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SAŽETAK 

Generalni pristup kod kreiranja virtualnih scenarija potrebnih za validaciju i testiranje 

automatskih sustava u vozilima tipično se sastoji od opremanja vozila s nekom senzorskom 

konfiguracijom. Konfiguracije mogu uključivati, kameru, radar, LiDAR itd. Nakon što se 

odabere senzorska konfiguracija, podaci se prikupljaju vožnjom na stvarnim cestovnim 

segmentima. Podaci koji su sakupljeni su nakon toga procesuirani/anotirani kako bi se 

rekonstruirale trajektorije vozila u pokretu, koje se koriste kao ulazni podatak u procesu 

generiranja virtualnih scenarija iz snimljenih podataka. Tijekom procesa anotacije podataka i 

procesuiranja i zbog netočnih senzorskih podataka, trajektorije mogu biti netočno određene što 

dovodi do mogućih grešaka u generiranim scenarijima. Unutar ovog diplomskog rada, potrebno 

je razviti algoritam za lokalizaciju popratnih vozila unutar cestovne mreže s naglaskom na 

estimaciju i ispravljanje lateralne pozicije vozila unutar vozne trake koristeći set snimljenih 

slika i GPS podataka. Algoritam će koristiti module umjetne inteligencije za detekciju linija i 

objekata kako bi se estimirao položaj vozila na cesti. Detektirana vozila će zatim biti uparena s 

vozilima iz snimljenih trajektorija. Finalno, metoda za procjenu lateralnog pomaka mora biti 

razvijena, a podaci ispravljeni. Algoritam također mora biti verificiran. Cilj je smanjenje 

nedosljednosti lateralnog pomaka između snimljenih podataka i pripadajuće cestovne mreže 

tako da u simulaciji imamo istu situaciju koja se dogodila u stvarnome svijetu. 

 

 

Ključne riječi: testiranje s pomoću scenarija, anotirane trajektorije, lateralni pomak, ispravljanje 

podataka. 
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SUMMARY 

 

The general approach to creating virtual scenarios required for validation and testing of 

automatic systems in vehicles typically involves equipping the vehicle with a certain sensor 

configuration. This sensor configuration can include cameras, radars, LiDARs etc. After the 

sensor configuration is picked, data is collected through real driving on certain road segments. 

The collected data is then processed/annotated in order to reconstruct the trajectories of 

moving/dynamic objects, which are then used as input data in the process of generating virtual 

scenarios from the recorded driving data. Throughout this process of data annotation and 

processing, and due to noisy sensor data trajectories can be incorrectly determined which 

consequently leads to possible errors in the generated scenarios. Within the scope of this Master 

Thesis, it is necessary to develop an algorithm for the localization of accompanying („fellow“) 

vehicles within the road network with an emphasis on the estimation and correction of the 

lateral position of the vehicle within the lane using a set of recorded camera images and GPS 

data. The algorithm will use AI modules for line and object detection to estimate vehicle 

position on the road. Then detected vehicles have to be matched with the vehicles from the 

recorded trajectories. Finally, a method for lateral offset estimation needs to be developed, and 

data has to be corrected. The algorithm needs to be verified. Aim is to reduce lateral position 

inconsistencies between the recorded trajectories and the corresponding road network so that in 

the simulation we have the same situation as it happened in the real world. 

 

Key words: scenario-based testing, generated scenarios, annotated trajectories, lateral offset, 

data correction.  
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PROŠIRENI SAŽETAK 

Ovaj rad izrađen je u suradnji s tvrtkom dSPACE Engineering d.o.o. u Zagrebu koja je 

podružnica njemačke tvrtke dSPACE. Navedene tvrtke bave se pružanjem rješenja za 

simulacije i validacije diljem svijeta u svrhu razvijanja umreženih, autonomnih te električno 

pogonjenih vozila. 

Cilj ovog diplomskog rada je razviti algoritam koji će ispravljati bočne položaje vozila 

na temelju podataka dobivenih s pomoću modula umjetne inteligencije. Koristeći module za 

prepoznavanje objekata te za prepoznavanje linija vozila su grupirana u trake po kojima voze. 

Nakon što su se vozila grupirana, povezana su s vozilima iz trajektorija. Povezana su na način 

tako da su koordinate vozila iz trajektorija transformirane iz globalnog koordinatnog sustava u 

koordinatni sustav slike te su povezana s odgovarajućim vozilom. Bočni položaj vozila je 

estimiran na način tako da se gledao položaj graničnog okvira dobivenog AI modulima unutar 

vozne trake. Nakon što se dobio položaj, koordinate iz trajektorija su ispravljene prema 

dobivenim podacima. 

Istraživanje [1]  govori o tome da kako bi se ispunili zahtjevi funkcionalne sigurnosti  

za autonomnu vožnju (ISO 26262) autonomno vozilo mora biti testirano na stotine milijuna 

kilometra. Kako stvarne testne vožnje rezultiraju u povećanom riziku za testnog vozača tako i 

s visokom cijenom po kilometru. U zoni interesa nije samo veliki broj kilometara nego i 

reprezentacija relativnih i kritičnih kilometara. Prema tome svoju primjenu pronalaze testiranja 

u laboratoriju. Testni kilometar može biti standardiziran te je također jeftiniji. Virtualne testne 

vožnje podijeljene su u dva stadija, a to su testiranja Software-In-Loop (SIL) koji se fokusira 

na validaciju algoritama neovisno o vremenskim ograničenjima. Testovi se mogu provoditi 

prije nego hardver uopće i postoji. Drugi stadij, Hardware-In-Loop je stadij u kojem je finalna 

hardverska platforma (Electronic Control Unit) ECU spojena na simulator koji oponaša 

ponašanje pravog auta te se tako simulira cjelokupan hardver zajedno s softverom. Relativno 

na razvitak autonomne vožnje, sve više i više funkcija se ugrađuje u ECU stoga je testiranje bez 

virtualnih metoda skoro pa nemoguće. 

Kod virtualnog simuliranja na temelju scenerija, scenariji igraju jaku bitnu ulogu jer što 

je scenarij točniji, stvarni uvjeti će biti točnije prikazani te će samim time i testiranje biti sličnije 

realnom svijetu. Scenariji se prikupljaju tako da testno vozilo s nekom senzorskom 

konfiguracijom prikuplja podatke te se ti podaci još dodatno anotiraju te se u tome javljaju 

greške, zbog šuma, greške senzora, greške anotatora itd. Kroz ovaj rad će se ispraviti greške  



Matija Mužar Master's thesis 

Faculty of Mechanical Engineering and Naval Architecture IX 

bočnog položaja vozila te će se tako poboljšati točnost kvaliteta snimljenih trajektorija. Ovaj 

rad je organiziran u 6 poglavlja te je na kraju dat zaključak. 

Poglavlje 1 –  'Uvod ' –  U uvodu je dan kratak opis trenutačnog stanja automobilske 

industrije te je opisan postupak kreiranja virtualnih scenarija. Nakon toga je opisana 

problematika kojom se bavi ovaj diplomski rad te je opisan pristup ka rješenju. 

Poglavlje 2 – ' Materijali i metode ' – Unutar ovog poglavlja opisani su ulazni podaci 

koji se sastoje od videa/slika, mape ceste te trajektorija vozila. Predstavljeni su korišteni moduli 

umjetne inteligencije, a to su modul za prepoznavanje linija te modul za prepoznavanje objekata 

te su opisani njihovi ulazno/izlazni parametri. 

 Poglavlje 3 –  ' Identifikacija trake' – U ovom poglavlju opisani su izlazni parametri 

modula umjetne inteligencije za prepoznavanje linija. Opisan je postupak procesuiranja 

podataka te su spomenuti neki od algoritama koji su korišteni prilikom istog. Opisan je postupak 

grupiranja detektiranih linija u vozne trake. Također je i opisan način kako su se detektirane 

vozne trake uskladile s voznim trakama koje su zadane u trajektorijama. 

 Poglavlje 4 –  ' Estimacija lateralnog pomaka' – Ovo poglavlje govori o metodama 

korištenim za pronalaženje bočnog pomaka detektiranih vozila. Predstavljena su dva pristupa 

za računanje bočnog pomaka te je za svaki od njih detaljno objašnjen. 

 Poglavlje 5 –  'Uparivanje vozila' – Unutar ovog poglavlja obrađeno je projiciranje 

globalnih koordinata u koordinatni sustav kamere. Objašnjeni su koordinatni sustavi te 

transformacije koje ih povezuju. Nakon što su koordinate vozila prikazane u koordinatnom 

sustavu slike, detektirana vozila su povezana s vozilima koja su detektirana AI modulom za 

prepoznavanje objekata. 

 Poglavlje 6 – 'Ispravljanje podataka' – Ovo poglavlje govori o načinu kako su podaci iz 

trajektorija ispravljani. Opisuje kako se podaci dobiveni u poglavlju 4 koriste ka ostvarivanju 

cilja ovog diplomskog rada, a to je ispravljanje trajektorija. 

Poglavlje 7 – 'Rezultati' – U ovom poglavlju vizualizirane su dobivene trajektorije. 

Dobivene ispravljene trajektorije su dodatno uspoređene originalnim neispravljenim 

trajektorijama. Također, ispravljene trajektorije su dodatno uglađene korištenjem jednog od 

filtra. Dobiveni podaci prvo su prikazani za testni skup podataka, a nakon toga i na cijeli skup 

podataka. 
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Poglavlje 8 – 'Zaključak' – Unutar zaključka opisana je uspješnost algoritma u estimaciji 

i ispravljanju lateralnog pomaka zajedno sa svim ostalim njegovim zadaćama. Spomenuta su 

neka od ograničenja algoritma te su predložena poboljšanja samog rada.  
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1. INTRODUCTION 

 

1.1. Background  

 

Car industry is one of the biggest world industries and a key driver of global economies. 

Also, it's one of the leaders is innovative engineering solutions. Current state of the car industry 

is that it's leaning more and more towards development of autonomous vehicles. Huge global 

car companies are investing in AI-driven solutions for safer and more efficient driving. To fulfil 

the requirements of functional and effective testing for autonomous driving, autonomous car 

needs to be test driven on thousands of kilometres. One of the approaches in testing is scenario 

based testing which is usually performed in simulation with Software-in-the-loop (SIL), but can 

also be performed with Hardware-in-the-loop (HIL) or in the real world on polygons. Important 

piece of information for scenario based testings are generated scenarios. Generated scenarios 

are generally created by equipping the vehicle with a certain sensor configuration and collecting 

the data through real driving on certain road segments. The collected data is then 

processed/annotated in order to reconstruct the trajectories of moving/dynamic objects which 

are then used as input data in the process of generating virtual scenarios from the recorded 

driving data. The Process of data annotation is shown in Figure 1.1: 

 

Figure 1.1: Process of data annotation. 
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Company responsible for data annotation for dSPACE is Understand.ai. Throughout this 

process of data annotation and processing and due to noisy sensor data, trajectories can be 

incorrectly determined which consequently leads to possible errors in the generated scenarios.  

1.2. Problem analysis and approach to the task  

 

The main problem that this thesis is trying to solve is that lateral position of accompanying 

vehicles in generated scenarios is inaccurate. Main two sources of error come from labelling 

error and measurement error. Lateral position of the surrounding vehicles can be inaccurate in 

two ways, lateral offset can be determined wrong, but vehicle is still in correct lane or lateral 

offset is determined wrong, but also the driving lane is wrong. Figure 1.2 shows those two 

cases: 

 

Figure 1.2: Possible lateral offset mistakes. 

 

The approach to the problem is following: AI modules for line detection and object 

detection are used to detect moving object and lane lines. Results from the modules are 

processed and detected objects are grouped into driving lanes that they are driving in. After 

they are grouped into the lanes, lateral offset is calculated in two ways. To connect data from 

the image and from the trajectory detected objects are matched with objects from the data. That 

is done in a way that objects from trajectories are projected to the image plane via multiple 

coordinate system transformations and matched to detected vehicles. Data is then corrected and 

results are presented.  
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2. AVAILABLE DATA AND MODELS 

Main focus of this chapter will be on the interpretation of the input data and the AI models 

that were provided by the company. Output of both AI models will be presented and some of 

the algorithms used in output data processing will be described. Finally, outputs will be 

visualised and conclusion will be given. 

This chapter starts with introduction of the available input data and related data types. 

Next, the ONNX format in which AI models are provided is introduced. Then, Lane Line 

Detection model and Object Detection model are briefly described. Finally, post-processing of 

output data for Object Detection model is described.  

 

2.1. Input data 

 

Input data to be used includes the camera video (split into a set of images), object list data 

with all the annotated trajectories for dynamic objects and the corresponding road network map. 

 

2.1.1. Camera images/video 

 

The camera data contains the relative lateral positioning between the vehicle and the 

road network. The lane markings on highways are often clearly defined and can help to 

determine the correct lateral position of the vehicles.  

Camera data consists of video of the road which lasts 3 minutes and 29 seconds. Video 

is divided into 4180 pictures which is approximately 20 frames per second. Each of those 

pictures is then loaded and processed in Python. Figure 2.1 shows example of the camera image. 
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Figure 2.1: Example of input image. 

 

Camera data is collected with camera and LiDAR setup. Camera used is SC5-IMX490C-5300-

GMSL2 with the resolution of 2880*1860. Camera uses Sony's IMX490 RGGB 5.44 Mega 

Pixel sensor [2].  
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Figure 2.2: Camera used for data collection. 

 

2.1.2. Annotated trajectories 

 

As mentioned in the introduction, part of the process in creating virtual scenarios is data 

collection, which is then processed/annotated in order to reconstruct trajectories. These 

trajectories of moving objects are used as input data. For every dynamic object, a set of 

coordinates is assigned for every frame/timestamp. Each timestamp is matched with two 

corresponding images. Figure 2.3 shows illustration of trajectory assignment per dynamic 

object in object list.  
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Figure 2.3: Format of trajectory data for dynamic objects stored in object list data. 

 

2.1.3. Road network map 

 

The road network-related map data is in OpenDrive format. It provides information 

about the individual road elements (as components of road network), their number of lanes and 

the lane widths, that can be used to transform into the position estimations obtained from the 

camera data to determine the absolute trajectories of the vehicle. 

Assumption is that the map data is the ground truth, because in case of HD maps the 

road network is probably more reliable than the annotated trajectories. Likewise, it is easier to 
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modify the trajectories than the road network. Figure 2.4 shows the graphical representation of 

the road network map. 

 

 

Figure 2.4: Graphical representation of road network map [3]. 

 

2.2. ONNX models 

 

Both of the models are given in Open Neural Network Exchange (ONNX) format. This 

format presents a common format used for representing deep learning models that can be then 

later executed by multiple frameworks, including TensorFlow, PyTorch, etc. ONNX format is 

useful because any model can be formatted into ONNX format, and from ONNX can be 

converted back into any desired framework. Also, it is efficient and can be run on a wide range 

of hardware (GPU, CPU). Provided models were run using Python library ONNX Runtime. 

Generally speaking, ONNX Runtime is engine that allows users to optimize and accelerate 

machine learning inferencing [4], [5].  

 

2.2.1. Lane Line Detection model 

 

Lane Detection model detects lines on images and sorts them by type (solid line, dashed 

line, boundary, etc.). Input to model is score threshold and image which is imported using 

python Open CV library. When image is loaded it is then converted into the array and resized 

to match the format that model provides. Before running the model, the related configuration 
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must be loaded. Model configuration is provided in .yaml format and contains information 

about the model and about the model output. 

After the model inputs and the configuration are prepared, model is ran using the main 

class of the ONNX Runtime library called InferenceSession.  

Output of the model contains some information about the image. Most important 

information it contains are points, scores and classes for each point. Score describes how well 

model predicted something, i.e., reliability in prediction. Points that belong to certain class 

present the line group that was detected. Using the Matplotlib's function scatter() we can 

visualise the model output. Figure 2.5 shows output of the Lane Line Detection model laid over 

the original/input image.  

 

Figure 2.5: Input image with scattered points. 

 

In Figure 2.5 it is visible that points are scattered in three colours: pink, red and blue. Each 

colour presents a different class to which point belongs. Points drawn pink belong to class 

„Barrier“ where red points belong to class „Solid Line“ and blue points belong to class „Dashed 

Line“.  

Model has some limitations and those are that it only works on a highway since it is 

trained on highway data set, and detected lines do not cover the full length of the road in some 

cases. 
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2.2.2. Object Detection Model 

 

Object Detection Model detects objects (that can be moving vehicle, traffic sign etc.) on 

images and sorts them by classes they belong to. Herein it is necessary to distinguish between 

two terms: „ego“ and „fellow“ vehicle. Ego vehicle refers to a vehicle that is equipped with 

sensors and perceives the surrounding environment, i.e. the surrounding traffic consisting of 

pedestrians, static objects and accompanying vehicles, which are called fellow vehicles. 

Similarly, as the Lane Line Detection model, the Object detection model also takes 

image as an input together with the score threshold.  

Outputs of the Object Detection model are points and classes to which points belong. 

Those points present starting and ending coordinates of the bounding box around the object that 

was detected. Figure 2.6 shows those detected points on input image.  

 

Figure 2.6: Input image with detected bounding box points. 

Using Python library Matplotlib and its function Rectangle bounding boxes are visualised. To 

differentiate between different classes to which detected objects belong, bounding boxes are 

plotted in different colours. Also, the labels with vehicle ID and class (i.e., vehicle category), 

were added, as shown in Figure 2.7.  
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Figure 2.7: Input image with detected bounding boxes and labels. 

 

Same as the previous model, Object Detection model also has some limitations, it only 

works on highway data same as previous model, 2D bounding boxes are not accounting for 

driving direction (heading angle), and it is front camera support only, meaning only fellows 

positions that are in front of ego can be estimated.  
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3. LANE IDENTIFICATION 

This section describes some of the methods and algorithms that are used when post-

processing the output data of the Lane Line Detection and Object Detection models. 

Afterwards, the method that is used to identify the driving lane of the fellows is described. 

Finally, the process of mapping detected lanes with lanes from the road network map is 

described. 

3.1. Determination of road lane lines  

After the points were outputted/predicted with Lane Line detection model, next step is 

connecting those points into the lines which then represents the road lane lines. Problem that 

occurs is that points are provided in the separate lists, where each list contains all the points that 

belong to one class. For example, all the “blue” points which belong to multiple lines are 

grouped into a single list. To separate those groups of points into lane lines, the clustering 

algorithm was used. 

The applied algorithm is DBSCAN from the Python Scikit-learn library, which contains 

many efficient tools for machine learning and statistical modelling. DBSCAN-Density Based 

Spatial Clustering of Applications with Noise finds core samples of high density and expands 

clusters from them. In general, algorithm is suitable for data which contains clusters of similar 

density [6]. 

When data was separated into clusters, another algorithm from Scikit-learn library was 

used, RANSACRegressor. [7] RANSAC (RAndom SAmple Consensus) algorithm is an 

iterative algorithm for the robust estimation of parameters from a subset of inliers from the 

complete data set. The algorithm splits the complete input sample data into a set of inliers, 

which may be subject to noise, and outliers, which are, e.g., caused by erroneous measurements 

or invalid hypotheses about the data. The resulting model is then estimated only from the 

determined inliers. Figure 3.1 presents the visualized output of the Lane Detection model after 

using clusters and RANSAC algorithm on the output data of AI model.  
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Figure 3.1: Detected lines using RANSAC and Cluster algorithm. 

 

Next step needed to determine the fellows position is to sort lines in order, e.g., from 

left to right if the leftmost boundary line is detected, so that we can use that information during 

mapping of detected lanes to the road network map. Lines were sorted in a specific way. First 

step in sorting the lines is to calculate the slope of each line. With the slope being positive or 

negative, we split them into two groups. Lines with positive slopes are on the left side of the 

ego vehicle and lines with negative slopes are on the right side of the ego. That information is 

very valuable because we can extract number of lanes on left side of the ego and number of 

lanes on right side of the ego. Thanks to that information, we can get an ego position and know 

in which lane ego is situated in some cases where it is possible to calculate.  

Lines are sorted into the list so that leftmost line comes in at a first place in a list, while 

the rightmost line comes last in a list. To get that list, first step is to add lines with positive slope 

since they are on left side of the ego thus they are always more left than lines with negative 

slope. That is achieved by calculating the distance between point at the start of the line (closest 

to the camera) and the point on top left corner (image origin in pixel coordinates). Since we are 

in image/pixel coordinate system point in the top left corner has coordinates (0, 0). Line with 

the smallest distance comes first in list which means that it is leftmost line. Points on lines that 

are closest to ego camera were calculated using min/max functions in Python. Figure 3.2 shows 

those distances. Pink line presents barrier, so it was ignored in distance calculation. 
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Figure 3.2: Distance calculation for lines with positive slope. 

 

Lines with negative slope were sorted with the same logic as the lines with positive slope, only 

difference is that reference point for calculating the distance was not point (0,0) but instead 

point(2880, 1860) which presents point in the bottom right corner as shown in Figure 3.3: 

 

 

Figure 3.3: Distance calculation for lines with negative slope. 
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After the lines with negative slopes were sorted in a way so that line with the least distance 

comes first and line with most distance comes last, they were appended to a list which now 

contains sorted lines. 

3.2. Identification of driving lanes for fellows 

 

 Method for identifying the driving lane of the fellows includes the polygon creation, 

where each polygon represents the corresponding lane boundaries, and then checking in which 

polygon the fellow is situated. The polygons are created by using the Python's library Shapely, 

while the check if fellow is within a polygon is realized by using the .within() function in 

Python. 

  First step in doing that is to find the reference points of bounding boxes that will be 

used for „is-fellow-within-polygon“ checks. Reference points x-coordinates are calculated 

simply as arithmetic mean of starting and ending bounding box x-coordinates, while the y- 

coordinates are equal to bounding box ending coordinates provided by Object Detection model 

output. 

 

Figure 3.4: Bounding boxes with corresponding reference points. 
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After the fellows reference points are determined, three different types of polygons are created.  

First, the polygon aims to filter out the irrelevant traffic objects, i.e., the ones which are 

part of oncoming traffic. It is constructed from point (2880,0) in pixel coordinates, which is the 

top right corner, the end point of the last lane line (point with the smallest x value) and the last 

point is the intersection between the elongated last lane line and line that goes through 

coordinates (2880,0) and (2880. 1860), representing the right edge of the image, as shown in 

Figure 3.5. 

 

Figure 3.5: First polygon which filters out the irrelevant oncoming traffic objects (marked 

with yellow dashed lines). 

 

 The second polygon aims to filter out the out-of-scope traffic objects, i.e., objects left 

of the leftmost detected lane line, e.g., in the case of a road section whose number of lanes 

exceeds the limitations of Lane Line Detection model. It is constructed from the end point of 

the first lane line (point with biggest x value), point (0,0) which is in the top left corner, and the 

point at coordinates (0, y), where y is representing the y coordinate of the intersection of the 

first lane line and line between points (0,0) and (0,1860), representing the left edge of the image, 

as shown in Figure 3.6. 
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Figure 3.6: Second polygon which filters out the „out-of-scope“ traffic objects  

(marked with magenta dashed lines). 

 

The third polygon defines the area of a certain driving lane, which is created by each 

pair of lane lines from the list of lane lines. 

 

Figure 3.7: Third polygon example for lane number one (marked with red dashed lines). 
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Final step after post-processing of Lane Line Detection model data together with Object 

Detection model data is to combine them and visualize it on the same image, as shown in Figure 

3.8: 

 

Figure 3.8: Example camera image with Object Detection and Lane Line Detection results. 

 

All the information about the detected fellows on an image are stored in a special dictionary 

fellows_position, which is structured as follows: 

{'lanes': {1: [{'matches_to_lane': ''}, 

               {'bbox': (1160, 906, 1266, 1017), 

                'bbox_ref_point': {'u': 1213, 'v': 1017}, 

                'class': 'Car', 

                'id': '0.0', 

                'scores': '0.7557713'}], 

           2: [{'matches_to_lane': ''}, 

               {'bbox': (1382, 858, 1506, 996), 

                'bbox_ref_point': {'u': 1444, 'v': 996}, 

                'class': 'Truck', 

                'id': '1.0', 

                'scores': '0.6120546'}], 
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           3: [{'matches_to_lane': ''}], 

           'out_of_scope': [], 

           'unconsidered': [{'bbox': (2086, 799, 2503, 1038), 

                             'bbox_ref_point': {'u': 2295, 'v': 1038}, 

                             'class': 'Truck', 

                             'id': '1.0', 

                             'scores': '0.79898787'}]}}   

 

3.3. Lane matching 

 

Next step after the lanes were detected in camera image is to match those detected lanes 

with lanes from the OpenDRIVE road network map.  First step is to load the data from the road 

file that is in OpenDRIVE format. After the data is loaded, it is then reorganized and written in 

an output file called Road Network Data in JSON format.  

 

Figure 3.9: Road Network Data output file format. 
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Formatting data in that way gives a much more cleared and organised view into the data. 

Most important part of Road Network Data are identified driving lanes, for each road network 

element (i.e., road or junction element). They are put in a list and assigned as a value to key 

driving_lanes. This list is then used for matching.   

 

Figure 3.10 shows that for the road network element (RNE) with ID '“2_0“ the leftmost lane, 

relative to the moving direction (marked with red arrows), corresponds to OpenDRIVE lane ID 

'-2'. Likewise, by looking at the Figure 3.11 it is visible that the rightmost detected lane 

corresponds to OpenDRIVE lane ID '-4'.  

 

 

Figure 3.10: Leftmost lane. 

 

Figure 3.11: Rightmost lane. 

 

Before the lanes were matched, another piece of information is important, and that is 

information about whether the left and right barriers are detected. Lanes can only be matched 

if one of the barriers is detected or if the number of lanes is 5. The reason for that is the limitation 

of the AI models so that a maximum of 5 road lanes can be detected. If one of the barriers is 

detected, there is a reference for matching the lanes. If there are no references, but there is 

information that there are 5 lanes, and with the limitation that only 3 lanes are detectable, it can 

be assumed that ego is in the middle lane and the two lanes that are not detected are lanes next 

to barriers. All the cases that were taken into concern are presented in the figures below. In the 

figures, red lines present detected barriers, green lines present detected barriers and black lines 

present lines that were not detected. The ego vehicle is painted blue, and the fellow vehicle is 

painted red. 
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Figure 3.12: Left barrier 

detected. 

 

 

Figure 3.13: Right barrier 

detected. 

 

 

Figure 3.14: Both 

barriers detected. 

 

 

 

Figure 3.15: None of the barriers are 

detected, number of lanes is 5  

(solvable case). 

 

 

Figure 3.16: None of the barriers are detected, 

number of lanes is > 5  

(unsolvable case). 

 

 

In the case when only the left barrier is detected, visible in Figure 3.12, the first element 

of the list of lanes from road network data is matched with the first lane detected (i.e., leftmost 

lane). The second lane is matched with the second lane from the left and so on. Information 

about which lane from road network data matches with the detected lane is stored as value to a 

key matches_to_lane for every lane.  

If only the right barrier is detected, visible in Figure 3.13, matching starts from the last 

member of the list of lanes from road network data with the rightmost lane (i.e., last in the list 

of detected lanes), and so on. In the case of both barriers being detected, visible in Figure 3.14 

match starts from the left, by convention. 

In cases where no barriers are detected, presented in Figure 3.15 and there are 5 driving 

lanes, matching starts from the ego lane, meaning ego lane is the middle one. The number of 

lanes is calculated using information about detected lines. That lane is then matched with the 

middle lane of the driving lanes. 
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In cases where no barriers are detected and there are more than five lanes, matching is 

not possible because ego position cannot be determined. That case is visible in Figure 3.16.  

Each of these mentioned cases is saved together with ego lane information as an 

„observation case“ and annotated on the image for better data visualisation with some extra 

information, as is shown in Figure 3.17:  

 

 

Figure 3.17: Example image with detection results, including the additional observation case 

information put at top. 

 

After the lane matching is done, dictionary fellows_position for detected lane number 1 looks 

as follows:  

{'lanes': {1: [{'matches_to_lane': -2}, 

               {'bbox': (1160, 906, 1266, 1017), 

                'bbox_ref_point': {'u': 1213, 'v': 1017}, 

                'class': 'Car', 

                'id': '0.0',, 

                'scores': '0.7557713'}]} 

   

It is noticable that now key „matches_to_lane “ has a value. 
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4. LATERAL OFFSET ESTIMATION 

This section describes how lateral offsets of fellow vehicles are found. Two solutions will 

be presented together with their advantages and disadvantages.  Comparison of their results will 

be presented in section 7 later on. 

4.1. Lateral offset estimation via horizontal intersections 

 

First solution for lateral offset calculation uses intersections between the horizontal line 

going through bounding box lower middle point (reference point) and lines that define the lane 

in which fellow currently is driving. Solution is implemented in the python using the function 

which takes as an input 4 points and outputs one point, intersection. First, input points are two 

points that belong to the left line and other two points are bounding box reference point and 

point (0, bounding box ref.point Y). The output point is the intersection between the horizontal 

line going through bounding box reference point and left lane line. Same principle is repeated 

for the right lane line. Calculus used to find that intersection will be described in the following 

text.  

To find intersection between two lines, first step is to solve system of linear equations 

that present each line, and those lines describe the fellow lane. Lines are described with 

following equations: 

 𝑎1𝑥 + 𝑏1𝑦 =  𝑐1 (1) 

 

 𝑎2𝑥 + 𝑏2𝑦 =  𝑐2 (2) 

 

Solving these two equations, we get formulas how to find x and y coordinates of an intersection: 

 
𝑥 =

(𝑏2 ∗  𝑐1 −  𝑏1 ∗  𝑐2)

𝑎1 ∗ 𝑏2 −  𝑎2 ∗ 𝑏1
 

(3) 

 

 
𝑦 =

(𝑎1 ∗  𝑐2 −  𝑎2 ∗  𝑐1)

𝑎1 ∗ 𝑏2 −  𝑎2 ∗ 𝑏1
 

(4) 

It is visible that expressions (3) and (4) have unknown parameters that have to be found. They 

are found using the equation for the line between two points. Each point is given in coordinates 

as following:  
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 𝐴(𝑥1, 𝑦1)  

 

 𝐵(𝑥2, 𝑦2)  

 

Distance between two points can be calculated using the formula:  

 

 𝑦 − 𝑦1 =
𝑦2 −  𝑦1

𝑥2 −  𝑥1
∗ (𝑥 − 𝑥1) (5) 

 

Rewriting expression (5)  we get:  

 

 𝑥 (𝑦2 − 𝑦1) + 𝑦(𝑥1 − 𝑥2) − 𝑥1𝑦2 −  𝑥2𝑦1 = 0 (6) 

 

By comparing expression (6) to line equation in the expression (1): we can see that some 

unknown parameters for expression (3) and (4) can be calculated as following:  

 

 𝑎1 =  (𝑦2 −  𝑦1) (7) 

 

 𝑏1 =  (𝑥1 − 𝑥2) (8) 

 

 𝑐1 =  − 𝑥1𝑦2 − 𝑥2𝑦1 (9) 

 

Expression (9) can be more simplified and can be rewritten as:  

 

 𝑐1 =  𝑎1𝑥1 +  𝑏1𝑦1 

 

(10) 

That process of distance calculation is done for the first two points that are input to function 

that calculates lines intersection and also for last two points that describe other lane. Parameters 

that describe the second line can be calculated as following:  

 𝑎2 =  (𝑦4 −  𝑦3) (11) 
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 𝑏2 =  (𝑥3 −  𝑥4) (12) 

 

 𝑐2 =  𝑎2𝑥3 +  𝑏2𝑦3 (13) 

 

When intersections are found, their coordinates are used to calculate the distances from 

bounding box lower midpoint. First distance is distance between fellow and left line and 

distance between bounding box and right line. By calculating lane width using formula for 

distance between two points (expression (5)) and putting mentioned distances to ratio, lateral 

position of the fellow on the lane is estimated. If fellow vehicle is exactly in the middle, left 

and right ratios are the same. If the right ratio is bigger, that means that fellow vehicle is closer 

to the left side of the lane and vice versa.  

 

Figure 4.1: Example results for lateral offset estimation via horizontal intersections. 

 

The flaw of this solution is that it does not take into account distortion of the image where lanes 

are smaller and smaller as distance from the camera increases. Lanes are also angled at a certain 

angle, so this solution results in not so correct estimations for vehicles that are not in ego lane. 

Bigger the lateral distance from the ego, less accurate is the offset estimation. 
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4.2. Lateral offset estimation via „angled“ intersections 

 

 This solution adds in extra step to the first solution. When intersections are found, they 

are rotated for the angle of the line on the left in case for fellows left from ego and for the angle 

of the right line in case for fellows right from ego. This process if done only for the none ego 

lanes because for ego lane horizontal intersections approximate offset the best. When rotating 

2D points about another 2D pivot point first step is to translate that point to the origin to be 

rotated. 

The point that we are trying to rotate has following coordinates:  

 

𝑇(𝑥1, 𝑦1 ) 

 

Pivot point that we want to rotate point T about has coordinates:  

 

𝑃(𝑝1, 𝑝2 ) 

 

When translating T coordinates by P coordinates we get new T coordinates:  

 

 𝑥1
′ =   𝑥1 − 𝑝1 (14) 

 

 𝑦1
′ =  𝑦1 − 𝑝2 (15) 

 

Next step is to rotate coordinates for the angle of the left line of the lane. Rotated coordinates 

are calculated by the following expressions:  

 

 𝑥1,𝑟𝑜𝑡𝑎𝑡𝑒𝑑
′ =   𝑥1

′ cos(𝑎𝑛𝑔𝑙𝑒) −  𝑦1
′ sin (𝑎𝑛𝑔𝑙𝑒 ) (16) 

 

 𝑦1,𝑟𝑜𝑡𝑎𝑡𝑒𝑑
′ =  𝑥1

′ sin(𝑎𝑛𝑔𝑙𝑒) +  𝑦1
′ cos (𝑎𝑛𝑔𝑙𝑒 ) (17) 
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After the coordinates are rotated, final step is to translate them back by adding the coordinates 

of the pivot point. Final formula for calculating x and y coordinates of a point T that is rotated 

by an angle about another point P is: 

 

 𝑥1
′ =  ((𝑥1 − 𝑝1) cos(𝑎𝑛𝑔𝑙𝑒) − (𝑦1 − 𝑝2) sin(𝑎𝑛𝑔𝑙𝑒 ) + 𝑝1 (18) 

  

 𝑦1
′ =  ((𝑥1 − 𝑝1) sin(𝑎𝑛𝑔𝑙𝑒) +  (𝑦1 − 𝑝2) cos(𝑎𝑛𝑔𝑙𝑒 )) + 𝑝1 (19) 

 

 

When new rotated points are found, next step is to find intersections between the line going 

through found points and between the left line and right line of the lane. Intersections are visible 

at Figure 4.2. 

 

Figure 4.2: Example results for lateral offset estimation via „angled“ intersections. 

 

 Information about the left reference point and right reference point, along with 

information about the left ratio and right ratio is saved in dictionary fellows_positions. Example 

of this dictionary for key 1 which presents first lane is:   

{'lanes': {1: [{'matches_to_lane': -2}, 
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               {'bbox': (1160, 906, 1266, 1017), 

                'bbox_ref_point': {'u': 1213, 'v': 1017}, 

                'class': 'Car', 

                'id': '0.0', 

                'left_distance': 98.23007274727775, 

                'left_lane_point': (1114, 1016), 

                'right_distance': 136.99329237603524, 

                'right_lane_point': (1350, 1016), 

                'scores': '0.7557713'}]} 
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5. OBJECT MATCHING 

This section will describe methods used to solve the problem of matching objects 

detected with Object Detection AI model with objects from the trajectory data. To match objects 

there are two main parts: projection of fellow coordinates to image plane and matching them.  

 

 

Figure 5.1: Object matching flowchart. 

 

5.1. Projecting fellow coordinates to image plane  

 

First step in solving the problem of matching is to project fellow coordinates from 

trajectory data to image plane. In trajectories fellow and ego coordinates are in global 

coordinate system. To transform those coordinates to image coordinate system, first they need 

to be transformed to ego coordinate system because ego presents a vehicle with the camera. 

After that transformation is done, coordinates are transformed from ego to camera coordinate 

system and finally from camera to image coordinate system. After all these transformations are 

done, fellow coordinates are plotted on image plane.  

5.1.1. Transformation from world coordinate system to ego coordinate system 

 

First step in projecting fellow coordinates from global coordinate system to ego 

coordinate system is to calculate transformation matrix called 𝑇
𝑒𝑔𝑜

𝑔𝑙𝑜𝑏𝑎𝑙. The Matrix consists 

of three translations and three rotations and describes relative position of fellow (global) 
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coordinate system to ego coordinate system. Ego data from trajectories consists of six 

coordinates: x, y, z, yaw, roll and pitch. 

Translation matrix is shown in equation (20): 

 

 

𝑇𝑟𝑎𝑛(𝑝𝑥, 𝑝𝑦, 𝑝𝑧) =  [

1 0 0 𝑝𝑥

0 1 0 𝑝𝑦

0 0 1  𝑝𝑧

0 0 0 1

]. 

 

 

(20) 

 

Where value 𝑝𝑥 presents x-coordinate of an ego, 𝑝𝑦 presents y-coordinate and 𝑝𝑧 presents z-

coordinate. 

Rotation matrix for yaw angle is shown in equation (21): 

 

 

 

𝑅𝑜𝑡(𝑧, 𝑦𝑎𝑤) =  [

cos(𝑦𝑎𝑤) − sin(𝑦𝑎𝑤) 0 0
sin(𝑦𝑎𝑤) cos(𝑦𝑎𝑤) 0 0

0 0 1  0
0 0 0 1

]. 

 

 

(21) 

 

Rotation matrix for pitch angle is shown in equation (22): 

 

 

 

𝑅𝑜𝑡(𝑦, 𝑝𝑖𝑡𝑐ℎ) =  [

cos(𝑝𝑖𝑡𝑐ℎ) 0 sin(𝑝𝑖𝑡𝑐ℎ) 0
0 1 0 0

−sin(𝑝𝑖𝑡𝑐ℎ) 0 cos(𝑝𝑖𝑡𝑐ℎ)  0
0 0 0 1

]. 

 

 

(22) 

 

Rotation matrix for roll angle is shown in equation (23): 

 

 

 

𝑅𝑜𝑡(𝑥, 𝑟𝑜𝑙𝑙) =  [

1 0 0 0
0 cos(𝑟𝑜𝑙𝑙) −sin(𝑟𝑜𝑙𝑙) 0
0 sin(𝑟𝑜𝑙𝑙) cos(𝑟𝑜𝑙𝑙)  0
0 0 0 1

]. 

 

(23) 
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Transformation matrix 𝑇
𝑒𝑔𝑜

𝑔𝑙𝑜𝑏𝑎𝑙 is calculated for every timestamp, and it describes relative 

position of fellow (global) coordinates to ego. It is calculated as following: 

 

 

  𝑇
𝑒𝑔𝑜

𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑖𝑛𝑣( 𝑇
𝑔𝑙𝑜𝑏𝑎𝑙

𝑒𝑔𝑜). 

 

 

(24) 

Where :  

 

 𝑇
𝑔𝑙𝑜𝑏𝑎𝑙

𝑒𝑔𝑜 = 𝑇𝑟𝑎𝑛(𝑝𝑥, 𝑝𝑦, 𝑝𝑧) ∙ 𝑅𝑜𝑡(𝑧, 𝑦𝑎𝑤) ∙ 𝑅𝑜𝑡(𝑦, 𝑝𝑖𝑡𝑐ℎ) ∙  𝑅𝑜𝑡(𝑥, 𝑟𝑜𝑙𝑙). (25) 

 

When multiplying fellow coordinates in global coordinate system with matrix 𝑇
𝑒𝑔𝑜

𝑔𝑙𝑜𝑏𝑎𝑙 as a 

result we get fellow coordinates in ego coordinate system. Matrix 𝑇
𝑒𝑔𝑜

𝑔𝑙𝑜𝑏𝑎𝑙 is calculated as 

inverse of the matrix 𝑇
𝑔𝑙𝑜𝑏𝑎𝑙

𝑒𝑔𝑜 because for calculating matrix 𝑇
𝑔𝑙𝑜𝑏𝑎𝑙

𝑒𝑔𝑜 , ego coordinates can 

just be included in that matrix.  

  

5.1.2. Transformation from ego coordinate system to camera coordinate system 

 

After the fellow coordinates are projected to ego coordinate system they need to be 

projected to camera coordinate system. Ego coordinates present a car with a camera and LiDAR 

at the top and coordinates that are in trajectories are coordinates of LiDAR. Transformation 

matrices that transform from LiDAR coordinate system to camera coordinate system are 

provided by the company. There are two provided matrices. One matrix describes extrinsics 

and the other one describes rotations to match ego and camera coordinate system. 

To find fellow coordinates in camera coordinate system, fellow coordinates in ego 

coordinate system have to be multiplied as following:  

 

[

𝑥𝑐𝑎𝑚

𝑦𝑐𝑎𝑚

𝑧𝑐𝑎𝑚

1

] = 𝑖𝑛𝑣 (𝐸) ∗ 𝑟𝑜𝑡 ∗  [

𝑥𝑙𝑖𝑑𝑎𝑟

𝑦𝑙𝑖𝑑𝑎𝑟

𝑧𝑙𝑖𝑑𝑎𝑟

1

] 

 

(26) 

 

 



Matija Mužar Master's thesis 

Faculty of Mechanical Engineering and Naval Architecture 31 

Where rot presents rotation matrix and E presents matrix that describes a camera to LiDAR 

position. We have to find inverse of the E matrix to get LiDAR to camera positioning.  

5.1.3. Transformation from camera coordinate system to image plane coordinate system 

 

Final step in transforming global fellow coordinates to image coordinate system is to project 

coordinates from camera to image coordinate system. This is a 3-D to 2-D transformation, so 

the depth information is lost. Calculation is done based on a Pinhole Model.  

 

 

Figure 5.2: Image/pixel coordinate system. 

 

Transformation matrix that does that is called Intrinsic matrix, and it depends on camera 

parameters. The intrinsic matrix has the following shape:  

 

𝐼 =  [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] 

(27) 

 

Where: 

𝑓𝑥  and 𝑓𝑦 are focal lengths of the camera in pixels, 𝑓𝑥 in x-direction and 𝑓𝑦 in y-direction and 

𝑐𝑥 and 𝑐𝑦 are coordinates of the image centre (principal points) , ideally points should be in the 

centre of the image however in practice and for this thesis it is not. To get points from a camera 
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coordinate system to image coordinate system, fellow coordinates (in camera coordinate 

system) have to be multiplied with camera intrinsics as following: 

  

 
[
𝑢
𝑣
1

] = 𝐼 ∗  [

𝑥𝑐𝑎𝑚

𝑦𝑐𝑎𝑚

𝑧𝑐𝑎𝑚

], 
 

(28) 

 

Where u,v present coordinates in image coordinate system visible at Figure 5.2. All that 

calculation is done in python using module NumPy for every fellow from fellow trajectory date 

for certain timestamp. Scattered fellow coordinates in image coordinate system are visible at 

Figure 5.3. 

 

 

Figure 5.3: Fellows projections on image plane presented by yellow dots. 

 

5.2. Matching the trajectory with camera data  

 

Last step is to match fellows by rule point within bounding box. That process is done 

similar to the process of estimation of the fellow positions. For every bounding box a polygon 

is created, and every projected fellow is then checked if it is in that bounding box. When fellow 

that is inside that bounding box is found fellow is matched with the bounding box which 
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represents detected fellow. That way detected fellows are matched with fellows from the 

trajectory data. After the fellows are matched, data is written in output file Camera Image Data. 

 

 

Figure 5.4: Process of matching fellows. 
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6. DATA CORRECTION 

Final step after the fellows were matched with trajectory data and left, and right ratios were 

calculated, is to correct the data. Plan to execute that step is presented at Figure 6.1: 

 

 

Figure 6.1: Execution plan for data correction. 

 

 

First step is to load the data from trajectories to get s/t–coordinates for each fellow. That data 

is then written in the output file called „Camera_Image_Data“ containing all the information 

about the spotted fellow from the image. Before correcting the data, there is one coordinate 

system that needs to be discussed and that is the road coordinate system. [8] To every road 

specified in the road network definition document, there is an s/t-type coordinate system 

assigned. The road reference line defines the s-axis belonging to the (X,Y)-plane of the world 

coordinate system. The shape of the s-axis line is flat and determined by the geometry of the 

road projected on the (X,Y)-plane (Z-coordinates equal to 0). The origin of s-coordinates is 

fixed at the beginning of the road reference line and not affected by an elevation of the road (its 

inclination in the s-direction). In contrast, multiple t-axes can be defined along the s-axis. Each 

t-axis points orthogonally leftwards to the s-axis direction and originates on the s-axis at the 

point with the concerned s-coordinate. All t-axes lie on the surface which is derived from the 

road surface as if its elevation were not considered. Therefore, t-axes adopt a lateral slope of 

the road as they are oriented coplanar to the road surface. As the consequence, t-coordinates are 

not affected by a super elevation of the road. 

The following constraints are defined: 

• It is assumed the s-axis line has a smooth shape (no leaps nor kinks). 

• Being two-dimensional by its nature, the Road coordinate system does not define any 

vertical positioning. This means positions, specified with (s/t)-coordinates, are on the 

road surface. 

• Both s- and t-coordinates are applicable within boundaries of the respective road only. 
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• In the case of multiple chained roads, each road defines its own s-axis. 

• In the case of roads with a complex lateral profile (for example, uneven surface), 

applicability and conversion of s/t-coordinates into other coordinate systems might 

appear problematic or even impossible. 

 

Figure 6.2 shows (s/t)–coordinate system for input road data:  

 

 

Figure 6.2: ( s/t )–coordinate system. 

 

For each lane minimum and maximum value of t-coordinate were extracted from the data and 

that piece of information is used to calculate errors. For our road data, reference line is on the 

beginning of leftmost lane meaning that all the values of t for detected fellows are negative. 

Lane width is calculated as following:  

 

 𝑤𝑖𝑑𝑡ℎ = 𝑡_ max − 𝑡_𝑚𝑖𝑛 (29) 

 

Where : 
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t_max presents maximum value of the lane coordinate t and t_min presents minimum value of 

lane coordinate t. For each lane width in meters is calculated, and the next step is to correct t-

coordinates of the fellows because they present lateral offset.  

 

Figure 6.3: Calculation of new t-coordinate. 

 

Figure 6.3 shows how new t-coordinate was calculated. New corrected t-coordinate, t' was 

calculated using the ratios that were calculated in the section before for each fellow. The new 

coordinate was calculated as following:  

 

 𝑡′ = 𝑡_ min + width  ∙ 𝑟𝑖𝑔ℎ𝑡_𝑟𝑎𝑡𝑖𝑜 (30) 

 

 

By adding product of width and right ratio to minimum value of t for the lane, new corrected t' 

value is calculated for each fellow.  

New s/t' coordinates were then transformed to xyz-coordinate system, so fellow's position is 

not only corrected in s/t- coordinate system but also in xyz-coordinate system. New coordinates 

from both coordinate system were then written to output file Camera_Image_Data.  
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7. RESULTS 

This chapter deals with the results of implementation of the algorithm on two datasets, test 

dataset consisting of 30 images and whole dataset. First test results will be discussed and 

visualised. Test results present a testing of the algorithm before whole data was taken as an 

input.  

7.1. Results for limited dataset 

 

To make sure algorithm gives good results it was first tested on a smaller dataset. There are two 

approaches that were tested. First approach that was tested was approach where lateral offsets 

were estimated via horizontal intersection and second approach that was tested was for lateral 

offsets that were estimated via „angled“ intersections. Both of those approaches were described 

in sections 4.1 and 4.2. Results for first approach where lateral offsets were calculated via 

horizontal intersections is visible at Figure 7.1: 

 

Figure 7.1: Test fellow trajectories for lateral offset estimation via horizontal intersections. 
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In Figure 7.1 trajectories of fellows for first 30 pictures are visualised. Blue lines represent lane 

lines. Trajectories of fellows from data are visualised with light blue and green colour while 

corrected trajectories for those two fellows are visualised with orange and red colour. There are 

only trajectories of two fellows because other fellows were too far and AI model could not 

detect them or if they were detected by Object Detection AI module they were not fitted into 

the lane because they were too far to fit into the polygon. It is also visible in Figure 7.1 that 

corrected trajectories and trajectories from data are not the same. Corrected trajectories are more 

to the left than original trajectories that are almost in the middle. Looking at the Figure 7.2 

which represents first image it is visible that corrected trajectories present fellow location better 

because fellows position is not in the middle of the lane but they are positioned more to the left 

part of the lane. Detected fellows whose trajectories are visible in Figure 7.1 are circled red and 

green in Figure 7.2. 

 

 

Figure 7.2: First input image for test trajectories. 

 

Results for second approach where lateral offsets were estimated via „angled“ intersections are 

visible in Figure 7.3. It is visible that the trajectory for the fellow in the second lane from left 

has the same trajectory as given in the first approach. Reason for that is that lateral offset for 
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fellows that are in ego lane is calculated the same in both approaches, via horizontal 

intersections because it gives better results and estimates positions better. The fellow that is in 

the first lane from left has a different corrected trajectory comparing to first approach. Corrected 

trajectory is now even more to the left which describes actual position even better because 

looking at the Figure 7.2 it is visible that the fellow closest to ego, in the leftmost lane (circled 

red) is almost completely to the left side of the lane.  

 

Figure 7.3: Test fellow trajectories for lateral offset estimation via „angled“  intersections. 

 

Last step that was done is data smoothening. Even corrected data may have some 

outliers that don't fit because of some isolated case, and they need to be smoothened. They were 

smoothened by Savitzky-Golay filter. [9] The Savitzky-Golay filter, developed by Abraham 

Savitzky and Marcel J. E. Golay in 1964, is a digital filter widely used for data smoothing and 

differentiation. Unlike many other smoothing methods, which can distort the signal by blurring 

its sharp features (take the median or mean filters as an example) the Savitzky-Golay filter excels 

in maintaining the integrity of the original signal. This makes it particularly useful in applications 

where preserving the shape and features of the signal is one of the constraints. Data smoothening 

was done in the python by using Scipy library[10]. Test results after data smoothening of fellow 
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trajectories for lateral offset estimation via horizontal intersection are shown in Figure 7.4, and 

test results after data smoothening of fellow trajectories for lateral offset estimation via „angled“ 

intersection is shown in Figure 7.5. 

 

Figure 7.4:  Smoothened and corrected test trajectories for lateral offset estimation via 

horizontal intersections. 
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Figure 7.5: Smoothened and corrected test trajectories for lateral offset estimation via „angled“ 

intersections. 

 

By observing Figure 7.4 and Figure 7.5 it is visible that by using Savitzky-Golay filter 

trajectories are much smoother which matches better a real life driving on the highway because 

generally there aren't many lane position changes on the highway.  

7.2. Results for whole dataset 

 

Next step left to do after testing the algorithm on a test data set, was to test the algorithm on the 

whole data set which consists of 4180 images. Since showing all the trajectories in one figure 

is not very organised, and it's quite messy, in figures below trajectories that were calculated 

from first 250 images were shown while all the other trajectories from all data are included in 

the appendix. Trajectories of the cars that were recreated using first approach for lateral offset 

estimation via horizontal intersections is shown in Figure 7.6:  
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Figure 7.6: Fellow trajectories for lateral offset estimation via horizontal intersections for the 

first 250 images. 

 

From the Figure 7.6 it is visible that that corrected trajectories are somehow not very similar to 

original trajectories but by visual inspection it was concluded that corrected trajectories give 

much better representation of a real world drive in some cases where matching is possible. It is 

also visible that some parts of corrected trajectories are not corrected well and there are some 

oscillations. That happens because of errors in trajectories which results in wrong coordinate 

projections and wrong matching. Case where matching in not correct is shown in Figure 7.7:  
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Figure 7.7: Case where object matching is not possible.   

 

 

When data points from trajectories are wrong, their projection on the image plane is also wrong, 

and they cannot be matched or are matched incorrectly with detected fellows which results in 

no trajectory data or incorrect trajectory data. 

Trajectories of the fellow vehicles that were created on first 250 images of the dataset 

using the second approach for lateral offset estimation via „angled“ intersections is shown in 

Figure 7.8: 
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Figure 7.8: Fellow trajectories for lateral offset estimation via „angled“ intersections for first 

250 images. 

 

After using Savitzky-Golay filter on corrected trajectories of both methods for lateral offset 

estimation is shown in Figure 7.9 and Figure 7.10. 

 

Figure 7.9: Fellow trajectories for lateral offset estimation via „angled“  intersection for first 

250 images after using the filter. 
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Figure 7.10: Fellow trajectories for lateral offset estimation via „angled“  intersections for 

first 250 images after filter. 

 

Looking at Figure 7.9 and Figure 7.10 it is visible that fellow trajectories after using the filter 

are much smoother and give more realistic representation of real-world trajectories.  
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8. CONCLUSION 

The main goal of this thesis was to develop an algorithm and implement that algorithm on 

a real-world data in order to estimate and correct lateral offsets of fellow vehicles. Throughout 

this master thesis methods that were used in achieving that goal were presented and explained. 

There are three main methods: lane identification and matching, object matching and lateral 

offset estimation and correction. Each of those was successfully done, and trajectories were 

corrected to better match a real-world scenario in some cases.  

By visual verification it was concluded that corrected trajectories give more accurate 

representation of a real-world scenario than original trajectories in some cases where matching 

is possible. Also, the approach of lateral estimation via „angled“ intersections gives better 

results than the approach of lateral estimation via horizontal intersections. Another approach to 

results verification is hardly achievable because there is no ground truth except visual 

perception and comparing trajectories with the video. Virtual scenarios can be generated using 

data trajectories and corrected trajectories, and that virtual scenario can be simulated with 

dSPACE software AURELION, but note that simulation results for original trajectories and 

corrected trajectories cannot be compared directly because the parameters of the simulator and 

processes of generating scenarios can introduce changes in trajectories.  

By running the algorithm on the whole data set some of the limitations were met. One 

of the limitations is a situation when there are many vehicles on the highway and one vehicle 

is behind the other. In that cases coordinates of both vehicles are projected, but one is detected 

resulting in matching one detected vehicle with two vehicles from the trajectory. That situation 

is visible in Figure 8.1: 
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Figure 8.1: Scenario where object matching mistakes occur. 

 

Another case when algorithm could not match detected vehicles with vehicles from the 

trajectory is when coordinates from the trajectory are wrong and matching is not done meaning 

trajectories cannot be corrected.  

Future improvements of the algorithm could include bounding box rotation to better describe 

fellow position. Now bounding box represents whole detected object and when that object is 

not in ego lane bounding box consists of whole vehicle including its side and rear end. Future 

improvement could find rotation matrix so that bounding box would consist only of the back 

end of the fellow to estimate lateral position even better. A scene where that could be 

implemented is visible in Figure 8.2: 



Matija Mužar Master's thesis 

Faculty of Mechanical Engineering and Naval Architecture 48 

 

 

Figure 8.2: Scenario where bounding box rotation could improve lateral position estimation. 

 

Future improvements of the presented approach could also include tracking of detected objects 

in image stream (i.e., across all the recorded frames) for improved object matching, as well as 

different kind of algorithms for smoothening of the estimated lateral offsets. 
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APPENDICES 

APPENDIX A: Data examples 

 

 Trajectory data example for one key: 

 

{ 

 "1680581868.0": [ 

  { 

   "object_id": "EGO,6e54d6e8-74c6-41cb-aa31-005a3c925e84", 

   "road_position": { 

    "road_ID": 2, 

    "section_index": 0, 

    "lane_id": -3.0, 

    "road_s": 240.95532913104938, 

    "road_t": -5.822240584283497}, 

   "world_position": { 

    "x": 0.01, 

    "y": 0.01, 

    "z": 0.75, 

    "yaw": -2.66, 

    "pitch": -0.01, 

    "roll": 0.0}}, 

  { 

   "object_id": "06804c38-6c91-446b-bd7b-9614a44bf865", 

   "road_position": { 

    "road_id": 2, 

    "section_index": 0, 

    "lane_id": -2.0, 

    "road_s": 342.1832673695808, 

    "road_t": -2.066811300018098}, 

   "world_position": { 

    "x": -87.15, 

    "y": -52.24, 
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    "z": -0.83, 

    "yaw": -2.62, 

    "pitch": -0.0, 

    "roll": 0.01}} 

 

Example of Road Network data for road part 2: 

 

"2": { 

  "sections": { 

   "0": { 

    "driving_lanes": [-2, -3,-4], 

    "lanes": { 

     "0": { "type": "none"}, 

     "-1": {"type": "shoulder"}, 

     "-2": {"type": "driving"}, 

     "-3": {"type": "driving"}, 

     "-4": {"type": "driving"}, 

     "-5": {"type": "shoulder"} 

}}}} 

 

Example of Camera image data for one frame:  

 

{'detected_objects': {'#1': {'bounding_box': (2086, 799, 2503, 1038), 

                             'class': 'Truck', 

                             'mapping_data': {'associated_lane_id': '', 

                                              'lane_identification_case': 'unconsidered', 

                                              'matches_to_annotation_object': 'MatchNotFound', 

                                              'matching_road_lanes': {1: -2, 

                                                                      2: -3, 

                                                                      3: -4}, 

                                              'reference_point': 'ReferencePoint(2295, ' 

                                                                 '1038)'}, 

                             'score': '0.79898787'}, 

                      '#2': {'bounding_box': (1160, 906, 1266, 1017), 
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                             'class': 'Car', 

                             'mapping_data': {'associated_lane_id': 1, 

                                              'lane_identification_case': 'Identified', 

                                              'lane_t_max': -3.739450918814552, 

                                              'lane_t_min': 0.0, 

                                              'lane_width': 3.739450918814552, 

                                              'left_lane_boundary_point': (1114, 

                                                                           1016), 

                                              'left_ratio': 0.42, 

                                              'matches_to_annotation_object': 'c294421a-7fe5-47d6-81f2-

690a497aa3de', 

                                              'matching_road_lanes': {1: -2, 

                                                                      2: -3, 

                                                                      3: -4}, 

                                              'reference_point': 'ReferencePoint(1213, ' 

                                                                 '1017)', 

                                              'right_lane_boundary_point': (1350, 

                                                                            1016), 

                                              'right_ratio': 0.58, 

                                              'road_network_element': '2_0', 

                                              'road_s': 287.0148362223681, 

                                              'road_t': -1.5879434167702944, 

                                              'road_t_corrected': -1.570569385902112, 

                                              'road_t_delta': 0.017374030868182455, 

                                              'xyz_corrected': (-38.9, 

                                                                -25.37, 

                                                                0.0)}, 

                             'score': '0.7557713'}, 

                      '#3': {'bounding_box': (1382, 858, 1506, 996), 

                             'class': 'Truck', 

                             'mapping_data': {'associated_lane_id': 2, 

                                              'lane_identification_case': 'Identified', 

                                              'lane_t_max': -7.598524542478597, 

                                              'lane_t_min': -3.739450918814554, 
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                                              'lane_width': 3.8590736236640435, 

                                              'left_lane_boundary_point': (1371, 

                                                                           996), 

                                              'left_ratio': 0.38, 

                                              'matches_to_annotation_object': 'c52d1b47-66f6-494f-a81e-

c26727926971', 

                                              'matching_road_lanes': {1: -2, 

                                                                      2: -3, 

                                                                      3: -4}, 

                                              'reference_point': 'ReferencePoint(1444, ' 

                                                                 '996)', 

                                              'right_lane_boundary_point': (1560, 

                                                                            996), 

                                              'right_ratio': 0.62, 

                                              'road_network_element': '2_0', 

                                              'road_s': 300.68463767966875, 

                                              'road_t': -5.80533166262987, 

                                              'road_t_corrected': -5.20589889580689, 

                                              'road_t_delta': 0.5994327668229795, 

                                              'xyz_corrected': (-52.92, 

                                                                -28.4, 

                                                                0.0)}, 

                             'score': '0.6120546'}}, 

 'image_frame': '1680581868050000.jpg', 

 'matching_trajectory_timestamp': 1680581868.0, 

 'observation_case': 'case 3: both barriers are detected'} 
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APPENDIX B: Trajectories 

Corrected trajectories with lateral offset estimation via horizontal intersections: 
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Corrected trajectories with lateral offset estimation via horizontal intersections, corrected with 

Savitzky-Golay filter: 
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Corrected trajectories with lateral offset estimation via „angled“ intersections: 
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Corrected trajectories with lateral offset estimation via „angled“ intersections, corrected with 

Savitzky-Golay filter: 

 

 


