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 Abstract 
 

The drive for improved building energy performance has led to increased automation 

levels in building control systems, challenging the balance between energy efficiency and 

comfort. This has often resulted in decreased user satisfaction with indoor environments for 

two main reasons, occupants are unable to adjust conditions to their preferences, resulting in 

discomfort, and the lack of control causes psychological dissatisfaction. Since people spend 

approximately 90% of their time indoors, shifting from technology-centric to human-centric 

control (HCC) systems in buildings is crucial. HCC allows the integration of user preferences 

into the building control system for indoor environmental control. This approach not only 

improves occupant comfort but also enables occupants to change their energy consumption 

behaviour towards more efficient and sustainable behaviour. This is particularly beneficial for 

demand-response actions in imbalanced grids, where load fluctuates during peak and off-peak 

hours, and there is a higher participation of renewable energy sources, sometimes resulting in 

a surplus of generated electricity. As buildings account for about 75% of electricity 

consumption in developed countries, with 80% of that occurring during peak hours, engaging 

users in grid flexibility actions through advanced control systems like HCC shows significant 

potential for supporting grid efficiency and stability.  

However, this integration of user preferences into controllers requires occupants to 

interact with the system and share data or feedback on their perceived comfort or to engage in 

grid flexibility actions, which can be inconvenient for users. Data-driven personalized comfort 

models (PCMs) offer an optimal solution by learning occupant preferences (e.g., if one wants 

warmer or cooler, dimmer or brighter, comfortable or not) and representing their comfort levels 

without requiring continuous interaction. Nonetheless, this still demands some effort from 

users until sufficient data is collected to learn their preferences. In HCC research, seamless user 

interaction and continuous data sharing are often assumed, leading to a lack of user-provided 

data when deployed in real scenarios.  

This thesis explores user perspectives on interacting with HCC, using a survey-based 

study to examine their opinions and perceptions and their willingness to share data or feedback 

for indoor environmental control and grid flexibility interaction. It developed a method to 

create PCMs for multiple comfort aspects and multiple occupants during two field experiments, 
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including indoor air quality, thermal, and visual comfort PCMs. During the second field 

experiment, the impact of implementing HCC in an actual building is tested, providing 

important insights from the real experiences of 24 building occupants interacting with HCC.  

Additionally, through simulations, the study investigates how user-building interaction 

facilitated by HCC coupled with advanced controllers like Model Predictive Control (MPC) 

can be leveraged for grid flexibility and the impact of HCC on grid flexibility, energy 

consumption, costs, and comfort.  

The research methods include a survey-based study with almost 1 000 respondents, a 

behavioural science theory, two field experiments, and simulations. This emphasizes the 

interdisciplinary nature of this thesis, which bridges technical and social sciences. The survey 

was conducted in Zagreb, Croatia, with occupants from six educational buildings consisting of 

a diverse target group. The first field experiment involved four participants in a faculty office 

over three weeks, gathering data to develop PCMs. The second experiment took place in a high 

school building (RCK Ruder Boskovic) in Zagreb, Croatia, with 24 participants over two 

weeks, aiming to test the findings from the first experiment in real scenarios and integrate user 

preferences into the open code building control system. A mixed-method approach consisting 

of mini-surveys and semi-structured interviews evaluated the impact of implementing HCC on 

user satisfaction during the school field experiment. Lastly, simulations compared the effects 

of integrating user preferences into conventional PID control and advanced systems like MPC. 

More importantly, the impact of combining HCC with MPC and engaging users in demand 

response or grid flexibility actions was analyzed and quantified.   

The survey-based research revealed that 75.7% of nearly 1 000 occupants want access 

to building controls, but only 55.6% are willing to interact with HCC by sharing data. Indoor 

air quality was the most important comfort aspect for 85% of occupants, followed by thermal 

comfort (84%) and visual comfort (74%). A behavioral science model with 64% prediction 

accuracy was developed to predict occupants’ willingness to share data with HCC. This study 

also elicited that the key factors influencing data sharing with HCC, ranked by impact, are 

beliefs about its usability and benefits, ease of use, social influence, and privacy security. The 

survey also indicated that 66% of respondents prefer using smartphones as interfaces and 

primarily interact with controls only when discomfort arises. Field experiments, designed 

based on these preferences, collected data from actual building occupants in natural 

environments. The results from these experiments show that tree-based models, like Decision 

Trees and Random Forest, are the best-performing machine learning models for developing 
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PCMs, depending on the varying levels of occupant engagement in providing data. The school 

field experiment indicated that integrating user preferences into the control system increased 

user satisfaction with the indoor environment by 16.7%. Regarding grid flexibility, 59.5% of 

survey respondents were willing to engage in grid flexibility or demand response actions. 

About 47.7% preferred interacting for 1 – 2  hours daily, with varying expectations for financial 

incentives, even if it meant adjusting indoor temperatures to unfavourable conditions during 

grid overloads to reduce energy usage. Simulations combining HCC and MPC with grid 

flexibility actions while prioritizing occupant preferences achieved 44.6% energy savings, 

60.6% load shifting, and 59.4% cost savings during peak hours compared to the baseline PID 

scenario with standard setpoints. Comfort improved by 38% compared to the baseline, yet the 

improvement was  lower compared to scenarios that primarily focus on occupant preferences 

without engaging in grid flexibility, which is expected and assumed to be agreed upon by 

occupants. These findings are valuable for HCC designers, practitioners, and stakeholders 

aiming to create control systems prioritizing occupants and their preferences. Additionally, 

insights on leveraging user-building interaction through HCC for grid flexibility are crucial for 

the future role of buildings in smart and sustainable grids. 

Keywords: Human-centered control, advanced control systems, MPC, smart buildings, 

occupant comfort, personalized comfort models, grid flexibility. 
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Nomenclature 

  
ACC Accuracy % 

𝐷(𝑡0, 𝑡𝑓) Discomfort between start and end time 𝐾ℎ 

𝐸𝐶 Electricity cost EUR 

𝐸𝑓𝑙𝑒𝑥 Energy consumption for flexibility scenario kWh 

𝐸𝑟𝑒𝑓 Energy consumption of reference baseline kWh 

𝐸𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜(𝑖) Energy consumption of other scenarios kWh 

𝐸total Total energy consumption kWh 

𝐸𝑙price Electricity price EUR/kWh 

F1 score Prediction potential % 

ΔF1 score Difference of F1 scores % 

N Number of zones - 

PRE Precision % 

𝑄2 Predictive relevance % 

𝑄int Internal heat gains W 

𝑄sol Solar heat gains W 

𝑄w Water inlet heat in the heat pump W 

𝑅2 Explained variance or predictive potential % 

REC Recall % 

𝑠𝑧 Temperature deviation outside comfort 

boundaries 

℃ 

𝑇amb Ambient temperature ℃ 

𝑇z Zone temperature ℃ 

x Mean setpoint for all users (temperature) ℃ 

𝛼 Cronbach’s alpha - 

𝛽 Path coefficient - 

𝜇𝑖 Mean setpoint for each user (temperature) ℃ 

𝜎𝑖 Standard deviation for each user (temperature) ℃ 

   

 

Acronyms and abbreviations 

AI Artificial intelligence 

ANN Artificial neural network 

ASHRAE American society of heating, refrigerating and air conditioning engineers 

AVE Average variance extracted 

BIM Building information modeling 

CIBSE Chartered institution of building services engineers 

CR Composite reliability 

CV Convergent validity  
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DGP Discomfort glare perception 

DV Divergent validity 

DR Demand response 

DR-HR-MPC Demand response human-centered model predictive control 

DSM Demand side management 

EPBD Energy performance of buildings directive 

FL Factor loading 

FN False negatives 

FP False positives 

HCC Human-centered control 

HC-MPC Human-centered model predictive control 

HC-PID Human-centered PID  

HTMT Heterotrait-monotrait ratio 

HVAC Heating, ventilation and air conditioning  

IAQ Indoor air quality 

IEQ Indoor environment quality 

IoT Internet of things 

IPMA Importance performance map analysis 

KDE Kernel density estimation 

KNN K-nearest neighbor 

KPI Key performance indicator 

LSTM Long short term memory  

ML Machine learning  

MPC Model predictive control 

OSHA Occupational safety and health administration 

PCM Personalized comfort model 

PCS Personalized comfort systems 

PDF Probability density function 

PI Proportional integral 

PID Proportional-integral-derivative control strategy 

PLS Partial least squares 

RF Random Forest 

RNN LSTM Recurrent neutral network with long short term memory 

SCADA Supervisory control and data acquisition 

SEM Structural equation modeling 

SRI Smart readiness indicator 

SRMR Standardized root mean square residual 

SVM Support vector machine 

TN True negatives 

TP True positives 

TPB Theory of planned behaviour 
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Definitions 

  Human-centered control—An advanced control system in buildings that primarily 

focuses on users’ needs and preferences, intending to improve user experience while 

maintaining the energy efficiency of the building. Synonym: Occupant-centered control.  

  Personalized Comfort Model – A model trained on user-provided data that can predict the 

comfort level of individuals based on their previous experiences in indoor environments.  

  Theory of Planned Behaviour – A well-established psychological theoretical framework 

that enables predicting future action or behavior or the intention to exhibit that behaviour 

based on believed outcomes, social influences, and self-perceived ability.  

  Behavioral Intention – The intention, tendency, or willingness to exhibit an action or 

behaviour now or in the future based on intrinsic motivations.  

  Attitude – The viewpoint or belief people have toward an action or behaviour and what 

possible outcome they expect from that action.   

  Perceived Behavioral Control – The self-perceived capability to exhibit an action or 

behaviour.  

  Social Norms – The social impact of the exhibited action or behavior from the target (user) 

to society or vice versa.  

  Grid flexibility – “The ability of a power grid to reliably and cost-effectively manage the 

variability and uncertainty of demand and supply across all relevant timescales, from 

ensuring instantaneous stability of the power system to supporting long-term security of 

supply” as defined by Energy Agency (IEA). 

  Demand-response actions - “Demand response refers to balancing the demand on power 

grids by encouraging customers to shift electricity demand to times when electricity is more 

plentiful or other demand is lower, typically through prices or monetary incentives.” As 

defined verbatim by Energy Agency (IEA).  

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

 

 

 Chapter I.   
 

1. Introduction  

 

Recent dynamic lifestyle changes have led people to focus their daily activities and 

work primarily in indoor environments. It is estimated that most people spend around 90% of 

their time indoors [1]. The importance of proper indoor conditions was emphasized, especially 

during the pandemic. In highly automated modern buildings, the lack of accessible controls 

that operate on standardized settings in a “one-size-fits-all” fashion frequently compromises 

occupant satisfaction, rendering individual preferences obsolete [2], [3]. Striving for energy 

efficiency in modern buildings sometimes takes precedence over comfort when aiming for 

sustainability goals. However, the paramount importance of occupant well-being and comfort 

has shifted the priorities to balance efficiency and comfort in buildings [4]. This emphasizes 

the importance of integrating the human dimension into building control systems, giving rise 

to human-centered control (HCC) systems. These systems prioritize the needs and preferences 

of building occupants without compromising energy efficiency targets. HCC facilitates the 

integration of occupant preferences for indoor climate control [5], [6] and engagement in grid 

flexibility interactions. The integration of user preference as a direct input has been reported in 

various control systems, such as diverse predictive controllers [7], [8], [9], Model Predictive 

Control (MPC) [10], [11], [12], [13], [14], or more conventional ones like PI control [7], [15], 

and PID control [16], BMS [17], heuristic rules control [18], [19], [20], and self-developed 

frameworks [21]. However, implementing HCC using advanced data-driven methods to allow 

user-led control in automated buildings and how it affects occupants remains underexplored. 

This highlights the need for further research into how such systems that integrate user 

preferences into control systems can be effectively implemented and evaluated for their impact 

on occupant satisfaction and overall comfort. 

Smart buildings are characterized by their energy performance and operation, response 

to the occupants’ needs, and energy flexibility. This is stated in the revised Energy Performance 

of Buildings Directive (EPBD) ) [22], which introduced the Smart Readiness Indicator (SRI) 

to evaluate the smart readiness of a particular building. The impact criteria that the smart 
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services should meet include energy savings, maintenance, grid flexibility, comfort, 

convenience, health and well-being, and providing information to occupants. Notably, the last 

four criteria are related to occupants, emphasizing the importance of integrating the human 

dimension when aiming to design smart and sustainable buildings, as it weighs more on the 

smart readiness scale of buildings. In line with the energy-saving criteria of the SRI, HCC 

systems demonstrate the potential for achieving energy-savings [23] while improving user 

comfort [24],[25]. For instance, personalized comfort settings enabled by HCC allow for 

localized energy usage, leading to energy savings in multifunctional buildings. Furthermore, 

HCC facilitates grid flexibility by enabling occupants to engage in demand response programs 

to adjust energy use based on grid load or electricity pricing. These benefits extend beyond 

occupant satisfaction, encompassing energy efficiency and grid flexibility; hence, it is 

paramount to conduct further investigations on the impact of HCC on building energy 

performance and grid flexibility.    

Integrating user preferences into the control framework of HCC is facilitated through 

two primary methods: direct user input and personalized comfort models (PCMs). PCMs are 

data-driven models that learn user preferences under different conditions, predict comfort 

without constant interaction, and serve as digital representations of occupants [26]. Unlike 

traditional group-based comfort models like Predicted Mean Vote (PMV) or Percentage of 

People Dissatisfied (PPD), PCMs consider individual comfort preferences and physiological 

responses [27]. The increase in the availability of IoT (Internet of Things) and ICT (Information 

and Communication Technology) in modern buildings enables extensive data collection, 

empowering the development of data-driven PCMs through predictive models using artificial 

intelligence (AI) or, more specifically, machine learning (ML) models. Despite its promising 

potential in control systems, the integration of PCMs into actual building control system 

algorithms remains limited in current research. Hence, there is a need for a framework or a 

“know-how” to integrate the predicted outputs of PCMs as inputs into control algorithms for 

indoor environment control. 

PCMs are developed using diverse input features: physiological data (e.g., skin 

temperature, heart rate) [28], [29], environmental measurements (e.g., air temperature, relative 

humidity) indoors and outdoors, and subjective self-reported data from occupants, regarding 

their states, activities, preferences, perceptions, or environmental sensations [7], [30], [31]. 

PCMs can address various comfort aspects, including Indoor Air Quality (IAQ), thermal, 

visual, and acoustic comfort. However, the predominant focus in existing literature has been 



Introduction 

3 

 

on thermal comfort [28], [32], [33] often neglecting other vital aspects such as IAQ, visual 

[34], or acoustic comfort [28] for building occupants [35]. The bias toward thermal comfort 

stems from the relatively well-understood nature of thermal comfort and its immediate 

detectability by occupants. In contrast, IAQ comfort is complex, involving numerous pollutants 

and factors, and poor IAQ is not easily detected by occupants. Conversely, visual comfort is 

heavily influenced by occupants’ spatial positions and is typically more adaptable. 

Consequently, this oversight highlights the need for a more comprehensive approach 

encompassing all comfort aspects in building environments. Figure 1.1 presents the trend of 

research regarding comfort-related studies with PCMs and occupants in buildings that were 

yielded by analyzing over 300 studies regarding occupant comfort in buildings.  

 

 

Figure 1.1. Cluster visualization of existing research on PCMs and human-centered control. 

The thermal comfort (cluster depicted in orange color) is the most researched compared to 

IAQ (blue cluster) and visual comfort (yellow cluster) 

 

Introducing new technologies like HCC that depend on user inputs and interaction to 

work properly, without considering the user’s willingness to interact with them, can be 

unproductive and impede the long-term operation of such systems. PCMs need subjective 

inputs from users, such as preferences or perceptions of indoor conditions, alongside measured 
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environmental or physiological data to enhance predictive accuracy. Due to their subjective 

nature, psychological features like preferences cannot be directly measured and are challenging 

to quantify. The primary data sources for these aspects are the occupants themselves, as the 

“mind” holds irreplaceable information for perceived comfort [36]. Meaning that they need to 

share data or feedback (e.g., through an interface  [37]), which is generally perceived as a hassle 

by occupants if requested frequently. Therefore, studies often report a shortage of data supplied 

by occupants to substantiate their findings. For instance, a study by [37] revealed that when 

using feedback-dependent controllers, 71% of participants in the experiment experienced a 

decrease in their thermal comfort, compared to only 21% who experienced an increase. This 

outcome is attributed to insufficient data collected from user feedback, highlighting the 

importance of evaluating user acceptance and their willingness to engage with such controllers 

by sharing data. Therefore, by leveraging theoretical frameworks from behavioral sciences, 

such as the Theory of Planned Behavior (TPB) [38], the willingness or intention of occupants 

to interact with HCC can be predicted. This theory also enables the identification of influencing 

factors that drive or hinder the interaction. This approach fosters interdisciplinary collaboration 

by combining advanced building control methodologies with behavioral sciences. 

To ensure the HCC design aligns with occupant preferences and provides a more 

convenient interaction experience, it is essential to ask occupants for feedback on their 

preferences using surveys or interviews [39]. This approach helps tailor the system to meet 

their needs effectively. This includes asking occupants about their desired automation levels 

[40], interaction frequencies, preferred interfaces, motivating factors, and more. Given that 

HCC facilitates grid flexibility actions within buildings, understanding occupants’ willingness 

to engage in demand response actions is also crucial. This entails identifying preferences 

regarding participation in demand response actions, including the potential need for financial 

incentives and the preferred duration for such involvement during the day. While current 

studies highlight the importance of integrating user preferences in HCC systems, there is a lack 

of comprehensive research on how these preferences impact the effectiveness and acceptance 

of HCC in real-world scenarios. Furthermore, the specific aspects of user interaction, such as 

frequency and interface preferences, and their influence on engagement and satisfaction with 

HCC remain underexplored. This indicates a need for further studies to understand these 

dynamics better and develop more user-led HCC designs. 

Considering the significant potential for leveraging buildings in demand-response or 

grid flexibility actions during periods of grid overload, it is crucial to align occupants’ 
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preferences and readiness to engage in such actions. Therefore, the participatory role of 

occupants in grid flexibility needs more exploration. Power grids struggle to balance 

fluctuating demand and generation from renewable energy systems, making grid flexibility 

essential for maintaining grid stability and efficiency. Furthermore, it is important to evaluate 

the impact of HCC systems on energy flexibility. It is necessary to understand how control 

strategies, from conventional PID to advanced MPC, affect energy consumption, costs, load 

shifting, and comfort. These insights can help HCC developers and stakeholders design 

demand-side management strategies that leverage HCC for more sustainable power grids. By 

aligning these strategies with occupant preferences, a more effective and user-led approach to 

grid flexibility and building performance can be ensured. 

 

1.1 Motivation  

From the literature review (a detailed literature review is provided for each specific chapter 

later in the thesis), the research gaps that are addressed in this thesis are aggregated into:  

• The human aspect of HCC is often overlooked in research. More attention is needed to 

understand user preferences, their willingness to engage with building control, and 

motivating factors. Interdisciplinary studies incorporating behavioral science theories 

are essential to gain insights into user-system interactions, especially in HCC, where 

user input is critical for design, development, and operation.  

• Research on PCMs with multi-comfort aspects for multiple building occupants is 

limited, with most studies focusing on thermal comfort rather than visual or IAQ 

comfort. The lack of field implementations of HCC systems shows the need for 

integration frameworks of PCMs for multi-comfort aspects and multi-occupants in 

advanced building control systems.  

• Due to the novelty, the impact of HCC on grid flexibility needs to be further investigated 

by defining and quantifying its effects.  

 

1.2 Thesis objective and structure 

 

This thesis aims to address an important gap in building control systems by developing 

a comprehensive framework that facilitates the integration of the human dimension into 
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automated controls to regulate the indoor environment according to user preferences using 

PCMs. This entails the development of multi-comfort (including IAQ, thermal, and visual 

comfort) and multi-occupant data-driven PCMs using ML. Furthermore, the thesis provides a 

theoretical framework to analyze the human perspective of using control systems in buildings 

from an interdisciplinary approach. Adapting existing psychological theories, this thesis also 

explores occupants’ willingness to interact with such control systems and elucidates their 

preferences, motivations, and drivers regarding interaction. Finally, leveraging the capabilities 

of advanced predictive control, the thesis evaluates the impact of HCC on grid flexibility to 

estimate the broader implications of HCC implementation on load shifting, energy saving, cost 

and comfort. 

This research hypothesizes that deploying human-centered predictive control in a 

building by developing personalized data-driven comfort models significantly increases 

the occupants’ indoor comfort satisfaction. 

The thesis follows the structure outlined in Figure 1.2. The introduction provides an 

overarching view of the subtopics, while each subsequent chapter includes its detailed literature 

review, methods, results, discussion, and conclusion sections. 

 

Figure 1.2. Thesis outline 
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1.3 Research questions and scientific contributions  

 

The scientific contributions of this research are as follows:   

• A framework based on a behavioural science approach, namely the Theory of Planned 

Behaviour (TPB), that can be used to predict the willingness of users to report feedback 

on the perceived comfort conditions in a human-centered control system.  

• A method for developing personalized comfort models using multi-aspect comfort data 

collected as direct feedback from the occupants on their perceived indoor comfort. The 

developed models will enable the deployment of human-centered predictive control in 

buildings. 

• Definition and quantification of the impact of human-centered predictive control on 

grid flexibility.  

The following sections outline the scientific contributions and insights elucidated by each 

chapter; more detailed information can be found in the respective chapters.  

Chapter II – The human side of human-centered control systems. This chapter presents 

the first scientific contribution of providing a framework based on a behavioural science 

approach, namely the TPB, that can be used to predict occupant behaviour or willingness to 

report feedback on the perceived comfort conditions in an HCC system. It also answers these 

research questions: 

− What are the user preferences regarding control systems, including control access, 

comfort prioritization, user interface, duration, frequency of interacting with HCC, etc.?   

− Can we predict the willingness of building occupants to interact with HCC (by sharing 

data on their perceived comfort)? If so, are they willing to interact, and what motivates 

their interaction?  

− Are occupants inclined to participate in grid flexibility actions, and what are the 

underlying motivators?  

To address these inquiries, a survey involving nearly 1 000 participants was conducted. The 

research is structured using a well-established psychological theory called TPB, and the data is 

analyzed using Structural Equation Modelling through Smart PLS software as a statistical tool.  
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Chapter III – Development of Personalized Comfort Models. This chapter elaborates 

on the scientific contribution of providing a method for developing PCMs using multi-comfort 

aspect data collected as direct feedback from the occupants on their perceived indoor comfort. 

The developed models will enable the deployment of human-centered predictive control in 

buildings. Some of the research questions answered in this section of the thesis include: 

− How can data be effectively collected to develop data-driven PCMs?  

− How can multi-comfort PCMs for multiple occupants be developed using ML models? 

− Which is the most reliable ML model for PCM? How many data points are needed for 

an optimal PCM? How to overcome the lack of data? 

This is addressed by presenting evidence from two experiments conducted in actual 

buildings, incorporating site measurement data and participant subjective feedback. Based on 

the collected data, different ML models are developed and compared to find the best performing 

model for PCMs.  

Chapter IV – Integration of user preferences into building control systems. This 

chapter focuses on one of the key objectives of this research, which is to provide a framework 

for integrating the human dimension into the control algorithm of an actual pilot building, using 

user preferences as a proxy to regulate the indoor environment. Furthermore, this chapter shows 

how deploying HCC in a building impacts occupant comfort and satisfaction. The research 

questions answered in this section include:  

− How to integrate PCMs into control systems in buildings?  

− Does integrating user preferences through PCMs into control systems increase user 

satisfaction?  

− How do occupants experience and accept the interaction with HCC during and after 

deployment?  

These analyses are provided through a case study in which the outputs of PCMs are 

integrated into the control system of a school building.   
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Chapter V – Impact of human-centered control on grid flexibility. This chapter 

elaborates on the last scientific contribution of defining and quantifying the impact of HCC on 

grid flexibility. The research questions elaborated on in this chapter include:  

− What is the impact of HCC on grid flexibility? 

− How do different control systems impact grid flexibility, including user preferences and 

dynamic electricity pricing?  

The methods used in this chapter include simulating various scenarios using the TRNSYS 

software, one of the most advanced tools for dynamic simulation of buildings.  
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2. The human side of human-centered control systems  

 

 

Parts of this chapter are based on: 

 

A. Bresa, T. Žakula, and D. Ajduković, “Occupant preferences on the interaction with 

human-centered control systems in school buildings,” Journal of Building Engineering, p. 

105489, Nov. 2022, doi: 10.1016/j.jobe.2022.105489. 

 

A. Bresa, T. Zakula, and D. Ajdukovic, “A framework to predict the willingness and 

influencing factors of building Occupants to interact with advanced control systems in 

buildings,” Energy Reports, vol. 10, pp. 4078–4086,  Nov. 2023, doi: 

10.1016/j.egyr.2023.10.071. 

 

A. Bresa, T. Zakula, and D. Ajdukovic, “Occupant-centric control in buildings: 

Investigating occupant intentions and preferences for indoor environment and grid 

flexibility interactions,” Energy and Buildings, p. 114393, Jun. 2024, doi: 

10.1016/j.enbuild.2024.114393. 
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“We shape our buildings; thereafter, they shape us.” 

W. Churchill  

 

 

Human-centered control (HCC) allows occupants to shape their environmental 

conditions according to their preferences and needs. However, the design, development, and 

functioning of such controllers do not always adhere to occupant preferences. Therefore, 

harnessing their opinion and preferences on designing and operating HCC is crucial, as HCC 

relies on occupant-provided data and their interaction. Many research studies assume seamless 

interaction between individuals and advanced controls reliant on occupant data, which results 

in a lack of data in real-world applications due to low engagement levels of occupants. An 

interdisciplinary research approach is needed to understand the willingness of occupants to 

interact with control systems, the influencing factors that drive or hinder this interaction, and 

overall occupant preferences for control systems. The use of interdisciplinary research in the 

control system domain is very scarce, as mentioned by [41] and in a review on the use of 

behavioural theories for user-building interactions [42], therefore, it is paramount to investigate 

HCC from a behavioural science perspective. This chapter focuses on eliciting occupant 

preferences and opinions on HCC for indoor environmental control and grid flexibility 

interaction. This creates grounds for reconsidering some of the occupant-related 

misconceptions and assumptions in current building control studies. It provides survey-based 

insights from 959 participants with varying levels of technical knowledge across six 

educational buildings in Zagreb, Croatia. It is one of the rare interdisciplinary studies that 

combine behavioral science and technical science in building control systems, offering 

practical guidance for practitioners and designers who seek to create HCC and assess user 

engagement with such systems.  
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2.1 Literature review 

 

User preferences regarding control systems have been analyzed in previous research 

studies, such as in [39], where they aim to develop a user-led design and operation of building 

control, or separately, preferences for automation levels in [40]. Research [43] explored the 

correlation between perceived control in adjusting indoor conditions and comfort using 

interviews with 170 occupants in 23 institutional buildings in Canada. While a thorough review 

[42] emphasizes the need to consider occupant behaviour and preferences in building systems. 

However, there is a gap in comprehensive reporting on user preferences for control access, the 

designing of HCC, and grid flexibility interaction combined in one study. Hence, it is beneficial 

to have a well-rounded preference overview, such as control access preference, comfort 

prioritization, data-sharing interface, the process of sharing data, and grid flexibility 

engagement, which is imperative to empowering the occupant-in-the-center tenet of HCC.  

To better analyze occupant behavior regarding building control systems, behavioral 

science theories such as the Theory of Planned Behavior (TPB) [38] can be employed. 

Predicting human behavior, particularly the willingness or intention to perform a specific 

action, is inherently complex [44]. This complexity extends to predicting occupant willingness 

to share their data or interact with HCC systems. By viewing this willingness as a planned 

action, established psychological theories like Ajzen’s TPB [38] can provide a predictive 

framework. Despite providing predictions, this theoretical framework is also used to uncover 

the drivers and motivators behind human actions. TPB simplifies the prediction of an 

individual’s willingness to act (Behavioral Intention) by weighing their attitude toward the 

action (Attitude), societal perceptions (Subjective or Social Norms), and their perceived ability 

to perform it (Perceived Behavioral Control). TPB has been effectively used to predict various 

behaviors in many scientific domains [45], [46], [47]. For instance, it has been used for research 

on energy conservation by users [46], [47], [48], [49] and pro-environmental-related behaviour 

[50], [51], [52], [53]. Furthermore, it was used for smart appliance adoption [54], [55], [56] 

and miscellaneous topics such as green exercise [57], tourism [58], consumption of local 

beverages [59], etc. The TPB was also employed in [60] where they analyzed the occupant 

behaviour to manual adjustments of the Heating, Ventilation, and Air Conditioning (HVAC) 

system thermostat and its impact on energy savings. Apart from that, TPB was also used to 

analyze the behaviour for lighting and shading operations [61], [62].This shows that TPB can 

be easily tailored to represent a specific behaviour, such as in our study, where it is used to 
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predict the willingness of occupants to report feedback or to interact with advanced control 

systems (HCC), a situation not previously encountered in the existing literature. 

 

 

2.1.2 Extended Theory of Planned Behaviour 

 

The TPB [63] suggests behaviour can be predicted once the motivation and intention 

exist, how much of a factor the social impact is on them, and whether the ability to perform the 

action exists. However, these subjective measures do not always suffice to describe the 

behaviour or the intention altogether [53]. Extending the scope of TPB by incorporating 

external influencing factors has shown promise in predicting behaviors [59]. Hence, many 

research studies involving TPB have added external or additional variables on TPB as the 

foundation. The literature review shows that the exogenous variable type depends on the 

observed behaviour. The variables were chosen either by adopting them from other “surrogate” 

research studies and tailoring them according to their need, or they were elicited from 

interviews and surveys from people. Some added variables are moral norms, past behaviour, 

self-identity, habit, self-efficacy, environmental awareness and values, socioeconomic and 

demographic factors [46], etc. For instance, research [52] predicted how green buildings dictate 

pro-environmental behaviour to their occupants. This was analyzed with the additional variable 

to the TPB, which was the impact of informational background factors added to the building, 

such as passive instructions. In research [64], they predicted the intention of the users to adopt 

hybrid electric vehicles, and the external variables added to the TPB were the moral norm and 

environmental concern. In research [55], the consumer acceptance of smart home services was 

predicted, and the added variables were automation, mobility, interoperability, security and 

privacy risks, physical risks, and trust in the service provider. Research [46] elaborated on 

saving intentions using additional variables such as income and education. A similar study was 

conducted in research [65], which analyzed occupants’ behaviour toward energy conservation 

in university buildings. Research [54] and [66] show the intention to use green and 

environmentally friendly products and technologies. The exogenous variables used include 

social impression, environmental ethics, and consciousness. Research [67] and [68] used 

personal traits as exogenous variables to predict the intention to adopt pro-environmental 

behaviour and household energy conservation, respectively. In addition to employing 
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exogenous variables, research [69] combined three theoretical frameworks: TPB, Drivers, 

Needs, and Action System (DNAS), and Social Cognitive Theory (SCT)[41]. In conclusion, it 

is seen from the literature that the possibility of expanding the TPB with additional variables 

facilitates capturing a more comprehensive range of phenomena affecting the observed 

behaviour, increasing the TPB model prediction potential. However, the scarcity of studies 

addressing the prediction of users’ willingness to share data and engage in grid flexibility 

actions, particularly in the context of HCC systems, remains an open gap that needs to be 

addressed. 

 

2.2 Methods 

 

This chapter aims to get occupant feedback on their preferences and willingness to 

interact with control systems, specifically with HCC, which relies on occupant-provided data. 

This survey-based study uses a qualitative and quantitative approach. This was done using 

surveys, where one part of the questionnaire collected user preferences, and the other used the 

TPB method to predict the willingness of users to interact with HCC. The data and the 

hypothesis testing were analyzed using Structural equation modeling (SEM) through SmartPLS 

software. In the following sections, the survey design, the theoretical framework, and the data 

analysis method are presented. 

 

2.2.1 Survey design and data collection 

 

The survey was conducted in Zagreb, Croatia, in six educational buildings, two of 

which were high schools and the rest university faculty buildings. These buildings were 

selected to achieve diversity in the target group in terms of age, gender, background, levels of 

technical knowledge, and interests. Furthermore, since HCC will be implemented in one of the 

surveyed high school buildings, it was important to gather the occupant preferences and their 

intention to interact with such controllers.  Figure 2.1 shows the process of the conducted 

research, which includes two phases: Phase I, where only one high school building was 

surveyed, and Phase II, where five additional educational buildings were added, reaching a 

cumulative number of six educational buildings with a total of 959 respondents.  
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Figure 2.1. The process of conducting the survey-based research in educational buildings 

 

The questionnaire consists of three parts. The first part addresses the respondents’ 

demographic details, such as age, sex, and occupation. The second part presents the section 

with questions to elicit control-related user preferences, and it is presented in Annex A, Table 

A.1. This section includes questions to show occupants’ preferences on access to control, 

automation level preference, engagement in grid flexibility, HCC interface design, etc. Lastly, 

the third part of the questionnaire is presented in Annex A, Table A.2, and is structured 

according to the TPB guidelines [70], [71]. Most questions (also called items) are adopted and 

tailored from prior studies, and the answers are structured on a 5-point Likert scale. Initially, 

the survey was tested through a piloting phase with 43 respondents outside the target group. 

The survey was distributed online using Google Forms through the snowball sampling 

technique. Due to the highly technical nature of the questionnaire, as the survey topic contains 

technical terms and concepts that might be new to the participants, an informative video was 

shared along with the link to the questionnaire. The aim was to give the respondents basic 

information regarding the technical concepts for HCC and what it means to provide feedback, 

by taking careful consideration to maintain a neutral tone to avoid biased responses. The 

questionnaire is given in Annex A, also published in [72]. The current study includes an 

extensive sample group, reaching 959 respondents. The respondent details are shown in Table 

2.1.  
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Table 2.1. Demographic details of the respondents from six educational buildings 

Building 
Sex Age range Percentage 

Female Male Up to 18 19-30 31-50 Over 50 % 

Technical high school 74 361 410 1 10 14 45.4 

Gymnasium high school 66 32 86 9 0 3 10.2 

Faculty of Humanities and 

Social Sciences 
105 30 3 127 5 0 14.1 

Faculty of Economics 84 45 0 129 0 0 13.5 

Faculty of Mechanical 

Engineering and Naval 

Architecture 

32 81 2 102 5 4 11.8 

Faculty of Sciences 40 9 0 24 16 9 5.1 

Percentage % 41.8 58.2 52.2 40.9 3.8 3.1  

 

 

2.2.2 Theory of Planned Behaviour 

 

TPB (a theoretical psychological framework) is used to express the relationship 

between the factors that impact the willingness of users to share data or report feedback and 

how well those factors enable to predict the feedback-reporting intention of users. This theory 

states that once the willingness to perform an action exists, the action is highly likely to be 

exhibited as well. In our research, if the willingness of the occupants to interact with the control 

system exists, there is a level of certainty that they will interact with the controller as active 

participants or data providers. The framework of the fundamental form of TPB is presented  in 

Figure 2.2. TPB suggests that people’s intention to perform a specific action is based on three 

fundamental pillars, also called constructs. The first pillar presents the Attitude, which shows 

that someone with a positive attitude toward an action is more likely to exhibit that action. In 

other words, if they think they will get a positive outcome (e.g., if they interact with the 

controller, they will save energy), they will be more prone to interact with the controller. The 

second pillar presents the Subjective Norms or the social impact. It states that if someone puts 

a high value on the opinion of others, then they are wired to act according to others’ 

expectations or to follow their example. For instance, if occupants know they would set an 

excellent example for others to interact with the controller, they are more likely to commit to 

the interaction. The third pillar presents the Perceived Behavioural Control. It states that if 

someone thinks they are capable of performing the action, they are more prone to do so. For 
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instance, if someone thinks using a smartphone to report feedback on the perceived indoor 

temperature is easy, they are more likely to interact with the controller.  

 

Figure 2.2. The fundamental TPB layout consisting of three pillars or constructs, according 

to Ajzen 

Three different variations of the TPB models are developed in this research, called 

models M1, M2, and M3, for simplicity. Models M1 and M2 are used to predict the willingness 

of users to interact with HCC by sharing data. In contrast, model M3 is used to predict the 

willingness of users to engage in grid flexibility actions and how this is correlated to the 

intention to use HCC. Model M1 presents the fundamental TPB according to the original 

framework proposed by Ajzen [73]. The model design or what questions were used are 

presented in Figure 2.3. The second TPB model, M2, presents an extended version of the 

fundamental TPB and is also used to predict the willingness of users to share data. The 

difference is in the inclusion of additional external or exogenous variables to the model that 

can impact the willingness of users to interact with HCC, such as user trust, user preferences, 

etc. Model M2 is based on the proposed framework in Figure 2.4 meaning that this model 

includes model M1 plus the additional exogenous variables depicted in yellow circles. Lastly, 

model M3 also presents an extended version of TPB, and the framework is presented in Figure 

2.5.  
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Figure 2.3. The framework of the fundamental TPB model (model M1), where the boxes show 

the questions from the questionnaire with their acronym, the circles show the basic constructs 

(latent variables), and the big circle shows the target to be predicted 

 

Figure 2.4 The extended TPB (a proposed framework) predicts occupants’ willingness to 

interact with HCC. Yellow circles present the additional exogenous variables. The plus sign 

([+]) shows that each construct has its own set of questions. The question-coded acronyms 

are given in Annex A 



Chapter II 

19 

 

2.2.3 Data analysis with Structural Equation Modeling to quantify survey findings 

 

A statistical approach was used to quantify the strengths of the relationships between 

the considered variables (e.g., how much the user trust impacts the willingness to interact with 

HCC or intention to report feedback). Specifically, the data collected from the TPB survey was 

analyzed using the Structural Equation Modelling (SEM) method [74] with Partial Least 

Squares (PLS) computing [46] using Smart PLS software [75], [76] as a statistical tool.  

           The SEM analysis [77] consists of measurement and structural modelling. The first one 

helps to assess the reliability and validity of the constructs; in other words, it shows how well 

the questions in the questionnaire present the construct, namely, whether they are valid and 

reliable representations to measure that construct. Specifically, it evaluates if the survey is a 

good tool to measure the willingness of users to interact with HCC by sharing data or reporting 

feedback. Structural modelling helps to assess the relationship between variables and to define 

how one variable affects the other.  

           The measurement model is assessed through Convergent Validity (CV) and Divergent 

Validity (DV) indices. The CV reflects how each question presents the construct or the 

correlation of items in a construct. According to [78], the CV can be assessed by (1) the Factor 

Loading (FL) that should be greater than 0.5 for each question to be significant, (2) the Average 

Variance Extracted (AVE) greater than 0.5, (3) the Composite Reliability (CR) greater than 0.7, 

and (4) the Cronbach’s Alpha (α) greater than 0.6. On the other hand, the DV is calculated to 

elicit which questions placed in different constructs are correlated with one another or to show 

whether they perform well in their mother constructs (e.g., if an item better represents an 

Attitude rather than a Subjective Norm). The DV results show how the constructs are 

statistically different. The DV is evaluated using the FL criterion [78] and the heterotrait-

monotrait (HTMT) ratio. 

         The structural model is calculated to test the statistical significance of the path 

coefficients, showing the importance of the hypothesized relationships between variables. For 

example, whether Attitude affects Behavioural Intention or not is evaluated through the 

structural model used to generate t-statistics that show the significance of the paths. The 

structural model in Smart PLS software is calculated using the Bootstrapping technique, which 

is a method to test statistical significance by recreating samples of the dataset. During this 

analysis, the bootstrapping setup in the software was two-tailed with 5000 subsamples with 
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parallel processing. The t-value of a path (t-statistic) should be higher than 1.96 to show a 

strong influence of one variable on the other. Whether the hypotheses of the relationships are 

supported or rejected can be determined by the p-value or the probability value, which shows 

the probability that the yielded data would have occurred by random chance. A smaller p-value 

shows that the model paths are significant, meaning that there is a correlation between the 

dependent (Behavioural Intention or willingness to interact with HCC) and independent 

variables (Attitude, Subjective Norms, and Perceived Behavioural Control) or that one of them 

impacts the other. In this study, for example, the p-value determines whether the hypothesis 

that Attitude impacts Behavioural Intention is supported. If the p-value<0.05, the relation 

between the variables (Attitude and Behavioural Intention) is significant, and the hypothesis is 

supported.  

           The fundamental constructs of TPB, namely, the Attitude, Subjective Norm, and 

Perceived Behavioural Control, were presented as indirect variables, whereas their respective 

questions show the direct variables. The nature of the proposed TPB constructs is reflective, 

which is common for behavioural science constructs, indicating that each question has a 

specific meaning reflecting the construct (e.g., the Attitude). The measurement model was 

modelled as a composite using PLS-SEM, considering that the primary purpose of the model 

is explanation and prediction [79]. It should be noted that using PLS for reflective measurement 

models is still an open discussion in the field because the results are biased; however, according 

to Hair et al. [80] the PLS-SEM is suitable for measurement models regardless of the nature of 

the constructs. Furthermore, it is stated that the bias does not have practical relevance in most 

applications [80], and if the aim of the model is prediction and explanation, as in this case, 

PLS-SEM should be considered.  

The predictive accuracy of the proposed models is measured using the explained 

variance 𝑅2, the predictive relevance 𝑄2, and the predictive potential using the PLSpredict 

analysis [81]. The detailed measurement and structural model results are presented in Annex B 

for brevity reasons. Furthermore, 2.5% and 97.5% confidence intervals are also given for each 

hypothesis. The confidence interval value different from zero shows a significant relationship 

between the constructs. The model fit was also evaluated using the SRMR (Standardized Root 

Mean Square Residual) measure computed with SmartPLS [82]. The acceptable results of 

SRMS range in values that are less than 0.1 [83] and for a more conservative threshold, it is 

0.08 [84]. However, the quality of the model in PLS-SEM is represented more with the 
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predictive potential (𝑅2) and relevance (𝑄2) and less with the model fit indices, as argued in 

[85]. 

Lastly, another analysis in SmartPLS4 software [82] is used to assess the influencing 

factors that can highly improve the willingness of users to interact with HCC and engage in 

grid flexibility. This analysis is called the Importance Performance Map Analysis (IPMA) [86], 

[87]. It is a graphical representation that places all the influencing factors in a graph and 

determines which influences have the highest potential to improve the willingness of users to 

share data and engage in grid flexibility. The IPMA map consists of four quadrants: I, II, III, 

and IV. Quadrant I is the “Keep up the good work” section. It shows the influencing factors 

that have a high impact and high performance, meaning that practitioners and designers of HCC 

should focus on developing or maintaining these factors. Quadrant II is the “Concentrate here” 

section, which shows the factors that have an impact and require improvement to meet the 

desired level of performance. Quadrant III shows the “Low priority” section with low impact 

and low performance, meaning they are unimportant. Quadrant IV is the “Possible overkill” 

section, which shows influencing factors with low impact. Their improvement does not make 

a difference in the willingness of occupants to interact with HCC.  

Hypothesis testing. To establish a relationship between two variables, their relationship must 

be initially hypothesized. The 𝑝 − 𝑣𝑎𝑙𝑢𝑒 and 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 indices are used to confirm 

whether a hypothesis is supported or rejected. The hypotheses tested for the first model, M1, 

are presented below, whereas the rest are in Annex B: 

  H1a: Attitude influences the intention of the occupants to interact with HCC systems by 

sharing comfort-related data in the form of feedback.  

  H1b: Subjective Norms influence the intention of the occupants to interact with HCC 

systems by sharing comfort-related data in the form of feedback. 

  H1c: Perceived Behavioural Control influences the intention of the occupants to interact 

with HCC systems by sharing comfort-related data in the form of feedback. 
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Figure 2.5. The framework and hypotheses formulation based on the relationship between 

variables for model M3 

 

2.3 Results 

 

The results of this research are two-fold; on one side, the user preferences regarding 

control systems are elicited. On the other hand, their willingness to share data with HCC for 

indoor climate control is predicted, including their willingness to engage in grid flexibility 

actions and their correlation. In this study, the “user preferences” include various aspects such 

as the user preference to have control access either in the traditional concept (e.g., by regulating 

the thermometer) or through HCC. The latter means providing data to a system that creates a 

data-driven comfort model and uses the outputs to regulate the indoor environment based on 

user comfort preferences. Other user preferences considered include the automation scale 

preference (whether occupants like more manual or more automated controllers) and which 

comfort aspect they prioritize (e.g., indoor air quality, thermal comfort, visual comfort). 

Additionally, what are the preferred design features in HCC? For instance, what kind of 

interface do they like to use? What is the tolerated frequency of reporting feedback? Do 
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occupants accept notifications and reminders, or do they prefer to report only when 

uncomfortable? Do they trust HCC with their data and location in terms of privacy? Lastly, are 

occupants open to engage in grid flexibility actions? If yes, do personal financial benefits play 

a crucial role? What daily duration would they accept to engage in grid flexibility? These and 

other findings are presented in the following sections.  

 

2.3.4 Findings on user preferences to interact with human-centered control 

 

Figure 2.6 presents user preferences for control systems and automation levels. It includes 

the preference for control access or the ability to adjust indoor parameters like temperature, 

lighting, and ventilation for manual or automated control. Furthermore, the preference related 

to involvement in the decision-making algorithm for automated control was also evaluated 

(e.g., whether occupants want their preferences to be considered when a building manager or 

equivalent adjusts indoor parameters in automated control systems). Lastly, among the 

preferences was whether occupants like to share their data to control the indoor environment 

using HCC, which includes their comfort perceptions reported as feedback. The findings in 

Figure 2.6 indicate that:  

− As expected, occupants want access to control systems (to regulate indoor conditions). 

A cumulative response rate incorporating very important and important answers shows 

that 75.7% of the surveyed occupants want access to controllers.  

− Only 60.8% of occupants want to be involved or have their preferences taken into 

consideration when indoor conditions such as temperature, lighting, or the amount of 

fresh air indoors are set up automatically in controlled environments.  

− Only 55.6% of the surveyed occupants are willing to interact with HCC controllers by 

sharing feedback on perceived comfort. It suggests that the participation of occupants 

in data-sharing activities cannot be assumed to exist seamlessly, meaning it can result 

in a lack of data. This situation can impede the proper functioning of HCC, which relies 

on user input. Therefore, predicting user willingness to share data when implementing 

HCC is beneficial and is further discussed in Section 2.3.6. 

− The discrepancy between 75.7% of occupants wanting control access, of whom only 

55.6% are open to interacting with HCC through data sharing, suggests that occupants 

prefer not to make an effort to regulate the indoor climate. This significant discrepancy 
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may also be attributed to a lack of knowledge of the functionality of HCC. Hence, the 

willingness to interact might change with an increasing awareness of how HCC 

operates. Other factors impacting this discrepancy are given in Section 2.3.6. 

− The results show that the majority (46.7%) of respondents want a higher level of 

automation, while only 26.9% prefer manual control. 

Figure 2.7 shows the distribution of responses for control preferences across different age 

groups and sexes. The scale on the y-axis shows a 5-point Likert scale from not at all important 

to very important, and for the preference level of automation, it is a 5-point Likert scale from 

more manual to more automated. The results indicate that demographic factors do not 

significantly impact user preferences regarding control systems. However, it is seen that the 

desire to control indoor conditions is more prevalent in older age groups who also want more 

manual control systems. In contrast, younger groups wish to access controllers and prefer more 

automated control systems.  

 

 

Figure 2.6. Occupant preferences on a) control access, desire to be considered when 

regulating indoor conditions in automatically controlled environments, and openness to share 

data or interact with HCC, and b) automation level preference 
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Figure 2.7. Occupant preferences based on demographic details: control access (top left), 

desire to be considered in automated control (top right), openness to share data or interact 

with HCC (bottom left), and automation scale preference (bottom right) 

 

HCC systems can manage multiple comfort aspects, such as IAQ, thermal, and visual 

comfort. The results in Figure 2.8 show that 85% of respondents found IAQ as the most 

important comfort aspect (based on cumulative responses of very important and important). 

This outcome is closely followed by thermal comfort (84%) and visual comfort (74%). This 

finding is important considering that most studies dealing with comfort focus primarily on 

thermal comfort, when the results here show that IAQ is as much or even more important to 

building occupants. Hence, when aiming for human-centric design, the focus should also be on 

IAQ.  
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Figure 2.8. Comfort aspect preference showing which comfort aspect occupants prioritize 

(IAQ, thermal, or visual comfort) 

 However, the perceived importance of the comfort aspect might vary depending on 

the demographics of the individual respondent. Figure 2.9 shows the variance of the perceived 

importance for different age groups and occupants in different educational buildings (different 

technical knowledge and interests). It shows that occupants perceive IAQ as the most important 

comfort aspect, followed closely by thermal comfort for all age groups. However, visual 

comfort is perceived as less important for younger groups than older groups.  

This study also explores user preferences regarding interface design and the data-gathering 

process, which is important when designing HCCs. Figure 2.10 shows the survey results 

regarding occupant preferences when using HCC interfaces. The results indicate: 

− Smartphones are the most convenient tool for reporting feedback, specifically 

smartphone applications (65.9%). This is likely due to the widespread ownership of 

smartphones today, while fewer people own or prefer to carry smartwatches or another 

similar gadget. 

− Concerning the frequency of data sharing throughout the day, occupants only want to 

interact with the controller when feeling uncomfortable (73.3%), and some can 

compromise by interacting once every few hours (14.4%). 
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− In all, 53.3% of respondents are open to interacting with HCCs only on their terms, 

usually when discomfort arises, and only 29.5% want to receive reminders or nudges 

to share data.  

 

Figure 2.9. Comfort aspect preference showing which comfort aspect occupants prioritize 

based on age group, sexes, and occupant background (or technical knowledge) 
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Figure 2.10. User preferences on the interface type for sharing data with HCC, feedback 

frequency, and preferred manner of initiating interaction 

 

Given that HCC requires occupants to share data, user trust should be considered. The 

results presented in Figure 2.11 show that: 

− Occupants are divided regarding their trust in privacy when sharing data with the HCC. 

Overall, 40.8% would trust the HCC with their data (basic personal information and 

location), whereas 32.9% of respondents would most likely not trust the controller even 

when it was emphasized that all privacy measures had been ensured.  

− Although it is a novel concept, 60.9% of occupants trust the operability of HCC, i.e., 

they trust they will benefit from using HCC or it will make a positive difference.  
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Figure 2.11.  User trust in privacy security (top) and user trust in HCC operability (bottom) 

HCC can facilitate the engagement of occupants in grid flexibility actions, such as notifying 

users of an overloaded grid, allowing them to reduce energy consumption (dim lights, adjust 

the temperature, unplug unnecessary appliances). However, it is important to determine 

whether occupants are open to engaging in actions that can potentially compromise their 

comfort, for instance, when reducing the indoor temperature during the heating season to 

alleviate energy demand in the grid. Occupant preferences regarding their engagement in grid 

flexibility are shown in Figure 2.12. The results suggest that: 

− If given the opportunity, 59.5% of occupants are open to engaging in grid flexibility 

actions.  

− 14.6% prioritize their comfort and would not engage in grid flexibility actions if they 

had to compromise their comfort (e.g., decrease the indoor temperature). 

− Higher financial gains do not necessarily motivate occupants to engage in such actions. 

Most (30.9%) would adopt curtailment actions for grid flexibility even without 

obtaining personal monetary gains, as their actions are driven by other intrinsic values 

(such as high energy-saving or environmental awareness).  

− Most occupants (47.7%) would engage in curtailment actions (i.e., dim the lights or 

reduce the indoor temperature if informed of an overloaded grid) but only for a short 

period of time, i.e., 1 – 2 hours a day. Only 22.1% would do so for a more extended 

period of time, i.e., more than 2 hours daily, while some are willing to interact all the 

time if necessary (21.6%).  
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Figure 2.12. User preferences on grid flexibility engagement. Openness to participate in grid 

flexibility actions (top), personal financial gains as motivation to participate (middle), and 

the time duration for which they are willing to participate (bottom) 

 

2.3.5 Findings on the model performance to predict occupant willingness to interact 

with human-centered control  

 

One of the aims of this research is to provide a model based on behavioural science 

theory to predict the willingness of occupants to interact with HCC by reporting feedback. 

Three TPB models were developed and analyzed using the SEM method. The first model (M1) 

was built upon the fundamental form of TPB to predict occupant willingness to interact with 

HCC for indoor environmental control. The second model (M2) was built upon a proposed 

framework that uses the fundamental form of TPB and adds more influencing factors. The 

target of this model was the same as M1. Lastly, the third model (M3) used another proposed 

framework with additional inputs, and the target was to predict the willingness of occupants to 

interact with HCC for grid flexibility (to be engaged in demand response). These models enable 
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us to estimate if building occupants are predisposed to share data, which creates a degree of 

certainty that they will provide data. 

The results show that the willingness of users to interact with HCC can be predicted 

with a satisfactory prediction potential. The yielded predictive potential of the models is M1 

(𝑅2 = 0.62), M2(0.64) and 𝑀3(0.64). The 𝑅2 shows the prediction potential or the 

percentage of the covered influencing factors that explain why a phenomenon happens. The 

higher the value of 𝑅2, the more the model explains the observed phenomena. The reached 

value in all three models is above 60%, which is satisfactory as the model predicts a human 

behaviour, which has an unpredictable nature. For reference, in social and behavioural sciences, 

as a rule of thumb, an 𝑅2 of 0.75 is a relevant prediction, 0.5 is moderate prediction and 0.25 

is a weak prediction potential of the model [88]. Hence our values are in the upper bound of 

moderate which is acceptable. To strengthen these findings, predictive potential of the models 

was also measured using other metrics, like the model fit using SRMR (Standardized Root 

Mean Square Residual) and predictive relevance using 𝑄2, the results again complied with the 

thresholds [84] and are shown in more detail in Annex B.   

  The results of the path coefficients (coefficients that show the strength of the 

relationship between two variables) from the measurement models are presented in Figure 2.13 

only for model M1. The higher the path weight and value of the t-statistic, the greater the 

influence of the factor on the observed phenomena. The 𝑅2 is also shown in the same figure 

indicating the predictive potential of the model 𝑅2 = 0.62 for model M1.  Furthermore, Table 

2.2 shows the results from the structural model and confirms the posed hypotheses for model 

M1, that attitude or beliefs, social norms and ease of use or perceived control, significantly 

impact the willingness of occupants to interact with HCC.  For the other models (M2 and M3), 

the path coefficients, as well as other numerical results of CV and DV are presented in the 

respective tables in Annex B, for brevity.  



Chapter II  

32 

 

 

Figure 2.13. Measurement model result of the path coefficient for the fundamental TPB (M1) 

 

Table 2.2. Structural modeling results and hypothesis testing of model M1 

 Relationship 
Path 

weight 𝜷 

T 

statistics 

P 

values 

Confidence 

intervals Hypothesis 

2.50% 97.50% 

H1 

Attitude →Behavioral 

Intention 
0.419 12.513 0.000 0.352 0.483 Supported 

Perceived Control → 

Behavioral Intention 
0.262 8.812 0.000 0.202 0.319 Supported 

Social Norms → Behavioral 

Intention 
0.229 8.016 0.000 0.173 0.285 Supported 

 

2.3.6 Predictions on the willingness of users to interact with the HCC 

 

The most important findings from the M1 and M2 models predicting user willingness to share 

data to interact with HCC or the intention to report feedback (i.e., a willingness to interact with 

HCC), shown  Table 2.2 and for M2 in Annex B, Table B.5., are as follows:  

− The willingness to interact with HCC can be predicted using the M1 and M2 models. 

The explained variance or the prediction potential of the M1 model is 𝑅2  = 61.9%, 

and for the M2 model it is 𝑅2  = 63.9%. It means that this model explains almost 64% 

of all influencing factors and that the respondents are willing to participate.  

− The main influencing factors impacting the willingness to interact with HCC are user 

attitudes (beliefs in the advantages of using HCC, whether users will save energy, 

mitigate the environmental impact, and feel more satisfied with indoor conditions). This 
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is measured in both M1 (β=0.42, p-value<0.05, t-statistic=12.51) and M2 (β=0.26, p-

value<0.05, t-statistic=6.67). The metric β is the path coefficient that shows the 

intensity or strength of the relationship, the higher the value the stronger the correlation. 

The p-value shows if the relationship is significant (the threshold is p-value<0.05) and 

t-statistic>1.96 also measures significance and the quality of the relationship. In the 

following findings, only the path coefficient β is presented in the text, the other values 

can be seen in their corresponding tables. 

− Subjective norms significantly impact a willingness to interact with HCC, i.e., social 

norms and the impact of other people’s opinions or motivation to comply (e.g., a group 

of colleagues reporting feedback would motivate other people to do the same). This 

was measured in M1 (β=0.23) and M2 (β=0.216). 

− Perceived behavioral control (the ease of use or perceived user ability to interact with 

HCC), significantly impacts the willingness to interact with HCC, as shown in M1 

(β=0.26) and M2 (β=0.23).  

− User preferences for control systems (control access preference, automation level) 

slightly impact the willingness to interact with HCC (M2, β=0.079).  

− User trust (in terms of privacy issues and trust in the operability of the system) 

significantly impacts the willingness to interact with HCC (M2, β=0.13)   

− Demographic characteristics (age and gender) do not have a notable impact on the 

willingness to interact with HCC (M2, β=0.028).  

− Notifications or nudges sent to inform users on how their actions (e.g., dimming the 

lights or reducing the indoor temperature) affect energy usage or the environment have 

an impact on user willingness to interact with HCC (M2, β=0.79). 

 

2.3.7 Predictions on the willingness to engage in grid flexibility actions 

 

If occupants are willing to share data or report feedback with HCC, does this mean they are 

also willing to engage in grid flexibility actions? This correlation was tested in the M3 model, 

and the results are shown in Annex B, Table B.6. The results suggest that:  



Chapter II  

34 

 

− Occupants willing to interact with HCC are more likely to engage in grid flexibility 

actions. It was measured in the M3 model showing a significant correlation between 

these two actions (M3, 𝛽 = 0.17, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05, 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 4.64) 

− User preferences (M3, 𝛽 = 0.10) and user trust (M3, 𝛽 = 0.07) significantly impact the 

willingness to engage in grid flexibility. Other numerical values shown in Annex B. 

− There is an impact on the willingness to engage in grid flexibility from occupant 

demographic characteristics (M3, 𝛽 = 0.12). It means different age groups perceive 

engaging in grid flexibility actions differently.  

− Notifications or nudges positively impact the willingness to engage in grid flexibility 

actions (M3, 𝛽 = 0.27). 

− Personal financial gains (financial benefits that occupants gain when engaging in grid 

flexibility actions) have an impact on their willingness to engage in grid flexibility 

actions (M3, 𝛽 = −0.09). Surprisingly, the findings indicate that more occupants are 

open to engaging in grid flexibility for lower rather than higher financial gains. It 

suggests that increasing financial gains is not necessarily a source of motivation for 

users, but their drive to interact comes from other intrinsic values.  

− The time span or duration in the day when occupants would accept curtailment actions 

(e.g., dimming the lights or reducing the indoor temperature) if the grid is overloaded 

significantly impacts their willingness to engage in grid flexibility actions (M3, 𝛽 =

0.23). It means that occupants like shorter periods rather than longer ones for 

interaction.  

To strengthen the findings of using the extended TPB model M3, another approach was tested 

using a heatmap correlation matrix for the survey data. The insights yielded from Figure 2.14 

are in line with the findings from the TPB and they suggest that:  

− If occupants are prone to interact with HCC, they are more likely to engage in grid 

flexibility actions. 

− Energy saving awareness of occupants has a high impact on the willingness of users to 

share data and their willingness to engage in grid flexibility actions.  

− People are willing to engage in grid flexibility actions (such as dimming the lights or 

decreasing the temperatures in winter) for a short period (1 – 2  hours) but not for more 

extended periods.  
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− Financial gains do not have a positive correlation, meaning that an increase in financial 

gains does not necessarily mean people will be more prone to engage in grid flexibility.   

 

Figure 2.14. Heatmap correlation matrix of the willingness of occupants to share data with 

HCC and their willingness to engage in grid flexibility actions 

2.3.8 Influencing factors when engaging occupants in grid flexibility actions 

 

The impact of individual influencing factors on grid flexibility engagement was also assessed 

using the Importance Performance Map Analysis (IPMA) [87] and is presented in Figure 2.15. 

The results suggest the following:  

− Notifications have the highest potential to increase user willingness to engage in grid 

flexibility. This means that once occupants receive information (either through a 

smartphone application or another interface) about how their actions lead to higher 

energy savings, a lower environmental impact, and other benefits, they will become 

more motivated to interact with HCC for grid flexibility.  

− The time duration of the grid interaction is important and needs more in-depth 

consideration. More specifically, the shorter the duration of grid flexibility actions, the 

higher the user readiness to engage in such actions. 
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− User trust is also an important influencing factor, meaning that transparent data privacy 

measures can bolster user engagement to share data when needed. 

− Personal gains, in line with the findings from the extended TPB model, are attributed 

as “Low Priority” according to the IPMA (Quadrant III). In other words, this 

corroborates our previous finding that financial gains are not a top priority when 

motivating occupants to engage in grid flexibility actions. 

 

Figure 2.15. The IPMA analysis diagram shows the distribution of the influencing factors 

towards grid flexibility based on importance 

 

2.4 Discussion and Conclusion 

 

This study investigates HCC systems in buildings, focusing on the integral role of user 

preferences regarding control systems and user willingness to participate in the successful 

implementation of HCC through sharing data on perceived user comfort and engaging in grid 

flexibility actions. The survey-based research was conducted in six different educational 

buildings with a diverse target group in terms of age, sex, and technical knowledge, totaling 

959 respondents. The results offer valuable insights into user preferences for interacting with 

control systems. It includes their preferences on control access, automation level, willingness 

to interact with advanced controllers that utilize user data in the form of reported feedback on 

the comfort conditions, and user willingness to engage in grid flexibility actions. Furthermore, 

it also offers insight into preferences on the interface design for sharing data and the actual 

process.  
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Although HCC opts to prioritize users, some aspects, like user willingness to share data 

and user preferences, are often overlooked in research. The findings from this study show that 

occupants want control access, but, unsurprisingly, their engagement diminishes when effort 

or data sharing on their part is involved. Therefore, user interaction with controls dependent on 

user-reported data cannot be seamlessly assumed but can be predicted to increase the level of 

certainty that users will interact with controllers through data sharing in the form of reported 

feedback. Furthermore, 46.7% of the occupants prefer higher automation levels, which goes in 

line with findings of research [40]. Also, in compliance with research [39], the results show 

that they also want control access (75.7%), but only 55.6% would like to interact with the 

controller by reporting feedback. This indicates that almost 20% of occupants would rather not 

have control access at all than interact with an advanced controller through active inputs. This 

finding is important as it shows that the occupants’ involvement as active data providers cannot 

just be assumed, even if the interaction of users is needed for a short time to develop 

personalized models. 

HCC systems enable the management of multi-dimensional comfort aspects like IAQ, 

thermal comfort, and visual comfort. The results from the survey show that IAQ holds the most 

importance among occupants (85%), followed by thermal (84%) and visual comfort (74%). 

This outcome may be due to the pandemic, which placed paramount importance on air quality. 

Interestingly, the perceived significance of these comfort aspects remains somewhat consistent 

across different age groups, except for visual comfort, which seems less important for younger 

individuals (up to 18 years old). Therefore, in addition to thermal comfort, IAQ control should 

also be given priority in building control systems. 

The study also emphasizes the importance of understanding user preferences to 

optimize HCC design. The results show that the preferred tool for occupants reporting feedback 

is a smartphone application (65.9%), which most likely stems from its widespread use and 

convenience. Users are willing to interact or share data in most cases only when discomfort 

arises (53.5%), and some are open to accepting reminders (29.5%), indicating the significance 

of nudges or notifications. These results support the concept that feedback sharing needs to be 

effortless and infrequent to avoid overwhelming occupants [89]. Hence, if user data is used to 

develop PCM, historical data or data transfer and tailoring from other groups can be used to 

avoid the need for too much data from users. Using cohort-based models to adapt data by 

groups of similar comfort preferences is well used in some research studies [4], [90].  
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  In an attempt to predict user willingness to interact with HCC through data sharing and 

identifying a possible correlation of this willingness with user readiness to engage in grid 

flexibility actions, three versions of the Theory of Planned Behaviour (TPB) model were 

developed and evaluated (M1, M2, M3). The moderate predictive potential or explained 

variance for the M1 and M2 models (𝑅2 = 61.9%, and 𝑅2 = 63.9%, respectively), suggests 

that occupant willingness to share data can be predicted and occupants are willing to interact 

with HCC.  

The major motivators to interact with HCC for all three models resulted to be occupant 

attitudes (𝛽 = 0.264, believing in the benefits of sharing data in terms of energy savings or the 

environment), perceived control (𝛽 = 0.231, occupants pondering on whether they are capable 

of reporting feedback or whether the task is easy, means they are more prone to do the task) 

and lastly, the social aspect (𝛽 = 0.216, how other occupants interact with the controllers or 

their opinion on the matter highly impacts their behavior). This goes in line with other TPB-

related research studies [91], [92], [93]. The yielded results for all three fundamental TPB 

constructs in model M1 show (p<0.001), hence supporting the posed hypothesis (H1) that 

attitude, subjective norms, and perceived control significantly impact the willingness of users 

to interact with HCC. These findings suggest that knowing what motivates and drives the 

occupants is beneficial when planning to implement HCC systems in actual buildings. As a 

result, appealing interventions to the occupants can be tailored, such as nudges or prompts 

through the feedback interface. For example, if the awareness for energy saving is high, then 

prompts may be tailored to include information on how much energy was or can be saved. 

Increasing environmental and energy-saving awareness through campaigns or education 

enhances the belief of occupants in the usability of such systems, thereby improving their 

willingness to engage in HCC, which can lead to significant energy savings. 

On the other hand, when considering Perceived Behaviour Control and Subjective 

Norms, the results show that the perceived ease and ability to report feedback and the social 

impact (opinion of others, peer pressure) significantly influence the Intention to report 

feedback. These findings comply with research [93] where higher perceived control determined 

higher intention to perform the studied behaviour of using smart meters. On the other hand, the 

results show that the social impact is also an important driver of the occupants’ intention to 

report feedback, meaning that there is ground for possible interventions e.g. comparison among 

peers or gamification [94]. Additionally, due to the early stage of development and adoption of 
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HCC, people tend to rely more on the opinion of others when it comes to interacting with new 

technologies as asserted by [55], which justifies the current results of high social impact.  

The results on the impact of user trust (the privacy concerns of users when sharing data 

and their belief that the system is beneficial) suggest that user trust significantly impacts their 

willingness to interact with HCC. This goes in line with the findings of other TPB [45], [55] 

where the impact of user trust was assessed for the intention to adopt smart home services and 

internet banking, respectively.  

The third TPB model, M3, explores the correlation between user willingness to share 

data with HCC and the readiness to engage in grid flexibility actions. All relationships resulted 

to be significant with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05. The findings show that those willing to share data are 

more likely to engage in grid flexibility actions (𝛽 = 0.17). The shorter the required time 

duration during the day, the higher the willingness of occupants to interact with the grid (𝛽 =

0.23). Surprisingly, although financial benefits have a significant impact (𝛽 = −0.09), higher 

financial gains do not always equate to higher levels of engagement. The results suggest that 

30.9% of occupants would interact even without any financial benefit and a smaller portion for 

small financial benefit (20.5%). Some would interact for moderate financial gains (27.2%), and 

fewer occupants for high financial gains (6.8%). Lastly, there are those who, regardless of 

financial gains, want to prioritize their comfort (14.6%). Results also suggest that 

demographics impact the willingness to engage in grid flexibility actions (𝛽 = 0.12), but not 

the overall willingness to interact with HCC (𝛽 = 0.028). 

Lastly, the findings mentioned above were confirmed using a correlation heatmap, 

reiterating that occupants are prone to interact with HCC for indoor environment control and 

are more likely to interact with it for demand response actions. Moreover, the IPMA analysis 

used to identify critical factors that can improve interaction with HCC and engagement in grid 

flexibility shows that notifications, time duration, and user trust are pivotal areas that can boost 

participation. The theoretical and practical implications elicited from this survey are discussed 

in the following sections.  

2.4.9 Theoretical implications  

 

This research developed three TPB models, namely M1, M2 and M3. Model M2 and 

M3 present novel frameworks not encountered in previous research studies to the best of the 

author’s knowledge. The framework can be a foundation for future research studies on user 
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willingness towards other control-related actions (either for indoor climate control or grid 

flexibility actions), and it can be expanded with additional exogenous variables. It is also a 

significant contribution to broadening the use of TPB in multidisciplinary fields beyond social 

sciences. 

2.4.10  Practical implications  

 

The concept of HCC indicates that its design should be rooted in occupant preferences and 

needs. However, user willingness to interact with HCC or their preferences in the data-sharing 

process and interface design are not often considered. In opting towards an occupant-centered 

approach, the findings of this research are presented below and can be used as guidelines for 

HCC practitioners and designers:   

− Automation and interaction: most users favor an automated control system with interaction 

capabilities or a system giving them control over it. However, they prefer not to spend too 

much time or effort interacting with it. This occupant attitude highlights the need for 

adaptable control systems that customize indoor conditions to user comfort preferences.  

− Data sharing and feedback: users are willing to share data with HCC predominantly when 

discomfort arises. However, proactive nudges and reminders are important in motivating 

interaction, although only around 30% of occupants said they would like to receive such 

nudges. Notifications that illustrate user actions environmental and energy impact enhance 

user engagement to share data or participate in grid flexibility actions. 

− Influencing factors and motivators: intrinsic values such as user beliefs and awareness of 

the possible benefits of HCC significantly impact user willingness to interact with HCC. 

Accordingly, there should be a greater focus on educating people about the benefits of HCC 

and grid flexibility to increase awareness, ultimately leading to higher engagement levels. 

Social impact is also an important indicator, suggesting that behavioral approaches 

(comparison, gamification) can motivate people to participate on a larger scale. These 

approaches were used in different energy efficiency actions in [95], [96], [97]. Lastly, the 

ease of sharing data with HCC is very important, meaning that intuitive, easy-to-use 

interfaces make the reporting process less burdensome for users.   

− Feedback mechanism: users prefer smartphone applications for reporting feedback, 

possibly due to the widespread use of smartphones. The findings suggest that smartphone 
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applications should be simple, easy to use, and require less frequent feedback, and a high 

degree of privacy security should be ensured.  

− Grid flexibility engagement: the findings suggest that users inclined to interact with HCC 

are more inclined to participate in grid flexibility actions. If higher user engagement is 

expected, a shorter duration of curtailment actions should be planned. Higher financial 

benefits for the users do not always equate to higher levels of user engagement; therefore, 

although financial incentives are important, other motivators also need to be considered. 

 

2.4.11 Limitations and future research directions 

 

Although the findings cover a wide range of the population regarding age groups, there 

is a relatively limited number of elderly respondents because the survey was conducted on 

educational facilities. However, the current respondents are the most likely users of HCC, given 

that a broader implementation of such systems is still in the development phase. In the future, 

it will be interesting to compare the occupant behavior while interacting with HCC after 

implementation in real-world settings compared to their expressed willingness to interact. 

Furthermore, it is also interesting to explore the long-term impact of HCC data collection 

interfaces on occupant engagement. Despite the various aspects considered in this research, 

several other influencing factors impact user willingness to share data and are worth analyzing, 

such as the personality traits of occupants. Lastly, other means of soliciting occupant 

preferences should be explored (e.g. from interviews) to extract additional insights that 

otherwise are harder to predict.  

 

 

 

 

 

 

 

 

 



 

42 

 

 
 

 Chapter III.  
 

3. Development of Personalized Comfort Models 

 

 

Parts of this chapter are based on: 

 

A. Bresa, T. Zakula, and B. Omerzo, “Indoor Air Quality Comfort Model Development 

Using Machine Learning,” 18th SDEWES Conference, Dubrovnik, Croatia, Sep. 2023 
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“When I enter most intimately into what I call myself,  

I always stumble on some particular perception or other, of heat or cold, 

 light or shade, love or hatred, pain or pleasure.” 

D. Hume 

 

The development of personalized comfort models (PCMs) plays a pivotal role in 

understanding people’s perceptions of their indoor surroundings, which is crucial for creating 

environments that meet their needs and preferences. By learning user preferences over a short 

period, PCMs reduce the need for constant user input, addressing the challenge of obtaining 

user-provided data for human-centered control (HCC) systems. PCMs can be developed for 

different comfort aspects such as thermal, visual, acoustic, and indoor air quality (IAQ) [27]. 

These models integrate personal characteristics (age, gender, clothing, activity level), 

subjective feedback, physiological measurements, and environmental data to learn user 

comfort levels for varying indoor conditions. Although the use of PCMs is still developing, 

they hold great potential when integrated into advanced control systems. This chapter focuses 

on creating PCMs that enable user-building interaction without continuous user input. The goal 

is to develop PCMs for multiple users and comfort aspects. Drawing from two experiments – 

one in a faculty laboratory and one in a school building – this chapter demonstrates how to 

develop PCMs, effectively collect data, determine the necessary data points, handle data 

scarcity, and identify an optimal machine learning model for various comfort aspects and users. 

 

3.1 Literature review  

 

Occupant comfort in the building industry has recently gained significant attention, but 

there is a significantly higher focus on thermal comfort compared to IAQ, visual, and acoustic 

comfort [35]. This is because thermal comfort is relatively well understood, and building 

occupants can immediately sense the lack of thermal comfort. For instance, Liu et al. predicted 

the thermal comfort of 14 occupants by collecting data for 2 – 4 weeks [32]. Salamone et al. 

[33] conducted a field experiment with eight office workers to assess their thermal comfort 

using an ML technique. Research [98] predicted thermal comfort using ML in an office building 
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in France by collecting user feedback. Kim et al. [27] developed thermal PCMs for 38 

occupants in an office building. Quintana et al. [99] present data on thermal comfort collected 

for over four weeks in a faculty building in Singapore from 17 occupants. This dataset was 

used to develop thermal PCMs in combination with spatial data imported from Building 

Information Modelling (BIM) in [100] and [31], where the models showed higher accuracy. 

Research [101] focused on IAQ in a hotel building and collected measurement and subjective 

data from occupants to develop thermal comfort models. There are some studies dealing with 

a multi-comfort aspect such as thermal, visual, and acoustic comfort, such as in research [28] 

where data from 30 occupants for over two weeks were collected to develop multi-aspect 

comfort models and also show the correlation between thermal comfort and other comfort 

aspects. The correlation of the multi-comfort aspect is also studied in research [102], where the 

impact of visual stimuli on the thermal comfort perception of users in real and virtual 

environments using ML was tested. Although these studies have made significant efforts in 

thermal comfort predictions, the other comfort aspects are not as researched, which is important 

to improve overall occupant comfort.  

Data-driven ML models are widely used in the building sector, as stated in [103] and 

can be leveraged for comfort-related predictions in buildings [104]. These models are 

becoming increasingly popular as they outperform traditional comfort models. For instance, 

research [105] used ML models in naturally ventilated buildings to predict thermal comfort and 

sensation.  Furthermore, [106] stated that their ML models outperform traditional group-based 

models like  Predicted mean vote (PMV) by 13.1%, up to 17.8%. Research [107] also employs 

ML models for thermal comfort prediction. The use of ML models in comfort-related studies 

was extensively discussed in the review [108]. Some of the most used ML models for comfort-

related predictions are Random forest [109], [110], [111], Decision trees [112], Support Vector 

Machine (SVM) [113], [114], ANN [115], [116], [117], [118], [119], Deep learning [24], [120], 

[121], [122], [123], [124], Reinforcement learning (RL) [125], [126], [127], [128], [129], 

Logistic regression, K-nearest neighbor (KNN) [130], Bayesian networks [131], [132], [133], 

etc. The choice of model depends on the target and data availability, and it is important to 

compare various ML models on the same dataset to identify the best-performing model for a 

specific target.  

Developing data-driven PCMs using ML models requires a lot of user-provided data 

that ideally would have sufficient variability to avoid an imbalanced dataset. The data 

collection process in actual buildings is challenging. While more data is better for the models, 
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it also means increasing survey fatigue and burden for the data providers, in this case, building 

occupants. Furthermore, ensuring a balanced dataset collected from users is difficult in natural 

settings because feedback data cannot always be sufficiently balanced (e.g., one cannot expect 

the same amount of reported “Comfortable” and “Uncomfortable” feedback responses) as it 

would mean that the building is poorly managed [134]. To address this, scheduled feedback-

reporting times are often used, such as participants are asked to report their feedback once 

every half-hour or hour, but this can disrupt occupants’ daily tasks. If feedback reporting is left 

entirely to occupants, the data collection process can become prolonged, as evidenced by a 

study where 77% of participants only reported 1 – 2 times over six months [135]. To overcome 

this challenge, various methods have been developed, like Cohort-based models, that develop 

PCMs by grouping people with similar characteristics and using data from other occupants 

from the same group [4], [90]. Additionally, algorithms such as comfortGAN [134] can 

augment imbalanced datasets. Another method involves leveraging data collected from peers 

in similar indoor settings to address gaps in individual datasets. This approach enables the 

initial development of PCMs, which can be refined and adjusted as more personalized data 

becomes available. Despite these efforts, the question of how to collect sufficient data for 

proper PCM development remains an ongoing quest.  

Several studies have outlined the necessary data points for PCM development. For 

instance, some research suggests that 250 – 300 data points are needed for reliable PCM 

development [136],  while other studies have achieved 80% classification accuracy with just 

50 data points, representing 60% of the collected data [20]. Daum et al. [137] reported that 90 

data points are needed for the model to converge. Kim et al. [27] developed stable predictions 

of comfort models with around 60 data points. Research [138] used 110 and 150 data points 

for two users, respectively, and achieved an overall accuracy of > 94% to predict thermal 

preference. In [139], they used two weeks of data collected from wearable technology for at 

least 20 hours/day and achieved 75% accuracy. The required number of data points varies based 

on the ML model used (e.g., neural networks, logistic regression, random forests), the 

classification classes (e.g., binary vs. multi-class classification), and the indoor conditions 

during data collection (data variability) etc. Generally, binary classification (e.g., Comfortable 

vs. Uncomfortable) requires fewer data points and offers higher predictive potential [134]. 

However, this can confuse users when asked to provide feedback on their comfort level for 

different aspects (e.g., IAQ, thermal, visual comfort). In contrast, multi-class classification 

(e.g., want warmer, no change, want cooler) might require more data but is easier and more 
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intuitive for users to answer. The question of whether preference-based models (multi-class 

classification) or comfort-based models (binary classification) are better for PCMs is still 

debated. 

Due to the challenges of collecting data from occupants, there is a lack of openly 

available measured datasets accompanied by user-reported comfort data. Some studies provide 

valuable data, such as Quintana et al. [99] sharing four weeks of data from 17 collected 

participants, as well as Gao et al. [140] sharing data in a K-12 private school in Australia from 

23 students and six teachers for four weeks. Both studies included indoor and outdoor 

measurements, physiological data, and subjective feedback on occupant perception. However, 

these studies focused primarily on thermal comfort and did not include multi-comfort aspects 

such as temperature, air quality, and lighting. Therefore, it would be highly beneficial for the 

whole research community and the industry to provide data sets that entail multiple comfort 

aspects for multiple users.  

 

3.1.1 Thermal personalized comfort models 

Thermal comfort is a state of mind [141], making it challenging to quantify and predict 

due to its subjective nature. While various mathematical models (PMV, PPD)  and 

physiological measurements (heart rate, skin temperature) are used to assess thermal comfort, 

they are incomplete without involving the “mind” or subjective feedback from users [36]. 

Thermal comfort is among the most studied comfort aspects. Table 3.1 shows the reported 

studies that developed thermal PCMs by using occupant votes or feedback on their perceived 

comfort, and some of them combined the feedback with physiological measurements. 

PCMs are developed using various input variables and predict different outputs 

depending on the researchers and the aim of the model. This was also emphasized in a review 

of comfort models [146]. Kim et al. [26] mentioned that there is a need to unify the input 

variables to avoid unnecessary complications that come from gathering additional data. Figure 

3.1 shows some of the most used inputs and outputs in PCM based on the number of studies 

analyzed, such as indoor air temperature, relative humidity, and air velocity. It also includes 

physiological measurements of the human body, such as temperature on the wrist, forehead, 

face, nose, etc. Then, there are others like occupancy status and subjective inputs like preferred 

temperature, sensations, etc. 
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Table 3.1. Literature review on thermal PCMs 

Ref. Author Year Title PCM, target ML model 

 

[109] Chaudhuri 2018 Random forest based thermal 

comfort prediction from 

gender-specific physiological 

parameters using wearable 

sensing technology 

Thermal sensation, 

thermal preference, 

and thermal 

comfort votes, also 

uses PMV. 

RF 

[27] Kim 2018 Personal comfort models: 

Predicting individuals’ thermal 

preference using occupant 

heating and cooling behavior 

and machine learning 

Thermal preference CTree, GPC, 

GBM, kSVM, 

RF, regLR 

[10] Lee 2019 Implementation of a self-tuned 

HVAC controller to satisfy 

occupant thermal preferences 

and optimize energy use 

Thermal preference Bayesian 

clustering 

[112] Jiang 2019 Personalized Thermal Comfort 

Model with Decision Tree 

 Decision tree 

[142] Zhang 2020 Coupled thermal comfort 

control of thermal condition 

profile of air distribution and 

thermal preferences 

Thermal condition 

profile 

Possibility 

analysis, 

Sequential 

coupling 

[143] Wang 2020 Dimension analysis of 

subjective thermal comfort 

metrics based on ASHRAE 

Global Thermal Comfort 

Database using machine 

learning 

Thermal 

acceptability, 

thermal preference, 

thermal sensation, 

comfort 

Logistic 

regression, 

SVM 

[144] Dimara 2021 Personalized thermal comfort 

modeling through genetic 

algorithm 

 Genetic 

algorithm 

[145] Suman 2021 Towards Personalization of 

User Preferences in Partially 

Observable Smart Home 

Environments 

Activity-based Bayesian, 

LSTM, RL  

[4] Quintana 2021 Cohort-based personal comfort 

models for HVAC occupant-

centric control 

Thermal preference 

modeling and 

prediction, 

RF  

 

. 
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Figure 3.1. Input variables and outputs used for PCMs in the literature. The scale presents normalized values of the used variables in the 

aggregated number of studies shown in brackets 
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3.1.2 IAQ personalized comfort model 

IAQ significantly impacts the health and well-being of occupants. It involves multiple 

pollutants and factors, making IAQ comfort a complex issue. Its effects can be subtle, often not 

showing immediate symptoms, which makes it challenging to point out clear cause-and-effect 

relationships. Additionally, IAQ is often not adequately considered through quantifiable 

metrics, as mentioned in [147]. It has sometimes been overlooked by the building industry, 

which has traditionally prioritized energy efficiency and thermal comfort. 

The use of data-driven ML models has also emerged as a solution to IAQ-related issues. 

A recent study discussed how to leverage IoT, big data, and ML models for air pollution 

monitoring [148] and research [149] discussed the opportunities and challenges of using IoT 

to achieve higher indoor air quality. For instance, research [150] shows a review of the use of 

ANN models to predict IAQ in schools. On the other hand, research [151] uses ANN to predict 

indoor environmental quality by predicting the PMV, the CO2 level, and particulate matter. A 

similar study using ANN to predict indoor air pollutants was conducted for child daycare 

centers [152]. Furthermore, research [120] shows the leverage of deep learning in ML to 

optimize thermal comfort, IAQ, and energy saving in a faculty classroom. Research [153] 

shows the use of ANN for IAQ level prediction in an educational building. Research [154] 

shows the use of ML models to predict the change in CO2 level in an office with multiple 

occupants during 1007 meeting sessions. A similar study with one year of indoor measurements 

in an office using four different ML models to predict future CO2 levels is discussed in the 

research [155].These studies show that the use of ML for IAQ-related issues is focused more 

on predicting parameters like air pollutant levels than on predicting the IAQ-related comfort 

perceived by building occupants, which emphasizes the need for IAQ PCMs.  

 

3.1.3 Visual personalized comfort models  

Visual comfort presents the optimal combination of natural or artificial light, including 

glare control and access to outdoor views. It is one of the comfort aspects that impacts 

occupants’ health [156], well-being [157], productivity [158], cognitive performance [159], 

work engagement [160] etc. Like other comfort aspects, measuring visual comfort is 

challenging as it comprises various dimensions, each of which presents a side of visual comfort. 
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Metrics for visual comfort can be dynamic or static [161]. Research often measures 

illuminance (lux), luminance (cd/m2), and glare using HDR photographs and luminance meters. 

Non-visual effects, such as melanopic lux, lighting history, and outdoor views, also influence 

visual comfort. The best metric for assessing visual comfort remains debated. Some studies 

suggest vertical illuminance and luminance-based metrics [161], with DGP (Discomfort Glare 

Perception) being highly correlated with subjective feedback. However, measured metrics 

don’t always align with occupants’ perceptions [162]. Shafavi et al. [163] emphasize the lack 

of consensus but highlight the importance of understanding how these metrics interrelate. 

Several survey-based field studies investigated the visual comfort of building 

occupants. For instance, Jakubiec et al. [164] investigated the visual comfort of 500 students 

in an educational building using surveys and simulations. Kong et al. [165] estimated visual 

comfort of 118 participants in a higher education building in China. Davoodi et al. [166], 

performed a post-occupancy evaluation of visual comfort. Research [167] provides a 

combination of surveys, room measurements, and simulations to elicit the impact of various 

metrics on visual comfort. They surveyed 192 students for 3 days from 09:00 – 13:00 in a 

school building in Tehran. They measured illuminance (lux) in the middle of the room and at 

table level, as well as the temperature in the middle of the room. Their findings show that visual 

comfort of students is significantly influenced by various factors, like perceived lighting level, 

view satisfaction, satisfaction with the lighting distribution in the room and glare perception.  

Visual PCMs facilitate integrating users’ visual preferences into the controller for 

personalized lighting and blind control. Some studies report the development of visual PCMs, 

although compared to thermal PCMs, these studies are very scarce. Ma et al. conducted an 

experiment in China by collecting on-site measurements and user preferences in the form of 

subjective feedback simultaneously and developed visual PCMs [34]. The experiment included 

six student participants. This low number was deemed sufficient for developing PCMs, as these 

individualized models do not require a large variety of subjects to achieve statistical 

significance. The experiment lasted six months, averaging 212 datapoints per participant. The 

ML models used were Random Forest, SVM, Gaussian Mixed Model, and Classification Tree. 

Random Forest and SVM were the best-performing models. They used several indices and 

evaluated their performance using a method called failure mode and effect analysis (FMEA) 

and a hierarchical technique for order of preference by similarity to the ideal solution 

(TOPSIS). Their evaluation showed that the best-performing indices for their models are 

unsatisfied vertical illuminance, daylight glare index, luminance ratio, and shadow position. 
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Another visual PCM development was reported by Jayathissa et al. [28], where 30 participants 

reported their perceived comfort for two weeks, 5 – 15 times per day, even when they changed 

rooms, collecting around 146 data points per participant. Despite visual PCM, this study also 

investigated thermal and aural comfort (satisfaction with the sound environment), making it 

one of the rare multi-comfort aspect studies dealing with PCM. The PCMs were developed 

using a Random Forest with 1 000 trees with the Gini criterion, where 60% of the collected 

data was used for training and 40% for testing. Xiong et al. [168] developed personalized 

satisfaction models using Bayesian inference to improve visual comfort and energy use, they 

collected visual preference data in single-use offices with dimmable lights and automated 

shading systems. 

 

3.2 Methods 

 

This section presents the methods for developing PCMs to predict occupants’ comfort 

levels based on a combination of physical and subjective inputs. The methods involve two 

experimental exhibits and model prediction using ML. The experiments were used to collect 

data from indoor settings and user feedback on their perceived comfort. The first experiment 

was a laboratory experiment (hereinafter the lab) conducted in an office at the Faculty of 

Mechanical Engineering and Naval Architecture (FAMENA), University of Zagreb, Croatia. 

The experiment had four participants and lasted for three weeks. To test the findings of the lab 

experiment in more realistic and less controlled settings, another experiment was conducted in 

a classroom of a Technical School, Ruder Boskovic (RCK RB), in Zagreb, Croatia (hereinafter 

the field experiment). This field experiment had 24 high school students participating, lasting 

two weeks. Drawing from the two experiments, this section presents methods to effectively 

collect data for PCMs and to develop multi-comfort PCMs for multiple users with varying 

engagement levels in providing data. Different ML classification models were trained and 

tested to determine their effectiveness in predicting comfort across different comfort aspects 

for different users for the lab experiment. Then, the same was tested for the field experiment. 

Furthermore, this section also outlines the design of a smartphone application for data 

collection, the structure of the experiments, and the comparison of different developed models. 

Finally, this chapter also discusses how to deal with the lack of data from the users.  
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3.2.4 Design of personalized comfort models 

 

In this research, PCMs are developed using physical indoor measurements and user-

reported feedback on perceived comfort. The measurements are conducted for multiple comfort 

aspects, including air temperature, air humidity, air velocity, CO2, and lighting level. 

Meanwhile, subjective feedback includes people’s perceptions of indoor conditions, 

preferences, sensations, and satisfaction. Figure 3.2 shows the process of developing a PCM, 

which includes data collection and processing and ML model development. In the following 

sections, these processes are explained in more detail.  

 

Figure 3.2 The process of developing a PCM, including data collection and ML model  

 

 

3.2.5 Data collection for personalized comfort model development 

 

Two experiments are conducted to collect data for PCMs. First, in the FAMENA faculty 

office, user preferences and indoor measurements were collected over three weeks from 21 

November to 12 December 2023, involving four participants. Feedback was collected via a 

smartphone app, and indoor measurements were conducted simultaneously through static and 

portable sensors. The second experiment took place in RCK RB Technical High School, with 

24 students in one classroom participating for two weeks, starting from 18 April up to 3 May 
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2024. The school experiment was conducted with the aim of integrating PCMs into the control 

system of the school building, which will be discussed in Chapter IV. The participants were 

thoroughly informed about the experiment through a prior lecture on how to report feedback 

and the rules (e.g., do not use blinds, open windows or table lamps, or manipulate the heating 

or A/C). Both experiments were approved by the Ethics Board Committee at the Faculty of 

Humanities and Social Sciences and the Ethics Board Committee at the FAMENA. 

Additionally, all participants or their legal guardians have signed a consent form for 

participation.  

In the lab experiment, the user feedback was collected every 30 minutes, which is quite 

frequent, but this was set up to compensate for the times when one or some of the participants 

were not at the office. To create variability in the data and to test the comfort boundaries of 

users, different weeks of the experiment had different indoor conditions (e.g., some days had 

higher indoor temperatures, other days lower, more fresh air, less fresh air, etc.). The 

experiment layout is shown in Table 3.2 in more detail. To visualize the variability of indoor 

conditions, Figure 3.3 depicts how the indoor setpoints changed daily throughout the 

experiment. On average, 180 data points were collected for each participant throughout the 

three weeks. Each task of reporting feedback took the participants around 15 seconds per task.  

Table 3.2 Experiment design for the lab experiment 

Week of the 

experiment 

Interventions 

Week 1  Business as usual (no interventions) 

Week 2  Various intervention days with diverse combinations, such as: 

− high temperature (heating on, A/C on heating)  

− low temperatures (heating OFF, A/C on cooling) 

− high lighting levels (natural lights, no blinds used, high glare) 

− low lighting levels (natural lights, blinds on, or half-way, no 

artificial light) 

− high CO2 level (doors closed, natural increase of CO2 levels from 

participants in the office) 

Week 3 Three intervention days with additional variating CO2 levels using 

additional CO2 injection from a CO2 bottle. On other days, business as 

usual.  
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Figure 3.3 The indoor parameters variability throughout the days for the lab experiment 

 

In the field experiment, the user feedback was collected once every hour at the end of 

each class. This frequency was selected to gather sufficient user feedback for a short time while 

still not interrupting regular class teaching. To create data variability, the experiment period 

was divided into standard operating days (with regular or standard indoor conditions) and 

intervention days (where the comfort boundaries were tested with setpoints outside the comfort 

zone, similar to the lab experiment). This is shown in Table 3.3 in more detail. The number of 

data points provided by the participants in the school building was lower, reaching 43 for some 

participants, but for some, even as low as 7 data points for two weeks. Each task of reporting 

feedback took the participants around 15 – 60 seconds per task. Figure 3.4 shows pictures taken 

during the field experiment while taking indoor measurements and feedback reporting using 

the smartphone app.  
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Two data sets are needed to develop personalized comfort models, including user 

preferences and indoor environment measurements. The indoor measurements collected 

through the experiments are presented in Table 3.4.  

 

  

Figure 3.4 Pictures taken during the field experiment where a) the students are shown during 

manual measurements, b) students report their comfort feedback through the app interface 

 

Table 3.3 The field experiment design 

Day of the 

experiment 

Interventions 

Day 1  Free-floating (no HVAC) 

Day 2 Business as usual (standard setpoints) 

Day 3-7 Various intervention days with diverse combinations, such as: 

− high temperature (heating on)  

− low temperatures (cooling on) 

− high lighting levels (natural lights, no blinds, high glare) 

− low lighting levels (natural lights, blinds on, or half-way, no artificial 

light) 

− High CO2 level (doors closed, natural increase of CO2 levels from 

participants in the classroom) 

Day 8 Business as usual (standard setpoints) 

Day 9-11 Setpoints are regulated based on user responses and preferences.  

 

 

 

 

 

 

a)

) 

 

b)

) 
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Table 3.4 The measurements conducted at the lab and field experiments 

The measurement The instrument Instrument position Frequency 

 

The indoor measurements collected at the lab experiment 

Temperature (℃) Static sensors 

(thermocouples)  

 

MR*, T, A, W 5 s** 

 Mobile sensors (Testo 401)  NB 30 min 

CO2 level (ppm) Static sensors  MR, T, W  

 

5 s 

Air humidity (%), 

Air velocity (m/s) 

Mobile sensors (Testo 401) MR, T 

 

30 min 

Illuminance (lux) Mobile sensors (Testo 401) T (horizontal illuminance), 

Eye level (vertical 

illuminance), MR. 

30 min 

Indoor measurements collected at the field experiment 

Temperature (℃) Embedded sensors, 

thermostats 

MR, WA, RD, OMR 5 min 

 Mobile sensors (Testo 401)  NB 1 h 

CO2 level (ppm) Embedded sensors  WA, MR 5 min 

Air humidity (%), 

Air velocity (m/s) 

Mobile sensors (Testo 401) T, MR  1 h 

Illuminance (lux) Embedded sensors MR, W, WA 5 min 

Mobile sensors (Testo 401) T (horizontal illuminance), 

Eye level (vertical 

illuminance), MR. 

1 h 

*MR-Middle of the room (1.5m above ground); T-at table level for each participant; A-ankle 

level for each participant; W-at the windows, NB-near body, WA-at the wall, RD-return air 

duct, OMR-operative temperature in MR. **5s-frequency every 5 seconds; 30 min-frequency 

every 30 minutes.  

 

The user preferences include user perceptions on IAQ, thermal and visual comfort. (i.e., 

temperature, air quality, and lighting level). The feedback was collected using a smartphone 

application called HComfort, explicitly developed for this purpose and shown in Figure 3.5. 

The app was developed based on research findings in Chapter I, where 66% of nearly 1 000 

respondents preferred using a smartphone app to report feedback. Ease of use and privacy 

security were identified as critical factors for data sharing. The user interface of the app is 

simple, featuring a welcome page, a home page with questionnaires, and a profile page, as 

shown in Figure 3.5. Developed using React Native and Amazon Web Services (AWS), the app 
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leverages AWS for scalability and robust data protection. Data is stored in DynamoDB, a 

NoSQL database that facilitates easy scaling and information management. The architecture of 

the app development is shown in Figure 3.6. The decision to develop the app from scratch was 

driven by the lack of open-source options covering all three comfort aspects, allowing for 

greater flexibility and independence in managing users and questions. In the future, the app can 

be further developed to interact with building control systems, enabling bidirectional data flow 

to not only send data collected from users but also convey data from the system to users.  

Each comfort aspect has its own set of questions to describe the comfort as much as 

possible; for instance, perceived thermal comfort is measured using thermal preference, 

thermal sensation, and perceived comfort. The questions used are: How do you prefer the room 

temperature? Options: Cooler, No change, Warmer [28], How do you currently feel? Options: 

Hot, Warm, Slightly warm, Neutral, Slightly cool, Cool, Cold. In terms of Thermal comfort, 

how would you describe your current comfort level? Options: Comfortable or uncomfortable. 

The other questions in the app to measure each specific comfort aspect are shown in Annex C 

for brevity reasons. 

 

Figure 3.5 The smartphone application user interface is used to collect user feedback on their 

indoor environment perceptions 
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Figure 3.6 The HComfort React native application architecture 

 

The data collected from the app is automatically stored in the DynamoDB database 

connected to the Python environments through an intermediator called Boto3. The user-

reported data flows automatically from DynamoDB to the Jupyter lab notebook, where the 

PCMs are developed, as shown in Figure 3.7. This enables immediate updates of the PCMs, 

which are developed in a Python environment.  

 

Figure 3.7 The data storage and flow process from users to the PCMs 

 

3.2.6 Development of personalized comfort models using machine learning 

 

ML models are powerful prediction tools and can be categorized into supervised and 

unsupervised learning. Supervised learning is used when the relationship between inputs and 

outputs is known, allowing models to be trained on labeled data. In contrast, unsupervised 
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learning is used when the relationship between data points is unknown, requiring models to 

identify patterns independently. This research employs supervised learning to develop PCMs, 

as the collected data from the experiments include known inputs and outputs. The inputs are 

physical indoor measurements and subjective user feedback, while the outputs are the comfort 

levels (Comfortable or Uncomfortable) shown in Figure 3.8. This is a binary classification 

model. The dataset was divided into two parts: 70% for training the models and 30% for testing 

their performance. This ensures that the models are trained on a substantial portion of the data 

while retaining enough unseen data for the model to evaluate their predictive accuracy.  

 

Figure 3.8 Inputs and outputs of the multi-comfort aspect PCMs, a) IAQ PCM, b) thermal 

PCM, and c) visual PCM. The measured inputs are as follows: MR – middle of the room, T – 

at the table, NB – near body, W – at the window 
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Nine different ML models are tested and compared to identify the best-performing 

model for the PCMs for the lab experiment and later for the field experiment. Each model has 

its strengths and weaknesses, and their predictive performance can vary. The reason for 

selecting different models is to get a variety of models from simpler ones (e.g., Naïve Bayes) 

to more complex models such as deep learning (LSTM). For the lab experiment, a simple 

prediction model was used as a baseline or reference model to compare the performance of the 

nine other models to it. This simple model is called a Dummy classifier that ignores inputs and 

makes simple predictions based on frequency of predicted responses. Artificial Neural 

Networks (ANNs) are robust ML models that mimic the human brain and are capable of 

modeling complex nonlinear relationships [169]. Decision Trees are versatile and robust 

models used in various applications [170]. When multiple decision trees are combined, they 

form a Random Forest, which overcomes the limitations of a single Decision Tree [171]. K-

nearest neighbor (KNN) is a classification technique that approximates data point 

classifications by identifying the closest objects [172]. Logistic Regression is a statistical 

method that examines the relationship between influencing factors and a binary or categorical 

outcome [173]. Ada Boost [174] enhances accuracy by combining multiple weak learners into 

a strong learner and is effective for unbalanced datasets, often used with models like Logistic 

Regression. Recurrent Neural Networks with Long-Short Term Memory (RNN LSTM) [175] 

are deep learning models that predict time-series or sequential data. Naïve Bayes is a 

probabilistic classification model that uses evidence to find hypotheses [176]. Support Vector 

Machine (SVM) [177] is known for its simplicity and flexibility in various classification 

problems, providing balanced predictive performance even with limited sample sizes. These 

ML models were developed using Python programming, and Python packages were adopted 

for the ML models as shown in Table 3.5. 

 

Table 3.5 Python packages used for ML model development 

 Name of the ML model Code snippet used  

M1 Ada Boost Logistic Regression   Package: sklearn.linear model  

  Imported: LogisticRegression & 

AdaBoostClassifier 

M2  Artificial Neural Network 

(ANN) 

  Package: tensorflow.keras.models  

  Imported: Sequential 

M3 Decision Tree   Package: sklearn.tree  

  Imported:  DecisionTreeClassifier 
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  *Continued table 

M4 K-nearest neighbor (KNN)   Package: sklearn.neighbors 

  imported: KNeighborsClassifier 

M5 Logistic Regression   Package: sklearn.linear_model  

  Imported: LogisticRegression 

M6 Recurrent Neural Network 

Long-short term memory 

(RNN LSTM) 

  Package: keras.layers 

  Imported: LSTM, Dense, Dropout 

M7 Naïve Bayes   Package: sklearn.naive_bayes  

  Imported: GaussianNB 

M8 Random Forest   Package: sklearn.ensemble 

  Imported: RandomForestClassifier 

M9 Support Vector Machine 

(SVM) 

  Package: sklearn.svm 

  Imported:  SVC 

 

All ML classification models are trained and tested on the same dataset using a random 

seed set to 42 to ensure consistency. This means the models start on the same random index, 

ensuring they always yield the same results. Furthermore, the inputs have a significant impact 

on the prediction performance of the model. Therefore, a feature analysis is conducted to 

evaluate the impact of each input, and to assess which inputs can be removed without 

significantly affecting the model performance yet simplifying the model. In the context of 

PCM, this means using fewer data sources, i.e., fewer sensors, making PCMs viable even for 

buildings that do not have numerous and sophisticated sensors. 

 

3.2.7 Model performance evaluation  

 

Accuracy, precision, f1-score, and specificity are metrics used to compare the 

developed PCMs with various classifiers. These metrics present different ratios of True 

Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). A TP is 

when the model is supposed to predict the “Comfortable” state, and it accurately predicts 

comfortable, and a TN is when the model accurately predicts the “Uncomfortable” state. A FP 

or FN on the other hand are when the model wrongly predicts either “Comfortable” (FP), or 

“Uncomfortable (FN), respectively. To visually depict the prediction potential of each 

individual classifier, the Confusion Matrix method is used to show how many times the model 

predicted what it was supposed to predict. The example of the Confusion Matrix is presented 

in Figure 3.9. The higher the True predictions (shown in green) the better the performance of 
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the model. And contrarily, the higher the False predictions (shown in red color), the worse the 

performance of the model is.  

 

Figure 3.9 The Confusion Matrix concept depicting the number of occurrences the model 

predicted True or False predictions 

 

Accuracy shows the ratio of TP and TN predicted, compared to all other predictions. It 

is calculated as:  

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
 

 

(1) 

 

Precision is a metric that shows the ratio of predicted TPs and is calculated as follows: 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(2) 

 

For imbalanced datasets, such as those collected in buildings with more “Comfortable” 

than “Uncomfortable” responses, it’s crucial to use metrics that account for this imbalance. The 

model may be biased towards predicting the majority class (“Comfortable”), leading to high 

precision but poor performance for the minority class (“Uncomfortable”). Hence, the F1-score 

is a more appropriate metric for evaluating models trained on imbalanced data. It considers 

both True Positives (TP) and True Negatives (TN), providing a balanced measure of how well 

the models predict both “Comfortable” and “Uncomfortable” states. The F1-score is calculated 

as:   
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𝐹1 = 2 ×
𝑃𝑅𝐸 × 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
 

 

(3) 

where REC is the recall metric that is calculated as:  

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(4) 

 

In the context of PCMs integrated into building control systems, it is crucial to 

accurately predict when a user is “Uncomfortable”. The reason is that the system only triggers 

changes to the indoor environment when the PCM predicts discomfort. Therefore, the best 

PCM models are those that effectively predict the “Uncomfortable” state (TN). High FN 

(predicting discomfort when users are comfortable) leads to unnecessary changes and higher 

energy consumption. High FP (predicting comfort when users are uncomfortable) results in 

user dissatisfaction and prolonged discomfort. Thus, models with the fewest False predictions 

are preferred, with an emphasis on maximizing TN. To highlight models that best predict TN 

(“Uncomfortable”), the Specificity metric is used, defined as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃 + 𝑇𝑁
 

 

(5) 

 

3.3 Results 

 

After analyzing the data collected from the lab and field experiment and developing 

PCMs for laboratory settings and for the field experiment with less control over user 

engagement levels, this section shows the yielded results and corresponding findings. Some of 

the research questions answered in this section include: how to develop multi-comfort PCMs 

for multiple occupants using ML models? How to effectively collect data to develop data-

driven PCMs? Which is the most reliable ML model for PCM? How many data points are 

needed for an optimal PCM? How to overcome the lack of data for people with different 

engagement levels on reporting data?  
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3.3.8 Findings from the lab experiment: user preferences and personalized comfort 

models 

 

Throughout the three weeks of the lab experiment in a faculty office, a total of 623 

datapoints were collected for four participants. The distribution of data across participants is 

shown in Figure 3.10. The participants in the lab experiment were more dedicated to regularly 

reporting their feedback and more intentional in the sincerity of their responses compared to 

the field experiment. For that reason, the lab experiment is used as a reference scenario to 

develop and test the models, that are later used in the field experiment. The lab experiment 

results encompass user preferences and comfort levels over three weeks, focusing on IAQ, 

thermal comfort, and visual comfort. These findings are compared with the standard setpoints 

typically used in buildings. On the other side, the results also show the PCMs developed for 

the four participants which is elaborated in more detail in the subsequent sections.  

 

Figure 3.10 Distribution of collected datapoints for all participants in the lab experiment 

 

User preferences. The perceived comfort during the lab experiment varied 

significantly, as shown in Figure 3.11. The high discomfort rate was caused purposefully to 

create more variability in the user responses and to test the comfort boundaries of the 

participants. Figure 3.11 shows that the IAQ comfort was the one affecting participant the most 

and where they felt the most discomfort. The changes in perceived comfort throughout different 

days of the experiment, especially during the intervention days, are presented in Annex D due 

to brevity reasons.  
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Figure 3.11 The perceived comfort for all participants in the lab experiment for different 

comfort aspects 

Considering that various comfort aspects were evaluated simultaneously during the 

experiment, it is important to show how each individual perceived each comfort aspect and to 

compare their comfort profiles. The participants, although being in the same office under the 

same conditions, reported different comfort perceptions. Figure 3.12 shows how different users 

experience thermal comfort differently for varying indoor air temperatures. The findings from 

this analysis show that: 

− Thermal comfort is perceived differently for different users across the same 

temperature ranges.  

− The range of temperature yielding the peak comfort for all users can be narrowed 

down to 22.5 − 25℃. This outcome challenges the standard recommended 

setpoints for office environments such as CIBSE recommending 20℃ for offices in 

the United Kingdom [178], but in other cases it overlaps with the upper boundaries 

of the recommendations such as  OSHA 20 − 24℃ in the United States [179], and 

ASHRAE 55 for winter when the relative humidity is 30% then the recommended 

temperature is 20.5 − 25.5℃. The comfort temperature ranges go in line with 

findings of other studies in office buildings such as in research [133] by Wang et 

al., where by using the ASHRAE Global Thermal Comfort Database for office 

buildings in the US, they retrieved that for heating season (same as in our 

experiment), the comfort operative temperature varies between 20.5 − 24.9℃.  

− There are outliers in the reported comfort or discomfort for temperatures outside 

the normal comfort zone. This shows that it is impossible to always predict the 

thermal comfort of occupants correctly, due to the subjective nature of occupant 

preferences where for the same temperature individuals can feel comfortable 

sometimes, and uncomfortable other times depending on other factors.  
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Figure 3.12 The difference in perceived thermal comfort under the same indoor conditions for 

the lab experiment participants. Upper part: the KDE plot showing the density of 

distribution, and the lower part: showing the bar plot for clearer depiction of the data 

distribution and outliers 

 

People find it difficult to notice the change in air quality when remaining in a room. The 

poor IAQ is often noticed only when one changes the room, or the conditions are getting 

unbearably worse. The imperceptible nature of CO2 in the air makes it even more harmful to 

people if the concentration gets higher. This was also noticed in the outcomes of the office 

experiment as shown in Figure 3.13. Results show that:  

− IAQ comfort is perceived differently from different occupants. 

− The comfort peak in terms of IAQ is around 800 ppm, which goes in line with ASHRAE 

standard value of comfortable indoor air quality limit of 1 000 ppm.  

− However, even at standard values of CO2 (less than 1 000 ppm) participants reported 

feeling uncomfortable, showing the impact of other factors on IAQ comfort 

perceptions. 
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− The inability to perceive high concentrations of CO2 was highlighted during the 

intervention days. Despite extremely high CO2 levels (above 3 500 ppm), participants 

occasionally reported feeling “comfortable” for IAQ, indicating a clear failure to sense 

the elevated CO2 levels. These high CO2 concentrations were induced purposefully and 

closely monitored not to exceed the allowed threshold according to ASHRAE, yet 

sometimes, even without artificially induced CO2, on some days the natural CO2 levels 

increased to high concentrations when doors and windows were closed. This is 

important as it shows that IAQ needs more attention and even nudges to warn occupants 

when poor IAQ is present. 

 

 

Figure 3.13 The difference in perceived IAQ comfort under the same indoor conditions for 

the lab experiment participants. Upper part: the KDE plot shows the density of distribution, 

and the lower part: shows the bar plot for a clearer depiction of the data distribution and 

outliers 

 

Visual comfort in terms of lighting level is highly dependent on the spatial position of the 

occupants in the room compared to the lighting source. The visual comfort perception of the 

participants in the lab experiment is presented in Figure 3.14. The findings show that:  
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− Like other comfort aspects, visual comfort is highly individual but also deeply 

dependent on the sitting position of the participants in the room compared to the 

artificial or natural lighting sources in the room, i.e., windows.  

− The lighting levels in the office were, in the majority of cases below the standard 

recommended values of 500 – 1 000 lux according to EN 12464, and 300 lux for office 

spaces according to CIBSE [180]. However, even in below-optimal conditions, the 

participants were not always dissatisfied with the illuminance level. This shows that the 

preferences vary significantly, and the often-used 500 lux lighting level setpoints in the 

offices can also be lower. This finding goes in line with research [181] which shows 

that optimal visual performance can be achieved even with lower lighting levels than 

500 lux. The survey-based research of Mui et al., in Hong Kong offices with 293 

surveyed occupants, shows that a horizontal illuminance of 518 lux reaches 86% 

satisfaction in terms of visual comfort [182]. However, the small group of participants 

in the lab office cannot be used to generalize the findings that less than 500 lux is also 

acceptable.  

 

 

Figure 3.14 The difference in perceived Visual comfort under the same indoor conditions for 

the lab experiment participants. Upper part: the KDE plot showing the density of 

distribution, and the lower part: shows the bar plot for clearer depiction of the data 

distribution and outliers 

 

While it is important to know when the participants feel comfortable and 

uncomfortable, knowing their preferences regarding the indoor conditions is also beneficial. 
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For instance, someone may be more inclined to prefer lower temperatures over higher 

temperatures. User preferences regarding the three comfort aspects are presented in Figure 

3.15, to show the nuanced preferences of different users, emphasizing the fact that the “one-

fits-for-all” approach is difficult to reach, but there are temperature ranges that can satisfy most 

of the participants.  

 

Figure 3.15 The correlation between thermal comfort and thermal preferences for the lab 

experiment 

 

Since this chapter focuses on PCMs, other important findings are presented in Annex 

D for brevity. This Annex provides detailed analyses of various comfort perceptions and 

correlations, user preferences, and the relationships between comfort, productivity, mood, and 

participant states. For example, it explores how perceived thermal comfort and IAQ correlate 

with temperature and CO2 levels, and how users react to higher temperatures with lower IAQ 

perceived comfort. Additionally, it examines the correlation between occupant satisfaction with 
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indoor conditions and perceived comfort, as well as the relationship between comfort, 

productivity, and mood, although the causal effect was not confirmed. 

Personalized comfort models. Several ML models were trained and tested for different 

users in the lab experiment. These results present the reference models which are later used and 

tested in the school field experiment. The results show that not all ML models have the same 

prediction performance, and that the predictability also depends on the comfort aspect being 

predicted, the tolerance level of users, their acceptance on the indoor conditions (individuality 

of the users), and of course, on the number of collected datapoints.  

To show the performance of the models, a confusion matrix is used for a clearer 

depiction on how many times the model predicted the true values (what it was supposed to 

predict, either Comfortable or Uncomfortable), and how many times it predicted falsely. To 

avoid redundancy, only the confusion matrices of Random Forest are shown below in Figure 

3.16 for user 4. Figure 3.17 shows the confusion matrices for thermal PCMs for all users that 

were developed with Random Forest. The comparison of the performance of nine different ML 

models for all four participants compared to a baseline model (the simplest prediction model 

called the Dummy classifier) is shown as a heatmap in Figure 3.18. The prediction performance 

was measured with F1 score, as an appropriate metric for imbalanced datasets that shows if a 

model is a good predictor of both “Comfortable” and “Uncomfortable” instances and with 

Specificity, which shows how many times “Uncomfortable” was predicted correctly.  

 

Figure 3.16 The confusion matrix shows the performance of the Random Forest model for 

User 4 Thermal PCM. It indicates that “Comfortable” was correctly predicted 32 times and 

“Uncomfortable” 24 times. The model made 1 false prediction for “Uncomfortable” and 3 

false predictions for “Comfortable” 
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To compare which model from the nine ML models has the best prediction potential 

across all classes (users and comfort aspects) compared to the baseline model, the F1 scores 

(prediction potential) are shown in Figure 3.18 and Figure 3.19. The findings show that:  

- There is a variety of prediction performance of different ML models for the same user and 

same comfort aspect. However, the best performing model on average for all users and all 

comfort aspects is Random Forest, followed very closely by Decision Trees. Comparison 

of average F1 scores and Specificities for all participants and all comfort aspects is shown 

in Figure 3.19.  

- As the models are used to predict comfort, which in its nature is a subjective and complex 

concept to predict, in this research, if a model yields a prediction performance of F1 score 

above 0.7, the model is considered appropriate and the higher the F1 score, the better the 

prediction performance. Yet, the best performing models such as Random forest and 

Decision tree, yielded an average F1 score value of 0.87 and 0.86, respectively, across all 

users and all comfort aspects. 

- When selecting the best model, factors beyond prediction performance should be 

considered, such as training duration and computational effort. ANN and LSTM had the 

longest training times and required higher computational effort, yet produced similar results 

to Random Forest, Decision Trees, KNN, and Naive Bayes. The optimal model should 

deliver satisfactory results across many users and comfort aspects, covering a wide range 

of scenarios. In this case, Random Forest and Decision Trees proved to be the most 

effective.  

- User 1 models performed the least effectively, likely because they had the smallest dataset 

with little variation (mostly reporting comfortable). This led to overfitting, where the 

models fit the available data too perfectly but perform poorly on new data. This was 

particularly evident in visual comfort, where model predictions were 100% accurate which 

is a sign of overfitting rather than perfect prediction in ML. 

- User 4 had the best-performing models as they had the largest dataset (198 data points). 

However, the models performed slightly worse for thermal and visual aspects than the IAQ 

model because of the users’ varying preferences for temperature and lighting levels.  

- Thermal comfort PCM has lower F1-scores than the IAQ and visual comfort PCMs. This 

can be attributed to participants feeling comfortable across a wide range of temperatures. 

For example, a participant might feel comfortable at 21℃ one day and cold and 

uncomfortable at the same temperature on another day. This highlights that thermal comfort 
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is highly conditional and influenced by various factors, including historical thermal comfort 

and the interaction of different comfort aspects, not just indoor temperature.  

 

 

 

Figure 3.17 Confusion matrices for each individual user and each comfort aspect – an 

overview of the prediction performance of the Random Forest model in predicting True 

Positives and Negatives, and False Positives and Negatives 
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Figure 3.18 The comparison of model performance measured with F1 score for each 

individual user. Results are shown for IAQ PCMs (left), thermal PCMs (middle) and visual 

PCMs (right) 

 

Figure 3.19 The comparison of model performance measured with average F1 score and 

specificity for all users. Results are shown for IAQ PCMs (top left), thermal PCMs (top 

right), visual PCMs (bottom left) and all comfort aspects (bottom right) 

 

3.3.9 Feature analysis for input selection in personalized comfort models 

The models developed for the participants in the lab experiment include a lot of inputs 

and are used to predict comfort. To test the importance that each input feature has on the 

performance of the model, a feature analysis was performed for the selected best performing 

model, which is Random Forest. The feature performance analysis is conducted for all users 
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and all three comfort aspects and the results are presented in Figure 3.20 (IAQ comfort), Figure 

3.21 (thermal comfort), and Figure 3.22 (visual comfort).    

The most important features identified from the input feature analysis for IAQ comfort 

PCMs are the perceived air quality sensations of the users (very stuffy to very fresh, etc.), the 

perceived air humidity sensation (very dry to very humid), the air quality preference (want 

more fresh air or no change), air temperature (measured at different points in the room), CO2 

levels, and the air humidity. Results suggest that air temperature impacts the IAQ PCM more 

than the CO2 levels, emphasizing the correlation between comfort aspects (in this case, IAQ 

and thermal comfort). The least important input feature for IAQ PCM is air velocity. (Figure 

3.20) 

The feature analysis of the thermal PCM with Random forest (Figure 3.21) shows that 

thermal preference, air temperature (measured at different points), air humidity, and thermal 

sensation highly impact thermal PCM performance. However, it should be noted that these vary 

from person to person, depending on their expressed responses. The least important input 

features are the measured air velocity, air humidity sensation, and air velocity preference.  

As per the visual PCMs (Figure 3.22), results show that the least important input 

features are blind usage and glare perception, meaning that these features did not contribute 

much to the prediction potential of these models. The most important ones are illuminance 

measured in the middle of the room, vertical and horizontal illuminance measured at table level 

and eye level in lux, lighting preference (want brighter or dimmer), and illuminance sensation 

(too dark, too bright, neutral).  
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Figure 3.20 Feature importance analysis for Random Forest for IAQ comfort aspect. Data 

are presented for each user. 

 

Figure 3.21 Feature importance analysis for Random Forest for thermal comfort aspect. 

Data are presented for each user 
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Figure 3.22 Feature importance analysis for Random Forest for visual comfort aspect. Data 

are presented for each user 

 

Considering the feature importance, some features with little impact were removed e.g., 

air velocity. The models were simplified by using only one data source for each parameter, 

such as using air temperature from a single sensor in the middle of the room, instead of multiple 

sensors from different locations. The feature reduction enables one to evaluate the potential of 

developing PCMs with less measured sources or reported variables. The reason behind this is 

to make the models easily reproducible since most buildings usually have, e.g., one thermostat 

that measures the room temperature in only one location. Figure 3.23 shows the comparison of 

variables between the model with all initial inputs and the reduced model, while Figure 3.24 

shows the differences in the prediction potential between those two models.  
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Figure 3.23 The comparison of the full PCMs (all input features) and the reduced PCMs 

(reduced input features) 
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Figure 3.24 The difference between the F1 scores for the PCMs with all initial inputs and the 

reduced PCMs. Results are shown as average values between all users  

 

For a more explicit depiction of how the feature reduction impacts the PCMs for 

different comfort aspects, Figure 3.25 shows the difference between the F1 score for reduced 

models and F1 scores for all inputs, or more precisely: ΔF1 score = 𝐹1 𝑠𝑐𝑜𝑟𝑒(𝑟𝑒𝑑𝑢𝑐𝑒𝑑) −

𝐹1 𝑠𝑐𝑜𝑟𝑒(𝑎𝑙𝑙 𝑖𝑛𝑝𝑢𝑡𝑠). The results indicate that for thermal PCMs, the F1 score decreases for 

some ML models. However, IAQ and visual PCMs show improved performance with fewer 

inputs. Notably, feature reduction did not significantly impact performance for the Random 

Forest model, which is the best-performing model. The baseline model (Dummy classification) 

is not included here as it ignores the input features and will not be used for comparison in 

following sections, leaving only the nine other ML models for comparison.  
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Figure 3.25 The difference between the F1 scores of the PCMs with all inputs and the PCMs 

with the reduced inputs for IAQ, thermal comfort, visual comfort, and the average for all 

three comfort aspects 

 

3.3.10 Comparison between comfort-based and preference-based models   

To determine the comfort of occupants using PCMs, some researchers use preference-based 

models by predicting, for instance, thermal preference (e.g., want cooler, no change, want 

warmer) or thermal sensation (feeling hot, warm, neutral, cool, cold). This study has applied a 

simplified approach using a binary classification model that categorizes comfort as 

Comfortable or Uncomfortable. The main benefit of such comfort-based models is the reduced 

number of data points needed as input to achieve satisfactory predictions compared to 

multiclass models. Figure 3.26 compares the performance of comfort-based and preference-

based models using data from four participants in the lab experiment. Overall, the average F1 

scores across all users and comfort aspects reveal that both comfort-based and preference-based 

models have similar prediction capabilities, particularly when using tree-based models for the 

PCMs.  
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Figure 3.26. Comparison of comfort-based and preference-based PCMs for different comfort 

aspects 

 

3.3.11 Analysis on the amount of datapoints needed for PCM development 

This section presents the results of an analysis to determine the minimum amount of data 

required to develop well-performing PCMs. The analysis involved testing models with varying 

numbers of data points by partitioning the user dataset into 10-point slices. These slices were 

incrementally added to the model to observe when the prediction performance improved and 

stabilized. The models were initially trained with 20 data points per user, then increased to 30, 

40, and so on. This process was applied to all three comfort aspects and the models with all 

initial inputs (Figure 3.27) for two users with the highest number of data points. For brevity 

reasons, additional results (results for the reduced models and the results on the specificity) are 

shown in Annex D. Figure 3.27 shows that: 

- Some models converge their accuracy or stabilize their performance after 50 – 60 collected 

data points. This goes in line with research [27] and [20].  

- Random Forest, Decision tree, KNN, ANN, and LSTM significantly improved their 

performance after around 50 – 60 data points.  
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Figure 3.27 Comparison of prediction accuracy (F1 score) of PCMs depending on the 

number of data points for all comfort aspects. Data are shown for the models with all initial 

inputs 

 

3.3.12 Findings from the field experiment: user preferences and personalized comfort 

models 

To test the PCMs developed in the lab experiment, a field study was conducted in a 

school building with 24 participants with limited knowledge of control systems. These 

participants were typical building occupants whose feedback reporting habits and engagement 

levels with the building controller were naturally varied and uncontrolled. Although reminders 

were used to nudge them to report, compliance was sometimes inconsistent. Throughout the 

two weeks of the experiment, a total of 702 data points were collected from 24 participants in 

one classroom. The participants reported feedback 3 to 7 times per day; due to varying class 

schedules, they were not always available to report. The distribution of data across participants 

is shown in Figure 3.28. The results of the field experiment include user preferences and 

comfort levels related to IAQ, thermal comfort, and visual comfort over two weeks. These 

results are compared to the standard setpoints typically used in buildings. Additionally, the 

results entail PCMs developed for the participants, which are discussed further in the 

subsequent sections. 
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Figure 3.28 The number of data points provided by each user during the field experiment 

 

Findings on user preferences and perceived comfort during the field experiment. 

The perceived comfort during the field experiment varied significantly as shown in Figure 3.29. 

Although a higher discomfort rate was expected, especially during the intervention days of the 

experiment when their comfort boundaries were tested, the participants were mostly 

comfortable throughout the experiment. Figure 3.29 also indicates that IAQ was the primary 

factor affecting the comfort of participants, causing the most discomfort. This observation 

aligns with the findings from the lab experiment. 

 

 

Figure 3.29 Distribution of the perceived comfort for different comfort aspects (IAQ, thermal 

and visual comfort) and the overall comfort for all participants 

 

Figure 3.30 shows the perceived thermal comfort for the field participants. The 

distribution of thermal comfort responses is presented for different indoor temperatures and for 
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different participants. The other data distributions for IAQ and visual were similar to the lab 

findings and will, therefore, not be presented to avoid redundancy. 

  

 

Figure 3.30 Distribution of perceived thermal comfort votes for different users across 

different air temperatures during the field experiment 

 

The comfort ranges or boundaries for air temperature and CO2 levels, representing the 

upper and lower limits of comfort for each participant (calculated excluding outliers), are 

shown in Figure 3.31. The findings show that the temperature range in which most participants 

feel satisfied is 21.8°C – 24.8°C. Based on these findings, if the classroom was controlled 

according to standard temperatures ranges of 21 – 22°C, oftentimes the students would be 

outside their comfort range. This highlights the importance of considering user preferences 

when defining indoor setpoints. The acceptable CO2 levels are shown to be consistent with the 

standard setpoints of less than 1 000 ppm according to ASHRAE. The visual comfort ranges 

are not presented as they largely depend on the position of the user (where they sit in the 

classroom), and there is too much variability to draw any significant conclusions.  
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Figure 3.31 The comfort ranges for each participant. Left: Temperature comfort boundaries 

and right: CO2 level comfort boundaries 

 

Personalized comfort models from the field experiment. After developing PCMs in the 

lab conditions, the same ML models were applied in a field experiment at a school building. 

User engagement in reporting data varied significantly, with some participants providing up to 

43 data points, while others provided fewer than 10. Although the literature suggests a 

minimum of 50 data points for PCM development [20] and 50-60 datapoints according to the 

lab experiment, the PCMs in the field experiment were developed with data less than the 

recommended threshold. The reason behind this is the high variability in indoor conditions 

during the intervention days of the experiment, leading to varying data and using comfort-

based models (with binary classification) that perform well even with fewer data points. To 

address these challenges and provide a solution on how to develop PCMs for different types of 

user engagement in providing data, participants in the field experiment were categorized into 

four groups based on their reporting behavior: 
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1. Group I – High engagement: these users actively reported comfort responses sincerely, 

providing sufficient and variable data. For them, PCMs can be developed directly by 

training the model on the provided data. 

2. Group II – Always comfortable: these individuals consistently report being comfortable 

and having a wide tolerance range, even when indoor conditions change. Hence, their 

responses lack variability. For this group, peer data (data from other occupants) can be 

added to their own data and form a “Peer-based PCM”, allowing the model to be 

updated as more personal data becomes available. 

3. Group III – Comfortable but want change: these users reported feeling comfortable but 

still desired changes (e.g., cooler or warmer conditions). Hence, a binary classification 

model (comfortable/uncomfortable) is unsuitable for them. For this group, a preference-

based PCM (e.g., want cooler, no change, want warmer) is needed to capture their 

nuanced preferences. The preference-based approach is not proposed for all groups 

because the goal was to test if the simpler binary classification PCM 

(comfortable/uncomfortable) could be effective, as it is easier to develop. 

4. Group IV – Low engagement: this group includes individuals who either do not share 

data, have been absent, or are new occupants, resulting in a lack of data. For them, 

standard setpoints or peer-based PCMs can be used, and they can be updated as new 

data becomes available. 

This categorization and the proposed solutions for PCM development are illustrated in 

Figure 3.32. It should be noted that the naming of the groups was based on convenience, 

according to observations during the experiment. These names (e.g., “high engagement 

participants”) are not standardized terms. Since the number of participants was relatively small 

in the experiment, the categorization was proposed based on close observations of the data 

during and after the experiments. For larger groups of people, research studies use clustering 

methods to group people based on similar characteristics, such as cohort-based models in [90].  
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Figure 3.32 The proposed categorization of users based on the provided data 

 

The results for the PCMs for the Group I – “High engagement” occupants, built directly 

with user-provided data, are shown in heatmaps in Figure 3.33. The heatmaps provide a detailed 

view of the performance (F1 scores) of various ML models across different users for three 

comfort aspects: IAQ, thermal, and visual comfort. Each heatmap represents the F1 scores for 

each model and user combination, with darker shades indicating higher scores. The results 

show significant model performance variability across users and comfort aspects. Due to the 

relatively low number of data points provided by users (around 40 data points) and the lack of 

variability, the model performance is lower compared to the lab experiment models.   

 

Figure 3.33 The comparison of model performance measured with F1 score for each user for 

Group I – “High engagement” occupants. Results are shown for IAQ PCMs (left), thermal 

PCMs (middle), and visual PCMs (right) 
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To better visualize which ML model is more robust for different people and different 

comfort aspects, for all seven occupants from Group I – “High engagement”, the average F1 

score values are shown in Figure 3.34. For IAQ models, LSTM and Logistic regression are the 

best-performing ones, although with LSTM, it can be because of overfitting as this model 

requires more data to perform better. For thermal comfort, Naive Bayes, followed closely by 

Decision Tree, performs the best, and lastly, for Visual comfort, Logistic regression, followed 

by Decision Tree, performs the best. If the average value across all users and all comfort aspects 

is taken, then the Logistic regression and Naive Bayes show the highest prediction potential 

for Group I. This aligns with the characteristics of the ML models as they perform better when 

small datasets are available.  

 

Figure 3.34 The comparison of model performance measured with average F1 score for all 

users for Group I – “High engagement”. Results are shown for IAQ PCMs (top left), thermal 

PCMs (top right), visual PCMs (bottom left) and all comfort aspects (bottom right) 

 

For Group II – “Always comfortable”, who are always satisfied, the PCMs were 

developed using data augmentation by adding data from peers. For example, if a participant 

from the field experiment had their own 40 data points but with no variability, then an 

additional 30 data points were added to the mix to increase variability. These additional data 

were from the lab experiment participant who had the best-performing PCM. Figure 3.35 shows 
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the results of the peer-based model built by mixing personal data with peer data from the lab 

experiment. The results show good prediction potential with high F1 scores. Given that this 

group consistently reports being satisfied and comfortable, even if the model is initially based 

on peer data, it can effectively serve these individuals due to their high tolerance for varied 

indoor conditions. Using peer data provides a robust starting point, ensuring their comfort is 

maintained while allowing the model to adapt and become more personalized as additional 

individual data is collected. 

 

Figure 3.35 The comparison of model performance measured with average F1 score for all 

users for Group II – “Always comfortable” by adding an additional 30 peer data points on 

top of their own data. Results are shown for IAQ PCMs (top left), thermal PCMs (top right), 

visual PCMs (bottom left) and all comfort aspects (bottom right) 

For Group III – “Comfortable but want change” that feels comfortable but wants 

change, the preference-based approach was proposed to predict the need to change conditions 

(e.g., cooler, no change, or warmer). Figure 3.36 shows the yielded results for the preference-

based model. However, the results highly depend on the user, showing that the PCMs do not 

perform very well for IAQ (when the options were “no change” or “want more fresh air”). For 

thermal comfort, machine learning models designed for imbalanced datasets, such as Logistic 

Regression, AdaBoost, and SVM, demonstrated better performance. The models for visual 

comfort predicted quite well, apart from one user. The comparison of the model performance 

is shown in Figure 3.37. Whereas to illustrate how the performance of Group I models would 

change if preference-based models are used instead of comfort-based models, the comparison 

results are shown in Annex E.  
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Figure 3.36 The comparison of model performance measured with F1 score for each 

individual user for Group III – “Comfortable but want change” using preference-based 

PCMs. Results are shown for IAQ PCMs (left), thermal PCMs (middle) and visual PCMs 

(right) 

 

Figure 3.37 The comparison of model performance measured with average F1 score for all 

users for Group III – “Comfortable but want change” by using preference-based PCMs. 

Results are shown for IAQ PCMs (top left), thermal PCMs (top right), visual PCMs (bottom 

left) and all comfort aspects (bottom right) 

 

The findings show that for all three groups of participants, namely Group I – “High 

engagement,” Group II – “Always comfortable” and Group III – “Comfortable but want 

change,” Decision Tree is the ML model that has the optimal performance across different user 

groups and different comfort aspects. With an average F1 score of 0.74 for Decision Tree. 
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Followed by Logistic regression (0.73) and Naïve Bayes. This goes in line with the findings 

from the lab experiment, where Decision Trees was the 2nd best performing model, closely after 

Random Forest. With this, it can be concluded that Tree-based ML models are the best models 

to be used to develop PCMs.  

3.3.13 Comparing the findings from the lab and field experiment  

Table 3.6 provides a summary of the two experiments, namely the lab and field 

experiment. The findings show that Tree-based ML models can be used to develop PCMs 

despite variations in user engagement levels or comfort aspects.  

Table 3.6 Comparison between the lab and field experiment setting and results 

 Lab experiment Field experiment 

 

Experiment venue Faculty office School classroom 

 

Duration Three weeks Two weeks 

 

Participants 4 24 

 

Number of reported 

data 

83 –198 data points 

per user 

 

7 – 43 data points per user 

User engagement  Continuous 

feedback  

Diverse feedback habits. 

Data insufficiency. 

Four groups of participants were identified: 

− Group I – “High engagement occupants”,  

− Group II – “Always comfortable”,  

− Group III – “Comfortable but want change”,  

− Group IV – “Low engagement”.  

 

PCM development Direct PCMs 

(comfort-based 

PCMs) 

For the groups mentioned above, different PCM 

development methods were tested: 

− Group I (Direct PCMs)  

− Group II (Peer-based PCM & Preference-

based PCM) 

− Group III (Peer-based PCM & Preference-

based PCM) 

Highest PCM 

prediction 

performance  

Average F1 score of 

0.87 with Random 

forest and Decision 

tree (0.86)  

(calculated across all 

users and all 

comfort aspects) 

 

Average F1 score of 0.74 for Decision tree and 

Logistic regression (0.73) (calculated across all 

groups and all comfort aspects).  

Optimal ML model  Random Forest and 

Decision Tree 

Decision Tree and Logistic regression 
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3.4 Discussion and conclusions  

 

This chapter presents the development of data-driven PCMs to predict the comfort level 

of building occupants. This is achieved by collecting user feedback on their perceived comfort 

regarding IAQ and thermal and visual factors while conducting indoor measurements to 

understand the conditions under which individuals feel comfortable or uncomfortable. This is 

important to tailor indoor conditions based on user preferences, reducing the need for 

continuous input from users as the models learn and represent user preferences. The PCMs are 

developed using supervised ML models with known inputs and outputs. Inputs include 

subjective feedback and indoor measurements, while outputs classify the user’s comfort state 

as either Comfortable or Uncomfortable, making the PCMs a binary classification model.  

Developing data-driven PCMs requires extensive data, involving both subjective data 

provided as feedback from occupants and environmental measurements indoors. Subjective 

inputs collected from the users included their comfort perception and preferences. Some 

measured subjective parameters include thermal sensation and preference, IAQ sensation and 

preference, visual or lighting sensation and preference, etc. Feedback was gathered using a self-

developed smartphone app called HComfort, chosen based on the findings from the conducted 

survey in which 66% of users preferred this method (details are in Chapter II). The app ensured 

data privacy security via Amazon Web Services (AWS). It enabled seamless data flow from the 

app to the DynamoDB database and then to Jupyter Labs in Python for PCM development. 

This setup allows continuous updates of the PCMs as more data becomes available, presenting 

a practical method for developing PCMs. Indoor measurements were collected through various 

sensors that measured air temperature, CO2 level, lighting level, air humidity, and air velocity 

at multiple measurement points.  

Two experiments were performed: a faculty office for three weeks with 4 participants 

(called the lab experiment) and a classroom in a school building for two weeks with 24 

participants (the field experiment). The experiments were designed to create variability in 

indoor conditions for different days, also called the intervention days, that were planned to test 

the comfort boundaries of the users.  

The findings show that data-driven PCMs using ML models can be developed for 

multiple occupants and multiple comfort aspects, yielding variable prediction performance 

across users and comfort aspects. Model performance depends on the number of available data 
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points per user, selected inputs and outputs, data variability, and the type of ML model used. 

This indicates that it is challenging to have one “universal key” method to develop models that 

can be utilized for different types of occupants to lead to the best-performing PCM for all users 

or different comfort aspects. Still, there is an optimal approach that can handle the variations. 

For that reason, the development of PCM for multiple occupants and different aspects of 

comfort (IAQ, thermal, visual) is explored in this research, using nine different ML 

classification models. The tested models include ANN, Ada boost with logistic regression, 

Decision trees, KNN, LSTM, Logistic regression, Naïve Bayes, Random Forest, and SVM. 

The models were developed and tested under controlled conditions (the lab experiment) and in 

a field experiment with less control over user engagement in reporting feedback. 

The lab experiment results indicate that Random Forest is the best-performing ML 

model, based on an average F1 score (0.87) for predicting Comfortable and Uncomfortable 

responses across all users and comfort aspects and specificity (0.80) for predicting specifically 

Uncomfortable responses. Accurate prediction of Uncomfortable responses is crucial for 

building control systems, as it informs the controller to initiate actions to regulate indoor 

conditions. Decision Tree models closely follow with an F1 score of 0.86 and a specificity of 

0.80. This finding aligns with other research on PCMs, such as an F1 score of 0.72 for thermal 

comfort, 0.79 for visual comfort using Random forest [28].   

A feature analysis for the Random Forest model was conducted to identify inputs with 

minimal impact on performance, simplifying the model by retaining only essential inputs. For 

example, while air temperature sensors were placed at various locations in the room (middle, 

windows, table, near body), only the air temperature measurement from the middle of the room 

was retained for the reduced model. This approach ensures that PCMs can be developed for 

various buildings with a standard number of sensors. Comparing PCMs with all inputs to those 

with reduced inputs shows that effective PCMs can still be developed with fewer features. This 

analysis was performed for different ML models and comfort aspects, with varying results. For 

some models, reducing inputs decreased accuracy; for others, it increased it. For instance, in 

IAQ, simplifying inputs increased the F1 score by 0.06. For thermal comfort, the F1 score 

increased by up to 0.06 for KNN, LSTM, and Random Forest models but decreased by up to 

0.15 for ANN, AdaBoost, and Decision Tree models. This indicates a trade-off between 

simplicity and performance, as removing some inputs can result in a loss of valuable 

information. Despite simplification, Random Forest and Decision Trees maintained high 

performance, demonstrating robustness even with fewer inputs. 
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A comparison was conducted to evaluate the effectiveness of comfort-based models 

(predicting if a user is comfortable or uncomfortable) versus preference-based models 

(predicting if a user wants warmer, no change, cooler, brighter, no change, or dimmer) for 

PCMs in building control systems. The lab experiment results showed minimal differences in 

prediction accuracy between the two approaches across various ML models and comfort 

aspects. Tree-based models, such as Random Forest and Decision Trees, performed well in 

both cases, corroborating with research [28] which used preference-based models with Random 

forest. This indicates that both methods are viable for developing PCMs. However, from a user 

perspective, preference-based models may be more intuitive, as occupants can more readily 

specify if they want conditions to be warmer, cooler, brighter, or dimmer, compared to simply 

stating their comfort level. Therefore, for building control integration, preference-based PCMs 

might offer a more straightforward and user-friendly approach for collecting occupant 

feedback, as proposed in other studies such as [28].  

Since data-driven PCMs depend on user-provided data, which is a challenging and time-

consuming task, it is important to determine the minimum number of data points needed for 

effective model development. To estimate this, PCMs from the lab experiment were tested for 

the participants using varying numbers of data points. Data from two users with the most data 

points were incrementally added to the PCMs in sets of 10 until performance stabilized. Results 

suggest that 50 – 60 data points are needed for optimal PCM performance, aligning with 

findings from other studies, such as 50 data points in [20], 60 datapoints by Kim et al. [27]. 

Although there are other studies suggesting more, like 90 [137] and  250 – 300 data points in 

[136]. Yet, while sometimes there might be sufficient data available, the models can perform 

poorly due to the lack of variability. Hence, it is important for the data to have variability in the 

provided user feedback for a balanced dataset to train the ML models effectively.  In actual 

buildings, it is practically impossible to expect perfectly balanced datasets (same amount of 

provided Comfortable and Uncomfortable votes), as it would mean that the building is 

managed very poorly [134]. One solution could be to use intervention days, where indoor 

settings are purposely altered (e.g., regular days, cold days, hot days, more fresh air, less fresh 

air, increased lighting, reduced lighting) to test occupants’ comfort boundaries through planned 

disturbances. However, of course, this would cause inconvenience to the users, and it is not a 

feasible solution in actual buildings. This was tested in the school field experiment with typical 

school occupants, and unsurprisingly, on the intervention days, they were not satisfied with the 

indoor conditions.  
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The school field experiment results showed that the number of data points per user was 

significantly lower than in the lab experiment, ranging from 7 to 43. Due to variability in indoor 

conditions, some datasets were still sufficient to develop PCMs, while others were not. Based 

on the observation of the feedback engagement during the experiment, occupants were 

categorized into four groups. Group I – “High engagement” occupants who provide sufficient 

and variable data to develop their own PCMs. Group II – “Always comfortable” occupants are 

always comfortable; hence, the reported data lack variability. For them, data augmentation with 

pre-collected peer data can be used to develop hybrid peer-based PCMs, which can be updated 

as more data becomes available. Group III – “Comfortable but want change” are the ones that 

express being comfortable but want change (e.g., warmer or colder). For this group, preference-

based models (or models that predict preferences, e.g., if one wants cooler or warmer) or peer-

based models can be used. Lastly, Group IV – “Low engagement” occupants (not reporting 

feedback), have insufficient data for PCM development. For them, standard setpoints or peer-

based models can be used. Different PCM development approaches were tested for the first 

three groups using the nine different ML models (the same as for the lab experiment). Decision 

Tree achieved the highest prediction accuracy with an F1 score of 0.74, followed closely by 

Logistic regression (0.73). These values are averages across all groups and all comfort aspects. 

Again, the findings align with values achieved in existing literature (F1 score of 0.72 and 0.79 

for different comfort aspects)[28]. The prediction accuracy is slightly lower than that of the 

models for the lab experiment, as less data was available to train the models. 

The lab and the field experiments provided important insights into the perceived 

comfort of the participants. Participants in both groups reported being comfortable at higher 

indoor temperatures than standard setpoints. In the lab experiment, the most comfortable 

temperature range was 22.5 – 25°C, which is higher than the 20°C standard for offices by 

CIBSE [178], but within the setpoints of 20 – 24°C according to OSHA in the US [179] and 

20.5 – 25.5°C according to ASHRAE 55. This finding also complies with the findings from 

Wang et al., in [133], in which they identified that the comfort temperature range was 20.5 – 

24.9oC  for office buildings in the US. The field experiment in the school building supported 

these findings, with a thermal comfort range of 21.8 – 24.8°C after removing outliers. Despite 

being conducted in different seasons (winter for the lab and spring for the field experiment), 

both experiments indicate a desired air temperature slightly higher than the regular setpoints of 

20 – 22°C.   
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The comfort analysis was also conducted for IAQ and visual comfort. For IAQ, peak 

comfort was reported at CO2 levels around 800 ppm, aligning with the under 1 000 ppm 

guideline from ASHRAE. However, there were instances during the lab experiment in which 

the CO2 levels were purposely elevated during the intervention days, reaching 3500 ppm for 

the lab experiment. This was closely monitored not to get dangerously high CO2 levels (values 

up to 5000 ppm are considered non-toxic for short periods according to ASHRAE [183]). 

Nevertheless, the occupants still often reported feeling comfortable, indicating a lack of 

awareness of poor IAQ. This highlights the need for nudges or warnings about poor air quality, 

especially for buildings that rely on natural ventilation, such as when occupants manually open 

the windows. Similar results were observed in the field experiment, where high CO2 levels 

naturally increased when turning off the ventilation system. For visual comfort, user 

perceptions varied based on their positions in the room, mainly whether they were near 

windows. The lab experiment showed that indoor lighting levels were usually below the 

recommended 300 lux according to CIBSE [180], or 500 –1 000 lux according to EN 12464. 

Yet, the users reported feeling comfortable most of the time, suggesting a high adaptability to 

the lighting level. Similar findings were observed in the field experiment in the school building.  

 

 

3.4.14 Practical implications and recommendations 

 

Developing multi-occupant and multi-comfort aspect PCMs demonstrates significant 

potential for improving building control systems. Insights gained from the lab experiment and 

the field study provide valuable information for designers, practitioners, and other stakeholders 

who aim to apply HCC by prioritizing occupant comfort in buildings. These insights highlight 

the importance of integrating PCMs into control systems to establish a better user-building 

interaction. Key takeaways, practical implications, and guidelines include:   

− Tailored indoor conditions: by implementing data-driven PCMs, building control 

systems can dynamically adjust indoor conditions to match occupants’ preferences, thus 

enhancing comfort and satisfaction without requiring continuous user input. The ability 

to predict and adapt individual comfort needs based on real-time data allows for a more 

personalized indoor environment.  
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− Efficient resource utilization: the implementation of PCMs can significantly improve 

the control of HVAC systems by adjusting to actual comfort requirements rather than 

relying on static setpoints.  

− Scalability: the use of robust ML models such as Random Forest and Decision Trees, 

which perform well even with reduced input features, demonstrate the feasibility of 

deploying PCMs across various building types with different sensor setups and data 

availability. 

− Increasing awareness: the findings on IAQ and visual comfort highlight the need for 

occupant awareness regarding indoor environmental quality. Integrating informative 

nudges or alerts into building control systems can improve occupants’ understanding 

and engagement with their indoor environment.  

− User-friendly data collection: it is encouraged to use intuitive and secure smartphone 

applications to gather user feedback. The app must be easy to use, have clearly stated 

questions, and address privacy concerns to encourage widespread adoption and 

consistent data input from occupants. 

− Sensor data collection: for effective PCM development, it is essential to have 

environmental measurements. One measurement per parameter is sufficient (e.g. one 

temperature sensor in the middle of the room, one CO2 sensor), and using standard 

sensors simplifies the data collection process. 

− The needed number of data points: a minimum data requirement needs to be established 

(e.g., 50 – 60 data points per user) to ensure the reliability of the models. Data can be 

added to update the model continuously.  

− Target of the PCM: using comfort-based or preference-based PCMs does not 

significantly impact the model performance when employing tree-based ML models. 

Hence, it is better to use inputs that are more intuitive to the users (e.g., it is easier for 

the user to report if they want warmer or cooler conditions than to state if they are 

comfortable or uncomfortable).  

− Diverse PCM approaches: at times, different PCM strategies need to be implemented 

for various occupant groups (high engagement occupants, occupants who are always 

comfortable, occupants who are comfortable but still desire change, low engagement 

occupants). Peer data can be used to develop peer-based models when necessary to 

compensate for the lack of individual data. 
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− Intervention days: although not always practical, if possible, scheduling intervention 

days in controlled environments can be beneficial. This expands the data variability and 

tests the robustness of the PCM. However, intervention days should be thoroughly 

planned and balanced against potential occupant inconvenience.  

For future research, it would be beneficial to extend the duration of data collection from 

occupants to observe changes in their feedback engagement over longer periods. Additionally, 

expanding the research to include other comfort aspects, such as acoustic comfort, and testing 

these models in various field studies would provide a more comprehensive understanding. 

Chapter IV of this thesis introduces a framework for the integration of PCMs into building 

control systems. This framework offers a practical approach for developing HCC in buildings.  
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4. Integration of user preferences into building control systems 
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“First life, then spaces, then buildings, 

 the other way around never works.” 

J. Gehl 

 

When regulating indoor environments, it is essential to remember that buildings are 

built for users. Human-centric control (HCC) prioritizes occupant needs and preferences by 

following an occupant-in-the-center tenet. This is important to increase user comfort, 

satisfaction, and well-being by tailoring indoor spaces to their needs. Hahn et al.,[184], 

emphasized that the best way to consider occupant preferences is by directly asking them rather 

than solely relying on building control systems. This research examines the impact of 

integrating user preferences into building control systems through multi-occupant and multi-

comfort aspect personalized comfort models (PCMs). A proposed framework incorporates 

these preferences, improving user comfort and satisfaction. This was achieved by conducting 

a field experiment in the RCK Ruder Boskovic high school building, with 24 participants over 

two weeks. The study evaluated user satisfaction when indoor settings were controlled by 

standard setpoints versus user preferences. Additionally, user insights were gathered through 

semi-structured interviews to understand their experience with HCC, comfort and satisfaction 

during the experiment, practical recommendations, and future intentions to use such systems.  

 

4.1 Literature review   

 

Building control systems have significantly evolved to improve energy performance 

and comfort by automating the operation of energy-consuming service systems such as HVAC 

and lighting [40]. According to research [185], employing intelligent technologies and 

analytics in building control systems can achieve an average of up to 18% energy savings. 

Several control strategies are used in buildings, from more conventional ones such as rule-

based, PI, and PID to more advanced methods like fuzzy logic, Model Predictive Control 

(MPC), and ML-based control strategies. The latter is increasingly being used with the 
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development of ICT and IoT in buildings that provide easier access to data. For instance, [186] 

provided a framework for demand-driven cooling controls where 7 – 52% of energy savings 

were achieved in offices used as case studies compared to scheduled cooling operations. 

Another study used MPC integrated with ML techniques where 58.5% cooling energy savings 

were achieved in an office compared to conventional control [187]. While control systems 

greatly improve building performance, occupant behaviour significantly increases energy 

consumption [188], sometimes up to 33%, according to [189]. Hence, integrating control 

systems with a human touch enables more significant potential for improving building energy 

performance and occupant comfort and well-being.  

However, the increased level of automation impedes occupants’ adaptive comfort by 

disabling them from regulating the indoor environment, such as changing the indoor 

temperature or airflow and adjusting the lights or blinds. This lack of consideration of user 

preferences and needs regarding the indoor environment has decreased occupant satisfaction 

with indoor conditions. Studies show that occupant satisfaction increases when they can control 

and adapt the indoor environment to their needs, enhancing both comfort and a psychological 

effect from a sense of empowerment [190]. A research study in 5 office buildings in the 

Netherlands shows that higher controllability led to higher user satisfaction with thermal and 

visual comfort. Furthermore, the possibility of having control access showed a positive 

psychological effect impacting overall user satisfaction [191]. Hence, enabling control access 

for users or integrating user preferences into automated control systems is crucial.  

Modern buildings have enabled mutual interaction between buildings and occupants 

through improved sensing, communications, and controls [192]. HCC in buildings empowers 

occupants by integrating their behaviour, preferences, and needs into building control systems 

for HVAC and lighting, thereby enhancing both occupant comfort and building performance 

[193]. This can be done by either enabling manual access to control or using automated systems 

that learn user preferences and adjust accordingly [193]. The latter can be implemented using 

PCMs. The application of AI techniques and PCMs in a review of studies until the year 2020 

showed that energy savings of 21.8 – 44.4% can be reached and an increase in comfort levels 

of 21.6 – 85.7%, according to [194]. 

The field implementation of HCC is scarce, as mentioned in [195]. Research [193] 

shows a collection of 58 case studies with field-implemented HCC systems. These studies are 

categorized into observation and intervention field studies. Observation studies involve data 
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collection of occupant interaction, while intervention studies compare conditions before and 

after HCC implementation, emphasizing its impact. Several studies have integrated user 

preferences into control systems using AI-driven comfort predictions. For instance, Lu et al. 

[196] used readily available data from the ASHRAE RP884 dataset to develop thermal comfort 

models and integrate them into building control systems by simulation. They used KNN, 

Random Forest, and SVM to develop the comfort models. Their models achieved a recall of 

49.3% with thermal sensation as an output. Another simulation using a deep neural network 

with Bayesian regularization and Deep Deterministic Policy Gradients (DDPG) tested control 

policies with TRNSYS software [197]. Murakami [198] balanced occupants’ needs and energy 

consumption by developing an automatic control logic in an office space that resulted in energy 

savings of 20% without increasing occupant dissatisfaction. Another office study achieved 24% 

energy savings in HVAC systems when using a user-centric distributed control system 

compared to conventional HVAC control. The proposed system learns individual occupants’ 

thermal preferences using linear discriminant analysis. Jazizadeh et al. [199] also integrated 

user feedback into an actual building,  using the fuzzy logic model to create comfort profiles 

integrated into HVAC control. They achieved 39% energy savings in HVAC while improving 

occupant comfort. Some other integrations using elevated versions of PMV that variate with 

time were reported to achieve fully satisfied occupants with the indoor conditions while 

yielding a 10.1% energy savings [200]. PMV combined with occupant feedback using a 

personalized regression model was also used in [11], [12]. They integrated these models into 

the control system of an office room, yielding up to 60% energy savings. However, the 

mentioned impact is mainly focused on energy savings and less on the effects it has on 

occupants. Hence, it is essential to provide more field studies that compare the before and after 

HCC implementation, especially on their impact on occupants. 

While most studies integrating user preferences into control systems are focused on 

thermal comfort, some also address IAQ and visual comfort. Advanced ML models such as 

reinforcement learning were used to develop an HVAC controller in a university lab with 5 – 7  

occupants, reducing CO2 levels by 10% and energy consumption by 4 – 5% without 

compromising comfort [201]. Research [151] uses deep learning to predict PMV, CO2 

concentrations, and particulate matter (PM10 and PM2.5) in a school building, achieving 

sufficient accuracy to be integrated into building control. They used simulations with 

EnergyPlus software and a controlled electric heat pump with a ventilator. A Q-learning-based 

control tested in a classroom with 72 occupants for one month resulted in 43% energy savings 
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and a 24% reduction in CO2 levels, while maintaining thermal comfort compared to air 

conditioning with fixed temperature of 25℃. HCC has also been applied to lighting control, 

with a 12-week field study [202] in six offices, showing a 13.4% reduction in energy 

consumption and improved occupant comfort. Furthermore, in [203] they used ML models to 

predict the user interaction with blinds to reduce the glare effect. The glare effect was reduced 

by 86.5 – 96.9% , making people more comfortable. Random forest was concluded to be the 

best-performing model for visual comfort predictions, followed by KNN and SVM.  

The occupant perspective, experience, and insights are rarely investigated in research 

involving building control systems interacting with occupants. Some survey-based studies 

explore user preferences to interact with control systems [40]. However, interviews provide 

deeper insights and uncover underlying indicators that surveys cannot capture. Semi-structured 

interviews with 170 occupants in 23 Canadian university campus buildings revealed a 

correlation between perceived comfort and the ability to control the environment [204]. 

Occupants expressed a solid desire to adjust their surroundings, such as lighting and windows, 

based on their needs. Another study with 27 occupants in 13 buildings explored the use of 

building control systems by occupants. Their results indicated that the design of many building 

control systems holds unrealistic assumptions about occupants’ knowledge and ability to 

interact with them. As HCC is a new concept, there is limited evidence of occupant experiences 

with HCC. Therefore, interviews with participants interacting with HCC are crucial to 

understanding their perceptions and interactions with these systems.  

 

4.2 Methods  

 

This chapter provides a framework for integrating user preferences into automated 

control systems using data-driven PCMs. A field study was conducted at the RCK Ruder 

Boskovic high school in Zagreb, Croatia, integrating user preferences into the conventional 

(PID-based) control system in the building. Indoor setpoints were adjusted based on user 

feedback from 24 participants in a classroom. A survey approach and semi-structured 

interviews are used to evaluate the impact of integrating user preferences into building control 

on occupants.  
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4.2.1 Proposed framework to integrate user preferences into automated building 

control systems 

 

The proposed framework for integrating multiple user preferences into a building 

control system, is presented in Figure 4.1 .The struggle to balance preferences among multiple 

occupants is a known challenge for indoor environments with multiple users. Hence, the aim 

was to include the preferences of all users by creating a bound or range of setpoints where most 

users reported being comfortable. The comfort bound was created using simple statistics, 

identifying the comfort boundaries of each user with standard deviations to include the most 

frequent setpoints (i.e., air temperature, CO2 level, or lighting level) for which users felt most 

comfortable. The standard deviations help to remove the outliers and create the upper and lower 

boundaries that translate to the setpoints, allowing the controller to adjust within these limits 

(Figure 4.2). While this might not be a “one-size-fits-all” approach that always satisfies all the 

occupants, it aims to reduce the number of dissatisfied people by considering their preferences.   

 

 

Figure 4.1 Framework for the integration of user preferences into building control systems 

using personalized comfort models of multiple users 
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Figure 4.2 The output of the PCMs for multiple users is translated into the upper boundary 

(UB) and the lower boundary (LB), indicating the desired comfort ranges 

 

Identifying the upper and lower boundaries begins by selecting all the data when users feel 

comfortable. This involves filtering data to include only instances when the user reported 

feeling comfortable (e.g., air temperature, CO2 level, lighting levels). The proposed steps to 

determine the range of setpoints (using air temperature as an example, but applicable to CO2 

and lighting levels as well) are presented below and shown in Figure 4.3. The procedure is as 

follows:  

1. Check data distribution: use a Kernel Density Estimation (KDE) plot to check the data 

distribution for all users. Does it resemble a normal distribution? (Figure 4.3, a.). 

2. Calculate the mean setpoint (𝜇𝑖) for each user 𝑖. This shows the central value around 

which the preferred setpoints are centered. The mean value for all users is 𝑥. (Figure 

4.3, b.). 

3. Calculate the standard deviation (𝜎𝑖) for each user 𝑖. This shows the variation or 

dispersion of preferred setpoints from the mean setpoint (Figure 4.3, c.). 

4. Assume the normal distribution for which the probability density function (PDF) [205] 

is calculated as: 

 

𝑓(𝑥 ∣ 𝜇𝑖 , 𝜎𝑖) =
1

𝜎𝑖√2𝜋
exp (−

(𝑥 − 𝜇𝑖)
2

2𝜎𝑖
2 ) 

 

5. Determine the confidence interval, which shows the percentage of data around the mean 

setpoints to be considered. In normal distribution, the confidence intervals can be 68% 

(corresponding to one standard deviation away from the mean setpoints [𝜇𝑖 − 𝜎𝑖 , 𝜇 +

𝜎𝑖  ]), 95% or 99%. For this analysis, the 68% and 95% confidence intervals were 

selected, corresponding to one standard deviation and two standard deviations from the 
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mean value, respectively. The reason for choosing 68% is that it provides a clear and 

focused understanding on the central tendency and distribution of user comfort 

preferences. On the other hand, 95% confidence intervals include a more 

comprehensive range of temperatures that allow for more flexibility regarding the 

indoor conditions, and therefore, higher energy saving potential (Figure 4.3, d.). 

6. Identify the comfort range between the lower and upper standard deviations, which 

shows the range of setpoints for which most users are satisfied (e.g., based on the 68% 

confidence interval, the comfort range in this study was 22.6 – 24.2℃, and for the 95% 

confidence interval, it was 21.8 – 24.8℃. Depending on user input, ranges may vary 

slightly and should be adjusted as more feedback becomes available. This range aligns 

with the thermal zone of 21.5℃-26.6℃ yielded from feedback collected in a field study 

including 258 occupants from six countries measured for 8 to 21 months [206]. 

 

 

Figure 4.3 The proposed procedure to finding a range of comfort boundary setpoints for 

multiple occupants sharing a space. Step 1: plot and inspect the data distribution when users 

feel comfortable. Step 2: calculate mean values for each user. Step 3: calculate standard 

deviations for each user. Step 4: determine the comfort range of setpoints assuming normal 

distribution  

 



Chapter IV 

106 

 

4.2.2 A field study integration of user preferences into a building control system  

 

A field study was conducted at RCK Ruder Boskovic high school in Zagreb, Croatia, 

to test the impact of integrating user preferences into an actual building. Before the 

implementation, the experiment used the building as a living laboratory to develop PCMs that 

predict user comfort (as explained in Chapter III). Over two weeks in the spring, indoor 

measurements and user feedback data were collected to report on indoor air quality (IAQ), 

thermal, and visual comfort and to learn about occupant preferences. The desired comfort 

ranges were then calculated based on the procedure explained in Section 4.2.1. For the last 

three days, the indoor setpoints were regulated based on learned preferences from PCMs, 

creating a tailored environment. Finally, user satisfaction was evaluated through individual 

interviews with each user. 

A SCADA (Supervisory Control and Data Acquisition) building control system with a 

conventional control was used to change the indoor conditions in the classroom, serving as the 

experimental test bed. The RCK Ruder Boskovic high school is equipped with advanced HVAC 

systems. More specifically, the classroom chosen for the experiment is one of the most 

advanced living laboratories, equipped with four different types of ventilation systems (natural 

ventilation, mixing ventilation, displacement ventilation from the floor, and displacement 

ventilation from the walls) and three types of heating and cooling systems (fan coils, thermally 

activated building surfaces, and all-air system). Figure 4.4 shows the school building (a), the 

SCADA system in the control room (b), and the HVAC systems in the classroom (c). Chapter 

III thoroughly outlined the experiment design, showing that indoor conditions were measured 

3 – 7 times daily. Simultaneously, occupants provided feedback during the same measurement 

intervals. The experiment design is briefly summarized in  Table 4.1. 
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Figure 4.4 a) RCK Ruder Boskovic school building used as a living laboratory, b) SCADA 

system in the control room, c) various HVAC systems installed in the classroom that was used 

as a test bed 

 

Table 4.1. The experiment design shows varying indoor settings across different days, 

spanning from 18. 04. 2024 to 03. 05. 2024 

Days 1 2 3 4 5 6 7 8 9 10 

Settings A* B C C C C B D D D 
* A – Free floating building (HVAC systems turned off) 

B – Standard setpoints  

C – Intervention days (hot, cold, change in ventilation rates, change in lighting levels) 

D – Human-centered control (integrating user preferences into the controller) 

 

4.2.3 The impact of integrating user preferences into the control system on occupant 

comfort and satisfaction 

 

Two approaches were used to evaluate the impact of integrating user preferences on 

occupant comfort and satisfaction: quantitative and qualitative analysis. Quantitative analysis 

included collecting survey-based responses reported by users via the app throughout the two-

week field experiment. The qualitative study included semi-structured interviews with the 

participants to get insights into their experience interacting with HCC. 



Chapter IV 

108 

 

The experiment included standard operating days, intervention days, and days when 

user preferences were used as new setpoints. To assess changes in user satisfaction before and 

after integrating their preferences, comparisons were made between standard operating days 

(e.g., temperature set at 21℃) and free-floating days (when HVAC systems is not used only 

natural settings) versus HCC days (when user preferences were considered). Intervention days, 

when occupants were intentionally made uncomfortable, were excluded from this comparison. 

At the beginning of the experiment, the participants were informed about the concept of HCC 

and that they should report their comfort feedback sincerely, but they were not informed on 

which days of the experiment included their preferences.  

Short, semi-structured interviews were conducted at the end of the two weeks of the 

experiment to gather qualitative insights and firsthand experiences of participants interacting 

with HCC. These are interviews conducted conversationally with one participant at a time to 

get more insights from them [207]. Of the 24 people that participated in the experiment, 19 of 

them participated in the interviews. The aim was to understand their experiences, opinions on 

HCC, beliefs about its potential, difficulties encountered, complaints, suggestions, and 

willingness to engage with such systems in the future. The list of questions is presented in Table 

4.2 but it was expanded during the conversation-like interviews. The interviews were recorded 

with the participant’s permission and later transcribed and translated from Croatian to English 

by native speakers with expertise in building control systems.  

 

Table 4.2 Semi-structured interview questions to elicit insights from the participants on the 

interaction with HCC 

1. How would you describe your overall experience during the experiment? 

2. What are your thoughts on the concept of integrating your preferences into an automated 

control system?  

3. Do you believe that implementing a control system that responds to user feedback has the 

potential to enhance comfort and satisfaction in indoor environments?   

(Follow up: Even in buildings outside this experiment?) 

4. How did you feel interacting with the controller through the app during the experiment? 

Were there any challenges or difficulties? (For example, did you feel tired of reporting? 

Annoyed?  Was it too frequent? Too many questions?) 

5. Did you notice any changes in your satisfaction with indoor conditions during this week? 



Chapter IV 

109 

 

6. Do you have any suggestions or recommendations on what would make you feel more 

satisfied with the building control?  (For example, would you like to be able to control the 

indoor environment? If yes, how?) 

7. Would you keep reporting feedback if you could control the indoor conditions (not that 

frequently, but only when you feel like changing the conditions?) 

 

 

 

4.3 Results  

 

The aim of the school field experiments is to integrate user preferences into the open-

code building control system. The focus is on improving user satisfaction by gathering insights 

from occupants through mini-surveys and interviews to learn from their experience interacting 

with HCC.    

 

4.3.4 Findings from the field study on integrating user preferences into the building 

control system 

 

The change of indoor parameters before and after integrating user preferences into the 

building control system are shown in Figure 4.5. The changed parameters for this experiment 

included only indoor air temperature and CO2 level as shown in Figure 4.5 (a) and (c), 

respectively.  The other changes in parameters are shown just for information on how different 

days had different conditions during the standard days (one day with free floating (no HVAC) 

and two days with standard setpoints) and HCC days (with integrated user preferences). The 

CO2 comfort boundaries according to user preferences aligned with standard values, so CO2 

level setpoints required minimal adjustments. In contrast, occupant preferred air temperature 

boundaries exceeded standard values, necessitating continuous changes of the temperature 

setpoints. Although CO2 was also controlled, occupants primarily noticed the changes in indoor 

air temperature. Furthermore, the visual comfort or lighting levels were not controlled during 

this experiment because the novel systems required for this control were not yet set up during 

the experiment period, but this will be explored in future research.  
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Figure 4.5 Change of indoor parameters before and after the integration of user preferences 

 

The quantitative analysis of self-reported satisfaction during standard operating days 

and HCC days revealed significant differences in the perceived level of satisfaction among 

participants. For a meaningful comparison of user satisfaction before and after integrating their 

preferences, only standard setpoint and free-floating days (April 18, 19, 27) were compared to 

HCC days (April 30, May 2, 3). This is because the participants were expected to feel 

uncomfortable during intervention days when indoor conditions were intentionally set outside 

comfort boundaries. Figure 4.6 illustrates the difference in reported satisfaction. To avoid 

biased responses, participants were not informed which days the setpoints would be adjusted 

according to their preferences.  

  

Figure 4.6 Comparison of reported satisfaction levels before (HVAC control using standard 

setpoints) and after integrating user preferences (setpoints defined based on user feedback) 
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The results indicate a significant improvement in overall user satisfaction, which 

increased by 16.7%, while dissatisfaction decreased by 14.9% (Figure 4.7), which is an 

important finding because only 11% of buildings reach 80% satisfaction [208], some have 42% 

dissatisfaction [209], and improving satisfaction by 17.6% would improve the overall occupant 

experience indoors, their comfort, and their well-being. This finding supports the hypothesis 

of this PhD research that “The deployment of human-centered predictive control in a 

building by developing personalized data-driven comfort models significantly increases 

the occupants’ indoor comfort satisfaction”. The semi-structured interviews discussed later 

further corroborate this conclusion.  

  

Figure 4.7 Comparison of aggregated user satisfaction levels grouping all responses into 

either the “satisfied” category (including “very satisfied, “ “satisfied, “ and “somewhat 

satisfied”) or the “dissatisfied” category (including “very dissatisfied, “ “dissatisfied,” and 

“somewhat dissatisfied”) 

 

To provide a clearer picture,  Figure 4.8 illustrates the number of satisfied participants 

before and after integrating user preferences. Initially, 10 out of 24 participants were satisfied. 

After the integration, the number of satisfied participants rose to 13 out of 24. Correspondingly, 

based on the percentages, it can be illustrated that the number of dissatisfied participants 

decreased from 7 to 4 out of 24 (Figure 4.8). 
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Figure 4.8 A visual representation of the number of participants satisfied and dissatisfied 

before and after integrating their preferences into the control system 

 

4.3.5 Insights from occupants: findings from semi-structured interviews 

 

The qualitative analysis of the semi-structured interviews elicited exciting insights from 

the participants’ perspectives. These included insights on the participants’ beliefs on the 

usability and potential of HCC, their experience reporting feedback, and their struggles and 

suggestions.  

Belief in the usability of HCC: the belief that human-centered control can achieve the 

desired level of comfort and satisfaction varies among individuals. While some respondents 

express a positive sentiment and a stronger belief in the usability and functionality of HCC, 

others are skeptical but also a little optimistic. Lastly, some do not believe in the use of HCC.  

“I find it interesting, and I like that it can listen to our opinions.” 

Respondent 2  

    “Do you mean that the “space” follows me?... I like the idea of the system 

recognizing me.”  

Respondent 12 

 

Belief in the functionality of HCC: when asked whether they believe such a system 

has potential and could predict their comfort level and adjust the indoor conditions to their 
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preferences, the responses varied. The majority expressed a positive sentiment (73.7%). In 

comparison, some were neutral and did not have an opinion (10.5%). Lastly, there were those 

who recognized the potential but were still skeptical about the benefits of HCC and liked 

traditional control better (15.8%). Some of their responses are as shown below:  

  “Yes, it makes sense to me. I believe in it because I think the system could 

recognize me. I would like it if the environment adapted to me; I like that 

concept.” 

  Respondent 7 

  “I find this interesting, honestly. I like the idea of artificial intelligence 

determining the temperature for us based on our preferences.” 

  Respondent 12 

  “Well, perhaps not perfectly, but it can make me comfortable.”  

  Respondent 19  

  “To be honest, I think that automatic control based on standards and norms, 

which is generally used, is fine, and it is unnecessary to do anything about it. … I 

don’t think I should control the building since they are designed to accommodate 

many people.” 

  Respondent 5 

  “I don’t think it’s entirely pointless, but it’s easier to open a window or turn on 

the air conditioning yourself. It’s hard to see that in the future because doing 

some things yourself is easier.” 

  Respondent 3 

 

Evaluation of app and feedback reporting process: participants found it easy to 

interact with the controller by sharing feedback on perceived comfort conditions. The app was 

described as easy, simple, straightforward, and intuitive. The time required to complete surveys 

varied: 15 – 30 seconds (Respondent 12), 20 seconds (Respondent 24), 30 seconds 

(Respondents 2 and 4), one minute (Respondents 6 and 8), and two minutes (Respondent 19). 

 “It wasn’t tiring; it was short,”  
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“The questions are simple, understandable, the answers as well, and it was straightforward 

to choose the answers.” 

  “It’s good; the questions and answers are short.” 

  “It was intuitive.”  

  “It’s easy to access and get used to; it goes quite quickly after two or three times.” 

 

When it comes to frequency, a good share of participants were comfortable reporting once 

per hour (47.4%). In comparison, others preferred less frequent interaction (31.6%), while 

some had no opinion on this aspect (21.05%).   

  “It was frequent, but it also depends on the conditions. If they are changing quickly, 

then it is not too frequent, but if nothing changes, it doesn’t make sense to report the 

feedback. There weren’t too many questions, but sometimes it felt too frequent.” 

  “If I imagined myself at work, I would probably prefer it to be a little less frequent.” 

  “I would limit it to maybe 3 or 4 times daily.” 

  “Once or twice a day.” 

 

Difficulties and struggles while reporting feedback: participants reported two main 

challenges with providing feedback. First, the app should be available in different languages, 

as it was in English while the participants’ first language was Croatian. Second, they found it 

challenging to determine air humidity sensation, aligning with findings in Chapter III, 

suggesting that people often struggle to accurately perceive some indoor environment 

parameters, for instance, air humidity and CO2 levels.  

  “It is great, but I would like it to be available in different languages. In the beginning, 

I had trouble with this English version of the app.” 

  “The only thing that was a bit problematic was the air humidity question,” 

  “One of the questions I found difficult was reporting how I feel about air quality and 

how dry the air is. I wasn’t sure how to determine that.” 



Chapter IV 

115 

 

Occupant awareness of collective comfort in shared spaces: in shared environments, it 

is usually challenging to achieve a one-size-fits-all approach. Therefore, the aim is to achieve 

indoor conditions that satisfy most users. As participants reported, sharing the control 

autonomy with other participants in the room is not an inconvenience for them.   

“If the majority’s preferences are considered and then applied, that is fine with me. I think it 

would be silly if only my preferences were considered.” 

Respondent 19  

“I think finding a temperature that suits 24 people is tough. I don’t even know how that 

should be adjusted. But if the survey indicates that more people feel hot than cold, the system 

should automatically at least crack open the windows.” 

Respondent 12 

 

Willingness to use HCC in the future: despite some being somewhat skeptical about 

using such systems in the future, all 19 respondents expressed readiness to use such systems in 

the future. However, some prefer a hybrid form of control that, despite the controller taking 

their preferences into account automatically, allows them to adjust some conditions manually. 

36.8% of participants reported that they would like to be able to open the windows manually, 

while 21% also mentioned wanting to adjust the lighting levels manually.  

“It would be good if this new system doesn’t meet our preferences; we can just open the 

window ourselves.”  

Respondent 9 

“I think the best would be when the building was controlled automatically, according to some 

standards, and then if I felt bad or uncomfortable, I would like to influence the building 

conditions.   

Respondent 14  

 

The impact of social influences on interacting with HCC: recalling the results in 

Chapter II on the social influence on users to report feedback, the interviews brought forth the 

distinct impact of social norms. Specifically, people are more likely to interact with a controller 
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if they believe they will positively impact their peers and people around them and that their 

actions will be of service to someone.  

 “Of course, I would continue to report feedback if it would benefit me and others, students, 

and teachers.” 

Respondent 11  

Perceived satisfaction with the indoor conditions: when asked about the perceived 

level of satisfaction, most respondents reported increased satisfaction during the last three days 

of the experiment, when the room was controlled with updated setpoints yielded according to 

user preferences. It is important to note that the participants were not informed on which days 

the setpoints were changed according to their preferences. Their awareness of their 

surroundings increased; they could even remember a day with the perfect temperature.  

“…especially on one day, though I can’t remember exactly which, the temperature was 

perfect. I don’t know if it was Tuesday; I think it was Tuesday. The temperature and airflow 

were perfect.” 

Respondent 11 

“These last few days were great.” 

Respondent 14 

A smaller number of participants, around 15%, perceived all days as more or less the 

same, including the intervention days when the temperature was set too high or too low the 

other day, the air was stuffy some days, and the lighting was purposefully bad. These 

respondents had low variability in their reported data and are part of the “Always satisfied” 

group of respondents.  

“I was neutral most of the time or comfortable. Only rarely did I feel any large discomfort.” 

Respondent 22 

“…well, the conditions were the same, more or less. It was comfortable all the time.” 

Respondent 10 
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Practical suggestions and recommendations from the participants: participants 

made several valuable suggestions for the app. One suggestion was incorporating more 

nuanced comfort levels (e.g., the ASHRAE comfort scale). However, this approach was 

intentionally avoided to simplify responses and limit prediction categories to two classes 

(comfortable and uncomfortable) when developing PCMs. However, this could be 

implemented by getting nuanced responses from the occupants and then grouping the responses 

into two categories for ML models. Another suggestion for the app was to predict user 

responses based on indoor conditions so it could suggest responses instead of asking users to 

select them. For example, the app could tell the response “wants colder” if the user prefers 

cooler conditions. This feature could be explored in the future. 

“I would prefer more choices regarding comfort or discomfort. If I had only the option of 

being comfortable or uncomfortable, I would feel in between most of the time.” 

“The app should be super simple and easy to use. Like short questions, so that the app learns 

your preferences and even offers you the answers it expects you to say immediately.” 

Some respondents even came up with ideas on incorporating HCC in future buildings. 

Their ideas resembled some current state-of-the-art research on personalized comfort and HCC. 

For instance, two respondents suggested ideas to use localized climate control, which aligns 

with the so-called Personalized Comfort Systems or spaces [210], [211], which is a well-

researched topic currently. Furthermore, some mentioned grouping people with similar 

interests, which is also being explored by various research groups [4].  

“The whole idea is good, but in my opinion, impossible to incorporate. Because many of us 

have different wishes and preferences regarding the conditions in the room, satisfying 

everyone is impossible. It would be possible if there was a way of cooling a specific part of 

the room. But currently, I don’t see a possibility of doing this in real life… However, the idea 

of listening to building users seems good.”  

Respondent 14 

“I think it has potential, but only if the rooms could be divided into zones so that each 

occupant has its microenvironment. The only way of doing this in practice is in the rooms 

where the occupants have similar preferences. For example, an office with people generally 

always feeling hot.” 

Respondent 22 
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 From all the interviews, a word count analysis was conducted using MAXQDA 

software [212], demonstrating an overall positive sentiment. The results are in Figure 4.9, 

showing the most frequent words (more prominent ones used more frequently). The interview 

transcripts were cleaned, meaning that the stop words were removed, and articles and other 

words that did not contain any valuable meaning were removed. Furthermore, the questions 

from the interviews were also removed, and only the answers were included in the text analysis. 

The results were tested with and without lemmatization (shortening words to their base root 

form). Since the results did not differ much, Figure 4.9 shows the word cloud without 

lemmatization.  

 

Figure 4.9 Word cloud visualization of the most frequent word used by respondents during the 

structured interviews 

 

4.4 Discussion and conclusion 

 

This chapter explores the impact of integrating user preferences into a building control 

system using PCM. It provides a framework for this integration, addressing multiple occupants 

in a shared space and various comfort aspects, including IAQ, thermal, and visual comfort.  

This was enabled through a field study in a classroom of the RCK Ruder Boskovic high 

school, involving 24 participants. Over two weeks, this classroom served as a living laboratory 

to test and observe interactions with HCC. The indoor environment was managed using an 

open-source automated control system, allowing for real-time adjustments of indoor 

parameters as needed. The field experiment had distinct phases with specific indoor conditions. 

One day, the experiment featured free-floating conditions without HVAC. For two days, the 

experiment maintained standard HVAC settings. During the four-day intervention phase, 
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comfort boundaries were tested by varying indoor air temperatures, ventilation rates, and 

lighting levels. Lastly, the HCC days highlighted the occupant-centered approach by 

integrating user preferences into the indoor environment regulation, with setpoints adjusted 

based on participants’ self-reported preferences.  

The proposed framework to integrate user preferences into the controller is a simple yet 

effective approach that considers all user preferences by removing outliers. If necessary, 

weights can be assigned to different occupants so that their responses impact the comfort ranges 

more. Based on the two experiments conducted, the one in the faculty lab (presented in Chapter 

III) and one in the school building, shared spaces such as offices or classrooms reveal that while 

individual comfort perceptions vary, there is often significant overlap in preferences. This 

allows us to define approximate comfort ranges or boundaries that satisfy most users, even if 

not all of them. According to standards such as ISO 7730:2005 [213], around 90% of people 

indoors need to be satisfied with the indoor conditions for thermal comfort, whereas ASHRAE 

55-2004 states the same limit by adding an extra 10% dissatisfaction that might occur due to 

local discomfort and asymmetries. According to ASHRAE 62.1 [214], an acceptable IAQ level 

is achieved when 80% or more of the occupants do not express dissatisfaction. This shows that 

not all users can be satisfied. The aim is to consider occupants’ preferences, and by using 

comfort ranges for all users individually, the indoor environmental settings can be tailored as 

close to their preferences as possible to improve their comfort and wellbeing.  

The findings from this chapter show a 16.7% increase in self-reported user satisfaction 

after integrating user preferences into the controller, with satisfaction levels including very 

satisfied, satisfied, and somewhat satisfied. Dissatisfaction with indoor conditions decreased 

by 14.9% when comparing days with free-floating conditions, natural ventilation, and standard 

setpoints to those with HCC setpoints. Intervention days were excluded from this comparison 

as occupants were intentionally made uncomfortable, which was expected to result in lower 

satisfaction. In context, a survey of 62 360 occupants in 617 office buildings in the US, 

Australia, Canada and other locations, found that 38% were dissatisfied with the temperature 

in indoor conditions and 20% dissatisfied with air quality [215]. Another study with 34 000 

office occupants in 215 buildings in US, Canada and Finland, reported only 11% of buildings 

reaching 80% satisfaction [208]. A study in Portugal with 425 elderly care center occupants 

showed 42% dissatisfaction, rating conditions as “slightly cool” despite standard heating 

operations [209]. These studies highlight that many buildings fail to meet occupant comfort 
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requirements. Thus, a 16.7% increase in satisfaction would be significant as it is known that 

enabling user access to control increases their satisfaction [3], [191].  

During the field study, 19 out of 24 participants shared their experiences interacting 

with HCC through semi-structured interviews. Participants expressed varying beliefs about the 

usability and functionality of HCC systems. Around 73.7% believe that HCC could learn and 

meet their preferences, 10.5% were neutral, and 15.8% were skeptical, favoring conventional 

control systems. These findings align with Chapter II, where 60.9% of 1 000 surveyed 

individuals believed in the functionality of HCC, even without prior interaction with such 

systems. This suggests that direct interaction with HCC might increase user acceptance and 

willingness to engage. Moreover, this interaction increases their awareness of the indoor 

environment, making them more likely to take conscious actions in regulating indoor 

parameters when they understand the impact of such actions. Another influence was the social 

factors, as the participants expressed that they would interact more if they contributed 

positively to their peers and teachers. This finding aligns with the insights from Chapter II, 

which identified attitude, ease of use, and social influences as the main factors influencing 

willingness to interact with HCC and share data [216]. All participants, including those initially 

skeptical about its functionality, expressed a willingness to use HCC in the future if given the 

opportunity. The skeptical group, however, emphasized the need for hybrid controls operating 

on standard settings while allowing user interaction in automated control when needed.  In a 

natural environment, it is expected that not everyone will choose to engage with HCC, which 

is acceptable. The goal of HCC is to enable occupants access to control to adjust the indoor 

environment through PCMs. At the same time, those who prefer not to interact can be 

accommodated within the onset conditions.  

The field experiment also assessed the practicality of interacting with HCC. Participants 

indicated that the feedback reporting process was easy, straightforward, and intuitive, taking 

them between 15 seconds and 2 minutes to complete. Regarding the feedback frequency, the 

results suggest that 47.4% of the participants were comfortable reporting feedback every hour, 

31.6% preferred less frequent interaction, and 21.0% had no opinion. However, these results 

may be biased as the participants, being school students, expressed pride in participating in the 

novel research and might have felt the need to provide favorable responses. However, bias is 

somewhat expected in semi-structured interviews and can come from many sources, such as 

leading questions or selection bias of the participants [217]. The responses that might be more 

realistic are those reported in survey responses from Chapter II, stating that from 1 000 
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individuals only 1.9% were willing to provide feedback every hour, 14.4% every few hours, 

and 73.3% only when they felt uncomfortable. 

During interviews the participants also suggested a few strategies to accommodate 

collective comfort in shared spaces, and those strategies align with current research on 

occupant comfort. One of the proposed strategies includes the development of Personalized 

Comfort Systems (PCS) to create localized microclimates for occupants sharing the same space 

[210], [218], [219]. The PCS could be using heating chairs [220], leg warmers [221], 

personalized ventilators [222], [223], etc. Another suggested strategy involves grouping people 

with similar indoor environment preferences to sit in the same proximity [4]. The interviews 

also indicated that collective comfort is a common expectation in shared spaces. Consequently, 

the willingness to share the control autonomy with others is generally high, with participants 

expressing that it is expected to consider the preferences of the majority.  

The challenges and difficulties encountered by the participants include the fact that the 

participants struggled to respond to some perceived indoor air parameters, such as air humidity. 

This shows that some parameters are complex for users to sense. Furthermore, some reported 

language barriers to understanding the app questions, which had to be translated. This suggests 

that it is important to know the audience and, if possible, to tailor the interface to be more 

acceptable to users or the target group. Participants also gave some suggestions, such as having 

the interface to predict their responses initially so that they could directly skip some questions.   

 The field study uncovered some practical implications that somewhat align with the findings 

of Chapter II. Some of the takeaways are:   

− Framework for integrating user preferences: the recommendation is to implement a 

simple yet functional framework that integrates user preferences into building control 

by removing outliers (for instance, someone being comfortable when the temperature 

is 26.5 ℃, while everyone else was uncomfortable in those conditions). This approach 

accounts for most user preferences, which are useful in shared spaces, allowing for 

approximate comfort ranges that satisfy most users. 

− Increased user satisfaction: integrating user preferences into the building control system 

using PCMs led to a 16.7% increase in overall user satisfaction, indicating that HCC 

can significantly enhance occupant indoor satisfaction.  

− Ease of interaction: participants found the feedback reporting process (through the 

proposed HComfort app) easy and intuitive. It took 15 seconds to 2 minutes to provide 
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feedback. This suggests that designing user-friendly interfaces can facilitate greater 

user engagement with HCC systems. 

− Feedback frequency preferences: nearly 50% of the participants were comfortable 

providing feedback every hour, but a significant portion preferred less frequent 

interaction. This highlights the need to balance the frequency of user interactions to 

avoid potential user fatigue. 

− Multilingual interfaces: to accommodate diverse user groups, it is recommended to 

ensure that the HCC system interfaces are available in multiple languages, especially 

in environments with participants who may not be fluent in other languages. 

− Hybrid control systems: it is recommended to implement hybrid control systems that 

run on standard settings but also enable adaptive control and user interaction. This 

caters to both groups of occupants, those who prefer automated control and those who 

want some level of manual control. 

− Challenges with sensing parameters: it is recommended to provide more intuitive 

measurement tools or visual aids to address users’ difficulties in sensing specific indoor 

parameters, such as air humidity. 

 

This study has some limitations: 

− Due to time constraints, the experiment lasted only ten working days. However, the 

open-access control system created enough varying indoor conditions to collect 

sufficient data. As Chapter III indicated, 50-60 data points are the minimum needed to 

learn occupant preferences. The frequent feedback of occupants under different 

conditions helped compensate for the short duration of the experiment.  

− The experiment was focused only on one classroom, and in the future, it can be 

expanded to include the whole building.  

− The building was newly built, which could also impact the participants’ sense of 

participation as the entire environment was a novelty. Furthermore, the new building 

also might have impacted their IAQ comfort as one participant mentioned the smell of 

freshly painted walls, which might be the reason that they expressed discomfort even 

for normal CO2 levels.  
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− The positive predisposition of the participants can also be slightly biased by their sense 

of pride in participating in such a novel experiment. This was also indicated in some of 

the responses.  

“I was quite pleased to participate in the experiment. I feel honored to have been in the class 

where I was. It was interesting here. I experienced something new.”  

Respondent 8 

In future studies, expanding this experiment to other buildings, such as residential and 

commercial buildings, and for more extended periods would be beneficial. Furthermore, 

increasing users’ awareness of energy-efficient and environmentally friendly behaviors in 

buildings is imperative.  

“…well, I would like to see someone doing it [implementing HC] for their own home. That 

their house generally adapts to the homeowner. That people can enter the building with their 

phones, and by itself, the system already knows they’ve entered, and then the system can turn 

on and adjust itself.” 

Respondent 12 
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5. Impact of human-centered control on grid flexibility 
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                                                   “The secret of change is to focus all of your 

energy, not on fighting the old, but on building the new.” 

Socrates 

 

Occupant behaviour significantly impacts the overall energy consumption in buildings 

and can potentially increase it by one-third [189]. Therefore, changing the energy consumption 

behaviour towards more sustainable actions can have a positive outcome on energy efficiency 

and environmental impact. Encouraging occupants to engage in energy-efficient actions, such 

as grid flexibility or demand response actions, is a promising approach to reducing energy 

usage in buildings. On the other side, the high penetration of renewable energy sources in the 

electricity grids of developed countries has created imbalances between electricity supply and 

demand. For instance, during peak hours, solar energy generation can exceed demand, leading 

to fluctuations in electricity prices. In this case, it is essential to have consumers who can utilize 

this excess electricity. Conversely, during peak hours, the grid becomes overloaded, leading to 

high electricity prices and necessitating reduced energy consumption. This situation presents 

an opportunity for demand-response actions within the grid. Buildings account for around 40% 

of the overall energy consumption [224], and around 75% of electricity consumption only in 

the US [225], contributing to 80% of peak demand, have significant potential to participate in 

these actions. Advanced control systems in buildings, such as Human-Centric Control (HCC) 

with Model Predictive Control (MPC), empower occupants to be active participants in the 

energy management process. This is achieved through information exchange between the grid, 

buildings, and users. When the electricity grid is overloaded, occupants can be prompted to 

modify their energy consumption to alleviate the load from the grid. For example, informed 

occupants could reduce energy use by temporarily lowering temperature setpoints during the 

heating season or turning off certain appliances. HCC highlights the crucial role that buildings 

can play in enhancing grid flexibility. However, due to its novelty, the impact of HCC on grid 

flexibility still requires further exploration.  

In this chapter, the definition and quantification of the impact of HCC on grid flexibility 

are examined using simulations. The powerful TRNSYS software and MATLAB are utilized 
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to run simulations representing the building behaviour of the RCK Ruder Boskovic high school 

in Zagreb, Croatia. Five scenarios are analyzed to demonstrate the impact of various control 

strategies on building energy performance and the role of HCC in grid flexibility.  

5.1 Literature review  

 

The increasing electric demand with varying dynamics and the rise in renewable energy 

sources characterized by their intermittent power generation, have heightened the complexity 

of power grids, making it more challenging to balance supply and demand. [226], [227]. To 

achieve balance, flexibility is needed [228]. Flexibility can be provided on the grid side, where 

the grid enables flexibility through measures like flexible electricity generation [228]. It can 

also be on the demand side, where consumers adjust their energy use to support grid stability 

[229]. Demand-side management (DSM) [230] enables flexibility through various strategies, 

including energy efficiency, which involves reducing overall energy consumption compared to 

a baseline by improving building insulation and using more efficient HVAC systems [231]. 

Another strategy within DSM is demand-response (DR), which decreases electricity demand 

when the power grid is overloaded [232]. Additionally, energy flexibility, also known as 

demand flexibility, encompasses the ability to reduce, shed, shift, modulate, or generate 

electricity [230]. For instance, energy flexibility includes reducing energy consumption from 

the grid using renewable energy systems, rescheduling HVAC systems, shifting occupant 

demand through changed behaviour [233], [230], etc. Load shifting strategy is the most 

researched one, according to [227], which involves moving energy use to off-peak times. DR 

programs can be either incentive-based or price-based and aim to shift energy consumption 

away from peak hours [234]. The price-based program is the most commonly used approach 

in research, according to Jurjevic et al. [230]. 

The notion of flexibility is still not yet clearly defined and continues to be debated 

[235]. This challenge is being tackled by The International Energy Agency (IEA) Energy in 

Buildings and Communities Program Annex 67 [224], where they aim to define and quantify 

the energy flexibility in buildings. Definitions of some common terms related to flexibility are 

shown in Table 5.1. However, the quantification of flexibility is an ongoing quest as it varies 

based on the approach level (system, building, or community/district), building controls, 

flexible building operations [236], and model type (physics-based, data-driven, or hybrid).  
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5.1.1 The role of buildings in grid flexibility  

As significant energy users, buildings can effectively facilitate DSM by adjusting their 

energy consumption and timing of energy usage. This makes them valuable for DR actions, 

which help reduce grid stress by altering electricity demand when needed [241]. In buildings, 

HVAC systems, washing machines, dishwashers, and electric vehicles are considered 

controllable loads to enable reducing and shifting energy peaks, whereas computers and 

televisions are considered non-controllable loads [230].  Additionally, thermal and electric 

storage can also provide flexibility. Thermal storage options include passive storage or the 

thermal mass of the building [242] or active storage solutions like water tanks and, less 

commonly used, phase change material tanks [228]. In commercial buildings, the HVAC 

systems alone account for 40 – 50% of the total electricity consumption [243], which makes 

them a primary target for DR research related to buildings. 

 

Table 5.1. Definitions of common terms used for flexibility solutions 

Source Name Definition 

Energy 

Agency (IEA)  

[237] 

Grid 

flexibility 

 “The ability of a power grid to reliably and cost-

effectively manage the variability and uncertainty of 

demand and supply across all relevant timescales, from 

ensuring instantaneous stability of the power system to 

supporting long-term security of supply” 

The Electric 

Power 

Research 

Institute 

(EPRI) [238] 

Demand side 

management 

(DSM) 

“DSM is the planning, implementation, and monitoring of 

those utility activities designed to influence customer use 

of electricity in ways that will produce desired changes in 

the utility’s load shape, i.e., time pattern and magnitude of 

a utility’s load. Utility programs falling under the umbrella 

of DSM include load management, new uses, strategic 

conservation, electrification, customer generation, and 

adjustments in market share.” 

Energy 

Agency (IEA) 

Annex 67 

[239] 

Energy 

flexibility 

“The ability for a building to manage its demand and 

generation according to local climate conditions, user 

needs, and grid requirements” 

Energy 

Agency (IEA)  

[240] 

Demand 

response 

“Demand response refers to balancing the demand on 

power grids by encouraging customers to shift electricity 

demand to times when electricity is more plentiful or other 

demand is lower, typically through prices or monetary 

incentives.” 
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Two main control architectures enable grid-building interaction: centralized and 

decentralized controls [230]. Centralized control is managed from the grid side using a top-

down approach for the end users. In contrast, decentralized control operates at the building 

level, requiring a local controller to adjust building or appliance behavior in response to grid 

signals. This controller can function at the appliance level, managing smart energy-consuming 

devices, or as part of a building control system managing the entire building [234]. Depending 

on the control system used, DR at the building level can be implemented in various ways. The 

simplest method involves on-off control of appliances or HVAC systems, such as turning 

heating or cooling on and off at specific times to reduce energy consumption. Rule-based 

control operates on if-else conditions, managing appliances or HVAC systems to avoid 

exceeding restrictions when electricity prices are high. For example, if electricity prices are 

high, the system might reduce the water inlet temperature of heat pumps. Advanced controllers 

optimize building system operation and energy consumption, balancing costs and comfort by 

considering various factors such as weather predictions, occupancy, and electricity price 

forecasts [228]. Research [244] presents a review on the use of rule-based control and MPC 

systems using HVAC with heat pumps for energy flexibility in buildings.  

Different benefits can be achieved depending on the control strategy employed for 

energy flexibility through HVAC in buildings. For instance, rule-based controllers can reduce 

energy consumption but may compromise costs or comfort. On the other hand, advanced 

controllers offer great flexibility for load shifting and cost reduction but may increase the 

aggregated amount of energy usage. The effectiveness of various control systems in buildings 

that aim to reduce energy consumption and enable energy flexibility shows total and peak 

energy consumption reductions ranging from 20 – 30% under different control schemes [230]. 

In residential buildings, the literature reports peak power reductions ranging from 0.5% to 65%, 

energy savings up to 60%, operational cost reductions from 0.8% to 48%, and greenhouse gas 

emissions reductions between 0.4% and 29% [235]. Lee et al. [245] achieved up to 80% energy 

consumption reduction during peak hours in the cooling season and 64% in the heating season. 

Carvalho et al. [246] reported energy cost reductions between 17% and 34%. 

Model Predictive Control (MPC) is an advanced control strategy that presents a great 

enabler for demand response (DR) because, during peak hours, it can reduce or shift energy 

consumption to more favorable times. MPC optimizes an objective function to minimize targets 

such as energy costs and occupant discomfort, among other targets. It leverages prediction 

horizons that account for disturbances like weather, occupancy, and dynamic electricity pricing 
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to optimize building operations effectively. Economic MPC, which aims to reduce electricity 

costs, is the most commonly used approach [244]. For example, research [247] used economic 

MPC to compare energy consumption and costs under three electricity tariff scenarios: flat rate, 

day-night tariff, and time-of-use prices. The results showed up to 15% electricity cost savings 

and 80% load shifting, though overall energy consumption increased by 20% outside peak 

hours. This demonstrates that energy flexibility, which shifts consumption to more favorable 

times sometimes increases amount of energy usage, but that energy is used in off-peak times 

and should not be penalized [241]. In another study, MPC with simple day-night tariffs in an 

actual office building in Brussels achieved a 30 – 40% cost reduction compared to conventional 

rule-based control [248]. Similarly, research [249] using MPC with floor heating and a ground 

source heat pump reported 35% cost savings with dynamic electricity pricing. In [250], MPC 

is used in a multi-room house in Denmark to adjust the heat consumption depending on 

dynamic electricity prices, and it achieves up to 37% reduction in electricity costs per week. 

MPC has also been used for visual comfort by controlling blinds for sufficient daylight and for 

indoor air quality (IAQ) to ensure proper ventilation [251]. This shows the great potential of 

MPC for energy efficiency and energy flexibility in buildings. However, these studies focus 

primarily on energy efficiency and cost savings and less on the impact on occupant comfort, 

satisfaction, and acceptability of such systems.  

Research on incorporating the human dimension in MPC is limited, but some studies 

show the feasibility of implementing HCC with MPC in buildings, as shown Table 5.2. 

Experimental studies were conducted in office rooms, open-plan offices [10], [11], [252], 

academic buildings [13], and a chamber experiment [14]. Additionally, two simulation studies 

[253] , [254] were not validated in natural environments but included the human dimension. 

The limited number of field implementations highlights the need for more research in real-life 

settings, particularly in multi-zone buildings with more occupants, to confirm the feasibility of 

such control systems. 

 

5.1.2 The role of occupants in grid flexibility actions 

The human dimension plays an important role in enabling energy flexibility. Energy 

consumers can participate in flexibility solutions either actively, by adjusting their energy 

consumption behavior and timing according to grid price signals, or passively, by agreeing to 

a control program managed by the grid [255]. Ensuring long-term consumer participation in 

DR actions is still a significant challenge [256]. Therefore, a participatory approach that 
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engages users in the design and implementation, enhances occupant experience and raises 

awareness of the benefits of energy flexibility can improve acceptance and user engagement in 

DR actions [241]. Additionally, prioritizing occupant comfort and understanding the impact on 

occupants is crucial for successfully deploying and accepting HVAC control strategies. 

According to [235] there is a gap in integrating occupant impacts into the quantification of 

energy flexibility. Moreover, the future of developing and implementing demand response 

greatly depends on incorporating user feedback [257]. Therefore, estimating how the users can 

impact energy flexibility is essential. 

 

Table 5.2. Studies on the integration of the human dimension in buildings using MPC 

focusing on user-provided feedback, not occupancy 

Reference Year Building People  Type Human dimension 

 

[258] 2020 Campus 

building-one 

zone 

 Experiment PMV, physiological sensing 

using IoT 

[10] 2019 Open-plan 

office 

9 Experiment 

&Simulation 

Thermal 

preference/feedback 

[13] 2017 Academic 

building 

22 Experiment Thermal 

preference/feedback 

[14] 2016 Chamber 4 Experiment AMV-actual mean vote  

[11] 2013 Office room 1 Experiment Thermal 

preference/feedback, 

occupancy 

[252] 2013 Office room 1 Experiment Thermal 

preference/feedback, 

occupancy 

[253] 2014   Simulation  

[254] 2015   Simulation  

 

Integrating occupant preferences and comfort into control strategies involves either 

using comfort temperature ranges or group-based comfort models like PMV (Predicted Mean 

Vote), PPD (Predicted Percentage of Dissatisfied), or personalized comfort models (PCMs). In 

MPC, comfort can be addressed as a constraint that should not be violated or within the 

objective function by penalizing deviations from a setpoint. In the first approach, the use of 

comfort temperature ranges varies significantly in the literature. For example, research  [259] 

uses 21 − 24°𝐶, while research [247] uses 20 − 22°𝐶 during occupancy hours (07: 00 −

22: 00) with no constraints outside these hours. Yoon et al. [260] use 22 − 27°𝐶 in a dynamic 
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demand response controller that adjusts indoor temperature based on real-time electricity 

pricing. This controller was also tested in another study [261], calculating the percentage of 

hours within 25 − 28°𝐶 for medium and large houses. Other studies, such as those by Yu et al. 

[243], use a multi-agent framework to control HVAC systems in commercial buildings, setting 

comfort boundaries based on minimum and maximum comfortable temperatures. However, 

this approach can include outliers and cause discomfort in multi-occupant settings. Therefore, 

considering individual comfort ranges and finding a collective comfort range in multi-occupant 

settings can minimize dissatisfaction.  

The second approach is often used with group-based comfort models like PMV or PPD. 

For instance, in [262], simulations in TRNSYS achieved 10 − 15% cost savings while 

maintaining comfort by integrating PMV into the MPC objective function. In [263], PMV was 

considered in a predictive controller for public buildings, estimating energy savings greater 

than 50%.  

The third approach involves integrating personalized occupant preferences using 

PCMs. Ghahramani et al. [18] optimized energy consumption with a knowledge-based control 

strategy that considered personal thermal comfort. Kim et al. [264] developed PCMs using 

neural networks for each occupant. They implemented them into a predictive controller for 

demand response, achieving a 17.3% cost reduction and a 25% reduction in discomfort without 

significant changes in energy consumption during peak hours. In a recent study [265], the 

integration of PCMs in optimization-based controllers was analyzed using the proposed PICO 

(Personalization-Integrated Co-Optimization) framework. This simulation-based study used 

EnergyPlus software with August weather data to develop average comfort probability profiles 

for all occupants, aiming to satisfy most of them. Data were used from a previous study by the 

same authors [266] collected thermal votes (uncomfortably warm, comfortable, and 

uncomfortably cold) via a smart thermostat, processed using a Bayesian network. The 

predictive model aimed to minimize energy costs while penalizing collective discomfort. 

Various scenarios were tested, including one where occupants accepted 50% less comfort for 

greater energy flexibility. With a comfort probability reduced to 50%, the acceptable 

temperature range widened from 21°C to 26.6°C. However, the preferred comfort range based 

on occupant profiles was 20.63°C to 24.67°C. Results measured energy consumption, costs, 

and comfort during peak hours and the entire day. The study achieved a peak energy 

consumption reduction of 18.7% to 24.2% compared to a fixed setpoint controller, with a 

comfort reduction of 7% to 17.6%. This demonstrates that using PCMs consistently meets 
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various thermal comfort needs, enhancing occupant experience and potentially improving 

acceptance. 

The assumed peak times of grid load vary across studies, but most use fixed schedules, 

for example, Kim et al. [267] assumed peak times from 13:00 to 17:00, Yoon et al. [260] from 

15:30 to 17:30, and research [265] considered peak hours from 14:00 to 15:00 based on the 

highest electricity price on August 1st when they did their simulation. Lee et al. [245] assumed 

peak hours from 14:00 to 17:00 in summer and 17:00 to 20:00 in winter, while Carvalho et al. 

[246] assumed peak hours from 09:00 to 10:30 and 18:00 to 20:30. On a more general principle, 

late afternoons or early evenings between 16:00 to 21:00 are considered peak hours, although 

this can vary by region [268], [269], [270]. However, [245] mentions that fixed schedules lack 

adaptation to natural conditions and vary seasonally, yet they are the more straightforward 

option.  

 

5.2 Methods  

 

This chapter uses comprehensive simulations to evaluate the impact of HCC on grid 

flexibility and various control systems on building energy performance, costs, and comfort. 

The case study building for the simulation is the same high school building, RCK Ruder 

Boskovic, mentioned in Chapters III and IV. These simulations are built upon a collaborative 

research effort with PhD candidate Nikola Badun [271],[272] using TRNSYS software and 

MATLAB programming. Two different control strategies are employed for these simulations. 

The first is the conventional Proportional-Integral-Derivative (PID) control, and the second is 

the advanced MPC. These control strategies are tested for different indoor air setpoints, 

including standard setpoints of 20 − 22℃, where 20℃ was used for heating and 22℃  for 

cooling. Additionally, setpoints based on user preferences (Human-centric (HC) setpoints) with 

temperature ranges of 21.8 − 24.8℃, were extracted as the desired comfort range from the 

field study in Chapter III. 

To explore the impact that various control strategies have on the building energy 

performance, grid flexibility, costs, and comfort, five scenarios are presented and analyzed:  

− Scenario 1 – Standard PID: PID control with standard setpoints (20 − 22℃)  and 

dynamic electricity prices. It is important to note that while electricity prices do not 

influence the PID control function, dynamic pricing impacts the overall energy costs. 
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− Scenario 2 – HC-PID: PID control with adjusted setpoints based on user comfort 

boundaries (21.8 − 24.8℃) and dynamic electricity prices.  

− Scenario 3 – Standard MPC: MPC with standard setpoints (20 − 22℃) and dynamic 

electricity prices when the space was occupied and (15 − 30 ℃) when the space was 

unoccupied. 

− Scenario 4 – HC-MPC: MPC with adjusted setpoints based on user comfort 

boundaries (21.8 − 24.8℃) and dynamic electricity prices, and (15 − 30 ℃) when the 

space was unoccupied. 

− Scenario 5 – DR-HC-MPC (demand-response HC-MPC): combines user engagement 

in demand-response (aiming to provide grid flexibility) with MPC control. The 

assumption is that occupants are willing to reduce energy consumption by adjusting 

their comfort boundaries by 2℃ to less favorable conditions for two hours during peak 

times. This assumption is based on survey responses from Chapter II. In the survey, 

nearly 48% of the 1 000 respondents indicated a willingness to participate in grid 

flexibility actions for only 1 − 2 hours per day, assuming they would accept two hours 

with reduced comfort for energy flexibility. Peak hours were considered 17:00-19:00 in 

January and 18:00-20:00 in August, based on the highest average hourly electricity 

prices per day for a month (Figure 5.1). Although the actual peak for August was 19:00-

21:00, it was adjusted to 18:00-20:00 to include occupied hours for the consumption 

reduction analysis. The actual dynamic electricity prices of Denmark for 2023 [273] are 

used as an example to simulate a realistic electricity market with dynamic prices. These 

prices are applied to the simulated building in Zagreb, Croatia, to illustrate how the 

system would function under similar conditions. 

These scenarios are analyzed for both the heating season, using January as an example, and 

the cooling season, using August as an example, assuming a consistent occupancy schedule 

where the building was occupied from 06:00 to 20:00. 
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Figure 5.1. Hourly average electricity prices for Denmark during January and August 2023 

[273] 

 

PID Control – is a conventional, often-used control strategy due to its simple structure 

and ease of implementation [274]. It entails three mode algorithms such as proportional (P), 

which determines the reaction to the current error; integral (I), which determines the response 

based on the sum of past errors; and derivative (D), which predicts future errors based on the 

trend of change. It adjusts the control inputs to minimize the difference between the measured 

parameters  (i.e., air temperature) and the desired setpoint (i.e., desired air temperature). 

According to [274], the control in parallel PID is computed using:  

𝑢(𝑡) = 𝐾𝑐 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝑡)𝑑𝑡 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
) 

where 𝐾𝑝 = 𝐾𝑐 is the proportional gain, 𝑒(𝑡) is the error at time t (e.g., the difference between 

the setpoint and the measured temperature),  𝑘𝑖 =
𝐾𝑐

𝑇𝑖
 and 𝑇𝑖 is the integral time, 𝑘𝑑 = 𝐾𝑐𝑇𝑑  and  

𝑇𝑑 is the derivative time.   

MPC is an advanced control strategy that uses a model of a system (i.e., building) to 

predict future states (i.e., air temperature) and optimize control inputs over a prediction horizon 

[275].  It continuously solves optimization problems that aim to minimize a cost function. In 

this case, the cost function is designed to minimize both electricity costs and thermal discomfort 

violations. The objective function used for the MPC is as follows:  
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𝐸𝐶tot = ∑[𝐸𝐶(𝑘) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑘)]

𝑃𝐻

𝑘=1

 (1) 

 

Where the  𝐸𝐶(𝑘) = 𝐸total(𝑘) ∙ 𝐸𝑙price(𝑘) presents the electricity cost, calculated based on the 

total energy consumption by the heat pump and the electricity price. The 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑘) indicates 

the discomfort violation, which occurs when the actual zone temperature 𝑇z(𝑘) exceeds the 

comfort boundaries, either above the upper boundary or below the lower boundary. The zone 

temperature 𝑇z(𝑘) is simulated using an ARX grey-box model, which captures the behavior of 

the simulated building. The details of the building model and MPC formulation can be found 

in [272]. This model expresses the zone air temperature 𝑇z(𝑘) as a function of the ambient 

temperature (𝑇𝑎𝑚𝑏(𝑘)), the heat of the water (𝑄𝑤(𝑘)), internal heat gains (𝑄𝑖𝑛𝑡(𝑘)), and solar 

gains (𝑄𝑠𝑜𝑙(𝑘)):  

𝑇z(𝑘) = 𝑓(𝑇amb(𝑘), 𝑄w(𝑘), 𝑄int(𝑘), 𝑄sol(𝑘)) (2) 

 

5.2.3 The performance evaluation and grid flexibility quantification 

To evaluate the performance of different control strategies and the impact of HCC on grid 

flexibility, various Key Performance Indicators (KPIs) were calculated. The standard PID is 

considered a baseline or reference scenario, and the other scenarios are compared to it. The 

data analysis from simulations followed this procedure:  

1. Data selection: data were selected for peak hours when the grid is generally more 

overloaded. The peak hours were chosen based on the hourly average electricity prices 

for the chosen electric pricing dataset. Peak hours were considered 17:00 to 19:00 in 

January and 18:00 to 20:00 in August. Only afternoon peak hours were considered for 

simplification and complying with the general knowledge that, on average, late 

afternoons or early evenings between 16:00 to 21:00 are usually considered peak hours 

[268], [269], [270]. Furthermore, the data for the entire day was also analyzed to 

achieve a broader overview of how the scenarios impact not only peak hours but the 

entire day; this is shown in Annex F.  

2. Energy consumption calculation: The total energy consumption of the heat pumps 

(𝐸𝑡𝑜𝑡𝑎𝑙, kWh) was calculated for these peak hours and entire days over one month 
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during the heating and cooling seasons. Additionally, the total energy consumption for 

both seasons combined was also calculated. The difference in energy consumption 

(energy savings (Δ𝐸, 𝑘𝑊ℎ)) between the reference scenario (standard PID) and other 

scenarios was calculated. Lastly, the difference in energy consumption in percentage 

(Δ𝐸(%)) is also shown, highlighting the variations in energy consumption.  

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑖

𝑛

𝑖=1

 (3) 

 

Δ𝐸 = 𝐸𝑟𝑒𝑓 − 𝐸𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜(𝑖) (4) 

 

Δ𝐸(%) =
𝐸𝑟𝑒𝑓 − 𝐸𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜(𝑖)

𝐸𝑟𝑒𝑓
⋅ 100% (5) 

 

3. Energy cost calculation: energy costs for the heat pumps were also calculated, including 

total energy costs (𝐸𝐶𝑡𝑜𝑡𝑎𝑙 , €), savings in energy costs (Δ𝐸𝐶, €), and savings as a 

percentage (Δ𝐸𝐶, %). 

𝐸𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝐶𝑖

𝑛

𝑖=1

 (6) 

 

Δ𝐸𝐶 = 𝐸𝐶𝑟𝑒𝑓 − 𝐸𝐶𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜(𝑖) (7) 

 

Δ𝐸𝐶(%) =
𝐸𝐶𝑟𝑒𝑓 − 𝐸𝐶𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜(𝑖)

𝐸𝐶𝑟𝑒𝑓
⋅ 100% (8) 

 

4. Load shifting ability calculation: the load shifting ability was assessed using the KPI 

proposed by IEA EBC Annex 67 [276]. This equation measures how effectively a 

system shifts energy usage to optimize consumption. A higher value indicates better 

performance, meaning more energy was shifted from peak to off-peak times. The 

numerator captures the maximum positive differences between reference energy 
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consumption (𝐸ref ,𝑖) and the energy consumption for the flexibility scenario (𝐸flex ,𝑖,). 

The zero ensures positive energy savings are counted to measure load-shifting 

effectiveness accurately. 

𝐿𝑜𝑎𝑑 𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔 𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
∑  𝑛

𝑖=1 𝑚𝑎𝑥(𝐸ref ,𝑖 − 𝐸flex ,𝑖,, 0)

∑  𝑛
𝑖=1 𝐸ref ,𝑖

 (9) 

 

5. Comfort impact calculation: the impact on comfort is calculated using the thermal 

discomfort over a given period of time, as described in the BOPTEST documentation 

[277]. This method measures the integral of temperature deviation compared to the 

comfort boundaries over a specified time period. 𝐷(𝑡0, 𝑡𝑓) is the total discomfort 

between start (to) and end (tf) time, 𝑧 is the index of the zone for 𝑁 zones, 𝑠𝑧(𝑡) is the 

deviation outside the comfort boundaries at the time 𝑡. In these scenarios, 

uncomfortable conditions are defined as indoor air temperatures falling outside the 

comfort boundaries of 21.8 − 24.8℃, as determined during the field experiment in 

Chapter III. 

𝐷(𝑡0, 𝑡𝑓) =
∑  𝑁

𝑧 ∫  
𝑡𝑓

𝑡0
∥∥𝑠𝑧(𝑡)∥∥𝑑𝑡

𝑁
 (10) 

 

 

5.3 Results  

 

The results from the simulations show the impact of HCC on grid flexibility and various 

control systems on building energy performance, costs, and comfort. Five scenarios using 

different settings for various control strategies for the same building are presented.  

5.3.4 Findings from the building performance simulations 

 

Integrating user preferences into the building control changes the building behaviour 

compared to standard setpoints. For instance, when the building is controlled based on the 

thermal comfort boundaries expressed by users (21.8 − 24.8 ℃), it significantly changes 

compared to the conventionally used 20 − 22℃. Figure 5.2 shows how the indoor air 

temperature and energy consumption vary depending on the control strategy used and the 
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temperature range inserted as an input into the controller during winter. The indoor air 

temperature was controlled only when the building was occupied. As expected, when using 

HC-PID or HC-MPC, the air temperatures are higher in winter as occupants prefer warmer 

temperatures. In contrast, in summer, temperatures are maintained near the upper boundary. 

Consequently, the variation in indoor air temperature incurs varying energy consumption of the 

HVAC system (Figure 5.2). The graph shows that the energy consumption using standard-

temperature PID and MPC is lower in winter than HC-PID and HC-MPC because the standard 

temperature was lower, needing less heating than the occupants’ desired temperature range, 

which is higher and requires more energy. Engaging users in demand-response actions (DR-

HC-MPC) leads to lower energy consumption during peak hours because users accept lower 

temperature ranges for 2℃ which requires less energy from the heat pumps. These findings are 

numerically supported in 5.3.5 for a more precise description.  

For the summer season (August), when cooling is needed, Figure 5.3 shows the energy 

consumption for different scenarios. The findings show that standard PID and standard MPC 

have the highest energy consumption during summer because the standard setpoints are lower, 

requiring more energy for cooling. HC-PID and HC-MPC consume less energy than 

conventional PID since occupants prefer higher temperatures, needing less cooling, and using 

less energy. Yet, a limitation of this is that the comfort boundaries (21.8 − 24.8 ℃) were 

decided during a transition period (spring), and these can be lower or higher during summer. 

For some days, standard MPC and HC-MPC consume less energy during the day than PID 

because the energy consumption was shifted at night.  
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Figure 5.2 Air temperatures (upper) and energy consumptions (lower) when using different 

control strategies and different setpoint ranges of temperatures during winter (heating 

season) for one day taken as a representative day. 

 

Figure 5.3 Air temperatures (upper) and energy consumptions (lower) when using different 

control strategies and different setpoint ranges of temperatures during summer (cooling 

season)for one day taken as a representative day 
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5.3.5 Evaluation of the impact of HCC on grid flexibility 

 

This chapter aims to define the impact that HCC  has on grid flexibility. For simplicity, this 

analysis focuses on KPIs during peak hours. Comparisons for the hours during occupied times 

from 06:00 – 20:00 are also included for the reader but are shown in Annex F for brevity. Figure 

5.4 shows how different scenarios perform for energy savings, cost savings, load shifting, and 

comfort. The presented data includes the winter season (heating period – January) and the 

summer season (cooling period – August). The KPIs are calculated separately for both seasons, 

and the combined or cumulative results are shown later in Figure 5.5 within this section. The 

key findings presented in Figure 5.4, for separate summer and winter seasons, show that:  

− Energy savings: During heating season for peak hours, engaging users in demand-

response actions (DR-HC-MPC scenario) achieves only 3.9% energy savings compared 

to the baseline scenario with standard PID. This minimal increase is due to the high 

preferred temperature ranges of occupants. Although occupants accept less comfort for 

energy flexibility, the high initial temperatures (21.8 − 24.8℃) mean that reducing the 

temperature by 2℃ still requires more energy than using the standard 20 − 22℃ range. 

Standard MPC, with standard setpoints, achieved 7.6% energy savings for winter 

compared to standard PID, whereas integrating preferred temperature ranges of 

occupants to MPC, the energy consumption increased by 95% during peak hours. 

Again, this results from the high initial desired temperatures for the heating season. 

Furthermore, the highest increase in energy consumption is caused by integrating user 

preferences into PID control. The increase in energy consumption goes up to 121.8%, 

as it doesn’t try to optimize the energy consumption. This demonstrates if occupants 

prefer higher temperatures and PID is used for control, high energy consumption is 

expected. However, integrating user-desired temperatures higher than standard 

setpoints during the summer or cooling season significantly increases the energy 

savings from 78.6 – 87.0% for DR-HC-MPC, HC-MPC, and HC-PID, respectively. 

This is because, with higher accepted indoor temperatures, less energy will be used for 

cooling (Figure 5.4 (a)). 

− Energy cost savings: During winter peak hours, the DR-HC-MPC scenario achieved 

4.6% cost savings compared to the baseline scenario with standard PID. Standard MPC 

achieved 7.9% cost savings compared to the baseline. While standard MPC achieved 

higher savings, DR-HC-MPC considered occupant preferences, aligning with HCC 
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primary goal to put occupants first. However, integrating user preferences into PID and 

using MPC with standard temperatures increased electricity costs: HC-PID costs were 

237.4% higher, and HC-MPC costs were 95.2% higher than the baseline due to the extra 

heating needed in winter. During peak hours in summer, all scenarios achieved cost 

savings from 20.9% for standard MPC up to 97.9% for DR-HC-MPC, showing the great 

potential of HCC during summer. Standard MPC (20.9%) performed lower than HC-

PID (83.4%) because the latter had higher temperature setpoints, needing less cooling 

and consequently lower costs. (Figure 5.4 (b)). Detailed costs and energy savings are 

shown in Annex F. 

− Cost variations depend on electricity pricing. Although PID control is price-agnostic 

and does not consider electricity prices, electricity costs are still affected by the pricing 

model used. The baseline scenario with standard PID was tested under fixed and 

dynamic electricity prices, and cost savings for all scenarios were analyzed. For 

instance, dynamic prices increased HC-PID costs by 237.4%, as mentioned above, 

whereas fixed prices raised them by 121.8% compared to baseline. The pricing 

approach also slightly affected other scenarios, with detailed results available in Annex 

H.  

− Load shifting: During winter peak hours, DR-HC-MPC achieves the highest load 

shifting ability at 27.0%, indicating significant flexibility in shifting energy 

consumption to off-peak periods. Standard MPC shows an 11.6% load-shifting ability, 

while HC-MPC, which integrates user preferences, fails to shift any load during winter 

due to the high energy needed to maintain preferred high temperatures. During summer 

peak hours, DR-HC-MPC shows the highest load-shifting ability at 88.5%, followed 

by HC-MPC (85.1%). This is because the DR scenario expanded the comfort range by 

2℃, raising the upper limit from 24.8℃ to 26.8℃, which allows for greater flexibility 

(Figure 5.4 (c)). 

 

− Comfort: Integrating user preferences significantly improves comfort in both PID and 

MPC. During winter peak hours, HC-PID achieves low discomfort values of 2.9 Kh 

compared to 95.3 Kh with standard PID. HC-MPC achieves 5.1 Kh, which is also 

significantly better than the baseline. This measure is degree-hours, indicating fewer 

hours and temperature points outside the comfort boundaries. However, engaging users 

in grid flexibility or DR during winter peak hours results in higher discomfort at 51.9 
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Kh, although lower than the standard PID baseline but higher than HC-MPC (5.1 Kh). 

This indicates that while demand response actions can reduce overall discomfort 

compared to traditional PID, there is a considerable increase in discomfort compared to 

advanced control strategies explicitly prioritizing user comfort, like HC-MPC. In 

summer, standard PID discomfort is low at 4.4 Kh, with HC-PID and HC-MPC 

achieving even lower values at 0.1 Kh and 0.7 Kh, respectively. The controllers keep 

the air temperature within the occupant-desired comfort range. Conversely, discomfort 

in DR-HC-MPC rises to 9.7 Kh, indicating a slight increase compared to the baseline 

(4.4 Kh) and HC-MPC (0.7 Kh). This trade-off, or “collateral damage,” is necessary to 

achieve significant cost savings: 97.9% compared to the baseline and 8.4% higher than 

HC-MPC with 89.5% savings. This highlights the balance between achieving energy 

cost savings and maintaining occupant comfort when engaging in DR actions. (Figure 

5.4 (d)). 

 

 

Figure 5.4. Key Performance Indicators (KPIs) during peak hours for energy consumption 

savings (a), cost savings (b), energy flexibility (c), and comfort (d) are presented separately 

for the winter season (heating periods, in red) and summer season (cooling periods, in blue) 

 

To illustrate the overall impact of integrating user preferences and engaging occupants in 

grid flexibility actions in general with data from two representative months, a cumulative 
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approach was used by combining the data from January (heating season) and August (cooling 

season). The analysis focused on peak hours for both months, revealing the following results: 

− Energy consumption: engaging users in DR actions during peak hours in both seasons 

can result in up to 44.6% energy savings compared to the standard PID control. This is 

achieved by combining an advanced controller (MPC), a wider comfort range agreed 

upon by occupants, and considering electricity pricing. This demonstrates the 

significant potential of demand response actions to reduce energy consumption by 

targeting peak hours. Without DR, the MPC that integrates user preferences (HC-MPC) 

does not yield overall energy savings when aggregating data for both cooling and 

heating seasons. Although there are energy savings in summer, the higher energy 

consumption in winter due to preferred high temperatures cancels out these benefits. 

(Figure 5.5 (a)). 

− Energy costs: DR actions during both seasons result in a 59.4% reduction in energy 

costs compared to the PID baseline. In contrast, HC-MPC achieves 13.3% savings, and 

standard MPC achieves 15.5%. However, integrating user preferences into PID control 

increases energy costs by 49% compared to standard temperature PID. This 

demonstrates that the highest savings are achieved with DR actions, even when 

integrating user preferences, showing that occupants can be prioritized without 

compromising costs by leveraging advanced controllers like MPC, dynamic electricity 

prices, and short curtailment actions (Figure 5.5 (b)). 

− Grid flexibility: engaging users in DR actions improves the load-shifting ability of the 

building during peak hours by 60.6% as it uses wider temperature ranges, allowing for 

more flexibility. In comparison, MPC with user preferences (HC-MPC) achieves a 

46.4% improvement for both seasons, and standard MPC is 17.1%. (Figure 5.5 (c)). 

− Comfort: integrating user preferences significantly improves comfort conditions in both 

PID and MPC. HC-PID achieves the lowest discomfort violation at 3.0 Kh, followed 

by HC-MPC at 5.8 Kh, compared to the standard PID baseline of 99.6 Kh. This 

indicates fewer hours and temperature points outside the comfort boundaries when 

integrating user preferences. However, engaging users in DR actions increases 

discomfort to 61.6 Kh. While this is lower than the standard PID discomfort of 99.6 

Kh, it is higher than HC-MPC (5.8 Kh). This shows that although DR-HC-MPC 

improves comfort by integrating user preferences, comfort is compromised for 2 hours 

during peak periods, although agreed upon by occupants. This is the trade-off for DR 
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actions to achieve significant cost savings of 59.5% when aggregating heating and 

cooling season data. (Figure 5.5 (d)). 

  

Figure 5.5 Key Performance Indicators (KPIs) during peak hours for both winter (heating 

periods) and summer (cooling periods) seasons, for energy consumption savings (a), cost 

savings (b), energy flexibility (c), and comfort (d) 

 

5.4 Discussion and conclusions  

 

In this chapter, the definition and quantification of the impact of HCC on grid flexibility 

are examined using comprehensive simulations. The simulations are conducted 

using TRNSYS and MATLAB, two widely recognized tools in the field, to run simulations 

representing the building behaviour of the RCK Ruder Boskovic high school in Zagreb, 

Croatia. Five scenarios are analyzed to demonstrate the impact of various control strategies on 

building energy performance and the role of HCC in grid flexibility.  The key findings are:  

• Significant peak energy consumption reductions during heating and cooling seasons 

can be achieved using occupant-based comfort ranges while engaging users in grid 

flexibility actions. By allowing indoor air temperatures to adjust to less favorable 

conditions during peak hours, energy savings of up to 44.6% can be achieved with the 

DR-HC-MPC scenario compared to the reference scenario using PID control with 

standard temperatures. This result is within the reported value where energy savings 
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reached up to 60% [235]. Research [230] states that peak energy reductions range from 

20 – 30% under different control schemes and more than 50% in [263].  Moreover, the 

results also show that winter savings reach 3.9%, while summer savings can be as high 

as 78.6% during peak hours. Compared to other studies considering occupant comfort 

with PCMs [265], which achieved an 18.7 – 24.2% peak energy consumption reduction 

during the cooling season in August by assuming a 50% reduction in comfort, the results 

of this study are significantly higher. Despite using a similar comfort temperature range 

(21°C to 26.6°C in their study and 21.8°C to 24.8°C in this study), the additional ±2°C 

deviation during peak hours for DR activity in this chapter resulted in much more 

significant energy savings. Yet, Lee et al. [245] achieved up to 80% energy consumption 

reduction during peak hours in the cooling season and 64% in the heating season. 

However, they used standard temperatures, and in this study, the summer season 

exceeds these mentioned savings. This demonstrates the substantial potential of the DR-

HC-MPC to reduce energy consumption by engaging occupants as active participants 

in DR actions for only 2 hours (as assumed in this research) if they engage for longer 

or if the agreed upon comfort boundary exceedance changes (other than ±2°C), then the 

savings will also significantly change. Hence, engaging participants in a participatory 

manner is important to make DR actions as acceptable to them as possible, including 

various motivation factors to increase flexibility, energy savings, and other benefits. 

• The DR-HC-MPC control strategy enables significant load shifting, averaging 60.6% 

for both heating and cooling seasons. During the heating season, it achieves a load shift 

of 27.0%, while in the cooling season, it reaches 88.5%. The heating season performed 

lower as it deals with higher temperature setpoints per occupants’ preferences, 

increasing the need for more energy. Whereas the summer results align with reported 

findings of 80% load shifting in [247].This highlights its potential to move energy 

consumption from peak to off-peak hours, reducing grid overload and taking advantage 

of lower electricity prices.  

• The DR-HC-MPC control strategy enables an average electricity cost saving of 59.4%. 

This goes in line with other cost savings reported in the literature, such as  0.8% to 48% 

reported by [235], 17 – 34% reported by [246].  In winter, savings can be achieved by 

up to 4.6%, while in summer, savings can reach up to 97.9%. The higher overall savings 

occur during summer as the comfort ranges for the occupants are higher, leading to less 

energy usage for cooling and resulting in higher savings. The other studies usually use 
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standard setpoints. This demonstrates that demand-response actions combined with 

user-preference-based setpoints are particularly beneficial financially. However, these 

outcomes are specific to the selected comfort boundary of 21.8 – 24.8℃ and may vary 

with different comfort boundaries.  

• The DR-HC-MPC strategy has a relatively high discomfort rate, reaching up to 61.6 𝐾ℎ 

which is still lower compared to the standard PID baseline with 99.6 𝐾ℎ, but higher 

than the HC-MPC (5.8 𝐾ℎ) which primarily focuses on occupant comfort. This increase 

in discomfort is the trade-off for achieving 59.4% cost reduction and 44.6% energy 

savings during peak hours, on average, for both cooling and heating season. Most 

discomfort occurs during winter, with 51.9 𝐾ℎ, and summer, with 9.7 𝐾ℎ. These 

findings indicate that engaging occupants in grid flexibility actions can decrease their 

comfort. In this study, discomfort increased from 5.8 Kh to 61.6 Kh when using DR-

HC-MPC instead of HC-MPC, though it remained lower than the 99.6 Kh of the 

standard PID baseline. This indicates that advanced controllers like MPC with user 

integration and engagement in flexibility actions can still improve comfort, albeit less 

so than using advanced controllers with user preferences integration alone without DR 

actions. 

• Integrating user preferences into conventional control strategies like PID significantly 

improves overall comfort for both seasons, reducing discomfort to as low as 3.0 𝐾ℎ. 

However, this improvement results in a 7.9% increase in energy consumption and a 

49.0% increase in costs compared to the standard PID baseline. This shows that when 

prioritizing occupants in buildings that use PID, higher energy consumption and higher 

costs are expected, especially during the heating season, considering that people prefer 

higher temperature ranges than standard ranges.  

• Using standard setpoint temperatures of 20 − 22 ℃, in both MPC and PID, control 

strategies cause high thermal discomfort with values up to 99.6 and 101.5 𝐾ℎ, 

respectively. The standard MPC reduced electricity costs by 15.5% compared to the 

standard PID for aggregated data during peak hours. This goes in line with other values 

reported in studies like 15% electricity cost savings in [247] and 17% to 34%  in [246]. 

Additionally, it enables 17.1% of the consumed energy to be shifted to off-peak periods. 

This indicates that while standard setpoints are commonly used, advanced control 

strategies like MPC can reduce energy costs, though they may not prioritize overall 

occupant comfort.   
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5.4.6 Practical implications and recommendations 

 

The findings from this chapter are valuable for designers and developers of advanced 

control systems in buildings, as well as practitioners and other stakeholders. For convenience, 

some key takeaways, practical implications, and recommendations are presented below:   

− Significant energy savings: implementing occupant-based comfort ranges and engaging 

users in grid flexibility actions can substantially reduce electricity consumption. For 

example, the DR-HC-MPC control strategy can achieve up to 44.6% savings in 

electricity usage, demonstrating a promising approach to balancing energy efficiency 

with occupant preferences.  

− Increased load shifting: the DR-HC-MPC control strategy shows significant potential 

for load shifting, with an average ability of 60.6% for both heating and cooling seasons. 

This ability to shift energy consumption from on-peak to off-peak hours can help reduce 

grid overload and leverage lower electricity prices.  

− Cost savings: integrating demand-response actions with user-preference-based 

setpoints in the DR-HC-MPC control strategy results in an average electricity cost 

saving of 59.4%. Seasonal variations are notable, with up to 4.6% cost savings in winter 

and 97.9% in summer. This suggests that the potential can also significantly change 

depending on climate zones. This financial benefit emphasizes optimizing control 

strategies based on user preferences and grid conditions. 

− Trade-offs in comfort: while the DR-HC-MPC strategy offers significant energy and 

cost savings, it comes with a lower discomfort rate (61.6 𝐾ℎ) compared to the standard 

PID baseline (99.6 𝐾ℎ), but higher discomfort compared to HC-MPC (5.8 𝐾ℎ). This 

indicates that advanced controllers like MPC with user integration and engagement in 

flexibility actions can still improve comfort, albeit less than using advanced controllers 

with user preferences integration alone without DR actions. This suggests balancing 

energy reduction and grid flexibility goals with occupant comfort, possibly by adjusting 

engagement times or temperature changes to minimize discomfort.  

− DR-HC-MPC merges all vital points, including advanced controllers like MPC, 

occupant preference integration, and grid flexibility interaction, while still yielding cost 

savings, load shifting, and improved comfort compared to the PID baseline. 
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− User preferences in advanced control: incorporating user preferences into advanced 

control strategies like MPC significantly improves occupant comfort, reducing overall 

discomfort to 5.8 𝐾ℎ. It achieves 13.3% cost savings compared to standard PID, but it 

has a lower load-shifting ability compared to the scenario when occupants are engaged 

in DR actions.  

− Improved comfort with conventional strategies: integrating user preferences into 

conventional PID control also improves overall comfort, reducing discomfort to 

3.0 𝐾ℎ. However, this comes with increased energy consumption (7.9%) and costs 

(49.0%) compared to the standard PID baseline. The most significant increases occur 

in winter, suggesting that prioritizing occupant comfort in PID-controlled buildings 

may lead to higher energy usage and costs, especially during heating seasons. This 

means that MPC is the better option to integrate user preferences for HCC. 

− Challenges with standard setpoints: using standard setpoint temperatures (20 − 22℃) 

in MPC or PID, control strategies result in high thermal discomfort (up to 99.6 and 

101.5 𝐾ℎ, respectively). Although standard MPC reduces energy costs by 15.5% and 

enables a 17.1% load-shifting ability, it does not prioritize occupants as the desired 

comfort boundaries differ from the standard. This indicates a need for more advanced 

strategies to balance cost savings with comfort.  

 

For future studies, it is important to test these scenarios in real-world buildings, 

incorporating dynamic electricity pricing and engaging occupants in demand response actions. 

This research included several assumptions, such as the willingness of occupants to participate 

in grid flexibility actions for only two hours. Exploring other scenarios, such as interactions 

lasting one or more hours or temperature exceedances of more or less than two degrees outside 

the desired comfort boundary, would be beneficial. Additionally, expanding the study to include 

the impact of HCC on grid flexibility when using other systems, such as ventilation or lighting, 

would provide valuable insights. Moreover, according to the findings from Chapter II, people 

have different expectations regarding incentives. Exploring how incentives impact interaction 

and motivation for long-term engagement in grid flexibility actions would be interesting. 

Overall, the role of occupants in enabling grid flexibility, when combined with advanced 

controllers like HCC with MPC, shows great potential for creating energy-flexible buildings 

and smart, sustainable grids, all while prioritizing occupant comfort.  
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 Conclusions 
 

 

6. Summary and Conclusions 

 

This thesis significantly advances the knowledge of the potential of integrating Human-

Centered Control (HCC) systems in buildings, prioritizing occupant preferences and needs to 

improve comfort and satisfaction with indoor environments. The study presents an 

interdisciplinary research approach that combines technical and social sciences. It begins by 

examining user perspectives on control systems, including their opinions, preferences, and 

willingness to interact with HCC by sharing data or feedback for indoor environmental control 

and grid flexibility. This was accomplished using a survey-based study involving nearly 1 000 

respondents in Zagreb, Croatia, with a diverse target group regarding age, sex, and technical 

knowledge. The research also introduces a novel theoretical framework using an established 

psychological theory known as the Theory of Planned Behavior to predict users’ willingness to 

interact with HCC systems by sharing data for environmental control and grid flexibility 

interaction. This framework addresses the common issue of insufficient user-provided data in 

HCC systems by predicting if occupants are willing to interact with them. Moreover, this 

framework enables to identify factors that motivate or hinder occupants from interacting with 

HCC, such as the beliefs about the usability of such systems, the ease of use, type of preferred 

interface, time duration and frequency of the interaction, the impact of social norms and user 

trust in sharing data with such systems.  

Building on these practical insights gathered by the survey, this research also developed 

a practical method, based on a user-led design to integrate user preferences into building control 

systems using personalized comfort models (PCMs). These models learn occupants’ 

preferences over time, reducing the need for continuous user input. The models can predict 

future comfort levels by analyzing past user-reported comfort and discomfort states in specific 

indoor conditions (e.g., air temperature, CO2 level, lighting). Data-driven PCMs were 

developed using Artificial Intelligence (AI), specifically supervised Machine learning (ML) 

models, for multiple comfort aspects, including indoor air quality, thermal and visual comfort. 

This is a significant step forward, as research found in literature has primarily focused on 
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thermal comfort PCMs. Additionally, nine different ML models were developed and tested to 

find the optimal one for PCM development. These models use collected subjective data as 

feedback on perceived comfort from users through a specially designed smartphone 

application, as well as indoor measurements obtained from sensors. The data was collected 

during two field studies. The first field study involved four participants over three weeks in a 

faculty office, while the second study was conducted in a high school building with 24 

participants over two weeks. In the high school study, the feasibility of integrating user 

preferences through PCMs into the control system of an actual building was tested by 

implementing HCC as a proof-of-concept study. The impact on occupant satisfaction was 

evaluated through surveys and semi-structured participant interviews. This evaluation 

demonstrated the practical implications and real-world effects of implementing HCC in an 

actual building. 

Finally, simulations were employed to quantify the impact of integrating user 

preferences into control systems, namely the effect of HCC on grid flexibility, energy savings, 

electricity costs, and comfort. These simulations compared the effects of incorporating user 

preferences into conventional PID control and advanced systems like Model Predictive Control 

(MPC). More importantly, they demonstrated how combining HCC with MPC and user 

engagement in demand-response actions can significantly enhance grid stability and efficiency, 

emphasizing the crucial role of buildings in grid flexibility.  

 

6.1 Scientific contributions  

 

This thesis presents an interdisciplinary study that combines surveys, model development, 

field experiments, and simulations. It highlights the novelty and practicality of integrating user 

preferences into building control systems through PCMs, a method that can significantly 

improve occupant comfort and satisfaction. The research also demonstrates the potential of 

leveraging HCC with MPC in buildings for grid flexibility, marking a significant step toward 

smarter, more responsive buildings. The main scientific contributions, key findings, and 

practical implications of this research are as follows:  

• The first scientific contribution includes a framework based on a psychological or 

behavioral science approach, namely the Theory of Planned Behaviour (TPB), that can 

be used to predict the willingness of users to report feedback on the perceived comfort 
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conditions in a human-centered control system. A survey-based approach was used with 

almost 1 000 respondents to gather insights on their willingness to interact with HCC 

and their preferences regarding control systems in buildings. The key findings show 

that:  

o Approximately 75.7% of respondents want access to control in buildings, but 

only 55.6% are willing to interact with HCC by sharing data or feedback for 

environmental control. Therefore, user interaction with controls dependent on 

user-reported data cannot be seamlessly assumed but can be predicted to 

increase the certainty that users will interact with controllers.  

o The proposed framework for predicting users’ willingness to interact with HCC 

by sharing data or feedback on perceived comfort can achieve a moderate 

prediction potential of 𝑅2 = 64%, which is satisfactory in behavioural sciences. 

This is useful for predicting user engagement in HCC, which relies on user-

provided data.  

o The proposed framework identified key factors influencing occupant interaction 

with HCC: beliefs about usability and benefits, ease of use, social impact, and 

trust in data privacy. Increasing awareness of the positive impact of HCC 

benefits on environmental control and grid flexibility can enhance user 

engagement. Behavioural approaches like comparison and gamification can 

boost social impact. Additionally, intuitive, easy-to-use interfaces are crucial for 

simplifying data sharing with HCC. 

o Around 47% of respondents prefer more automated control systems while still 

desiring the ability to adjust indoor conditions. IAQ emerged as the most 

important comfort aspect (85%), followed by thermal (84%) and visual comfort 

(74%). Therefore, in addition to thermal comfort, IAQ control should also be 

given priority in building control systems. 

o From the practical side, 66% of respondents prefer to use smartphones as 

interfaces to interact with the HCC as a more convenient interface. The findings 

suggest that smartphone applications should be simple, easy to use, and require 

less frequent feedback. Also, a high degree of privacy security should be 

ensured. Occupants want to interact or share data or feedback only when 
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discomfort arises (53.5%), and only 30% would like to receive nudges or 

reminders to share their data with HCC.  

o Around 60% of respondents are open to engaging in grid flexibility actions by 

reducing their energy consumption when informed of grid overloads, and the 

expectations of incentives vary among respondents. Most respondents would 

only like to interact with demand-response action for short periods (1 −

2 hours).  

• The second scientific contribution shows a method for the development of PCMs using 

multi-aspect comfort data collected as direct feedback from the occupants on their 

perceived indoor comfort. The PCMs enable the deployment of HCC in buildings with 

less user interaction, which was tested in an actual building. Two field studies or 

experiments were conducted to collect data for PCM development, the first in a faculty 

office experiment with four participants for three weeks and the second in a school 

building with 24 participants for two weeks. The school building was also used to test 

the feasibility of implementing HCC in an actual building. The key findings show that:  

o Data-driven PCMs using ML models can be developed for various occupants 

and comfort aspects (IAQ, thermal, visual). The decision tree ML model 

generally performs best, especially when there is less data available, with an 

average F1 score ranging from 0.7 to 0.86 across different participants and 

comfort aspects. Random Forest performs better with more data points. Tree-

based models maintain high performance even with fewer input features, 

making PCMs feasible for deployment in diverse buildings with varying sensor 

setups and data availability. 

o The use of comfort-based (predicting comfortable or uncomfortable states) or 

preference-based PCMs (predicting desire for change, e.g., want warmer or 

cooler) does not significantly impact the model performance (predictive 

potential) when employing tree-based ML models. Specifically, the small 

deviation in F1 score ranged from 0 to 0.02 for tree-based models (on average 

across all users and comfort aspects). Hence, if the aim of PCMs is to be 

integrated into control systems in buildings, it is better to use approaches that 

are more intuitive to the users (e.g., it might be easier for the user to report if 
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they want warmer or cooler conditions than to state if they are comfortable or 

uncomfortable). 

o Around 50 – 60 data points are needed for optimal PCM performance. Yet, the 

data need variability in the provided user feedback for a balanced dataset to train 

the ML models effectively.  

o Participants reported comfort at higher indoor temperatures than standard 

setpoints. The lab experiment found a comfortable range of 22.5 – 25°C, while 

the field experiment in the school building found 21.8 – 24.8°C. Both 

experiments, conducted in different seasons, indicate a preferred temperature 

slightly above the usual setpoints of 21 – 22°C. The field studies revealed that 

while individual comfort perceptions vary, preferences often overlap 

significantly. Thus, implementing HCC with PCMs can optimize HVAC control 

by adjusting to comfort needs rather than static setpoints.  

o The IAQ and visual comfort analysis found peak comfort at CO2 levels around 

800 ppm, aligning with the ASHRAE guideline that defines 1 000 ppm as the 

upper boundary for comfort. Despite indoor lighting levels being below the 

recommended 300 lux in the lab experiment, users reported feeling comfortable, 

indicating high adaptability to lighting levels.  

This study included a field test in a school building to evaluate the feasibility of 

implementing HCC for multiple occupants. The proposed framework enables occupant access 

to automated control through PCMs by considering the comfort boundaries and temperature 

preferences of all occupants. This was tested during the two-week-long experiment, where the 

collected feedback from occupants was used to learn their preferences and then adjust the 

environmental setpoints based on their preferences for three days. This straightforward yet 

practical approach ensures most occupant preferences are accounted for by removing outliers, 

ultimately aiming to maximize satisfaction for most occupants. The real-world impact on 

occupant satisfaction was also evaluated using longitudinal surveys during the experiment and 

semi-structured interviews at the end of the experiment by comparing user satisfaction before 

and after the implementation. The key findings are: 

o Integrating user preferences into the building control system led to a 16.7% 

increase in overall user satisfaction, indicating that HCC can significantly 

enhance occupant indoor satisfaction. This was concluded by comparing the 
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self-reported satisfaction before and after the implementation of HCC without 

informing the participants on which days the setpoints were adjusted based on 

their expressed preferences. This also confirms the hypothesis of this research 

that “The deployment of human-centered predictive control in a building 

by developing personalized data-driven comfort models significantly 

increases the occupants’ indoor comfort satisfaction.” 

o Semi-structured interviews conducted with 19 of the 24 participants after the 

field integration of HCC revealed that 73.7% believed HCC could learn and 

meet their preferences, 10.5% were neutral, and 15.8% were skeptical, favoring 

conventional control systems. HCC enables occupants to have control access to 

automated control systems. Yet, some participants preferred hybrid control 

systems that operate on standard settings but allow for manual interaction and 

adaptive control.  

o Interviews revealed that collective comfort is a common expectation in shared 

spaces, with a high willingness of occupants to share control autonomy. 

Participants expect the preferences of the majority to be considered. Thus, the 

proposed HCC framework, which removes outliers to accommodate most 

occupants, aligns with occupant expectations and is not seen as a significant 

inconvenience. 

o Participants found the feedback reporting process easy, straightforward, and 

intuitive, typically taking between 15 seconds and two minutes to complete. 

Regarding feedback frequency, 47.4% of participants did not mind reporting 

feedback every hour, 31.6% preferred less frequent interaction, and 21.0% had 

no preference. However, challenges were noted: some participants struggled to 

sense specific indoor air parameters, such as air humidity, indicating the 

complexity of these parameters for users. Additionally, language barriers were 

reported, with some participants having difficulty understanding questions in 

English, necessitating translations. This highlights the importance of tailoring 

the interface to the target group and having an intuitive app. 

• The third scientific contribution is the definition and quantification of the impact of 

HCC on grid flexibility. This is achieved by using comprehensive simulations using 

TRNSYS software and MATLAB, two widely recognized tools in the field. The 
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simulations represent the building behavior of the RCK Ruder Boskovic high school in 

Zagreb, Croatia. Five scenarios are analyzed to demonstrate the impact of various 

control strategies on electricity consumption, costs, grid flexibility, and comfort. The 

scenarios are standard PID and standard MPC (both with standard temperature setpoints 

(20 − 22℃)), human-centered PID (HC-PID), and HC-MPC (with expressed user 

preferences or human-centered (HC) setpoints (21.8 − 24.8 ℃), retrieved from 

participants during the school experiment). Lastly, the DR-HC-MPC scenario integrates 

user preferences in HCC and user engagement in grid flexibility. This engagement is 

done during peak overloads by temporarily adjusting comfort boundaries to less 

favorable conditions, aiming to reduce energy consumption and alleviate grid load, 

upon agreement with occupants. For example, for the simulations, it was assumed the 

desired comfort boundary of occupants (21.8 − 24.8 ℃) to be adjusted for ±2℃ for 

two hours when the electricity prices are on average the highest to decrease the heating 

need in winter and decrease the cooling need in summer. The key findings suggest that:  

o The DR-HC-MPC shows significant potential to reduce electricity consumption 

(44.6%) and costs (59.4%) compared to the standard PID that was used as a 

reference scenario. This demonstrates a promising approach to balancing energy 

efficiency with occupant preferences. Furthermore, it comes with a lower 

discomfort rate (61.6 Kh) compared to the standard PID baseline (99.6 Kh), but 

higher compared to HC-MPC (5.8 Kh). This indicates that advanced controllers 

like MPC with user integration and engagement in flexibility actions can still 

improve comfort, albeit less so than using advanced controllers with user 

preferences integration alone without DR actions. This suggests balancing 

energy reduction and grid flexibility goals with occupant comfort, possibly by 

adjusting engagement times or temperature changes to minimize discomfort. 

The DR-HC-MPC control strategy shows significant potential for load shifting, 

with an average ability of 60.6% for both heating and cooling seasons. This 

ability to shift energy consumption from on-peak to off-peak hours can help 

reduce grid overload and leverage lower electricity prices.   

o Incorporating user preferences into advanced control strategies like MPC 

significantly improves occupant comfort, reducing discomfort to 5.8 Kh, 

compared to standard PID with 99.6 Kh, for peak hours. This control strategy 

enables shifting energy consumption to off-peak hours, achieving a 13.3% cost 
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saving and a 46.4% load-shifting ability, which is 14.2% less than when 

engaging occupants in demand response (DR-HC-MPC with 60.6%). 

o Integrating user preferences into the conventional PID control improves overall 

comfort, reducing discomfort to 3.0 Kh. However, this comes with increased 

energy consumption (7.9%) and costs (49.0%) compared to the standard PID 

baseline. The most significant increases occur in winter, suggesting that 

prioritizing occupant comfort in PID-controlled buildings may lead to higher 

energy usage and costs, especially during heating seasons. Therefore, the results 

suggest that the MPC is the better option for integrating user preferences in 

HCC. 

 

6.2 Limitations and future studies  

 

This thesis employs multidisciplinary methods and approaches, yielding insightful 

findings that pave the way for implementing HCC using PCMs in buildings and leveraging 

HCC for grid flexibility actions. Yet, this research has some limitations. For instance, the 

survey-based study used in this research consists of a high number of respondents, but there is 

a relatively limited number of elderly and lower-education respondents because the survey was 

conducted in educational facilities. However, the current respondents are the most likely users 

of HCC, given that a broader implementation of such systems is still in the development phase. 

In future studies, expanding the survey to other buildings and including more diverse target 

groups besides those in educational buildings is beneficial. Furthermore, conducting more field 

studies to compare the respondents’ expressed willingness to interact with HCC with their 

actual behavior after implementation in real-world settings would be valuable. Lastly, it would 

be interesting to explore how the engagement levels of users interacting with HCC change over 

time and what impacts that engagement in the long run.  

The field studies that were conducted included a small group of people (four 

participants) in the faculty experiment and medium size group (24 participants) in the school 

experiment. Having more people participating would benefit the generalization of the findings. 

Furthermore, the experiments lasted for a short time, one during winter and the other during 

spring, therefore longer experiments across different seasons would cover more versatile 

conditions. Despite their brevity, these experiments provided sufficient variation to learn 
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participants’ preferences under varying conditions due to the planned intervention days. 

Moreover, the experiment of implementing HCC in an actual building was conducted only in 

one classroom and it mainly serves as a proof-of-concept study. This approach can be expanded 

to include the entire building or extended to other buildings to evaluate how the implementation 

of HCC performs in various settings, allowing for the assessment of its effects with a larger 

number of participants. Additionally, expanding the research to include other comfort aspects, 

such as acoustic comfort, would provide a more comprehensive understanding of comfort. The 

building used in the field experiment was newly built, which could also impact the participants’ 

sense of participation as the entire environment was a novelty to them. The predisposition of 

the participants to respond positively can also be slightly biased by their pride in participating 

in such a novel experiment. However, this is a general concern in experiments involving people. 

Lastly, it would be interesting to test the impact of HCC on grid flexibility and the integration 

of user preferences into conventional and advanced control systems (e.g., MPC) in field studies 

rather than simulations. Furthermore, the impact of HCC on grid flexibility was tested with the 

assumption that the users are willing to engage in grid flexibility actions for only two hours 

when the grid is overloaded. This was done by changing the indoor temperature for ±2℃ to 

unfavorable conditions to reduce energy consumption. In reality, this highly depends on user 

acceptance. In future studies, testing more scenarios helps to evaluate how engagement 

duration and setpoint changes alter the impact of HCC on grid flexibility.  

In conclusion, much intriguing research remains to be done on generalizing the 

integration of HCC in actual buildings. However, the goal is clear: buildings are built for 

people, and their comfort, well-being, and satisfaction should be prioritized. Comfortable 

environments can be created by leveraging IoT and AI in buildings to learn user preferences 

through PCMs and integrate them into the building control systems to tailor environments to 

occupants’ needs. Combining this approach with advanced control systems (like MPC) and 

demand-response actions, empowers both occupants and buildings to contribute to grid 

stability and efficiency, with minimal impact on comfort for short periods with occupant 

agreement. This strategy enhances energy efficiency and helps shape a sustainable future while 

prioritizing occupants in buildings. 

 

 

 



  

158 

 

References 
 

[1] Peter. J. Irga, G. Mullen, R. Fleck, S. Matheson, Sara. J. Wilkinson, and Fraser. R. Torpy, 

“Volatile organic compounds emitted by humans indoors– A review on the measurement, 

test conditions, and analysis techniques,” Building and Environment, vol. 255, p. 

111442, May 2024, doi: 10.1016/j.buildenv.2024.111442. 

[2] S. D’Oca, T. Hong, and J. Langevin, “The human dimensions of energy use in buildings: 

A review,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 731–742, Jan. 2018, 

doi: 10.1016/j.rser.2017.08.019. 

[3] R. T. Hellwig, “Perceived control in indoor environments: a conceptual approach,” 

Building Research & Information, vol. 43, no. 3, pp. 302–315, May 2015, doi: 

10.1080/09613218.2015.1004150. 

[4] M. Quintana, “Cohort-based personal comfort models for HVAC occupant-centric 

control,” in Proceedings of the 8th ACM International Conference on Systems for 

Energy-Efficient Buildings, Cities, and Transportation, in BuildSys ’21. New York, NY, 

USA: Association for Computing Machinery, Nov. 2021, pp. 242–243. doi: 

10.1145/3486611.3492386. 

[5] A. Donkers, B. de Vries, and D. Yang, “Creating occupant-centered digital twins using 

the Occupant Feedback Ontology implemented in a smartwatch app,” Semantic Web, 

vol. Preprint, no. Preprint, pp. 1–26, Jan. 2022, doi: 10.3233/SW-223254. 

[6] Z. Nagy et al., “Ten questions concerning occupant-centric control and operations,” 

Building and Environment, p. 110518, Jun. 2023, doi: 10.1016/j.buildenv.2023.110518. 

[7] F. Jazizadeh, A. Ghahramani, B. Becerik-Gerber, T. Kichkaylo, and M. Orosz, “User-led 

decentralized thermal comfort driven HVAC operations for improved efficiency in office 

buildings,” Energy and Buildings, vol. 70, pp. 398–410, Feb. 2014, doi: 

10.1016/j.enbuild.2013.11.066. 

[8] M. Kumar Yadav, A. Verma, B. Ketan Panigrahi, and S. Mishra, “User comfort driven 

time-table linked AHU scheduling for ancillary service maximization of an educational 

building,” Energy and Buildings, vol. 225, p. 110317, Oct. 2020, doi: 

10.1016/j.enbuild.2020.110317. 

[9] Y. I. Alamin, M. D. M. Castilla, J. D. Álvarez, and A. Ruano, “An Economic Model-

Based Predictive Control to Manage the Users’ Thermal Comfort in a Building,” 

Energies, vol. 10, no. 3, Art. no. 3, Mar. 2017, doi: 10.3390/en10030321. 

[10] S. Lee, J. Joe, P. Karava, I. Bilionis, and A. Tzempelikos, “Implementation of a self-

tuned HVAC controller to satisfy occupant thermal preferences and optimize energy 

use,” Energy and Buildings, vol. 194, pp. 301–316, Jul. 2019, doi: 

10.1016/j.enbuild.2019.04.016. 

[11] P. X. Gao and S. Keshav, “SPOT: a smart personalized office thermal control system,” 

in Proceedings of the fourth international conference on Future energy systems, in e-

Energy ’13. New York, NY, USA: Association for Computing Machinery, May 2013, pp. 

237–246. doi: 10.1145/2487166.2487193. 

[12] P. X. Gao and S. Keshav, “Optimal Personal Comfort Management Using SPOT+,” in 

Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient 

Buildings, Roma Italy: ACM, Nov. 2013, pp. 1–8. doi: 10.1145/2528282.2528297. 

[13] T. Hilliard, L. Swan, and Z. Qin, “Experimental implementation of whole building MPC 

with zone based thermal comfort adjustments,” Building and Environment, vol. 125, pp. 

326–338, Nov. 2017, doi: 10.1016/j.buildenv.2017.09.003.

 



References 

159 

 

[14] X. Chen, Q. Wang, and J. Srebric, “Occupant feedback based model predictive control 

for thermal comfort and energy optimization: A chamber experimental evaluation,” 

Applied Energy, vol. 164, pp. 341–351, Feb. 2016, doi: 10.1016/j.apenergy.2015.11.065. 

[15] M. Feldmeier and J. A. Paradiso, “Personalized HVAC control system,” in 2010 Internet 

of Things (IOT), Nov. 2010, pp. 1–8. doi: 10.1109/IOT.2010.5678444. 

[16] V. Erickson and A. Cerpa, Thermovote: Participatory sensing for efficient building 

HVAC conditioning. 2012, p. 16. doi: 10.1145/2422531.2422534. 

[17] F. Jazizadeh, A. Ghahramani, B. Becerik-Gerber, T. Kichkaylo, and M. Orosz, “A 

Human-Building Interaction Framework for Personalized Thermal Comfort Driven 

Systems in Office Buildings,” Journal of Computing in Civil Engineering, vol. 28, Feb. 

2013, doi: 10.1061/(ASCE)CP.1943-5487.0000300. 

[18] A. Ghahramani, F. Jazizadeh, and B. Becerik-Gerber, “A knowledge based approach for 

selecting energy-aware and comfort-driven HVAC temperature set points,” Energy and 

Buildings, vol. 85, pp. 536–548, Dec. 2014, doi: 10.1016/j.enbuild.2014.09.055. 

[19] C. Sarkar, S. N. A. U. Nambi, and R. V. Prasad, “iLTC: Achieving Individual Comfort 

in Shared Spaces,” in Proceedings of the 2016 International Conference on Embedded 

Wireless Systems and Networks, EWSN 2016, Association for Computing Machinery 

(ACM), 2016, pp. 65–76. [Online]. Available: 

https://research.tudelft.nl/en/publications/iltc-achieving-individual-comfort-in-shared-

spaces 

[20] D. Li, C. C. Menassa, and V. R. Kamat, “Personalized human comfort in indoor building 

environments under diverse conditioning modes,” Building and Environment, vol. 126, 

pp. 304–317, Dec. 2017, doi: 10.1016/j.buildenv.2017.10.004. 

[21] S. K. Gupta et al., “BEES: Real-time occupant feedback and environmental learning 

framework for collaborative thermal management in multi-zone, multi-occupant 

buildings,” Energy and Buildings, vol. 125, pp. 142–152, Aug. 2016, doi: 

10.1016/j.enbuild.2016.04.084. 

[22] European Commission. Directorate General for Energy. and Vito., Final report on the 

technical support to the development of a smart readiness indicator for buildings: final 

report. LU: Publications Office, 2020. Accessed: Oct. 25, 2020. [Online]. Available: 

https://data.europa.eu/doi/10.2833/41100 

[23] A. Heidari, F. Maréchal, and D. Khovalyg, “An occupant-centric control framework for 

balancing comfort, energy use and hygiene in hot water systems: A model-free 

reinforcement learning approach,” Applied Energy, vol. 312, p. 118833, Apr. 2022, doi: 

10.1016/j.apenergy.2022.118833. 

[24] S. Jung, J. Jeoung, and T. Hong, “Occupant-centered real-time control of indoor 

temperature using deep learning algorithms,” Building and Environment, vol. 208, p. 

108633, Jan. 2022, doi: 10.1016/j.buildenv.2021.108633. 

[25] J. Jeoung, S. Jung, T. Hong, and J.-K. Choi, “Blockchain-based IoT system for 

personalized indoor temperature control,” Autom. Constr., vol. 140, p. 104339, Aug. 

2022, doi: 10.1016/j.autcon.2022.104339. 

[26] J. Kim, S. Schiavon, and G. Brager, “Personal comfort models – A new paradigm in 

thermal comfort for occupant-centric environmental control,” Building and 

Environment, vol. 132, pp. 114–124, Mar. 2018, doi: 10.1016/j.buildenv.2018.01.023. 

[27] J. Kim, Y. Zhou, S. Schiavon, P. Raftery, and G. Brager, “Personal comfort models: 

Predicting individuals’ thermal preference using occupant heating and cooling behavior 

and machine learning,” Building and Environment, vol. 129, pp. 96–106, Feb. 2018, doi: 

10.1016/j.buildenv.2017.12.011. 



 References 

160 

 

[28] P. Jayathissa, M. Quintana, M. Abdelrahman, and C. Miller, “Humans-as-a-Sensor for 

Buildings—Intensive Longitudinal Indoor Comfort Models,” Buildings, vol. 10, no. 10, 

p. 174, Oct. 2020, doi: 10.3390/buildings10100174. 

[29] C. Cen, S. Cheng, and N. H. Wong, “Physiological sensing of personal thermal comfort 

with wearable devices in fan-assisted cooling environments in the tropics,” Building and 

Environment, vol. 225, p. 109622, Nov. 2022, doi: 10.1016/j.buildenv.2022.109622. 

[30] F. Jazizadeh, F. M. Marin, and B. Becerik-Gerber, “A thermal preference scale for 

personalized comfort profile identification via participatory sensing,” Building and 

Environment, vol. 68, pp. 140–149, Oct. 2013, doi: 10.1016/j.buildenv.2013.06.011. 

[31] M. M. Abdelrahman, A. Chong, and C. Miller, “Personal thermal comfort models using 

digital twins: Preference prediction with BIM-extracted spatial–temporal proximity data 

from Build2Vec,” Building and Environment, vol. 207, p. 108532, Jan. 2022, doi: 

10.1016/j.buildenv.2021.108532. 

[32] S. Liu, S. Schiavon, H. P. Das, M. Jin, and C. J. Spanos, “Personal thermal comfort 

models with wearable sensors,” Building and Environment, vol. 162, p. 106281, Sep. 

2019, doi: 10.1016/j.buildenv.2019.106281. 

[33] F. Salamone et al., “Integrated Method for Personal Thermal Comfort Assessment and 

Optimization through Users’ Feedback, IoT and Machine Learning: A Case Study †,” 

Sensors, vol. 18, no. 5, Art. no. 5, May 2018, doi: 10.3390/s18051602. 

[34] G. Ma and X. Pan, “Research on a Visual Comfort Model Based on Individual 

Preference in China through Machine Learning Algorithm,” Sustainability, vol. 13, no. 

14, Art. no. 14, Jan. 2021, doi: 10.3390/su13147602. 

[35] Y. Song, F. Mao, and Q. Liu, “Human Comfort in Indoor Environment: A Review on 

Assessment Criteria, Data Collection and Data Analysis Methods,” IEEE Access, vol. 7, 

pp. 119774–119786, 2019, doi: 10.1109/ACCESS.2019.2937320. 

[36] G. Molina, “Exploring, modelling, and simulating the Feeling of Comfort in residential 

settings,” thesis, Open Access Te Herenga Waka-Victoria University of Wellington, 

2021. doi: 10.26686/wgtn.17085467.v1. 

[37] J. J. Aguilera, O. B. Kazanci, and J. Toftum, “Thermal adaptation in occupant-driven 

HVAC control,” Journal of Building Engineering, vol. 25, p. 100846, Sep. 2019, doi: 

10.1016/j.jobe.2019.100846. 

[38] I. Ajzen, “From Intentions to Actions: A Theory of Planned Behavior,” in Action 

Control: From Cognition to Behavior, J. Kuhl and J. Beckmann, Eds., in SSSP Springer 

Series in Social Psychology. , Berlin, Heidelberg: Springer, 1985, pp. 11–39. doi: 

10.1007/978-3-642-69746-3_2. 

[39] S. Laing and N. Kühl, “Comfort-as-a-Service: Designing a User-Oriented Thermal 

Comfort Artifact for Office Buildings,” in Thirty Ninth International Conference on 

Information Systems (ICIS), San Francisco, CA, 13th-16th December 2018, 2018. 

[Online]. Available: https://publikationen.bibliothek.kit.edu/1000086130 

[40] S. Ahmadi-Karvigh, A. Ghahramani, B. Becerik-Gerber, and L. Soibelman, “One size 

does not fit all: Understanding user preferences for building automation systems,” 

Energy and Buildings, vol. 145, pp. 163–173, Jun. 2017, doi: 

10.1016/j.enbuild.2017.04.015. 

[41] S. D’Oca, C.-F. Chen, T. Hong, and Z. Belafi, “Synthesizing building physics with social 

psychology: An interdisciplinary framework for context and occupant behavior in office 

buildings,” Energy Research & Social Science, vol. 34, pp. 240–251, Dec. 2017, doi: 

10.1016/j.erss.2017.08.002. 

[42] A. Heydarian et al., “What drives our behaviors in buildings? A review on occupant 

interactions with building systems from the lens of behavioral theories,” Building and 

Environment, vol. 179, p. 106928, Jul. 2020, doi: 10.1016/j.buildenv.2020.106928. 



References 

161 

 

[43] R. Tamas and M. Ouf, “A field study on the effect of building automation on perceived 

comfort and control in institutional buildings,” Architectural Science Review, vol. 63, 

pp. 1–13, Dec. 2019, doi: 10.1080/00038628.2019.1695573. 

[44] J. M. Box-Steffensmeier et al., “The future of human behaviour research,” Nat Hum 

Behav, vol. 6, no. 1, Art. no. 1, Jan. 2022, doi: 10.1038/s41562-021-01275-6. 

[45] M.-C. Lee, “Factors influencing the adoption of internet banking: An integration of TAM 

and TPB with perceived risk and perceived benefit,” Electronic Commerce Research and 

Applications, vol. 8, no. 3, pp. 130–141, May 2009, doi: 10.1016/j.elerap.2008.11.006. 

[46] X. Liu, Q. Wang, H.-H. Wei, H.-L. Chi, Y. Ma, and I. Y. Jian, “Psychological and 

Demographic Factors Affecting Household Energy-Saving Intentions: A TPB-Based 

Study in Northwest China,” Sustainability, vol. 12, no. 3, p. 836, Jan. 2020, doi: 

10.3390/su12030836. 

[47] U. H. Obaidellah, M. Danaee, M. A. A. Mamun, M. Hasanuzzaman, and N. A. Rahim, 

“An application of TPB constructs on energy-saving behavioural intention among 

university office building occupants: a pilot study in Malaysian tropical climate,” J Hous 

and the Built Environ, vol. 34, no. 2, pp. 533–569, Jun. 2019, doi: 10.1007/s10901-018-

9637-y. 

[48] S. Allen and S. T. Marquart-Pyatt, “Workplace energy conservation at Michigan State 

University,” IJSHE, vol. 19, no. 1, pp. 114–129, Jan. 2018, doi: 10.1108/IJSHE-07-2016-

0124. 

[49] X. Xu, B. Xiao, and C. Z. Li, “Analysis of critical factors and their interactions 

influencing individual’s energy conservation behavior in the workplace: A case study in 

China,” J. Clean Prod., vol. 286, p. 124955, Mar. 2021, doi: 

10.1016/j.jclepro.2020.124955. 

[50] A. de Leeuw, P. Valois, I. Ajzen, and P. Schmidt, “Using the theory of planned behavior 

to identify key beliefs underlying pro-environmental behavior in high-school students: 

Implications for educational interventions,” Journal of Environmental Psychology, vol. 

42, pp. 128–138, Jun. 2015, doi: 10.1016/j.jenvp.2015.03.005. 

[51] M. Greaves, L. D. Zibarras, and C. Stride, “Using the theory of planned behavior to 

explore environmental behavioral intentions in the workplace,” Journal of 

Environmental Psychology, vol. 34, pp. 109–120, Jun. 2013, doi: 

10.1016/j.jenvp.2013.02.003. 

[52] S. R. Wu, M. Greaves, J. Chen, and S. C. Grady, “Green buildings need green occupants: 

a research framework through the lens of the Theory of Planned Behaviour,” 

Architectural Science Review, vol. 60, no. 1, pp. 5–14, Jan. 2017, doi: 

10.1080/00038628.2016.1197097. 

[53] A. Yuriev, M. Dahmen, P. Paillé, O. Boiral, and L. Guillaumie, “Pro-environmental 

behaviors through the lens of the theory of planned behavior: A scoping review,” 

Resources, Conservation and Recycling, vol. 155, p. 104660, Apr. 2020, doi: 

10.1016/j.resconrec.2019.104660. 

[54] S.-C. Chen and C.-W. Hung, “Elucidating the factors influencing the acceptance of green 

products: An extension of theory of planned behavior,” Technological Forecasting and 

Social Change, vol. 112, pp. 155–163, Nov. 2016, doi: 10.1016/j.techfore.2016.08.022. 

[55] H. Yang, H. Lee, and H. Zo, “User acceptance of smart home services: an extension of 

the theory of planned behavior,” Industrial Management & Data Systems, vol. 117, no. 

1, pp. 68–89, Jan. 2017, doi: 10.1108/IMDS-01-2016-0017. 

[56] M. Y. Bhutto, X. Liu, Y. A. Soomro, M. Ertz, and Y. Baeshen, “Adoption of Energy-

Efficient Home Appliances: Extending the Theory of Planned Behavior,” Sustainability, 

vol. 13, no. 1, Art. no. 1, Jan. 2021, doi: 10.3390/su13010250. 



 References 

162 

 

[57] E. P. Flowers, P. Freeman, and V. F. Gladwell, “The Development of Three 

Questionnaires to Assess Beliefs about Green Exercise,” Int J Environ Res Public 

Health, vol. 14, no. 10, p. E1172, Oct. 2017, doi: 10.3390/ijerph14101172. 

[58] Y. Joo, H. Seok, and Y. Nam, “The Moderating Effect of Social Media Use on 

Sustainable Rural Tourism: A Theory of Planned Behavior Model,” Sustainability, vol. 

12, no. 10, Art. no. 10, Jan. 2020, doi: 10.3390/su12104095. 

[59] E. J. Sabina del Castillo, R. J. Díaz Armas, and D. Gutiérrez Taño, “An Extended Model 

of the Theory of Planned Behaviour to Predict Local Wine Consumption Intention and 

Behaviour,” Foods, vol. 10, no. 9, p. 2187, Sep. 2021, doi: 10.3390/foods10092187. 

[60] Z. H. Ding, Y. Q. Li, C. Zhao, Y. Liu, and R. Li, “Factors affecting heating energy-saving 

behavior of residents in hot summer and cold winter regions,” Nat Hazards, vol. 95, no. 

1–2, pp. 193–206, Jan. 2019, doi: 10.1007/s11069-018-3489-3. 

[61] S. H. Lo, G.-J. Y. Peters, G. J. P. van Breukelen, and G. Kok, “Only reasoned action? An 

interorganizational study of energy-saving behaviors in office buildings,” Energy 

Efficiency, vol. 7, no. 5, pp. 761–775, Oct. 2014, doi: 10.1007/s12053-014-9254-x. 

[62] Y. S. Lee and A. M. Malkawi, “Simulating multiple occupant behaviors in buildings: An 

agent-based modeling approach,” Energy and Buildings, vol. 69, pp. 407–416, Feb. 

2014, doi: 10.1016/j.enbuild.2013.11.020. 

[63] I. Ajzen, “The theory of planned behavior,” Organizational Behavior and Human 

Decision Processes, vol. 50, no. 2, pp. 179–211, Dec. 1991, doi: 10.1016/0749-

5978(91)90020-T. 

[64] S. Wang, J. Fan, D. Zhao, S. Yang, and Y. Fu, “Predicting consumers’ intention to adopt 

hybrid electric vehicles: using an extended version of the theory of planned behavior 

model,” Transportation, vol. 43, no. 1, pp. 123–143, Jan. 2016, doi: 10.1007/s11116-

014-9567-9. 

[65] M. M. Alomari, H. EL-Kanj, A. Topal, and N. I. Alshdaifat, “Energy conservation 

behavior of university occupants in Kuwait: A multigroup analysis,” Sustainable Energy 

Technologies and Assessments, vol. 52, p. 102198, Aug. 2022, doi: 

10.1016/j.seta.2022.102198. 

[66] N. Adnan and M. N. Shahrina, “A comprehensive approach: Diffusion of environment-

friendly energy technologies in residential photovoltaic markets,” Sustainable Energy 

Technologies and Assessments, vol. 46, p. 101289, Aug. 2021, doi: 

10.1016/j.seta.2021.101289. 

[67] X. Liu, Q.-C. Wang, I. Y. Jian, H.-L. Chi, D. Yang, and E. H.-W. Chan, “Are you an 

energy saver at home? The personality insights of household energy conservation 

behaviors based on theory of planned behavior,” Resources, Conservation and 

Recycling, vol. 174, p. 105823, Nov. 2021, doi: 10.1016/j.resconrec.2021.105823. 

[68] Q.-C. Wang et al., “The impact of personality traits on household energy conservation 

behavioral intentions – An empirical study based on theory of planned behavior in 

Xi’an,” Sustainable Energy Technologies and Assessments, vol. 43, p. 100949, Feb. 

2021, doi: 10.1016/j.seta.2020.100949. 

[69] S. D’Oca, A. L. Pisello, M. De Simone, V. M. Barthelmes, T. Hong, and S. P. Corgnati, 

“Human-building interaction at work: Findings from an interdisciplinary cross-country 

survey in Italy,” Building and Environment, vol. 132, pp. 147–159, Mar. 2018, doi: 

10.1016/j.buildenv.2018.01.039. 

[70] I. Ajzen, “CONSTRUCTING A THEORY OF PLANNED BEHAVIOR 

QUESTIONNAIRE.” 2019. Accessed: Jan. 15, 2022. [Online]. Available: 

https://people.umass.edu/aizen/pdf/tpb.measurement.pdf 



References 

163 

 

[71] J. J. Francis, Constructing questionnaires based on the theory of planned behaviour: a 

manual for health services researchers. Newcastle upon Tyne: Centre for Health 

Services Research, University of Newcastle, 2004. 

[72] A. Bresa, T. Žakula, and D. Ajduković, “Occupant preferences on the interaction with 

human-centered control systems in school buildings,” Journal of Building Engineering, 

p. 105489, Nov. 2022, doi: 10.1016/j.jobe.2022.105489. 

[73] I. Ajzen, “Constructing a TpB Questionnaire: Conceptual and Methodological 

Considerations,” 2002. 

[74] R. E. Schumacker and R. G. Lomax, A Beginner’s Guide to Structural Equation 

Modeling: Fourth Edition, 4th ed. New York: Routledge, 2015. doi: 

10.4324/9781315749105. 

[75] C. Ringle, S. Wende, and J.-M. Becker, “SmartPLS 3. . Retrieved from.” Bönningstedt: 

SmartPLS, 2015. [Online]. Available: https://www.smartpls.com 

[76] C. M. Ringle, S. Wende, and J.-M. Becker, “SmartPLS 4. Oststeinbek: SmartPLS.” 2022. 

[Online]. Available: https://www.smartpls.com 

[77] J. F. Hair, C. M. Ringle, and M. Sarstedt, “PLS-SEM: Indeed a Silver Bullet,” Journal 

of Marketing Theory and Practice, vol. 19, no. 2, pp. 139–152, Apr. 2011, doi: 

10.2753/MTP1069-6679190202. 

[78] C. Fornell and D. F. Larcker, “Evaluating Structural Equation Models with Unobservable 

Variables and Measurement Error,” Journal of Marketing Research, vol. 18, no. 1, pp. 

39–50, Feb. 1981, doi: 10.1177/002224378101800104. 

[79] J. F. Hair, L. M. Matthews, R. L. Matthews, and M. Sarstedt, “PLS-SEM or CB-SEM: 

updated guidelines on which method to use,” International Journal of Multivariate Data 

Analysis, vol. 1, no. 2, pp. 107–123, Jan. 2017, doi: 10.1504/IJMDA.2017.087624. 

[80] J. Hair, G. T. M. Hult, C. Ringle, and M. Sarstedt, A Primer on Partial Least Squares 

Structural Equation Modeling (PLS-SEM). 2022. doi: 10.1007/978-3-030-80519-7. 

[81] G. Shmueli et al., “Predictive model assessment in PLS-SEM: guidelines for using 

PLSpredict,” European Journal of Marketing, vol. 53, no. 11, pp. 2322–2347, Jan. 2019, 

doi: 10.1108/EJM-02-2019-0189. 

[82] “Importance-Performance Map Analysis (IPMA) - SmartPLS.” Accessed: Jul. 24, 2023. 

[Online]. Available: https://www.smartpls.com/documentation/algorithms-and-

techniques/ipma 

[83] J. F. Hair, T. Hult, and C. M. Ringle, “A Primer on Partial Least Squares Structural 

Equation Modeling (PLS-SEM) | SAGE Publications Inc.” [Online]. Available: 

https://us.sagepub.com/en-us/nam/a-primer-on-partial-least-squares-structural-

equation-modeling-pls-sem/book244583 

[84] L. Hu and P. M. Bentler, “Cutoff criteria for fit indexes in covariance structure analysis: 

Conventional criteria versus new alternatives,” Structural Equation Modeling, vol. 6, 

no. 1, pp. 1–55, 1999, doi: 10.1080/10705519909540118. 

[85] J. Henseler and M. Sarstedt, “Goodness-of-fit indices for partial least squares path 

modeling,” Comput Stat, vol. 28, no. 2, pp. 565–580, Apr. 2013, doi: 10.1007/s00180-

012-0317-1. 

[86] C. M. Ringle and M. Sarstedt, “Gain more insight from your PLS-SEM results: The 

importance-performance map analysis,” Industrial Management & Data Systems, vol. 

116, no. 9, pp. 1865–1886, Jan. 2016, doi: 10.1108/IMDS-10-2015-0449. 

[87] J. Abalo, J. Varela, and V. Manzano, “Importance values for Importance–Performance 

Analysis: A formula for spreading out values derived from preference rankings,” Journal 

of Business Research, vol. 60, no. 2, pp. 115–121, Feb. 2007, doi: 

10.1016/j.jbusres.2006.10.009. 



 References 

164 

 

[88] J. Henseler, C. M. Ringle, and R. R. Sinkovics, “The use of partial least squares path 

modeling in international marketing,” in New Challenges to International Marketing, 

vol. 20, R. R. Sinkovics and P. N. Ghauri, Eds., in Advances in International Marketing, 

vol. 20. , Emerald Group Publishing Limited, 2009, pp. 277–319. doi: 10.1108/S1474-

7979(2009)0000020014. 

[89] M. M. Abdelrahman and C. Miller, “Targeting occupant feedback using digital twins: 

Adaptive spatial–temporal thermal preference sampling to optimize personal comfort 

models,” Building and Environment, vol. 218, p. 109090, Jun. 2022, doi: 

10.1016/j.buildenv.2022.109090. 

[90] M. Quintana, S. Schiavon, F. Tartarini, J. Kim, and C. Miller, “Cohort comfort models 

— Using occupant’s similarity to predict personal thermal preference with less data,” 

Building and Environment, vol. 227, p. 109685, Jan. 2023, doi: 

10.1016/j.buildenv.2022.109685. 

[91] L. M. Kranz, J. Gallenkamp, and A. Picot, “Exploring the Role of Control – Smart Meter 

Acceptance of Residential Consumers,” AMCIS 2010 Proceedings, Aug. 2010, [Online]. 

Available: https://aisel.aisnet.org/amcis2010/315 

[92] Y. Sun, N. Wang, X. Guo, and Z. Peng, “Understanding the acceptance of mobile health 

services: a comparison and integration of alternative models,” Journal of Electronic 

Commerce Research, vol. 14, p. 183, 2013. 

[93] P. Wunderlich, D. Veit, and S. Sarker, “Examination of the Determinants of Smart Meter 

Adoption: An User Perspective,” in ICIS, 2012. 

[94] A. Paone and J.-P. Bacher, “The Impact of Building Occupant Behavior on Energy 

Efficiency and Methods to Influence It: A Review of the State of the Art,” Energies, vol. 

11, no. 4, Art. no. 4, Apr. 2018, doi: 10.3390/en11040953. 

[95] J. I. Méndez, A. Medina, P. Ponce, T. Peffer, A. Meier, and A. Molina, “Evolving 

Gamified Smart Communities in Mexico to Save Energy in Communities through 

Intelligent Interfaces,” Energies, vol. 15, no. 15, Art. no. 15, Jan. 2022, doi: 

10.3390/en15155553. 

[96] F. Soares et al., “FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency 

through Buildings’ Consumer Engagement,” Energies, vol. 14, no. 6, Art. no. 6, Jan. 

2021, doi: 10.3390/en14061524. 

[97] G. Mylonas, F. Paganelli, G. Cuffaro, I. Nesi, and D. Karantzis, “Using gamification and 

IoT-based educational tools towards energy savings - some experiences from two 

schools in Italy and Greece,” J Ambient Intell Human Comput, Jan. 2021, doi: 

10.1007/s12652-020-02838-7. 

[98] G. Tardioli, R. Filho, P. Bernaud, and D. Ntimos, “An Innovative Modelling Approach 

Based on Building Physics and Machine Learning for the Prediction of Indoor Thermal 

Comfort in an Office Building,” Buildings, vol. 12, no. 4, Art. no. 4, Apr. 2022, doi: 

10.3390/buildings12040475. 

[99] M. Quintana, M. Abdelrahman, M. Frei, F. Tartarini, and C. Miller, “Longitudinal 

personal thermal comfort preference data in the wild,” in Proceedings of the 19th ACM 

Conference on Embedded Networked Sensor Systems, in SenSys ’21. New York, NY, 

USA: Association for Computing Machinery, Nov. 2021, pp. 556–559. doi: 

10.1145/3485730.3493693. 

[100] C. Miller et al., “The Internet-of-Buildings (IoB) — Digital twin convergence of 

wearable and IoT data with GIS/BIM,” J. Phys.: Conf. Ser., vol. 2042, no. 1, p. 012041, 

Nov. 2021, doi: 10.1088/1742-6596/2042/1/012041. 

[101] Q. Y. Li, “A novel real-time monitoring, notification, analytics system, and personal 

thermal sensations model for indoor air quality and energy efficiency in commercial 



References 

165 

 

buildings,” PhD thesis, 2021, Accessed: Aug. 29, 2023. [Online]. Available: 

https://theses.lib.polyu.edu.hk/handle/200/11153 

[102] F. Salamone et al., “Evaluation of the Visual Stimuli on Personal Thermal Comfort 

Perception in Real and Virtual Environments Using Machine Learning Approaches,” 

Sensors, 2020, doi: 10.3390/s20061627. 

[103] P. Tien, S. Wei, J. Darkwa, C. Wood, and J. K. Calautit, “Machine Learning and Deep 

Learning Methods for Enhancing Building Energy Efficiency and Indoor Environmental 

Quality – A Review,” Energy and AI, vol. 10, p. 100198, Aug. 2022, doi: 

10.1016/j.egyai.2022.100198. 

[104] F. Salamone et al., “Application of IoT and Machine Learning techniques for the 

assessment of thermal comfort perception.,” Energy Procedia, vol. 148, pp. 798–805, 

Aug. 2018, doi: 10.1016/j.egypro.2018.08.130. 

[105] Q. Chai, H. Wang, Y. Zhai, and L. Yang, “Using machine learning algorithms to predict 

occupants’ thermal comfort in naturally ventilated residential buildings,” Energy and 

Buildings, vol. 217, p. 109937, Jun. 2020, doi: 10.1016/j.enbuild.2020.109937. 

[106] W. Hu, Y. Wen, K. Guan, G. Jin, and K. J. Tseng, “iTCM: Toward Learning-Based 

Thermal Comfort Modeling via Pervasive Sensing for Smart Buildings,” IEEE Internet 

of Things Journal, vol. 5, no. 5, pp. 4164–4177, Oct. 2018, doi: 

10.1109/JIOT.2018.2861831. 

[107] T. Chaudhuri, Y. C. Soh, H. Li, and L. Xie, “Machine learning driven personal comfort 

prediction by wearable sensing of pulse rate and skin temperature,” Building and 

Environment, vol. 170, p. 106615, Mar. 2020, doi: 10.1016/j.buildenv.2019.106615. 

[108] Z. Qavidel Fard, Z. S. Zomorodian, and S. S. Korsavi, “Application of machine learning 

in thermal comfort studies: A review of methods, performance and challenges,” Energy 

and Buildings, vol. 256, p. 111771, Feb. 2022, doi: 10.1016/j.enbuild.2021.111771. 

[109] T. Chaudhuri, D. Zhai, Y. C. Soh, H. Li, and L. Xie, “Random forest based thermal 

comfort prediction from gender-specific physiological parameters using wearable 

sensing technology,” Energy and Buildings, vol. 166, pp. 391–406, May 2018, doi: 

10.1016/j.enbuild.2018.02.035. 

[110] K. Huang, S. Lu, X. Li, and W. Chen, “Using random forests to predict passengers’ 

thermal comfort in underground train carriages,” Indoor and Built Environment, p. 

1420326X221110046, Jun. 2022, doi: 10.1177/1420326X221110046. 

[111] Q. Y. Li, J. Han, and L. Lu, “A Random Forest Classification Algorithm Based Personal 

Thermal Sensation Model for Personalized Conditioning System in Office Buildings,” 

The Computer Journal, vol. 64, no. 3, pp. 500–508, Mar. 2021, doi: 

10.1093/comjnl/bxaa165. 

[112] Y. Jiang, “Personalized Thermal Comfort Model with Decision Tree,” Intelligent Control 

and Automation, doi: 10.4236/ica.2019.104012. 

[113] M. Javed, N. Li, and S. Li, “Personalized Thermal Comfort Modeling based on Support 

Vector Classification,” in Proceedings of the 36th Chinese Control Conference (ccc 

2017), T. Liu and Q. Zhao, Eds., New York: Ieee, 2017, pp. 10446–10451. Accessed: 

Oct. 09, 2022. [Online]. Available: http://www.webofscience.com/wos/woscc/full-

record/WOS:000432015504068 

[114] L. Jiang and R. Yao, “Modelling personal thermal sensations using C-Support Vector 

Classification (C-SVC) algorithm,” Building and Environment, vol. 99, pp. 98–106, Apr. 

2016, doi: 10.1016/j.buildenv.2016.01.022. 

[115] G. Barone et al., “Modelling the thermal response of the human body for thermal 

comfort assessment in indoor spaces: an experimental validation,” in Proceedings of 

2022 Ieee International Workshop on Metrology for Living Environment (ieee 



 References 

166 

 

Metroliven 2022), New York: Ieee, 2022, pp. 23–28. doi: 

10.1109/MetroLivEnv54405.2022.9826971. 

[116] G. Cosoli, S. A. Mansi, I. Pigliautile, A. L. Pisello, G. M. Revel, and M. Arnesano, 

“Enhancing personal comfort: A machine learning approach using physiological and 

environmental signals measurements,” Measurement, vol. 217, p. 113047, Aug. 2023, 

doi: 10.1016/j.measurement.2023.113047. 

[117] M. Castilla, J. D. Álvarez, M. G. Ortega, and M. R. Arahal, “Neural network and 

polynomial approximated thermal comfort models for HVAC systems,” Building and 

Environment, vol. 59, pp. 107–115, Jan. 2013, doi: 10.1016/j.buildenv.2012.08.012. 

[118] J. von Grabe, “Potential of artificial neural networks to predict thermal sensation votes,” 

Applied Energy, vol. 161, no. C, pp. 412–424, 2016. 

[119] T. Chaudhuri, Y. C. Soh, H. Li, and L. Xie, “A feedforward neural network based indoor-

climate control framework for thermal comfort and energy saving in buildings,” Applied 

Energy, vol. 248, pp. 44–53, Aug. 2019, doi: 10.1016/j.apenergy.2019.04.065. 

[120] K.-H. Yu et al., “Optimization of thermal comfort, indoor quality, and energy-saving in 

campus classroom through deep Q learning,” Case Studies in Thermal Engineering, vol. 

24, p. 100842, Apr. 2021, doi: 10.1016/j.csite.2021.100842. 

[121] L. Arakawa Martins, V. Soebarto, T. Williamson, and D. Pisaniello, “Personal thermal 

comfort models: a deep learning approach for predicting older people’s thermal 

preference,” Smart and Sustainable Built Environment, vol. 11, no. 2, pp. 245–270, Jan. 

2022, doi: 10.1108/SASBE-08-2021-0144. 

[122] J. Jin, S. Shu, and F. Lin, “Personalized Control of Indoor Air Temperature Based on 

Deep Learning,” in Proceedings of the 2019 31st Chinese Control and Decision 

Conference (ccdc 2019), New York: Ieee, 2019, pp. 1354–1359. Accessed: Oct. 09, 

2022. [Online]. Available: http://www.webofscience.com/wos/woscc/full-

record/WOS:000555859001109 

[123] L. A. Martins, V. Soebarto, T. Williamson, and D. Pisaniello, “A deep learning approach 

to personal thermal comfort models for an ageing population,” p. 10. 

[124] N. von Frankenberg, P. Ruoff, B. Bruegge, and V. Loftness, “LATEST: A Learning-based 

Automated Thermal Environment Control System,” in Ubicomp/Iswc ’20 Adjunct: 

Proceedings of the 2020 Acm International Joint Conference on Pervasive and 

Ubiquitous Computing and Proceedings of the 2020 Acm International Symposium on 

Wearable Computers, New York: Assoc Computing Machinery, 2020, pp. 573–579. doi: 

10.1145/3410530.3414591. 

[125] M. Han et al., “A review of reinforcement learning methodologies for controlling 

occupant comfort in buildings,” Sustainable Cities and Society, vol. 51, p. 101748, Nov. 

2019, doi: 10.1016/j.scs.2019.101748. 

[126] P. Fazenda, K. Veeramachaneni, P. Lima, and U. O’Reilly, “Using reinforcement 

learning to optimize occupant comfort and energy usage in HVAC systems,” J. Ambient 

Intell. Smart Environ., 2014, doi: 10.3233/AIS-140288. 

[127] Y. Lei et al., “A practical deep reinforcement learning framework for multivariate 

occupant-centric control in buildings,” Applied Energy, vol. 324, p. 119742, Oct. 2022, 

doi: 10.1016/j.apenergy.2022.119742. 

[128] J. Y. Park and Z. Nagy, “HVACLearn: A reinforcement learning based occupant-centric 

control for thermostat set-points,” in Proceedings of the Eleventh ACM International 

Conference on Future Energy Systems, in e-Energy ’20. New York, NY, USA: 

Association for Computing Machinery, Jun. 2020, pp. 434–437. doi: 

10.1145/3396851.3402364. 

[129] L. Yu, Z. Xu, T. Zhang, X. Guan, and D. Yue, “Energy-efficient personalized thermal 

comfort control in office buildings based on multi-agent deep reinforcement learning,” 



References 

167 

 

Building and Environment, vol. 223, p. 109458, Sep. 2022, doi: 

10.1016/j.buildenv.2022.109458. 

[130] L. Xiong and Y. Yao, “Study on an adaptive thermal comfort model with K-nearest-

neighbors (KNN) algorithm,” Build. Environ., vol. 202, p. 108026, Sep. 2021, doi: 

10.1016/j.buildenv.2021.108026. 

[131] F. Auffenberg, S. Stein, and A. Rogers, “A Personalised Thermal Comfort Model using 

a Bayesian Network,” in Proceedings of the Twenty-Fourth International Joint 

Conference on Artificial Intelligence (ijcai), Q. Yang and M. Wooldridge, Eds., Freiburg: 

Ijcai-Int Joint Conf Artif Intell, 2015, pp. 2547–2553. Accessed: Oct. 09, 2022. [Online]. 

Available: http://www.webofscience.com/wos/woscc/full-

record/WOS:000442637802089 

[132] S. Crosby and A. Rysanek, “Predicting thermal satisfaction as a function of indoor CO2 

levels: Bayesian modelling of new field data,” Building and Environment, vol. 209, p. 

108569, Feb. 2022, doi: 10.1016/j.buildenv.2021.108569. 

[133] Z. Wang and T. Hong, “Learning occupants’ indoor comfort temperature through a 

Bayesian inference approach for office buildings in United States,” Renewable and 

Sustainable Energy Reviews, vol. 119, p. 109593, Mar. 2020, doi: 

10.1016/j.rser.2019.109593. 

[134] M. Quintana, S. Schiavon, K. W. Tham, and C. Miller, “Balancing thermal comfort 

datasets: We GAN, but should we?,” in Proceedings of the 7th ACM International 

Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Nov. 

2020, pp. 120–129. doi: 10.1145/3408308.3427612. 

[135] A. Sanguinetti, M. Pritoni, K. Salmon, A. Meier, and J. Morejohn, “Upscaling 

participatory thermal sensing: Lessons from an interdisciplinary case study at University 

of California for improving campus efficiency and comfort,” Energy Research & Social 

Science, vol. 32, Jun. 2017, doi: 10.1016/j.erss.2017.05.026. 

[136] F. Tartarini, S. Schiavon, M. Quintana, and C. Miller, “Personal comfort models based 

on a 6-month experiment using environmental parameters and data from wearables,” 

Indoor Air, vol. 32, no. 11, p. e13160, 2022, doi: 10.1111/ina.13160. 

[137] D. Daum, F. Haldi, and N. Morel, “A personalized measure of thermal comfort for 

building controls,” Building and Environment, vol. 46, no. 1, pp. 3–11, Jan. 2011, doi: 

10.1016/j.buildenv.2010.06.011. 

[138] Y. Feng, J. Wang, N. Wang, and C. Chen, “Alert-based wearable sensing system for 

individualized thermal preference prediction,” Building and Environment, vol. 232, p. 

110047, Mar. 2023, doi: 10.1016/j.buildenv.2023.110047. 

[139] S. Liu, “Personal thermal comfort models based on physiological parameters measured 

by wearable sensors,” Apr. 2018, Accessed: Apr. 20, 2022. [Online]. Available: 

https://escholarship.org/uc/item/3qk6d6tv 

[140] N. Gao, M. Marschall, J. Burry, S. Watkins, and F. D. Salim, “Understanding occupants’ 

behaviour, engagement, emotion, and comfort indoors with heterogeneous sensors and 

wearables,” Sci Data, vol. 9, no. 1, Art. no. 1, Jun. 2022, doi: 10.1038/s41597-022-

01347-w. 

[141] ASHRAE, American Society of Heating Refrigeration and Air-Conditioning Engineers 

ASHRAE Handbook Fundamentals. Atlanta, GA, USA, 1989. 

[142] S. Zhang, Y. Lu, and Z. Lin, “Coupled thermal comfort control of thermal condition 

profile of air distribution and thermal preferences,” Building and Environment, vol. 177, 

p. 106867, Jun. 2020, doi: 10.1016/j.buildenv.2020.106867. 

[143] Z. Wang, J. Wang, Y. He, Y. Liu, B. Lin, and T. Hong, “Dimension analysis of subjective 

thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using 



 References 

168 

 

machine learning,” Journal of Building Engineering, vol. 29, p. 101120, May 2020, doi: 

10.1016/j.jobe.2019.101120. 

[144] A. Dimara, C.-N. Anagnostopoulos, S. Krinidis, and D. Tzovaras, “Personalized thermal 

comfort modeling through genetic algorithm,” Energy Sources, Part A: Recovery, 

Utilization, and Environmental Effects, vol. 0, no. 0, pp. 1–22, Jun. 2021, doi: 

10.1080/15567036.2021.1937404. 

[145] S. Suman, F. Rivest, and A. Etemad, “Towards Personalization of User Preferences in 

Partially Observable Smart Home Environments.” arXiv, Apr. 09, 2022. doi: 

10.48550/arXiv.2112.00971. 

[146] A. Culic, S. Nižetić, P. Šolić, T. Perković, and V. Congradac, “Smart monitoring 

technologies for personal thermal comfort: A review,” 2021, doi: 

10.1016/J.JCLEPRO.2021.127685. 

[147] S. A. Abdul-Wahab, S. Chin Fah En, A. Elkamel, L. Ahmadi, and K. Yetilmezsoy, “A 

review of standards and guidelines set by international bodies for the parameters of 

indoor air quality,” Atmospheric Pollution Research, vol. 6, no. 5, pp. 751–767, Sep. 

2015, doi: 10.5094/APR.2015.084. 

[148] A. Gangwar, S. Singh, R. Mishra, and S. Prakash, “The State-of-the-Art in Air Pollution 

Monitoring and Forecasting Systems Using IoT, Big Data, and Machine Learning,” 

Wireless Pers Commun, vol. 130, no. 3, pp. 1699–1729, Jun. 2023, doi: 10.1007/s11277-

023-10351-1. 

[149] “Achieving better indoor air quality with IoT systems for future buildings: Opportunities 

and challenges,” Science of The Total Environment, vol. 895, p. 164858, Oct. 2023, doi: 

10.1016/j.scitotenv.2023.164858. 

[150] J. Dong, N. Goodman, and P. Rajagopalan, “A Review of Artificial Neural Network 

Models Applied to Predict Indoor Air Quality in Schools,” International Journal of 

Environmental Research and Public Health, vol. 20, no. 15, Art. no. 15, Jan. 2023, doi: 

10.3390/ijerph20156441. 

[151] J. H. Cho and J. W. Moon, “Integrated artificial neural network prediction model of 

indoor environmental quality in a school building,” Journal of Cleaner Production, vol. 

344, p. 131083, Apr. 2022, doi: 10.1016/j.jclepro.2022.131083. 

[152] J. Kim, Y. Hong, N. Seong, and D. D. Kim, “Assessment of ANN Algorithms for the 

Concentration Prediction of Indoor Air Pollutants in Child Daycare Centers,” Energies, 

vol. 15, no. 7, Art. no. 7, Jan. 2022, doi: 10.3390/en15072654. 

[153] L. C. Tagliabue, F. Re Cecconi, S. Rinaldi, and A. L. C. Ciribini, “Data driven indoor air 

quality prediction in educational facilities based on IoT network,” Energy and Buildings, 

vol. 236, p. 110782, Apr. 2021, doi: 10.1016/j.enbuild.2021.110782. 

[154] S. Zhong, D. Lalanne, and H. Alavi, “The Complexity of Indoor Air Quality Forecasting 

and the Simplicity of Interacting with It – A Case Study of 1007 Office Meetings,” in 

Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, in 

CHI ’21. New York, NY, USA: Association for Computing Machinery, May 2021, pp. 

1–19. doi: 10.1145/3411764.3445524. 

[155] J. Kallio, J. Tervonen, P. Räsänen, R. Mäkynen, J. Koivusaari, and J. Peltola, 

“Forecasting office indoor CO2 concentration using machine learning with a one-year 

dataset,” Building and Environment, vol. 187, p. 107409, Jan. 2021, doi: 

10.1016/j.buildenv.2020.107409. 

[156] O. Osibona, B. D. Solomon, and D. Fecht, “Lighting in the Home and Health: A 

Systematic Review,” International Journal of Environmental Research and Public 

Health, vol. 18, no. 2, Art. no. 2, Jan. 2021, doi: 10.3390/ijerph18020609. 



References 

169 

 

[157] M. J. Brown and D. E. Jacobs, “Residential light and risk for depression and falls: results 

from the LARES study of eight European cities,” Public Health Rep, vol. 126 Suppl 1, 

no. Suppl 1, pp. 131–140, 2011, doi: 10.1177/00333549111260S117. 

[158] A. Kaushik, M. Arif, O. J. Ebohon, H. Arsalan, M. Q. Rana, and L. Obi, “Effect of indoor 

environmental quality on visual comfort and productivity in office buildings,” Journal 

of Engineering, Design and Technology, vol. 21, no. 6, pp. 1746–1766, Jan. 2021, doi: 

10.1108/JEDT-09-2021-0474. 

[159] W. Luo, R. Kramer, M. Kompier, K. Smolders, Y. de Kort, and W. van Marken 

Lichtenbelt, “Personal control of correlated color temperature of light: Effects on 

thermal comfort, visual comfort, and cognitive performance,” Building and 

Environment, vol. 238, p. 110380, Jun. 2023, doi: 10.1016/j.buildenv.2023.110380. 

[160] M. Deng, X. Wang, and C. C. Menassa, “Measurement and prediction of work 

engagement under different indoor lighting conditions using physiological sensing,” 

Building and Environment, vol. 203, p. 108098, Oct. 2021, doi: 

10.1016/j.buildenv.2021.108098. 

[161] Z. S. Zomorodian and M. Tahsildoost, “Assessing the effectiveness of dynamic metrics 

in predicting daylight availability and visual comfort in classrooms,” Renewable Energy, 

vol. 134, pp. 669–680, Apr. 2019, doi: 10.1016/j.renene.2018.11.072. 

[162] A. Faraji, F. Rezaei, P. Rahnamayiezekavat, M. Rashidi, and H. Soleimani, “Subjective 

and Simulation-Based Analysis of Discomfort Glare Metrics in Office Buildings with 

Light Shelf Systems,” Sustainability, vol. 15, no. 15, Art. no. 15, Jan. 2023, doi: 

10.3390/su151511885. 

[163] N. S. Shafavi, Z. S. Zomorodian, M. Tahsildoost, and M. Javadi, “Occupants visual 

comfort assessments: A review of field studies and lab experiments,” Solar Energy, vol. 

208, pp. 249–274, Sep. 2020, doi: 10.1016/j.solener.2020.07.058. 

[164] J. A. Jakubiec and C. F. Reinhart, “A Concept for Predicting Occupants’ Long-Term 

Visual Comfort within Daylit Spaces,” LEUKOS, vol. 12, no. 4, pp. 185–202, Oct. 2016, 

doi: 10.1080/15502724.2015.1090880. 

[165] Z. Kong, R. Zhang, J. Ni, P. Ning, X. Kong, and J. Wang, “Towards an integration of 

visual comfort and lighting impression: A field study within higher educational 

buildings,” Building and Environment, vol. 216, p. 108989, May 2022, doi: 

10.1016/j.buildenv.2022.108989. 

[166] A. Davoodi, P. Johansson, and M. Aries, “The Implementation of Visual Comfort 

Evaluation in the Evidence-Based Design Process Using Lighting Simulation,” Applied 

Sciences, vol. 11, no. 11, Art. no. 11, Jan. 2021, doi: 10.3390/app11114982. 

[167] M. Fakhari, V. Vahabi, and R. Fayaz, “A study on the factors simultaneously affecting 

visual comfort in classrooms: A structural equation modeling approach,” Energy and 

Buildings, vol. 249, p. 111232, Oct. 2021, doi: 10.1016/j.enbuild.2021.111232. 

[168] J. Xiong, A. Tzempelikos, I. Bilionis, and P. Karava, “A personalized daylighting control 

approach to dynamically optimize visual satisfaction and lighting energy use,” Energy 

and Buildings, vol. 193, pp. 111–126, Jun. 2019, doi: 10.1016/j.enbuild.2019.03.046. 

[169] J. Zou, Y. Han, and S.-S. So, “Overview of Artificial Neural Networks,” in Artificial 

Neural Networks: Methods and Applications, D. J. Livingstone, Ed., in Methods in 

Molecular BiologyTM. , Totowa, NJ: Humana Press, 2009, pp. 14–22. doi: 10.1007/978-

1-60327-101-1_2. 

[170] V. G. Costa and C. E. Pedreira, “Recent advances in decision trees: an updated survey,” 

Artif Intell Rev, vol. 56, no. 5, pp. 4765–4800, May 2023, doi: 10.1007/s10462-022-

10275-5. 



 References 

170 

 

[171] R. Genuer and J.-M. Poggi, “Random Forests,” in Random Forests with R, R. Genuer 

and J.-M. Poggi, Eds., Cham: Springer International Publishing, 2020, pp. 33–55. doi: 

10.1007/978-3-030-56485-8_3. 

[172] S. Zhang, “Challenges in KNN Classification,” IEEE Transactions on Knowledge and 

Data Engineering, vol. 34, no. 10, pp. 4663–4675, Oct. 2022, doi: 

10.1109/TKDE.2021.3049250. 

[173] T. G. Nick and K. M. Campbell, “Logistic Regression,” in Topics in Biostatistics, W. T. 

Ambrosius, Ed., Totowa, NJ: Humana Press, 2007, pp. 273–301. doi: 10.1007/978-1-

59745-530-5_14. 

[174] R. E. Schapire, “Explaining AdaBoost,” in Empirical Inference: Festschrift in Honor of 

Vladimir N. Vapnik, B. Schölkopf, Z. Luo, and V. Vovk, Eds., Berlin, Heidelberg: 

Springer, 2013, pp. 37–52. doi: 10.1007/978-3-642-41136-6_5. 

[175] R. DiPietro and G. D. Hager, “Chapter 21 - Deep learning: RNNs and LSTM,” in 

Handbook of Medical Image Computing and Computer Assisted Intervention, S. K. 

Zhou, D. Rueckert, and G. Fichtinger, Eds., in The Elsevier and MICCAI Society Book 

Series. , Academic Press, 2020, pp. 503–519. doi: 10.1016/B978-0-12-816176-0.00026-

0. 

[176] E. M. K. Reddy, A. Gurrala, V. B. Hasitha, and K. V. R. Kumar, “Introduction to Naive 

Bayes and a Review on Its Subtypes with Applications,” in Bayesian Reasoning and 

Gaussian Processes for Machine Learning Applications, Chapman and Hall/CRC, 2022. 

[177] D. A. Pisner and D. M. Schnyer, “Chapter 6 - Support vector machine,” in Machine 

Learning, A. Mechelli and S. Vieira, Eds., Academic Press, 2020, pp. 101–121. doi: 

10.1016/B978-0-12-815739-8.00006-7. 

[178] “Legal Working Temperature in the UK,” BrightHR. Accessed: Jan. 07, 2024. [Online]. 

Available: https://www.brighthr.com/articles/health-and-safety/working-temperature/ 

[179] “Reiteration of Existing OSHA Policy on Indoor Air Quality: Office 

Temperature/Humidity and Environmental Tobacco Smoke | Occupational Safety and 

Health Administration.” Accessed: Dec. 16, 2023. [Online]. Available: 

https://www.osha.gov/laws-regs/standardinterpretations/2003-02-24 

[180] S. Barbhuiya and S. Barbhuiya, “Thermal comfort and energy consumption in a UK 

educational building,” Building and Environment, vol. 68, pp. 1–11, Oct. 2013, doi: 

10.1016/j.buildenv.2013.06.002. 

[181] S. Fotios, “Lighting in offices: lamp spectrum and brightness,” Coloration Technology, 

vol. 127, no. 2, pp. 114–120, 2011, doi: 10.1111/j.1478-4408.2011.00285.x. 

[182] K. W. Mui and L. T. Wong, “Acceptable Illumination Levels for Office Occupants,” 

Architectural Science Review, vol. 49, no. 2, pp. 116–119, Jun. 2006, doi: 

10.3763/asre.2006.4915. 

[183] ASHRAE, “ASHRAE Position Document on Indoor Carbon Dioxide,” Feb. 2022. 

Accessed: May 20, 2024. [Online]. Available: 

https://www.ashrae.org/file%20library/about/position%20documents/pd_indoorcarbon

dioxide_2022.pdf 

[184] J. Hahn, S. Heiler, M. B. Kane, S. Park, and W. Jensch, “The Information Gap in 

Occupant-Centric Building Operations: Lessons Learned from Interviews with Building 

Operators in Germany,” Frontiers in Built Environment, vol. 8, 2022, Accessed: Jul. 06, 

2023. [Online]. Available: 

https://www.frontiersin.org/articles/10.3389/fbuil.2022.838859 

[185] “Smart Buildings: A Deeper Dive into Market Segments | ACEEE.” Accessed: Jun. 12, 

2024. [Online]. Available: https://www.aceee.org/research-report/a1703 



References 

171 

 

[186] Y. Peng, A. Rysanek, Z. Nagy, and A. Schlüter, “Using machine learning techniques for 

occupancy-prediction-based cooling control in office buildings,” Applied Energy, vol. 

211, pp. 1343–1358, Feb. 2018, doi: 10.1016/j.apenergy.2017.12.002. 

[187] S. Yang, “Model predictive control for energy efficiency and occupant well-being 

optimisation in tropical buildings,” 2020, Accessed: Sep. 16, 2020. [Online]. Available: 

https://dr.ntu.edu.sg//handle/10356/138124 

[188] T. Hong, D. Yan, S. D’Oca, and C. Chen, “Ten questions concerning occupant behavior 

in buildings: The big picture,” Building and Environment, vol. 114, pp. 518–530, Mar. 

2017, doi: 10.1016/j.buildenv.2016.12.006. 

[189] T. A. Nguyen and M. Aiello, “Energy intelligent buildings based on user activity: A 

survey,” Energy and Buildings, vol. 56, pp. 244–257, Jan. 2013, doi: 

10.1016/j.enbuild.2012.09.005. 

[190] P. Hoes, J. L. M. Hensen, M. G. L. C. Loomans, B. de Vries, and D. Bourgeois, “User 

behavior in whole building simulation,” Energy and Buildings, vol. 41, no. 3, pp. 295–

302, Mar. 2009, doi: 10.1016/j.enbuild.2008.09.008. 

[191] M. Kwon, H. Remøy, A. van den Dobbelsteen, and U. Knaack, “Personal control and 

environmental user satisfaction in office buildings: Results of case studies in the 

Netherlands,” Building and Environment, vol. 149, pp. 428–435, Feb. 2019, doi: 

10.1016/j.buildenv.2018.12.021. 

[192] B. Becerik-Gerber et al., “Ten questions concerning human-building interaction research 

for improving the quality of life,” Building and Environment, vol. 226, p. 109681, Dec. 

2022, doi: 10.1016/j.buildenv.2022.109681. 

[193] C.-L. Lorenz et al., “A repository of occupant-centric control case studies: Survey 

development and database overview,” Energy and Buildings, vol. 300, p. 113649, Dec. 

2023, doi: 10.1016/j.enbuild.2023.113649. 

[194] G. Halhoul Merabet et al., “Intelligent building control systems for thermal comfort and 

energy-efficiency: A systematic review of artificial intelligence-assisted techniques,” 

Renewable and Sustainable Energy Reviews, vol. 144, p. 110969, Jul. 2021, doi: 

10.1016/j.rser.2021.110969. 

[195] J. Y. Park et al., “A critical review of field implementations of occupant-centric building 

controls,” Building and Environment, vol. 165, p. 106351, Nov. 2019, doi: 

10.1016/j.buildenv.2019.106351. 

[196] S. Lu, W. Wang, C. Lin, and E. C. Hameen, “Data-driven simulation of a thermal 

comfort-based temperature set-point control with ASHRAE RP884,” Building and 

Environment, vol. 156, pp. 137–146, Jun. 2019, doi: 10.1016/j.buildenv.2019.03.010. 

[197] G. Gao, J. Li, and Y. Wen, “Energy-Efficient Thermal Comfort Control in Smart 

Buildings via Deep Reinforcement Learning.” arXiv, Jan. 15, 2019. Accessed: Jun. 12, 

2024. [Online]. Available: http://arxiv.org/abs/1901.04693 

[198] Y. Murakami, M. Terano, K. Mizutani, M. Harada, and S. Kuno, “Field experiments on 

energy consumption and thermal comfort in the office environment controlled by 

occupants’ requirements from PC terminal,” Building and Environment, vol. 42, no. 12, 

pp. 4022–4027, Dec. 2007, doi: 10.1016/j.buildenv.2006.05.012. 

[199] F. Jazizadeh, A. Ghahramani, B. Becerik-Gerber, T. Kichkaylo, and M. Orosz, “Human-

Building Interaction Framework for Personalized Thermal Comfort-Driven Systems in 

Office Buildings,” J. Comput. Civil. Eng., vol. 28, no. 1, pp. 2–16, Jan. 2014, doi: 

10.1061/(ASCE)CP.1943-5487.0000300. 

[200] V. L. Erickson and A. E. Cerpa, “Thermovote: participatory sensing for efficient building 

HVAC conditioning,” in Proceedings of the Fourth ACM Workshop on Embedded 

Sensing Systems for Energy-Efficiency in Buildings, in BuildSys ’12. New York, NY, 



 References 

172 

 

USA: Association for Computing Machinery, Nov. 2012, pp. 9–16. doi: 

10.1145/2422531.2422534. 

[201] W. Valladares et al., “Energy optimization associated with thermal comfort and indoor 

air control via a deep reinforcement learning algorithm,” Building and Environment, vol. 

155, pp. 105–117, May 2019, doi: 10.1016/j.buildenv.2019.03.038. 

[202] Z. Nagy, F. Y. Yong, and A. Schlueter, “Occupant centered lighting control: A user study 

on balancing comfort, acceptance, and energy consumption,” Energy and Buildings, vol. 

126, pp. 310–322, Aug. 2016, doi: 10.1016/j.enbuild.2016.05.075. 

[203] J. Xie, “Occupant-Centric Shading and Lighting Control Using a Simulation-Assisted 

Data-Driven Framework,” thesis, Carnegie Mellon University, 2023. doi: 

10.1184/R1/24123291.v1. 

[204] M. Ouf, R. Tamas, and W. O’Brien, “Usability and comfort in Canadian offices: 

Interview of 170 university employees,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 609, no. 

4, p. 042091, Sep. 2019, doi: 10.1088/1757-899X/609/4/042091. 

[205] P. A. Bromiley, “Products and Convolutions of Gaussian Probability Density Functions,” 

University of Manchester, Manchester, M13 9PT., No. 2003-003, 2014. [Online]. 

Available: http://www.lucamartino.altervista.org/2003-003.pdf 

[206] S. Gauthier et al., “The colours of comfort: From thermal sensation to person-centric 

thermal zones for adaptive building strategies,” Energy and Buildings, vol. 216, p. 

109936, Jun. 2020, doi: 10.1016/j.enbuild.2020.109936. 

[207] “Conducting Semi‐Structured Interviews - Handbook of Practical Program Evaluation - 

Wiley Online Library.” Accessed: Apr. 10, 2024. [Online]. Available: 

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119171386.ch19 

[208] C. Huizenga, S. Abbaszadeh, L. Zagreus, and E. A. Arens, “Air quality and thermal 

comfort in office buildings: Results of a large indoor environmental quality survey,” 

2006, Accessed: Jun. 11, 2024. [Online]. Available: 

https://escholarship.org/uc/item/7897g2f8 

[209] A. Mendes et al., “INDOOR AIR QUALITY AND THERMAL COMFORT—

RESULTS OF A PILOT STUDY IN ELDERLY CARE CENTERS IN PORTUGAL,” J 

Toxicol Environ Health A, vol. 76, no. 0, pp. 333–344, 2013, doi: 

10.1080/15287394.2013.757213. 

[210] W. Song, Z. Zhang, Z. Chen, F. Wang, and B. Yang, “Thermal comfort and energy 

performance of personal comfort systems (PCS): A systematic review and meta-

analysis,” Energy and Buildings, vol. 256, p. 111747, Feb. 2022, doi: 

10.1016/j.enbuild.2021.111747. 

[211] A. Aryal and B. Becerik-Gerber, “Thermal comfort modeling when personalized 

comfort systems are in use: Comparison of sensing and learning methods,” Building and 

Environment, vol. 185, p. 107316, Nov. 2020, doi: 10.1016/j.buildenv.2020.107316. 

[212] “MAXQDA | All-In-One Qualitative & Mixed Methods Data Analysis Tool,” 

MAXQDA. Accessed: Jun. 09, 2024. [Online]. Available: https://www.maxqda.com/ 

[213] ISO, “ISO 7730:2005 - Ergonomics of the thermal environment,” ISO. Accessed: Mar. 

11, 2024. [Online]. Available: https://www.iso.org/standard/39155.html 

[214] “Standards 62.1 & 62.2.” Accessed: Jun. 11, 2024. [Online]. Available: 

https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2 

[215] T. Parkinson, S. Schiavon, J. Kim, and G. Betti, “Common sources of occupant 

dissatisfaction with workspace environments in 600 office buildings,” Buildings & 

Cities, vol. 4, no. 1, Jan. 2023, doi: 10.5334/bc.274. 

[216] A. Bresa, T. Zakula, and D. Ajdukovic, “Occupant-centric control in buildings: 

Investigating occupant intentions and preferences for indoor environment and grid 



References 

173 

 

flexibility interactions,” Energy and Buildings, p. 114393, Jun. 2024, doi: 

10.1016/j.enbuild.2024.114393. 

[217] B. Dicicco-Bloom and B. F. Crabtree, “The qualitative research interview,” Med Educ, 

vol. 40, no. 4, pp. 314–321, Apr. 2006, doi: 10.1111/j.1365-2929.2006.02418.x. 

[218] S. Shahzad, J. K. Calautit, K. Calautit, B. Hughes, and A. I. Aquino, “Advanced personal 

comfort system (APCS) for the workplace: A review and case study,” Energy and 

Buildings, vol. 173, pp. 689–709, Aug. 2018, doi: 10.1016/j.enbuild.2018.02.008. 

[219] Z. Yang, W. Zhang, H. Liu, W. Zhang, and M. Qin, “Field study of meeting thermal 

needs of occupants in old residential buildings in low-temperature environments using 

personalized local heating,” Building and Environment, vol. 247, p. 111004, Jan. 2024, 

doi: 10.1016/j.buildenv.2023.111004. 

[220] M. Veselý, P. Molenaar, M. Vos, R. Li, and W. Zeiler, “Personalized heating – 

Comparison of heaters and control modes,” Building and Environment, vol. 112, pp. 

223–232, Feb. 2017, doi: 10.1016/j.buildenv.2016.11.036. 

[221] Y. He, X. Wang, N. Li, M. He, and D. He, “Heating chair assisted by leg-warmer: A 

potential way to achieve better thermal comfort and greater energy conservation in 

winter,” Energy and Buildings, vol. 158, pp. 1106–1116, Jan. 2018, doi: 

10.1016/j.enbuild.2017.11.006. 

[222] D. Al-Assaad, N. Ghaddar, and K. Ghali, “Performance of Mixing Ventilation System 

Coupled with Dynamic Personalized Ventilator for Thermal Comfort,” in Proceedings 

of the Asme Summer Heat Transfer Conference, 2017, Vol 1, New York: Amer Soc 

Mechanical Engineers, 2017, p. V001T04A001. Accessed: Oct. 09, 2022. [Online]. 

Available: http://www.webofscience.com/wos/woscc/full-

record/WOS:000422809300016 

[223] N. Ghaddar, K. Ghali, and A. Makhoul, “Performance of Coaxial Ceiling-Mounted 

Personalized Ventilator for Comfort and Good Air Quality,” in Proceedings of the Asme 

Summer Heat Transfer Conference - 2013, Vol 4, New York: Amer Soc Mechanical 

Engineers, 2014, p. V004T13A008. Accessed: Oct. 09, 2022. [Online]. Available: 

http://www.webofscience.com/wos/woscc/full-record/WOS:000360415200014 

[224] S. Ø. Jensen et al., “IEA EBC Annex 67 Energy Flexible Buildings,” Energy and 

Buildings, vol. 155, pp. 25–34, Nov. 2017, doi: 10.1016/j.enbuild.2017.08.044. 

[225] “NREL Researchers Reveal How Buildings Across United States Do—and Could—Use 

Energy.” Accessed: Jun. 21, 2024. [Online]. Available: 

https://www.nrel.gov/news/features/2023/nrel-researchers-reveal-how-buildings-

across-the-united-states-do-and-could-use-energy.html 

[226] J. Li, F. Liu, Z. Li, C. Shao, and X. Liu, “Grid-side flexibility of power systems in 

integrating large-scale renewable generations: A critical review on concepts, 

formulations and solution approaches,” Renewable and Sustainable Energy Reviews, 

vol. 93, pp. 272–284, Oct. 2018, doi: 10.1016/j.rser.2018.04.109. 

[227] R. Jurjevic and T. Zakula, “Demand Response in Buildings: A Comprehensive Overview 

of Current Trends, Approaches, and Strategies,” Buildings, vol. 13, no. 10, Art. no. 10, 

Oct. 2023, doi: 10.3390/buildings13102663. 

[228] M. Hall and A. Geissler, “Comparison of Flexibility Factors and Introduction of A 

Flexibility Classification Using Advanced Heat Pump Control,” Energies, vol. 14, no. 

24, Art. no. 24, Jan. 2021, doi: 10.3390/en14248391. 

[229] S. Hussain, C. Lai, and U. Eicker, “Flexibility: Literature review on concepts, modeling, 

and provision method in smart grid,” Sustainable Energy, Grids and Networks, vol. 35, 

p. 101113, Sep. 2023, doi: 10.1016/j.segan.2023.101113. 



 References 

174 

 

[230] K. Kaspar, M. Ouf, and U. Eicker, “A critical review of control schemes for demand-

side energy management of building clusters,” Energy and Buildings, vol. 257, p. 

111731, Feb. 2022, doi: 10.1016/j.enbuild.2021.111731. 

[231] A. J. Satchwell et al., “A Conceptual Framework to Describe Energy Efficiency and 

Demand Response Interactions,” Energies, vol. 13, no. 17, Art. no. 17, Jan. 2020, doi: 

10.3390/en13174336. 

[232] J. Langevin et al., “US building energy efficiency and flexibility as an electric grid 

resource,” Joule, vol. 5, no. 8, pp. 2102–2128, Aug. 2021, doi: 

10.1016/j.joule.2021.06.002. 

[233] Y. Chen, P. Xu, J. Gu, F. Schmidt, and W. Li, “Measures to improve energy demand 

flexibility in buildings for demand response (DR): A review,” Energy and Buildings, vol. 

177, pp. 125–139, Oct. 2018, doi: 10.1016/j.enbuild.2018.08.003. 

[234] N. G. Paterakis, O. Erdinç, and J. P. S. Catalão, “An overview of Demand Response: 

Key-elements and international experience,” Renewable and Sustainable Energy 

Reviews, vol. 69, pp. 871–891, Mar. 2017, doi: 10.1016/j.rser.2016.11.167. 

[235] H. Li, Z. Wang, T. Hong, and M. A. Piette, “Energy flexibility of residential buildings: 

A systematic review of characterization and quantification methods and applications,” 

Advances in Applied Energy, vol. 3, p. 100054, Aug. 2021, doi: 

10.1016/j.adapen.2021.100054. 

[236] V. Stavrakas and A. Flamos, “A modular high-resolution demand-side management 

model to quantify benefits of demand-flexibility in the residential sector,” Energy 

Conversion and Management, vol. 205, p. 112339, Feb. 2020, doi: 

10.1016/j.enconman.2019.112339. 

[237] “Status of Power System Transformation 2019: Power system flexibility – Analysis,” 

IEA. Accessed: Jun. 20, 2024. [Online]. Available: https://www.iea.org/reports/status-

of-power-system-transformation-2019 

[238] “EPRI Home.” Accessed: Jun. 20, 2024. [Online]. Available: https://www.epri.com/ 

[239] “Subtasks || IEA EBC || Annex 79.” Accessed: Jul. 07, 2023. [Online]. Available: 

https://annex79.iea-ebc.org/subtasks 

[240] “Demand response,” IEA. Accessed: Jun. 20, 2024. [Online]. Available: 

https://www.iea.org/energy-system/energy-efficiency-and-demand/demand-response 

[241] R. Li et al., “Ten questions concerning energy flexibility in buildings,” Building and 

Environment, vol. 223, p. 109461, Sep. 2022, doi: 10.1016/j.buildenv.2022.109461. 

[242] J. Le Dréau and P. Heiselberg, “Energy flexibility of residential buildings using short 

term heat storage in the thermal mass,” Energy, vol. 111, pp. 991–1002, Sep. 2016, doi: 

10.1016/j.energy.2016.05.076. 

[243] L. Yu et al., “Multi-Agent Deep Reinforcement Learning for HVAC Control in 

Commercial Buildings,” IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 407–419, 

Jan. 2021, doi: 10.1109/TSG.2020.3011739. 

[244] T. Q. Péan, J. Salom, and R. Costa-Castelló, “Review of control strategies for improving 

the energy flexibility provided by heat pump systems in buildings,” Journal of Process 

Control, vol. 74, pp. 35–49, Feb. 2019, doi: 10.1016/j.jprocont.2018.03.006. 

[245] K.-H. Lee, M.-C. Joo, and N.-C. Baek, “Experimental Evaluation of Simple Thermal 

Storage Control Strategies in Low-Energy Solar Houses to Reduce Electricity 

Consumption during Grid On-Peak Periods,” Energies, vol. 8, no. 9, Art. no. 9, Sep. 

2015, doi: 10.3390/en8099344. 

[246] A. D. Carvalho, P. Moura, G. C. Vaz, and A. T. de Almeida, “Ground source heat pumps 

as high efficient solutions for building space conditioning and for integration in smart 

grids,” Energy Conversion and Management, vol. 103, pp. 991–1007, Oct. 2015, doi: 

10.1016/j.enconman.2015.07.032. 



References 

175 

 

[247] G. Masy, E. Georges, C. Verhelst, V. Lemort, and P. André, “Smart grid energy flexible 

buildings through the use of heat pumps and building thermal mass as energy storage in 

the Belgian context,” Science and Technology for the Built Environment, vol. 21, no. 6, 

pp. 800–811, Aug. 2015, doi: 10.1080/23744731.2015.1035590. 

[248] R. De Coninck and L. Helsen, “Practical implementation and evaluation of model 

predictive control for an office building in Brussels,” Energy and Buildings, vol. 111, 

pp. 290–298, Jan. 2016, doi: 10.1016/j.enbuild.2015.11.014. 

[249] R. Halvgaard, N. K. Poulsen, H. Madsen, and J. B. Jørgensen, “Economic Model 

Predictive Control for building climate control in a Smart Grid,” in 2012 IEEE PES 

Innovative Smart Grid Technologies (ISGT), Jan. 2012, pp. 1–6. doi: 

10.1109/ISGT.2012.6175631. 

[250] H. Golmohamadi, K. Guldstrand Larsen, P. Gjøl Jensen, and I. Riaz Hasrat, 

“Optimization of power-to-heat flexibility for residential buildings in response to day-

ahead electricity price,” Energy and Buildings, vol. 232, p. 110665, Feb. 2021, doi: 

10.1016/j.enbuild.2020.110665. 

[251] D. Sturzenegger, D. Gyalistras, M. Morari, and R. S. Smith, “Model Predictive Climate 

Control of a Swiss Office Building: Implementation, Results, and Cost–Benefit 

Analysis,” IEEE Transactions on Control Systems Technology, vol. 24, no. 1, pp. 1–12, 

Jan. 2016, doi: 10.1109/TCST.2015.2415411. 

[252] “Optimal Personal Comfort Management Using SPOT+ | Proceedings of the 5th ACM 

Workshop on Embedded Systems For Energy-Efficient Buildings.” Accessed: Oct. 07, 

2020. [Online]. Available: https://dl.acm.org/doi/10.1145/2528282.2528297 

[253] A. Majumdar, J. L. Setter, J. R. Dobbs, B. M. Hencey, and D. H. Albonesi, “Energy-

comfort optimization using discomfort history and probabilistic occupancy prediction,” 

in International Green Computing Conference, Nov. 2014, pp. 1–10. doi: 

10.1109/IGCC.2014.7039173. 

[254] J. Zhao, K. Lam, B. Ydstie, and V. Loftness, “Occupant-oriented mixed-mode 

EnergyPlus predictive control simulation,” Energy and Buildings, vol. 117, Sep. 2015, 

doi: 10.1016/j.enbuild.2015.09.027. 

[255] M. Goulden, B. Bedwell, S. Rennick-Egglestone, T. Rodden, and A. Spence, “Smart 

grids, smart users? The role of the user in demand side management,” Energy Research 

& Social Science, vol. 2, pp. 21–29, Jun. 2014, doi: 10.1016/j.erss.2014.04.008. 

[256] T. Hargreaves, M. Nye, and J. Burgess, “Keeping energy visible? Exploring how 

householders interact with feedback from smart energy monitors in the longer term,” 

Energy Policy, vol. 52, pp. 126–134, Jan. 2013, doi: 10.1016/j.enpol.2012.03.027. 

[257] J. R. Vázquez-Canteli and Z. Nagy, “Reinforcement learning for demand response: A 

review of algorithms and modeling techniques,” Applied Energy, vol. 235, pp. 1072–

1089, Feb. 2019, doi: 10.1016/j.apenergy.2018.11.002. 

[258] R. Carli, G. Cavone, S. Ben Othman, and M. Dotoli, “IoT Based Architecture for Model 

Predictive Control of HVAC Systems in Smart Buildings,” Sensors, vol. 20, no. 3, Art. 

no. 3, Jan. 2020, doi: 10.3390/s20030781. 

[259] J. Ma, S. J. Qin, and T. Salsbury, “Application of economic MPC to the energy and 

demand minimization of a commercial building,” Journal of Process Control, vol. 24, 

no. 8, pp. 1282–1291, Aug. 2014, doi: 10.1016/j.jprocont.2014.06.011. 

[260] J. H. Yoon, R. Baldick, and A. Novoselac, “Dynamic Demand Response Controller 

Based on Real-Time Retail Price for Residential Buildings,” IEEE Transactions on 

Smart Grid, vol. 5, no. 1, pp. 121–129, Jan. 2014, doi: 10.1109/TSG.2013.2264970. 

[261] G. Bianchini, M. Casini, A. Vicino, and D. Zarrilli, “Demand-response in building 

heating systems: A Model Predictive Control approach,” Applied Energy, vol. 168, pp. 

159–170, Apr. 2016, doi: 10.1016/j.apenergy.2016.01.088. 



 References 

176 

 

[262] J. Cigler, S. Prívara, Z. Váňa, E. Žáčeková, and L. Ferkl, “Optimization of Predicted 

Mean Vote index within Model Predictive Control framework: Computationally 

tractable solution,” Energy and Buildings, vol. 52, pp. 39–49, Sep. 2012, doi: 

10.1016/j.enbuild.2012.05.022. 

[263] P. M. Ferreira, A. E. Ruano, S. Silva, and E. Z. E. Conceição, “Neural networks based 

predictive control for thermal comfort and energy savings in public buildings,” Energy 

and Buildings, vol. 55, pp. 238–251, Dec. 2012, doi: 10.1016/j.enbuild.2012.08.002. 

[264] U. Amin, M. J. Hossain, and E. Fernandez, “Optimal price based control of HVAC 

systems in multizone office buildings for demand response,” Journal of Cleaner 

Production, vol. 270, p. 122059, Oct. 2020, doi: 10.1016/j.jclepro.2020.122059. 

[265] M. Meimand and F. Jazizadeh, “A personal touch to demand response: An occupant-

centric control strategy for HVAC systems using personalized comfort models,” Energy 

and Buildings, vol. 303, p. 113769, Jan. 2024, doi: 10.1016/j.enbuild.2023.113769. 

[266] W. Jung and F. Jazizadeh, “Comparative assessment of HVAC control strategies using 

personal thermal comfort and sensitivity models,” Building and Environment, vol. 158, 

pp. 104–119, Jul. 2019, doi: 10.1016/j.buildenv.2019.04.043. 

[267] Y.-J. Kim, “Optimal Price Based Demand Response of HVAC Systems in Multizone 

Office Buildings Considering Thermal Preferences of Individual Occupants Buildings,” 

IEEE Trans. Ind. Inf., vol. 14, no. 11, pp. 5060–5073, Nov. 2018, doi: 

10.1109/TII.2018.2790429. 

[268] S. S. Kholerdi and A. Ghasemi-Marzbali, “Interactive Time-of-use demand response for 

industrial electricity customers: A case study,” Utilities Policy, vol. 70, p. 101192, Jun. 

2021, doi: 10.1016/j.jup.2021.101192. 

[269] “What Are Peak And Off-Peak Hours For Electricity?” Accessed: Apr. 18, 2024. 

[Online]. Available: https://www.solarreviews.com/blog/peak-hour-electricity-

explained 

[270] “What Are the Off-Peak and Peak Electricity Hours? - Freedom Solar.” Accessed: Apr. 

18, 2024. [Online]. Available: https://freedomsolarpower.com/blog/what-are-the-off-

peak-and-peak-electricity-hours 

[271] N. Badun and T. Zakula, “Proposed RC Model Structure for Estimation of Building 

Performance Using Limited Data,” in Digital proceedings of the 17th SDEWES 

Conference on Sustainable Development of Energy, Water and Environment Systems, 

Cyprus, 2022. 

[272] N. Badun, T. Zakula, and A. Jokic, “Scaling-Up Grey-Box Models for Predicting 

Building Dynamics: Model Structure, Seasonal Variation, and Physical Interpretability,” 

Unpublished, TBA. 

[273] “Market data - Electricity prices for Denmark for 2023.” Accessed: Jan. 20, 2024. 

[Online]. Available: https://www.nordpoolgroup.com/en/Market-data1/Regulating-

Power1/Regulating-Prices1/DK-1/Denmark/?view=table 

[274] R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of PID control, 

tuning methods and applications,” Int. J. Dynam. Control, vol. 9, no. 2, pp. 818–827, 

Jun. 2021, doi: 10.1007/s40435-020-00665-4. 

[275] M. Bird, C. Daveau, E. O’Dwyer, S. Acha, and N. Shah, “Real-world implementation 

and cost of a cloud-based MPC retrofit for HVAC control systems in commercial 

buildings,” Energy and Buildings, vol. 270, p. 112269, Sep. 2022, doi: 

10.1016/j.enbuild.2022.112269. 

[276] H. Johra, A. Marszal-Pomianowska, J. R. Ellingsgaard, and M. Liu, “Building energy 

flexibility: a sensitivity analysis and key performance indicator comparison,” J. Phys.: 

Conf. Ser., vol. 1343, no. 1, p. 012064, Nov. 2019, doi: 10.1088/1742-

6596/1343/1/012064. 



References 

177 

 

[277] “Core KPI Specification and Calculation — BOPTEST Design Requirements and Guide 

0.1.0 documentation.” Accessed: Jun. 17, 2024. [Online]. Available: 

https://ibpsa.github.io/project1-boptest/docs-design/core_kpi.html#thermal-discomfort-

in-a-given-period-of-time 

[278] J. F. Hair, G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. P. Danks, and S. Ray, Partial 

Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook. in 

Classroom Companion: Business. Cham: Springer International Publishing, 2021. doi: 

10.1007/978-3-030-80519-7. 

[279] M. Sarstedt, C. M. Ringle, and J. F. Hair, “Partial Least Squares Structural Equation 

Modeling,” in Handbook of Market Research, C. Homburg, M. Klarmann, and A. E. 

Vomberg, Eds., Cham: Springer International Publishing, 2020, pp. 1–47. doi: 

10.1007/978-3-319-05542-8_15-2. 

[280] N. Lolli, A. Nocente, J. Brozovsky, R. Woods, and S. Grynning, “Automatic vs Manual 

Control Strategy for Window Blinds and Ceiling Lights: Consequences to Perceived 

Visual and Thermal Discomfort,” Journal of Daylighting, vol. 6, no. 2, pp. 112–123, 

Nov. 2019, doi: 10.15627/jd.2019.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

178 

 

 Annex A  
 

Table A.1. Questions from the questionnaire dealing with user preferences on control systems 

Retrieved 

information 
Code Question 5-point Likert scale 

 

Integration 

preference 

CA 

How important is it for you to have the possibility 

of adjusting the lighting, heating, ventilation (air 

quality, amount of fresh air), and cooling 

systems? 

Not at all 

important/Very 

important 

ICA 

To what extent would you prefer to be involved 

in the process of regulating the temperature, air 

quality, or lighting in the room, if these 

conditions were initially controlled automatically. 

Prefer not to be 

involved/Prefer to be 

very involved 

WILL 

If involvement means giving your feedback 

(comfort preferences, complaints) by using an 

interface (e.g. A mobile app), to what extent are 

you willing to participate? 

Not willing at all 

/Very willing 

Automation 

scale 
AP 

Would you prefer your lighting, heating, cooling, 

and ventilation systems to be more manual or 

more automated? 

More manual/More 

automated 

Comfort aspect 

preference 
COMF 

How important are these comfort aspects to you? 

 

-Thermal comfort 

(indoor temperature) 

-Visual comfort 

(lighting) 

-Indoor Air Quality 

(fresh air) Not at all 

important/ important 

User-trust 

UT1 

To what extent would you trust an automated 

control system with your location data, given all 

safety measures were ensured: 

Not trust at all/ 

Completely trust 

 

UT2 

To what extent do you think it would be 

beneficial to provide your feedback (comfort 

preferences, complaints) to the automated control 

system? 

Not at all beneficial/ 

Very beneficial 

Frequency of 

feedback 

FREQ 

How many times per day would you be willing to 

give feedback on your comfort level for the 

indoor conditions? 

Each hour/Every few 

hours/ Only when 

feeling 

uncomfortable. 

Not willing to give 

my feedback 

REM How would you like to report your feedback? 

I would like to report 

whenever I feel like it. 

I would like to be 

reminded to give my 

feedback. 

I don’t want to give 

my feedback at all 
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Manner of 

feedback 
INTF 

What interface would you prefer to use to report 

your feedback? 

Smartphone 

application 

Web-based 

Smartwatch or 

Wristband 

Other please 

specify… 

 EN 

If you could impact the energy consumption of 

your school by reporting your feedback (comfort 

preferences, complaints), would you participate in 

reporting your feedback? 

I do not think this is 

very important, so I 

would not participate. 

Maybe, I am available 

to listen how it works 

and decide if I want to 

participate. 

Yes, I care a lot about 

energy saving and I 

would like to actively 

contribute 

 
FLEX 

WILL 

If I was notified that the energy grid is 

overloaded, I would use less energy and accept 

slightly less comfortable temperatures and dim 

the lights, if I had personal financial gains 

Strongly disagree – 

Strongly agree 

 FIN 

If I was notified that the energy grid is 

overloaded, I would consider using less energy 

and accepting less comfortable conditions, if: 

(1)  I had no financial 

gains. 

(2) The financial gain 

for me is small      (3) 

The financial gain for 

me is moderate, (4) 

The financial gain for 

me is high, (5) I don’t 

care about financial 

gains, I want 

maximum comfort.  

 TIME 

The amount of time during the day when I would 

accept to use less energy and have less 

comfortable conditions if the grid is overloaded 

is:                                     

 

(0) no time at all – (2) 

for a short period of 

time only (1 – 2 

hours) – (3) for longer 

periods (over 2 hours 

per day) (4) All the 

time when needed.  
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Table A.2. TPB questionnaire  

Construct 

name 
Subconstruct 

Question 

name 
Questions 

Attitude Behavioural 

beliefs 

BB1 For me, reporting  my feedback to the control system during 

the day would be pleasant. 

BB2 If I give my feedback to the control system, I can save more 

energy 

BB3 If I give my feedback to the control system, I can protect 

the environment 

BB6 The energy problem concerns the whole society and 

everyone is responsible to save energy 

BB7 I am aware of how control systems can save energy in 

buildings 

Outcome 

evaluation 

OE8 If I communicate with the automated control system 

through my feedback, I would feel more satisfied with the 

comfort conditions 

OE9 If I was notified of how much energy I saved, I would be 

more committed to reporting my feedback 

OE10 If I would have personal gains due to energy savings, I 

would be more willing to provide my feedback 

OE11 I would be more committed to reporting my feedback if I 

was notified of how my comfort preference affects the 

environment 

Subjective 

Norms 

Normative 

beliefs 

NB12 Most people whose opinions I value would agree with me 

reporting my feedback to adjust indoor conditions 

NB13 If I participate by giving my feedback to adjust indoor 

conditions, this would set a good example for my peers 

Motivation 

to comply 

MC14 In general, I care greatly about how my friends or 

colleagues act, and I will do the same as them 

MC15 I will do what my teachers/superiors ask me to do in regards 

to giving my feedback to adjust indoor conditions.  

Perceived 

Behavioural 

Control 

Control 

beliefs 

CB16 I am confident that I can provide my feedback several times 

during the day 

Influence of 

control 

beliefs 

ICB18 The type of user interface to report my feedback will affect 

my willingness to participate 

ICB19 The requested frequency to report my feedback will affect 

my willingness to give my feedback 

Generalized 

Intention 

 GI20 I am willing to participate/communicate with the user-

centered control system (a system that takes into account 

my feedback when controlling temperatures, air quality, and 

lights). 

GI21 I intend to report my feedback whenever I feel 

uncomfortable 

GI22 I am willing to encourage my friends or colleagues to 

participate in reporting their feedback to the control system.  
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 Annex B 
 

B1. Statistical analysis of the survey data with Structural Equation Modelling (SEM) 

This Annex shows the detailed statistical analysis for Chapter II. The results from the 

measurement model are presented in Table B.1.The CV shows how well the questions measure 

the constructs. Although some constructs have lower AVE than the recommended threshold, 

they are still acceptable considering that the Cronbach’s alpha and the CR meet the criteria.  

Furthermore, the factor loadings for some questions are lower than the recommended values 

between 0.4 and 0.7 [83], or as other state the factor loadings need to be at least 0.7 according 

to [83], larger than 0.5 [78], etc. In this study, some loadings did not reach the desired 0.7. 

However, the items with factor loadings of less than 0.7 were still retained, according to [67], 

as it was tested that their deletion did not significantly improve the reliability of the model. 

AVE reached the acceptable levels for all constructs as suggested by [278]. Lastly, the 𝐶𝑅 >

0.7 was reached, showing that the chosen questions are reliable. The Cronbach’s alpha 𝛼 > 0.6 

was reached for all constructs, meaning the questionnaire is consistent. 

The divergent validity enables us to evaluate the diversity among questions so that each 

one measures something else or differs from one another. The metrics used to establish 

divergent validity is either through Fornell-Larcker criterion (FL criterion) or through HTMT 

ratio [78]. The results for the  FL criterion for all three models were presented in Table B.2, 

B.3, and B.4, respectively, which show good DV values since each set of questions performs 

best on their mother construct (e.g., Attitude questions have a higher value in the Attitude 

construct than the others.  

In conclusion, the measurement model confirms that this questionnaire is a valid and 

reliable measuring instrument to predict occupant behaviour for feedback-reporting behaviour 

in human-centered control systems.  

The proposed hypotheses to establish relationships between influencing factors and the 

target (the willingness of occupants to interact with HCC by reporting feedback) are formulated 

as shown below. The hypotheses for models M2 and M3 are formulated based on Figure 2.5 in 

Chapter II, which also represents the proposed framework to predict the willingness of users to 
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engage in grid flexibility actions (M3). The descriptions of the proposed hypotheses, are as 

follows:  

  H1: The fundamental constructs of TPB (the Attitude, Subjective norms, and Perceived 

Behavioural Control) significantly impact user willingness to share data with HCC for 

indoor environmental control. 

  H2: The demographic characteristics significantly impact user willingness: 

a. To share data with HCC for indoor environmental control. 

b. To engage in grid flexibility actions. 

  H3: Notifications or nudges sent to users significantly impact: 

a. User willingness to share data with HCC for indoor environmental control. 

b. User willingness to engage in grid flexibility actions. 

c. The Perceived Behavioral Control (perceived capability of users) to share data 

with HCC for indoor control or to engage in grid flexibility actions. 

  H4: User preferences for control systems (control access, automation level, using 

HCC) significantly impact: 

a. User willingness to share data with HCC for indoor environmental control. 

b. User willingness to engage in grid flexibility actions. 

c. User attitudes toward sharing data with HCC for indoor control and engaging 

in grid flexibility actions. 

  H5: User trust significantly impacts: 

a. User willingness to share data with HCC for indoor environmental control.  

b. User willingness to engage in grid flexibility actions.  

c. User attitudes to share data with HCC and engage in grid flexibility actions.  

d. The Perceived Behavioral Control (perceived user capability) to share data 

with HCC and engage in grid flexibility actions.  

  H6: Personal gains significantly impact user willingness to engage in grid flexibility 

actions.  

  H7: Time duration significantly impacts user willingness to engage in grid flexibility 

actions.  

  H8: User willingness to share data with HCC for indoor climate control significantly 

impacts user willingness to engage in grid flexibility actions. 
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Table B.1. Results of the measurement model of models M1, M2, and M3 

 

 

 

 

   Model M1 Model M2 & M3 

   𝜷 𝜶 CR AVE 𝜷 𝜶 CR AVE 

Attitude (ATT) 
Behavioural 

beliefs 
BB1 0.72 0.87 0.90 0.51 0.74 0.83 0.88 0.51 

  BB2 0.82    0.84    

  BB3 0.79    0.80    

  BB6 0.67    0.68    

  BB7 0.52    0.57    

 Outcome 

evaluation 
OE8 0.75    0.78    

  OE9 0.76        

  OE10 0.54    0.52    

  OE11 0.77        

Subjective 

Norms (SN) 

Normative 

Beliefs 
NB12 0.86 0.75 0.86 0.66 0.86 0.70 0.80 0.52 

  NB13 0.88    0.88    

 Motivation to 

Comply 
MC14 0.45    0.45    

  MC15 0.60    0.60    

Perceived 

Behavioural 

Control (PBC) 

Control Beliefs CB16 0.70 0.54 0.76 0.51 0.69 0.54 0.76 0.51 

 Influence of 

control beliefs 
ICB18 0.79    0.80    

  ICB19 0.64    0.66    

Intention (INT)  GI20 0.87 0.70 0.80 0.52 0.87 0.75 0.86 0.66 

  GI21 0.78    0.78    

  GI22 0.79    0.79    

User 

preferences 

(UP) 

 AP     0.29 0.60 0.77 0.48 

  CA     0.67    

  ICA     0.81    

  WILL     0.86    

User trust (UT)  UT1     0.82 0.61 0.84 0.72 

  UT2     0.87    

Notifications 

received (NOT) 
 OE9     0.92 0.81 0.91 0.84 

  OE11     0.91    

Demographics (DM) SEX     0.72 0.44 0.78 0.64 

  AGE     0.87    

Duration (DUR)  TIME     1.00    

Financial Gains (FG) FIN     1.00    

Willingness to engage in Grid 

Flexibility actions (GR) 

FLEX 

WILL 
    0.80 0.51 0.80 0.67 

 EN     0.84    



Annex B 

184 

 

Table B.2. FL criterion for model M1 

 ATT INT PBC SN 

Attitude 0.73*    

Behavioral Intention 0.71 0.82   

Perceived Control 0.62 0.63 0.72  

Social Norms 0.67 0.64 0.49 0.72 

*The top value in a column should be the highest.  

 

Table B.3. FL criterion for model M2 

 ATT DM BI NOT PBC SN UP UT 

Attitude 0.72*        

Demographics 0.18 0.80       

Intention to Report Feedback 0.71 0.18 0.82      

Notifications 0.69 0.21 0.60 0.92     

Perceived Control 0.60 0.14 0.63 0.50 0.72    

Social Norms 0.65 0.07 0.64 0.58 0.49 0.72   

User preference 0.50 0.25 0.49 0.38 0.37 0.41 0.70  

User trust 0.63 0.15 0.60 0.48 0.49 0.48 0.54 0.85 

*The top value in a column should be the highest.  

Table B.4. FL criterion for model M3 

 ATT DM DUR INT NOT PBC FG SN UP UT GR 

ATT 0.72           

DM 0.18 0.80          

DUR 0.27 0.04 1.00         

INT 0.71 0.18 0.19 0.82        

NOT 0.69 0.21 0.25 0.60 0.92       

PBC 0.60 0.14 0.14 0.63 0.50 0.72      

FG -0.18 -0.15 -0.26 -0.13 -0.22 -0.06 1.00     

SN 0.65 0.07 0.24 0.64 0.58 0.49 -0.11 0.72    

UP 0.50 0.25 0.07 0.49 0.37 0.37 0.01 0.40 0.70   

UT 0.63 0.15 0.15 0.60 0.48 0.49 -0.08 0.48 0.53 0.85  

GR 0.60 0.27 0.38 0.51 0.55 0.41 -0.26 0.48 0.37 0.42 0.82 

*The top value in a column needs to be the highest. 
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Table B.5. Structural modeling results, hypothesis testing, and path coefficients of model M2 

 Relationship 
Path 

weight 𝜷 

T 

statistic 

P 

value 

Confidence 

interval Hypothesis 

2.50% 97.50% 

H1 

Attitude → Intention to 

Report Feedback 
0.264 6.667 0.000 0.185 0.339 Supported 

Social Norms→Intention 

to Report Feedback 
0.216 7.54 0.000 0.156 0.270 Supported 

Perceived Control → 

Intention to Report 

Feedback 

0.23 7.764 0.000 0.171 0.288 Supported 

H2a 

Demographics → 

Intention to Report 

Feedback 

0.028 1.428 0.153 -0.011 0.066 Rejected 

H3a 
Notifications → Intention 

to Report Feedback 
0.079 2.427 0.015 0.018 0.146 Supported 

H3c 
Notifications → Perceived 

Control 
0.343 9.425 0.000 0.271 0.414 Supported 

H4a 

User preference → 

Intention to Report 

Feedback 

0.079 2.969 0.003 0.027 0.131 Supported 

H4c 
User preference → 

Attitude 
0.228 7.356 0.000 0.166 0.288 Supported 

H5a 
User trust → Intention to 

Report Feedback 
0.126 4.358 0.000 0.07 0.184 Supported 

H5c User trust → Attitude 0.511 16.45 0.000 0.447 0.569 Supported 

H5d 
User trust → Perceived 

Control 
0.327 9.543 0.000 0.257 0.391 Supported 

 

Table B.6. Structural modeling results, hypothesis testing, and path coefficients of model M3 

 Relationship 
Path 

weight 𝜷 

T 

statistic 

P 

value 

Confidence 

interval Hypothesi

s 
2.50% 97.50% 

 
Attitude → Intention to 

Report Feedback 
0.263 6.667 0.000 0.185 0.339 Supported 

H1 

Social Norms →  

Intention to Report 

Feedback 

0.216 7.626 0.000 0.158 0.270 Supported 
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Perceived Control →  

Intention to Report 

Feedback 

0.231 7.807 0.000 0.172 0.288 Supported 

H2a 

Demographics →  

Intention to Report 

Feedback 

0.028 1.381 0.167 -0.012 0.066 Rejected 

H2b 

Demographics → 

Willingness to Engage in 

Grid Flexibility 

0.121 4.9 0.000 0.072 0.169 Supported 

H3a 

Notifications →  

Intention to Report 

Feedback 

0.079 2.425 0.015 0.017 0.146 Supported 

H3b 

Notifications →  

Willingness to Engage in 

Grid Flexibility 

0.272 7.722 0.000 0.203 0.341 Supported 

H3c 
Notifications →  

Perceived Control 
0.342 9.386 0.000 0.270 0.414 Supported 

H4a 

User preference →  

Intention to Report 

Feedback 

0.079 3.008 0.003 0.028 0.132 Supported 

H4b 

User preference →  

Willingness to Engage in 

Grid Flexibility 

0.098 3.025 0.002 0.036 0.161 Supported 

H4c 
User preference →  

Attitude 
0.226 7.283 0.000 0.164 0.286 Supported 

H5a 
User trust →  Intention 

to Report Feedback 
0.127 4.382 0.000 0.071 0.184 Supported 

H5b 

User trust →  

Willingness to Engage in 

Grid Flexibility 

0.07 1.964 0.040 0.001 0.139 Supported 

H5c User trust →  Attitude 0.513 16.559 0.000 0.450 0.571 Supported 

H5d 
User trust →  Perceived 

Control 
0.327 9.509 0.000 0.257 0.391 Supported 

H6 

Personal gains→ 

Willingness to Engage in 

Grid Flexibility 

-0.096 3.444 0.001 -0.151 -0.042 Supported 

H7 

Duration →  Willingness 

to Engage in Grid 

Flexibility 

0.234 9.093 0.000 0.182 0.282 Supported 

H8 

Intention to Report 

Feedback →  

Willingness to Engage in 

Grid Flexibility 

0.175 4.644 0.000 0.102 0.248 Supported 
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The predictive potential of the model measured using the explained variance 𝑅2, the 

model fit through the SRMR factor, and the 𝑄2, computed through Smart PLS. These are 

presented in Table B.8. The acceptable results of SRMS range in values that are less than 0.1 

[83] and for a more conservative threshold, it is 0.08 [84].). The yielded values satisfy the 

conditions according to [83] and are at a boundary value with  [84].  𝑄2 presents the predictive 

relevance that needs to be greater than zero to be relevant according to [279]. The results show 

that all models have predictive relevance. Since the 𝑅2 of the intention to engage in grid 

flexibility action is lower than 0.5 but considering the novel concept of grid flexibility to the 

respondents and the fact that the 𝑄2 and SRMR have acceptable levels, an almost moderate 

predictive potential of 𝑅2 can be accepted. 

Table B.8. The predictive power of the models measured with 𝑅2  (the explained variance), 

SRMR (the model fit), and 𝑄2 (the predictive relevance of the model) 

Prediction metrics Model M1 Model M2 Model M3 

 A* A A B 

𝑅2 0.619 0.639 0.639 0.452 

SRMR 0.086 0.081 0.077 0.077 

𝑄2 0.615 0.54 0.541 0.434 

*A-Willingness to share data with HCC, B-Willingness to engage in grid flexibility actions 
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Annex C 
 

Table C.1 The questions used in the HComfort smartphone application to collect user 

feedback on multiple comfort aspects   

 Measured 

parameter 

 

Question Answer 

Indoor Air 

Quality 

Air quality 

sensation 

How does the air quality feel 

to you? 

Just right 

Slightly stuffy  

Stuffy 

Very stuffy 

Air quality 

preference 

How would you prefer the air 

to be? 

No change  

More fresh air 

Humidity 

sensation 

How does the air humidity feel 

to you? 

Dry  

Slightly dry  

Just right  

Slightly humid  

Very humid  

IAQ Comfort  In terms of air quality only, 

how would you describe your 

current comfort level? 

Comfortable  

Uncomfortable 

Thermal 

Comfort 

Thermal 

preference [28] 

How would you prefer the 

room temperature?  

Cooler  

No change  

Warmer 

Thermal 

sensation  [280] 

How do you currently feel? Hot 

Warm 

Slightly warm 

Neutral 

Slightly cool 

Cool  

Cold  

Air movement 

preference * 

How would you like the air 

movement to be?  

Less  

No change  

More 

Thermal 

comfort 

In terms of Thermal comfort, 

how would you describe your 

current comfort level? 

 

Comfortable 

Uncomfortable 

Visual 

Comfort 

Illuminance 

sensation  [280] 

Describe the current lighting Too dark 

Dark 

Just right 

Bright 

Too bright 

Lighting 

preference 

How would you like the 

brightness level to be? 

Dimmer 

No change 

Brighter 

Glare sensation 

[162] 

What degree of glare are you 

experiencing? 

Imperceptible (no glare) 

Perceptible (little glare) 

Disturbing (significant glare) 
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Intolerable (Extreme glare) 

Shading use* Do you need to use the blinds? Yes 

No 

Visual comfort In terms of Visual comfort 

only, how would you describe 

your current comfort level? 

Comfortable 

Uncomfortable  

Health & 

Wellbeing 

General 

Comfort 

In general, including all 

comfort aspects, are you 

comfortable at the moment? 

Comfortable 

Uncomfortable 

Comfort aspect 

impact * 

Which aspect is affecting your 

comfort the most currently? 

 

IAQ 

Thermal 

Visual 

Acoustic 

None of the above 

IEQ satisfaction Overall, how satisfied are you 

with the indoor environment?  

 

Very dissatisfied  

Dissatisfied  

Somewhat dissatisfied  

Neutral 

Somewhat satisfied  

Satisfied  

Very satisfied  

Productivity * How would you rate your 

current productivity level? 

Very productive  

Productive  

Neutral  

Unproductive  

Very unproductive  

Health 

symptoms * 

Have you experienced any 

health symptoms related to the 

indoor environment?  

No  

Headache  

Respiratory issues 

Allergies  

Dry eyes or skin 

Other 

Mood * What is your current mood? Happy 

Content 

Calm & relaxed  

Bored 

Annoyed 

Stressed  

Angry 

Sad 

State/Condition 

* 

Describe your current state Hungry 

Thirsty 

Tired 

Sleepy 

Energetic  

Neutral 

* The questions with the (*) sign, were removed in the field experiment, to shorten the length of the 

survey and to avoid survey fatigue considering that the contribution of these features was minor as 

assessed in the lab experiment. 

 

 

 



 

190 

 

Annex D 
 

This annex shows some more findings from the lab experiment including comfort-

related results, how different comfort aspects correlate, why it is important to measure comforts 

separately (e.g., thermal comfort, IAQ, visual comfort) and not as a unit, how user satisfaction 

correlates to comfort and exploring the relationship between comfort, productivity, mood and 

health conditions.  

The distribution of user-reported comfort varied significantly on a day-to-day basis 

during the lab experiment. Figure D.1., shows the changes in perceived comfort for all 

participants for different days for IAQ, thermal and visual comfort. Furthermore, how the 

perceived overall comfort differs depending on varying levels of CO2 and air temperature, is 

shown in Figure D.2. 

 

 

Figure. D.1.a) Distribution of comfort votes by for IAQ (upper) and thermal (lower) and 

daily measurements. Left: Distribution plots show data spread. Right: Bar plots highlight 

detailed distribution 
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Figure. D.1.b) Distribution of comfort votes by aspect for visual comfort and daily 

measurements. Left: Distribution plots show data spread. Right: Bar plots highlight detailed 

distribution 

 

Figure D.2. Distribution of perceived overall comfort based on air temperature and CO2 level 

The correlation between CO2 levels and air temperature, and their impact on IAQ 

comfort, thermal comfort and the overall reported comfort are shown in Figure D.3. This figure 
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shows the aggregated data for all days for different users for the lab experiment. The significant 

difference among users is clearly depicted emphasizing the variety of preferences within the 

same indoor conditions. It is interesting to notice that overall comfort resembles IAQ and 

thermal comfort votes but is not exactly like either of them. Therefore, it is important to clearly 

distinguish the comfort aspects when collecting occupant feedback.  

 

 

Figure D.3. Comparison of how different reported perceived comfort (IAQ, thermal and 

overall comfort) changes depending on CO2 level and air temperature. Upper row: IAQ 

comfort, middle: Thermal comfort, lower row: Overall comfort 

 

To have a clearer vision of the change in IAQ, thermal and overall comfort reported by 

users in terms of CO2 and air temperature, Figure D.4. shows the data for only one day among 

the 3 weeks of experiment, as an example of how the occupant perceptions change for some of 

the users in the experiment. 
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Figure D.4. Comparison of how different reported perceived comfort (IAQ, thermal and 

overall comfort), for different users (2,3,4) change depending on CO2 level and air 

temperature. Upper row: IAQ comfort, middle: Thermal comfort, lower row: Overall comfort 

 

Achieving higher occupant satisfaction is one of the fundamental aims of HCC, 

alongside a higher comfort level for occupants. The correlation between occupant satisfaction 

and perceived comfort was investigated in Figure D.5. with data collected in the lab 

experiment. The findings show that the participants might be dissatisfied with the indoor 

conditions but still report being comfortable. However, when they are satisfied, they rarely 

report discomfort for IAQ and thermal, but for visual there are some cases considering the high 

impact seating or position have in visual comfort. 
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Figure D.5. Correlation between occupant satisfaction and comfort for IAQ, thermal and 

visual comfort 

Figure D.6 shows the correlation of the responses of perceived comfort, productivity, 

mood, condition, and health symptoms of participants using a Sankey diagram. The findings 

show that most occupants reported being productive when they were comfortable, whereas 

when unproductive was reported, most of the time the occupants were uncomfortable. 

Furthermore, self-reported votes of productive, and very productive are more related to positive 

moods like happiness, content, calm and relaxed whereas uncomfortable and unproductiveness 

is more related to negative feelings like annoyed, bored, stressed. Moreover, based on the state 

or conditions of the participants, the majority had neutral feelings, followed by sleepy then 

energetic. Lastly, in terms of reported health symptoms, the majority showed no health 

symptoms, but sometimes headache, dry eyes or skin, and respiratory issues were reported. 

However, the cause-and-effect relationship of these correlations needs to be studied more to 

extract generalizable statements.  
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Figure D.6.  Sankey diagram of the relationship between comfort, productivity, mood, 

condition, and health symptoms for all users of the lab experiment 

 

D.1. Analysis on the amount of datapoints needed for PCMs with reduced inputs 

Figure D.7. shows how the model performance (F1 score) stabilizes with the increase 

of available data points for models that are built upon a reduced number of inputs. Furthermore, 

the change and stability of specificity is also depicted for all-inputs PCMs (Figure D.8.) and 

reduced inputs PCMs (Figure D.9).  

 

Figure D.7. Comparison of prediction accuracy (F1 score) of PCMs depending on the 

number of data points for all comfort aspects. Data are shown for the models with reduced 

inputs 
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Figure D.8. Comparison of prediction accuracy (Specificity) of PCMs depending on the 

number of datapoints for all comfort aspects. Data are shown for the models with all initial 

inputs 

 

Figure D.9. Comparison of prediction accuracy (Specificity) of PCMs depending on the 

number of datapoints for all comfort aspects. Data are shown for the models with reduced 

inputs
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Annex E  
 

Figure E.1. shows the depiction of the model performance for PCMs of Group I – “High 

engagement” occupants when using preference-based models. Due to the small number of data 

points, the model performance is lower than the models of the lab experiment. 

Figure E.1. The comparison of model performance measured with F1 score for each user for 

Group I – “High engagement” occupants. Results are shown for IAQ PCMs (left), thermal 

PCMs (middle), and visual PCMs (right). Preference-based models are tested for Group I. 

 

 

Figure E.2 compares the effectiveness of comfort-based PCMs and preference-based 

PCMs for different comfort aspects. The average F1 scores for all users in Group I – “High 

Engagement” show that while comfort-based PCMs occasionally outperform preference-based 

PCMs for thermal and IAQ comfort, the overall average difference across all users and comfort 

aspects is minimal. This suggests that comfort-based binary classification models can be 

effectively used. If integrating comfort-based models into control systems, it is crucial to 

provide clear instructions to occupants on reporting their feedback: “uncomfortable” should 

indicate a need for change in indoor conditions, and “comfortable” should mean no changes 

are needed.  
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Figure E.2. Comparison of the performance preference-based models and comfort-based 

models for Group I 
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Annex F 
 

F.1. Comparison of energy consumption, costs, load shifting, and comfort for different 

control strategies 

In the following sections, the detailed simulation results to evaluate the performance of 

different control strategies under different conditions are presented. First the results for peak 

hours are presented and then for the entire day.  

Results on energy consumption, costs, load shifting, and comfort for peak hours. 

Figure F.1.  presents detailed results for different scenarios during peak hours, showing energy 

consumption in kWh for both summer and winter. It also includes energy savings in kWh and 

percentage, as well as the load shifting ability. The results show that while MPC saves the most 

energy during heating season, the DR-HC-MPC saves the most energy in both heating and 

cooling season compared to the baseline scenario which is standard PID. Unsurprisingly, the 

DR-HC-MPC has the highest load shifting ability during both heating and cooling season.  

 

Figure F.1. KPIs during peak hours for energy consumption (a), energy savings (b), 

percentage of energy savings (c), and load shifting ability (d) are presented separately for the 

winter season (heating periods, in red) and summer season (cooling periods, in blue) 
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Figure F.2. shows the total costs (EUR), cost savings (EUR), cost savings in percentage 

and the thermal discomfort. The results show that integrating user preferences into 

conventional controllers like PID during heating season causes a significant increase in costs. 

A cost increase during the heating season is also caused when integrating user preferences into 

the MPC controller, but only in heating season, as during cooling season there are significant 

cost savings. The DR-HC-MPC enables cost savings in both heating and cooling season while 

adhering to occupant preferences, although the savings during heating season are only 4.6% 

but during cooling season they reach up to 97.9%. As per the thermal comfort, the highest 

comfort is achieved when integrating user preferences into PID or MPC, but these are 

accompanied with higher cost. The DR-HC-MPC enables higher comfort than standard PID 

(the baseline) but lower than the HC-PID or HC-MPC. But this is the trade-off between cost 

savings and comfort, where this dicomfort occurs only for two hours during peak times and not 

the whole day.  

 

Figure F.2. KPIs during peak hours for electricity cost (a), cost savings (b), percentage of 

cost savings (c), and thermal discomfort (d) are presented separately for the winter season 

(heating periods, in red) and summer season (cooling periods, in blue) 

 

The energy pricing model significantly impacts the energy costs of the PID scenario 

even if PID doesn’t consider electricity prices. In Figure F.3. The impact of the fixed and 

dynamic electricity prices used for the reference PID scenario significantly changes the yielded 
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costs for all scenarios since the reference point changes, indicating that, in general, static costs 

cause lower costs than dynamic prices.   

 

Figure F.3. Comparison of cost savings during peak hours in heating and cooling seasons, 

contrasting (a) fixed electricity prices with two tariffs (left) and (b) dynamic electricity 

pricing (right) 

 

Figure F.4. Comparison of peak hour cost savings, aggregating heating and cooling seasons, 

under (a) fixed electricity prices with two tariffs (left) and (b) dynamic electricity pricing 

(right) 

Results on energy consumption, costs, load shifting, and comfort for the entire day. 

To understand the implications of different scenarios throughout the entire day, not just during 

peak hours, results are also presented for the entire period when the building is occupied, from 

06:00 to 20:00. Figure F.5. shows the results for heating and cooling season, separately, and 

Figure F.6. for both seasons, cumulatively. The results indicate similar outcomes to the analysis 

of the peak hours. Figure F.6 highlights the significant impact of integrating user preferences 

and engaging occupants in demand response: increased comfort compared to the standard PID 

baseline (86.1 Kh compared to 591.7 Kh), a 7.1% increase in cost savings, and a higher load-

shifting ability of 39.7%. 
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Figure F.5. KPIs for the entire day while occupied (06:00 – 20:00) for percentage energy 

savings (a), percentage cost savings (b), load shifting (c), and thermal discomfort (d) are 

presented separately for the winter season (heating periods, in red) and summer season 

(cooling periods, in blue) 

 

 

Figure F.6. KPIs for the entire day while occupied (06:00 – 20:00) for percentage energy 

savings (a), percentage cost savings (b), load shifting (c), and thermal discomfort (d) are 

presented for aggregated heating and cooling seasons  
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Figure F.7 and Figure F.8 show that energy cost savings throughout the entire day vary 

depending on whether PID control is used with fixed or dynamic electricity price models. When 

using dynamic electricity prices, the PID control that integrates user preferences incurs 

approximately twice the costs compared to when fixed electricity prices are used. 

 

Figure F.7.  Comparison of cost savings for PID control in heating and cooling seasons, 

contrasting (a) fixed electricity prices with two tariffs (left) and (b) dynamic electricity 

pricing (right), for the entire day when occupied (06:00-20:00) 

 

Figure F.8. Comparison of cost savings for PID control, aggregating heating and cooling 

seasons, under (a) fixed electricity prices with two tariffs (left) and (b) dynamic electricity 

pricing (right), for the entire day when occupied (06:00 to 20:00) 
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