

F (ti−1, zi−1) =

[
M ΦT

x

Φx 0

]−1 [
Q

ξ

]
.
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The result consists of system accelerations and Lagrange multipliers.

2. After calculating the system vector F (ti−1, zi−1), separate the system accelerations

which are to be integrated from the Lagrange multipliers, where the system vector is

structured as

F (ti−1, zi−1) =
[
q̈1 q̈2 . . . q̈N λ1 λ2 . . . λK

]T
=
[
q̈ λ

]T
,

and the vector q̈p, defined as q̈p =
[
ẍp Ω̇p

]T
, is the p-th body acceleration vector,

while q̈ is the global system acceleration vector.

3. Integrate using the Euler method given with (3.5) to obtain the system velocities from

the previous step velocities and the calculated accelerations as

q̇i = q̇i−1 + hq̈i−1.

4. From the obtained system velocities q̇i, separate the translational and angular velocities

as they are not integrated to displacements levels in the same way. This separation

results in the system translational velocities vector ẋi and the system angular velocities

vector Ωi.

5. Integrate the translational velocities by using again the Euler method to obtain the

translational displacements of the system:

xi = xi−1 + hẋi−1.

6. Integrate the angular velocities to obtain the system orientations. As the orientations

are given with the rotation matrices Rp for each body p, p = {1, . . . , N}, independently

so the new rotational matrices have to be calculated for each body separately. As none

of the local parametrizations for SO (3) is used and, by using the Lie group Euler, the

system is integrated directly on SO (3):

Rp
i = Rp

i−1 exp
(
hΩp

i−1
)
.

7. Run steps 1 to 6 with a fixed integration time step length h until the simulation end

time Tend is reached.
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3.3.3 MBS integration based on the MK integration method

The Runge-Kutta-Munthe-Kaas (RK-MK, usually only MK) integration method is the

classical Runge-Kutta (RK) integration method applied for the integration on Lie groups.

The MK method originally uses the exponential map as the mapping function between the

Lie algebra and the Lie group, but also the Cayley map can be used for the same operation.

The RK method is a whole family methods (distinguished by the method order) of great

practical importance and much greater accuracy than the above described Euler method.

The method was developed by the German mathematicians Karl Runge and Wilhelm Kutta.

In each integration step of the RK method auxiliary quantities are calculated. Their

number and way of calculation depends on the method order. The most commonly used

RK method is of fourth order and is often referred to as RK4 or classical Runge-Kutta

method. RK methods are numerically stable and the fourth-order method’s global error is

proportional to the fourth power of the integration time step length: O (h4). Furthermore,

RK methods can be formulated as implicit or explicit iterative methods and it’s a one-step

method meaning that in each step only data from the preceding step is used.

Returning to the integration of MBS, the input of the MK method, same ad for the Lie

group Euler method, consists of the function of the (differential) governing equations, system

initial conditions, integration time step length and the simulation end time (or number of

steps).

In order to apply the method on a Lie group, in each integration step a parametrization

is introduced in order to move from the non-linear Lie group to the linear Lie algebra space.

As the Lie algebra is a linear vector space, the linear RK method can be applied there and

the solution returned back to the group (using a mapping function). In this way the MK

method is obtained.

The discussion above is applied in the case of the SO (3) Lie group. Using the dexp−1

map, the equations are ”pushed-forward” from the SO (3) group to the so (3) algebra, the

numerical integration is then performed and the result is ”pulled-back”, using the exp map,

from the algebra to the new position on the SO (3) group. The group structure is respected

in every integration step, as in each step the system is re-parametrized and the equations

transferred in the Lie algebra. In the Lie algebra the equations are integrated and the solution

returned to the last known point on the group (the preceding integration step result).

In the sequel the integration algorithm for the MB system solution with the MK4 method

(MK of order four) implemented is presented step by step. In the fourth order method for
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integration on SO (3) the dexp−1 mapping arises and the way of calculating it is given

together with the formulae for the exponential and Cayley maps in section 3.5.

The MK integration method of order four, for the solution of MBS motion, is performed

in the following steps:

1. From the previous step solution, or from the initial conditions values in the case of the

first integration step, calculate F (ti−1, zi−1) using

F (ti−1, zi−1) =

[
M ΦT

x

Φx 0

]−1 [
Q

ξ

]
.

2. After calculating the system vector F (ti−1, zi−1), separate the system accelerations

from the Lagrange multipliers. The system vector is structured as

F (ti−1, zi−1) =
[
q̈1 q̈2 . . . q̈N λ1 λ2 . . . λK

]T
=
[
q̈1 λ1

]T
,

and the vector q̈p1, defined as q̈p1 =
[
ẍp1 Ω̇

p

1

]T
, is the p-th body acceleration vector,

while q̈1 is the global system acceleration vector. This accelerations, together with the

previous step solution, form the first set of auxiliary quantities of the MK method.

This is denoted with the index 1.

3. Calculate the 2nd set of auxiliary quantities as

ap2 = xpi−1 +
h

2
ẋpi−1,

bp2 = ẋpi−1 +
h

2
ẍp1,

cp2 = Ωp
i−1 +

h

2
Ω̇
p

1,

up2 =
h

2
Ωp

1,

dp2 = Rp
i−1 exp (up1) ,

and from these values calculate the auxiliary quantities used in for the calculation of

the next set of auxiliary quantities:

F

(
h

2
+ ti−1, a2,b2, c2,d2

)
,

kp2R = dexp−1 (cp
2) .

Again, from F
(
h
2

+ ti−1, a2,b2, c2,d2

)
accelerations (ẍp2 and Ω̇

p

2) are separated from

the Lagrange multipliers. It is seen that F is calculated using the 1st set of auxiliary

quantities.
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4. Calculate the 3rd set of auxiliary quantities as

ap3 = xpi−1 +
h

2
bp2,

bp3 = ẋpi−1 +
h

2
ẍp2,

cp3 = Ωp
i−1 +

h

2
Ω̇
p

2,

up3 =
h

2
kp2R,

dp3 = Rp
i−1 exp (up3) ,

and from these values calculate the auxiliary quantities used in for the calculation of

the next set of auxiliary quantities:

F

(
h

2
+ ti−1, a3,b3, c3,d3

)
,

kp3R = dexp−1 (cp
3) .

From F
(
h
2

+ ti−1, a3,b3, c3,d3

)
, accelerations ẍp3 and Ω̇

p

3 are separated.

5. Calculate the 4th set of auxiliary quantities as

ap4 = xpi−1 + hbp3,

bp4 = ẋpi−1 + hẍp3,

cp4 = Ωp
i−1 + hΩ̇

p

3,

up4 = hkp3R,

dp4 = Rp
i−1 exp (up4) ,

and from these values calculate the last set of auxiliary quantities:

F (h+ ti−1, a4,b4, c4,d4) ,

kp4R = dexp−1 (cp
4) .

Again, separate accelerations ẍp4 and Ω̇
p

4 from the vector F
(
h
2

+ ti−1, a4,b4, c4,d4

)
.

6. Calculate the final result for translational displacements and velocities and angular

velocities of the current integration step as

xpi = xpi−1 +
h

6

(
ẋpi−1 + 2bp2 + 2bp3 + bp4

)
,

ẋpi = ẋpi−1 +
h

6
(ẍp1 + 2ẍp2 + 2ẍp3 + ẍp4) ,

Ωp
i = Ωp

i−1 +
h

6

(
Ω̇
p

1 + 2Ω̇
p

2 + 2Ω̇
p

3 + Ω̇
p

4

)
.
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7. Calculate the auxiliary quantities required for the calculation of the current integration

step rotation matrices:

φpR =
h

6

(
Ωp
i−1 + 2cp2 + 2cp3 + cp4

)
.

8. Calculate the current integration step rotation matrices using the exponential map as

Rp
i = Rp

i−1 exp (φpR) .

9. Repeat steps 1 to 8 with a fixed integration time step length h until the simulation

end time Tend is reached.

With this, the two methods used for solving the motion of the case study MBS (chapter

4) are presented. In the following section the problem of constraint violation is shortly

presented and the constraint violation stabilisation procedure, that is implemented in order

to correct the integrator results, is given. Also, at the end of the chapter, expressions for

calculating different mappings are given and shortly described.

3.4 Constraint violation stabilisation algorithm

As the system is numerically integrated and the constraint equations in (1.8) are at the

acceleration level, it is expected that, in the joints of the system, errors arise at the velocity

and displacement levels. The acceleration level is automatically satisfied as the constraints

acceleration level equations are incorporated in the system governing equations formulation,

but, due to the straightforward integration procedure, errors at velocities and displacements

accumulate.

The error (inability) of the integrator solution to satisfy joints and imposed motions

constraints at the displacement and velocity level is called constraint violation. This is often

referred to as drift from the configuration manifold of the system, as the integrator solution in

that case is no longer on the system configuration manifold. The constraint violation at the

displacement level is easily calculated if one joint (that connects the first and second body,

for example) global position is calculated using the first body global position, its rotation

matrix and the joint position in its local reference frame, and then the same is calculated

from the second body parameters. The difference between the joint position calculated from

the first body of the joint and from the second body of the joint gives the error in the joint

position.
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The position error at the joint described above implies that constraints are violated at

the displacement level. The same can be shown for the velocity level also. The system

displacements and velocities have to be stabilised, so that the integrator displacement and

velocity solutions are corrected. Also, the constraint violation can influence the dynamics of

the system significantly (see the case study results presentation in section 4.5).

In order to eliminate the constraint violation, i.e. reduce it to an acceptable level which

does not affect the system dynamics and its solution, the the intermediate integrator results

have to be stabilised, both at the velocity and displacement levels. With the stabilisation,

that is performed in each integration step, the system solution is kept on the system config-

uration manifold guaranteeing the correct solution.

The implemented stabilisation procedure is carried out using global integration coordi-

nates in each integration time step. The integrator output in each step forms the input of

the stabilisation algorithm. Using the least squares method, the algorithm iterates to the

correct displacement and velocity values, that satisfy the constraint equations at the velocity

and displacement levels. The global system constraints equations at the displacement and

velocity levels are of the form

Φ (x,R) = 0, (3.6)

Φ̇ (x,R, ẋ,Ω) = 0. (3.7)

The stabilisation algorithm implementation is as follows:

1. After the integration procedure is carried out for the current integration step (denoted

with the index i), the integrator output, consisting of the displacements x̂pi , rotation

matrices R̂p
i and translational and angular velocities ̂̇xpi and ̂̇Ωp

i , forms the input of the

stabilisation procedure. This solution follows from the step 6 of the MBS integration

based the Lie group Euler algorithm or from the step 8 of the MBS integration based

on the MK method.

2. Stabilise the system displacements by solving the non-linear least squares problem(
Φ
(
x̂i, R̂i

)
−Φ (xi,Ri)

)2
→ min,(

Rp
i Rp

i
T − I

)2
→ min .

It is seen from the problem formulation that the square of the error between the

integrator solution and the stabilised solution (i.e. the constraint equations values
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obtained from those solutions) is minimized. Also, one additional constraint that has to

be satisfied by the stabilisation procedure is the orthogonality of rotation matrices. The

rotation matrices obtained from the integrator are orthogonal (the mappings always

result in orthogonal matrices), but when the rotations and displacements are stabilised

this orthogonality can be lost, so the additional constraint is required.

3. The solution of the least squares problem for the displacement level are the stabilised

displacements xpi and stabilised rotation matrices Rp
i of the system. Together with ̂̇xpi

and ̂̇Ωp

i , the stabilised displacements form the input into the stabilisation of system

velocities.

4. Stabilise the system velocities (the system stabilised displacements and rotation ma-

trices from the stabilisation step 2 are fixed) again by solving a least squares problem

given in the form (
Φ̇
(̂̇xi, ̂̇Ωi

)
− Φ̇

(
ẋi, Ω̇i

))2
→ min .

5. Gather the stabilised integration step results ẋi, xi, Ri and Ωi for all system bodies

(i = {1, . . . , N}). They are the stabilised system solutions of the current integration

step and present the input for the next integration step. These stabilised solutions lie

on the configuration manifold, in contrary to the intermediate integrator results which

drifted from the configuration manifold.

The stabilisation steps 1 to 5 are repeated at each integration step, because at each step

the integrator intermediate result drifts from the manifold. Non-stabilised solutions can lead

to errors in the system dynamics (forces and torques act on different points than in the real

system due to drift) and, consequently, to wrong solutions.

Other types of stabilisations also exist, but the review and implementation of other

stabilisation methods is beyond the scope of the thesis.

3.5 Mappings calculation

In the previous sections, exponential mapping was often mentioned, its properties and

interpretation discussed, but the way the mapping is practically computed was not given.

In this section the way different mappings are numerically computed is presented. For the

numerical computation of mappings, as they are used in possibly large scale systems, it is
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very important that they are fast and stable. Of course, the computations must yield a

required accuracy and stability level, so that it makes sense to use them in practice.

Mappings used in the thesis include the, already mentioned, exponential mapping and

the Cayley mapping. The Cayley map is another mapping function between the so (3) Lie

algebra and the SO (3) Lie group. The exponential map is treated first and, afterwards, the

Cayley mapping is presented. The expressions for the mappings calculation are taken from

[3].

3.5.1 Exponential mapping calculation

The exponential map was already thoroughly described throughout the thesis, but the

way the matrices are numerically computed was not mentioned. Using that map, from a

skew-symmetric matrix ã an orthogonal matrix B ∈ R3×3 : BBT = I is obtained, i.e. an

element of the Lie algebra is mapped to an element of the Lie group: so (3)→ SO (3). The

skew-symmetric matrix ã is obtained from the vector a, from which the vector norm (vector

length) is computed as

ϕ = ‖a‖ =
√

aTa. (3.8)

The exponential map is then computed using

exp (ã) = I +
sinϕ

ϕ
ã +

sin2 (ϕ/2)

2 (ϕ/2)2
ã2, (3.9)

and this is the well known Rodrigues formula for the calculation of the exponential map

in the case of the SO (3) Lie group. The exponential mapping of a matrix cannot be ex-

pressed exactly with a finite number of operations with elementary functions. This follows

from the fact that computers cannot calculate exactly the trigonometric functions: for their

calculations computers use the Taylor series expansion and approximate the function. It

is important that the approximate solution of the map belongs to SO (3) within machine

accuracy [2].

The differential and the inverse of the differential exponential map are calculated using

dexp (ã) =
exp (ã)− I

ã
= I +

sin2 (ϕ/2)

ϕ2/2
ã +

ϕ− sinϕ

ϕ3
ã2, (3.10)

dexp−1 (ã) =
ã

exp (ã)− I
= I− 1

2
ã− ϕ cot (ϕ/2)− 2

2ϕ2
ã2. (3.11)
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3.5.2 Cayley mapping calculation

Another transformation that maps a special orthogonal matrix to a skew-symmetric ma-

trix is the Cayley transformation originally described and named after the British mathe-

matician Arthur Cayley. The mapping is applicable on the SO (3) Lie group and its so (3)

Lie algebra, but in the Cayley map singularities arise. Because of that, the map is not

generally applicable to big rotational displacements that go beyond the map domain. The

Cayley map is calculated from

cay (ã) = I + cã +
c

2
ã2, (3.12)

where the auxiliary quantity c is calculated from the vector norm ϕ of equation (3.8) as

c =
4

4 + ϕ2
.

The Cayley map of equation (3.12) is numerically faster and easier to compute than the ex-

ponential map of (3.9) and could be also used to provide faster algorithms and computations

of body spatial rotations (as long as the mapping singularity is not encountered). This is

inspected in the case study presented in chapter 4.

The differential of the Cayley mapping and the inverse of the differential are calculated

using

dcay (ã) = c

(
I +

1

2
ã

)
, (3.13)

dcay−1 (ã) = I− 1

2
ã +

1

4
aaT . (3.14)

All the expressions for the computation of mappings are given and, in section 4.5, the

difference in the computation times between the given mappings is compared.
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Chapter 4

Case study

In this chapter the described integration methods are used for integrating i.e. solving the

motion of a spatial multibody system. Firstly, the MBS is described: bodies and joints are

identified, as are the forces that act on the system. Also, the prescribed motions in the system

are defined along with the system initial configuration and velocities. Three different motion

cases with different imposed motions and external forces are defined. After that introductory

part of the case study, the kinematic constraint equations are formulated and reshaped in a

form suitable for integration. After the system governing equations and methods are finally

described, the system is implemented in MATLAB and the solution obtained using two

different mapping operators from the Lie algebra to the Lie group: the exponential map

and the Cayley map. The solutions are compared with the ADAMS solution of the system

motion.

4.1 Multibody system description

The system under consideration is a cylindrically shaped satellite equipped with a manip-

ulator consisting of three members connected with different joints. The system is presented

on figure 4.1 where it is seen that it is a four body spatial system.

The first manipulator element, the base rod, is connected with the satellite body via a

spherical joint. The base rod is then connected with a revolute joint to the second manipu-

lator element, the slider rod, on which there is a tool, the slider, connected with a prismatic

joint to it and able to move along the slider rod.

The bodies in the system are numbered from 1 to 4 and on figure 4.1 the body-fixed

reference frames (xiyizi, i = {1, . . . , 4}) are shown along with the inertial reference frame
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Figure 4.1: The four body MBS analysed in the case study.

xyz.

The system presented here is a simplified satellite system. More complex systems can

also be defined with different inertial and geometric properties, but the scope of the thesis

and this case study is to show the possibilities of the Lie group integration algorithms, not

on the complexity of satellites and their manipulators.

4.1.1 Bodies parameters

In this section the parameters of individual bodies in the system are identified. The

necessary parameters are identified and they include:

• body dimensions and geometrical shape description,

• mass of the body, and

• locations of joints on the body expressed in the body-fixed reference frame.

The conventions and simplifications used here are:

• the body-fixed reference frame is located in the body centre of gravity;

• bodies are regarded as homogeneous with uniform mass distribution;
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• simplified body representations are used;

• the joints geometry (construction) is not taken into account.

In accordance with the statements above, the body inertia matrix is formed and the mass

moments of inertia determined. Also, the system is discretized using primitive, or as simple

as possible, geometrical bodies so that the inertia can be calculated in the simplest possible

manner. Furthermore, all bodies used are symmetric and their body-fixed reference frame

axes are at the same time the principal axes of inertia. The inertia matrix (for the principal

axes of inertia) of the i-th body is defined as

Ji =


J ix 0 0

0 J iy 0

0 0 J iz

 ,
where J ik, k = {xi, yizi}, is the moment of inertia about the k-axis calculated using formulae

given in [1]. The above defined inertia matrix is a diagonal matrix and consequently J ik are

principal mass moments of inertia.

Main satellite body

The main satellite body is a cylindrically shaped object and it is modelled as a pure

cylinder shown on figure 4.2. The body-fixed reference frame x1y1z1 is also shown along

with the body dimensions d1, L1, the spherical joint location vector XSJ
1 and the fixed point

locations in the body-fixed reference frame and in the inertial reference frame (vectors XFP
1

and xFP ).

SJ

SJX 1

x1

z1

y1

d 1

L
1

L
1
/2

Figure 4.2: The main satellite body: dimen-

sions and joint position vector.

d1 = 2 m,

L1 = 3 m,

m1 = 1800 kg,

XSJ
1 =

[
0 0 L1

2

]T
,

XFP
1 =

[
0 0 0

]T
,

xFP =
[
0 0 0

]T
.
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From the quantities defined above it is possible to calculate the body moments of inertia

about the principal axes of inertia, which coincide with the body-fixed reference frame axes:

J1
x = J1

y =
m1d

2
1

16
+
m1L

2
1

12
,

J1
z =

m1d
2
1

8
.

The body inertia matrix is formed using the values obtained from the expressions above.

Base rod

The base rod is the first manipulator element of the satellite manipulator and it is denoted

as body 2. It’s connected to the satellite body with a spherical joint whose location on the

body is given with the vector XSJ
2 and with the second manipulator element, the slider rod, is

connected with a revolute joint whose location is given with XRJ
2 (figure 4.3). Geometrically,

the base rod is modelled as a long cylindrical rod.

SJ

RJ

x2

z2

y2

RJX 2

SJX 2

L 2
/2

L 2

d2

Figure 4.3: The base rod: dimensions and

joint position vectors.

d2 = 0.15 m,

L2 = 1.5 m,

m2 = 80 kg,

XSJ
2 =

[
0 0 −L2

2

]T
,

XRJ
2 =

[
0 0 L2

2

]T
.

The moments of inertia are calculated as

J2
x = J2

y =
m2d

2
2

16
+
m2L

2
2

12
,

J2
z =

m2d
2
2

8
.

Slider rod

The slider rod is, in contrary to the base rod, modelled as a long rectangular prism with

a small cross section. As on the slider rod the slider is allowed only to slide along it, with

that geometrical shape all relative rotations between the rod and slider are constrained.
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L3
/2

L 3

□d3

x3

z3

y3
RJ

X 2

RJ

Figure 4.4: The slider rod: dimensions and

joint position vector.

d3 = 0.1 m,

L3 = 1.5 m,

m3 = 60 kg,

XRJ
3 =

[
0 0 −L3

2

]T
.

The slider rod moments of inertia are

J3
x = J3

y =
m3 (d23 + L2

3)

12
,

J3
z =

m3d
2
3

6
.

Slider

As it was mentioned above, the slider translates along the slider rod and is modelled

as a rectangular prism with a rectangular hole in the centre. In the case of the satellite

manipulator, on the slider a tool or gripper for maintenance of the satellite or docking other

objects that approach the satellite can be mounted.

x4

z4

y4

□a

L 4

□d
3

Figure 4.5: The slider: dimensions.

d3 = 0.1 m,

a = 0.3 m,

L4 = 0.2 m,

m4 = 30 kg,
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In order to calculate the slider moments of inertia, additional parameters are defined as

β′ =
V ′

V
=

bd3
a2 − d23

, β′′ =
V ′′

V
=

ba

a2 − d23
,

m′ = β′m4, m′′ = β′′m4,

b =
a− d3

2
,

and they follow from the decomposition of the slider into simpler parts, whose inertia is easy

to calculate.

The coefficients β′ and β′′ follow when the volumes of sections of the slider are divided

with the volume of the complete slider. As the slider has uniform mass distribution, that ratio

is used to obtain the mass of individual sections. The slider moments of inertia are calculated

from the inertias of smaller parts of the slider by using the Huygens-Steiner theorem (parallel

axis theorem). It finally follows:

J4
x = J4

y =
1

6
m′
[
L2
4 + b2 + 3 (b+ d3)

2]+
1

6
m′′
(
L2
4 + a2

)
,

J4
z =

1

6
m′
[
b2 + d23 + 3 (b+ d3)

2]+
1

6
m′′
[
b2 + a2 + 3 (b+ d3)

2] .
Now, as all parameters for the system topological definition, along with inertial properties,

are given, the system is fully defined and it remains to define the external forces that act on

the system and its initial conditions for displacements and velocities.

4.1.2 System initial conditions

As the system governing equations are differential equations of the second order (forming,

together with the algebraic constraint equations, a DAE system of equations), for each

coordinate involved two initial conditions have to be given in order to have a starting point

for obtaining a trajectory on the solution manifold. The initial conditions are given for the

displacements (system initial configuration) while the velocities are calculated.

In the case study, three different motion cases of the system are analysed. The initial

displacements of the system are given first and are valid for all three motions cases. The

motion cases differ in the angular velocities and number of the imposed motions and in

external forces. The description and parameters of the motion cases analysed in the case

study is given in section 4.1.3. Also, in that section the way initial velocities are calculated

is described.
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Initial displacements

In its initial configuration the satellite manipulator lies in the global xz plane. The

cylindrical satellite body local coordinate system is in the initial position coincident with the

global coordinate system. Mathematically this is expressed as

x0
1 =

[
0 0 0

]T
,

θ01 =
[
0 0 0

]T
,

where θ01 is the initial vector of the Euler angles for the 313 rotation sequence from which,

by using equation (2.3), the initial body orientation matrix is calculated to be

R0
1 =


1 0 0

0 1 0

0 0 1

 .
The base rod of the satellite manipulator has the same local coordinate system orientation

as the global coordinate system and the main satellite body. The CoG location of body 2 in

the global coordinate system and its orientation is given with

x0
2 =

[
0 0 L1+L2

2

]T
,

θ02 =
[
0 0 0

]T
,

R0
2 = R0

1.

The slider rod and the slider have the same orientation as their relative rotations are

constrained (defined and explained in section 4.2.4). In the initial position, the slider rod

stands vertically as a continuation of the base rod. Mathematically, the initial position is

given with

x0
3 =

[
0 0 L1

2
+ L2 + L3

2

]T
,

θ03 =
[
0 0 0

]T
,

R0
3 =


1 0 0

0 1 0

0 0 1

 .
In the initial position, besides having the same orientation as the slider rod, the slider is

located right in the middle of the slider rod so that their global positions (of their centres of

60



Master thesis Chapter 4 Case study

gravity) coincide in the initial configuration:

x0
4 = x0

3,

θ04 = θ03,

R0
4 = R0

3.

With this all the initial conditions regarding positions are given and this information is

also used for determining the velocity initial conditions.

4.1.3 Motion cases

As was stated above, the motion cases analysed differ in the velocities of imposed motions,

their number and external forces that act on the system bodies. The external forces that

act on the system are presented first, followed by the description of the imposed motions

velocities. In the following subsections, all the variants for external forces and velocities are

given. The motion cases are finally described and their parameters defined as a combination

of external forces and imposed motions velocities.

Initial velocities

The system initial velocities are calculated using the system constraints defined in section

4.2. The constraint equations, used for calculating the system initial velocities, have to be

formulated at the velocity level, so that from the values of the system initial displacement and

the imposed motions velocities are obtained. In this section the system velocities that remain

constant throughout the motion, i.e. the quantities that define the rheonomic constraints

(imposed motions), are presented.

The i-th body (or element) angular velocity expressed in the global coordinate system is

denoted with ΩG
i and the angular and translational velocity vectors are given as:

Ωi =
[
Ωx
i Ωy

i Ωz
i

]T
, ẋi =

[
ẋxi ẋyi ẋzi

]T
.

The multibody system is solved for three different motion cases, but all the cases are

formed using two variants of imposed velocities. The first velocity variant is a simpler, 1

DOF rotational motion imposed on the satellite body and the spherical joint, while the second

is a complex, 3 DOF rotation. The superscript index, next to the global coordinate system

index G, on the imposed motions constant velocity denotes the motion variant identifier.
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The main satellite body is set to have a constant angular velocity. The two variants for

the angular velocity are expressed in terms of the inertial reference frame (global coordinate

system) as

ΩG,1
1 =

[
0 0 2π

60

]T
rad/s, ΩG,2

1 =
[
0 2π

60
3π
60

]T
rad/s. (4.1)

Between the main satellite body and the first manipulator element - the base rod, there

is a spherical joint that does not transmit rotations between the two bodies. The base rod

rotation is also a prescribed motion in the system: the vector of the base rod angular velocity

is constant in the global reference frame and it is equal to

ΩG,1
2 =

[
π
120

0 0
]T

rad/s, ΩG,2
2 =

[
π
120

2π
60

0
]T

rad/s (4.2)

The revolute joint motion results from the solution of the system dynamics, but the slider

has a prescribed relative motion with respect to the slider rod. The initial velocity of the

slider, relative to the slider rod and along the zi translation axes, equals to

ẋrel3,4 = 0.02 m/s, (4.3)

while the constant acceleration on the slider, also along the zi axes is equal to

ẍrel3,4 = −0.0007 m/s2. (4.4)

In two cases the slider motion is as prescribed, but in a third case its motion is not included

and a force acting along the slider translational axis is included so that the system then has

two dynamic DOFs.

Finally, the revolute joint motion follows from the forces that act on the system. The

satellite manipulator is controlled with the moment acting on the revolute joint. The actuator

moment is in relation with the force acting on the slider and the slider imposed motion. The

joint is dynamically controlled so that its relative angular acceleration is constant and equals

Ω̇RJ
x = −0.00058 rad/s2. (4.5)

This acceleration is imposed around the only axis about which the revolute joint allows

rotations (the x2 and x3 axes).

In order to calculate the system initial velocities, the joint constraints together with

the rheonomic constraints equations have to be formulated at the velocity level and solved

for translational and angular velocities. In the section 4.2 the constraint equations are
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formulated, joints are defined and the imposed motions mathematically modelled. The

quantities given with (4.1) to (4.5) are constants that appear in the rheonomic constraints

mathematical formulation of section 4.2.5.

The system initial velocities are calculated using a numerical algorithm: the velocity

level constraint equations (4.43) are solved numerically using the least squares method and

the solution obtained are the initial velocities. The input of the global system constraint

equations at the velocity level consists of the system constant velocities given above and the

system initial positions (section 4.1.2).

External forces

The external applied system forces are forces that don’t arise due to the interaction of

the bodies that form the system (e.g. constraint forces, internal forces). They include forces

like gravity, forces due to contacts with other bodies, forces originating from the propulsion

system, etc.

On the satellite, gravity is not acting as it can be considered that it is in a gravity-free

environment. Consequently, the only applied forces that act are the actuator forces and

external loads. In the formulated system, external forces act on the slider and the slider rod.

On the slider the force (the first variant) is a constant load due to the tool mounted and it

is defined in the local coordinate system of the slider along the y4 axis. On the slider rod

the applied force is a time-dependent moment of the joint actuator acting along the joint x3

axis. The external forces are defined in the respective body-fixed reference frames as

F1
4 =


Fx4

Fy4

Fz4

 =


0

25

0

 N, L3 =


Lx3

Ly3

Lz3

 =


Lx3 (t)

0

0

 Nm.

The second variant of the forces is valid, as it is seen later, when there is no imposed

motion on the slider. In that case, the force acting on the slider is collinear with the slider

translation axis and it is defined as

F2
4 =


Fx4

Fy4

Fz4

 =


0

0

−0.014

 N.

In the second variant of external loads, the revolute joint actuator moment remains un-

changed.
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The time-dependent moment of the actuator is calculated in such a way that the resulting

acceleration of the slider rod is constant. The time-dependence of the moment follows from

the imposed motion on the slider on which the force acts. The moment time-function is

Lx3 (t) = J3
xΩ̇RJ

x + Fy4

(
xrel3,4 (t) +

L3

2

)
, (4.6)

where the time-function of the relative slider motion is denoted with xrel3,4 (t) (for more details

see section 4.2.5), and Ω̇RJ
x is the constant revoulte joint acceleration.

As the revolute joint actuator acts simultaneously on the base rod and the slider rod, it

is necessary to include the same moment of opposite sign on the base rod as

Lx2 = −Lx3 .

The moments are, like the angular velocities, expressed in the Euler equation in terms of the

body-fixed reference frame so they are introduced in the global formulation as they are given

here, but the forces have to be expressed in the inertial reference frame. The slider force is

constant in the body-fixed reference frame, but in the inertial frame it is expressed as

FG
4 = R4F4,

and as such it is introduced in the mathematical formulation.

These forces are added to the non-linear velocity forces in the global forces vector Q,

and in that way they are mathematically introduced into the governing equations given with

(1.8). Also, as no motion is imposed on the revolute joint between the slider rod and the

base rod, these forces, together with inertia forces, determine the resulting relative motion

of the revolute joint.

Motion cases formulation

The motion cases analysed in the case study are formulated using the imposed motions

and external forces defined in the subsections above. The analysed motion cases of the

system are:

Motion case 1 The main satellite body has a 1 DOF rotation about its local z1 axis, which

is coincident with the global z axis throughout the motion. The motion constant

angular velocity is given with ΩG,1
1 , defined in (4.1). The base manipulator rod motion

is also a 1 DOF rotation about the global x axis with constant angular velocity ΩG,1
2

given with (4.2). The external force on the slider is given with F1
4. The motion of the
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system is interpreted as: the main satellite body rotates about its longitudinal axis,

while the satellite manipulator is loaded (the slider tool carries an external object).

The satellite manipulator motion is controlled so that motions are imposed on the

spherical joint and the slider but there is one dynamical DOF in the revolute joint.

The revolute joint motion is force-controlled, so that it results in a constant angular

acceleration of the revolute joint.

Motion case 2 The main satellite body and the base rod of the satellite manipulator have

the same imposed motions as in the motion case 1: ΩG,1
1 and ΩG,1

2 . The difference is

in the number of dynamic DOFs and in the slider motion. The slider is not controlled

kinematically, as in this case its actuators are failing. At the same time the force on the

slider changes to F2
4, so that there is just a small force acting in the slider translation

z4 axis direction: this implies that the slider motion is now a dynamical DOF together

with the revoulte joint motion. The revolute joint motion is controlled dynamically

with the moment of the joint actuator. In this motion case the system possesses one

dynamical DOF and one rheonomic constraint less than the other two motion cases

(the slider imposed motion is not included).

Motion case 3 This motion case is a showcase that the method is able to solve systems

with large rotations that would result in singularities if a local parametrization (ex.

Euler angles) had been adopted. The rotational motion of the main satellite body and

the base rod consist of 3 DOF rotations given with ΩG,2
1 and ΩG,2

2 . The system has

one dynamical DOF and the force on the slider is given with F1
4, as was the case in

motion case 1. The slider relative translational motion is also imposed.

4.2 Constraint equations formulation

As it is stated in section 1.1.3, the constraint equations have to be reshaped to the

acceleration level. The governing equations in the DAE index 1 form, which are suitable for

integration using the methods presented in chapter 3, are then obtained. The starting point

for the formulation of constraints at the acceleration level is the formulation of constraints

at the displacement level. Depending on the constraint type the constraint equations can be

formulated at the velocity level, or even at the acceleration level.

From the constraint equations at the displacement level by differentiating twice with

respect to time, the constraint equations at the acceleration level are obtained (for holonomic
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systems). This approach is used in the sequel where the constraint equations of four basic

joints are formulated: the fixed point constraint, the spherical, revolute and prismatic joints

are mathematically formulated.

Before going into the very formulation of the joints constraint equations some relations,

that are used throughout the equations formulation, are presented. Firstly, the difference

between the local and global coordinate system is to be made. The local or body-fixed

coordinate system is a non-inertial reference frame fixed to the body. The global coordinate

system is the inertial reference frame in which the Newton 2nd law is valid. Also, the system

motion is naturally given in terms of the global coordinate system as the local coordinate

system of a body cannot describe its motion, i.e. it moves with the body.

If the position of a point P in the i-th body local coordinate system is denoted with Xi
P

and the same point is denoted in the global coordinate system with xiP , then the relation

between the two coordinate systems is given with equation (4.7):

xiP = RiX
i
P . (4.7)

In the sequel, the superscript i denoting the body is omitted. As the point P is a point fixed

on the body (does not move relatively to the body) it follows

ẊP =
dXP

dt
= 0. (4.8)

Differentiating (4.7) with respect to time and using (4.8) it is obtained

ẋP = ṘXP .

The time derivative of the rotation matrix R is defined as

Ṙ = RΩ̃, (4.9)

where Ω̃ is the skew-symmetric matrix of the body angular velocity expressed in the body-

fixed reference frame. This results in the application of left invariant vector field. After using

(4.9) it follows:

ẋP = RΩ̃XP . (4.10)

Relations (4.7) to (4.10) are often used when formulating the constraint equations, es-

pecially when the equations are differentiated to obtain the acceleration level equations.

Also, some other properties that belong to the vector cross product and to the vector scalar

product are used.
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The vector cross product can be calculated, besides using the symbolic determinant, using

the skew-symmetric matrix representation of a vector (given with equation (2.4)):

~Ω× ~XP = Ω̃XP .

The anti-commutativity property of the vector cross product yields

~Ω× ~XP = − ~XP × ~Ω,

Ω̃XP = −X̃PΩ. (4.11)

The vector scalar product is calculated using the vector transpose:

~x · ~y = xTy,

and it is commutative so that

xTy = yTx. (4.12)

Finally, unit vectors, that give the coordinate axes orientation, are also often used so

they are defined at this point:

ex =


1

0

0

 , ey =


0

1

0

 , ez =


0

0

1

 .
As such, they can be used either in the global coordinate system or in local, body-fixed

reference frames. If they are expressed in the i-th body local coordinate system then they

are expressed in the global coordinate system as

Ex
i = Rie

x, Ey
i = Rie

y, Ez
i = Rie

z. (4.13)

These are some mathematical formalisms that are used throughout this section. Other

properties of vectors and their products are also used when formulating the initial constraint

equations at the displacements level, but they are explained at the specific joint formulation

for whose formulation the property is used.

4.2.1 Fixed point constraint

The fixed point constraint is one of the simplest constraint that eliminates DOFs of a

body. This constraints force a body point to have a fixed position in the inertial reference
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Figure 4.6: Fixed point position vectors.

frame throughout the motion. Consequently, this leads to the elimination of body transla-

tional DOFs, while rotations about that fixed point are allowed. The number of eliminated

DOFs is equal to three.

The mathematical formulation of such a constraint follows from the analysis of vectors

from figure 4.6. If the body fixed point position is expressed in the body-fixed reference frame

with XFP
1 and that point is constrained to have the position xFP1 in the inertial reference

frame the mathematical formulation states

ΦFP = xFP1 − x1 −R1X
FP
1 = 0. (4.14)

After differentiating with respect to time and using relations (4.9), (4.11) and the fact that

xFP1 is a fixed point in space (independent of time) the velocity level is obtained in the form

Φ̇
FP

= −ẋ1 −R1Ω̃1X
FP
1 = 0. (4.15)

Differentiating once more with respect to time and performing some more mathematical

manipulations the acceleration level constraint equation is obtained in the form

−ẍ1 + R1X̃
FP
1 Ω̇1 = −R1Ω̃1X̃

FP
1 Ω1.

Written in the form

ΦFP
x ẍ1 = ξFP , (4.16)

the matrix ΦFP
x and vector ξFP are

ΦFP
x =

[
−I +R1X̃

FP
1

]
,

ξFP = −R1Ω̃1X̃
FP
1 Ω1,
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where the acceleration vector ẍ1 in equation (4.16) contains both translational and angular

accelerations of body 1.

It is finally seen that the matrix equation (4.16) consists of three algebraic equations for

three eliminated DOFs and, for the matrix dimension to be correct, the unitary matrix I

dimension is dim (I) = 3 × 3. The position of the fixed body point in the inertial reference

frame is not directly seen at the acceleration level, but it’s given in the initial conditions with

the body CoG initial position x0
1 and the position of the fixed point XFP

1 in the body-fixed

reference frame.

In the next section the spherical joint mathematical formulation is presented, and it

is seen that the fixed point and the spherical joint constraints give practically the same

equations. The only difference is that the fixed point given here is with respect to a point

fixed in the inertial reference frame. This is why in the final constraint equation of the fixed

point constraint only one body accelerations and parameters are seen.

4.2.2 Spherical joint

The spherical joint is graphically shown on figure 4.7. This kind of joint doesn’t place

any restrictions on the relative rotational displacements between the two bodies connected

with that joint, but restricts bodies relative displacements.

Figure 4.7: Spherical joint.

The bodies connected with the joint are the main satellite body (body 1) and the base

rod of the manipulator (body 2). On figure 4.8 the location vectors of the joint in the local

and global coordinate systems are shown. Also, the coordinate systems involved are shown

for an arbitrary relative position of the two bodies.

On figure 4.8 with CoG is denoted the body centre of gravity, while SJ stands for spherical

joint. The joint is mathematically modelled so that the spherical joint global position is the

same when calculated from both bodies CoG position. In that formulation, bodies global
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Figure 4.8: Spherical joint position vectors.

CoG positions, rotation matrices and joint local positions are involved (equation (4.17)).

One point on the first body is restricted to have the same global position as one point on the

second body and that point is the spherical joint location. Finally, three algebraic constraint

equations at the displacement level are obtained, written in matrix form they are

ΦSJ = x1 + R1X
SJ
1 − x2 −R2X

SJ
2 = 0. (4.17)

Vectors XSJ
1 and XSJ

2 give the location of the spherical joint in the body coordinate system

while x1 and x2 are the positions of the bodies CoGs. Differentiating (4.17) once with respect

to time the constraint is obtained at the velocity level:

Φ̇
SJ

= ẋ1 + R1Ω̃1X
SJ
1 − ẋ2 −R2Ω̃2X

SJ
2 = 0. (4.18)

Differentiating once more and separating the terms dependent on accelerations on the left-

hand side and other terms on the right-hand side it is obtained

ẍ1 − ẍ2 −R1X̃
SJ
1 Ω̇1 + R2X̃

SJ
2 Ω̇2 = R2Ω̃2Ω̃2X

SJ
2 −R1Ω̃1Ω̃1X

SJ
1 .

The spherical joint constraint equations in the matrix form, analogous to the second equation

of (1.8), are

ΦSJ
x ẍ1,2 = ξSJ , (4.19)

where ẍ1,2 =
[
ẍ1 Ω̇1 ẍ2 Ω̇1

]T
is the vector of accelerations of bodies 1 and 2 that are

connected with the spherical joint. The spherical constraint matrix ΦSJ
x and vector ξSJ are
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defined as

ΦSJ
x =

[
I −R1X̃

SJ
1 −I R2X̃

SJ
2

]
,

ξSJ = R2Ω̃2Ω̃2X
SJ
2 −R1Ω̃1Ω̃1X

SJ
1 .

Analysing equation (4.19) and its terms it is seen that, as dim (Ri) = dim
(
Ω̃i

)
=

dim
(
X̃SJ
i

)
= 3× 3 and dim

(
XSJ
i

)
= 3× 1, this matrix equation consists of three equations

implying that between the two bodies connected with the spherical joint three DOFs are

eliminated. The eliminated DOFs are the relative translations at the joint location, while

relative body rotations are still allowed. Also, from the dimensions of matrices, it follows

that the unitary matrix I dimension is dim (I) = 3× 3.

4.2.3 Revolute joint

The second joint of the satellite manipulator is the revolute joint that connects the

base rod (body 2) with the slider rod (body 3). This kind of joint prevents relative body

translations while, at the same time, allowing only one relative rotational displacement.

Figure 4.9 shows the revolute joint graphically.

Figure 4.9: Revolute joint.

On figure 4.10 the revolute joint (RJ) position vectors are shown along with the coordinate

axes direction vectors that are also used for the constraint equations formulation.

The first step of mathematically defining the revolute joint is to eliminate the relative

translations at the joint location. This is done in completely the same way the spherical

joint was formulated. Consequently, the first set of constraint equations of the revolute joint

are the same equations as the spherical joint equations, but with indices modified so that

bodies 2 and 3 are brought into relation:

ΦRJ
1 = x2 + R2X

RJ
2 − x3 −R3X

RJ
3 = 0. (4.20)
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Figure 4.10: Revolute joint position vectors.

The first set of constraints at the velocity level are then of the form

Φ̇
RJ

1 = ẋ2 + R2Ω̃2X
RJ
2 − ẋ3 −R3Ω̃3X

RJ
3 = 0, (4.21)

while at the acceleration level they are

ΦRJ
x,1ẍ2,3 = ξRJ1 , (4.22)

where

ΦRJ
x,1 =

[
I −R2X̃

RJ
2 −I R3X̃

RJ
3

]
,

ξRJ1 = R3Ω̃3Ω̃3X
RJ
3 −R2Ω̃2Ω̃2X

RJ
2 .

With the matrix equation (4.22) in place, relative translations are eliminated, but there

are still two relative rotations that have to be constrained. This means that two additional

scalar equations have to be formulated.

Only the rotation about the local x2 and x3 axes is allowed. This implies that the planes

y2z2 and y3z3 have to be parallel at all times and this parallelism is achieved by eliminating

relative rotations about the yi and zi axes. Mathematically, this is stated using the scalar

product and its geometrical interpretation. The scalar product of unit vectors in the x3 and

z2 direction and the scalar product of unit vectors in the x2 and y3 direction are set to be

zero:

ΦRJ
2 = EzT

3 Ex
2 = 0,

ΦRJ
3 = EyT

3 Ex
2 = 0,
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where the vectors E are defined with relations (4.13) and, when inserted, it is obtained

ΦRJ
2 = (R3e

z)T R2e
x = 0,

ΦRJ
3 = (R3e

y)T R2e
x = 0.

(4.23)

This follows from the vector scalar product geometrical interpretation: if two vectors are

perpendicular their scalar product is zero. What equations (4.23) state is:

1. The local coordinate axis z3 of body 3 is perpendicular to the local coordinate axis x2

of body 2. This constraint eliminates relative rotations about the yi axes.

2. The local coordinate axis y3 of body 3 is perpendicular to the local coordinate axis x2

of body 2. This constraint eliminates relative rotations about the zi axes.

These statements can be easily verified by imagining the relative rotations of the two bodies

local reference frames and then performing the scalar product.

Having formulated the two rotational constraints, it is necessary to reshape them to the

acceleration level. After the first differentiation with respect to time equations (4.24) follow:

Φ̇
RJ

2 =
(
R3Ω̃3e

z
)T

R2e
x + (R3e

z)T R2Ω̃2e
x = 0,

Φ̇
RJ

3 =
(
R3Ω̃3e

y
)T

R2e
x + (R3e

y)T R2Ω̃2e
x = 0.

(4.24)

After differentiating once more with respect to time and performing some mathematical

manipulations, using the vector scalar product commutativity of equation (4.12), the general

form of the constraints at the acceleration level for the two additional rotational constraints

of the revolute joint are obtained

ΦRJ
x,2ẍ2,3 = ξRJ2 . (4.25)

The matrix ΦRJ
x,2 and vector ξRJ2 are defined as

ΦRJ
x,2 =

[
0 − (R3e

z)T R2ẽ
x 0 − (R2e

x)T R3ẽ
z

0 − (R3e
y)T R2ẽ

x 0 − (R2e
x)T R3ẽ

y

]
,

ξRJ2 =



[(
R3Ω̃3e

z
)T

R2ẽ
x + (R3e

z)T R2Ω̃2ẽ
x
]

Ω2

+

[(
R2Ω̃2e

x
)T

R3ẽ
z + (R2e

x)T R3Ω̃3ẽ
z

]
Ω3[(

R3Ω̃3e
y
)T

R2ẽ
x + (R3e

y)T R2Ω̃2ẽ
x
]

Ω2

+

[(
R2Ω̃2e

x
)T

R3ẽ
y + (R2e

x)T R3Ω̃3ẽ
y

]
Ω3


.
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Since the matrices given above consist of only two rows (this can be deduced when looking at

the dimension of individual elements and from the knowledge that these are two equations),

the null matrix 0 is of dimension dim (0) = 1× 3.

The complete constraint equations in matrix form of the revolute joint are finally formu-

lated by simply putting the two matrix equations (4.22) and (4.25) into one single matrix

equation

ΦRJ
x ẍ2,3 = ξRJ , (4.26)

where the revolute joint constraint matrix and vector are

ΦRJ
x =

[
ΦRJ
x,1

ΦRJ
x,2

]
, ξRJ =

[
ξRJ1

ξRJ2

]
.

From the equations given above, it is seen that there are five scalar equations. Consequently,

five relative DOFs of the two bodies connected with the revolute joint are eliminated. The

only remaining DOF is one rotation about the x2 and x3 axes, which are collinear at all

times.

4.2.4 Prismatic joint

A prismatic joint is a sliding contact joint where just one relative translational motion

is allowed between the two connected bodies. Figure 4.11 shows the prismatic joint that

connects the slider rod (body 3) and the slider (body 4).

Figure 4.11: Prismatic joint.

Figure 4.12 shows the coordinate systems of the bodies connected with the prismatic

joint (PJ) and all the vectors that are used when formulating the constraint equations of the

joint.

When formulating the constraint equations of the prismatic joint, the first step is to

eliminate all the relative rotations between the two connected bodies as the joint allows only
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Figure 4.12: Prismatic joint position vectors.

one translation. The rotations are constrained in the same way rotations were constrained

in the revolute joint formulation of section 4.2.3.

In order to constrain all relative rotations using the vector scalar product, the following

perpendicularities of axes are imposed:

1. x4 ⊥ z3 - The rotation about the yi axes is constrained with this imposed perpendicu-

larity.

2. x4 ⊥ y3 - The rotation about the zi axes is constrained.

3. y4 ⊥ z3 - The rotation about the xi axes is constrained.

The two body-fixed reference frames of bodies 3 and 4 are constrained to remain parallel at all

times, meaning that during the motion the corresponding coordinate axes of the bodies have

to remain mutually parallel. Mathematically, this stated using the vector scalar products

ΦPJ
1 = ExT

4 Ez
3 = 0,

ΦPJ
2 = ExT

4 Ey
3 = 0,

ΦPJ
3 = EyT

4 Ez
3 = 0.

When the relationship connecting the local and global coordinate systems, given with (4.13),

is inserted in the equations given above, the constraint equations that eliminate the prismatic
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joint relative rotations at the displacement level are obtained:

ΦPJ
1 = (R4e

x)T R3e
z = 0,

ΦPJ
2 = (R4e

x)T R3e
y = 0,

ΦPJ
3 = (R4e

y)T R3e
z = 0.

(4.27)

The velocity level of equations (4.27) is of the form

Φ̇
PJ

1 =
(
R4Ω̃4e

x
)T

R3e
z + (R4e

x)T R3Ω̃3e
z = 0,

Φ̇
PJ

2 =
(
R4Ω̃4e

x
)T

R3e
y + (R4e

x)T R3Ω̃3e
y = 0,

Φ̇
PJ

3 =
(
R4Ω̃4e

y
)T

R3e
z + (R4e

y)T R3Ω̃3e
z = 0.

(4.28)

By differentiating (4.27) twice with respect to time and after some mathematical manip-

ulation the first set equations at the acceleration level is obtained in the form

ΦPJ
x,1ẍ3,4 = ξPJ1 , (4.29)

where the constraint matrix and vector are defined as

ΦPJ
x,1 =


0 (R4e

x)T R3ẽ
z 0 (R3e

z)T R4ẽ
x

0 (R4e
x)T R3ẽ

y 0 (R3e
y)T R4ẽ

x

0 (R4e
y)T R3ẽ

z 0 (R3e
z)T R4ẽ

y

 ,

ξPJ1 =



−
[(

R4Ω̃4e
x
)T

R3ẽ
z + (R4e

x)T R3Ω̃3ẽ
z
]

Ω3

−
[(

R3Ω̃3e
z
)T

R4ẽ
x + (R3e

z)T R4Ω̃4ẽ
x

]
Ω4

−
[(

R4Ω̃4e
x
)T

R3ẽ
y + (R4e

x)T R3Ω̃3ẽ
y
]

Ω3

−
[(

R3Ω̃3e
y
)T

R4ẽ
x + (R3e

y)T R4Ω̃4ẽ
x

]
Ω4

−
[(

R4Ω̃4e
y
)T

R3ẽ
z + (R4e

y)T R3Ω̃3ẽ
z
]

Ω3

−
[(

R3Ω̃3e
z
)T

R4ẽ
y + (R3e

z)T R4Ω̃4ẽ
y

]
Ω4



.

As the rotations have been constrained, the translations still remain unconstrained, where

only two of them have to be constrained. From figure 4.12 it is seen that the only allowed

translation is along the zi axes, while translations in the xi and yi directions are eliminated.

Mathematically, this constraint is formulated by introducing the vector that connects the

CoGs of bodies 3 and 4 and which is defined in the global coordinate system. This vector
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has to be coincident with the joint translation axis. In order for the slider to slide along the

z3 axis, this vector must have the same direction as the unit vector along the z3 axis. Two

constraint equations are formulated (two relative DOFs are eliminated) giving the projections

of the translation axis on the x3 and y3 axes. These projections are set to be equal to zero.

Again, the vector scalar product is used:

ΦPJ
4 = (x4 − x3)

T Ex
3 = 0,

ΦPJ
5 = (x4 − x3)

T Ey
3 = 0.

When relations (4.13) are introduced equations (4.30) follow:

ΦPJ
4 = (x4 − x3)

T R3e
x,

ΦPJ
5 = (x4 − x3)

T R3e
y.

(4.30)

The velocity level of equations (4.30) is obtained by differentiating once with respect to time

and equations (4.31) are obtained:

Φ̇
PJ

4 = (ẋ4 − ẋ3)
T R3e

x + (x4 − x3)
T R3Ω̃3e

x = 0,

Φ̇
PJ

5 = (ẋ4 − ẋ3)
T R3e

y + (x4 − x3)
T R3Ω̃3e

y = 0.
(4.31)

Again, the acceleration level constraint equations are obtained by differentiating (4.30) twice

with respect to time. The last two constraint equations at the acceleration level are obtained

in the form

ΦPJ
x,2ẍ3,4 = ξPJ2 , (4.32)

where the matrix ΦPJ
x,2 and vector ξPJ2 are defined as

ΦPJ
x,2 =

[
(R3e

x)T (x4 − x3)
T R3ẽ

x − (R3e
x)T 0

(R3e
y)T (x4 − x3)

T R3ẽ
y − (R3e

y)T 0

]
,

ξPJ2 =

[
2 (ẋ4 − ẋ3)

T R3Ω̃3e
x − (x4 − x3)

T R3Ω̃3ẽ
xΩ3

2 (ẋ4 − ẋ3)
T R3Ω̃3e

y − (x4 − x3)
T R3Ω̃3ẽ

yΩ3

]
.

The dimension of the null matrices 0 is dim (0) = 1× 3.

The complete matrix constraint equation of the prismatic joint is obtained by combining

equations (4.29) and (4.32), so that equation (4.33) follows:

ΦPJ
x ẍ3,4 = ξPJ , (4.33)
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where the prismatic joint constraint matrix and vector are

ΦPJ
x =

[
ΦPJ
x,1

ΦPJ
x,2

]
, ξPJ =

[
ξPJ1

ξPJ2

]
.

The complete prismatic joint formulation consists of five algebraic equations, meaning that

five relative DOFs have been eliminated with the constraint.

From the definition of the prismatic joint it is seen that axes z3 and z4 of body 3 and

4 are aligned and they represent the translation axis of the joint. Consequently, from the

definition of the translation axis above, it has to be kept in mind that the translation axis

has to pass through bodies 3 and 4 CoGs. This follows from the fact that the axes zi have the

origin in the bodies CoGs and that the translation axis is calculated in the global reference

frame from the bodies CoGs positions.

4.2.5 Rheonomic constraints

In contrary to scleronomic constraints, which are time independent functions (in their

mathematical formulation at the displacement level), rheonomic constraints are time-dependent

functions and they describe imposed motions on the system. As joint equations, the rheo-

nomic constraint equations are also mathematically introduced as a set of equations that

represent additional row entries in the global system constraint matrix. This way, it is seen

that the rheonomic constraints further reduce the number of system DOFs.

The joint constraint equations have to be formulated at the acceleration level and the

same holds for the rheonomic constraint equations in order to be able to put them together

in the global system constraint matrix (so that the DAE system of index 1 is obtained). This

is achieved so that the rheonomic constraint equations are formulated at the displacement

or velocity level first, and then, by differentiation, reshaped to the acceleration level.

The general form of the rheonomic constraint equations at the acceleration level is the

same as that of the joint constraint equations:

ΦRH
x,i ẍk = ξRHi ,

where i is the number of the rheonomic constraint and k is the number of the body or bodies

involved in the constraint.

In the case study system there are three imposed motions which are defined the sequel:

1. The main satellite body (body 1) has a constant angular velocity (given with (4.1))

which, at the displacement level, results in a linear time dependence of the constraint
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equation. The constraint equation is formulated directly at the velocity level:

ΦRH
FP = R1Ω1 −ΩG

1 = 0, (4.34)

so that at the acceleration level the constraint mathematical formulation is

R1Ω̇1 = −R1Ω̃1Ω1,

where Ω̃1Ω1 = 0 follows from the vector cross product properties. It finally follows

R1Ω̇1 = 0. (4.35)

The constraint matrix ΦRH
x,1 and vector ξRH1 are, from equation (4.35), identified as

ΦRH
x,1 =

[
03×3 R1

]
,

ξRH1 = 03×1,

where the superscript on the zero matrix 0 denotes the dimension of the matrix.

2. The spherical joint has a constant angular velocity (equation (4.2)), meaning that the

angular velocity of body 2 is constant. The constant angular velocity of the joint is

expressed as the angular velocity ΩG
2 in the inertial reference frame. This constraint is

formulated at the velocity level as

ΦRH
SJ = R2Ω2 −ΩG

2 = 0, (4.36)

while at the acceleration level it follows (again the vector cross product property

Ω̃2Ω2 = 0 is used)

R2Ω̇2 = 0. (4.37)

The constraint matrix ΦRH
x,2 and vector ξRH2 are, from equation (4.37), identified as

ΦRH
x,2 =

[
03×3 R2

]
,

ξRH2 = 0.

3. The prismatic joint allows only one relative translation of the slider, whose acceleration

is given with (4.4) and the initial velocity with (4.3). The slider has a constant accel-

eration with a non-zero initial velocity, so that the rheonomic constraint, formulated

at the displacement level, has the form

ΦRH
PJ = (x4 − x3)

T R3e
z − ẋrel3,4t− ẍrel3,4

t2

2
= 0. (4.38)
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The velocity level follows by differentiating once with respect to time

Φ̇RH
PJ = (ẋ4 − ẋ3)

T R3e
z + (x4 − x3)

T R3Ω̃3e
z − ẋrel3,4 − ẍrel3,4t = 0 (4.39)

The acceleration level is obtained by further differentiating with respect to time:

− (R3e
z)T ẍ3 − (x4 − x3)

T R3ẽ
zΩ̇3

+ (R3e
z)T ẍ4 = ẍrel3,4 + 2 (ẋ4 − ẋ3)

T R3ẽ
zΩ3

+ (x4 − x3)
T R3Ω̃3ẽ

zΩ3. (4.40)

The constraint matrix ΦRH
x,3 and vector ξRH3 are, from equation (4.40), identified as

ΦRH
x,3 =

[
− (R3e

z)T − (x4 − x3)
T R3ẽ

z (R3e
z)T 01×3

]
,

ξRH3 = ẍrel3,4 + 2 (ẋ4 − ẋ3)
T R3ẽ

zΩ3 + (x4 − x3)
T R3Ω̃3ẽ

zΩ3.

Equations (4.35) to (4.40) are the rheonomic constraint equations formulated at the

acceleration level. It is seen that equations (4.35) and (4.37) consist of three algebraic

equations so that they eliminate three DOFs, all of which rotations. Equation (4.40) is one

algebraic equation imposing the translational motion of the slider and, thus, eliminating one

DOF.

4.3 System governing equations

The system governing equations are formulated in the form of equation (1.8):[
M ΦT

x

Φx 0

][
q̈

λ

]
=

[
Q

ξ

]
,

and, in the sequel, the formulation of matrices that are present in the governing equations is

described. All the matrices have to be formulated according to the convention of the system

accelerations vector q̈ given with

q̈ =
[
ẍ1 Ω̈1 ẍ2 Ω̈2 . . . ẍN Ω̈N

]T
,

where ẍi are the translational acceleration of the i-th body and Ω̈i its angular acceleration.

The indices over the unitary and zero matrices denote the dimension of the matrix in question.

The dimensions are given so that the dimension of the global system matrices is clearly seen.
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In accordance with that, the mass matrix M is a diagonal matrix defined with its diagonal

elements as

diag (M) =
[
m1I

3×3 J1 m2I
3×3 J2 m3I

3×3 J3 m4I
3×3 J4

]
.

The global constraint matrix is formed out of all joints and rheonomic constraint matrices

as

Φx =



ΦFP
x 03×6 03×6 03×6

ΦSJ
x 03×6 03×6

05×6 ΦRJ
x 05×6

05×6 05×6 ΦPJ
x

ΦRH
x,1 03×6 03×6 03×6

03×6 ΦRH
x,2 03×6 03×6

01×6 01×6 ΦRH
x,3


, (4.41)

while the right-hand side global system constraint vector ξ is formed as

ξ =
[
ξFP ξSJ ξRJ ξPJ ξRH1 ξRH2 ξRH3

]T
.

The global system force vector Q consists of the external forces that act on the system

and non-linear forces originating from non-linear velocity terms of the Euler equation (1.5).

If the force vector Q is defined with

Q = Qext + Qnl,

then the non-linear part is defined as

Qnl =
[
03×1 −Ω̃1J1Ω1 03×1 −Ω̃2J2Ω2 03×1 −Ω̃3J3Ω3 03×1 −Ω̃4J4Ω4

]T
,

while the external forces part follows from the external forces that act on the system defined

in section 4.1.3

Qext =
[
03×1 03×1 03×1 −L3 03×1 L3 R4F4 03×1

]T
.

Every column (or row, depending of the vector/matrix in question) corresponds to one

body set of coordinates (rotational or angular set of accelerations) and, consequently, the

number of columns in the global constraint matrix is equal to the number of rows in the global

system force vector, which is equal to the number of system accelerations: 6N . Also, from

the very structure of the global system constraint matrix, the topology of the system can be
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deduced. The first row of expression (4.41) defines the fixed point constraint which affects

only the first body, all other row elements, that multiply with other bodies accelerations, are

zero matrices. The spherical joint connects bodies 1 and 2, no other bodies accelerations are

related in the second row. The rest is deduced in the same way as above.

Similarly, the rheonomic constraints can be interpreted and deduced on which joints and

bodies the motions are imposed. Furthermore, by counting the entries in the system matrices

the final number of the system DOFs (n) is established. It’s seen that the global system

constraints matrix has 23 rows, K1,3 = 23, for motion cases 1 and 3. The system is a spatial

four body system, so that the full number of system coordinates is 6N = 24. Using the

equation for spatial systems (given in section 1.1.2), the number of system dynamic DOFs

follows as

n1,3 = 6N −K1,3 = 24− 23 = 1,

and that’s the DOF in the revolute joint, whose motion follows from the forces that act on

the bodies. The global system constraint matrix of the system motion case 2 has 22 rows

because the rheonomic constraint of the prismatic joint (last row of (4.41)) is not included.

For that case the number of dynamic DOFs is equal to

n2 == 6N −K2 = 24− 22 = 2.

The dynamic DOFs of motion case 2 are the DOF in the revolute joint and the DOF in the

prismatic joint. Those motions are obtained from the system governing equations integration

procedure.

For the stabilisation algorithm it is required to formulate the global system constraint

matrices at the displacement and velocity levels. The global system constraints vector at the

displacement level is obtained by gathering equations (4.14), (4.17), (4.20), (4.23), (4.27),

(4.30) and the slider relative displacement rheonomic constraint (4.38), so that the vector Φ

is

Φ =
[
ΦFP ΦSJ ΦRJ ΦPJ ΦRH

PJ

]T
. (4.42)

Similarly, the global system constraints vector Φ̇ at the velocity level is obtained by

gathering equations (4.15), (4.18), (4.21), (4.24), (4.28), (4.31) and the rheonomic constraint

equations at the velocity level of equations (4.34), (4.36) and (4.39):

Φ̇ =
[
Φ̇
FP

Φ̇
SJ

Φ̇
RJ

Φ̇
PJ

ΦRH
FP ΦRH

SJ Φ̇RH
PJ

]T
. (4.43)

The rheonomic constraint equations directly formulated at the velocity level are not included
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in the displacement level formulation of constraints. Their displacement level is stabilised as

soon as velocities are stabilised.

In the next section the MATLAB implementation of the solver with the system definition

is shortly presented.

4.4 Algorithm implementation

In order to obtain results using the method presented in the thesis, the solution procedure

has to be implemented on a computer using a programming language or in a computer

algebra system. A specially suitable software (which uses its own programming language)

for technical computations is MATLAB. Hence, the algorithms and methods described in the

thesis are implemented in MATLAB, where the solution of the defined system is obtained

and post-processed. Simultaneously to the implementation of the methods in MATLAB, the

multibody system is modelled in ADAMS whose solution serves for results verification.

All the solutions and simulations are performed on the same computer: a Dell Inspiron

N5110 laptop with an Intel CORE i7 2.20 GHz processor, 8 GB of RAM, a 7200 rpm SATA

hard drive and with a Windows 7 Ultimate 64-bit operating system installed. The MATLAB

version installed is the 64 bit R2010a (7.10.0.499) version, while the ADAMS version is MD

ADAMS Student Edition 2011.

4.4.1 MATLAB implementation

In the case study presented, the computational implementation and the solution algo-

rithm are closely related as the programming was done specifically for the problem at hand.

Because of that, the definition of the system and the algorithm implementation in MATLAB

are presented simultaneously. The main MATLAB script and function files are shortly de-

scribed in the sequel. From that description it will be clear how the system is defined in the

program. It has to be kept in mind that the system definition consists of bodies inertial and

geometrical properties, connections (joints) between bodies, imposed motions, forces and

initial conditions.

sys def.m In this script file the bodies and system constant parameters are defined. Bodies

dimensions, masses and joints positions in the body-fixed reference frames are given.

The inertia matrices are also calculated and constructed. The global mass matrix is

constructed and the unit vectors of the coordinate system axes are defined for later
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use. The system initial configuration is also defined, initial rotation matrices follow

from the Euler 313 rotation sequence angles. Finally, the imposed motions parameters

are also given (a switch for the slider motion by which the motion can be disabled is

also included) together with the system forces.

con def.m This is a function file that returns the system global constraint matrix, given

with (4.41), and the right-hand side constraint vector ξ for a given input consisting

of the system translational displacements, rotation matrices, translational and angular

velocities: [
Φx ξ

]
= con def (x,R, ẋ,Ω) .

con vel opt.m Similarly to the sys def.m function file, this function returns the value of

the system global constraint vector at the velocity level given in the equation (3.7).

From that equation it follows that this vector equals to zero and this function is used in

the stabilisation of system velocities. The function returns the vector Φ̇ for the input

consisting of translational and angular velocities (in the programmed implementation

the translational displacements and rotation matrices are available to the function as

global variables):

global x R,

Φ̇ = con vel opt (ẋ,Ω) .

The function is also used when solving the system for the initial velocities.

con disp opt.m Returns the displacement level system global constraint vector of equa-

tion (3.6) which has to be equal to zero. This function is used for the stabilisation of

displacements. The input in the function consists of the system translational displace-

ments and rotation matrices:

Φ = con disp opt (x,R) .

gov eqn.m This function, for the given input consisting of translational displacements, ro-

tation matrices, translational and angular velocities and the simulation time ti, returns

the vector containing the system accelerations and Lagrange multipliers calculated from

(1.8). In this function system forces are introduced into the formulation and, if they

are time dependent, evaluated. The function call is

F = gov eqn (x,R, ẋ,Ω) .
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init vel.m In this function the least squares problem, using the global constraint equations

at the velocity level, is numerically solved for the system initial velocities. The routine

lsqnonlin is used for the least squares problem solution. The function input are global

variables: initial rotation matrices and initial translational displacements:

global x R,[
ẋ0 Ω0

]
= init vel () .

stabilisation.m This function performs the stabilisation algorithm as described in section

3.4. For the given input, in the form of the integrator output, the function solves the

least squares problems using the routine lsqnonlin, and returns the stabilised values of

the system displacements and velocities:[
x R ẋ Ω

]
= stabilisation

(
x̂, R̂, ̂̇x, Ω̂) .

Other function files include the calculation of the rotation matrices from the Euler 313

rotation angles (rot313 matrix.m, for the initial calculation of rotation matrices), and the

LC perm.m and LC perm inv.m functions for calculating the skew-symmetric matrix of a

vector (using equation 2.4) and its inverse for obtaining the vector out of the matrix. Function

files exp map.m, cay map.m, dexpinv.m and dcayinv.m serve for calculating the respective

mappings.

The main solver scripts are the euler int.m, euler int stab.m, rk mk int.m, rk mk int stab.m,

and the same scripts with the Cayley map instead of the exponential map have the suffix

* caym.m. In those scripts the integration algorithm is implemented and the system inte-

grated.

Finally, the computation time measurement procedure of the scripts is presented. Every

script has been run five times consequently, so that for one script five different execution

times (using MATLAB tic and toc statements) were obtained. The mean value of those

times was taken as the relevant computation time.

4.4.2 ADAMS model

Using the system description and parameters definition of section 4.1, the ADAMS model

was introduced as an ADAMS/Solver dataset, i.e. a script containing statements and func-

tion expressions that describe the system at hand. The dataset includes specifications of

mass and inertia properties, geometry, body connections, imposed motions and forces in the
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system. Statements about the analysis control in ADAMS and the output specification [7]

are also included along with geometrical data for graphics output in the dataset. A motion

animation is also obtained as a analysis result.

Figure 4.13: The ADAMS model of the

MBS shown in ADAMS/View.

Figure 4.14: The ADAMS model of the

MBS shown in motion.

On figure 4.13 the ADAMS model is shown when the ADAMS/Solver dataset is imported

into ADAMS/View for visualization and simulation. Also, the system configuration obtained

in ADAMS is presented at a simulation time t on figure 4.14.

Two different datasets are written: one for the motion case 1 and the other for the motion

case 2 (motion cases are described in section 4.5). While modelling the system in ADAMS,

the internal joints definitions of the software have to be kept in mind in order to align the

local joint coordinate systems in such a manner that the software is able to connect all the

bodies correctly. One such example is that for the revolute joint: the local axes zi at the

joint location of the bodies have to be aligned and with the same orientation, while in the

thesis the revolute joint was formulated with the local xi axes aligned (section 4.2.3).

4.5 Results

The case study system is solved for three different motion cases differing in the combina-

tions of motion imposed on the bodies and in the forces acting upon the bodies. In section

4.1.3 the motion cases parameters and formulation is presented.

The simulation time for each motion case is

Tsim = Tend = 60 s,
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during which the satellite manipulator performed the prescribed action or the fault was

detected and the operation stopped. The results of the numerical method (of chapter 3) are

obtained for the fixed integration time step length

h = 0.1 s,

with the exception of one simulation pass of motion case 1, that shows the effect of the time

step, and the analysis of motion case 3.

The results of the motion cases described above are presented in the sequel. Solutions of

motion cases 1 and 2 are also obtained by solving the ADAMS model for control purposes.

The ADAMS solutions are then presented together with the solutions obtained using the

integration method presented in the thesis.

4.5.1 Motion case 1

As it is mentioned above, the motion case 1 solution was obtained both from the ADAMS

model (a reference solution for control) and using the method presented in the thesis. In

order to show that the method presented gives correct results, figure 4.15 shows the slider

rod (body 3) motion from both solutions.
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Figure 4.15: Motion 1: MK vs. ADAMS

solution of body 3 motion for h = 0.1 s.
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Figure 4.16: Motion 1: MK vs. ADAMS

solution of body 3 motion for h = 0.01 s.

The results are shown for the body 3 as its motion is a dynamic DOF: in this way it is

shown that the method presented gives correct results for the system dynamics beside the
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results for DOFs that are controlled kinematically. On figure 4.15 some result discrepancies

are noticed. They follow from the difference in the numerical algorithms of the MK method

and the ADAMS solver: in the MK method a fixed time step is used while ADAMS uses

an integration routine with a variable time step (the solution output time step was chosen

to be the same). When a smaller time step length (h = 0.01 s) is used within the presented

method, an excellent coincidence between results, seen from figure 4.16, is achieved.

Based on the presented results, it is visible that integration results of the presented

method converge to the ADAMS solution when the integration time step is refined. It is

important to mention that the solutions given above are obtained when the stabilisation

algorithm is implemented within the solution algorithm. Figure 4.17 shows the solutions of

the MK method with and without stabilisation.
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Figure 4.17: Motion 1: MK solution of body 3 motion with and without stabilisation.

When the results stabilisation (in every integration step) is not performed the wrong

solution is obtained, i.e. the solution oscillates and the dynamics of the system is different.

In the sequel only solutions obtained using the stabilised integration methods are presented.

In the thesis both the Lie group Euler and Munthe-Kaas integration algorithm for inte-

grating on SO (3) are presented (though the focus is mainly on the MK method) and the

difference between their solution is shown on figure 4.18. It is seen that the difference be-

tween the two solutions is small (10−3) compared to the integration time step (10−1). The

system under consideration in the case study is an open kinematic chain system and the Lie

group Euler method gives solutions comparable to the more sophisticated MK method.

In order to present that the solver gives correct results for coordinates with imposed
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Figure 4.18: Motion 1: Difference between the MK and Lie group Euler methods solution of

body 3 motion.

motions, the relative motion of the slider (body 4) expressed in the slider rod (body 3)

coordinate system is presented on figure 4.19. It is seen that the curve has the shape of the

time function given in equation (4.38).

0 10 20 30 40 50 60
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Slider relative motion

t,s

[X
,Y

,Z
],m

 

 
X
Y
Z

Figure 4.19: Motion 1: Slider motion seen in the slider rod CS.

Finally, all four bodies rotations are presented with a set of four plots given in figure 4.20,

where in each plot the nine components of the respective body rotation matrix are plotted

against time.
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Figure 4.20: Motion 1: Elements of bodies rotation matrices.

4.5.2 Motion case 2

Same as motion case 1, the MK method solution of motion case 2 is compared to the

ADAMS solution of the system. The difference between the motion case 1 is that now the

system has two dynamic DOFs whose motion is not known a priori (i.e. for body 3 it is

controlled, but dynamically). To find this motions the system has to be integrated. On

figures 4.21 and 4.22 the motion of bodies 3 and 4 (slider rod and slider), obtained with

the MK method, is shown in terms of the global coordinate system. On the same plots the

ADAMS solution is presented with dashed lines.

The MK and ADAMS solutions coincide exactly, though the used time step length is the

larger, h = 0.1 s, step. This results coincidence is due to the fact that, in motion case 1, one

of the imposed motions is the slider translational motion with respect to the slider motion.

This motion mathematically manifests as one additional equation which has to be stabilised

at each integration step. When a longer time step is used with that imposed motion, together

with the combination of the larger force that acts on the slider in motion case 1, the solver

is less accurate. The equations have to ”transfer” the force from the slider to the slider rod

at each step and in order to obtain more precise results a shorter time step has to be used in

the motion case 1. In the motion case 2 this is not the case and the slider force is small and
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Figure 4.21: Motion 2: Body 3 motion (MK

and ADAMS ).
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Figure 4.22: Motion 2: Body 4 motion (MK

and ADAMS ).

collinear with the slider translation axis. This results in a smaller gradient in the equations

and, together with the smaller set of equations, a precise solution, even with the larger time

step, is obtained.
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Figure 4.23: Motion 2: Slider motion seen in the slider rod CS.

On figure 4.23 the slider relative motion, seen in the slider rod coordinate system, is

presented. Knowing the fact that on the slider acts a constant force directed along its

translation axis, one could expect its relative motion to be a quadratic function, but it is

not so. The resulting curve is not a purely quadratic function because of the centrifugal
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force that acts on the slider: the centrifugal forces are variable because the slider changes its

position on the slider rod, causing a change in the centripetal acceleration of the slider.

4.5.3 Motion case 3

Results of the motion case 3 are obtained using the MK method with the implemented

stabilisation algorithm and a fixed time step length of

h = 0.01 s,

because of the higher angular velocity of body 1 imposed in the system. The higher velocity

implies that a time step which yields good results for a slower system does not yield the

same quality of results for a faster system. Also, the accuracy of the solution of motion case

3 is affected by the fact that the slider exerts an imposed motion relative to the slider rod,

that influence is explained in section 4.5.2 above.
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Figure 4.24: Motion 3: Body 3 (slider rod) motion (MK method).

On figure 4.24 the motion of the slider rod CoG in the inertial reference frame is shown.

Also, rotation matrices of the system bodies are presented on figure 4.25, where each body

rotation matrix is represented with its nine components in one plot. From the results of

figure 4.25 it is seen that the rotations are large. Furthermore, it is seen that bodies 3

and 4 have the same orientation. That could have been anticipated since these bodies are

connected with the prismatic joint that eliminates relative rotations.
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Figure 4.25: Motion 3: Elements of bodies rotation matrices.

An additional results verification is the check of the rotation matrices properties. Rota-

tion matrices are elements of SO (3) (defined with the relation (2.2)), which are orthogonal

matrices with a positive determinant equal to one. For every simulation time (for which the

solution is calculated) this properties of bodies rotation matrices are checked. Results are

shown on figure 4.26.

Also, this verification, besides proving that the solution remains on SO (3), shows that

the stabilisation algorithm (step 2 of the algorithm given in section 3.4) works correctly and

its solution satisfies the rotation matrices orthogonality condition.

4.5.4 Exponential and Cayley map comparison

The Cayley map was shortly presented in section 3.5.2, where the relation (3.12) for its

practical computation was given. Compared to the exponential map of equation (3.9), it

is seen that the Cayley map is, theoretically, less computationally expensive. This is the

main advantage of the Cayley map, but the existence of singularities in the map are its main

drawback and limit the practical application of the map.

In table 4.5.4 the computation times of different system integration procedures are pre-

sented for both the exponential and Cayley map application. From the results it is seen
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Figure 4.26: Motion 3: Properties of the rotation matrices Ri ∈ SO (3).

that the difference is very small and the Cayley map is faster than the exponential one only

when the Euler method is applied. When the system is solved using the MK method the

computation times are virtually the same and marginally faster in the case of the exponential

map. If the stabilisation algorithm is applied, the computation time is extended significantly

by the stabilisation algorithm. The influence of the stabilisation is then much greater than

the influence of the map used.

Without stabilisation With stabilisation

Texp, s Tcay, s Texp, s Tcay, s

Euler 1.119 1.109 28.775 28.452

RK-MK 3.728 3.729 26.516 26.556

Table 4.1: Solution algorithm computation times for the exponential and Cayley maps.

As the stabilisation has to be implemented in order to obtain correct results, the focus is

laid upon those computation times. It is seen that the MK method is, in the stabilised case,

faster than the Lie group Euler in the context of the presented case. This is due to the fact

that in each integration time step the MK solution is more precise than the Lie group Euler

solution. A more precise intermediate integrator solution makes the stabilisation algorithm

work faster and, consequently, the correct solution of the integration step is obtained faster.
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Conclusion

In this chapter all partial conclusions made in the thesis are summarized and presented.

The conclusions are backed up with the case study results. The method’s advantages are

pointed out clearly.

In chapter 1, it was shown that the dynamics of mechanical systems consisting of more

bodies can be mathematically modelled as a system of differential algebraic equations (DAE

system) which include informations about the system inertia and the bodies connections. By

solving equation (1.8) or (1.7), the motion of the system is obtained and other quantities,

like system forces, forces on a specific element, loads on joints and other data that is required

for system design and strength calculations, can be obtained.

In chapter 2 it was shown that rotations of three-dimensional bodies form a group of spe-

cial orthogonal matrices denoted with SO (3). The special properties of this group, together

with the geometrical interpretation of the group (SO (3) is a manifold with elements that

posses group properties, i.e. it is a Lie group), provide the basis for developing integration

methods that integrate the body rotational motion directly on the Lie group, while respect-

ing the group structure and properties at the same time. In order to be able to integrate on

the group, the differential equations have to be formulated on the Lie group and the general

solution form obtained. It was shown that the exponential map is the solution of the initial

value problem presented and solved in section 2.3.4. Thus, the exponential map provides

mathematical means used for developing integration methods on the manifold.

After the integration methods presentation, a case study was performed to show the

advantages of the method. The Lie group integration methods presented in the thesis yield

correct results, where the reference results (taken to be correct) are the ADAMS results. The

effect of the time step length used in the integration methods is seen from the results (see
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section 4.5.1). Also, the time step influence depends upon the system formulation. Different

systems (motion cases) give different result errors for the same integration time step length

h in the case of Lie group methods. Motion cases 1 and 2 (see sections 4.5.1 and 4.5.2) show

this influence.

Within the presented Lie group integration methods, a constraint violation stabilisation

algorithm, based on solving the least squares problem, is described. The stabilisation algo-

rithm numerically minimizes the constraint violation at the velocity and displacement level,

thus returning the solution on the system configuration manifold.

One of the main advantages of Lie group formulation is the non-existence of singularities

that would have occurred if the system had been formulated in vector space and integrated

using a standard integration method. Therefore, motion case 3 was formulated (see section

4.5.3) to present results for the case of large rotational domains. If the local parametrizations

of SO (3) have been used, singularities would be encountered.

Figure 5.1: Motion 3: Euler ψ, θ and ϕ rotation angles of the system bodies.

On figure 5.1 the Euler angles of the system bodies are presented for the motion case 3.

The angles were obtained by post-processing the rotation matrices of the bodies. The Euler

rotation angles domain is −π ≤ θi ≤ π. From the result plots two singularity occurrences

for the body 1 motion and one occurrence for the body 2 motion are noticed. Bodies 3 and

4 motion is such that their rotations are not so large and singularities don’t occur.
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Since they operate directly with angular velocities and rotation matrices, the Lie group

integration methods of chapter 3 are able to solve large rotational motions of the system

without encountering singularities. This conclusion follows from the results presented on

figure 5.1.

The Lie group integration methods circumvent problems of kinematic singularities that

arise due to the use of rotation parametrizations. The need for re-parametrizations is, thus

avoided. Within the presented case study, the methods showed numerical robustness and

accuracy as the results are coincident with the ADAMS results. Also, the methods are easy

to implement on general multibody problems.

97



References

[1] H. Baruh. Analytical Dynamics. WCB/McGraw-Hill, 1999.

[2] E. Celledoni and B. Owren. Lie group methods for rigid body dynamics and time

integration on manifolds. Computer methods in applied mechanics and engineering,

(192):421–438, 2003.

[3] A. Iserles, H. Z. Munthe-Kaas, S. P. Norsett, and A. Zanna. Lie-group methods. Acta

Numerica 2000, 9:215–365, 2000.

[4] J. V. Jose and E. J. Saletan. Classical dynamics: a contemporary approach. Cambridge

University Press, 1998.

[5] E. Kreyszig. Advanced engineering mathematics. John Wiley & Sons, 9th edition, 2006.

[6] A. Morawiec. Orientations and Rotations: Computations in Crystallographic Textures.

Springer, 2004.

[7] MSC Software Corporation. ADAMS/Solver MDR3 manual, October 2009. Availible

at http://simcompanion.mscsoftware.com.

[8] B. Schutz. Geometrical methods of mathematical physics. Cambridge University Press,

1980.

[9] Z. Terze and A. Eiber. Dynamics of Multibody Systems: modelling concepts and ap-

plications. http://www.fsb.unizg.hr/aero/, 2009. Internal version.

[10] Z. Terze and J. Naudet. Geometric properties of projective constraint violation stabi-

lization method for generally constrained multibody systems on manifolds. Multibody

System Dynamics, (20):85–106, 2008.

98



Master thesis REFERENCES

[11] Z. Terze, D. Zlatar, and A. Müller. Lie-group integration method for constrained multi-

body systems. Proceedings of ECCOMAS Thematic Conference Multibody Dynamics

2011, Brussels, Belgium, July 2011.

[12] Z. Terze, D. Zlatar, and A. Mueller. Lie-group integration method for constrained

multibody systems in stabilized DAE index 1 form. Multibody System Dynamics, To

appear.

99


	List of Figures
	List of Tables
	List of Symbols
	Abstract
	Extended abstract (Croatian)
	Introduction
	Dynamics of mechanical systems
	System degrees of freedom and generalized coordinates
	Constraints
	Modelling of dynamical systems

	Manifolds
	Manifold definition and properties
	Functions
	Curves
	Vector fields and vector spaces
	Vector fields commutation

	Manifolds in multibody system dynamics
	The tangent bundle
	Properties of tangent bundles
	Dynamics on tangent bundles


	Rotations and the SO( 3) group
	Mathematical description of rotations
	Groups

	Rotations as a group
	Rotation parametrizations
	Euler's and Chasles's theorems

	The SO( 3) group
	SO( 3) as a differential manifold
	SO( 3) as a Lie group
	Lie algebra
	Exponential mapping


	Lie group integration method for constrained MBS
	The embedded manifold and parametrizations
	Local parametrization of SO( 3)
	Correlation between vector spaces at different points on SO( 3)

	Integration methods
	MBS configuration space
	MBS integration based on the Lie group Euler method
	MBS integration based on the MK integration method

	Constraint violation stabilisation algorithm
	Mappings calculation
	Exponential mapping calculation
	Cayley mapping calculation


	Case study
	Multibody system description
	Bodies parameters
	System initial conditions
	Motion cases

	Constraint equations formulation
	Fixed point constraint
	Spherical joint
	Revolute joint
	Prismatic joint
	Rheonomic constraints

	System governing equations
	Algorithm implementation
	MATLAB implementation
	ADAMS model

	Results
	Motion case 1
	Motion case 2
	Motion case 3
	Exponential and Cayley map comparison


	Conclusion
	References

