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Abstract

In modern times, the use of advanced manufacturing techniques such as 3D printing
or sintering allows for the creation of specific heterogeneous structures at the nano,
i.e. microlevel, which can eventually lead to advantageous thermal, electrical or
mechanical properties at the macrolevel. Since the behaviour of modern engineering
materials is directly influenced by the behaviour of their microstructure, the use of
classical phenomenological constitutive relations is insufficient when considering highly
localized effects such as plasticity or damage. Therefore, the discovery of accurate and
efficient numerical procedures for the description of material behaviour that take into
account the contribution of each individual microconstituent is becoming increasingly
important.

Concurrent multiscale methods are able to overcome the limitations of classical
continuum mechanics by establishing a direct link between the microscale and the
response of the material at the macroscale through the process of homogenization.
This computational approach is based on the solution of two boundary value problems,
one at each scale. Homogenized results obtained by the simulation of a statistically
representative sample of material, named Representative Volume Element (RVE), are
used as input data at the macrolevel. Direct numerical simulation (DNS), performed
by the finite element method (FEM) or the fast Fourier transformation (FFT), is
the most accurate and flexible method for solving the RVE boundary value problem.
However, due to the significant number of degrees of freedom (DOF), DNS can be
very consuming in terms of time and computational resources.

Concurrent multiscale methods have become a valuable tool in the numerical
modelling of material failure since the highly localized phenomena, such as damage,
occur at the lower levels first and cannot be captured appropriately using classi-
cal continuum mechanics. Today, multiscale modelling of damage in heterogeneous
materials represents a particularly interesting and demanding topic in the field of
computational mechanics. On the one hand, by modelling small domains of a material,
concurrent multiscale methods which employ DNS for solving RVE boundary value
problem can improve the accuracy and predict material failure. On the other hand,
high computational costs that come along with concurrent multiscale methods are a



major obstacle in the analysis of realistic macrostructures. Moreover, incorporating
damage into the concurrent multiscale procedure is a significant challenge in itself. The
simple homogenization scheme that can be used for acquiring macroscopic stress-strain
response will encounter stability issues when the material experiences strain softening.
Also, studies have shown that the macroscopic value of material damage cannot be
well captured by applying direct homogenization of the damage parameter at the
lower levels, as it will eventually lead to non-physical results. In addition to that, the
use of either discrete or continuum damage models at the macroscale exhibits certain
challenges. For the continuum damage model at the macroscale, pathological mesh
dependency will occur if the nonlocal damage model is not applied. Discrete damage
models on the other hand require additional fracture criteria to address the questions
about the macro crack trajectory, but also suffer from mesh dependency since the
macroscopic crack propagates along element’s edges.

In this research, a novel multiscale procedure capable of describing static
fracture processes in both brittle and ductile heterogeneous materials for both two-
and three-dimensional problems is developed. The novel procedure includes the use of a
reduced-order homogenization method called self-consistent clustering analysis (SCA)
and a nonlocal continuum damage theory called phase-field. SCA and phase-field
fracture formulations are implemented at the microlevel and macrolevel, respectively.
The issue of high computational costs, that comes with the use of concurrent multiscale
methods that employ DNS at the microlevel, is circumvented by the utilization of the
SCA. On the other hand, nonlocal continuum damage formulation, such as phase-field,
at the macrolevel ensures objectivity and mesh independence of the final results. In
this way, the calculation of the material degradation at the macrolevel does not include
any kind of damage analysis at the microlevel, which provides additional stability of
the concurrent approach.

The developed concurrent procedure is implemented into commercial finite
element software Abaqus through UEL and UMAT user subroutines, and is exhaustively
tested on a large number of different geometrical specimens. Presented examples include
multiscale analysis with simple unit cell/sphere microstructures, but also complex ones
which were obtained from experimental metalography of nodular cast iron. Since special
attention is given to the computational efficiency, a detailed discussions regarding the
proposed implementation’s CPU time usage are also provided.

Keywords: microlevel, macrolevel, concurrent multiscale methods, heterogeneous
material, RVE, homogenization, self-consistent clustering analysis, phase-field, Abaqus,
k-means clustering, Lippmann-Schwinger equation, Green’s function, material cluster



Prošireni sažetak

Uvod
U moderno vrijeme težnja za pouzdanim, trajnim i učinkovitim konstrukcijskim kompo-
nentama u konstantnom je porastu. S ciljem postizanja što viših stupnjeva učinkovitosti
te što nižih troškova proizvodnje nužno je poznavanje specifičnih fizikalnih svojstava
modernih inženjerskih materijala, kojih je u današnje vrijeme sve više i više. Ko-
rištenjem naprednih tehnologija proizvodnje kao što su 3D printanje i sinteriranje
omogućeno je stvaranje heterogenih struktura odgovarajuće geometrije na nano, tj.
mikrorazini, koje u konačnici mogu dovesti do povoljnih mehaničkih, toplinskih i elek-
tričnih svojstava na makrorazini. Mehanička svojstva modernih heterogenih materijala
na makrorazini izravna su posljedica međusobne interakcije materijalnih konstituenata
na nano, tj. mikrorazini. Višerazinska priroda heterogenih materijala od izuzetne je
važnosti i do danas predstavlja veliku prepreku u njihovom numeričkom modeliranju.
Klasična mehanika kontinuuma opisuje uprosječeno ponašanje materijala, odnosno ne
uzima u obzir pojedinačne doprinose svakog pojedinog mikrokonstituenta koji tvori
materijal. Pri pojavi visokolokaliziranih fenomena, kao što su plastičnost i oštećenje,
upotreba klasičnih fenomenoloških relacija ne dovodi do kvalitetnih rezultata. Stoga je
razvoj točnih i učinkovitih numeričkih postupaka za opisivanje ponašanja heterogenih
materijala, koji u obzir uzimaju doprinos od svakog pojedinačnog mikrokonstituenta,
u fokusu brojnih znanstvenih istraživanja i projekata.

Numeričko modeliranje heterogenih materi-
jala
Jedan od brojnih načina numeričkog modeliranja heterogenosti predstavlja upotreba
izravnih, tj. direktnih numeričkih simulacija (eng. direct numerical simulation, DNS)
pri čemu se heterogena mikrostruktura modelira izravno - bez pojednostavljenja. Ovo



predstavlja najprecizniju, ali i ujedno računalno najzahtjevniju metodu modeliranja
heterogenih materijala, budući da ukupan broj stupnjeva slobode vrlo brzo može
dosegnuti iznimne vrijednosti - prevelike za bilo koje moderno računalo.

Poopćena mehanika kontinuuma, poznata i kao teorija gradijenata višeg reda,
predstavlja jedan od prikladnijih načina opisivanja mehaničkog ponašanja hetero-
genih materijala. Proširivanjem tenzora malih deformacija ili tenzora gradijenta de-
formiranja s gradijentima višeg reda, osigurava se kvalitetno opisivanje nelinearnog
i visokolokaliziranog ponašanja kao što je plastičnost ili oštećenje. Na ovaj način,
informacije s nižih razina su izravno ugrađene u numerički proračun bez potrebe za
analizom same mikrostrukture. U ovom trenutku, dva najveća izazova koja se javljaju
prilikom korištenja poopćene mehanike kontinuuma su visoki računalni troškovi te
pojava velikog broja materijalnih parametara, čije eksperimentalno određivanje u
većini slučajeva nije moguće.

S druge strane, višerazinske (eng. multiscale) metode predstavljaju skup nu-
meričkih postupaka s mogućnošću analiziranja mehaničkog ponašanja heterogenog
materijala na više razina. Izravna posljedica kod korištenja ovih metoda jest ovisnost
između različitih razina, gdje rješenje s jedne razine izravno utječe na rješenja druge
razine. Iako postoji značajan broj višerazinskih metoda, one se općenito dijele na
konkurentne, sekvencijalne, homogenizacijske, paralelne, hibridne i hijerarhijske.

Konkurentne višerazinske metode predstavljaju najpopularniju i najčešće ko-
rištenu klasu višerazinskih metoda. Ove metode karakterizira izravna veza između
niže razine i odziva materijala na višoj razini, koja se ostvaruje korištenjem procesa
homogenizacije. Niža razina je najčešće vezana za mikrostrukturu materijala, dok
se viša (makro) razina odnosi na konstrukcijsku komponentu koja se proračunava.
Tijekom analize, svojstva materijala kao i njegovo ponašanje u svakoj materijalnoj točki
se dobiva izravno iz svojstava i ponašanja njegove mikrostrukture, koja je određena
preko reprezentativnog volumenskog elementa (eng. representative volume element,
RVE). Nakon rješavanja problema rubnih vrijednosti na mikrorazini, rezultate analize
je potrebno homogenizirati, tj. uprosječiti. Uprosječeni rezultati se nakon toga šalju na
makrorazinu gdje se upotrebljavaju kao ulazni podaci za rješavanje problema rubnih
vrijednosti na makrorazini. Direktna numerička simulacija predstavlja najtočniji i
najfleksibilniji način rješavanja problema rubnih vrijednosti na mikrorazini. Metoda
konačnih elemenata (MKE) i brza Fourierova transformacija (BFT) su jedni od načina
putem kojih je moguće provesti direktnu numeričku simulaciju. Međutim, zbog velikog
broja stupnjeva slobode, provođenje konkurentne višerazinske analize za sobom nosi
potrebu za značajnim računalnim resursima i dugotrajnim vremenom računanja. Ra-
zlog tome jest činjenica da se problem rubnih vrijednosti na mikrorazini mora riješiti



za svaku materijalnu točku na makrorazini i za svaki inkrement cjelokupne analize.
Budući da je glavni (i osnovni) cilj rješavanja problema rubnih vrijednosti na

nižoj razini određivanje prosječnog (homogeniziranog) ponašanja RVEa, dobivanje
“finih” (detaljnih) raspodjela polja deformacije i naprezanja nije nužno. S relativno
malim brojem stupnjeva slobode na nižoj razini nije moguće na ispravan način opisati
raspodjelu polja deformacije i naprezanja, ali je moguće doći do njihovih prosječnih
vrijednosti. Zbog toga se pribjegava upotrebi takozvanih reduciranih metoda (eng.
reduced-order homogenization methods), koje uz odgovarajući gubitak na točnosti
homogeniziranih rezultata osiguravaju značajno smanjenje vremena računanja višer-
azinskog konkurentnog postupka. Ubrzanje se postiže prvenstveno zbog smanjenja
složenosti proračuna na mikrorazini, a danas se u tu svrhu sve češće koriste velike baze
podataka.

Višerazinsko modeliranje heterogenih ma-
terijala putem velikih baza podataka
Značajnim rastom računalnih resursa, numeričkom modeliranju mehaničkog ponašanja
heterogenih materijala sve češće se pristupa sa stajališta velikih baza podataka. Anali-
zom “sirovih podataka” moguće je doći do prethodno nepoznatih materijalnih zakona
i regularnosti, koje se kasnije mogu koristiti za značajno smanjivanje računalne zaht-
jevnosti konkurentnog višerazinskog postupka. Proces “učenja” i analiziranja “sirovih
podataka” se odvija u takozvanom “offline koraku", kojeg je potrebno provesti samo
jednom. Do “sirovih podataka” moguće je doći ili eksperimentalnim putem ili upotre-
bom numeričkih simulacija, a s gledišta njihove upotrebe razlikuju se dva pristupa:
makroskopski i mikroskopski.

U makroskopskom pristupu, analizom “sirovih podataka” dolazi se do regu-
larnosti koje služe za izravno predviđanje mehaničkog ponašanja heterogenog materi-
jala pri odgovarajućem opterećenju. Točnije, uključivanje makroskopskog pristupa u
konkurentnu višerazinsku proceduru znači da se homogenizirana (uprosječena) vrijed-
nost bilo koje veličine može dobiti izravno iz vrijednosti makroskopske deformacije,
tj. makroskopskog gradijenta deformiranja. Budući da je rješavanje problema rubnih
vrijednosti na mikrorazini u potpunosti isključeno, makroskopski pristup osigurava
najviši stupanj računalne učinkovitosti.

Iako računalno izuzetno učinkovit i prilagodljiv, makroskopski pristup je uve-
like uvjetovan kvalitetom i količinom “sirovih podataka”. Opisivanje i modeliranje
visokolokaliziranih fenomena kao što su plastičnost i oštećenje zahtijeva stvaranje



ogromnih baza podataka, što u nekim slučajevima nije moguće. Također, zbog manjka
informacija s mikrorazine, točnost predviđanja koju makroskopski pristup nudi je često
ograničena. To je pogotovo izraženo u prijelaznim slučajevima, tj. trenutcima gdje
heterogeni materijal značajno mijenja svoju krutost uslijed akumulacije oštećenja ili
prijelaza iz elastičnog u elastoplastično područje.

S druge strane, mikroskopski pristup se služi direktnom numeričkom simu-
lacijom kako bi u offline koraku prikupio podatke iz svake materijalne točke razma-
trane mikrostrukture (RVEa) koji se zatim koriste za stvaranje velike baze “sirovih
podataka”. Analizom tih podataka dolazi se do odgovarajućih regularnosti koje se
kasnije koriste za smanjenje složenosti i ubrzavanje računanja problema rubnih vrijed-
nosti na mikrorazini. Budući da rješavanje problema rubnih vrijednosti nije isključeno
(kao u makroskopskom pristupu), mikroskopski pristup se nalazi na nižem stupnju
računalne učinkovitosti, ali s druge strane nudi veću količinu informacija u odnosu
na makroskopski pristup. U neke od najpoznatijih mikroskopskih pristupa spadaju
pravilna ortogonalna dekompozicija (eng. proper orthogonal decomposition), analiza
putem transformacijskih polja (eng. transformation field analysis), analiza putem
neuniformnih transformacijskih polja (eng. nonuniform transformation field analysis)
te metoda homogenizacije s reduciranim brojem stupnjeva slobode temeljena na analizi
klastera (eng. reduced order homogenization: self-consistent clustering analysis).

Metoda homogenizacije s reduciranim bro-
jem stupnjeva slobode
Metoda homogenizacije s reduciranim brojem stupnjeva slobode predstavlja jednu
od procedura, u području mikroskopskih pristupa, za analizu mehaničkog ponašanja
heterogenih materijala. Temeljena je na dvije inovacije: (1) upotreba algoritma strojnog
učenja za dekompoziciju RVEa u odgovarajući broj potpodručja, tj. klastera i (2)
upotreba Lippmann-Schwingerove jednadžbe za rješavanje problema rubnih vrijednosti
na RVEu koji je diskretiziran odgovarajućim brojem klastera.

Prva inovacija iskorištava svojstvo k-means algoritma, ili bilo kojeg drugog
algoritma za klasteriranje podataka, kako bi se broj stupnjeva slobode (koji su prisutni
na mikrorazini) značajno smanjio. Redukcija se postiže grupiranjem točaka (konačnih
elemenata u slučaju MKEa) u odgovarajuće materijalne klastere. Pojam “materijalni
klaster” označava područje konačnog volumena u kojem je vrijednost bilo koje varijable
konstantna. Točnije, svaka varijabla unutar jednog klastera ima isključivo jednu vrijed-
nost. Dekompozicijom složene mikrostrukture u materijalne klastere, broj stupnjeva



slobode se može smanjiti i za nekoliko stotina puta. Broj materijalnih klastera kojima
se diskretizira mikrostruktura je proizvoljan, s pravilom da ne može biti manji od
broja mikrokonstituenata koji tvore mikrostrukturu, niti veći od broja točaka (kon-
ačnih elemenata u slučaju MKEa) kojima je inicijalno diskretizirana mikrostruktura.
Proces klasteriranja, tj. grupiranja točaka (konačnih elemenata u slučaju MKEa) u
odgovarajuće materijalne klastere provodi se u offline koraku, i potrebno ga je izvršiti
samo jednom. Dobivena diskretizacija se kasnije može koristiti za bilo koju vrstu
opterećivanja kao i za bilo koji konstitutivni materijalni zakon.

Druga inovacija je nešto složenija i odnosi se na korištenje Lippmann-Schwingerove
jednadžbe s ciljem modeliranja i analize mehaničkog ponašanja svakog pojedinog
klastera kao i cjelokupnog RVEa. Iako je inicijalno izvedena za potrebe opisivanja
sudara čestica u problemima kvantne mehanike, Lippmann-Schwingerova jednadžba
pronašla je svoje mjesto i u području mehanike deformabilnih tijela. Prvi radovi
koji razmatraju modifikaciju i primjenu Lippmann-Schwingerove jednadžbe za rješa-
vanje problema heterogenih mikrostruktura pojavili su se početkom 70-ih godina
prošlog stoljeća. U njima je jednadžba korištena za dobivanje prosječne (homogene)
vrijednosti modula elastičnosti i modula smičnosti odgovarajućeg heterogenog ma-
terijala. U slučaju metode homogenizacije s reduciranim brojem stupnjeva slobode,
Lippmann-Schwingerova jednadžba se može smatrati jednadžbom ravnoteže klastera.

Usprkos vrlo gruboj diskretizaciji, metoda homogenizacije s reduciranim bro-
jem stupnjeva slobode osigurava visok stupanj točnosti, tj. malu grešku kada se
usporede vrijednosti dobivene nekom od numeričkih metoda kao što su MKE i BFT.
Osim računalne učinkovitosti, metodu karakterizira i značajna fleksibilnost. Točnije,
Lipmann-Schwingerova jednadžba, koja je diskretizirana po klasterima, valjana je za
bilo koji konstitutivni zakon u određenom materijalnom klasteru, a također osigu-
rava relativno jednostavan prelazak s malih na velike deformacije. Međutim, visoka
razina točnosti nije uvijek zagarantirana, te je ovisna o vrsti opterećenja, ali i samoj
materijalnoj kao i geometrijskoj konfiguraciji razmatrane mikrostrukture.

Numeričko modeliranje oštećenja i loma
Numeričke metode modeliranja oštećenja i loma najčešće se razvijaju u sklopu metode
konačnih elemenata, a općenito se mogu podijeliti na diskretne (diskontinuumske)
i difuzne (kontinuumske). Ovo je ujedno i osnovna podjela numeričkih metoda za
modeliranje oštećenja i loma koja je ustanovljena s gledišta način prikaza i modeliranja
pukotina unutar materijala.



Diskretne metode pukotinu opisuju kao oštar geometrijski diskontinuitet u
polju pomaka. Danas, dvije najpoznatije teorije koje stoje iza diskretnih metoda su
linearno elastična mehanika loma (eng. linear elastic fracture mechanics LEFM) i
metoda modeliranja kohezivnih zona (eng. cohesive zone modelling CZM). Za razliku
od linearno elastične mehanike loma, čija primjena je moguća samo kada je nelinearna
zona ispred vrška pukotine zanemarivo mala, metoda modeliranja kohezivnih zona je
doživjela značajno veću primjenu. S mogućnošću potpunog isključivanja singularnosti
naprezanja ispred vrška pukotine, metoda modeliranja kohezivnih zona našla je svoju
primjenu u problemima krhkog i duktilnog loma, pri malim i velikim deformacijama.
S gledišta numeričke analize, uvođenje i modeliranje geometrijskih diskontinuiteta
predstavlja značajan izazov, pogotovo u slučaju metoda temeljenih na prostornoj
diskretizaciji (eng. mesh-based methods) kao što je MKE. Budući da pukotina raste
duž rubova elemenata, linearno elastična mehanika loma kao i metoda modeliranja
kohezivnih zona podliježu problemima vezanim uz ovisnost rezultata o veličini mreže
(eng. mesh dependency), ali i problemima vezanim uz ovisnost rasta pukotine o
usmjerenosti konačnih elemenata (eng. bias dependency). S druge strane, odgovarajućim
modifikacijama konačnih elemenata, geometrijski diskontinuitet se može pratiti ne po
rubu elementa već po samom elementu. Takva modifikacija se naziva obogaćivanje (eng.
enrichment), a elementi se samim time nazivaju obogaćeni elementi. Proširena metoda
konačnih elemenata (eng. extended finite element method) predstavlja najpoznatiju i
najpopularniju metodu ove vrste. U njoj, topologija pukotine je opisana implicitno,
pomoću Heavisideovih polinoma i asimptotskih funkcija, što osigurava neovisnost rasta
pukotine o mreži konačnih elemenata i time isključuje potrebu za promrežavanjem.
Međutim, upotreba proširene metode konačnih elemenata za sobom dovodi do potrebe
za visokim računalnim resursima, ali i problema vezanih za numeričku implementaciju.
Povrh toga, gore navedene diskretne metode nisu samodostatne, tj. zahtijevaju dodatne
kriterije za određivanje trenutka i mjesta nastanka kao i samog rasta pukotina.

Za razliku od diskretnih (diskontinuumskih) pristupa, informacije o oštećenju
se u kontinuumskim (difuznim) modelima dobivaju kao dio rješenja matričnog sustava
jednadžbi. Uvođenjem dodatne varijable koja kontrolira stupanj oštećenja, degradacija
naprezanja, koja je povezana s nastankom i rastom pukotine, je izravno uključena u
konstitutivni model. Vrijednost varijable oštećenja se kreće između 0 i 1, pri čemu 0
označava neoštećen materijal, dok 1 predstavlja potpuno degradiran materijal koji ne
posjeduje krutost. S gledišta načina razvoja oštećenja, kontinuumski modeli oštećenja
se mogu podijeliti na izotropne, ortotropne i anizotropne. U izotropnim modelima
varijabla oštećenja je skalar, dok je u ortotropnim, tj. anizotropnim modelima ona
tenzor višeg reda.



Kontinuumski modeli oštećenja, bazirani na lokalnom (standardnom) kontinu-
umu predstavljaju skup lokalnih kontinuumskih modela oštećenja. U tim modelima,
ponašanje materijala u svakoj materijalnoj točki je opisano određenim konstitutivnim
zakonom, a varijabla oštećenja ovisi isključivo o deformaciji u promatranoj točki.
Točnije, uzimaju se u obzir samo lokalni efekti. To u konačnici uzrokuje lokalizaciju
oštećenja koja dovodi do lokalnog gubitka eliptičnosti sustava parcijalnih diferenci-
jalnih jednadžbi, zbog čega numeričko rješenje ne konvergira ka fizikalno smislenoj
vrijednosti. Uz to, lokalni kontinuumski modeli nisu u stanju opisati efekt veličine
uzorka (eng. size effect), koji se javlja u eksperimentalnim analizama.

Navedeni problemi mogu se riješiti uvođenjem nelokalnih kontinuumskih modela
u kojima za razliku od lokalnih kontinuumskih modela, varijabla oštećenja u promatra-
noj točki ovisi i o deformaciji u točkama koje ju okružuju - nelokalni efekti se uzimaju
u obzir. Iako postoji pozamašan broj nelokalnih kontinuumksih modela oštećenja,
sve ih karakterizira uvođenje parametra duljine (eng. length parameter). Njime se
omogućava regularizacija problema rubnih vrijednosti čime je osigurana eliptičnost
parcijalnih diferencijalnih jednadžbi i omogućeno dobivanje objektivnih i fizikalnih
rezultata. Također, nelokalni kontinuumski modeli imaju mogućnost opisivanja efekta
veličine uzorka, upravo zbog činjenice da prilikom određivanja vrijednosti oštećenja
uzimaju u obzir i nelokalne efekte.

Jedan od glavnih nedostataka kontinuumskih modela jest nemogućnost opisi-
vanja stvarnog diskontinuiteta, što pukotina u konačnici i jest. Ova činjenica je dovela
do razvoja takozvanih kontinuumskih-diskontinuumskih modela u kojima je kontinu-
umski način opisivanja oštećenja aktivan sve dok se ne pojavi pukotina, koja se kasnije
modelira putem diskretnog principa. Povrh toga, upotreba nelokalnih kontinuumskih
metoda za opisivanje oštećenja može, pri nekim uvjetima opterećivanja, dovesti do
neispravnih rezultata u smislu krive topologije, ali i mjesta nastanka pukotine.

Metoda faznog polja
Metoda faznog polja (eng. phase-field method) predstavlja općeniti pristup modeliranju
fizikalnih sustava s dvije ili više faza koje su razdijeljene nekom vrstom oštrog diskon-
tinuiteta. Ova se metoda temelji na kontinuiranoj varijabli polja koja stvara razliku
između fizikalnih faza preko “glatke” i kontinuirane tranzicije. U kontekstu mehanike
oštećenja i loma, ova “glatka” tranzicija odnosi se na prijelaz iz neoštećenog u potpuno
oštećeni dio materijala i obrnuto. Na taj način, oštar diskontinuitet, kojeg pukotina
predstavlja, je zamijenjen kontinuiranom varijablom faznog polja (eng. phase-field



variable) koja u suštini tvori difuzni pojas.
Ono što ovu metodu čini izuzetno atraktivnom u području numeričkog modeli-

ranja oštećenja i loma jest njena mogućnost da na elegantan i učinkovit način modelira
složene procese koji se javljaju pri pojavi i rastu pukotina. Pukotine koje rastu bivaju
automatski praćene preko varijable faznog polja koja se izračunava kao dio ukupnog
rješenja matričnog sustava jednadžbi. Numerička vrijednost te varijable izravno utječe
na razinu oštećenja u difuznom pojasu, čija je širina kontrolirana preko parametra
duljine. Budući da metoda faznog polja spada u grupu nelokalnih kontinuumskih
metoda, ovisnost konačnih rezultata o veličini mreže konačnih elemenata kao i problem
opisivanja efekta veličine uzorka su izbjegnuti. Povrh toga, implementacija metode
faznog polja u metodu konačnih elemenata predstavlja relativno jednostavan zadatak,
bez obzira radi li se o problemu opisanom u dvije ili tri dimenzije.

Formulacija metode faznog polja, koja je prisutna u ovoj disertaciji, potječe od
varijacijskog pristupa krhkom lomu gdje je osnovna Griffithova teorija krhkog loma
pretvorena u problem minimizacije ukupne potencijalne energije. Unutarnji dio poten-
cijalne energije ukupnog funkcionala se u tom slučaju sastoji od energije unutarnjih
sila i energije oslobođene (disipirane) uslijed nastanka i rasta pukotine. Na taj način,
varijacija ukupne potencijalne energije dobiva se minimiziranjem funkcionala po dvije
varijable - pomaku i samoj pukotini. Varijacijski princip nalaže da se tijelo deformira,
a pukotina raste na onaj način koji osigurava minimum ukupne potencijalne energije.
Naći analitičko rješenje, tj. odrediti vrijednost pomaka i topologiju diskretne pukotine
koji zadovoljavaju princip minimuma ukupne potencijalne energije je moguće samo u
ograničenom broju slučajeva. Stoga je, nedugo nakon uvođenja varijacijskog principa
krhkog loma, napravljena regularizacija izvedenog funkcionala. Pri tome je korištena
eliptična regularizacija problema koji je karakteriziran Mumford-Shah funkcionalom.
Posljedica regularizacije bilo je stvaranje sustava eliptičnih parcijalnih diferencijal-
nih jednadžbi koje preko varijable faznog polja u potpunosti opisuju nastanak i rast
pukotine. Sam izvod metode faznog polja spada u još jednu od njenih pozitivnih
karakteristika. Razlog tome jest činjenica da rubni uvjeti i međuovisnost varijabli
slijede “prirodno” iz jednog izvoda - što nije slučaj s ostalim nelokalnim kontinuumskim
metodama.

U zadnjem desetljeću popularnost metode faznog polja je značajno porasla,
što potvrđuju brojni radovi na temu krhkog i duktilnog loma, ali i loma pri malim,
tj. velikim deformacijama. Nadalje, metoda faznog polja uspješno je primijenjena
za opisivanje nastanaka i rasta pukotina uzrokovanim termomehaničkim, elektrome-
haničkim, ali i hidrauličkim opterećenjem. Uz to, problemi zamora materijala, di-
namičkog oštećenja kao i višerazinsko modeliranje heterogenih materijala također su



opisani metodom faznog polja.
Iako učinkovita i fleksibilna, metoda faznog polja ima odgovarajuće nedostatke

i probleme koji se javljaju prilikom njene numeričke implementacije. Trenutno, dva
najveća problema su nekonveksnost funkcionala ukupne potencijalne energije te potreba
za gustim mrežama u području nastanka i rasta pukotina.

Prva poteškoća proizlazi iz činjenice da izvedeni funkcional nije strogo kon-
veksan, već u sebi posjeduje nekoliko ekstrema. Točnije, mala promjena (diferencijal)
ukupne potencijalne energije poprima vrijednost 0 u više različitih točaka, što otežava
jednostavno određivanje globalnog minimuma. Sa stajališta metode konačnih eleme-
nata to predstavlja veliki nedostatak, budući da nekonveksnost remeti konvergenciju
i stabilnost simulacije, a to je pogotovo izraženo prilikom nastanka i rasta pukotine.
Drugi problem vezan je za visoke računalne resurse koji proizlaze iz potrebe za vrlo
gustim i finim mrežama konačnih elemenata. Veličina konačnog elementa je u izravnoj
vezi s vrijednošću parametra duljine koji kontrolira debljinu difuznog sloja, a u prob-
lemima u kojima je topologija pukotine unaprijed poznata, ovo ne predstavlja značajan
problem. U suprotnom, ovo može uvelike povećati računalne troškove, budući da se
unaprijed progušćena mreža ne može jasno odrediti.

Višerazinsko modeliranje oštećenja i loma
Otpornost materijala na pojavu i razvoj pukotina u velikoj je mjeri uvjetovano nje-
govom mikrostrukturom. Male promjene oblika, prostorne raspodjele, volumenskog
udjela ili mehaničkih svojstava svakog individualnog mikrokonstituenta mogu značajno
izmijeniti lomne karakteristike materijala, te ga učiniti više ili manje otpornim na
pojavu oštećenja. Prostorna i materijalna konfiguracija mikrostrukture materijala će
u konačnici dovesti do nejednolične raspodjele polja deformacije i naprezanja što će
u konačnici stvoriti područja pogodna za nastanak i razvoj oštećenja. Višerazinsko
modeliranje materijala ima mogućnost povezivanja ponašanja mikrostrukture i odziva
materijala na makrorazini, stoga predstavlja vrijedan alat za numeričko modeliranje
oštećenja u heterogenim materijalima. Međutim, provođenje konkurentnih višerazinskih
analiza koje u sebi uključuju neki od algoritama za modeliranje oštećenja predstavlja
velik izazov.

Za početak, određivanje prosječne (homogene) vrijednosti parametra oštećenja
unutar RVEa nije moguće klasičnom primjenom računalne homogenizacije prvog reda,
budući da takav način u konačnici rezultira nefizikalnim vrijednostima. Također,
takav pristup ne može odgovoriti na pitanje upitne reprezentativnosti RVEa prilikom



pojave oštećenja i loma kao i utjecaja njegove veličine na konačne rezultate. Druga
prepreka očituje se u samoj zahtjevnosti sa strane računalnih resursa, budući da
konkurentni pristup temeljen na primjeni direktne numeričke simulacije za rješavanje
problema rubnih vrijednosti na mikrorazini, i bez algoritma oštećenja zahtjeva značajne
računalne resurse. Još jedan problem koji zahtjeva pažnju jest neovisnost konačnih
rezultata o veličini i orijentiranosti elemenata na makrorazini - bez obzira da li je u
pitanju diskretni ili difuzni model oštećenja. U slučaju korištenja diskretnog pristupa
modeliranju oštećenja i loma, potrebno je uvesti odgovarajući algoritam promrežavanja
kao i dodatne kriterije za kontrolu razvoja i rasta pukotine. S druge strane, izostanak
nelokalne teorije u slučaju difuznog modela oštećenja na makrorazini, rezultirat će
ovisnošću konačnih rezultata o veličini mreže konačnih elemenata.

Ciljevi i hipoteze istraživanja
Cilj ovog istraživanja je razviti i implementirati novi višerazinski postupak za mod-
eliranje oštećenja i loma u duktilnim heterogenim materijalima uslijed statičkog
opterećenja. Postupak bi trebao zadovoljiti sljedeće zahtjeve:

• povezati svojstva heterogene mikrostrukture sa svakom materijalnom točkom na
makrorazini,

• osigurati reprezentativnost mikrostrukturnog uzorka, tj. RVEa tijekom pojave i
razvoja oštećenja,

• osigurati neovisnost konačnih rezultata o veličini i usmjerenosti konačnih eleme-
nata,

• postići računalnu učinkovitost,

• omogućiti jednostavno proširenje sa problema krhkog loma pri malim deformaci-
jama, na probleme duktilnog loma pri velikim deformacijama.

Također, metodologija bi trebala biti općenita i stabilna, tj. u stanju provesti višer-
azinsku analizu sa složenim mikrostrukturama na nižoj razini, s proizvoljnim bro-
jem mikrokonstituenata različitog oblika, volumenskog udjela, prostorne raspodjele i
mehaničkih svojstava. Hipoteza ovog rada je mogućnost razvoja takve metode kombini-
ranjem metode faznog polja na makrorazini i metode homogenizacije s reduciranim
brojem stupnjeva slobode na mikrorazini.

Prisutnost nelokalnog kontinuumskog modela oštećenja, kao što je metoda
faznog polja, na makrorazini će osigurati objektivnost i neovisnost konačnih rezultata o



mreži konačnih elemenata. Također, implementacija metode faznog polja u numeričku
metodu kao što je MKE nije složen postupak, što je također dodatna prednost. Uz to,
izostanak algoritma za modeliranje oštećenja na mikrorazini imat će pozitivan učinak
na osiguravanje reprezentativnosti RVEa tijekom pojave i razvoja oštećenja.

S druge strane, funkcija metode homogenizacije s reduciranim brojem stupnjeva
slobode bit će rješavanje problema rubnih vrijednosti na mikrorazini i određivanje
prosječnih (homogeniziranih) materijalnih svojstava mikrostrukture kroz upotrebu
računalne homogenizacije prvog reda. Valjanost i primjenjivost metode homogenizacije
s reduciranim brojem stupnjeva slobode za bilo koji konstitutivni zakon od iznimne je
važnosti jer pridonosi općoj primjenjivosti cjelokupne višerazinske procedure.

U sklopu ovog rada razvijena je višerazinska konkurentna metoda za modeliranje
nastanka i razvoja oštećenja u krhkim i duktilnim materijalima, pri statičkom optereći-
vanju za dvodimenzijske i trodimenzijske probleme. Metoda je ugrađena u komercijalni
MKE programski paket Abaqus, primjenom korisničkih rutina UEL i UMAT. Pomoću
više različitih geometrijskih uzoraka te nekoliko različitih mikrostruktura, provedena je
detaljna i temeljita verifikacija razvijene metode. Velika pozornost posvećena je raču-
nalnoj učinkovitosti, stoga je prva faza testiranja orijentirana isključivo na nju. Ostale
faze testiranja usmjerene su na ispitivanje stabilnosti i učinkovitosti novorazvijenog
višerazinskog postupka u određivanju nastanka i razvoja oštećenja u slučaju složenih
mikrostruktura.

Zaključak i doprinos rada
Glavni doprinosi ovog rada i istraživanja odnose se na područje višerazinskog mod-
eliranja oštećenja u krhkim i duktilnim heterogenim materijalima. Ključni doprinosi
rada su:

1. Implementacija algoritma metode homogenizacije s reduciranim brojem stupnjeva
slobode u komercijalni MKE programski paket Abaqus

• Algoritam homogenizacije s reduciranim brojem stupnjeva slobode je ini-
cijalno razvijen i testiran u komercijalnom programskom paketu Matlab.
Međutim, s ciljem provođenja konkurentnog višerazinskog postupka, algo-
ritam je naknadno implementiran u komercijalni MKE programski paket
Abaqus.

• Brojni testovi na različitim 2D i 3D mikrostrukturama pokazali su zamje-
tan nivo računalne učinkovitosti i točnosti što je ključno u višerazinskom



postupku. Također je uočeno da pojedine vrste makro-opterećenja, pri
određenim materijalnim konfiguracijama na mikrorazini, treba izbjegavati.

2. Spajanje metode faznog polja i metode homogenizacije s reduciranim brojem
stupnjeva slobode u jedan jedinstveni višerazinski postupak

• Razvijeni konkurentni višerazinski postupak je dokazano ispravan i raču-
nalno učinkovit, što pokazuju testovi provedeni na nekoliko geometrijskih
uzoraka pri čemu je razmatran krhki i duktilni lom.

• Postupak je također stabilan, što je dokazano ponovo na nekoliko geometri-
jskih uzoraka pri čemu je na mikrorazini bila prisutna složena mikrostruk-
tura.

• U konačnici, postupak je općenit i fleksibilan. Točnije, proširenje na ostale
tipove materijala, npr. hiperelastični materijal, i druge modele plastičnosti
kao što je Drucker-Prager ili Mohr-Coloumb kriterij tečenja, predstavlja
relativno jednostavan postupak.

Ključne riječi: mikrorazina, konkurentne višerazinske metode, heterogeni materijal,
RVE, homogenizacija, metoda homogenizacije s reduciranim brojem stupnjeva slobode
temeljena na analizi klastera, metoda faznog polja, Abaqus, k-means klasteriranje,
Lippmann-Schwingerova jednadžba, Greenova funkcija, materijalni klaster
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1. Introduction

1.1. Background and motivation
Mechanical properties of modern engineering materials are in a direct link with their
hierarchical nature. This hierarchy arises from the interaction of simple, small-scale
constituents, that together form a compound that can spam multiple time- but also
length-scales. At their lower scales, heterogeneous materials often exhibit a significant
level of heterogeneity. This heterogeneity manifests itself in the form of several different
microconstituents (material phases) with arbitrary shape, volume fraction, spatial
distribution and mechanical properties - Figure 1.1.

Therefore, the overall mechanical behaviour of the material will be the result
of the mutual interaction and contribution of each of its material phases. Advanced
manufacturing techniques such as 3D printing [1–3] and sintering [4–6] allow for
the creation of a specific nano and microstructures, which can eventually lead to
advantageous thermal, electrical or mechanical properties at the macroscale. This
multiscale nature of heterogeneous materials has become the subject of intensive
research in the field of material science, but it also poses a continuing challenge in the
computational modelling of macroscopic structures.

Traditional phenomenological constitutive relations [7] characterize the average
behaviour of material, i.e. the contributions from all the material phases are not
accounted for as an individual interaction of separate constituents. The main disadvan-
tage of this approach lies in its inability to span microstructural mechanisms essential
for understanding the general behaviour of the material. Besides mathematical limita-
tions, practical numerical problems also involve mesh dependency of the results. In
addition, highly localized processes such as plasticity, fatigue and damage always occur
at the lower scales first, and they cannot be captured appropriately using classical
continuum mechanics.
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(a) Al-Mg-Si-Cu-Fe alloy [8] (b) Sintered silicon nitride ceramics [9]

(c) Nodular graphite cast iron [10] (d) Ti-5Al-1.5Mo-1.8Fe alloy [11]

Figure 1.1: Microstructure of modern heterogeneous materials

Although with flaws, the classical phenomenological approach is still widely
used in numerical simulations for a wide variety of physical problems. Its robustness,
stability and overall simplicity are the main reasons for its strong presence in the
industry. With the further increase in computational resources, more and more effort
will be invested into the development of new numerical procedures that take into
account material behaviour at lower scales. However, the classical phenomenological
approach will certainly be in use for some time to come.
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1.2. Numerical modelling of heterogeneous
materials

Generalized continuum mechanics, also known as higher-gradient theories, represents
one of the ways in which it is possible to consider structural phenomena at the lower
scales. By introducing a higher-order gradient of deformation, microscopic information
can be incorporated into the numerical analysis. The first known work in extension to
the higher-order continuum theory was done by the Coserrat brothers at the beginning
of the 20th century [12]. In their work, they introduced additional rotational degrees
of freedom (DOF) at the microscale, along with a non-symmetric stress tensor and
a higher-order couple stress tensor. The potential of this approach was recognized
about half a century later, as evidenced by the works of Mindlin [13–16], Koiter [17],
Toupin [18, 19] and Eringen [20]. With the introduction of double stress tensor as the
work conjugate to the second derivative of the displacement, Mindlin [14, 21] further
extended the original Cosserat theory in order to account for not only local rotations
but also stretch gradients. Some approaches introduce material with microstructure
[13, 22], where each point of the microstructure has its own DOF. In the last few
decades, higher-order theories have become a valuable tool in the field of computational
mechanics for modelling of not only simple linear elastic but also highly localized
material responses such as plasticity and damage. Due to higher-order gradients, the
description of localization phenomena is possible without loss of ellipticity of governing
equations [23–28].

Currently, the major challenge in all higher-gradient theories lies in the relatively
large number of coefficients that are associated with higher-order terms [29]. The
experimental determination of these coefficients can be quite a complex and delicate
task, since the gradient of strain is generally not directly informed by the microstructure.
In addition to that, numerical implementation of higher-order theories often requires
computationally expensive and demanding numerical algorithms, which are not suitable
for practical use.

Multiscale methods, on the other hand, represent a class of numerical methods
with the ability to analyze material behaviour at different levels, i.e. scales. These
methods imply dependency between different scales, where the solution at one scale
is transferred to the other scale in an appropriate way. Thereby, the response of the
material at the macrolevel will be directly related to the microstructure geometry and
the material properties of the microconstituents. Depending on the variable-passing
hierarchy, we distinguish bottom-up and top-down approaches. In the bottom-up
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approach, the solution is driven by the smaller scale, while in the top-down approach,
lower scales are added until desired effects are captured [30]. Due to the rapid increase
in computational power, and their ability to link material behaviour at different
levels, multiscale methods have become a particularly attractive tool in the field
of numerical modelling of heterogeneous materials. Although there exists a wide
range of multiscale methods, generally speaking, they can be classified as hierarchical,
concurrent, sequential, homogenization, parallel and hybrid [30]. For more details on
the development and applications of the multiscale methods see [31–34].

1.2.1. Concurrent multiscale methods

Concurrent multiscale methods, which will be used in this dissertation, represent the
most popular and widely used class of multiscale methods [35–38]. These methods
avoid the calibration process in the phenomenological approach by directly establishing
the link between the microstructure and the response of the material at the macrolevel,
with the use of the homogenization method [30, 35, 36, 39–45]. Because of that, they
do not require an explicit a priori constitutive relation at the macrolevel which opens
up the possibility of modelling geometrical and material nonlinearities, as well as a
description of a microstructural irregularity. In terms of variable-passing hierarchy,
concurrent methods fall in the category of bottom-up approaches - since the solution
is driven by the behaviour at a lower scale.

During the analysis, the material properties and its behaviour at each macro-
scopic point is obtained from the behaviour and properties of its microstructure, which
is defined by representative volume element (RVE) [46–50]. After solving the RVE
boundary value problem at the microlevel, homogenization (averaging) of stress and
material tangent matrix needs to be performed. The averaged (homogenized) values
are then transferred back to the macrolevel, where they are used as input parameters
for the boundary value problem at the macrolevel - Figure 1.2. For a material with
random microstructure, its true macroscopic properties are obtained as converged
values only if the size of the RVE becomes sufficiently large, i.e. RVE should be a
statistically representative sample of the material’s microstructure [49, 50].

4



1.2. Numerical modelling of heterogeneous materials

t

mac
ro 

to 
micr

o
micro to macro

RVE boundary
value problem

Homogenization

RVE

Figure 1.2: Schematic representation of the concurrent multiscale approach

First-order computational homogenization [39–43], which will be used in this
dissertation, is the most flexible and accurate method through which one can obtain
the macro response of the RVE. It can be defined by assuming scale separation and
vanishing external body force inside the RVE, i.e. through the use of Hill-Mandel
macro-homogeneity condition [51, 52]. This condition is equivalent to the statement
that the volume average of the work variation done on the RVE must be equal to
the work variation at the macrostructural material point. It also ensures that the
homogenized stress and strain tensors are admissible variables in the macroscale
constitutive relations.

In terms of boundary conditions, the solution of the RVE boundary value
problem can be obtained using displacement boundary conditions (DBC), traction
boundary conditions (TBC) or periodic boundary conditions (PBC). It has been shown
that the use of DBC eventually leads to too stiff RVE behaviour, while the results
obtained with TBC show too compliant behaviour. On the other hand, PBC [30]
provide the best homogenization results and the fastest convergence properties by
increasing the RVE size. As shown in [39, 40], the results obtained by PBC lie between
the values obtained by the DBC (upper bound) and TBC (lower bound). For proper
use, PBC require periodicity in the geometry of the RVE that is being analyzed, which
is not the case in DBC or TBC. For more details on PBC and their application see
[30].
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Direct numerical simulation (DNS) represents the most accurate and flexible
method with whom one can obtain the solution of the RVE boundary value problem.
Finite element method (FEM) [53] and Fast Fourier transform (FFT)-based microme-
chanics methods [54, 55], are two basic ways in which DNS analysis can be performed.
However, due to the large number of DOF, DNS can be very time-consuming. Since
the RVE boundary value problem has to be solved for each material point at the
macrolevel and for each increment of the analysis, the total computational cost of
this approach is tremendous. For practical problems, the use of concurrent multiscale
approach with either FEM or FFT-based solver at the microlevel is inefficient.

1.2.2. Reduced-order multiscale methods

Bearing in mind the fact that the goal of solving the RVE boundary value problem
is to determine the average (homogenized) behaviour of the microstructure, one can
easily conclude that the precise description of the strain and stress field inside the
RVE is not crucial. This is because high concentrations of stress and strain in certain
areas of the RVE do not have a significant influence on their average values.

With this information in mind, the complexity of the RVE boundary value
problem can be reduced in various ways without significant loss of accuracy of the
final results, which are needed at the macrolevel. Throughout decades, a significant
number of homogenization methods have been developed with the goal of finding
an appropriate balance between accuracy and computational complexity. These are
generally referred to as reduced-order methods. Analytical micromechanical methods
[52, 56–59], the Voronoi cell finite element method (VCFEM) [60], the generalized
method of cells [61], the transformation field analysis (TFA) [62], the nonuniform
transformation field analysis (NTFA) [63, 64] and the proper orthogonal decomposition
(POD) [65], are some of the most successful methods of this kind. Although successful
in the reduction and speed up of the calculation at the microlevel, the aforementioned
methods are plagued by several issues.

Analytical micromechanical methods, which are based on analytical solutions
and mean-field assumptions, aim to describe heterogeneous microstructure by employ-
ing several different microstructural descriptors. Although efficient, their usefulness
drastically decreases when considering complex microstructure and localized phenom-
ena such as plasticity and damage. Similarly, the generalized method of cells, which is
simply a generalization of the original method of cells developed by Aboudi [66], also
suffers from the inability to analyze arbitrary microstructure for the case of complex
loading conditions. Its use is limited only to microstructure consisting of two material

6



1.2. Numerical modelling of heterogeneous materials

phases, i.e. matrix and unidirectional fibers that all have uniform rectangular shape
and are distributed in such a way, that they form an ordered rectangular array. On
the other hand, the VCFEM attempts to overcome difficulties in the calculation at the
lower level by using Dirichlet tessellation in order to decompose complex microstructure
into relatively small numbers of Voronoi cells. This is particularly useful in the case of
crystal plasticity, where the observed microstructure is made of a specific number of
crystal grains. While successful in the reduction of DOF, the VCFEM mesh brings
with it problems involving complex numerical implementation which is especially
pronounced in the case of 3D analysis. The TFA, NTFA and POD approach the
problem in a different way by first conducting DNS simulations on the RVE subjected
to specific loading conditions. This process is called the offline stage [67]. POD uses
the collected data from the DNS analysis to construct the reduced basis which are then
used in the RVE boundary value problem during the concurrent analysis. As shown in
[65], POD can lead to significant savings in computational time and resources. However,
the approach is suitable only for history-independent problems where a relatively small
number of DNS simulations in the offline stage are sufficient to obtain satisfactory
results. The idea behind TFA and NTFA is to use data generated in the offline stage
to define a set of reduced variables that are then subjected to evolution equations.
Consequently, the computational cost of both TFA and NTFA is low, but the inclusion
of empirical laws that require further calibration is a limitation. Furthermore, the
RVEs need to be subjected to irreversible deformation to obtain the plastic modes
which leads to an extensive exploration of the deformation space in the offline stage.

1.2.3. Data-driven multiscale methods

With the exponential growth of computational resources in the last decade, data-
driven homogenization methods have attracted lots of attention. By sifting through
the raw data in the database, previously unknown regularities or patterns can be
extracted and generalized to make accurate predictions [67]. A raw dataset can be
generated either by conducting a large number of numerical simulations or through
experimental analysis. Regarding the type of raw dataset, data-driven methods in
the field of multiscale analysis of heterogeneous materials are divided into two main
approaches, i.e. microscopic and macroscopic.

The macroscopic approach uses the raw data in order to make predictions
about the material behaviour and its properties based on the specific type of loading
condition. In the case of a concurrent multiscale approach, this means that the value
of the homogenized stress tensor and material tangent matrix is obtained directly from
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the value of small strain or deformation gradient tensor at the macrolevel. Since solving
the RVE boundary value problem is avoided, data-driven macroscopic approaches
exhibit the highest efficiency regarding both computational time and resources.

One of the first attempts at the reduction of the concurrent multiscale analysis
complexity employing a data-driven macroscopic approach was presented by Yvonnet
et al. [68]. In it, the raw data, generated through a series of finite element simulations
on the RVE subjected to different macroscopic loading conditions, was interpolated
using multidimensional spline interpolation [69]. The result was an explicit relation-
ship between macroscopic strain energy density and stress tensor of heterogeneous
hyperelastic material undergoing small strains. The same procedure was later applied
in [70] to model the behaviour of heterogeneous hyperelastic materials exhibiting
large strains, while in [71], the influence of the microstructure was considered. Le
et al. [72] followed the same procedure, but used neural networks to interpolate the
data for the case of 3D analysis, where multidimensional spline interpolation would
be computationally expensive task. A different approach, in which calculations are
carried out directly on the pure (unprocessed) experimental data was presented by
Kirchdoerfer and Ortiz [73]. The developed algorithm aims to assign to each material
point the state from a prespecified data set while at the same time satisfying the
conservation laws. Later, the approach was improved by the same group of authors in
[74], with the use of clustering analysis. Specifically, to each data point from the raw
data set a variable relevance was assigned depending on the distance to the solution
and maximum-entropy estimation. Flaschel et al. [75] developed an unsupervised
sparse regression approach that can determine constitutive law for heterogeneous
hyperelastic materials from the data set that can come either from the experimental
analysis or numerical simulations. The presented approach does not require stress data
but only displacement and global force data, and it delivers interpretable models from
a potentially very large library of candidate functions. Flaschel and his co-workers later
extended the original procedure to model history-dependent problems, i.e. plasticity
[76]. Along with their computational efficiency, the rapid development of deep neural
networks [77] is another reason for the attractiveness and popularity of macroscopic
approaches in the field of multiscale analysis of heterogeneous materials.

Although computationally efficient and quite versatile, the applicability of
the macroscopic approaches is, to a large extent, dependent on the raw data that
is available. Description of highly localized and history-dependent problems such as
plasticity and damage requires the generation of enormous amounts of data, which in
some cases is not a possibility. In addition, due to the lack of microscopic information,
the accuracy and smoothness of the prediction obtained with macroscopic approaches is
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often limited. This is especially pronounced when a significant change in heterogeneous
material stiffness occurs due to the accumulation of damage or transition from elastic
to elastoplastic region.

Microscopic approaches on the other hand collect data at each discretization
point in the DNS analysis of the offline stage in order to reduce the complexity
and speed up the calculation of the RVE boundary value problem that is present at
each material point at the macrolevel. POD, TFA and NTFA fall in the category of
microscopic approaches; however, with flaws listed in subsection 1.2.2.

To address the limitations of POD, TFA and NTFA, Liu developed a new
microscopic approach for predicting the behaviour of general heterogeneous materials
undergoing both elastic and inelastic deformations [78]. The proposed data-driven,
two-scale approach included two major innovations: (1) the use of data compression
algorithm, k-means clustering [79], during the offline stage in order to decompose the
complex microstructure into a group of subdomains, i.e. clusters, and (2) a new method
called self-consistent clustering analysis (SCA) used in the online stage that is valid for
any constitutive law of each material phase, without the need for additional calibration.
The first innovation makes use of k-means clustering, or any other clustering algorithm
(for example self-organizing map [80]), to reduce the number of DOF at the microlevel.
This is achieved by grouping the points that have similar behaviour into appropriate
clusters, i.e. areas in which the field of stress and strain is constant. The second
innovation on the other hand is more complex, and it involves the use of the Lippmann-
Schwinger integral equation [67, 81] to analyze and model the behaviour of each cluster
in the RVE.

As evident from [67, 78], the approach is characterized by a significant reduction
in degrees of freedom, in some cases by several orders of magnitude, and a noticeable
level of the accuracy of homogenized results. As a consequence, many ideas and
problems in the field of concurrent multiscale approach that were previously too
demanding from the point of both computational time and resources suddenly became
a possible reality. Strain softening of heterogeneous materials, a particularly interesting
and demanding topic in the field of multiscale analysis, found its place alongside self-
consistent clustering analysis in [67, 82, 83]. Problems involving finite strains at both
reversible and irreversible deformations weren’t left behind either [84–87]. Moreover,
the original approach [67] has been used in the multiscale analysis of fiber-reinforced
composites [67], woven composites [88, 89], anisotropic crystal plasticity [67, 85, 86],
thermoelasticity [90] and even microstructure with porosities [91]. Instead of the finite
element method, which was used in [68], Bessa et al. [92] utilized SCA to speed up
the generation of raw data, which was then interpolated in the same manner as in
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[68]. A modification of SCA, called virtual clustering analysis [93] further improved
the accuracy of homogenized results by taking into account boundary conditions of
the Lippmann-Schwinger equation that were previously neglected. The mathematical
investigation, which is necessary for a better understanding of the governing equations
behind the self-consistent scheme during the online stage was conducted by Schneider
[94]. However, only for material behaviour under small strains, which since then hasn’t
been extended to account for finite strains.

1.3. Numerical modelling of damage and
fracture

Fracture is one of the most commonly encountered failure models in modern engineering
materials and structures. Accurate prediction of damage accumulation, that eventually
leads to cracking-induced failure is, therefore, a key ingredient in the design of reliable
and safe products. Fracture mechanics, a sub-domain of solid mechanics in which
the a priori presence of crack is assumed, was introduced in 1921, by Griffith [95].
His milestone work provided a quantitative connection between the fracture stress
and crack size in ideally brittle materials and thus introduced the branch of fracture
mechanics into the field of solid mechanics. According to the original approach [95],
a crack becomes unstable and the fracture occurs when the strain energy change is
sufficient to overcome the surface energy of the material [96]. Since this model assumes
that the fracture energy comes exclusively from the surface energy of the material, it
can only be applied in the case of ideally brittle solids.

Later development by Irwin [97, 98], who included the energy dissipated by
plastic flow and developed the energy release rate concept, extended the original
Griffith approach to a wider range of materials making it more useful for solving
engineering problems. In 1961, Paris and his co-workers [99] applied fracture mechanics
principles to the fatigue crack growth and thus introduced the idea that the rate of
crack growth may depend on the stress intensity factor. Two years later, Paris law, i.e.
equation that describes crack growth regarding the number of cycles was introduced.
Since then, principles of fracture mechanics have been applied to a wide range of
materials, exhibiting both small and finite deformations, subjected both static and
dynamic loading.

Today, i.e. one century after the original Griffith theory, fracture mechanics
has become a standard part of numerical methods, mostly FEM. Numerical modelling
of damage and fracture in the 21st century represents a wide field of methods and
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algorithms that all have two common goals: (1) predict the moment in which damage
occurs, and (2) describe the strain softening phenomena from the moment the damage
occurs to the moment of failure. Generally speaking, fracture can be numerically
modelled using either a discontinuous approach (also referred to as a discrete approach)
or a continuous (diffusive) one. This split into two major approaches arises from the
manner in which the crack, present in the material, is treated - see Figure 1.3. In
the former, the displacement field is allowed to be discontinuous across the fracture
surfaces whereas in the latter the displacements are continuous everywhere but the
stress values are gradually reduced to model the degradation process.
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Figure 1.3: Schematic representation of the crack modelling approaches

1.3.1. Discrete crack modelling

Since they introduce the crack as a sharp geometrical discontinuity, as stated before,
field of the displacement in the discrete crack approaches is discontinuous across the
fracture surface. Today, two of the most well-known theories behind the discontinuous
crack modelling approach are the linear elastic fracture mechanics (LEFM) [95, 97,
98] and the cohesive zone model (CZM) - firstly introduced in Barenblatt [100] and
Dugdale [101].

Unlike LEFM, whose applicability is limited to problems in which the nonlinear
zone ahead of the crack tip is negligible, CZM has experienced a significantly larger
use in problems involving discrete crack propagation and failure. With its ability to
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completely eliminate stress singularity at the crack tip, CZM has been applied to
model fracture processes in both ductile and brittle solids [102–105], as well as for small
and finite deformations [104–107]. It is implemented through interface or generalized
contact elements which compose a narrow band ahead of the crack front called a
cohesive zone [108]. At this zone, the material behaviour is governed by the constitutive
law that describes the relationship between the stress and relative displacement of the
cohesive surfaces. In order to be applied, CZM demands a priori knowledge about
the crack path and the constitutive law, making a detailed experimental analysis a
necessity. For more information on CZM and its advantages and limitations see [103].

From the perspective of numerical analysis, the introduction of the discontinuous
displacement field poses a great challenge, especially in mesh-based numerical methods
such as FEM. Since the crack propagates along the element edges, both standard LEFM
and CZM can exhibit a significant dependence of the final result on the element’s size
and orientation. The only way to mitigate this problem is through the utilization of a
proper remeshing algorithm [109, 110] that will track crack topologie as it propagates.
Being only applicable to triangular (in the case of 2D analysis) and tetrahedral (in
the case of 3D analysis) type elements, remeshing approach also exhibits significant
implementation difficulties that arise due to the need for suitable transfer of the state
variables from one mesh to another [111].

On the other hand, with the specific modification of the standard finite elements,
discontinuity can be resolved not on the element’s boundaries but on the element itself.
This modification is usually called enrichment and the elements are therefore called
enriched elements. Extended finite element method (XFEM), developed by Moes et al.
[112], represents the most popular and widely used method of this kind. In the XFEM,
crack topology is represented implicitly, through the use of finite elements that are
enriched with the Heaviside function and asymptotic near-tip singularity functions.
This enables cracks to propagate completely independent of the underlying mesh and
thereby removes the need for mesh refinement. Since it was first proposed, XFEM has
attracted lots of attention [113–118], and has even been successfully coupled with the
CZM [119]. However, the computational complexity of the XFEM can quickly reach
significant levels. The reason for this is the increase in the DOF, which occurs due to
the increase in the number of level set functions that are required to describe each
individual segment of the crack surface. Also, just like remeshing, XFEM is plagued
with implementation issues that involve numerical integration, conditioning and data
handling, which are especially pronounced in the case of 3D analysis.

It is also important to emphasize, that both LEFM and CZM, as well as
the enriched finite element methods, from the fundamental point of view, are not
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self-contained in the sense that they require additional criteria to address the following
questions:

• When and where a crack initiates?

• How much it propagates and in which direction?

Some well-established fracture criteria that are commonly used are maximum cir-
cumferential stress criterion [120], minimum strain energy density criterion [121] and
maximum strain energy release rate criterion [109]. A detailed overview and comparison
of these criteria can be found in [109, 122].

To this end, the discontinuity surface has to be explicitly tracked, which is,
sometimes, an intractable task for those problems with arbitrary and complex crack
paths. Despite recent advances, numerical modelling of complex fracture problems
using a discrete approach is still a challenging issue, especially in three dimensions
[123, 124].

1.3.2. Diffusive crack modelling

In contrast to the discrete crack modelling approaches, crack topology in diffusive crack
modelling approaches (often called continuum damage or smeared crack modelling
approaches) is obtained as a part of the solution. With the introduction of the damage
parameter at the material level that controls the stiffness of the material, degradation of
stress associated with the crack formation is incorporated directly into the constitutive
model. From the point of damage development, continuum damage models can be
either isotropic, orthotropic or anisotropic [125]. In the isotropic damage modelling,
which will be used in this dissertation, the damage parameter is a scalar variable that
ranges between 0 (virgin material, with elastic stiffness) and 1 (completely damages
material, with no stiffness). It is also assumed that this scalar variable depends on a
state variable, which in turn depends on the strain. On the other hand, orthotropic and
anisotropic damage models require the damage parameter to be a higher-order tensor,
which is then able to capture different evolutions of damage in different directions.

Continuum damage models that are based on standard, also called local,
continuum represent a class of local continuum damage models. The material behaviour
in these models is characterized by the constitutive law at each material point, which
does not exhibit the influence of the surrounding points. This is because the state
variable depends only on strain at the point of consideration, i.e. only local effects are
taken into account. As a consequence, this leads to a local loss of ellipticity of the
governing differential equations, which in turn leads to physically meaningless solutions,
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as discussed in de Borst et al. [126]. As evident from [127], local continuum damage
models suffer from pathological mesh dependency, yielding physically unrealistic
results. Moreover, they are unable to interpret size effects which are often observed in
experimental analysis.

To overcome these drawbacks, various regularization techniques have been
proposed, including nonlocal [128] and gradient-enhanced continuum approach [129],
gradient damage model [130], phase-field fracture formulation [131], the crack band
theory [132], micropolar [133] and later micromorphic continuum theory [134]. Among
all these methods, the damage variable is made to depend on the strain state in a
neighbourhood (associated with a characteristic length) of the point under consid-
eration, i.e. nonlocal effects are taken into account. Essentially, through the use of
material length parameter, the aforementioned approaches are able to regularize the
original ill-posed boundary value problem, cure pathological mesh dependence and
predict size effect. The material length parameter, which is related to both geometry
and the material itself [135, 136], helps to diffuse (smear) the sharp crack topology
over a finite domain region, thus allowing the objectivity of the numerical solution to
be recovered.

The major drawback of continuous approaches is that the true discontinuity
cannot be properly represented. This led to the development of so-called continuous-
discontinuous approaches, where a continuous description of cracking is used until
the final stage of failure, which is modelled by a discontinuous approach [137–140].
However, there is no consensus in defining the transition procedure between continuous
and discontinuous approaches, especially when the cracking-induced anisotropy is
important. Furthermore, the aforementioned techniques have been applied only to
problems with the existing dominant propagating crack. On top of that, the use of
nonlocal approaches [128, 129] for specific types of loading can lead to incorrect failure
characterization in terms of damage initiation and propagation, as reported in Simone
et al. [141]. From the author’s own experience, this phenomenon may also occur
in phase-field fracture formulation. The problem in question can be avoided by the
introduction of material length parameter as a function of strain [142, 143]. However,
the underlying assumption of these models might not have a microstructurally correct
physical background as explained by Poh et al. [144].

1.3.3. Phase-field fracture approach

Phase-field modelling represents a general approach for the description of the behaviour
of physical systems that consist of several phases that are divided by sharp interfaces.
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It is based on the introduction of a continuous field variable (order parameter) which
differentiates between multiple physical phases within a given system through a
smooth transition. In the context of fracture, such an order parameter is used to
describe the smooth transition between the fully broken and intact material phase,
thus approximating the sharp crack discontinuity.

What makes this approach particularly attractive is its ability to elegantly sim-
ulate complicated fracture processes, including crack initiation, propagation, merging
and branching - without the need for additional ad-hoc criteria. Propagating cracks
are tracked automatically by the evolution of the smooth crack field on the fixed
mesh, which leads to a significant advantage over the discrete fracture description
methods outlined in subsection 1.3.1. In addition, numerical implementation of the
phase-field fracture approach into the FEM represents a straightforward task, for both
two- and three-dimensional problems.

The phase-field fracture formulation, which will be used in this dissertation,
was conceived by Francfort and Marigo [131], who proposed a generalization of the
original Griffith’s approach by introducing the energy associated with the creation of
new fracture surfaces into the total energy functional. As a consequence, the original
Griffith’s approach was transformed into an energy minimization problem, where the
total energy functional can be minimized with respect to both displacement and the
crack geometry. Energy functional derived in [131] was later regularized by Bourdin
et al. [145, 146], who used Ambrosio and Tortorelli [147] elliptic regularization of the
free-discontinuity problem characterized by the Mumford-Shah functional [148] to
reformulate the problem into a system of elliptical partial differential equations that
completely determine the crack evolution. Bourdin’s formulation introduced a scalar
variable (later termed the phase-field variable) that discriminates intact from the
broken material and a small positive length scale parameter that controls the width of
the localization band. Regularized phase-field fracture model [145] is, herein, referred
to as isotropic since it does not distinguish between tensile and compressive fracture
behaviour. In order to prevent the formation of cracks during compression, Amor et al.
[135] presented an anisotropic phase-field model in which elastic strain energy density
was additively decomposed into volumetric and deviatoric part. Another anisotropic
model was proposed in Lancioni and Royer-Carfagni [149], to handle fracture for the
case of shear loading, and was later applied to model the development of cracks in the
masonry work of the French Panthéon, one of the most famous historical monuments
in Paris.

Miehe et al. [150] achieved a major milestone in the development of the phase-
field fracture model with the introduction of a spectral strain energy split and a new,
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more intuitive, formulation that was more accessible to the engineering community.
Since then, the popularity of the phase-field method in the field of numerical modelling
of damage and fracture increased exponentially. Today, a considerable number of
various phase-field brittle fracture formulations has been developed for both quasi-
static [150–154] and dynamic [154–156] models. Furthermore, the framework has been
extended to handle ductile fracture at small [157–159], but also finite strains [160–
163]. Moreover, problems involving thermomechanical fracture [164–166], hydraulic
fracture [167, 168], fatigue crack propagation [169–173], electromechanical fracture
[174, 175], fracture in porous media [176–178] or biological tissues [179] and even
multiscale damage modelling [180–182] were all tackled through the use of phase-field
fracture approach. A majority of the aforementioned formulations have been thoroughly
verified by the available numerical benchmark tests and qualitative experimental data
comparing the predicted and observed crack paths. For quantitative experimental
validations see Ambaty et al. [161], Nguyen et al. [136], Miehe et al. [162], Seleš et al.
[172], Lesičar et al. [183], Dittmann et al. [160], Jukić et al. [173], and Nagaraja et al.
[184].

However, the phase-field method is not without its disadvantages, with two
main issues being: (1) non-convexity of the underlying free energy functional, and (2)
the need for extremely fine mesh in the crack propagation zone.

The first flaw constitutes a major problem within the so-called monolithic
treatment of the variational formulation where the system of partial differential
equations is fully coupled. Therefore, both displacement and the crack phase-field
are computed simultaneously as part of one solution vector. However, due to the
non-convexity of the free energy functional, multiple extremes exist (schematically
shown in Figure 1.4) thus creating issues with convergence and stability, which is
especially pronounced during brutal crack evolution as well as in the post-peak loading
regime.
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Figure 1.4: Schematic representation of non-convex energy functional

To mitigate this issue, different approaches have been proposed, most notably
the modified line-search assisted monolithic solver [185], arc-length procedure [186],
the modified Newton scheme with Jacobian modification [187] and a quasi-Newton
algorithm [188]. A more robust and effective way of dealing with the problem of non-
convexity is the utilization of a so-called staggered solution strategy, which is based on
the observation that, while the free energy functional is generally non-convex, it is
convex with respect to either displacement or the phase-field variable, if the other one
is held constant [145]. Unlike monolithic procedure, the system of partial differential
equations in a staggered solution scheme is fully decoupled, i.e. displacement and the
crack phase-field are computed separately. This property was first exploited by Miehe
et al. [151] where a staggered algorithm based on the single iteration procedure was
presented. However, to be accurate with only one iteration the size of the loading
increment has to be small, which is computationally inefficient for more complex
problems. This led to the development of staggered schemes that allow for larger
increment sizes by performing multiple iterations until the specific stopping criterion
is met. In Duda et al. [189] and Bourdin et al. [146] the stopping criterion was the
relative difference between solution variables in two consecutive iterations. A similar
approach has been presented by Lesičar et al. [183]. In Ambati et al. [153], the status
of the increment convergence has been determined based on the normalized change of
the system’s energy, while Seleš et al. [190, 191] developed a staggered solution scheme
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with a stopping criterion based on the value of the residual norm.
The second issue that plagues the phase-field method is the need for fine meshes

in the zone where the crack forms and propagates. The size of finite elements is
directly related to the value of the length scale parameter controlling the width of the
localization band, and in the cases where the crack topologies are known a priori, this
does not represent a major problem. However, in the opposite case, this can increase
computational cost significantly, since pre-refined meshes cannot be generated in an
appropriate way. One antidote to this flaw is the utilization of the remeshing algorithm,
which will track the crack topologies and refine the mesh depending on the specific
criterion. Phase-field simulations with adaptive mesh refinement have been reported in
e.g., Borden et al [192], Klinsmann et al. [193], Heister et al. [194], Jukić et al. [195],
Wick et al. [187], Artina et al. [196]. Computational parallelization on the other hand is
another remedy to the computational cost of phase-field fracture models, as presented
in [154]. To this day, the high computational cost associated with fine meshes is one of
the main reasons for the absence of a phase-field fracture approach in commercial use.

1.4. Multiscale modelling of damage and
fracture

It is not unknown that the material fracture for any kind of loading is highly sensitive
to the microstructure that forms it. Slight changes in the shape, spatial distribution
and volume fraction of each individual microconstituent can alter material behaviour
significantly, making it more or less resistant to the occurrence of damage and formation
of cracks. In Čanžar et al. [197], an experimental analysis that was conducted on
the nodular cast iron showed a high dependency of the fatigue crack initiation and
propagation on the microstructure of the material. More precisely, the shape of the
graphite nodules, which are one out of three microconstituents, proved to be a key
factor in determining the material’s resistance to fatigue-induced cracking. Spherically
shaped graphite nodules had a positive impact on the values of stress by acting as
stress concentration reductors, thus improving material’s resistance to the formation
of microcracks. On the other hand, the volume fraction of voids in the microstructure
of sintered steel turned out to be a main enhancer/diminisher of its fracture properties
[4]. Non-uniform stress and strain state inside the microstructure also arise due to the
specific spatial distribution of the microconstituents, which can create areas suitable
for the occurrence and development of damage. In the field of numerical modelling of
damage and fracture in heterogeneous materials, multiscale analysis is a valuable tool
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that couples the microstructural stress state with the macroscopic calculation in order
to predict fracture processes at the macrolevel of material.

Over the past two decades, extensive studies on the numerical modelling of
failure processes in heterogeneous materials have been performed. Unfortunately,
the use of computational homogenization scheme described in subsection 1.2.1
exhibits several issues. First of all, highly localized phenomena such as damage cannot
be appropriately calculated at the macrolevel by simply performing averaging over
the RVE domain, as it will lead to physically inaccurate and meaningless results
[198]. Not only that, but due to the loss of statistical homogeneity, which occurs
in strain softening, the representativeness of the RVE may come into question [50,
199]. Moreover, a distinction between scales is no longer clearly determined, resulting
in another problem known as the lack of separation of scales [200, 201]. To tackle
these issues, Gitmann et al. [202] developed a coupled-volume multiscale method in
which the RVE is associated with a domain of finite volume (an element in a FEM
context) rendering it objective to the size of the RVE; however, the approach did
not experience any major extensions or improvements. Different procedures, all based
on the Hill-Mandel homogenization scheme, that aim to describe material failure
at the macrolevel by calculating homogenized traction-separation law (homogenized
cohesive law) from the finite element analysis at the lower scales were developed
for both adhesive [203, 204] and cohesive [205, 206] crack formations. By utilizing
computational homogenization for adhesive type cracking, in [203] the existence of
an RVE for strain softening materials (under tension and mixed-mode loading) which
exhibits diffusive damage has been reported. The same result has been presented in
[204] for fiber-epoxy material that undergoes discrete cracking. In [206] the authors
have proved the existence of an RVE for softening materials, for both adhesive and
cohesive cracks, by deriving a traction-separation law from the homogenized values
of stress and strain. However, the method has been applied only to materials with
a simple microstructure that exhibits discrete cracking. The question of the RVE
representativeness during the strain softening was also the subject of work done by
Nguyen et al. [207], where a modified averaging scheme was presented. More precisely,
homogenization of the damage parameter was carried out only on the RVE domain
that has experienced failure - failure averaging homogenization scheme. Unfortunately,
the scheme is not suitable for any type of nonlocal continuum damage model since
the failure zone is determined with respect to nonlocal equivalent deformation. Also,
aditional criteria will be needed if one wishes to address strain softening in elastoplastic
region. An approach that combines phase-field fracture formulation [131], multiscale
finite element method based on multiscale basis functions [208, 209] and XFEM [112]
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to model brittle fracture in heterogeneous materials can be found in [180–182]. In the
mentioned works, the entire domain of interest was divided into two regions - with
coarse and fine mesh discretization, which were modelled and computed individually.
In the former, multiscale finite element method based on multiscale basis function
was utilized to capture heterogeneous response, whereas in the latter phase-field
was used to approximate sharp crack discontinuity while the XFEM was applied to
model discontinuous displacement field. However, all numerical examples which were
presented in [180–182] were conducted for cases of very simple 2D microstructures
undergoing only brittle fracture.

One of the first approaches that deals with the problem of ductile softening in
heterogeneous materials can be found in Ibrahimbegović et al. [210], where the solution
method for the strong coupling of two scales, employing the implicit integration
scheme at each scale, was utilized. Ductile heterogeneous material behaviour was
captured by a two-phase microstructural model, where the nonlinear behaviour of
one phase was described by the plasticity model undergoing small strains and the
nonlinear behaviour of the other phase was represented by a damage model. Since the
microstructure in question consisted of a phase that did not exhibit any kind of damage,
the true failure of the microstructure and the material at the macrolevel couldn’t
be captured properly. Tchalla et al. [211] conducted a multiscale analysis of damage
in fiber-reinforced elastoplastic composites by combining mean-field homogenization
and incremental micromechanics scheme. The proposed approach; however, did not
show good agreement with experimental analysis, which was especially pronounced in
the case of high volume fraction of fibers. Also, due to the utilization of the mean-
field homogenization method alongside the incremental micromechanics scheme, the
intensive damage localization problem wasn’t addressed. In order to bring stability
and at the same time ensure clear separation of scales, Lesičar et al. [212] developed a
two-scale approach in which first-order computational homogenization was performed
on two microstructural samples, one without damage and another with embedded
nonlocal gradient-enhanced damage model. The procedure also included a novel damage
averaging scheme closely related to the failure averaging homogenization scheme
presented in [207]. Herein, due to the presence of a local continuum at the macroscale,
pathological mesh dependency of the final results at the macrolevel was unresolved.
Approaches that deal with the problem of multiscale modelling of damage in ductile
heterogeneous materials at finite strains were presented in e.g. Benedeti et al. [213]
and Xiang et al. [214]. In [213], authors have developed a three-dimensional concurrent
multiscale approach for describing failure in polycrystalline materials in which the
intergranular degradation and failure at the microlevel were modelled with cohesive
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and frictional contact laws. The macroscopic measure of degradation was obtained
by the comparison of effective macro-stress for the damaged and undamaged RVE,
while the pathological mesh dependence at the macrolevel was avoided through the
use of integral nonlocal counterparts of the strains. However, the contribution [213] did
not include any force-displacement diagrams, which calls into question the robustness
and accuracy of the presented approach. As in [211], the mean-field homogenization
method was also utilized in [214] to model the failure of aluminum and titanium
alloy plates during impact loads. The evaluation of the damage variable was described
by the nucleation-and-growth model [215], while the acceleration of the damage
softening due to void coalescence was taken into account through the use of percolation
theory [216]. Although more efficient than computational homogenization, mean-field
homogenization does not provide a clear connection between the deformation gradient
at two scales and therefore requires additional assumptions to create it. Contribution
[82], already mentioned in subsection 1.2.3, represents a major milestone in the field
of multiscale modelling of damage in ductile heterogeneous materials. It included a
novel, three-step homogenization scheme, that was able to capture size effect and ensure
RVE representativeness during the strain softening, but also a nonlocal formulation
at the macrolevel that managed to completely eliminate mesh dependency. Since the
RVE boundary value problem at each macroscopic point is resolved through the use
of SCA, the computational efficiency of this approach is extremely high. However, the
discretization of the microstructural domain into a relatively small number of clusters
also led to the need for energy regularization, i.e. subsequent calibration of the damage
parameters that are dependent on the different loading conditions. In addition, the
multiscale damage formulation presented in [82] is not suitable for problems in which
energy dissipated by plasticity is larger than that of elasticity.

1.5. Research hypothesis and objectives
The main objective of this study is to develop and implement a novel multiscale
procedure for modelling damage and fracture processes in ductile heterogeneous
materials for the static/quasi-static type of loading. The framework should be able to
meet the following:

• link heterogeneous RVE properties with each macroscopic point,

• ensure RVE representativeness during strain softening,

• cure pathological mesh dependence at the macrolevel,
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• provide computational efficiency,

• ensure straightforward extension from small strains brittle fracture, to the finite
strains ductile fracture.

Also, the proposed multiscale framework should be general and robust, i.e. capable of
dealing with complex microstructures, with an arbitrary number of microconstituents
of different shape, volume fraction, spatial distribution and mechanical properties. The
hypothesis is the possibility of the development of such a method by combining the
phase-field fracture algorithm at the macrolevel and SCA at the microlevel.

The presence of a nonlocal continuum damage model, such as phase-field, at
the macrolevel will ensure objectivity and mesh independence of the final results. In
addition, phase-field implementation into FEM is a straightforward task (as stated
in subsection 1.3.3), and any extension to different types of material behaviour is
therefore easily doable. Also, the absence of a damage algorithm at the microlevel
will be a beneficial factor in retaining a clear distinction between the two scales and
ensuring the RVE representativeness during the strain softening process.

SCA will be used to solve the RVE boundary value problem and to obtain
averaged (homogenized) properties of the microstructure through the use of a first-
order computational homogenization. Utilization of the SCA at the microlevel will
greatly increase computational efficiency, which is especially important for large-
scale concurrent multiscale simulations. Moreover, as a method, SCA is valid for any
constitutive law of each material phase (as stated in subsection 1.2.3), and therefore
can be applied to any type of material/microstructure.

In contrast to many existing approaches, the calculation of the material degra-
dation at the macrolevel will not include any kind of damage analysis at the microlevel.
Generated RVE will serve exclusively for obtaining homogenized stress and tangent
stiffness tensor, equivalent plastic deformation and strain energy density. By upscaling
the homogenized values, the phase-field fracture algorithm will receive all the necessary
input to perform its calculation and to determine the material degradation.

1.6. Thesis outline
The thesis is organized in five chapters. After the introductory lines described above,
Chapter 2 includes a detailed derivation of all the necessary equations needed for
the SCA, along with numerical validation, performed on two- and three-dimensional
elastoplastic heterogeneous microstructure. Complete SCA analysis, which consists of
the offline and online stage, is executed using commercial software Matlab. Chapter 3
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gives a thorough description of the phase-field fracture formulation for both brittle
and ductile materials as well as its numerical implementation into FEM. In Chapter
4, a novel concurrent multiscale procedure, based on SCA and phase-field fracture
formulatino is presented. The proposed concurrent framework is implemented into
commercial finite element software Abaqus, through the use of a user subroutine and
is thoroughly tested on several geometrical samples. Finally, concluding remarks are
given in Chapter 5 with suggestions for future work.
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2. Data-driven homogenization: Self-
consistent clustering analysis

2.1. Background

In the field of multiscale analysis of heterogeneous materials, the term “representa-
tive volume element”, i.e. RVE represents a concept of crucial importance. There,
unfortunately, is not a unique and exact definition of the RVE for an arbitrary het-
erogeneous material. However, in general, an RVE can be considered as a sample
of a microstructure of an arbitrary size which fulfills the following three conditions:
(1) an increase in the size of the sample does not lead to considerable differences in
the homogenized properties, (2) the size of the sample is large enough so that the
homogenized properties are independent of the microstructural randomness, and (3)
the size of the sample is small enough so that the separation of scales principle is valid.
In terms of geometry, RVE can be quite complex, and can consist of several different
material phases of different shape, volume fraction and spatial distribution. Accurate
description of the stress and strain field inside the RVE for a given load is not a trivial
task, and it requires a significant number of finite elements (in the case of FEM), i.e.
pixels/voxels (in the case of FFT-based solver).

Since the sole purpose of the RVE boundary value problem is to obtain homoge-
nized values for a given load, the number of the DOF that are present at the microlevel
does not need to be significant. However, although it is possible to drastically reduce
the number of DOF at the microlevel, the concurrent multiscale approach that utilizes
DNS for solving the RVE boundary value problem is, to this day, still too demanding
from the point of computational time and resources. The main reason for this is the
fact that the RVE boundary value problem has to be solved for every material point at
the macrolevel, at every increment of the analysis. Of course, this does not represent
an issue if the amount of macroscopic material points is in the range of single-digit
numbers, but for practical problems, this number will be measured in thousands.
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Reduced-order homogenization methods aim to further improve the efficiency
of the concurrent multiscale simulations, by addressing the high costs associated with
the calculation at the lower levels. However, the use of these methods comes at the
cost of lower accuracy of the homogenized results that are upscaled to the macrolevel.
The rule is simple: the more effort one puts into reducing the complexity of the RVE
boundary value problem, the more accuracy will suffer. However, this dependence is not
linear, and it is always beneficial to find the optimal balance between computational
efficiency and overall accuracy. Also, reduced-order homogenization methods have
their limits regarding RVE complexity, material behaviour, and the type of loading
that the RVE is subjected to. This is also true for self-consistent clustering analysis
[78] that is presented in detail in the following pages.

2.2. Offline stage
In the data-driven multiscale methods that fall in the category of microscopic ap-
proaches, the term “offline stage” stands for the part of the analysis that needs to be
done only one time, but the quality of its execution can greatly affect the accuracy of
homogenized results. The main goal in this stage is to gather as much information
as possible about the behaviour of the microstructure subjected to different types
of loading. This can be done by conducting multiple DNSes, in most cases by FEM,
on the RVE which is discretized with a significant number of finite elements. This
fine discretization will allow for an accurate description of the stress and strain field
inside the RVE, which is a beneficial factor in any offline stage. Although conducting
multiple finite element simulations with a large number DOF is not computationally
efficient (especially in three-dimensional cases), the fact that it needs to be done only
once makes it profitable in the long run.

In POD [65], the offline stage boils down to conducting several finite element
analyses on the RVE subjected to different loading conditions. The goal is to collect the
data from each integration point in order to construct the reduced basis which will then
be used in the RVE boundary value problem during the concurrent multiscale approach.
However, as stated in subsection 1.2.2, POD is only suitable for history-independent
problems, where a relatively small number of finite element simulations are sufficient in
order to obtain satisfactory results. The values and the type of macro-loading conditions
that the RVE is subjected to in the offline stage are directly correlated with the problem
of the macrostructure that is being analyzed. Therefore, it is important to choose
offline macro-loading conditions that will include both minimum and maximum values
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of the strain/deformation gradient present at the macrostructure under consideration.
Otherwise, POD won’t be able to provide accurate results, as the macro-loading
conditions that have appeared during the analysis were not captured during the offline
stage. The NTFA [63, 64], an extension of the TFA [62], uses data collected from the
finite element analyses to define a set of internal variables that are then subjected to
the evolutionary equations. Basically, the RVE boundary value problem is reduced
through a decomposition of the microscopic inelastic strain field into a finite set of
transformation fields. Again, as in the case of the POD, it is important to have general
knowledge about the type of loading that the RVE will undergo during the concurrent
analysis. This is because a relatively small number of plastic modes, obtained by the
series of finite element simulations in the offline stage, will be used to describe complex
inelastic strain field inside the RVE.

Unlike POD and NTFA, self-consistent clustering analysis [78], or simply
SCA, is a reduced-order homogenization method that aims to improve computational
efficiency at the microlevel by physically decomposing RVE into a finite number of
large subdomains - Figure 2.1. These subdomains are designed as material clusters
henceforth, and in each one of them the distribution of an arbitrary variable is constant,
i.e. every local variable β within each material cluster is uniform [67]. This is equivalent
to considering a piecewise uniform approximation to the local variables of interest in
the RVE [67]

β (x) =
k∑

I=1
βIχI (x) , (2.1)

where βI is the homogeneous variable in the I-th material cluster, x stands for position
vector, k is the total number of material clusters, while χI represents a characteristic
function in the domain of the I-th material cluster of the volume ΩI , and is defined as

χI (x) =

1, x ∈ ΩI

0, x /∈ ΩI
(2.2)

From (2.2), the following cluster averaging relationship is derived∫
Ω
χI (x)□dx =

∫
ΩI

□dx, (2.3)

where □ signifies any quantity of interest to be averaged in the cluster domain ΩI of
the RVE with total volume Ω.
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(a) Unit cell geometry (b) Discretization with eight clusters

(c) Unit sphere geometry (d) Discretization with eight clusters

Figure 2.1: Microstructure decomposition into an appropriate number of material
clusters

The minimum number of material clusters inside the RVE must be equal to
the total number of material phases. This is because each material phase can be
decomposed with a minimum of one material cluster. Regarding the upper limit of the
number of clusters, it is restricted by the total number of points used in each material
phase. Of course, for practical use, the total number of clusters should be as small as
possible in order to ensure maximum computational efficiency for a given problem.
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2.2.1. Decomposition into k number of clusters

Clustering analysis by itself always involves grouping of points that have similar
characteristics into one cluster. Points can be characterized in various ways; however,
in this dissertation, the similarity between different points is determined by their
mechanical behaviour. More precisely, points that exhibit similar mechanical behaviour
are placed together into one material cluster. That similarity can be expressed through
a well-known quantity in the field of micromechanics called the strain concentration
tensor A, defined as

ε (x) = A (x) : ε. (2.4)

In the equation above, ε is the small strain tensor inside the RVE domain, i.e. at the
microlevel, while ε stands for the value of a homogenized (macro) small strain tensor.
For a linear elastic material, the strain concentration tensor A is independent of the
loading conditions and provides a connection between the micro and macro value of
a small strain tensor. To be fully determined, finite element simulations inside the
linear elastic region are sufficient. Therefore, values of only two material parameters,
e.g. modulus of elasticity E and the Poisson coefficient ν are required to run the DNS
analysis. Other metrics, such as equivalent plastic strain or damage indicator can also
be added to further improve the characterization of each individual point. However,
apart from being load-dependent they also require extra computation in the offline
stage and therefore are not used in this dissertation.

For a two-dimensional linear elastic analysis, the strain concentration tensor
A, in each material point defined by the position vector xa, has nine independent
components in total

εx (xa)
εy (xa)
γxy (xa)

 =


A11 (xa) A12 (xa) A13 (xa)
A21 (xa) A22 (xa) A23 (xa)
A31 (xa) A32 (xa) A33 (xa)



εx

εy

γxy

 , (2.5)

which can be determined by conducting finite element simulations on densely discretized
RVE subjected to three orthogonal loading conditions ε1, ε2 and ε3, i.e.

ε1 =


εx

0
0

 , ε2 =


0
εy

0

 , ε3 =


0
0
γxy

 . (2.6)

On the other hand, in the case of a three-dimensional analysis, A has 36 independent
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components, needing a set of six finite element simulations under six different orthogonal
loading conditions. If the RVE in question is discretized by e number of finite elements,
with one integration point per element, then the total number of strain concentration
tensors is equal to e. Although it is not mandatory, since they provide the best
homogenized results, PBC are utilized in both two- and three-dimensional analyses
for all orthogonal macro-loading conditions. Finally, this part of the offline stage,
which includes finite element analysis with three/six orthogonal loading conditions
and the construction of the strain concentration tensor for every integration point, is
implemented into commercial finite element software Abaqus [217].

After computing the strain concentration tensor A for each element, the k-means
clustering method [79] is used to group points (elements) into appropriate material
clusters. For this step of the offline stage, the commercial software Matlab [218] is used
to conduct k-means clustering but also to visualize the clustered data. Furthermore,
Matlab provides additional functionalities regarding the k-means clustering algorithm
that control properties such as the maximum number of iterations, a procedure for
choosing initial cluster centroid points and some others [219].

The k-means clustering results for a two-dimensional heterogeneous RVEs
consisting of 20 %, i.e. 40 % circular inclusions are provided in Figure 2.2 and Figure
2.3.

(a) Geometry of a 2D microstructure (b) Discretization with 32 clusters

Figure 2.2: Results of the k-means clustering for a 2D microstructure with 20 % of
circular inclusions
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(a) Geometry of a 2D microstructure (b) Discretization with 32 clusters

Figure 2.3: Results of the k-means clustering for a 2D microstructure with 40 % of
circular inclusions

For the purposes of the DNS data collection, both microstructures were dis-
cretized by a total of 106 quadrilateral finite elements with one integration point, i.e.
with 1000 × 1000 pixels. Herein, the term “pixel” is used to indicate regular finite
element mesh, consisting of identical quadrilateral finite elements with one integration
point in their center.

Moreover, clustering results for a three-dimensional microstructure with 10 %,
i.e. 20 % of the spherical inclusions volume fraction are shown in Figure 2.4 and
Figure 2.5.
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(a) Geometry of a 3D microstructure (b) Discretization with 24 clusters

Figure 2.4: Results of the k-means clustering for a 3D microstructure with 10 % of
spherical inclusions

(a) Geometry of a 3D microstructure (b) Discretization with 24 clusters

Figure 2.5: Results of the k-means clustering for a 3D microstructure with 20 % of
spherical inclusions

In the case of three-dimensional DNS analysis, the microstructures shown
above were discretized with 106 hexahedra finite elements containing one integration
point, i.e. with 100 × 100 × 100 voxels (three-dimensional pixels). This extraordinary
fine discretization for both two- and three-dimensional finite element simulations is
beneficial for clustering analysis since it allows for an accurate description of the strain
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field inside the RVE, and therefore improves the quality of the RVE decomposition
into a specific number of clusters.

As mentioned before, the offline stage has to be conducted only once, but the
quality of its execution will have a significant impact on the overall accuracy. The
physical discretization into material clusters can now be used for any type of material
configuration at the microlevel, and for any type of loading. The question that now
arises is: how to model and implement the RVE boundary value problem if the domain
is discretized with material clusters? Obviously, the ellipticity of the partial differential
equations has to be preserved, i.e. the change in one material cluster has to have an
impact on all other clusters and vice versa. The problem in question is addressed
through the Lippmann-Schwinger equation, the derivation of which is presented for
both small and finite strains.

2.3. Lippmann-Schwinger equation
The Lippmann-Schwinger equation is one of the most used equations for describing
particle collisions, or more precisely, scattering in quantum mechanics. Although it
was originally derived to tackle problems of particle physics, the Lippmann-Schwinger
equation found its place in the field of continuum mechanics for analyzing heterogeneous
materials systems. In [220] Kröner utilized the Lippmann-Schwinger integral equation
to model and analyze the average behaviour of heterogeneous materials during static
loading, in the linear elastic region. It has been also extended by Lee and Mal [221]
to consider multiple scattering problems in elastodynamics, while referring to it as
a volume integral equation. Moreover, the equivalent inclusion method [222], which
introduces the concept of eigenstrain, is actually an alternative interpretation of the
Lippmann-Schwinger integral equation.

Obtaining exact analytical solutions of the Lippmann-Schwinger integral equa-
tion is only possible in cases of linear elastic behaviour and simple RVE geometry.
Micromechanical methods such as Mori-Tanaka [223] and the self-consistent method
[52] are able to provide only approximate solutions whose accuracy is highly dependent
on the complexity of the given problem. On the other hand, FFT-based solvers can
be utilized to obtain numerical solutions to the equation considering both small [55]
and finite strains [224, 225]. In the following pages, the Lippmann-Schwinger integral
equation will be derived from the equilibrium conditions based on Green’s function,
for both small and finite strains.
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2.3.1. Small strain formulation

For small strain assumption, the equilibrium equation can be written in the most
general form as

∇ · σ (x, t) + b (x, t) = ρ (x, t) ü (x, t) . (2.7)

In Eq. (2.7) ∇ and σ denote gradient operator and Cauchy stress tensor, respectively.
b represents body force vector, ρ is the body’s density, while ü stands for vector of
the acceleration. The mentioned quantities depend on time t and the position vector
x. Considering only static/ quasi-static problems and neglecting the body force vector
b, equilibrium (2.7) is reduced to

∇ · σ (x) = 0. (2.8)

For a homogeneous elastic body of volume Ω0 and a material stiffness tensor C0,
Cauchy stress tensor σ can be expressed through Hoke’s law as

σ (x) = C0 : ε (x) = λ0tr [ε (x)] I + 2µ0ε (x) . (2.9)

Here λ0 and µ0 are the Lamé constant and the shear modulus, I is a second-order
identity tensor, “tr” denotes a trace of the matrix, while ε represents a small strain
tensor. For the purposes of further derivation, the material with stiffness tensor C0

will from now on be called reference material. Let a small part of the homogeneous
elastic body now be changed into a heterogeneous one with the volume Ω and unknown
stiffness C as depicted in Figure 2.6

x1

x2

:

:�

heterogeneous material
reference material

Figure 2.6: Schematic plot for the computational set-up of the SCA
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The Cauchy stress tensor can now be divided into two parts, i.e.

σ (x) = C0 : ε (x) + q (x) , (2.10)

where q is the so-called polarization stress tensor, denoting the difference between the
Cauchy stress tensor in the heterogeneous and reference material with the same strain.
Moreover, according to [57, 226] the Cauchy stress tensor is defined as a piecewise
function

σ (x) =

C : ε (x) = C0 : ε (x) + q (x) , x ∈ Ω

C0 : ε (x) , x ∈ Ω0,
(2.11)

from which it is not difficult to conclude that the polarization stress tensor q vanishes
outside of the heterogeneous material. Also, by using the first expression in (2.11), the
initial equilibrium defined by Eq. (2.8) can be rewritten as

∇ ·
(
C0 : ε (x)

)
= −∇ · q (x) , in Ω. (2.12)

With the help of Green’s function Φ0 (x,x′), which represents the strain at x
(inside the heterogeneous material) contributed by a stress at x′ (inside the reference
material), and by regarding the polarization stress tensor q as an external stress on
the reference material, the following integral equation can be written [67]

ε (x) +
∫

Ω
Φ0 (x,x′) : q (x′) dx′ − ε0 = 0, (2.13)

where ε0 is the far-field small strain tensor, which is homogeneous for a homogeneous
reference material and for which the following is true [93]

lim
x→∞

ε (x) = ε0. (2.14)

Substituting (2.10) into (2.13) an integral form of the Lippmann-Schwinger equation
is obtained as

ε (x) +
∫

Ω
Φ0 (x,x′) :

[
σ (x′) − C0 : ε (x′)

]
dx′ − ε0 = 0. (2.15)

Eq. (2.15) can also, for convenience, be written in the incremental form as

∆ε (x) +
∫

Ω
Φ0 (x,x′) :

[
∆σ (x′) − C0 : ∆ε (x′)

]
dx′ − ∆ε0 = 0. (2.16)
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Moreover, by using the integral property of Green’s function, i.e.∫
Ω

Φ0 (x,x′) dx = 0, (2.17)

it can be shown that the incremental far-field small strain tensor ∆ε0 is equal to the
homogenized incremental strain of the RVE. By averaging Eq. (2.16) in the domain Ω,

1
Ω

∫
Ω

∆ε (x) dx+
1
Ω

∫
Ω

[∫
Ω

Φ0 (x,x′) dx
]

:
[
∆σ (x′) − C0 : ∆ε (x′)

]
dx′ − ∆ε0 = 0,

(2.18)

and with the use of Eq. (2.17), incremental far-field small strain tensor ∆ε0 can be
expressed as

∆ε0 = 1
Ω

∫
Ω

∆ε (x) dx. (2.19)

In order to solve (2.16) for ∆ε (x) constraints are needed from the macroscopic
boundary conditions. Two basic types of constraints are available: the macro-strain
constraint

1
Ω

∫
Ω

∆ε (x) dx = ∆ε → ∆ε0 = ∆ε, (2.20)

where ∆ε is the homogenized (average) value of the incremental small strain tensor
∆ε. Or the macro-stress constraint

1
Ω

∫
Ω

∆σ (x) dx = ∆σ, (2.21)

where ∆σ is a homogenized (average) value of the incremental Cauchy stress tensor
∆σ. Here the boundary conditions are applied as constraints on the volume average of
strain or stress inside the RVE. This is different from the standard FEM where the
boundary conditions constrain the displacement or force on the RVE boundaries.

Expression (2.16) implies that the reference material is homogeneous; however,
in a more general sense, that is not the case and the stiffness of the reference material
is then expressed as a function of the position vector x

C0 = C0 (x) . (2.22)

The derivation of the incremental integral equation is the same as the one for a
homogeneous reference material, except that the incremental far-field strain tensor
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2.3. Lippmann-Schwinger equation

∆ε0 also becomes inhomogeneous. The new incremental Lippmann-Schwinger equation
takes the following form

∆ε (x) +
∫

Ω
Φ0 (x,x′) :

[
∆σ (x′) − C0 (x) : ∆ε (x′)

]
dx′ − ∆ε0 (x) = 0, (2.23)

where Φ0 (x,x′) is now Green’s function of the heterogeneous elastic reference material.
By averaging Eq. (2.23) and utilizing the property of Green’s function in (2.17), for
incremental far-field small strain tensor ∆ε0 it is valid to write

1
Ω

∫
Ω

∆ε (x) dx = 1
Ω

∫
Ω

∆ε0 (x) = ∆ε. (2.24)

Furthermore, a new strain concentration tensor, that conncects ∆ε with ∆ε0 (x) is
now defined as

∆ε0 (x) = A (x) : ∆ε. (2.25)

Substituting (2.25) into (2.23) gives

∆ε (x) = A (x) : ∆ε −
∫

Ω
Φ0 (x,x′) :

[
∆σ (x′) − C0 (x) : ∆ε (x′)

]
dx′. (2.26)

Eq. (2.26) is more complex and provides a higher level of accuracy than (2.16) since it
allows for more realistic material behaviour. However, in the case of heterogeneous
reference material, the determination of the strain concentration tensor A and Green’s
function Φ0 (x,x′) is not a trivial task and has to be done numerically by solving
the RVE problem using DNS methods [67]. The integral identity (2.16) based on the
homogeneous reference material will be used in this dissertation and will serve as the
basis for further analysis.

2.3.2. Finite strain formulation

Although the transition from small to finite strains often includes more complex
expressions, the derivation of the Lippmann-Schwinger integral equation for finite
strains follows the same procedure that was outlined in the previous subsection.
Therefore, the extension is a straightforward task with the only two differences being:
(1) formulation of the equilibrium condition and the integral equation in the reference
(non-deformed) configuration, and (2) replacement of the strain and Cauchy stress
tensor with the deformation gradient F and first Piola-Kirchhoff stress tensor P,
respectively [67]. The equilibrium condition, i.e. equivalent of Eq. (2.8) in the reference
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configuration is equal to

∇0 · P (X) = 0, (2.27)

with ∇0 and X being the gradient operator and the position vector in the reference
configuration. As well as in the case of small strains, a reference material with the
stiffness tensor C0 is introduced, and its constitutive law is given by

P (X) = C0 : F (X) = λ0tr [F (X)] I + 2µ0F (X) . (2.28)

It is important to emphasize that the law written above is not physical, and it requires
the deformation gradient to be defined as

F (X) = ∂x (X)
∂X

− I = ∂u (X)
∂X

. (2.29)

In Eq. (2.29) the deformation gradient is represented simply as the gradient of the
displacement vector u, without the second-order identity tensor I. The main reason
for the identities (2.28) and (2.29) is the ease of deriving the incremental integral
equation along with Green’s function [67]. Following Eq. (2.10) and Figure 2.6, the
first Piola-Kirchhoff stress tensor is equal to

P (X) = C0 : F (X) + Q (X) , (2.30)

where Q is the polarization stress tensor in the reference configuration, denoting the
difference between the first Piola-Kirchhoff stress tensor in the heterogeneous and
reference material. As in the case of small strains, its value is equal to zero outside of
the heterogeneous material. With the use of Green’s function Φ0 (X,X′) Eq. (2.13) is
expressed in terms of reference configuration and the deformation gradient tensor as

F (X) +
∫

Ω0
Φ0 (X,X′) : Q (X′) dX′ − F0 = 0. (2.31)

Here, Ω0 is the reference volume of the heterogeneous material, while F0 represents
far-field deformation gradient, which is homogeneous for a homogeneous reference
material, obeying the same rule as the small strain tensor, i.e.

lim
X→∞

F (X) = F0. (2.32)

The Lippmann-Schwinger integral equation for the case of finite deformations takes
the following form
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2.3. Lippmann-Schwinger equation

F (x) +
∫

Ω0
Φ0 (X,X′) :

[
P (X′) − C0 : F (X′)

]
dX′ − F0 = 0. (2.33)

or in terms of the increments of the deformation gradient and first Piola-Kirchhoff
stress tensor

∆F (X) +
∫

Ω0
Φ0 (X,X′) :

[
∆P (X′) − C0 : ∆F (X′)

]
dX′ − ∆F0 = 0. (2.34)

Through the integral property of Green’s function for finite strains∫
Ω0

Φ0 (X,X′) dX = 0 (2.35)

and by applying the averaging scheme shown in (2.18), for the incremental far-field
deformation gradient ∆F0 it is valid to write

∆F0 = 1
Ω0

∫
Ω0

∆F (X) dX. (2.36)

In the case of finite strain macroscopic constraints can be expressed through homoge-
nized incremental deformation gradient ∆F

1
Ω0

∫
Ω0

∆F (X) dX = ∆F → ∆F0 = ∆F, (2.37)

or homogenized incremental first Piola-Kirchhoff stress tensor ∆P

1
Ω0

∫
Ω0

∆P (X) dX = ∆P. (2.38)

As in the case of small strain formulation, reference material does not need to be
homogenous, i.e.

C0 = C0 (X) , (2.39)

which entails the need for numerical determination of Green’s function Φ0 (X,X′) and
the deformation gradient concentration tensor A. A problem that goes beyond the
scope of this dissertation.
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2.4. Green’s function
Since the term “Green’s function” has been mentioned multiple times in the previous
section, it is important to give a more detailed insight and provide a derivation of this
important mathematical concept.

Consider a one-dimensional linear second-order inhomogeneous differential
equation

d2y (x)
dx2 + dy (x)

dx + y (x) = g (x) , (2.40)

where y and g are analytic scalar functions of the variables x, that are continuous on
an interval [a, b]. Eq. (2.40) can also be written in a more compact form as

L [y (x)] = g (x) , (2.41)

with L being a linear differential operator given by

L = d2

dx2 + d
dx + 1. (2.42)

Now, the solution to Eq. (2.41) can be expressed in the form of the inverse of L , i.e.

y (x) = L −1 [(x)] , (2.43)

or through an integral of Green’s function Φ (x, x′)

y (x) =
∫ b

a
Φ (x, x′) g (x′) dx′, (2.44)

which is defined as the impulse response of an inhomogeneous linear differential
equation operator defined on a domain with specified initial, i.e. boundary conditions.
Identity (2.44) is also called convolution, a term that will be important in section 2.5.
In the physical sense, Green’s function always gives information about the influence
on the position x, affected by the source at x′. By defining appropriate boundary
conditions, and through the use of the following identity

L [Φ (x, x′)] = δ(x− x′), (2.45)

where δ(x− x′) is the Dirac delta function defined as
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2.4. Green’s function

δ (x− x′) =

1, (x− x′) = 0
0, (x− x′) ̸= 0,

(2.46)

Green’s function can be used to solve a broad range of ordinary and partial differential
equations. However, as usual in mathematics, closed-form solutions of Green’s function
are available only for linear problems, since (2.41) and (2.43) require the differential
operator L to be linear.

2.4.1. Green’s function for small strains

The key to Eq. (2.16) is the corresponding Green’s function of the reference material,
and in this subsection, it will be derived for the case of small strains and a homogeneous
reference material with the stiffness tensor C0. The system of two equationsσ (x) = C0 : ε (x) + q (x)

∇ · σ (x) = 0,
(2.47)

where small strain tensor ε is expressed in terms of displacement vector u

ε (x) = 1
2
(
∇u (x) + ∇T u (x)

)
, (2.48)

fully determines the problem of the body depicted in Figure 2.6 that is subjected
to the specific boundary conditions. Since micromechanics always presupposes the
periodicity of the RVE, distribution of the quantities such as displacement, small strain
and the stress tensor inside the RVE can be expressed in the form of a single wave, i.e.

u (x) = û (ξ) exp (iξ · x) , (2.49)

ε (x) = ε̂ (ξ) exp (iξ · x) , (2.50)

σ (x) = σ̂ (ξ) exp (iξ · x) , (2.51)

q (x) = q̂ (ξ) exp (iξ · x) . (2.52)

In the expressions above, ξ is a wave vector corresponding to the periodicity of the
RVE, i is the complex number

(
i =

√
−1
)
, while û, ε̂, σ̂ and q̂ denote displacement,

strain, Cauchy and polarization stress expressed in the Fourier space, i.e. frequency
domain. Considering that the strain field is a function of a displacement, it is convenient
to rewrite the first identity in the system (2.47) in terms of displacement. In index
notation, which will be used for further derivation of Green’s function, the new system
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of equations is σij (x) = C0
ijkluk,l (x) + qij (x)

σij,j = 0.
(2.53)

Now, by using (2.49), (2.50), (2.51) and (2.52), the system of equations in (2.53) can
be expressed in the frequency domain asσ̂ij (ξ) = iC0

ijklξlûk (ξ) + q̂ij (ξ)
iσ̂ij (ξ) ξj = 0.

(2.54)

Multiplying the first identity in (2.54) with iξj and subtracting it from the second one
yields

K0
ik (ξ) ûk (ξ) = iq̂ij (2.55)

where K0
ik is a symmetric second-order tensor given by

K0
ik (ξ) = C0

ijklξlξj =
[
λ0δijδkl + µ0 (δikδjl + δilδjk)

]
ξlξj, (2.56)

or in a more compact form

K0
ik (ξ) =

(
λ0 + µ0

)
ξiξk + µ0δikξjξj, (2.57)

that is obtained through the property of the Kronecker delta symbol δij . The displace-
ment field ûk is now solved as

ûk (ξ) = iN0
ki (ξ) ξj q̂ij (ξ) , (2.58)

where N0
ki is a second-order tensor obtained by inverting K0

ik, i.e.

N0
ki (ξ) = K0

ik
−1 (ξ) . (2.59)

Based on the symmetry of the polarization stress q̂ij, Eq. (2.55) is expressed in the
following form

ûk (ξ) = i

2
[
N0

ki (ξ) ξj +N0
kj (ξ) ξi

]
q̂ij (ξ) . (2.60)

and by means of Eq. (2.48) and (2.50), for the strain field ε̂kl it is valid to write

42



2.4. Green’s function

ε̂kl (ξ) = i

2 [ξlûk (ξ) + ξkûl (ξ)] . (2.61)

Finally, by substituting (2.60) into (2.61), the strain field ε̂kl is expressed in terms of
polarization stress q̂ij as

ε̂kl = −Φ̂0
klij (ξ) q̂ij, (2.62)

where Φ̂0
klij (ξ) is the fourth-order tensor, i.e. Green’s function for small strains ex-

pressed in Fourier space (frequency domain)

Φ̂0
klij = 1

4
[
N0

ki (ξ) ξjξl +N0
kj (ξ) ξiξl +N0

li (ξ) ξjξk +N0
lj (ξ) ξiξk

]
. (2.63)

As shown in [222], the expression of N0
ki can be quite complex for orthotropic and

anisotropic materials. However, its form becomes particularly simple in the case of an
isotropic (homogeneous) elastic material. Based on the identities (2.56), (2.57) and
(2.59), it can be derived that

N0
ij = 1

µ0ξmξm

(
δij − λ0 + µ0

λ0 + 2µ0
ξiξj

ξnξn

)
. (2.64)

Substituting (2.64) into (2.63), Green’s function is obtained as

Φ̂0
ijkl (ξ) = 1

4µ0 Φ̂1
ijkl (ξ) + λ0 + µ0

µ0 (λ0 + 2µ0)Φ̂2
ijkl (ξ) , (2.65)

with Φ̂1
ijkl (ξ) and Φ̂2

ijkl (ξ) being

Φ̂1
ijkl (ξ) = 1

ξmξm

(δikξjξl + δilξjξk + δjlξiξk + δjkξiξl) , (2.66)

Φ̂2
ijkl (ξ) = − ξiξjξkξl

ξmξmξnξn

. (2.67)

Notation in (2.65), where Φ̂1
ijkl (ξ) and Φ̂2

ijkl (ξ) are independent of the reference
material parameters λ0 and µ0, is extremely usefull and will be heavily exploited in
the online stage. Due to the symmetry of the small strain and Cauchy stress tensor,
Green’s function possesses all four symmetries, i.e

Φ̂0
ijkl (ξ) = Φ̂0

klij (ξ) = Φ̂0
jikl (ξ) = Φ̂0

ijlk (ξ) , (2.68)

and therefore can be simplified as a second-order tensor through Voigt notation. It is
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also possible to write Green’s function of the isotropic linear elastic reference material
in the real space, i.e. Cartesian coordinates with the use of inverse Fourier transform.
This procedure is presented in detail in Appendix A.

2.4.2. Green’s function for finite strains

Following the procedure outlined in the previous subsection, Green’s function for the
case of finite strains will be also derived in the Fourier space. The initial system of
equations in the reference configuration is defined asP (X) = C0 : F (X) + Q (X)

∇0 · P (X) = 0,
(2.69)

where the deformation gradient F is determined as a gradient of displacement, i.e.

F (X) = ∂u (X)
∂X

. (2.70)

Using index notation and Eq. (2.70), system of equations (2.69) is expressed in the
spatial domain as Pij (X) = C0

ijkluk,l (X) +Qij (X)
Pij,j = 0,

(2.71)

or, by means of identities (2.49), (2.50), (2.51) and (2.52), in the frequency domain
P̂ij (Ξ) = iC0

ijklΞlûk (Ξ) + Q̂ij (Ξ)
iP̂ij (Ξ) Ξj = 0.

(2.72)

Here, it is important to note that unlike the spatial (Cartesian) coordinates, where one
can define clear difference between coordinate vector x and X, in Fourier space, i.e.
frequency domain there exists no distinction between reference and current configura-
tion. Still, for the sake of clarity and consistency the capital of ξ is used to emphasize
the reference configuration. Multiplying the first expression in (2.72) with iΞj and
subtracting it from the second one yields

K0
ik (Ξ) ûk (Ξ) = iQ̂ij, (2.73)

where K0
ik is a symmetric second-order tensor expressed in the same way as in the

case of small strains, i.e.
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K0
ik (Ξ) =

(
λ0 + µ0

)
ΞiΞk + µ0δikΞjΞl. (2.74)

Since K0
ik is the same for both small and finite strains, its inverse N0

ki is simply

N0
ki (Ξ) = 1

µ0ΞmΞm

(
δki − λ0 + µ0

λ0 + 2µ0
ΞkΞi

ΞnΞn

)
. (2.75)

In contrast to small strains, the polarization stress tensor Q̂ij in the case of finite
strains is, generally, non-symmetric, and therefore the rule for an arbitrary symmetric
tensor Zij

Zij = 1
2 (Zij + Zji) , (2.76)

cannot be applied. Because of that, for the displacement field ûk it is valid to write

ûk (Ξ) = iN0
ki (Ξ) ΞjQ̂ij (Ξ) , (2.77)

and by expressing Eq. (2.70) in the frequency domain

F̂kl (Ξ) = iΞlûk (Ξ) , (2.78)

the deformation gradient F̂kl is expressed in terms of the polarization stress Q̂ij as

F̂kl (Ξ) = −Φ̂0
klij (Ξ) Q̂ij (Ξ) . (2.79)

where Φ̂klij (Ξ) is Green’s function for the case of finite strains, i.e.

Φ̂0
ijkl (Ξ) = 1

µ0ΞmΞm

(
δikΞjΞl − λ0 + µ0

λ0 + 2µ0
ΞiΞjΞkΞl

ΞnΞn

)
. (2.80)

Again, identity above can be written in a more compact form

Φ̂0
ijkl (Ξ) = 1

µ0 Φ̂1
ijkl (Ξ) + λ0 + µ0

λ0 + 2µ0 Φ̂2
ijkl (Ξ) , (2.81)

with Φ̂1
ijkl (Ξ) and Φ̂2

ijkl (Ξ) being

Φ̂1
ijkl (Ξ) = δikΞjΞl, (2.82)

Φ̂2
ijkl (Ξ) = − ΞiΞjΞkΞl

ΞmΞmΞnΞn

. (2.83)
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Since the deformation gradient F and first Piola-Kirchhoff stress tensor P are, generally,
non-symmetric second-order tensors, Green’s function Φ0 (Ξ) only has major symmetry

Φ̂0
ijkl (Ξ) = Φ̂0

klij (Ξ) , (2.84)

and therefore cannot be written in Voigt notation. Compact notation of (2.81) is again
beneficial as it allows for the calculation of Φ̂1

ijkl (Ξ) and Φ̂2
ijkl (Ξ) independently from

the reference material parameters λ0 and µ0. As in the case of small strains, using
inverse Fourier transform it is possible to express Green’s function in terms of spatial
coordinates. For more details see Appendix B

2.5. Online stage
In the field of reduced-order microscopic approaches, the term “online stage” refers
to the process in which, for a given macroscopic constraint, the solution of a reduced
set of equations is solved and the homogenized, i.e. average values of stress, material
stiffness tensor, strain energy, etc. are obtained and upscaled to the macrolevel. The
computational efficiency of the online stage will determine the overall efficiency of the
multiscale concurrent procedure that is being simulated. As stated in section 2.1, the
reduction of the complexity of the RVE boundary value problem will impair accuracy
to some extent. However, the increase in efficiency is often tremendous, which makes
sacrificing a few percent of the accuracy worthwhile.

In order to conduct the online stage, i.e. self-consistent clustering analysis, the
incremental Lippmann-Schwinger equation, derived for both small and finite strains
needs to be defined for each material cluster. Here, the emphasis will be on the small
strain formulation; however, as shown in section 2.3 and 2.4 the extension to the
finite strains is a straightforward task. With the successive homogenization of Eq.
(2.16), the incremental Lippmann-Schwinger equation is averaged for each material
cluster [67, 78]

1
cIΩ

∫
Ω
χI (x) ∆ε (x) dx+

1
cIΩ

∫
Ω

∫
Ω
χI (x) ΦO (x,x′) :

[
∆σ (x′) − C0 : ∆ε (x′)

]
dx′dx − ∆ε0 = 0.

(2.85)

where cI is the volume fraction of the I-th material cluster inside the RVE with volume
Ω. The equation above follows directly from the averaging of the original Eq. (2.16)
within the I-th material cluster. Averaging is performed since the local variable β in
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each material cluster is uniform, i.e. homogeneous. Using identity (2.1) for incremental
small strain and Cauchy stress tensor, inside the RVE that is discretized with k number
of clusters, it is valid to write

∆ε (x) =
k∑

I=1
χI (x) ∆εI , (2.86)

∆σ (x) =
k∑

I=1
χI (x) ∆σI . (2.87)

Using averaging identity defined in (2.3), Eq. (2.85) can be written for each material
cluster I as

∆εI +
k∑

J=1

[ 1
cIΩ

∫
Ω

∫
Ω
χI (x)χJ (x′) Φ0 (x,x′) dxdx′

]
:
[
∆σJ − C0 : ∆εJ

]
−

∆ε0 = 0.
(2.88)

In Eq. (2.88) term inside the square brackets represents a well-known quantity in
micromechanics called the interaction tensor [67]

DIJ = 1
cIΩ

∫
Ω

∫
Ω
χI (x)χJ (x′) Φ0 (x,x′) dx′dx, (2.89)

which represents the influence of the stress in the J-th cluster on the strain in the I-th
cluster [67]. In the case of periodic RVE, the interaction tensor DIJ is a fourth-order
tensor that is determined through a double integral of Green’s function Φ0 (x,x′).
Now, using (2.89), Eq. (2.88) can be written in a more compact form as

∆εI +
k∑

J=1
DIJ :

[
∆σJ − C0 : ∆εJ

]
− ∆ε0 = 0, (2.90)

that is qualitatively quite similar to Eq. (2.13), i.e.

ε (x) +
∫

Ω
Φ0 (x,x′) : q (x′) − ε0 = 0. (2.91)

Expression (2.90) can be regarded as the equilibrium that needs to be satisfied for each
material cluster I. Unlike FEM, where homogenized value □ is calculated through e

number of finite elements

□ = 1
Ω

e∑
I=1

□IΩI , (2.92)
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in the SCA, □ is determined through k number of clusters

□ = 1
Ω

k∑
I=1

□IΩI , (2.93)

which is significantly smaller than the total number of finite elements.
After the discretization, the incremental far-field small strain tensor ∆ε0 is still

equal to the average strain in the RVE

∆ε0 =
k∑

I=1
cI∆εI . (2.94)

Meanwhile, the macroscopic boundary conditions defined by (2.20) and (2.21) are also
required to be discretized. Discretized macro-strain constraint can be written as

∆ε =
k∑

I=1
cI∆εI → ∆ε0 = ∆ε (2.95)

while for the macro-stress constraint it is valid to write

∆σ =
k∑

I=1
cI∆σI (2.96)

For the problems that involve finite strains, Eq. (2.90), (2.94), (2.95) and (2.96) take
the following form



∆FI +
k∑

J=1
DIJ :

[
∆PJ − C0 : ∆FJ

]
− ∆F0 = 0

∆F0 =
k∑

I=1
cI∆FI

∆F =
k∑

I=1
cI∆FI → ∆F0 = ∆F

∆P =
k∑

I=1
cI∆PI ,

(2.97)

where DIJ is now the interaction tensor obtained through a double integral of Green’s
function Φ0 (X,X′)

DIJ = 1
cIΩ0

∫
Ω0

∫
Ω0
χI (X)χJ (X′) Φ0 (X,X′) dX′dX. (2.98)

To obtain the interaction tensor DIJ , double integral in Eq. (2.89), i.e. (2.98)
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needs to be solved. For an RVE that is discretized with uniform finite element mesh of
p× p pixels (in 2D), or p× p× p voxels (in 3D) and later decomposed with k number
of material clusters, the interaction tensor DIJ can be computed as

DIJ = 1
ΩI

∑
i∈ΩI

∑
j∈ΩJ

∫
Ωi

∫
Ωj

Φ0 (x,x′) dx′dx, I, J = 1, 2, 3, ..., k. (2.99)

Here, indices i and j refer to the i-th, i.e. j-th pixel/voxel, which implies that the
double integration is performed for all the interaction terms between a pixel/voxel in
ΩI and a pixel/voxel in ΩJ . As reported in [93], this procedure can be computationally
quite expensive, especially in the case of three-dimensional RVEs. To increase the
computational efficiency, Tang et al. [227] proposed a reduced method to approximate
(2.99). However, from the author’s own experience, the procedure outlined in [227]
provided a good approximation of the interaction tensor DIJ only for certain types
of RVE material configuration. On the other hand, Cheng et al. [228] developed a
fully numeric procedure for evaluating double integral (2.99) that does not include
evaluation or the construction of Green’s function in any way.

In contrast to [93, 227, 228], in [78, 85] DIJ was computed through the con-
volution theorem, which is directly related to the inverse Fourier transform. Using
Eq. (2.44), the relation between convolution integral and inverse Fourier transform is
expressed in the following form

y (x) =
∫ b

a
Φ (x, x′) g (x′) dx′ = F −1

[
Φ̂ (ξ) ĝ (ξ)

]
. (2.100)

where F −1 stands for inverse Fourier transform, ξ is the one-dimensional coordinate
in Fourier space, while Φ̂ and ĝ denote one-dimensional scalar functions expressed
through the frequency domain. Applying (2.100) on (2.89), interaction tensor DIJ is
calculated as

DIJ = 1
cIΩ

∫
Ω
χI (x) F −1

[
Φ̂

0
(ξ) F

[
χJ (x′)

]]
, (2.101)

where F is the Fourier transform of a function in the spatial domain. In the case of
finite strains, Eq. (2.101) becomes

DIJ = 1
cIΩ0

∫
Ω0
χI (X) F −1

[
Φ̂

0
(Ξ) F

[
χJ (X′)

]]
. (2.102)

Before applying (2.101), i.e. (2.102) it is important to notice that expressions for
both Φ̂

0
(ξ) (Eq. (2.63)) and Φ̂

0
(Ξ) (Eq. (2.78)) are not determined for ξ = Ξ = 0.
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2. Data-driven homogenization: Self-consistent clustering analysis

However, a uniformly distributed polarization stress (which follows from the frequency
value of zero) will not induce any strain field inside the RVE, indicating

Φ̂
0

(ξ = 0) = Φ̂
0

(Ξ = 0) = 0. (2.103)

An important feature of the continuous Lippmann-Schwinger equation, for
both small (2.16) and finite strains (2.34) is that its solution ∆ε (x), i.e. ∆F (X)
is independent of the choice of material parameters λ0 and µ0 that determine the
stiffness of the reference material. This can be explained by the fact that the physical
problem is fully described by the equilibrium condition and the prescribed macroscopic
boundary conditions [67]. However, once the continuous integral equation is discretized
based on the piecewise uniform assumption, the equilibrium is not strictly satisfied at
every point in the RVE, and the solution of the reduced system of equations therefore
depends on the choice of λ0 and µ0. This discrepancy can be reduced by increasing
the number of material clusters; however, this will have a negative effect on overall
computational efficiency due to the increase in DOF. Self-consistent clustering analysis
aims to mitigate this issue differently, by applying a self-consistent scheme during the
online stage, i.e. after each converged increment.

2.5.1. Self-consistent scheme - update of C0

Originally proposed by Hill [52], the self-consistent scheme is utilized to improve
the level of accuracy without the increase in the number of material clusters. This is
achieved by setting the material stiffness tensor of the reference material approximately
the same as the homogenized material stiffness tensor of the whole RVE, i.e.

C0 → C, (2.104)

where the material stiffness tensor C0 can be expressed in terms of bulk modulus κ0

and shear modulus µ0 as

C0 = κ0I ⊗ I + µ0
(

2IS − 2
n

I ⊗ I
)
, (2.105)

with IS being the symmetric part of the fourth-order identity tensor

IS = 1
2 (δikδjl + δilδjk) , (2.106)

and n denoting the number of dimensions. In (2.105), instead of Lamé parameter λ0,
which is present in the expressions for Green’s function, bulk modulus κ0 is used. Its
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relationship with µ0 and λ0 is determined by the following identity

κ0 = λ0 + 2
n
µ0, (2.107)

where n, as stated before, defines the number of dimensions. On the other hand,
homogenized material stiffness tensor C needs to be computed and its value follows
directly from the homogenized incremental small strain and Cauchy stress tensor

C = ∂∆σ

∂∆ε
= ∂

∂∆ε

(
k∑

I=1
cI∆σI

)
=

k∑
I=1

cI ∂∆σI

∂∆εI
: ∂∆εI

∂∆ε
=

k∑
I=1

cICI : AI , (2.108)

i.e. from the homogenized incremental deformation gradient and first Piola-Kirchhoff
stress tensor

C = ∂∆P
∂∆F

= ∂

∂∆F

(
k∑

I=1
cI∆PI

)
=

k∑
I=1

cI ∂∆PI

∂∆FI
: ∂∆FI

∂∆F
=

k∑
I=1

cICI : AI . (2.109)

CI in Eq. (2.108) and (2.109) represents stiffness tensor in the I-th material clus-
ter depending on the constitutive law at the microlevel, while AI denotes small
strain/deformation gradient concentration tensor that provides a quantitative con-
nection between strain/deformation gradient in the I-th material cluster and at the
macrolevel. Since both AI and C are required for the self-consistent scheme, their
calculation is performed once after the convergence of the Newton’s iterative method
in order to save computational time.

In the case of material or geometrical nonlinearities, it is not possible to
determine C0 which provides an exact match with C. Still, the calculation of the new
material parameters that form C0 is extremely beneficial, since the values of C can
change significantly during the analysis. In [67], two types of self-consistent schemes
were proposed: (1) regression-based scheme, and (2) projection-based scheme.

In the regression based scheme, the self-consistent scheme is formulated as
an optimization problem with the goal of finding λ0 and µ0 that minimize the cost
function w

w (λ′, µ′) =
∣∣∣∣∣∣∣∣∆σ − C0 (λ′, µ′) : ∆ε

∣∣∣∣∣∣∣∣2, (2.110)

where ||Z||2 = Z : Z for an arbitrary second-order tensor Z. In the case of finite strain
analysis, expression (2.110) takes the following form

w (λ′, µ′) =
∣∣∣∣∣∣∣∣∆P − C0 (λ′, µ′) : ∆F

∣∣∣∣∣∣∣∣2. (2.111)
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Now, the optimal point is obtained via the respective partial derivative of the cost
function w, i.e.

∂w (λ′, µ′)
∂λ′

∣∣∣∣∣
λ0,µ0

= 0, (2.112)

∂w (λ′, µ′)
∂µ′

∣∣∣∣∣
λ0,µ0

= 0. (2.113)

which forms a system of two linear equations in terms of λ′ and µ′. The system always
has a unique solution except for pure shear or hydrostatic conditions. In the former,
Lamé parameter λ0 cannot be determined and therefore is not updated, while in the
latter shear modulus µ0 is not updated. Additionally, w (λ0, µ0) vanishes when the
effective macroscopic homogeneous material is also isotropic and linear elastic.

However, apart from being under-determined for pure shear and hydrostatic
type loading, the optimization problem defined by (2.112) and (2.113) can also produce
non-physical values for λ0 and µ0. More precisely, the material parameters of the
reference material may become negative in the case of complex loading conditions,
which is deleterious to the convergence in the online stage.

In contrast to the regression based scheme, the projection based scheme aims
to find the optimal values of the reference material parameters by defining a set of
two, one-dimensional cost functions: w1

w1 (κ′) =
∣∣∣∣∣∣∣∣[C − C0 (κ′)

]
: ∆εh

∣∣∣∣∣∣∣∣2, (2.114)

and w2

w2 (µ′) =
∣∣∣∣∣∣∣∣[C − C0 (µ′)

]
: ∆εdev

∣∣∣∣∣∣∣∣2, (2.115)

where ∆εh and ∆εdev represent hydrostatic, i.e. deviatoric part of the homogenized
incremental small strain tensor, which can be calculated through

∆εh = 1
n

tr [∆ε] I, (2.116)

∆εdev = ∆ε − 1
n

tr [∆ε] . (2.117)

After taking derivative of the cost functions w1 and w2, the following system of
equations is obtained
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dw1 (κ′)
dκ′

∣∣∣∣∣
κ0,µ0

= 0, (2.118)

dw2 (µ′)
dµ′

∣∣∣∣∣
κ0,µ0

= 0, (2.119)

which, in contrast to the regression based scheme, is independent, since Eq. (2.118) is
solved independently from Eq. (2.119). Using index notation, κ0 and µ0 for the case of
small strains are expressed as

κ0 = Ciijj

n
, (2.120)

µ0 =
Cijkl∆εdev

ij ∆εdev
kl

2∆εdev
ij ∆εdev

ij

, (2.121)

while their values in finite strain configuration can be obtained as

κ0 = Ciijj

n
, (2.122)

µ0 =
Cijkl∆F

dev
kl

(
∆F dev

ij + ∆F dev
ji

)
(
∆F dev

ij + ∆F dev
ji

) (
∆F dev

ij + ∆F dev
ji

) . (2.123)

From (2.120) and (2.122) it is clear that the value of the bulk modulus κ0

depends solely on the value of the homogenized material stiffness tensor C and therefore
can be computed regardless of the loading conditions. On the other hand, shear modulus
µ0 is, as in the case of the regression based scheme, undetermined for the hydrostatic
type of loading, since there exists no deviatoric part of the homogenized incremental
small strain, i.e. deformation gradient tensor. An effective way of updating C0 is
to consider both schemes that can be utilized depending on the loading conditions.
The regression based scheme provides a higher level of accuracy since it relies on
the optimization that does not include macroscopic material stiffness tensor C and
should be used whenever possible. On the other hand, the projection based scheme
yields poorer accuracy but ensures physical values of κ0 and µ0 when complex loading
conditions are in question.

The material stiffness tensor of the reference material C0 is not the only value
that will be updated after every converged increment. Interaction tensor DIJ , defined
by (2.89), i.e. (2.98) will also be subject to change during the SCA since its value
derives directly from Green’s function. However, this does not imply that it is necessary
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2. Data-driven homogenization: Self-consistent clustering analysis

to resolve double integral after every converged increment of the analysis. Recall that
Green’s function in the Fourier space, for both small and finite strains, is expressed in
a compact form where the reference material parameters λ0 and µ0 are independent of
the Fourier coordinates, i.e.

Φ̂0
ijkl (ξ) = 1

4µ0 Φ̂1
ijkl (ξ) + λ0 + µ0

µ0 (λ0 + 2µ0)Φ̂2
ijkl (ξ) , (2.124)

Φ̂0
ijkl (Ξ) = 1

µ0 Φ̂1
ijkl (Ξ) + λ0 + µ0

λ0 + 2µ0 Φ̂2
ijkl (Ξ) . (2.125)

Therefore, Φ̂1
ijkl and Φ̂2

ijkl can be computed once in the offline stage, and their values
can be used during the whole online stage. If the reference material is changed in the
self-consistent scheme during the online stage, only the coefficients relating to its Lamé
constants need to be updated.

2.5.2. Numerical implementation

In general case, where RVE exhibits nonlinear behaviour such as plasticity, damage,
or large deformations, it is not possible to obtain the exact solution of the equilibrium
(2.90), i.e. (2.97). This implies that the solution has to be obtained numerically
through a series of iterations at every loading increment. Herein, an implicit scheme is
adopted and the numerical implementation, following [78], for both small and finite
strains is presented. As in previous sections, the emphasis will be on the small strain
configuration.

To begin, the residual of the discretized Lippmann-Schwinger equation in the
I-th cluster is defined as

rI = ∆εI +
k∑

J=1
DIJ :

[
∆σJ − C0 : ∆εJ

]
− ∆ε0, I = 1, 2, ..., k, (2.126)

while the residual of the macro-strain/macro-stress constraint is

rk+1 =
k∑

I=1
cI∆εI − ∆ε, ∆ε0 = ∆ε (2.127)

rk+1 =
k∑

I=1
cI∆σI − ∆σ. (2.128)

In the implicit scheme, the residual r = {r1; r2; ...; rk+1}, is linearized with respect to
the incremental small strain tensor ∆ε = {∆ε1; ∆ε2; ...; ∆ε0}. After dropping terms
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of higher order, the following system is obtained

r + Mδε = 0, (2.129)

where M is a system Jacobian matrix obtained through

M = ∂r
∂∆ε

. (2.130)

For I, J = 1, 2, ..., k, the components of M are

MIJ = δIJI + DIJ :
(
CJ − C0

)
, (2.131)

where δIJ is the Kronecker delta symbol in terms of I and J , I denotes fourth-order
identity tensor

I = δikδjl, (2.132)

while CJ is the material stiffness matrix in the J-th material cluster defined as

CJ = ∂∆σJ

∂∆εJ
. (2.133)

Under the macro-strain constraint, the remaining components of the system Jacobian
matrix M are

M(k+1)I = cII, (2.134)

and

M(k+1)(k+1) = 0. (2.135)

On the other hand, for the macro-stress constraint, it is valid to write

M(k+1)I = cICI , (2.136)

M(k+1)(k+1) = 0. (2.137)

The remaining part of the system Jacobian matrix M is the same regardless of the
constraints, i.e.
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MI(k+1) = −I. (2.138)

Finally, the correction of the incremental strain can be expressed as

δε = −M−1r. (2.139)

Based on the updated incremental small strain tensor and a specific material
constitutive law, it is possible to obtain the new value of the incremental stress tensor
in each material cluster. In the case of finite strains, all that is needed is to replace the
small strain tensor with a deformation gradient and Cauchy stress tensor with first
Piola-Kirchhoff stress tensor. Of course, one also has to replace the constitutive law
that was used for small strain configuration with the constitutive law for finite strains.
To finish, a general numerical algorithm of the self-consistent clustering analysis is
given in Box I.
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Box I: General algorithm for the self-consistent clustering analysis

1. Initial condition and initialization: set (κ0, µ0); n = 0; ∆εn = ∆σn = 0.

2. Start new increment n: n = n+ 1.

3. For a load increment n use (2.127), i.e. (2.128) and define rk+1, update the
interaction tensor DIJ and the material stiffness tensor of the reference material
C0 based on κ0 and µ0.

4. Newton iterations for load increment n: set iteration i = 0.

(a) Start new iteration i: i = i+ 1.

(b) Compute incremental Cauchy stress tensor ∆σ in each cluster based on
the specific material constitutive law.

(c) Use (2.126) and (2.127), or (2.126) and 2.128 to compute residual r.

(d) Use (2.131), (2.134), (2.135) and (2.138) or (2.131), (2.136), (2.137) and
(2.138) to compute system Jacobian M.

(e) Use (2.139) to compute the correction of the incremental strain δε.

(f) Update the incremental small strain tensor ∆ε = ∆ε + δε.

(g) Check the stopping criterion. If not met: go to 4 (a).

5. Compute the macroscopic material stiffness tensor C and calculate optimal
values for κ0 and µ0 using either regression or projection based self-consistent
scheme.

6. Update the values for the small strain and Cauchy stress tensor: σn =
σn−1 + ∆σn, εn = εn−1 + ∆εn.

7. If simulation not complete: go to 2.

2.6. Numerical validation
In this section, a thorough numerical validation is conducted in order to test the capa-
bility of the self-consistent clustering analysis to compute the homogenized response
of the complex microstructure subjected to various macro-loading conditions and with
different number of clusters. The goal is to evaluate the accuracy and computational
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time of the SCA by comparing it to the DNS which is carried out using FEM. The
expectation is that the SCA will offer significant savings in the computational time and
resources, while at the same time ensuring a minimum deviation from the homogenized
results obtained by the DNS.

Analyses are performed for both two- and three-dimensional microstructures all
consisting of two material phases - matrix (material phase 1) and inclusions (material
phase 2). In all examples, the matrix material phase is treated as an elastoplastic
material with the following material properties

E = 70000 MPa, ν = 0.33,

σ0
y = 150 MPa, k = 150MPa, r = 0.15.

(2.140)

Here, E is the modulus of elasticity, ν stands for Poisson ratio, σ0
y denotes the initial

yield strength, while k and r are material parameters of Swift’s non-linear isotropic
hardening law that is given by

σy

(
εp

eq

)
= σ0

y

(
1 + kεp

eq

)r
, (2.141)

with σy being the hardening function depending on the value of equivalent plastic
strain εp

eq whose evolution is modelled through von Mises (J2) yield criterion, i.e.

f =
√

3
2S : S − σy

(
εp

eq

)
. (2.142)

In Eq. (2.142) f is a yield surface, while S denotes deviatoric part of the Cauchy stress
tensor that is calculated through

S = σ − 1
n

tr [σ] I, (2.143)

where n defines the number of dimensions, “tr” represents the trace operator, while I
stands for second-order identity tensor.

On the other hand, the second material phase, which is represented by inclusions
that are embedded into the matrix, is (in all examples) treated as a linear elastic
material. However, two material configurations are considered

hard inclusions → {E = 200000 MPa, ν = 0.29},

soft inclusions → {E = 5000 MPa, ν = 0.29}.
(2.144)

Therefore, each microstructure has two different material configurations: (1) matrix
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with embedded hard inclusions, and (2) matrix with embedded soft inclusions.
In terms of macroscopic boundary conditions, only macro-strain constraints

are utilized. Recall that in the Lippmann-Schwinger equation boundary conditions are
applied as constraints on the volume average of the small strain or stress tensor, i.e.
deformation gradient or first Piola-Kirchhoff stress tensor. The number of different
macro-strain constraints is obviously infinite; however, focusing on several characteristic
ones will be sufficient to demonstrate the effectiveness of the SCA. Here, four different
macro-strain constraints are defined. For small strain configuration, they are expressed
in Voigt notation for both two-



ε1 = η
[
εx = 1, εy = 0, εz = 0, γxy = 0

]T

ε2 = η
[
εx = 0, εy = 0, εz = 0, γxy = 1

]T

ε3 = η
[
εx = 1, εy = 1, εz = 0, γxy = 0

]T

ε4 = η
[
εx = 1, εy = 1, εz = 0, γxy = 1

]T

(2.145)

and three-dimensional analysis


ε1 = η
[
εx = 1, εy = 0, εz = 0, γxy = 0, γxz = 0, γyz = 0

]T

ε2 = η
[
εx = 0, εy = 0, εz = 0, γxy = 1, γxz = 0, γyz = 0

]T

ε3 = η
[
εx = 1, εy = 1, εz = 1, γxy = 0, γxz = 0, γyz = 0

]T

ε4 = η
[
εx = 1, εy = 1, εz = 1, γxy = 1, γxz = 1, γyz = 1

]T

(2.146)

Here, η is a scalar value that multiplies each member in a small strain vector. Its
value is set to 0.05, i.e. to 5 % of macroscopic deformation. Notice that in (2.145)
homogenized normal strain in z direction is present, and its value is constantly equal
to zero. This is because all 2D analyses are carried out under plane strain assumption,
which implies that the value of strain in the z direction is always equal to zero. For
each macro-strain constraint listed in (2.145), i.e. (2.146), the following homogenized
strain-stress relations are depicted using 2D diagrams

x− y =



εx − σx, ε = ε1

γxy − τxy, ε = ε2

εh − σh, ε = ε3

εx − σeq, ε = ε4.

(2.147)
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In (2.147) x − y denotes a specific homogenized strain-homogenized stress relation
that depends on the type of macro-strain constraint. Notice that for ε3, which is
actually pure hydrostatic loading, homogenized hydrostatic strain εh and homogenized
hydrostatic stress σh are computed and visualized. On the other hand, for ε4, which
includes all components of the small strain vector, homogenized equivalent (von Mises)
stress σeq is displayed on the ordinate axis.

Last but not least, SCA, as a numerical procedure, is implemented in the
commercial software Matlab, while DNS (conducted through FEM) is performed
using commercial finite element software Abaqus. By applying fixed incrementation,
both SCA and DNS are carried out in a total of 100 increments, which ensures the
maximum level of objectivity. The workstation standing behind every Matlab and
every two-dimensional Abaqus simulation is driven by the Intel Xeon E5-1620 (version
2) processor alongside 24 GB of DDR3 RAM. In the case of all three-dimensional DNS
analyses, a more powerful workstation containing an AMD Ryzen 3900x processor
and 128 GB of DDR4 RAM is utilized. All Matlab and all two-dimensional Abaqus
simulations were conducted on a single CPU, while all three-dimensional Abaqus
simulations were performed using four CPUs in parallel.

2.6.1. Two-dimensional elastoplastic material

Microstructures depicted in Figure 2.7 represent two different RVEs that were
generated for the purposes of the numerical validation of the SCA in 2D space.
Microstructures are identical in terms of

• size - both with a length of 0.2 mm,

• material composition - both consisting of matrix and circular inclusions with
fixed radius of 0.01 mm,

• material configuration - both possessing one elastoplastic material phase (matrix)
and one linear elastic material phase (circular inclusions).

Two characteristics that set them apart are

• volume fraction - one with 20 % and the other with 40 % of circular inclusions
share,

• minimum neighbour distance [229] - one with 8 µm and the other with 4 µm of
the minimum neighbour distance.
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As mentioned in section 2.6, each microstructure will have two different material
configurations in total. One with elastoplastic matrix and hard circular inclusions, and
one with elastoplastic matrix and soft circular inclusions. Therefore in this subsection
results for four different microstructures are presented. Also, as can be seen from
Figure 2.7, both RVEs possess periodicity in their geometry, which is a necessary
condition in the field of micromechanics and Fourier analysis.

(a) 2D RVE with 20 % of circular
inclusions

(b) 2D RVE with 40 % of circular
inclusions

Figure 2.7: Geometry of the 2D RVEs

Before the actual comparison between the SCA and DNS, several analyses
need to be carried out first. In order to conduct the SCA, all four microstructures
need to be decomposed into k number of clusters. As stated in section 2.2, the
minimum number of clusters must be equal to the number of material phases, while
the maximum number of clusters is limited by the total number of points for which
the strain concentration tensor A is being calculated. With the goal of performing a
detailed assessment of the SCA, all RVEs are decomposed into 8, 32 and 128 material
clusters. This diversity of cluster numbers will provide a better understanding of the
computational efficiency of the SCA since it allows for the study of convergence and
computational time. In order to ensure a high quality of the clustering results, finite
element simulations under three orthogonal loading conditions were carried out on the
extraordinary fine mesh of 106 quadrilateral finite elements with one integration point
in their center, i.e. 1000 × 1000 pixels. The results of the k-means clustering for all
four RVEs are depicted in Figures 2.8, 2.9, 2.10 and 2.11.
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(a) k = 8 (b) k = 32 (c) k = 128

Figure 2.8: Results of the k-means clustering for a 2D RVE with 20 % of hard
inclusions

(a) k = 8 (b) k = 32 (c) k = 128

Figure 2.9: Results of the k-means clustering for a 2D RVE with 20 % of soft
inclusions

(a) k = 8 (b) k = 32 (c) k = 128

Figure 2.10: Results of the k-means clustering for a 2D RVE with 40 % of hard
inclusions
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(a) k = 8 (b) k = 32 (c) k = 128

Figure 2.11: Results of the k-means clustering for a 2D RVE with 40 % of soft
inclusions

From Figure 2.8 and Figure 2.9, it is clear that although both microstructures
have identical geometrical configuration, due to their different material configuration
k-means clustering produces a completely different decomposition for the same number
of clusters. Also, notice that one material cluster can be located in several different
positions. This is because different locations in the RVE can have similar mechanical
response, i.e. similar values of the strain concentration tensor A. After the domain
decomposition into the appropriate number of clusters, the next step includes the
calculation of the interaction tensor DIJ using (2.101), i.e. (2.102). As well as the
k-means clustering, this part of the offline stage is carried out using Matlab.

Alongside the SCA, finite element simulations also need to be carried out
for four different macro-strain constraints defined by (2.145). However, the use of a
finite element mesh that contains 106 quadrilateral finite elements is not necessary
since accurate homogenized results can be obtained with a significantly sparser mesh.
To get a rough estimate of the finite element mesh that is sufficient, finite element
simulations with two different discretizations were carried out on the pure shear loading
condition, i.e. using macro-strain constraint ε2. The homogenized stress-strain relations
for 100 × 100 and 200 × 200 pixels discretization are depicted in Figure 2.12.
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Figure 2.12: Influence of the finite element discretization on the homogenized values
for the case of ε = ε2

For all RVEs, except for the RVE with 40 % of hard inclusions, the maximum relative
difference between two discretizations is less than 1 %. This deviation is higher in
the case of the RVE with 40 % of hard inclusions; however, at only 3.6 % it is still
negligible.

In the next four figures and four tables comparisons of the macroscopic stress-
strain relations and computational times for both SCA and DNS are presented.
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Figure 2.13: Comparisons of the homogenized stress-strain curves for a 2D RVE
with 20 % of hard inclusions subjected to different macro-strain constraints

By taking only a glance at Figure 2.13 it is not difficult to notice an impressive
level of accuracy that the SCA is able to achieve with only 8 material clusters. With
that discretization, for macro-strain constraints ε1, ε3 and ε4, the difference between
homogenized values obtained by the SCA and DNS is almost nonexistent. For macro-
strain constraint ε2, which is actually a pure shear type of loading, the maximum
relative difference is only 2.7 %. However, it too quickly evaporates when the number
of material clusters is increased to 32. Also, it is clear that the increase from 32 to
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128 clusters does not lead to any major improvement in accuracy for any type of
macro-strain constraint. It is important to emphasize that these results were obtained
for an RVE with matrix (material phase 1) and hard inclusions (material phase 2) with
a total volume fraction of 20 %. In general, this level of accuracy is not guaranteed, as
will be seen from the following diagrams.

Table 2.1: Comparisons of the computational time for a 2D RVE with 20 % of hard
inclusions subjected to different macro-strain constraints

ε = ε1

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.1536 0.4342 10.4709 107

ε = ε2

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.1713 0.5147 12.7332 131

ε = ε3

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.1052 0.3657 4.0603 108

ε = ε4

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.1433 0.4087 7.6238 111

From Table 2.1 it is clear that for the discretization with 8, i.e. 32 material
clusters, the SCA provides tremendous savings in the computational time for all four
macro-strain constraints. Notice that an increase from 8 to 32 material clusters (four
times) results in about three times longer computational time. This is because the
numerical implementation of the SCA was conducted by fully vectorizing Matlab
code, which can then achieve a maximum level of efficiency. However, the increase
from 32 to 128 material clusters results in a significantly longer computational time,
which is especially pronounced for macro-strain constraint ε2. The main reason for
this behaviour is the large number of iterations that need to be performed in order to
satisfy the equilibrium. Therefore, as stated in section 2.1, it is important to find the
optimal balance between the computational efficiency and overall accuracy.
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Figure 2.14: Comparisons of the homogenized stress-strain curves for a 2D RVE
with 20 % of soft inclusions subjected to different macro-strain constraints

In contrast to RVE with 20 % of hard inclusions, the RVE with the same volume
fraction of soft inclusions represents a more challenging microstructure for the SCA.
Notice that mechanical behaviour for macro-strain constraints ε3 and ε4 cannot be
well captured with only 8 material clusters and therefore requires a finer discretization.
Also, from Figure 2.14 (b) it is clear that the algorithm’s ability to capture the
homogenized response of the RVE is weaker in the transitional area, i.e. in the moments
where material transitions from elastic to elastoplastic type behaviour. Still, with the
increase in the number of material clusters the relative error can be reduced; however,
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the convergence is non-linear. More precisely, with every four-fold increase in the
number of material clusters, the relative error decreases by approximately a factor of
2.

Table 2.2: Comparisons of the computational time for a 2D RVE with 20 % of soft
inclusions subjected to different macro-strain constraints

ε = ε1

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.3478 0.8035 11.5453 120

ε = ε2

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.1382 0.4628 6.4346 127

ε = ε3

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.1923 0.4618 5.7213 118

ε = ε4

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.7784 1.3375 13.6587 116

Table 2.2 shows again that the use of the SCA can lead to significant savings
in the computational time in comparison to the DNS. However, in the case of soft
inclusions, the time needed to complete the analysis with 100 fixed increments is,
for a given number of clusters and macro-strain constraint, significantly higher than
in the case of hard inclusions. The primary and only reason for that is the number
of iterations the SCA needs to perform in each increment before the equilibrium is
achieved. This amount of iterations is higher when soft inclusions are embedded in the
elastoplastic matrix since they allow for more flexible behaviour near the boundaries of
the matrix and inclusions. This ultimately creates higher levels of strain concentrations
and a greater degree of material nonlinearity and overall inhomogenity.
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Figure 2.15: Comparisons of the homogenized stress-strain curves for a 2D RVE
with 40 % of hard inclusions subjected to different macro-strain constraints

Increasing the volume fraction of the hard inclusions from 20 % to 40 % does
not (significantly) affect the ability of the SCA to calculate the macroscopic value of
stress for a given macro-strain constraint. Results displayed in Figure 2.15 show a
negligible difference between the two approaches as far as macro-strain constraints ε1,
ε2 and ε4 are concerned. For ε2, the maximum relative error at only 8 material clusters
is a single-digit number, i.e. 9.58 %, which can be further decreased by applying finer
discretization.
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Table 2.3: Comparisons of the computational time for a 2D RVE with 40 % of hard
inclusions subjected to different macro-strain constraints

ε = ε1

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.1607 0.4771 8.9301 114

ε = ε2

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.2264 1.3534 22.5117 133

ε = ε3

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.1289 0.3586 4.0413 110

ε = ε4

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.1539 0.3677 7.6749 111

From the data in Table 2.3 and Table 2.1, it is clear that the increase in
hard inclusions volume fraction from 20 % to 40 % did not have a major impact on
the computational efficiency of the SCA. This is true for all macro-strain constraints
with the exception of ε2, i.e. pure shear loading, for which the computational time
more than doubled. However, Figure 2.15 (b) already hinted at possible issues with
that type of macro-strain constraint. Also, notice that the longest computational time
for the RVE with 20 % of hard inclusions was also under pure shear loading. The
reason lies in the fact that hard inclusions have higher stiffness than the elastoplastic
matrix and they therefore significantly affect the overall stiffness of the heterogeneous
material. This is particularly pronounced where there exists a hydrostatic component
of the stress tensor, which does not contribute to the plastic evolution of the matrix
material phase. However, when pure shear, i.e. pure deviatoric loading is applied,
the elastoplastic behaviour of the matrix is more significant. This ultimately leads to
stronger material nonlinearity for which a higher number of iterations is needed in
order to satisfy the equilibrium.
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Figure 2.16: Comparisons of the homogenized stress-strain curves for a 2D RVE
with 40 % of soft inclusions subjected to different macro-strain constraints

By comparing Figure 2.14 and Figure 2.16 it is clear that the ability of the
SCA to compute the macroscopic response of heterogeneous material does not signifi-
cantly change with the increase in soft inclusions volume fraction either. Qualitatively
speaking, the algorithm again is not able to accurately predict macroscopic values of
stress in the case of macro-strain constraints ε3 and ε4 with only 8 material clusters.
Also, deviation from the results obtained by the DNS is again more pronounced in the
transitional area, as can be seen from Figure 2.16 (b).
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Table 2.4: Comparisons of the computational time for a 2D RVE with 40 % of soft
inclusions subjected to different macro-strain constraints

ε = ε1

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.2566 0.6866 11.2523 138

ε = ε2

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.1913 0.7474 8.3361 145

ε = ε3

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.1847 0.5655 6.2783 121

ε = ε4

Method SCA DNS
Discretization k = 8 k = 32 k = 128 100 × 100
CPU time, s 0.4431 0.8355 12.6719 125

As was the case when the volume fraction of hard inclusions was raised from 20
% to 40 %, the increase in the volume fraction of soft inclusion does not have a major
impact on the overall computational efficiency of the SCA. As evidenced by Table 2.4,
if the number of material clusters is kept below 32, one can expect a reduction of the
computational time by a minimum of 140 times! This degree of acceleration is valid
for almost all analyses that were conducted in 2D space with no more than 32 material
clusters. Discretization with 32 material clusters also proved to be efficient enough
in obtaining a satisfactory level of accuracy, ensuring a single-digit (percentage-wise)
relative error throughout the whole analysis.

Before moving on to finite strains, one last comparison in small strain config-
uration is shown in Figure 2.17 and Table 2.5. More precisely, displayed results
represent the influence of the regression based (Update 1), i.e. projection based (Up-
date 2) scheme on the overall accuracy and the computational efficiency of the SCA.
The comparison is related to all four RVEs that are discretized with 128 clusters and
exclusively for the macro-strain constraint ε1.
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Figure 2.17: Comparisons of the homogenized stress-strain curves for a regression
and projection based types of update for the case of ε = ε1 and with 128 clusters

Table 2.5: Comparisons of the computational time for a regression and projection
based types of update for the case of ε = ε1 and with 128 clusters

RVE inclusions share 20 % (hard) 20 % (soft) 40 % (hard) 40 % (soft)
Update 1

(CPU time, s) 10.4709 11.5453 8.9301 11.2523

Update 2
(CPU time, s) 5.3571 7.0121 4.8817 7.9121
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From Figure 2.17 it can be seen that the homogenized results obtained by
both regression based (Update 1) and projection based (Update 2) scheme are in good
agreement with the results obtained through DNS. However, it is also clear that for all
macro-strain constraints, the regression based scheme provides more accurate results,
which is especially noticeable when soft inclusions are embedded in the elastoplastic
matrix. Although less accurate, the projection based scheme is characterized by a
noticeably higher degree of computational efficiency for a discretization with 128
clusters. This is particularly important when large-scale concurrent analyses are in
question, as the new Lamé parameters have to be calculated for each macroscopic
point in each increment of the analysis.

Figures and tables in previous pages clearly demonstrate the ability of the SCA
to efficiently and accurately predict the macroscopic behaviour of various heterogeneous
materials for different loading types under small strain assumption. Now, the same
detailed analysis should be done for finite strains. After all, in the previous sections,
the extension from small to finite strains was presented as a straightforward task.
The macro-deformation gradient constraints for the two-dimensional analysis, i.e. the
equivalent to the macro-strain constraints in (2.145) are given by



F1 = η
[
F 11 = 1, F 21 = 0, F 12 = 0, F 22 = 0, F 33 = 0

]T

F2 = η
[
F 11 = 0, F 21 = 0.5, F 12 = 0.5, F 22 = 0, F 33 = 0

]T

F3 = η
[
F 11 = 1, F 21 = 0, F 12 = 0, F 22 = 1, F 33 = 0

]T

F4 = η
[
F 11 = 1, F 21 = 0.5, F 12 = 0.5, F 22 = 1, F 33 = 0

]T

(2.148)

Here, η is again a scalar value that multiplies all elements in a defined vector, and
its value is set to 0.15. Recall that the deformation gradient in the SCA is defined
simply as a gradient of a displacement, i.e. second-order identity tensor is removed.
Since the deformation gradient is, generally, non-symmetric, Voigt notation cannot
be utilized. Also, in order to ensure pure shear loading, both F 12 and F 21 are set
at exactly half of the desired total value of the macroscopic deformation. Since the
two-dimensional analysis is performed under plane strain assumption, the value of F 33

is in all constraints set to zero.
However, although the extension is a straightforward task, the developed

algorithm behaves unexpectedly. Mainly, if the macro-deformation gradient constraint
F1 is enforced, analyses with all four RVEs behave in the same manner - they break
before the total load is applied, which can be seen in Figure 2.18.
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Figure 2.18: Comparisons of the homogenized curves under finite strain
configuration and for the case of F = F1

If the regression based scheme is utilized, the phenomenon mentioned above
occurs for any type of macro-deformation gradient constraint and for any type of the
RVE. One of the ways the author has been able to mitigate this issue was to use
one material cluster for each material phase. However, the discretization with only
two material clusters is sufficient only for simple microstructures that are subjected
to specific loading types. Generally, it will produce inaccurate results, like the ones
depicted in Figure 2.18 (b) and (d).
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Figure 2.19: Comparisons of the homogenized curves for a projection based type of
update for the case of F = F1 and with 128 clusters

The second way in which the author was able to conduct the full analysis
was to utilize projection based scheme. Although more stable than the regression
based scheme, the projection based scheme does not give satisfactory results even
with 128 material clusters - Figure 2.19. This is because, unlike regression based
scheme, the new Lamé parameters in the projection based scheme are obtained through
homogenized material stiffness tensor C, which in the case of finite strains cannot be
well captured using cluster decomposition.
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The author of this thesis is unable to provide a physical or mathematical
interpretation of the phenomenon that occurs when a regression based scheme is
utilized. Why exactly the numerical algorithm is able to perform the whole analysis
only if two material clusters are used is an open question. It is worth noting that in
[85], i.e. [67] the maximum value of macroscopic logarithmic strain was set to 2.5 %, i.e.
5 %. This also points to potential problems with the SCA algorithm in finite strains
configuration, since both 2.5 % and 5 % cannot be considered large deformations. This
part of the SCA clearly requires further numerical and mathematical investigation and
therefore won’t be the subject of further discussion.

2.6.2. Three-dimensional elastoplastic material

With the two-dimensional numerical validation being successfully carried out, it is
time to validate the SCA in 3D space. For that purpose, as was the case in the
previous subsection, two RVEs with different spherical inclusions volume fraction were
generated. Along with the microstructure itself, Figure 2.20 shows both matrix and
spherical inclusions, since the 3D isometric view of the microstructure does not provide
an overview of its interior. Both microstructures are identical in terms of:

• size - both with a length of 0.2 mm,

• material composition - both consisting of matrix and spherical inclusions with
fixed radius of 0.02 mm

• material configuration - both possessing one elastoplastic material phase (matrix)
and one linear elastic material phase (spherical inclusions).

Two characteristics that set them apart are

• volume fraction - one with 10 % and the other with 20 % of spherical inclusions
share,

• minimum neighbour distance - one with 16 µm and the other with 8 µm of the
minimum neighbour distance.

Again, each RVE has two different material configurations: (1) elastoplastic matrix
and hard spherical inclusions, and (2) elastoplastic matrix and soft spherical inclu-
sions, which makes a total of four different microstructures. As was the case for
two-dimensional RVEs, both RVEs possess periodicity in their geometry; however, in
3D isogeometric view that is not as obvious as in the case of two dimensions.
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(a) 3D RVE with 10 % of
spherical inclusions (b) Matrix (c) Spherical inclusions

(d) 3D RVE with 20 % of
spherical inclusions (e) Matrix (f) Spherical inclusions

Figure 2.20: Geometry of the 3D RVEs

In order to conduct the SCA, all four RVEs need to be decomposed into k number
of material clusters. In contrast to two-dimensional analysis, where discretization
with 8, 32, i.e. 128 clusters was carried out, in three-dimensional analysis RVEs are
decomposed in 6, 24 and 96 material clusters. This reduction in the number of material
clusters is done solely for the purpose of computational efficiency. Since the k-means
clustering and the calculation of the interaction tensor in three dimensions represent a
significantly more demanding task than in two. Still, the chosen discretizations will be
sufficient for getting a clear picture of the SCA’s capabilities in a three-dimensional
configuration.

In the previous subsection, finite element mesh that was present in the calcu-
lation of strain concentration tensor consisted of 1000 × 1000 pixels, i.e. 1000 finite
elements per edge. Unfortunately, in the case of three-dimensional RVEs, the number
of voxels per edge cannot be nearly that high. Discretization with 1000 × 1000 ×
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1000 voxels would produce a finite element mesh of one billion hexahedral elements.
Running DNS with that discretization would require hundreds of gigabytes of RAM
alongside dozens of CPUs. Due to that limitation, the finite element mesh needed for
the calculation of the strain concentration tensor was kept at 106 hexahedral elements
with one integration point in their center. 100 voxels per edge cannot be considered
a fine discretization, as can be seen from Figure 2.21. However, running a single
finite element simulation with 106 hexahedral elements already requires almost 100
gigabytes of RAM. In the future, other procedures that include running an iterative
solver (instead of direct) on the sparse linear system and utilization of an FFT-based
solver can be adopted to further improve the discretization of 3D RVEs. In contrast to
direct solvers such as LU decomposition or Cholesky factorization, iterative solvers do
not perform decomposition of the sparse linear system but execute a series of iterations
to find the approximate solution. In that way RAM required to run the analysis is
significantly lower. Fast Fourier transform on the other hand can also be utilized, as it
requires memory for storing only data in each pixel/voxel. For example, a 3D RVE
discretized with 100 × 100 × 100 voxels would require only 8 megabytes of RAM.

(a) 10 % inclusions (b) 20 % inclusions

Figure 2.21: Discretization of spherical inclusions for the case of 100 voxels per RVE
edge

The results of the k-means clustering for all four RVEs are depicted in Figures
2.22, 2.23, 2.24 and 2.25.
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(a) k = 6 (b) k = 24 (c) k = 96

Figure 2.22: Results of the k-means clustering for a 3D RVE with 10 % of hard
inclusions

(a) k = 6 (b) k = 24 (c) k = 96

Figure 2.23: Results of the k-means clustering for a 3D RVE with 10 % of soft
inclusions

(a) k = 6 (b) k = 24 (c) k = 96

Figure 2.24: Results of the k-means clustering for a 3D RVE with 20 % of hard
inclusions
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(a) k = 6 (b) k = 24 (c) k = 96

Figure 2.25: Results of the k-means clustering for a 3D RVE with 20 % of soft
inclusions

Behaviour that was characteristic of 2D RVEs is again present in 3D RVEs.
From Figure 2.22 and Figure 2.23, i.e. Figure 2.24 and Figure 2.25 it is clear
that identical geometrical but different material configuration produces completely
distinctive cluster decomposition. Also, as was the case in two-dimensional analysis, one
material cluster can occupy different positions inside the RVE. This is again because
different material points inside the RVE can have similar mechanical behaviour. After
the domain decomposition into the appropriate number of clusters, the calculation of
the interaction tensor is performed using (2.101). Of course, this part is also performed
using Matlab.

FEM analyses that need to be performed for four distinctive macro-strain
constraints definitely do not require 106 hexahedral finite elements and can be carried
out by using significantly sparser mesh. The procedure of defining appropriate mesh
for running FEM analyses again boils down to conducting simulations of pure shear
loading, i.e. using macro-strain constraint ε2 with two different discretizations. The
homogenized stress-strain relations for discretizations with 50 × 50 × 50, i.e. 60 × 60
× 60 voxels are depicted in Figure 2.26.

81



2. Data-driven homogenization: Self-consistent clustering analysis

0 0.01 0.02 0.03 0.04 0.05
γ̄xy, mm/mm

0

30

60

90

120

τ̄ x
y
,

M
P

a

50× 50× 50

60× 60× 60

(a) 3D RVE with 10 % of hard inclusions

0 0.01 0.02 0.03 0.04 0.05
γ̄xy, mm/mm

0

30

60

90

120

τ̄ x
y
,

M
P

a

50× 50× 50

60× 60× 60

(b) 3D RVE with 10 % of soft inclusions
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(c) 3D RVE with 20 % of hard inclusions
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(d) 3D RVE with 20 % of soft inclusions

Figure 2.26: Influence of the finite element mesh discretization on the homogenized
values for the case ε = ε2

From Figure 2.26 it is clear that the difference between coarser and finer
discretization for all RVEs is almost non-existent. Therefore, for running all DNS
simulations for all macro-strain constraints and for all RVEs, the discretization with
125,000 hexahedral elements is utilized.

In the next four figures and four tables comparisons of the macroscopic stress-
strain relations and computational efficiency for both SCA and DNS are presented.
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Figure 2.27: Comparisons of the homogenized stress-strain curves for a 3D RVE
with 10 % of hard inclusions subjected to different macro-strain constraints

Figure 2.27 shows good agreement of homogenized results obtained by the
SCA and ones obtained by DNS through FEM. For the case of macro-strain constraints
ε1 and ε3 the difference barely exists, while for other constraints similar accuracy can
be achieved with 96 material clusters. However, even with only 6 material clusters,
the maximum relative error, which appears for macro-strain constraint ε4, amounts to
“only” 7.4 %.
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Table 2.6: Comparisons of the computational time for a 3D RVE with 10 % of hard
inclusions subjected to different macro-strain constraints

ε = ε1

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1753 0.6798 10.7506 56808

ε = ε2

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1982 0.5655 11.8646 68022

ε = ε3

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1173 0.4139 5.4219 54960

ε = ε4

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1452 0.8366 12.6445 55182

In contrast to two-dimensional analysis, where the increase in computational
efficiency was measured in hundreds, Table 2.6 shows that SCA can offer significantly
higher savings in computational time if three-dimensional simulations are considered.
Even with 96 material clusters the time needed to complete the analysis is on average
5800 times shorter in the case of SCA than it is for DNS. Recall that all three-
dimensional Abaqus analyses were carried out using 4 threads of the AMD Ryzen
3900x processor, while the SCA was conducted on a single thread of the Intel Xeon
E5-1620 v2 processor. If the SCAs were to be carried out with multiple threads the
difference in computational times would be even greater. Also, notice that the increase
from 24 to 96 material clusters leads to significantly longer computational time, which
is true for all four macro-strain constraints. This was also present in two-dimensional
analysis and the main reason is, again, a significantly higher number of iterations that
the algorithm needs to perform in order to satisfy the equilibrium.
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Figure 2.28: Comparisons of the homogenized stress-strain curves for a 3D RVE
with 10 % of soft inclusions subjected to different macro-strain constraints

Changing the material configuration, i.e. switching from hard to soft inclusions
has as a consequence lower level of agreement between the SCA and DNS. In Figure
2.28 it is clear that for macro-strain constraints ε3 and ε4, the SCA is not able to
properly capture the macroscopic response of the RVE with 10 % of soft inclusions.
The difference is more than significant, even with 96 material clusters. Recall that
the macro-strain constraint ε3 is actually a pure hydrostatic loading, for which the
optimal value shear modulus µ0 is undetermined for both regression and projection
based scheme. Although constrain ε4 is not pure hydrostatic loading, it does possess
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the hydrostatic component which has a negative impact on the self-consistent scheme.
In contrast to ε3 and ε4, macro-strain constraints ε1 and ε2 can be captured well with
the use of the SCA, and the increase in clusters does not lead to major changes in
homogenized results. The overall accuracy could certainly be improved by applying finer
discretization during DNS data collection. That “simple” change would have a positive
impact for two reasons: (1) higher quality in the description of the inhomogeneous
strain field inside the RVE, and (2) higher level of accuracy during the process of
interaction tensor calculation.

Table 2.7: Comparisons of the computational time for a 3D RVE with 10 % of soft
inclusions subjected to different macro-strain constraints

ε = ε1

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.3233 1.5342 23.7773 61558

ε = ε2

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1309 0.4564 7.0555 77875

ε = ε3

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1755 0.5677 8.6768 63094

ε = ε4

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.5729 2.2853 33.5189 56797

The change in the material configuration at the microscale definitely had an
impact on the computational efficiency of the SCA. From Table 2.7 and Table 2.6
it is clear that for macro-strain constraints ε1 and ε4 the time needed to complete
the analysis more than doubled. The increase in computational time is also present
in the other two constraints; however, at noticeably lower levels. Despite this, SCA
is still providing an immense reduction in the overall CPU time which is especially
pronounced in the case of pure shear conditions, i.e. macro-strain constraint ε2.
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Figure 2.29: Comparisons of the homogenized stress-strain curves for a 3D RVE
with 20 % of hard inclusions subjected to different macro-strain constraints

As far as macro-strain constraints ε1 and ε3 are concerned, an increase in the
volume fraction of hard inclusions has almost no influence on the accuracy of the
SCA. Figure 2.29 also shows that for the other two constraints, the deviation from
DNS results are slightly larger than in the case of 3D RVE with 10 % of spherical
inclusions share - Figure 2.27. Although not as precise as it was for the mentioned
RVE, the SCA with 96 material clusters is still able to provide good results for which
the maximum relative error is less than 5 %.
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Table 2.8: Comparisons of the computational time for a 3D RVE with 20 % of hard
inclusions subjected to different macro-strain constraints

ε = ε1

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1685 0.5265 7.9663 57289

ε = ε2

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1755 0.7018 12.1756 69063

ε = ε3

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1284 0.3759 5.3041 56772

ε = ε4

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1883 0.5761 11.6052 56747

From both Table 2.8 and Table 2.6 it is clear that computational times of
the SCA for all discretizations and macro-strain constraints did not experience any
major changes. The difference in CPU times for both SCA and DNS is still tremendous
even with the maximum number of clusters. As was the case for all two-dimensional
analyses, a four-fold increase in the total number of material clusters (from 24 to 96)
will extend the computational time by more than 10 times. Proving once again that
it is necessary to perform multiple analyses in order to find an appropriate balance
between computational efficiency and overall accuracy.
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Figure 2.30: Comparisons of the homogenized stress-strain curves for a 3D RVE
with 20 % of soft inclusions subjected to different macro-strain constraints

The last comparison in this chapter is related to the 3D RVE in which the
total volume fraction of soft inclusions is 20 %. As can be seen from Figure 2.30,
good agreements between the SCA and DNS results cannot be obtained for all
constraints. Pure hydrostatic loading and the macro-strain constraint ε4 are again
poorly approximated by the SCA. This behaviour was also present in the RVE with 10
% of soft inclusions. Notice also that discretization with 6 material clusters produces
a non-physical stress-strain relation for macro-strain constraint ε. Although at a
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much lower intensity, Figure 2.28 (d) shows a similar phenomenon when identical
discretization and constraints are utilized. The “vibrating” stress-strain relation occurs
when the optimal value of one of two Lamé parameters of the reference material
becomes negative. In that case, the calculated negative value is replaced by the value
obtained in the previous increment.

Table 2.9: Comparisons of the computational time for a 3D RVE with 20 % of soft
inclusions subjected to different macro-strain constraints

ε = ε1

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.3416 1.1517 16.1357 54160

ε = ε2

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1382 0.4579 7.3445 79857

ε = ε3

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.1741 0.5505 8.1476 51418

ε = ε4

Method SCA DNS
Discretization k = 6 k = 24 k = 96 50 × 50 × 50
CPU time, s 0.5261 2.1736 32.4882 52105

The last table in this chapter does not show any unexpected results. The
increase in computational efficiency, which happens when the SCA is utilized, is again
tremendous. This is especially pronounced for pure shear conditions. Related to that
macro-strain constraint, from Table 2.9 it is not difficult to conclude that by far the
longest CPU time for the case of DNS appears exactly when pure shear macro-strain
constraint is applied. However, this is not typical only for 3D RVE with 20 % of soft
inclusions, but for each and every RVE that was the subject of numerical validation.
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3. Phase-field fracture formulation

3.1. Background

Although there exists a significant number of non-local continuum damage models, as
presented in subsection 1.3.2, the phase-field modelling approach is certainly one
of the most popular ones. Interestingly, the phase-field fracture framework has been
independently developed by the physics and mechanics community with considerably
different approaches and starting points. The physics community developed dynamic
fracture models [230, 231] using the Ginzburg-Landau theory [232], which was originally
derived for electromagnetic second-order phase transition phenomena. On the other
hand, the phase-field fracture models which this dissertation is focused on, originates
from the variational approach to brittle fracture proposed by Francfort and Marigo
[131]. Even though phase-field fracture formulation was developed through a variational
approach to fracture, i.e. using energy minimization, it shares some similarities and
differences with other non-local continuum models, most notably the gradient damage
model [130] and gradient-enhanced continuum damage model [129].

From the perspective of partial differential equations, both phase-field and
gradient-enhanced damage model are quite similar, as they are defined through the
second-order, Helmholtz-type partial differential equation in which the Laplacian
operator ∇2 is applied to the non-local scalar variable. Not only that, but in both
models the material length parameter, that helps to diffuse the discrete crack over the
finite region, is multiplied by the Laplacian term. Moreover, boundary conditions for
both approaches are defined as a dot product between the outer normal vector and
the gradient of the non-local scalar variable. However, the non-local scalar variable,
i.e. damage driving force in the gradient-enhanced damage model is the non-local
equivalent strain, while in the phase-field fracture model, it is the value of the crack
phase-field itself. Also, the major difference is that in the phase-field model, the
crack driving force vanishes for a fully damaged material, which is not the case in
the gradient-enhanced damage model. In addition, boundary conditions in the case
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of phase-field fracture formulation follow naturally from its derivation (which will
be shown in the following pages), while for gradient-enhanced continuum damage
approach they are introduced separately.

Although they originated from rather distinct points of view, the phase-field
method resembles the gradient damage model quite significantly, provided the incorpo-
rated length parameter is treated as a purely material property rather than a numerical
one. The gradient damage model, originally proposed by Frémond and Nedjar [130],
was derived by extending the virtual power principle in order to incorporate the damage
gradient accounting for microscopic non-local interactions. The resulting macroscopic
balance equation and the damage evolution law possess the same format as one in the
phase-field model. However, in gradient damage models the fracture energy does not
enter the formulation from the beginning, but rather, it is later identified heuristically
from the 1-D analytical solution. Moreover, the notion of approximating the sharp
crack topology by the crack phase-field does not appear at all, even in the newer
gradient damage models [233, 234].

From this discussion, it can be stated that phase-field combines some of the
features of both gradient damage and gradient-enhanced continuum damage models.
However, since it is derived through minimization of the total energy functional,
governing equations of the phase-field model follow naturally from the derivation itself.
This is not present in either of the two non-local approaches that are mentioned above.
Also, phase-field relies on two parameters, i.e. length parameter and a critical value of
strain energy release rate, to regularise the original ill-posed boundary value problem.
The length parameter helps to diffuse (smear) the sharp crack topology over a finite
domain region, while the critical value of strain energy release rate limits the energy
dissipation per unit area in the crack. How exactly this works is presented in the
following pages.

3.2. Governing equations
For a body of volume Ω and surface ∂Ω, the total energy functional (also known as the
free energy functional) Π is a function of a displacement field u, and in the quasi-static
regime of loading it is defined as

Π = Πint + Πext. (3.1)

In Eq. (3.1) Πint is the internal part of the potential energy calculated through the
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integral of strain energy density function ψ

Πint =
∫

Ω
ψ (ε (u)) dΩ, (3.2)

while Πext denotes potential energy produced by the external loading

Πext = −
∫

Ω
u · b dΩ −

∫
∂Ω

u · h d∂Ω (3.3)

where b and h are prescribed volume, i.e. surface force vector and “·” indicates the dot
product between two vectors. Identity (3.2) is valid for any deformable body without
any flaws, i.e. cracks. However, if at any point, under the influence of static external
load, a crack appears, the internal part of the total energy functional is additively
decomposed into two parts, i.e.

Πint = Πb + Πs =
∫

Ω\Γ
ψ (ε (u) ,Γ) dΩ +

∫
Γ
Gc dΓ. (3.4)

The first integral in Eq. (3.4) defines body’s bulk energy, while the second integral
represents fracture-induced dissipating surface energy. In the first integral of Eq. (3.4),
the symbol Ω\Γ indicates that the integration is performed over the finite volume Ω
with the exclusion of the crack surface Γ. Scalar value Gc, which appears in the second
integral of Eq. (3.4) is called critical Griffith force (it is also known as the critical value
of energy release rate), and in the case of brittle and quasi-brittle type materials can
be considered as a material’s fracture toughness. The variational approach to fracture,
proposed by Francfort and Marigo [131], implies that the cracked body deformes and
the crack(s) propagates in a way that ensures minimum values of total potential energy.
More precisely, fracture is regarded as an energy minimization problem, in which the
pair (u,Γ) are the global minimizers of the total energy functional Π, i.e.

(u,Γ) = Arg{min [Π (u,Γ)]}. (3.5)

This implies that the internal part of total energy functional Πint can be minimized
with respect to both strain field and the crack itself

δΠint = ∂Πint

∂ε
: δε + ∂Πint

∂Γ δΓ, (3.6)

while the external part of free energy functional is, as usual, minimized with respect
to displacement field u
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δΠext = ∂Πextp

∂u
· δu. (3.7)

For a body with crack surface Γ, the equilibrium state is reached if the variation of
the total energy functional is equal to zero, i.e.

δΠ = δΠint + δΠext = 0. (3.8)

Substituting Eq. (3.6) and (3.7) into identity (3.8) yields

δΠ = ∂Πint

∂ε
: δε + ∂Πint

∂Γ δΓ + ∂Πextp

∂u
: δu = 0. (3.9)

Although a variational approach to fracture [131] was initially proposed for brittle and
quasi-brittle materials, as will be seen in the following pages, the principle defined
by (3.4) and (3.6) can be applied to ductile materials as well. Not only that, but in
subsection 1.3.3 several contributions were listed in which the phase-field (which is
based on the variational approach to fracture) was successfully utilized in multiphysics
problems such as thermomechanics and electromechanics.

Eq. (3.9) represents a free discontinuity problem, in which displacement field u
and the crack surface Γ are both a priori unknown. In order to numerically implement
the resulting free discontinuity problem, Bourdin et al. [145] proposed using the so-
called regularized variational fracture model, based on Ambrosio and Tortorelli [147]
regularisation in image segmentation. That is, a discontinuous crack of zero width is
approximated (replaced) by a diffusive crack of a finite width - Figure 3.1.

G

(a) Discrete crack surface Γ
 

 

 

ф
Ovdje upišite jednadžbu. 

(b) Regularized discrete crack surface Γ

Figure 3.1: Phase-field regularisation of the discrete crack surface Γ
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Without the loss of generality, in the phase-field formulation the sharp crack
surface Γ is regularised by the functional Γl

Γ ≈ Γl (ϕ) =
∫

Ω
γ (ϕ; ∇ϕ) dΩ, (3.10)

such that the fracture-induced surface energy Πs is approximated as

Πs =
∫

Γ
Gc dΓ ≈

∫
Ω
Gcγ (ϕ; ∇ϕ) dΩ, (3.11)

where γ represents the crack surface density function [150], which is expressed in terms
of the crack phase-field parameter ϕ and its gradient ∇ϕ. Here, the crack phase-field
parameter ϕ represents a scalar value that ranges between 0 and 1 - ϕ ∈ [0, 1]. A value
of 0 indicates virgin material, while a value of 1 means the material is fully broken.
Notice from (3.11) that the integral is no longer performed on the surface Γ but on
the finite volume Ω. This is because a discontinuous crack is now smeared over a finite
volume using scalar value of ϕ. Now, the internal part of the free energy functional,
i.e. expression (3.4) can be rewritten in the following form

Πint = Πb + Πs =
∫

Ω
g (ϕ)ψ (ε (u)) dΩ +

∫
Ω
Gcγ (ϕ; ∇ϕ) dΩ, (3.12)

where g is called the degradation function, which controls the value of damage the
material has sustained. Notice that the first integral in (3.4), which was initially
performed over the volume Ω with the exclusion of the fracture surface Γ, is now
performed on the finite volume Ω. This is again the result of crack smearing over a
finite region through the use of ϕ.

The total energy functional Π can now be written as

Π = Πint + Πext =
∫

Ω
g (ϕ)ψ (ε (u)) dΩ +

∫
Ω
Gcγ (ϕ; ∇ϕ) dΩ−∫

Ω
u · b dΩ −

∫
∂Ω

u · h d∂Ω,
(3.13)

and its variation is now expressed through

δΠ = ∂Πint

∂ε
: δε + ∂Πint

∂ϕ
δϕ+ ∂Πextp

∂u
· δu = 0. (3.14)

From Eq. (3.14) it is clear that the internal part of the free energy functional is
minimized with respect to both small strain tensor ε and the crack phase-field parameter
ϕ, while the external part is minimized solely with respect to displacement field u.
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3. Phase-field fracture formulation

The minimization of Πint yields

δΠint =
∫

Ω
g (ϕ) σ : δε dΩ +

∫
Ω
ψ (ε (u)) dg (ϕ)

dϕ δϕ dΩ+∫
Ω
Gc

(
∂γ (ϕ; ∇ϕ)

∂ϕ
δϕ+ ∂γ (ϕ; ∇ϕ)

∂∇ϕ
· δ∇ϕ

)
dΩ,

(3.15)

while for the external part of the free energy functional, the following is true

δΠext = −
∫

Ω
b · δu dΩ −

∫
∂Ω

h · δu d∂Ω. (3.16)

With the help of the divergence theorem, the first integral in Eq. (3.15) is expressed
in terms of displacement field differential δu and a unit normal n, i.e.∫

Ω
g (ϕ) σ : δε dΩ =

∫
∂Ω
g (ϕ) σ · n · δu d∂Ω −

∫
Ω
g (ϕ) ∇ · σ · δu dΩ, (3.17)

The divergence theorem is also applied to the second term of the third integral of Eq.
(3.15) in order to exclude the differential of the phase-field gradient

∫
Ω

∂γ (ϕ; ∇ϕ)
∂∇ϕ

· δ∇ϕ dΩ =
∫

∂Ω

∂γ (ϕ; ∇ϕ)
∂∇ϕ

· nδϕ d∂Ω−∫
Ω

∇ · ∂γ (ϕ; ∇ϕ)
∂∇ϕ

δϕ dΩ.
(3.18)

Substituting (3.17) and (3.18) into (3.15) yields the following expression

δΠint =
∫

∂Ω
g (ϕ) σ · n · δu d∂Ω −

∫
Ω
g (ϕ) ∇ · σ · δu dΩ+∫

Ω
ψ (ε (u)) dg (ϕ)

dϕ δϕ dΩ +
∫

∂Ω
Gc
∂γ (ϕ; ∇ϕ)
∂∇ϕ

· nδϕ d∂Ω−∫
Ω
Gc∇ · ∂γ (ϕ; ∇ϕ)

∂∇ϕ
δϕ dΩ +

∫
Ω
Gc
∂γ (ϕ; ∇ϕ)

∂ϕ
δϕ dΩ.

(3.19)

Now the variation of total energy functional Π is expressed through variation of the
displacement field u and the crack phase-field parameter ϕ

δΠ =
∫

∂Ω
g (ϕ) σ · n · δu d∂Ω −

∫
Ω
g (ϕ) ∇ · σ · δu dΩ+∫

Ω
ψ (ε (u)) dg (ϕ)

dϕ δϕ dΩ +
∫

∂Ω
Gc
∂γ (ϕ; ∇ϕ)
∂∇ϕ

· nδϕ d∂Ω−∫
Ω
Gc∇ · ∂γ (ϕ; ∇ϕ)

∂∇ϕ
δϕ dΩ +

∫
Ω
Gc
∂γ (ϕ; ∇ϕ)

∂ϕ
δϕ dΩ−∫

Ω
b · δu dΩ −

∫
∂Ω

h · δu d∂Ω,

(3.20)
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3.2. Governing equations

which yields the following system of equations

g (ϕ) ∇ · σ + b = 0, in Ω, (3.21)

g (ϕ) σ · n − h = 0, on ∂Ωh, (3.22)

ψ (ε (u)) dg (ϕ)
dϕ +Gc

(
∂γ (ϕ; ∇ϕ)

∂ϕ
− ∇ · ∂γ (ϕ; ∇ϕ)

∂∇ϕ

)
= 0, in Ω, (3.23)

Gc
∂γ (ϕ; ∇ϕ)
∂∇ϕ

· n = 0, on ∂Ω. (3.24)

For a given set of boundary conditions, the above set of equations has a unique solution
in terms of displacement field u and the crack phase-field parameter ϕ. However, the
model obtained from (3.20) has one critical flaw - it does not distinguish between
compressive and tensile loading. More precisely, the crack forms and propagates
regardless of loading type, which does not reflect reality. To correct this error, Eq.
(3.20) needs to be reformulated so that only positive values of stress and strain energy
density are connected to the phase-field variable ϕ, i.e.

δΠ =
∫

∂Ω

[
g (ϕ) σ+ + σ−

]
· n · δu d∂Ω −

∫
Ω

[
g (ϕ) ∇ · σ+ + ∇ · σ−

]
· δu dΩ+∫

Ω
ψ+ (ε (u)) dg (ϕ)

dϕ δϕ dΩ +
∫

∂Ω
Gc
∂γ (ϕ; ∇ϕ)
∂∇ϕ

· nδϕ d∂Ω−∫
Ω
Gc∇ · ∂γ (ϕ; ∇ϕ)

∂∇ϕ
δϕ dΩ +

∫
Ω
Gc
∂γ (ϕ; ∇ϕ)

∂ϕ
δϕ dΩ−∫

Ω
b · δu dΩ −

∫
∂Ω

h · δu d∂Ω,

(3.25)

which then leads to a modified set of equations

[
g (ϕ) ∇ · σ+ + ∇ · σ−

]
+ b = 0, in Ω, (3.26)[

g (ϕ) σ+ + σ−
]

· n − h = 0, on ∂Ωh, (3.27)

ψ+ (ε (u)) dg (ϕ)
dϕ +Gc

(
∂γ (ϕ; ∇ϕ)

∂ϕ
− ∇ · ∂γ (ϕ; ∇ϕ)

∂∇ϕ

)
= 0, in Ω, (3.28)

Gc
∂γ (ϕ; ∇ϕ)
∂∇ϕ

· n = 0, on ∂Ω. (3.29)

In the identities above, σ+ and σ− are positive, i.e negative part of the Cauchy stress
tensor, while ψ+ and ψ− denote positive, i.e. negative part of strain energy density.
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3. Phase-field fracture formulation

The formulation described in strong from through expressions (3.21)-(3.24)
does not include the split of strain energy density function or Cauchy stress tensor, and
is also known as the isotropic model [146]. On the other hand, equations (3.26)-(3.29)
describe what is known as anisotropic phase-field formulation, which prevents crack
formation and evolution during compressive loading. Some techniques for splitting,
i.e. finding the positive and negative parts of the strain energy density, Cauchy stress
tensor and the material stiffness tensor C are presented in subsection 3.3.1.

3.2.1. Phase-field representation of the fractured surface

The key ingredient of phase-field fracture models is the approximation of the sharp
crack topologies (geometries) by a diffusive crack smeared within a localization band of
finite width, that is controlled by length-scale parameters l. In the 1-D configuration,
this can be visualized by the following exponential function

ϕ (x) = exp
(

−|x|
l

)
, (3.30)

which satisfies the following properties

ϕ (x = 0) = 1 and lim
x→±∞

ϕ (x) = 0, (3.31)

for a specific value of a length-scale parameter l, which is illustrated in Figure 3.2.
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Figure 3.2: Diffusive representation of a 1D discrete crack Γ for various length-scale
parameters l
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3.2. Governing equations

It can be easily verified that the scalar function given by (3.30) is a solution of
the following ordinary differential equation

ϕ (x)
l

− lϕ′′ (x) = 0, (3.32)

supplemented with the boundary conditions in (3.31). Following (3.10), the goal is to
find functional Γl that approximates the sharp discontinuity and whose minimization
yields back the ordinary differential equation given by (3.32). For the problem defined
in Figure 3.2, the following can be written

Γ ≈ Γl (ϕ) =
∫ +∞

−∞

1
2

[1
l
ϕ2 + l (ϕ′)2

]
dx =

∫ +∞

−∞
γ (ϕ, ϕ′) dx, (3.33)

where γ (ϕ, ϕ′) is, as previously mentioned, crack surface density function - a term first
introduced in Miehe et al. [150]. For the one-dimensional case, it is defined as

γ (ϕ, ϕ′) = 1
2

(1
l
ϕ2 + l (ϕ′)2

)
, (3.34)

while its form in multidimensional problems is equal to

γ (ϕ,∇ϕ) = 1
2

(1
l
ϕ2 + l∇ϕ · ∇ϕ

)
. (3.35)

From Figure 3.2 it is clear that the length-scale parameter l has a direct control of
the discrete crack approximation by the phase-field variable ϕ. When l → 0, a discrete
crack surface Γ is recovered. The influence of the value of length-scale parameter l on
the phase-field crack approximation is more vividly shown in Figure 3.3. Therein, four
different values of length-scale parameter l (each next one twice as small as the previous
one) provide different approximations of the sharp crack topology on the square domain
of unit length. However, length-scale parameter l is not only related to the geometry
of the crack surface, but it also influences material behaviour during fracture. More
precisely, different values of length-scale parameter will lead to different values of peak
stress/force in the underlying model. This is because, with every decrease in l, there
will be a decrease in the surface on which fracture energy can be dissipated. In order
to ensure the same energy dissipation, i.e. same energy release rate for different values
of l the value of peak stress ultimately needs to increase. For a length-scale parameter
of value 0, the peak stress would go to infinity.
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Figure 3.3: Influence of the length-scale parameter l on the diffusive representation
of the discrete crack surface

It is important to note that the crack surface density function γ, given by Eq.
(3.35), is not the unique one that can be used to regularise the sharp crack topology.
Its form can vary, but in general, can be expressed as [235]

γ (ϕ; ∇ϕ) = 1
c0

(1
l
α (ϕ) + l∇ϕ · ∇ϕ

)
, (3.36)

where α is the so-called geometric crack function, which can be expressed through

α (ϕ) = ξϕ+ (1 − ξ)ϕ2, (3.37)

for a non-negative parameters ξ ∈ [0, 2]; otherwise, α (ϕ) ∈ [0, 1] cannot be guaranteed.
Different values of ξ will produce various crack surface density functions and therefore
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3.2. Governing equations

different crack topologies. However, for the purposes of this dissertation, crack density
function of the form given by (3.35) will be used.

3.2.2. Bulk energy degradation

The stored energy functional, i.e. the body’s bulk energy Πb

Πb =
∫

Ω
g (ϕ)ψ (ε (u)) dΩ, (3.38)

describes the smooth transition from the intact bulk material to the fully cracked
state - through the use of strain energy density ψ and the energetic/stress degradation
function g. In the phase-field fracture formulation, the energetic degradation function
g plays an important role since it links the crack phase-field and the mechanical
properties. More precisely, it determines how the stored energy functional responds to
changes in the crack phase-field. However, there are four conditions that every stress
degradation function needs to satisfy:

(1) g (0) = 1,

(2) g (1) = 0,

(3) g′ (1) = 0,

(4) g′ (ϕ) < 0.

The first and second condition describes intact and fully broken material, respectively.
The third condition ensures that the degradation function is monotonically increasing,
thus ensuring an increase in the material’s degradation as the phase-field ϕ is increasing.
The last condition guarantees that the localization band does not grow orthogonally
as usually observed in the gradient-enhanced damage model [129].

There exists a broad range of functions that satisfy all four conditions and thus
can be used in (3.38). A common choice for the degradation function g, which will also
be the case in this dissertation, is a simple quadratic function first utilized in Bourdin
et al. [145]

g (ϕ) = (1 − ϕ)2 . (3.39)

On the other hand, a cubic degradation function of the general form

g (ϕ) = (3 − s) (1 − ϕ)2 − (2 − s) (1 − ϕ)3 , (3.40)
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3. Phase-field fracture formulation

was introduced in Borden et al [163]. In (3.40) s is the scalar value that controls the
overall slope of the function. Kuhn et al. [236] introduced a fourth-degree polynomial
degradation function

g (ϕ) = 4 (1 − ϕ)3 − 3 (1 − ϕ)4 . (3.41)

Moreover, Sargado et al. [237] proposed a family of exponential-type degradation
function with three additional parameters and a corrector term and made a detailed
comparison with the already mentioned degradation functions.

The degradation function is ultimately the key factor that controls the degree
of material damage, and its value is not the reflection of the value held by the crack
phase-field parameter ϕ, since the relationship between g and ϕ is non-linear. More
precisely, the value of ϕ by itself does not determine the value of damage the material
has endured. For example, the value of ϕ = 0.5 (at a specific material point) does not
imply that the material has degraded by 50 %. This is another important difference that
arises when comparing phase-field to gradient-enhanced continuum damage models,
as in the latter the relationship between the damage variable and the function that
degrades the stiffness of the material is linear - see Figure 3.4. Because of that,
the choice of degradation function will greatly influence the overall solution of the
underlying problem.
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Figure 3.4: Relationships between the crack phase-field parameter ϕ and the value
of overall damage, for different degradation functions
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3.3. Phase-field for brittle fracture

3.3. Phase-field for brittle fracture

In cases of brittle (and sometimes quasi-brittle) materials, the behaviour of the material
is assumed to be linear elastic, i.e. total small strain tensor ε consists exclusively of
elastic deformations. Therefore, strain energy density function ψ is only influenced by
the elastic strain tensor εe through the following relation

ψ (ε) = ψe (εe) = 1
2λtr2 [ε] + µtr [ε : ε] . (3.42)

Here λ and µ denote the Lamé constant and the shear modulus, respectively. The
relation (3.42) can also be written using bulk modulus κ as

ψ (ε) = 1
2κtr2 [ε] + µεdev : εdev, (3.43)

with εdev being the deviatoric part of the small strain tensor ε that is equal to

εdev = ε − 1
n

tr [ε] I, (3.44)

where I is the second-order identity tensor. Lamé parameters λ, µ and κ are related
to each other through the following expression

κ = λ+ 2
n
µ, (3.45)

where n defines the number of dimensions. The Cauchy stress tensor σ is calculated
directly from elastic strain energy density, i.e.

σ = ∂ψ (ε)
∂ε

, (3.46)

which, using (3.42), i.e. (3.43) is equal to

σ = λtr [ε] I + 2µε = κtr [ε] I + 2µεdev. (3.47)

Since degradation function g is applied to positive parts of both Cauchy stress tensor
σ and elastic strain energy density ψ, their values are in the end equal to

ψ (ε) = g (ϕ)ψ+ (ε) + ψ− (ε) (3.48)

σ = g (ϕ) σ+ + σ− = g (ϕ) ∂ψ
+ (ε)
∂ε

+ ∂ψ− (ε)
∂ε

. (3.49)
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3. Phase-field fracture formulation

3.3.1. Strain energy density decomposition

In order to ensure physical behaviour, i.e. prevent the formation and propagation
of cracks under compression, both elastic strain energy density and Cauchy stress
tensor need to be additively decomposed on their negative, i.e. positive parts. The
split on positive and negative values also needs to be performed on the underlying
elastic stiffness tensor C, which is expressed as

C = κI ⊗ I + µ
(

2Is − 2
n

I ⊗ I
)
, (3.50)

or

C = λI ⊗ I + 2µIs, (3.51)

where Is is the symmetric part of the fourth-order identity tensor expressed in terms
of Kronecker delta symbol δij as

Is = 1
2 (δikδjl + δilδjk) . (3.52)

The two most common energy decompositions in the phase-field fracture models
are considered here and will be used in the later examples, when necessary.

The first split to be described refers to the decomposition proposed by Amor et
al. [135] in which the strain energy density ψ is additively decomposed into volumetric
and deviatoric part, i.e.

ψ±
e = 1

2κ ⟨tr [ε]⟩2
± + µεdev : εdev, (3.53)

Here < x >±= 1
2 (x± |x|) is the Macaulay bracket, while ψ± refers to positive/negative

part of strain energy density. From Eq. (3.53) it is clear that in a volumetric-deviatoric
split, the deviatoric part of ψ is always considered to have a positive impact on the
crack formation and propagation, while the volumetric (hydrostatic) part can act in
both ways - depending on the sign of the hydrostatic strain. Following (3.49) the
Cauchy stress tensor is now obtained through

σ = g (ϕ)
[
κ ⟨tr [ε]⟩+ I + 2µεdev

]
+ κ ⟨tr [ε]⟩− I (3.54)

while the material stiffness tensor C is equal to

C = g (ϕ) (κI ⊗ IH [tr [ε]] + 2µIs) + κI ⊗ IH [−tr [ε]] . (3.55)
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3.3. Phase-field for brittle fracture

In (3.55) H is the Heavyside function defined as

H [tr [ε]] =

1, tr [ε] ≥ 0
0, tr [ε] < 0.

(3.56)

The second energy split, proposed by Miehe et al. [150], is based on the spectral
decomposition of the small strain tensor ε, i.e.

ψ±
e = 1

2λ ⟨tr [ε]⟩2
± + µε± : ε±, (3.57)

where ε± denotes the positive and negative part of the strain tensor, which, for the
purposes of spectral decomposition is expressed using the following identity

ε± =
n∑

a=1
⟨λa⟩± na ⊗ na =

n∑
a=1

⟨λa⟩± Ma. (3.58)

In Eq. (3.58) λa is the a-th eigenvalue, while Ma is the projection matrix, defined for
a given eigenvalue and obtained as a tensor product of eigenvector na. Following again
(3.49) the Cauchy stress tensor is calculated as

σ = g (ϕ)
[
λ ⟨tr [ε]⟩+ I + 2µε+

]
+ λ ⟨tr [ε]⟩− I + 2µε−, (3.59)

while the material stiffness tensor C is given by

C = g (ϕ)
[
λH [tr [ε]] + 2µ∂ε+

∂ε

]
+ λH [−tr [ε]] + 2µ∂ε−

∂ε
. (3.60)

The second-order tensor ∂ε±

∂ε
, which appears in the identity above, can be calculated

by following the procedure presented in [238]

∂ε±

∂ε
=

n∑
a=1

H [±λa] Ma ⊗ Ma + ⟨λa⟩±

n∑
b ̸=a

1
2 (λa − λb)

(Gab + Gba)
 , (3.61)

where Gijkl
ab and Gijkl

ba are the fourth-order tensors that are obtained from projection
matrices Ma and Mb

Gijkl
ab = Mik

a Mjl
b + Mil

a Mjk
b , (3.62)

Gijkl
ba = Mik

b Mjl
a + Mil

b Mjk
a . (3.63)

While effective in preventing the formation and propagation of cracks during
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3. Phase-field fracture formulation

compression, the decompositions discussed above encounter specific challenges with the
so-called crack boundary conditions [239]. More advanced energy split has been proposed
by Freddi and Royer-Carfagni [240] to model no-tension masonry-like materials. This
approach selectively degrades only the energy associated with the positive-definite
symmetric part of the small strain tensor. Wu et al. [241] proposed a similar split
based on the effective stress tensor projection in energy norm thus alleviating some
spurious behaviour of [240]. The directional split is presented in Steinke et al. [239], in
which the Cauchy stress tensor is decomposed with respect to the crack orientation.
Both spectral and volumetric-deviatoric energy decompositions will eventually lead to
different crack paths and force-displacement diagrams when complex microstructural
geometries are considered, as illustrated by Seleš et al. [242].

3.4. Phase-field for ductile fracture
The phase-field theory for brittle and quasi-brittle fracture has also been extended to
describe fracture processes in ductile materials [157–163, 243]. Contributions [157–159,
243] have considered small strains, while in [160–163] ductile fracture under finite
strain configuration was modelled. The common point of all contributions listed above
is the additive decomposition of the body’s bulk energy into an elastic and plastic part.
Following this statement and expression (3.4), the internal part of the total energy
functional is

Πint = Πb + Πs =
∫

Ω\Γ
[ψe (εe (u) ,Γ) + ψp (εp (u) ,Γ)] dΩ +

∫
Γ
Gc dΓ, (3.64)

where ψp and εp denote the plastic part of strain energy density and small strain
tensor, respectively. Together with their elastic counterparts, they form total strain
energy density and total small strain tensor, i.e.

ψ = ψe + ψp, (3.65)

ε = εe + εp. (3.66)

When considering ductile fracture, material parameter Gc in Eq. (3.64) cannot be
treated as a value of fracture toughness, as ductile fracture in contrast to brittle and
quasi-brittle represents a more complex phenomenon.

When applying phase-field regularization to the internal part of the free energy
functional (3.64), two different procedures are available. In the first approach, the
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3.4. Phase-field for ductile fracture

plastic part of the body’s bulk energy is not affected by the phase-field crack growth
and vice versa. This approach was adopted in [157, 161] and the internal part of the
free energy functional was defined as

Πint =
∫

Ω

[
g (ϕ)ψ+

e (εe) + ψ−
e (εe) + ψp (εp)

]
dΩ +

∫
Ω
Gcγ (ϕ; ∇ϕ) dΩ. (3.67)

This first approach implies that only the positive part of the elastic strain energy
density drives the phase-field crack evolution and the plastic part of the small strain
tensor εp is not affected by the phase-field variable ϕ in any way. On the other hand,
the second, and more often used, approach in the phase-field ductile fracture modelling,
which is adopted in this dissertation, was proposed by Miehe et al. [244]. The second
approach, in contrast to the first, relies on the plastic degradation function gp to
connect the crack phase-field and plastic part of stored energy functional, i.e.

Πint =
∫

Ω

[
g (ϕ)ψ+

e (εe) + ψ−
e (εe)

]
dΩ +

∫
Ω
gp (ϕ)ψp (εp) dΩ+∫

Ω
Gcγ (ϕ; ∇ϕ) dΩ.

(3.68)

Generally, for both degradations functions, g and gp, the same type of functions are
adopted. In the resulting phase-field model for ductile fracture, the evolution of the
crack phase-field is now affected by both parts of the strain energy density. For more
details on the differences and advantages of these two different approaches see Alessi
et al. [245].

In order to model the evolution of the plastic strain field and the plastic part
of the strain energy density, in this dissertation, the plasticity model employing the
von Mises yield criterion and non-linear isotropic hardening is utilized

f =
√

3
2S∗ : S∗ − σy

(
εp

eq

)
≤ 0. (3.69)

In Eq. (3.69) f is the von Mises yield surface, S∗ denotes the effective (non-degraded)
deviatoric part of the Cauchy stress tensor, while σy stands for non-linear isotropic
hardening law that is given by

σy

(
εp

eq

)
= σ0

y

(
1 + kεp

eq

)r
, (3.70)

where σ0
y is the initial yield strength, while k and r are material parameters. The

equation given by (3.70) is also known as Swift’s non-linear isotropic hardening law.
The value of equivalent plastic strain εp

eq is obtained directly from the plastic strain
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tensor εp as

εp
eq =

√
2
3εp : εp. (3.71)

Last but not least, the plastic energy dissipation potential, i.e. plastic part of the
strain energy density is obtained through

ψp (εp) =
∫ t

0
S∗ : εp dt. (3.72)

When considering multiscale modelling of damage in heterogeneous materials,
variables such as elastic/plastic strain energy density, equivalent plastic strain, Cauchy
stress tensor and the material stiffness tensor need to be obtained directly from the
microstructure of the heterogeneous material. In that way, each material point will
receive homogenized (averaged) values of the aforementioned variables, which are
required in the phase-field fracture algorithm. The procedure behind this is explained
in detail in Chapter 4.

3.5. Numerical implementation
In general, numerical implementation of non-local continuum damage models is a
relatively simple task, especially when considering mesh-based numerical methods such
as FEM. This is because in the continuum, i.e. diffusive damage modelling approaches
the non-local variable that controls the value of damage and therefore determines the
crack topology, is obtained as part of the solution. In the case of FEM, in addition to
displacement, the non-local variable is simply another degree of freedom for which the
internal force vector and stiffness matrix need to be defined.

In the phase-field fracture model, this additional degree of freedom is the crack
phase-field parameter ϕ - Figure 3.5. When considering orthotropic or anisotropic
damage, scalar parameter ϕ will be replaced by the vector, i.e. second-order tensor.
However, as stated in subsection 1.3.2, this dissertation will be focused on isotropic
damage models in which the damage parameter is the scalar variable. Due to that
fact, the number of DOF in each node of the finite element is increased by one. This
also means that it is computationally less expensive to solve phase-field boundary
value problem than it is displacement, as the partial differential equation that governs
phase-field evolution is a scalar - not a vector equation.
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Figure 3.5: Implementation of the phase-field variable ϕ into FEM

3.5.1. Fracture irreversibility

Before the actual implementation and finite element discretization, the principle
of fracture irreversibility needs to be addressed. Namely, Eq. (3.4) and (3.64) by
themselves do not ensure irreversibility condition, which represents the second law of
thermodynamics demanding that the rate of dissipative fracture energy Π̇s has to be
non-negative value - Π̇s ≥ 0. This ultimately implies that the crack surface Γ cannot
decrease in size over time t, but can either grow or stay the same. This condition is
not included in any equation and needs to be enforced subsequently.

In the phase-field fracture framework, the irreversibility condition is achieved
by preventing the decrease of the crack phase-field parameter ϕ, i.e. ϕ̇ ≥ 0. However,
there exist several different methods that can produce the desired outcome, each one
with some side effect.

A direct way of introducing the irreversibility condition is by enforcing the
monotonicity of the phase-field parameter through the variational inequality condition
[135, 246], which unfortunately comes with additional computational cost. In [145,
185], a computationally more efficient method was utilized where the irreversibility
condition was enforced through the use of a variational equality, which ensures the
irreversibility condition only on the fully developed crack(s), while at the same time
allowing the transition zone to heal. Penalized methods introduce irreversibility through
penalty functions [187, 194]. In contrast, Miehe et al. [151] proposed an implicit way
of incorporating the irreversibility condition that is based on the introduction of the
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strain energy density history field H , i.e.

H (t) = max
τ∈[0,t]

[
ψ+

e (εe, t) + ψp (εp, t)
]
. (3.73)

By preventing a decrease in the positive part of strain energy density, the above
expression ensures fracture irreversibility, as the history field variable H will never
decline during the analysis. When considering ductile fracture, both plastic and the
positive part of the strain energy density enter the condition (3.73). On the other hand,
if brittle, i.e. quasi-brittle fracture is in question, the plastic part of the strain energy
density is always equal to zero. Using this information, Eq. (3.28) is now rewritten in
terms of H

H (t) dg (ϕ)
dϕ +Gc

(
∂γ (ϕ; ∇ϕ)

∂ϕ
− ∇ · ∂γ (ϕ; ∇ϕ)

∂∇ϕ

)
= 0, in Ω. (3.74)

Although it violates the full variational nature of the phase-field approach, the implicit
method of enforcing the irreversibility condition is particularly attractive due to its
simplicity and computational efficiency. It has been used in the majority of works on
the topic of phase-field fracture modelling as well as in this dissertation.

3.5.2. Finite element discretization

Implementation of the phase-field fracture method into the finite element framework
relies on domain discretization with finite elements, in whose nodes both displacement
vector v

vT =
[
u1 v1 w1 u2 v2 w2 ... up vp wp,

]
(3.75)

and the phase-field vector ϕ

ϕT =
[
ϕ1 ϕ2 ... ϕp

]
(3.76)

are located. In Eq. (3.75) u, v and w are displacements in x, y and z direction of a
local coordinate system, respectively, while index p, which occurs in the identities
above, defines the total number of nodes that are present in the finite element.

In the 3D finite element framework, both displacement vector u and the scalar
phase-field variable ϕ are expressed using matrices of shape functions

u = Nv v, (3.77)
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ϕ = Nϕ ϕ, (3.78)

where for both Nv and Nϕ same shape functions Ni are used

Nv =


N1 0 0 N2 0 0 ... Np 0 0
0 N1 0 0 N2 0 ... 0 Np 0
0 0 N1 0 0 N2 ... 0 0 Np

 , (3.79)

Nϕ =
[
N1 N2 ... Np

]
. (3.80)

Notice that the dimension of Nv is completely different from Nϕ as the former is used
to describe the vector of displacement u, while the latter ensures the description of
the scalar variable ϕ. Besides the displacement vector u and the crack phase-field
parameter ϕ, Eq. (3.25) also demands interpolation of the small strain tensor ε and the
gradient of crack phase-field ∇ϕ. This is performed using matrices of shape functions
derivatives Bv and Bϕ

Bv =



N1,1 0 0 N2,1 0 0 ... Np,1 0 0
0 N1,2 0 0 N2,2 0 ... 0 Np,2 0
0 0 N1,3 0 0 N2,3 ... 0 0 Np,3

N1,2 N1,1 0 N2,2 N2,1 0 ... Np,2 Np,1 0
N1,3 0 N1,1 N2,3 0 N2,1 ... Np,3 0 Np,1

0 N1,3 N1,2 0 N2,3 N2,2 ... 0 Np,3 Np,2


, (3.81)

Bϕ =


N1,1 N2,1 ... Np,1

N1,2 N2,2 ... Np,2

N1,3 N2,3 ... Np,3

 (3.82)

Small strain tensor ε is now expressed as

ε = Bv v, (3.83)

while the gradient of phase-field ∇ϕ is equal to

∇ϕ = Bϕ ϕ. (3.84)

Notice that ε in (3.83) needs to be written as a vector, i.e.

εT =
[
εx εy εz γxy γxz γyz

]
. (3.85)
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3. Phase-field fracture formulation

This notation is also required for the degraded Cauchy stress tensor σ

σT =
[
σx σy σz τxy τxz τyz.

]
(3.86)

Now, substituting (3.77), (3.78), (3.83) and (3.84) into (3.15) and (3.16), and
with the use of identity (3.73), the variation of the total energy functional is equal to

δΠ =
∫

Ω
σT δ (Bv v) dΩ +

∫
Ω

H (t) dg (ϕ)
dϕ δ (Nϕ ϕ) dΩ+∫

Ω
Gc

[
Nϕ ϕ

l
δ (Nϕ ϕ) + l (Bϕ ϕ)T Bϕ δϕ

]
dΩ −

∫
Ω
δ (Nv v)T b dΩ−∫

∂Ω
δ (Nv v)T h d∂Ω,

(3.87)

which in simple terms represents balance of internal and external forcers

δvT
(
f int
v − f ext

v

)
+ δϕT

(
f int
ϕ − f ext

ϕ

)
= 0. (3.88)

In Eq. (3.88) f int
v and f int

ϕ correspond to the local internal force vectors associated with
the discretized displacement and phase-field, respectively, as follows

f int
v =

∫
Ω

BT
v σ dΩ, (3.89)

f int
ϕ =

∫
Ω

[
H (t) dg (ϕ)

dϕ NT
ϕ +Gc

(
ϕ

l
NT

ϕ + lBT
ϕ Bϕ ϕ

)]
dΩ, (3.90)

while f ext
v and f ext

ϕ denote local external force vectors for the displacement and the
crack phase-field, respectively

f ext
v =

∫
Ω

NT
v b dΩ +

∫
∂Ω

NT
v h d∂Ω, (3.91)

f ext
ϕ = 0. (3.92)

Local residual vectors rv and rϕ are now obtained through

rv = f int
v − f ext

v =
∫

Ω
BT

v σ dΩ −
∫

Ω
NT

v b dΩ −
∫

∂Ω
NT

v h d∂Ω, (3.93)

rϕ = f int
ϕ − f ext

ϕ =
∫

Ω

[
NT

ϕ

(
H (t) dg (ϕ)

dϕ + Gc

l
ϕ

)
+Gc lBT

ϕ Bϕ ϕ

]
dΩ. (3.94)

Finally, using local residual vectors rv and rϕ, local stiffness matrices kv v, kv ϕ, kϕ v
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and kϕ ϕ are given by

kv v = ∂rv

∂v
=
∫

Ω
BT

v C Bv dΩ, (3.95)

kv ϕ = ∂rv

∂ϕ
=
∫

Ω

dg (ϕ)
dϕ BT

v σ Nϕ dΩ, (3.96)

kϕ v = ∂rϕ

∂v
=
∫

Ω

dg (ϕ)
dϕ NT

ϕ σT Bv dΩ, (3.97)

kϕ ϕ = ∂rϕ

∂ϕ
=
∫

Ω

[
Gc lBT

ϕ Bϕ + NT
ϕ Nϕ

(
Gc

l
+ H (t) d2g (ϕ)

dϕ2

)]
dΩ. (3.98)

Identities (3.93)-(3.98) participate in the formation of a linear system of equa-
tions. In Eq. (3.95), C is the degraded material stiffness matrix written in Voigt
notation. Despite the introduction of one additional degree of freedom, all matrices
defined by integrals (3.95)-(3.98) are symmetric, which will ultimately result in a
symmetric system of equations. As stated in subsection 1.3.3, there are two essential
algorithms through which the solution of the displacement and the crack phase-field
can be obtained - monolithic and staggered.

3.5.3. Monolithic solvers

In a monolithic phase-field algorithm, the system of equations is fully coupled, i.e.
values of both displacement and the crack phase-field are obtained simultaneously
as part of one solution. The value of the global displacement vector V and global
phase-field vector Φ, at the increment n and for iteration i+ 1, is obtained as

V
Φ

i+1

n

=
V

Φ

i

n

−

KV V KV Φ

KΦ V KΦ Φ

i−1

n

RV

RΦ

i

n

, (3.99)

where KV V, KV Φ, KΦ V and KΦ Φ denote global stiffness matrices, while RV and
RΦ represent global residual vectors.

However, as stated in subsection 1.3.3, due to the non-convexity of the free
energy functional Π, monolithic solvers can exhibit significant convergence issues,
especially during the process of crack propagation. There are some procedures that
are able to mitigate this problem [185–188]; however, they are dependent on the type
of loading and do not guarantee successful convergence of the analysis. Moreover, the
fact that in this dissertation the values of the strain energy density, Cauchy stress
tensor, equivalent plastic strain and the material stiffness tensor are computed from
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3. Phase-field fracture formulation

heterogeneous microstructure, puts additional pressure on the algorithm’s stability.
Due to these reasons, monolithic solver won’t be used in this dissertation.

3.5.4. Staggered solvers

Unlike monolithic solvers, staggered algorithms rely on the observation that, while
the free energy functional Π is generally non-convex, it is convex with respect to
either displacement or the phase-field variable, if the other one is held constant [145].
Through this property, the coupled system (3.99) is written in the following form

V
Φ

i+1

n

=
V

Φ

i

n

−

KV V 0
0 KΦ Φ

i−1

n

RV

RΦ

i

n

. (3.100)

The decoupled system (3.100) implies that the displacement and crack phase-field
are solved independently one from another. This ensures stable convergence as both
equations are ultimately derived from the convex functional. By comparing (3.100)
and (3.99) it can be concluded that the staggered algorithms are computationally more
efficient, as there is no reason for the calculation of global stiffness matrices KV Φ and
KΦ V.

The general idea in staggered solvers is to solve the decoupled system (3.100)
at time t and iteration i by first computing one field using the other field’s solution
computed in iteration i. Then, the obtained solution is used to solve the other field at
the iteration i+ 1. This procedure repeats until the defined stopping criterion is met.
This is schematically depicted in Box II.
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Box II: General phase-field staggered solution scheme

1. Start new increment n: n = n+ 1.

2. Newton iterations for load increment n: set iteration i = 0.

(a) Start new iteration i: i = i+ 1.

(b) Loop over first layer of elements: Displacement equation.

(c) Use (3.100) and obtain new value of global displacement vector as:
Vi+1

n = Vi
n − KV V (Φi

n, Vi
n) RV (Φi

n, Vi
n).

(d) Loop over second layer of elements: Phase-field equation.

(e) Use (3.100) and obtain new value of global phase-field vector as:
Φi+1

n = Φi
n − Kϕ ϕ (Φi

n, Vi+1
n ) RΦ (Φi

n, Vi+1
n ).

(f) Check the stopping criterion. If not met: go to 2 (a).

3. If analysis not complete: go to 1.

The efficiency and convergence rate of staggered algorithms depends on the stopping
criterion, which differs between the implementations as discussed in subsection 1.3.3.
In this dissertation, the staggered phase-field algorithm presented by Lesičar et al.
[183] is used. In that contribution, the stopping criterion is defined as the relative
change between values of the global phase-field vector between two iterations - i and
i+ 1

||Φi+1
n || − ||Φi

n||
||Φi

n||
≤ ε, (3.101)

where ε is a scalar value defined at the beginning of the analysis. The algorithm
was thoroughly tested and verified on several different benchmark examples. Its
computational efficiency was shown to be higher than the algorithm presented in Seleš
et al. [190]. Due to that fact, this chapter won’t include any numerical examples.
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4. Multiscale modelling of damage

4.1. Background

Numerical modelling of material fracture requires the incorporation of the multiscale
approach since fracture in any material is highly sensitive to the microstructure
that forms it. A material’s microstructure can consist of voids or inclusions that
can exhibit different shape, spatial distribution and volume fraction. Ultimately, the
microstructure’s spatial and material configuration will lead to a non-uniform stress
and strain state, which will create areas suitable for the occurrence and development of
damage. Multiscale modelling has the ability to couple the microstructural stress state
with the macroscopic calculation to capture the effect of behaviour of the microstructure
in a macroscopic calculation - see Figure 1.2

Unlike the stress tensor and some other values that are connected to it, such
as strain energy density or material stiffness tensor, for which there exists a clear
procedure for calculating their average (macroscopic) values, the clear and unique
procedure for acquiring the macroscopic value of damage is still not defined. The
classical first-order computational homogenization is not suitable, as it will produce
results that highly underestimate the true value of the overall damage. Also, during
the period of damage accumulation, the representativeness of the RVE may come into
question and the PBC start to lose their meaning. Moreover, the utilization of any
damage algorithm on the complex geometry of the RVE will be numerically quite
intense and will lead to stability issues.

Besides physical aspects, the computational cost of the multiscale damage
models is another obstacle that needs to be overcome. As stated in subsection 1.2.1,
a concurrent multiscale procedure that tackles the RVE boundary value problem either
through FEM or FFT-based numerical solver will experience tremendous computational
costs. This will be even more elevated if damage comes into the equation.

An additional condition that needs to be satisfied is the finite element mesh
independence at the macrolevel. Concurrent multiscale approaches can be performed
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using either discontinuous (discrete) or continuous (diffusive) damage approach at
the macrolevel. If the former is applied, a specific remeshing algorithm or XFEM will
have to be utilized in order to avoid dependence of final results on the mesh size and
element orientation. On top of that, as stated in subsection 1.3.1, an additional
criterion will be needed in order to address questions about the crack’s topology. On
the other hand, if the latter is used, some form of non-locality has to be introduced at
the macrolevel, otherwise, a pathological mesh dependence will prevail.

Most of the issues mentioned above were addressed in [67, 82] through the
utilization of SCA at the microlevel, a new three-step homogenization scheme and
a non-local formulation at the macrolevel. Significantly reducing the computational
complexity, while at the same time retaining a noticeable level of accuracy, the use of
the SCA (which is valid for any type of constitutive law) managed to resolve problems
of concurrent multiscale computational complexity. A second, quite important part of
the contributions [67, 82], is the so-called three-step homogenization scheme, where
the evolution of damage and plastic deformations at the microlevel is decoupled. This
innovation managed to provide an additional level of stability and ensured physical
values of the macroscopic damage parameter. Last but not least, a non-local formulation
at the macrolevel, which introduced a length parameter and a non-local equivalent
plastic strain, cured the pathological mesh dependence.

However, the procedure presented in [67, 82] has two major flaws: (1) it requires
running DNS simulations in order to perform energy regularization, and (2) it is
applicable only to problems where energy dissipated by plasticity is relatively low. The
first issue occurs due to the discretization of the RVE with a relatively small number
of material clusters. More precisely, when SCA is coupled with damage calculation
at the microlevel, its accuracy, i.e. deviation of final results from the results obtained
by the DNS is quite significant. The only way to mitigate this issue is by performing
several DNS simulations whose results are then used to adjust fracture parameters
for the SCA analysis so that energy regularization can be adequately performed. The
second issue is related to the derivation of the energy regularization, in which, for the
ease of derivation itself, the material’s fracture toughness was approximated using its
fracture energy. An assumption only valid when the energy dissipated by fracture is
mainly dominated by its elastic - not plastic part.

In order to bring the concurrent multiscale damage modelling one step closer
to commercial use, in the following pages a new procedure, that addresses the major
issues listed above is presented. This chapter ultimately represents the synergy of the
self-consistent clustering analysis and the phase-field fracture formulation into one
algorithm that combines the best features of both methods.
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4.2. Proposed multiscale damage model

4.2. Proposed multiscale damage model
Resolving all issues that plague multiscale modelling of strain softening of heterogeneous
materials is no easy task, as fixing one issue can open or create another one. Both SCA
and phase-field method have specific roles in the proposed multiscale damage model.
The function of the SCA at the microlevel is to:

• Ensure computational efficiency by performing fast and accurate calculation of
the RVE boundary value problem.

• Link two scales by performing first-order computational homogenization on the
Cauchy stress tensor, stiffness tensor, strain energy density and plastic part of
the small strain tensor.

• Provide a straightforward extension to any type of constitutive law for a given
material phase.

• Enable concurrent multiscale approach with complex microstructures consisting
of multiple material phases.

The function of the phase-field method at the macrolevel is to:

• Cure pathological mesh dependence of the final results.

• Enable efficient and robust calculation of the fracture processes.

• Provide additional stability by being present at the macrolevel instead of the
microlevel.

• Ensure physical and objective results by being present at the macrolevel instead
of the microlevel.

The computational setup is complete and the algorithm of the proposed concurrent
approach is summarized in Box III.

It should be noted that the proposed procedure requires both Gc and l to be
known a priori, since the damage calculation is done at the macrolevel and therefore
they cannot be calculated at the microlevel. Herein, both Gc and l are treated as the
macroscopic properties of the heterogeneous microstructure whose values are already
defined.
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Box III: Concurrent multiscale damage algorithm for the increment n

1. Start increment n: with new iteration i: i = i+ 1.

2. For increment n and iteration i go to first layer of elements: Displacement
equation.

(a) Increase current element number e: e = e+ 1.

(b) For element e obtain local displacement vector v.

i. Increase current integration point number j: j = j + 1.
ii. For integration point j calculate macroscopic strain ε: ε = Bv v.
iii. Send ε to microscale.
iv. call the SCA - use Box I to solve the RVE boundary value problem.
v. obtain macroscopic values of the Cauchy stress tensor σ, stiffness

tensor C, strain energy density ψ, elastic part of the strain energy
density ψe and plastic part of the strain energy density ψp.

vi. Perform spectral or volumetric-deviatoric split if needed.
vii. Store macroscopic values that will be needed in phase-field analysis.
viii. If j equal to the total number of integration points: go to 3 (a).

(c) If e equal to the total number of elements: go to 4.

3. Calculate new value of global displacement vector Vi+1
n :

Vi+1
n = Vi

n − KV V (Φi
n, Vi

n) RV (Φi
n, Vi

n).

4. For increment n and iteration i go to second layer of elements: Phase-field
equation.

5. Calculate new value of global phase-field vector Φi+1
n :

Φi+1
n = Φi

n − Kϕ ϕ (Φi
n, Vi+1

n ) RΦ (Φi
n, Vi+1

n ).

6. Check the stopping criterion: ||Φi+1
n ||−||Φi

n||
||Φi

n|| ≤ ε. If not met: go to 1.

4.2.1. Test specimens

In order to assess the accuracy, robustness and overall computational efficiency, the
proposed concurrent procedure will undergo detailed and thorough testing. For that
purpose, a significant number of test specimens with different geometries and loading
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conditions are generated, and are depicted in Figure 4.1-4.7, with all dimensions
being given in millimeters.

Many of the depicted specimens are frequently used for qualitative testing
of phase-field fracture algorithms and a reference is given for each one of them. All
test specimens will be present in 2D plane strain examples; however, some specimens
include only brittle, i.e. ductile fracture, while specimens depicted in Figure 4.5 and
4.6 are present in both brittle and ductile fracture under 2D plane strain conditions.
Moreover, some test specimens are extruded in the third dimension for the purposes
of a 3D concurrent analysis, more precisely specimens in Figure 4.1(a), 4.3, 4.4, 4.6
and 4.7. Information on which specimens are used in which analysis, what are the
values of the specimen’s thicknesses in the third dimension and what are the values of
prescribed displacements is presented in Table 4.1.
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(a) Tension test [243]
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Figure 4.1: Single-edge notched plate
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Figure 4.2: V-notch bar [243]
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Figure 4.3: Three-point bending specimen [153]
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Figure 4.5: Notched plate with a hole [153]
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Figure 4.6: Double-notched specimen [82]
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Figure 4.7: Sandia fracture challenge specimen [161]
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Table 4.1: Informations about the test specimens

Single-edge notched plate - tension test
Fracture analyses 2D brittle 2D ductile 3D brittle 3D ductile
Displacement, mm u2 = 0.006 Not performed u2 = 0.0066 Not performed

Thickness, mm 0.1
Single-edge notched plate - shear test

Fracture analyses 2D brittle 2D ductile 3D brittle 3D ductile
Displacement, mm u1 = 0.014 Not performed Not performed Not performed

Thickness, mm Not used in 3D
V-notch bar

Fracture analyses 2D brittle 2D ductile 3D brittle 3D ductile
Displacement, mm Not performed u1 = 1.5 Not performed Not performed

Thickness, mm Not used in 3D
Three-point bending specimen

Fracture analyses 2D brittle 2D ductile 3D brittle 3D ductile
Displacement, mm u2 = 0.1 Not performed u2 = 0.07 Not performed

Thickness, mm 1
Unnotched specimen

Fracture analyses 2D brittle 2D ductile 3D brittle 3D ductile
Displacement, mm Not performed u1 = 1.5 Not performed u1 = 2

Thickness, mm 2.5
Notched plate with a hole

Fracture analyses 2D brittle 2D ductile 3D brittle 3D ductile
Displacement, mm u2 = 0.45 u2 = 0.75 Not performed Not performed

Thickness, mm Not used in 3D
Double-notched specimen

Fracture analyses 2D brittle 2D ductile 3D brittle 3D ductile
Displacement, mm u2 = 0.038 u2 = 1.5 u2 = 0.038 u2 = 2

Thickness, mm 10
Sandia fracture challenge specimen

Fracture analyses 2D brittle 2D ductile 3D brittle 3D ductile
Displacement, mm Not performed u2 = 7.5 Not performed u2 = 6

Thickness, mm 2
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As can be seen from Table 4.1, all test specimens are loaded by enforcing
displacement on specific points, i.e. by utilizing displacement-controlled boundary
conditions. Because of that, the classical Newton-Raphson algorithm will be sufficient
for all specimens and under any type of analysis. Also, it is important to note that in
the case of three-dimensional analyses, the thickness of the specimen is taken to be
half of the value that is given in Table 4.1. The reason for that is the utilization of a
symmetry condition in the thickness direction.

4.2.2. Test microstructures

With defined test specimens, now it is time to define microstructures, i.e. RVEs that
are required for the RVE boundary value problem. Two types of RVEs are generated:
(1) simple unit cell, i.e. unit sphere - Figure 4.8, and (2) complex RVE (both 2D
and 3D cases) - Figure 4.9. All four microstructures consist of two material phases -
matrix and inclusions, whose mechanical properties will be defined later. The inclusion
in the unit cell and unit sphere microstructure is represented by a circle and sphere,
respectively. On the other hand, for complex RVEs in Figure 4.9, the inclusion is the
ellipse (in the case of 2D RVE), i.e. ellipsoid (in the case of 3D RVE). Also, notice
from Figure 4.9 that the RVE in question possesses periodicity in terms of geometry.
This is a necessary condition when PBC or Fourier analysis is utilized for any type of
calculation.

(a) Unit cell microstructure (b) Unit sphere microstructure

Figure 4.8: 2D and 3D microstructures for the initial phase of testing
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(a) 2D RVE with side length of 0.5 mm (b) 3D RVE with side length of 0.25 mm

Figure 4.9: Complex RVEs

Unit cell and unit sphere are classical examples of RVEs that are used for initial
testing of the accuracy and the validity of the developed multiscale implementations.
This is also true in this dissertation. Both microstructures depicted in Figure 4.8 have
side lengths of one millimeter. The unit cell contains one inclusion with a radius of 0.2
mm, making the total volume fraction equal to 12.57 %. On the other hand, inclusion
in the unit sphere microstructure has a radius of 0.3 mm and therefore produces a
volume fraction of 11.31 %.

Complex RVEs depicted in Figure 4.9 will serve to evaluate the robustness
of the proposed concurrent multiscale damage approach, as the random geometrical
configuration of inclusions will produce a highly nonuniform distribution of stress
and strain field. The basis for the generation of both RVEs was the experimental
metallography of nodular cast iron produced by Tundish method of casting [248].

Figure 4.10: Nodular cast iron metallography - Tundish method of casting [248]
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Figure 4.11: Probability density distributions of the microstructural descriptors

The microstructure of this material consists of three material phases - graphite
nodules and crystals of ferrite and pearlite. In the experimental investigation performed
by Čanžar [248], it has been determined that the volume fraction of graphite nodules
and pearlite is approximately 3.6 % and 7.64 %, respectively. Making the volume
fraction of the third material phase (ferrite) almost 90 %. For the ease of microstructure
generation and the multiscale implementation, the influence of the pearlite matrix
was neglected, leaving only ferrite and graphite nodules as two material phases to
be considered. The metallographic image in Figure 4.10 was first transformed into
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4. Multiscale modelling of damage

a binary-type image and then analyzed using the ImageJ software package [249] in
order to obtain information about the distribution of the nodule’s equivalent radius,
shape (ratio between major a and minor b ellipse axis), nearest neighbor distance
and orientation of the major axis. During the image analysis, the irregularly shaped
graphite nodules were replaced by ellipses. All four distributions are depicted in Figure
4.11.

4.3. Initial phase of testing
The first, i.e. initial phase of testing will focus on the proposed algorithm’s accuracy
and computational efficiency. This section includes analysis done only on the unit cell
and unit sphere microstructures for both brittle and ductile fracture with two different
material configurations. The first material configuration essentially forms homogeneous
material, as both matrix and inclusion possess identical material properties. The goal
is to show that both SCA and DNS (performed with homogeneous material properties)
will give almost identical results since no material heterogeneity exists. The second
material configuration will downgrade, by 5 %, some mechanical properties of the
inclusion. The goal now is to show there will be a difference in force-displacement
diagrams, as now there exists some level of material heterogeneity. The mechanical
properties chosen for the first, i.e. second configuration are given in Table 4.2.

Table 4.2: Mechanical properties for the initial phase of testing

Material configuration First Second
Material phases Matrix Inclusion Matrix Inclusion

E, GPa 200 200 200 190
ν 0.3 0.3 0.3 0.3

σ0
y, MPa 200 200 200 190
k, MPa 200 200 200 200

r 0.2 0.2 0.2 0.2

As can be seen from Table 4.2, in the second material configuration both
modulus of elasticity E and initial yield strength σ0

y of the inclusion are degraded
by 5 %. This small degree of material heterogeneity is chosen so that the clustering
done with the first material configuration can be used directly for the second material
configuration. In Liu et al. [78] it was shown that clustering decomposition for one
material and geometrical configuration can be reused if there is no change in geometrical
configuration and if the changes in material configuration are not significant. In this
case, both conditions are met. The results of k−means clustering for both unit cell
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4.3. Initial phase of testing

and unit sphere are presented in Figure 4.12 and 4.13.

(a) k = 8 (b) k = 16 (c) k = 32

Figure 4.12: Results of the k-means clustering of the unit cell

(a) k = 6 (b) k = 12 (c) k = 24

Figure 4.13: Results of the k-means clustering of the unit sphere

When considering brittle fracture, only the modulus of elasticity and Poisson
ratio will be required as the material parameters at the microlevel, while in the case of
ductile fracture, all material parameters listed in Table 4.2 will enter the analysis. In
addition to the mechanical properties needed for the RVE boundary value problem, the
developed concurrent multiscale approach also requires phase-field fracture parameters
at the macrolevel. Herein, for the case of all brittle fracture simulations, the critical
value of the energy release rate Gc is set to 2.7 N/mm. The value of Gc for all ductile
fracture analyses is chosen to be 11 times higher than the previous one, i.e. 29.7 N/mm.
On the other hand, the value of the length-scale parameter l won’t be constant, and
will change depending on the analysis.

Before the testing begins, a “quick check” is performed in order to compare
SCA and DNS (which is performed using FEM) for both unit cell and unit sphere
microstructures. Tests are performed under four different macro-strain constraints
(defined in section 2.6), using material parameters from the second material configu-
ration, and with the clustering decomposition shown in Figure 4.12 and 4.13. The
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4. Multiscale modelling of damage

homogenized stress-strain curves are depicted in Figure 4.14 and 4.15.
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Figure 4.14: Comparisons of the homogenized stress-strain curves for a unit cell under
different macro-strain constraints

Figure 4.14 shows what was expected - a perfect match between homogenized
results obtained by the DNS and SCA. The maximum level of simplicity in terms
of geometrical configuration and a difference of only 5 % between the modulus of
elasticity and the initial yield strength are the main, and only, reasons for the almost
non-existent error. Since it is possible to obtain accurate results with only eight
material clusters, concurrent analyses with both material configurations are conducted
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4.3. Initial phase of testing

with that discretization.
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Figure 4.15: Comparisons of the homogenized stress-strain curves for a unit sphere
under different macro-strain constraints

As was the case for unit cell microstructure, the SCA is able to predict ho-
mogenized values of stress and strain with pinpoint accuracy if the unit sphere is
in question. Regardless if the total number of material clusters is equal to 6, 12, or
24, the difference between DNS and SCA is non-existent. Again, the discretization
with the minimum number of material clusters, which in the case of three-dimensional
analysis is equal to 6, is chosen for the purposes of all concurrent analyses.
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4. Multiscale modelling of damage

In the next several pages, results obtained by the DNS, SCA with the first
material configuration (“SCA homogeneous”) and SCA with the second material
configuration (“SCA heterogeneous”) are presented. Each analysis includes the force-
displacement diagram, alongside its detailed view, and images depicting the crack-phase
field for both DNS and “SCA homogeneous” simulations. A detailed view of the specific
part of the force-displacement diagram proves the premise that results obtained for
homogeneous material under both DNS and SCA should be in a very small deviation.
On the other hand, results obtained when mechanical properties of inclusion are
degraded will deviate by a certain factor.

In addition to figures, each result is accompanied by a table of CPU times for
all three analyses - DNS, “SCA homogeneous” and “SCA heterogeneous”. Recall that
the goal of this testing is to determine the computational efficiency of the proposed
concurrent approach. Every analysis that is present from now on was executed using
a single thread of an Intel Xeon E5-1620 (version 2) processor, which ensures an
objective comparison of times needed to complete the analyses. All simulations are
performed with fixed increment size and using a projection based scheme algorithm
for the update of the reference material stiffness tensor. As was stated in subsection
2.5.1, the projection based scheme represents a more stable approach for finding the
optimal values of Lamé parameters that form the stiffness of the reference homogeneous
material. Not only that, but the computational efficiency of the projection based scheme
sits on a higher level than the regression based scheme.

4.3.1. Brittle fracture model

The first in the line is the phenomena of brittle fracture where four material parameters
are specified in total. More precisely, a modulus of elasticity, Poisson ratio, critical
energy release rate and length-scale parameter. The first three parameters are given in
section 4.3, while the length-scale parameter is provided for each analysis separately.
When choosing a length-scale parameter, which is not only a geometrical parameter
but also a material one, it is important to define its value to be small enough when
compared to the specimen. Otherwise, incorrect crack topologies may occur during
analysis. Also, due to a need for an element size that is at least two times smaller than
the chosen value of the length-scale parameter, its value cannot be extremely small
either. To ensure an adequate description of the diffusive layer, the element size in the
region where the crack forms and propagates will always be three times lower than
the chosen length-scale parameter.
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4.3. Initial phase of testing

The first specimen to be tested is the 2D single-edge notched plate; loaded to tension.
The model is discretized by 12122 fully integrated quadrilateral plane strain elements.
The chosen length-scale parameter is equal to 0.01 mm. The analysis is performed in
100 increments using no energy split.
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Figure 4.16: A 2D single-edge notched plate - tension test

Table 4.3: Comparisons of the computational time for a 2D single-edge notched plate -
tension test

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 56.75 281.02 301.13
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4. Multiscale modelling of damage

The next specimen is the 2D single-edge notched plate; loaded to shear. The model is
discretized by 28447 fully integrated quadrilateral plane strain elements. The chosen
length-scale parameter is equal to 0.01 mm. The analysis is performed in 200 increments
using a volumetric-deviatoric energy split.
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Figure 4.17: A 2D single-edge notched plate - shear test; volumetric-deviatoric split

Table 4.4: Comparisons of the computational time for a 2D single-edge notched plate -
shear test; volumetric-deviatoric split

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 866.08 2212.90 1156.38
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4.3. Initial phase of testing

Results shown below are also from the 2D single-edge notched plate; loaded to shear.
The model is discretized by 28447 fully integrated quadrilateral plane strain elements.
The chosen length-scale parameter is equal to 0.01 mm. The analysis is performed in
200 increments using a spectral energy split.
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Figure 4.18: A 2D single-edge notched plate - shear test; spectral split

Table 4.5: Comparisons of the computational time for a 2D single-edge notched plate -
shear test; spectral split

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 394.80 1137.13 1206.13
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4. Multiscale modelling of damage

A 2D three-point bending specimen is the next in line. The model is discretized by
12194 fully integrated quadrilateral plane strain elements. The chosen length-scale
parameter is equal to 0.04 mm. The analysis is performed in 200 increments using a
spectral energy split.
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Figure 4.19: A 2D three-point bending specimen; spectral split

Table 4.6: Comparisons of the computational time for a 2D three-point bending
specimen; spectral split

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 69.05 198.06 198.07
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4.3. Initial phase of testing

Results for the 2D notched plate with a hole are depicted below. The model is
discretized by 33703 fully integrated quadrilateral plane strain elements. The chosen
length-scale parameter is equal to 0.1 mm. The analysis is performed in 400 increments
using spectral energy split.
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Figure 4.20: A 2D notched plate with a hole; spectral split

Table 4.7: Comparisons of the computational time for a 2D notched plate with a hole;
spectral split

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 568.95 2233.87 2743.43

137



4. Multiscale modelling of damage

A 2D double-notched specimen is the last example in 2D plane strain brittle fracture
tests. The model is discretized by 22127 fully integrated quadrilateral plane strain
elements. The chosen length-scale parameter is equal to 0.3 mm. The analysis is
performed in 100 increments using no energy split.

0 0.01 0.02 0.03 0.04
U2, mm

0

2

4

6

F
2,

kN

DNS

SCA homogeneous

SCA heterogeneous

(a) Force-displacement curves

0.029 0.034
U2, mm

4.9

5.5

F
2,

kN
DNS

SCA homogeneous

SCA heterogeneous

(b) Zoomed-in view

(c) Crack topology - DNS (d) Crack topology - SCA homogeneous

Figure 4.21: A 2D double-notched specimen

Table 4.8: Comparisons of the computational time for a 2D double-notched specimen

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 161.67 436.48 305.45
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4.3. Initial phase of testing

A 3D single-edge notched plate loaded to tension is the first example in the 3D brittle
fracture tests. The model is discretized by 13680 fully integrated hexahedral elements.
The chosen length-scale parameter is equal to 0.01 mm. The analysis is performed in
100 increments using no energy split.
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Figure 4.22: A 3D single-edge notched plate - tension test

Table 4.9: Comparisons of the computational time for a 3D single-edge notched plate -
tension test

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 238.52 987.45 1057.95
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4. Multiscale modelling of damage

A volumetric-deviatoric energy split is applied for the 3D three-point bending specimen.
The model is discretized by 15477 fully integrated hexahedral elements. The chosen
length-scale parameter is equal to 0.04 mm. The analysis is performed in 200 increments.
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Figure 4.23: A 3D three-point bending specimen; volumetric-deviatoric split

Table 4.10: Comparisons of the computational time for a 3D three-point bending
specimen; volumetric-deviatoric split

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 453.47 1767.97 1779.10
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A 3D three-point bending specimen was also analyzed using spectral energy split. The
model is discretized by 15477 fully integrated hexahedral elements. The chosen length-
scale parameter is equal to 0.04 mm. The analysis is performed in 200 increments.

0 0.0175 0.035 0.0525 0.07
CMOD, mm

0

0.07

0.14

0.21

0.28

F
2,

kN

DNS

SCA homogeneous

SCA heterogeneous

(a) Force-displacement curves

0.009 0.014
CMOD, mm

0.24

0.27

F
2,

kN

DNS

SCA homogeneous

SCA heterogeneous

(b) Zoomed-in view

(c) Crack topology - DNS (d) Crack topology - SCA homogeneous

Figure 4.24: A 3D three-point bending specimen; spectral split

Table 4.11: Comparisons of the computational time for a 3D three-point bending
specimen; spectral split

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 616.12 1787.60 1626.13

141



4. Multiscale modelling of damage

A 3D double-notched specimen is the last example in this subsection. The model is
discretized by 31389 fully integrated hexahedral elements. The chosen length-scale
parameter is equal to 0.3 mm. The analysis is performed in 100 increments using no
energy split.
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Figure 4.25: A 3D double-notched specimen

Table 4.12: Comparisons of the computational time for a 3D double-notched specimen

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 1198.13 2354.17 1357.92
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From the figures and tables provided in the previous pages, it can be concluded
that the proposed algorithm is able to describe brittle fracture in an accurate and
computationally efficient way. Force-displacement diagrams and their zoomed-in views
show there exists almost no difference between DNS analysis (performed using ho-
mogeneous material properties) and the developed concurrent approach performed
on the unit cell/unit sphere type microstructure with material properties from the
first material configuration. In some examples such as a 2D single-edge notched plate
loaded by shear (both energy decompositions), a 2D notched plate with a hole and a
2D/3D double-notched specimen, a more significant difference in force-displacement
behaviour can be observed. However, this occurs only after the peak force is reached,
i.e. after the crack has formed.

On the other hand, when the modulus of elasticity is degraded by 5 %, the
proposed concurrent approach gives different results - which was expected. The zoomed-
in views of force-displacement diagrams give a better insight into this difference since
for some examples, such as 2D/3D single-edge notched plate loaded by tension, the
distinction between three curves is not immediate. All zoomed-in views show that
the value of peak force is always the lowest for the heterogeneous microstructure.
This is extremely important, as it validates the accuracy and provides proof that the
proposed concurrent approach gives physically correct results. The opposite scenario is
physically not justified, as a material with the lower value of material stiffness tensor
and the same value of phase-field fracture parameters cannot experience a fracture at
higher levels of peak force.

Figures that depict the crack topology for both DNS and “SCA homogeneous”
are also in excellent agreement. The topologies of cracks are almost identical, which is
again an important result as it provides additional confirmation of the validity of the
developed concurrent approach. Interestingly enough, figures of the crack topologies
show that the concurrent approach gives more localized plots of the crack phase-field
parameter ϕ in contrast to DNS.

In addition to being accurate and physically correct, the tables shown above
confirm that the proposed concurrent approach is also computationally efficient. When
compared to the DNS, the average time needed to complete concurrent multiscale
analysis is increased by a factor of 3.26, for the 2D plane strain configuration, i.e. 3.17,
for the 3D configuration. This is less than the total number of material clusters, which,
recall, was 8 (in 2D plane strain configuration) and 6 (in 3D configuration). Unless the
number of material clusters is equal to 1 (which is possible when only one material
phase is present at the lower level), the computational time of the concurrent approach
will certainly be longer when compared to DNS. This is because every integration
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4. Multiscale modelling of damage

point now represents a separate analysis that includes the calculation of the small
strain and Cauchy stress tensor in each material cluster. With the increase in the
number of material clusters, the level of computational efficiency will undoubtedly fall,
as the majority of time will be spent on solving the linear system of equations.

Although they represent the same type of analysis, “SCA homogeneous” and
“SCA heterogeneous” can result in different computational time for the same specimen
- in both two- and three-dimensional configuration. The reason for this lies in the
different number of iterations that are performed in each increment at the macrolevel.
For example, in the case of a 2D single-edge notched plate (loaded by tension), “SCA
homogeneous” required 1304, while “SCA heterogeneous” performed 1333 iterations
in the critical increment. On the other hand, the maximum number of iterations (in
one increment) for the case of a 2D single-edge notched plate (loaded by shear; with
volumetric-deviatoric energy split) was 1414 and 283 for “SCA homogeneous” and
“SCA heterogeneous”, respectively. The exact reason for these discrepancies in the
maximum iteration number is, at this moment, unknown to the author of this thesis.

4.3.2. Ductile fracture model

The initial phase of testing is also performed for ductile fracture, as the very title of
this dissertation carries this term. When considering fracture in ductile materials, seven
material parameters in total are required. In addition to four material parameters,
which were present in brittle fracture modelling, three new material parameters that
now are coming into the equation are initial yield strength, and two parameters of
Swift’s non-linear hardening law - see Table 42. In contrast to brittle fracture, the
length-scale parameter in ductile fracture will take on higher values, as crack(s) in
ductile fracture do not behave the same way as in the case of brittle fracture. More
precisely, when ductile material experiences damage, i.e. fracture, the formed crack(s)
can dull and widen. Generally, values of the length-scale parameter for problems of
ductile fracture are several times higher than in problems that involve brittle and quasi-
brittle fracture. To ensure the adequate capturing of the crack phase-field, element size
in the zones of damage will again be three times smaller than the chosen value of the
length-scale parameter. Results that are depicted in the following pages also include
some specimens that were not used in the previous subsection. These are the V-notch
bar, unnotched specimen and Sandia challenge fracture specimen. Once again, it is
noted that all analyses in this subsection are performed with the assumption of small
elastoplastic strains. This is because the SCA algorithm for finite strain configuration
was not able to produce satisfactory results - see subsection 2.6.1.
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4.3. Initial phase of testing

A 2D V-notch bar is the first example in this subsection. The model is discretized
by 15441 fully integrated quadrilateral plane strain elements. The chosen length-scale
parameter is equal to 0.2 mm. The analysis is performed in 200 increments using no
energy split.
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Figure 4.26: A 2D V-notch bar

Table 4.13: Comparisons of the computational time for a 2D V-notch bar

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 81.42 332.1 597.68
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A 2D unnotched specimen is next in line. The model is discretized by 14282 fully
integrated quadrilateral plane strain elements. The chosen length-scale parameter is
equal to 0.4 mm. The analysis is performed in 200 increments using no energy split.
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Figure 4.27: A 2D unnotched specimen

Table 4.14: Comparisons of the computational time for a 2D unnotched specimen

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 52.58 242.20 437.53
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Results for the 2D notched plate with a hole are depicted below. The model is
discretized by 24084 fully integrated quadrilateral plane strain elements. The chosen
length-scale parameter is equal to 0.4 mm. The analysis is performed in 200 increments
using volumetric-deviatoric energy split.
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Figure 4.28: A 2D notched plate with a hole (ductile fracture); volumetric-deviatoric
split

Table 4.15: Comparisons of the computational time for a 2D notched plate with a hole
(ductile fracture); volumetric-deviatoric split

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 126.87 768.63 1137.58
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A 2D double-notched specimen is also present in ductile fracture analysis. The model
is discretized by 16988 fully integrated quadrilateral plane strain elements. The chosen
length-scale parameter is equal to 0.6 mm. The analysis is performed in 200 increments
using no energy split.
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Figure 4.29: A 2D double-notched specimen (ductile fracture)

Table 4.16: Comparisons of the computational time for a 2D double-notched specimen
(ductile fracture)

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 77.17 301.93 385.45
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4.3. Initial phase of testing

A 2D Sandia fracture challenge specimen is the last example in 2D plane strain ductile
fracture tests. The model is discretized by 18589 fully integrated quadrilateral plane
strain elements. The chosen length-scale parameter is equal to 0.4 mm. The analysis
is performed in 200 increments using volumetric-deviatoric energy split.
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Figure 4.30: A 2D Sandia fracture challenge specimen; volumetric deviatoric-split

Table 4.17: Comparisons of the computational time for a 2D Sandia fracture challenge
specimen; volumetric-deviatoric split

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 90.75 522.47 1418.80
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4. Multiscale modelling of damage

A 3D unnotched specimen is the first in line for 3D ductile fracture analysis. The model
is discretized by 17673 fully integrated hexahedral elements. The chosen length-scale
parameter is equal to 0.4 mm. The analysis is performed in 200 increments using no
energy split.
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Figure 4.31: 3D unnotched specimen

Table 4.18: Comparisons of the computational time for a 3D unnotched specimen

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 160.17 805.48 1123.37
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4.3. Initial phase of testing

A 3D double-notched specimen is also present in ductile fracture analysis. The model
is discretized by 20757 fully integrated hexahedral elements. The chosen length-scale
parameter is equal to 0.6 mm. The analysis is performed in 200 increments using no
energy split.
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Figure 4.32: A 3D double-notched specimen (ductile fracture)

Table 4.19: Comparisons of the computational time for a 3D double-notched specimen
(ductile fracture)

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 261.23 1125.48 1440.85
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4. Multiscale modelling of damage

A 3D Sandia fracture challenge specimen is the last example in this subsection. The
model is discretized by 35241 fully integrated hexahedral elements. The chosen length-
scale parameter is equal to 0.4 mm. The analysis is performed in 200 increments using
no energy split.
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Figure 4.33: A 3D Sandia fracture challenge specimen; volumetric-deviatoric split

Table 4.20: Comparisons of the computational time for a 3D Sandia fracture challenge
specimen; volumetric-deviatoric split

Analysis DNS SCA homogeneous SCA heterogeneous
CPU time, min 480.30 2220.15 5119.33
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4.3. Initial phase of testing

From the figures and tables provided in the previous pages, it can be concluded
that the proposed algorithm is also able to describe ductile fracture in an accurate and
computationally efficient way. As was the case in the previous subsection, the difference
between force-displacement curves obtained using DNS and the concurrent approach
(by means of first material configuration) is almost non-existent. However, this is not
present throughout the whole loading history, since after a significant accumulation of
damage the difference between the two approaches becomes visible. The point at which
these discrepancies start and their magnitude varies from specimen to specimen, with
their values being within the acceptable limits in all examples. A perfect correlation
between the two approaches throughout the whole analysis is unrealistic, for both
brittle and ductile fracture. What is important is the fact that both approaches give
an almost exact match before the peak force occurs.

The results obtained by the concurrent approach using the second material
configuration are in line with the expectations. Degradation of both modulus of
elasticity and the initial value of yield strength yields a lower value of peak force in
all examples. However, unlike in brittle fracture, this difference is clearly observed
even without the zoomed-in views that are provided alongside each force-displacement
diagram. This is, again, an important result, as it provides proof that the proposed
concurrent procedure gives physically correct results when fracture in ductile materials
is considered.

Figures that depict the crack phase-field for both DNS and “SCA homogeneous”
are also in good agreement. The topologies of cracks in specimens that were also present
in the analysis of brittle fracture are completely different, more precisely for the 2D
notched plate with a hole and a 2D/3D double-notched specimen. A phenomenon
of a more localized crack phase-field is also present in the case of ductile fracture
analysis. This is especially noticeable when examining a 2D double-notched specimen,
i.e. Figure 4.16.

In terms of computational efficiency, the factor for which the time needed
to complete the concurrent analysis is higher for the case of ductile fracture. More
precisely, in the 2D plane strain configuration, the average increase in computational
time in regards to DNS is 6.97. This is approximately two times higher when compared
to the brittle fracture. As was the case in the previous subsection, the increase for the
case of 3D analysis is smaller and is equal to 6.19. Comparison with the increase in
computational time for the case of 3D brittle fracture again results in an approximately
two times higher value. This drop in computational efficiency is not unexpected, as
the SCA algorithm at the microlevel now has to perform multiple iterations at each
integration point in order to satisfy the stopping criterion.
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4. Multiscale modelling of damage

In addition to having a higher increase in computational time when compared
to DNS, the concurrent multiscale approach for the case of ductile fracture differs from
the concurrent multiscale approach for the case of brittle fracture in one additional
way. Namely, the increase in the computational time is higher when the modulus of
elasticity E and the initial yield strength σ0

y of the inclusion are degraded, i.e. for “SCA
heterogeneous”. This is true for all test specimens; however, the ratio between times
obtained with “SCA heterogeneous”, i.e. “SCA homogeneous” varies. For example,
this ratio for a 2D double-notched specimen is equal to 1.276, while for a 2D Sandia
fracture challenge specimen its value is higher and amounts to 2.716. A 2D Sandia
fracture challenge specimen represents, from the geometrical point of view, a more
complex specimen and therefore is more sensitive to the changes at the microlevel. The
main “driving force” behind the higher computational time of the “SCA heterogeneous”
analyses is of course a higher level of heterogeneity that the unit cell/unit sphere
now exhibits. In contrast to brittle fracture, where there exists no difference in the
computational efficiency between the “SCA homogeneous” and “SCA heterogeneous”
(as in both cases only one iteration at the microlevel is needed to satisfy the stopping
criterion), the increase in the number of iterations at the microlevel is always on the side
of “SCA heterogeneous” when a fracture in ductile microstructure is considered. This
is because a higher level of heterogeneity, that is present in the “SCA heterogeneous”,
is forcing the self-consistent clustering analysis algorithm to perform a higher number
of iterations than in the case of “SCA homogeneous” - where no level of material
heterogeneity exists. Also, a more complex material and geometrical configuration
at the microlevel can lead to slower convergence at the macrolevel, which further
increases the total computational time of the analysis.

4.4. Complex RVEs analyses
The second stage of testing will focus on the algorithm’s robustness and its ability to
analyze more complex microstructures. The unit cell and unit sphere microstructural
samples represent, from the point of geometrical and material configuration, extraor-
dinarily simple RVEs. In contrast to them, RVEs depicted in Figure 4.9 clearly
represent more realistic microstructures, as they consist of multiple inclusions that all
have specific size, shape and spatial orientation, and are randomly placed in space.

As was the case in the first stage of testing, both brittle and ductile fracture is
considered; however, inclusions, in all analyses, are treated as a linear elastic material.
Mechanical properties of the elastoplastic matrix correspond to those from [250] and
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4.4. Complex RVEs analyses

their values are

E = 228900 MPa, ν = 0.282,

σ0
y = 246.67 MPa, k = 117.95, r = 0.208,

(4.1)

while the mechanical behaviour of inclusions is modelled by means of material properties
of isotropic graphite [251]

E = 25500 MPa, ν = 0.312. (4.2)

Using values of the modulus of elasticity and the Poisson ratio that are provided in
(4.1), i.e. (4.2), k-means clustering was conducted and the results of it are presented
in Figure 4.34 and 4.35.

(a) k = 8 (b) k = 16

Figure 4.34: Results of the k-means clustering for the complex 2D RVE
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4. Multiscale modelling of damage

(a) k = 6 (b) k = 12

Figure 4.35: Results of the k-means clustering for the complex 3D RVE

As can be seen from both figures above, two discretizations will be used - with 8,
i.e. 16 material clusters (for two-dimensional analyses) and 6, i.e. 12 material clusters
(for three-dimensional analyses).

In order to perform phase-field simulation at the macrolevel, the critical value
of strain energy release rate Gc and the length-scale parameter l are mandatory
parameters. For both brittle and ductile fracture, values of critical strain energy release
rate correspond to actual materials and are equal to

brittle fracture → Gc = 1.2597 N/mm,

ductile fracture → Gc = 86.0 N/mm.
(4.3)

The first value in (4.3) corresponds to the value of Gc for the high carbon chromium
alloy E52100, which was taken from the online material database MatWeb [252]. On
the other hand, the value of Gc for ductile fracture analysis is related to the fracture
property of the nodular cast iron obtained by the Tundish method of casting [248].

As far as the length-scale parameter l is considered, its values have not changed.
More precisely, for a given test specimen and analysis (brittle or ductile fracture) the
value of a length-scale parameter is already provided in subsection 4.3.1 and 4.3.2,
i.e. in the initial phase of testing.

In addition to multiscale analysis with 8 and 16 (in 2D), i.e. 6 and 12 (in 3D)
material clusters, a third analysis using DNS and the homogeneous properties of the
RVEs is also conducted. Homogeneous properties of the microstructures depicted in
Figure 4.9, and with the material properties defined through (4.1), i.e. (4.2), can be
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4.4. Complex RVEs analyses

obtained by running a uniaxial tension test with one finite element at the macrolevel.
From the obtained macro stress-strain curve it is possible to calculate macro-values
of: modulus of elasticity E, Poisson ratio ν, initial yield strength σ0

y, Swift’s law
parameter k and Swift’s law parameter r. For the 2D RVE depicted in Figure 4.9
(a) the homogeneous parameters are

E = 195.1 GPa, ν = 0.2815,

σ0
y = 248.9 MPa, k = 44.7468 MPa, r = 0.48836,

(4.4)

while for the 3D RVE depicted in Figure 4.9 (b) the following macroscopic properties
were obtained

E = 216 GPa, ν = 0.28,

σ0
y = 252.8 MPa, k = 51.3573 MPa, r = 0.3865.

(4.5)

Homogenized properties in (4.5) are actually mechanical properties of nodular cast
iron that was obtained through Tundish mode of casting - see [248].

The results that are displayed in the following pages include force-displacement
diagrams, and figures of crack topologies for the analysis conducted using DNS and
proposed concurrent approach with a higher number of clusters - 16 for 2D plane
strain analysis and 12 for 3D analysis. Computational efficiency here is not in the
foreground and therefore computational times are not provided.

4.4.1. Brittle fracture

Both DNS and the concurrent multiscale analyses of brittle fracture include in total four
test specimens: a 2D three-point bending specimen, 2D double-notched specimen, 3D
three-point bending specimen and 3D double-notched specimen. Finite element meshes
and values of the length-scale parameters correspond to those used in subsection
4.3.1, while material properties needed to run all analyses are provided by (4.1),
(4.2), (4.4) and (4.5). Of course, when fracture in brittle materials is considered, only
modulus of elasticity E and the Poisson ratio ν are required. The results obtained by
the two approaches (DNS and concurrent multiscale) in this subsection are expected
to be similar, if not the same, in the region before the fracture occurs, and to a certain
degree different after the fracture had occurred, i.e. in the post-fracture region. The
reason for the expected difference in the post-fracture region is due to a higher level
of material nonlinearity, which should have a significant impact on the discrepancies
between the results obtained by the two approaches.

157



4. Multiscale modelling of damage

0 0.01 0.02 0.03 0.04 0.05
CMOD, mm

0

0.05

0.1

0.15

0.2

F
2,

kN

Homogeneous

k = 8

k = 16

(a) Force-displacement curves

(b) Crack topology - DNS

(c) Crack topology - SCA; k = 16

Figure 4.36: A 2D three-point bending specimen; spectral decomposition (complex
RVE)

As evident from Figure 4.36 (a), both DNS and concurrent multiscale approach
give similar results in terms of force-displacement relationship. The difference between
the two approaches is negligible in the pre-fracture region, i.e. before the reaction force
reaches its peak value. Although not significant, the difference is noticeable in the
post-fracture region, which was expected as a higher degree of material nonlinearity
is included in the simulation. In terms of the crack topologies, both approaches give
qualitatively the same crack paths; however, Figure 4.36 (c) shows a more irregular
crack trajectory as material heterogeneity is now fully present in the analysis.
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Figure 4.37: A 2D double-notched specimen (complex RVE)

In contrast to the previous example, where no significant difference in the
force-displacement relationship was present, a 2D double-notched specimen shows
noticeably different post-fracture behaviour when comparing DNS and concurrent
multiscale approach. After the peak force is reached, results obtained using DNS and
homogeneous material properties depict an abrupt loss in material stiffness. This is
not the case in the concurrent multiscale approach, where material degradation follows
a more gradual path. Before the peak force, both approaches give almost the same
result. Similarly to the previous example, crack topologies are qualitatively similar,
with the trajectory in Figure 4.37 (c) having again a more irregular path.
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Figure 4.38: A 3D three-point bending specimen; spectral decomposition (complex
RVE)

As was the case with a 2D three-point bending specimen (Figure 4.36), force-
displacement curves obtained from the analyses of the 3D three-point bending specimen
also show small discrepancies. However, from both Figure 4.36 (a) and Figure 4.38
(a) it is clear that the difference is even smaller if the 3D configuration is in question.
When looking at Figure 4.38 (b) and (c), it is evident that both approaches give
exactly the same crack paths. Herein, crack topologie obtained using a concurrent
approach exhibits no “noisy” behaviour, which was the case in the previous two
examples. Notice also that the increase in the number of material clusters does not
lead to major differences either in the pre- or the post-fracture behaviour. This is also
observable from Figure 4.36 (a) and 4.37 (a).
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Figure 4.39: A 3D double notch specimen; (complex RVE)

The last example in this subsection, i.e. a 3D double-notched specimen shows
similar behaviour to its 2D counterpart. In terms of force-displacement relationships,
results obtained by both approaches are in excellent agreement in the pre-fracture
region; however, when fracture does occur, DNS gives again a more abrupt drop in
material stiffness. When looking at crack topologies, the crack phase-field obtained
with the concurrent approach (using 12 material clusters) shows again a more irregular
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4. Multiscale modelling of damage

and realistic crack propagation curve. Also, notice from Figure 4.39 (a) that in this
example there are more noticeable differences between the analysis run with 6, i.e. 12
material clusters.

4.4.2. Ductile fracture

As was the case in the previous subsection, DNS and the concurrent multiscale analyses
in this subsection will also include four test specimens in total: a 2D unnotched
specimen, 2D double-notched specimen, 3D unnotched specimen and 3D double-
notched specimen. Finite element mesh and values of the length-scale parameters are
also already defined - see subsection 4.3.2. Unlike the previous subsection, in the
case of ductile fracture, all five material parameters provided in (4.1), (4.4) and (4.5)
are required in order the perform simulations.

Here it is important to note that unlike the homogenized (macroscopic) values
of the modulus of elasticity E and the Poisson ratio ν, the homogenized parameters
that describe the hardening curve (σ0

y, k and r) are not uniquely determined. The
reason for this lies in: (1) the way in which the initial yield strength is determined, and
(2) the value of the macroscopic strain at which the uniaxial tension was performed.

The first aspect directly impacts the value of the macroscopic initial yield
strength σ0

y. The conventional way of determining σ0
y, which is used in this dissertation,

comes down to evaluating the value of equivalent (von Mises) stress at the equivalent
plastic deformation of 0.2 %. This means that the σ0

y in both (4.4) and (4.5) was
obtained for εp

eq = 0.002. However, different values of the macroscopic equivalent
plastic strain εp

eq can be used and therefore different values of the initial macroscopic
yield strength σ0

y can be obtained. In reality, at εp
eq = 0.002 the material has already

entered the elastoplastic region and started to accumulate plastic deformation.
The second aspect is related to the values of k and r. More precisely, these

parameters are obtained by performing a non-linear curve fit of the macroscopic data
that consists of homogenized equivalent plastic strain and homogenized von Mises
stress. Depending on the data that is available, the non-linear curve fit will produce
different values of k and r. In this dissertation, the uniaxial tension on one 2D/3D
finite element was performed under a total macroscopic longitudinal strain of 15 %. In
other words, an element with a side length of one millimeter was loaded by the uniaxial
displacement of 0.15 millimeters. As in the first aspect, herein it is also acceptable to
use different values of the macroscopic displacement, i.e. deformation.
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Figure 4.40: A 2D unnotched specimen (complex RVE)

From Figure 4.40 (a) it is clear that the trend of the same force-displacement
relationship, before the peak force is reached, is again present in the case of fracture
in ductile heterogeneous material. However, herein, there is a significant difference
between the peak force obtained by DNS and the concurrent multiscale approach.
From Figure 4.40 (a) it is also visible that the rate of material degradation is
noticeably higher in the case of multiscale analysis. The main factor that influences
this behaviour is the value of the macroscopic initial yield strength, which in the case
of homogeneous material is determined as the value of homogenized von Mises stress at
the homogenized equivalent plastic strain of 0.2 %. This means, that the homogeneous
material enters the elastoplastic region only when von Mises stress exceeds the value
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4. Multiscale modelling of damage

of 248.9 MPa, while for the heterogeneous material that transition will happen for
lower values of the macroscopic von Mises stress. In terms of crack topologies, both
DNS and the concurrent multiscale approach do not provide similar results - not even
qualitatively. This is again a direct consequence of material parameters determination
that was discussed in subsection 4.4.2.
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Figure 4.41: A 2D double-notched specimen (ductile fracture; complex RVE)

As can be seen from Figure 4.41 (a), the difference in the rate of material
degradation between the two approaches is even more significant for the case of a
2D double-notched specimen. When compared to the concurrent approach, the peak
force obtained by the DNS sits on an 18.6 % higher value, which is more than double
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4.4. Complex RVEs analyses

when compared to the 2D unnotched specimen where the peak force for the case of
DNS was 7.94 % higher - see Figure 4.40 (a). On the other hand, crack topologies
depicted in Figure 4.41 (b) and (c) are qualitatively similar, which wasn’t the
case for the 2D unnotched specimen. However, the damaged region obtained by the
concurrent multiscale approach (using 16 material clusters) is more localized than the
one obtained by the DNS (using homogeneous material properties).
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Figure 4.42: A 3D unnotched specimen (complex RVE)

Figure 4.42 (a) shows a negligible difference between the peak force obtained
by the two approaches, with the value obtained by the DNS being only 1.4 % higher.
However, a more “aggressive” rate of material degradation is again present in the
case of a concurrent multiscale approach. Notice also that this faster rate of material
degradation is not characteristic for the whole analysis, but rather for one portion
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4. Multiscale modelling of damage

of it. At some point, the degradation rate for the case of a concurrent approach falls
below that of a DNS. The same phenomenon is also observable in Figure 4.40 (a)
and Figure 4.41 (a). Crack topologies on the other hand are quite similar for both
approaches; however, with again more localized damage zone when the concurrent
approach is considered.
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Figure 4.43: A 3D double-notched specimen (ductile fracture; complex RVE)
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From the last figure in this dissertation, it is clear that the 3D double-notched
specimen behaves similarly to the 3D unnotched specimen. Figure 4.43 (a) shows
again a higher and faster material degradation when microstructural effects are taken
into account. Although the peak force in all previous examples was higher for the DNS
(homogeneous material), in this case, the opposite is true. However, the concurrent
approach gives a value of the peak force that is only 1.1 % higher when compared
to DNS. Last but not least, crack phase-fields depicted in Figure 4.43 (b) and
(c) are in good agreement, with again more localized damage zone being present
when the concurrent multiscale approach is in question. Also, notice that for all the
examples shown in this subsection, no difference in the force-displacement relationship
is observed when different cluster discretizations are considered.
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5. Conclusions and future work

5.1. Achievements

Numerical modelling of damage and fracture in heterogeneous materials represents an
ongoing challenge in the field of computational mechanics. Since fracture under any
kind of loading is highly sensitive to the microstructure that forms the material, the
use of classical phenomenological constitutive relations that characterize the average
behaviour of the material is not an adequate solution. For a more realistic and accurate
description of damage and fracture in heterogeneous materials, novel and advanced
modelling techniques that include microstructural effects in the calculation are required.

Concurrent multiscale methods are one category of such techniques since they
possess the ability to link the microstructure (which is characterized by the represen-
tative volume element, i.e. RVE) and the behaviour of the material at the macrolevel
through the process of homogenization. If utilized exclusively using DNS, concurrent
multiscale methods come at the cost of high computational resources and long com-
putational time. Even without the inclusion of the damage calculation, concurrent
multiscale methods still exhibit the previously mentioned shortcomings. However, when
numerical modelling of damage comes into the equation, the number of issues increases
even further. In addition to high computational costs, there are also problems related
to stable convergence, non-objective results and questionable representativeness of
the RVE. Resolving one problem usually creates a new one, or requires additional
sacrifices and compromises in terms of computational efficiency. Also, the goal of every
multiscale algorithm should be generality and robustness, i.e. the ability to model a
large suite of constitutive laws and materials with complex and arbitrary microstruc-
tures. Last, but not least, the issue of mesh dependence at the macrolevel must not
be neglected. The choice of either discrete (discontinuous) or diffusive (continuum)
damage model at the macrolevel requires adequate treatment. If a discrete damage
modelling approach is utilized at the macrolevel, mesh dependence needs to be resolved
by introducing additional criteria for crack initiation and propagation as well as the
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remeshing algorithm (for resolving discontinuity at the element’s edge) or some kind
of element enrichment (for resolving discontinuity on the element itself). In the case
of a diffusive damage approach, pathological mesh dependence at the macrolevel is
resolved only if a non-local approach, driven by a non-local variable, is introduced.

The main objective of the research presented in this dissertation was to develop
and implement an accurate, robust, computationally efficient but also general concur-
rent multiscale procedure for modelling of damage and fracture in ductile heterogeneous
materials. By combining the best features of the reduced order homogenization method
called self-consistent clustering analysis (SCA) and the phase-field fracture method,
the research attempted to satisfy all the necessary requirements of a highly efficient
multiscale damage algorithm. The SCA has been given the task of resolving the RVE
boundary value problem at the microlevel and determining the average (homogenized)
properties for a given value of macro small strain tensor. On the other hand, the
phase-field method was utilized at the macrolevel in order to determine the value of
material degradation from the homogenized properties that were obtained by the SCA.
The use of reduced-order homogenization method, such as the SCA, at the microlevel
ensures accuracy and computational efficiency, while the presence of the non-local
continuum damage model, such as phase-field, provides mesh independence and an
accurate description of complex material processes that arise during the formation
and propagation of crack(s). The absence of a damage algorithm at the microlevel and
the separation of two methods helps to maintain a clear distinction between two scales
but also provides an additional level of numerical stability.

In this dissertation, the SCA is first implemented in the commercial software
Matlab. First for small, and later for finite elastoplastic strains. The implemented SCA
algorithm has been thoroughly tested on several different microstructures loaded by
different macro-strain constraints for both two- and three-dimensional configuration.
The developed algorithm has been proven capable of accurate and computationally
efficient calculation of the homogenized stress-strain relations when compared to the
DNS, which was performed using commercial finite element software Abaqus. Unfortu-
nately, the algorithm’s behaviour in finite strain configuration was not satisfactory
and therefore the problem of large elastoplastic strains was not considered in the
concurrent procedure.

After the successful implementation of the SCA algorithm into Matlab, in order
to perform concurrent analyses, the SCA was implemented into Abaqus (using user
UEL and UMAT subroutines) and combined with the already tested and verified
phase-field staggered algorithm. The testing of the developed concurrent approach
has been performed in two stages. In the initial stage of testing, the accuracy and
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computational efficiency of the proposed procedure have been thoroughly examined.
The testing was performed on several geometrical specimens with simple unit cell, i.e.
unit sphere microstructures at the microlevel. For every analysis, force-displacement
diagram, crack phase-field and overall time needed to complete the analysis has been
provided. The robustness of the proposed approach was put to the test in the second
phase, where more complicated microstructures were present at the microlevel. Both
the first and the second phase of testing included brittle and ductile heterogeneous
materials.

The main contributions of this dissertation are made in the field of multiscale
modelling of damage and fracture in brittle and ductile heterogeneous materials. The
main contributions are as follows:

1. Implementation of the SCA into commercial finite element software Abaqus

• The SCA algorithm has been initially developed and tested in commercial
software Matlab. With the goal of conducting concurrent multiscale simula-
tions, the algorithm was later implemented into commercial finite element
software Abaqus.

• Multiple tests on different 2D and 3D microstructures have shown a notice-
able level of computational efficiency and overall accuracy of homogenized
results, which is crucial in every multiscale procedure. In addition, it has
been shown that some forms of macro-strain constraints, under certain
material configurations at the microlevel, should be avoided.

• The SCA algorithm was initially developed for the description of small
elastic and elastoplastic deformations, and later on was extended to model
large elastoplastic deformations. However, the algorithm in the case of
finite strains shows unexpected behaviour and is not able to provide satis-
factory results. For that reason, an additional and detailed mathematical
investigation will be necessary in order to resolve this issue.

2. Combining the phase-field method and SCA into one unique multiscale procedure

• The developed concurrent multiscale approach is proven to be correct and
computationally efficient, which is shown by the multiscale simulations
carried out on several geometrical specimens for both brittle and ductile
fracture.

• The approach is also robust, which is again evident from simulations that
were carried out on different geometrical specimens, where more complex
microstructure was present at the microlevel.
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• Ultimately, the approach is general and adaptive. More precisely, the
extension to other material types, e.g. hyperelastic materials, and other
plasticity models such as the Drucker-Prager or Mohr-Columb yield criterion
represents a relatively simple procedure.

5.2. Suggestions for future work
Although there are many research directions based on the work in this dissertation,
three main suggestions include: (1) the improvement of the SCA accuracy, (2) resolving
issues concerning finite strain analysis using SCA and (3) calculation of the phase-field
fracture parameters (l, and Gc) directly from the microstructure.

Even though the data-driven SCA homogenization algorithm shows good
accuracy for various heterogeneous material systems, its ability to provide highly
accurate results in three-dimensional configuration is noticeably lower in contrast
to two-dimensional configuration. In order to ensure higher levels of accuracy in
three dimensions, the offline stage of the SCA must be improved. This improvement
can be achieved in two ways: (1) discretization of the complex 3D RVE with a
higher number of voxels, and (2) improvements in the material characterization of
the mechanical behaviour of each voxel. The first improvement does not represent
something complicated or advance and can be achieved by using either an FFT-based
numerical solver or by applying an iterative method (instead of direct) for solving the
FEM linear system of equations. Both approaches will allow for a significantly higher
number of voxels in the data collection stage as a direct solution of the DNS problem
using FEM requires a noticeably higher computational capacity in terms of RAM.
The second improvement is more complex and includes the use of additional material
descriptors, besides the strain concentration tensor, to characterize each material
point and to improve the quality of k-means clustering. Which additional information
would improve the clustering analysis remains an open question. In addition to the
improvements in the offline stage, the SCA’s online stage, i.e. the self-consistent scheme
is a part that also needs a more thorough investigation. The self-consistent scheme
has been proposed to improve the accuracy; however, the mechanism behind this
procedure requires better understanding, which can be achieved only through rigorous
mathematical testing.

The second suggestion is related to the situation when finite strains are present
in the analysis. As was shown in subsection 2.6.1, the SCA algorithm is unable
to provide satisfactory results when large elastoplastic deformations occur. In the
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regression based scheme, the only way of conducting the analysis was to decompose
the microstructure into k number of material clusters that is equal to the number of
material phases. However, this discretization is not sufficient and cannot give accurate
results for various types of heterogeneous material systems. The projection based
scheme on the other hand did not experience any stability issues when dealing with
finite strain configuration; however, its accuracy wasn’t at the desired level, even with
a relatively high number of material clusters. This area of the SCA obviously requires
additional analysis and testing, as there should be a clear reason, i.e. explanation
for why the regression based scheme performs the analysis correctly only when the
number of material clusters is equal to the number of material phases. The focus
should be on the derivation of the Lippmann-Schwinger equation for the case of finite
strains, which, as stated in subsection 2.3.2 is not physically justified. As a good
starting point, derivation based on the second Piola-Kirchhoff stress tensor S and the
right Cauchy–Green deformation tensor C should be thoroughly investigated. Also,
the use of the mentioned tensors could be a better choice, in contrast to the first
Piola-Kirchhoff stress tensor P and the deformation gradient F, when the regression
based scheme is utilized in the online stage.

The last, i.e. third suggestion is not related to the SCA but rather the phase-
field fracture method itself. The length scale parameter l and the critical value of the
energy release rate Gc are necessary parameters in every phase-field simulation and
represent key factors that determine a point of crack formation and the rate of its
propagation. In this research, their macroscopic values have been “directly” prescribed
and were not connected, in any way, to the RVE that was analyzed. In reality, both
geometrical and material configuration at the microlevel have an impact on the value
of l and Gc at the macrolevel. Therefore, homogenized (macroscopic) values of both
l and Gc should be calculated directly from the RVE itself, as in that way all the
material properties at the macrolevel would come directly from the information at
a lower level. Performing a uniaxial tension FEM analysis on the RVE seems like a
good starting point, as it would allow for observation of the RVE’s fracture property
directly using the most accurate approach.

With all the above, the utilization of neural networks would also contribute
to the effectiveness of the SCA. A well trained neural network can increase the
computational efficiency of the SCA even further, thus reducing the time needed for
the conduction of the fully concurrent multiscale approach. The use of neural networks
in the field of computational mechanics has experienced a significant upswing in recent
years, which is why they should be considered as a possible upgrade to the online
phase of the SCA algorithm.
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A. Inverse Fourier transform of Green’s
function for small strains

Originally, Green’s function for the case of small strains has been derived in subsection
2.4.1 in the Fourier space as

Φ̂0
ijkl (ξ) = 1

4µ0ξmξm

(δikξjξl + δilξjξk + δjlξiξk + δjkξiξl) −

λ0 + µ0

µ0 (λ0 + 2µ0)
ξiξjξkξl

ξmξmξnξn

,

(A.1)

with ξ, i.e. ξi being a coordinate vector in Fourier space. Unlike the spatial domain, the
Fourier domain is defined through frequencies, which as well as spatial coordinates, take
values between negative and positive infinity. For a one-dimensional scalar function y,
Fourier transform F is defined through a definite integral

F [y (x))] = ŷ (ξ) = 1
2π

∫ ∞

−∞
y (x) exp (−iξx) dx, (A.2)

where i denotes complex number, ŷ indicates that the function is defined in the
frequency domain, while ξ is the one-dimensional coordinate in the Fourier space. On
the other hand, inverse Fourier transform F −1 is also defined as a definite integral
and allows for a function in the frequency domain to be transformed into a spatial
domain, i.e.

F −1 [ŷ (ξ)] = y (x) =
∫ ∞

−∞
ŷ (ξ) exp (iξx) dξ. (A.3)

For a two-dimensional scalar function y, the Fourier transform F can be written as

F [y (x1, x2))] = ŷ (ξ1, ξ2) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
y (x1, x2) exp [−i (ξ1x1 + ξ2x2)] dx1dx2,

(A.4)



while its inverse is then

F −1 [ŷ (ξ1, ξ2))] = y (x1, x2) =∫ ∞

−∞

∫ ∞

−∞
ŷ (ξ1, ξ2) exp [i (ξ1x1 + ξ2x2)] dξ1dξ2.

(A.5)

Since definite integrals in (A.2) and (A.4) are defined on a full spectrum, i.e. from neg-
ative to positive infinity, any function y, either one-dimensional or multi-dimensional,
that undergoes Fourier transform has to obey

lim
xi→ ±∞

y (xi) = 0. (A.6)

If this is not the case, the definite integral will go to positive/negative infinity, making
both Fourier and inverse Fourier transform undetermined. An important property of
the Fourier transform, needed for this derivation, refers to a derivative of a scalar
function y. More precisely, for the Fourier transform of the derivative of function y, it
is valid to write

F [y′ (x)] = iξF [y (x)] . (A.7)

This can be proven with the use of integration by parts, i.e.

1
2π

∫ ∞

−∞
y′ (x) exp (−iξx) dx = 1

2π [y (x) exp (−iξx)] |∞−∞−

1
2π

∫ ∞

−∞
y (x) exp (−iξx) (−iξ) dx.

(A.8)

Using (A.6), the first term on the right-hand side of Eq. (A.8) vanishes leaving

1
2π

∫ ∞

−∞
y′ (x) exp (−iξx) dx = 1

2π iξ
∫ ∞

−∞
y (x) exp (−iξx) dx, (A.9)

which is the identity (A.7). Following this procedure, Fourier transform for the higher-
order derivative can also be derived. For a Fourier transform of a fourth-order derivative
of a one-dimensional scalar function y, the rule is

F
[
y(IV ) (x)

]
= ξ4F [y (x)] , (A.10)

where y(IV ) denotes the fourth-order derivative of function y.
A direct application of the inverse Fourier transform F −1 on the (A.1) would

eventually produce extremely complex integrals, whose solution would be almost
impossible to obtain. Therefore, the problem of the transformation from frequency
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to spatial domain will be solved gradually. From [227], the Fourier transform of the
functions

g (x1, x2) = 1
16π

(
x2

1 + x2
2

)
ln
(
x2

1 + x2
2

)
= 1

16πxixi ln (xjxj) , (A.11)

and

h (x1, x2, x3) = − 1
8π

√
x2

1 + x2
2 + x2

3 = − 1
8π

√
xixi, (A.12)

takes the following form

F [g (x1, x2)] = 1
(ξ2

1 + ξ2
2)2 = 1

ξiξiξjξj

, (A.13)

F [h (x1, x2, x3)] = 1
(ξ2

1 + ξ2
2 + ξ2

3)2 = 1
ξiξiξjξj

. (A.14)

Moreover, functions g and h are fundamental solutions to the biharmonic differential
equation in 2D

∂4g (x1, x2)
∂xi∂xi∂xj∂xj

= 0, (A.15)

and 3D

∂4h (x1, x2, x3)
∂xi∂xi∂xj∂xj

= 0. (A.16)

Using partial fractions, the initial form of Green’s function, i.e. Eq. (A.1) can be
rewritten as

Φ̂0
ijkl (ξ) = 1

µ0

[
ξpξp (δikξjξl + δilξjξk + δjlξiξk + δjkξiξl) − 4ξiξjξkξl

4ξmξmξnξn

]
+

1
λ0 + 2µ0

ξiξjξkξl

ξmξmξnξn

,

(A.17)

and by applying identities in (A.10), (A.13) and (A.14) on a newly written Eq. (A.17),
Green’s function in the spatial domain is obtained for the case of two-dimensional
analysis

Φ0
ijkl (x,x′) = 1

4µ0

[
δikg

(ppjl) + δilg
(ppjk) + δjlg

(ppik) + δjkg
(ppil) − 4g(ijkl)

]
+

1
λ0 + 2µ0 g

(ijkl),
(A.18)
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as well as three-dimensional analysis

Φ0
ijkl (x,x′) = 1

4µ0

[
δikh

(ppjl) + δilh
(ppjk) + δjlh

(ppik) + δjkh
(ppil) − 4h(ijkl)

]
+

1
λ0 + 2µ0h

(ijkl).
(A.19)

In Eq. (A.18) and (A.19) indices in the superscript indicate the derivation of the
function. For example, g(ijkl) implies

g(ijkl) = ∂4g (x1, x2)
∂xi∂xj∂xk∂xl

, (A.20)

while h(ppik) is equal to

h(ppkl) = ∂4h (x1, x2, x3)
∂xp∂xp∂xi∂xk

. (A.21)
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B. Inverse Fourier transform of Green’s
function for finite strains

The procedure for obtaining Green’s function in the spatial domain for the case of
finite strains follows the same procedure that was outlined in Appendix A. To begin
with, Green’s function derived in subsection 2.4.2 for the case of finite strains is
given by

Φ̂0
ijkl (Ξ) = 1

µ0ΞmΞm

(
δikΞjΞl − λ0 + µ0

λ0 + 2µ0
ΞiΞjΞkΞl

ΞnΞn

)
. (B.1)

where Ξ, i.e. Ξi is a coordinate vector in the Fourier space. Once again, it should be
noted that both ξi and its capital Ξi represent the same coordinate in the frequency
domain, as Fourier space does not discriminate between the current and reference
configuration. The only reason for choosing Ξi over ξi is the additional clarity and
the consistency with the capitalization of the position vector x that is present in the
spatial domain.

As in the case of small strains, with the use of partial fractions, Green’s function
in (B.1) is rewritten in the following form

Φ̂0
ijkl (Ξ) = 1

µ0

(
δikΞjΞlΞpΞp − ΞiΞjΞkΞl

ΞmΞmΞnΞn

)
+ 1
λ0 + 2µ0

ΞiΞjΞkΞl

ΞmΞmΞnΞn

. (B.2)

Now, using the fourth-order derivative rule of the Fourier transform of a one-dimensional
scalar function Y

F
[
Y (IV ) (X)

]
= Ξ4F [Y (X)] , (B.3)

and having in mind the values of a Fourier transform for scalar functions G and H are

G (X1, X2) = 1
16π (XiXi) ln (XjXj) → F [G (X1, X2)] = 1

ΞiΞiΞjΞj

, (B.4)



H (X1, X2, X3) = − 1
8π

√
XiXi → F [H (X1, X2, X3)] = 1

ΞiΞiΞjΞj

, (B.5)

Green’s function in the spatial domain for finite strains is obtained for the case of
two-dimensional analysis

Φ̂0
ijkl (X,X′) = 1

µ0

(
δikG

(ppjl) −G(ijkl)
)

+ 1
λ0 + 2µ0G

(ijkl), (B.6)

as well as three-dimensional analysis

Φ̂0
ijkl (X,X′) = 1

µ0

(
δikH

(ppjl) −H(ijkl)
)

+ 1
λ0 + 2µ0H

(ijkl). (B.7)

In Eq. (B.6) and (B.7) indices in the superscript indicate the derivation of the function.
For example, G(ijkl) implies

G(ijkl) = ∂4G (X1, X2)
∂Xi∂Xj∂Xk∂Xl

, (B.8)

while H(ppik) is equal to

H(ppik) = ∂4H (X1, X2, X3)
∂Xp∂Xp∂Xi∂Xk

. (B.9)
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